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Preface

This volume gathers the proceedings of the last three editions of the international
conference on Particle Systems and Partial Differential Equations (PSPDE), namely
the edition of 2017 at the University of Nice Sophia Antipolis, Nice, France, from
27th November to 1st December; the edition of 2018, at the University of Palermo,
Italy, from 19th to 23rd November and, finally, the edition of 2019, at IST,
University of Lisbon, from 2nd to 6th December.

These meetings were intended to bring together distinguished active researchers
working in the areas of probability and partial differential equations, in view of
presenting and discussing their latest scientific results in both areas. Many young
researchers from different countries attended the meetings and had the opportunity
to interact with other participants and follow the mini-courses included in the
conference programme.

This volume includes eighteen contributed papers authored by conference par-
ticipants on interesting and valuable topics in the fields of probability theory, partial
differential equations and kinetic theory.

We believe that this volume will be of great interest to probabilists, analysts and
also to those mathematicians with a general interest in mathematical physics,
stochastic processes and differential equations, as well as those physicists whose
work intersects with statistical mechanics, statistical physics and kinetic theory.

We would like to take this opportunity to extend our thanks to all the speakers,
and to the participants, for contributing to the success of this series of meetings.

Lastly, we wish to gratefully acknowledge the financial support provided by the
following sponsors:

ANR EDNHS 14-CE25-0011, France, Laboratoire J.A. Dieudonné, Université
Côte d’Azur, France.

ERC StG 715734.
Gruppo Nazionale per la Fisica Matematica-Istituto Nazionale di Alta

Matematica “Francesco Severi” (GNFM-INdAM), Italy.
Centre for Mathematical Analysis, Geometry and Dynamical Systems of the

University of Lisbon.
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Centre of Mathematics, Fundamental Applications and Operations Research
of the University of Lisbon.

Centre of Mathematics of the University of Minho.
Dipartimento di Matematica e Informatica (DMI), Università degli studi di

Palermo.
We really hope that you enjoy reading this book!

Nice, France Cédric Bernardin
Palaiseau, France

November 2020

François Golse
Lisbon, Portugal Patrícia Gonçalves
Palermo, Italy Valeria Ricci
Braga, Portugal Ana Jacinta Soares
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Brief Discussion of the Lr-Theory for the
Boltzmann Equation: Cutoff and
Non-cutoff

Ricardo J. Alonso

Abstract In this manuscript we go over the main ideas of the Lr -theory, with r ∈
[1,∞], for the homogeneous Boltzmann equation with Maxwell and hard potential
kernels. A discussion for the cutoff and non-cutoff cases is presented in a concise
manner. In the non-cutoff case the whole range of singularity is addressed.

Keywords Boltzmann equation · Propagation of norms · Regularity · Fractional
diffusion

1 Introduction

We briefly discuss the main ideas around the Lr -theory of the Boltzmann equation in
the so-called cutoff and non-cutoff cases. We restrict ourselves to the Maxwell and
hard potential kernels.

Let us recall that the homogeneous Boltzmann equation is given by

∂t f (v) = Qγ,b( f, f )(v) , (t, v) ∈ R
+ × R

d , d ≥ 2 is the dimension. (1)

The nature of the particle interaction is described in the collision operator Qγ,b and,
more specifically, in its collision kernel

B(x, y) = xγ b(y) , with x ≥ 0, y ∈ [0, 1], γ ∈ (−d, 1] .

The parameter γ ∈ (−d, 1] is related to the nature of the kinetic potential. The
potential is soft if γ ∈ (−d, 0) and hard if γ ∈ (0, 1]. The case γ = 0 is addressed
as Maxwell molecules. This parameter is in charge of the tail’s behaviour of the
solutions to the equation. In particular, the so-called generation of exponential tails
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2 R. J. Alonso

for solutions to Eq. (1) happens when γ > 0. In this discussion we only consider the
case γ ∈ [0, 1] since the soft potential case requires a different approach.

The function b(·) > 0 is called angular kernel and it is in charge of modelling the
angular scattering properties of the particle interaction. In fact, the singular nature of
this function divides the analysis into cutoff and non-cutoff cases. More precisely,
we have that

b ∈ L1(Sd−1) for the cutoff case, and

sind−2 θ b(cos θ) ≈ D

θ1+2s
, θ ≈ 0 , s ∈ (0, 1) for the non-cutoff case .

(2)

The support of b is assumed in [0, 1] thanks to a symmetrisation argument. The
explicit expression of the collision operator is given by

Qγ,b( f, g)(v) = Q+
γ,b( f, g) − Q−

γ,b( f, g)

:=
∫
Rd

∫
Sd−1

f (v′)g(v′
∗)B(|u|, û · w)dwdv∗

− f (v)
∫
Rd

∫
Sd−1

g(v∗)B(|u|, û · w)dwdv∗ ,

where the collisional variables are defined as

v′ := v − u−, v′
∗ := v∗ + u−, u := v − v∗, u± := u ± |u|w

2
.

The scattering angle θ is defined as cos θ := û · w with the understanding that uni-
tary vectors are denoted as û := u/|u|. The relevant initial data is assumed to be
nonnegative and with finite mass and energy,

∫
Rd

f0〈v〉2dv < ∞, where 〈v〉 :=
√
1 + |v|2. (3)

It is well known that, under these conditions, the Boltzmann equation (1) has a
unique weak solution f (t, v) ≥ 0 that conserves mass, momentum and energy, see
for instance [11, 15, 38, 43].

An important remark is that for the non-cutoff case b /∈ L1(Sd−1), as a conse-
quence Q±

γ,b are not finite quantities. In this way, the collision operator cannot be
written separately as gain minus loss operators, that is, it must be kept as a whole

Qγ,b( f, g)(v) :=∫
Rd

∫
Sd−1

(
f (v′)g(v′

∗) − f (v) f (v∗)
)
B(|u|, û · w)dwdv∗ .

Such operator is well defined for sufficiently smooth functions f and g even for
a singular b as described previously in (2) for the non-cutoff case. The techniques
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presented here, cutoff and non-cutoff, are based on energymethods, thus, they exploit
the weak formulation of the collision operator, namely, for any suitable test function
ψ := ψ(v)

∫
Rd

Qγ,b( f, g)(v)ψ(v)dv =
∫
Rd

∫
Rd

∫
Sd−1

f (v)g(v∗)

×
(
ψ(v′) + ψ(v′

∗) − ψ(v) − ψ(v∗)
)
B(|u|, û · w)dwdv∗dv .

(4)

In the non-cutoff case, the weak formulation of the collision operator can be inter-
preted, to some extend, as an integration by parts of a fractional Laplacian operator.

2 The Cutoff Case

Propagation of Lr -norms for the Boltzmann equation with different degrees of cutoff
in the scattering kernel b and weights in the norms has been of central interest to the
community. Some papers dealing with such topic for the hard potential model γ > 0
are [5, 11, 13, 25, 39, 45, 47] for r ∈ (1,∞), [5, 11, 16, 19, 22, 28, 29] for r = ∞,
and [45] with r ∈ [1,∞] for the Maxwell molecules model γ = 0. Propagation of
exponentially weighted norms is more rare in the literature but can be found in [5,
11, 19, 28, 29]. See also [5, 10, 39] for similar results for propagation of Sobolev
norms in the hard potential case.

2.1 Propagation of the Lr-Norm for the Cutoff Case

There are mainly three ingredients on which the propagation of Lebesgue norms in
the cutoff case is based on. First, the gain part Q+

γ,b( f, g) of the collision operator
enjoys compactness properties under cutting conditions on the collision kernel B.
This observation has been used since the early stages of the development of the
mathematical theory for the Boltzmann equation [22, 30, 31] and, in particular, in a
series of influential papers [21, 27, 37, 39, 46]. This type of result is known in this
context of Lebesgue norm propagation as gain of integrability for the gain collision
operator. The following version of this result can be found in [9, 11].

Proposition 1 (Gain of integrability in Lr ) Let r ≥ 1 and d ≥ 3

{
r̃ = d r

r(d−1)+1 , θ = 2
r ′ if r ∈ [1, 2] ,

r̃ = d r
2d−1 , θ = 2

r if r ∈ [2,∞) .

Fix h ∈ Lr̃ (Rd), ε > 0, and assume a cutoff Maxwell potential
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B(|u|, û · w) = 1|u|≥ε b(û · w)

with scattering kernel b ∈ L∞(Sd−1). Then,

||Q+
B (g, h)||Lr ≤ Cd

ε
d−1
2 θ

‖b‖∞‖g‖L1

∥∥h∥∥
Lr̃ . (5)

Proposition 1 simply states that the Lr -norm of the gain operator can be controlled
by a lower norm, since r̃ < r , for particular cutoff kernels B.

Second, an idea inspired on the first, the decomposition of a general angular
scattering kernel b ∈ L1(Sd−1) as

b = b∞ + bres , b∞ , bres ≥ 0 , b∞ ∈ L∞, ‖bres‖L1 ≤ εγ ,

and the decomposition of the kinetic part as

|u|γ = |u|γ (
1|u|<ε + 1|u|≥ε

)
.

Using such splitting on a general cutoff kernel B and some classical convolution-type
estimates for the gain collision operator, see for instance [7, 8, 34], it is not difficult
to arrive to an estimate of the following form.

Proposition 2 Letγ > 0, b ∈ L1(Sd−1), andr ∈ (1,∞). For any ε > 0 the collision
operator satisfies the following estimate

∫
Rd

Q+
γ (g, h)(v)h(v)r−1dv ≤ εγ Cd(b) ‖〈·〉γ (1+1/r)g‖L1‖〈·〉γ /r h‖rLr

+ Cd(b, ε)‖〈·〉γ (1+1/r)g‖L1‖〈·〉γ /r h‖1−δ
L1 ‖〈·〉γ /r h‖r−1+δ

Lr ,

(6)

where δ = r
r−1

r̃−1
r̃ = r ′

r̃ ′ ∈ (0, 1).

In other words, the gain collision operator for general B has two components, one
that is large but compact related to the kernel parts b∞ and |u|γ 1|u|≥ε controlled by
the latter right term in (6), and a second that is singular but small related to bres
and |u|γ 1|u|<ε controlled by the former right term. This idea of decomposing the
collision operator in compact-singular parts has been very successful for the spectral
analysis of the linearised collision operator as well, see [33] and references therein.
Also, observe that the L1-norms in (6) are controlled by conservation of mass and
energy for γ ∈ [0, 1]. Now that Proposition 2 has provided a suitable upper bound
for the gain collision operator, the last ingredient is a suitable lower bound for the
loss part of the collision operator. Indeed, it is possible to control from below the
loss collisional operator using only the physical properties of conservation of mass
and energy, and propagation of a higher-than-energy moment for solutions. For the
cutoff hard potential and Maxwell cases, both cutoff and non-cutoff, the propagation
of higher moments is a well known fact, see for instance [6, 17, 18, 20, 40, 42, 44].
The explicit control that one can show is given by the inequality



Brief Discussion of the Lr -Theory for the Boltzmann Equation: Cutoff and Non-cutoff 5

(
f (t, ·) ∗ | · |γ )

(v) ≥ c( f0)〈v〉γ , γ ∈ [0, 1] , (7)

for an explicit constant c( f0) > 0 depending on mass, energy, and a higher-than-
energy moment of f0. An elementary proof of this estimate can be found in [11, 12].
Proposition 2 and the lower bound (7) can then be used in an energy estimate type of
argument that leads to the following theorem. Details of this discussion, including
the Maxwell case, can be found in [11, 13].

Theorem 1 (Propagation of Lebesgue norms cutoff case) Fix r ∈ (1,∞) and
assume that the initial data satisfies f0 ∈ L1

2 ∩ Lr . Let f be a solution to (1) with
γ ∈ [0, 1] and b ∈ L1(Sd−1). Then,

1

r

d

dt
‖ f ‖rLr ≤ C(b, f0) − c( f0)‖ f ‖rLr .

As a consequence, it follows that

sup
t≥0

‖ f (t)‖Lr ≤ max
{
‖ f0‖Lr ,

(C(b, f0)

c( f0)

)1/r}
.

We observe here that Theorem 1 can not be applied to r = ∞. The reason is that the
constant C(b, f0) degenerates as r → ∞ because δ → 1 in (6). The case r = ∞ is
treated separately.

2.2 Propagation of the L∞-Norm for the Cutoff Case

Propagation of the L∞-norm is a byproduct of the L2-norm propagation. We will see
in the next section that this is the case for the non-cutoff case as well. A first proof of
an estimation on the essential supremum for solutions was given in [16] under more
stringent cutoff on b, say bounded. The approach that we present here here can be
found in [11].

Akeyobservation is to invoke classical convolution-type inequalities for theBoltz-
mann equation using the idea of the decomposition b = b∞ + bres . More specifically
one has the estimates

‖Q+
|·|γ ,b∞

(
f, g

)‖L∞(Rd ) ≤ Cb∞‖〈·〉γ f ‖L2(Rd )‖〈·〉γ g‖L2(Rd ) , and

Q+
|·|γ ,bres

(
f, g

)
(v) ≤ C‖bres‖L1(Sd−1)‖ f ‖L∞(Rd )‖〈·〉γ g‖L1(Rd ) 〈v〉γ ,

(8)

which are particular applications of the so-called Young inequality for the gain colli-
sion operator [7, 8, 34]. With estimates (8) at hand, let us now implement an energy
estimate argument to control such L∞-norm for solutions to the Boltzmann equa-
tion (1). Considering a initial datum such that ‖〈·〉γ f0‖L2(Rd ) < ∞, propagation of
L2-norms implies that
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sup
t≥0

‖〈·〉γ f (t, ·)‖L2(Rd ) < C( f0) .

The upper bound (8) and lower bound (7) give us that

∂t f (v) = Q+
|·|γ ,b( f, f )(v) − f (v)

(
f ∗ | · |γ )

(v)

= Q+
|·|γ ,b∞( f, f )(v) + Q+

|·|γ ,bres
( f, f )(v) − f (v)

(
f ∗ | · |γ )

(v)

≤ Cb∞‖〈·〉γ f ‖2L2(Rd )

+ C‖bres‖L1(Sd−1)‖ f ‖L∞(Rd )‖〈·〉γ f ‖L1(Rd )〈v〉γ − c( f0) f (v)〈v〉γ .

(9)

Recall that one can take ‖bres‖L1(Sd−1) in (9) sufficiently small. Thus, choosing bres
such that

C‖bres‖L1(Sd−1)‖ f ‖L1
2(R

d )〈v〉γ ≤ c( f0)

2
,

it follows that

∂t f (t, v) ≤ C( f0) + c( f0)
2 ‖ f (t)‖L∞(Rd )〈v〉γ − c( f0) f (t, v)〈v〉γ . (10)

Now, integrate estimate (10) in t ≥ 0 to obtain that

f (t, v) ≤ f0(v)e
−co〈v〉γ t

+
∫ ∞

0
e−c( f0)〈v〉γ (t−s)

(
C( f0) + c( f0)

2 ‖ f (s)‖L∞(Rd )

)
〈v〉γ ds

≤ ‖ f0‖L∞(Rd )

+
(
C( f0) + c( f0)

2 sup
t≥0

‖ f (t)‖L∞(Rd )

)
〈v〉γ

∫ ∞

0
e−c( f0)〈v〉γ (t−s)ds

≤ ‖ f0‖L∞(Rd ) + C( f0) + 1
2 sup

t≥0
‖ f (s)‖L∞(Rd ) , a.e. in v ∈ R

d .

We can compute the essential supremum in v ∈ R
d and, then, the supremum in time

of f (t, v) to conclude that

sup
t≥0

‖ f (t, ·)‖L∞(Rd ) ≤ 2‖ f0‖L∞(Rd ) + C( f0) .

Finally, one notices that if f0 ∈ L1
2 ∩ L∞, then f0 ∈ L2

γ which completes the argu-
ment.
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3 The Non-cutoff Case

Arguments related to integrability properties of solutions for the non-cutoff Boltz-
mann equation have a different angle with respect to that of the cutoff case and it
is inspired by arguments from parabolic PDE’s. The approach that we present here,
based in [5], is also of the type of energy estimate which exploit the weak formulation
of the equation. Some papers treating well-posedness for the equation and estimates
involving Lr -norm and Sobolev analysis for the homogeneous equation are [1, 2,
5, 25, 29, 41, 43]. The theory for the equation in the non-cutoff context has been
developed through amix of papers involving analysis of the collision operator [1, 18,
25, 26, 41, 43] and its application to estimates for solutions [2–4, 14, 23, 32, 35].
In particular, [1] was seminal after interpreting quantitatively the collision operator
in the Maxwell case as a fractional diffusion

Q(g, f ) ∼ c(g)(−�)s f + lower order terms.

Indeed, it was in [1] and later refined in [2] where the key coercivity estimate

D(g, F) :=
∫
Rd

∫
Rd

∫
Sd−1

g(v∗)
(
F(v′) − F(v)

)2|u|γ b(û · σ)dσdv∗dv

≥ cg‖〈·〉γ /2F‖2Hs − Cg‖〈·〉γ /2F‖22
(11)

was proven. Here the constants Cg, cg depend only on the physical quantities mass,
energy and entropy of g. We also note that a sophisticate approach related to the
treatment of general fractional nonlinear parabolic equations has been successfully
used recently in the non-cutoff Boltzmann context in [29, 36, 41] to find various reg-
ularity estimates for solutions of the inhomogeneous and homogeneous Boltzmann
equations.

Since the constants in (11) depend also on the entropy of g, it will be handy for
this section to define the space

U (D0, E0) =
{
g measurable : g ≥ 0 ,

∫
Rd

g dv ≥ D0 ,

∫
Rd

g (1 + |v|2 + ln g) dv ≤ E0

}
,

and to assume that f0 ∈ U (D0, E0). Conservationofmass and energy anddissipation
of entropy implies that the solution to the Boltzmann equation f (t) ∈ U (D0, E0) at
all times.
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3.1 The Lr-Theory for the Non-cutoff Case

The idea that is considered here is explained easily noting the standard heat equation’s
Lr -energy estimate

∂t‖ f ‖rr + 4
r ′ ‖∇ f r/2‖22 = 0 , r > 1 .

This estimate gives directly a Lr -theory for the equation even though it is in nature
a L2-estimate: the secret is, after integration by parts, to understand the Dirichlet
product 〈∇ f,∇ f r−1〉L2 . The link between the L2 and Lr versions of such Dirichlet
product for the collision operator is the following simple lemma.

Lemma 1 For any θ ≥ 0

θ2/r ′ − 1 ≤ 1

r ′ (θ
2 − 1) − 1

max{r, r ′}
(
θ − 1

)2
, r ∈ (1,∞] .

Equality is achieved in such estimate for the case r = 2.

With Lemma 1 at hand one can compute and estimate

F(v)
(
F(v′)r−1 − F(v)r−1

)
= F(v)r

(( F(v′)r/2

F(v)r/2

)2/r ′
− 1

)

≤ F(v)r
(
1

r ′
( F(v′)r

F(v)r
− 1

)
− 1

max{r, r ′}
( F(v′)r/2

F(v)r/2
− 1

)2
)

= 1

r ′
(
F(v′)r − F(v)r

)
− 1

max{r, r ′}
(
F(v′)r/2 − F(v)r/2

)2
.

Using the weak formulation of the collision operator (4) and the coercivity estimate
(11) one proves the following estimate suited for the Lr -norm.

Proposition 3 Let g ∈ U (D0, E0), F be sufficiently smooth, γ ∈ [0, 1], s ∈ (0, 1),
and r ∈ (1,∞). Then,

∫
Rd

Q(g, F)(v)Fr−1(v)dv

≤ − cg
max{r, r ′} ‖〈·〉

γ /2Fr/2‖2Hs + Cg

r ′ ‖〈·〉γ /2Fr/2‖22 ,

where the constants cg and Cg depend on D0 and E0.

Using Proposition 3 in an energy estimate type of argument for the Boltzmann equa-
tion (1) proves the differential inequality

X ′
r (t) + cr X

1
θ
r (t) ≤ Cr , r ∈ (1,∞) , θ ∈ (0, 1) ,
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where Xr (t) := ‖ f (t)‖rr with f := f (t, ·) solution to (1). The constants Cr , cr
depend on D0 and E0, thus, conservation is essential in the whole argument. Such
differential inequality proves the following result.

Theorem 2 (Generation/propagation Lebesgue’s norms) Let γ ∈ [0, 1] and s ∈
(0, 1), and assume f0 ∈ U (D0, E0). Then,

‖ f (t)‖r ≤ Cr

(
1

t
d

2 sr ′
+ 1

)
, r ∈ (1,∞) .

Here Cr depends on the physical quantities D0 and E0. Furthermore, if additionally
f0 ∈ Lr (Rd), then

sup
t≥0

‖ f (t)‖r ≤ max
{
‖ f0‖r , Cr

}
, r ∈ (1,∞) .

The reader observes that, in contrast to the cutoff case, the non-cutoff Boltzmann
equation instantaneously generates the Lr -integrability for solutions due to the strong
diffusion nature of the scatter.

3.2 The L∞-Theory for the Non-cutoff Case

Aclassical approach in parabolic theory for finding regularity estimates is the level set
method. In particular, it is possible to prove L∞-norm appearance and/or propagation
invoking an argument by De Giorgi [24]. Let us explain how this argument works in
the context of the Boltzmann equation. Fix a level K > 0 and define

FK (v) := F(v) − K , and F+
K (v) := FK (v)1{FK≥0} .

Note that

F(v)
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

= FK (v)
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

+ K
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

= FK (v)
(
1{FK≥0} + 1{FK<0}

)(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

+ K
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

.

Using that
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FK (v)1{FK<0}
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

= FK (v)1{FK<0}FK (v′)1{F ′
K≥0} ≤ 0 ,

we conclude that

F(v)
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

≤ FK (v)1{FK≥0}
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

+ K
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)

= 1
2

(
F+
K (v′)2 − F+

K (v)2
)

− 1
2

(
F+
K (v′) − F+

K (v)
)2 + K

(
F+
K (v′) − F+

K (v)
)

.

Consequently, using the weak formulation we deduce that

∫
Rd

Q(g, F)(v)FK (v)1{FK≥0}dv

=
∫
R2d

∫
Sd−1

g(v∗)F(v)
(
FK (v′)1{F ′

K≥0} − FK (v)1{FK≥0}
)
|u|γ b(û · σ)dσdv∗dv

≤ −D(g, F+
K ) + J1(g, F

+
K ) + J2(g, F

+
K ) ,

where

D(g, F+
K ) := 1

2

∫
R2d

∫
Sd−1

g(v∗)
(
F+
K (v′) − F+

K (v)
)2|u|γ b(û · σ)dσdv∗dv ,

J1(g, F
+
K ) := 1

2

∫
R2d

∫
Sd−1

g(v∗)
(
F+
K (v′)2 − F+

K (v)2
)
|u|γ b(û · σ)dσdv∗dv ,

J2(g, F
+
K ) := K

∫
R2d

∫
Sd−1

g(v∗)
(
F+
K (v′) − F+

K (v)
)
|u|γ b(û · σ)dσdv∗dv .

(12)

Using the Cancellation Lemma introduced in [1, Sect. 3], it follows that

J1(g, F
+
K ) ≤ C‖b‖1‖〈·〉γ g‖1‖〈·〉γ /2F+

K ‖22 , and

J2(g, F
+
K ) ≤ C‖b‖1 K ‖〈·〉γ g‖1‖〈·〉γ F+

K ‖1 .

For the diffusive termD(g, F+
K )we use, again, the coercivity estimate (11) to obtain

that
D(g, F+

K ) ≥ cg‖〈·〉γ /2F+
K ‖2Hs − Cg‖〈·〉γ /2F+

K ‖22 ,

for constants Cg, cg depending only on D0 and E0. This proves the following esti-
mate.

Proposition 4 Take g ∈ U (D0, E0), F sufficiently smooth, γ ∈ [0, 1], and s ∈
(0, 1). Then,
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∫
Rd

Q(g, F)(v)F+
K (v)dv ≤ −cg‖〈·〉γ /2F+

K ‖2Hs

+ Cg‖〈·〉γ /2F+
K ‖22 + Cg K ‖〈·〉γ F+

K ‖1 ,

where the constants cg and Cg depends on D0 and E0.

Once a coercive estimate on level sets has been stablished, such as the one of Propo-
sition 4, one can follow a classical argument defining an energy functional of the
form

Wk := 1
2 sup
t∈[tk ,T ]

‖ fk(t)‖22 + c0

∫ T

tk

‖〈·〉γ /2 fk(s)‖2Hsds , 0 < t∗ < T ,

for fixed t∗ > 0 and suitable increasing times tk > 0 and levels Kk > 0

Kk := K
(
1 − 1/2k

)
, tk := t∗

(
1 − 1/2k+1

)
, k = 1, 2, . . . ,

and where fk := f +
Kk
. Proposition 4 together with Sobolev embedding and interpo-

lation1 lead to an estimate of the form

1
2Wk ≤ 2

d+4s
d k C

K
4s
d

( 1

t∗
+ 1

)
W

d+2s
d

k−1 . (13)

The fact that the exponent in the right side is bigger that one (that is d+2s
d > 1) is

essential to conclude that
Wk → 0 as k → ∞ ,

provided W0 is finite and K > 0 is sufficiently large. An estimation of such K is
given by

K ≤ C
(
t
− d

2s∗ + √
T

)
, 0 < t∗ < T .

Since Kk ↗ K and tk ↗ t∗ as k → ∞, the fact that Wk vanishes in the limit imply
that

sup
t∈[t∗,T ]

‖ f +
K (t)‖2 = 0 , that is , f (t) ≤ K for t ∈ [t∗, T ] . (14)

This argument proves the appearance of the L∞-norm based on the L2-theory. The
reader should notice that the fact that s > 0 is important and such a procedure would
not work in the cutoff case. Setting t∗ = 0 in previous argument also proves propa-
gation of the L∞-norm provided the initial datum is essentially bounded.

1Again, conservation plays an important role, in particular, the constant C depends on D0 and E0
in the recurrence (13).



12 R. J. Alonso

Theorem 3 (Generation/propagation of L∞-norm) Let γ ∈ [0, 1] and s ∈ (0, 1),
and assume f0 ∈ U (D0, E0). Then,

‖ f (t)‖∞ ≤ C
(
t−

d
2 s + 1

)
, t > 0 , (15)

where C depends on D0, E0. Furthermore, if additionally f0 ∈ L∞(Rd) then,

sup
t≥0

‖ f (t)‖∞ ≤ max
{
2‖ f0‖∞, C‖〈·〉2 f0‖1

}
, (16)

where C depends also on ‖ f0‖2.
Details of the proof can be found in [5].
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The Maxwell–Stefan Diffusion Limit of a
Hard-Sphere Kinetic Model for Mixtures

Benjamin Anwasia

Abstract We study a kinetic model for non-reactive mixtures of monatomic gases
with hard-sphere cross-sections under isothermal condition. By considering a dif-
fusive scaling of the kinetic model and using the method of moments, we formally
obtain from the continuity and momentum balance equations of the species, in the
limit as the scaling parameter goes to zero, the Maxwell–Stefan diffusion equations,
with explicit expressions for the diffusion coefficients.

Keywords Kinetic theory of gases · Maxwell–Stefan equations · Diffusion

1 Introduction

The study of diffusion phenomena is very important due to its varied uses in many
fields, such as engineering, physics, biology, chemistry, etc. The most classical con-
stitutive law used to describe diffusive transport was given by Fick in [9, 10]. Fick
postulated that flux goes from higher concentration regions to lower concentration
regions with a magnitude that is proportional to the concentration gradient. This
proportionality relation between flux and concentration gradient postulated by Fick
is predominantly used to model diffusion. In many situations, it provides accurate
description of diffusive transport, while in others, it seems to be too simplistic (as
in the case of multispecies/multicomponent mixtures) and hence cannot be used to
describe diffusion in these cases.

The limitations of using Fick’s constitutive relation to describe diffusion in mul-
ticomponent gaseous mixtures and some other situations have been shown experi-
mentally, see for example [8, 14]. In the case of multicomponent gaseous mixtures,
three distinct diffusion phenomena, referred to as osmotic diffusion, uphill or reverse
diffusion and diffusion barrierwere observed. These three types of diffusion phenom-
ena cannot be described by the Fickian approach. More precisely, osmotic diffusion
corresponds to a situation of diffusion without a gradient. Uphill or reverse diffusion
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refers to a situation in which flux goes from lower concentration regions to higher
concentration regions. Diffusion barrier is a situation of diffusion in which flux is
zero.

Due to the shortcomings of the Fick’s constitutive relation in describing diffu-
sion in multicomponent mixtures, a more general constitutive relation known as the
Maxwell–Stefan (MS) equations [15, 18] is often used instead. The MS equations
rely on the fact that the driving force of the species in a multicomponent mixture is
in local equilibrium with the total inter-species drag/friction force. For a continuum
physics approach to modeling diffusion using the MS equations, see, [20, 21].

In spite of the importance of the MS equations in describing diffusion in multi-
species mixtures, its mathematical study is relatively new. In particular, [4, 6, 11]
dealt with the formal derivation of diffusion models of MS type from a diffusive
scaling of Boltzmann type equations for non-reactive multi-species mixtures, under
isothermal condition (i.e. uniform in space and constant in timemixture temperature).
The existence and uniqueness issues, as well as the long-time behaviour of solutions
of the MS diffusion systems have been considered in [3, 5, 13]. The numerical study
of MS equations has been considered in [16]. The derivation of a non-isothermal
diffusion model of MS type from a kinetic model for non-reactive mixtures has been
considered in [12]. The derivation of an isothermal reaction diffusion model of MS
type from the simple reacting sphere (SRS) kinetic model has been considered in
[1]. More precisely, from a scaling of the SRS kinetic model which corresponds
to a situation where the dominant role in the evolution of the species is played by
mechanical interaction, while chemical reactions are assumed to be slow enough to
allow the surroundings to continually compensate for the difference in heat between
the reactants and products. Here explicit expressions for the MS diffusion coeffi-
cients were obtained. The derivation of non-isothermal diffusion model of MS type
from a kinetic model for a reactive mixture of polyatomic gases with a continuous
structure of internal energy has been considered in [2].More precisely, from a scaling
where mechanical collisions are dominant while chemical reactions are slow. Here
the MS diffusion coefficients are not explicit because a general cross-sections was
considered.

The goal of this work is to follow the formal method of deriving macroscopic
equations from the Boltzmann equation, presented in [19] and derive an isothermal
diffusion model of MS type, with explicit expressions for the MS diffusion coeffi-
cients, as a hydrodynamic limit of a Boltzmann typemodel for non-reactivemixtures,
with hard-sphere cross-sections. Also, the computations are given in detail in order to
show some particular aspects and technicalities involved in the derivation. The main
differences between this work and [4, 6, 11] are the kinetic models studied and the
cross-sections considered. More precisely, [4, 11] considered general and analytic
cross-sections, respectively, while [6] dealt with the case of Maxwellian molecules.
These cross-sections present different levels of difficulty, particularly in the compu-
tation of the diffusion coefficients. Therefore, in each case, different strategies and
techniques were adopted to help compute the diffusion coefficients. In the case of
general cross-sections, in order to compute the diffusion coefficients, one has to use
the weak form of the collision operator together with an expansion of the distribution
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function with respect to the scaling parameter. In the end, the expression obtained
for the diffusion coefficients is not explicit as it contains the integral over the sphere
and the six-fold integrals with respect to the velocity variables. In the case of ana-
lytic cross-sections and Maxwellian molecules, only the weak form of the collision
operator was used. In the end, explicit expressions for the diffusion coefficients were
obtained. In the present work, a different strategy from those used in [4, 6, 11] was
employed. More precisely, a property of the collision operators which is a conse-
quence of the form of the distribution functions considered was used. In addition,
the diffusion coefficients obtained in this work is different from those obtain in [4, 6,
11] because we have studied a different kinetic model and a different cross-section.

The rest of this work is organized as follows. In Sect. 2, we introduce the kinetic
model for a non-reactive mixture with hard-sphere cross-sections. In Sect. 3, we
introduce the scaled kinetic equation, its properties and the assumptions that will be
needed in our analysis. In Sect. 4, we present the MS diffusion limit of the scaled
kinetic equations. More precisely, we obtain the species continuity equations and
the momentum balance equations for the species from the scaled kinetic equations.
Finally, we present the asymptotic analysis of the species continuity and momentum
balance equations towards the diffusion model of MS type. Section5 is dedicated to
our conclusions.

2 Kinetic Model

The starting point of our analysis is a system of Boltzmann-type equations that
describe the evolution of a non-reactive mixture of N monatomic inert gases, Ai with
i = 1, 2, . . . , N . Particles in the mixture undergo elastic collisions of hard-sphere
type. These elastic collisions occur between particles of the same species and between
particles of different species. More precisely, in the absence of external forces, let
fi := f (t, x, vi )≥0 be the unknown probability distribution function, representing
the density of particles of species Ai which at time t are located at position x and
have velocity vi , we will study the following Cauchy problem:

∂ fi
∂t

+vi · ∂ fi
∂x

= Ji +
N∑

s=1
s �=i

Jis, (t, x, vi ) ∈ R+ × R
3 × R

3, i = 1, 2, . . . , N ,

fi (0, x, vi ) = ( f ini )(x, vi ), (x, vi ) ∈ R
3 × R

3,

(1)

where

Ji = σ 2
i i

∫

R3

∫

S
2+

[
fi

′ f ′
i∗ − fi fi∗

] 〈
ε, vi − vi∗

〉
dε dvi∗ (2)

is the mono-species collision operator and it represents collisions between particles
of the same species,
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Jis = σ 2
is

∫

R3

∫

S
2+

[
fi

′ f ′
s − fi fs

] 〈ε, vi − vs〉 dε dvs (3)

is the bi-species collision operator and it represents collisions between particles of
different species.

The functions fi are not directly observable, however, they allow one to compute
measurablemacroscopic quantities like : the species concentrations ci and themacro-
scopic velocities for the species ui , which can be expressed in terms of microscopic
averages as given below:

ci (t, x) =
∫

R3
f (t, x, vi ) dvi ,

ui (t, x) = 1

ci (t, x)

∫

R3
vi f (t, x, vi ) dvi .

(4)

In Eqs. (2) and (3) for the mono-species and bi-species collision operators, f ′
i =

f (t, x, v′
i ), f ′

i∗ = f (t, x, v′
i∗), f ′

s = f (t, x, v′
s), ε is a unit vector directed along the

line joining the centre of the two spheres at the moment of impact (i.e. ε ∈ S
2+ ={

ε ∈ R
3 : ‖ε‖ = 1, 〈ε, vi − vs〉 > 0

}
), 〈·, ·〉 represents the inner product inR3 and

‖ · ‖ is the norm induced by this inner product. Furthermore, vi , vi∗, vs are the pre-
collisional velocities, v′

i , v
′
i∗ , v

′
s are the post-collisional velocities, σ

2
i i and σ 2

is are the
mono-species and the bi-species collision cross-sections defined respectively as

σ 2
i i = d2

i , σ 2
is = 1

4
(di + ds)

2, i, s = 1, 2, . . . , N , i �= s,

where di and ds are the diameters of particles of species Ai and As .
Since the collisions are elastic, both momentum and kinetic energy are conserved.

Therefore, the conservation laws of linear momentum and kinetic energy for bi-
species collisions are given by:

mivi +msvs =miv
′
i + msv

′
s, (5)

1

2
mi (vi )

2+ 1

2
ms(vs)

2= 1

2
mi (v

′
i )
2+ 1

2
ms(v

′
s)

2, (6)

respectively. The post-collisional velocities can be written in terms of the pre-
collisional velocities as

v′
i = vi − 2

μis

mi
ε 〈ε, vi − vs〉 and v′

s = vs + 2
μis

ms
ε 〈ε, vi − vs〉 , (7)

where μis = mims

mi + ms
is the reduced mass.

Remark 2.1 For same species collisions, the indices i and i∗ are used to distinguish
their velocities. Also, the conservation of linear momentum and kinetic energy for
mono-species collisions are respectively, given by:



The Maxwell–Stefan Diffusion Limit of a Hard-Sphere Kinetic Model for Mixtures 19

vi + vi∗ = v′
i + v′

i∗, (8)

1

2
(vi )

2 + 1

2
(vi∗)2 = 1

2
(v′

i )
2 + 1

2
(v′

i∗)
2. (9)

Furthermore, the post-collisional velocities can be written in terms of the pre-
collisional velocities as given below:

v′
i = vi − ε 〈ε, vi − vi∗〉 and v′

i∗ = vi∗ + ε 〈ε, vi − vi∗〉 . (10)

Remark 2.2 The kinetic equations given in the first rowof (1)with Ji and Jis defined
in (2) and (3), respectively, can be obtained from the simple reacting sphere kinetic
model studied in [17] when the chemical reaction is turned off.

3 Scaled Kinetic Equations, Properties and Assumptions

In this section, we first present the scaled version of the kinetic equations given in
the first row of (1). Then we present some of its properties and the assumptions that
will be used to obtain the desired diffusion model.

3.1 Scaled Kinetic Equations

Introducing a reference length and time scales together with a reference temperature,
one can define the dimensionless time, space, velocities (obtained using the speed
of sound in a monatomic gas), cross-sections and number densities. Thus the kinetic
equations given in the first row of (1), where Ji and Jis are as defined in (2) and (3),
respectively, can be written in the following dimensionless/scaled form

α
∂ f α

i

∂t
+vi · ∂ f

α
i

∂x
= 1

α
σ 2
i i

∫

R3

∫

S
2+

[
f α′
i f α′

i∗ − f α
i f α

i∗

] 〈
ε, vi − vi∗

〉
dε dvi∗

︸ ︷︷ ︸
Jα
i

+ 1

α

N∑

s=1
s �=i

σ 2
is

∫

R3

∫

S
2+

[
f α′
i f α′

s − f α
i f α

s

]
〈ε, vi − vs〉 dε dvs

︸ ︷︷ ︸
Jα
is

,

(11)

for (t, x, vi ) ∈ R+ × R
3 × R

3, i = 1, 2, . . . , N whereαwhich is such that 0 < α 

1 is the formal scalingparameter representing theKnudsennumber, f α

i , f α′
i , f α

i∗, f α′
i∗ ,

f α
s and f α′

s are the scaled distribution function, Jα
i is the scaled mono-species colli-

sion operator and Jα
is is the scaled bi-species collision operator.We have also assumed

that the Mach number is of the same order of magnitude as the Knudsen number.
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In what follows, the evolution domain of the mixture is represented by an open
bounded domainΩ ⊂ R

3, with regular boundary and we will consider the following
Cauchy problem:

α
∂ f α

i

∂t
+vi · ∂ f

α
i

∂x
= 1

α

(
Jα
i +

N∑

s=1
s �=i

Jα
is

)
, (t, x, vi ) ∈ R+ × R

3 × R
3, i = 1, 2, . . . , N ,

f α
i (0, x, v) = ( f ini )α(x, v), (x, v) ∈ R

3 × R
3.

(12)
To ensure that the non-reactive mixture is considered in a closed domain Ω , without
being precise, the boundary conditions which describe the interaction of the particles
and the boundary of the evolution domain ∂Ω , is assumed to be of specular reflection
type.

3.2 Properties of the Collision Operators

Here we will present some properties of the mono-species and bi-species collision
operators that will be needed in our analysis.

Lemma 3.1 Let ϕ(vi ) be a sufficiently smooth test function. Then, the weak form of
the mono-species collision operator J α

i is given by

∫

R3
Jα
i ϕ(vi ) dvi = 1

4
σ 2
i i

∫

R3

∫

R3

∫

S
2+

[
f α′
i f α′

i∗ − f α
i f α

i∗
]
〈ε, vi − vi∗〉

× [
ϕ(vi )+ϕ(vi∗)−ϕ(v′

i )−ϕ(v′
i∗)
]
dε dvi∗dvi . (13)

Lemma 3.2 let ϕ(vi ) be a sufficiently smooth test function. Then, the weak form of
the bi-species collision operator Jα

is is given by

∫

R3
Jα
isϕ(vi )dvi =σ 2

is

∫

R3

∫

R3

∫

S
2+

[
ϕ(v′

i )−ϕ(vi )
]
f α
i f

α
s 〈ε, vi −vs〉 dεdvsdvi , (14)

for each i, s = 1, 2, . . . , N , with i �= s.

The proofs of Lemmas 3.1 and 3.2 follow from standard arguments, see for example
[6, 7].

Corollary 3.1 Themono-species collisionoperator Jα
i is such that, for i = 1, 2, . . . , N,

∫

R3
Jα
i

⎛

⎝
1

mivi
1
2mi (vi )

2

⎞

⎠ dvi = 0. (15)



The Maxwell–Stefan Diffusion Limit of a Hard-Sphere Kinetic Model for Mixtures 21

Proof The proof follows from Lemma 3.1 by setting ϕ(vi ) = 1, ϕ(vi ) = mivi and
using the mono-species conservation of momentum (8), ϕ(vi ) = 1

2mi (vi )
2 and using

the mono-species conservation of energy (9), respectively. �

Corollary 3.2 Thebi-species collisionoperator J α
is is such that, for i, s = 1, 2, . . . , N ,

with i �= s,

∫

R3
Jα
is dvi = 0,

∫

R3
Jα
is

(
mivi

1
2mi (vi )

2

)
dvi +

∫

R3
Jα
si

(
msvs

1
2ms(vs)

2

)
dvs = 0.

(16)

Proof The proof follows from Lemma 3.2 by setting ϕ(vi ) = 1, ϕ(vi ) = mivi and
using the bi-species conservation of momentum (5), ϕ(vi ) = 1

2mi (vi )
2 and using the

bi-species conservation of energy (6), respectively. �

Remark 3.1 The properties of the scaled collision operators given in Lemmas 3.1
and 3.2, Corollaries 3.1 and 3.2 are also valid for the non-scaled collision operators.

3.3 Assumptions

In order to derive the target equations (that is a purely diffusion model where the
diffusion process is governed by the MS equations), we will assume that

(a) The temperature of the mixture T is uniform in space and constant in time.
(b) The bulk velocity of the mixture uα is small and goes to zero as α → 0.
(c) The initial conditions are local Maxwellians centered at the average velocity of

the species uα
i . More precisely the distribution functions at time t = 0 are of the

form

f α(in)(x, vi )=cα(in)
i (x)

(
mi

2πkBT

)3
2

exp

⎡

⎢⎣−
mi

(
vi −αuα(in)

i (x)
)2

2kBT

⎤

⎥⎦, x ∈ Ω, vi ∈ R
3,

where kB is the Boltzmann’s constant, cα
i is the concentration of the species

which is such that cα(in)
i : Ω → R+ and uα(in)

i : Ω → R
3, for i = 1, 2, . . . , N .

(d) The evolution of the system leaves the distribution functions in the local
Maxwellian state. More precisely, the distribution functions at time t > 0 are
of the form

f α(t, x, vi ) = cα
i (t, x)

(
mi

2πkBT

)3
2

exp

⎡

⎢⎣−
mi

(
vi −αuα

i (t, x)
)2

2kBT

⎤

⎥⎦ , x ∈ Ω, vi ∈ R
3 (17)

where cα
i : R+ × Ω → R+ and uα

i : R+ × Ω → R
3, for i = 1, 2, . . . , N .
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Assumption (a) is the isothermal condition and it allows us to neglect effects due
to temperature gradient. Assumption (b) allows us to neglect convective effects.
Assumptions (c) and (d) represent a physical situation in which the system evolves
not far away from the local Maxwellian equilibrium.

Lemma 3.3 As a consequence of (17), we have that

f α′
i fs

α′ − f α
i f α

s = Mα
i M

α
s

(
αais · (v′

i − vi ) + α2ais · (v′
i − vi )(ai · vi )

+α2ais · (v′
i − vi )(as · vs) + α2

2

(
ais · (v′

i − vi )
)2 + O(α3)

)
, (18)

where

ai = miuα
i

kBT
, as = msuα

s

kBT
, ais = mi (uα

i − uα
s )

kBT
,

Mα
i = cα

i

(
mi

2πkBT

) 3
2

exp

(
−mi (vi )

2

2kBT

)
, Mα

s = cα
s

(
ms

2πkBT

) 3
2

exp

(
−ms(vs)

2

2kBT

)
.

(19)

Proof Using Eq. (17), we can write

f α′
i f α′

s =cα
i

(
mi

2πkBT

)3
2

exp

⎡

⎢⎣−
mi

(
v′
i −αuα

i

)2

2kBT

⎤

⎥⎦cα
s

(
ms

2πkBT

)3
2

exp

⎡

⎢⎣−
ms

(
v′
s−αuα

s

)2

2kBT

⎤

⎥⎦

=cα
i c

α
s

(mims)
3
2

(2πkBT )3
exp

⎡

⎢⎣−
(mi

(
v′
i −αuα

i

)2+ms

(
v′
s−αuα

s

)2

2kBT

)
⎤

⎥⎦ . (20)

Observe that

mi
(
v′
i − αuα

i

)2 + ms
(
v′
s − αuα

s

)2 = mi (v
′
i )
2 + ms(v

′
s)

2 + mi (αuα
i )

2

+ ms(αuα
s )

2 − 2αmiuα
i · v′

i − 2αmsuα
s · v′

s .

Using the bi-species conservation of kinetic energy (6), we obtain

mi
(
v′
i − αuα

i

)2 + ms
(
v′
s − αuα

s

)2 = mi
(
vi − αuα

i

)2 + ms
(
vs − αuα

s

)2

− 2αmiuα
i · (v′

i − vi ) − 2αmsuα
s · (v′

s − vs).

Using the bi-species conservation of momentum (5) rewritten as

mi (v
′
i − vi ) = −ms(v

′
s − vs),

we obtain
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mi
(
v′
i − αuα

i

)2 + ms
(
v′
s − αuα

s

)2 = mi
(
vi − αuα

i

)2 + ms
(
vs − αuα

s

)2

− 2αmi (v
′
i − vi ) · (uα

i − uα
s ). (21)

Substituting (21) into (20), we obtain

f α′
i f α′

s = cα
i c

α
s

(mims)
3
2

(2πkBT )3

× exp

[
−
(
mi

(
vi − αuα

i

)2 + ms
(
vs − αuα

s

)2 − 2αmi (v
′
i − vi ) · (uα

i − uα
s )

2kBT

)]
.

Using the distribution function (17), we obtain

f α′
i f α′

s = f α
i f α

s exp

[
αmi (v

′
i − vi ) · (uα

i − uα
s )

kBT

]
. (22)

Now, using (22), we can write

f α′
i fs

α′ − f α
i f

α
s = f α

i f α
s

(
exp

[
αmi (v

′
i − vi ) · (uα

i − uα
s )

kBT

]
− 1

)
. (23)

Taylor expanding the exponential term in (23) above with respect to α gives

exp

[
αmi (v

′
i − vi ) · (uα

i − uα
s )

kBT

]
= 1 + αmi (v

′
i − vi ) · (uα

i − uα
s )

kBT

+1

2

(
αmi (v

′
i − vi ) · (uα

i − uα
s )

kBT

)2

+ O(α3). (24)

Substituting (24) into (23) gives

f α′
i fs

α′ − f α
i f α

s

= f α
i f

α
s

(
αmi (v

′
i −vi )·(uα

i −uα
s )

kBT
+ 1

2

(
αmi (v

′
i −vi )·(uα

i −uα
s )

kBT

)2
+O(α3)

)
. (25)

Observe that

exp

[
− mi (vi − αuα

i )2

2kBT

]
=exp

[
− mi (vi )

2

2kBT

]
exp

[
miαuα

i · vi
kBT

]
exp

[
− mi (αuα

i )2

2kBT

]
.

The Taylor expansion of the last two terms on the right-hand side of the previous
equation with respect to α is
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exp

[
miαuα

i · vi
kBT

]
= 1 + α

miuα
i · vi

kBT
+ O(α2),

exp

[
− mi (αuα

i )
2

2kBT

]
= 1 + O(α2).

Therefore,

exp

[
−mi (vi −αuα

i )2

2kBT

]
=exp

[
− mi (vi )

2

2kBT

](
1 + α

miuα
i · vi

kBT
+ O(α2)

)(
1 + O(α2)

)

= exp

[
− mi (vi )

2

2kBT

](
1 + α

miuα
i · vi

kBT
+ O(α2)

)
.

Thus,

f α
i = cα

i

(
mi

2πkBT

) 3
2

exp

[
− mi (vi )

2

2kBT

](
1 + α

miuα
i · vi

kBT
+ O(α2)

)
.

Similarly,

f α
s = cα

s

(
ms

2πkBT

) 3
2

exp

[
− ms(vs)

2

2kBT

](
1 + α

msuα
s · vs

kBT
+ O(α2)

)
.

Taking the product of f α
i and f α

s , we obtain

f α
i f α

s = cα
i

(
ms

2πkBT

) 3
2

cα
s

(
mi

2πkBT

) 3
2

exp

[
− mi (vi )

2

2kBT

]

× exp

[
− ms(vs)

2

2kBT

](
1 + α

miuα
i · vi

kBT
+ α

msuα
s · vs

kBT
+ O(α2)

)
. (26)

Substituting (26) into (25), expanding and using the definitions given in (19) gives
the desired result �

4 The Maxwell–Stefan Diffusion Limit

In this section, we obtain the continuity equations, the momentum balance equa-
tions for the species and perform a formal asymptotic analysis of the continuity and
momentum balance equations toward a diffusion model of MS type.
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4.1 Continuity Equations for the Species

The continuity equations for the species can formally be derived from the scaled
kinetic equations (11), by integrating over vi ∈ R

3 as shown in the following lemma.

Lemma 4.1 The continuity equations for the species in the non-reactive mixture are
given by

∂cα
i

∂t
+ ∂

∂x
(cα

i u
α
i ) = 0, i = 1, 2, . . . , N . (27)

Proof Integrating both sides of (11) with respect to vi ∈ R
3, we obtain for i =

1, 2, . . . , N

α
∂

∂t

∫

R3

f α
i dvi

︸ ︷︷ ︸
cα
i

+ ∂

∂x

∫

R3

vi f
α
i dvi

︸ ︷︷ ︸
αcα

i u
α
i

= 1

α

∫

R3

Jα
i dvi

︸ ︷︷ ︸
0

+ 1

α

N∑

s=1
s �=i

∫

R3

Jα
isdvi

︸ ︷︷ ︸
0

. (28)

To show that the first term on the right-hand side of (28) vanishes, we use the weak
form of the mono-species collision operator (13) with ϕ(vi ) = 1, see Corollary 3.1
in Sect. 3.2. Similarly, using the weak form of the bi-species collision operator (14)
with ϕ(vi ) = 1, see Corollary 3.2 in Sect. 3.2, we obtain that the second term on the
right-hand side of (28) vanishes. Finally, dividing both sides of (28) by α gives the
desired result. �

4.2 Momentum Balance Equations for the Species

To derive the momentum balance equations for the species from the scaled kinetic
equations (11), we multiply it by mivi and integrating over vi ∈ R

3 as shown in the
following lemma.

Lemma 4.2 The momentum balance equations for the species in the non-reactive
mixture is given by

α2mi
∂

∂t

(
cα
i u

α
i

)
+ kBT

∂cα
i

∂x
+ α2mi

∂

∂x

(
cα
i u

α
i ⊗ uα

i

)

= 32

9

N∑

s=1
s �=i

σ 2
is(2πμiskBT )

1
2 cα

i c
α
s

(
uα
i −uα

s

)+O(α), (29)

for i = 1, 2, . . . , N.
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Proof Multiplying both sides of the scaled kinetic equations (11) by mivi and inte-
grating with respect to vi ∈ R

3, we obtain for i = 1, 2, . . . , N ,

α
∂

∂t

(∫

R3
mivi f

α
i dvi

)

︸ ︷︷ ︸
αmi cα

i u
α
i

+ ∂

∂x

(∫

R3
mi (vi ⊗ vi ) f

α
i dvi

)

︸ ︷︷ ︸
cα
i kBT+α2mi(cα

i u
α
i ⊗uα

i )

= 1

α

∫

R3
mivi J

α
i dvi

︸ ︷︷ ︸
0

+ 1

α

N∑

s=1
s �=i

∫

R3
mivi J

α
isdvi

︸ ︷︷ ︸
O i

. (30)

To show that the first term on the right-hand side of (30) vanishes, we use the
weak form (13) with ϕ(vi ) = mivi together with the mono-species conservation of
momentum given in (5), see Corollary 3.1 in Sect. 3.2. Concerning the second term
on the right-hand side of (30), using the definition of Jα

is given in (11), we obtain

Oi =
N∑

s=1
s �=i

σ 2
is

∫

R3

∫

R3

∫

S
2+
mivi

[
f α′
i f α′

s − f α
i f α

s

]
〈ε, vi − vs〉 dε dvs dvi

= α

N∑

s=1
s �=i

σ 2
is

∫

R3

∫

R3

∫

S
2+
mivi M

α
i M

α
s ais · (v′

i − vi ) 〈ε, vi − vs〉 dε dvsdvi + O(α2),

where we have used (18) to obtain the previous equation. From the definition of
post-collisional velocity (7), we can write

v′
i − vi = −2μis

mi
〈ε, vi −vs〉ε

=− 2mims

(mi + ms)mi
‖vi − vs‖ cos θ

(vi − vs)

‖vi − vs‖
=− 2ms

(mi + ms)
(vi − vs) cos θ.

Setting V = vi − vs , we obtain

v′
i − vi = − 2ms

mi + ms
V cos θ. (31)

Therefore,
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Oi=−α

N∑

s=1
s �=i

σ 2
is2μis

∫

R3

∫

R3

∫

S
2+
vi M

α
i M

α
s

(
ais · V

)
cos θ 〈ε, vi −vs〉 dεdvsdvi + O(α2)

=−α

N∑

s=1
s �=i

σ 2
is2μis

∫

R3

∫

R3

∫

S
2+
vi M

α
i M

α
s

(
ais · V

)
‖vi −vs‖ cos2 θ dεdvsdvi + O(α2)

=−α

N∑

s=1
s �=i

σ 2
is2μis

∫

R3

∫

R3

∫ π
2

0

∫ 2π

0
vi M

α
i M

α
s

(
ais ·V

)
V cos2θ sin θdφdθdvs dvi +O(α2)

=−α

N∑

s=1
s �=i

σ 2
is2μis

∫

R3

∫

R3
vi M

α
i M

α
s

(
ais ·V

)
Vdvsdvi

∫ π
2

0
cos2 θ sin θdθ

︸ ︷︷ ︸
1
3

∫ 2π

0
dφ

︸ ︷︷ ︸
2π

+ O(α2)

= −α

N∑

s=1
s �=i

σ 2
is

4πμis

3

∫

R3

∫

R3
vi M

α
i M

α
s

(
ais · V

)
V dvs dvi + O(α2)

=−α

N∑

s=1
s �=i

σ 2
is

4πμis

3

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3

∫

R3
vi exp

(
−mi (vi )

2+ms(vs)
2

2kBT

)

×
(
ais · V

)
Vdvsdvi + O(α2).

It will be convenient to transform the above six fold integral from vi and vs to the
center of mass velocity

X= (mivi + msvs)

mi + ms
⇐⇒ (mi + ms)X = mivi + msvs, (32)

and relative velocity

V =vi − vs ⇐⇒ vi = V + vs . (33)

Observe that by substituting (33) into (32), we obtain

(mi + ms)X = miV + (mi + ms)vs .

Dividing both sides by mi + ms , we obtain

X = vs + miV
mi + ms

⇐⇒ vs = X − miV
mi + ms

. (34)

Also, substituting (34) into (33), we obtain
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vi = V + X − miV
mi + ms

= X + msV
mi + ms

. (35)

Furthermore, using (35), we obtain

mi (vi )
2 = mi

(
X + msV

mi + ms

)2

= mi

{
X
(
X + msV

mi + ms

)
+ msV

mi + ms

(
X + msV

mi + ms

)}

= mi

{
X2 + 2

ms

mi + ms
(V · X) + m2

s

(mi + ms)2
V 2

}
,

where X = ‖X‖ and V = ‖V‖. Similarly, using (34), we obtain

ms(vs)
2 = ms

{
X2 − 2

mi

mi + ms
(V · X) + m2

i

(mi + ms)2
V 2

}
.

Thus,

mi (vi )
2 + ms(vs)

2 = (mi + ms)X
2 + μisms

mi + ms
V 2 + μismi

mi + ms
V 2

= (mi + ms)X
2 + μis

mi + ms
V 2(mi + ms)

= (mi + ms)X
2 + μisV

2. (36)

Therefore, using the fact that the Jacobian of the transformation (vi , vs) �→ (V , X)

has absolute value 1, we obtain

Oi = −α

N∑

s=1
s �=i

σ 2
is
4πμis

3

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3

∫

R3

(
X + msV

mi + ms

)

× exp

(
− (mi + ms)X2+μis V 2

2kBT

)
(ais ·V )VdXdV + O(α2)

= −α

N∑

s=1
s �=i

σ 2
is
4πμis

3

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3

∫

R3
X exp

(
− (mi + ms)X2+μis V 2

2kBT

)

×
(
ais ·V

)
VdXdV

− α

N∑

s=1
s �=i

σ 2
is

4πμisms

3(mi +ms)

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3

∫

R3
V exp

(
− (mi + ms)X2+μis V 2

2kBT

)

×
(
ais ·V

)
VdXdV + O(α2)
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= −α

N∑

s=1
s �=i

σ 2
is
4πμis

3

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3
X exp

(
− (mi + ms)X2

2kBT

)
dX

︸ ︷︷ ︸
A

×
∫

R3
exp

(
− μis V 2

2kBT

)
V
(
ais · V

)
dV

︸ ︷︷ ︸
B

−α

N∑

s=1
s �=i

σ 2
is

4πμisms

3(mi + ms)

(mims)
3
2

(2πkBT )3
cα
i c

α
s

∫

R3
exp

(
− (mi + ms)X2

2kBT

)
dX

︸ ︷︷ ︸
C

×
∫

R3
V exp

(
− μis V 2

2kBT

)
V
(
ais ·V

)
dV

︸ ︷︷ ︸
D

+O(α2).

Now let us evaluate the integrals A , B, C and D . To do this, in the sequel we will
use the integral representation of gamma function defined as given below:

∫ ∞

0
xne−ηx2dx = 1

2
Γ

(
n + 1

2

)(
1

η

) n+1
2

. (37)

Using the fact that any vector X can be written in terms of a unit vector as X = Xx,
with X = ‖X‖ and x a unit vector, we can rewrite the integral A as given below

A =
∫

R3
Xx exp

(
− (mi + ms)X2

2kBT

)
dX . (38)

Writing (38) in spherical coordinates, we obtain

A =
∫ ∞

0

∫ π

0

∫ 2π

0
X (x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ) exp

(
− (mi + ms)X2

2kBT

)

× X2 sin θdφdθdX

=
∫ ∞

0
X3 exp

(
− (mi + ms)X2

2kBT

)
dX

(
x̂
∫ π

0
sin2 θdθ

︸ ︷︷ ︸
π
2

∫ 2π

0
cosφdφ

︸ ︷︷ ︸
0

+ ŷ
∫ π

0
sin2 θdθ

︸ ︷︷ ︸
π
2

∫ 2π

0
sin φ

︸ ︷︷ ︸
0

+ẑ
∫ π

0
cos θ sin θdθ

︸ ︷︷ ︸
0

∫ 2π

0
dφ

︸ ︷︷ ︸
2π

)
,

where x̂, ŷ, ẑ are the Cartesian unit vectors in R
3. The integral in X can be eval-

uated using the integral representation of gamma function given in Eq. (37). More
specifically,
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∫ ∞

0
X3 exp

(
− (mi + ms)X2

2kBT

)
dX = 1

2
Γ (2)

(
2kBT

mi + ms

)2

= 1

2

(
2kBT

mi + ms

)2

.

Thus,

A = 1

2

(
2kBT

(mi + ms)

)2[
x̂
(π

2
× 0

)
+ ŷ

(π

2
× 0

)
+ ẑ(0 × 2π)

]
= 0. (39)

Now, using the fact that any vector V can be written in terms of a unit vector as
V = V v, with V = ‖V‖ and v a unit vector, we obtain that the integral B can be
rewritten as

B =ais ·
∫

R3
exp

(
− μisV 2

2kBT

)
V vV dV .

Transforming to spherical coordinates and integrating, we obtain

ais ·
∫

R3
exp

(
− μis V 2

2kBT

)
V vV dV

=ais ·
∫ ∞

0

∫ π

0

∫ 2π

0
exp

(
− μis V 2

2kBT

)
V (x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ)

× V 3 sin θdφdθdV

=ais ·
∫ ∞

0
V 4 exp

(
− μis V 2

2kBT

)
dV

(
x̂
∫ π

0
sin2 θdθ

︸ ︷︷ ︸
π
2

∫ 2π

0
cosφdφ

︸ ︷︷ ︸
0

+ŷ
∫ π

0
sin2 θdθ

︸ ︷︷ ︸
π
2

∫ 2π

0
sin φdφ

︸ ︷︷ ︸
0

+ẑ
∫ π

0
sin θ cos θdθ

︸ ︷︷ ︸
0

∫ 2π

0
dφ

︸ ︷︷ ︸
2π

)
,

where x̂, ŷ, ẑ are the Cartesian unit vectors inR3. Evaluating the integral with respect
to V using (37), we obtain

∫ ∞

0
V 4 exp

(
− μisV 2

2kBT

)
dV = 1

2
Γ

(
5

2

)(
2kBT

μis

) 5
2

= 1

2

3

4

√
π

(
2kBT

μis

) 5
2

.

Therefore,

B = ais
3
√

π

8

(
2kBT

μis

) 5
2

·
[
x̂
(π

2
× 0

)
+ ŷ

(π

2
× 0

)
+ ẑ(0 × 2π)

]
= 0. (40)
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Transforming the integral C to spherical coordinates and integrating, we obtain

C =
∫ ∞

0

∫ π

0

∫ 2π

0
exp

(
− (mi + ms)X2

2kBT

)
X2 sin θdφdθdX

=
∫ ∞

0
X2 exp

(
− (mi + ms)X2

2kBT

)
dX

∫ π

0
sin θdθ

︸ ︷︷ ︸
2

∫ 2π

0
dφ

︸ ︷︷ ︸
2π

=4π
∫ ∞

0
X2 exp

(
− (mi + ms)X2

2kBT

)
dX.

Evaluating the previous integral using the integral representation of gamma (37), we
obtain

C = 4π
1

2
Γ

(
3

2

)(
2kBT

mi + ms

) 3
2

= 2π

√
π

2

(
2kBT

mi + ms

) 3
2

(41)

=
(

2πkBT

mi + ms

) 3
2

. (42)

Finally, the integral D can be rewritten as

D =
∫

R3
V v exp

(
− μisV 2

2kBT

)(
ais ·V

)
VdV

=
∫

R3
V v exp

(
− μisV 2

2kBT

)(
aisV cos θ

)
VdV

= ais

∫

R3
V v exp

(
− μisV 2

2kBT

)
V 2 cos θdV .

Writing the integral D in spherical coordinates, we obtain
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D = ais

∫ ∞

0

∫ π

0

∫ 2π

0
V (x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ) exp

(
− μisV 2

2kBT

)

× V 2 cos θV 2 sin θdφdθdV

=ais

∫ ∞

0
V 5 exp

(
− μisV 2

2kBT

)
dV

︸ ︷︷ ︸
D1

(
x̂
∫ π

0
sin2 θ cos θdθ

︸ ︷︷ ︸
0

∫ 2π

0
cosφdφ

︸ ︷︷ ︸
0

+ŷ
∫ π

0
sin2 θ cos θdθ

︸ ︷︷ ︸
0

∫ 2π

0
sin φdφ

︸ ︷︷ ︸
0

+ẑ
∫ π

0
sin θ cos2 θdθ

︸ ︷︷ ︸
2
3

∫ 2π

0
dφ

︸ ︷︷ ︸
2π

)
,

where x̂, ŷ, ẑ are the Cartesian unit vectors in R3. Evaluating the integral in V using
(37), we obtain

∫ ∞

0
V 5 exp

(
− μisV 2

2kBT

)
dV = 1

2
Γ (3)

(
2kBT

μis

)3

= 1

2
2!
(
2kBT

μis

)3

=
(
2kBT

μis

)3

. (43)

Substituting (43) into the integral D , we obtain

D = ais

(
2kBT

μis

)3[
x̂(0 × 0) + ŷ(0 × 0) + ẑ

(2
3

× 2π
)]

= ais
4π

3

(
2kBT

μis

)3

.

(44)
Since the integrals A and B both vanish, we have that Oi reduces to

Oi =−α

N∑

s=1
s �=i

σ 2
is

4πμisms

3(mi + ms)

(mims)
3
2

(2πkBT )3
cα
i c

α
s

(
2πkBT

mi + ms

) 3
2

ais
4π

3

(
2kBT

μis

)3

+ O(α2)

= −α

N∑

s=1
s �=i

σ 2
is
16μ2

is

9kBT

(
μis

2πkBT

) 3
2

cα
i c

α
s

(
2πkBT

μis

)2 (2kBT

μis

)
(uα

i − uα
s ) + O(α2)

= −α

N∑

s=1
s �=i

σ 2
is
32μis

9
cα
i c

α
s

(
2πkBT

μis

) 1
2

(uα
i − uα

s ) + O(α2)

= −α
32

9

N∑

s=1
s �=i

σ 2
is (2πμis kBT )

1
2 cα

i c
α
s (uα

i − uα
s ) + O(α2),

where we have used the definition of ais given in (19). The proof is complete. �
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4.3 Formal Asymptotics

Here we present the asymptotic analysis of the species continuity equations and the
species momentum balance equations towards a diffusion model where the diffu-
sion process is described by the MS equations. For a diffusion asymptotics of the
Boltzmann equations for non-reactive mixtures in a kinetic framework, see, [22].

Theorem 4.1 The Maxwellians defined in (17) are solutions of the initial-boundary
value problem (12) if (cα

i , u
α
i ) solves

∂cα
i

∂t
+ ∂

∂x
(cα

i u
α
i ) = 0, i = 1, 2, . . . , N ,

α2mi
∂

∂t

(
cα
i u

α
i

)
+ kBT

∂cα
i

∂x
+ α2mi

∂

∂x

(
cα
i u

α
i ⊗ uα

i

)
= 1

α
Oi ,

(45)

where
1

α
Oi = −32

9

N∑

s=1
s �=i

σ 2
is(2πμiskBT )

1
2 cα

i c
α
s

(
uα
i −uα

s

) + O(α).

Moreover, in the limit as α → 0 Eqs. (45) reduces to

∂ci
∂t

+ ∂Ji
∂x

= 0, i = 1, 2, . . . , N ,

∂ci
∂x

= 32

9

N∑

s=1
s �=i

σ 2
is

(
2πμis

kBT

)1
2 (

ciJs − csJi
)
.

(46)

Proof Putting together Eqs. (27) and (29) gives (45). To obtain (46), we first set
cα
i u

α
i = Jα

i + cα
i u

α in (45), where uα represents the average velocity of the mixture,
next we divide both sides of the second equation of (45) by kBT , then take the limit
for α → 0, where

ci = lim
α→0

cα
i , Ji = lim

α→0
Jα
i , u = lim

α→0
uα,

and neglect the convective term, that is
∂

∂x
(ciu) = 0. �

Observe that summing over all species in both equations given in (46), we obtain that

∂c

∂t
= 0 and

∂c

∂x
= 0, respectively where c =

N∑

i=1

ci . Therefore, we must have that c

is uniform in space and constant in time. Hence, the second equation of system (46)
can be rewritten as
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∂ci
∂x

= 1

c

N∑

s=1
s �=i

ciJs − csJi
Dis

, i = 1, 2, . . . , N , (47)

where

Dis = 9

32

(
kBT

2πμis

)1
2 1

c σ 2
is

. (48)

The equations given in (47) are the MS equations and the MS diffusion coefficients
are given in (48). Replacing the second equation of (46) with (47), we obtain

∂ci
∂t

+ ∂Ji
∂x

= 0 i = 1, 2, . . . , N ,

∂ci
∂x

= 1

c

N∑

s=1
s �=i

ciJs − csJi
Dis

.
(49)

System (49) above is a diffusion model where the diffusion process is described by
the MS equations. Furthermore, the boundary conditions to accompany the system
of equations (49) are

ν · Ji = 0, i = 1, 2, . . . N , (50)

where ν(x) is the outward normal vector at x ∈ ∂Ω . This boundary conditions ensure
that the system is closed.

Remark 4.1 System (49) is a diffusion model where the diffusion process is gov-
erned by the MS equations. This diffusion model is similar to the ones obtained in
[4, 6, 11]. However, the MS diffusion coefficients in [4] were not given explicitly.
In [6, 11], the MS diffusion coefficient were obtained explicitly but they differ from
the one obtained in this work. More precisely, the MS diffusion coefficients in [6]
are given by

Di j = KT

2πμi j

1

c||bi j ||L1
, (51)

while those of [11] are given by

D̄i j = 1

�̃i j

, where �̃i j = a0
2πμi j |bi j |L1

(mi + m j )kT
+ . . . , (52)

see Eq. (24) of [11] for the complete expression of �̃i j . The difference σ 2
is and |bi j |L1

is due to the fact that the angular collision kernel in [6, 11] is given by bi j (cos θ),
whereas in the present paper, it is cos θ . The differences in the coefficient 9

32 and
the exponent 1

2 between Eqs. (48) and (51) are consequences of the difference in the
considered cross-sections and the definitions of the pre-collision velocities in [6, 11]
and the post-collision velocities in the present work. Furthermore, the MS diffusion
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coefficients obtained in this work are the same as those obtained in [1] because the
cross-sections considered in both cases are of hard-sphere type, and also because of
the chemical regime considered in [1], which results in the fact that diffusion effects
are not seen on the chemical reactive terms.

5 Conclusion

In this work, we have studied a kinetic model for non-reactive mixtures with hard-
sphere cross-sections under isothermal condition and obtained a diffusion model
where the diffusion process is described by the Maxwell–Stefan equations. More
precisely, the diffusion model of MS type was obtained as a hydrodynamic limit of
the scaled kinetic equations. In particular, from the species continuity equations and
the species momentum balance equations in the limit as the scaling parameter tends
to zero.
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An Asymptotic Preserving Scheme for a
Stochastic Linear Kinetic Equation in the
Diffusion Regime

Nathalie Ayi

Abstract In this paper, we present anAsymptotic Preserving scheme for a stochastic
linear kinetic equation. Its construction is based on a micro-macro decomposition.
We start by explaining how we build it and then perform the formal numerical limit.
After stating some stability results proved in [1], some numerical tests confirming
the good performances of our scheme are finally presented.

Keywords Stochastic partial differential equations · Transport equations ·
Diffusion limit · Asymptotic preserving schemes · Stiff terms

1 Introduction

In some physical contexts such as radiative transfer or rarefied gas dynamics for
instance, there exist several levels of description: the microscopic scale where we
are interested in the evolution of each particle and the macroscopic one where we
deal with macroscopic quantities. There exists also an intermediate scale, called
mesoscopic, where we are interested in the evolution of the density of particles f , a
function depending on time, position andvelocity such that f (t, x, v)dxdv represents
the number of particles in the infinitesimal volume dxdv. At this level, we study the
kinetic equation satisfied by the density of particles. The passage from one scale to
another is done by passing to the limit on one parameter of the system. Typically,
to go from the microscopic scale to the mesoscopic one, we pass to the limit on the
number of particles N , N going to infinity.

In this proceeding, we will focus on the passage from the mesoscopic scale to
the macroscopic one, by passing to the limit on the mean free path, denoted by
ε. Our goal will be to study this passage from a numerical point of view. Indeed,
we want to design a scheme which adapts to this particular scaling limit. Actually,
this type of problem can be very challenging numerically. The idea is to construct a
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Fig. 1 Property of AP
Schemes: Pε,h is the
numerical approximation of
the solution of the kinetic
equation Pε and converges to
the numerical approximation
P0,h of the solution of the
macroscopic equation P0

scheme which mimics the asymptotic behavior of the kinetic equation, i.e. reduces to
numerical approximations of the macroscopic equation when the scaling parameter
goes to 0. This is exactly the purpose of the Asymptotic Preserving (AP) schemes
as illustrated in Fig. 1. They have been first studied in neutron transport by Larsen et
al. [19], Larsen and Morel [18] and Jin and Levermore [13, 14] for steady problems.
For time dependent problems, we can mention the works of Klar [17], Jin et al. [15]
who proposed two classes of semi-implicit time discretizations.

One of the difficulties is that, when adopting standard schemes to reach our goal,
the time step satisfies a stability condition of the type h = O(ε) and this becomes
computationally too expensive in “fluid” zone (i.e. for ε small). Therefore, we need
to be cautious when constructing our scheme to obtain an h independent of ε.

This type of questions has been widely studied in the literature. The novelty in
our problem is that we are interested in that question in a stochastic setting. The
kinetic equation we study presents a stochastic perturbation by a Wiener process.
Indeed, lately, the study of stochastic perturbation ofwell known deterministic partial
differential equations has been a subject of growing interest, (see [2, 7–9, 11, 12, 16]
…). The introduction of such term can be justified to model numerical and empirical
uncertainties.

The paper is organized as follows: in Sect. 2, we introduce the model under study,
which is a stochastic kinetic linear equation with multiplicative noise. In Sect. 3, we
present the diffusion limit and we introduce a new formulation of the problem which
will be the key to construct our scheme. In Sect. 4, we construct the scheme and give
some results about its behavior. In Sect. 5, we present some numerical tests. Finally,
in Sect. 6, we present our perspectives.

2 General Setting

We are interested into the following stochastic linear kinetic equation (see [6])

d f + 1

ε
v∂x f dt = σ

ε2
L f dt + f ◦ QdWt (1)
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where f is the distribution function of particles that depends on time t > 0, on
position x ∈ T = R/2πZ and on velocity v ∈ [−1, 1], dWt a cylindrical Wiener
process on the Hilbert space L2(T), ◦ referring to the Stratonovich integral. We can
define it by setting

dWt =
∑

k≥0

ekdβk(t)

where the (βk)k≥0 are independent Brownian motions on the real line and (ek)k≥0 a
complete orthonormal system in the Hilbert space L2(T). Q is a linear self-adjoint
operator on L2(T) such that

∑

k≥0

‖Qek‖2L∞
x

< +∞. (2)

This assumption, borrowed to [6], is used for the existence of a solution to the
macroscopic equation that we will introduce later. Moreover, we assume that σ

satisfies 0 < σm ≤ σ(x) ≤ σM for every x and belongs to C 3(T).
In this Eq.1, the left-hand side represents the free transport of the particles while

the right-hand side models the interaction of particles with the medium.

We define the operator Π such that

Πφ = 1

2

∫ 1

−1
φ(v)dv (3)

which is the average of every velocity dependent function φ. The linear operatorL
that we will consider is given by

L f (v) =
∫ 1

−1
s(v, v′)( f (v′) − f (v))dv′, (4)

where the kernel s is such that 0 < sm ≤ s(v, v′) ≤ sM for every v, v′ ∈ [−1, 1]. We

assume that s satisfies
∫ 1

−1
s(v, v′)dv′ = 1 and that it is symmetric: s(v, v′) = s(v′, v).

We then have the following properties:

Lemma 1 • L acts only on the velocity dependence of f (it is local with respect
to t and x).

• Π(L φ) = 0 for every φ ∈ L2([−1, 1]).
• The null space of L isN (L ) = {φ = Πφ} (constant functions).
• The range of L is R(L ) = N ⊥(L ) = {φ s.t. Πφ = 0}.
• L is non-positive self-adjoint in L2([−1, 1]) and we have

Π(φL φ) ≤ −2smΠ(φ2) (5)
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for every φ ∈ N ⊥(L ).
• L admits a pseudo inverse fromN ⊥(L ) onto N ⊥(L ) denoted by L −1.
• The orthogonal projection from L2([−1, 1]) onto N (L ) is Π .

All those properties are actually easy to obtain once we have noticed that the assump-
tions on s imply thatL + I is a self-adjoint Hilbert–Schmidt, and therefore compact
operator.

For instance, the one-group transport equation corresponds to

L f =
∫ 1

−1

1

2
( f (v′) − f (v))dv′ = Π f − f,

and it is classical in this case to prove that L satisfies all the previous properties.
Equation1 becomes

d f + 1

ε
v∂x f dt = σ

ε2
(Π f − f )dt + f ◦ QdWt . (6)

If the velocity set is {−1, 1}, dv is the discrete measure and the corresponding one-
group transport equation is called the telegraph equation. We denote f (t, x, 1) :=
p(t, x) and f (t, x,−1) := q(t, x). For σ = 1, the Eq.1 becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dp + 1

ε
∂x pdt = 1

ε2

(
p + q

2
− p

)
dt + p ◦ dWt

dq − 1

ε
∂xqdt = 1

ε2

(
p + q

2
− q

)
dt + q ◦ dWt .

(7)

3 The Diffusion Limit

3.1 The Macroscopic Equation

The diffusive limit of (1) when ε goes to 0 is

dρ+∂x (κ∂xρ)dt = ρ ◦ QdWt (8)

with κ(x) = Π(vL −1v)

σ (x)
, see [6].

A good approach to see it is to perform Hilbert’s expansion:

f (t, x, v) = f0(t, x, v) + ε f1(t, x, v) + ε2 f2(t, x, v) + . . . (9)

and to identify the power of ε. Using the properties of L leads to
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σL f0 = 0 ⇒ f0 = Π f0 = ρ0,

v∂x f0 = σL f1 ⇒ f1 = L −1

(
1

σ
v∂xρ0

)
(10)

d f0 = σL f2dt + f0 ◦ QdWt − v∂x f1dt. (11)

Applying Π on (11) and identifying f1, we obtain

dρ0 = ρ0 ◦ QdWt − ∂x

(
Π

[
vL −1

( v

σ

)]
∂xρ0

)
dt (12)

and so when ε goes to 0, fε goes to f0 which is equal to ρ0, solution of (8).

3.2 The Micro-Macro Decomposition

The starting point of this article is a scheme proposed by Lemou and Mieussens in
[20] based on themicro-macro decomposition of the distribution function intomicro-
scopic and macroscopic components. The decomposition only uses basic properties
of the collision operator that are common to most of kinetic equations (namely con-
servation and equilibrium properties) and leads to a coupled system of equations for
these two components without any linearity assumption. One of the interest of this
approach is that it appears to be very general, as it can be applied to kinetic equa-
tions for both diffusion limit (see [20, 21] for linear transport equations and [4] for
the nonlinear Kac equation) and hydrodynamic regimes (see [3] for the Boltzmann
equation for instance).

We introduce g such that

g := f − ρ

ε
(13)

with ρ = Π( f ) so that f = ρ + εg, adopting the framework of an expansion of
Chapman–Enskog type. We notice that g satisfies Π(g) = 0. The equation becomes

d(ρ + εg) + 1

ε
v∂x (ρ + εg)dt = σ

ε2
L (ρ + εg)dt + (ρ + εg) ◦ QdWt . (14)

We apply Π and since π(L φ) = 0 for every φ, we obtain

dρ + ∂xΠ(vg)dt = ρ ◦ QdWt . (15)

We do (14), (15) and obtain

dg + 1

ε
(I − Π)(v∂x g)dt = σ

ε2
L gdt + g ◦ QdWt − 1

ε2
v∂xρdt. (16)
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Thus, we obtain an equivalent system to (14):

{
dρ + ∂xΠ(vg)dt = ρ ◦ QdWt

dg + 1

ε
(I − Π)(v∂x g)dt = σ

ε2
L gdt + g ◦ QdWt − 1

ε2
v∂xρdt .

(17)

Example 1 For the one group transport equation, the micro-macro decomposition
writes

{
dρ + ∂xΠ(vg)dt = ρ ◦ QdWt

dg + 1

ε
(I − Π)(v∂x g)dt = − σ

ε2
gdt + g ◦ QdWt − 1

ε2
v∂xρdt .

(18)

For the telegraph equation, denoting g = (α, γ ), it is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ + ∂x
α − γ

2
dt = ρ ◦ QdWt

dα + 1

ε
∂x

α + γ

2
dt = − 1

ε2
αdt + α ◦ QdWt − 1

ε2
∂xρdt

dγ − 1

ε
∂x

γ + α

2
dt = − 1

ε2
γ dt + γ ◦ QdWt + 1

ε2
∂xρdt .

(19)

3.3 Formal Analytical Limit

Under this form, we can perform the formal analytical limit again. The interest is
that it is now straightforward. Moreover, we will study the limit of our numerical
scheme with this same approach.

From dg + 1

ε
(I − Π)(v∂x g)dt = σ

ε2
L gdt + g ◦ QdWt − 1

ε2
v∂xρdt , we

deduce

g = L −1

(
1

σ
v∂xρ

)
+ O(ε).

Thus, dρ + ∂xΠ(vg)dt = ρ ◦ QdWt leads to

dρ + ∂x (κ∂xρ)dt = ρ ◦ QdWt + O(ε)

where κ(x) = Π(vL −1v)

σ (x)
is the diffusion coefficient which satisfies κ(x) < 0 ∀x .
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4 The Numerical Scheme

4.1 Construction of the Scheme

We start by an illustration of the type of problems that can occur. Let us deal with
the stiff term for the one-group transport equation with σ = 1. We are interested in

∂t g = − 1

ε2
g. (20)

With the explicit Euler method, we obtain

gn+1 − gn

Δt
= − 1

ε2
gn. (21)

Thus, we have gn+1 =
(
1 − Δt

ε2

)
gn =

(
1 − Δt

ε2

)n+1

g0. Therefore, we see that

stability considerations imply that Δt ≤ ε2. In particular for instance, in order to
preserve the positivity, we have to satisfy this condition. Thus, it is an issue for small
ε. On the other hand, if we adopt the implicit Euler method, we obtain

gn+1 − gn

Δt
= − 1

ε2
gn+1 (22)

Thus, we have gn+1 =
(

ε2

ε2 + Δt

)
gn and we see that stability issues are indepen-

dent of the size ε.

Thus, in our scheme, the collision term will be implicit to ensure stability as ε

goes to 0. Furthermore, we will adopt the upwind discretization of (I − Π)(v∂x g) to
ensure stability in the kinetic regime while the centered approximations of ∂xΠ(vg)
and v∂xρ will allow to capture the diffusion limit. Using the formula which links the
Itô integral and the Stratonovich one, we can rewrite (17) as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dρ + ∂xΠ(vg)dt = ρQdWt + 1

2
ρ

∑

k≥0

(Qek )
2dt

dg + 1

ε
(I − Π)(v∂x g)dt = σ

ε2
L gdt + gQdWt + 1

2
g
∑

k≥0

(Qek )
2dt − 1

ε2
v∂xρdt .

(23)

We study the following numerical scheme for this system with a time step Δt and
times tn = nΔt and two staggered grids of step Δx and nodes xi = iΔx and xi+ 1

2
=

(i + 1
2 )Δx extended by periodicity. We are interested in a semi-discretization in x ,

and we use the notation ρn
i ≈ ρ(tn, xi ) and gn

i+ 1
2
(v) ≈ g(tn, xi+ 1

2
, v).
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ρn+1
i = ρni − Δt Π

⎛

⎜⎝v

gn+1
i+ 1

2
− gn+1

i− 1
2

Δx

⎞

⎟⎠ + ρni

⎛

⎝ 1

2
Δt

∑

k≥0

(bik )
2 + √

Δt
∑

k≥0

bikξ
n+1
k

⎞

⎠

gn+1
i+ 1

2
= gn

i+ 1
2

− Δt

εΔx
(I − Π)

(
v+

(
gn
i+ 1

2
− gn

i− 1
2

)
+ v−

(
gn
i+ 3

2
− gn

i+ 1
2

))

+
σ
i+ 1

2

ε2
L gn+1

i+ 1
2
Δt + gn

i+ 1
2

⎛

⎝ 1

2
Δt

∑

k≥0

(b
i+ 1

2 ,k
)2 + √

Δt
∑

k≥0

b
i+ 1

2 ,k
ξn+1
k

⎞

⎠

− 1

ε2
v
ρni+1 − ρni

Δx
Δt,

(24)

where v+ = max(v, 0) and v− = min(v, 0), (ξ n
k )n≥1,k≥0 are i.i.d. variables with a

normal distribution andweuse the notation bik := Qek(xi ) and bi+ 1
2 ,k := Qek(xi+ 1

2
).

4.2 Formal Numerical Limit

Similarly as for the kinetic equation, we can obtain the formal limit directly. From

the second equation of (24), we obtain gn+1
i+ 1

2
= 1

σi+ 1
2

L −1

(
v
ρn
i+1 − ρn

i

Δx

)
+ O(ε).

Thus, putting this in the first equation of (24), we have

ρn+1
i = ρni − Δt

Δx

(
κ
i+ 1

2

ρni+1 − ρni
Δx

− κ
i− 1

2

ρni − ρni−1
Δx

)
+ ρni

⎛

⎝ 1

2
Δt

∑

k≥0

(bik )
2 + √

Δt
∑

k≥0

bikξ
n+1
k

⎞

⎠ + O (ε)

with κi+ 1
2

= Π(vL −1v)

σi+ 1
2

. We recognize the usual 3-points stencil explicit scheme

for the diffusion equation.

4.3 Stability Results

In this subsection, we will just state the stability results that we have established in
[1] and we invite the reader to consult this reference to see the proofs.

4.3.1 The Telegraph Case

We start with the telegraph case with a one dimensional Brownian motion. In that
case, as seen previously the micro-macro system writes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ + ∂x
α − γ

2
dt = ρ ◦ dβ(t)

dα + 1

ε
∂x

α + γ

2
dt = − 1

ε2
αdt + α ◦ dβ(t) − 1

ε2
∂xρdt

dγ − 1

ε
∂x

γ + α

2
dt = − 1

ε2
γ dt + γ ◦ dβ(t) + 1

ε2
∂xρdt .

(25)

For this system, the scheme (24) takes the form

ρn+1
i = ρni − Δt

2Δx

[(
αn+1
i+ 1

2
− γ n+1

i+ 1
2

)
−

(
αn+1
i− 1

2
− γ n+1

i− 1
2

)]
+ ρni

(
Δt
2 + √

Δt ξn+1
)

αn+1
i+ 1

2
= αn

i+ 1
2

− Δt

εΔx

[(
αn
i+ 1

2
− αn

i− 1
2

)
− 1

2

(
αn
i+ 1

2
− αn

i− 1
2

− γ n
i+ 3

2
+ γ n

i+ 1
2

)]

−Δt

ε2
αn+1
i+ 1

2
+ αn

i+ 1
2

(
Δt

2
+ √

Δt ξn+1
)

− 1

ε2
Δt

(
ρni+1 − ρni

Δx

)

γ n+1
i+ 1

2
= γ n

i+ 1
2

Δt

εΔx

[
−

(
γ n
i+ 3

2
− γ n

i+ 1
2

)
− 1

2

(
αn
i+ 1

2
− αn

i− 1
2

− γ n
i+ 3

2
+ γ n

i+ 1
2

)]

−Δt

ε2
γ n+1
i+ 1

2
+ γ n

i+ 1
2

(
Δt

2
+ √

Δt ξn+1
)

+ 1

ε2
Δt

(
ρni+1 − ρni

Δx

)

(26)

where (ξ n)n≥1 are i.i.d. variables with a normal distribution. We denote j := 1
2ε (p −

q) = 1
2 (α − γ ) and the above scheme can be written under the much simpler form

ρn+1
i = ρni − Δt

Δx

(
jn+1
i+ 1

2
− jn+1

i− 1
2

)
+ ρni

(
Δt
2 + √

Δt ξn+1
)

jn+1
i+ 1

2
= jn

i+ 1
2

+ Δt

2εΔx

[
jn
i+ 3

2
− 2 jn

i+ 1
2

+ jn
i− 1

2

]

−Δt

ε2
jn+1
i+ 1

2
+ jn

i+ 1
2

(
Δt

2
+ √

Δt ξn+1
)

− 1

ε2
Δt

(
ρni+1 − ρni

Δx

)
(27)

In [1], we have established the following result for the stability of this scheme.

Theorem 1 There exist constants L, Δt0, Δx0 and ε0 such that for all Δt ≤ Δt0,
Δx ≤ Δx0 and ε ≤ ε0 satisfying the CFL condition

Δt ≤ 1

2

(
Δx2

2
+ εΔx

)
(28)

then we have

e

[
∑

i

(ρn
i )

2 + (ε j n
i+ 1

2
)2

]
≤ eLnΔt e

[
∑

i

(ρ0
i )

2 + (ε j0i+ 1
2
)2

]
(29)

for every n.
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The proof is based on a standardVonNeumann analysis.We observe that the diffusive
CFL condition Δt ≤ 1

4Δx2 is sufficient for stability for small ε, while half of the
convection CFL is sufficient for ε = O(1).

4.3.2 The General Case

We also have established the uniform stability of the general scheme in [1].

Theorem 2 If Δt satisfies the following CFL condition

Δt ≤ 2smσmΔx2

2(2 + ε)
+ εΔx

2 + ε
, (30)

then the sequence ρn and gn defined by the scheme (24) satisfy the energy estimate

e

⎡

⎣
∑

i

(ρni )2

⎤

⎦ + ε2e

⎡

⎣
∑

i

Π

(
(gn

i+ 1
2
)2

)⎤

⎦ ≤ C(T )

⎛

⎝e

⎡

⎣
∑

i

(ρ0i )2

⎤

⎦ + ε2e

⎡

⎣
∑

i

Π

(
(g0

i+ 1
2
)2

)⎤

⎦

⎞

⎠

(31)
for every n with C(T ) a constant which only depends on T . Hence, the scheme (24)
is stable.

5 Numerical Tests

We now test the performance of our algorithm on the one-group model (6) with
velocity set [−1, 1] and σ = 1. We denote this equation by

d f + v

ε
∂x f dt = 1

ε
(Π f − f )dt + f ◦ QdWt . (32)

For the space variable x ∈ [0, 1], we assume periodic boundary conditions. The noise
QWt is given by

(QW )t (x) =
∑

k∈Z

1

|k| + 1
(cos(2kπx) + sin(2kπx)) dβk(t)

where (βk)k∈Z are independent brownian motions. Note that, indeed, it fulfills the
condition (2). The initial data f (0, x, v) = f0(x, v) is given by

f0(x, v) = (1 + cos(2πx + π)).

We denote our scheme SMM N , where N is the number of grid points both in
space and velocity variables: x j = jΔx for Δx = N−1 and v j = −1 + jΔv with
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Δv = 2Δx = 2N−1 for j = 1, . . . , N − 1. A function f (x, v) will be approxi-
mated by numbers f jk , ( j, k) ∈ {0, . . . , N − 1} representing f (x j , vk) evaluated
at the grid point. For a given time step Δt , f (tn, x j , vk) is thus represented by
f njk for tn = nΔt . The operator Π is discretized by the discrete average operator

(ΠN f ) j = 1
2N

∑N−1
k=0 f jk .

To test the performance of our scheme and in particular its asymptotic preserving
properties, we calculate some reference solutions to which we will compare our
numerical results. We compare our solution with the kinetic equation for ε = 1.
More precisely, we compute reference solutions with the explicit schemes

f n+1
i = f ni − Δt

εΔx
(v+( f ni − f ni−1) + v−

(
f ni+1 − f ni )

)

+ 1

ε2
(Π f ni − f ni ) + f ni

⎛

⎝ 1

2
Δt

∑

k≥0

(bik )
2 + √

Δt
∑

k≥0

bikξ
n+1
k

⎞

⎠
(33)

referred to as the kinetic (KIN) schemes. Then, we compare our numerical solution
with respect to the solution of the diffusionEq.8 for smaller εwithκ = Π(vL −1v) =
−1/3, andwhich is independent of ε. To compute an approximationμn

i of the solution
of this equation at time tn and grid points xi , we use the Crank–Nicholson (CN)
scheme

μn+1
i = μn

i − κ

2

Δt

Δx2
(
μn+1
i+1 − 2μn+1

i + μn+1
i−1

) − κ

2

Δt

Δx2
(
μn
i+1 − 2μn

i + μn
i−1

)

+ μn
i

(
1

2
Δt

∑

�≥0

(bi�)
2 + √

Δt
∑

�≥0

bi�ξ
n+1
�

)
.

(34)
As we will see, our scheme behaves well in the kinetic regime, and is asymptotic
preserving at the limit ε → 0.

We are interested in the evolution of ρ(t, x) = (Π f )(t, x) and we denote by ρn
i

the approximated value of this function at the point x j at time tn = nΔt .
In all the cases we perform M = 100 realizations of the processes and we denote

by (ρn
j )(m) the realizations obtained, for m = 1, . . . , M . We are interested in the

mean ρn = (ρn
j )

N−1
j=0 and the standard deviation Sn = (Snj )

N−1
j=0 defined by

ρn
i = 1

M

M∑

m=1

(
ρn
i

)
(m)

, Sni =
√√√√ 1

M − 1

M∑

m=1

((
ρn
i

)
(m)

− ρn
i

)2
.

In Fig. 2, we consider the case ε = 1, and we plot the means ρ of the KIN scheme
and our SMM scheme in two cases: 25 grid points and 200 grid points and for various
different values of the time t = 0.01, 0.25, 0.4 and 1. In Fig. 3we consider the diffusion
regime ε = 10−8 and compare the numerical solutions ρ̄ given by SMM schemes
for various values of the number of grid points N , with the numerical solution of the
reference CN scheme (CN 200). In Fig. 4, we plot the differences of the mean ρ̄ and
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Fig. 2 One-group transport equation ε = 1: comparisons of the mean between KIN and SMM
schemes. Results at times t = 0.01, 0.25, 0.4 and 1 (from down to up on the left vertical axis)

Fig. 3 One-group transport equation ε = 10−8: comparison of the mean between CN and SMM
schemes. Results at times t = 0.01, 0.1, 0.25 and 0.4 (from down to up)
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Fig. 4 Error for the mean (solid lines) and the standard deviation (dashed lines) at t = 0.4, with
respect to ε, with 25 (squares), 50 (circles), 100 (diamonds) and 200 grid points (stars)

standard deviation S between the reference scheme (KIN or CNN) and our SMM
schemes (with N = 25, 50, 100 and 200 points) and for ε ∈ {10−2m}, m = 0, . . . , 4.

6 Conclusion and Perspectives

The scheme presented in this paper is Asymptotic Preserving and its construction is
based on the micro-macro decomposition. We have obtained some numerical results
confirming the good performances of the scheme, in particular in the diffusion regime
as it can be seen in the figures. In [1], we have established some conditions of
CFL type ensuring the stability of our scheme uniformly with respect to ε. The
natural perspectives are to use similar techniques to study stochastic perturbations
of the nonlinear case which has been studied theoritically in [6], or again of the
Boltzmann equation for which one the micro-macro decomposition method works
in the deterministic case (see [10]). It is quite relevant to develop a scheme for
that stochastic setting regarding the recent advances for the stochastic study of the
Boltzmann equation, see [22] for instance. We could also take an interest in some
AP schemes for hydrodynamical limits of the previous problems mentioned and for
a stochastic version of the Vlasov equation, the deterministic case being treated in
[5].
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Abstract We survey our recent articles dealingwith one-dimensional attractive zero
range processes moving under site disorder. We suppose that the underlying random
walks are biased to the right and so hyperbolic scaling is expected. Under the con-
ditions of our model the process admits a maximal invariant measure. The initial
focus of the project was to find conditions on the initial law to entail convergence
in distribution to this maximal distribution, when it has a finite density. Somewhat
surprisingly, necessary and sufficient conditions were found. In this part hydrody-
namic results were employed chiefly as a tool to show distributional convergence
but subsequently we developed a theory for hydrodynamic limits treating profiles
possessing densities that did not admit corresponding equilibria. Finally we derived
strong local equilibrium results.
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1 Introduction

The asymmetric zero-range processs (AZRP) with site disorder was introduced in
[20] to study condensation phenomena. It is a conservative interacting particle system
whose dynamics is determined by a jump rate function g : N → N, a function α :
Z
d → R+ (called the environment or disorder), and a jump distribution p(.) on Zd ,

for d ≥ 1. A particle leaves site x at rate α(x)g[η(x)], where η(x) denotes the current
number of particles at x , and moves to x + z, where site z is chosen at random with
distribution p(.). As explained later on, this model has a whole family of product
invariant measures carrying different mean densities; it exhibits a critical density ρc,
i.e. no product invariantmeasure exists aboveρc [19, 21], if the function g is bounded,
α has averaging properties plus a proper tail assumption. This can be interpreted as
a phase transition.

In this review paper, we consider the one-dimensional attractive nearest neigh-
bour process, that is d = 1, p(1) + p(−1) = 1 and g nondecreasing. We summarize
the papers [13–16], by giving their results and the main ideas of their proofs. In
these papers, we developed robust approaches to study various aspects of the phase
transition mentioned above.

One aspect is themass escape phenomenon. Suppose the process is started from a
given configuration where the global empirical density of particles is greater than ρc.
One usually expects convergence to the extremal invariantmeasure carrying the same
density as the initial state. However, in this case such a measure does not exist. When
g(n) = min(n, 1) and p(1) = 1 it was shown in [6] that the system converges to the
maximal invariant measure (thereby implying a loss ofmass). This was established in
[13, 14] for the general nearest neighbourmodel under a weak convexity assumption,
and we showed that this could fail for non nearest neighbour jump kernels.

Phase transition also arises in the hydrodynamic limit. We show in [15] that the
hydrodynamic behaviour of our process is given under hyperbolic time scaling by
entropy solutions of a scalar conservation law

∂tρ(t, x) + ∂x [ f (ρ(t, x))] = 0 (1)

where ρ(t, x) is the local particle density field, with a macroscopic flux function
ρ �→ f (ρ) that is increasing up to ρc and constant thereafter.

The natural question following hydrodynamic limit is that of local equilibrium. In
general, for a conservative particle system endowed with a family (νρ)ρ of extremal
invariant measures, the local equilibrium property states that the distribution of the
microscopic particle configurations at a macroscopic time t ≥ 0 around a site with
macroscopic location x ∈ R is close to νρ(t,x), where ρ(t, x) is the hydrodynamic
density, here given by (1). This property has a weak (space-averaged) and a strong
(pointwise) formulation, see e.g. [24]. But the local equilibrium property is expected
to be wrong at supercritical hydrodynamic densities, that is, such that ρ(t, x) >

ρc, since a corresponding equilibrum measure does not exist. This already poses a
problem at the level of the hydrodynamic limit [15], since in the usual heuristic for
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(1), the macroscopic flux function f is the expectation of microscopic flux function
under local equilibrium.

In [16], we introduce a new approach for the derivation of quenched strong local
equilibrium. In the case of subcritical hydrodynamic density, that is, ρ(t, x) < ρc, we
establish not only conservation but also spontaneous creationof local equilibrium:we
only require starting froma sequence of (possibly deterministic) initial configurations
with a givenmacroscopic profile, butwith a distribution possibly far away from initial
local equilibrium. In the case of supercritical hydrodynamic density ρ(t, x) > ρc,
we prove that the local equilibrium property fails, and that, locally around “typical
points” of the environment, the distribution of the microscopic state is close to the
critical measure denoted byμα

c : this can be viewed as a dynamic version of the loss of
mass property studied in [6, 13, 14]. In the case of a critical hydrodynamic density,
that is, ρ(t, x) = ρc, we prove that locally around typical points, the distribution
of the system approaches the critical measure. This can still be viewed as a local
equilibrium creation result, but only in a partial sense. Indeed, outside the situation
of an ergodic disorder (to which we are not limited), the critical measure may not
have critical density, nor even any well-defined density.

The paper is organized as follows. In Sect. 2, we introduce our results through
an illustrating analysis of traffic jams. In Sect. 3, we introduce the model and its
basic properties. Section4 refers to [13, 14], that is, to the convergence to the critical
measure μα

c from a supercritical or a critical initial configuration. Section5 refers to
[15], that is, to the hydrodynamic limits results (including the supercritical regime).
Section6 refers to [16], that is, to strong local equilibrium in the subcritical and
critical regimes (creation or conservation), and to loss of local equilibrium in the
supercritical regime.

2 A Preliminary Illustration: Traffic Jams

In this section we describe some heuristics for a particular AZRP, where g(n) =
min(n, 1) and p(1) = 1. This is a well-known model, namely, a series of M/M/1
queues in tandem where each site x ∈ Z corresponds to a server with service rate
α(x). Then (see e.g. [32]) provided λ < α(x) for all x , an invariant measure for this
process can be described as follows: if η(x) denotes the number of customers waiting
for server x , the random variables {η(x) : x ∈ Z} are independent, and the law of
η(x) + 1 is the geometric distribution with parameter 1 − λ/α(x); thus η(x) has
mean value λ/(α(x) − λ). The parameter λ is the intensity of the Poisson process of
departures from each queue, hence it can be interpreted as the mean current (or flux)
of customers along the system. We assume that

∀x ∈ Z, 0 < c := inf
y∈Z

α(y) < α(x) (2)
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so that the above invariant measure is defined for λ ≤ c. The value λ = c corresponds
to what we called “critical” in the introduction.

This particular AZRP is isomorphic to a totally asymmetric simple exclusion
process (TASEP), that models traffic on a one lane highway where overtaking is
forbidden. In this TASEP, cars (particles) are labeled from left to right by integers
n ∈ Z, and each of them moves one step further left as long as it is not blocked
by another car in front of it (according to the exclusion rule). Particle n jumps
with its own rate α(n), hereafter called its speed. This intrinsic speed is the one
it would reach on an otherwise empty road in the absence of any exclusion rule.
Whereas the original AZRP was endowed with site disorder, the associated TASEP
is endowed with particle disorder. Here, (2) means that we can find cars moving at
speeds arbitrarily close to but not equal to c.

The isomorphism between AZRP and TASEP is as follows. An AZRP server
at site n ∈ Z becomes a TASEP car with label n, and customers waiting for this
server become vacant TASEP sites between this car and the next one to the left. Thus
if we denote by xn the position of the nth TASEP particle, η(n) = xn − xn−1 − 1
represents the number of AZRP particles at site n.

Any time the nth TASEP particle jumps to the left (that is xn decreases by 1), an
AZRP customer (i.e. a TASEP hole) is transferred from server n to server n + 1 at
rate α(n) (that is η(n) decreases by 1 and η(n + 1) increases by 1). The displacement
of car n corresponds to the flux of customers leaving server n. By the isomorphism
betweenAZRPandTASEP, invariantmeasures can be obtained for the aboveTASEP:
under these, inter-particle distances xn+1 − xn are independent geometric random
variables with parameter 1 − λ/α(n + 1), where 0 ≤ λ ≤ c.

We illustrate these different cases for TASEP with cars with different speeds
(represented by different colors) on a highway. In the corresponding figures, cars are
now going from left to right (see Fig. 1), and not from right to left as in the previous
explanations. When the traffic is dense, cars tend to be slowed down by the exclusion
rule, compared to which the differences of speeds between them play a lesser role
(see Fig. 2). There is a phase transition between dense and fluid traffic: when the
traffic is fluid (see Fig. 3), the difference of speeds plays a dominant role compared
to the exclusion rule. There are traffic jams arising behind the slowest cars, and big
gaps ahead of them and behind the jams generated by the next slower car (see Fig. 4).
Then big gaps get reduced from back to front: the successive jams merge together
(see Fig. 5).

Indeed, to see this,we goback to our explanations (whereTASEPparticles go left);
we candefine a subsequence {α(nk)} (of {α(n) : n ≤ 0}) of rates for successive slower
cars which strictly decreases to c such that if nk+1 < j < nk then α(nk) ≤ α( j). This
is done by defining nk+1 = sup{ j < nk : α( j) < α(nk)} and n0 = 0. Let us see how

Fig. 1 cars on a highway: fast cars are blue, slow cars are purple, and slower cars are red
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Fig. 2 dense traffic: all cars are separated by small gaps

Fig. 3 fluid traffic: all cars are separated by large gaps, but in front of slow cars, the gaps are much
larger

Fig. 4 evolution from fluid traffic

Fig. 5 condensation due to cars regulation: slow cars are dark purple, slower cars are light purple
and even slower cars are red

cars with labels in the intervalZ ∩ [nk+1, nk] evolve when we start with large enough
gaps. Neglecting the exclusion rule, each car moves at its intrinsic speed as long as it
is not slowed down by the motion of the next car ahead. This generates the following
scenario:

1. Since car nk − 1 has greater speed than car nk , its displacement will be bigger,
hence the gap between them first grows linearly with time, until:

2. in the long run car nk becomes slowed down by the slightly (if k is large) smaller
speed of car nk+1 and joins the jam already formed behind it by cars with labels in
between (which are indeed faster than nk+1). At this time the existing jam behind
car nk merges with the one between nk+1;

3. on a longer time scale, this new bigger jam will in turn catch up with a slightly
slower jam behind car nk+2, and so on.

These steps translate as follows into the AZRP picture, starting with large enough
occupation numbers (that is, “supercritical density”):

1. The flux from site nk − 1 will be greater than the flux leaving site nk , and the
occupation number of site nk will first grow linearly with time, which can be
interpreted as dynamic condensation;
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2. in the long run the region between sites nk+1 and nk will tend towards an equi-
librium with incoming flux close to α(nk+1) on the left end and an outgoing flux
α(nk) close to matching it, meaning an equilibrium at flux α(nk+1);

3. when the effect from the next block to the left (i.e. from nk+2 to nk) reaches nk ,
the approximate equilibrium in the site intervalZ ∩ [nk+2, nk]will be one for flux
α(nk+2) on the left.

Since α(nk) → c as k → +∞, this suggests that as time goes to infinity the measure
on theAZRPwill converge to ameasure parametrized byflux c. A heuristic derivation
of the time scale at which merging (or condensation) occurs, when the service rates
α(x) are i.i.d. random variables, can be found in [26].

If we zoom out and look at servers from far away (corresponding to a scaling
limit), one obtains a conservation law with a flux function that grows nonlinearly
in the “subcritical” density range (that is, for densities with flux less than c), and is
truncated at c in the supercritical range.

While we have described the heuristics for the simplemodel of totally asymmetric
case with a jump rate one if the site is occupied (for AZRP) we obtain the same result
for a more complicated case of AZRP (like our general model) where the jumps are
asymmetric (but not totally asymmetric), the jump rate is determined by a function
depending on the occupation number and the randomness of the disorder is much
weaker than independent.

3 Description of the Model, Basic Properties

In the sequel, R denotes the set of real numbers, Z the set of signed integers,
N = {0, 1, . . .} the set of nonnegative integers and N := N ∪ {+∞}. For x ∈ R, �x�
denotes the integer part of x , that is largest integer n ∈ Z such that n ≤ x . The
notation X ∼ μ means that a random variable X has probability distribution μ.

Let X := N
Z

denote the set of particle configurations, and X := N
Z the subset of

particle configurations with finitely many particles at each site. A configuration in
X is of the form η = (η(x) : x ∈ Z) where η(x) ∈ N for each x ∈ Z. The set X is
equipped with the coordinatewise order: for η, ξ ∈ X, we write η ≤ ξ if and only if
η(x) ≤ ξ(x) for every x ∈ Z; in the latter inequality, ≤ stands for extension to N of
the natural order on N, defined by n ≤ +∞ for every n ∈ N, and +∞ ≤ +∞. This
order is extended to probability measures on X: For two probability measures μ, ν,
we write μ ≤ ν if and only if

∫
f dμ ≤ ∫

f dν for any nondecreasing function f on
X. We denote by (τx )x∈Z the group of spatial shifts. For x ∈ Z, the action of τx on
particle configurations is defined by (τxη)(y) = η(x + y) for every η ∈ X, y ∈ Z.
Its action on a function f from X or X to R is defined by τx f := f ◦ τx .
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3.1 The Process and Its Invariant Measures

Let p(.) be a probability measure onZ supported on {−1, 1}. We set p := p(1), q :=
p(−1) = 1 − p, and assume p ∈ (1/2, 1], so that the mean drift of the associated
random walk is p − q > 0. Let g : N → [0,+∞) be a nondecreasing function such
that

g(0) = 0 < g(1) ≤ lim
n→+∞ g(n) =: g∞ < +∞ .

We extend g toN by setting g(+∞) = g∞. Without loss of generality, we henceforth
assume g(+∞) = g∞ = 1.

Let α = (α(x), x ∈ Z) (called the environment or disorder) be a [0, 1]-valued
sequence. The set of environments is denoted by A := [0, 1]Z.

We consider the Markov process (ηα
t )t≥0 onXwith generator given for any cylin-

der function (also called local function, that is depending on finitely many sites)
f : X → R by

Lα f (η) =
∑

x,y∈Z
α(x)p(y − x)g(η(x))

[
f
(
ηx,y

) − f (η)
]

(3)

where, if η(x) > 0, ηx,y := η − δx + δy denotes the new configuration obtained from
η after a particle has jumped from x to y (configuration δx has one particle at x and no
particle elsewhere; addition of configurations is meant coordinatewise). In cases of
infinite particle number, the following interpretations hold: ηx,y = η − δx if η(x) <

η(y) = +∞ (a particle is removed from x), ηx,y = η + δy if η(x) = +∞ > η(y) (a
particle is created at y), ηx,y = η if η(x) = η(y) = +∞.

For the existence and uniqueness of (ηα
t )t≥0 see [14, Appendix B]. Recall from

[1] that, since g is nondecreasing, (ηα
t )t≥0 is attractive, i.e. its semigroup, denoted

by S(t) for t ≥ 0, maps nondecreasing functions (with respect to the partial order on
X) onto nondecreasing functions. A graphical construction via a Harris system [23]
will be a crucial tool (see e.g. [14]): attractiveness enables to construct a completely
monotone coupling of a finite number of copies of the process.

The process (ηα
t )t≥0 has the property that if η0 ∈ X, then almost surely, one has

ηt ∈ X for every t > 0. In this case, it may be considered as a Markov process on X
with generator (3) restricted to functions f : X → R.

When the environment α(.) is identically equal to 1, we recover the homogeneous
zero-range process (see [1] for its detailed analysis).

For β < 1, we define the probability measure θβ on N by

θβ(n) := Z(β)−1 βn

g(n)! , n ∈ N, where Z(β) :=
+∞∑

=0

β

g()! ,

g(n)! :=
n∏

k=1

g(k) for n ∈ N \ {0}, and g(0)! := 1 .
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We denote by μα
β the invariant measure of Lα defined (see e.g. [19]) as the product

measure with marginal θβ/α(x) at site x :

μα
β(dη) :=

⊗

x∈Z
θβ/α(x)[dη(x)] . (4)

Let
c := inf

x∈Z
α(x) . (5)

The measure (4) can be defined on X for β ∈ [0, c], by using the conventions

θ1 := δ+∞ , (6)
β

a
= 0 if β = 0 and a ≥ 0 . (7)

Definition 1 With the above conventions, for β = c,

μα
c :=

⊗

x∈Z
θc/α(x)[dη(x)] (8)

is by definition the critical measure.

The measure (4) is always supported on X if β ∈ (0, c) ∪ {0}. When β = c > 0,
conventions (6)–(7) yield ameasure supported on configurationswith infinitelymany
particles at all sites x ∈ Z that achieve the infimum in (5), and finitely many particles
at other sites. In particular, this measure is supported onXwhen the infimum in (5) is
not achieved. When c = 0, the measure (4) is supported on the empty configuration.

Since (θβ)β∈[0,1) is an exponential family, we have a stochastic order relation, that
is, for β ∈ [0, inf x∈Z α(x)], μα

β is weakly continuous and stochastically increasing
with respect to β .

3.2 Assumptions on the Environment, and Consequences

To state our results, we introduce two sets of assumptions on α. The first one says that
the environment α has “averaging properties”, while the second one sets a restriction
on the sparsity of “slow sites” (where by “slow sites” we mean sites where the
disorder variable becomes arbitrarily close or equal to the infimum value c, which
was defined by (5)).

Assumption 1 If c > 0, there exists a probability measure Q0 = Q0(α) on [0, 1]
such that

Q0(α) = lim
n→+∞

1

n + 1

0∑

x=−n

δα(x) = lim
n→+∞

1

n + 1

n∑

x=0

δα(x) . (9)
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Assumption 2 The environment α hasmacroscopically dense defects, that is, there
exists a sequence of sites (xn)n∈Z such that

∀n ∈ Z, xn < xn+1; lim
n→±∞ α(xn) = c , (10)

and
lim

n→±∞
xn+1

xn
= 1 .

Remark that (10) implies in particular

lim inf
x→±∞ α(x) = c . (11)

By (5) and (9), we have

c = inf
x∈Z

α(x) ≤ inf supp Q0 , (12)

and if, for β < 1, we define the mean value of θβ by

R(β) :=
+∞∑

n=0

nθβ(n) , (13)

an average mean density exists for all β ∈ [0, c):

R(β) := lim
n→+∞

1

n + 1

0∑

x=−n

R

(
β

α(x)

)

= lim
n→+∞

1

n + 1

n∑

x=0

R

(
β

α(x)

)

. (14)

Remark 1 When c > 0, Assumption 1 is actually equivalent to the fact that the two
limits in (14) exist and coincide for every β ∈ [0, c).
For reasons of concreteness, we denote by (EE) the stronger hypothesis of environ-
mental ergodicity.

(EE) The environment has a distribution Q, for Q a spatially ergodic probability
measure on A with marginal Q0, such that c = inf supp Q0.

For instance, the i.i.d. case Q = Q⊗Z

0 satisfies (EE).
Assumptions 1 and 2 are satisfied under assumption (EE); in particular, Q-a.e.

realization of the environment α satisfies Assumption 2.
By (14), R is an increasing C∞ function on [0, c) if c > 0 (see [15, Lemma 3.1]).

We define the critical density by

ρc := R(c−) := lim
β↑c R(β) ∈ [0,+∞] , (15)

and we define R(c) := R(c−) = ρc, making R(.) left continuous at c. If c = 0, R is
defined on {0} and equal to 0 by convention (7). In this case, we set ρc = 0.
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Moreover, we may define the inverse of R on its image [0, ρc), and, for β ∈ [0, c),
we reindex the invariant measure μα

β by setting

μα,ρ := μα

(R)
−1

(ρ)
(16)

The parameterρ represents themeanparticle density in the sense that, forμα,ρ -almost
every configuration η ∈ X,

lim
n→+∞

1

n + 1

n∑

x=0

η(x) = lim
n→+∞

1

n + 1

0∑

x=−n

η(x) = ρ . (17)

Note that under (EE), (11) is satisfied, R(β) is well-defined by the ergodic theorem
for all β ∈ [0, c], and we have

R(β) =
∫

(c,1]
R

[
β

a

]

dQ0[a], ρc = R(c) , (18)

Remark 2 (i) Unlike under (EE), under (9), limβ↑c R(β) could be distinct from
R(c) as defined by (14) for β = c. In fact, the limits in (14) may not exist for
β = c, or exist and be different from one another and/or from ρc.

(ii) In view of (15), it may be tempting to extend the parametrization (16) to ρ = ρc

by setting μα,ρc = μα
c . However, this does not make real sense, as under (9),

because of (i) above, the measure thus defined may not satisfy (17) for ρ = ρc.

We regard densities below ρc as subcritical, density ρc as critical and densities above
ρc as supercritical. In the first case there exists an equilibrium probability measure
with this density, while we will see that none exists for supercritical densities.

4 Convergence

Anatural question for an interacting particle systemwith multiple equilibria is, given
a particular equilibriumμ, to determine the set of initial configurations for which the
particle system converges to μ. Among classical conservative systems this is fully
answered for symmetric exclusion processes on Z

d (see e.g. [29]) but in general
seems very hard. It is often softened to finding large classes of initial distributions for
which there is convergence. For asymmetric nearest neighbour exclusion processes,
the first result of importance was [2], see also [12, 31] which gave conditions for
convergence to product measure. The last is important since it does not require an
initial translation invariant distribution but only needs a fixed initial distribution
satisfying the appropriate law of averages.
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Theorems 1 and 2 below, proved respectively in [13, 14], establish a necessary
and sufficient condition for our zero range process to converge to μα

c . To our knowl-
edge there are no other comparable results for nontrivial assymmetric conservative
systems. Certainly the fact (to be justified below), that we consider the maximal
equilibrium helps but it is to be noted that, [12] notwithstanding, for the exclusion
process it is not clear what a necessary and sufficient condition for convergence in
distribution to δ0 (and so δ1) would be (where 0 and 1 denote the empty and full
configurations, defined respectively by 0(x) = 1 − 1(x) = 0 for every x ∈ Z).

4.1 Previous Results for Convergence

The main paper we refer to is [6], which considers a TAZRP (p(1) = 1), on Z, for
g(n) = 1{n≥1}, with α(x) ∈ [c, 1]. Their results are the following:
(a) [6, Theorem 2.1] For α fixed, the geometric product measures μα

β , for β < α(x)
for all x ∈ Z, are the extremal invariant measures. The range of the parameter β

may be either [0, c) (when α(x) = c for some x) or [0, c] (when α(x) > c for
all x).

(b) [6, Proposition 2.2] There does not exist any invariant measure with a density
above ρc.

(c) [6, Theorem 2.3] If ρc < +∞, and η0 ∈ N
Z satisfies the supercriticality assump-

tion

lim inf
n→∞ n−1

0∑

x=−n

η0(x) > ρc , (19)

then ηα
t converges in distribution to μα

c .

Note that under our assumptions, we obtain β ∈ [0, c] in (a).
An immediate consequence of (c) is that there is a “loss of mass”: for “most” of

the sites the local density will be ρc but our system is conservative and the hypothesis
(19) has a “global” density (at least on the left halfline) strictly higher.

This is an example of condensation (as exhibited for instance in [20, 21, 26]).
The “lost” mass accumulates at sites with α value close to the minimum c (where
“close” decreases with time). If we return to M/M/1 queues with service rate α(x)
at queue x , or cars, then, informally speaking, many clients remain trapped in far
away slow servers, or lots of space in the road is in front of a small number of slow
cars.
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4.2 Our Results for Convergence

For our convergence results (from [13, 14]), we also need the following assumption
on disorder. Recall that c is defined by (5):

Assumption 3 We have that c > 0, ρc < +∞, and R satisfies the weak convexity
assumption

(H) ∀β ∈ [0, c), R(β) − R(c) − (β − c)R
′+

(c) > 0

where R
′+

(c) is the left-hand derivative at c of the convex envelope of R, that is

R
′+

(c) := lim sup
β→c

R(c) − R(β)

c − β
.

For instance, if R is strictly convex, then for any environment satisfying assumption
(14), R is strictly convex and (H) satisfied. A sufficient condition for R to be strictly
convex [17] is that n �→ g(n + 1) − g(n) is a nonincreasing function.

Theorem 1 ([14, Theorem 2.2]) Assume (14), Assumptions 2 and 3. Then, for all
η0 ∈ N

Z satisfying the supercriticality assumption

lim inf
n→∞ n−1

0∑

x=−n

η0(x) ≥ ρc , (20)

the process (ηα
t )t≥0 of initial state the configuration η0 converges in distributionwhen

t → ∞ to the critical measure μα
c defined by (8).

Theorem 2 ([13, Theorem 2.2]) Assume (14), Assumptions 2 and 3. Assume further
that η0 satisfies

ρ = lim inf
n→∞ n−1

0∑

x=−n

η0(x) < ρc .

Then ηα
t does not converge in distribution to μα

c as t → +∞.

Together, as claimed, these two results give a necessary and sufficient condition for
convergence to μα

c .
Now note that Theorem 1 generalises [6, Theorem 2.3] in the following ways:

1. the underlying random walk kernel is asymmetric nearest neighbour but not
necessarily totally asymmetric,

2. the strict inequality in (19) is replaced by the greater than or equal condition of
Theorem 1,

3. the special case function g(n) = 1{n≥1} is removed in favour of any g(.) increas-
ing to a finite limit and compatible with Assumption 3.

In viewing these improvements, one might think that 1. could be improved to at
least the condition that kernel p(.) is positive mean and of finite range. In fact,
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surprisingly, this is not possible. The nearest neighbour requirement is not to facilitate
the argument. The reason is that, loosely speaking, the result holds because the
incoming flux to the left of the origin is the maximal value: c(p − q). This balances
the outgoing flux to the right of the origin under equilibrium. How the “lim inf”
behaviour for the initial particle configuration is achieved is immaterial under nearest
neighbourmotion and for instance a configuration that is mostly vacant but which has
a sparse set of very high peaks at isolated sites poses no problems. This is no longer
true if the kernel is not nearest neighbour: an isolated peak with a great number of
particles initially surrounded by vacant sites may be unable to furnish the needed
maximal flux. The following result is established in [13].

Theorem 3 ([13, Theorem2.3])Assume (11) and (14). Assume further that the jump
kernel p(.) is totally asymmetric (but not nearest neighbour) and p(1) < 1. Then
there exists η0 ∈ N

Z satisfying (20), such that ηα
t does not converge in distribution

to μα
c as t → +∞.

The proof of Theorem 1 comes down to showing that any limit point of the distribu-
tions S(t)δη0 must be “above” and “below” the target distribution. The upper bound
almost follows from [22] which gives a strong condition for zero-range processes
corresponding to our conditions but with general finite range randomwalk kernels in
Z
d for all d ≥ 1 so that lim sup S(t)δη0 ≤ μα

c . Unfortunately the following growth
condition on η0 is imposed in [22]:

∑

n∈N
e−βn

∑

x : |x |=n

η0(x) < +∞, ∀β > 0 .

The approach of [14] is to use (for each ε > 0) a comparison with finite Jackson
networks on intervals (Aε, aε), where

Aε := Aε(α) = max{x ≤ 0 : α(x) ≤ c + ε} ,

aε := aε(α) = min{x ≥ 0 : α(x) ≤ c + ε} .

These networks evolve according to the AZRP rules as if the points Aε and aε

were permanently occupied by infinitely many particles. As ε → 0 the left and right
endpoints tend respectively to −∞ and +∞. The nontrivial part was to show that
this could be done so that:

(a) the resulting “finite AZRP” on (Aε, aε) would be positive recurrent for each ε;
(b) the resulting equilibria converged as ε → 0 to μα

c .

The lower bound is harder to show. At root it exploits the following interface prop-
erty for one-dimensional nearest neighbour processes (which will be substantially
deepened in Sect. 5). If two configurations η0 and ξ0 satisfy the interface condition

∃ x0 : ∀ y ≤ x0, η0(y) ≤ ξ0(y); ∀ y > x0, η0(y) ≥ ξ0(y) (21)
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and if the AZRP’s (ηt )t≥0 and (ξt )t≥0 are generated by the same Harris system, then
the interface property is maintained:

∀ t > 0, ∃ xt : ∀ y ≤ xt , ηt (y) ≤ ξt (y); ∀ y > xt , ηt (y) ≥ ξt (y) . (22)

This simple property permits a recasting of the property of stochastic domination.
To show that our process ηα

t stochastically dominatesμα
c in the limit as t becomes

large, it is enough to show that for each β < c, ηα
t in the limit dominates μα

β ; or
equivalently (recalling (16)) that for each ρ < ρc, ηα

t in the limit dominates μα,ρ .
This will be done if (for ρ fixed) ηα

t (x) ≥ ξ
α,ρ
t (x) for x fixed for (ξ

α,ρ
s )s≥0 an AZRP

generated with the same Harris system as (ηα
s )s≥0 but initially in μα,ρ equilibrium.

We cannot use the interface property to compare ηα
t (x) and ξ

α,ρ
t (x) directly so we

introduce an intermediary process (ηα,t
s )s≥0 that can be compared with both (and

indeed everything). This process is itself generated by the same Harris system as the
other two and is therefore fully defined by specifying

η
α,t
0 (x) = (+∞)1{x≤xt } (23)

where xt is a site that is negative, of order t , with environment value α(xt ) so that as
t becomes large, α(xt ) tends to c. The choice of xt is not straightforward, it requires
assumption (H). The initial configuration (23) corresponds to placing source/sinks
to the left up to site xt (but since jumps are nearest neighbour, as seen from the right
of xt , this is equivalent to placing a source/sink only at xt ).

Due to (23), there must be interfaces I 1s between ηα,t
s and ηα

s and I 2s between ηα,t
s

and ξ
α,ρ
s . Our domination result will follow once we have shown that with probability

tending to one as t becomes large

• I 1t is highly negative and
• I 2t is highly positive

as this will imply that around the origin (with high probability)

ηα
t (x) ≥ ηα,t

t (x) ≥ ξ
α,ρ
t (x) . (24)

for all x near the origin.
To show that e.g. I 1t ≤ Mt (for some well chosen Mt ) it suffices to show that

on some interval [Nt , Mt ], ∑Mt
x=Nt

(ηα
t (x) − η

α,t
t (x)) > 0 (and similarly for I 2t ≥

Mt ). We choose Nt and Mt to both be of order t so that we can use hydrodynamic
results to show that at order t both

∑Mt
x=Nt

ηα
t (x) and

∑Mt
x=Nt

η
α,t
t (x) are essentially

nonrandomandappropriately ordered. In fact in this calculation, itwas only necessary
to understand the hydrodynamic behaviour and local equilibrium starting from a
source initial configuration (23).

The key point regarding this behaviour is the following. The hydrodynamic profile
created by the source on its right is nonincreasing and there is a critical speed vc ≥ 0
such that a front of uniform density ρc propagates from the source at speed vc.
Assumption (H) ensures that the profile is continuous at the end of this front. This
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enables us to choose xt of order −t (vc + ε) and ensure that (24) holds on [xt , 0]
with any ρ smaller than the hydrodynamic density created by the source around the
origin, which can be made arbitrarily close to ρc.

A fuller picture of hydrodynamic behaviour and local equilibrium is discussed in
the next sections.

5 Hydrodynamics

We begin with the following standard definitions in hydrodynamic limit theory. We
denote byM (R) the set of Radon measures onR. To a particle configuration η ∈ X,
we associate a sequence of empirical measures (π N (η) : N ∈ N \ {0}) defined by

π N (η) := 1

N

∑

y∈Z
η(y)δy/N ∈ M (R) .

Let ρ0(.) ∈ L∞(R), and let (ηN
0 )N∈N\{0} denote a sequence of X-valued random

variables. We say this sequence has limiting density profile ρ0(.), if the sequence of
empirical measures π N (ηN

0 ) converges in probability to the deterministic measure
ρ0(.)dx with respect to the topology of vague convergence.

Let f : [0,+∞) → R be a Lipschitz function, and consider the conservation law

∂tρ(t, x) + ∂x f [ρ(t, x)] = 0 . (25)

Equation (25) means that around a point where the macroscopic particle density is
ρ, the instantaneous algebraic flux (or current) is f (ρ). This equation, with given
initial condition ρ0(.) generally does not have strong solutions even if ρ0(.) is regular,
and has infinitely many weak solutions. However, it has a unique so called entropy
solution, that is considered as the physical solution [35]. The sequence (ηN

t , t ≥
0)N∈N\{0} is said to have hydrodynamic limit ρ(., .) if: for all t ≥ 0, (ηN

Nt )N∈N\{0} has
limiting density profile ρ(t, .), which is the entropy solution to the conservation law
(25) with initial datum ρ0(.).

5.1 Previous Results for Hydrodynamic Limit

The hydrodynamic limit of an attractive homogeneous asymmetric zero-range pro-
cesswas derived in [4, 5] for step initial conditions under the assumption of a concave
flux function, and in [33] for general initial conditions without the concavity assump-
tion (the latter result applies to more general attractive models with product invariant
measures in any space dimension). In [28], the hydrodynamic behavior was studied
for an AZRP with a single spatial inhomogeneity exhibiting condensation.
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The paper [19] derived quenched hydrodynamics in the subcritical regime for an
attractive AZRP (i.e. nondecreasing g(.)), onZd , for p(.) finite range, with a disorder
such that α(x) has a finite number of values (thus ρc = +∞).

In the paper [34], hydrodynamics were derived through the variational coupling
method, which is effective for a totally asymmetric ZRP (p(1) = 1), with g(n) =
1{n≥1}, in all regimes (subcritical, critical and supercritical).

Note that condensation also arises for zero-range processes which are not attrac-
tive, that is,with non-increasing jump rates. There, condensation is due to fluctuations
accumulating mass at some sites, instead of site disorder in our case. The formation
of the condensate over a fixed, finite number of sites is described in [18]. Hydrody-
namics for this model are proved in [30, 36].

The difficulties to prove hydrodynamic limits in our set-up are the following.
At supercritical densities, there are no invariant measures; moreover we have con-
densation. It is thus impossible to use the traditional approach [24], through block
averaging and block estimates, since mesoscopic block densities can blow up around
condensation sites.

5.2 Our Results on Hydrodynamic Limits

The main result of [15] is the following.

Theorem 4 ([15, Theorem 2.1]) Assume the environment α satisfies Assumption
1, and the sequence (ηN

0 )N∈N\{0} has limiting density profile ρ0(.) ∈ L∞(R). For
each N ∈ N \ {0}, let (ηα,N

t )t≥0 denote the process with initial configuration ηN
0 and

generator (3). Assume either that the initial data is subcritical, that is ρ0(.) < ρα
c ;

or, that Assumption 2 holds. Let ρ(., .) denote the entropy solution to (25)with initial
datum ρ0(.), where f is the flux function defined by (26)–(27) below. Then for any
t > 0, the sequence (η

α,N
Nt )N∈N\{0} has limiting density profile ρ(t, .).

To complete the above theorem, we explain how the flux function in (25) is obtained.
Let x. : t �→ xt be a Z-valued path representing the position of a moving “observer”
on the lattice.

Definition 2 We let Γx.
(t, η) denote the algebraic current across x., that is the alge-

braic number of particles crossing the “observer” to the right, between times 0 and
t , when starting from the initial configuration η.

In the special case where x. is identically 0, we obtain in Definition 2 the current
through the origin between times 0 and t , simply denoted by Γ α

0 (t, η): that is, the
number of jumps from 0 to 1 minus the number of jumps from 1 to 0. Then the flux
function ρ �→ f (ρ) is defined by

f (ρ) := lim
t→+∞ t−1Γ α

0 (t, ηρ) .
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We can show that this limit exists and depends only on ρ (and not on the choice of
ηρ nor on α), where ηρ denotes a configuration with density ρ, that is a configuration
satisfying (17). For β ∈ [0, c), we can compute the stationary current under μα

β , as
follows.

∫

X
[pα(x)g(η(x)) − qα(x + 1)g(η(x + 1))]dμα

β(η) = (p − q)β .

Recall the function R defined by (14). As a function of the mean density ρ = R(β),
we define the flux for our system as

f (ρ) := (p − q)R
−1

(ρ) . (26)

And we extend f to [ρc,+∞) by

f (ρ) = (p − q)c, ∀ρ ≥ ρc . (27)

Remark 3 Under Assumption (EE) of an ergodic environment, the flux function
depends only on the marginal Q0 of the environment. Under the more general
Assumptions 1–2, the flux function depends on the pair (Q0, c) defined in (12)–
(14). In the latter case, the inequality in (12) can be strict, so c should be regarded as
an additional parameter not contained in Q0, whereas in the ergodic case, equality
always holds in (12). A simple non-ergodic example is given in Sect. 5.3 below.

To prove Theorem 4, we use a reduction principle established in [7–11] for one-
dimensional conservative attractive processes. This method reduces the proof of
hydrodynamics for a Cauchy initial condition to that for a Riemann initial condition,
that is, of the form

ρ0(x) = Rλ,ρ(x) := λ1{x<0} + ρ1{x≥0} (28)

for λ, ρ ∈ R. The passage from one to the other is similar in spirit to Riemann-
based numerical schemes for scalar conservation laws; the difficulty is to control
the propagation of the error committed at successive time steps when replacing the
actual entropy solution with a piecewise constant approximation. Crucial tools in
this reduction are:

(i) The finite propagation property, that is, the fact that discrepancies between two
AZRP’s, and similarly between two entropy solutions of (25), propagate with
bounded speed.

(ii) Themacroscopic stability property, which states that if twoAZRP configurations
are initially close macroscopically, they remain so at later times. In our case
this is a consequence of the fact that jumps are nearest neighbour and g(.) is
nondecreasing.
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To prove hydrodynamics for the Riemann initial condition (28), we use a variational
characterization (see e.g. [11]) of the entropy solution Rλ,ρ(t, .) of the Riemann
problem (that is, (25) with initial datum (28)). Namely, define

Gλ,ρ(v) =
{
minr∈[λ,ρ][ f (r) − vr ] if λ ≤ ρ ,

maxr∈[ρ,λ][ f (r) − vr ] if λ ≥ ρ .
(29)

For such values, we define

Rλ,ρ(t, vt) :=
{
argminr∈[λ,ρ][ f (r) − vr ] if λ ≤ ρ

argmaxr∈[ρ,λ][ f (r) − vr ] if λ ≥ ρ
(30)

that is, theminimizer (resp. maximizer) in (29) if λ ≤ ρ (resp. λ ≥ ρ). This optimizer
is unique for all but countably many values of v (see [15, Proposition 3.2]).

In order to prove (29) at the microscopic level, the main issue is to show that

lim
t→+∞ t−1Γx.

(t, ξα,λ,ρ) = Gλ,ρ(v) (31)

in probability, where x. is a path with asymptotic speed v, and ξα,λ,ρ is a random
configuration with profile Rλ,ρ(.) given in (28); this is the content of [15, Proposition
4.2]. Assume for instance λ < ρ. To define a suitable configuration ξα,λ,ρ in (31), we
use a family of AZRP’s ξα,r,r

. , where r ≥ 0, and ξα,r,r
. has homogeneous macroscopic

density r at time 0. For r < ρc, we can choose ξα,r,r
. to be an equilibrium process with

density r (that is, with distribution μα,r , cf. (16)). For r > ρc, such equilibria do not
exist. Instead, we use what we call “pseudo-equilibria”, that is, configurations ξα,r,r

with a supercritical homogeneous macroscopic density profile. We choose ξα,λ,ρ in
(31) as the configuration whose restriction to x ≤ 0 is ξα,λ,λ and whose restriction
to x > 0 is ξα,ρ,ρ . The following main ideas are then involved to derive (31):

(a) We prove convergence (31) for equilibria and pseudo-equilibria, that is λ =
ρ = r . This follows from ergodicity in the case r < ρc of equilibria, but novel
arguments are necessary in the case r > ρc of pseudo-equilibria.

(b) Theupper bound in (31) (proving that the l.h.s. is dominatedwith high probability
by the r.h.s.) is the simpler part. It follows from a coupling argument showing
that the current in ξα,λ,ρ

. cannot exceed the one in ξα,r,r
. . This property can be

regarded as “intuitive” because, since r ∈ [λ, ρ], the latter system has initially
more particles to the left and more space to the right. However, mathematically,
this is related to the macroscopic stability property.

(c) For the lower bound in (31), we introduce a novel “interface process”, which
gives a more adapted (in our setting) version of the local particle density than the
usual block average. This is a random spatially nondecreasing lattice field ρt (x)
taking values in [λ, ρ] with the following property: in a space region where
ρt does not fluctuate much, the system is approximately at local equilibrium
or pseudo-equilibrium, in the sense that ξ

α,λ,ρ
t is close to ξ

α,r,r
t for a random

r = ρt (x). As a nondecreasing function cannot jump too often, for “most” values
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of v, using (a), the macroscopic current across a path with velocity v is close to
f [ρt (vt)] − vρt (vt), which dominates theminimum in (29).Whence the desired
lower bound.

The interface process is obtained by looking at simultaneous interfaces of ξα,λ,ρ
.

in the sense of (21)–(22) with all equilibria and pseudo-equilibria ξα,r,r
. for r ∈

[λ, ρ]. Precisely, we can define a simultaneous evolution of interfaces xr. between
ηα

. and ξα,r,r
. so that xrt is nondecreasing with respect to r , and define x �→ ρt (x) as

a generalized inverse of r �→ xrt .

5.3 Examples

In this subsection, we illustrate the behaviour of the flux function and of solutions to
(25) with some examples.
Dilute limit (see [15, Sect. 3.4]). It is natural to compare the “disordered” flux
function (26)–(27) to the “homogeneous” flux function fhom obtained from the same
AZRP in a homogeneous environment αhom(x) ≡ 1. In general, there is no simple
relation between these two fluxes. However, the relation becomes simple and natural
in the so-called dilute limit where α(x) = 1 at “most” sites. More precisely, let Q0

be the probability measure in Assumption 1, (EE) and (18). We consider an i.i.d.
random environment in which, for each x ∈ Z, α(x) is chosen according to Q0 with
probability ε ≥ 0, and equal to 1 with probability (1 − ε). Thus α(x) has distribution

Qε
0 := (1 − ε)δ1 + εQ0 . (32)

The value ε = 0 corresponds to the homogeneous environment αhom, while ε = 1
corresponds to the i.i.d. environment with marginal Q0. The dilute limit is the limit
ε → 0+. Let f ε denote the flux function (26)–(27) produced by the environment
with marginal (32). For ε = 0, f 0 = fhom is the flux function for the homogenous
AZRP. It follows from (26)–(27) that

fhom(ρ) = (p − q)R−1(ρ) . (33)

For ε ∈ (0, 1], there is no simple relation between f ε and fhom. However, using
(26)–(27) and (18), we can show that

lim
ε→0

f ε(ρ) = fd(ρ)

where fd is the dilute limit of the flux function, defined by

fd(ρ) :=
{
fhom(ρ) if ρ < ρc

(p − q)c if ρ ≥ ρc

}

= fhom(ρ) ∧ (p − q)c . (34)
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This limit can be understood intuitively as follows. As ε → 0, slow sites are very
rare, hence the system exhibits long homogeneous stretches where it behaves as a
homogeneous process. Thus the memory of slow sites is only retained by the flux
truncation, but not by the shape of the flux function prior to truncation. Note in
particular that only the infimum of the support of Q0 in (32) (but not details of the
distribution) is involved in the dilute limit.

We defined above the dilute limit from the limit of a sequence of random envi-
ronments. Another point of view is to construct a single deterministic environment
equal to 1 except on a 0 density subset of Z, where it asymptotically approaches its
infimum value c. Precisely, let α(.) be an environment satisfying the conditions of
Assumption 2, with values in [c, 1], and such that

α(x) = 1 if x /∈ {xn : n ∈ Z} .

Assume moreover limn→±∞(n/xn) = 0. For such an environment, the flux function
defined by (26)–(27) is exactly fd given by (34). As announced in Remark 3, this
example shows that, outside the case of an ergodic random environment, the flux
function is not entirely determined by the empirical distribution Q0 in (10). Indeed,
in this case we have Q0 = δ1, which does not give any information on c.
Supercritical entropy solutions.We now describe the consequences of the flat line
(27) on the behaviour of entropy solutions through the analysis of the so-called
Riemann problem with initial data of the form (28). The following result can be
obtained using (29) and (30).

Proposition 1 ([15, Proposition 3.1]) Assume +∞ > λ ≥ ρc > ρ. Let

vc(ρ) := inf
r∈[ρ,ρc)

f (ρc) − f (r)

ρc − r
= inf

r∈[ρ,ρc)

f̂ (ρc) − f̂ (r)

ρc − r
= f̂ ′(ρc−) (35)

where f̂ denotes the concave envelope of f on [ρ, ρc]. In particular, if f is concave,

vc(ρ) = f ′(ρc−) =
{∫

[c,1]
1

a
R′

[ c

a

]
dQ0(a)

}−1

.

Then, for every t > 0, we have

Rλ,ρ(x, t) = λ, ∀x < 0 (36)

Rλ,ρ(x, t) = Rρc,ρ(x, t), ∀x > 0 (37)

lim
t→+∞ Rλ,ρ(x, t) = ρc, ∀x ≥ 0 (38)

Rλ,ρ(0+, t) = ρc (39)

Rλ,ρ(x, t) = ρc, ∀x ∈ (0, tvc(ρ)) (40)

Rλ,ρ(x, t) < ρc, ∀x > tvc(ρ) (41)
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Fig. 6 Illustration of the
critical front in (40), (41),
with here λ = ρc and ρ = 0.
On the lower picture, each
arrow represents the
characteristic speed of the
corresponding density level,
that is the derivative of the
flux function on the upper
picture; we denote
ν0 = νc(0). The critical
density has a whole fan of
speeds ranging from 0 to ν0
due to the cusp on the flux
function. This accounts for
the flat part of the front. We
chose a concave flux on this
example; if it is not, it should
be replaced by its concave
envelope on [0, ρc]

Property (36) states that the initial constant density is not modified to the left of
the origin. This is related to the fact that f is nondecreasing, hence characteristic
velocities are always nonnegative.

Property (37) states that the solution to the right of the origin does not depend on
the supercritical initial density λ on the left. Formally, we may thus consider that this
is also the solution for “λ = +∞”, which corresponds to placing sources to the left
of the origin. In particular, for ρ = 0, we recover the source solution used in Sect. 4.2,
that is the hydrodynamic limit starting from the particular source configuration (23).

Properties (38), (39), (40) are signatures of the phase transition. They express the
fact that, regardless of the supercritical value on the left side, supercritical densities
are blocked, and the right side is dominated by the critical density. In particular,
(40)–(41) state that a front of critical density propagates to the right from the origin
at speed vc if vc(ρ) > 0. This is illustrated in Fig. 6.
An explicit case: M/M/1 queues in series. Consider the M/M/1 queues in series,
that is g(n) = min(n, 1), with total asymmetry (p = 1, q = 0), cf. Sect. 2. With this
choice of g, (13) and (33) write

R(β) = β

1 − β
, fhom(ρ) = ρ

1 + ρ
. (42)

In view of (42), the dilute limit fd defined in (34) writes here
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fd(ρ) =
[

ρ

1 + ρ

]

∧ c =
{ ρ

1 + ρ
if ρ < ρc := c

1 − c
,

c if ρ ≥ ρc .
(43)

Since fd defined by (43) is concave, (35) yields

vc(ρ) = f ′
hom(ρ−

c ) = (1 − c)2 .

6 Local Equilibrium

We now come to results from [16] on strong local equilibrium with respect to the
hydrodynamic limit (25).

A natural extension of the convergence theorems is to establish results for the
following question. Let us fix a realization of the environment α(.) and suppose
given a sequence of initial configurations {ηN

0 }N≥0 which correspond to a “profile”
ρ0 in the sense that, for every a, b ∈ R,

1

N

∑

aN<k<bN

ηN
0 (k) −

∫ b

a
ρ0(x)dx → 0 . (44)

Let xN ∈ Z satisfy N−1xN → u ∈ (−∞,∞). What can be said about the
behaviour of η

α,N
Nt around xN?

We suppose that the entropy solution ρ(., .) to the associated hydrodynamic equa-
tion (25) is continuous at (t, u). It is reasonable to believe that τ[xN ]ηα,N

Nt “looks” like
the equilibrium corresponding to ρ(t, u) (with environment α suitably shifted). This
question is anticipated by several works on conservative systems without disorder.
In translation invariant cases where there is a family of equilibria {μr }r≥0 and the
initial configurations are random there is conservation of local equilibrium if, when

lim
N→∞ τ[uN ]ηN

0 = μρ0(u)

in distribution for each continuity point u of ρ0(.), then for each (t, u) as above,

lim
N→∞ τ[uN ]ηN

Nt = μρ(t,u) (45)

in distribution. In [27], conservation of local equilibrium was proved for a homoge-
neous zero-range process with a strictly convex flux, under an initial product local
equilibriummeasure. Following [2, 12] showed for finite range nonzero mean exclu-
sion processes, that (45) held with no further assumptions on ηN

0 beyond the profile
hypothesis (44). We call this a “spontaneous creation of local equilibrium.”

In our family of models it is natural to hope for similar results. We discuss three
differences: We denote by IE the expectation w.r.t. the process (ηα

t )t≥0.
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1. Our system is not translation invariant and in fact we cannot expect a limit as
in (45) because the environment varies as N → +∞: given appropriate (t, u) it
is possible to find sequences xN and yN that converge macroscopically to x so
that IE( f (τxN η

α,N
Nt )) − IE( f (τyN η

α,N
Nt )) does not converge to zero as N becomes

large.
2. Around a fixed point, say 0, the environment is fixed and will satisfy α(x) < c for

x close to the point, however when considering xN which (in scale N ) converges
to, say the origin, it is perfectly possible that α(xN ) converges to c.

3. The valueρ(t, u)maybe supercritical, that is strictly greater thanρc themaximum
density for an equilibrium.

The first point is dealt with by a simple reformulation of the result but the second
and third questions require a more substantive response. The second requires us to
consider AZRP for which the occupation number +∞ is permitted. For the third, as
with other papers analyzing condensation phenomena, we expect that the limiting
density will be ρc and not ρ(t, u).

Our first results concern cases where the entropy solution ρ(., .) is continuous at
(t, u) and has a value strictly below ρc.

Theorem 5 ([16, Theorem 2])Under assumptions of Theorem 4, the following holds
for every (t, u) ∈ (0,+∞) × R: let ψ : X → R be a bounded local function, and
(xN )N∈N a sequence of sites such that u = limN→+∞ N−1xN . Then if ρ(., .) is con-
tinuous at (t, u) and ρ(t, u) < ρc,

lim
N→+∞

[

IEψ
(
τxN η

α,N
Nt

)
−

∫

X
ψ(η)dμτxN α,ρ(t,u)(η)

]

= 0 . (46)

This result relied upon coupling. It is sufficient to show the desired convergence for
increasing cylinder functions ψ . So it is sufficient to show that for r < ρ(t, u) we
have

lim inf
N→∞ IEψ

(
τxN η

α,N
Nt

)
−

∫

X
ψ(η)dμτxN α,r (η) ≥ 0

for N large; and similarly for r > ρ(t, u). So it will be sufficient to show that for
N large in a N order interval centered around xN , the process η

α,N
tN dominates ξ

α,r
Nt

where as before ξ
α,r
.t is a AZRP run with the given Harris system inμα,r equilibrium.

Our approach shadows that of [12] but is a bitmore complicated than this argument
which dealt with the exclusion process. In particular the key tool of [25], which relies
on global strict concavity or convexity of the flux function, is no longer available here.

Under the general assumptions on function g(.), the flux function f need not be
globally convex or globally concave. Nonetheless away from the critical value the
function f is analytic and therefore in any interval of densities, there will exist subin-
tervals on which the flux is either globally convex or globally concave. Thus given
r < ρ(t, u) we can find r < r1 < r2 < ρ(t, u) so that f is either convex or concave
on (r1, r2). For concreteness suppose it is concave, then we may “impose” a system
of priorities (or classes, cf. [3]) on ηα,N

s particles that are not coalesced with ξα,r
s

particles. This means that higher priority particles will be faster than lower priority
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ones. So a given small, but order N , interval I can be placed between two similar
intervals Jl and Jr . In a short time (unless they become coalesced) fast particles in
Jl will overtake slow particles in Jr . This entails coalescence of many uncoalesced
ξα,r
s particles originally in I . This argument is repeated until in an interval around
xN , the “density” of uncoalesced ξα,r

s particles will be very small. We can then argue
as in [12] to show the required domination.

Next, we consider points at which the hydrodynamic density is supercritical or
critical. As discussed above, there does not (in the supercritical case) or may not (in
the critical case) exist a corresponding equilibrium measure, so one cannot expect
the same type of convergence as above. We expect and to some extent show one has
local convergence to the critical quenched invariant measure. We now introduce an
additional assumption that is needed.

Definition 3 ([16,Definition 1]) Let (xN )N∈N be a sequence of sites such that N−1xN
converges to u ∈ R as N → +∞. The sequence (xN )N∈N is typical if and only if
any subsequential limit α of (τxN α)N∈N has the following properties:

(i) For every z ∈ Z, α ∈ B := (c, 1]Z.
(ii) lim inf z→−∞ α(z) = c.

The interpretation of the word “typical” is the following. When α does not achieve
its infimum value c (that is α ∈ B), (i)–(ii) says that the environment as seen from
xN shares key properties of the environment seen from a fixed site (say the origin).

The typicality assumption will in fact be needed only to show that themicroscopic
distribution is locally dominated by the critical measure (8). We observe however
that even in the critical case, if the invariant measure does not (in the supercritical
case) or may not (in the critical case), we are not able to prove the statement without
the typicality assumption.

Theorem 6 ([16, Theorem 3])Under assumptions of Theorem 4, the following holds
for every (t, u) ∈ (0,+∞) × R. Let ψ : X → R be a bounded local function, and
(xN )N∈N a typical sequence of sites such that u = limN→+∞ N−1xN . Then:

(i) If ψ is nondecreasing,

lim
N→+∞

[

IEψ
(
τxN η

α,N
Nt

)
−

∫

X
ψ(η)dμ

τxN α
c (η)

]+
= 0 . (47)

(ii) If ρ∗(t, u) ≥ ρc (where ρ∗(t, u) := lim inf (t ′,u′)→(t,u) ρ(t ′, u′)), then

lim
N→+∞

[

IEψ
(
τxN η

α,N
Nt

)
−

∫

X
ψ(η)dμ

τxN α
c (η)

]

= 0 . (48)

The argument we give for the upper bound is now close to that for the convergence
upper bound: we show that we can find yN < xN < zN so that the “finite” AZRP on
(yN , zN ) with infinitely many particles at yN and zN has an equilibrium very close
to μα

c . The lower bound is essentially supplied by the arguments for Theorem 5.
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Without the above typicality assumption, we are not able to prove such a statement
at given times, but we can obtain a weaker time-integrated result.

Theorem 7 ([16, Theorem 4]) Under assumptions and notations of Theorem 4, the
following holds. Let t > 0, and (xN )N∈N be an arbitrary sequence of sites such that
limN→+∞ N−1xN = u, where u ∈ R is such that ρ∗(t, u) ≥ ρc. Let ψ : X → R be
a continuous local function. Then

lim
δ→0

lim sup
N→+∞

∣
∣
∣
∣
1

δ

∫ t

t−δ

IEψ
(
τxN η

α,N
Ns

)
ds −

∫

X
ψ(η)dμ

τxN α
c (η)

∣
∣
∣
∣ = 0 . (49)

Remark 4 Whereas in Theorems 5 and 6, the test function ψ is defined on X,
in Theorem 7, it is defined on X. Indeed in Theorem 5, the fact that ρ(t, u) < ρc

implies that the subcritical measureμτxN α,ρ(t,u) in (46) is supported onX. In Theorem
6, statement (i) in Definition 3 of the typicality assumption ensures that the critical
measure μ

τxN α
c in (47)–(48) is still supported on X. However in Theorem 7, owing

to the absence of the typicality assumption, the critical measure μ
τxN α
c in (49) may

have infinitely many particles at sites x ∈ Z such that α(x) = c.

Our approach is to first note that, again, the lower bound is achieved via Theorem
5. The upper bound is more intricate. We argue that in the supercritical regime the
current through any point must (“on average”) equal c. We then argue that any invari-
ant measure that dominates μα

c and has current c must equal μα
c . The (unfortunately

necessary) Cesàro means are to give an invariant measure for any limit measure and
to ensure that the limit measure must have flux c.
Example An illuminating particular case of the above theorems is when the initial
datum is uniform. Assume

ρ0(x) ≡ ρ (50)

for some ρ ≥ 0. Then ρ(t, x) ≡ ρ for all t > 0. Specializing Theorems 5 and 6 to
u = 0, we obtain that η

α,N
Nt converges in distribution to μα,ρ if ρ < ρc, or to μα

c if
ρ ≥ ρc. Therefore a mass condensation phenomenon is somehow present, even at
hyperbolic scaling. We may in particular achieve (50) as follows by a sequence of
initial configurations ηN

0 = η0 independent of N .

(i) Stationary initial state. Let ηN
0 = η0 ∼ μα,ρ , with ρ < ρc. Since μα,ρ is an

invariant measure for the process with generator (3), for every t > 0, we have
η

α,N
Nt ∼ μα,ρ . As a result, the expression between brackets in (46) vanishes for

every N ∈ N \ {0} and t ≥ 0. Hence there is conservation of local equilibrium
(since (46) already holds for t = 0), but there is in fact nothing to prove, since
this conservation follows form stationarity.

(ii) Deterministic initial state. Let ηN
0 = η0, where η0 ∈ X has density ρ, cf. (17).

This implies that the sequence (ηN
0 )N∈N\{0} has density profile ρ0(x) ≡ ρ. Here

Theorems 5 and 6 are no longer void statements as in (i). When specialized
to u = 0, they yield a large-time convergence result for our process. Namely,
Theorem 5 implies that ηα

t → μα,ρ in distribution if ρ < ρc, and Theorem 6
implies ηα

t → μα
c if ρ ≥ ρc.



76 C. Bahadoran et al.

Pushing the analysis of (ii) further, we can show that the first limit in (17) is irrelevant,
and derive from Theorems 5 and 6 the following convergence result.

Theorem 8 ([16, Theorem 5]) Let η0 ∈ X be such that, for some ρ > 0,

lim
n→+∞

1

n

0∑

x=−n

η0(x) = ρ .

Then ηα
t converges in distribution as t → +∞ to μα,ρ∧ρc .

Remark 5 (i) In the case ρ < ρc, Theorem 8 solves the convergence problem
posed in [19, pp 195–196].

(ii) In the case ρ ≥ ρc, Theorem 8 is a partial improvement over Theorem 1. It
improves the latter in the sense that we do not need a weak convexity assumption
on g, but is it less general with respect to initial conditions.
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On Non-equilibrium Fluctuations for the
Stirring Process with Births and Deaths

Panagiota Birmpa, Patrícia Gonçalves, and Dimitrios Tsagkarogiannis

Abstract We study the density fluctuation field for the stirring process with births
and deaths at two sites at the boundary which tend to impose a current into the
system. Assuming correlation estimates (to be proved in a companion paper [2]) we
derive an equation for the limiting kernel of the variance of the fluctuation field. The
key difficulty lies in closing the martingales, with respect to the density fluctuation
field, due to the boundary effects and we present a strategy on how to deal with more
general boundary conditions.

Keywords Stirring process · Births and deaths · Current reservoir · Boundary
conditions · Non-equilibrium fluctuations · Closure of martingale

1 Introduction

Interacting particle systems coupled with reservoirs can demonstrate a rich macro-
scopic behaviour sensitive to the effective boundary conditions. From the technical
point of view a key issue is the closure of the corresponding equations as boundary
effects propagate and create non vanishing correlations. One can design different
types of reservoirs corresponding to different physical mechanisms, such as density
(i.e., fixing the density as in the Fourier law) or current (fixing the current which tends
to propagate in the medium). This is done by tuning the strength of the boundary
action, namely, when it is strong the density is fixed and when it is weak the density
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is no longer fixed but instead the current is. Macroscopically, the reservoirs’ action,
if restricted to a finite number of sites, gives rise to a boundary condition, while if
the reservoirs’ action is in the bulk, then it gives rise to a reaction term. The hydro-
dynamic limit for the current reservoir with a medium consisting of the symmetric
simple exclusion process (SSEP) has been considered in [4–6]. Instead, the density
reservoir case has been explored in [1] in the presence of only one reservoir and in
[7] for the case of two reservoirs. The hydrodynamic equation is the heat equation
(thanks to the SSEP dynamics), with either Robin-type boundary conditions (see
(18)), in the case of current reservoirs, or Dirichlet boundary conditions in the case
of density reservoirs.

The main difficulty one faces when dealing with a reservoir that acts in more than
one site and which injects/removes particles from the system at a particular site x
depending at the configuration of all the neighbouring sites, is that one has to know a
lot of information about the boundary behaviour in order to control the correlations
of the boundary variables. Actually, the proof of hydrodynamics of the SSEP with a
strong boundary action from a reservoir consisting of more than one sites is an open
problem due to the fact that correlation estimates are difficult to establish (as a result
of the competition between the bulk exchange dynamics and the boundary Glauber
dynamics).

In these notes we focus on the properties of the density fluctuation field around the
hydrodynamic limit and we present a systematic way of closing the corresponding
martingale problem associated to this field. Our result is compatible with previous
work for the special case when the reservoirs act at one boundary point (see [8]) and
provides some more insight on how to treat more complex scenarios. Other cases of
the SSEP superposedwith a Glauber dynamics acting at only one site in the boundary
have been studied in [12] where the intensity of the density reservoir is strong and
in [9] for the case of a weaker intensity for both density and current reservoirs.

The key idea in dealing with the fluctuations for boundary mechanisms is to view
the problem as a linearization of the limiting equations both at the bulk and at the
boundary. As it will be shown, this allows to “guess” the space in which one should
describe the fluctuation field. In all the aforementioned problems, the space where
the density field is defined is independent of the hydrodynamic profile since the
boundary dynamics only acts at one site and the hydrodynamic equation is the heat
equation with linear Robin boundary conditions (see (18) for K = 1). In the case
where the boundary acts in more than one site and the current is fixed, the boundary
conditions become non-linear Robin and the choice of the space of test functions
will depend on the hydrodynamical profile which requires, from a technical point of
view, further decay properties of higher order correlation functions. We leave this
issue for a more technical subsequent paper [2].

These notes are organized as follows: we start (Sect. 2) with the presentation of
themodel and some relevant results for the hydrodynamic limit. Then, in Sect. 2.3 we
define the fluctuation field and describe the problem, presenting the corresponding
martingale decomposition. The strategy of closure of the martingale is described in
Sect. 3 where a linearization argument is given for the appropriate choice of the test
function space in which to define the limiting fluctuation field. Finally, in Sect. 4 we
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give a comparison between a direct microscopic derivation of the variance of the
fluctuation field and another based on the martingale decomposition using Holley-
Stroock’s theory. The comparison of the two provides another way of dictating the
right choice for the test functions. We conclude with the derivation of an equation
for the kernel of the macroscopic fluctuation field.

2 Preliminaries

2.1 The Model

Let N ∈ N denote the scaling parameter which will be taken to infinity and fix
an integer K ≤ N which does not scale with N . We consider the stirring process
evolving on the discrete subsetΛN := [−N , N ] ofZ. The configurations of particles
are elements η in {0, 1}ΛN , so that η(x) = 1 if there is a particle at site x and η(x) = 0
otherwise. The stirring process with births and deaths is a Markov process defined
by its infinitesimal generator given by

Lε := ε−2
(
L0 + εLb,− + εLb,+

)
, ε ≡ 1

N
, (1)

where L0 is the generator of the stirring process in ΛN , namely

L0 f (η) := 1

2

N−1∑

x=−N

[ f (ηx,x+1) − f (η)] (2)

and

Lb,± f (η) := j

2

∑

x∈I±
D±η(x)[ f (ηx ) − f (η)

]
, (3)

with j > 0, I+ = [N − K + 1, N ], I− = [−N ,−N + K − 1], and for any function
u : ΛN → R, D± are defined as follows:

D+u(x) = [1 − u(x)]u(x + 1)u(x + 2) · · · u(N ), x ∈ I+,

D−u(x) = u(x)[1 − u(x − 1)][1 − u(x − 2)] · · · [1 − u(−N )], x ∈ I− .

Observe that K fixes the size of the window where the reservoirs act. In the sequel
we will be switching between the use of ε and N (depending on the context) in
order to describe the small parameter for the passage from micro to macro. We hope
this does not create confusion to the reader. Above, ηx,x+1, −N ≤ x ≤ N − 1, is
the configuration obtained from η by exchanging the occupation variables η(x) and
η(x + 1):
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(ηx,x+1)(y) =

⎧
⎪⎨

⎪⎩

η(x + 1), y = x ,

η(x), y = x + 1 ,

η(y), y �= x, x + 1 ,

while for x ∈ I±, ηx is the configuration obtained by flipping the occupation variable
η(x) :

(ηx)(y) =
{

η(x), y �= x ,

1 − η(y), y = x .

The generator N 2L0 describes a process where nearest neighbour sites are
exchanged at rate N 2/2 and NLb,+ describes a birth process: at rate j N/2 a particle
is created in the first (starting from N and going down up to N − K + 1) empty site
in I+, if no site is empty the birth is aborted. Symmetrically NLb,− describes deaths:
at rate j N/2 the first particle (starting from −N ) in I− is removed, if I− is empty
there is no death.

N x 1 x NN 1N 2

jN/2

jN/2

N2/2

2.2 Hydrodynamic Limit

For x ∈ ΛN and t ≥ 0, let us denote

ρε
t (x) := Eε[ηt (x)], (4)

where by Eε we denote the expectation of the process with generator Lε and starting
from the product measure με. It readily follows from the structure of the generators
that ρε

t (x) satisfies the relations:

∂tρ
ε
t (x) = 1

2
Δε,1ρ

ε
t (x) + ε−1 j

2

(
1x∈I+Eε[D+ηt (x)] − 1x∈I−Eε[D−ηt (x)]

)
(5)

for any x ∈ ΛN and t > 0, where

Δε,1u(x) = ε−2
(
u(x + 1) + u(x − 1) − 2u(x)

)
, x ∈ ΛN \ {−N , N },

Δε,1u(±N ) = ε−2
(
u(±(N − 1)) − u(±N )

)
(6)
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for any function u : ΛN → R. On the other hand, for x ∈ ΛN let us denote byρε(x, t)
(note the slight difference in notation with (4)) the solution of

{
∂tρε(x, t) = 1

2Δε,1ρε(x, t) + ε−1 j
2

(
1x∈I+ D+ρε(x, t) − 1x∈I− D−ρε(x, t)

)

ρε(x, 0) = ρε
0(x),

(7)
for any x ∈ ΛN . Observe that the previous equation is the closed version of (5), that
is, the previous equation would be obtained from (5), if we had assumed that, for
any x ∈ I± and any time t , it holdsE[D±ηt (x)] = D±E[ηt (x)], which translates into
uncorrelatedness of occupation variables at the boundary for any time t . Below we
recall Eq. (3.9) from [5], which allows the control of discrete gradients of ρε(x, t).

Lemma 1 For any ζ > 0 and τ > 0, there is c so that

sup
x,y∈ΛN :|x−y|≤1

|ρε(x, t) − ρε(y, t)| ≤ c

(ε−2t)1/2−ζ + 1
(8)

for any t ≤ τ log ε−1.

Observe that the difference between the solutions of the two Eqs. (5) and (7), can
be quantified by estimates on the following quantities, called v-functions:

vε
n(x, t) := Eε

[
n∏

i=1

(ηt (xi ) − ρε(xi , t))

]

, x ∈ Λ
n,�=
N , n ≥ 1, (9)

where Λ
n,�=
N is the set of all sequences (x1, . . . , xn) ∈ Λn

N with xi �= x j . Such esti-
mates have been derived in [4, Theorem 2.1]: for any β∗ > 0 and for any positive
integer n, there is a constant cn < ∞ so that for every ε > 0, any initial product
measure με,

sup
x∈Λ

n,�=
N

|vε
n(x, t)| ≤

{
cn(ε−2t)−c∗n, for t ≤ εβ∗

cnε(2−β∗)c∗n, for εβ∗ ≤ t ≤ τ log ε−1,
(10)

for some τ > 0 and c∗ > 0.
As a result of (10), empirical averages of the microscopic process are close to

the functions ρε satisfying (7); hence the following theorem (which is proved in [4])
identifies the hydrodynamics of the microscopic system:

Theorem 1 ([4, Theorem 1]) Suppose that the initial datum ρε(·, 0) defined on ΛN ,
with values in [0, 1] converges weakly as ε → 0 to u0(·) ∈ L∞([−1, 1], [0, 1]) in
the sense

lim
ε→0

ε
∑

x∈ΛN

ρε(·, 0)φ(εx) =
∫

[−1,1]
u0(r)φ(r)dr, for every φ ∈ L∞([−1, 1],R).

(11)
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Then, there is ρ(r, t), r ∈ [−1, 1], t > 0 so that for any t1 > t0 > 0

lim
ε→0

sup
x∈ΛN

sup
t0≤t≤t1

|ρε(x, t) − ρ(εx, t)| = 0, (12)

where the function ρ(r, t) is the unique solution of the integral equation

ρ(r, t) =
∫

[−1,1]
Pt (r, r

′)u0(r ′)dr ′ + j

2

∫ t

0
Ps(r, 1)(1 − ρ(1, t − s)K )

−Ps(r,−1)(1 − (1 − ρ(−1, t − s))K )ds (13)

where Pt (r, r ′) is the density kernel of the semigroup (also denoted as Pt ) with
generator Δ/2, Δ the Laplacian in [−1, 1] with reflecting, Neumann, boundary
conditions.

Remark 1 The density kernel Pt (r, r ′) can be expressed in terms of the Gaussian
kernel

Gt (r, r
′) = e−(r−r ′)2/2t

√
2π t

(14)

as follows: if ψ : R → [−1, 1] denotes the usual reflection map, i.e. ψ(x) = x for
x ∈ [−1, 1], ψ(x) = 2 − x for x ∈ [1, 3], withψ extended to the whole line as peri-
odic of period 4, then

Pt (r, r
′) =

∑

ψ(r ′′)=r ′
Gt (r, r

′′), for r, r ′ �= ±1 (15)

Pt (r,±1) =
∑

ψ(r ′′)=±1

2Gt (r, r
′′). (16)

Furthermore, by a simple computation one can check that ρ(r, t) for t > 0 and
r ∈ (−1, 1) satisfies the heat equation

∂tρ(r, t) = 1

2
∂2
rrρ(r, t) (17)

with boundary conditions:

∂rρ(r, t)
∣∣∣
r=1

= j (1 − ρ(1, t)K ), ∂rρ(r, t)
∣∣∣
r=−1

= j (1 − (1 − ρ(−1, t))K ).

(18)

See also [6] for an alternative derivation using the entropy method of [10].
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2.3 Fluctuations

The main goal of this note is to suggest a systematic way of choosing the proper
test functions for the definition of the limiting fluctuation field. So let H be a test
function in a space S which will be determined later on. Let D([0, T ],S′) be the
space of trajectories which are right continuous, with left limits and taking values in
S

′, the dual of S.

Definition 1 (Density fluctuation field) We define the density fluctuation field Y ε· as
the time-trajectory of linear functionals acting on functions H : [−1, 1] × [0, T ] →
R as

Y ε
t (H) = √

ε
∑

x∈ΛN

H(εx, t)η̄t (x), (19)

where η̄t (x) := ηt (x) − ρε
t (x) and ρε

t (x) was defined in (4).

For each ε > 0, let Qε
με be the probability measure on D([0, T ],S′) induced by the

density fluctuation field Y ε· and the measure με. For every n positive integer and
x1, . . . , xn ∈ Λ

n,�=
N , we define:

Cn,ε
t (x1, . . . , xn) := Eε[η̄t (x1) . . . η̄t (xn)]. (20)

Note the difference between the v-function defined in (9) and the correlation function
Cn,ε
t , that is ρε

t is the solution to the discrete equation (5) whose closed version is
exactly (7). In order to find the limiting equation for the density fluctuation field
defined in (19), one needs an improved version of (10) due to the softer scaling of
the quantity of interest (ε1/2 instead of ε). Hence, for the purpose of this note, we
will assume an improved version of this estimate see (44) and (45), to be proven in
a forthcoming article [2].

In order to find the distribution of the fluctuation field, for any F ∈ C∞(R) and
for any H : [−1, 1] × [0, T ] → R a test function, we define

M F,ε
t (H) := F(Y ε

t (H)) − F(Y ε
0 (H)) −

∫ t

0
(∂s + Lε)F(Y ε

s (H))ds. (21)

For special choices of F we can write:

Mε
t (H) := Y ε

t (H) − Y ε
0 (H) −

∫ t

0
(∂s + Lε)Y

ε
s (H)ds, (22)

N ε
t (H) := (Mε

t (H))2 −
∫ t

0

(
Lε(Y

ε
s (H))2 − 2Y ε

s (H)LεY
ε
s (H)

)
ds. (23)

It is easy to check that these are martingales with respect to the natural filtration
Ft := σ({ηs : s ≤ t}). Furthermore, using the general form (21), there is a function
Rε(t, H) uniformly bounded in ε such that:
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(∂t + Lε)F(Y ε
t (H)) = F ′(Y ε

t (H))γ ε
1 (t, H) + 1

2
F ′′(Y ε

t (H))γ ε
2 (t, H) + Rε(t, H),

(24)
where

γ ε
1 (t, H) = (∂t + Lε)Y

ε
t (H) (25)

and

γ ε
2 (t, H) = Lε(Y

ε
t (H))2 − 2Y ε

t (H)LεY
ε
t (H). (26)

Above, by noticing that ∂t Y ε
t (H) = Y ε

t (∂t H) − √
ε
∑

x∈ΛN
H(εx)∂tρε

t (x) and that,
from Kolmogorov’s equation ∂tρ

ε
t (x) = Eε[Lεηt (x)], we get

γ ε
1 (t, H) = LεY

ε
t (H)+Y ε

t (∂t H) − Eε(LεY
ε
t (H)). (27)

Before proceeding we give a small remark which will be useful in the sequel.

Remark 2 For the particular case F(r) = r2, noting that

Lε(Y
ε
t (H))2 = 2Y ε

t (H)LεY
ε
t (H) + Lε(Y

ε
t (H))2 − 2Y ε

t (H)LεY
ε
t (H) (28)

and comparing with (24) as well as γ ε
1 (t, H) and γ ε

2 (t, H) defined in (27) and (26),
respectively, we obtain that Rε(t, H) = 0.

3 Closure of the Martingale

Themain purpose of this note is to propose a strategy on how to close the martingales
(22) and (23) with respect to the macroscopic quantity Y ε

t . This is equivalent to
determining the distribution of the limiting field using (24) and in particular its
variance from expression (26).

To give an intuition why we will have to consider test functions with a certain
type of boundary conditions, we first present an heuristic argument derived from the
macroscopic PDE (17) with the boundary conditions given in (18). Therefore, we
consider an order ε variation of the value of the density ρ(1, t) at the boundary. Then
Eq. (18) becomes:

∂r (ρ(r, t) + εξ(r, t))|r=1 = j (1 − ((ρ + εξ)(1, t))K ), (29)

similarly at r = −1. The first order correction ξ should satisfy:

∂rξ(r, t)|r=1 = − j Kρ(1, t)K−1ξ(1, t). (30)
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On the other hand, in the bulk we have ∂tξ(r, t) = 1
2∂

2
rrξ(r, t) and by performing

integration by parts against the test function H (depending on both space and time),
we obtain:

−ξ∂t H = H∂tξ = H 1
2∂

2
rrξ

= ∂2
rr H

1
2ξ + 1

2 (H∂rξ)|1−1 − 1
2 (∂r Hξ)|1−1

= ∂2
rr H

1
2ξ + 1

2 [− j Kρ(1, t)K−1H(1, t) − ∂r H(1, t)]ξ(1, t) + · · ·

and similarly at the left boundary. Since the latter should be true for all ξ one should
choose H such that

∂t H(r, t) = 1
2∂

2
rr H(r, t), ∂r H(1, t) = − j Kρ(1, t)K−1H(1, t) and

∂r H(−1, t) = j K (1 − ρ(−1, t))K−1H(−1, t). (31)

Motivated by the previous argument we are now in position to define what we believe
that will be the proper space of test functions S.

Definition 2 Fix a solution of the hydrodynamic equation ρ(t, r) and let S denote
the subspace of functions in C1,2([−1, 1] × [0, T ]) that satisfy

∂r H(−1, t) = j K (1 − ρ(−1, t))K−1H(−1, t),

∂r H(1, t) = j Kρ(1, t)K−1H(1, t) (32)

for all t ∈ [0, T ].
Now, we are back to the microscopic level and our goal is to check whether the

choice of the space of test functions defined above is the correct one or not. The first
task now is to compute the compensator of the martingale defined in (21), which
corresponds to γ1 defined in (27). Since in the next calculations we want to pass
from differences in η to differences in H we need to perform a (discrete) summation
by parts which is summarized in the next two formulas:

b−1∑

x=a+1

H(x)(u(x + 1) − u(x)) = H(b − 1)u(b) − H(a + 1)u(a + 1)

−
b−1∑

x=a+2

(H(x) − H(x − 1))u(x) (33)

b−1∑

x=a+1

H(x)(u(x) − u(x − 1)) = H(b − 1)u(b − 1) − H(a + 1)u(a)

−
b−1∑

x=a+2

(H(x) − H(x − 1))u(x − 1) (34)
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in a discrete domain {a, a + 1, . . . , b}. Above, just for ease of notation, we did not
index the test function H in time. Thus, for the first term on the right hand side of
(27), by the summation by parts formulas, we obtain:

ε−2L0Y
ε
t (H) =√

ε

N−1∑

x=−N+1

H(εx, t)Δε,1ηt (x)

+ 1

2
√

ε
∇+

ε H(−1, t)ηt (−N ) − 1

2
√

ε
∇−

ε H(1, t)ηt (N ), (35)

where

ε∇−
ε H(1, t) := H(ε(N − 1), t) − H(1, t),

ε∇+
ε H(−1, t) := H(ε(−N + 1), t) − H(−1, t), (36)

i.e., for a smooth function H the quantities ∇±
ε H are of order one in ε. We observe

that the last term of (35) is “closed” with respect to Y ε
t , but we also obtain the

gradients of H evaluated at ±1 with a diverging factor ε− 1
2 . The purpose of this

section is to suggest a strategy how to treat the latter. For simplicity and transparency
of the key steps we perform the boundary calculations for the case K = 2, but the
same strategy can be followed for the general K case.

In addition, for the generators acting at the boundary we have:

Lb,+Y ε
t (H) = j

2
√

ε
H(ε(N − 1), t)(1 − ηt (N − 1))ηt (N ) + j

2
√

ε
H(1, t)(1 − ηt (N ))

(37)
and

Lb,−Y ε
t (H) = j

2
√

ε
H(−ε(N − 1), t)ηt (−N + 1)(1 − ηt (−N )) + j

2
√

ε
H(−1, t)ηt (−N ).

(38)
Putting together (35) and the two previous displays, we obtain that LεY ε

t (H) equals
to

1

2
√

ε
∇+

ε H(−1, t)ηt (−N ) − 1

2
√

ε
∇−

ε H(1, t)ηt (N ) + √
ε

∑

x∈ΛN

H(εx, t)Δε,1ηt (x)

+√
ε
( j

2
H(ε(N − 1), t)(1 − ηt (N − 1))ηt (N ) + j

2
H(1, t)(1 − ηt (N ))

)

+√
ε
( j

2
H(−ε(N − 1), t)ηt (−N + 1)(1 − ηt (−N )) + j

2
H(−1, t)ηt (−N )

)
.

(39)

Also recall (5) and observe its contribution to (27). Next, we show how the com-
bination of the above formulas together with an appropriate intuitive choice for the
test functions H gives a martingale which is closed in terms of Y ε

t . For the first,
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since macroscopically the points ε(N − 1) and εN in the second line of (39) are
the same, we can consider the test function evaluated at the same point H(1, t) with
a vanishing error of order ε (by performing a Taylor expansion on H ). Then we
observe the cancellation of the ηt (N ) term in the second line of (39). Note that
a similar cancellation takes place in the derivation of the hydrodynamic limit for
the general K case, where by adding the boundary contributions—denoted here by
ρ—(i.e., considering them at the same site) we obtain:

N∑

x=N−K+1

(1 − ρ)ρN−x = (1 − ρ)ρK−1 + · · · + (1 − ρ)ρ + (1 − ρ) = 1 − ρK .

Note that the 1 cancels with the corresponding contribution from the third term of
(27). Thus, we are left with the term −ηt (N − 1)ηt (N ) on the second line of (39)
(corresponding to −ρ2 in the example just above for K = 2) and the second term
from (35). Both are at the boundary and we want to combine them in some way
in order to get a martingale closed with respect to Y ε

t . Note that the reasoning at
the left boundary is completely analogous and we will not repeat it here. Thus, we
need to get some information from the boundary conditions and the equation that
these satisfy in the hydrodynamic equation. Furthermore, since we are looking at the
fluctuations (rather than the hydrodynamic limit) maybe we should be looking at the
linearized version of these conditions and mimic them at the microscopic level.

The heuristic argument presented in the beginning of this section suggests that
we may match the second (diverging) term of (35) with some terms from (37) by
“mimicking” the linearization (30). Following this reasoning, the first step is to use
the same test function H(±1, t) in front of both terms, Then, in the same way of
finding the order ε term of (ρ + εξ)2 in (29) we write:

ηt (N − 1)ηt (N ) = {
η̄t (N − 1) + ρε

t (N − 1)
} {

η̄t (N ) + ρε
t (N )

}

= η̄t (N − 1)ρε
t (N ) + η̄t (N )ρε

t (N − 1)

+η̄t (N − 1)η̄t (N ) + ρε
t (N − 1)ρε

t (N )

= 2η̄t (N )ρε
t (N ) (40)

+[η̄t (N − 1) − η̄t (N )]ρε
t (N ) + η̄t (N )(ρε

t (N − 1) − ρε
t (N ))

+η̄t (N − 1)η̄t (N ) + ρε
t (N − 1)ρε

t (N )

It is also easy to check that

Eε[η̄t (N − 1)η̄t (N )] = Eε[ηt (N − 1)ηt (N )] − ρε
t (N − 1)ρε

t (N ). (41)

Thus, considering the bulk with only the right boundary (the left is completely anal-
ogous), we obtain:
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γ ε
1 (t, H) = − 1

2
√

ε
∇−

ε H(1, t)η̄t (N ) + Y ε
t

(1
2
ΔεH

)
+Y ε

t (∂t H)

− j

2
√

ε
H(1, t) {ηt (N − 1)ηt (N ) − Eε[ηt (N − 1)ηt (N )]}+ · · ·

where the second term in last line comes from the second term on the right hand side
of (5). Above the dots represent the extra terms coming from the left boundary and

ΔεH(εx, t) = ε−2
(
H(ε(x + 1), t) + H(ε(x − 1), t) − 2H(εx, t)

)
. (42)

Therefore we have

γ ε
1 (t, H) = Y ε

t

(1
2
ΔεH

)
+Y ε

t (∂t H)

− 1

2
√

ε
∇−

ε H(1, t)η̄t (N ) − j

2
√

ε
H(1, t)

{
2η̄t (N )ρε

t (N )

+[η̄t (N − 1) − η̄t (N )]ρε
t (N ) + η̄t (N )[ρε

t (N − 1) − ρε
t (N )]

+η̄t (N − 1)η̄t (N )+ρε
t (N − 1)ρε

t (N ) − Eε[ηt(N − 1)ηt (N )]}+ · · ·
= Y ε

t

(1
2
ΔεH

)
+Y ε

t (∂t H) (43)

− 1

2
√

ε
∇−

ε H(1, t)η̄t (N ) − 1

2
√

ε
H(1, t)

{
2η̄t (N )ρε

t (N )

+[η̄t (N − 1) − η̄t (N )]ρε
t (N ) + η̄t (N )(ρε

t (N − 1) − ρε
t (N ))

+η̄t (N − 1)η̄t (N ) − Eε[η̄t(N − 1)η̄t (N )]} + · · ·

where Eε[η̄t (N )] = 0. In the last equality we used (41). The second line in last
equality vanishes by the choice of test functions (31) and by approximating ρε

t (N )

by ρ(1, t) using (12) and the v-estimate for the one point correlation given in (10).
For the first term on the third line of the last equality of (43), we use the following

estimate which holds for x ∈ ΛN \ {N − 1} and t ≤ τ log ε−1:

Eμε

[(∫ t

0
(η̄s(x) − η̄s(x + 1)) ds

)2 ]
≤ Cε1+a, (44)

for some a > 0 and C > 0. This estimate will be proved in the subsequent work [2].
For the second term on the third line in the last equality of (43), we recall Lemma 1,
so that

E

[( ∫ t

0

j

2
√

ε
H(1, s)η̄s (N )(ρε

s (N − 1) − ρε
s (N ))ds

)2]

= j2

2ε
E

[ ∫ t

0

∫ s

0
H(1, s)H(1, r)η̄s (N )η̄r (N )(ρε

s (N − 1) − ρε
s (N ))(ρε

r (N − 1) − ρε
r (N ))dr ds

]
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≤ Cε−1
∫ t

0

∫ s

0
(ρε

s (N − 1) − ρε
s (N ))(ρε

r (N − 1) − ρε
r (N ))dr ds

≤ Cε−1
∫ t

0

∫ s

0

1

(ε−2s)1/2−ζ

1

(ε−2r)1/2−ζ
dr ds ≤ Cε1−4ζ (τ log ε−1)1+2ζ

where we use that E
[
η̄s(N )η̄r (N )

]
is bounded by 1. Last display vanishes as ε → 0

for any choice of 0 < ζ < 1
4 . For the fourth line we use the following inequality

which holds for any subset X ⊂ ΛN :

Eμε

⎡

⎣

(∫ t

0

∏

x∈X
η̄s(x) ds

)2
⎤

⎦ ≤ Cε1+a, (45)

for some a > 0 and C > 0, which will be proved in a subsequent work [2]. These
arguments show that (22) can be rewritten as

Mε
t (H) := Y ε

t (H) − Y ε
0 (H) −

∫ t

0
(Y ε

s ( 12ΔεH)+Y ε
s (∂s H))ds,

plus terms that vanish in L2, as ε → 0.
Analogously and by repeating similar computations to the ones above, we see that

for (26) we obtain

γ ε
2 (t, H) = ε

N∑

x=−N

(∇+
ε H(εx, t))2(ηt (x) − ηt (x + 1))2 +

+ j

2

N∑

x=N−K+1

H(εx, t)2D+ηt (x) + j

2

−N+K−1∑

x=−N

H(εx, t)2D−ηt (x),

where
ε∇+

ε H(εx, t) := H(ε(x + 1), t) − H(εx, t).

We observe that all terms in γ ε
2 (t, H) survive in the limit ε → 0. Recalling

Remark 2, the second moment becomes:

Lε(Y
ε
t (H))2 = 2Y ε

t (H)γ ε
1 (t, H) + γ ε

2 (t, H) + Rε(t, H) (46)

= 2Y ε
t (H)Y ε

t (
1

2
ΔεH) + γ ε

2 (t, H) + oε(1). (47)

We note that the contribution of the boundary terms has been registered in the choice
of the test functions H as well as in γ ε

2 (t, H) in a “closed” form. Thus, in the next
section we will be looking for the limiting field as ε → 0 of Y ε

t for an appropriate
choice of test function space satisfying (31).
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4 Macroscopic Limit of the Fluctuation Field

The purpose of this section is to find an equation for the continuous kernel of the
variance of the limiting fluctuation field. This will also motivate another way of
“guessing” the appropriate test function space alternative to the one of the previous
section, but of the sameflavour. The strategy is as follows. Let us assume for amoment
that the limiting fluctuation field exists. Its variance should coincide with the limit
as ε → 0 of Eε[Y ε

t (H)2]. We can compute the latter in two ways: either directly or
using the martingale decomposition (24) by computing γ1 and γ2 separately. Note
that the difference between the two approaches lies on the fact that in the former
some cancellations take place making disappear the “dangerous” diverging terms in
γ1. Instead, for the latter, in order to control the dangerous terms, one has to choose
a proper test function space and then apply the Holley-Stroock theory [11] obtaining
a martingale for the limiting field from which an equation for the kernel follows.
Summarizing, we notice that in the second approach the catch lies in the fact that
using the martingale decomposition we have to obtain closed forms and for that an
assumption for the test functions is in order.

In the previous section this choicewasmotivated by the linearization argument and
itwill be used here for the derivation of themacroscopic equation for the kernel. Then,
we will further validate it by a comparison to the direct calculation of Eε[Y ε

t (H)2]
since a term-by-term correspondence can be established. Moreover, the latter could
also serve as an alternative (to the linearization)way of determining the test functions.

4.1 Direct Calculation of the Variance

We have:

∂tEε[Y ε
t (H)2] = ε

∑

x �=y

H(εx)H(εy)∂tEε[η̄t (x)η̄t (y)]

+2ε
∑

x �=y

∂t H(εx)H(εy)Eε[η̄t (x)η̄t (y)]

+ε
∑

x

H(εx)2(1 − 2ρε
t (x))∂tρ

ε
t (x)

+2ε
∑

x

H(εx)∂t H(εx)(1 − (ρε
t (x))

2). (48)

Recalling (20), the factor ∂tEε[η̄t (x)η̄t (y)] for x �= y and K = 2 yields:
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∂tC
2,ε
t (x, y) = 1−N≤x,y≤N

1

2
Δε,2C

2,ε
t (x, y) − ε−21|x−y|=1

1

2
(ρε

t (x) − ρε
t (y))

2

+ε−1 j

2
1x=N−1,y=N

[−C2,ε
t (N − 1, N )(2 − ρε

t (N ))

+(1 − ρε
t (N − 1))ρε

t (N )(1 − ρε
t (N ))

]

+ε−1 j

2
1y=N−1

[
(1 − ρε

t (N − 1))C2,ε
t (x, N ) − ρε

t (N )C2,ε
t (x, N − 1)

−C3,ε
t (x, N − 1, N )

]

+ε−1 j

2
1y=N

[−C2,ε
t (x, N )

]

+ · · · (49)

where the . . . stand for the corresponding terms at the left boundary. Moreover, by
Δε,2 we denote the discrete Laplacian acting on both entries of C2,ε

t , namely for
−N + 1 ≤ x, y ≤ N − 1 we have:

Δε,2C
2,ε(x, y) =ε−2

(
C2,ε(x + 1, y) + C2,ε(x − 1, y) + C2,ε(x, y + 1)

+ C2,ε(x, y + 1) − 4C2,ε(x, y)
)
, (50)

while for x = −N , N , we have

Δε,2C
2,ε(N , y) = ε−2

(
C2,ε(N − 1, y) − C2,ε(N , y)

)
(51)

Δε,2C
2,ε(−N , y) = ε−2

(
C2,ε(−N + 1, y) − C2,ε(−N , y)

)
. (52)

Note that Δε,2C2,ε(x, N ) and Δε,2C2,ε(x,−N ) are defined analogously. Similarly,
for the second term of (48) we have:

∂tρ
ε
t (x) = Eε[Lεηt (x)] = 1−N+1≤x≤N−1

1

2
Δε,1ρ

ε
t (x) − 1

2
Δε,1ρ

ε
t (N )

+ j

2
1x=N−1

[
ρε
t (N )(1 − ρε

t (N − 1))(1 − 2ρε
t (N ))

−(1 − 2ρε
t (N − 1))C2,ε

t (N − 1, N )
]

+ j

2
1x=N

[
(1 − 2ρε

t (N ))(1 − ρε
t (N ))

]

+ · · · (53)

and similarly at the left boundary. We remark that the previous display is exactly (5)
but now it is written with respect to the correlation function. Based on the correlation
function estimates (still to be established in [2]), we expect that the higher order
correlation C3,ε

t (x, N − 1, N ) is of lower order in ε with respect to the one and the
two point correlations. As mentioned before, at this point one option would be to
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pass to the limit ε → 0 and obtain an equation for the kernel of the variance of the
limiting field (without need of introducing the martingales). But since our purpose
is to see how to work with the martingales, we keep Eq. (49) at finite ε and we will
use it later for comparison. Hence, in the next subsection we pass to the limit ε → 0
in the context of the Holley-Stroock theory [11] using the martingale decomposition
and the choice of the test functions motivated by the linearization argument given
in the beginning of Sect. 3. Alternatively, we observe that the same choice of test
functions is dictated by the comparison with Eq. (49) given in this subsection.

4.2 Continuous Kernel Variance Using Martingales

To pass to the limit for the fluctuation field, we follow the strategy presented in [3].
One needs the following ingredients:

1. The process at time 0, {Y ε
0 }ε>0 converges as ε → 0 to a mean-zero Gaussian field

Y with some covariance kernel.
2. The sequence Y ε ≡ {Y ε

t (H), t ≥ 0, H ∈ S} is tight in D([0, T ],S′).
3. Any limiting point Y of Y ε satisfies the martingale problem: for any F ∈

C∞([−1, 1]) and for any H ∈ S:

F(Yt (H)) −
∫ t

0
F ′(Ys(H))(Ys(AH) + Ys(∂s H)) − ds

∫ t

0

1

2
‖Bs H‖2L2(ρs )

F ′′(Ys(H)) ds

(54)
is a martingale for a choice of the operators A and Bs and the norm L2(ρs) is
defined below. Based on the decomposition (24) as well as γ ε

1 (t, H) and γ ε
2 (t, H)

defined in (27) and (26), respectively, the operators A and Bs in the above for-
mulation will be given by:

A := 1

2
Δ and Bs := √

χ(ρs)∇, (55)

where ΔH(r) = ∂2
rr H(r) and ∇H(r) = ∂r H(r). For s > 0 and H ∈ S

‖Bs H‖2L2(ρs )
= j

2
(H(−1, s))2(1 − (1 − ρ(−1, s))K ) + j

2
(H(1, s))2(1 − ρ(1, s)K )

+
∫ 1

−1
(∇H(r, s))2χ(ρ(r, s)) dr (56)

where χ(ρ(r, s)) = ρ(r, s)(1 − ρ(r, s)) with ρ(r, t) being the solution of the
hydrodynamic equation given in Sect. 2.2.

Suppose for a moment that we have tightness, which will be proved using cor-
relation estimates in [2]. From the arguments derived in the previous sections and
if we assume that {Y ε

0 }ε converges, as ε → 0, to a mean-zero Gaussian field Y0,
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then, the limit field, obtained by taking ε → 0 in a proper topology, is a generalized
Ornstein–Uhlenbeck (O.U.) process, which is the formal solution of the equation:

∂t Yt = AYtdt + √
χ(ρt )∇Wt , (57)

where Wt is a space-time white noise of unit variance.
Following the previous section one sees that the time integral of γ ε

2 (s, H) con-
verges in mean to

∫ t
0

1
2‖BsH‖2L2(ρs )

ds and the time integral of γ ε
1 (s, H) converges in

L2 to
∫ t
0 Ys(AH)+Ys(∂s H) ds under some assumption on the space of test functions.

The latter was based on a linearization argument but here, the choice of test functions
can be derived by comparing to the direct calculation of the previous subsection as
we show next.

Definition 3 We define the variance kernel C∗
t (r, r

′) by the relation

E[Yt (H)Yt (G)] =
∫ 1

−1

∫ 1

−1
H(r)G(r ′)C∗

t (r, r
′)drdr ′ (58)

for any H,G test functions and where E is the expectation with respect to the law of
the limiting process Yt .

Since Y = {Yt (H) : t ≥ 0, H ∈ S} satisfies themartingale problem given in (54),
choosing F(r) = r2 and taking the expected value we obtain:

E[Yt (H)Yt (H)] =
∫ t

0
ds 2E[Ys(H)Ys(AH)+Ys(H)Ys(∂s H)] +

∫ t

0
ds‖Bs H‖2L2(ρs )

.

(59)
By substituting the expression from Definition 3, we obtain the following equation
for the kernel variance C∗

t (r, r
′):

∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)C∗

t (r, r ′) dr dr ′ =
∫ t

0

∫ 1

−1

∫ 1

−1
∂2rr H(r, s)H(r ′, s)C∗

s (r, r ′) dr dr ′ ds

+2
∫ t

0

∫ 1

−1

∫ 1

−1
H(r, s)∂s H(r ′, s)C∗

s (r, r ′) dr dr ′ ds

+
∫ t

0

∫ 1

−1
(∂r H(r, s))2χ(ρ(r, s))dr ds + j

2

∫ t

0
H(1, s)2(1 − ρ(1, s)K ) ds

+ j

2

∫ t

0
H(−1, s)2(1 − (1 − ρ(−1, s))K ) ds. (60)

Note that for the above expression we have used so far only the bulk part of operator
A as well as the operator Bs which is closed, so no closure issues arised. But now,
the boundary conditions come into play as we need to perform integration by parts
in order to obtain an equation for the kernel. It will be also useful to split the kernel
variance in the following way: for any t ≥ 0 and r, r ′ ∈ (−1, 1)
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C∗
t (r, r

′) = Ct (r, r
′) + δ(r, r ′)χ(ρ(r, t)), (61)

where we introduced the new kernelCt (r, r ′). The calculation leading to the equation
for Ct (r, r ′) is summarized in the next lemma.

Lemma 2 Let H ∈ S. The kernel Ct (r, r ′) defined in (61) satisfies the following
equation:

∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂tCt (r, r

′) dr dr ′ =
∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂2rrCt (r, r

′) dr dr ′

−
∫ 1

−1
(H(r, t))2(∂rρ(r, t))2 dr

−K jρ(1, t)K−1H(1, t)
∫ 1

−1
H(r, t)Ct (1, r) dr

−K j (1 − ρ(−1, t))K−1H(−1, t)
∫ 1

−1
H(r, t)Ct (−1, r) dr

−
∫ 1

−1
H(r, t)H(1, t)∂rCt (1, r)dr +

∫ 1

−1
H(r, t)H(−1, t)∂rCt (−1, r) dr

+ j (H(1, t))2
[
ρ(1, t)(1 − ρ(1, t)K ) − Kρ(1, t)K (1 − ρ(1, t))

]

+ j (H(−1, t))2
[
(1 − (1 − ρ(−1, t))K )(1 − ρ(−1, t)) − K (1 − ρ(−1, t))K ρ(−1, t)

]
.

Proof We first substitute (61) into (60) and perform integration by parts. For the first
term we have

∫ 1

−1

∫ 1

−1
∂2rr H(r, t)H(r ′, t)Ct (r, r

′) dr dr ′ =
∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂2rrCt (r, r

′) dr dr ′

−
∫ 1

−1
H(1, t)H(r ′, t)∂rCt (1, r

′) dr ′ +
∫ 1

−1
H(−1, t)H(r ′, t)∂rCt (−1, r ′) dr ′

+
∫ 1

−1
∂r H(1, t)H(r ′, t)Ct (1, r

′) dr ′ −
∫ 1

−1
∂r H(−1, t)H(r ′, t)Ct (−1, r ′) dr ′,

where ∂rCt (1, r ′) is the derivative with respect to the first entry and then evaluated
at r = 1. For the third term,

∫ 1

−1
(∂r H(r, t))2χ(ρ(r, t))dr = 1

2

∫ 1

−1
(H(r, t))2∂2rr (χ(ρ(r, t)))dr

−
∫ 1

−1
H(r, t)∂2rr H(r, t)χ(ρ(r, t))dr − 1

2
(H(1, t))2(1 − 2ρ(1, t))∂rρ(1, t)

+1

2
(H(−1, t))2(1 − 2ρ(−1, t))∂rρ(−1, t)

+H(1, t)∂r H(1, t)χ(ρ(1, t)) − H(−1, t)∂r H(−1, t)χ(ρ(−1, t)).
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In the above formula the second term of the right hand side cancels when we go from
C∗
t to Ct . Furthermore, the first term can be written as

1

2

∫ 1

−1
(H(r, t))2∂2

rr (χ(ρ(r, t)))dr = −
∫ 1

−1
(H(r, t))2(∂rρ(r, t))2dr

+1

2

∫ 1

−1
(H(r, t))2(1 − 2ρ(r, t))∂2

rrρ(r, t)dr.

Substituting to (60) we obtain:

∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂tC∗

t (r, r ′) dr dr ′ + 2
∫ 1

−1

∫ 1

−1
H(r, t)∂t H(r ′, t)C∗

t (r, r ′)dr dr ′

=
∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂2rrCt (r, r

′)drdr ′

−
∫ 1

−1
H(1, t)H(u, t)∂rCt (1, u)du +

∫ 1

−1
H(−1, t)H(u, t)∂rCt (−1, u)du

+
∫ 1

−1
∂r H(1, t)H(u, t)Ct (1, u)du −

∫ 1

−1
∂r H(−1, t)H(u, t)Ct (−1, u)du

−
∫ 1

−1
(H(r, t))2(∂rρ(r, t))2dr + 1

2

∫ 1

−1
(H(r, t))2(1 − 2ρ(r, t))∂2rrρ(r, t)dr

−1

2
(H(1, t))2(1 − 2ρt (1))∂rρ(1, t) + 1

2
(H(−1, t))2(1 − 2ρ(−1, t))∂rρ(−1, t)

+H(1, t)∂r H(1, t)χ(ρ(1, t)) − H(−1, t)∂r H(−1, t)χ(ρ(−1, t))

+ j

2
(H(1, t))2(1 − ρ(1, t)K ) + j

2
(1 − (1 − ρ(−1, t))K )(H(−1))2

+2
∫ 1

−1

∫ 1

−1
H(r, t)∂t H(r ′, t)Ct (r, r

′)dr dr ′ + 2
∫ 1

−1
H(r, t)∂t H(r)χ(ρ(r, t)). (62)

Note that the second term of the left hand side cancels with the last line of the right
hand side. Moreover, the first term of the left hand side combined with the second
term of the fifth line gives

∫ 1

−1

∫ 1

−1
H(r, t)H(r ′, t)∂tCt (r, r

′)drdr ′.

Then we can conclude by using the choice of test functions H given in (31).
Alternatively, we observe that it is easy to establish the connection between the

last expression and formulas (49) and (53) of the direct calculation of the variance
and as a result obtain the same choice of test functions as in (31). For example, the
first term of the fourth line of (62) corresponds to the terms of the fourth and sixth
line of (49) and similar arguments hold for the other terms. As a result, one obtains
a condition for ∂r H(1, t) which agrees with (31). �
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On Existence, Uniqueness and Banach
Space Regularity for Solutions
of Boltzmann Equations Systems
for Monatomic Gas Mixtures

Erica de la Canal, Irene M. Gamba, and Milana Pavić-Čolić

Abstract This review manuscript reports on two recent results for a time dynamics
model for a non-linear system of Boltzmann equations in a space homogeneous set-
ting that describes multi-component monatomic gas mixtures for binary interactions.
This model describes the evolution of an arbitrary finite set of probability density
functions, depending on time and molecular velocity in R

N , corresponding to each
gas component described by its mass parameter. The existence and uniqueness of
the initial value problem of the vector-valued solution associated to the mixture in
the case of hard potentials with integrable angular scattering kernels corresponding
to each pair of interacting species is addressed. This result is obtained by means of
an abstract ODE theory in Banach spaces localized in the molecular velocity state. It
relies on a lower bound of the collision frequency as much as on an energy identity
for gas mixtures that enables a new angular averaging (Povzner) lemma associated
to the vector of collisional integrals. Moreover, for collisional transition probability
rate given by hard potentials with integrable angular part, the unique vector-valued
solution L1(RN ) polynomially and exponentially weighted norm is generated and
propagated. Further, by means of a Carleman representation for the collision opera-
tor associated to the binary mixing of two components, L p(RN ) weighted norms are
propagated with polynomial and/or exponential weights, p ∈ (1,∞]. These results
are obtained by gain of integrability L p(RN ) estimates for the multi-species collision
operator.
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Keywords Kinetic theory of gases · Monatomic gas mixtures · System of
Boltzmann equations

1 Introduction

This manuscript reviews the recent progress in the theory for monatomic gas mix-
tures modeled by time dynamical system of Boltzmann equations for binary molec-
ular interactions associated to identical spherical molecules with a finite number of
different masses in the space homogeneous setting. This presentation will simply
merge the work on existence and uniqueness theory from [14] of global in time
vector-valued probability density function solution, showing the propagation and
generation of polynomial and exponential weighted norm bounds in L1(R3) Banach
spaces in molecular velocity; and recently extended to L1(RN ), N ≥ 3, as well as
the complete global in time theory of propagation of L p(RN ), N ≥ 3 norms, both in
[12], for a system of Boltzmann equations in a unified frame. Hence, this manuscript
will state and connect results of these twomanuscripts in a review presentation, with-
out including rigorous proofs presented in [12, 14]. For a self-contained narrative,
we start with a full introduction presenting the system model.

Kinetic theory for monatomic gas mixtures in a space homogeneous setting
describes each mixture component Ai , i = 1, . . . , I , with its own distribution func-
tion fi := fi (t, v), that depends on time t ≥ 0 and velocity of molecules v ∈ R

N .
Each particle density function fi changes due to binary collisions with other parti-
cles. In the mixture framework, these particles interactions can belong to the same
species Ai or a pair of different one A j , j �= i when a particle from species Ai

collide with another particle from A j , for some j �= i . Thus, the collision operator
needs to take into account the influence of all speciesA j for all j = 1, . . . , I , to the
fixed one, Ai . In other words, the measure of change of distribution function fi is a
sum

∑I
j=1 Qi j ( fi , f j ), where the pair-wise collision operator Qi j ( fi , f j ) describes

influence of A j on Ai .
Considering all species simultaneously, a vector-valued problem is described by

a set of both distribution functions and collision operators,

F := [ fi ]1≤i≤I , Q(F,F) =
⎡

⎣
I∑

j=1

Qi j ( fi , f j )

⎤

⎦

1≤i≤I

. (1)

Then in a space homogeneous setting, the system of Boltzmann equations describing
a monatomic gas mixture reads

∂tF(t, v) = Q(F,F)(t, v). (2)
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Reference [14] shows global in time existence and uniqueness of solutions
C ([0,∞) ,Ω) ∩ C 1

(
(0,∞) , L1

2

)
, where the setΩ , to be defined in (42), is a subset

of a vector-valued Banach space with a norm depending on the species mass frac-
tions, for the initial value problem associated to system (2) . These results may be
obtained by following a general ODE theory in Banach spaces and relies on a sta-
bility condition, depending on the first few moments of the initial data as well as the
transition probability rate parameters, that secures the existence of a unique global in
time solution, without imposing initial entropy boundedness. These techniques were
inspired by thework in [6] for the scalar classical N -dimensionalBoltzmann equation
for elastic binary interactions in integrable angular transition, and hard potentials or
Maxwell type of interactions. This approach to existence may be view as a revision
from the notes in [11], where the ODE on Banach spaces approach is proposed as a
main tool to tackle the Cauchy problem for hard spheres in three dimensions with
constant angular transition rate and for which the work by [6], as much as related
ones by [1, 7], provide complete proof that the sub-tangency condition is fulfilled
by the Boltzmann flow.

The path to obtain these results, i.e. the existence and uniqueness of the vector-
valued solution F to the initial valued problem for the Boltzmann system (2), have
recently been extended to vector valued in Banach spaces in L1(RN ). Their analysis
involve the development of global in time propagation and generation of L1(RN )

polynomial as much as exponential weighted norms. It is based, on one hand, on a
lower bound of the sum collision frequencies that depends on the Lebesgue bracket
associated to a fixed species with order γ̄ defined by the minimum of all potential
rates of the binary system mixture. On the other hand, it relies on an energy identity
for gas mixtures that enables a new angular averaging (Povzner) lemma associated
to the system of collisional integrals, showing the emergence of a constant, smaller
than unity, depending on the Lebesgue bracket order decaying to zero for any higher
order. These results were presented first in [14] for R3, and extended to R

N in [12],
where relevant estimates taking into the account the extension to the N -dimensional
account are developed. These two estimates yield sufficient control for the evolu-
tion of polynomially weighted L1(RN ) estimates of the collisional integral system,
referred to as moments estimates. They show positive contributions from collectively
the moments of the mixture gain collision term expressed in binary sums forms that
are dominated in moment order by the negative contribution from the loss collision
term.Moreover, the unique vector-valued solution propagates and generates L1(RN )

polynomially weighted (Lebesgue bracket) norms of order k > k∗ , whose bounds
depend on specific conditions on the collision transition probabilities to be specified
in this manuscript.

In addition, the authors rigorously studied propagation of polynomially and expo-
nentially weighted L p norms, for the extended range of p ∈ (1,∞] in [12]. These
results rely on a new explicit Carleman integral representation for the positive con-
tribution associated to each binary collisional operator, referred by the gain operator
Q+

i j ( fi , f j ), 1 ≤ i, j ≤ I. By means of this new representation, a gain of integrabil-
ity estimate for each Q+

i j ( fi , f j ) can be obtained first, by the control of the weighted
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L p norm of Q+
i j ( fi , f j ) by a sublinear weighted L p norm of the input function,

say fi . Then, such estimate is invoked in the propagation of L p norms, with both
polynomial and exponential weights, provided that a control of the negative part of
the collisional form, denoted by Q−

i j ( fi , f j ), by a linear form of weighted L p norm
for the same input function fi holds, depending on the integrability properties of the
angular transition function and the intramolecular potential rates as will be described
in these pages. More precisely, in this review we look at the at the weighted inte-
grability properties which strongly depends on the transition probability rates (also
called collision kernels in the classical elastic setting for single monoatomic elastic
gasses) associated to binary molecular interactions. For a complete and comprehen-
sive list of references, readers can look at manuscripts [12, 14].

2 Kinetic Model

The kinetic model is first described along with the notation used throughout this
manuscript.

2.1 Collision Process

Abinary collision law is obtained by fixing a pair of interacting particles, each inRN ,
one of species Ai having mass mi and pre-collisional velocity v′ and the other one
belonging to the speciesA j , with mass m j and velocity v′∗; producing a pair of post-
collisional velocities v and v∗ respectively. When interactions are assumed elastic,
then the momentum and kinetic energy of the two interacting molecular velocities
pairs are conserved, that is

miv
′ + m jv

′
∗ = miv + m jv∗ (3)

mi |v′|2 + m j |v′
∗|2 = mi |v|2 + m j |v∗|2. (4)

If the center-of-mass velocity Vi j and the relative velocity u both inRN are introduced
by

Vi j = mi

mi + m j
v + mi

mi + m j
v∗, u = v − v∗,

then conservation laws (3) during collision process are equivalent to

V ′
i j = Vi j ,

∣
∣u′∣∣ = |u| . (5)
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As done in the case of a single gas, these equations can be parameterized with the
vector-parameter σ ∈ S

N−1, so that

u′ = |u| σ.

Now pre-collisional velocities can be written in terms of post-collisional ones as

v′ = Vi j + m j

mi + m j
|u| σ, v′

∗ = Vi j − mi

mi + m j
|u| σ. (6)

Thus, introducing the parameter ri j ∈ (0, 1) as the mass contribution of the molecule
of speciesAi to the sum of masses of the two colliding molecules of speciesAi and
A j , that is,

ri j := mi

mi + m j
⇒ r ji := 1 − ri j = m j

mi + m j
, (7)

then the coordinate pair v′, v′∗ (6) becomes

Fig. 1 Illustration of the collision transformation for N = 3. Solid lines denote vectors after col-
lision, or given data. Dash-dotted vectors represent primed (pre-collisional) quantities that can be
calculated from the given data, and compared to the case mi = m j , represented by dotted vectors.
The dashed vector direction is the displacement along the direction of the relative velocity u propor-
tional to the half difference of relative masses, (which clearly vanishes for mi = m j , reducing the
model to a classical collision). Note that the scattering direction σ is preserved as the pre-collisional
relative velocity u′ keeps the same magnitude as the post-collisional u, u′ is parallel to the reference
elastic pre-collisional relative velocity |u|σ
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v′ = v + (1 − ri j )(|u| σ − u), v′
∗ = v∗ − ri j (|u| σ − u), (8)

which will be used in the sequel as well. It is noticeable that in the case of the single
species the mass fraction is ri j = 1/2 for all i, j = 1, · · · , I . The difference between
this representation for a single species and the collision transformation given in (8)
for a binary mixture of monatomic gases can be clear when looking at the Fig. 1,
presented for N = 3.

2.2 The System of Boltzmann Equations

When fixing i , the distribution function fi changes due to binary interactions of the
particle of species Ai with particles of the same or different species; therefore, it
solves a Boltzmann type equation where the collision operator takes into account the
influence of all particles of species A j over our fixed particle. The Boltzmann type
equation in this case is

∂t fi (t, v) =
I∑

j=1

Qi j ( fi , f j )(t, v), i = 1, . . . , I. (9)

The form of Qi j , for any i, j = 1, . . . I , is given by the non-local bilinear form

Qi j ( fi , f j )(v) =
∫

RN

∫

SN−1

(
fi (v

′) f j (v′
∗) − fi (v) f j (v∗)

)
Bi j (|u|, û · σ) dσ dv∗

=: Q+
i j ( fi , f j )(v) − Q−

i j ( fi , f j )(v) (10)

where the pre-collisional velocity pair v′, v′∗, and post-collisional corresponding ones
v, v∗, are related as stated on (8) and û := u/|u|. The transition probability ratesBi j

are positive a.e. measures that satisfy the micro-reversibility assumptions given by
an invariance when switching the post- and pre-collisional velocities or the particles
themselves. This means that

Bi j (|u| , û · σ) = Bi j (
∣
∣u′∣∣ , û′ · σ ′) = B j i (|u| , û · σ), (11)

where σ and u′ are defined as in the previous subsection (note that then σ ′ = u/ |u|).
Some additional assumptions are also listed in Sect. 4 below.

Note that (10) has introduced the gain and loss operator forms, namely

Q+
i j ( fi , f j )(v) :=

∫

RN

∫

SN−1
fi (v

′) f j (v′)Bi j (|u|, û · σ) dσ dv∗ , (12)

Q−
i j ( fi , f j )(v) :=

∫

RN

∫

SN−1
fi (v) f j (v∗)Bi j (|u|, û · σ) dσ dv∗ = fi (v)νi j (v) .
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where νi j (v) is the local collision frequency for each collision pair (i, j) , 1 ≤ i,
j ≤ I .

When the mixture is considered as a whole, a vector-valued notation is introduced
for both the probability distribution functions as well as for the collision operators
as given in (1). Then the Boltzmann collisional system in (9) takes the vector form
(2).

2.3 Representations of the Collision Operator

The proposed approach strongly relies on different estimates of the positive contri-
bution of the collision operator, namely the gain term Q+

i j ( fi , f j )(v) given in (12).
Different formulations of this operator are used throughout the paper, where proper-
ties of the transition probability rates (or collision kernels) may vary.

2.3.1 The Kernel Form for the Gain Term

Inspired by the work [5] of gain of integrability estimate for the scalar single species
model, the authors [12] found a new representation of strong form for the gain term
Q+

i j ( fi , f j )(v) bymeans of an associatedCarleman integral representation associated
to the vector-valued collisional forms.

This new Carleman representation for the strong collisional form associated to
the gain operator for a binary interaction is formulated in the next statement, where
all the parameters are determined by functions of the corresponding mass ratio. This
is a key step in the proof of propagation of L p norms.

Theorem 1 (Carleman representation of the gain term) Let

Pri j (v, v
′) =

(
v − (2ri j − 1)v′)

2(1 − ri j )
, ri j ∈ (0, 1).

Denote with Evv′ the hyperplane orthogonal to the vector v − v′, that is

Evv′ = {
y ∈ R

N : (v − v′) · y = 0
} ⊂ R

N−1. (13)

Let f and g be nonnegative functions. Then the gain term can be represented as
follows

Q+
i j ( f, g)(v) = (1 − ri j )

−N+1
∫

x∈RN

f (x)

|x − v|
∫

z∈Evx

g(z + Pri j (v, x)) (14)

×
∣
∣
∣
∣

(v − x)

2(1 − ri j )
+ z

∣
∣
∣
∣

2−N
Bi j

⎛

⎜
⎝

∣
∣
∣
∣

(v − x)

2(1 − ri j )
+ z

∣
∣
∣
∣ , 1 − |x − v|2

2(1 − ri j )2
∣
∣
∣

(v−x)
2(1−ri j )

+ z
∣
∣
∣
2

⎞

⎟
⎠ dz dx .
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By means of the Carleman representation, the operator Q+(F,G) can be written in
a kernel form as follows.

Lemma 1 (Kernel form of the gain operator) Let F = [ fi ]1≤i≤I andG = [gi ]1≤i≤I ,
where fi (v) ≥ 0 and gi (v) ≥ 0 for all v ∈ R

N and all 1 ≤ i ≤ I . Then the gain
operator Q+(F,G) can be written in the following kernel form

[
Q

+(F,G)
]
i (v) =

∫

RN

fi (x) Ki [G](v, x) dx, (15)

where the kernel is

Ki [G](v, x) =
I∑

j=1

τx Q
+
i j (δ0, τ−x g j )(v),

with δ0 the Dirac mass at the origin and the translation operator τw defined by

τwg(v) = g(v − w), for any v,w ∈ R
N .

2.3.2 Weak Formulation of Collisional Integrals for Gas Mixtures

The weak form associated to the system is obtained by integrating each equation
after multiplying by a test function ψi (v) and performing the classical interchange
of coordinates (v, v∗, σ ) ↔ (v′, v′∗, σ ′) and (v, v∗, σ ) ↔ (v∗, v,−σ). That yields

2
I∑

i=1

∫

RN

[Q(F,F)]i ψi (v)dv =
I∑

i=1

I∑

j=1

∫∫∫

RN×RN×SN−1
fi (v) f j (v∗)

× (
ψi (v

′) + ψ j (v
′
∗) − ψi (v) − ψ j (v∗)

)
Bi j (v, v∗, σ )dσdv∗dv, (16)

where now the primed velocity pair v′, v′∗ refers to post collisional velocities, and the
unprimed associated pair v, v∗ to pre collisional ones, and are defined as in (8).

This formulation enables the classical functions that annihilate the weak form
associated to the system, called collision invariants, given by

ψ
(x) = 1, ψ
(x) = m
x and ψ
(x) = m
 |x |2 , 
 = 1, . . . , I, x ∈ R
N ,

(17)
to satisfy the total conservation laws during collision process (3).

2.3.3 A Different Weak Formulation

Following the representation introduced in [4], we define the collisionweight angular
integral operator acting on the test functions ϕ and χ , bounded and continuous,
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Pi j (ϕ, χ)(u) :=
∫

SN−1
ϕ(u−

i j ) χ(u+
i j ) bi j (û · σ) dσ, (18)

where u+ and u− are defined by

u−
i j := (1 − ri j )(u − |u|σ) and u+

i j := u − u−
i j = ri j u + (1 − ri j )|u|σ.

Moreover, let τ and R denote the translation and reflection operators,

τvψ(x) := ψ(x − v) and Rψ(x) := ψ(−x), v, x ∈ R
N .

Therefore, from the weak formulation (16) of the gain part of the collision operator
when Bi j (|u| , û · σ) = |u|γi j bi j (û · σ), yields

∫

RN

Q+
i j ( f, g)(v)ψ(v)dv =

∫

RN

∫

RN

f (v)g(v − u)|u|γi jPi j (τ−v(Rψ), 1)(u)du dv

=
∫

RN

∫

RN

f (v − u)g(v)|u|γi jPi j (1, τ−v(Rψ))(u)du dv.

3 Moments and Functional Space

Set first the following Lebesgue brackets that yield weighted polynomial moment in
the Banach space topology with a suitable norm to handle the mixture system,

〈v〉i :=
(
1 + mi

∑I
j=1 m j

|v|2
)1/2

, v ∈ R
N , i = 1, . . . , I. (19)

Thus, scalar Lebesgue bracket polynomial moments of order q ≥ 0, for both vector-
valued F(t, v) andQ(F,F) taking values on the vector space RI , are independent of
mass density units. They are given by

mq [F](t)=
I∑

i=1

∫

RN
fi (t, v) 〈v〉qi dv and mq [Q(F,F)](t)=

I∑

i=1

∫

RN
[Q(F,F)]i 〈v〉qi dv.

(20)

The associated Banach space is defined by the kth-polynomial weighted Lebesgue
space associated to the i th-component, namely,

L p
k,i (R

N ) :=
{

g : ‖g‖p
L p
k,i

:=
∫

RN

(|g(v)| 〈v〉ki
)p

dv < ∞, k ≥ 0, 1 ≤ p < ∞
}

.

The corresponding L∞
k,i (R

N ) space is defined in the usual way, as
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L∞
k,i :=

{

g : ‖g‖L∞
k,i

= ess sup
v∈RN

(|g(v)||〈v〉ki
)

< ∞, k ≥ 0

}

.

When summed over all species, the corresponding Lebesgue space for the whole
mixture takes the form, for any 1 ≤ p < ∞,

L p
k (R

N ) :=
{

F= [ fi ]1≤i≤I :‖F‖p
L p
k
:=

I∑

i=1

∫

RN

(| fi (v)| 〈v〉ki
)p

dv<∞, k ≥ 0,

}

,

(21)
with L∞

k (RN ) defined as

L∞
k :=

{

F = [ fi ]1≤i≤I :
I∑

i=1

ess supv∈RN

(| fi (v)|〈v〉ki
)

< ∞, k ≥ 0

}

.

It is clear that F in L p
k is related to the norm of its components fi in the space L p

k,i
via

‖F‖p
L p
k

=
I∑

i=1

‖ fi‖p
L p
k,i

, ‖F‖L∞
k

=
I∑

i=1

‖ fi‖L∞
k,i

.

Remark 1 Lebesgue bracket weighted polynomial norms ‖F‖L1
k
, as defined in (21)

coincide with the corresponding polynomial moment mk[F] if each component
fi (t, v) of F is non-negative. However, it is important to stress that, on one hand, by
(16) and (17), both m0[Q(F,F)] = m1[Q(F,F)] = 0, giving rise to conservation of
both total number density m0[F](t) = ‖F‖L1

0
(t) = ‖F0‖L1

0
and total kinetic energy

m2[F](t) = ‖F‖L1
2
(t) = ‖F0‖L1

2
of the mixture,

∂t ‖F‖L1
0,i

= 0, ∂t ‖F‖L1
0
= 0, ∂t ‖F‖L1

2
= 0.

On the other hand, the k-moment of the collision operator mk[Q(F,F)] is expected
to take negative values for k > k∗, sufficiently large. This property is essential for
the global in time solutions for the Cauchy problem associated to system (1) as it
will be addressed in sections to come.

4 Statement of the Problem

The Cauchy problem for the Boltzmann system (2) for a binary gas mixture of an
arbitrary number I of species is given by

{
∂tF(t, v) = Q(F,F)(t, v), t > 0, v ∈ R

N ,

F(0, v) = F0(v).
(22)



On Existence, Uniqueness and Banach Space Regularity for Solutions… 109

This problem is uniquely solved globally in time by the authors in [14] with initial
data F0(v) ∈ Ω ⊂ L1

k(R
N ), for k ≥ k∗ (with Ω and k∗ defined as below), showing

that the Lebesgue moments are propagated, and also generated, obtaining that the
solution is globally in L1

k for all k ≥ k∗.
If, in addition, the initial data is in L p


 (RN ), with p ∈ [1,∞] for 
 ≥ 0 then the
property of propagation also holds, as shown in [12].

The proofs consist in showing that Lebesgue polynomial moments of vector-
valued solutions F propagate the Banach space regularity of the initial data by
means of constructing anOrdinary Differential Inequality for the L p


 (RN )-norms, for

 ≥ 0, as well as the full range of p ∈ [1,∞]. The base case p = 1 actually gener-
ates all L1

k(R
N )-norms, with just initial data F0(v) ∈ Ω ⊂ L1

k∗(R
N ) and propagates

them with the additional requirement on the initial data F0(v) ∈ L1
k(R

N ), k ≥ k∗.
It is important to stress that the L p


 (RN )-norm propagation, 
 ≥ 0, p ∈ [1,∞], as
much as exponentially weighted norms propagation (and generation for p = 1) hold
under restricted conditions on the transition probabilities forms depending on the
intramolecular rates and integrability properties of the angular transition function,
which are being described next. These properties are consequence of the conservation
laws associated to the mixture.

The assumption on the form of the transition probability ratesBi j , i, j = 1, . . . , I
which corresponds to hard potentials with a potential γi j , are

Bi j (|u| , û · σ) = |u|γi j bi j (û · σ), with γi j ∈ (0, 1], (23)

and angular transition rates bi j (û · σ) satisfying the integrability conditions

bi j (û · σ) ∈ L1(SN−1) (24)

for L1
k theory in Sect. 6 and existence and uniqueness theory in Sect. 7; and

bi j (û · σ) ∈ L∞(SN−1) (25)

for L p

 theory, p ∈ (1,∞] in Sects. 8–9. However, our studies ofmoment propagation

and generation of summability of moments giving rise to exponentially weighted
norms in L p, for the complete range of p ∈ [1,∞] requires that potentials γi j are
the same for all i, j = 1, . . . , I.

Whenever needed, the following notation will be employed

γ̄ = min
1≤i, j≤I

γi j , ¯̄γ = max
1≤i≤I

γi j . (26)

In addition, the following control by below is fundamental to estimate the colli-
sion frequency factor in the loss term under the assumption (23) for the transition
probability rate.

Lemma 2 Let γi j ∈ [0, 2], for any i, j ∈ {1, . . . , I }, and assume
0 ≤ {

F(t) = [ f1(t) . . . f I (t)]
T
}
t≥0 ⊂ L1

2 satisfies
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c ≤
I∑

i=1

∫

RN

mi fi (t, v)dv ≤ C, c ≤
I∑

i=1

∫

RN

fi (t, v)mi |v|2 dv ≤ C,

I∑

i=1

∫

RN

fi (t, v)mivdv = 0,

for some positive constants c and C. Assume also boundedness of the moment

I∑

i=1

∫

RN

fi (t, v)mi |v|2+ε dv ≤ B, ε > 0.

Then, there exists a constant clb depending on mi , c, C and B such that

I∑

i=1

∫

RN

mi fi (t,w) |v − w|γi j dw ≥ clb〈v〉γ̄j , (27)

for any j ∈ {1, . . . , I }, with γ̄ = min1≤i, j≤I γi j .

The proof of this Lemma, originallywritten in [14,Appendix], extends concepts from
a single monatomic gas case given in [6, 9]. A revised version reflecting the notation
of the current statement of this lemma can be found in [14, ArXiv:1806.09331v3,
Appendix].

5 Angular Averaging Estimate for the Mixture System
Gain Operators

This key estimate may be viewed as the extension of the angular averaging lemma
used in [5, 10, 13], referred as a sharper form of the original Povzner lemma for the
classical theory of single species of monoatomic elastic gases with binary interac-
tions. It is a crucial step for the theory since it ensures the dominance of polynomially
weighted norms of an order k in L1 space associated to the negative contribution from
the loss part of the collision operator with respect to those same norms of the positive
contribution, i.e. gain part, for sufficiently large k. In the mixture setting, k grows
with disparateness of masses measured with deviations of ri j from 1/2.

Lemma 3 (Angular averaging for the mixing model) Suppose that bi j satisfies (24).
Let v′ and v′∗ be functions of v, v∗, σ as in (6), with mi ,m j > 0. Then, the following
estimate holds for any fixed i, j ,

∫

SN−1

(〈
v′〉k

i + 〈
v′
∗
〉k
j

)
bi j (σ · û) dσ ≤ C i j

k
2

(〈v〉2i + 〈v∗〉2j
) k

2 , (28)
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where constant C i j
k
2
tends to zero as k grows and moreover

C i j
k
2

− ∥
∥bi j

∥
∥
L1(dσ)

< 0, for any k ≥ ki j∗ , 1 ≤ i, j ≤ I, (29)

where each ki j∗ depends on bi j and ri j .

The proof strongly relies on an energy identity, which encodes double-convex com-
bination form of velocities v′ and v′∗ written in brackets (19). More precisely, define
first the total energy Ei j of two colliding particles in 〈·〉 bracket forms, which is
conserved during collision process by (3),

Ei j := 〈v〉2i + 〈v∗〉2j = 〈
v′〉2

i
+ 〈

v′
∗
〉2
j
.

Then, there exists a couple of functions pi j = pi j (v, v∗,
mi ,m j ) and qi j = qi j (v, v∗,mi ,m j ) such that, pi j + qi j = Ei j and a function λi j =
λi j (v, v∗,mi ,m j ) so that the following representation holds

〈v′
i j 〉2i = pi j + λi j σ · V̂i j , 〈v′

∗i j 〉2j = qi j − λi j σ · V̂i j . (30)

These Eq. (30) allow to write left-hand side of (28) in terms of a Taylor expansion
up to second order with a reminder in the integral form. Thus, denoting

¯̄ri j = max{ri j , 1 − ri j }, r̄i j = min{ri j , 1 − ri j },

the following estimate holds

∫

SN−1

(〈
v′〉k

i
+ 〈

v′
∗
〉k
j

)
bi j (σ · û) dσ

≤ Ek/2
i j

{ (
(k + 2)C̃ i j

k/2 + C̄ i j
k/2 + Ĉ i j

k/2

) ∥
∥bi j

∥
∥
L1(dσ)

+ Č i j
k/2, k > 4

2C̃ i j
k/2

∥
∥bi j

∥
∥
L1(dσ)

, 2 < k ≤ 4
,

with explicit expressions for constants

C̃ i j
n = ( ¯̄ri j

)n
, C̄ i j

n = −2

( ¯̄ri j
r̄i j

)2

(1 − r̄i j )
n, Ĉ i j

n = 2

( ¯̄ri j
r̄i j

)2

n (1 − r̄i j )
n−1,

and

Č i j
n = 2

( ¯̄ri j
r̄i j

)2 ∫

SN−1

(
1 + r̄i j (|σ · û| − 1)

)n
bi j (σ · û) dσ.

Under a more restrictive assumption on bi j which is bi j (σ · û) ∈ L∞(SN−1; dσ), it
is possible to calculate the constant Č i j

n as well. Namely,
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Č i j
n = 2

∣
∣SN−1

∣
∣

¯̄r2
r̄3
∥
∥bi j

∥
∥
L∞(dσ)

(
1

n + 1
− (1 − r̄)n+1

n + 1

)

,

where
∣
∣SN−1

∣
∣ is the volume of a unit N -dimensional ball.

Since these constants are explicitly calculated, it is clear that the Povzner constant
C i j

n decays to zero as n → ∞ (for Č i j
n when bi j ∈ L1(SN−1; dσ) it follows from the

Monotone Convergence Theorem). This ensures existence of a ni j∗ such that

C i j
n <

∥
∥bi j

∥
∥
L1(dσ)

, n > ni j∗ . (31)

It is worthwhile to mention the rate of convergence of the Povzner constant C i j
n

and the difference in the mixture setting with respect to the single component case.
For the single component gas, when ri j = 1/2 the convergence rate of C i j

n is 1/n
when n → ∞, which implies that (31) will hold for any n > 1 or we can take n∗ = 1.
In the mixture case, the C i j

n decay power strongly depends on ri j , and as ri j deviates
from 1/2 it decays slower, and thus ni j∗ which guarantees (31) will be greater. This
fact is illustrated in the following Fig. 2 for the case bi j (σ · û) ∈ L∞(SN−1; dσ) after
introducing C∞

n (ri j ) via

C i j
n = ∣

∣SN−1
∣
∣
∥
∥bi j

∥
∥
L∞(dσ)

C∞
n (ri j ), (32)

and compared C∞
n (ri j ) with respect to 1.

Fig. 2 Constant C∞
n (ri j )

defined in (32) and related to
the constant from Povzner
Lemma 3 for some fixed
value of ri j =: r∗, and
N = 3. This figure illustrates
the non-monotonic behavior
in n variable, and the growth
of n needed to ensure that
C∞

n (r∗) < 1 caused by a
deviation of ri j with respect
to 1

2
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6 Polynomially and Exponentially Weighted L1 Theory

Next, the focus is on a priori estimates in k-polynomially and exponentially weighted
L1-norms in order to solve the Cauchy problem (22) in a suitable Banach space.
The techniques in this section have been inspired by the ones developed for single
species scalar binary elastic interactions case in [2, 3, 10, 13, 16], and extended to
hard potentials with the angular part of the transition probability being integrable.
All these results were extended to the case of Maxwell type of interactions, (i.e.
γ = 0), where the polynomially and exponentially weighted L1 theory [17] can only
propagate, due to the nature of the Maxwell type of interaction model.

6.1 Polynomially Weighted L1 Norms

The kth moment associated to the system of Eq. (22) is given by

d

dt
‖F‖L1

k
(t)= d

dt
mk[F](t)=mk[Q(F,F](t)=

I∑

i=1

∫

RN

[Q(F,F)]i (t) 〈v〉ki dv. (33)

In order to find an upper control to the right-hand side of (33), it is important to
notice that such term has a negative and positive contributions that can be associated
to moments of the vector-valued solutions, whose all its components fi (t, v) are
a priori assumed to be non-negative. These estimates are due to, on one hand, the
Povzner Lemma 3 which allows to control kth polynomial moments of the collision
operator gain terms, and, on the other hand, the lower bound from Lemma 2 which
provides a lower estimate for the loss term. More precisely, it was shown in [14], that
the right hand side of (33) is bounded by a superlinear function of the k-moments
of ‖F‖L1

k
(t) that recover the classical Bernoulli form associated to the generation

and propagation of moments of solutions. All these results are summarized in the
following two lemmas.

Lemma 4 (Ordinary differential inequality for polynomial moments in L1
k) If F =

[ fi ]i=1,...,I ∈ L1
2 is a solution of the Boltzmann system (22) with the transition rate

(23)–(24), then the following Ordinary Differential Inequality (ODI) for norms in
L1
k space holds

d

dt
‖F‖L1

k
(t) ≤ −Ak∗ ‖F‖L1

k
(t)1+

γ̄

k + Bk ‖F‖L1
k
(t), (34)

for positive constants Ak∗ and Bk, large enough k ≥ k∗, with k∗ defined by
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k∗ = max{2 + 2 ¯̄γ, k̄}, with k̄ = max
1≤i, j≤I

{ki j∗ }, (35)

for ¯̄γ and γ̄ defined in (26) and ki j∗ as in (29).

The constant Ak∗ which depends on clb from (27), C i j
k∗/2 from (29) and the mass

and energy of the initial data, as well as themoment of order k∗ and γ̄ , may be viewed
as a coercive constant for the Boltzmann flow system that induces a global in time
bound for its vector value solutions. Both constants, Ak∗ and Bk depend only on the
data associated to the Boltzmann system (22), as described in [14].

This ODI for the Lebesgue bracket weighted norms in L1
k paves the way to the

following result on generation and propagation of such norms.

Theorem 2 (Generation and propagation of polynomially weighted L1 norms)
Under the same conditions of Lemma 4, the following estimates hold.

1. (Generation) Let Cm = (
Ak∗/Bk

)−k/γ̄
be the constants from (34), γ̄ from (26),

andBm = Cm max
{
(γ̄ /(Bkk))

−k/γ̄ e
Bk
2 ,
(
1 − e−γ̄ /(Bkk)

)−k/γ̄
}
and k∗ defined in

(35). Then,

‖F‖L1
k
(t) ≤ Bm max{1, t−k/γ̄ }, for any k > k∗, ∀t > 0. (36)

2. (Propagation) Moreover, if ‖F‖L1
k
(0) < ∞, then

‖F‖L1
k
(t) ≤ max{Cm, ‖F‖L1

k
(0)}, for any k > k∗, ∀t > 0. (37)

The idea of the proof is to find upper solutions to an associate super-linear ODE of
Bernoulli type to (34), namely y′(t) = −a y(t)1+c + b y(t),whose explicit solution,
given by

y(t) =
(a

b

(
1 − e−c b t

)+ y(0)−ce−c b t
)− 1

c
, (38)

y(t)≤( ab (1 − e−c b t ))−
1
c , for t > 0, which yields the generation estimate (36) after

setting y(t) := ‖F‖L1
k
, a := Ak , b := Bk and c := γ̄ /k. Moreover, when the initial

data is finite, then y(t) ≤ max{y(0), (a/b)−1/c}, for t > 0, which concludes the
propagation result (37).

6.2 Exponentially Weighted L1 Norms

The results that hold for polynomially weighted L1-norms, can be extended to L1-
norms with exponential weight for the solution of the Boltzmann system for the case
when ¯̄γ = γ̄ , i.e., all γi j coincide, i, j ∈ {1, . . . , I }.



On Existence, Uniqueness and Banach Space Regularity for Solutions… 115

Theorem 3 (Generation and propagation of exponentially weighted L1 norms) Let
γ̄ = ¯̄γ = γi j , i, j ∈ {1, . . . , I }. Then, under the same conditions of Lemma 4 and
Theorem 2 the summability of k−moments imply the following properties of L1

exponentially weighted norms for the solution F of the mixture Cauchy problem
(22).

(a) (Generation) There exist constants α > 0 and BE > 0 such that

∥
∥
∥Feα min{t,1}〈·〉γ̄

∥
∥
∥
L1
0

≤ BE , ∀t ≥ 0.

(b) (Propagation) Let 0 < s ≤ 2. Suppose that there exists a constant α0 > 0, such
that ∥

∥F0e
α0〈·〉s∥∥

L1
0
≤ M0 < ∞. (39)

Then there exist constants 0 < α ≤ α0 and CE > 0 such that

∥
∥Feα〈·〉s∥∥

L1
0
≤ CE , ∀t ≥ 0. (40)

The idea of the proof is to write exponential function in terms of its Taylor series and
then to apply results obtained in Theorem 2.

7 Existence and Uniqueness Theory

As mentioned in the introduction, abstract ODE theory in Banach spaces was
employed to solve the Cauchy Problem in order to prove existence and uniqueness
of the vector-valued solution F to (22). This technique was adapted to the system set-
ting from the work in [1] for the scalar, single species elastic Boltzmann equation for
Maxwell type and hard potentials and integrable angular transition functions. Thus,
a natural Banach space to solve the system of Boltzmann equations is L1

2 defined in
(21). The crucial point is to find an invariant region Ω ⊂ L1

2 in which the collision
operatorQ : Ω → L1

2 will satisfy (i) Hölder continuity, (ii) Sub-tangent and (iii) one-
sided Lipschitz conditions. To that end, we have studied themapLγ̄ ,k : [0,∞) → R,
with γ̄ from (26), motivated by the upper control of the k-moment of the collision
operator generating the ODI discussed in (34). More precisely, such estimate results
motivates the study of the map

L ¯̄γ,k(x) = −Ax1+
γ̄

k∗ + Bx, x ≥ 0,

where A and B are positive constants, and γ̄ , k∗ are defined by (35). This map has
only one non-zero root, denoted with x∗

γ̄ ,k∗ , at whichLγ̄ ,k∗ changes from positive to
negative. Thus, for any x ≥ 0, define
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Lγ̄ ,k∗(x) ≤ max
0≤x≤x∗

γ̄ ,k∗
Lγ̄ ,k∗(x) =: L ∗

γ̄ ,k∗ .

and denote
Ck∗ := x∗

γ̄ ,k∗ + L ∗
γ̄ ,k∗ . (41)

Now, one can formulate an invariant region Ω ⊂ L1
2,

Ω =
{
F(t, ·) ∈ L1

2(R
N ) : F ≥ 0 in v,

I∑

i=1

∫

RN

miv fi (t, v)dv = 0,

∃ c0,C0, c2,C2,C2+ε > 0, and C0 < c2, such that ∀t ≥ 0,

c0 ≤ ‖F‖L1
0
(t) ≤ C0, c2 ≤ ‖F‖L1

2
(t) ≤ C2,

‖F‖L1
2+ε

(t) ≤ C2+ε, for ε > 0,

‖F‖L1
k∗

(t) ≤ Ck∗, with k∗ as in (35), and Ck∗ is constructed in (41)
}
, (42)

and solve the Cauchy problem (22), as stated in the following theorem.

Theorem 4 (Existence and Uniqueness) Assume that F(0, v) = F0(v) ∈ Ω . Then
the Boltzmann system (22) for a transition function satisfying (23) and (24) has a
unique solution in C ([0,∞) ,Ω) ∩ C1

(
(0,∞) , L1

2(R
N )
)
.

We stress that no conditions on initial entropy are necessary. However, if the initial
data has finite entropy, then the entropy inequality implies that the total entropy will
remain globally bounded for all times.

8 Polynomial and Exponential Weighted L p Theory,
1 < p < ∞

The proof for the propagation of L p norms follows, after the generalization to the
multi-species problem, the strategy devised in [5], which consists in first showing the
control of a weighted L2 norm of the positive part of the pairwise collision operator
by a lower order weighted L2 norm of the input vector-valued function in a suitable
Banach space. After the L2 control, one can obtain a Young’s type inequality for the
gain term of the vector-valued collision operator for mixture of gases by means of
a weak form of the positive term of the collisional operator as an extension of the
original strategy developed in [4] and a subsequent interpolation argument obtained
now for the whole system describing a gas mixture.

Estimates in L2 space. The first result we need is a gain of integrability estimate,
whose proof will follow from the kernel form of the gain term.
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Lemma 5 Let N ≥ 3 and let F and G be distribution functions, such that F ∈
L1


(R
N ) andG ∈ L1

N−3
1−θ

+

(RN ) ∩ L2


(R
N ), 
 ≥ 0. For the transition probability terms

choose (23) and (25). Then, for any ε > 0, the following estimate holds

∥
∥Q+(F,G)

∥
∥
L2




≤
(
√
2I k0 ε

¯̄γ ‖G‖L2


+√2I kN ε2(2−N+γ̄ ) ‖G‖1−θ

L1
N−3
1−θ

+


‖G‖θ
L2




)

‖F‖L1


,

where ¯̄γ and γ̄ as defined in (26) and the constants kN and k0 depending on ri j ,m j ,
and ‖bi j‖L∞(SN−1), and θ = 1

N .

Young’s-type estimate. Using the operator (18) and the different weak formulation
of the gain term of the collision operator we can prove the following estimate. Note
that this theorem is stated for a more general version of the cross section.

Theorem 5 Let F ∈ L p
λ (RN ) and G ∈ Lq

λ(R
N ), for p, q, r ∈ [1,∞] with 1

p + 1
q =

1 + 1
r . Assume that Bi j takes the form

Bi j (x, y) = xλi j bi j (y), λi j ≥ 0, and bi j ∈ L1([−1, 1]; dξ bi j
N (s)),

for any i, j = 1, . . . , I , with the measure as dξ
bi j
N (s) = bi j (s)(1 − s2)

N−3
2 . Then,

∥
∥Q+(F,G)

∥
∥
Lr
0
≤ CQ

+
p,q,r ‖F‖L p

λ
‖G‖Lq

λ
, with λ = max

1≤i, j≤I
λi j , (43)

and the constant CQ
+

p,q,r depends on mi ,m j and ‖bi j‖L1(SN−1).

By Riesz–Thorin Interpolation, and the use of Lemma 5 and Theorem 5, yields
the following Theorem. It is noteworthy that by gain of integrability, we mean that
the L p

k norm of the positive part of the collision operator is controlled sublinearly by
the L p

k norms of the input functions.

Theorem 6 (Gain of integrability)Under the same conditions of Theorem 5, for any
ε > 0, p ∈ (1,∞) and 
 ≥ 0 the collision operator can be estimated by

∥
∥Q+(F,G)

∥
∥
L p



≤ I 1−

1
p 2

p−1
p ‖F‖L1




(

ε
¯̄γCQ

+
p,1,p‖G‖L p



+ ĈN ε2+γ̄−N‖G‖1−θ

L1
N−2
1−θ

+


‖G‖θ

L p



)

(44)

with CQ
+

p,1,p from Theorem 5, ĈN depending on N , Mi j , bi j and θ defined as

θ = θp,N :=
{

1
N , if p ∈ (1, 2]
N (p−2)+1
N (p−1) , if p ∈ [2,∞),

(45)
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These estimates, together with the lower bound estimate (27), the following lem-
mas are proven, whose complete proofs can be found on Sects. 5, 6 and 7 of [12].

Lemma 6 (ODI for L p

 -moments) LetF0 ∈ Ω ∩ L1

N−2
1−θ

+

(RN ) ∩ L p


 (RN ), with 0 <

θ < 1 from (45), 
 ≥ 0, 1 < p < ∞ and the solvability set Ω from (42). If F is the
solution of the Boltzmann system (22) with the transition probability rates (23) and
(25), then

1

p
∂t‖F‖p

L p



≤ B
p‖F‖p−1+θ

L p



− A
p ‖F‖p
L p




, (46)

with B
p and A
p positive constants, both depending on the constants Ak∗ and Bk

introduced in (34), for k ≥ k∗ from (35), expressed on the bounds to solutions con-
structed in Theorem 2.

These L p

 -moments ODI is different from the one in the previous section, since

(46) is associated to a sub-linear ODE of Bernoulli type

y′(t) = by(t)1−c − ay(t), (47)

with a, b, c > 0, whose solutionwill be an upper bound for ‖F‖p
L p




. Note that the right

hand side of (47) is linear with respect to y(t), which implies the lack of generation
estimates, contrary to the L1

k-theory and equation super-linear Bernoulli ODE.
Indeed, explicitly solving (47) we get the solution

y(t) =
(
b

a

(
1 − e−act

)+ y(0)ce−act

) 1
c

.

The difference of this solution with respect to (38) is now clear, and since we cannot
have an analogue of Jensen’s inequality for L p, p > 1, we can not obtain generation
of L p norms. However, choosing y(t) = ‖F‖p

L p



, b = pB
p, a = pA
p, and c = 1−θ
p

we obtain the propagation as stated in the following Theorem.

Theorem 7 (Propagation of polynomially weighted L p norms) If F is the solution
of the Boltzmann system (22) with F0 ∈ Ω ∩ L1

N−2
1−θ

+

(RN ) ∩ L p


 (RN ), with θ given

in (45), 
 ≥ 0, 1 < p < ∞, the set Ω from (42), and the transition probability rates
satisfying (23) and (25), then

‖F‖p
L p




≤ max{D
p, ‖F0‖p
L p




}, (48)

where D
p = (B
p/A
p)
(1−θ)/p, with A
p and B
p from (46).

Invoking this previous estimate, the following theorem extends to propagation of L p

norms with exponential weights, for p ∈ (1,∞), when ¯̄γ = γ̄ as follows.
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Theorem 8 (Propagation of exponentially weighted L p norms) Let F be the solu-
tion of the Boltzmann system with the transition probability rates satisfying (23) and
(25) and additionally γ̄ = ¯̄γ = γi j , i, j ∈ {1, . . . , I }. If

∥
∥F0e

α0〈·〉s∥∥
L1
0∩L p

0
= Ce

0 < ∞,

for some s ∈ (0, 1], p ∈ (1,∞) and positive constants α0 and Ce
0 , then, there exist

positive constants α and D̂0 such that

∥
∥Feα〈·〉s∥∥

L p
0

≤ max
{
D̂0, ‖F0e

α〈·〉s‖L p
0

}
, t ≥ 0. (49)

9 Polynomial and Exponential L∞ Theory

Theorem 5 and the Lower Bound Lemma 2 are enough to complete the proof of the
propagation of L∞ norm as stated in the following Theorem. The complete version
can be found in [12], Sect. 9, which extends the arguments of [8, 15] for a single
monatomic gas.

Theorem 9 (Propagation of polynomially weighted L∞ norms) Let F be the solu-
tion of the Boltzmann system (22) from Theorem 4 with the assumption (25). Let
F0 ∈ Ω ∩ L1

2N−4+
+ ¯̄γ (RN ) ∩ L2

+ ¯̄γ (RN ), with the setΩ from (42), and assume there

exists some positive constant C0 such that

‖F0‖L∞



= C0,

for 
 ≥ 0. Then there exists a constant C (F0) depending on ¯̄γ from (26), mi , bi j , 

such that

‖F(t, ·)‖L∞



≤ C (F0), t ≥ 0. (50)

Clearly, whenever ¯̄γ = γ̄ , Theorem 9 extends to the propagation property of L∞
exponentially weighted norms, as follows.

Theorem 10 (Propagation of exponentially weighted L∞ norms) Let F be the
solution of the Boltzmann system (22) with the transition probability rates satisfying
(23) and (25) and additionally γ̄ = ¯̄γ = γi j , i, j ∈ {1, . . . , I }. Assume that the initial
data F0 := F(0, ·) ∈ Ω and that

‖F0e
α0〈·〉s‖(L1

0∩L2
0∩L∞

0 ) = Ce
0 < ∞,

for some s ∈ (0, 1], and positive constants α0 and Ce
0 , then, there exist positive

constants α and D̂∞ such that

‖Feα〈·〉s‖L∞
0

≤ D̂∞(F0), t ≥ 0. (51)
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Hydrodynamics of Weakly Asymmetric
Exclusion with Slow Boundary

Pedro Capitão and Patrícia Gonçalves

Abstract In this articlewediscuss the hydrodynamic limit of theweakly asymmetric
simple exclusion process, whose asymmetry is regulated by a factor N γ with γ ≥ 1,
and in contact with stochastic reservoirs, which are regulated by two factors N θ and
N δ for, respectively, the symmetric and asymmetric parts of the jump rate at the
boundary. Depending on the strength of the asymmetry, that is on the parameter γ ,
we derive the heat equation (when γ > 1) as in the purely symmetric case studied
in [1], or the viscous Burgers equation (when γ = 1). In both cases, the PDEs have
several boundary conditions which depend on the range of the parameters δ and θ .

Keywords Exclusion process · Weakly asymmetric rates · Slow boundary ·
Hydrodynamic limits

1 Introduction

Interacting particle systems are a class of Markov processes, which were introduced
around 1970 (see [15]) and since then they have been widely studied, see [13, 14].
These systems are used as toy models in contexts such as statistical physics, neural
networks, spread of infections and evolution of biological populations. Other than the
exclusion process, which is our process of interest, examples of interacting particle
systems include the stochastic Ising model, the voter model, the contact process and
the zero-range process (see, for example [13]).

The main defining features of interacting particle systems are the following: they
usually have state spaces of the form Ω = {0, 1}Λ or Ω = N

Λ, where Λ is a count-
able set, and they can be seen as a superposition of processes, each describing the
movement of a single particle. These individual particle processes, with values in
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Λ, would behave like independent random walks, if it were not for the interaction
mechanics. In this interpretation, a state of the process η ∈ Ω is seen as a configu-
ration of particles and η(x) represents the number of particles at site x ∈ Λ. Each
model is characterized by its state space and the set of laws that dictate how parti-
cles interact. These laws determine the evolution of the system as a whole, which is
always assumed to be Markovian.

The process we are going to study is a simple exclusion process on the discrete
space ΛN = {1, . . . , N − 1}, for some N ∈ N. This means that at most one particle
can occupy each site (hence the state space isΩN = {0, 1}ΛN ), each transition affects
two sites and corresponds to the jump of a particle from one to the other, and particles
can only jump to their nearest neighbours. This process can be thought of as a
superposition of random walks, with the law for interaction being that jumps to
sites that are already occupied are suppressed. For each possible jump, the time
until that jump occurs is exponentially distributed. Furthermore, all these times are
independent of each other and depend only on the current configuration. This ensures
that the system is aMarkov process. Note that these exponentially distributed random
variables do not necessarily have all the same rate.

The particular model we want to study is the weakly asymmetric simple exclusion
process (abbreviated WASEP) in contact with reservoirs. The particles move on
ΛN = {1, . . . , N − 1}, which is called the bulk, and the state space of the process
is ΩN = {0, 1}ΛN . The sites 0 and N act as reservoirs: they have an infinite number
of particles and can add or remove particles from the sites in the bulk immediately
next to them. The process is weakly asymmetric in the sense that the rate at which
particles jump to the left or right is not the same (jumps to the right are slightly
preferred and happen at rate 1 + E

N γ , while to the left they happen at rate 1), but this
difference between the two rates becomes smaller as N increases. We restrict the
parameter γ to be greater or equal to 1. A representation of these dynamics is given
in Fig. 1.

Our goal is to study the density of particles in the limit as the scaling parameter N
tends to infinity. More precisely, we want to show that the empirical measure, which
is a random measure on [0, 1] weighted by the number of particles, converges to an
absolutely continuous deterministic measure whose density is the solution of some
partial differential equation, called the hydrodynamic equation. This is the equation
that governs the macroscopic evolution of the density of the system. According to

Fig. 1 Possible transitions in the WASEP with reservoirs
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the parameters of the model, we will identify the equations that should be obtained
for each one of their values. Depending on the value of γ the nature of the PDE
changes, more precisely, for γ > 1 we derive the heat equation while for γ = 1
we derive the viscous Burgers equation. Depending on the values of the parameters
that regulate the intensity of the reservoirs we obtain these equations with several
boundary conditions. We give the description of the hydrodynamics for the cases
θ ≥ 0 and δ ≥ 1 and the case δ = θ ∈ [0, 1). The remaining cases are left for a
future work.

We employ the entropy method developed in [11] and the main reason for the
method not to work in the case we left open is the fact that we do not have enough
information on the stationarymeasure of themodel to derive good bounds to compare
the Dirichlet form operator and the carré du champ operator, which is crucial when
proving replacement lemmas. We remark that the case of symmetric jumps was
analyzed in [1] where the heat equationwas derivedwith several boundary conditions
and corresponds to our case when E = 0 (no asymmetry). The case when jumps are
arbitrarily large and given by a symmetric transition probability p(·) with finite
variance was studied in [2] and the case of infinite variance was studied both in [3,
4].

The motivation for the study of the model we consider in this article is to have
intuition for the case where long jumps are present, as in the aforementioned articles,
but considering a transition probability which is weakly asymmetric. The goal will be
to derive the fractional viscous Burgers equation with several (fractional) boundary
conditions. This is left for a future work.

Once the hydrodynamic limit is established, there are several possibilities to attack
as, for example, the Fick’s Law, the large deviation principle, the fluctuations, among
others. Let us just briefly discuss one of the paths we want to pursue: the fluctuations.
We observe that for ourmodel in the case κ = 1, γ = 1, θ = 0, δ = 1 the equilibrium
fluctuations were established in [6], while the non-equilibrium fluctuations were
analysed in [9]. When the asymmetry increases, the equilibrium fluctuations in the
case κ = 1, γ ∈ [ 12 ,+∞), θ = 0, δ = γ and α = β, were derived in [10], and for
γ > 1

2 the limit is an Ornstein–Uhlenbeck process; while for γ = 1/2 the limit is
an energy solution of the stochastic Burgers equation, both with Dirichlet boundary
conditions. As a continuation of our study we intend to analyse the remaining cases
in a future work, specially for the case of a strong asymmetric regime.

This article is organized as follows. In Sect. 2 we present the models that we
study, the hydrodynamic equations that we derive and the respective notions of weak
solutions, and we state our main result, the hydrodynamic limit. We assume that
the PDEs we obtain have a unique weak solution, according to Definitions 2 and 3,
since the equations are quite classical in the PDE’s literature. In Sect. 3 we give a
heuristic argument on how to derive the notions of weak solutions for each one of
the regimes that we study. This is done through auxiliary martingales that can be
associated toMarkov Processes by Dynkin’s formula, which gives a discretization of
the notion of weak solution. Then one just has to justify that the limit in N converges
to the integral solution given either in (3) or (5). In Sect. 4 we prove tightness of
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the sequence of empirical measures. In Sect. 5 we prove all the replacement lemmas
that we need along the arguments, in order to recognize the limit of the martingales
as the solution of the respective PDE.

2 Statement of Results

2.1 The Models

Fix the following parameters: E, κ > 0, α, β ∈ (0, 1), γ ≥ 1, and θ, δ ≥ 0. Let N
be a natural number. Denote by {ηt : t ≥ 0}, the one-dimensional, boundary driven,
weakly asymmetric simple exclusion process with state spaceΩN = {0, 1}ΛN , where
ΛN = {1, . . . , N − 1}. The configurations of the state space are denoted by the sym-
bolη, so thatη(x) = 1 if site x ∈ ΛN is occupied for the configurationη andη(x) = 0
if site x is empty. The infinitesimal generator of the Markov process {ηt : t ≥ 0} is
denoted by LN and acts on functions f : ΩN → R as LN = L B

N + L L
N + L R

N ,
where the terms on the right are the generators corresponding to the dynamics of the
bulk, the left boundary, and the right boundary, respectively:

(L B
N f )(η) =

N−2∑

x=1

cx,x+1(η) { f (ηx,x+1) − f (η)} ,

(L L
N f )(η) = c0,1(η) { f (η1) − f (η)} ,

(L R
N f )(η) = cN−1,N (η) { f (ηN−1) − f (η)} .

(1)

where, for 1 ≤ x ≤ N − 2,

cx,x+1(η) =
(
1 + E

Nγ

)
η(x) [1 − η(x + 1)] + η(x + 1) [1 − η(x)] ,

c0,1(η) =
( κ

N θ
+ E

N δ

)
η(0) [1 − η(1)] + κ

N θ
η(1) [1 − η(0)] ,

cN−1,N (η) =
( κ

N θ
+ E

N δ

)
η(N − 1) [1 − η(N )] + κ

N θ
η(N ) [1 − η(N − 1)],

with the convention that η(0) = α and η(N ) = β. In these formulas, for 1 ≤ x ≤
N − 2, ηx,x+1 is the configuration obtained from η by exchanging the occupation
variables η(x) and η(x + 1):

(ηx,x+1)(y) =

⎧
⎪⎨

⎪⎩

η(x + 1), y = x ,

η(x), y = x + 1 ,

η(y), y �= x, x + 1 ,
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while for x ∈ {1, N − 1}, ηx is the configuration obtained by flipping the occupation
variable η(x), that is (ηx )(y) = η(y)1y �=x + (1 − η(y))1y=x .

From now on we fix a finite time horizon [0, T ]. The trajectories of our process
{ηt : t ≥ 0} are elements of the Skorohod spaceD([0, T ],ΩN ), which is defined as
the set of all functions η· : [0, T ] → ΩN that are right continuous with left limits.

We observe that, since our process is a finite state Markov process, there exists a
unique stationarymeasure. Forα = β = ρ and E = 0 or γ = δ the invariantmeasure
is the Bernoulli product measure νN

ρ with marginals

νN
ρ {η : η(x) = 1} = ρ,

for x ∈ ΛN . In fact, one can show that, when α = β = ρ and E = 0 this measure
is also reversible. Nevertheless, for other values of the parameters, we do not have
information about the stationary measure, except some partial description that can
be given by the matrix ansatz method, but which, in fact, we do not use in this article.

2.2 Hydrodynamic Equations

We denote by 〈·, ·〉μ the inner product in L2([0, 1]) with respect to a measure μ

defined in [0, 1] and ‖ · ‖L2(μ) is the corresponding norm. When μ is the Lebesgue
measure we write 〈·, ·〉 and ‖ · ‖L2 for the corresponding norm.

We denote byCm,n([0, T ] × [0, 1]) the set of functions defined on [0, T ] × [0, 1]
that are m times continuously differentiable on the first variable and n times
continuously differentiable on the second variable. For a function G := Gt (q) ∈
Cm,n([0, T ] × [0, 1]) we denote by ∂tG its derivative with respect to the time
variable t and by ∇G and �G its first and second derivatives, respectively, with
respect to the space variable q. The supremum norm is denoted by ‖ · ‖∞. Finally,
Cm,n
0 ([0, T ] × [0, 1]) is the set of functions G ∈ Cm,n([0, T ] × [0, 1]) such that for

any time t the function Gt vanishes at the boundary, that is, Gt (0) = Gt (1) = 0.
Now we want to define the space on which the solutions of the hydrodynamic

equations will live, namely the Sobolev space H1 on [0, 1]. For that purpose, we
define the semi inner-product 〈·, ·〉1 on the set C∞([0, 1]) by

〈G, H〉1 =
∫ 1

0
(∇G)(q) (∇H)(q) dq,

for G, H ∈ C∞([0, 1]) and the corresponding semi-norm is denoted by ‖ · ‖1.
Definition 1 The Sobolev spaceH1 on [0, 1] is theHilbert space defined as the com-
pletion of C∞([0, 1]) for the norm ‖ · ‖2H 1

:= ‖ · ‖2L2 + ‖ · ‖21. Its elements coincide
a.e. with continuous functions. The space L2([0, T ],H1) is the set of measurable
functions f : [0, T ] → H1 such that

∫ T
0 ‖ fs‖2H 1

ds < ∞.
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We can now give the definition of the weak solutions of the hydrodynamic equa-
tions that will be derived. In what follows, ρ0 : [0, 1] → [0, 1] is a measurable func-
tion and it is the initial condition of all the partial differential equations that we define
below.

Definition 2 We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the vis-
cous Burgers equation with Dirichlet boundary conditions

⎧
⎨

⎩

∂tρ(t, q) = �ρ(t, q) − e∇σ(ρ(t, q)) , t ∈ [0, T ] , q ∈ [0, 1] ,

ρ(t, 0) = a , ρ(t, 1) = b , t ∈ [0, T ],
ρ(0, q) = ρ0(q) , q ∈ [0, 1] ,

(2)

if the following two conditions hold:

• ρ ∈ L2([0, T ],H1);
• ρ satisfies the weak formulation

∫ 1

0
ρt (q)Gt (q) dq −

∫ 1

0
ρ0(q)G0(q) dq −

∫ t

0

∫ 1

0
ρs(q)

(
� + ∂s

)
Gs(q) dq ds

−
∫ t

0

∫ 1

0
eσ(ρs(q))∇Gs(q)dqds +

∫ t

0

(
b∇Gs(1) − a∇Gs(0)

)
ds = 0,

(3)
for all t ∈ [0, T ] and any function G ∈ C1,2

0 ([0, T ] × [0, 1]).
Above σ(ρ) represents the mobility and it is given by σ(ρ) = ρ(1 − ρ).

Observe that when e = 0 the equation above reduces to the heat equation.

Definition 3 We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the vis-
cous Burgers equation with Robin boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ(t, q) = �ρ(t, q) − e∇σ(ρ(t, q)) , t ∈ [0, T ] , q ∈ [0, 1] ,

∇ρ(t, 0) = aρ(t, 0) + b + eσ(ρ(t, 0)) , t ∈ [0, T ],
∇ρ(t, 1) = cρ(t, 1) + d + eσ(ρ(t, 1)) , t ∈ [0, T ],
ρ(0, q) = ρ0(q) , q ∈ [0, 1] ,

(4)

if the following two conditions hold:

• ρ ∈ L2([0, T ],H1);• ρ satisfies the weak formulation

∫ 1

0
ρt (q)Gt (q) dq −

∫ 1

0
ρ0(q)G0(q) dq −

∫ t

0

∫ 1

0
ρs(q)

(
� + ∂s

)
Gs(q) dq ds

−
∫ t

0

∫ 1

0
eσ(ρs(q))∇Gs(q) dq ds +

∫ t

0
ρs(1)∇Gs(1) ds −

∫ t

0
ρs(0)∇Gs(0) ds

−
∫ t

0

(
cρs(1) + d

)
Gs(1) ds +

∫ t

0

(
aρs(0) + b

)
Gs(0) ds = 0,

(5)

for all t ∈ [0, T ] and any function G ∈ C1,2([0, T ] × [0, 1]).
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Theproof of theuniqueness ofweak solutions in the case e = 0,which corresponds
to the heat equation with Dirichlet, linear Robin or Neumann boundary conditions
can be seen in Sect. 7 of [1]. For completeness we included in the Appendix the
proof of uniqueness of weak solutions in the case e �= 0 for Dirichlet or Neumann
boundary conditions. Nevertheless, we assume the uniqueness of weak solutions for
Robin boundary conditions in the case e �= 0, but we believe that the proof could be
adapted from the one in Sect. 7 of [5]. We leave this for a future work.

2.3 Hydrodynamic Limit

In this section we want to state the hydrodynamic limit of the process {ηt N 2 : t ≥ 0}
with state space ΩN and infinitesimal generator N 2LN , where LN is as defined in
(1). Note that we are accelerating time by a factor of N 2. Let M+ be the space of
positive measures on [0, 1] with total mass bounded by 1 equipped with the weak
topology. For any configuration η ∈ ΩN we define the empirical measure π N (η, dq)

on [0, 1] by
π N (η, dq) = 1

N − 1

∑

x∈ΛN

η(x)δ x
N

(dq) ,

where δa is a Dirac mass on a ∈ [0, 1], and

π N
t (η·, dq) := π N (ηt N 2 , dq).

This measure gives weight 1
N−1 to each occupied site of the configuration η.

We denote by PμN the probability measure on the Skorohod spaceD([0, T ],ΩN )

induced by the Markov process {ηt N 2 : t ≥ 0} and initial distribution μN on ΩN ,
and we denote by EμN the expectation with respect to PμN . Now let {QN }N≥1 be the
sequence of probability measures onD([0, T ],M+) induced by theMarkov process
{π N

t : t ≥ 0} and by PμN .
At this point we need to fix an initial profile ρ0 : [0, 1] → [0, 1] which is mea-

surable and an initial distribution μN ∈ ΩN . We are going to consider the following
set of initial measures:

Definition 4 A sequence of probability measures {μN }N≥1 inΩN is associated with
the profile ρ0(·) if for any continuous function G : [0, 1] → R and any ε > 0

lim
N→∞ μN

(
η ∈ ΩN :

∣∣∣
1

N − 1

∑

x∈ΛN

G
(
x
N

)
η(x) −

∫ 1

0
G(q)ρ0(q)dq

∣∣∣ > ε
)

= 0.

Our main result is summarized in the following theorem.

Theorem 1 Let ρ0 : [0, 1] → [0, 1] be a measurable function and let {μN }N≥1 be
a sequence of probability measures in ΩN associated with ρ0(·). Then, for any t ∈
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[0, T ] and any ε > 0,

lim
N→∞PμN

(
η· :

∣∣∣∣∣
1

N − 1

N−1∑

x=1

G
(
x
N

)
ηt N 2(x) −

∫ 1

0
G(q)ρt (q)dq

∣∣∣∣∣ > ε
)

= 0,

where ρt (·) is:
• for γ = 1 the unique weak solution of

1. for θ > 1 and δ > 1, the PDE (4) with e = E and a = b = c = d = 0.
2. for θ = 1 and δ > 1, the PDE (4) with e = E, a = κ , b = −κα, c = −κ and

d = κβ.
3. for δ = 1 and θ > 1, the PDE (4)with e = E, a = Eα, b = −Eα, c = −E(1 −

β) and d = 0.
4. for θ = δ = 1, the PDE (4) with e = E, a = κ + Eα, b = −(κ + E)α, c =

−(κ+E(1 − β)) and d = κβ.
5. for θ = δ ∈ [0, 1), the PDE (2) with e = E, a = α(κ+E)

κ+αE and b = κβ

κ+E(1−β)
.

6. for θ ∈ [0, 1) and δ ≥ 1, the PDE (2) with e = E, a = α and b = β.

• for γ > 1 the unique weak solution of heat equation with the same boundary
conditions as in the case γ = 1.

The partial differential equations corresponding to the values of the parameters θ

and δ are summarized in Fig.2.

We note that above we obtained in the first four cases, for γ = 1 (resp. γ > 1)
the viscous Burgers equation (resp. heat equation) with non-linear Robin boundary

Fig. 2 Boundary conditions
for the viscous Burgers
equation (when γ = 1) and
for the heat equation (when
γ > 1) as functions of the
model parameters θ and δ.
The numbering refers to the
equations above. The study
of the regions in light green
and grey is left for future
work
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conditions (resp. linear Robin or Neumann boundary conditions); and in the last two
cases, the boundary conditions are of Dirichlet type.

Remark 1 Weobserve that, by changing the value of E to Ẽ only on the rates c0,1(η)

and changing E to E ′ only on the rates cN−1,N (η) we would obtain the same PDEs
as above, except that on the boundary conditions, we would replace in both a and b
the value E by Ẽ and in both c and d we would replace the value E by E ′.

The analysis of the region δ ∈ [0, 1) and θ ≥ 0 (apart the red line in Fig. 2) is left
for a future work. Nevertheless, we conjecture that the green zone should continue
up to the red line (the region in light green) and the remaining region (the region in
grey) should correspond to the PDE (2) with a = 1 and b = 0 and with e = 0 when
γ > 1 and e = E when γ = 1.

The proof of last theorem follows the usual approach of convergence in distribu-
tion of stochastic processes: we have to prove tightness of the sequence {QN }N≥1

(which is done in Sect. 4) from where we conclude that the sequence {QN }N≥1 has a
subsequence that converges weakly to some measure that we denote by Q. Then we
characterize this measure by showing that it is supported on trajectories of measures
that satisfy πt (dq) = ρt (q)dq where ρt (q) is the unique weak solution of the hydro-
dynamic equation. These two results combined give the convergence of {QN }N≥1

to Q, as N → ∞. Showing that the limit point Q is concentrated on trajectories of
measures that are absolutely continuous with respect to the Lebesgue measure is a
consequence of the fact that our process is an exclusion process (we refer the reader
to [12] for a proof), and the proof that the density ρt (·) is a weak solution of the
hydrodynamic equation goes through the help of auxiliary martingales associated to
the empirical measure, this is done in Sect. 3. We only present the heuristic argument
of this derivation, but since we prove all the replacement lemmas (see Sect. 5) that are
necessary, the rigorous proof is simple and is left to the reader. From the uniqueness
of the weak solutions of the equations, we conclude that {QN }N≥1 has a unique limit
point Q.

3 Heuristics for Hydrodynamic Equations

In this section we give the main ideas which are behind the identification of limit
points as weak solutions of the partial differential equations given in Sect. 2.2. Now
we argue that the density ρt (·) is a weak solution of the corresponding hydrodynamic
equation for each regime of the parameters γ, θ, δ. In order to prove that ρt (·) sat-
isfies the weak formulation we use auxiliary martingales associated to the Markov
process {ηt N 2 : t ≥ 0}. For that purpose, fix a functionG ∈ C1,2([0, T ] × [0, 1]). By
Dynkin’s formula, see for example Lemma 5.1 of [12],

MN
t (G) = 〈π N

t ,G〉 − 〈π N
0 ,G〉 −

∫ t

0
(N 2LN+∂s)〈π N

s ,G〉 ds (6)
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is a martingale with respect to the natural filtration {Ft }t≥0, where for each t ≥
0, Ft := σ(ηs : s < t). By expanding the last term above and using the notation
∇+

NGs(
x
N ) := N (Gs(

x+1
N ) − Gs(

x
N )), ∇−

NGs(
x
N ) := N (Gs(

x
N ) − Gs(

x−1
N )), �NGs

( x
N ) := N 2(Gs(

x+1
N ) − 2Gs(

x
N ) + Gs(

x−1
N )), we get the following expression:

MN
t (G) = 〈πN

t ,Gt 〉 − 〈πN
0 ,G0〉 −

∫ t

0
〈πN

s , �NGs〉 ds −
∫ t

0
〈πN

s , ∂sGs〉 ds

− E
∫ t

0

N1−γ

N − 1

N−2∑

x=1

∇+
NGs(

x
N )ηsN2 (x)(1 − ηsN2 (x + 1)) ds

−
∫ t

0

N

N − 1
∇+
NGs(

1
N )ηsN2 (1) ds +

∫ t

0

N

N − 1
∇−
NGs(

N−1
N )ηsN2 (N − 1) ds

− N2

N − 1

∫ t

0
Gs(

1
N )
{ κ

N θ
(α − ηsN2 (1)) + E

N δ
α(1 − ηsN2 (1))

}
ds

− N2

N − 1

∫ t

0
Gs(

N−1
N )

{ κ

N θ
(β − ηsN2 (N − 1))− E

N δ
(1 − β)ηsN2 (N − 1)

}
ds.

(7)
From this expressionwewill deduce the notion of weak solution of the equations pre-
sented above for several regimes of the parameters. We do not present the complete
proof but we only highlight what are the ingredients one needs to obtain the results.
First we observe that from Sect. 4 we see that EμN [(MN

t (G))2] vanishes as N → ∞.
Now we analyse the remaining terms. For that purpose we introduce some nota-
tion. We define Λε

N = {1 + εN , . . . , N − 1 − εN } and denote by −→η εN
sN 2(x) (resp.←−η εN

sN 2(x)) the empirical density in the box of size εN , which is given on x ∈ Λε
N by

−→η εN
sN 2(x) = 1

εN

x+εN∑

y=x+1

ηsN 2(y)
(
resp. ←−η εN

sN 2(x) = 1

εN

x∑

y=x−εN+1

ηsN 2(y)
)
.

(8)
Note that above, εN should be understood as �εN� and that −→η εN

sN 2(x) = 〈π N
sN 2 , ι

x
ε 〉,

where ιxε (u) = 1
ε
1( x

N , x
N +ε)(u) and analogously for the definition of the left average.

Heuristically, 〈π N
sN 2 , ι

x
ε 〉 converges, when N → ∞, to 〈πs, ι

x
ε 〉 = ∫ 1

0 ρs(u)ιxε (u) du,

where ρs(·) is the density profile that we want to characterize. Then, by taking the
limit as ε → 0 we obtain that 〈πs, ι

x
ε 〉 converges to ρs(

x
N ). From the observation

above we say that −→η εN
sN 2(x) ∼ ρs(

x
N ).

Now observe that a simple computation shows that the fifth term on the RHS of
(7) vanishes if γ > 1, while for γ = 1, a simple application of Lemma 6 twice shows
that we can replace that term by

−E
∫ t

0

1

N − 1

N−2∑

x=1

∇+
NGs(

x
N )←−η εN

sN 2(x)(1 − −→η εN
sN 2(x + 1)) ds.

Indeed, to do that observe that the fifth term on the RHS of (7) can be written as
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−E
∫ t

0

1

N − 1

∑

x∈Λε
N

∇+
NGs(

x
N )ηsN 2(x)(1 − ηsN 2(x + 1)) ds + O(ε)

and now one applies Lemma 6 once to replace η(x) by the average to the left and
then again to replace η(x + 1) by the average to the right.

This term is the one that will change the nature of the PDE, so that for γ > 1
we will derive the heat equation while for γ = 1 we will derive the viscous Burgers
equation.

Now we look at the boundary terms. The next terms are those on the third line of
(7). From Lemma 5 we see that for θ, δ < 1 (see the restriction on the parameters
below) they can be replaced by

−
∫ t

0

N

N − 1
∇+

NGs(0)rα ds +
∫ t

0

N

N − 1
∇−

NGs(1)rβ ds

(where rα, rβ are defined in Sect. 5) while from Lemma 6 they can be replaced, for
θ ≥ 1, by

−
∫ t

0

N

N − 1
∇+

NGs(0)
−→η εN

sN 2(1) ds +
∫ t

0

N

N − 1
∇−

NGs(
N−1
N )←−η εN

sN 2(N − 1) ds.

The next terms on the list are those on the fourth line of (7), which, for θ = δ < 1
or θ < 1, δ ≥ 1 and by using the fact that in this regime the space of test functions
is G ∈ C1,2

0 ([0, T ] × [0, 1]), vanish as N → +∞. For θ > 1 and δ > 1 those terms
vanish as N → +∞. Finally for θ = δ = 1, as a consequence of Lemma 6 these
terms can be replaced by

− N 2

N − 1

∫ t

0
Gs(

1
N )
{ κ

N
(α − −→η εN

sN 2(1))− E

N
α(1 − ←−η εN

sN 2(N − 1))
}
ds.

For θ = 1 and δ > 1 those terms can be replaced by

− N 2

N − 1

∫ t

0
Gs(

1
N )
{ κ

N
(α − −→η εN

sN 2(1))
}
ds

and for δ = 1 and θ > 1 those terms can be replaced by

− N 2

N − 1

∫ t

0
Gs(

1
N )
{ E
N

α(1 − −→η εN
sN 2(1))

}
ds.

The terms related to the right boundary can be analysed as we just did for the left
boundary. Then, taking the limit N → ∞ and ε → 0 in each of the expressions that
we have derived, we obtain for γ = 1 (for γ > 1 just ignore the nonlinear term in
the equation):
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1. θ > 1 and δ > 1:

0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs,�Gs〉 ds −

∫ t

0
〈ρs, ∂sGs〉 ds

− E
∫ t

0
〈∇Gs, ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)ρs(0) ds +

∫ t

0
∇Gs(1)ρs(1) ds

which corresponds to (4) with e = E and a = b = c = d = 0.
2. θ = 1 and δ > 1:

0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs,�Gs〉 ds −

∫ t

0
〈ρs, ∂sGs〉 ds

− E
∫ t

0
〈∇Gs, ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)ρs(0) ds +

∫ t

0
∇Gs(1)ρs(1) ds

−
∫ t

0
Gs(0)κ(α − ρs(0)) ds −

∫ t

0
Gs(1)κ(β − ρs(1)) ds

which corresponds to (4) with e = E and a = κ , b = −κα, c = −κ and d = κβ.
3. δ = 1 and θ > 1:

0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs,�Gs〉 ds −

∫ t

0
〈ρs, ∂sGs〉 ds

− E
∫ t

0
〈∇Gs, ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)ρs(0) ds +

∫ t

0
∇Gs(1)ρs(1) ds

−
∫ t

0
Gs(0)Eα(1 − ρs(0)) ds+

∫ t

0
Gs(1)E(1 − β)ρs(1) ds

which corresponds to (4) with e = E and a = Eα, b = −Eα, c = −E(1 − β)

and d = 0.
4. δ = θ = 1:

0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs,�Gs〉 ds −

∫ t

0
〈ρs, ∂sGs〉 ds

− E
∫ t

0
〈∇Gs, ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)ρs(0) ds +

∫ t

0
∇Gs(1)ρs(1) ds

−
∫ t

0
Gs(0)((κ + E)α − ρs(0)(κ + Eα)) ds

−
∫ t

0
Gs(1)(κβ − (κ+E(1 − β))ρs(1) ds

which corresponds to (4) with e = E and a = κ + Eα, b = −(κ + E)α, c =
−(κ+E(1 − β)) and d = κβ.

5. δ = θ < 1:
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0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs , �Gs〉 ds −

∫ t

0
〈ρs , ∂sGs〉 ds

− E
∫ t

0
〈∇Gs , ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)

α(κ + E)

κ + αE
ds +

∫ t

0
∇Gs(1)

κβ

κ + E − βE
, ds

which corresponds to (2) with e = E and a = α(κ+E)

κ+αE and b = κβ

κ+E−βE .
6. θ ∈ [0, 1) and δ ≥ 1:

0 = 〈ρN
t ,Gt 〉 − 〈ρN

0 ,G0〉 −
∫ t

0
〈ρs,�Gs〉 ds −

∫ t

0
〈ρs, ∂sGs〉 ds

− E
∫ t

0
〈∇Gs, ρs(1 − ρs)〉 ds −

∫ t

0
∇Gs(0)α ds +

∫ t

0
∇Gs(1)β ds

which corresponds to (2) with e = E and a = α and b = β.

The remaining cases of θ and δ are left open for a future work.

4 Tightness

In this section we show that the sequence of probability measures {QN }N≥1 is tight
in the Skorohod spaceD([0, T ],M+). Tightness of this sequence implies that every
subsequence of {QN }N∈N has a further subsequence which is weakly convergent.

Since C1([0, 1]) is dense in C([0, 1]) in the uniform topology, by Proposition 1.7
of Chap.4 in [12] it is enough to show that for every G ∈ C1([0, 1]) the sequence of
measures associated with the real-valued processes 〈π N

t ,G〉 is tight. In order to do
that, we invoke Aldous’ criterion [12], stated as follows:

Lemma 1 A sequence {PN }N≥1 of probability measures onD([0, T ],M+) is tight
if these two conditions hold:
a. For every t ∈ [0, T ] and every ε > 0, there exists a compact set K t

ε ⊂ M+ such
that

sup
N≥1

PN
(
πt /∈ K t

ε

)
< ε

b. For every ε > 0

lim
l→0

lim sup
N→∞

sup
τ∈T T ,t≤l

PN
(
d(πτ , πτ+t ) > ε

) = 0,

where TT denotes the set of stopping times with respect to the canonical filtration,
bounded by T, and d is any metric in the spaceM+ inducing the weak topology.

In our case, condition a. reduces to

lim
A→∞ sup

N≥1
PμN

(|〈π N
t ,G〉| > A

) = 0. (9)
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To prove this, note that for any A > 0 and any N ∈ N, by Markov’s inequality,

PμN

(|〈π N
t ,G〉| > A

) ≤ 1

A
EμN

[|〈π N
t ,G〉|] = 1

A
EμN

[∣∣ 1

N − 1

∑

x∈ΛN

G( x
N )ηt N 2(x)

∣∣
]
.

Since |ηt N 2(x)| ≤ 1, the last expression is bounded by 1
A‖G‖∞, and (9) holds.

To establish condition b. above, we must show that, for every ε > 0 and G ∈
C1([0, 1]),

lim
l→0

lim sup
N→∞

sup
τ∈T T ,t≤l

PμN

(
η· : ∣∣〈π N

τ+t ,G〉 − 〈π N
τ ,G〉∣∣ > ε

)
= 0, (10)

where all stopping times are bounded by T (thus τ + t should be understood as
(τ + t) ∧ T , where ∧ denotes the minimum).

LetCm
c ([0, 1]) denote the set of allm times continuously differentiable real-valued

functions with compact support contained in (0, 1). We begin by showing that (10)
holds for functions G ∈ C2

c ([0, 1]). Recall (6). Then

PμN

(
η. :

∣∣∣〈πN
τ+t ,G〉 − 〈πN

τ ,G〉
∣∣∣ > ε

)

=PμN

(
η. :

∣∣∣MN
τ+t (G) − MN

τ (G) +
∫ τ+t

τ

N 2LN 〈πN
s ,G〉 ds

∣∣∣ > ε

)

≤PμN

(
η. :

∣∣∣MN
τ+t (G) − MN

τ (G)

∣∣∣ >
ε

2

)
+ PμN

(
η. :

∣∣∣
∫ τ+t

τ

N 2LN 〈πN
s ,G〉 ds

∣∣∣ >
ε

2

)
.

Applying, to the first term on the RHS of last inequality, Chebyshev’s (resp.
Markov’s) inequality to the first (resp. second), we can bound the previous expression
by

4

ε2
EμN

[(
MN

τ+t (G) − MN
τ (G)

)2]+ 2

ε
EμN

[∣∣∣
∫ τ+t

τ

N 2LN 〈π N
s ,G〉 ds

∣∣∣
]
.

Therefore it is enough to show the next two limits:

lim
l→0

lim sup
N→∞

sup
τ∈T T ,t≤l

EμN

[∣∣∣
∫ τ+t

τ

N 2LN 〈π N
s ,G〉 ds

∣∣∣
]

= 0 (11)

lim
l→0

lim sup
N→∞

sup
τ∈T T ,t≤l

EμN

[(
MN

τ+t (G) − MN
τ (G)

)2] = 0. (12)

Since we are assuming that G ∈ C2
c ([0, 1]), there exists N0 ∈ N such that G(0) =

G( 1
N ) = G( N−1

N ) = G(1) = 0 for all N ≥ N0. Since |ηsN 2(x)| ≤ 1, we have
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∣∣∣N 2LN 〈π N
s ,G〉

∣∣∣ =
∣∣∣〈π N

s ,�NG〉+ E

N − 1

N−2∑

x=1

∇+
NG( x

N )ηsN 2(x)(1 − ηsN 2(x + 1))
∣∣∣

≤ ‖G ′′‖∞ + E‖G ′‖∞

for N ≥ N0. Therefore there exists a constant C such that |N 2LN 〈π N
s ,G〉| ≤ C for

all N ∈ N, and (11) follows.
Let us now prove (12). By Dynkin’s formula, see for example Lemma 5.1 of [12],

MN
t (G)2 −

∫ t

0
N 2[LN 〈π N

s ,G〉2 − 2〈π N
s ,G〉LN 〈π N

s ,G〉] ds

is a martingale with respect to {Ft }t≥0. From this, and since τ is a stopping time, it
follows that

EμN

[(
MN

τ+t (G) − MN
τ (G)

)2] = EμN

[ ∫ τ+t

τ

N 2[LN 〈π N
s ,G〉2 − 2〈π N

s ,G〉LN 〈π N
s ,G〉]ds

]
.

A computation shows that, for N ≥ N0,

N 2[LN 〈π N
s ,G〉2 − 2〈π N

s ,G〉LN 〈π N
s ,G〉]

= 1

(N − 1)2

N−2∑

x=1

cx,x+1(ηsN 2)(ηsN 2(x) − ηsN 2(x + 1))2(∇+
NG( x

N ))2.

Since |cx,x+1(ηsN 2)| ≤ 2 + E , the last expression is bounded by 2+E
N ‖G ′‖∞, and

therefore it goes to zero as N → ∞. This finishes the proof for G ∈ C2
c ([0, 1]).

Assume now that G ∈ C1([0, 1]). Since C2
c ([0, 1]) is dense in C1([0, 1]) wrt the

L
1 topology, there exists a sequence {Gk}k≥1 of functions in C2

c ([0, 1]) such that
‖Gk − G‖1 → 0. Since the probability in (10) is less than or equal to

PμN

(
η. :

∣∣∣〈πN
τ+t ,Gk〉 − 〈πN

τ ,Gk〉
∣∣∣ >

ε

2

)
+ PμN

(
η. :

∣∣∣〈πN
τ+t ,G − Gk〉 − 〈πN

τ ,G − Gk〉
∣∣∣ >

ε

2

)

and Gk ∈ C2
c ([0, 1]), by the computation above it remains only to check that the last

probability vanishes as N → ∞ and then k → ∞. For that purpose, note that

∣∣〈πN
τ+t ,G − Gk〉 − 〈πN

τ ,G − Gk〉
∣∣ ≤ 2

N

N−1∑

x=1

∣∣(G − Gk)(
x
N )
∣∣

≤ 2
N−1∑

x=1

∫ x+1
N

x
N

∣∣(G − Gk)(
x
N ) − (G − Gk)(q) dq

∣∣+ 2
∫ 1

0

∣∣(G − Gk)(q)
∣∣ dq

≤ 2

N
‖(G − Gk)

′‖∞ + 2
∫ 1

0

∣∣(G − Gk)(q)
∣∣ dq.
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The result follows by taking N → ∞ and then k → ∞.

5 Replacement Lemmas

This section is devoted to the proof of the two lemmas mentioned in Sect. 3, using
methods similar to those in [2, 8].

5.1 Estimates on Dirichlet Forms

We consider ρ : [0, 1] → [0, 1] to be a Lipschitz continuous function and we take
rα, rβ ∈ (0, 1) satisfying rα ≤ ρ(q) ≤ rβ for q ∈ [0, 1] such that ρ(0) = rα , ρ(1) =
rβ . Denote by νN

ρ(·) the Bernoulli product measure on ΩN with marginals

νN
ρ(·){η : η(x) = 1} = ρ( x

N ),

for x ∈ ΛN . For functions f, g : ΩN → R and a probability measure μ on ΩN , the
inner product in L2(ΩN , μ) is denoted by 〈 f, g〉μ = ∫

ΩN
f (η)g(η)dμ.

Lemma 2 Let T : ΩN → ΩN be a transformation, (either the exchange ηx,y or the
flip ηx ), c : ΩN → R a positive function and f a density with respect to a probability
measure μ on ΩN . Then

∫
c(η)

[√
f (T (η)) −√

f (η)
]√

f (η) dμ

= −1

2

∫
c(η)

[√
f (T (η)) −√

f (η)
]2

dμ

+ 1

2

∫ [√
f (T (η))

]2 [
c(η) − c(T (η))

μ(T (η))

μ(η)

]
dμ.

(13)

Proof To prove the result, it is enough to write the term at the LHS of (13) as its
half plus its half and to sum and subtract the term needed to complete the square.

We recall Lemmas 5.1 and 5.2 of [2]:

Lemma 3 Let T : ΩN → ΩN be a transformation, c : ΩN → R a positive function
and f a density with respect to a probability measure μ on ΩN . Then
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〈
c(η)

(√
f (T (η)) −√

f (η)
)
,
√

f (η)
〉

μ

≤ − 1

4

∫

ΩN

c(η)
(√

f (T (η)) −√
f (η)

)2
dμ

+ 1

16

∫

ΩN

1

c(η)

[
c(η) − c(T (η))

μ(T (η))

μ(η)

]2(√
f (T (η)) +√

f (η)
)2
dμ

Lemma 4 Let ρ(·) be as described above. There exists a constant C such that, for
any N ∈ N and any density f with respect to νN

ρ(·),

sup
1≤x≤N−2

∫

ΩN

f (ηx,x+1)dνN
ρ(·)(η) ≤ C, sup

x∈{1,N−1}

∫

ΩN

f (ηx )dνN
ρ(·)(η) ≤ C.

We introduce the following non-negative functions, defined for densities f with
respect to νN

ρ(·):

D L
N (
√

f , νN
ρ(·)) =

∫

ΩN

c0,1(η)
(√

f (η1) −√
f (η)

)2
dνN

ρ(·),

D R
N (
√

f , νN
ρ(·)) =

∫

ΩN

cN−1,N (η)
(√

f (ηN−1) −√
f (η)

)2
dνN

ρ(·),

D B
N (
√

f , νN
ρ(·)) =

N−2∑

x=1

∫

ΩN

cx,x+1(η)
(√

f (ηx,x+1) −√
f (η)

)2
dνN

ρ(·).

As a consequence of Lemma 2 we conclude that

Corollary 1 Let ρ(·) be a profile. There exists a constant C > 0 such that, for any
density f and N ∈ N,

〈L L
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

2
D L

N (
√

f , νN
ρ(·)) + C

∣∣∣
κ

N θ

(
ρ( 1

N ) − α
)

+ αE

N δ

(
ρ( 1

N ) − 1
)∣∣∣,

(14)

〈L R
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

2
D R

N (
√

f , νN
ρ(·))

+ C
∣∣∣

κ

N θ

(
ρ( N−1

N ) − β
)

+ (1 − β)E

N δ
ρ( N−1

N )

∣∣∣.
(15)
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Proof We present the proof for the left boundary since the other case is analogous.
By Lemma 2,

〈L L
N

√
f ,
√

f 〉νN
ρ(·) = −1

2
D L

N (
√

f , νN
ρ(·))

+ 1

2

∫

ΩN

[
c0,1(η) − c0,1(η

1)
νN

ρ(·)(η
1)

νN
ρ(·)(η)

](√
f (η1)

)2
dνN

ρ(·).

Let η̄ ∈ {0, 1}{2,...,N−1} denote the configuration obtained from η by discarding its
value at 1, so that η = (1, η̄) if η(1) = 1 and η = (0, η̄) if η(1) = 0. The second
term on the RHS of last expression inside can be written as

1

2

∑

η̄

[
(1 − α)κ

N θ
− α

( κ

N θ
+ E

N δ

) (1 − ρ( 1
N ))

ρ( 1
N ))

]
f (0, η̄)νN

ρ(·)(1, η̄)

+1

2

∑

η̄

[
α
( κ

N θ
+ E

N δ

)
− (1 − α)κ

N θ

ρ( 1
N )

(1 − ρ( 1
N ))

]
f (1, η̄)νN

ρ(·)(0, η̄)

≤C
∣∣∣

κ

N θ

(
ρ( 1

N ) − α
)

+ αE

N δ

(
ρ( 1

N ) − 1
)∣∣∣.

Corollary 2 Let ρ(·) be a Lipschitz continuous function. There exists a constant
C > 0 such that, for any density f and N ∈ N,

〈L B
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
D B

N (
√

f , νN
ρ(·)) + C

( 1

N
+ 1

N 2γ−1

)
.

Proof By Lemma 3,

〈L B
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
D B

N (
√

f , νN
ρ(·))

+ 1

16

N−2∑

x=1

∫

ΩN

1

cx,x+1(η)

[
cx,x+1(η) − cx,x+1(η

x,x+1)
νN

ρ(·)(η
x,x+1)

νN
ρ(·)(η)

]2×

×
(√

f (ηx,x+1) +√
f (η)

)2
dνN

ρ(·).

For any 1 ≤ x ≤ N − 2, the expression inside last sum is equal to

∑

ζ

1

1 + E
Nγ

[
1 + E

Nγ
− ρ( x+1

N )(1 − ρ( x
N ))

(1 − ρ( x+1
N ))ρ( x

N )

]2 (√
f (ζ ) +

√
f (ζ x,x+1)

)2
νNρ(·)(ζ )

+
∑

ζ

[
1 −

(
1 + E

Nγ

)
ρ( x

N )(1 − ρ( x+1
N ))

(1 − ρ( x
N ))ρ( x+1

N )

]2 (√
f (ζ ) +

√
f (ζ x,x+1)

)2
νNρ(·)(ζ )
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where thefirst sum is over all configurations ζ ∈ ΩN satisfying ζ(x) = 1, ζ(x + 1) =
0, and the second sum over those ζ ∈ ΩN such that ζ(x) = 0, ζ(x + 1) = 1. By
Lemma 4, we conclude that

〈L B
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
D B

N (
√

f , νN
ρ(·)) + C

N−2∑

x=1

(∣∣ρ( x+1
N ) − ρ( x

N )
∣∣+ E

N γ

)2

for some constant C . Since ρ(·) is Lipschitz continuous, we get

〈L B
N

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
D B

N (
√

f , νN
ρ(·)) + C

( 1

N
+ 1

N 2γ−1

)
.

Remark 2 Now, we analyze the bounds obtained above in different regimes of θ

and δ. Observe that the bound above simplifies to (without requiring anything on the
values of the profile ρ(·) at q = 0 nor at q = 1)

〈LN

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
DN (

√
f , νN

ρ(·)) + C
( 1

N θ
+ 1

N
+ 1

N δ
+ 1

N 2γ−1

)
. (16)

This will be useful in the cases θ ≥ 1 and δ ≥ 1 below. When θ = δ < 1, we ask
that ρ(0) = rα and ρ(1) = rβ , where rα and rβ are defined as

rα = α(κ + E)

κ + αE
, rβ = κβ

κ + E − βE
, (17)

and, since we assumed ρ(·) to be Lipschitz, we get the bound:

〈LN

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
DN (

√
f , νN

ρ(·)) + C
( 1

N θ+1
+ 1

N
+ 1

N 2γ−1

)
. (18)

In the case δ ≥ 1 and θ ∈ [0, 1), by asking that ρ(0) = α (and ρ(1) = β) and ρ(·)
to be Lipschitz we get the bound:

〈LN

√
f ,
√

f 〉νN
ρ(·) ≤ −1

4
DN (

√
f , νN

ρ(·)) + C
( 1

N θ+1
+ 1

N δ
+ 1

N
+ 1

N 2γ−1

)
.

(19)

Now that we have all the ingredients we need we state and prove the replacement
lemmas we need. The next lemma will be used in the Dirichlet case.

Lemma 5 Let F : N × [0, T ] → R be a bounded function and suppose that

(1) θ = δ < 1
(2) θ ∈ [0, 1) and δ ≥ 1.

Then, for any t ∈ [0, T ],
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lim
N→∞EμN

[∣∣∣∣
∫ t

0
F(N , s)(ηsN 2(1) − rα) ds

∣∣∣∣

]
= 0,

where in

(1) rα and rβ where defined in (17).
(2) rα = α and rβ = β.

The same estimate above holds replacing η(1) by η(N − 1) and rα by rβ .

The next lemma will be used in the Robin cases for x = 1 and x = N − 1 to deal
with the boundary terms and in all the cases for x ∈ Λε

n to treat the bulk term coming
from the weak asymmetry.

Lemma 6 Fix x. Let F : N × ΩN × [0, T ] → R be a bounded function whose
support does not intersect the set of points {x + 1, . . . , x + εN }. Then, for any t ∈
[0, T ] and for any x

lim
ε→0

lim
N→∞EμN

[∣∣∣∣
∫ t

0
F(N , ηsN 2 , s)(ηsN 2(x) − −→η εN

sN 2(x)) ds

∣∣∣∣

]
= 0

where −→η εN
sN 2(x) was defined in (8). The same result holds replacing −→η εN

sN 2(x) by←−η εN
sN 2(x), but in this case the support of F cannot intersect the set of points {x −

εN + 1, . . . , x}. The values above of x are restricted to the cases when the averages
make sense.

In order to prove Lemmas 5 and 6, we need some intermediate results. First
observe that if H(μN |νN

ρ(·)) is the relative entropy of the measure μN with respect to
νN

ρ(·), then there exists a constant Cα,β such that H(μN |νN
ρ(·)) ≤ Cα,βN . To see this it

is enough to observe that

νN
ρ(·)(η) =

N−1∏

x=1

ρ( x
N )η(x)(1 − ρ( x

N ))1−η(x) ≥ (rα ∧ (1 − rβ))N := (Cα,β)N ,

and by the explicit formula for the entropy, it holds

H(μN |νNρ(·)) =
∑

η∈ΩN

μN (η) log

(
μN (η)

νN
ρ(·)(η)

)
≤ N log

(
1

Cα,β

) ∑

η∈ΩN

μN (η) = Cα,βN .

Lemma 7 Let GN : [0, T ] × ΩN → R, N ∈ N, be a sequence of functions and t ∈
[0, T ]. Then, for any N ∈ N and for any B > 0,

EμN

[∣∣∣∣
∫ t

0
GN (s, ηsN2 ) ds

∣∣∣∣

]
≤ Cα,β

B

+
∫ t

0
sup
f

{
〈GN (s, η), f 〉

νN
ρ(·)

+ N

B
〈LN

√
f ,
√

f 〉
νN
ρ(·)

}
ds,
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where the supremum is taken over all densities f with respect to νN
ρ(·), and Cα,β is a

positive constant.

Proof By the entropy inequality and Jensen’s inequality, for any B > 0 the expec-
tation in the statement of the theorem is bounded by

C0

B
+ 1

N B
logEνN

ρ(·)

[
e| ∫ t

0 BNGN (s,ηsN2 ) ds|
]
. (20)

Since e|x | ≤ ex + e−x and

lim sup
N→∞

1
N log(aN + bN ) ≤ max

{
lim sup
N→∞

1
N log(aN ), lim sup

N→∞
1
N log(bN )

}
,

we can remove the absolute value from expression (20). By Feynman–Kac’s formula
(see Lemma 7.3 in [1]), (20) is bounded by

Cα,β

B
+
∫ t

0
sup
f

{
〈GN (s, η), f 〉νN

ρ(·) + N

B
〈LN

√
f ,
√

f 〉νN
ρ(·)

}
ds,

with the supremum taken over all densities f with respect to νN
ρ(·).

In the next lemma we do not assume any condition on the profile ρ(·).
Lemma 8 There exists a positive constant C such that, for any A > 0, any N ∈ N

and any density f with respect to νN
ρ(·),

∣∣〈η(1) − rα, f 〉νN
ρ(·)

∣∣ ≤ C

A
D L

N (
√

f , νN
ρ(·)) + CAN θ + C

∣∣ρ( 1
N ) − rα

∣∣,

Proof By summing and subtracting the appropriate term,

∣∣〈η(1) − rα, f 〉νN
ρ(·)

∣∣ ≤ 1

2

∣∣∣
∫

ΩN

(η(1) − rα)( f (η) − f (η1))dνN
ρ(·)
∣∣∣

+ 1

2

∣∣∣
∫

ΩN

(η(1) − rα)( f (η) + f (η1))dνN
ρ(·)
∣∣∣.

(21)

By multiplying and dividing by
√
c0,1(η) and applying Young’s inequality we have,

for any A > 0, that the first term on the RHS of (21) can be bounded by

A

4

∫

ΩN

(η(1) − rα)2

c0,1(η)

(√
f (η) +

√
f (η1)

)2
dνN

ρ(·) + 1

4A
D L

N (
√

f , νN
ρ(·))

≤C ′AN θ + 1

A
D L

N (
√

f , νN
ρ(·)),

where the last inequality holds, for some constant C ′, by Lemma 4 and by the fact
that (η(1) − rα)2c0,1(η)−1 is bounded by a constant times N θ .
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Now we analyze the second term on the RHS of (21). Let η̄ ∈ {0, 1}{2,...,N−1}
denote the configuration obtained from η by discarding its value at 1, so that η =
(1, η̄) if η(1) = 1 and η = (0, η̄) if η(1) = 0. Since νN

ρ(·) is a product measure with

νN
ρ(·)(η(1) = 1) = ρ( 1

N ), the second term on the RHS of (21) is equal to

1

2

∣∣∣
∑

η̄

[
(1 − rα)ρ( 1

N ) − rα(1 − ρ( 1
N ))

]
( f (0, η̄) + f (1, η̄))νN

ρ(·)(η̄)

∣∣∣

= 1

2

∣∣∣
∑

η̄

(ρ( 1
N ) − rα)( f (1, η̄) + f (0, η̄))νN

ρ(·)(η̄)

∣∣∣

≤ C ′′∣∣ρ( 1
N ) − rα

∣∣
∑

η̄

[
ρ( 1

N ) f (1, η̄)νN
ρ(·)(η̄) + (1 − ρ( 1

N )) f (0, η̄)νN
ρ(·)(η̄)

]

= C ′′∣∣ρ( 1
N ) − rα

∣∣∑

η

f (η)νN
ρ(·)(η) = C ′′∣∣ρ( 1

N ) − rα
∣∣,

where C ′′ = max
{

1
2rα

, 1
2(1−rβ )

}
≥ max

{
1

2ρ(
1
N )

, 1

2(1−ρ(
1
N ))

}
.

Now we have all set to prove the lemma. We start with the proof of Lemma 5.

5.2 Proof of Lemma 5

The main difference in the proof between the two cases (1) and (2) is that we change
from μN to a measure νN

ρ(·) where the profile ρ : [0, 1] → [0, 1] is Lipschitz, but
we assume ρ(0) = rα and ρ(1) = rβ where in (1) (resp. (2)) these values are given
in (17) (resp. rα = α and rβ = β). By Lemma 7, since |F(N , s)| ≤ C1 for some
constant C1 > 0, the expectation in the statement of the lemma is bounded from
above by

Cα,β

B
+ t sup

f

{
C1

∣∣〈η(1) − rα, f 〉νN
ρ(·)

∣∣+ N

B
〈LN

√
f ,
√

f 〉νN
ρ(·)

}
. (22)

If θ = δ < 1 , we recall (18) and the term inside the supremum in the last expression
is bounded from above by

C1

∣∣〈η(1) − rα, f 〉νN
ρ(·)

∣∣− N

4B
DN (

√
f , νN

ρ(·)) + C

B

(
1 + 1

N θ

)
.

If θ ∈ [0, 1) and δ ≥ 1, we recall (19) and the term inside the supremum in (22) is
bounded from above by

C1

∣∣〈η(1) − rα, f 〉νN
ρ(·)

∣∣− N

4B
DN (

√
f , νN

ρ(·)) + C

B

(
1 + 1

N θ

)
.
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Furthermore, from Lemma 8, and choosing A = cBN−1 where c is a suitable
constant, the last bounds obtained above for both cases give that the term in the
supremum in (22) is bounded from above by a constant times

BN θ

N
+ ∣∣ρ( 1

N ) − rα
∣∣+ C

B

(
1 + 1

N θ

)
.

Since we assumed ρ(0) = rα (on the case θ = δ) or ρ(0) = α (on the case θ ∈ [0, 1)
and δ ≥ 1) and that ρ(·) is Lipschitz continuous, all the terms above depending on
N vanish as N → ∞. To finish the proof we just need to send B → +∞.

5.3 Proof of Lemma 6

This result is necessary in all the regimes of θ and δ. The main difference in the proof
between these cases is the fact that we change from μN to a measure νN

ρ(·), where the
profile ρ : [0, 1] → [0, 1] is Lipschitz continuous, but in the case δ > 1 and θ > 1
we do not need to impose any extra restriction on the profile. In the other cases we
assume the extra conditions as in the proof of last lemma. Using the same arguments
as above, the expectation in the statement of the lemma is bounded from above by

Cα,β

B
+
∫ t

0
sup
f

{∣∣〈F(N , η, s)(η(x) − −→η εN (x)), f 〉νN
ρ

∣∣+ N

B
〈LN

√
f ,
√

f 〉νN
ρ(·)

}
ds,

(23)
for any B > 0. By writing the term above as a telescopic sum, summing and sub-
tracting terms, we write

〈F(N , η, s)(η(x) − −→η εN (x)), f 〉νN
ρ(·)

= 1

2εN

x+εN∑

y=x+1

y−1∑

z=x

∫
F(N , η, s)(η(z) − η(z + 1))

(
f (η) − f (ηz,z+1)

)
dνN

ρ(·)

+ 1

2εN

x+εN∑

y=x+1

y−1∑

z=x

∫
F(N , η, s)(η(z) − η(z + 1))

(
f (η) + f (ηz,z+1)

)
dνN

ρ(·).

By Young’s inequality, the first term on the RHS of last expression can be bounded
from above by a constant times

‖F‖2∞A

εN

x+εN∑

y=x+1

y−1∑

z=x

∫
cz,z+1(η)(

√
f (ηz,z+1) −√

f (η))2dνN
ρ(·)

+‖F‖2∞
AεN

x+εN∑

y=x+1

y−1∑

z=x

∫
1

cz,z+1(η)
(
√

f (ηz,z+1) +√
f (η))2(η(z + 1) − η(z))2dνN

ρ(·)
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for any A > 0. The first term in last expression can be bounded by A‖F‖2∞D B
N (

√
f ,

νN
ρ(·)) and by Lemma 4, the second term can be bounded by a constant times
A−1‖F‖2∞εN .

The remaining term in last display can be treated using a similar argument to the
one as in the last part of the proof of Lemma 8, invoking the fact that the profile is
Lipschitz, and can be bounded from above by ε.

Now we split the proof according to the regimes of δ and θ . For simplicity of the
presentation we restrict to the case θ ≥ 1 and δ ≥ 1. The other cases are left to the
reader. From (16) we get

〈LN

√
f ,
√

f 〉νN
ρ

≤ −1

4
DN (

√
f , νN

ρ(·)) + C

N
.

Then (23) becomes bounded from above by

Cα,β

B
+
∫ t

0
sup
f

{
A‖F‖2∞D B

N (
√

f , νN
ρ(·)) + ‖F‖2∞εN

A
+ ε − N

4B
DN (

√
f , νN

ρ(·)) + C

4B

}
ds,

Therefore, choosing A = N (C1B)−1, where C1 is an appropriate constant, the
expression in last supremum is bounded by a constant times

Bε + 1

B
+ ε.

The result follows by taking the limit ε → 0 and then B → ∞.
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Appendix: Uniqueness of Weak Solutions

In this sectionwe prove uniqueness ofweak solutions of (2).We use themethod taken
from Appendix 2 of [12] but an alternative proof can be seen in, for example, Sect. 7
of [7]. Take ρ1 and ρ2 two weak solutions of (2) with the same initial condition and
call ρ̄ their difference ρ̄ = ρ1 − ρ2 . Let us recall that the set {ψk}k of eigenfunctions
of the Laplacian with Dirichlet boundary conditions, given byψk(u) = √

2 sin(kπu)

for k ≥ 1 and ψ0(u) = 1 is an orthonormal basis of L2([0, 1]). Consider

V (t) =
∑

k≥0

1

2ak
< ρ̄t , ψk >2
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where ak = (kπ)2 + 1.We claim that V ′(t) ≤ CV (t), whereC is a positive constant
and since V (0) = 0, from Gronwall’s inequality we conclude that V (t) ≤ 0, and we
are done. Now,

V ′(t) =
∑

k≥0

1

ak
< ρ̄t , ψk >

d

dt
< ρ̄t , ψk > . (24)

and from (3), d
dt < ρ̄t , ψk > can be replaced by

< ρ̄t ,�ψk > +e < σ(ρ1
t ) − σ(ρ2

t ), ∂uψk >= −(kπ)2 < ρ̄t , ψk > +e < σ(ρ1
t ) − σ(ρ2

t ), ∂uψk >

and we get

V ′(t) = −
∑

k≥0

(kπ)2

ak
< ρ̄t , ψk >2 +

∑

k≥0

e

ak
< ρ̄t , ψk >< σ(ρ1t ) − σ(ρ2t ), ∂uψk > .

From Young’s inequality the rightmost term in last display is bounded from above
by

1

2A

∑

k≥0

e

ak
< ρ̄t , ψk >2 + A

2

∑

k≥0

e

ak
< σ(ρ1

t ) − σ(ρ2
t ), ∂uψk >2,

for any A > 0. Observe that ∂uψk(u) = −kπ ϕk(u), with ϕk(u) = √
2 cos(kπu), for

k ≥ 1 and ϕ0(u) = 1. Therefore, the rightmost term in last display can be bounded
from above by

A

2

∑

k≥0

e(kπ)2

ak
< σ(ρ1

t ) − σ(ρ2
t ), ϕk >2 ≤ A

2
e
∑

k≥0

< σ(ρ1
t ) − σ(ρ2

t ), ϕk >2 ,

because of the choice of ak . Observe that, since {ϕk}k is an orthonormal basis of
L
2, the rightmost term in last display is equal to A

2 e
∫ 1
0

(
σ(ρ1

t ) − σ(ρ2
t )
)2
du. Since

(σ (ρ1
t ) − σ(ρ2

t ))
2 ≤ 5ρ̄t , last display is bounded from above by 5A

2 e‖ρ̄t‖22. Putting
all this together we conclude that

V ′(t) ≤
∑

k≥0

(
− (kπ)2

ak
+ e

2Aak
+ 5A

2
e
)

< ρ̄t , ψk >2 .

Taking A = 2(5e)−1 we get V ′(t) ≤ 2( 5e
2

4 + 1)V (t) and we are done.
In the Neumann case the proof above can be adapted by observing that the set

{ψk}k of eigenfunctions of Laplacian with Neumann boundary conditions isψk(u) =√
2 cos(kπu). Observe that the previous proof also includes the case when e = 0,

that is for the heat equation with Dirichlet or Neumann boundary conditions.
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Recent Developments on the Modelling of
Cell Interactions in Autoimmune Diseases

M. Fernanda P. Costa, M. Piedade M. Ramos, C. Ribeiro,
and Ana Jacinta Soares

Abstract In this paper, we give an overview of our recent results concerning the
mathematical modelling of autoimmune diseases in absence [1] and in presence
[2] of immunotherapeutic treatment. Then we complement the model description
given in [2], by developing here a kinetic system describing the cellular dynamics
corresponding to the macroscopic model presented in [2]. This is the main new
contribution in these proceedings and it allows us to investigate the effect of an
external drug therapy at the cellular level. The relevant properties on existence,
uniqueness, positivity and asymptotic behaviour of the solution to the new kinetic
system are stated. Some numerical simulations are also performed for the models
in absence and in presence of immunotherapy, to analyse both the effect of optimal
treatment strategies and the sensitivity of the solutions to certain parameters of the
model with biological significance.

Keywords Mathematical biology · Modelling · Kinetic theory · Autoimmune
diseases · Optimal immunotherapy

1 Introduction

The potential of mathematical models in giving valuable predictions concerning the
biological development of a disease and its optimal medical treatment is well recog-
nized by specialists both in mathematical and in medical sciences. This recognition
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has become more widespread due to the current epidemiological situation that we
are living.

In particular, many interesting problems can be investigated in the context of
mathematical modelling of autoimmune diseases. Some of these problems are inter-
esting due to particular mathematical aspects, but other challenging problems can
arise due to the scientific interchange between mathematicians and immunologists
or biologists.

Our work is motivated by the idea of developing advanced mathematical methods
for describing, in a rigorous form, the complex dynamics of the variables involved
in autoimmunity, and also to better understand and predict, biologically, the effect
of certain populations of cells on the outcome of the disease. We believe that the
kinetic approach, being developed at the cellular scale, can give some important
insights concerning the effect of certain interactions between cells on the develop-
ment and control of the disease. At the same time, suitable averaging processes may
provide information on the macroscopic observables, so that the advantage of the
kinetic approach is that it offers both microscopic and macroscopic descriptions of
the biological processes involved in autoimmunity.

In this paper, we give an overview of recent developments concerning the mathe-
matical modelling of autoimmune diseases. We start by presenting the model devel-
oped in [1], which is based on a kinetic theory description andwhere three interacting
populations are considered in the development of the disease. In this model, the well-
posedness of the kinetic system is proven and the existence of biologically realistic
solutions is investigated. Then, a new variable representing the population of IL-2
cytokines, that are believed to be important players in the control of the autoimmune
reaction, is introduced in the macroscopic analogue of the kinetic model given in [1].
This extended model is presented in [2] and was developed with the aim of studying
optimal policies for the immunotherapeutic treatment of autoimmune diseases.

The main contribution in these proceedings is to present a kinetic system whose
macroscopic analogue is the model given in [2]. Accordingly, a fourth population
of IL-2 cytokines is considered in the kinetic system and an artificial inlet for the
external drug therapy is also introduced in the equations in the same manner as it
was done for corresponding macroscopic system.

From the mathematical point of view, our work follows the research line initiated
in [3–5], on the study of the tumour-immune system interactions, and then used by
other researchers, for instance in [6–10] concerning the immune system response to
certain diseases.

2 The Biological Scenario

Autoimmune diseases can affect just about any part of the body, and more than
100 types have been identified so far (some of the most common include type 1
diabetes, rheumatoid arthritis, multiple sclerosis, lupus, psoriasis, thyroid diseases,
and inflammatory bowel disease). Most of these diseases are chronic, and so patients
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can face a lifetime of debilitating symptoms, loss of organ function, and in extreme
cases even death. However, as common and serious they might be, much about
autoimmune diseases remains amystery. The number of patients suffering from these
conditions are steadily increasing, particularly in the developed world, yet specialists
do not know why, although environmental changes associated with industrialization
have been long suspected.

The Role of Self-Reactive T Cells
T cells originate from the common lymphoid progenitor cells in the bone marrow.
They migrate as immature precursor T cells via the bloodstream into the thymus,
where they undergo several different maturation phases. More than 98 per cent of
these cells die during maturation by apoptosis, as they undergo positive selection for
those T cells that recognize self major histocompatibility complex molecules and
negative selection against those T cells that react to self-antigens. In healthy individ-
uals, T cells that escape thymic negative selection are usually controlled by intrinsic
(inhibitory receptors) and extrinsic (regulatory cell populations) mechanisms of tol-
erance in the periphery. In individuals genetically prone to autoimmunity, one or
several of these checkpoints are defective, resulting in expansion of self-reactive T
cells due to their exposure to self-antigens by self-antigen presenting cells (SAPCs),
that cannot be controlled by regulatory cells. Then, self-reactive T cells migrate to
their targeted tissue where cytotoxic mechanisms and uncontrolled inflammation
result in tissue damage.

The Role of Regulatory T Cells and Natural Killer Cells
Regulatory T cells (Tregs) are believed to be important mediators within the immune
system [11–15]. In fact, Tregs are central to the peripheral tolerance since they are
effective in preventing or even reversing disease, whereas autoimmunity commonly
results from the genetic absence or loss of Tregs. In autoimmunity, the main func-
tional properties of Tregs involve suppression by modulation of SAPCs maturation
or function and suppression by direct or indirect killing of SRTCs and SAPCs. In-
creasing evidence shows that Natural Killer Cells (NKCs) play a relevant role in
organic-specific and systemic autoimmune diseases [16–18]. The decreased NKC
frequency and impaired NKC cytotoxicity observed in a variety of autoimmune dis-
eases implies a protective role of NKCs in controlling autoimmunity. In fact, NKCs
may limit autoimmune responses by inhibiting the proliferation and activation of
SAPCs and SRTCs.

Tregs and NKCs constitute the great majority of immunosuppressive cells (ISCs).

Various immunotherapeutic strategies target different steps in the processes of au-
toimmunity. The ultimate goal of immunotherapy is to alter the balance of pathogenic
versus regulatory T cells to restore tolerance.

Our models focus on the cellular dynamics when an autoimmune episode occurs,
particularly on the interplay between SAPCs, SRTCs and ISCs, that can either result
in an autoimmune cascade and consequently in illness or in an aborted autoimmune
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Fig. 1 Flowchart for the models of papers [1, 2]. Cellular dynamics involving SAPCs, SRTCs,
ISCs and IL-2 cytokines

response by regulation via ISCs.When the population of IL-2 cytokines is introduced
in the model, the control of the autoimmune reaction by external drug therapy takes
part of the dynamics.

The cellular interactions among the populations considered in our models are
illustrated in the diagram of Fig. 1.

3 The Model for Autoimmune Diseases

The immune system can be regarded, at the cellular level, as a system constituted by
a large number of cells belonging to several interacting populations. In our model,
we consider three interacting cell populations pi , i = 1, 2, 3, that are involved in the
autoimmune competition. More precisely, we consider the population p1 of SAPCs,
the population p2 of SRTCs, and the population p3 of ISCs.

In simple terms, the dynamics of these populations can be described as follows.
SAPCs transport self-antigens to their encounter with SRTCs. SRTCs are activated
when they encounter a SAPC that has digested a self-antigen. ISCs regulate the
activity of SRTCs and SAPCs.



Recent Developments on the Modelling of Cell Interactions … 153

The biological system can be modelled using a kinetic theory approach described
in terms of the statistical distribution of all states possessed by each cell population.

3.1 The Kinetic Description of the Cellular Interactions

The functional state of the cells of each population is described by a positive real
variable u ∈ [0, 1], called activation variable or activity, whose biological meaning
varies from one population to another and will be specified below.

The Cellular Activity
The activity u of self-antigen presenting cells is defined as the ability to stimulate
and activate self-reactive T cells. In particular, u = 0 means that the stimulation by
SAPCs does not activate SRTCs and, therefore, does not induce an autoimmune
response.

In turn, the activity u of self reactive T cells is defined as the ability of promoting
the secretion of cytokines. In particular, u = 0 means that the SRTCs do not produce
cytokines; in other words, SRTCs are not sensitive to the stimulus by SAPCs and no
inflammatory process is triggered.

Finally, the activity u of the immunosupressive cells is defined as the ability to
inhibit the autoimmune response by either suppressing the activity of SAPCs and
SRTCs or eliminating SAPCs or SRTCs. In particular, u = 0 means that the ISCs
are neither able to inhibit the activity of SAPCs and SRTCs nor to eliminate SAPCs
or SRTCs.

The Cellular Dynamics
The interactions among cells of different populations can modify the activity of the
cells and can also modify the size of populations. When the interactions only modify
the activity of the cells, they are of conservative type, whereas when they increase
or reduce the size of the populations, they are of proliferative or destructive type,
respectively.

Based on the biological scenario presented above concerning the activity of our
populations, we consider interactions of the following type:

Conservative interactions

• ISCs–SAPCs that decrease the activity of SAPCs;
• ISCs–SRTCs that decrease the activity of SRTCs;
• SAPCs–SRTCs that increase the activity of SAPCs and also that of SRTCs;

Proliferative interactions

• SAPCs–SRTCs that increase the number of SRTCs and also that of SAPCs;
• SAPCs–ISCs that increase the number of ISCs;
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Destructive interactions

• ISCs–SAPCs that decrease the number SAPCs;
• ISCs–SRTCs that decrease the number SRTCs.

Our Assumptions
In our mathematical model, as a simplification of the biological reality, we consider
the following assumptions.

(A) Only binary interactions among cells are significant.
(B) Interactions among cells are instantaneous and homogeneous in space.
(C) The binary interactions between cells of populations p1 (SAPCs), p2 (SRTCs)

and p3 (ISCs) can change the activation of SAPCs and SRTCs as well as the
size of each population, either by creating more SAPCs, SRTCs and ISCs or
by destroying SAPCs and SRTCs. In the first case, the interactions are conser-
vative, whereas in the second case they are either proliferative or destructive
interactions.

(D) The population p3 (ISCs) is homogeneous with respect to its biological activity,
since the effect of the cellular interactions on the activity of Tregs and NKCs
(ISCs) is not considered in our model. Therefore, the distribution function of
the population p3 is independent of its functional state, that is f3 = f3(t).

The Kinetic Equations
The internal state of the biological system is described by the distribution functions
associated to the considered populations, namely fi : [0,∞] × [0, 1] → R

+, i =
1, 2, 3, with fi (t, u) giving the number of cells of population pi with activity u ∈
[0, 1] at time t ≥ 0. The expected number of cells belonging to each population pi ,
at time t ≥ 0, is then given by

ni (t) =
∫ 1

0
fi (t, u)du, i = 1, 2, 3. (1)

The evolution equations for the distribution functions fi , i = 1, 2, 3, with t ∈ R
+

and u ∈ [0, 1], are given by the following coupled system of integro-differential
equations, that describe the interactions presented above:

∂ f1
∂t

(t, u) = 2c12

∫ u

0
(u − v) f1(t, v)dv

∫ 1

0
f2(t, w)dw − c12(u − 1)2 f1(t, u)

∫ 1

0
f2(t, w)dw

+2c13 f3(t)
∫ 1

u
(v − u) f1(t, v)dv − c13u2 f1(t, u) f3(t)

+p12 f1(t, u)

∫ 1

0
f2(t, w)dw − d13 f1(t, u) f3(t), (2)

∂ f2
∂t

(t, u) = 2c21

∫ u

0
(u − v) f2(t, v)dv

∫ 1

w�
f1(t, w)dw − c21(u − 1)2

f2(t, u)

∫ 1

w∗ f1(t, w)dw + 2c23 f3(t)
∫ 1

u
(v − u) f2(t, v)dv − c23u2 f2(t, u) f3(t)
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+ p21 f2(t, u)

∫ 1

0
f1(t, w)dw − d23 f2(t, u) f3(t), (3)

d f3
dt

(t) = p31 f3(t)
∫ 1

0
f1(t, w)dw. (4)

The initial conditions for system (2)–(4) are given by

f1(0, u) = f 01 (u), f2(0, u) = f 02 (u), f3(0) = f 03 . (5)

The parameters pi j , di j and ci j in equations (2)–(4) indicate constant rates of prolifer-
ative, destructive and conservative interactions, respectively. Furthermore,w∗∈ ]0, 1[
is a parameter of the model, that is related to the tolerance of SRTCs to self-antigens.
For more details on the model, please see paper [1].

The description obtained with the kinetic system (2)–(4) is rather detailed and
reflects how the cellular interactions affect the activity of the various populations
and how they contribute to the evolution of the distribution functions fi , i = 1, 2, 3.

3.2 The Macroscopic Equations

From the kinetic equations (2)–(4), we formally derive the corresponding macro-
scopic balance equations describing the time evolution of the cellular density of each
population, namely ni (t), i = 1, 2, 3. These balance equations are obtained by suit-
able integration of the kinetic equations (2)–(4) over the biological activity variable
u ∈ [0, 1]. As expected, conservative interactions do not give any contribution to the
equations for ni (t), since they do not modify the number of cells of each popula-
tion and are lost through the integration process. Therefore, the system of ordinary
differential equations (ODEs) obtained in this way is

dn1

dt
(t) = p12n1(t)n2(t) − d13n1(t)n3(t), (6)

dn2

dt
(t) = p21n2(t)n1(t) − d23n2(t)n3(t), (7)

dn3

dt
(t) = p31n3(t)n1(t). (8)

For this system, we consider the following initial data

n1(0) = n0
1, n2(0) = n0

2, n3(0) = n0
3, with n0

i > 0 for i = 1, 2, 3. (9)

The description obtained with the balance equations (6)–(8) gives information at a
global or macroscopic scale and only reflects information concerning the changes
on the number of cells of each population.
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3.3 The Wellposedeness of the Model

In this subsection, we state the mathematical properties of the biological model
expressed both by the kinetic formulation given by system (2)–(4) and by its macro-
scopic analogue described by system (6)–(8).

These properties are important, not only from a mathematical point of view, in
order to guarantee consistency of the model, but also from the biological point of
view, to obtain solutions that are biologically significant. In particular, the positivity
and the boundedness of the solution are essential features in the present context.

Local existence of solutions is proven in paper [4] for a rather vast class of kinetic
systems with conservative, proliferative and destructive interactions. In general, the
solution does not exist globally in time, since a blow-up can occur due to the pro-
liferative interactions. However, a local result is enough when the system is solved
numerically and an approximate solution is obtained in the considered biological
context.

Theorem 1 (Local existence) Assume initial data f 0i (u) in L1[0, 1]. Then, there
exists T0>0 such that a unique positive solution to the Cauchy problem (2)–(4) exists
in L1[0, 1], for t ∈[0, T0].
On the other hand, considering local existence of solution guaranteed by Theorem 1
and assuming that the proliferation and destruction rates are constant, it can be shown
that the boundedness of the solution to the macroscopic system (6)–(8) implies the
boundedness of the L1-norm || fi (t, ·)||1. This result is proven in paper [5] and is an
immediate consequence of the positivity of the local L1−solution stated in Theorem
1. In this case, the estimates on the solution to the macroscopic system provide
a priori estimates on the solution to the kinetic system, precisely because of the
relation kinetic-macro given by Eq. (1) of the population densities ni (t) in terms of
the distribution functions fi (t, u).

Therefore, we go on to obtain the following results on the existence of a global,
positive solution of the Cauchy problem (6)–(8) and (9).

Theorem 2 (Positivity) Let n(t)=(n1(t), n2(t), n3(t)) be a solution of the Cauchy
problem (6)–(8) and (9) defined on [0, T ], 0<T <+∞. Then n1(t) > 0, n2(t) >

0, n3(t) > 0, for t ∈ [0, T ].
Theorem 3 (Global solution and asymptotic behaviour) Assume that p21< p31.
Then the Cauchy problem (6)–(8) and (9) has a unique solution n(t) = (

n1(t), n2(t),
n3(t)

)
defined on R+, satisfying the conditions

lim
t→+∞n1(t) = 0, lim

t→+∞n2(t) = 0, lim
t→+∞n3(t) = σ <+∞,

whatever are the corresponding initial data.

From the biological point of view, condition p21< p31 considered in Theorem 3 cor-
responds to assuming that the proliferation of SRTCs resulting from the encounters
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with SAPCs is dominated by the proliferation of ISCs resulting from the encounters
with SAPCs. In this case, the solution of the system does not possess blowups.

Theorems 2 and 3 have been proven by the authors in [1], extending the technique
proposed in [5] in the context of tumour dynamics. These results are crucial to assure
the consistency of themodel and also to perform numerical simulations of the system.

In conclusion, the basic information on the behaviour of the solution to the kinetic
system (2)–(4) can be “extracted” from the information concerning the solution to
the corresponding macroscopic system (6)–(8).

3.4 Numerical Solutions of the Model

We have solved numerically the kinetic system (2)–(4) by discretizing the equations
in the activation variable u and using a trapezoidal quadrature rule. The details of
the numerical scheme are given in paper [1].

We have performed several numerical tests in view of analysing different scenar-
ios, investigating some trends or reactions that are typical in autoimmune diseases
and studying the influence of certain parameters of the model on the behaviour of
the solution.

In our simulations, the choice of the parameter values is based on biological
considerations presented in the literature and summed up in Sect. 2.

The initial data are taken to be f 0i = 10−2, i = 1, 2, 3, and the values for the
parameters that are not investigated are fixed and are given by

c12 = c12 = 2, c13 = c23 = 0.01,

p21 = 19, p12 = 1, d13 = 0.45, d23 = 0.01.
(10)

In particular, we have studied a scenario describing the trend to illness and two
other scenarios in which the autoimmune reaction is controlled to a certain extent.

(a) The scenario where there is development of an autoimmune disease corresponds
to the situation inwhich the ISCs are unable to regulate the autoimmune reaction,
resulting in a full autoimmune cascade. The corresponding solution is depicted
in Fig. 2a. We can observe the mass proliferation of very active SRTCs due to
insufficient regulation by ISCs and low tolerance of SRTCs to SAPCs.

(b) The scenario where SRTCs become more tolerant to SAPCs corresponds to the
situation in which SAPCs are less efficient in increasing the activity of SRTCs.
The corresponding solution is illustrated in Fig. 2b and shows this effect. We can
observe that, in comparison with Fig. 2a, a moderate decrease in the proliferation
of very active SRTCs is observed.

(c) The scenario where there is immunosuppression of the autoimmune reaction
corresponds to the situation in which the number of ISCs produced by the bi-
ological system are enough to abort the autoimmune reaction in an efficient
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(a) Trending to illness (b) Immunotolerance (c) Immunosupression

Fig. 2 Evolution of SRTCs determined by the kinetic system (2)–(4), for (a) p31 = 20 and w� =
1/30, (b) p31 = 20 and w� = 29/30, (c) p31 = 22 and w� = 1/30

manner. The corresponding solution is shown in Fig. 2c. We can observe a very
low proliferation of active SRTCs due to an efficient regulation by ISCs.

4 The Extended Model with Immunotherapy

We have extended the model presented in Sect. 3 in order to include the effect of
immunotherapy on the autoimmune response and investigate optimal therapeutical
strategies for the treatment of autoimmune diseases. This study has been recently
developed in [2] and we present here a brief description of the relevant aspects,
concerning both the model and the obtained results.

In brief, in [2] the macroscopic model with immunotherapy is obtained by ex-
tending the balance equations (6)–(8) to include a drug therapy. The mathematical
analysis of this new model is developed and some numerical simulations are per-
formed. In particular, we have proven the existence of an optimal control and, under
certain conditions on the parameters involved in the model, we have concluded that
the optimal control is of bang bang type. This analysis completely characterizes the
optimal dosage of drug therapy.

4.1 The Model

Here, we extend the kinetic model given in [1] and written in (2)–(4) such that its
the macroscopic analogue is the macroscopic model given in [2]. In other words,
we derive a kinetic system by extending equations (2)–(4), when a fourth population
of Interleukin-2 cytokines is considered and an artificial inlet for an external drug
therapy is also considered, as obtained for the macroscopic model of paper [2].

The fourth population, namely the I -population of Interleukin-2 cytokines, is
denoted by p4, and an artificial inlet for the external drug therapy is denoted by x(t).
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The activity of I -cells is the ability of these to promote the ISCs. Moreover, I -cells
interact with ISCs resulting in the proliferation of ISCs.

The Kinetic Equations
We introduce the distribution function f4 of the I -population, and, similarly to what
we have assumed for the immunosupressive population, we also assume that f4 is
independent of the biological activity of the I -cells.

Then,wederive a kinetic systemby extending equations (2)–(4),when the external
drug therapy, x(t), is also considered, as obtained for the macroscopic model in [2].

Therefore, the kinetic equations of the new model have the form

∂ f1
∂t

(t, u) = 2c12

∫ u

0
(u−v) f1(t, v)dv

∫ 1

0
f2(t, w)dw−c12(u − 1)2 f1(t, u)

∫ 1

0
f2(t, w)dw

+ 2c13 f3(t)
∫ 1

u
(v − u) f1(t, v)dv − c13u2 f1(t, u) f3(t)

+p12 f1(t, u)

∫ 1

0
f2(t, w)dw − d13 f1(t, u) f3(t), (11)

∂ f2
∂t

(t, u) =2c21

∫ u

0
(u − v) f2(t, v)dv

∫ 1

w�
f1(t, w)dw − c21(u − 1)2 f2(t, u)

∫ 1

w∗ f1(t, w)dw + 2c23 f3(t)
∫ 1

u
(v − u) f2(t, v)dv − c23u2 f2(t, u) f3(t)

+p21 f2(t, u)

∫ 1

0
f1(t, w)dw − d23 f2(t, u) f3(t), (12)

d f3
dt

(t) = p31 f3(t)
∫ 1

0
f1(t, v)dv + p34 f3(t) f4(t), (13)

d f4
dt

(t) = x(t) − d4 f4(t), (14)

where the parameters pi j ,di j and ci j indicate, as before, constant rates of proliferative,
destructive and conservative interactions.

The initial conditions for system (11)–(14) are given by

f1(0, u) = f 01 (u), f2(0, u) = f 02 (u), f3(0) = f 03 , f4(0) = f 04 . (15)

The description obtained with the kinetic system (11)–(14) reflects how the cellular
interactions among cells affect the activity of the various populations and how they
contribute to the evolution of the distribution functions fi , i = 1, 2, 3, 4.

The Macroscopic Model
Integration of the kinetic equations (11)–(14) over the biological activity variable
u ∈ [0, 1] leads to the corresponding macroscopic balance equations. The resulting
system describes the time evolution of the cellular density of each population and is
represented by the following ODE system,
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dn1

dt
(t) = p12n1(t)n2(t) − d13n1(t)n3(t), (16)

dn2

dt
(t) = p21n2(t)n1(t) − d23n2(t)n3(t), (17)

dn3

dt
(t) = p31n3(t)n1(t) + p34n3(t)n4(t), (18)

dn4

dt
(t) = x(t) − d4n4(t), (19)

where n4(t) is the number density of the IL-2 population. The initial conditions for
the ODE system (16)–(19) are

ni (0) = n0
i > 0, for i = 1, 2, 3, 4. (20)

4.2 Mathematical Analysis and Optimal Control

The macroscopic system shows good consistency properties for what concerns the
qualitative behaviour of its solution. An optimal control problem relative to this
system can be formulated in view of simultaneously minimizing the quantity of both
the SRTCs that are produced in the body and the IL-2 cytokines that are administrated.
See paper [2] for the complete analysis.

The Wellposedness
The Cauchy problem for system (16)–(19) and (20) is studied in detail in paper [2].
Here we state the results concerning the wellposedness of the system.

Theorem 4 (Positivity) If (n1(t), n2(t), n3(t), n4(t)) is a solution to the Cauchy
problem (16)–(19) and (20) defined on the time interval [0, T ], with 0 < T < ∞,
then this solution is positive, that is n1(t) > 0, n2(t) > 0, n3(t) > 0 and n4(t) > 0,
for t ∈ [0, T ].
Proof The proof of positivity of n1(t), n2(t) and n3(t) can be carried out in a similar
way as the one presented in paper [1] for an analogous result. On the other hand,
equation (19) can be solved analytically and the proof of the positivity of n4(t) is
straightforward, since x(t) is described by a sectionally continuous positive branch
function.

Theorem 5 (Global solution and asymptotic behaviour) Suppose that the prolifer-
ative rates p21 and p31 are such that p21 < p31. Then the Cauchy problem (16)–(19)
and (20) has a unique solution

(
n1(t), n2(t), n3(t), n4(t)

)
defined on all R+. This

solution is bounded and satisfies the conditions
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lim
t→∞ n1(t) = 0, lim

t→∞ n2(t) = 0, lim
t→∞ n4(t) = 0, (21)

lim
t→∞ n3(t) = σ < +∞, (22)

whatever are the corresponding initial conditions (20).

Proof Condition (21) on n4(t) is easy to prove from the analytical solution to the
uncoupled equation (19). Furthermore, the proof of the other results for n1(t), n2(t)
and n3(t) can be obtained following the same rationale as the one used in [1] for an
analogous result.

Once again, under the assumption of constant proliferation and destruction rates, it
can be proven that the boundedness of the solution to the macroscopic system (16)–
(19) implies the boundedness of the local solution to the kinetic system (11)–(14).
Therefore, also for this model, the basic information on the behaviour of the solution
to the kinetic system (11)–(14) can be “extracted” from the information concerning
the solution to the corresponding macroscopic system (16)–(19).

The Optimal Control Problem
We study the control problem of deriving the optimal policy for IL-2 immunothera-
peutic treatment for autoimmune diseases, in view of determining an optimal exter-
nal influx of the IL-2 drug, x�(t), for the macroscopic system (16)–(19) with initial
conditions (20). The optimality criteria consists in minimizing the total number of
SRTCs over the complete treatment and, at the same time, minimizing the IL-2 drug
administration. We consider the following objective functional

J (t f ; x) =
∫ t f

0

(
β n2(t) + α x(t)

)
dt, (23)

where t f is the given final time of the complete treatment and α, β > 0 are the weight
parameters of the SRTCs and IL-2 drug administration, respectively.

The goal is to find an optimal control function x�(t), representing the optimal
treatment with IL-2, so that

J (t f ; x�) = min
{

J (t f ; x) : x ∈ X
}
, (24)

where X is the set of admissible control functions,

X =
{

x(t) : 0 ≤ x(t) ≤ 1, x is piecewise continuous, t ∈ [0, t f ]
}
. (25)

In paper [2], first we have proven the existence of a linear optimal control solution
for our problem starting from the boundedness of the solution to the macroscopic
system stated in Theorem 5. Then, we have characterized the optimal solution. The
results are as follows. See paper [2] for the proofs and other details.
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Theorem 6 (Existence of the optimal control) Consider the objective functional
J (t f ; x) given in (23) with control set X defined in (25), subject to system (16)–(19)
with initial conditions (20). There exists an optimal control x� ∈ X, such that

min
0≤x≤1

J (t f ; x) = J (t f ; x�),

if the following conditions are satisfied:

(a) the set consisting of the controls x ∈ X and corresponding state variable solu-
tions of the Cauchy problem (16)–(19) and (20) is non empty;

(b) the control set X is convex and closed;
(c) each function on the right hand side of the equations that constitute system

(16)–(19) is continuous and bounded from above by a linear function of x and
of the state variables;

(d) the integrand function of the objective functional J (t f ; x) is convex on X and
bounded from below by a linear function of x of the form c1x − c2, with c1, c2
positive constants.

Proof Statements (a) through (d) are sufficient conditions for the existence of solu-
tion to the optimal control problem, see [20]. Therefore, it is enough to prove condi-
tions (a) through (d). Condition (a) results from the boundedness of the solution to
the Cauchy problem (16)–(20) combined with a result by Lukes [21]. Condition (b)
results from the definition (25) of the control set X . Concerning condition (c), the
continuity is obvious. Then, we prove that

∣∣∣F
(

N (t), x(t)
)∣∣∣ ≤ C

(
|N (t)| + |x(t)|

)
,

where N (t) = (
n1(t), n2(t), n3(t), n4(t)

)T
, F

(
N (t), x(t)

)
is the vector formed by

the functions on the right hand side of equations (16)–(19), and C is a positive
constant that depends on the parameters pi j and on the maximum values of the state
variables. Finally, concerning condition (d), the convexity follows from the equality

J
(

t f ; (1 − p)x + py
)

= (1 − p)J
(
t f ; x

) − p J
(
t f ; y

)
,

which can be easily obtained. Additionally, we have

βn2(t) + αx(t) ≥ αx(t) ≥ αx(t) − c,

for any positive constant c, so that the boundedness condition is also verified.

Theorem 7 (Characterization of the optimal control) Given an optimal control x�

and a solution (n1, n2, n3, n4) to the corresponding state system (16)–(19), that mini-
mizes the functional (23), there exist adjoint variables ψi (t), i = 1, . . . , 4, satisfying
the following equations
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dψ1

dt
(t) = −[

p12n2(t) − d13n3(t)
]
ψ1(t) − p21n2(t)ψ2(t) − p31n3(t)ψ3(t), (26a)

dψ2

dt
(t) = −β − p12n1(t)ψ1(t) − [

p21n1(t) − d23n3(t)
]
ψ2(t), (26b)

dψ3

dt
(t) = d13n1(t)ψ1(t) + d23n2(t)ψ2(t) − [

p31n1(t) + p34 I (t)
]
ψ3(t), (26c)

dψ4

dt
(t) = −p34n3(t)ψ3(t) + d4ψ4(t), (26d)

and verifying the terminal conditions, ψ j (t f ) = 0, for j = 1, . . . , 4. Furthermore,
the optimal control is characterized as follows:

(i) If d13 �=d23 and βp34d13 p21 �= α d4 p31 d23 p12 then

x�(t) =
{
0, if α + ψ4(t) > 0,
1, if α + ψ4(t) < 0.

(ii) If α2 p12d2
4 p2

31A(t) = β2 p21 p2
34 and βp34d13 p21 = α d4 p31 d23 p12 then

x�(t) =
⎧⎨
⎩
0, if α + ψ4(t) > 0,
1, if α + ψ4(t) < 0,
f
(
n2(t), n3(t), n4(t), ψ1(t), ψ2(t)

)
, if α + ψ4(t) = 0,

(27)

where f
(
n2(t), n3(t), n4(t), ψ1(t), ψ2(t)

)
is defined by a rather long expression that

is given in Appendix A of paper [2].

Proof The proof of this theorem is rather intricate and will not be reported here. It
is given in detail in paper [2] and results from a rather careful manipulation of the
optimality conditions as well as of the switch function and its successive derivatives.

4.3 Numerical Solutions of the Model with Immunotherapy

We perform some numerical simulations for the model with immunotherapy.

The Optimal Immunotherapy
First, we determine the optimal control x∗(t) that describes the optimal treatment
protocol. With this in mind, we solve numerically the optimal control problem of
minimizing the functional (24) over the set (25), when subjected to the state equa-
tions (16)–(19) with initial conditions (20). We consider α = β = 1 for the weight
parameters of the objective functional J (t f ; x) given in (23). Moreover, we assume
the terminal time to be t f = 30, in appropriate time units, and take d4 = 1.

The optimal control problem is solved numerically by a direct sequential method.
The control problem is discretized and the resulting problem is solved using nonlin-
ear programming (NLP) techniques. When a direct sequential method is used, only
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Fig. 3 The optimal control x�(t), representing the optimal treatment protocol as given in (24)

the controls are discretized whereas the ODE system of state equations is embedded
in the NLP problem and solved by an ODE solver in order to obtain the state values
for the optimization. More in detail, the control x(t) is discretized using the sim-
plest piecewise polynomial approximations, defined by a a piecewise function with
constant branches,

x(t) = ci for t ∈ [ti−1, ti ] and i = 1, . . . , n,

so that x(t) only depends on the control parameters c1, c2, . . . , cn . Above, [ti−1, ti ]
represents a generic subinterval of the time interval [0, t f ] introduced by the dis-
cretization process. We use the Matlab� function ode15s to solve the ODE system
that is embedded in the discrete NLP problem.

The optimal control x�(t) obtained in our simulations is represented in Fig. 3, and
is of bang-bang type, since the values for the parameters used in our calculations
satisfy d13 �= d23 and βp34d13 p21 − α d4 p31 d23 p12 �= 0, see Theorem 7. We show
numerically that the bang-bang control have at most one switching time at ts = 13,
from maximum control to no control and the switch occurs before the peak of the
infection, ti = 20. The behaviour of x�(t) is in accordance with the administration of
the IL-2 drug given in the clinical trial described in paper [2], that can be found in the
medical literature. It corresponds to a situation where the IL-2 drug is administered
during a certain consecutive period of time after which the administration of the drug
is suspended.

The Immunoregulatory Effect at the Macroscopic Level
The optimal therapeutic protocol represented in Fig. 3 is shown to be effective in
controlling the proliferation of SRTCs and consequent evolution of an autoimmune
reaction. This behaviour can be observed when comparing Fig. 4b with Fig. 4a, and
is due to a more prompt response of these cells to the immunosuppressive cells that
receive an external boost from the IL-2 drug therapy.
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Fig. 4 Time evolution of SRTCs density determined by the macroscopic system (16)–(19), in the
absence of immunotherapy (a) and in presence of immunotherapy (b)

Thus, we can conclude that the optimal immunotherapy prevents the SRTCs mass
proliferation and possible autoimmune episode.

The Immunoregulatory Effect at the Cellular Level
We can observe the effect of the optimal immunotherapy at the cellular level, if we
solve numerically the kinetic system (11)–(14) when the optimal drug therapy x�

of Fig. 3 is prescribed. The description obtained in this way gives a more detailed
representation of the immunoregulatory effect than the one of Fig. 4b, because the
conservative interactions participate in the evolution showing the influence of the
cellular activity on the dynamics.

The numerical method used in the simulations is the same as the one proposed
in [1]. As initial data, we assume that the distribution functions f 0i , i = 1, 2, 3, are
of the order 10−2, as before, and f 04 is of the order 10−3. The input data for the
conservative, proliferative and destructive parameters are those given in (10), that
were used to obtain Figs. 3 and 4.

In view of estimating the effects of the conservative interactions in the evolution,
we start with the description of Fig. 5, when all conservative terms are taken to be
null.

The graph of Fig. 5 for the distribution function of the SRTCs, f2(t, u), behaves
in the same way as the graph of Fig. 4b for the number density of the SRTCs, n2(t),
which is what would be expected for this particular model, see Eq. (12).

In Fig. 6, conservative terms are included in the model, reflecting the influence
of the cell interactions on the activity of SRTCs. We are interested in analysing the
decreasing effect of the activity of the SRTCs caused by the conservative interactions
with ISCs. Therefore we vary the value of the corresponding conservative rate, by
considering c23 = 0.01 in diagram (a), c23 = 0.03 in diagram (b) and c23 = 0.2 in
diagram (c). We can observe that the mass production of SRTCs with high activity
decreases when c23 increases, and becomes residual when c23 takes the highest value.
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Fig. 5 Dynamic response of self-reactive T cells to the optimal control of non-conservative inter-
actions. Evolution determined by the kinetic system (11)–(14) without conservative interactions

Fig. 6 Conservative dynamic response of self-reactive T cells to the optimal control, varying the
conservative rate c23. Evolution determined by the kinetic system (11)–(14), with (a) c23 = 0.01,
(b) c23 = 0.03, (c) c23 = 0.2

In fact, the peak in the graph of SRTCs moves from a region of high activity in (a)
to a region of almost vanishing activity in (c).

5 Conclusion and Future Projects

Anewmathematical model, based on the Boltzman-like kinetic theory, describing an
autoimmune response against self-antigens, was developed in [1]. In this model three
of the main cell populations involved in the development of an autoimmune reaction
are considered, namely, self-antigen presenting cells, self-reactive T cells and im-
munosupressive cells, such as Tregs and NKCs. The interactions between these cell
populations are constructed in the model based on biological considerations appear-
ing in the literature. The model is characterized by a system of integro-differential
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equations. The mathematical analysis showing existence, uniqueness, positivity and
boundedness of the solution of this system was performed in [1].

This analysis is fundamental for the task of generating numerical simulations
of the model that translate, as realistically as possible, the behaviour of the cells
involved in autoimmunity and that are considered in this work. Consequently, it is
possible to study the sensitivity of the model to certain parameters appearing in the
equations. The effect of such parameters on the model can be interpreted as the
effect of the behaviour and characteristics of the cells involved on the evolution of
the autoimmune reaction.

The model proposed in [1] is reviewed in these proceedings and some numerical
simulations, different from those performed in [1], are also described and interpreted
here, in line with the objectives of the present work.

In paper [2], the macroscopic analogue of the kinetic model given in [1] is ex-
tended to include a fourth population of IL-2 cytokines and an artificial inlet of these
cytokines representing an external drug therapy. Again, an analytical analysis show-
ing existence, uniqueness, positivity and boundedness of the solution to this system
was performed [2]. This analysis allows us to proceed in determining the optimal
policy for IL-2 immunotherapeutic treatment for autoimmune disease, which reduces
the number of self-reactive T cells while at the same time minimizing the artificial
inlet of IL-2.We can then perform numerical simulations for themodel and explicitly
determine the optimal drug therapy.

In the work presented here, we have gone a little further in the study of our model
by presenting a kinetic system whose macroscopic analogue is the model given in
[2]. This kinetic system allows us to observe the result of the optimal drug therapy
with IL-2 at the cellular level. This is ourmain new contribution in these proceedings.

Themodels given in [1, 2] describe the cellular interactions and their consequences
when a single autoimmune reaction occurs. However, since most autoimmune dis-
eases are chronic conditions, the next step in our study is to introduce recurrence in
the mathematical model. We have, in fact, in a more recent work, introduced recur-
rency in our macroscopic model described by an oscillatory behaviour of the solution
and illustrating the relapse-remission pattern that is typical of some autoimmune dis-
eases.

In this new mathematical model, the macroscopic system of ODEs admits Hopf
bifurcations and therefore shows the desired oscillatory pattern. This is the topic of
recently developed work whose results can be found in [19].

Acknowledgements This work is partially supported by the Portuguese FCT Projects UIDB/
00013/2020 and UIDP/00013/2020 of CMAT-UM.
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Geometrical Structures of the
Instantaneous Current and Their
Macroscopic Effects: Vortices and
Perspectives in Non-gradient Models

Leonardo De Carlo

Abstract First we discuss the definition of the instantaneous current in interacting
particle systems, in particular in mass-energy systems and we point out its role in the
derivation of the hydrodynamics. Later we present some geometrical structures of
the instantaneous current when the rates of stochastic models satisfy a very common
symmetry. This structures give some new ideas in non-gradientmodels and show new
phenomenology in diffusive interacting particle systems. Specifically, we introduce
models with vorticity and present some new perspectives on the link between the
Green-Kubo’s formula and the hydrodynamics of non-gradient models.

Keywords Stochastic lattice gases · Non-gradient models · Discrete Hodge
decomposition

AMS 2010 Subject Classification: 60K35 · 82C22 · 82C20

1 Introduction and Results

When many interacting particles are modelled by Newton’s equations the rigorous
derivation of hydrodynamics equations, consisting in some PDEs and describing
the evolution of thermodynamic quantities, is often a too optimistic programme,
mainly because of the lack of good ergodic property of the system. To overcome
the mathematical problem two assumptions are traditionally made: or modelling
the problem with a stochastic microscopic evolution or assuming a low density of
particles. In the present framework we are interested in the first assumption and
we are not having a complete rigorous point of view. For a rigorous and didactic
treatment traditional references are [14, 18]. The microscopic dynamics consists of
randomwalks of particles on a lattice VN that are constrained to some rule expressing
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the local interaction, these are the so-called interacting particle systems introduced
by Spitzer [17].

In this paper we focus on the instantaneous current which is the bridge from
the microscopic description to the macroscopic description of interacting particle
systems. In Sect. 2 we give some definitions that we will use trough all the paper.
In Sects. 3 and 4 we present the models and describe the instantaneous current, in
particular its definitions it is clarified in in mass-energy systems like KMP [6, 13]. In
Sect. 5 we recall the functional Hodge decomposition obtained in [5] in dimension
one and two and we apply it to some interacting particle models. The expert reader
can skip the first four sections and Sect. 6, where well known notions of the literature
are presented with a general flavour, and refer these sections just for notation if
necessary.

In the work the attention is on diffusive models. Some new models with vorticity
are introduced in Sect. 8. After reviewing the qualitative theory of scaling limits in
diffusive systems in Sect. 7, in Sect. 8, for the first time we study the macroscopic
consequences of this decomposition. This leads us to some new phenomenology in
particle systems, that is we show in a non-rigorous way that the hydrodynamics of
the macroscopic current can present zero divergence terms that are not observed in
the hydrodynamics of the density. This extend the usual Fick’s law (58) to the a new
picture (68) where the diffusion matrix is a positive non-symmetric matrix.

In diffusive non gradient systems a derivation of the hydrodynamics with an
explicit diffusion coefficient is an open problem. The relative PDEs are in term of
a variational expression of the diffusion coefficient equivalent to the Green-Kubo’s
formula, see [15, 18]. In the last Sect. 9, we try to give some perspectives coming from
our Hodge decomposition. We give a possible explicit description of the minimizer
of Green-Kubo’s formula using our functional Hodge decomposition and describe a
scheme that connects this minimizer with an explicit hydrodynamics.

2 Definitions

Interacting particle systems are stochasticmodels evolving on a lattice along a contin-
uous time Markov dynamics. For the purposes of the paper, we are going to consider
only periodic boundary conditions for the lattice where particles move, i.e. the set
of vertices VN of the lattice will be the n-dimensional discrete torus Tn

N = Z
n/NZ

n

or Tn
ε = εZn/NZ

n , where ε = 1/N along the space scale we want to consider. We
denote with EN the set of all couples of vertices {x, y} of VN such that y = x ± δ ei
where ei is the canonical versor in Zn along the direction i and δ is equals to 1 on Tn

N
and to 1/N onTn

ε . The elements ofEN are named non-oriented edges or simply edges.
In this way we have an non-oriented graph (VN ,EN ). To every non-oriented graph
(VN ,EN ) we associate canonically an oriented graph (VN , EN ) such that the set of
oriented edges EN contains all the ordered pairs (x, y) such that {x, y} ∈ EN . Note
that if (x, y) ∈ EN then also (y, x) ∈ EN . If e = (x, y) ∈ EN we denote e− := x
and e+ := y and we call e := {x, y} the non-oriented edge.
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The microscopic configurations of our particle models are given by the collection
of variables η(x) representing the number of particles, the energy or mass at x ∈ VN

along the model. When the variables η(x) are discrete we interpret them as number
particles and when continuous as mass-energy. Calling � the state space at x we
define the configuration state space as �N := �VN . The microscopic dynamics is a
Markov process {ηt }t∈R where particles or masses interact along rules encoded in
the generator LN , i.e.

LN f (η) =
∑

η′∈�N

c(η, η′)[ f (η′) − f (η)], (1)

where f is an observable and c(η, η′) the transition rates from η to η′.
Let τz be the shift by z on Z

n defined by the relation τzη(x) := η(x − z) with
z ∈ Z

n and for a function h : η → h(η) ∈ Rwe define τzh(η) := h(τ−zη), moreover
for a domain B ⊆ VN we define τz B := B + z. A function h : �N → R is called
local if it depends only trough the configuration in a finite domain B ⊂ VN denoted
D( f ). Let [·]+ be the positive part function.

3 Particle Models and Instantaneous Current

We treat only nearest neighbour conservative dynamics, that is (1) becomes

LN f (η) =
∑

(x,y)∈EN

cx,y(η)
(
f (ηx,y) − f (η)

)
, ηx,y(z) :=

⎧
⎨

⎩

η(x) − 1 if z = x
η(y) + 1 if z = y
η(z) if z �= x, y

.

(2)
We study translational covariant models, i.e. cx,x±e(i) (η) = τxc0,±e(i) (η) ∀x ∈ VN .

3.1 Exclusion Process and the 2-SEP

In an exclusion process particles move according to a conservative dynamics of
independent random walks with the exclusion rule that there cannot be more than
one particle in a single lattice site (hard core interaction). The rates of (2) have the
general form

cx,y(η) = η(x)(1 − η(y))̃cx,y(η), (3)

where c̃x,y(η) is the jump rates when η has a particle in x and an empty site in y.
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The next example of (2) is the 2-SEP (2-simple exclusion process), in this model
the interaction is simply hardcore but in every site there can be at most 2 particles.
The state space is �N = {0, 1, 2} and the dynamics is defined by

L 2-SEP
N f (η) =

∑

(x,y)∈EN

cx,y(η)
(
f (ηx,y) − f (η)

)
, cx,y(η) = χ+(η(x))χ−(η(y)),

(4)
where χ+(α) = 1 if α > 0 and zero otherwise while χ−(α) = 1 if α < 2 and zero
otherwise.

3.2 Instantaneous Current in Particle Systems

In interacting particle systems there are deep underlying geometrical structures that
reflects in the hydrodynamics of lattice models as we will discuss later, see also [5].
The basis is the fact that the instantaneous current is a discrete vector field and closely
related to a microscopic mass conservation law leading to the hydrodynamics.

Definition 1 A discrete vector field is a function ϕ : EN → R that is antisymmetric,
i.e. ϕ(x, y) = −ϕ(y, x) for any (x, y) ∈ EN .

The instantaneous current for our particle models is defined as

jη(x, y) := cx,y(η) − cy,x (η) , (5)

which is a discrete vector field for each fixed configuration η. The intuitive interpre-
tation of the instantaneous current is the rate at which particles cross the bond (x, y).
Let Nt (x, y) be the number of particles that jumped from site x to site y up to time
t . The current flow across the bond (x, y) up to time t is defined as

Jt (x, y) := Nt (x, y) − Nt (y, x) . (6)

This is a discrete vector field (Jt (x, y) = −Jt (y, x)) depending on the trajectory
{ηt }t . Between the instantaneous current jη(x, y) and the current flow Jt (x, y) there
is a strict connection given by the key observation (see for example [18] Sect. 2.3 in
part II) that

Mt (x, y) = Jt (x, y) −
∫ t

0
jη(s)(x, y)ds (7)

is a martingale. This allows to treat the difference between Jt (x, y) and the integral∫ t
0 ds jη(s)(x, y) as a microscopic fluctuation term. It also gives a more physical
definition of jη(x, y) as follows. Consider an initial configuration η0 = η, the explicit
expression of the instantaneous current can be defined as
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jη(x, y) := lim
t→0

E
η(Jt (x, y))

t
. (8)

The expectation isEη(Jt (x, y)) = ∫
P

η(d{ηt }t )Jt (x, y), where the integration is over
all trajectories {ηt }t starting from η at time 0 and P

η the probability induced by the
Markov process. For a trajectory {ηt }t the probability to observe more than one jump
goes like O(t2), then it is negligible since we are interested in an infinitesimal time
interval. Since c(η, η′) = lim

t→0

P
η(ηt=η′)

t = lim
t→0

pt (η,η′)
t , where pt (η, η′) are the transition

probability, when t goes to zero Jt (x, y) takes value+1 if a jump from x to y happens,
−1 in the opposite case and 0 in the other cases. So the current defined in (8) becomes
jη(x, y) = cx,y(η) − cy,x (η) as in (5).

The discrete divergence for a discrete vector field ϕ on EN is ∇ · ϕ(x) :=∑
y∼x

ϕ(x, y), where the sum is on the nearest neighbours y ∼ x of x . For conve-

nience of notation, we will use the symbol ∇· both for the discrete case and the
continuous one, therefore we recommend to the reader to pay attention about this.
The local microscopic conservation law of the number of particles is then given by

ηt (x) − η0(x) + ∇ · Jt (x) = 0. (9)

Using (7) in (9) we get

ηt (x) − η0(x) +
∫ t

0
ds ∇ · js(x) + ∇ · Mt (x) = 0. (10)

We can deduce that at the equilibrium, that is when for a measure μN on �N

the detailed balance condition is true, i.e. μN (η)c(η, ηx,y) = μN (ηx,y)c(ηx,y, η)

for all (x, y) ∈ EN , the average flow E
η
μN

(Jt (x, y)) is constantly zero, where the
subscriptμN indicates the average respect to the equilibriummeasureμN . For a small
time interval 
t from (7), (8) and the detailed balance we have E

η
μN

(J
t (x, y)) ∼
EμN ( jη(x, y))
t = 0. Since this is true for any time interval 
t and the current
flow Jt (x, y) is additive we conclude that Eη

μN
(Jt (x, y)) = 0. More generally for a

stationary measure μN , that is μN (LN f ) = 0 for any f , we have that

E
η
μN

(Jt (x, y)) = EμN ( jη(x, y))t. (11)

Remark 1 For a translational covariant model, i.e. cx,y(η) = cx+z,y+z(τzη) for any
z ∈ VN , then the instantaneous current is translational covariant too, namely it satis-
fies the symmetry relation

jη(x, y) = jτzη(x + z, y + z). (12)



174 L. De Carlo

4 Energy-Mass Models

In this section we adapt the concepts of the previous section to the continuous case,
where we consider models that exchange continuous quantity between sites. The
lattice variables are interpreted as energy or mass along the context and the config-
uration is denoted with ξ = {ξ(x)}x∈VN . The first model to be described is the most
famous model of this class, namely the Kipnis-Marchioro-Presutti (KMP) model
[13].

4.1 KMP Model and Generalization, Dual KMP, Gaussian
Model

TheKMPdynamics is a generalized stochastic lattice gas onwhich energies ormasses
are associated to oscillators at the vertices VN . The stochastic evolution is of the
type

LN f (ξ) =
∑

{x,y}∈E N

L{x,y} f (ξ) , with (13)

L{x,y} f (ξ) :=
∫ ξ(x)

−ξ(y)

dq

ξ(x) + ξ(y)

[
f (ξ − q

(
εx − εy

)
) − f (ξ)

]
. (14)

where εx = {εx (y)}y∈VN
is the configuration of mass with all the sites different from

x empty and having unitary mass at site x , this means that εx (y) = δx,y where δ is the
Kronecker symbol. Formula (14) define the model as a uniform distributed random
current model.

The dynamics (14) can be generalized substituting the uniform distribution on
[−ξ(y), ξ(x)] for a different probabilitymeasure (or just positivemeasure)�ξ

x,y(dq),
i.e.

L{x,y} f (ξ) :=
∫

�ξ
x,y(dq)[ f (ξ − q

(
εx − εy

)
) − f (ξ)

]
(15)

with the symmetry �
ξ
x,y(q) = �

ξ
y,x (−q) so that (13) is a sum over unordered edges.

When considering a discrete state space, a natural choice for �
ξ
x,y(dq) in (15) is the

discrete uniform distribution on the integer points in [−ξ(y), ξ(x)]. This means that
if ξ is a configuration of mass assuming only integer values then

�ξ
x,y(dq) = 1

ξ(x) + ξ(y) + 1

∑

i∈[−ξ(y),ξ(x)]
δi (dq) (16)

where δi (dq) is the deltameasure at i and the sum is over the integer values belonging
to the interval. This is exactly the dual model of KMP [13] called also KMPd.
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Another interesting model could be the following Gaussian model. In this case
the interpretation in terms of mass is missing since the variables can assume also
negative values and it could be interpreted as a charge model. The bulk dynamics is
defined by a distribution of current having support on all the real line

�ξ
x,y(dq) = 1√

2πγ 2
e
−

(
q− (ξ(x)−ξ(y))

2

)2

2γ 2 dq . (17)

4.2 Weakly Asymmetric Energy-Mass Models

Weconsider dynamics perturbed by a space and time dependent discrete external field
F defined as follows. Let F : Tn → R

n be a smooth vector field with components
F(x) = (F1, . . . , Fn), describing the force acting on the masses of the systems. We
associate to F a discrete vector field F(x, y) defined by

F(x, y) =
∫

(x,y)
F(z) · dz, (18)

(x, y) is an oriented edge and the integral is a line integral that corresponds to the
work done by the vector field F when a particle moves from x to y. So we think
about F(x, y) as work done per particle. We want to change the random distribution
(15) of the current on each bond according to a perturbed measure �F, that is

L F{x,y} f (ξ) :=
∫

�ξ,F
x,y (dq)

[
f (ξ − q

(
εx − εy

)
) − f (ξ)

]
, �ξ,F

x,y (dq) = �ξ
x,y(dq)e

F(x,y)
2 q .

(19)
The effect of an external field is modelled by perturbing the rates and giving a
net drift toward a specified direction. When the size of |y − x | is of order 1/N
we obtain a weakly asymmetric model, the discrete vector field (18) is of order
1/N too and the hydrodynamics is studied considering a perturbative expansion of
�

ξ,F
x,y (dq) for the orders thatwill give amacroscopic effect.Wewill see that forweakly

asymmetric diffusive models this expansion is necessary up to the order two. If
F = −∇H is a gradient vector field, then F(x, y) = H(x) − H(y) and �

ξ,F
x,y (dq) =

�
ξ
x,y(dq)e(H(x)−H(y))q .
By the symmetry of the measure � and the antisymmetry of the discrete vector

fieldFwe have that�ξ,F
x,y (q) = �

ξ,F
y,x (−q) andwe can define the generator considering

sums over unordered bonds

LN f (ξ) =
∑

{x,y}∈E N

L F

{x,y} f (ξ). (20)
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4.3 Instantaneous Current of Energy-Mass Systems

Here we adapt the definition of instantaneous current to the formalism of the inter-
acting nearest neighbour energy-mass models. The generator is (19), the case F = 0
is treated as a subcase and we omit the index when the external field is zero. The
instantaneous current for the bulk dynamics is defined as

jFξ (x, y) :=
∫

�ξ,F
x,y (dq)q . (21)

Its interpretation is the rate at which masses-energies cross the bond (x, y) and it
is still a discrete vector field. The current flow now is indicated with Jt (x, y) and
it is the net total amount of mass-energy that has flown from x to y in the time
window [0, t]. It can be defined as sum of all the differences between the mass-
energy measured in x before and after of every jump on the bond {x, y}. Let τi be
the time of the i th jump on the bond {x, y} for some i , we write the current flow as
follows

Jt (x, y) :=
∑

τi :τi∈[0,t]
Jτi (x, y) , (22)

where Jτ (x, y) is the present flow defined as the current flowing from x to y jump
time τ

Jτ (x, y) := lim
h↓0 ξτ−h(x) − lim

h↓0 ξτ+h(x). (23)

Defining Jτ (y, x) := limh↓0 ξτ−h(y) − limh↓0 ξτ+h(y), the flow Jt (x, y) is still
an anti-symmetric vector field depending on the trajectory {ξt }, i.e. Jτ (y, x) :=
−Jτ (x, y). As in the particles case Jt (x, y) is a function on the path space, while
the instantaneous current jFξ (x, y) is a function on the configuration space and the
difference

Mt (x, y) = Jt (x, y) −
∫ t

0
ds jFξ(s)(x, y). (24)

is a martingale. Repeating what we did in Sect. 3.2 (with a formalism suitable to
energy-mass models) the instantaneous current (21) can be obtained as

jFξ (x, y) := lim
t→0

E
ξ (Jt (x, y))

t
. (25)

As we did in Sect. 3.2 from the local discrete conservation of the mass-energy
ξt (x) − ξ0(x) + ∇ · Jt (x) = 0 we have

ξt (x) − ξ0(x) +
∫ t

0
ds ∇ · jFξ(s)(x) + ∇ · Mt (x) = 0. (26)
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The microscopic fluctuation (24) has mean zero and (11) can be obtained similarly to
conclude that the average currents are zero in the equilibrium case, i.e. when detailed
balance conditions (DBC) hold.

The natural scaling limit for this class of processes is the diffusive one, where the
rates have to be multiplied by N 2 to get a non trivial scaling limit. So, instead of (24),
we will consider in the macroscopic theory the speeded up martingale Mt (x, y) =
Jt (x, y) − N 2

∫ t
0 ds jFξ(s)(x, y).

Example 1 For example the instantaneous current across the edge (x, y) for the
KMP process is given by

∫ ξ(x)

−ξ(y)

qdq

ξ(x) + ξ(y)
= 1

2
(ξ(x) − ξ(y)) . (27)

This computation shows that the KMP model is of gradient type, see definition (35),
with h(ξ) = − ξ(0)

2 . Also the KMPd is gradient with respect to the same function h.

Example 2 For the weakly asymmetric KMP in the case of a constant external field
F = E in the direction from x to y the discrete field F(x, y) is given by E/N on Tn

ε

and

�ξ,E
x,y (q) = 1 + E

N q

ξ(x) + ξ(y)
+ o(N )

Then the instantaneous current is

j Eξ (x, y) =
∫ ξ(x)

−ξ(y)
�ξ,E
x,y (q)qdq =

2N

E(ξ(x) + ξ(y))

[
e

E
2N ξ(x) + e− E

2N ξ(y)ξ(y) − 2
e

E
2N ξ(x) − e− E

2N ξ(y)

E

]
=

= 1

2

(
ξ(x) − ξ(y)

) + E

N
6
[
ξ(x)2 + ξ(y)2 − ξ(x)ξ(y)

] + o(N ) . (28)

The hydrodynamic behavior of the model under the action of an external field in
the weakly asymmetric regime, i.e. when the external field E is of order 1/N , is
determined by the first two orders in the expansion (28). In particular any perturbed
KMPmodel having the same expansion as in (28) will have the same hydrodynamics.

While for the KMPd model we get

j Eξ (x, y) = 1

2

(
ξ(x) − ξ(y)

) + E

N
12
[
2ξ(x)2 + 2ξ(y)2 − 2ξ(x)ξ(y) + 3ξ(x) + 3ξ(y)

] + o(N ) .

(29)
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5 Discrete Hodge Decomposition in Interacting Particle
Systems

In the first section we defined the graph (VN ,EN ). Now we enter into the detail of
the discrete mathematics we need to study the geometrical structures of the current.
We consider the case when the graph (VN ,EN ) is on T

2
N .

A sequence (z0, z1, . . . , zk) of elements of VN such that (zi , zi+1) ∈ EN , i =
0, . . . k − 1, is called an oriented path, or simply a path. A cycle C = (z0, z1, . . . , zk)
is a path with distinct vertices except z0 = zk and it is defined as an equivalence
class modulo cyclic permutations. If C is a cycle and there exists an i such that
(x, y) = (zi , zi+1) we write (x, y) ∈ C . Likewise if there exists an i such that x =
zi we write x ∈ C . A discrete vector field ϕ on (VN , EN ) is a map ϕ : EN → R

such that ϕ(x, y) = −ϕ(y, x). A discrete vector field is of gradient type if there
exists a function h : VN → R such that ϕ(x, y) = [∇h](x, y) := h(y) − h(x). The
divergence of a discrete vector field ϕ at x ∈ VN is defined by

∇ · ϕ(x) :=
∑

y : {x,y}∈E N

ϕ(x, y) . (30)

We call �1 the |EN |-dimensional vector space of discrete vector fields. We endow
�1 with the scalar product

〈ϕ,ψ〉 := 1

2

∑

(x,y)∈EN

ϕ(x, y)ψ(x, y) , ϕ, ψ ∈ �1 . (31)

We recall briefly theHodgedecomposition for discrete vectorfields.Wecall�0 the
collection of real valued function defined on the set of vertices�0 := {g : VN → R}.
Finally we call �2 the vector space of 2-forms defined on the faces of the lattice Z2

N .
Let us define this precisely. An oriented face is for example an elementary cycle in
the graph of the type (x, x + e(1), x + e(1) + e(2), x + e(2), x) . In this case we have
an anticlockwise oriented face. This corresponds geometrically to a square having
vertices x, x + e(1), x + e(1) + e(2), x + e(2) plus an orientation in the anticlockwise
sense. The same elementary face can be oriented clockwise and this corresponds to the
elementary cycle (x, x + e(2), x + e(1) + e(2), x + e(1), x). If f is a given oriented
face we denote by − f the oriented face corresponding to the same geometric square
but having opposite orientation. A 2-form is a map ψ from the set of oriented faces
FN toR that is antisymmetric with respect to the change of orientation, i.e. such that
ψ(− f ) = −ψ( f ). The boundary δψ of ψ is a discrete vector field defined by

δψ(e) :=
∑

f : e∈ f

ψ( f ) . (32)
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Since a face is a cycle the meaning of e ∈ f has been just discussed above. Note
that (32) is a discrete orthogonal gradient, the orthogonal gradient ∇⊥ f of a smooth
function f is defined as (−∂y f, ∂x f ). In higher dimension this a discrete curl.

By construction∇ · δψ = 0 for anyψ . The 2-dimensional discrete Hodge decom-
position is written as the direct sum

�1 = ∇�0 ⊕ δ�2 ⊕ �1
H , (33)

where the orthogonality is with respect to the scalar product (31). The discrete vector
fields on ∇�0 are the gradient ones. The dimension of ∇�0 is N 2 − 1. The vector
subspace δ�2 contains all the discrete vector fields that can be obtained by (32) from
a given 2-form ψ . The dimension of δ�2 is N 2 − 1. Elements of δ�2 are called
circulations. The dimension of �1

H is simply 2. Discrete vector fields in �1
H are

called harmonic. A basis in �1
H is given by the vector fields ϕ(1) and ϕ(2) defined by

ϕ(i)
(
x, x + e( j)

) := δi, j , i, j = 1, 2 . (34)

Given a vector field ϕ ∈ �1, we write ϕ = ϕ∇ + ϕδ + ϕH to denote the unique
splitting in the three orthogonal components. This decomposition can be com-
puted as follows. The harmonic part is determined writing ϕH = c1ϕ(1) + c2ϕ(2)

with The coefficients ci determined by ci = 1
N 2

∑
x∈VN

ϕ
(
x, x + e(i)

)
. To deter-

mine the gradient component ϕ∇ we need to determine a function h for which
ϕ∇(x, y) = [∇h](x, y) = h(y) − h(x). This is done by taking the divergence on
both side of ϕ = ϕ∇ + ϕδ + ϕH and obtaining the h solving the discrete Poisson
equation ∇ · ∇h = ∇ · ϕ. The remaining component ϕδ is computed just by differ-
ence ϕδ = ϕ − ϕ∇ − ϕH . We refer to [4, 10] for a version of discrete calculus with
cubic cells and to [8] for a version of discrete calculus with simplexes.

Fig. 1 On discrete two
dimensional torus, given
(x, y) = e we draw the faces
f −(e) and f +(e)
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Given an oriented edge e or an oriented face f we denote respectively by e, f the
corresponding un-oriented edge and face. Note that both f and − f are associated
with the same un-oriented face f. Given an oriented edge e ∈ EN of the lattice there is
only one anticlockwise oriented face to which e belongs that we call it f +(e). There
is also an unique anticlockwise face, that we call f −(e), such that e ∈ − f −(e) (see
Fig. 1).

It is useful to define τf for an un-oriented face f. If f = {x, x + e(1), x + e(2), x +
e(1) + e(2)} then we define τf := τx . For e = {x, x + e(i)}we define τe := τx . We use
also the notation f � for an anticlockwise face and f � for a clockwise one.

5.1 Functional Discrete Hodge Decomposition and Lattice
Gases

Arelevant notion in the derivation of the hydrodynamic behavior for diffusive particle
systems is the definition of gradient particle system. A particle system is called of
gradient type if there exists a local function h such that

jη(x, y) = τyh(η) − τxh(η) for all (η, (x, y)) ∈ (�N , EN ). (35)

The relevance of this notion is on the fact that the proof of the hydrodynamic limit
for gradient systems is extremely simplified. Moreover for gradient and reversible
models it is possible to obtain explicit expressions of the transport coefficients.

Here we show that (35) is a subcase of general geometrical structures for the
instantaneous current. In next sections, we will try to understand the consequences
of these structures in the hydrodynamic limits and how it could be useful in under-
standing the hydrodynamics of non-gradient models. We present a functional Hodge
decomposition of translational covariant discrete vector fields. This means vector
fields jη(x, y) depending on the configuration η ∈ �N and satisfying (12). Vector
fields of the form (35) play the role of the gradient vector fields. Circulations will
also be suitably defined in the context of particle systems.

5.2 The One Dimensional Case

On the one dimensional torus VN , we have the following theorem.

Theorem 1 Let jη be a translational covariant discrete vector field. Then there exists
a function h(η) and a translational invariant function C(η) such that

jη(x, x + 1) = τx+1h(η) − τxh(η) + C(η) . (36)

The function C is uniquely identified and coincides with
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C(η) = 1

N

∑

x∈VN

jη(x, x + 1) . (37)

The function h is uniquely identifiedup toanarbitrary additive translational invariant
function and coincides with

h(η) =
N−1∑

x=1

x

N
jη(x, x + 1) . (38)

Proof The basic idea of the theorem is the usual strategy to construct the potential
of a gradient discrete vector field plus a subtle use of the translational covariance of
the model. For the details of the proof see [5].

Observe that a one dimensional system of particles is of gradient type (with
a possibly not local h) if and only if C(η) = 0. This corresponds to say that for
any fixed configuration η then jη(x, y) is a gradient vector field. This was already
observed in [2, 15]. Now we compute the decomposition (36) in some examples.
Later we will discuss how it can be related to the hydrodynamics of non-gradient
systems.

Example 3 On the one-dimensional discrete torus, the symmetric exclusion process
with rates cx,x+1(η) = η(x)(1 − η(x + 1))[1 + αη(x − 1)] and cx+1,x (η) = η(x +
1)(1 − η(x))[1 + αη(x − 1)], with the constant α ∈ (0, 1), is reversible with respect
to the Bernoulli measure. This is a non-gradient systems, expected to have a diffusive
scaling limits, where the instantaneous current is given by

jη(x, x + 1) = (η(x) − η(x + 1)) + (η(x) − η(x + 1))αη(x − 1). (39)

Therefore its functional Hodge decomposition (36) is

h(η) = −η(0) +
N−1∑

x=1

x

N
(η(x) − η(x + 1))αη(x − 1), C(η) =

∑

x∈VN

x

N
(η(x) − η(x + 1))αη(x − 1).

(40)

Example 4 (The 2-SEP) The model we are considering is the 2-SEP, see its defini-
tion in Sect. 3.1. We denote by D±

η (x, x + 1) the local functions associated with the
presence on the bond (x, x + 1) of what we call respectively a positive or negative
discrepancy. More precisely D+

η (x, x + 1) = 1 if η(x) = 2 and η(x + 1) = 1 and
zero otherwise.Wehave instead D−

η (x, x + 1) = 1 ifη(x + 1) = 2 andη(x) = 1 and
zero otherwise. We define also Dη := D+

η − D−
η . The instantaneous current across

the edge (x, x + 1) associated with the configuration η is

jη(x, x + 1) := χ+(η(x)) − χ+(η(x + 1)) + Dη(x, x + 1). (41)

For this specific model formulas (37) and (38) become
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h(η) = −χ+(η(0)) +
N−1∑

x=1

x

N
Dη(x, x + 1), C(η) = 1

N

∑

x∈VN

Dη(x, x + 1). (42)

Remark 2 Both formulas (39) and (41) arewritten in the form jη(x, y) = j hη (x, y) +
j aη (x, y), namely they are given by the sum of a local gradient current j hη (x, y) =
τyh(η) − τxh(η) and a single net contribution j aη (x, y) to the harmonic function
C(η). We will refer to j aη (x, y) as single harmonic contribution on (x .y). In Sect. 9,
we will discuss that we think from this way of rewriting the current it has to start
both the study of an explicit hydrodynamics for the case of non-gradient diffusive
model and the computation of Green-Kubo’s formula.

Our decomposition ismotivated by the study of diffusivemodelswhere the current
cannot bewritten in the gradient form (35), but it can be computed also in not diffusive
models when the hypothesis of theorem (1) hold. For example for the asymmetric
simple exclusion process it is as follows.

Example 5 (ASEP) The asymmetric simple exclusion process is characterized by
the rates cx,x+1(η) = pη(x)(1 − η(x + 1)) and cx,x−1(η) = qη(x)(1 − η(x − 1)).
Given a configuration of particles η ∈ �, we call C(η) the collection of clusters of
particles that is induced on VN . A cluster c ∈ C(η) is a subgraph of (VN ,EN ). Two
sites x, y ∈ VN belong to the same cluster c if η(x) = η(y) = 1 and there exists an
un-oriented path (z0, z1, . . . , zk) such that η(zi ) = 1 and (zi , zi+1) ∈ EN . Given a
cluster c ∈ C we call ∂ l c and ∂r c ∈ VN respectively the first element on the left of
the leftmost site of c and the rightmost one. The decomposition (36) holds with

h(η) = 1

N

∑

c∈C(η)

[
p∂r c − q∂ l c

]
, C(η) = (p − q) |C(η)|

N
. (43)

where |C(η)| denotes the number of clusters.

5.3 The Two Dimensional Case

On the two dimensional torus VN the decomposition is as follows.

Theorem 2 Let jη be a covariant discrete vector field. Then there exist four functions
h, g,C (1),C (2) on configurations of particles such that for an edge of the type e =
(x, x ± e(i)) we have

jη(e) = [
τe+h(η) − τe−h(η)

] + [
τf+(e)g(η) − τf−(e)g(η)

] ± C (i)(η) . (44)

The functions C (i) = 1
N 2

∑
x∈VN

jη(x, x + e(i)) are translational invariant and uniquely

identified. The functions h and g are uniquely identified up to additive arbitrary
translational invariant functions.
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Proof see [5].

We remark that the proof in [5] is constructive, that is the function h(η), g(η)

and C (i)(η) have explicit expressions. In analogy to gradient systems we can say a
particle system is of circulation type when there exist a local function g such that

jη(e) = τf+(e)g(η) − τf−(e)g(η), (45)

for all edges e ∈ EN and η ∈ �N . We will see that for these systems the hydro-
dynamics can be treated with the same method of gradient systems. In particular
later in Sect. 8 we study the scaling limits of systems where gradient and circulation
dynamics are superposed. Now we introduce some examples of this kind.

Example 6 (A non gradient lattice gas with local decomposition) We construct a
model of particles satisfying an exclusion rule, with jumps only trough nearest neigh-
bour sites and having a non trivial decomposition of the instantaneous current (44)
with C (i) = 0 and h and g local functions. The functions h and g have to be chosen
suitably in such a way that the instantaneous current is always zero inside cluster
of particles and empty clusters and has to be always such that jη(x, y) ≥ 0 when
η(x) = 1 and η(y) = 0. A possible choice is the following perturbation of the SEP.
We fix h(η) = −η(0) and g(η) with D(g) = {0, e(1), e(2), e(1) + e(2)} (we denote by
0 the vertex (0, 0)) defined as follows.Wehave g(η) = α ifη(0) = η(e(1) + e(2)) = 1
and η(e(1)) = η(e(2)) = 0. We have also g(η) = β if η(0) = η(e(1) + e(2)) = 0 and
η(e(1)) = η(e(2)) = 1. The real numbers α, β are such that |α| + |β| < 1. For all the
remaining configurations we have g(η) = 0. Since � = {0, 1} the rates of jump are
uniquely determined by cx,y(η) = [

jη(x, y)
]
+.

Example 7 (A perturbed zero range dynamics) A face f = {0, e(1), e(2), e(1) + e(2)}
is occupied in the configuration η ∈ N

VN if η(x) �= 0 for some x ∈ f. Consider two
non negative functions w± that are identically zero when the face f is not occupied.
Given a positive function h̃ : N → R

+, we define the rates of jump as

ce−,e+(η) = h̃(η(e−)) + τf+(e)w
+ + τf−(e)w

− . (46)

This corresponds to a perturbation of a zero range dynamics such that one particle
jumps from one site with k particles with a rate h̃(k). The perturbation increases
the rates of jump if the jump is on the edge of a full face. The gain depends on
the orientation and the effect of different faces is additive. For such a model the
instantaneous current has a local decomposition (44) with h(η) = −h̃(η(0)) and
g(η) = w+(η) − w−(η).

The decomposition can be extended to higher dimensions. For the three dimen-
sional case we refer to [3].
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6 Interacting Particle Systems with Vorticity

The models presented in Examples 6 and 7 are superposition of a gradient system
and a circulation one, see definition (45). This kind of models are not gradient along
the classical definition. Here we want to study them from the microscopic point of
view and giving some physical motivation why we talk about them as interacting
particle systems with vorticity, this will become more clear at the end of Sect. 7. A
better discussion with graphical examples will appear in [7].

Let us consider the instantaneous current (5) with a decomposition (44) as

jη(x, y) = [τyh(η) − τx h(η)] + [τ f +(x,y)g(η) − τ f −(x,y)g(η)] = jhη (x, y) + j gη (x, y),
(47)

with h and g local functions. We are defining j hη (x, y) := τyh(η) − τxh(η) and
j gη (x, y) := τ f +(x,y)g(η) − τ f −(x,y)g(η). For example, taking an exclusion process
with rates

cx,y(η) = η(x)(1 − η(y)) + η(x)[τ f +(x,y)g(η) − τ f −(x,y)g(η)], (48)

we have jη(x, y) as in (47) with h(η) = −η(0), note that example 6 is of this form.
Models with jη(x, y) as in (47) can be thought as a generalization of the gradi-

ent case jη(x, y) = [τyh(η) − τxh(η)], indeed the current is a gradient part plus an
orthogonal gradient part (discrete bidimensional curl). Because of the presence of
this discrete curl we use the terminology of “exclusion process with vorticity”.

When the rates satisfies (47), we will see that the hydrodynamics for the empirical
measure (50) works exactly as if only the gradient part was present because

∇ · j gη (x) = 0, ∀ x ∈ VN , (49)

that is the part of the dynamics related to the current j gη (x, y) does not give anymacro-
scopic effect to the hydrodynamics of the particles density because its contribution
to the microscopic conservation law (9) is already zero. To observe macroscopically
the effect of the discrete curl we have to consider the scaling limits of the current
flow Jt (x, y) of formula (6). In Sect. 8 we derive the macroscopic current J (ρ) that
will appear in the hydrodynamics ∂tρ = ∇ · (−J (ρ)). Another physical phenomena
of this kind of dynamics (48) is that they are diffusive even if in general they are not
reversible on the torus Tn

N , namely this means that at the stationary state there is a
non-zero macroscopic current (11). For an explicit example see [7].
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7 Scaling Limits and Transport Coefficients of Diffusive
Models

To derive the hydrodynamics of diffusive systems the rates are multiplied by a factor
N 2 (diffusive time scale) and the space scale ε = 1/N is considered. The parti-
cles jump on the discrete torus Tn

ε := εZ/Z with mesh of size ε. When N goes to
infinity T

n
ε approximates the continuous torus Tn = [0, 1)n . A very general class

of diffusive systems are models that are reversible with respect to a Gibbs measure
when no boundary conditions are imposed. Reversibility with respect to a mea-
sure μN means 〈 f,LN g〉μN = 〈LN f, g〉μN for all functions f, g while stationar-
ity means〈LN f 〉μN = 0. 〈·〉 is the expectation on �N respect to μN and 〈·, ·〉μN is
the scalar product respect to μN . We assume μN to be a grand-canonical measure
parametrized by the density ρ, i.e. EμN (η(x)) = ρ. For this reason instead of μN we
are going to use the notation μ

ρ

N .
Themacroscopic evolution of themass is described by the empiricalmeasure. This

is a positive measure on the continuous torus Tn associated to any fixed microscopic
configuration η, defined as a convex combination of delta measures

πN (η) := 1

N

∑

x∈VN

η(x)δx . (50)

It represents a mass density or an energy density along the interpretation of the
model. Integrating a continuous function f : Tn → R with respect to πN (η) we get∫
Tn f dπN (η) = 1

N

∑
x∈VN

f (x)η(x) . In the hydrodynamic scaling limit the empir-
ical measure becomes deterministic and absolutely continuous for suitable initial
conditions ξ0 associated to a given density profile γ (x)dx , in the sense that in prob-
ability

lim
N→+∞

∫

Tn

f dπN (ξ0) =
∫

Tn

f (x)γ (x)dx . (51)

Let Pγ

N be the distribution of theMarkov chain of the energy-mass/particle interacting
model with initial condition associated to γ as in (51) . On D([0, T ];M 1(Tn)) the
space of trajectories from [0, T ] to the space of positive measure M 1(Tn), Pγ

N :=
Pγ

N ◦ π−1
N is the measure induced by the empirical measure. We have that πN (ηt ) is

associated to the density profile ρ(x, t)dx where ρ is the weak solution to a diffusive

equation with initial condition γ , i.e. Pγ

N
d−→
N

δρ where and δρ is the distribution

concentrated on the unique weak solution of a Cauchy problem

{
∂tρ = ∇ · (D(ρ)∇ρ)

ρ(x, 0) = γ (x).
(52)

This is a space-time law of large numbers, where D(σ ) is a positive symmetricmatrix
called diffusion matrix.
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7.1 Qualitative Derivation of Hydrodynamics

In this subsection we illustrate the general structure of the proof of the hydrodynamic
limit for reversible gradient models on the torus Tn

ε . We use the notion ξ of Sect. 4 of
energy-mass models because for themwe gave some example of weakly asymmetric
model and we want to emphasize that the KMP model is gradient. But the whole
scheme apply to particle models in the same way.

The starting point for the hydrodynamic description is the continuity equation

ξt (x) − ξ0(x) = −∇ · Jt (x) , (53)

whereJt has been defined in Sect. 4.3 and∇· denotes the discrete divergence defined
in (30). Using (24) we can rewrite (53) as (26) with F = 0. Multiplying (26) by a
test function ψ , dividing by N and summing over x we obtain

∫

Tn

ψ dπN (ξt ) −
∫

Tn

ψ dπN (ξ0) = −N
∫ t

0

∑

x∈VN

∇ · jξs (x) ψ (x) ds + o(1) .

(54)
The infinitesimal term o(1) comes from the martingale term. The idea is that the
martingales Mt (x, y) in (7) describe some microscopic fluctuations whose addi-
tive macroscopic contributions vanishes as N → ∞ as they are mean zero mar-
tingales and are almost independent for different bonds. This contribution can be
shown to be negligible (in probability) in the limit of large N with the methods
of [11, 14]. Using the gradient condition jξ (x, y) = τxh(ξ) − τyh(ξ), for example
for the KMP (14) and KMPd (16) we have h(ξ) = ξ(0)

2 , and performing a double
discrete integration by part, up to the infinitesimal term, one has that the right hand

side of (54) is 1
N

∑
x∈VN

∫ t
0 τxh(ξs)

[
N 2

(
ψ
(
x + 1

N

) + ψ
(
x − 1

N

) − 2ψ
(
x
))]

ds .

Considering aC2 test functionψ , the term inside squared parenthesis coincides with

ψ (x) up to an uniformly infinitesimal term.

At this point the main issue in proving hydrodynamic behavior is to prove the
validity of a local equilibrium property. Let us define

A(ρ) = Eμ
ρ

N
(h(ξ)) , (55)

where μ
ρ

N is the invariant measure characterized by a density profile ρ, that is
Eμ

ρ

N
(ξ(x)) = ρ. The local equilibrium property is explicitly stated through a replace-

ment lemma that shows that (in probability)

1

N

∑

x∈VN

∫ t

0
τxh(ξs)
ψ (x) ds � 1

N

∑

x∈VN

∫ t

0
A

(∫
Bx
dπN (ξs)

|Bx |

)

ψ (x) ds (56)

where Bx is a microscopically large but macroscopically small volume around the
point x ∈ VN . For a precise formulation of (56) see Lemma 1.10 and Corollary 1.3
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respectively in Chap. 5 and in Chap. 6 of [14] or Chap. 2 in [11]. This allows to write
(up to infinitesimal corrections) Eq. (54) in terms only of the empirical measure.
Substituting the r.h.s. of (56) in the place of the r.h.s. of (54), we obtain that in the
limit of large N the empirical measure πN (ηt ) converges in weak sense to ρ(x, t)dx
satisfying for any C2 test function ψ

∫

Tn

ψ(x)ρ(x, t) dx −
∫

Tn

ψ(x)ρ(x, 0) dx =
∫ t

0
ds

∫

Tn

A(ρ(x, s))
ψ(x) dx .

(57)
Equation (57) is a weak form of (52) with diagonal diffusion matrix D(ρ) with
each term in the diagonal equal to D(ρ) = d A(ρ)

dρ . We are calling D(ρ) both the

number and the diagonal matrix D(ρ)I. For h(ξ) = ξ(0)
2 it is A(ρ) = ρ

2 . To have
an unitary diffusion matrix we multiply all the rates of transition by a factor of 2
and correspondingly the diffusion matrix is the identity matrix. Equation (52) can be
written in the form

∂tρ + ∇ · (J (ρ)) = 0, with J (ρ) = −D(ρ)∇ρ, (58)

where the macroscopic current J (ρ) associated to ρ satisfies the Fick’s law.The
hydrodynamics for weakly asymmetric diffusive models of Sect. 4.2 is

∂tρ = ∇ · (−JE (ρ)) with JE (ρ) := D(ρ)∇ρ − σ(ρ)E . (59)

The positive definite matrix σ is called themobility. For the weakly asymmetric ver-
sions of theKMP and theKMPd, in Sect. 4.2 it is respectively σ(ρ) = 2Eμ

ρ

N
[g(η)] =

ρ2 and ρ + ρ2, where respectively g(ξ) = 1
6

(
ξ(0)2 + ξ(1/N )2 − ξ(0)ξ(1/N )

)
and

g(ξ) = 12
(
2ξ(x)2 + 2ξ(y)2 − 2ξ(x)ξ(y) + 3ξ(x) + 3ξ(y)

)
. For a discussion on the

computations of these kind of expectations see [1].
The hydrodynamics was derived with periodic boundary conditions but in the

bulk it is still the same for a boundary driven version of the system, see [9].

8 Scaling Limit of an Exclusion Process with Vorticity

In this section we want to show how to compute the scaling limit of the macroscopic
current J (ρ) for diffusive models with vorticity of Sect. 6, namely having the instan-
taneous current with an expression like (47). Here for the purpose of the paper the
treatment will be qualitative. It is the first time that the hydrodynamics of this kind
of models is discussed. A complete rigorous treatment of the problem is now being
developed in the work in progress [7], where a generalized picture of the Fick’s law
is under construction. Here we will discuss its main ideas. We consider a discrete
torus of mesh ε = 1/N but specifically in dimension 2, i.e. VN = T

2
ε .
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If the current has an Hodge decomposition (44) only the gradient part con-
tributes to the hydrodynamics (54), indeed ∇ · jη(x) = ∇ · j hη (x) since ∇ · j gη (x) =
∇ · j Hη (x) = 0 with j Hη (x, y) = C1(η)ϕ1(x, y) + C2(η)ϕ2(x, y). So if the gradi-
ent part of the current j hη (x) is diffusive with respect to a local gradient function
h(·), the hydrodynamics of πN (η) works exactly as if we considered a model with
jη(x, y) = j hη (x, y) along the scheme in Sect. 7.

Now we want to study the scaling limits of the current J (ρ) appearing in (58), as
model of reference for what we are going to present, the reader should keep in mind
the exclusion process of Example 6 but with α = β. More precisely the model has
the rates (48) with the local function g(η) defined as

g(η) :=
⎧
⎨

⎩

α if η(0) = η( e
(1)

N + e(2)

N ) = 1 and η( e
(1)

N ) = η( e
(2)

N ) = 0 ,

α if η( e
(1)

N ) = η( e
(2)

N ) = 1 and η(0) = η( e
(1)

N + e(2)

N ) = 0 ,

0 otherwise ,

(60)

where α is a real parameter such that |α| < 1. The informal and intuitive description
of the dynamics associated to the rates (48) is the following. Particles perform a
simple exclusion process, but the faces containing exactly 2 particles located at sites
which are not nearest neighbors let the particles rotate anticlockwise when α > 0 and
clockwise when α < 0 with a rate equal to |α|. For this choice of the parameters, the
model of example 6 can be proven to be a non-reversible stationary dynamics with
respect to Bernoulli measures of density parameter ρ. In this section, the language
will be general for amodel that is invariantwith respect to ameasureμ

ρ

N parametrized
by a density ρ, having the decomposition (47) and hydrodynamics for the empirical
measure of the form (58), while the results will be made explicit for the toy model
(60).

The scaling limits for the current J (ρ) it is obtained from the empirical current
measure JN in the space of the vector signed measure M (T2,R2) defined as

∫

T2
H · dJN := 1

N 2

∑

{x,y}∈E N

Jt (x, y)H(x, y) where H(x, y) =
∫ y

x
H(z) · dz. (61)

The family (JN (t))t∈[0,T ] belongs to the space D([0, T ],M (T2,R2)) of trajectories
from [0, T ] toM (T2,R2). Calling PJN := Pγ

N ◦ J
−1
N the measure induced by empir-

ical current measure on D([0, T ],M (T2,R2)), we have that JN (t) is associated to a
vector signed measure J (ρ)dx in weak sense, that is in probability for any C1 vector
field on T2 we will have

lim
N→+∞

∫
�
H · dJN (t) = ∫

�
dx

∫ T
0 dt J (ρt (x)) · H(x),

J (ρ) = −D(ρ)

(
1 0
0 1

)
∇ρ − D⊥(ρ)

(
0 −1
1 0

)
∇ρ ,

(62)
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where D(ρ) and D⊥(ρ) are two real coefficients depending on ρ, ρt (x) is the solution
of the Cauchy problem (52) and J (ρ(0)) is equal 0 by definition. This means that

PJN

d−→
N

δJ (ρ) where δJ (ρ) is the distribution concentrated on the measure J (ρ)dx

that we have just described. For the model (60) we will show that D(ρ) = 1 and
D⊥(ρ) = d

dρ (2α(ρ − ρ2)2). The derivation of the hydrodynamics starts from the
martingale

M(t) = 1

Nd

∑

{x,y}∈E N

Jt (x, y)H(x, y) − N 2−d
∫ t

0
ds

∑

{x,y}∈E N

jηs (x, y)H(x, y),

(63)
where N 2 is the diffusive scaling and the factor N−d it is a normalization. By the anti-
symmetry of the discrete vector fields there is no ambiguity in this definition. There-
fore 1

Nd

∑
{x,y}∈E N

Jt (x, y)H(x, y)=N 2−d
∫ t
0 ds

∑
{x,y}∈E N

jηs (x, y)H(x, y) + o(1),
where o(1) is a negligible (in probability) martingale term for large N , for which
holds a discussion like that one about the martingale in (54). From (47)

∑

{x,y}∈E N

jηs (x, y)H(x, y) =
∫ t

0

⎡

⎣
∑

x∈VN

τx h(η)(x)∇ · H(x) +
∑

f∈F N

τfg(ηs)
∑

(x,y)∈ f �
H(x, y)

⎤

⎦ ,

(64)
where N 2∇ · H(x) = ∇ · H(x) + o(1/N ) and N 2∑

(x,y)∈ f � H(x, y) = ∇⊥ · H(z)
+ o(1/N ). In the above formula z is any point belonging to the face, while given aC1

vector field H = (H1, H2)weused the notation∇⊥ · H(z) := −∂y H1(z) + ∂x H2(z).
When N is diverging, we assume the local equilibrium hypothesis with respect to
the grand-canonical measure μ

ρ

N to prove with a replacement lemma as discussed in
section7, this means that (64) converges (in probability) to

∫ t

0
ds

∫

T2
dx

[
a(ρ(x, s))∇ · H(x) + a⊥(ρ(x, s))∇⊥ · H(x)

]
, (65)

applying the replacement lemmas a(ρ) =Eμ
ρ

N
[h(η)] and a⊥(ρ) =Eμ

ρ

N
[g(η)], for the

model of reference (60) its a(ρ) = ρ and a⊥(ρ) = 2α[ρ(1 − ρ)]2. Formula (65) is
a weak form of

∫ t
0 ds

∫
�
J (ρ) · H dx with

J (ρ) = −∇a(ρ) − ∇⊥a⊥(ρ) = −D(ρ)∇ρ − D⊥(ρ)∇⊥ρ, (66)

where D(ρ) = d(a(ρ))/dρ, D⊥(ρ) = d(a⊥(ρ))/dρ and ∇⊥ f := (−∂y f, ∂x f ). As
we expected from the microscopic argument (49) we have ∇ · (−D(ρ)∇ρ −
D⊥(ρ)∇⊥ρ) = ∇ · (−D(ρ)∇ρ), hence the hydrodynamics is left unchanged with
respect to the usual gradient case. For the model (60) we obtain D(ρ) = 1 and
D⊥(ρ) = d

dρ (2α(ρ − ρ2)2) as anticipated above. Hence formula (66) can be rewrit-
ten in the form

J (ρ) = −
[
D(ρ)

(
1 0
0 1

)
+ D⊥(ρ)

(
0 −1
1 0

)]
∇ρ. (67)
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From the computations presented here and other considerations in [7] we think that
the Fick’s law (58) for particle models has to be replaced by the general picture

J (ρ) = −D(ρ)∇ρ, (68)

where the diffusion matrix D(ρ) is positive but not necessarily symmetric and in
general with respect to (67) the terms on the same diagonal can have different coef-
ficients.

Remark 3 An important question is to understand if there existmodelswith vorticity
that are also reversible. At the present stage, we are not able neither to find reversible
models of this kind neither to prove that this property is a genuine microscopic non
equilibrium property, if this is case, it looks that typically they will be diffusive
models with a non-zero average microscopic current at the stationary state.

9 Green-Kubo’s Formula and Perspectives in Non-gradient
Particles Systems

Scaling limits of non gradient particles systems can be proved to be diffusive with the
methods developed in [16, 19] if the spectral gap of the generator satisfies suitable
conditions [14], but even in one dimension when the instantaneous current is not
gradient there are no explicit PDEs. For what we know, the only case where there is
an explicit PDE is [20], where the author consider a spatial inhomogeneous simple
symmetric exclusion process where particles jump with two different constant along
an edge is even or odd. The model of Wick is translational covariant, see (36),
with respect to translations on two sites instead of one. To look at Wick model
into the context of this paper and in particular of this section, one has to generalize
the decomposition (36) for translational covariant models on two sites, this is done
considering a renormalized current on two sites and rewriting the decomposition for
it. Then, taking a lattice with a even number of sites, the discrete hydrodynamics
(54) can be written with respect to this current.

We start to explore if the decompositions (36) and (44) can tell something about
this problem. Let us consider exclusion processes in one dimension on the torus with
nearest neighbours interaction, reversible with respect toμ

ρ

N and non gradient, a case
is Example 3. For these models the hydrodynamics is expected to be diffusive with
the diffusion coefficient having the following variational expression

D(ρ) = 1

2χ(ρ)
inf
f

Eμ
ρ

N

[
c0,1(η)

(
(η(0) − η0,1(0)) +

∑

x∈VN

(S0,1τx ) f (η)
)2 ]

, (69)

where χ(ρ) is the mobility Eμ
ρ

N
(η2(0)) − ρ2, (Sx,y f ) = f (ηx,y) − f (η) and the inf

is over all functions f : �N → R. This is discussed in Chap. 2 of part 2 in [18] and
has been proved for the 2-SEP in chapter 7 of [14]. The variational formula (69) is
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proved to be equal to the Green-Kubo’s formula for interacting particles systems

D(ρ) = 1

2χ(ρ)

[
EμN (c0,1(η)) − 2

∫ +∞

0
EμN ( jη(0, 1)e

L N tτx jη(0, 1))
]
, (70)

where eL N t is the evolution operator of theMarkov process.We consider translational
covariant rates (Remark 1) to have the decomposition (36), plugging this one in (70)
we find

D(ρ) = 1

2χ(ρ)

[
EμN (c0,1(η)) − 2N EμN (C(η)L −1

N C(η))
]
, (71)

where L −1
N is the generalized inverse operator of LN (for f (η) constant function

LN f (η) = 0), for this definition see [12]. Formula (71) tells us that just the har-
monic part of the current C(η) contributes to the second term of the Green-Kubo’s
formula and for gradient systems we have D(ρ) = 1

2χ(ρ)
EμN (c0,1(η)) even if the

h is not local, admitting that such models exist. Expression (71) has an equivalent
variational formulation with a minimizer that is computable in principle. The term
Eμ

ρ

N
(C(η)L −1

N C(η)) can be seen as the scalar product 〈C(η),L −1
N C(η)〉μρ

N
, where

〈 f, g〉μρ

N
= ∑

η f (η)g(η)μ
ρ

N (η). Since LN is symmetric with respect to this scalar
product we have

〈C(η),L −1
N C(η)〉μρ

N
= inf

f

{
−〈 f,LN f 〉μρ

N
− 2〈C(η), f 〉μρ

N

}
(72)

where the minimizer is over all function f : �N → R and a solution is given by

LN f (η) = −C(η) for all η ∈ �N . (73)

The solution (73) is well posed since C(η) is orthogonal to the eigenspace of eigen-
value zero. This minimizer looks to us more simple to solve than the one of the
expression in [18], for example interpreting the model of Wick as explained at the
beginning of the section this minimum can be solved within the framework we are
going to explain in next paragraphs. We think that the solution of this minimizer is
equivalent to rewrite the discrete hydrodynamics in a form such that the only macro-
scopic relevant terms are reduced to the usual case of Sect. 7 of gradient systems. In
some special non-gradient cases (as Wick [20]) we expect a simplified scheme, that
is an exact case of a more general scheme briefly described at the end.

The idea starts from the observation that a natural attempt to solve (73) is to look
for a f (η) of the form

f (η) =
∑

x∈VN

τx g(η), (74)

where g(η) is a local function. Note that the left-hand side of (73) is invariant
by translation as it has to be. Remark 2 gives a connection between the mini-
mizer and the conservation law leading to the hydrodynamics, there we discussed
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that in reversible non-gradient model the current can be rewritten in the form
jη(x, y) = j hη (x, y) + j aη (x, y), where the single harmonic contributions are such
that C(η) = 1

N

∑
x∈VN

jη(x, x + 1) = 1
N

∑
x∈VN

jaη (x, x + 1). So to the part of the current

denoted j hη (x, y) we can apply the scheme of Sect. 7 with respect to a gradient func-
tion h(η), while it is not possible for the part j aη (x, y) . But if we are able to find a
local function g̃(η) such that

LN g̃(η) = j aη (0, 1) + τ h̃(η) − h̃(η), (75)

where h̃(η) is another local function, then we are done both with the solution (74)
and the discrete form of the hydrodynamics (54). Indeed respectively taking f (η) =∑
x∈VN

τx g(η) with g(η) = −g̃(η) we solve (73) and with the replacements (75) of the

harmonic contributions we will be able to treat the hydrodynamics. This is because
considering the translations of relation (75), in the discrete hydrodynamics (54) will
contribute only the local function h′(η) = −h̃(η) since with the local equilibrium
hypothesis (55) the terms Eμ

ρ

N
(LN τx g(ηt)) will be negligible in the scaling limit

as they are time derivatives and from the time integral they will give a contribution
of order O(1/N 2) each one. At the end, the hydrodynamics will follow Sect. 7 with
respect to the local function H(η) := h(η) + h′(η).

In the non-local decomposition (36) the partC(η) is divergence free and therefore
will not appear in the hydrodynamics (54). We expect that writing this last one with
respect to the non-local ha(η) of the Hodge decomposition j aη (x, y) = τyha(η) −
τxha(η) + C(η), doing the substitution (75) in ha = ∑N−1

x=1
x
N jaη (x, x + 1) , with

proper cancellations the hydrodynamics will still reduce to the one related to H(η).
In general solving (73) with an f (η) of the form (74) with the property (75) will

be not possible. But for models like Example 3, we expect a generalization of this
case where (73) is solved unless of (non-local) gradients (which will not contribute
in the computation of the scalar products in (72)) with a solution as (74) where g(η)

satisfies (75) unless extra terms on the right-hand side that in probabilistic sense will
be of order o(1/N ) and will not contribute to hydrodynamics.

Similarly to (71), in dimension higher than one, the extra terms for non gradient
systemswill comeonly from the harmonic part, i.e.C1(η)ϕ1(x, y) andC1(η)ϕ1(x, y)
in dimension two.
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Porous Medium Model: An Algebraic
Perspective and the Fick’s Law

Renato De Paula and Chiara Franceschini

Abstract In this work, we study the porous medium model (PMM), an interacting
particle systemwith nearest neighbor interactions of particles under some constraints.
First,we consider the discrete space {1, . . . , n − 1}with additionalGlauber dynamics
acting respectively on sites 0 and n. We assume the hydrodynamic limit (proved in a
companion paper [4]) and we prove that the Fick’s law holds. Moreover, we review
how to construct a self-duality relation starting from the reversible measure of the
process. Following this method, we show a self-duality result for the process without
reservoirs, which is found inspired by its description via the Lie algebra su(2).

Keywords Porous medium model · Hydrodynamic limit · Fick’s law · Porous
medium equation · Boundary conditions · Stochastic duality · Lie algebra su(2)

1 Introduction

One of the major problems in non-equilibrium Statistical Mechanics is the study of
scaling limits of interacting particle systems (IPS). In particular, the derivation of
macroscopic partial differential equations (PDE’s) frommicroscopic systems, known
in the literature as hydrodynamic limit, see [7] for a review. In recent years, a lot of
attention has been devoted to the study of the asymptotic behavior of microscopic
systems coupled with reservoirs, which bring up boundary conditions to the associ-
ated hydrodynamic equation. In the case of microscopic systems with independent
particles, we usually have linear hydrodynamic equations, as in [1]. Otherwise, which
is the case of the PMM, we usually have nonlinear hydrodynamic equations, as in
[13].
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The PMM is a special case of the KLS model introduced by Katz, Lebowitz, and
Spohn [18] where particles only hope randomly with no bias to nearest neighbors
sites with rates depending on the occupation of the nearest and next-nearest-neighbor
sites. See also [16], where, using their notation the PMM corresponds to the case
which has hopping rates given by δ = −1 and ε = 0. More recently in [13] the
authors derived for the first time the porous medium equation (PME) considering
discrete occupational variables. In addition, in [1], the authors studied the simple
symmetric exclusion process (SSEP) combined with a Glauber dynamics, that they
called “slow reservoirs”, which has the heat equation with Dirichlet, Neumann, and
Robin boundary conditions as hydrodynamic equations. In [4], in order to study non-
linear versions of the hydrodynamic equations obtained in [1], the authors considered
the PMM with a microscopic perturbation and slow reservoirs. Thus, they derived
for the first time the PME with similar boundary conditions as [1].

In this paper, we will work with two versions of the PMM. In the first part of
the paper, our microscopic system of interest will be the perturbed PMM with slow
reservoirs evolving in the discrete space {1, . . . , n − 1}, as in [4]. The perturbation
is necessary in order to assume the validity of the hydrodynamic limit through the
Entropy method of Guo, Papanicolau, and Varadhan [15]. The name “slow” comes
from the fact that we have a parameter θ ∈ [0,+∞) which regulates the reservoirs’
strength. In the second part, our microscopic system will be the PMM without per-
turbations and without reservoirs, evolving in the one-dimensional discrete torus
Tn = {0, 1, . . . , n − 1}. The aforementioned open models belong to the class of dif-
fusive systems. To illustrate, consider a finite volume containing interacting particles
coupled with opposite reservoirs, one at the left boundary and another at the right
boundary, both having a different density of particles. In this situation, one predicts
a net flux of particles from the reservoir with a higher density to the reservoir with a
lower density. Therefore, after some initial transitions, we expect a non-equilibrium
steady state to arise in the system, i.e., a state with a nonzero flux of particles that is
constant in space and time.

The aim of this paper is to examine some questions that arise when studying
diffusive systems out of equilibrium. We focus on Fick’s law of diffusion, and on the
self-duality for the generator of the PMM in the one-dimensional discrete torus.

The first result of this paper regards the Fick’s law of diffusion, derived by Adolf
Fick in [10], that says that the rate of the flux of particles is proportional to the
density gradient. Although the authors in [4] studied scaling limits for the empirical
density of the perturbed PMM with slow reservoirs, in the first part of this paper we
study scaling limits for the empirical currents of this model. The motivation comes
from [3], in which the authors derived the large deviation principle for the empirical
currents of the SSEP in the domain {−n, n}with creation and annihilation of particles
in the bulk and a Glauber dynamics at the boundaries.

As mentioned above the PMM has the porous medium equation as hydrodynamic
equation. It is a partial differential equation that can be seen in dimension one as

∂tρ = ΔρM , M > 1. (1)
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It is a nonlinear diffusion equation that can be written in the divergence form as

∂tρ = ∇(D(ρ)∇ρ),

where ρ = ρ(t, u) is a scalar function, which in this paper, denotes the macroscopic
density of particles in u ∈ [0, 1] at time t > 0, and D(ρ) = MρM−1 is the diffusion
coefficient. The equation is parabolic at the points where ρ �= 0, but it changes its
character at the level ρ = 0, since D(ρ) vanishes as ρ → 0. See [23] formore details.

In thiswork, for simplicity of the presentation,wewill consider the caseM = 2, so
that the hydrodynamic equations studied here are the same that the ones in [4]. These
equations will be the PME with boundary conditions depending on the parameter
θ , which, as mentioned above, regulates the reservoirs’ strengths. For 0 ≤ θ < 1,
we have the PME with Dirichlet boundary conditions (19); For θ = 1, the boundary
dynamics is slowed enough so the boundary conditions of Dirichlet type are replaced
by a type of Robin boundary conditions (20); Finally, for θ > 1, the boundary is
sufficiently slowed so that the Robin boundary conditions are replaced by Neumann
boundary conditions.

Therefore, with the notations above, we can write the Fick’s law in dimension one
as

J = −D(ρ)∇ρ,

where J is the diffusion flux. We stress that throughout the first part of the paper
we are assuming the validity of the hydrodynamic limit for the perturbed PMMwith
slow reservoirs, which was proved in [4]. Thus, for the convenience of the reader,
we repeat the relevant material from [4] without proofs, thus making our exposition
self-contained.

The second result of this paper regards self-duality for the generator of the
PMM whose dynamics take place in the discrete one-dimensional torus, Tn =
{0, 1, . . . , n − 1}. Duality, first introduced by Liggett in [21], is a powerful and rare
tool to deal with Markov processes and, in particular, interacting particle systems.

Duality relations allow us to connect twoMarkov processes via a duality function;
such functions are observables in terms of both processes whose expectations satisfy
a specific relation. We speak of self-duality if the two Markov processes are two
independent copies of the same process. The usefulness of (self-)duality is due to the
fact that the dual process may be easier to deal with than the initial process. Duality
plays a role in non-equilibrium statistical mechanics: a microscopic knowledge of
particle systems can only be reached for a particular class ofmodel - known as exactly
solvable models.

Unfortunately, these models, for which we can analytically compute profiles and
covariances in non-equilibrium settings, are rare and it turns out that they exhibit
a self-duality property. Two examples are the SSEP and the KMP model, which
describes a system of one-dimensional oscillators that redistribute energy among
nearest neighbors [20]. In this context, the self-duality relations can be used to infer
information regarding the n−point correlation functions using information (when
available) on n dual particles. The literature so far has been concentrated on several
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IPS and diffusion processes (see e.g. [6]): among the others the SSEP, of which the
PMM share several aspects but it is, however, more complicated.

It is not hard to see that from the PMM one can always retrieve results regarding
the SSEP: this is done by setting M = 1 in the hydrodynamic equation above and
microscopically by setting the exchange rate by 1. For the SSEP ameaningful duality
relation is well-known to exist and it is related to the fact that the stationary correla-
tion functions satisfy linear difference equations not involving correlation of higher
orders [22], see also Remark 11 below. In this case, an explicit expression of such
correlations is known and can be used in the study, for example, of the hydrostatic
equation for which an upper bound on the two-points correlation function is needed
with the aim of knowing the decreasing rate of convergence to zero. This preliminary
study of duality for PMM is motivated by the fact that the hydrostatic limit is still
an open problem. As mentioned above, at the microscopic level, PMM has kinetic
constraints given by the configuration while macroscopically one derives a nonlinear
PDE as hydrodynamic limit. One of the main issues is that the equations given by
the (same time) correlations are not closed in the sense that at each step the degree
is increased by one; for this reason, finding a meaningful duality relation is far from
trivial. On these grounds, this second part has a more investigative approach as, so
far, no duality relations are known, for systems with such features.

1.1 Organization of the Paper

Our presentation is divided into two sections: one to derive the Fick’s law for our
model under the hypothesis of hydrodynamic limit and another to provide an alge-
braic perspective of the model. We have divided them in such a way that the reader
can read Sects. 2 and 3 separately. In Sects. 2.1 and 2.2, we look more closely at
the instantaneous and integrated currents of the model. In Sect. 2.3, we defined the
empirical measures associated with these currents. In Sect. 2.4, we present the notion
of weak solution of the PME with different boundary conditions, to finally prove,
in Sect. 2.5, that the Fick’s law holds. Sect. 3 starts with a review of duality theory
in the context of interacting particle systems. In Sect. 3.1, we explain the algebraic
approach to duality by introducing the Lie algebra su(2) and we describe how, start-
ing from the reversible measure of the process one can find some duality relations.
In Sect. 3.2, we describe the bulk of our model via the generators of the su(2) alge-
bra and, lastly, in Sect. 3.3 we show how two different self-duality functions can
be constructed. We end this first section by describing the model in two different
settings: first,we illustrate its bulk dynamics, which is common to both Sects. 2 and
3; then, we have a subsection to develop the perturbed dynamics in an open setting,
by superposing it with a SSEP dynamics and adding two external reservoirs at the
boundary, needed for Sect. 2 only.
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1.2 The Model

The bulk of the PMM is a continuous time Markov process where particles jump
under the exclusion rule to nearest neighbor sites according to the state of the process.
However, there are some constraints to take into consideration. Our discrete space
is Σn := {1, . . . , n − 1}. Suppose that a particle at the site x wants to perform a
jump to the site x + 1: the jump with rate 1 is allowed only if there is a particle
at the site x − 1 or at the site x + 2. If these sites are empty, then the particle at
site x cannot jump and we called it blocked; if both the aforementioned sites are
occupied, then the particle performs the jump with rate 2. Due to the constraints of
the model’s rates, the PMMhas configurations that do not evolve under the dynamics
of the model, the so-called blocked configurations. The construction of the process is
done in the followingway. For each x ∈ Σn , the occupation variable η(x) denotes the
number of particles at site x , where η(x) = 0 (resp. η(x) = 1) stands for empty (resp.
occupied) site,whichmakes our state spaceΩn := {0, 1}Σn .We denote byη ∈ Ωn the
configuration of particles. To each bond of the bulk {x, x + 1}with x = 1 . . . , n − 2,
we associate three Poisson clocks with a parameter depending on the exclusion rule
and on the constraints of the process, which are represented by the following Poisson
processes: Nx−1

x,x+1(t) and N
x−2
x,x+1(t)with parameter 1, while Nx,x+1(t)with parameter

2. The PMM generator describes the evolution of the process and it acts on functions
f : Ωn → R as

LP f (η) =
n−2∑

x=1

cx,x+1(η)
{
ax,x+1(η) + ax+1,x (η)

}
( f (ηx,x+1) − f (η)) (2)

where
cx,x+1(η) = η(x − 1) + η(x + 2), (3)

ax,x+1(η) = η(x)(1 − η(x + 1)), (4)

are the exchange rates, while the exchange configuration ηx,y is given by

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(z), z �= x, y,

η(y), z = x,

η(x), z = y.

Notice that LP conserves the total number of particles.

1.2.1 The Open PMM

Let us now describe the open dynamics of the perturbed PMM with slow reservoirs.
Fix the following real numbers: 1 < a < 2, θ ≥ 0, m > 0, and α, β ∈ (0, 1). Let



200 R. De Paula and C. Franceschini

n ≥ 1 be a scaling parameter. The particles are distributed on the points of the discrete
space Σn . We artificially add two external sites 0 and n where particles can be
inserted or removed from the bulk with some rates defined below. We associate two
Poisson clocks at the bonds {0, 1} and {n − 1, n} in the following way: N0,1(t) (resp.
Nn,n−1(t)) with parameter mαn−θ (resp. mβn−θ ) and N1,0(t) (resp. Nn−1,n(t)) with
parameterm(1 − α)n−θ (resp.m(1 − β)n−θ ). The Poisson processes associated to a
bulk bond are now affected by the superposed SSEP dynamics, thus we need to add
a factor of na−2 to their parameters. We stress that all of these Poisson processes are
independent and throughout the text we use the convention

η(0) = α, η(n) = β.

For a description of the dynamics of the model, see Fig. 1.
The perturbed PMM with slow reservoirs is a continuous time Markov process

{ηt }t≥0 on Ωn = {0, 1}Σn . It can be fully characterized by the infinitesimal generator
Ln given by

Ln = LP + na−2LS + Lα + Lβ, (5)

where LP is the bulk generator of the PMM defined in Eq. (2), while LS is the
generator of the SSEP. Lα and Lβ are the generators of the Glauber dynamics which
act at sites 1 and n − 1. Their actions on functions f : Ωn → R are

LS f (η) =
n−2∑

x=1

{
ax,x+1(η) + ax+1,x (η)

}
( f (ηx,x+1) − f (η)),

Lα f (η) = m

nθ
{α(1 − η(1)) + (1 − α)η(1)} ( f (η1) − f (η)),

Lβ f (η) = m

nθ
{β(1 − η(n − 1)) + (1 − β)η(n − 1)} ( f (ηn−1) − f (η)), (6)

where the flip configuration ηx is given by

ηx (z) =
{

η(z), z �= x,

1 − η(x), z = x .

Remark 1 Recall that the diffusion coefficient of the PME is given by D(ρ) =
MρM−1, for M > 1. We note that the exchange rate in (3) is related to the diffusion
coefficient of the PME when M = 2. Considering different values of M (including
M = 1), we have to consider different exchange rates, for example:

M D(ρ) cx,x+1(η)

1 1 1
2 2ρ η(x − 1) + η(x + 2)
3 3ρ2 η(x − 2)η(x − 1) + η(x − 1)η(x + 2) + η(x + 2)η(x + 3)
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Remark 2 Throughout the text we denote by {ηtn2}t≥0 the Markov process sped up
in the diffusive time scale tn2.

Remark 3 The results presented here are also valid for any integer number M > 2.
For a deeper discussion about the model we refer the reader to [4].

Remark 4 The dynamics of the PMM is degenerate (due to the constraints of the
jump rates) and do not conserve the total number of particles (due to the Glauber
dynamics). However, since the PMM is superposed with a SSEP dynamics, it
becomes an irreducible Markov process and therefore only one invariant measure
exists. In the equilibrium state (α = β), it is not difficult to see that the Bernoulli
product measure with a constant parameter (ρ = α = β) is a reversible measure, and
in particular, it is invariant. But in the non-equilibrium state (α �= β), we have no
information about the invariant measure of the process. We stress that we have been
trying different approaches in order to have some information about it but without
success. One of them was to use the matrix ansatz, introduced in [9], which we could
not apply due to the complicated action of the bulk dynamics. Another one is to
use duality theory for IPS [12], we start the work here via a description of the PMM
which uses algebra representation theory; nevertheless this is still a work in progress.

Fig. 1 Allowed jumps for the perturbed porous medium model with slow reservoirs (with M = 2)

2 Fick’s Law for the PMM with Slow Reservoirs

Throughout this section wewill work with the open PMM, introduced in the previous
subsection. Moreover, since we are assuming the validity of the hydrodynamic limit
proved in [4] using the Entropy method of [15], we need to avoid blocked configura-
tions in order to have an irreducible Markov process. For this reason we superposed
the PMMdynamics with a SSEP dynamics with a time scale slower than the diffusive
one. This guarantees that, when scaling the time diffusively, we can see the impact
of the SSEP at the microscopic level, but we cannot see it at the macroscopic level.
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2.1 Currents

Let η ∈ Ωn . We denote by jx,x+1(η) the instantaneous current of particles over the
bond {x, x + 1}. In other words, it is the rate at which the particle jumps from the
site x to x + 1, minus the rate at which the particle jumps from the site x + 1 to x .
Thus, for x ∈ Σn−1, the current in the bulk is given by

jx,x+1(η) = (η(x) − η(x + 1))(η(x − 1) + η(x + 2) + na−2). (7)

In the same manner, the current over the bond in the left (resp. right) boundary is
given by

j0,1(η) = m
nθ (α − η(1)) and jn−1,n(η) = m

nθ (η(n − 1) − β).

Now, we look for a local function h : Ωn → R, such that for every x ∈ Σn−1 the
current can be written as jx,x+1(η) = τxh(η) − τx+1h(η), where τxh(η) = h(τxη).
The function τx being the translation by x in the configuration η. If such a function
exists, the Dynkin martingale will be much easier to compute (see (23)), since we
can sum by parts and transfer the gradient to the test function. Models for which the
current is the gradient of a local function are called gradient models, see for instance
[19]. Hence, summing and subtracting η(x)η(x + 1) in (7), we can write it as

jx,x+1(η) = τxh(η) − τx+1h(η), (8)

where

τxh(η) = η(x − 1)η(x) + η(x)η(x + 1) − η(x − 1)η(x + 1) + na−2η(x). (9)

Therefore, the PMM is a gradient model.

2.2 Integrated Currents

Let t ∈ [0, T ], for T > 0. For any x ∈ Σn ∪ {0}, we denote by Nn
t (x) the total number

of particles that jumped from site x to x + 1 in an interval of time [0, tn2], and by
Ñ n
t (x) the total number of particles that jumped from site x + 1 to x in the same

time interval. Thus, we define the integrated current at time t and location x by

J n
t (x) := Nt (x) − Ñt (x), for x ∈ Σn ∪ {0}. (10)

In other words, J n
t (x) denotes the flux of particles through the bond {x, x + 1} in

an interval of time [0, tn2]. The integrated current (10) can be written in terms of
its conservative and non-conservative parts. We denote by Qn

t (x) the conservative



Porous Medium Model: An Algebraic Perspective and the Fick’s Law 203

integrated current at time t and location x , which records the particle jumps from the
diffusive part of the dynamics (PMM and SSEP)

Qn
t (x) := J n

t (x), for x ∈ Σn−1. (11)

We denote by Kn
t (x) the non-conservative integrated current at time t and location

x , which records the particles inserted and removed from the system at sites 1 or
n − 1 (Glauber dynamics)

Kn
t (x) := J n

t (x), for x = 0, n − 1. (12)

Having disposed of this preliminary step, we can now define the infinitesimal gen-
erator of the joint process {ηt , J n

t (x)}t≥0 as

L̃n f (η, J n(x)) = L̃ P f (η, J n(x)) + na−2 L̃ S f (η, J n(x))

+ L̃α f (η, J n(x)) + L̃β f (η, J n(x)), (13)

for x ∈ Σn ∪ {0}. To simplify the notation, let px,x+1(η) = ax,x+1(η)(cx,x+1(η) +
na−2). For each x ∈ Σn−1, we define the part of (13) corresponding to the jumps in
the bulk as

(
L̃ P + na−2 L̃ S

)
f (η, Jn(x)) = px,x+1(η)

(
f (ηx,x+1, Jn(x) + 1) − f (η, Jn(x))

)

+ px+1,x (η)
(
f (ηx,x+1, Jn(x) − 1) − f (η, Jn(x))

)

+
∑

y∈Σn−1
y �=x

(py,y+1(η) + py+1,y(η))
(
f (ηy,y+1, Jn(y)) − f (η, Jn(y))

)
,

(14)

and the part of (13) corresponding to the jumps in the boundaries as

L̃α f (η, Jn(0)) = m

nθ

(
α(1 − η(1))

(
f (η1, Jn(0) + 1) − f (η, Jn(0))

) )

+ m

nθ

(
(1 − α)η(1)

(
f (η1, Jn(0) − 1) − f (η, Jn(0))

) )
,

L̃β f (η, Jn(n − 1)) = m

nθ

(
β(1 − η(n − 1))

(
f (ηn−1, Jn(n − 1) − 1) − f (η, Jn(n − 1))

)

+ (1 − β)η(n − 1)
(
f (ηn−1, Jn(n − 1) + 1) − f (η, Jn(n − 1))

) )
. (15)

Remark 5 Throughout this section the process is sped up in the diffusive time scale
tn2.

Remark 6 If we take f (η, J ) = f (η) in (14) and (15), we recover the infinitesimal
generator of {ηt }t≥0, which is defined in (5). Moreover, if we take f being the
projection in the second variable, that is, f (η, J ) = J in (14) and (15), we recover
the instantaneous current through the bond {x, x + 1} as we can see below.
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For x ∈ Σn−1, we have

(
L̃ P + na−2 L̃ S

)
J n(x) = ax,x+1(η)(cx,x+1(η) + na−2)

(
J n(x) + 1 − J n(x)

)

+ ax+1,x (η)(cx+1,x (η) + na−2)
(
J n(x) − 1 − J n(x)

)

= jx,x+1(η).

For the left (resp. right) boundary, we have

L̃α J
n(0) = m

nθ

(
α(1 − η(1))

(
J n(0) + 1 − J n(0)

) )

+ m

nθ

(
((1 − α)η(1))

(
J n(0) − 1 − J n(0)

) )

= j0,1(η),

L̃β J
n(n − 1) = m

nθ

(
β(1 − η(n − 1))

(
J n(n − 1) − 1 − J n(n − 1)

) )

+ m

nθ

(
((1 − β)η(n − 1))

(
J n(n − 1) + 1 − J n(n − 1)

) )

= jn−1,n(η).

2.3 Empirical Measures

Fix t ∈ [0, T ]. For η ∈ Ωn , we define the empirical measure πn
t on [0, 1] as

πn
t := 1

n

∑

x∈Σn

ηt (x)δx/n, (16)

where δu is the Dirac measure concentrated on u ∈ [0, 1]. Recall the definition of
the conservative current (11). The empirical measure associated with this current is
defined as the signed measure on [0, 1]

Qn
t := 1

n2

n−2∑

x=1

Qn
t (x)δx/n . (17)

Note that the renormalization factor of order n2 arises in (17) because we need to
take into account the space renormalization and the diffusive scaling of the PMMand
SSEP dynamics. Now, recall the definition of (12). The empirical measure associated
with this boundary current is defined as

Kn
t := 1

n
Kn

t (0)δ0/n + 1

n
Kn

t (n − 1)δn−1/n . (18)
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Since expression (18) is related to the Glauber part of the process, we only need to
take into account the space renormalization factor of order n.

Let f ∈ C1([0, 1]) be a test function. We define the empirical density of particles
at time t , that is, the integral of f with respect to the empirical measure πn

t , as

πn
t ( f ) = 1

n

∑

x∈Σn

f
(
x
n

)
ηt (x).

In the same manner, the current field J n
t is defined as

J n
t ( f ) := Qn

t ( f ) + Kn
t ( f ),

where Qn
t is the conservative current field

Qn
t ( f ) := 1

n2

n−2∑

x=1

f
(
x
n

)
Qn

t (x),

and Kn
t is the non-conservative current field

Kn
t ( f ) := 1

n

(
f (0)Kn

t (0) − f
(
n−1
n

)
Kn

t (n − 1)
)
.

2.4 Fick’s Law

In this section, we define the notion of weak solution of the PME with Dirichlet,
Robin, and Neumann boundary conditions, and we state the Fick’s law for the PMM
with slow reservoirs. Before we start, let us fix some notations. We denote by:

• C∞
c (0, 1), the set of all real-valued functionsG ∈ C∞(0, 1)with compact support;

• C1,2
0 ([0, T ] × [0, 1]), the set of all real-valued functionsG ∈ C1,2([0, T ] × [0, 1])

such that Gs(0) = Gs(1) = 0, for all s ∈ [0, T ];
• 〈·, ·〉, the inner product in L2([0, 1]) with corresponding norm ‖ · ‖2.
Definition 1 Let H 1 be the set of all locally summable functions ζ : [0, 1] → R

such that there exists a function ∂uζ ∈ L2([0, 1]) satisfying

〈∂uG, ζ 〉 = 〈G, ∂uζ 〉,

for all G ∈ C∞
c (0, 1). For ζ ∈ H 1, we define the norm

‖ζ‖H 1 := (‖ζ‖22 + ‖∂uζ‖22
)1/2

.

Let L2(0, T ;H 1) be the set of all measurable functions ξ : [0, T ] → H 1 such that
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‖ξ‖2L2(0,T ;H 1) :=
∫ T

0
‖ξt‖2H 1 dt < ∞.

Definition 2 Let T > 0,α, β ∈ (0, 1) and g : [0, 1] → [0, 1] ameasurable function.
We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the PMEwith Dirichlet
boundary conditions

⎧
⎪⎨

⎪⎩

∂tρt (u) = Δ(ρt (u))2, (t, u) ∈ (0, T ] × (0, 1),

ρt (0) = α, ρt (1) = β, t ∈ (0, T ],
ρ0(u) = g(u), u ∈ [0, 1],

(19)

if the following conditions hold:

1. ρ2 ∈ L2(0, T ;H 1);
2. ρ satisfies the integral equation:

∫ 1

0

{
ρt (u)Gt (u) − g(u)G0(u)

}
du −

∫ t

0

∫ 1

0

{
ρs (u)∂sGs (u) + (ρs )

2(u)ΔGs (u)
}
du ds

+
∫ t

0

{
β2∂uGs (1) − α2∂uGs (0)

}
ds = 0,

for all t ∈ [0, T ] and any function G ∈ C1,2
0 ([0, T ] × [0, 1]);

3. ρt (0) = α and ρt (1) = β for all t ∈ (0, T ].
Definition 3 Let T > 0, κ ≥ 0, α, β ∈ (0, 1) and g : [0, 1] → [0, 1] a measurable
function.We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the PMEwith
Robin boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρt (u) = Δ(ρt (u))2, (t, u) ∈ (0, T ] × (0, 1),

∂u(ρt (0))2 = κ(ρt (0) − α), t ∈ (0, T ],
∂u(ρt (1))2 = κ(β − ρt (1)), t ∈ (0, T ],
ρ0(u) = g(u), u ∈ [0, 1],

(20)

if the following conditions hold:

1. ρ2 ∈ L2(0, T ;H 1);
2. ρ satisfies the integral equation:

∫ 1

0

{
ρt (u)Gt (u) − g(u)G0(u)

}
du −

∫ t

0

∫ 1

0

{
ρs (u)∂sGs (u) + ρ2s (u)ΔGs (u)

}
du ds

+
∫ t

0

{
(ρs (1))

2∂uGs (1) − (ρs (0))
2∂uGs (0)

}
ds

− κ

∫ t

0

{
Gs (0)(α − ρs (0)) + Gs (1)(β − ρs (1))

}
ds = 0,

for all t ∈ [0, T ] and any function G ∈ C1,2([0, T ] × [0, 1]).
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Before stating the Fick’s law let us fix some notations. Let M+ be the space of
positive measures on [0, 1] with total mass bounded by 1 equipped with the weak
topology. Let μn be measure on Ωn . We denote by Pμn the probability measure
in the Skorokhod space D([0, T ],Ωn), induced by the accelerated Markov process
{ηtn2}t≥0 and the initial measure μn . We denote by Eμn the expectation with respect
to Pμn .

Let g : [0, 1] → [0, 1] be a measurable function. For each n ∈ N, we say that
{μn}n∈N is associated with g(·), if for any continuous function H : [0, 1] → R and
any δ > 0:

lim
n→+∞ μn

(
η ∈ Ωn :

∣∣∣∣∣
1

n

∑

x∈Σn

H( xn )η(x) −
∫ 1

0
H(u)g(u) du

∣∣∣∣∣ > δ

)
= 0. (21)

Theorem 1 (Fick’s law) Fix θ ∈ [0,+∞). Let g : [0, 1] → [0, 1] be a measurable
function, H : [0, 1] → R a continuous function, and {μn}n∈N a sequence of proba-
bility measures on Ωn associated with g(·), as in (21). Then, for any t ∈ [0, T ] and
any δ > 0, we have

lim
n→+∞Pμn

(
η· ∈ D([0, T ], Ωn) :

∣∣∣
1

n2

n−2∑

x=1

Qn
t (x)H

( x
n
) −

∫ 1

0
H(u)∇ρ2t (u) du

∣∣∣ > δ
)

= 0,

lim
n→+∞Pμn

(
η· ∈ D([0, T ], Ωn) :

∣∣∣
1

n

(
H(0)Kn

t (0) − H
(
n−1
n

)
Kn
t (n − 1)

)

− 1{θ=1}κ
∫ t

0
H(0)(α − ρs (0)) + H(1)(β − ρs (1))ds

∣∣∣ > δ
)

= 0,

where

• ρt (u) is a weak solution of (19), for 0 ≤ θ < 1;
• ρt (u) is a weak solution of (20) (κ = m), for θ = 1;
• ρt (u) is a weak solution of (20) (with κ = 0), for θ > 1.

Remark 7 Note that J n
t = Qn

t + Kn
t . From the previous theorem we have that J n

converges weakly to J du, where J is the weak solution of

J = −D(ρ)∇ρ = −∇ρ2.

The result stated in Theorem 1, that we will prove in the next section, is the Law of
large numbers for the empirical measures defined in (17) and (18). It is the analog
of the Law of large numbers for the empirical measure (16), known in the literature
as hydrodynamic limit.
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2.5 Proof of Theorem 1

In this section, we prove Theorem 1, that is, the validity of Fick’s law: the currents
which enter and exit from the system are at all times equal to the local density gradient
at 0 and 1. In order to prove it we need to assume the validity of the hydrodynamic
limit and some technical results, known as replacement lemmas, which are stated
in the appendix. These results and the hydrodynamic limit are proved in [4]. The
theorems we refer to in the proof are stated in the first and second sections of the
Appendix.

Proof Let us prove the first identity of the theorem. Our proof starts with the obser-
vation that by Dynkin’s formula, see Lemma A1.5.1 of [19], for a fixed test function
H ∈ C1([0, 1]), we have that

Mn
t (H) = Qn

t (H) − Qn
0(H) −

∫ t

0
n2 L̃nQ

n
s (H) ds, (22)

is a martingale with respect to the natural filtration {Ft }t≥0, which vanishes as n →
∞ in L2(Pμn ) (see fist section of the Appendix). Note that Qn

0(H) = 0. Hence, we
can write (22) as

Qn
t (H) −

∫ t

0

n−2∑

x=1

H
(
x
n

)
jx,x+1(ηsn2) ds.

Since the PMM is a gradient model, performing a summation by parts in the previous
expression, we can write (22) as

Qn
t (H) −

∫ t

0

1

n

n−2∑

x=1

∇−
n H

( x
n
)
τx h(ηsn2 ) + H

(
0
n

)
τ1h(ηsn2 ) − H

(
n−1
n

)
τn−1h(ηsn2 ) ds, (23)

where τxh(ηsn2) is defined in (9) and

∇+
n H

(
x
n

) = n
(
H

(
x+1
n

) − H
(
x
n

))
, ∇−

n H
(
x
n

) = n
(
H

(
x
n

) − H
(
x−1
n

))
. (24)

Thus, we want to examine the convergence of (23) for each value of θ ∈ [0,+∞).
If θ < 1, the test function vanishes at the boundary. From the hydrodynamic limit

and Theorem 3, we have that the integral term of (23) converges in Pμn , as n→∞ to

∫ t

0

∫ 1

0
∇H(u)ρ2

s (u) du ds =
∫ t

0
H(1)ρ2

s (1) − H(0)ρ2
s (0) ds

−
∫ t

0

∫ 1

0
H(u)∇ρ2

s (u) du ds,

which is equal to − ∫ t
0

∫ 1
0 H(u)∇ρ2

s (u) du ds.
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If θ ≥ 1, the test function does not necessarily vanishes at the boundary. From
the hydrodynamic limit, Theorems 3 and 4 it follows that the integral term of (23)
converges in Pμn , as n → ∞ to

∫ t

0

∫ 1

0
∇H(u)ρ2

s (u) du ds +
∫ t

0
H(0)ρ2

s (0) − H(1)ρ2
s (1) ds,

which is also equal to − ∫ t
0

∫ 1
0 H(u)∇ρ2

s (u) du ds.
In the same manner, for H ∈ C1([0, 1]) we have that

M̃n
t (H) = Kn

t (H) + κ

∫ t

0

n

nθ

(
H( 1n )(α − ηsn2 (1)) + H( n−1

n )(β − ηsn2 (n − 1))
)
ds, (25)

is also a martingale that vanishes in L2(Pμn ) as n → ∞, see first section of the
Appendix. Let us now examine the convergence of the integral term of (25), for each
value of θ ∈ [0,+∞).

If 0 < θ < 1, the test function vanishes at the boundary, and by a Taylor expansion
on H we get

κ

nθ

∫ t

0
−∇+

n H(0)(α − ηsn2(1)) − ∇−
n H (1) (β − ηsn2(n − 1)) ds,

where∇±
n H

(
x
n

)
are defined in (24). The previous expression is bounded from above

by
κ

nθ
‖∇H‖∞

∫ t

0
|α − ηsn2(1)| + |β − ηsn2(n − 1)| ds,

which vanishes as n → ∞. If θ = 0, the test function vanishes at the boundary, and
by Theorem 5 we have that the integral term of (25) vanishes. If θ = 1, the test
function does not vanishes at the boundary, and from Theorem 6 we have that the
integral term of (25) converges in Pμn , as n → ∞ to

κ

∫ t

0
H(0)(α − ρ(s, 0)) + H(1)(β − ρ(s, 1)) ds.

Finally, if θ > 1, we have that the integral term of (25) is bounded from above by

κ

nθ−1
‖H‖∞

∫ t

0
|α − ηsn2(1)| + |β − ηsn2(n − 1)| ds,

which vanishes as n → ∞, concluding the proof.
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3 Stochastic Duality Relations for the PMM

In order to show our self-duality result for the PMM, we first need to give some
context regarding stochastic duality theory for Markov jumping processes. The idea
behind duality is to get information on a given process from another process, its
dual. The link between these two processes is provided by a set of so-called duality
functions, i.e. a set of observables that are functions of both processes and whose
expectations satisfy the following definition.

Definition 4 (Duality of processes) For t ≥ 0, let ηt and ξt be two continuous time
Markov processes with state spaces Ω and Ωdual , respectively. We say that ξt is
dual to ηt with duality function D : Ω × Ωdual → R if

Eη[D(ηt , ξ)] = Eξ [D(η, ξt )] , (26)

for all (η, ξ) ∈ Ω × Ωdual and t ≥ 0. In (26) Eη (respectively Eξ ) is the expectation
with respect to the law of the ηt process initialized at η (respectively the ξt process
initialized at ξ ).

If ηt and ξt are two independent copies of the same process, we say that ηt is self-dual
with self-duality function D. We will see that this is the case for the bulk dynamics
of the PMM. Indeed, self-duality can always be thought as a special case of duality
where the dual process is an independent copy of the first one. The simplification
of self-duality typically arises from the fact that in the copy process only a small
number of particles are considered. Given the one-to-one correspondence between
Markov processes and their semigroups, then one sees that a duality relation between
twoMarkov processes is equivalent to a duality relation between their Markov semi-
groups, i.e.

(Tt D (·, ξ)) (η) = (
T dual
t D (η, ·)) (ξ) , for t ≥ 0, (27)

where Tt denotes the semigroup of the original process η and T dual
t the semigroup

of the dual process ξ . In the context of IPS duality can be defined at the level of their
Markov generator, this is usually a definition easier to work with and the equivalence
of these two definitions has been proved in [17].

Definition 5 (Duality of generators) For t ≥ 0, let L and Ldual be generators of the
two Markov processes ηt and ξt , respectively. We say that Ldual is dual to L with
duality function D : Ω × Ωdual −→ R if

[LD(·, ξ)](η) = [Ldual D(η, ·)](ξ) (28)

where we assume that both sides are well defined.

In case L = Ldual we shall say that the process is self-dual and the self-duality
relation becomes

[LD(·, ξ)](η) = [LD(η, ·)](ξ) . (29)
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In Eq. (28) (respectively (29)) it is understood that L on the left hand side acts on
D as a function of the first variable η, while Ldual (resp. L) on the right hand side
acts on D as a function of the second variable ξ . Definition 5 is easier to prove, so
we will usually work under the assumption that the notion of duality (respectively
self-duality) is the one in Eq. (28) (respectively (29)).

If the original process ηt and the dual process ξt are Markov processes with
countable state spaceΩ andΩdual respectively, then the duality relation is equivalent
to ∑

η′∈Ω

L(η, η′)D(η′, ξ) =
∑

ξ ′∈Ωdual

(Ldual)T (ξ ′, ξ)D(η, ξ ′) , (30)

where LT denotes the transposition of the generator L . In matrix notation (30)
becomes

LD = D(Ldual)T . (31)

Once more, if Ldual = L we obtain the corresponding definition for self-duality. In
this context, the generator L is given by a matrix known as rate matrix such that

L(η, η′) ≥ 0 and
∑

η′
L(η, η′) = 0 .

For η �= η′, we say that the process jumps from η to η′ with rate L(η, η′).

Remark 8 Given that the PMM has a finite state space, the self-duality relations,
which will be characterized in the following two sections, read as in Eq. (31).

Our goal is to frame and find a self-duality relation for the PMM. This is achieved
via an algebraic approach, first proposed in [12] and further developed in [5, 11,
14], which relies on the following idea. It starts from the hypothesis that the Markov
generator is an element of the universal enveloping algebra of a Lie algebra. Then
the derivation of a (self-)duality relation is based on two structural ideas:

(i) duality can be seen as a change of representation of a Lie algebra: more precisely
one moves between two equivalent representations and the intertwiner of those
representations yields the duality function.

(ii) self-duality is related to the reversibility of the process and the existence of an
algebra element that commutes with the generator of the process.

We will make use of item (ii) to find a self-duality function for the bulk generator of
the PMM in Eq. (2).

In what follows, classical theorems and propositions are taken from [11, 12].
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3.1 Algebraic Approach to Duality

In this section, we briefly recall the idea to find self-duality relation for an IPS with
a reversible measure, see [12]. For the PMM the existence of a reversible measure
can be found by the detailed balance equations and it is the starting point of our
analysis. As stated in Remark 4, the reversible measure is known for the open system
only in case the reservoirs are tuned with the same parameter. In the case of a closed
system, the reversible measure has the same form, namely the product of Bernoulli
distribution, with a free constant parameter.

3.1.1 Symmetries and Self-Duality

In this subsection, we review the general techniques to exhibit a self-duality relation
for an IPS.

Definition 6 Let A and B be two matrices having the same dimension. We say that
A is a symmetry of B if A commutes with B, i.e.

[A, B] := AB − BA = 0 .

Clearly the identity matrix is always a symmetry and it is easy to verify that
[AB,CD] = A[B,C]D + CA[B, D] + [A,C]BD + C[A, D]B. The main idea is
that self-duality (in the context of Markov processes with countable state space) can
be recovered starting from a trivial duality which is based on the reversible mea-
sures of the corresponding process. One then can act with a symmetry of the model
on this trivial self-duality and turn it into a non-trivial one. The following theorem
formalizes this last idea.

Proposition 1 (Symmetries and self-duality) Let d be a self-duality function of the
generator L and let S be a symmetry of L, then D = Sd is again a self-duality
function for L.

Proof The proof follows from a straightforward computation and in matrix notation
it reads

LD = LSd = SLd = SdLT = DLT ,

where the second identity follows from the fact that S and L commutes, while the
third one is due to the self-duality of the generator L with self-duality function d.

If there is a description of the process generator in terms of a Lie algebra, then
symmetries can be constructed using this algebraic structure. Notice that the two
main elements of the theorem above are the initial self-duality d and the symmetry
operator S. We explain now how these two objects can easily be found whenever
reversibility and an algebraic description of the process are available. In general, if
the process has a reversible measure, the self-duality d can be easily found starting
from the reversibility, as the following proposition shows.



Porous Medium Model: An Algebraic Perspective and the Fick’s Law 213

Proposition 2 If the process associated with the generator L has reversible measure
μ, then the function d : Ω × Ω → R

d(η, ξ) = δη,ξ

μ(η)
(32)

is a self-duality function.

Proof The proof follows from the reversibility of the measure μ. Since we are on a
countable state space, we can use the notion of self-duality via the matrix notation
in Eq. (31). Namely,

Ld = dLT

which reads ∑

η′∈Ω

L(η, η′)d(η′, ξ) =
∑

ξ ′∈Ω

d(η, ξ ′)LT (ξ ′, ξ) ,

once we substitute the expression of d as in Eq. (32) we get

∑

η′∈Ω

L(η, η′)
δη′,ξ

μ(ξ)
=

∑

ξ ′∈Ω

δη,ξ ′

μ(η)
LT (ξ ′, ξ) .

The sumon the left-hand side only survives for η′ = ξ while the one on the right-hand
side only survives for ξ ′ = η, i.e,

L(η, ξ)
1

μ(ξ)
= L(ξ, η)

1

μ(η)
,

which is exactly the detailed balance condition.

We refer to this diagonal self-duality function in Eq. (32) as trivial or cheap self-
duality function. At this point one may now wonder how the operator S is found;
here it is where the properties of the algebra help. If the algebra admits the Casimir
element C then it is not hard to find symmetries for the process generator. Indeed,
since the Casimir element commutes with all the other elements of the algebra, then
any element of the algebra is potentially a good candidate as a symmetry of C .
Moreover, whenever the process generator L can be written as the coproduct of the
Casimir element, then a symmetry of the Casimir can be extended using its coproduct
to a symmetry of the generator as shown in the proposition below. It will also be
useful to recall that the coproduct of a Lie algebra generator X , denoted by Δ(X) is
defined via the tensor product ⊗, as

Δ(X) = 1 ⊗ X + X ⊗ 1 (33)

and that it can be extended as an algebra homomorphism to the universal enveloping
algebra.
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Proposition 3 If S is a symmetry of the central element C , then Δ(S) is a symmetry
for Δ(C ).

Proof Starting from [C , S] = 0, we want to show that [Δ(C ),Δ(S)] = 0. This
follows from the fact that the coproduct is an algebra homomorphism, i.e.

[Δ(C ), Δ(S)] = Δ(C )Δ(S) − Δ(S)Δ(C ) = Δ(C S) − Δ(SC ) = Δ(C S − SC ) = 0 .

3.1.2 The Lie Algebra su(2)

In this subsection, we link our process to the Lie algebra su(2), for which the Casimir
element exists. The su(2)Lie algebra is generated by three abstract operators, namely
J 0, J+ and J−, which satisfy the following commutation relations

[J 0, J±] = ±J± and [J+, J−] = 2J 0 , (34)

while the adjoint are given by (J 0)∗ = J 0, (J+)∗ = J− and (J−)∗ = J+. The
Casimir element is

C = 2(J 0)2 + J+ J− + J− J+ . (35)

It is easy to check that C is self-adjoint, i.e. C = C ∗ and it commutes with any
generators of the algebra. We propose here two different notations that satisfy the
rules of the su(2) algebra. The first one is defined by the action of the three matrices

on vectors of the natural basis of R2,

{(
1
0

)
,

(
0
1

)}
. In bra-ket notation, it becomes

⎧
⎪⎨

⎪⎩

J+ | ηx 〉 = (1 − ηx ) | ηx + 1〉,
J− | ηx 〉 = ηx | ηx − 1〉,
J 0 | ηx 〉 = (ηx − 1/2) | ηx 〉,

where the | n〉 here is a column vector that represents the nth element of the canonical
basis of R2. Explicitly this means that we can think of the su(2) generators as three
2 × 2 matrices

J+ =
(
0 0
1 0

)
J− =

(
0 1
0 0

)
J 0 =

(−1/2 0
0 1/2

)
.

The second representation, equivalent, acts of functions f : {0, 1} → R and is given
by ⎧

⎪⎨

⎪⎩

(J+ f )(ηx) = ηx f (ηx − 1),

(J− f )(ηx) = (1 − ηx) f (ηx + 1),

(J 0 f )(ηx ) = (ηx − 1/2) f (ηx ),
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where f (−1) = f (2) = 0. In the next section, we use these two representations to
show how the PMM can be described using the algebra’s generators J+, J−, and J 0.
From the first representation the rate matrix will arise, while the second one is used
to find the generators of Sect. 1.2

3.2 Porous Medium Model Described with the su(2) Algebra

We now link together the previous two Sects. 3.1 and 3.2: we will show that it is
possible to describe the PMM generator, LP , using the three algebra generators J+,
J− and J 0. This is inspired by the algebraic description of the SSEP which we recall
here. We start by considering two sites, labeled by 1 and 2, then the SSEP generator
is

LS f (η) = [η1(1 − η2)] [ f (η1 − 1, η2 + 1) − f (η1, η2)] (36)

+ (η2(1 − η1)] [ f (η1 + 1, η2 − 1) − f (η1, η2)] ,

for η = (η1, η2). We will see that LS can be described via the two representations of
the su(2) algebra introduced above.

Remark 9 In principle LS is found by summing all over the lattice siteΣn . However,
with abuse of notation, but without loss of generality since the coproduct structure
introduced in Eq. (33) can be generalized to any lattice size, we will refer to the SSEP
generator for two sites only. Conversely, the minimum number of sites to describe
the PMM is 4. At this stage, it is still not clear how to treat the duality relations for
the Glauber dynamics, namely for the generators Lα and Lβ defined in Eq. (6). For
this reason, it will be convenient to expand the space Σn into the one dimensional
discrete torus with n points, Tn .

The theorem below is saying that the SSEP bulk generator of equation (36) and the
Casimir of the su(2) of equation (35) are deeply related. An analog result holds for
the PMM.

Theorem 2 Given the structure of the su(2) algebra described in the previous
section, we can write the SSEP generator in terms of the coproduct of the Casimir
element of the algebra in the following way

LS = 1

2
Δ(C ) − 1

2
⊗ C − C ⊗ 1

2
− 1

2
.

Moreover, the term −1

2
⊗ C − C ⊗ 1

2
− 1

2
on the right hand side of the previous

display represents the identity times a constant.

Proof First we substitute the expression of the coproduct of the Casimir Δ(C ), so
that we get
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LS = J+ ⊗ J− + J− ⊗ J+ + 2J 0 ⊗ J 0 − 1/2 .

Using the first representation via matrices, we can write the rate matrix of the SSEP
(for two sites) as

LS =

⎛

⎜⎜⎝

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

⎞

⎟⎟⎠ .

In this case, the expression −1

2
⊗ C − C ⊗ 1

2
− 1

2
is the diagonal matrix with ele-

ment −2. Equivalently, using the second notation, i.e. acting on the function of two
variables we recover the well-known expression of equation (36). In this representa-
tion one can check that the action of the Casimir on function is C f (η) = 3

2 f (η), so

that the expression −1

2
⊗ C − C ⊗ 1

2
− 1

2
on functions of two variables just gives

−2 f (η1, η2).

We now go back to the PMM. The first observation is that it works on 4 sites because
even if the jumps only contemplate two central sites, there are two extra sites to
be taken into account. For this reason, we start by considering the action on 4 sites
only and so we restrict the analysis to the finite one-dimensional lattice Σ5. Here
we observe jumps between sites 2 and 3. In this setting the PMM generator acts on
functions f : {0, 1}Σ5 → R. The key observation is that

LP = (J 0
1 + J 0

4 + 1)LS (37)

= (
J 0
1 + J 0

4 + 1
) (

J+
2 J−

3 + J−
2 J+

3 + 2J 0
2 J

0
3 − 1/2

)
.

Here the notation Jax means that Ja is acting on sites x ∈ Σ5 for a ∈ {0,+,−}.
Indeed, since the algebra generator J 0 does not increase or decrease the degree of
the functions, we can use them to describe the extra constraint for the PMM. Here
LS has to be thought as the SSEP generator acting on sites 2 and 3.

In the same spirit of Theorem 2 one can check that using the first representation
we get the PMM rate matrix for 4 sites, namely

LP = (
J 0 ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ J 0 + 1

)
(38)

·
(
1 ⊗ J+ ⊗ J− ⊗ 1 + 1 ⊗ J− ⊗ J+ ⊗ 1 + 21 ⊗ J 0 ⊗ J 0 ⊗ 1 − 1

2
1

)
,

here 1 = 1 ⊗ 1 ⊗ 1 ⊗ 1, is shorthand for the identity matrix of dimension 16. Using
the second representation we get LP , the PMM generator of equation (2) on 4 sites
only.
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3.3 Duality Relations for the Porous Medium Model

We now show how to use the above algebraic approach to find a self-duality rela-
tion. In general, it is simpler to have a duality function in a factorized and space
homogeneous form, i.e. which can be written in the following way

D(η, ξ) =
∏

x

d(ηx , ξx ) , (39)

so that one can focus on finding the single site self-duality function d(ηx , ξx ). How-
ever, unlike all the other IPS for which self-dualities have been established, in this
model the jump rates depend not only on the state of the two sites involved but also on
neighboring sites. This will lead the analysis to two different self-duality functions,
one that cannot be factorized unless losing some information, while the other one
has a factorized structure but it is non-homogeneous over the lattice site.

3.3.1 Duality Function I

It is easy to check that on Tn the PMM has the same reversible measure than the
SSEP, i.e. homogeneous product of Bernoulli with free parameter ρ ∈ (0, 1):

μ(η : η(x) = 1) = ρ = 1 − μ(η : η(x) = 0).

Therefore, by Proposition 2 a cheap self-duality function is guaranteed to exist. In
virtue of the fact that the total number of particles is conserved by the dynamic of
the model (recall Remark 9, the state space of the process is Ωn = {0, 1}Tn ), then
duality functions that differ by constants or quantities that are kept constant by the
dynamics (e.g. the total number of particles) are equivalent (see Lemma 3 of [5]). In
our case, this means that any term that depends only on ρ can be neglected for the
self-duality function, and so we have that the cheap self-duality function is

Dcheap(η, ξ) =
∏

x∈Tn

dcheap(ηx , ξx ) =
∏

x∈Tn

δηx ,ξx . (40)

We now look for our symmetry S, acting on Dcheap, to find a non-trivial self-duality
function. To do this we start with the result for the SSEP and extend it for the PMM.
For the SSEP it is known that the su(2) algebra generator J+ is a symmetry of
the Casimir by definition of the Casimir element. By Theorem 3 its coproduct is a
symmetry of the coproduct of the Casimir which means that we have a symmetry
for the SSEP generator. In order to have self-duality in a factorized form, we will
consider its exponential, eJ

+
. By inspection of the PMM generator one then sees that

for sites 2 and 3, the same symmetry must hold. However, the generator used in sites
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1 and 4 do not commute with J+, and so we extend the symmetry using the identity
operator. This is formalized in the following lemma.

Lemma 1 In the context of the Lie algebra su(2), the following operator

S = 11 ⊗ eJ
+
2 ⊗ eJ

+
3 ⊗ 14

is a symmetry of the generator L P .

Proof Oneway to verify this is, for example, to show that [L2,3
P , S] = 0. On the other

hand, from the expression of LP in Eq. (37) the second parenthesis only involves sites
2 and 3 and it commutes with eJ

+
2 ⊗ eJ

+
3 , while for the first parenthesis we just use

the fact that the identity operator is always a symmetry.

Remark 10 At this point, it is important to stress the following observation. One
would expect that, given that the PMM and the SSEP are described via the same
algebra, with the only difference of the operator J 0 (which does not increase nor
decrease the degree of the functions), then a duality relation for the PMM would be
close to the SSEP one. However, we can already see from the space non-homogeneity
expression of the symmetry S that this cannot be the case.

Following Theorem 1 we now have to act with S on Dcheap in order to construct a
new non-trivial self-duality function, namely

D(η, ξ) = SDcheap(·, ξ)(η)

in operator notation or D = SDcheap in matrix notation. The matrix S can be written

as S =
(
1 0
0 1

)
⊗

(
1 0
1 1

)
⊗

(
1 0
1 1

)
⊗

(
1 0
0 1

)
which leads to

S =
(
A 0
0 A

)
,

where A is the following lower triangular block:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since Dcheap is just the identity matrix, we have that the above matrix is also our new
non-trivial self-duality matrix. As a function, we can see that the matrix D above
can be written in a factorized form as
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D(η, ξ) = 1{η1=ξ1}1{η2≥ξ2}1{η3≥ξ3}1{η4=ξ4} . (41)

For the first and the last factors above no computations are needed, while for the
second and third it is enough to see that, for the single site self-duality function we
have

d(η, ξ) = eJ
+
dcheap(·, ξ)(η) =

∞∑

i=0

(J+)i

i ! δη,ξ =
∞∑

i=0

1

i !
η!

(η − i)!1{i≤η}δη−i,ξ

=
(

η

ξ

)
1{0≤ξ≤η} = 1{ξ≤η} .

The last equality follows from the fact that we are only dealing with 0 or 1, whose
factorial is always 1. As expected, given the observation in Remark 10, the self-
duality function of equation (41) is non-homogeneous. If we want to write this in
a homogeneous form the only possibility is to “lose” some information in the two
central sites. Namely, to impose that the single-site duality function for sites 2 and
3 matches the one for sites 1 and 4 and so losing the choice {η < ξ}. This allows to
retrieve a duality function on the torus, which matches the cheap duality function,
i.e.

D(η, ξ) =
∏

x∈Tn

1{ηx=ξx } .

It is a bit counter-intuitive that diagonal operators such as the J 0, which is morally
a multiplicative operator actually do change profoundly the form of the self-duality
function compared to the self-duality of the SSEP, see Remark 11 below. We could
claim that duality relations are not robustness when kinetically constrains of the
microscopic model are taken into consideration.

Remark 11 A similar strategy for the SSEP leads to the self-duality function

D(η, ξ) =
∏

x∈Tn

1{ηx≥ξx } , (42)

which is useful because one can write it in terms of the η process. For example
assuming ξ = δx , the dual configuration with just one particle at site x ∈ Tn , the
expression of the self-duality function in Eq. (42) reads for all y ∈ Tn − {x} as 1{ηy≥0}
which is always one. While for site x we have

1{ηx≥1} =
{
0 if ηx = 0

1 if ηx = 1
= ηx

leading to D(η, δx ) = ηx . A similar reasoning leads to D(η, δx + δy) = ηxηy and so
on. This is how duality relates n dual walkers with the n−point correlation function
of the original process.
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3.3.2 Duality Function II

We conclude this overview of self-duality for IPS with a different, more direct
approach that produces a distinct, far from trivial self-duality function. The idea
is to take advantage of the self-duality relation of the SSEP with the self-duality
function in Eq. (42). We have seen that, thanks to the algebraic approach, the PMM
and the SSEP generators are connected by

LP = (J 0
1 + J 0

4 − 1)LS. (43)

Looking for a self-duality relation introduced in Eq. (29), it means that

(η1 + η4)LSD(·, ξ)(η) = (ξ1 + ξ4)LSD(η, ·)(ξ) .

Now the key observation is that LSD(·, ξ)(η) = LSD(η, ·)(ξ) holds for every D of
the form we are interested in as in Eq. (39). Indeed, for two neighboring sites (say 2
and 3 to be consistent) we assume that

D(η, ξ) = d2(η2, ξ2)d3(η3, ξ3) .

Since we are working with the hard-core exclusion we have that for x = 2, 3 the
possible choices for d are

d(ηx , ξx ) = A + Bηx + Cξx + Dηxξx ,

for A, B, C and D arbitrary constant where ηx , ξx ∈ {0, 1}. At this point, it is not
hard to verify via an explicit, long but trivial computation that the duality relation
in Definition 5 holds independently from the choices of A, B, C or D. This means
that we have the freedom to choose D such that it just has to satisfy the identity
η1 + η4 = ξ1 + ξ4. In other words, we are saying that a self-duality function requires
to have the same number of particles in the original and dual process for sites that
have distance 2, i.e.

D(η, ξ) =
∏

x∈Tn

1{ηx−1+ηx+2=ξx−1+ξx+2} .

If the self-duality function above can be of any interest, it is not clear at this
stage. We were able to have a product form which, unluckily, is inhomogeneous; in
a symmetric context, all useful applications, as far as we know only deal with space
homogeneous self-duality functions.

We conclude here the section regarding self-duality for the PMM. A question,
still open, would be to figure out if we can also have an algebraic description of the
generators Lα and Lβ of equation (6). This would give more insight in the form of
the dual process at the boundaries. Moreover, we believe that, if the Glauber dynamic
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allows an algebraic description, one would have hope to infer the one or two points
correlation functions using the dual – possibly only absorbing – process.

Acknowledgements R.P thanks FCT/Portugal for support through the project LisbonMathematics
PhD (LisMath). The authors acknowledge support from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovative program (grant agreement No
715734).

Appendix

Finally, we write some auxiliary results for the work to be consistent. We start by
showing that the quadratic variation vanishes in L2(Pμn ), as n goes to infinity, and
we then recall the replacement lemmas needed to prove the Fick’s law.

Quadratic Variation

In this section we will prove that the quadratic variation of (22) vanishes in L2(Pμn ),
as n goes to infinity.

Fix f ∈ C1(0, 1). From Dynkin’s formula (see Lemma A1.5.1 of [19]) we have
that

Mn
t ( f ) = J n

t ( f ) − J n
0 ( f ) −

∫ t

0
n2 L̃n J

n
s ( f ) ds,

is a martingale with respect to the natural filtration {Ft }t≥0. The quadratic variation
of Mn

t is given by 〈Mn( f )〉t = ∫ t
0 Bn

s ( f ) ds, where

Bn
s ( f ) := n2

(
L̃n J

n
s ( f )2 − 2J n

s ( f )L̃n J
n
s ( f )

)
.

Recalling the definition of L̃n in (13), we can write Bn
s ( f ) in the following form

Bn
s ( f ) = Bn

s,α( f ) + Bn
s,P( f ) + na−2Bn

s,S( f ) + Bn
s,β( f ). (44)

Let us examine the conservative part of (44). Note that

(
Bn
s,P + na−2Bn

s,S

)
( f ) = n2

((
L̃ P + na−2 L̃ S

)
Qn
s ( f )2 − 2Qn

s ( f )
(
L̃ P + na−2 L̃ S

)
Qn
s ( f )

)
.

(45)
To simplify notation, take Qn

s ( f ) = F(ηsn2 , Qn
s (x)). Now, we can write (45) as

(
Bn
s,P + na−2Bn

s,S

)
( f ) = n2

n−1∑

x=1

(
Bn
s,P + na−2Bn

s,S

)
(x),
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where

(
Bn
s,P + na−2Bn

s,S

)
(x) =

(
L̃ P + na−2 L̃ S

)
F(ηsn2 , Q

n
s (x))

2

− 2F(ηsn2 , Q
n
s (x))

(
L̃ P + na−2 L̃ S

)
F(ηsn2 , Q

n
s (x)).

The previous expression is equal to

ax,x+1(ηsn2 )(cx,x+1(ηsn2 ) + na−2)
(
F

(
η
x,x+1
sn2

, Qn
s (x) + 1

)
− F

(
ηsn2 , Q

n
s (x)

))2

+ax+1,x (ηsn2 )(cx,x+1(ηsn2 ) + na−2)
(
F

(
η
x,x+1
sn2

, Qn
s (x) − 1

)
− F

(
ηsn2 , Q

n
s (x)

))2

+
n−2∑

y=1
y �=x

(
ηsn2 (x) − ηsn2 (x + 1)

)2
(cx,x+1(ηsn2 ) + na−2)

(
F

(
η
y,y+1
sn2

, Qn
s (y)

)
− F(ηsn2 , Q

n
s (y))

)2
.

Thus, since Qn
s ( f ) = F(ηsn2 , Qn

s (x)), we get

ax,x+1(ηsn2 )(cx,x+1(ηsn2 ) + na−2)

⎛

⎝ 1

n2

n−2∑

y=1

f
( y
n
)
Qn,x+1
s (y) − 1

n2

n−2∑

y=1

f
( y
n
)
Qn
s (y)

⎞

⎠
2

+ax+1,x (ηsn2 )(cx,x+1(ηsn2 ) + na−2)

⎛

⎝ 1

n2

n−2∑

y=1

f
( y
n
)
Qn,x−1
s (y) − 1

n2

n−2∑

y=1

f
( y
n
)
Qn
s (y)

⎞

⎠
2

,

which is equal to

ax,x+1(ηsn2)(cx,x+1(ηsn2) + na−2)

(
1

n2
f
(
x
n

) (
Qn

s (x) + 1
) − 1

n2
f
(
x
n

)
Qn

s (x)

)2

+ax+1,x (ηsn2)(cx,x+1(ηsn2) + na−2)

(
1

n2
f
(
x
n

) (
Qn

s (x) − 1
) − 1

n2
f
(
x
n

)
Qn

s (x)

)2

.

Hence,

(
Bn
s,P + na−2Bn

s,S

)
(x) = 1

n4
f
( x
n
)2

(ax,x+1(ηsn2 ) + ax+1,x (ηsn2 ))(cx,x+1(ηsn2 ) + na−2).

Therefore,

(
Bn
s,P + na−2Bn

s,S

)
( f ) = 1

n2

n−2∑

x=1

f
( x
n
)2

(ax,x+1(ηsn2 ) + ax+1,x (ηsn2 ))(cx,x+1(ηsn2 ) + na−2)

≤ 2
‖ f 2‖∞

n
+ ‖ f 2‖∞

n3−a
,

which vanishes when n goes to infinity since 1 < a < 2.
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Let us now examine the non-conservative part of the quadratic variation. Note
that

(
Bn
s,α + Bn

s,β

)
( f ) = n2

((
L̃α + L̃β

)
Kn

s ( f )2 − 2Kn
s ( f )

(
L̃α + L̃β

)
Kn

s ( f )
)

.

Wewill examine only Bn
s,α( f ) since the computations for Bn

s,β( f ) are the same. Take
Kn

s ( f ) = F(ηsn2 , Kn
s (0)). Repeating the same arguments used above, we have that

Bn
s,α( f ) = n2

m

nθ

{
α(1 − ηsn2(1))

(
F

(
(η1

sn2 , K
n
s (0) + 1

) − F(ηsn2 , K
n
s (0))

)2

+ (1 − α)(ηsn2(1))
(
F

(
(η1

sn2 , K
n
s (0) − 1

) − F(ηsn2 , K
n
s (0))

)2
}
.

Since Kn
s ( f ) = F(ηsn2 , Kn

s (0)), we get

n2
m

nθ

{
α(1 − ηsn2(1))

(
1

n
f (0)(Kn

s (0) + 1) − 1

n
f (0)Kn

s (0)

)2

+(1 − α)(ηsn2(1))

(
1

n
f (0)(Kn

s (0) − 1) − 1

n
f (0)Kn

s (0)

)2 }
.

Hence,

Bn
s,α( f ) = m

nθ
f (0)2(α − ηsn2(1))

2.

In the same manner, we also have

Bn
s,β( f ) = m

nθ
f
(
n−1
n

)2
(β − ηsn2(n − 1))2.

Therefore,

Bn
s,α( f ) + Bn

s,β( f ) ≤ C(α, β)
m

nθ
‖ f 2‖∞, (46)

which vanishes as n goes to infinity for any θ > 0. In order to conclude the proof we
need to show that (46) vanishes for θ = 0. This case is proved in Proposition 4.1 of
[8] and we refer the interested reader to see the proof there.

Replacement Lemmas

In this section, we state all the replacement lemmas used along the paper. For the
proofs, we refer the reader to [4]. Before stating the results let us fix some notation.

Fix n, � ∈ N, x ∈ Σn and ε > 0. Let Σε
n = {1 + εn, . . . , n − 1 − εn}, where εn

denotes �εn�,
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←−
Λ �

x := {x − � + 1, . . . , x} and
−→
Λ �

x := {x, . . . , x + � − 1},

be the boxes of size � to the left and to the right of site x , respectively. We denote by

←−η �(x) = 1

�

∑

y∈←−
Λ �

x

η(y) and −→η �(x) = 1

�

∑

y∈−→
Λ �

x

η(y)

the empirical densities in the boxes
←−
Λ �

x and
−→
Λ �

x .

Theorem 3 Let H : [0, 1] → R be such that ‖H‖∞ ≤ M < ∞. For any t ∈ [0, T ],
we have that

lim
ε→0

lim
n→+∞Eμn

⎛

⎝
∫ t

0

1

n

∑

x∈Σε
n

H
( x
n
) (

ηsn2 (x)ηsn2 (x + 1) − ←−η εn
sn2

(x)−→η εn
sn2

(x + 1)
)
ds

⎞

⎠ = 0.

Theorem 4 For any t ∈ [0, T ], we have

lim
ε→0

lim
n→+∞Eμn

(∣∣∣∣
∫ t

0
ηsn2(1)ηsn2(2) − −→η εn

sn2(1)
−→η εn

sn2(εn + 1) ds

∣∣∣∣

)
= 0

and

lim
ε→0

lim
n→+∞Eμn

(∣∣∣∣
∫ t

0
ηsn2 (n − 1)ηsn2 (n − 2) − ←−η εn

sn2
(n − 1)←−η εn

sn2
(n − 1 − εn) ds

∣∣∣∣

)
= 0.

Theorem 5 Fix θ < 1. Let ϕ : Ωn → Ωn be a positive and bounded function which
does not depend on the value of the configuration η at site 1. For any t ∈ [0, T ], we
have that

lim
ε→0

lim
n→+∞Eμn

(∣∣∣∣
∫ t

0
ϕ(ηsn2)(α − ηsn2(1)) ds

∣∣∣∣

)
= 0.

The same is true for β if place of α, n − 1 in place of 1 and requiring ϕ not to depend
on η at site n − 1.

Theorem 6 For any t ∈ [0, T ], we have

lim
ε→0

lim
n→+∞Eμn

(∣∣∣∣
∫ t

0
ηsn2(1) − −→η εn

sn2(1) ds

∣∣∣∣

)
= 0,

The same is true for ηsn2(n − 1) if place of ηsn2(1) and ←−η εn
sn2(n − 1) in place of−→η εn

sn2(1).
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Forward Utilities and Mean-Field Games
Under Relative Performance Concerns

Gonçalo dos Reis and Vadim Platonov

Abstract We introduce the concept of mean field games for agents using Forward
utilities of CARA type to study a family of portfolio management problems under
relative performance concerns. Under asset specialization of the fund managers, we
solve the forward-utility finite player game and the forward-utility mean-field game.
We study best response and equilibrium strategies in the single common stock asset
and the asset specialization with common noise. As an application, we draw on the
core features of the forward utility paradigm and discuss a problem of time-consistent
mean-field dynamic model selection in sequential time-horizons.

Keywords Forward utility · Mean-field games · Social interactions · Performance
concerns

1 Introduction

This work brings together the concept of forward utilities to the mean-field game
setting in the limelight of competitive optimal portfolio management of agents under
relative performance criteria and the analysis of the associated finite-player game.

There exists a very rich literature on portfolio management for agents with utility
preferences and under performance concerns to which this short introduction cannot
possibly due justice. For a literature perspective of the financial setting including
an in-depth discussion of agents with performance concerns and its impact in the
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utility maximization framework we refer to [4, 8, 14, 15] and references therein.
Additionally, we point the reader to the beautiful introductions of [20, 21] where
those concepts are brought to the framework of mean-field games. Further, those
works also make for an excellent review of mean-field games in the context of the
Merton problem which is the framework underlying our work.

In short, mean-field games (MFG), stochastic or not, gained renewed interest due
to their modelling power in crucially reducing the dimensionality of the underlying
problem under the assumption of statistically equivalent populations [5, 6, 19]. In
other words, as long as the actions of a single agent do not affect the average inter-
action of the agents in their whole, then, in principle, the MFG framework stands to
be more tractable than the n-agent games. See [20, 21].

The novelty of our work is the conceptualization and analysis, simplified here, of
the formulation ofmean-field gameswithin the so-called forward utilities framework.
Further, we juxtapose our construction to the related finite-player game.

The classical and ubiquitous approach of utility preferences, found throughout
the literature [4, 8, 14, 15], is that each agent, at an initial-time, specifies their risk-
preferences to some future time T and proceeds to optimize their investment to that
initial-time. This backward approach lacks flexibility to handle mid-time changes
of risk-preferences by the agents, or, to allow an update of the underlying model:
having in mind Covid-19, if the fund manager made investments in early 2019 to
mature in the later part of 2020, how would one update the underlying model stock
model to the change of parameters?

These problems feature an inherently forward-in-time nature of investment. A
view that is particularly clear for (competitive) fund managers updating their invest-
ment preferences frequently depending on market behavior. To cope with the limita-
tion of the backward-in-time view induced by the classical utility optimization for-
mulation, and, to better address this forward view, the mathematical tool of forward
utilities was developed. It was initially introduced for the analysis of the portfolio
management problems in [22–24] and subsequently expanded [1, 7, 27] and [11–13].
The latter dealingwith general forward utility Itô randomfields andwith applications
to longevity risk. Our approach builds from [16] where the first forward-utility def-
inition under competition appeared (for finite-player games); we additionally refer
the reader to the forthcoming works [2, 10] (who also build from [16]).

In essence, the concept of forward utility reflects that the utility map must be
adaptive and adjusted to the information flow. The forward dynamic utility map is
built to be consistent with respect to the given investment universe and the approach
we discuss here is based on the martingale optimality principle (see Sect. 2.1).

To the MFG context, the closest to our work we have found is the concept of
Forward-Forward MFG concept of [18].

Organization of the paper. InSect. 2we introduce thefinancialmarket. InSects. 3
and 4 we study the finite-agent and mean-field game respectively. We study forward
utilities of time-monotone type. In Sect. 4.4 we discuss the mean-field investment
problemwith dynamicmodel selection in large time-horizons.We conclude in Sect. 5
with a discussion of open questions and future research.
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2 Asset Specialization, Forward Utilities and CARA
Preferences

The market. We consider a market environment with one riskless asset and n risky
securities which serve as proxies for two distinct asset classes.We assume their prices
to be of log-normal type, each driven by two independent Brownian motions. More
precisely the price (Si

t )t�0 of the stock i traded exclusively by the i th agent solves

d Si
t

Si
t

= μi dt + νi dW i
t + σi d Bt , (1)

with constant parameters μi > 0, σi � 0 and νi � 0 with σi + νi > 0. We refer the
reader to [20, 21] for an in-depthmotivation of themodel. The one-dimensional stan-
dard Brownian motions B, W 1, . . . , W n are independent. When σi > 0, the process
B induces a correlation between the stocks, and thus we call B the common noise
and W i an idiosyncratic noise. The independent Brownian motions B, W 1, . . . , W n

are defined on a probability space (Ω,F,F ,P) endowed with the natural filtration
F = (Ft )t�0 generated by them and satisfies the usual conditions.

We recall the case of single common stock, where for any i = 1, . . . , n, (μi , σi ) =
(μ, σ ), νi = 0, for some μ, σ > 0 and independent of i . The single common stock
case has been explored in great generality in [4, 14, 15] incorporating portfolio
constraints, general stock price dynamics and risk-sharing mechanisms.

We aim to contribute to the literature on mean field games and forward utilities by
providing an explicitly solvable example. As argued by [20], outside linear-quadratic
structures such is very rare, and it is one of these rarities we bring here.Wework with
the very tractable model (1) and include common noise, heterogeneous of agents,
a mean field interaction through the controls in addition to the state processes and
forward utilities.

Agents’ wealth. Each agent i = 1, . . . , n trades using a self-financing strategy,
(π i

t )t�0, which represent the (discounted by the bond) amount invested in the i th
stock. The i th agent’s wealth (Xi

t )t�0 then solves

d Xi
t = π i

t

(
μi dt + νi dW i

t + σi d Bt

)
, with Xi

0 = xi
0 ∈ R. (2)

We recall that the strategy is self-financing, when the agent wealth evolve from
the starting capital only by agent’s investment decisions in the market without any
external sources of income and this evolution is described by respective SDE (2).

A portfolio strategy is said admissible if it belongs to the set A i , which consists
of

A i =
{
π i : F − progressively measurableR − valued processes (π i

t )t�0,

and self-financing such that E[
∫ t

0
|πs |2ds] < ∞, for all t � 0

}
.
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The Agents’ social interaction. Each manager measures the performance of her
strategy taking into account the policy of the other. Each agent engages in a form
of social interaction that affects the agent’s perception of wealth, all in an additive
fashion modelled through the arithmetic average wealth of all agents (this model is
largely inspired in [4, 14, 15, 21]). The way the agent assesses and optimizes his
relative performance is explored through Definition 2 in the latter Sect. 3. So far we
introduce the relative performance metric of manager i ∈ {1, . . . , n}, denoted X̃ i is
defined to be

X̃ i = Xi − θi X , where X := 1

n

n∑
k=1

Xk and θi ∈ [0, 1], (3)

where deterministic θi stands for the competition weight for agent i .
We easily obtain a dynamics for X and X̃ i , namely

d Xt =
(1

n

n∑
k=1

π k
t μk

)
dt +

(1
n

n∑
k=1

π k
t νkdW k

t

)
+

(1
n

n∑
k=1

π k
t σk

)
d Bt

= (πμ)t dt +
(1

n

n∑
k=1

π k
t νkdW k

t

)
+ (πσ)t d Bt , X0 = x0 = 1

n

n∑
k=1

xk
0

d X̃ i
t = (

π i
t μi − θi (πμ)t

)
dt +

(
π i

t νi dW i
t − θi

(1
n

n∑
k=1

π k
t νkdW k

t

))

+ (
π i

t σi − θi (πσ)t

)
d Bt , X̃ i

0 = xi
0 − θi x0, (4)

where x0, πμ and πσ are identified as averages (as seen from the 1st equation to the
2nd). Similarly to [21, Remark 2.5], it is natural to replace the average wealth X in
(3) by the average over all other agents. With that in mind we define for convenience

X
(−i) = 1

n−1

∑
k �=i Xk and Y (−i) = n

n−1 X
(−i)

. This leads us to recast (3) as

X̂ i = Xi − θi X
(−i)

, where X
(−i) = 1

n − 1

∑
k �=i

Xk . (5)

We easily obtain a dynamics for X̂ and X
(−i)

, namely

d X
(−i)
t = (πμ)

(−i)
t dt +

( 1

n − 1

∑
k �=i

π k
t νkdW k

t

)
+ (πσ)

(−i)
t d Bt , X

(−i)
0 = x (−i)

0

d X̂ i
t = (

π i
t μi − θi (πμ)

(−i)
t

)
dt +

(
π i

t νi dW i
t − θi

( 1

n − 1

n∑
k �=i

π k
t νkdW k

t

))

+ (
π i

t σi − θi (πσ)
(−i)
t

)
d Bt , X̂ i

t = xi
0 − θi x

(−i)
0 . (6)
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We also define the quantities

π̂σ (−i) := 1

n

∑
k �=i

πkσk , (πμ)
(−i) := 1

n

∑
k �=i

πkμk and (πν)2
(−i) := 1

n

∑
k �=i

(πkνk)2,

where we have the following relations between π̂σ (−i), πσ (−i) and πσ :

πσ (−i) = n

n − 1
πσ − 1

n − 1
π iσi , πσ (−i) = n

n − 1
π̂σ (−i), (7)

and π̂σ (−i) = πσ − 1
n π iσi . We do not write it explicitly but we extend the same

notation and relations to π̂μ(−i), πμ(−i) and πμ.

2.1 Forward Dynamic Utilities (Classic)

We recall, for reference, the classic forward utility formulation. We define a forward
dynamic utilities in the context of the probability space (Ω,F,F ,P). We denote by
u0 : R → R the initial data. The forward utility is constructed based on themartingale
optimality principle.

Definition 1 (Forward dynamic utilities) Let U : Ω × R × [0,∞) → R be an F-
progressively measurable random field. U is a forward dynamic utility if

(i) For all t � 0 the map x �→ U (x, t) is P-a.s. increasing and concave;
(ii) It satisfies U (x, 0) = u0(x);
(iii) For all T � t and each self-financing strategy, represented by π , the associated

discounted wealth process Xπ satisfies a supermartingale property

E[U (Xπ
T , T )|Ft ] � U (Xπ

t , t) P-a.s.;

(iv) For all T � t there exists a self financing strategy, represented by π∗, for which
the associated discounted wealth X∗ satisfies a martingale property

E[U (X∗
T , T )|Ft ] = U (X∗

t , t) P-a.s.

The above definition assumes the optimizer is attained. This is a somewhat strong
assumption which is discussed in [1, 27]. There it is argued that such constraint is
not necessary for the forward utility construction in certain contexts.

Following e.g. [24, Sect. 5], we say a utility map U is of Constant Absolute Risk
Aversion (CARA) type if the local risk tolerance function r i : Ω × R × [0,∞) →
R, given by the quotient r i (x, t) := −U i

x (x, t)/U i
xx (x, t), is constant uniformly. This

is the case for the classical exponential utility function, see Example 1 below.
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3 Forward Relative Performance Criteria

3.1 Forward Relative Performance Criteria

Eachmanagermeasures the output of her relative performancemetric using a forward
relative one as modelled by anFt -progressively measurable random field U i : R ×
[0,∞) → R for i ∈ {1, . . . , n}. The below criteria follows those proposed in [16].

The main idea here being a formulation inspired in the first step in the usual
strategy of solving a Nash game, namely the best response of an agent to the actions
of all other agents. Take manager i and assume all other agents j �= i have acted with
an investment policy π j then for any strategy π i ∈ A i , the process U i (X̂ i

t , t) is a
(local) supermartingale, and there exists π i,∗ ∈ A i such that U i (X̂ i,∗

t , t) is a (local)
martingale where X̂ i and X̂ i,∗ solves (5) with strategies π i and π i,∗ respectively.

This version of a relative criterion is (implicitly and) exogenously parametrized
by the policies of all other managers j �= i over which there is no assumption on
their optimality. In Nash-game language, we solve the so-called best response.

Definition 2 (Forward relative performance for the manager) Each manager i ∈
{1, . . . , n} satisfies the following. Let π j ∈ A j , for any j �= i be arbitrary but fixed
admissible policies, in other words, the other managers have fixed their admissible
strategies.

An F-progressively measurable random field U i (x, t) is a forward relative per-
formance for manager i if, for all t � 0, the following conditions hold:

(i) The mapping x �→ U i (x, t), is P-a.s. strictly increasing and strictly concave;
(ii) For any π i ∈ A i , U i (X̂ i

t , t) is a (local) supermartingale and X̂ i is the relative
performance metric given in (5);

(iii) There exists π i,∗ ∈ A i such that U i (X̂ i,∗
t , t) is a (local) martingale where X̂ i,∗

solves (5) with strategies π i,∗ being used.

In the above definition, we do not make explicit references to the initial conditions
U i (x, 0) but we assume that admissible initial data exists such that the above def-
inition is viable. Contrary to the classical expected utility case, the forward utility
process is an investor-specific input. Once it is chosen, the supermartingale and
martingale properties impose conditions on the drift of the process. Under enough
regularity, these conditions lead to the forward performance SPDE (see [26]).

Since we are working in a log-normal market, it suffices to study smooth relative
performance criteria of zero volatility (of the forward utility map). Such processes
are extensively analysed in [25] in the absence of relative performance concerns.
There, a concise characterization of the forward criteria is given along necessary
and sufficient conditions for their existence and uniqueness. In that setting, the zero-
volatility forward processes are always time-decreasing processes. We point to the
reader that this does not have to be case if relative performance concerns are present
(see also [16]). Before proving the main result of the subsection, we make a standing
assumption regarding the regularity of the forward utility maps.
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Assumption 1 Assume that the derivatives U i
t (x, t), U i

x (x, t) and U i
xx (x, t) exists

for t � 0, x ∈ R, P-a.s.

From Assumption 1, the Itô decomposition of the forward utility map is

dU i (x, t) = U i
t (x, t)dt, for i ∈ {1, . . . , n}. (8)

We next derive a PDEwith randomcoefficients and an optimal investment strategy
for a smooth relative performance criteria of zero volatility of some agent i assuming
that all other agents j �= i have made their investment decisions.

Proposition 1 (Best responses) Fix i ∈ {1, . . . , n} and the agent’s initial preference
ui
0. Assume that each manager j �= i follows π j ∈ A j . Consider the PDE with

stochastic coefficients for (x, t) ∈ R × [0,∞)

U i
t =

(
θi (πμ)

(−i)
t − μiθiσi (πσ)

(−i)
t

ν2
i + σ 2

i

)
U i

x + μ2
i

2(ν2
i + σ 2

i )

(U i
x )

2

U i
xx

+ 1

2
U i

xx

[(
θi (πσ)

(−i)
t

)2( σ 2
i

ν2
i + σ 2

i

− 1
)

− θ2
i

n − 1
(πν)2

(−i)
]
, (9)

and assume that for an admissible initial condition U (·, 0) = ui
0(·), the PDE has

a smooth solution U i satisfying Assumption 1, such that x �→ U i (x, t) is strictly
increasing (Ux > 0) and strictly concave (Uxx < 0) for each t > 0, P-a.s.

Define the strategy π i,∗

π i,∗
t = 1

ν2
i + σ 2

i

(
θiσi (πσ)

(−i)
t − μi

U i
x (X̂ i,∗

t , t)

U i
xx (X̂ i,∗

t , t)

)
, t > 0,

where X̂ i,∗ solves (6) with π i,∗ being used.
If π i,∗ ∈ A i and X̂ i,∗ are well-defined, then U i (x, t) is a forward utility per-

formance process. Moreover, the policy π i,∗ is optimal (in the sense of Definition
2).

Remark 1 Note that the randomness in PDE (9) is coming from π · only.

By direct inspection of the expression for π i,∗ one sees that if the local risk
tolerance function r i (x, t) = r i = Const , for all t > 0 (e.g. the utility is of Constant
Absolute Risk Aversion (CARA) type – see Sect. 2.1) then the optimal strategy will
be constant throughout time if additionally all other agents also choose a constant
strategy.

Corollary 1 (Constant strategies under CARA) Assume that all agents j �= i invest
according to constant strategies π j ∈ R and that the local risk tolerance function r i

is constant. Then π i,∗ is constant.

We now prove the previous “best responses” proposition above.
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Proof (of Proposition 1) From (5) we have the dynamics of d X̂ i (and hence that of

d(Xi − θi X
(−i)

)).We nowapply the Itô formula toU i (X̂ i
t , t) = U i (Xi

t − θi X
(−i)
t , t),

dUi (X̂ i
t , t) = Ui

t (X̂ i
t , t)dt + Ui

x (X̂ i
t , t)d X̂i

t + 1

2
Ui

xx (X̂ i
t , t)d〈X̂ i

t 〉

= Ui
t (X̂ i

t , t)dt + Ui
x (X̂ i

t , t)
(
π i

t μi − θi (πμ)
(−i)
t

)
dt

+ Ui
x (X̂ i

t , t)
(
π i

t νi dW i
t − θi

( 1

n − 1

n∑
k �=i

πk
t νkdW k

t
))

(10)

+ Ui
x (X̂ i

t , t)
(
π i

t σi − θi (πσ)
(−i)
t

)
d Bt

+ 1

2
Ui

xx (X̂ i
t , t)

[
(π i

t νi )
2 + θ2i

n − 1
(πν)2

(−i) + (
π i

t σi − θi (πσ)
(−i)
t

)2]dt,

with U i (X̂ i
0, 0) = U i (xi

0 − θi x
(−i)
0 , 0) and we used that the B, W j are all i.i.d.

By Definition 2, the process U i (X̂ i
t , t) becomes a Martingale at the optimum π .

Direct computations using first order conditions (∂π i “drift” = 0) yield

0 + U i
x

(
μi − 0

) + 1

2
U i

xx

[
2π iν2

i + 0 + 2
(
π i

t σi − θi (πσ)
(−i)
t

)
σi

]
= 0

⇔ U i
xxπ

i (ν2
i + σ 2

i ) = −U i
xμi + U i

xxθiσi (πσ)
(−i)
t (11)

⇒ π i
t = 1

ν2
i + σ 2

i

(
θiσi (πσ)

(−i)
t − μi

U i
x (X̂ i

t , t)

U i
xx (X̂ i

t , t)

)
.

Injecting the expression of π i
t in the drift term of (10) and simplifying we arrive at

the consistency condition (9), we do not carry out this step explicitly, nonetheless,
using that U i solves (9), Eq. (10) simplifies to (exact calculations are carried out in
the Sect. 6),

dU i (X̂ i
t , t)

= U i
x (X̂ i

t , t)
(
π i

t νi dW i
t − θi

( 1

n − 1

n∑
k �=i

π k
t νkdW k

t

))

+ U i
x (X̂ i

t , t)
(
π i

t σi − θi (πσ)
(−i)
t

)
d Bt

+ 1

2
U i

xx (X̂ i
t , t)

1

ν2
i + σ 2

i

∣∣∣π i (ν2
i + σ 2

i ) −
(
θiσi (πσ)

(−i)
t − μi

U i
x (X̂ i

t , t)

U i
xx (X̂ i

t , t)

)∣∣∣
2
dt.

(12)

The concavity assumption ofU i (x, t) implies that the drift term above is non-positive
and vanishes when (11) holds.We can conclude that, ifπ i,∗

t = π i
t ∈ A i and the asso-

ciated process X̂ i,∗ is well-defined (solution to (6) with π i,∗), the process U i (X̂ i,∗
t , t)

is a local-martingale, otherwise it is a local supermartingale.
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3.1.1 Examples: CARA Case

Example 1 (The classic CARA case—exponential case) The exponential criterion
takes as initial condition the map U (x, 0) (x ∈ R) defined as

U i (x, 0) = −e−x/δ, with δ > 0. (13)

In this case, the local risk tolerance function r = −U i
x/U i

xx = δ.

In our case accounting for social interaction between agents in the form of perfor-
mance concerns, the i th agent’s utility is a functionU i : Ω × R × R × [0,∞) → R

of both her individual wealth x and the average wealth wealth of all agents, m. The
initial/starting utility map is of the form

U i (x, m, 0) = − exp
{

− 1

δi
(x − θi m)

}
,

where we refer to the constants δi > 0 and θi ∈ [0, 1] as personal risk tolerance and
competition weight parameters, respectively.

Example 2 (The time-monotone forward utility with starting exponential) For i ∈
{1, . . . , n}, let the dynamics of U i be given by (8) and assume U i (x, 0) = −e−x/δi

with δi > 0. Then the solution to the PDE (9) is given by

U i (x, t) = −e− x
δi

+ fi (t), with δi > 0, (14)

where ( fi (t))t�0 is the randommap given below independent of x satisfying fi (0) =
0, sufficiently integrable and t �→ fi (t) is differentiable. Note that in this case, the
local risk tolerance function satisfies r i = −U i

x/U i
xx = δi .

Injecting U i (x, t) above in (9) yields an ODE for fi (we omit the time variable),

f ′
i = −θi

δi

(
(πμ)

(−i) − μiσi (πσ)
(−i)

ν2
i + σ 2

i

)
+ μ2

i

2(ν2
i + σ 2

i )

+ θ2
i

2δ2i

[(
(πσ)

(−i)
)2( σ 2

i

ν2
i + σ 2

i

− 1
)

− 1

n − 1
(πν)2

(−i)
]

= −θi

δi
(πμ)

(−i) + 1

2(ν2
i + σ 2

i )

(
μi + θi

δi
σi (πσ)

(−i)
)2

− θ2
i

2δ2i

[(
(πσ)

(−i)
t

)2 + 1

n − 1
(πν)2

(−i)
]

=: λi .

Hence, fi (t) = ∫ t
0 λi (s)ds. In particular, if all coefficients and strategies are con-

stant, then (with a slight abuse of notation) fi (t) = tλi for a constant λi given by the
RHS of the above ODE.
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Example 3 (No performance concerns: θ i = 0) We continue to work under the
time-monotone forward utility case of the previous example. Without performance

concerns, i.e. θi = 0, then λi = μ2
i

2(ν2
i +σ 2

i )
and we recover well-known results.We have

from Proposition 1 that

π i,∗
· = μiδi

ν2
i + σ 2

i

and U i (x, t) = − exp
{

− x

δi
+ tλ(θi =0)

i

}
,

with the constant λ(θi =0)
i = μ2

i

2(ν2
i +σ 2

i )
.

3.2 The Forward Nash Equilibrium

In view of the best responses discussed in Proposition 1 we now investigate the
simultaneous best responses as to establish the existence of a Nash equilibrium.

Definition 3 (Forward Nash equilibrium) A forward Nash equilibrium consists of
n-pairs ofF-adaptedmaps (U i , π i,∗) such that for any t � 0 the following conditions
hold.

(i) For any i ∈ {1, . . . , n}, π i,∗ ∈ A i ;
(ii) For each player i ∈ {1, . . . , n} the following holds: given the strategies π j,∗ ∈

A j (any j �= i) the processes U i (X̂ i
t (π

∗,−i ), t) is a (local) supermartingale
where X̂ i (π∗,−i ) solves (6) with all managers j �= i acting according to π j,∗;

(iii) For each player i ∈ {1, . . . , n} the following holds: the process U i (X̂ i,∗
t

(π∗,−i ), t) is a (local) martingale where X̂ i (π∗,−i ) solves (6) with all man-
agers j acting according to π j,∗.

If all the optimal strategies are constant we say we have a constant forward Nash
equilibrium.

Under appropriate integrability conditions plus the martingale/supermartingale char-
acterizations, we have for some agent i for any π i ∈ A i

E[U i (X̂ i,∗
t (π∗,−i ), t)] = E[U i (X̂ i,∗

0 (π∗,−i ), 0)] = E[U i (xi
0 − θi x

(−i)
0 , 0)]

= U i (xi
0 − θi x

(−i)
0 , 0) � E[U i (X̂ i

t (π
∗,−i ), t)].

As expected, nomanager can increase the expected utility of her relative performance
metric by unilateral decision.

The solvability of the general forward Nash equilibrium seems very difficult for
a general forward criteria as one needs to solve the following system for the π i,∗
(see Proposition 1, in particular (11)) and the corresponding PDEs for the U i , i ∈
{1, . . . , n}:
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π i,∗
t (ν2

i + σ 2
i ) = θiσi

( 1

n − 1

n∑
k=1,k �=i

π k,∗
t σk

)
− μi

U i
x

(
X̂ i,∗

t (π∗,−i ), t
)

U i
xx

(
X̂ i,∗

t (π∗,−i ), t
) . (15)

3.2.1 Equilibrium with Time-Monotone Forward Utilities and
Exponential Initial Condition

In order to obtain explicit results we focus on the time-monotone case presented in
Example 2 for which U i

x/U i
xx = −δi . More notably, at the level at which we have

formulated our problem we can easily recover the results of [21, Theorem 2.3] for
which one has U i

x/U i
xx = −δi , for any t (note their Remark 2.5).

Theorem 1 Assume the conditions of Proposition 1 hold for all agents i ∈ {1, . . . , n}.
Assume furthermore that agents have time-monotone forward utility U i with initial
condition (13).

Define the quantities ϕσ
n and ψσ

n by

ϕσ
n := 1

n

n∑
i=1

δi
μiσi

ν2
i + σ 2

i

(
1 + θi

n−1

) and ψσ
n := 1

n − 1

n∑
i=1

θi
σ 2

i

ν2
i + σ 2

i

(
1 + θi

n−1

) .

(16)
If ψσ

n �= 1, then a constant forward Nash equilibrium exists and is unique, with the
constant optimal strategies π i,∗ given by

π i,∗
· = 1

ν2
i + σ 2

i

(
1 + θi

n−1

)
(
θiσi

(
1 + 1

n − 1

) ϕσ
n

1 − ψσ
n

+ μiδi

)
. (17)

The forward Nash equilibria is given by the n-pairs {(U i,∗, π i,∗)}i=1,...,n where the
U i,∗ is the solution of (9) (see Example 2) under the optimal constant strategies π ·,∗.

The term λi (see Example 2), at equilibrium, is given by

λi = −θi

δi

({ n

n − 1
πμ − 1

n − 1
π iμi

}
− μiσi

ν2
i + σ 2

i

{ n

n − 1
πσ − 1

n − 1
π iσi

})

+ μ2
i

2(ν2
i + σ 2

i )
+ θ2

i

2δ2i

[{ n

n − 1
πσ − 1

n − 1
π iσi

}2( σ 2
i

ν2
i + σ 2

i

− 1
)

−
{ n

(n − 1)2
(πν)2 − 1

(n − 1)2
(π iνi )

2
}]

,

(18)

where the relevant expressions for πσ , πμ and (πν)2 are given below in (19), (20)
and (21).

Remark 2 We note that we do not solve the same problem studied at [21] but an
equivalent one. However, imposing the scaling factor given by [21, Remark 2.5] we
recover the same results as in [21, Theorem 2.3].
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Proof Injecting the condition Ux/Uxx = −δi in (15), the system to be solved in
order to ascertain the Nash equilibrium is, across i ∈ {1, . . . , n},

π i,∗
t (ν2

i + σ 2
i ) = θiσi

( 1

n − 1

n∑
k=1,k �=i

π k,∗
t σk

)
+ μiδi

= θiσi

( n

n − 1
(πσ)t − 1

n − 1
π i,∗σi

)
+ μiδi

⇔ π i,∗
t = 1

ν2
i + σ 2

i

(
1 + θi

n−1

)
(
θiσi

n

n − 1
(πσ)t + μiδi

)
.

The final line yields the expression for π i,∗ as a function of the unknown πσ . To
determine the latter, multiply both sides by σi and average over i ∈ {1, . . . , n}, this
yields a solvability condition

(πσ)t = (πσ)tψ
σ
n + ϕσ

n ⇔ πσ = ϕσ
n

1 − ψσ
n

as long as ψσ
n �= 1. (19)

Plugging the expression (πσ) in that for π i,∗ yields the result. That the optimal
strategies are constant is now obvious.

It remains to derive the expression for the λi ’s. Just like for πσ , we obtain an
expression for πμ by multiplying π i,∗ by μi and averaging on both sides, we have

πμ = n

n − 1
· ϕσ

n

1 − ψσ
n

· ψμ
n + φμ

n and πμ(−i) = n

n − 1
πμ − 1

n − 1
π iμi ,

(20)

where we used (7) and the quantities ϕ
μ
n , ψ

μ
n are defined as

ϕμ
n := 1

n

n∑
k=1

δk
μ2

k

ν2
k + σ 2

k (1 + θk
n−1 )

and ψμ
n := 1

n

n∑
k=1

θk
μkσk

ν2
k + σ 2

k (1 + θk
n−1 )

.

Similarly, defining (πν)2 := 1
n−1

∑
k �=i (π

k
t νk)

2 we have

(πν)2 = 1

n

n∑
i=1

(νiθiσi · n
n−1 · ϕσ

n
1−ψσ

n
+ νiμiδi

ν2
i + σ 2

i

(
1 + θi

n−1

)
)2

. (21)

Similarly to (7), we have (πν)2
(−i) = n

n−1 (πν)2 − 1
n−1 (π

iνi )
2. Replacing these

expressions in that for λi in Example 2 the expression in the result’s statement
follows.
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From the forward utility machinery one can easily recover the classical case of
utility optimization where one prescribes the utility map for the horizon time T then
proceeds to optimize.

Example 4 (Recovering the classical utility problem from the forward one.) If one
would start the forward utility with (for some 0 < T < ∞)

ui
0(x) := −e−x/δi −T λi ,

then computations like those presented yield the forward utility map U (x, t) as

U i (x, t) = −e−x/δi +(t−T )λi , t ∈ [0, T ]

and in particular U (x, T ) = −e−x/δi . In other words, our forward utility recovers as
a particular case the classical exponential utility maximization problem (discussed
in [21]).

Corollary 2 (Single stock) Let μi = μ > 0, σi = σ > 0 and νi = 0, for any i =
1, . . . , n. Let the constants

ϕσ
n := 1

n

n∑
i=1

δi

1 + θi
n−1

and ψσ
n := 1

n − 1

n∑
i=1

θi

1 + θi
n−1

. (22)

If ψσ
n �= 1, then a constant forwardNash equilibrium exists, with the constant optimal

strategies π i,∗ given by

π i,∗
· = μ

σ 2
(
1 + θi

n−1

)
(
θi

(
1 + 1

n − 1

) ϕσ
n

1 − ψσ
n

+ δi

)
.

4 The Mean Field Game

By inspection of Theorem 1 one sees that the optimal strategy and forward utility
map for some agent depend on that agent’s specific parameters (model parameters,
initial wealth, risk tolerance and performance concern) and on certain averages of
the parameters of all agents. This makes a case for a MFG approach to the game.

In this section and inspired by the results in the previous one, we formalize the
concept of forward mean-field Nash game. We use the concept of type distributions
introduced in [19–21]. We follow the construction presented in the latter.

We focus on initial forward utilities at time t = 0 that are of exponential type,

U i (x, m, 0) = − exp
{

− 1

δi
(x − θi m)

}
,
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where we refer to the constants δi > 0 and θi ∈ [0, 1] as personal risk tolerance and
competition weight parameters, respectively.

For the n-agent game, we define for each agent i = 1, . . . , n the type vector

ζi := (xi
0, δi , θi , μi , νi , σi ),

which characterizes perfectly each agent i . These type vectors induce an empirical
measure, called the type distribution, which is the probability measure on the type
space

Z e := R × (0,∞) × [0, 1] × (0,∞) × [0,∞) × [0,∞), (23)

given by

mn(A) = 1

n

n∑
i=1

1A(ζi ), for Borel sets A ⊂ Z e.

Assume now that as the number of agents becomes large, n → ∞, the above empir-
ical measure mn has a weak limit m, in the sense that

∫
Z e f dmn → ∫

Z e f dm for
every bounded continuous function f onZ e. For example, this holds almost surely
if the ζi ’s are i.i.d. samples from m. Let ζ = (ξ, δ, θ, μ, ν, σ ) denote an Z e-valued
random variable with this limiting distribution m.

The mean field game (MFG) defined next allows us to derive the limiting strategy
as the outcome of a self-contained equilibrium problem, which intuitively represents
a game with a continuum of agents with type distribution m. Rather than directly
modelling a continuum of agents, we follow the MFG paradigm of modelling a
single generic agent, who we view as randomly selected from the population. The
probability measure m represents the distribution of type parameters among the
continuumof agents; equivalently, the generic agent’s typevector is a randomvariable
with law m. Heuristically, each agent in the continuum trades in a single stock driven
by two Brownian motions, one of which is unique to this agent and one of which is
common to all agents. We extend the Forward Nash equilibrium of Definition 3 to
the MFG setting below.

4.1 Agents Through Type-Distribution and the Market

Let (Ω,F ,F = (F )t�0,P) be a stochastic basis supporting two independent Brow-
nianmotions W = (Wt )t�0 and B = (Bt )t�0 together with a random vector ζ having
distribution m and given by

ζ = (ξ, δ, θ, μ, ν, σ ),
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with values in the space Z e defined in (23) and independent of W and B. Let
F = (Ft )t∈[0,T ] denote the smallest filtration satisfying the usual assumptions for
which ζ isF0-measurable and both W and B are adapted. Let alsoFB = (F B

t )t∈[0,T ]
denote the natural filtration generated by the Brownian motion B.

The generic agent’s wealth process solves

d Xt = πt (μdt + νdWt + σd Bt ), X0 = ξ, (24)

where the portfolio strategy must belong to the admissible setAMF of self-financing
F-progressively measurable real-valued processes (πt )t�0 satisfying the square-
integrability condition E[∫ T

0 |πt |2dt] < ∞ for any T ∈ [0,∞). The generic agent’s
initial wealth is given by ξ , whereas (μ, ν, σ ) are the market parameters. In the
sequel, the parameters δ and θ will affect the risk preferences of the generic agent.
Each agent among the continuumwill have different preference parameters and hence
these six parameters are F0-random, and each has the exact same interpretation an
in the n-player game of the earlier section.

4.2 The Equilibrium

The formulation of the forward Nash game of Sect. 3 drives the formulation of the
Mean-field game we discuss here. Recall that in the MFG-formulation the generic
agent has no influence on the average wealth of the continuum of agents, as but one
agent amid a continuum of agents. We next introduce the concept of the main object
of interest the MF-Forward relative performance equilibrium.

We introduce the regularity requirements for the utility.

Assumption 2 Assume that the derivatives Ut (x, t), Ux (x, t) and Uxx (x, t) exists
for t � 0, x ∈ R, P-a.s.

As in Sect. 3.1, Assumption 2 implies the Itô decomposition of map U

dU (x, t) = Ut (x, t)dt.

Given this market setup we next define our concept of equilibrium.

Definition 4 (MF-Forward CARA relative performance equilibrium (for the generic
manager)) Let (Xt )t�0 be the FB-adapted square integrable stochastic process rep-
resenting the average wealth of the continuum of agents. Let π ∈ A MF and Xπ solve
(24) with π .

The FMF-progressively measurable random field (U (x, t))t�0 is an MF-forward
relative performance for the generic manager if, for all t � 0, the following condi-
tions hold:

(i) The mapping x �→ U (x, t), is P-a.s. strictly increasing and strictly concave;
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(ii) For any π ∈ A MF, U (Xπ
t − θ Xt , t) is a (local) supermartingale and Xπ is the

generic agent’s wealth process solving (24) for the strategy π ;
(iii) There existsπ∗ ∈ A MF such thatU (X∗

t − θ Xt , t) is a (local) martingale where
X∗ solves (24) with π∗ plugged in as the strategy;

(iv) We call π∗ of point (iii) a MF-equilibrium if Xt = E[X∗
t |F B

t ] for all t � 0
where where X∗ solves (24) with π∗ plugged in as the strategy.

We denote the triplet (U, π∗, X , ) satisfying (i)–(iv) the MF-Forward relative per-
formance equilibrium. An MF-equilibrium is constant if there exists an FMF

0 -
measurable RV π∗ such that πt = π∗, for all t � 0.

The last point can be understood as a fixed point argument which creates a com-
patibility condition between the generic agent within the continuum of agents. In
fact, conditionally on the BM B each agent faces an independent noise W and an
independent type vector ζ . As in Mean-field games [20, 21], conditionally on B,
all agents faces i.i.d. copies of the same optimization problem. The law of large
numbers suggests that the average terminal wealth of the whole population should
be E[X∗

t |F B
t ].

Our construction allows us to identify E[X∗
t |F B

t ] with a certain dynamics and,
in turn, treat this component as an additional uncontrolled state process. This avoids
altogether the conceptualization of the master equation for models with different
types of agents. The latter is left for future research.

4.3 Solving the Optimization Problem

We now present the main result of this section which is the existence of a MF-
Forward CARA relative performance equilibrium for the generic manager according
to Definition 4 within the context of time-monotone forward utilities.

From the methodological point of view, the problem is solved as before. Apply
Itô formula to U (Zπ

t , t), determine the optimal strategy π∗ and the consistency
condition (the PDE) for U such that the first three conditions of Definition 4 hold.
The last condition, to show that π∗ is indeed the MFG Forward equilibrium follows
by construction as we will see.

Theorem 2 Take a generic agent ζ = (ξ, δ, θ, μ, ν, σ ) and assume that δ > 0, θ ∈
[0, 1], μ > 0, σ � 0, ν � 0 such that σ 2 + ν2 > 0.

Assume the following constants are finite

ψσ :=E

[
θ

σ 2

ν2 + σ 2

]
, ϕσ := E

[
δ

μσ

ν2 + σ 2

]
,

ψμ :=E

[
θ

μσ

ν2 + σ 2

]
, and ϕμ := E

[
δ

μ2

ν2 + σ 2

]
.
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Assume that ψσ �= 1. Then there exists a unique constant MF-Forward CARA relative
performance equilibrium in the sense of Definition 4.

The constant MF-equilibrium strategy is unique and is given by

π∗ = 1

ν2 + σ 2

(
θσ

ϕσ

1 − ψσ
+ μδ

)
, (25)

constrained to the identity

E[σπ∗] = ϕσ

1 − ψσ
< ∞.

The MF-forward CARA relative performance utility map under Assumption 2 is the
unique solution of the PDE with stochastic coefficients

Ut = θ
( ϕσ

1 − ψσ
· ψμ + ϕμ − μ

σ

ν2 + σ 2
· ϕσ

1 − ψσ

)
Ux

+ μ2

2(ν2 + σ 2)

(Ux )
2

Uxx
+ 1

2
Uxx · θ2

( ϕσ

1 − ψσ

)2( σ 2

ν2 + σ 2
− 1

)
. (26)

When the initial condition is U (x, 0) = u0(x) = −e−x/δ , i.e. the exponential prefer-
ences, U is given explicitly by U (x, t) = u0(x)etλ with λ given by

λ = −θ

δ
μπ + 1

2(ν2 + σ 2)

(
μ + θ

δ
σσπ

)2 − θ2

2δ2

(
σπ

)2
, (27)

where σπ and μπ are given by (31) and (32) respectively. If ψσ = 1, then there
exists no constant MF-equilibrium.

By comparing the statements of Theorem 1 and Theorem 2 (and same happens for
the respective Single (common) Stock Corollaries) one easily sees that as n → ∞
the strategies, weights (φ·

n and ψ ·
n) and forward-utility map in Theorem 1 converge

to the respective quantities appearing in Theorem 2.

Remark 3 We point out that the interaction of the generic agent with the continuum
is only performed through the common noise B. That can be seen by the term

n
(n−1)2 (πν)2 − 1

(n−1)2 (π
iνi )

2 from λi ’s in (18) converging to zero as n → ∞, as we
have by (34) (compare with (27)). We can interpret it via the standard mean-field
approximation, the individual’s impact on the others is negligible for the infinite
system.

Remark 4 In contrast with Remark 2, here we recover the result from [21, Theorem
2.10] as the scaling factors converge to 1 (as n → ∞). Hence, due to space constraints
we defer the reader to [21, Sect. 2.3] for the discussion of the equilibria.

Proof Weproceed in several steps in order to construct the constantMF-equilibrium.
To that end wemust solve (ii)–(iii) in Definition 4 for a given X process associated to
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π ∈ AMF. Condition iv), for MF-equilibrium allows us to focus only on processes of
the form Xt = E[Xπ

t |F B
t ]where Xπ solves (24) for a constant strategy π (i.e.FMF

0 -
measurable) satisfying E[π2] < ∞.

Step 0. The dynamics of the average wealth process. To solve the above problem
given (Xt )t�0 it suffices to restrict ourselves to processes (Xt )t�0 satisfying Xt =
E[Xπ

t |F B
t ] P-a.s.. We then have

Xt = E[Xπ
t |F B

t ] = E

[
ξ +

∫ t

0
μπds +

∫ t

0
νπdWs +

∫ t

0
σπd Bs

∣∣∣F B
t

]

= ξ̄ +
∫ t

0
μπsds +

∫ t

0
σπsd Bs, (28)

where, for consistency of notation with the previous section, we denote

ξ̄ := E[ξ ], μπ := E[μπ ] and σπ := E[σπ ].

Hence for π ∈ A MF and as in the previous section we can define the dynamics of
the process Zπ = Xπ − θ X

d Zπ
t = (

μπt − θμπ
)
dt + νπt dWt + (

σπt − θσπ
)
d Bt , Zπ

0 = ξ − θξ,

and solve the MFG Forward utility problem in Definition 4 with its help.
Hence applying Itô’s formula to U (Zπ

t , t) yields

dU (Zπ
t , t) = Ut (Zπ

t , t)dt + Ux (Zπ
t , t)d Zπ

t + 1

2
Uxx (Zπ

t , t)d〈Zπ
t 〉

=
[
Ut (Zπ

t , t) + Ux (Zπ
t , t)

(
μπt − θμπ

)

+ 1

2
Uxx (Zπ

t , t)
(
(νπt )

2 + (
σπt − θσπ

)2)]
dt, (29)

+ Ux (Zπ
t , t)νπt dWt + Ux (Zπ

t , t)
(
σπt − θσπ

)
d Bt ,

with U (Zπ
0 , 0) = U (ξ − θξ, 0) = − exp{−(ξ − θξ)/δ} and we used that the B, W

are all i.i.d. Exact calculations on deriving (29) are presented in the Sect. 6.
Step 1. Finding the candidate optimal strategy π∗. As before, the processU (Zπ

t , t)
becomes a Martingale at the optimum π . Direct computations using first order con-
ditions (∂π“drift” = 0) yield

0 + Ux · (
μ − 0

) + 1

2
Uxx

[
2πν2 + 2

(
σπt − θσπ

)
σ
]

= 0

⇒ π∗
t (ν2 + σ 2) = θσσπ − μ

Ux (Zπ
t , t)

Uxx (Zπ
t , t)

= θσσπ + μδ, (30)
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where we injected the CARA constraint Ux/Uxx = −δ, for all t . By inspection it is
clear that π∗ is a FMF

0 -measurable RV which is independent of time and is well-
defined as long as σπ is finite.

Step 2. The optimality of the strategy. The argument is similar to that in [21]. The
original constant strategy π if a MF-equilibrium if and only if for all t � 0

E[Xπ
t |F B

t ] = E[Xπ∗
t |F B

t ] a.s.

⇔ ξ̄ + μπ t + σπ Bt = ξ̄ + μπ∗ t + σπ∗ Bt a.s.

Taking expectations on both sides implies that π is a MG-equilibrium if and only if
the following two conditions holds

μπ = μπ∗ and σπ = σπ∗.

Using (30) with Ux/Uxx = −δ and the expressions for ϕσ , ψσ one derives that

σπ∗ = θ
σ 2

ν2 + σ 2
σπ + δ

μσ

ν2 + σ 2
⇒ σπ∗ = σπψσ + ϕσ ,

using thatσπ = σπ∗ yields solvability ifψσ = E
[
θ σ 2

ν2+σ 2

] �= 1. The sameprocedure
deals with the condition μπ = μπ∗. We then have

σπ∗ = σπ = ϕσ

1 − ψσ
= Const, (31)

μπ∗ = μπ = ϕσ

1 − ψσ
· ψμ + ϕμ = Const. (32)

Injecting these identities in the expression for π∗ we find (25).
For the non-solvability statement, if the Eq. (32) has ψσ = 1 and ϕσ �= 0 then

the equation has no solution and hence no constant MF-equilibrium exists. The case
ψσ = 1 and ϕσ = 0 is impossible. Since μ > 0 and δ > 0 by assumption, it implies
that σ = 0 and hence that ψσ = 0 contradicting the condition ψσ = 1.

Step 3. Finding the consistency PDE and the Utility map. We do not carry out
this step explicitly, nonetheless, injecting the expression of π∗, σπ and μπ in the
drift term of (29) and simplifying, we find the necessary Eq. (26), i.e. the consistency
condition the random fieldU must satisfy to that the required properties in Definition
4 hold.

Just like in Example 2, the time-monotone forward utility Eq. (26) can be solved
and indeed one has a simplified version. We have

U (x, t) = −e−x/δ+tλ, (33)

where the FMF
0 -measurable RV λ is given by (using (31) and (32))
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λ = −θ

δ
μπ + 1

2(ν2 + σ 2)

(
μ + θ

δ
σσπ

)2 − θ2

2δ2

(
σπ

)2
(34)

= −θ

δ

( ϕσ

1 − ψσ
· ψμ + ϕμ − μ

σ

ν2 + σ 2
· ϕσ

1 − ψσ

)

+ μ2

2(ν2 + σ 2)
+ θ2

2δ2

( ϕσ

1 − ψσ

)2( σ 2

ν2 + σ 2
− 1

)
.

Step 4. The MFG forward utility dynamics. Injecting the consistency PDE (26) in
the expression for dU (Zπ

t , t) given in (29) yields,

dU (Zπ
t , t) = 1

2

Uxx (Zπ
t , t)

(ν2 + σ 2)

∣∣∣πt (ν
2 + σ 2) −

(
θσ · ϕσ

1 − ψσ
+ μδ

)∣∣∣
2
dt

+ Ux (Zπ
t , t)νπt dWt + Ux (Zπ

t , t)
(
σπt − θ · ϕσ

1 − ψσ

)
d Bt .

We close with a corollary regarding the common stock case.

Corollary 3 (Single stock) Let μ, σ, ν be deterministic with ν = 0, μ, σ > 0. Let
the constants

ϕ := E[δ] and ψ := E[θ ]. (35)

Then, if ψ �= 1 then a constant MF-equilibrium exists, with the constant optimal
strategy π∗ given by

π∗
· = μ

σ 2

(
θ

ϕ

1 − ψ
+ δ

)
.

4.4 Mean-Field Dynamic Model Selection with Large
Horizons

Over the time interval [0,∞) our generic agent selects a sequence of horizon time
(Tj ) j∈N0 (such that T0 = 0, Tj+1 − Tj > 0 and lim j Tj = ∞) on which the agent
assesses and updates the market model by adjusting the model’s coefficients. Com-
paring with (24) the agent models the stock as

d S j
t

S j
t

= μ j dt + ν j dWt + σ j d Bt , STj = s j , t ∈ [Tj , Tj+1], (36)

where the index j represents the model specification at time Tj . The associated
wealth process of the generic agent is

d X j
t = πt (μ j dt + ν j dWt + σ j d Bt ), XTj = ξ j , t ∈ [Tj , Tj+1].
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Following the earlier constructions of this section, assume that at time T0 = 0 the
agent starts with initial utility u0(x) = −e−x/δ . Then using the results of Theorem
2, the agent’s forward utility map is given by

U (x, t) = −ex/δetλ0 = u0(x)etλ0 , t ∈ [T0, T1] = [0, T1],

where λ0 is the version of (34) for the type of the agent over the time interval [T0, T1]
and all the coefficients correspond to a type ζ0, i.e. λ(ζ0) = λ0, with

λ0 = λ(ζ0) := −θ

δ
μπ + 1

2(ν2 + σ 2)

(
μ + θ

δ
σσπ

)2 − θ2

2δ2

(
σπ

)2
. (37)

At time T1, the generic agent assesses the previous model specification and chooses
new coefficients (leading to a change in type, say from ζ0 to ζ1). The agent then
carries out the optimization program over t ∈ [T1, T2] but starting from initial utility
U (x, T1). Under the assumption of constant coefficients Theorem 2, yields,

U (x, t) =
(

u0(x)eT1λ0

)
e(t−T1)λ1 , t ∈ [T1, T2],

where λ1 = λ(ζ1) (given by (37)) depends only on information at time T1. Quick
calculations generalize to any time horizon Tj . Assume we work on the time interval
[Tj , Tj+1]. Stemming from previous calculations, it is easy to see that the initial
condition for the forward utility problem is

U (x, Tj ) = u0(x)

j∏
k=1

e(Tk−Tk−1)λk−1

(with the convention that if j < 1 then
∏ j

k=1 · · · = 0) and the MFG forward utility
is for all t ∈ [Tj , Tj+1], j > 1 and using that λ j = λ(ζ j ).

U (x, t) = U (x, Tj )e
(t−Tj )λ j = u0(x)

j∏
k=1

e(Tk−Tk−1)λk−1 · e(t−Tj )λ j ,

= u0(x) exp
{

T1(λ0 − λ1) + T2(λ1 − λ2) + · · · + Tj (λ j−1 − λ j )
}

etλ j .

There are two points to highlight. Firstly, the agent needs to carry information of
what happened in the past in order to have time-consistency at present time. Secondly,
this construction also allows the agents to change not just the model specification
(μ, ν, σ ) but also their type including risk parameter δ and performance-concern
level θ . The initial wealth is fixed from the previous time interval.
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5 Outlook and Open Questions

In this work we considered two optimal portfolio management problems under for-
ward utility performance concerns. We presented a simplified setting allowing for
explicit calculations of the optimal control value function, strategies and an intuitive
validation that the finite-play game reaches the mean-field game in the limit.

This work provides a proof-of-concept for the forwardmean-field utility construc-
tion leaving open many questions. Generalizing the dynamics of the forward utility
(8) to a fully Itô-dynamics and stochastic strategies is also open. A crucial tool for
such would be a general Itô-Wentzell-Lions chain rule as developed in [9]. Such an
approach would require [13, 27].

Here we addressed only the exponential-utilities (CARA) and left the power-
case (CRRA) open. Even within (8), one can build towards the CRRA case in [21] or
include the consumption problem [20], on the latter see [10] for recent developments;
for the general forward utility case see [11]. Also open is the so-called mean-field
aggregation problem where different agents use utility maps from different families,
e.g. CRRA and CARA: [12] would be a starting point for the finite-player case while
the mean-field case would requires the multi-class approach of [3, Sect. 8] with the
parameterization technique of from our Sect. 4. Many other questions can be posed
in this context of mean-field forward utilities, ranging from possible non-solvability
[15], to risk-sharing [4], ergodic problems [7] and associated numerics [17].

6 Supplementary Calculations

Proof (of Proposition 1) We recall the optimal strategy is given by (11), where we
define

σ̂ := (πσ)
(−i)
t , Bν

t := θ2i
1

(n − 1)2

∑
k �=i

(πk
t νk)2, Mμ

t := θi (πμ)
(−i)
t = θi

n − 1

∑
k �=i

πk
t μk .

The drift of (10) becomes (we omit the argument in Ut , Ux , Uxx and use σ̂ :=
(πσ)

(−i)
t )

U i
t + U i

x

(
π i

t μi − Mμ
t

) + 1

2
U i

xx

[
(π i

t νi )
2 + Bν

t + (
π i

t σi − θi (πσ)
(−i)
t

)2]

=
(

U i
t − Mμ

t U i
x + 1

2
U i

xx Bν
t

)
+ 1

2
U i

xx

[(
θi σ̂

)2 − (π i
t )

2(ν2
i + σ 2

i )
]

=U i
t + U i

x

[
θiσi σ̂μi

1

ν2
i + σ 2

i

− Mμ
t

]
− μ2

i

2

1

ν2
i + σ 2

i

(U i
x )

2

U i
xx

+ 1

2
U i

xx

{
Bν

t + (
θi σ̂

)2 − 1

ν2
i + σ 2

i

(
θiσi σ̂

)2}
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=U i
t + U i

x

[μiθiσi σ̂

ν2
i + σ 2

i

− θi (πμ)
(−i)
t

]
− μ2

i

2(ν2
i + σ 2

i )

(U i
x )

2

U i
xx

+ 1

2
U i

xx

{
θ2

i

1

(n − 1)2
∑
k �=i

(π k
t νk)

2 + (
θi σ̂

)2[
1 − σ 2

i

ν2
i + σ 2

i

]}
.

Equation (9) now follows as U i
t needs to be chosen such that the equation is zero.

We inject in the drift of (10) the expression (9) and obtain a simplified version

−
{

U i
x

[
θiσi σ̂μi

1

ν2
i + σ 2

i

− Mμ
t

]
− μ2

i

2

1

ν2
i + σ 2

i

(U i
x )

2

U i
xx

+ 1

2
U i

xx

{
Bν

t + (
θi σ̂

)2

− 1

ν2
i + σ 2

i

(
θiσi σ̂

)2}}
+ U i

x

(
π i

t μi − Mμ
t

)

+ 1

2
U i

xx

[
(π i

t νi )
2 + Bν

t + (
π i

t σi
)2 − 2π i

t σiθi σ̂ + (
θi σ̂

)2]

=U i
xx

2

1

ν2
i + σ 2

i

((
π i

t )
2(ν2

i + σ 2
i )2 − 2

(
π i

t (ν
2
i + σ 2

i )
)(

σiθi σ̂ − μi
U i

x

U i
xx

))

+ − 1

ν2
i + σ 2

i

U i
xx

2

2

U i
xx

{
U i

x

[
θiσi σ̂μi

]
− μ2

i

2

(U i
x )

2

U i
xx

+ 1

2
U i

xx

{
− (

θiσi σ̂
)2}}

=U i
xx

2

1

ν2
i + σ 2

i

∣∣∣π i
t (ν

2
i + σ 2

i ) −
(
σiθi σ̂ − μi

U i
x

U i
xx

)∣∣∣
2
,

which results in (12).

Proof (of Equation (29)) We take up the drift of (29) and we have just by re-
organizing the terms

0 = Ut (Zπ
t , t) + Ux (Zπ

t , t)
(
μπt − θμπt

) + 1

2
Uxx (Zπ

t , t)
(
(νπt )

2 + (
σπt − θσπt

)2)

=
(

Ut − Uxθμπt + 1

2
Uxxθ2(σπt )

2
)

+ 1

2

Uxx

(ν2 + σ 2)

(
π2

t (ν2 + σ 2)2 − 2πt (ν
2 + σ 2)

{
θσσπt − μ

Ux

Uxx

})

We recall the optimal strategy given by (30), where we complete the square inside
the Uxx term in the SPDE above we have

0 =
{

Ut + Ux ·
(
μ

θσσπt

(ν2 + σ 2)
− θμπt

)
+ 1

2
Uxx · θ2(σπt )

2
(
1 − σ 2

ν2 + σ 2

)

− 1

2

μ2

(ν2 + σ 2)

(Ux )
2

Uxx

}
+ 1

2

Uxx

(ν2 + σ 2)

∣∣∣πt (ν
2 + σ 2) −

(
θσσπt − μ

Ux

Uxx

)∣∣∣
2
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Under the CARA condition Ux/Uxx = −δ and the choice of the optimal strategy,
the remaining drift must zero-out. We then have

Ut = − Ux

2(ν2 + σ 2)
·
(
μθσσπt + δμ2

)
+ Uxx

(θ σ σπt )
2

2(ν2 + σ 2)
− 1

2
Uxx · (θ σπt )

2 + Ux

(
θμπt

)
.
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The Boundary Driven Zero-Range
Process

Susana Frómeta, Ricardo Misturini, and Adriana Neumann

Abstract We study the asymptotic behaviour of the symmetric zero-range process
in the finite lattice {1, . . . , N − 1}with slow boundary, in which particles are created
at site 1 or annihilated at site N−1 with rate proportional to N−θ , for θ ≥ 1. We
present the invariant measure for this model and obtain the hydrostatic limit. In
order to understand the asymptotic behaviour of the spatial-temporal evolution of
this model under the diffusive scaling, we start to analyze the hydrodynamic limit,
exploiting attractiveness as an essential ingredient.We obtain, through some heuristic
arguments, the hydrodynamic equation, whose boundary conditions depend on θ .

Keywords Zero-range process · Slow boundary · Invariant measure · Hydrostatic
limit · Hydrodynamic limit · Boundary conditions

1 Introduction

The zero-range process, originally introduced in 1970 by Spitzer [27], is a model
that describes the behaviour of interacting particles moving on a lattice without
restriction on the total number of particles per site. In this model, a particle leaves
a site according to a jump rate g(k) that only depends on the number of particles,
k, in that site. The zero-range process has been mostly studied in infinite lattices
(see [2, 3, 18, 19, 26]) and in discrete torus (see [4, 9, 20–22] and the references
therein). In the present work we consider the process defined in the finite lattice
IN = {1, . . . , N − 1} with creation and annihilation of particles at the boundary.

S. Frómeta · R. Misturini · A. Neumann (B)
UFRGS, Instituto de Matemática e Estatística, Campus do Vale, Av. Bento Gonçalves,
9500, CEP 91509-900 Porto Alegre, Brasil
e-mail: aneumann@mat.ufrgs.br

S. Frómeta
e-mail: susana.frometa@ufrgs.br

R. Misturini
e-mail: ricardo.misturini@ufrgs.br

© Springer Nature Switzerland AG 2021
C. Bernardin et al. (eds.), From Particle Systems to Partial Differential Equations,
Springer Proceedings in Mathematics & Statistics 352,
https://doi.org/10.1007/978-3-030-69784-6_12

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69784-6_12&domain=pdf
mailto:aneumann@mat.ufrgs.br
mailto:susana.frometa@ufrgs.br
mailto:ricardo.misturini@ufrgs.br
https://doi.org/10.1007/978-3-030-69784-6_12


254 S. Frómeta et al.

One of the main interest in the study of interacting particle systems is the deriva-
tion of partial differential equations (PDE) to describe the time evolution of the
macroscopic density of particles as the lattice is rescaled to the continuum. Such
classical scaling limit is called hydrodynamic limit and the associated PDE is called
hydrodynamic equation. In recent years there has been an increasing interest in mod-
els that leads to hydrodynamic equations with boundary conditions (see [8, 12, 13,
17]). This has been done, for example, for the exclusion process in [5] and for the
porous medium model in [10]. In both cases, the lattice IN is connected to reservoirs
so that particles can be inserted into or removed from the system with rate propor-
tional to N−θ , and the obtained hydrodynamic equations have boundary conditions
that depend on the value of θ . One common characteristic of the models in [5, 10]
is that the exclusion rule only allows one particle per site, which provides a natural
control for the number of particles in the system.

For the classical zero-range process in the discrete torus, see [22, Chap. 5], con-
servation of particles is an extensively used property in the proof of hydrodynamic
limit, together with a hypothesis that controls the relative entropy of the initial dis-
tribution with respect to some invariant measure. In the open zero-range process,
considered in the present work, the number of particles in the system is not con-
served as it was in the process in the discrete torus and neither bounded as it was in
the exclusion process and porous mediummodel. To overcome this difficulty, instead
of assuming a relative entropy hypothesis, we exploit the attractiveness present in
our model under the assumption that the jump rate function g is non decreasing and
that the initial distribution is bounded above by the invariant measure. Attractiveness
was also an essential ingredient in [3], where the authors obtained the hydrodynamic
limit through preservation of local equilibrium for the asymmetric zero-range pro-
cess on Z under Euler scaling. The same was done, for example, for the symmetric
zero-range process in the discrete torus under the diffusive scaling, see [22, Chap. 9].

In this work we consider a symmetric nearest-neighbour zero-range process in IN
with the following dynamics at the boundary: a particle is inserted into the system
at site 1 with rate α/N θ and removed from the system through site N − 1 with rate
g(k)/N θ , if there are k particles at site N − 11, where α ≥ 0, θ ≥ 1 and g is same
jump rate function used in IN . Computing analytically the stationary distribution of a
non-equilibrium stochastic model is usually a very challenging task, see [7, 14–16].
However, an important general aspect of the zero-range process, that is not present in
the models considered in [5, 10], is that its invariant distribution is a product measure
that can be explicitly computed, see [1, 27]. This is also true in our case, despite
of the boundary conditions, as already considered in [6, 11, 23], and the resulting
steady-state, when it exists, is a product measure imitating the periodic case, but
now it is characterized by a non homogeneous space-dependent fugacity which is a
function of the boundary rates. In Sect. 3, we present the invariant measure for our
model obtained through elementary computations involving the jump rates. Having

1See Remark 4 for a more general dynamics allowing creation and annihilation of particles at both
sides of the boundary.
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the explicit form of the invariant measure, we obtain the stationary density profile,
the so called hydrostatic limit.

Our main goal is to describe the asymptotic behaviour for the time evolution of
the spacial density of particles for zero-range process with slow boundary introduced
above. More precisely, we want to prove that, if we start our evolution with an initial
configuration of particles that converges to amacroscopic density profileγ : [0, 1] →
R+, as N → ∞, then, under the diffusive scaling, and in a fixed time interval [0, T ],
the time trajectory of the spatial density of particles, {π N

t : t ∈ [0, T ]}, converges
to a deterministic limit, {πt : t ∈ [0, T ]}. In the present work we prove relative
compactness for the sequence {π N

t : t ∈ [0, T ]} and that the limit points, {πt : t ∈
[0, T ]}, are trajectories of absolutely continuousmeasures on [0, 1], that is,πt (du) =
ρ(t, u) du, for t ∈ [0, T ] and u ∈ [0, 1]. We conjecture, based on some heuristic
arguments, that ρ is the weak solution of the following non-linear diffusion equation
with boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ(t, u) = ΔΦ(ρ(t, u)), for u ∈ (0, 1) and t ∈ (0, T ],
∂uΦ(ρ(t, 0)) = −κ α , for t ∈ (0, T ],
∂uΦ(ρ(t, 1)) = −κ Φ(ρ(t, 1)) , for t ∈ (0, T ],

ρ(0, u) = γ (u), for u ∈ [0, 1],

where κ = 1, if θ = 1, and κ = 0, if θ > 1. The function Φ will be defined in (15),
in terms of the jumps rate g. In Remark 3, we explain what happens in the stationary
regime for the case θ < 1.

The paper is organized as follows. In Sect. 2, we introduce some notations and
define precisely the zero-range process with the boundary dynamics that we are
considering. In Sect. 3, we present the invariant measure and observe the different
asymptotic behaviour of the fugacity profile, depending on the value of θ . We also
provide the invariant measure for a more general dynamics that allows creation and
annihilation of particles in both sides of IN . In Sect. 4, we define the notion of mea-
sures associated to a density profile and present the hydrostatic limit for our model.
The small Sect. 5 is devoted to recall the essential property of attractiveness for the
zero-range process. In Sect. 6, we prove tightness for the sequence of probabilities of
interest. For that, we introduce the related martingales that will be very useful also in
the derivation of the hydrodynamic equation. In Sect. 7, we start the characterization
of the limit points by showing concentration on absolutely continuous measures. In
Sect. 8, we present the hydrodynamic equation that we conjecture for this model,
together with the necessary steps for a complete proof the of hydrodynamic limit. In
Sect. 9, we show how to obtain the integral form of the hydrodynamic equation from
the Dynkin martingales presented in Sect. 6. We use some heuristic arguments that
can be formalized through some fundamental replacement lemmas, whose proof is
postponed to a future work. Finally, in Sect. 10, we present the hydrodynamic equa-
tion obtained if we consider the general model presented in Remark 4, in which
particles are created and annihilated in both sides of IN .
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Fig. 1 The boundary driven zero-range process

2 Definition of the Model

Let IN = {1, . . . , N−1} be the finite lattice where the distinguishable particles will
be moving around, we called it by bulk. For x ∈ IN , the occupation variable η(x)
stands for the number of particles at site x . The zero-range process is an evolution
without restriction on the total number of particles per site, and therefore the state
space for the configurations η is the set ΩN = N

IN .
The process is defined through a function g : N → R+, with g(0) = 0. We

assume, throughout this work, that g has bounded variation in the following sense:

g∗ = sup
k

|g(k + 1) − g(k)| < ∞. (1)

The bulk dynamics can be described as: a particle leaves a site x ∈ {2, . . . , N−2}
with rate 2g(η(x)), and jumps tooneof the neighbouring sites (x − 1or x + 1) chosen
uniformly. A particle jumps from the sites x = 1 and x = N−1 to a neighbour site
in IN with rate g(η(x)). The boundary dynamics is given by the following birth and
death processes at the sites x = 1 and x = N−1 (see Fig. 1). For fixed non-negative
parameters α and θ , a particle is inserted into the system with rate α/N θ at site 1 and
removed with rate g(η(N − 1))/N θ through the site N−1.2

We can entirely characterize the continuous time Markov process {ηt : t ≥ 0} by
its infinitesimal generator LN given by

LN = LN ,0 + LN ,b, (2)

where LN ,0 and LN ,b represent the infinitesimal generators of the bulk dynamics and
the boundary dynamics, respectively. The generators act on functions f : ΩN → R

as

2See Remark 4 for a more general boundary dynamics.
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(LN ,0 f )(η) =
N−1∑

x=1

∑

y∈{x−1,x+1}∩IN

g(η(x)) [ f (ηx,y) − f (η)], (3)

(LN ,b f )(η) = α

N θ
[ f (η1+) − f (η)] + g(η(N − 1))

N θ
[ f (η(N−1)−) − f (η)], (4)

where ηx,y represents the configuration obtained when, in the configuration η, a
particle jumps from site x to y, i.e,

ηx,y(z) =

⎧
⎪⎨

⎪⎩

η(z) , if z �= x, y,

η(z) − 1 , if z = x,

η(z) + 1 , if z = y;
(5)

and ηω± represents a configuration obtained from η adding or subtracting one particle
at site ω, that is,

ηω±(z) =
{

η(z) , if z �= ω,

η(z) ± 1 , if z = ω.
(6)

Remark 1 Contrary to the classical zero-range process on the torus, see for example
[22], the process with these boundary conditions is not reversible, and does not
conserve the number of particles.

3 Invariant Measure

Sincewedonot have conservation of particles, theMarkov processwith generator LN

is irreducible inΩN . If the process is non-explosive and has an invariant distribution,
then the invariant measure is unique and the process is positive recurrent (see [25,
Proposition 3.5.3]). Coupling with a birth and death processes, we can see that if g is
such that

∑∞
k=1

1
max1≤i≤k g(i)

= ∞, then the process is non-explosive. This condition
is satisfied, since we are assuming that g has bounded variation, as stated in (1).

A particular aspect of the zero-range process is that its invariant measure can be
explicitly computed (see [1, 27]). This can also be done in our case, despite of the
boundary conditions, as already considered in [11, 23]. For the convenience of the
reader, we will present the calculations in the following.

Inspired by the periodic case, we look for an invariant probability ν̄N which is a
product measure on ΩN with marginals given by

ν̄N {η : η(x) = k} = 1

Z(ϕ(x))

(ϕ(x))k

g(k)! , (7)

for x ∈ IN . Here g(k)! stands for Π1≤ j≤kg( j), and g(0)! = 1, ϕ : IN → R+ is a
function to be determined, and Z is the normalizing partition function
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Z(ϕ) =
∑

k≥0

ϕk

g(k)! . (8)

Denote by ϕ∗ the radius of convergence of the partition function (8).

Lemma 1 For α, θ and N satisfying α( 1
N θ−1 − 2

N θ + 1) < ϕ∗, the measure ν̄N

defined in (7) with fugacity profile

ϕ(x) = ϕN (x) = − α
N θ (x + 1) + α

N θ−1 + α , x ∈ IN , (9)

is the unique invariant distribution for the Markov process on ΩN with infinitesimal
generator LN , defined in (2).

Proof Let η ∈ ΩN be an arbitrary configuration. We have to prove that

∑

η̃ �=η

ν̄N (η̃)

ν̄N (η)
R(η̃, η) = λ(η) , (10)

where R(η̃, η) is the rate at which the process jumps from η̃ to η and

λ(η) = g(η(1)) + 2
N−2∑

x=2

g(η(x)) + g(η(N − 1)) + α

N θ
+ g(η(N − 1))

N θ
(11)

is the rate at which the process jumps from the configuration η. In the left-hand side
of the equation (10), there are four types of configurations η̃ for which R(η̃, η) �=
0: η̃ = ηx,x+1 and η̃ = ηx+1,x , for x ∈ {1, . . . , N − 2}, η̃ = η1− and η̃ = η(N−1)+.
Decomposing the summation in these types of configurations, using the definition of
ν̄N in (7) and the jump rates in (3) and (4), we can rewrite the left-hand side of (10)
as

N−2∑

x=1

ϕ(x + 1)

ϕ(x)
g(η(x)) +

N−2∑

x=1

ϕ(x)

ϕ(x + 1)
g(η(x + 1)) + αg(η(1))

N θϕ(1)
+ ϕ(N−1)

N θ
.

Thus, changing the index in the second sum above, the last expression becomes

N−2∑

x=2

ϕ(x+1)+ϕ(x−1)

ϕ(x)
g(η(x)) + ϕ(2)+ α

N θ

ϕ(1)
g(η(1))

+ ϕ(N−2)

ϕ(N−1)
g(η(N − 1)) + ϕ(N−1)

N θ
. (12)

In order to (12) be equal to (11) we must require ϕ(x+1)+ϕ(x−1)
ϕ(x) = 2, for all x ∈

{2, . . . , N−2}. To get that, choose ϕ a linear function, let us say ϕ(x) = ax + b.
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The other required conditions:
ϕ(2)+ α

Nθ

ϕ(1) = 1, ϕ(N−2)
ϕ(N−1) = 1 + 1

N θ and ϕ(N−1) = α,
are satisfied with the choice a = − α

N θ and b = α
N θ (N−1) + α, which leads to (9).

Remark 2 The condition α( 1
N θ−1 − 2

N θ + 1) < ϕ∗ imposed in Lemma 1 ensures
that the fugacity function satisfies ϕ(x) < ϕ∗ for all x ∈ IN . Note that if ϕ∗ is finite
(which occurs, for instance, when g is bounded), then the probability measure ν̄N is
not well defined if α is too big. This is quite intuitive, since large α (many particles
entering the system) and small g (few particles leaving the system) would imply
transience of the process.

A simple computation shows that Eν̄N [g(η(x))] = ϕN (x), for x ∈ IN , where Eν̄N

denotes expectation with respect to the measure ν̄N . That is why ϕN (x) is called the
fugacity at the site x .

Remark 3 Weobserve that, depending on the value of θ ∈ [0,∞), we have different
asymptotic behaviours of the fugacity, see Fig. 2:

• For θ = 1, for x ∈ IN , ϕN (x) = ϕ̄( x+1
N ), where the asymptotic fugacity profile

ϕ̄ : [0, 1] → R is given by ϕ̄(u) = α(2 − u).
• For θ > 1, ϕN (x) = α + rN (x), where limN→∞ supx∈IN |rN (x)| = 0. In this case,
the asymptotic fugacity profile ϕ̄ is equal to the constant α.

• For θ < 1, we must look at the two different situations: ϕ∗ < ∞ and ϕ∗ = ∞. If
ϕ∗ < ∞, the partition functionwill not be defined for large values of N . Ifϕ∗ = ∞,
it would make sense to consider N → ∞, however, we will have ϕN (1) → ∞.
Thus, as IN is rescaled to the continuum, ϕN can not be rescaled to a macroscopic
profile ϕ̄ : [0, 1] → R, as in the previous cases.

Remark 4 It is possible also to consider a more general model allowing creation
and annihilation of particles at both sides of the boundary (see Fig. 3), let us say:
at site 1, particles are inserted into the system with rate α

N θ and removed from the
system with rate λ

N θ g(η(1)); at site N−1, particles are inserted into the system with
rate β

N θ and removed from the system with rate δ
N θ g(η(N − 1)). Following the lines

Fig. 2 The asymptotic fugacity profile ϕ̄ : [0, 1] → R+
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Fig. 3 The general slow boundary driven zero-range process

of Lemma 1 we found that the invariant probability is also a product measure with
marginals given by (7) for a linear fugacity profile

ϕ(x) = ϕN (x) = −(αδ − βλ)(x − 1) + αδ(N − 2) + (α + β)N θ

λδ(N − 2) + (λ + δ)N θ
,

for x ∈ IN and α, β, δ, λ, θ ≥ 0. In the case θ = 0, this formula coincides with
the one presented in [23]. All results obtained in the present work, including the
deduction of the hydrodynamic limit (see Sect. 10), can be straightforward adapted
to this general case. Nevertheless, in order to avoid too much notation, we choose
δ = 1, λ = β = 0. Also, since the creation of particles at one side has an analogous
effect to the creation of particles at the other side, and the same holds for annihilation,
the case studied in the present paper captures the essence of the macroscopic effect of
the boundary dynamics. Moreover, the dynamic presented in this work has a natural
interpretation as a flux of particles from a reservoir at the left-hand side of the bulk
toward the one at the right-hand side.

4 Hydrostatic Limit

Definition 1 A sequence {μN }N∈N of probabilities on ΩN is said to be associated
to the profile ρ0 : [0, 1] → R+ if, for any δ > 0 and any continuous function H :
[0, 1] → R the following limit holds:

lim
N→∞ μN

[
η ∈ ΩN :

∣
∣
∣
1

N

N−1∑

x=1

H( x
N ) η(x) −

∫ 1

0
H(u) ρ0(u) du

∣
∣
∣ > δ

]
= 0 . (13)

Recall that ϕ∗ denotes the radius of convergence of the partition function Z(ϕ) =
∑

k≥0
ϕk

g(k)! . The average particle density corresponding to the fugacity ϕ is a function
R : [0, ϕ∗) → R+, given by
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R(ϕ) = 1

Z(ϕ)

∑

k≥0

k
ϕk

g(k)! . (14)

As shown in [22, Sect. 2.3], R is strictly increasing, and, if we assume that

lim
ϕ↑ϕ∗ Z(ϕ) = ∞,

then the range of R is all R+, i.e, limϕ↑ϕ∗ R(ϕ) = ∞. Therefore, the inverse of R is
well defined.

Let Φ : R+ → [0, ϕ∗) be the inverse function of R. (15)

Definition 2 For a continuous function ρ0 : [0, 1] → R+, denote by νN
ρ0(·) the prod-

uct measure with slowly varying parameter associated to ρ0, this is the product
measure on ΩN with marginals given by

νN
ρ0(·){η : η(x) = k} = 1

Z(Φ(ρ0(
x
N )))

Φ(ρ0(
x
N ))k

g(k)! , for k ≥ 0 and x ∈ IN . (16)

From (14), we have

EνN
ρ0(·) [η(x)] = ρ0(

x
N ) , for all x ∈ IN . (17)

The sequence {νN
ρ0(·)}N∈N is a particular case of a sequence of probabilities asso-

ciated to the profile ρ0 in the sense of Definition 1, as stated in Proposition 1. To
prove this, we begin with the following lemma.

Lemma 2 If ρ0 : [0, 1] → R+ is a continuous profile, then for each positive inte-
ger �,

sup
N

sup
x∈IN

EνN
ρ0(·) [(η(x))�] < ∞.

Proof First of all, note that EνN
ρ0(·) [(η(x))�] = R�(Φ(ρ0(

x
N ))), where R� is defined

for ϕ ∈ [0, ϕ∗) as R�(ϕ) = 1
Z(ϕ)

∑
k≥0 k

� ϕk

g(k)! . The function Φ = R−1 is strictly
increasing and limv→∞ Φ(v) = ϕ∗. Denote by ϕ∗∗ = supu∈[0,1] Φ(ρ0(u)). Since ρ0

is bounded, we have ϕ∗∗ < ϕ∗. Therefore,

sup
N

sup
x∈IN

EνN
ρ0(·) [(η(x))�] = sup

N
sup
x∈IN

R�(Φ(ρ0(x/N ))) ≤ sup
0≤ϕ≤ϕ∗∗

R�(ϕ).

In order to conclude that the last expression above is finite we observe that the
function R� is analytic on [0, ϕ∗). To see this, we write R�(ϕ) = A�(ϕ)

Z(ϕ)
, where A� is

defined inductively by A0(ϕ) = Z(ϕ) and An(ϕ) = ϕA′
n−1(ϕ).
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Proposition 1 If ρ0 : [0, 1] → R+ is continuous, then the product measure νN
ρ0(·)

defined in (16) is associated to the profile ρ0 in the sense of Definition 1.

Proof Fix a continuous test function H . Observing that

1

N

N−1∑

x=1

H( x
N ) ρ0(

x
N ) →

∫ 1

0
H(u)ρ0(u)du,

it is enough to show that, for each δ > 0,

νN
ρ0(·)

[

η :
∣
∣
∣
∣
∣

1

N

N−1∑

x=1

H( x
N )[η(x) − ρ0(

x
N )]
∣
∣
∣
∣
∣
> δ

]

(18)

goes to zero as N → ∞. By Chebyshev’s inequality, (17) and independence, the
expression in (18) is bounded above by

1

δ2

1

N 2

N−1∑

x=1

H 2( x
N )EνN

ρ0(·)

[
(η(x) − ρ0(

x
N ))2

] ≤ 1

δ2

1

N 2

N−1∑

x=1

H 2( x
N )EνN

ρ0(·)

[
η(x)2

]
.

By Lemma 2 and since H is bounded, there exists some constant C such that
H 2( x

N )EνN
ρ0(·)

[
η(x)2

]
< C for every N and x ∈ IN . Therefore, the right-hand side of

the last displayed inequality goes to 0 when N → ∞.

Since we have the explicit formula for the fugacity profile of the invariant measure
ν̄N , it is straightforward to obtain, in terms of the function R, an expression for the
stationary density profile ρ̄ : [0, 1] → R+. Such result is usually called hydrostatic
limit. Recalling Remark 3, note that, when θ = 1, the invariant measure ν̄N satisfies

ν̄N {η : η(x) = k} = νN
ρ̄(·){η : η(x + 1) = k}, (19)

where ρ̄(u) = R(α(2 − u)). Also, when θ > 1, ϕN (x) − α goes to zero uniformly
in x ∈ IN , as N → ∞. Therefore, the next result is derived following the lines of
the proof of Proposition 1.

Proposition 2 (Hydrostatic Limit) Let ν̄N be the invariant measure in ΩN for the
Markov process with infinitesimal generator LN . Then the sequence ν̄N is associated
to the profile ρ̄ : [0, 1] → R+ given by

ρ̄(u) =
{
R(α(2 − u)), if θ = 1,

R(α), if θ > 1,
(20)

for all u ∈ [0, 1].
Notice that the linear fugacity profile does not imply a linear density profile,

except in the special case of non-interacting particles where g(k) = k.
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5 Attractiveness

This small section is devoted to recall the essential property of attractiveness for the
zero-range process.

Consider in ΩN the partial order: η ≤ ξ if and only if η(x) ≤ ξ(x) for every
x ∈ IN . A function f : ΩN → R is called monotone if f (η) ≤ f (ξ) for all η ≤ ξ .
This partial order extends to measures on ΩN . We say that

μ1 ≤ μ2, if
∫

f dμ1 ≤
∫

f dμ2, (21)

for all monotone functions f : ΩN → R.
An interacting particle system {ηt }t≥0 is said to be attractive if its semigroup S(t),

defined by S(t) f (η) = Eη [ f (ηt )], preserves the partial order:

μ1 ≤ μ2 ⇒ μ1S(t) ≤ μ2S(t),

for all t ≥ 0. Here Eη [ f (ηt )] stands for the expectation of f (ηt ) when the process
starts at η(0) = η.

It is well known, see [22, Theorem 2.5.2], that the zero-range process is attractive
if g is non decreasing.

6 Tightness

Let us denote by {ηt = ηN
t : t ≥ 0} the continuous-timeMarkov process onΩN with

generator N 2LN . LetM+ be the space of positive measures on [0, 1] endowed with
the weak topology, and denote by π N : ΩN → M+ the function that associates to
each configuration η the measure obtained by assigning mass 1/N to each particle:

π N (η, du) = 1

N

N−1∑

x=1

η(x)δ x
N
(du),

where δu denotes theDiracmass at u. Thus, the empirical processπ N (ηt ) is aMarkov
process in the space M+. By abuse of notation, in this section we will simply write
π N
t instead of π N (ηt ). For a function G : [0, 1] → R, we denote by 〈π N

t ,G〉 the
integral of G with respect to the measure π N

t :

〈π N
t ,G〉 = 1

N

∑

x∈IN
G( x

N )ηt (x).
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For a measureμN onΩN we denote byPμN the probability onD([0, T ],ΩN ), the
Skorohod space of càdlàg trajectories, corresponding to the jumpprocess {ηt : t ≥ 0}
with generator N 2LN and initial distribution μN . Expectations with respect to PμN

will be denoted byEμN . We denote by QN the probability onD([0, T ],M+) defined
by QN = PμN (π N )−1.

In the next proposition we state the tightness of the sequence {QN }N≥0 under the
hypothesis

g(·) is non decreasing, (22)

which implies attractiveness of the process.
The conservation of particles is an extensively used property in the proof of

tightness for the classical zero-range process in the torus, together with a hypothesis
that controls the relative entropy of the initial distribution μN with respect to the
invariant measure; see [22, Lemma 5.1.5]. Since we do not have conservation in our
case, a different approach is necessary. Instead of a relative entropy hypothesis, we
assume

μN ≤ ν̄N , (23)

in the sense of (21), where ν̄N is the invariant measure. Hypothesis (23), along with
attractiveness, provide us a way to control the number of particles in the system, as
time evolves.

As a consequence of [22, Lemma 2.3.5] the limitation (23) holds if, for instance,
μN is a product measure of the form (7) associated to a fugacity function bounded
above by the fugacity of the stationary measure obtained in (9).

Tightness of the sequence {QN }N≥0 is also true if we require that the function g
is bounded, instead of the hypothesis (22) and (23). See Remark 6 for more details.

Proposition 3 Let us consider θ ≥ 1. Suppose that the rate function g satisfies (22).
Assume that the sequence {μN }N∈N is associated to an integrable initial profile ρ0 :
[0, 1] → R+, in the sense of (13) and satisfies (23). Then the sequence of measures
{QN }N≥0 is tight.

Remark 5 Because of assumption (23), the profile ρ0 in the above proposition needs
to be bounded above by the profile ρ̄ given in (20). A natural sequence {μN }N∈N
satisfying the hypothesis is the sequence νN

ρ0(·) of product measures with slowly
varying parameter associated to a profile ρ0 : [0, 1] → R+, such that ρ0(u) + ε ≤
ρ̄(u) for all u ∈ [0, 1], for some ε > 0.

Proof of Proposition 3 will be postponed to Sect. 6.2. We will introduce now the
related martingales of the process studied in this work, which will be very important
not only in tightness as in the whole proof of hydrodynamic limit as well.



The Boundary Driven Zero-Range Process 265

6.1 Related Martingales

For G ∈ C2[0, 1], the set of twice continuously differentiable functions in [0, 1], the
process MG

t , defined as

MG
t = 〈

π N
t ,G

〉− 〈
π N
0 ,G

〉−
∫ t

0
N 2LN

〈
π N
s ,G

〉
ds, (24)

is a martingale. Recalling the definition of the generator (2), we write

N 2LN
〈
π N
s ,G

〉 = 1

N

N−2∑

x=2

g(ηs(x))ΔNG
(
x
N

)
(25)

+ g(ηs(1))∇+
NG

(
1
N

)− g(ηs(N − 1))∇−
NG

(
N−1
N

)

+ α

N θ−1
G
(
1
N

)− g(ηs(N − 1))

N θ−1
G
(
N−1
N

)
,

where

ΔNG
(
x
N

) = N 2
[
G
(
x+1
N

)+ G
(
x−1
N

)− 2G
(
x
N

)]
,

∇+
NG( x

N ) = N
[
G( x+1

N ) − G( x
N )
]
, (26)

∇−
NG( x

N ) = N
[
G( x

N ) − G( x−1
N )

]
.

The quadratic variation of the martingale MG
t is

〈
MG

〉

t =
∫ t

0

[
N 2LN

〈
π N
s ,G

〉2 − 2N 2
〈
π N
s ,G

〉
LN

〈
π N
s ,G

〉]
ds. (27)

After standard calculations we can see that
〈
MG

〉

t = ∫ t
0 BN (s)ds, where

BN (s) =
N−1∑

x=1

∑

y∈{x−1,x+1}∩IN

g(ηs(x))[G(
y
N ) − G( x

N )]2 (28)

+ α
N θ G

2( 1
N ) + g(ηs(N−1))

N θ G2( N−1
N ).

6.2 Proof of Tightness

By [22, Proposition 4.1.7], to prove Proposition 3 it is sufficient to show the tightness
of themeasures corresponding to the real processes 〈π N

t ,G〉 for everyG inC2([0, 1]).
By Aldous criterion, is therefore sufficient to show that the following conditions are
satisfied:
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Condition 1 For every t ∈ [0, T ],

lim
A→∞ lim sup

N→∞
PμN

[
1

N

N−1∑

x=1

ηt (x) ≥ A

]

= 0.

Condition 2 For every δ > 0,

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣
∣

1

N

N−1∑

x=1

G( x
N )ητ+ω(x) − 1

N

N−1∑

x=1

G( x
N )ητ (x)

∣
∣
∣
∣
∣
> δ

]

= 0,

where TT is the family of all stopping times bounded by T .

Proof of Condition 1

For η ∈ D([0, T ],ΩN ) define

Yt (η) = number of particles created up to time t. (29)

We have the following natural bound

N−1∑

x=1

ηt (x) ≤
N−1∑

x=1

η0(x) + Yt , (30)

and then

PμN

[
1

N

N−1∑

x=1

ηt (x) ≥ A

]

≤ PμN

[
1

N

N−1∑

x=1

η0(x) ≥ A

2

]

+ PμN

[
1

N
Yt ≥ A

2

]

=: AN + BN .

Not that limA→∞ lim supN→∞ AN = 0, since μN is associated to and integrable
profile ρ0. On the other hand, since the process is accelerated by N 2, under PμN , Yt
is a Poisson process with intensity N 2−θα, and then

BN ≤ 2

AN
EμN [Yt ] = 2

AN
· N 2−θαt ≤ 2αt

A
,

which goes to zero when A → ∞.

Proof of Condition 2

By (24), it is enough to show that

Condition 2.1 For every δ > 0,
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lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣

∫ τ+ω

τ

N 2LN 〈π N
s ,G〉ds

∣
∣
∣
∣ > δ

]

= 0.

Condition 2.2 For every δ > 0,

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣MG

τ+ω − MG
τ

∣
∣ > δ

] = 0.

By (25), to show Condition 2.1 it is sufficient to show that, for all δ > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣
∣

∫ τ+ω

τ

1

N

N−2∑

x=2

g(ηs(x))ΔNG( x
N )ds

∣
∣
∣
∣
∣
> δ

]

= 0 (31)

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣

∫ τ+ω

τ

g(ηs(1))∇+
NG( 1

N )ds

∣
∣
∣
∣ > δ

]

= 0 (32)

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣

∫ τ+ω

τ

g(ηs(N − 1))∇−
NG( N−1

N )ds

∣
∣
∣
∣ > δ

]

= 0 (33)

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣

∫ τ+ω

τ

α

N θ−1
G( 1

N )ds

∣
∣
∣
∣ > δ

]

= 0 (34)

lim
γ→0

lim sup
N→∞

sup
τ∈TT
ω≤γ

PμN

[∣
∣
∣
∣

∫ τ+ω

τ

g(ηs(N − 1))

N θ−1
G( N−1

N )ds

∣
∣
∣
∣ > δ

]

= 0 (35)

Condition (34) is immediate, since G ∈ C2([0, 1]), and then it is bounded.

Proof (Proof of (31)) Since G is of class C2 and g increases at most linearly (recall
hypothesis (1)), the integral in (31) is bounded by

C(g∗,G)

∫ τ+ω

τ

1

N

N−2∑

x=2

ηs(x)ds.

By (30), this is bounded above by

C(g∗,G)

[
ω

N

N−1∑

x=1

η0(x) +
∫ τ+ω

τ

1

N
Ysds

]

.

Then, observing that Ys is non decreasing, it is enough to show that, for any δ > 0

lim
ω→0

lim sup
N→∞

PμN

[
ω

N

N−1∑

x=1

η0(x) > δ

]

= 0 (36)
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and
lim
ω→0

lim sup
N→∞

PμN

[ ω

N
YT+ω > δ

]
= 0. (37)

As in the proof of Condition 1, (36) holds because μN is associated to an integrable
profile ρ0, and (37) follows from

PμN

[ ω

N
YT+ω > δ

]
≤ ω

δN
EμN

[
YT+ω

] = ωα(T + ω)

δN θ−1
≤ ωα(T + ω)

δ
,

which goes to zero as ω → 0.

For the proof of (32), (33) and (35) we will use the following lemma.

Lemma 3 Under the conditions (22) and (23), for every s ≥ 0 and x ∈ IN , it holds

EμN [g(ηs(x))] ≤ ϕN (x), (38)

EμN

[
g(ηs(x))

2] ≤ g∗ϕN (x) + (ϕN (x))2. (39)

And consequently, for � = 1, 2,

EμN

[
g(ηs(x))

�
] ≤ C(α), (40)

where C(α) is a positive constant that only depends on α.

Remark 6 In the proof of Proposition 3, the hypotheses (22) and (23) are only used
in Lemma 3 above. Since this result is trivial when g is bounded, in this case such
hypotheses are not needed to prove tightness.

Proof For every x ∈ IN , by (22) the function hx : ΩN → R, given by hx (η) =
[g(η(x))]�, is monotone. So, by attractiveness and hypothesis (23), we have

EμN

[
g(ηs(x))

�
] ≤ Eν̄N

[
g(ηs(x))

�
] = Eν̄N

[
g(η0(x))

�
] = Eν̄N

[
g(η(x))�

]
.

To conclude the proof of (38), we recall that Eν̄N [g(η(x))] = ϕN (x).
For the proof of (39), we write

Eν̄N

[
g(η(x))2

] = 1

Z(ϕN (x))

∞∑

k=0

g(k)2
ϕN (x)k

g(k)!

= ϕN (x)

Z(ϕN (x))

∞∑

k=1

g(k)
ϕN (x)k−1

g(k − 1)! .

By (1), we have that
g(k) ≤ g∗ + g(k − 1).
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Then

Eν̄N

[
g(η(x))2

] ≤ g∗ϕN (x) + ϕN (x)

Z(ϕN (x))

∞∑

k=1

g(k − 1)
ϕN (x)k−1

g(k − 1)!

= g∗ϕN (x) + ϕN (x)2

Z(ϕN (x))

∞∑

k=2

ϕN (x)k−2

g(k − 2)!
= g∗ϕN (x) + ϕN (x)2.

Since ϕN is a linear function satisfying ϕN (N − 1) = α and, for every θ ≥ 1,
ϕN (1) ≤ 2α, the proof Lemma 3 is concluded.

Proof (Proof of (32), (33) and (35)) Since G is of class C2, the integrals in (32),
(33) and (35) are bounded above by

C(g∗,G)

∫ τ+ω

τ

g(ηs(x))ds,

for x = 1 or x = N − 1.
For all x ∈ IN , we have

PμN

[∫ τ+ω

τ

g(ηs(x))ds > δ

]

≤ 1

δ
EμN

[∫ τ+ω

τ

g(ηs(x))ds

]

.

By Cauchy–Schwarz’s inequality

EμN

[∫ τ+ω

τ

g(ηs(x))ds

]

= EμN

[∫ T

0
1[τ,τ+ω](s)g(ηs(x))ds

]

≤ √
ω

[

EμN

[∫ T

0
g(ηs(x))

2ds

]]1/2

= √
ω

[∫ T

0
EμN

[
g(ηs(x))

2
]
ds

]1/2

.

Then, using Lemma 3, we obtain

EμN

[∫ τ+ω

τ

g(ηs(x))ds

]

≤ (ωTC(α))1/2. (41)

Sending ω → 0, we conclude the proof.

Proof (Proof of Condition 2.2) Using Chebychev’s inequality and the explicit for-
mula for the quadratic variation given in (27), we have
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PμN

[∣
∣MG

τ+ω − MG
τ

∣
∣ > δ

] ≤ 1

δ2
EμN

[
(MG

τ+ω − MG
τ )2

]

= 1

δ2
EμN

[∫ τ+ω

τ

BN (s)ds

]

, (42)

where BN (s) was defined in (28).
Using that G and its derivative are bounded functions, and then, using (41), we

can see that (42) is bounded above by Cω
N , whereC is a constant that does not depends

on N and ω. Thus the proof is concluded.

Remark 7 Considering a model in which a particle is removed from the system
throughout site N − 1 with rate g(η(N − 1)) instead of the slow boundary assump-
tion g(η(N−1))

N θ made in this work, our proof can be adapted and tightness will also
hold if we assume that particles are inserted into the system at site 1 with rate α

N θ

with θ > 1. In this case the fugacity profile ϕN goes to zero uniformly as N → ∞.

7 Limit Points are Concentrated on Absolutely Continuous
Measures

The next step to characterize the limit points of {QN } is to show that they are con-
centrated on trajectories of measures that are absolutely continuous with respect to
the Lebesgue measure.

Next lemma states that for any sequence μN of probabilities on ΩN bounded
by the invariant measure ν̄N , the corresponding sequence of empirical measures,
obtained via π N : ΩN → M+, if converges, must converge to an absolutely contin-
uous measure with respect to Lesbegue.

Lemma 4 Let μN be a sequence of probabilities on ΩN bounded by the invariant
measure ν̄N , i.e., μN ≤ ν̄N . Let RμN be the probability measure μN (π N )−1 onM+,
defined by RμN (A ) = μN {η : π N (η) ∈ A } for every Borel subset A ∈ M+. Then,
all limit points R∗ of the sequence RμN are concentrated on absolutely continuous
measures with respect to the Lebesgue measure:

R∗[π : π(du) = ρ(u)du] = 1.

Proof Let R∗ be a limit point of the sequence RμN . Recall from (20) that we denoted
by ρ̄ : [0, 1] → R+ the density profile associated to the sequence of invariant mea-
sures ν̄N . Fix some ε > 0, it is enough to prove that, for every non negative continuous
function G : [0, 1] → R,

R∗
[

π : 〈π,G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

= 1.

Let RμNk be a subsequence converging to R∗, then
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R∗
[

π : 〈π,G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

≥ lim sup
k→∞

RμNk

[

π : 〈π,G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

(43)

= lim sup
k→∞

μNk

[

η : 〈π N (η),G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

.

Since μN ≤ ν̄N , by [24, Theorem 2.2.4] there exist a coupling μ̄N , i.e, a probability
measure on ΩN × ΩN , with marginals μN and ν̄N respectively, such that

μ̄N [(η, ξ) : η ≤ ξ ] = 1,

and consequently

μ̄N
[
(η, ξ) : 〈π N (η),G〉 ≤ 〈π N (ξ),G〉] = 1. (44)

By (43) and (44),

R∗
[

π : 〈π,G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

≥ lim sup
k→∞

ν̄Nk

[

η : 〈π N (η),G〉 ≤
∫ 1

0
G(u)(ρ̄(u) + ε)du

]

= 1, (45)

by Proposition 2.

Assuming that the rate function g is non decreasing, by attractiveness, the semi-
group SN (t) associated to the generator N 2LN preserves the partial order μN ≤ ν̄N ,
that is, μN SN (t) ≤ ν̄N SN (t) = ν̄N for each 0 ≤ t ≤ T . Therefore, Lemma 4, when
applied to the marginal at time t of the measure QN = PμN (π N )−1, which is
μN SN (t), says that for every limit point Q∗, and every t ∈ [0, T ],

Q∗ [π : πt (du) = ρt (u)du] = 1.

To short notations, we write ρt (u) instead of ρ(t, u). Now consider the functional
J : M+ → R+ ∪ {∞} defined by

J (π) =
{
1, if π(du) = ρ(u)du,

∞, otherwise.

By Fubini’s lemma,

EQ∗

[∫ T

0
J (πt )dt

]

=
∫ T

0
EQ∗ [J (πt )] dt = T .
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In particular, changing, if necessary, πt (du) in a time set of measure zero, all limit
points Q∗ are concentrated on absolutely continuous trajectories:

Q∗ [π· : πt (du) = ρt (u)du, 0 ≤ t ≤ T ] = 1.

8 Hydrodynamic Limit

In this section we will present the hydrodynamic limit that we expect in this model,
together with the structure of the proof. Since some elements of the proof are not yet
completed, we present it as a conjecture.

Let us recall the hypotheses assumed in Sects. 6 and 7, that is, θ ≥ 1 and g is a
non decreasing function with bounded variation, as stated in (1). Also recall that, for
T > 0, PμN denotes the probability on the space D([0, T ],ΩN ) corresponding to
the process {ηt : t ∈ [0, T ]} on ΩN with infinitesimal generator N 2LN , where LN

is defined in (2).

Conjecture 1 (Hydrodynamic limit) Let {μN }N∈N be a sequence of probability mea-
sures on ΩN , bounded by the invariant measure, i.e., μN ≤ ν̄N . Assume that the
sequence {μN }N∈N is associated to a continuous profile3 γ : [0, 1] → R+ in the sense
of theDefinition1.Then, for all t ∈ [0, T ], for all continuous functionG : [0, 1] → R

and δ > 0,

lim
N→+∞PμN

⎡

⎣η· :
∣
∣
∣ 1N

∑

x∈IN
G
(
x
N

)
ηt (x) −

∫ 1

0
G(u) ρt (u) du

∣
∣
∣ > δ

⎤

⎦ = 0,

where

• for θ = 1, ρt (u) is a weak solution of (47) with Robin boundary condition (κ = 1);
• for θ > 1, ρt (u) is a weak solution of (47) with Neumann boundary condition
(κ = 0).

Before introducing the hydrodynamic equation (47), we need to define some
function spaces. The bracket 〈 · , · 〉 means the inner product in L2[0, 1] and ‖F‖22 =
〈F, F〉, for all F ∈ L2[0, 1].

We advertise that, to short the notation, we write ρt (u) and Gs(u) instead of
ρ(t, u) and G(s, u), respectively. The reader must not misunderstand this notation
with the time derivative, denoted by ∂s .

Definition 3 LetH 1(0, 1) be the set of all locally summable functions ξ : [0, 1] →
R such that there exists a function ∂uξ ∈ L2[0, 1] satisfying

3As discussed in Remark 5. the assumption (23) naturally imposes the initial profile γ to be bounded
above by the profile ρ̄ of the hydrostatic limit, given in (20).
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〈∂uG, ξ 〉 = −〈G, ∂uξ 〉,

for all C∞ function G : (0, 1) → R with compact support.
Let L2(0, T ;H 1(0, 1)) be the set of all measurable functions ξ̄ : [0, T ] →

L2[0, 1] such that ξ̄t ∈ H 1(0, 1), for almost t ∈ [0, T ], and

‖ξ̄‖2L2(0,T ;H 1(0,1)) :=
∫ T

0
{‖ξ̄t‖22 + ‖∂u ξ̄t‖22} dt < ∞. (46)

Denote by C1,2([0, T ] × [0, 1]) the set of real-valued functions defined on [0, T ] ×
[0, 1] that are differentiable on the first variable and twice differentiable on the second
variable.

Recall that the function Φ : R+ → [0, ϕ∗) is the inverse function of R, defined
in (14).

Definition 4 (Hydrodynamic equation) Let γ : [0, 1] → R+ be a continuous func-
tion. Consider the parameter κ equal to 0 or 1. We say that a function ρ : [0, T ] ×
[0, 1] → R+ is a weak solution of the equation

⎧
⎪⎪⎨

⎪⎪⎩

∂tρt (u) = ΔΦ(ρt (u)), for u ∈ (0, 1) and t ∈ (0, T ],
∂uΦ(ρt (0)) = −κ α, for t ∈ (0, T ],
∂uΦ(ρt (1)) = −κ Φ(ρt (1)), for t ∈ (0, T ],

ρ0(u) = γ (u), for u ∈ [0, 1],
(47)

if Φ(ρ) ∈ L2(0, T ;H 1(0, 1)) and

〈ρt ,G0〉 − 〈γ,G0〉 −
∫ t

0

{〈ρs, ∂sGs〉 + 〈Φ(ρs),ΔGs〉
}
ds

−
∫ t

0

{
Φ(ρs(0))∂uGs(0) − Φ(ρs(1))∂uGs(1)

}
ds

− κ

∫ t

0

{
αGs(0) − Φ(ρs(1))Gs(1)

}
ds = 0 , (48)

for all t ∈ [0, T ] and G ∈ C1,2([0, T ] × [0, 1]).
• When κ = 0, we say that the PDE (47) has Neumann boundary condition;
• When κ = 1, we say that the PDE (47) has Robin boundary condition.

We consider the PDE (47) with more general boundary conditions in the Sect. 10,
see Eq. (60).

Let us recall, from the beginning of Sect. 6, that QN denotes the probability on
D([0, T ],M+), corresponding to the empirical process {π N

t : t ∈ [0, T ]}.
Conjecture 2 As N → ∞, the sequence of probabilities {QN }N∈N convergesweakly
to Q, the probability measure on D([0, T ],M+) that gives mass one to the trajec-
tory πt (du) = ρt (u)du, where ρ : [0, T ] × [0, 1] → R is the weak solution of the
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hydrodynamic equation (47), with κ = 1 if θ = 1, and κ = 0 if θ > 1. We call ρt (u)

the hydrodynamic profile.

Conjecture 1 is a consequence of the Conjecture 2. Since the hydrodynamic
behaviour is described by Conjecture 1, it is not mandatory to get Conjecture 2
to understand the hydrodynamics. But the second conjecture gives more information
about the asymptotic behaviour of the system, because it handleswith thewhole time-
trajectory of the density of particles. Moreover, using the result stated in Conjecture
2 is possible to study the fluctuations and the large deviations of this convergence,
completing the asymptotic characterization of the model.

The proof of Conjecture 2 may be divided into three steps.
The first step is to show tightness, which is done in Sect. 6. This implies that the

sequence {QN }N∈N has limit points.
The second step is the characterization of these limit points, which we split in

two parts: The first part is the subject of Sect. 7, where we proved that the limit
points of the sequence {QN } are concentrated on trajectories of measures that are
absolutely continuous with respect to the Lebesgue measure, so that for each t ,
πt (du) = ρt (u)du for some function ρ : [0, T ] × [0, 1] → R+. The second part is
to show that ρ is a solution of the corresponding hydrodynamic equation. This part
we postpone to a future work, however, in the Sect. 9, we present some heuristics of
this proof.

The third step,whichwill be also postponed to a futurework, is to show the unique-
ness of solution for the hydrodynamic equations. This uniqueness would guarantee
that the sequence {QN } has a unique limit point, and thus the proof of Conjecture 2
would be concluded.

9 Heuristics of the Hydrodynamic Equation

Let {μN }N∈N be a sequence of probability measures onΩN , bounded by the invariant
measure, as stated in (23), and associated with to a continuous profile γ : [0, 1] →
R+ in the sense of Definition 1. Recall that {QN } is a sequence of probabilities on
D([0, T ],M+) defined by QN = PμN (π N )−1.

Let Q∗ be a limit point of {QN }. In Sect. 7, we proved that Q∗ is a probability
measure on D([0, T ],M+) which gives mass one to paths of absolutely continuous
measures: πt (du) = ρt (u)du. In this section we present some heuristics to obtain
that ρt (u) is a weak solution of the corresponding hydrodynamic equation. For this
purpose, we will assume, heuristically, that

〈
π N
s , H

〉 →
∫ 1

0
H(u) ρs(u) du , (49)

when N → ∞, for all s ∈ [0, T ] and H ∈ C[0, 1].
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In order to prove that ρt (u) satisfies the hydrodynamic equation, we evoke the
Dynkin martingale, introduced in Sect. 6.1, MG

t for G ∈ C2([0, 1]). Using (24) and
(25), we rewrite this martingale as

MG
t = 〈π N

t ,G
〉− 〈

π N
0 ,G

〉−
∫ t

0

1

N

N−2∑

x=2

g(ηs(x))ΔNG
(
x
N

)
ds

−
∫ t

0

(
g(ηs(1))∇+

NG
(
1
N

)− g(ηs(N − 1))∇−
NG

(
N−1
N

) )
ds (50)

−
∫ t

0

( α

N θ−1
G
(
1
N

)− g(ηs(N − 1))

N θ−1
G
(
N−1
N

) )
ds.

By the definition ofΔNG,∇+
NG and∇−

NG in (26) and the fact thatG ∈ C2([0, 1]),
we can rewrite MG

t as

〈
π N
t ,G

〉− 〈
π N
0 ,G

〉−
∫ t

0

1

N

N−2∑

x=2

g(ηs(x))ΔG
(
x
N

)
ds

−
∫ t

0

(
g(ηs(1))∂uG (0) − g(ηs(N − 1))∂uG (1)

)
ds (51)

−
∫ t

0

( α

N θ−1
G (0) − g(ηs(N − 1))

N θ−1
G (1)

)
ds + R1,θ

N (G, t) ,

where EμN [R1,θ
N (G, t)] goes to zero, as N → ∞, for all θ ≥ 1, and uniformly on

t ∈ [0, T ], because of Lemma 3 and Taylor’s expansion. By (49), as N → ∞,

〈
π N
t ,G

〉− 〈
π N
0 ,G

〉 → 〈ρt ,G〉 − 〈ρ0,G〉 .

Then we need to study the bulk and boundary terms of the expression (51). We
start by the bulk term:

∫ t
0

1
N

∑N−2
x=2 g(ηs(x))ΔG

(
x
N

)
ds. In order to do this, we will

introduce some notation.
For ε > 0, consider the set

I ε
N := {1 + εN , . . . , N − 1 − εN } . (52)

Above and in all text εN must be understood as �εN�.
Then the bulk term becomes

∫ t

0

1

N

∑

x∈I ε
N

g(ηs(x))ΔG
(
x
N

)
ds + R2

N ,ε(G, t) , (53)

where
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R2
N ,ε(G, t) =

∫ t

0

1

N

(
εN∑

x=2

g(ηs(x))ΔG
(
x
N

)+
N−2∑

x=N−εN

g(ηs(x))ΔG
(
x
N

)
)

ds .

Using (40) from Lemma 3, we have EμN [R2
N ,ε(G, t)] ≤ 2εCT ‖ΔG‖∞. Thus,

EμN [R2
N ,ε(G, t)] goes to zero, when N → ∞ and ε → 0. Adding and subtracting

suitable terms, we can see that the integral in (53) is equal to

∫ t

0

1

N

∑

x∈I ε
N

ΔG
(
x
N

) 1

εN

x+εN∑

y=x+1

g(ηs(y)) ds + R3
N ,ε(G, t) , (54)

where

R3
N ,ε(G, t) =

∫ t

0

1

N

∑

x∈I ε
N

{
g(ηs(x)) − 1

εN

x+εN∑

y=x+1

g(ηs(y))
}
ΔG

(
x
N

)
ds .

Changing variables R3
N ,ε(G, t) can be rewritten as

∫ t

0

1

N

{∑

x∈I ε
N

g(ηs(x))ΔG
(
x
N

)−
∑

y∈IN
g(ηs(y))

1

εN

εN∑

z=1

ΔG
( y−z

N

)
}

ds

=
∫ t

0

1

N

∑

x∈I ε
N

g(ηs(x))
{
ΔG

(
x
N

)− 1

εN

εN∑

z=1

ΔG
(
x−z
N

) }
ds

+
∫ t

0

1

N

∑

x∈IN \I ε
N

g(ηs(x))
1

εN

εN∑

z=1

ΔG
(
x−z
N

)
ds .

Then EμN [R3
N ,ε(G, t)] → 0, as N → ∞ and ε → 0. To handle the integral term

in (54), we use the function Φ : R+ → [0, ϕ∗), which is the inverse function of R,
defined in (14). We will need to introduce some more notation. Let −→η εN

s (x) be the
empirical density in the box of size εN , which is given on, x ∈ I ε

N , by

−→η εN
s (x) = 1

εN

x+εN∑

y=x+1

ηs(y) . (55)

Then the integral term in (54) is equal to

∫ t

0

1

N

∑

x∈I ε
N

ΔG
(
x
N

)
Φ(−→η εN

s (x)) ds + R4
N ,ε(G, t) . (56)

The last term above is the important expression:



The Boundary Driven Zero-Range Process 277

R4
N ,ε(G, t) =

∫ t

0

1

N

∑

x∈I ε
N

ΔG
(
x
N

) { 1

εN

x+εN∑

y=x+1

g(ηs(y)) − Φ(−→η εN
s (x))

}
ds,

(57)
which to prove that it is negligible we need to evoke the following very important
result:

Lemma 5 (Replacement lemma for the bulk)4 For every δ > 0,

lim
ε→0

lim
N→∞PμN

[
η· :

∣
∣
∣R4

N ,ε(G, T )

∣
∣
∣ > δ

]
= 0,

where R4
N ,ε(G, t) was defined in (57).

Note that, −→η εN
s (x) = 〈π N

s , ι
x/N
ε 〉, where

ιuε (v) = 1
ε
1(u,u+ε)(v),

for u, v ∈ [0, 1]. Then the integral in (56) can be rewritten as

∫ t

0

1

N

∑

x∈I ε
N

ΔG
(
x
N

)
Φ
(〈π N

s , ιx/Nε 〉) ds .

Since the function inside the summation above is integrable, it is possible to prove
that the last integral is asymptotically (when N → ∞ and ε → 0) equal to

∫ t

0

∫ 1

0
ΔG (u)Φ

(〈π N
s , ιuε 〉

)
du ds .

By (49), we have that, for u ∈ [0, 1]

〈π N
s , ιuε 〉 →

∫ 1

0
ρs(v)ι

u
ε (v) dv,

as N → ∞. Finally, taking ε → 0, the last integral converges to ρs(u). Then the
bulk term of the expression (51) converges to

∫ t

0

∫ 1

0
ΔG(u)Φ(ρs(u)) du ds =

∫ t

0
〈Φ(ρs),ΔG〉 ds,

when N → ∞ and ε → 0.

In order to analyze the boundary terms of (51), we start by observing that the
expectation with respect to the probability PμN of

4The proof of this lemma is a future work.
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∫ t

0

( α

N θ−1
G (0) − g(ηs(N − 1))

N θ−1
G (1)

)
ds,

goes to zero, as N → ∞, in the case θ > 1, because of Lemma 3. Then, when θ > 1,
we only need to analyze the term

−
∫ t

0

(
g(ηs(1))∂uG (0) − g(ηs(N − 1))∂uG (1)

)
ds. (58)

In the case θ = 1, rewriting the boundary terms of (51), we have

−
∫ t

0

(
g(ηs(1))∂uG (0) − αG (0) − g(ηs(N − 1))(∂uG (1) + G (1))

)
ds. (59)

In both cases we need to replace g(ηs(1)) and g(ηs(N − 1)) by the average of
g in a box of size εN in a neighborhood of x = 1 or x = N − 1 inside IN , that
is 1

εN

∑1+εN
y=2 g(ηs(y)) and 1

εN

∑N−2
y=N−1−εN g(ηs(y)), respectively. Note that this is

similar towhat we did above in (54). The next step is to use the following replacement
lemma with a suitable choice of f1 and f2.

Lemma 6 (Replacement lemma for the boundary)5 For θ ≥ 1 and for all continuous
functions fi : [0, T ] → R, with i = 1, 2, and every δ > 0, we have

lim
ε→0

lim
N→∞PμN

[
η· :

∣
∣
∣Rb

N ,ε( f1, f2, T )

∣
∣
∣ > δ

]
= 0,

where

Rb
N ,ε( f1, f2, T ) =

∫ T

0
f1(s)

{ 1

εN

1+εN∑

y=2

g(ηs(y)) − Φ(−→η εN
s (1))

}
ds

+
∫ T

0
f2(s)

{ 1

εN

N−2∑

y=N−1−εN

g(ηs(y)) − Φ(←−η εN
s (N−1))

}
ds

where −→η εN
s (1) was defined in (55) and

←−η εN
s (N − 1) = 1

εN

N−2∑

y=N−1−εN

ηs(y) .

As we said above −→η εN
s (1) ∼ ρs(0) and

←−η εN
s (N−1) ∼ ρs(1), then the expres-

sions in (58) and in (59) converge, as N → ∞ and ε → 0, to

5The proof of this lemma is a future work.
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−
∫ t

0

(
Φ(ρs(0)) ∂uG (0) − Φ(ρs(1)) ∂uG (1)

)
ds,

in case θ > 1, and

−
∫ t

0

(
Φ(ρs(0)) ∂uG (0) − Φ(ρs(1)) (∂uG (1) + G (1)) − αG (0)

)
ds,

in case θ = 1. These expressions are the boundary terms in the integral equations
(48), with κ = 0 and κ = 1, respectively.

Summarizing, the expression of the Dynkin martingale, in (50), converges to the
left-hand side of the integral equation (48) with κ = 0 and κ = 1, for θ > 1 and
θ = 1, respectively. Since we are only providing an idea of the proof, to make clear
the notation, up to this point we have been assuming that the test G does not depends
on the time, that is G ∈ C2[0, 1].

Note that from Condition 2.2, PμN [|MG
t | > δ] vanishes as N → ∞. Recall that

Q∗ is a limit point of the sequence {QN }, which is defined by QN = PμN (π N )−1.
Then, using Portmanteau Theorem, we can conclude that, in the case θ = 1, Q∗
satisfies

Q∗
[

π· : 〈ρt ,G0〉 − 〈γ,G0〉 −
∫ t

0

{〈ρs , ∂sGs〉 + 〈Φ(ρs),ΔGs〉
}
ds

−
∫ t

0

{
Φ(ρs(0))∂uGs(0) − Φ(ρs(1))∂uGs(1)

}
ds

−
∫ t

0

{
αGs(0) − Φ(ρs(1))Gs(1)

}
ds = 0 ,

∀t ∈ [0, T ], ∀G ∈ C1,2([0, T ] × [0, 1])
]

= 1.

Note that the expression inside the probability above is the integral equation (48)with
κ = 1. In the case θ > 1, using the same argument, we obtain a similar expression
as the one above with the integral equation (48) with κ = 0 instead of κ = 1.

Remark 8 In order to show that the boundary terms Φ(ρs(0)) and Φ(ρs(1)) in
the integral equation (48) are well defined we need to assure that Φ(ρ) belongs to
L2(0, T ;H 1(0, 1)). To obtain it, using Riesz representation theorem, it is enough
to prove the Energy Estimate, that is:

EQ∗

[

sup
H

{ ∫ T

0
〈Φ(ρs), ∂u Hs〉 ds − c

∫ T

0
〈Hs, Hs〉 ds

}]

≤ M0 < ∞,

for some constants M0 and c. As usual, the supremum above is taken over all func-
tions H ∈ C0,1([0, T ] × [0, 1]) with compact support. The notation EQ∗ means the
expectation with respect to the measure Q∗, which is the limit point of QN .
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10 Heuristics for Hydrodynamics of the General Model

If we had considered the more general slow boundary introduced in Remark 4, see
Fig. 3, the Dynkin martingale (50) would be

MG
t = 〈π N

t ,G
〉− 〈

π N
0 ,G

〉−
∫ t

0

1

N

N−2∑

x=2

g(ηs(x))ΔNG
(
x
N

)
ds

−
∫ t

0

(
g(ηs(1))∇+

NG
(
1
N

)− g(ηs(N − 1))∇−
NG

(
N−1
N

) )
ds

−
∫ t

0

{(α − λg(ηs(1))

N θ−1

)
G
(
1
N

)+
(β − δg(ηs(N − 1))

N θ−1

)
G
(
N−1
N

)
}

ds,

for G ∈ C2[0, 1]. Using similar ideas as in Sect. 9, we get that the limit point Q∗
satisfies

Q∗
[

π· : 〈ρt ,G0〉 − 〈γ,G0〉 −
∫ t

0

{〈ρs , ∂sGs〉 + 〈Φ(ρs), ΔGs〉
}
ds

−
∫ t

0

{
Φ(ρs(0))∂uGs(0) − Φ(ρs(1))∂uGs(1)

}
ds

−κ

∫ t

0

{(
α − λΦ(ρs(0))

)
Gs(0) + (

β − δΦ(ρs(1))
)
Gs(1)

}
ds = 0 ,

∀t ∈ [0, T ], ∀G ∈ C1,2([0, T ] × [0, 1])
]

= 1.

Above, κ = 1 in the case θ = 1 and κ = 0 in the case θ > 1. Therefore, the hydro-
dynamic equation is

⎧
⎪⎪⎨

⎪⎪⎩

∂tρt (u) = ΔΦ(ρt (u)), for u ∈ (0, 1) and t ∈ (0, T ],
∂uΦ(ρt (0)) = −κ

(
α − λΦ(ρt (0))

)
, for t ∈ (0, T ],

∂uΦ(ρt (1)) = κ
(
β − δΦ(ρt (1))

)
, for t ∈ (0, T ],

ρ0(u) = γ (u), for u ∈ [0, 1].
(60)
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Partial Regularity in Time for the
Landau Equation (with Coulomb
Interaction)

François Golse

Abstract The present paper gives a simplified presentation of a partial regular-
ity result obtained in a joint work with M. P. Gualdani, C. Imbert and A. Vasseur
[arXiv:1906.02841 [math.AP]] for the spatially homogeneous Landau equation with
Coulomb interaction in three space dimensions. Specifically, we prove that the pro-
cedure used in [C. Villani: Arch. Rational Mech. Anal. 143 (1998), 273–307] to
construct H-solutions of the Landau equation leads to a class of weak solutions sat-
isfying a truncated relative entropy estimate for values of the distribution function
larger than any arbitrary level κ > 0. Using the method introduced in [E. De Giorgi:
Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43] for studying the
regularity of parabolic equations with bounded diffusion coefficients, we prove that
the set of singular times of any such solution has Hausdorff dimension at most 1/2.

Keywords Landau equation · Partial regularity · DeGiorgi-Nash-Moser regularity
theory · Hausdorff dimension

1 The Landau Equation

The Landau equation [14] (see also Sect. 41 in [17]) is a collisional model used in
the kinetic theory of charged particles (ionized gases or plasmas). As in the case of
the Boltzmann equation of the kinetic theory of gases, the unknown in the Landau
equation is the velocity distribution function, that is the phase space number density of
particleswhich, at time t , are at position x and have velocity v. Throughout the present
paper, we focus our attention on the Landau collision integral, and forget about the
dependence in the position variable x . Thus, the velocity distribution function is
f ≡ f (t, v) ≥ 0, the number density of particles with velocity v ∈ R3 at time t ≥ 0.
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The space-homogeneous Landau equation with Coulomb interaction between
identical particles (with the same electric charge) is

∂t f (t, v) = ∇v ·
∫

R3
a(v − w)(∇v − ∇w)( f (t, v) f (t,w))dw , v ∈ R3 , (1)

with the notation:

a(z) := 1

8π
∇2|z| = 1

8π |z|Π(z) , Π(z) := I −
(

z

|z|
)⊗2

.

Obviously, this equation can also be written as a parabolic equation in nonconserva-
tive form:

∂t f (t, v) = (
ai j �v f (t, v)

)
∂vi ∂v j f (t, v) + f (t, v)2 . (2)

Whether there is finite-time blow-up, or global existence of smooth solutions of
the Cauchy problem for the space homogeneous Landau equation is one of the major
open problems in themathematical theory of kineticmodels at the time of this writing
(see Villani’s comment on this problem in Sect. 1.3 (2) of [25]).

Looking at the nonconservative parabolic form of the Landau equation suggests
comparing this equation with the semilinear heat equation

∂t u = Δxu + αu2 , (3)

where α > 0 is a constant. It is well known that, for each d ≥ 1, any classical solution
u ≡ u(t, x) > 0 of this semilinear heat equation with “large” initial data blows up
in finite time (the word “large” will be defined below). This is seen by the following
elementary argument: for an arbitrary open ball B ofRd , let φ ≡ φ(x) be the solution
of

−Δφ = λ0φ , φ > 0 on B , φ
∣∣
∂B = 0 ,

normalized by the condition ∫
B

φ(x)dx = 1 .

Then λ0 ≡ λ0[B] > 0. (In fact, λ0[B] is the smallest eigenvalue of −Δ on the ball B
with homogeneous Dirichlet boundary condition on ∂B. For each x0 ∈ Rd and each
r > 0, one has

λ0[B(x0, r)] = λ0[B(0, 1)]r2

by an obvious scaling argument.) Define

L(t) :=
∫
B
u(t, x)φ(x)dx .
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Elementary computations involving the Green formula show that

dL

dt
(t) ≥ −λ0L(t) + αL2(t) .

If L(0) > λ0/α, then t �→ L(t) cannot remain bounded on [0, τ ] with

τ >

∫ +∞

L(0)

dL

αL2 − λ0L
.

Hence, any classical solution u ≡ u(t, x) ≥ 0 of (3) such that, for some open ball
B ∈ Rd , ∫

B
u(0, x)φ(x)dx >

λ0

α

blows up in finite time. This condition is the precise definition of what we called a
“large” initial data above. We refer the interested readers to [26] and Sect. 5.4 in [3]
for more details on this problem.

However, the Landau equation is not expected to behave as the semilinear heat
Eq. (3) for the following reason. While the term f (t, v)2 in the right hand side of (2)
promotes blow-up, the diffusion matrix a �v f (t, v) grows with f (t, ·), and a large
diffusion matrix multiplying ∂vi ∂v j f (t, v) in the right hand side of (2) is expected to
inhibit blow-up. The diffusion coefficient in the semilinear heat Eq. (3) is constant,
and therefore cannot offset the effect of the quadratic term αu(t, x)2.

Another simpler model of the space homogeneous Landau equation is the so-
called “isotropic” model Landau equation

∂t u(t, x) = ((−Δx )
−1u(t, x))Δu(t, x) + αu(t, x)2 ,

for which the global existence of radially symmetric, nonincreasing solutions has
been proved [9, 10, 13].

There is however an unpleasant difference between this “isotropic” model Lan-
dau equation and the true Landau equation. Maxwellian distribution functions, i.e.
distribution functions of the form

M [ρ, u, θ ](v) := ρ

(2πθ)3/2
e−|v−u|2/2θ

are known to be equilibrium (i.e. independent of time) solutions of the true Landau
equation, and are not solutions of the “isotropic” model Landau equation. Since
Maxwellian distributions are of fundamental importance in physics, the “isotropic”
model Landau equation is only of mathematical interest.

Still another approach to the regularity issue for the Landau equation is to prove
conditional regularity results. In other words, assuming some bounds in appropriate
Lebesgue spaces on weak solutions of the Landau equation, one tries to prove that
suchweak solutionsmust be classical solutions, or at least bounded (weak) solutions.
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Perhaps the best result in this direction is [20]—see also [11] for similar results
obtained with different techniques—which proves that any weak solution of the
(space-homogeneous) Landau equation in the space L∞(R+; L p(R3; (1 + |v|)kdv))
with p > 3/2 and k > 5 belongs to L∞(R+ × R3)—a similar result for radial solu-
tions had been obtained earlier in [10].

Everywhere in this paper, we use the following notation

‖g‖p
L p
k

:=
∫

R3
(1 + |v|2)k/2|g(v)|pdv

with p ≥ 1 and k ∈ R, and we call L p
k (R

3) the set of (equivalence classes of a.e.
equal) measurable functions g ≡ g(v) on R3 with ‖g‖p

L p
k

< +∞.
In the present paper, we explore still another question: we seek to prove that the

set of times at which a weak solution of the Landau equation is singular cannot be too
large. Specifically, we seek to control the Hausdorff dimension of the set of singular
times of some appropriate class of weak solutions to the Landau equation. This
approach to the regularity issue for weak solutions of nonlinear partial differential
equations has been proposed by Leray in the case of his “turbulent solutions” (now
referred to as “Leray solutions”) of the three-dimensional incompressible Navier–
Stokes equations [15]: see formula (6.5) in Sect. 34 of [15]. (Leray’s observation
is not explicitly expressed in terms of Hausdorff dimension in [15].) It has been
later considerably improved by [2, 16, 18, 22], and is usually referred to as “partial
regularity”.

2 A Notion of Weak Solutions of the Landau Equation

Our first task is to define precisely the class of weak solutions to which our partial
regularity result will apply.

2.1 Villani’s H-Solutions

In his article [24], Villani proposed the following notion of weak solution of the
Landau equation. Since this notion of weak solution makes critical use Boltzmann’s
H Theorem, Villani chose to call such solutions “H-solutions”.

A H-solution of the Landau equation is a function

f ∈ C([0, T );D ′(R3)) ∩ L1((0, T ); L1
−1(R

3)) s.t. f (t, ·) ≥ 0 in D ′(R3)

for all t ∈ [0, T ), satisfying the following two properties:
(a) the conservation laws and Boltzmann’s H Theorem: for a.e. t ∈ [0, T ):
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∫
R3

⎛
⎝ 1

v
|v|2

⎞
⎠ f (t, v)dv =

∫
R3

⎛
⎝ 1

v
|v|2

⎞
⎠ fin(t, v)dv ,

∫
R3

f (t, v) ln f (t, v)dv ≤
∫

R3
fin(v) ln fin(v)dv ;

(b) the following weak formulation of the Landau equation:

∫
R3

fin(v)φ(0, v)dv +
∫ T

0

∫
R3

f (t, v)∂tφ(t, v)dv

=
∫ T

0

∫
R6

(Φ(t, v)−Φ(t,w))·Π(v−w) (F(∇v−∇w)F) (t, v,w)dvdw ,

where

Φ(t, v) := ∇vφ(t, v) and F(t, v,w) :=
√

f (t, v) f (t,w)

8π |v − w| .

Notice the following subtlety in Villani’s definition: the right hand side of the
identity above depends on the test function φ in a nonlocal manner. For this reason,
this weak formulation differs from the straightforward definition of a solution of (2)
in the sense of distributions.

2.2 Suitable Solutions

However, the notion of H-solution is not sufficient for our purpose in the present
paper. We shall need more information in order to control the size of the set of
singular times in a weak solution of the Landau equation. Specifically, we shall use
the following notion of weak solution of the Landau equation.

Definition 1 Let N ⊂ R+ be a set of Lebesgue measure 0, let q ≥ 1 and C ′
E > 0.

An (N , q,C ′
E )-suitable solution on [0, T ) × R3 of the Landau equation is an H-

solution f ≡ f (t, v) such that

H+( f (t2, ·)|κ) + C ′
E

∫ t2

t1

∥∥1 f (t,v)>κ∇v f (t, v)
1/q

∥∥2

Lq (R3)
dt

≤ H+( f (t1, ·)|κ) + 2κ
∫ t2

t1

∫
R3

( f (t, v) − κ)+dvdt

for all t1 < t2 ∈ [0, T ) \ N and all κ ≥ 1, where
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H+(g|κ) :=
∫

R3
κh+

(
g(v)

κ

)
dv , h+(z) := z(ln z)+ − (z − 1)+ .

It is interesting to compare the inequality for the “truncated relative entropy”
H+( f (t, ·)|κ) in the definition above, with what one might have expected from the
nonconservative form (2) of the Landau equation. Specifically, the inequality for
the truncated relative entropy is obtained formally by multiplying both sides of the
Landau equation by ln( f (t,v)

κ
)+ and integrating by parts in the diffusion operator (in

the variable v) on the left hand side of (2). One expects this procedure to lead to
the truncated entropy production term on the left hand side of the inequality above,
while the term f (t, v)2 on the right hand side of (2) is expected to lead to

∫ t2

t1

∫
R3

f (t, v)2 ln

(
f (t, v)

κ

)
+
dvdt .

Instead of this term, one finds instead the much weaker (in terms of the growth as
f → +∞) source term

κ

∫ t2

t1

∫
R3

( f (t, v) − κ)+dvdt .

In other words, there is a remarkable cancellation in the Landau collision inte-
gral, which significantly depletes the effect of the nonlinearity f (t, v)2. Since this
quadratic source term on the right hand side of (2) is responsible for the suspicion
of finite time blow-up in classical solutions of the Landau equation, the fact that
the truncated relative entropy inequality partially offsets the effect of the quadratic
nonlinearity f (t, v)2 in the form (2) of the Landau equation is a good sign and might
tip the scales in favor of global regularity.

3 Partial Regularity in t for Suitable Solutions

In spite of the helpful effect of the depleted nonlinear termon the right hand side of the
truncated relative entropy inequality, we have not been able to prove the propagation
of regularity in time for suitable solutions of the Landau equation. However, we have
been able to control the size of the set of singular times for this class of solutions.

We begin with a precise definition of what we call “singular times” for suitable
solutions of the Landau equation.

Definition 2 A regular time for a suitable solution f of the Landau equation defined
on I × R3, where I is an interval included in (0,+∞), is a time τ ∈ I such that
(τ − ε, τ ) ⊂ I and f ∈ L∞((τ − ε, τ ) × R3) for some ε ∈ (0, τ ). A singular time
for f is a time t ∈ I which is not regular. The set of singular times of f on the time
interval I is denoted S[ f, I ].

With this definition, we can state our main result in the present paper.
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Theorem 1 ([6]) Let f be a suitable solution to the Landau equation on [0, T ) × R3

for all T > 0 , with initial data fin satisfying

∫
R3

(1 + |v|k + | ln fin(v)|) fin(v)dv < +∞ for all k > 3 .

Then
Hausdorff dim S[ f, (0,+∞)] ≤ 1

2 .

(For the definition of Hausdorff measures, and of Hausdorff dimension, see
Sect. 2.1 in Chap.2 of [1].)

This statement is the main result of our joint article with Gualdani et al. [6]. The
purpose of the present paper is to provide the reader with a nontechnical description
of the main ideas in [6].

4 Existence Theory for Suitable Solutions

Our goal in this section is to prove the following existence result.

Proposition 1 For each T > 0 and each fin ∈ L1(R3) such that fin ≥ 0 a.e. on R3

and ∫
R3

(1 + |v|k + | ln fin(v)|) fin(v)dv < +∞ for some k > 3 ,

there exists N ⊂ [0, T ] of Lebesgue measure 0, and an (N , q,C ′
E )-suitable solu-

tion f on [0, T ] with initial data fin and

C ′
E ≡ C ′

E [T, q, fin] > 0 , q := 2k

k + 3
.

Two remarks are in order. First, there is no limitation on the length T of the time
interval on which the suitable solution is defined, except that the larger T , the smaller
the constant C ′

E . Since C
′
E > 0 is the strength of the parabolic regularizing effect in

the Landau equation, one should avoid letting T → +∞ if this implies thatC ′
E → 0.

The second remark is about the setN of Lebesgue measure 0. This setN is not to
be confused with the singular set S[ f, (0,+∞)], and may very well be of Hausdorff
dimension > 1

2 without ultimately affecting the Hausdorff dimension of the singular
set S[ f, (0,+∞)].
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4.1 Formal H Theorem

In this section, we propose a formal discussion of the Boltzmann H Theorem for the
Landau equation, and of its truncated variant which is at the core of the notion of
suitable solution. By formal, wemean thatwe proceed as if the solution f was smooth
(although we are trying to prove much less), everywhere positive, rapidly decaying
in v and such that ∇v ln f (t, v) has at most polynomial growth as |v| → +∞.

Under these assumptions, one has

d

dt

∫
R3

f (t, v) ln f (t, v)dv

= −
∫

R6

f (t,v) f (t,w)

16π |v−w|
∣∣∣Π(v−w)

(∇v f (t,v)
f (t,v) − ∇w f (t,w)

f (t,w)

)∣∣∣2 dvdw .

Next, we study the truncated variant of the identity above. For each κ ≥ 1, one
easily checks that

d

dt
H+( f (t, ·)|κ)

+
∫

R6

f (t,v) f (t,w)

16π |v−w|
∣∣∣Π(v−w)

(
1 f (t,v)>κ∇v f (t,v)

f (t,v) − 1 f (t,w)>κ∇w f (t,w)

f (t,w)

)∣∣∣2dvdw

=−
∫

R6
f (t, v) f (t,w)a(v−w):∇v(ln

f (t,v)
κ

)+⊗∇w(ln f (t,w)

κ
)−dvdw .

A careful inspection of the term on the right hand side shows that

−
∫

R6
f (t, v) f (t,w)a(v−w):∇v(ln

f (t,v)
κ

)+⊗∇w(ln f (t,w)

κ
)−dvdw

=
∫

R6
a(v − w) : ∇v f (t, v)1 f (t,v)≥κ ⊗ ∇w f (t,w)1 f (t,w)<κ dvdw

=
∫

R6
divv(divw a(v − w))( f (t, v) − κ)+(κ − ( f (t,w) − κ)−)dvdw

≤ κ

∫
R3

( f (t, v) − κ)+dv ,

since one can check, by an elementary computation, that
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divv(divw a(v − w)) = δ0(v − w) ≥ 0 in D ′(R6) .

Eventually, one finds that

d

dt
H+( f (t, ·)|κ) +

∫
R6

f (t,v) f (t,w)
16π |v−w|

∣∣∣Π(v−w)
(

1 f (t,v)>κ∇v f (t,v)
f (t,v) − 1 f (t,w)>κ∇w f (t,w)

f (t,w)

)∣∣∣2dvdw

≤ κ

∫
R3

( f (t, v) − κ)+dv .

The right hand side of this inequality is precisely the depleted nonlinear term which
appears in the definition of the notion of suitable solution of the Landau equation.

4.2 The Desvillettes Theorem

In [5], Desvillettes explained how the nonlocal entropy production integral for the
Landau equation can be replaced with a weighted variant of the Fisher information of
f . This is an absolutely remarkable result, for several reasons, the first one being that
it very clearly explains how Villani’s notion of H-solution to the Landau equation is
related to the usual notion ofweak solution. Another truly fascinating consequence of
this result is that it suggests the existence of some “dictionary” between the Navier–
Stokes and the Landau equations, as far as the regularity of solutions is concerned.
We shall return to this question in the final section of the present paper.

Theorem 2 ([5]) For each f ∈ L1
2(R

3) such that f ≥ 0 a.e. and f ln f ∈ L1(R3),
one has

∫
R3

|∇√
f (v)|2dv

(1+|v|2)3/2 ≤ CD + CD

∫
R6

|Π(v−w)(∇v−∇w)
√

f (v) f (w)|2
|v−w| dvdw ,

with

CD ≡ CD

[∫
R3

(1, v, |v|2, | ln f (v)|) f (v)dv
]

> 0 .

Observe that this is a functional inequality, and not a property special to solutions
of theLandau equation. The constantCD is essentially explicit—at least,Desvillettes’
proof of Theorem 2 provides an explicit estimate of CD .

An interesting consequence of this result is the following observation on the
propagation of moments for H-solutions of the Landau equation.

Theorem 3 ([5]) Let fin ∈ L1
k(R

3)) with k > 2 satisfy fin ≥ 0 a.e. on R3, and
assume that fin| ln fin| ∈ L1(R3). Then, any H-solution f of the Landau equation
such that f

∣∣
t=0 = fin satisfies

f ∈ L∞(0, T ; L1
k(R

3)) for each T > 0 .
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4.3 Sketch of the Proof of Proposition 1

This proof uses exactly the same approximating sequence as in [24]. In other words,
while we do not know whether all H-solutions of the Landau equation are suitable
solutions, our proof of Proposition 1 shows that theH-solutions constructed byVillani
are indeed suitable solutions.

Replace a with its truncated variant: for each integer n ≥ 1, set

an(z) := 1
8π min

(
1

|z| , n
)

Π(z) , satisfying div(div an) ≤ 0 ,

as in the construction of H-solutions in [24].
Next, use the first Desvillettes theorem (Theorem 2) to bound

1
C ′′

D

∫
R3

|∇v
√

f (t,v)|2
(1+|v|)3 1 f (t,v)>κdv

≤
∫

R6

f (t,v) f (t,w)

16π |v−w|
∣∣∣Π(v−w)

(
1 f (t,v)>κ∇v f (t,v)

f (t,v) − 1 f (t,w)>κ∇w f (t,w)

f (t,w)

)∣∣∣2dvdw
+

∫
R3

( f (t,w) − κ)+dw .

Using the Desvillettes propagation theorem (Theorem 3) with p′ = 2
q (recall that

q = 2k
k+3 ∈ (1, 2) since k > 3), one finds that

∥∥1 f (t,v)>κ∇v f (t, v)
1/q

∥∥q

Lq (R3)

≤ ( 2q )q‖ f (t, ·)‖L p
3p/2p′ (R

3)

(∫
R3

|∇v
√

f (t,v)|21 f (t,v)≥κ

(1+|v|2)3/2 dv

)1/p′

.

The remaining part in the existence proof follows essentially [24].

5 The 1st De Giorgi Type Lemma

In [4], De Giorgi provided the missing piece in the resolution of Hilbert’s 19th
problem (on the analyticity of extremals in the calculus of variations). De Giorgi’s
striking result is a Hölder regularity estimate on weak solutions of elliptic equations
in conservative form,with bounded but discontinuous diffusion coefficients. Because
of the discontinuity of the diffusion coefficients, such an elliptic equation cannot be
made close to Laplace’s equation (with a constant coefficient Laplacian) by zooming
in in the vicinity of one point where one seeks to prove that the weak solution is
Hölder continuous. For instance, one can think of a diffusion equation on the plane in
conservative formwith scalar diffusion coefficient with a jump discontinuity across a



Partial Regularity in Time for the Landau Equation (with Coulomb Interaction) 293

line. Zooming in at each point on the line of discontinuity will not eliminate the jump
discontinuity in the diffusion coefficient, and therefore will not make the diffusion
operator close to the Laplacian for the Euclidean metric. This simple observation
explains why the De Giorgi regularity estimate is of a totally different nature than
all the results obtained on PDEs with variable coefficients by the method of “frozen
coefficients”.

One particular feature in the De Giorgi method is a clever combination of a
zooming transformation in the variables involved in the PDE of interest, and of
nested truncations in the set of values of the weak solutions of the PDE of interest
(which is also known as the Stampacchia truncation method). The latter feature is
conveniently formulated in the truncated relative entropy inequality in the definition
(Definition 1) of the notion of suitable solution of the Landau equation: see [8] for an
application of the De Giorgi method to a reaction diffusion system, using a notion of
entropy similar to the truncated relative entropy considered here. That the De Giorgi
method applies to a parabolic system as in [8] is quite remarkable: in general, the De
Giorgi method cannot be used on systems. However, the system considered in [8]
enjoys a special structure including an entropy inequality similar to the Boltzmann
H theorem, and some of the ideas and results presented below are reminiscent of the
analysis in [8]. More recently, the De Giorgi method, originally written for elliptic
equations, and easily extended to the case of parabolic equations, has been used in
the more complicated case of kinetic models (see [7, 12] and the references therein).

Proposition 2 Let f be a (N , q,C ′
E )–suitable solution to the Landau equation for

t ∈ [0, 1] with C ′
E > 0 and q ∈ ( 65 , 2). Then there exists η0 ≡ η0[q,C ′

E ] > 0 such
that ∫ 1

1/8
H+( f (t, ·)| 12 )dt < η0 =⇒ f (t, v) ≤ 2 a.e. on [ 12 , 1] × R3 .

Proof Set

{
t k := 1

2 − 1
4 · 2−k , κk := (1 + (21/q − 1)(1 − 2−k))q ,

f +
k (t, v) := μ(( f (t, v)1/q − κ

1/q
k )+) , with μ(r) := min(r, r2) .

One easily checks that there exists ch > 0 and, for each ι > 0, there exists Cι > 0
such that

chμ((r − 1)+) ≤ h+(r) ≤ Cι(r − 1)ι+ , r ≥ 0 .

Consider the quantity

Ak := ess sup
t k≤t≤1

ch
2

∫
R3

f +
k (t, v)qdv + 1

4C
′
E

∫ 1

t k

(∫
R3

|∇v f
+
k (t, v)|qdv

)2/q

dt .

Observe first that
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f +
k+1 > 0 =⇒ f +

k > μ((21/q − 1) · 2−k−1) ,

so that Ak+1 ≤ Cq,ι4
(k+3)q(1+ι)

∫ 1

t k

∫
R3

f +
k (θ, v)q(1+ι)dvdθ .

At this point, we apply the De Giorgi nonlinearization technique. Using the Hölder
inequality and the Sobolev embedding with ι = 2

3 , one arrives after some manipula-
tions at the inequality

Ak+1 ≤ MΛk Aβ

k , β := 8
3 − 2

q > 1 and Λ := 2 · 4 5q
3

with M ≡ M[q,C ′
E ] > 0. Now, an easy induction argument shows that

A0 < M− 1
β−1 Λ

− 1
(β−1)2 =⇒ Ak → 0 as k → ∞ .

With Fatou’s lemma, the fact that Ak → 0 as k → ∞ implies that f (t, v) ≤ 2 a.e.
on [ 12 , 1] × R3. It remains to prove that A0 can be made arbitrarily small, which is
done by using the truncated entropy.

6 The Improved De Giorgi Lemma

Next one seeks to apply Proposition 2 to a scaled suitable solution of the Landau
equation. While zooming and scaling arguments are of considerable importance
in classical PDE theory, such arguments do not easily apply to kinetic models. In
general, moments of the distribution function such as the mass and kinetic energy
densities, together with the Boltzmann H function are of considerable importance
in the mathematical analysis of such models, and usually the group of scaling trans-
formations leaving a kinetic model equation invariant is not rich enough to preserve
simultaneously the mass, kinetic energy and entropy densities. This is precisely what
happens in the case of the Landau equation. However, what truly matters is to keep
the truncated relative entropy inequality in Definition 1 invariant, and this is a much
weaker demand on the scaling transformations to be used.

Proposition 3 Let f be a (N , q,C ′
E )-suitable solution of the Landau equation on

[0, 1] with q ∈ ( 43 , 2). There exists η1 ≡ η1[q,C ′
E ] > 0 and δ1 ∈ (0, 1) such that

lim
ε→0+

εγ−3
∫ 1

1−εγ

∥∥∥1 f (T,·)>ε−γ ∇V f (T, ·) 1
q

∥∥∥2

Lq (R3)
dT < η1

=⇒ f ∈ L∞((1 − δ1, 1) × R3)

with γ := 5q−6
2q−2 .
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Proof The Landau equation is invariant under the following 2-parameter group of
scaling transformations

fλ,ε(t, v) := λ f (λt, εv) .

Let f be a (N , q,C ′
E )-suitable solution on [0, 1], with λ = εγ : thus

H+( fλ,ε(t, ·)|εγ κ) = εγ−3H+( f (εγ t, ·)|εγ κ)∫ t2

t1

∫
R3

( fλ,ε(t, v)−εγ κ)+dvdt = 1

ε3

∫ εγ t2

εγ t1

∫
R3

( f (T, V )−κ)+dVdT ,

while γ := 5q−6
2q−2 implies that

∫ t2

t1

(∫
R3

|1 fλ,ε≥εγ κ∇v f
1
q

λ,ε(t, v)|qdv
)2/q

dt

= εγ−3
∫ εγ t2

εγ t1

(∫
R3

|1 f ≥κ∇v f
1
q (T, V )|qdV

)2/q

dT .

Set
fn(t, v) := εγ

n f (1 + εγ
n (t − 1), εnv) with εn := 2−n ,

Fn(t, v) := μ(( fn(t, v)
1/q − 1)+) ,

∫
R3

Fn(t, v)dv ≤ εγ−3
n .

Observe that fn is a (Nn, q,C ′
E )-suitable solution of the Landau equation on [0, 1]

with
Nn := {t ≥ 0 s.t. 1 + εγ

n (t − 1) ∈ N } .

One key point (perhaps the most important point) in the argument is that the constant
C ′

E is unchanged by the scaling defined above.
Pick a positive integer N large enough so that

n ≥ N =⇒
∫ 1

0

(∫
R3

|∇v Fn(t, v)|qdv
)2/q

dt

≤ 4εγ−3
n

∫ 1

1−ε
γ
n

(∫
R3

|1 f ≥ε
−γ
n

∇V f (T, V )1/q |qdV
)2/q

dT < 8η1 .

Next we use an iteration argument vaguely reminiscent (although different in
spirit, as we shall explain below) of the one used in the previous section. Using the
Hölder and the Sobolev inequalities as in the proof of Proposition 2, isolating the
term ‖∇v Fn+1‖L2

t L
q
v
= O(η1), shows that the quantity

Xm := ess sup
1
2 <t<1

∫
R3

FN+m(t, v)qdv
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satisfies

Xm+1 < ρ(max(1, Xm)α + max(1, Xm−1)
α) , X0, X1 ≤ M ,

with α := q/3 , ρ := D(q)η
q/2
1 , M :=2(N+3)(3−γ ) .

Choose η1 > 0 small enough so that ρ < 1
4 . Then, an easy induction argument shows

that
max(X2m, X2m+1) ≤max

(
2ρ, (2ρ)

1−αm

1−α Mαm
)

Since q ∈ ( 65 , 2), one has α ∈ (0, 2/3), and in particular 0 < α < 1. Therefore

lim
m→∞max

(
2ρ, (2ρ)

1−αm

1−α Mαm
)

= max
(
2ρ, (2ρ)

1
1−α

)
= 2ρ

since 0 ≤ 2ρ < 1 and 1
1−α

> 1. Hence there exists an integer m0 ≥ 1 such that

Xm0 < 3D(q)η
q
2
1 � 1

reducing η1 > 0 further as needed. By undoing the scaling transformation used here
and returning to the original variables, we easily check that this implies that fN+m0+3

satisfies the assumption in Proposition 2. With this, the conclusion easily follows.

It is interesting to compare the treatments of the sequences Xm and Ak in this
section and the previous one respectively. In the previous section, what matters is
that β > 1. Provided that A0 > 0 is small enough, the exponential increase of the
exponent of A0 in Ak offsets the linear increase of the exponent of Λ in Ak , even if
Λ > 0 is very large. This is typical of the De Giorgi method, and it is indeed one of
the clever ideas in this method to arrive at a nonlinear estimate for a linear problem.

In the present section on the contrary, the exponent α satisfies 0 < α < 1, and
even if Xm satisfies an inequality of the same type as the one satisfied by Ak , the
argument is totally different. Here, what matters is that the constant ρ > 0 can be
made arbitrarily small by an appropriate choice of η1 > 0. In other words, although
Xm and Ak satisfy the same type of recursive inequalities, the arguments for obtaining
the required bounds on these sequences are completely different.

7 Proof of the Partial Regularity Theorem

By Proposition 1, the initial data fin launches a (N , q,C ′
E ) suitable solution with a

constant C ′
E [T, fin, q] for each q ∈ (1, 2).

If τ ∈ S[ f, [1, 2]], apply Proposition 3 to the translated solution

fτ ≡ fτ (t, v) := f (t + τ − 1, v) .
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For each q ∈ ( 43 , 2), there exists ε(τ ) ∈ (0, 1
2 ) such that

∫ τ

τ−ε(τ )γ

(∫
R3

|∇v( f (t, v)
1/q − 1)+|qdv

)2/q

dt ≥ 1
2η1ε(τ )3−γ .

By Vitali’s covering theorem (see for instance Sect. 1.6 in Chap.1 of [21]) , there is
a sequence τ j ∈ S[ f, [1, 2]] such that

S[ f, [1, 2]] ⊂
⋃
j≥1

(τ j − 5ε(τ j )
γ , τ j + 5ε(τ j )

γ )

with (τ j − ε(τ j )
γ , τ j + ε(τ j )

γ ) pairwise disjoint for j ≥ 1 .

Thus

1
2η1

∑
j≥1

ε(τ j )
3−γ ≤

∑
j≥1

∫ τ j

τ j−ε(τ j )γ

(∫
R3

|∇v( f (t, v)
1/q − 1)+|qdv

)2/q

dt

≤
∫ 2

0

(∫
R3

|∇v( f (t, v)
1/q − 1)+|qdv

)2/q

dt < +∞

Since γ = 5q−6
2q−2 , one has

3−γ

γ
= q

5q−6 , and the inequality above implies that

H
q

5q−6 (S[ f, 1, 2]) < ∞ for each q ∈
(
4

3
, 2

)
,

where H s designates the s-dimensional Hausdorff measure. Letting k → ∞ (i.e.
assuming that fin has finite moments of all positive orders) implies that q = 2k

k+3

(by Proposition 1) satisfies q → 2−, and therefore q
5q−6 → ( 12 )

+. The conclusion
immediately follows from the very definition of the Hausdorff dimension.

8 Final Remarks and Open Problems

Afascinating outcomeof theDesvillettes theorem is that it puts the regularity issue for
the Landau equation in the same class as the regularity issue for the three-dimensional
Navier–Stokes equations in terms of Lebesgue exponents, except for the (1 + |v|)−3

weight in the Fisher information term. It is interesting to compare the following
pieces of information coming from Leray’s theory [15] in the case of the Navier–
Stokes equations, and from the Villani and Desvillettes theory of H-solutions [5, 24]
in the case of the Landau equation:
(a) in the case of the Navier–Stokes equations, the velocity field u ≡ u(t, x) ∈ R3

satisfies
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u ∈ L∞(R+; L2(R3; R3)) , ∇xu ∈ L2(R+ × R3; M3(R)) ;

(c) in the case of the Landau equation, the distribution function f ≡ f (t, v) ≥ 0
satisfies

√
f ∈ L∞(R+; L2(R3)) , ∇x

√
f ∈ L2(R+; L2

−3(R
3; R3)) .

Perhaps more analogies between these two problems should be explored more
systematically. For instance, according to Serrin’s theorem [19] , if a Leray solution
u ≡ u(t, x) of the three-dimensional Navier–Stokes equations satisfies

u ∈ L p
loc(R

∗
+; Lq

loc(R
3)) with

2

p
+ 3

q
< 1 ,

then u is smooth. Is there a similar conditional regularity result for the Landau
equation? specifically, if f ≡ f (t, v) is a H-solution of the Landau equation with
finite moments of all orders such that

√
f ∈ L p

loc(R
∗
+; Lq

loc(R
3)) with

2

p
+ 3

q
< 1 ,

is f smooth? The limit case p = ∞ and q = 3 has been considered in [20]. (The
same question could also be investigated for the “isotropic model Landau equation”
introduced in the first section of this paper. The similarities and differences with the
Navier–Stokes equations are perhaps more obvious on this model equation than on
the original Landau equation.)

The analogy between the Landau equation and the Navier–Stokes equations sug-
gests also that a partial regularity theorem in (t, v) “à la” Caffarelli-Kohn-Nirenberg
[2] might be within reach. As a matter of fact, our approach to partial regularity
through the De Giorgi method is inspired from Vasseur’s approach to partial regu-
larity in [23] (see also [8] for a problem closer to the one studied here).

There are however limitations in this analogy, due in particular to the negative
weight in theDesvillettes lower bound for the entropy production in the Landau equa-
tion. For instance, the set of singular times of Leray solutions of the Navier–Stokes
equations in three space dimensions is of H 1/2-measure 0. Likewise, Caffarelli-
Kohn-Nirenberg [2] prove that the set of singular (t, x) for a suitable solution of the
Navier–Stokes equations in three space dimensions is of “parabolic, 1-dimensional
Hausdorff measure” 0. Here, the word “parabolic” refers to the fact that the covering
of the set of singular (t, x) involved in the definition of the measure uses space-time
sets of the form

(t j − ε2, t j + ε2) × B(x j , ε) , j ≥ 1 .

By comparison, in the case of the Landau equation, we do not know whether
H 1/2(S[ f, I ]) is equal to 0, or even finite, for each bounded time interval I and
each suitable solution f .
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Recent Developments on the
Well-Posedness Theory for Vlasov-Type
Equations

Megan Griffin-Pickering and Mikaela Iacobelli

Abstract In these notes we summarise some recent developments on the existence
and uniqueness theory for Vlasov-type equations, both on the torus and on the whole
space.

Keywords Vlasov–Poisson · Plasma physics · Well-posedness

1 An Introduction to Vlasov-Type Equations in Plasma
Physics

In this note, we discuss some recent results concerning a class of PDEs used in the
modelling of plasma. Plasma is a state of matter abundant in the universe. It can be
found in stars, the solar wind and the interstellar medium, and is therefore widely
studied in astrophysics, as well as in many other contexts. For example, a major
terrestrial application is in nuclear fusion research. For this reason, mathematical
modelling of plasma is of interest, with different types of plasma models being
suitable for different contexts.

A plasma consists of an ionised gas. It forms when an electrically neutral gas is
subjected to high temperatures or a strong electromagnetic field, which causes the
gas particles to dissociate into charged particles. These charged particles then interact
through electromagnetic forces. The relatively long range nature of these interactions
results in a collective behaviour distinct from that expected from a neutral gas.

M. Griffin-Pickering
Department of Mathematical Sciences, Lower Mountjoy, Durham University, Stockton Road,
Durham DH1 3LE, UK
e-mail: megan.k.griffin-pickering@durham.ac.uk

M. Iacobelli (B)
ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
e-mail: mikaela.iacobelli@math.ethz.ch

© Springer Nature Switzerland AG 2021
C. Bernardin et al. (eds.), From Particle Systems to Partial Differential Equations,
Springer Proceedings in Mathematics & Statistics 352,
https://doi.org/10.1007/978-3-030-69784-6_14

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69784-6_14&domain=pdf
mailto:megan.k.griffin-pickering@durham.ac.uk
mailto:mikaela.iacobelli@math.ethz.ch
https://doi.org/10.1007/978-3-030-69784-6_14


302 M. Griffin-Pickering and M. Iacobelli

In this article, we will discuss the well-posedness of a certain class of PDE mod-
els for plasma. We will consider equations of Vlasov type, which describe particle
systems with mean field interactions.

1.1 The Vlasov–Poisson System: The Electrons’ View-Point

The ionisation process in the formation of a plasma produces two types of charged
particle: positively charged ions and negatively charged electrons. It also generally
contains neutral species, since not all of the particles of the original neutral gas will
dissociate. However, typically the interactions with the neutral species are weak in
comparison to the interactions of the charged species. For the purposes of these
notes, we will neglect interactions with the neutral particles and concentrate on the
modelling of the charged particles.

In fact, it is usual to make an assumption which decouples the dynamics of the
two species. It is possible to do this because the mass of an electron is much smaller
than the mass of an ion. The result is a separation between the timescales on which
each species evolves: in short, the ions typically move much more slowly than the
electrons. When modelling the electrons, it is thus common to assume that the ions
are stationary over the time interval of observation.

The Vlasov–Poisson system is a well-known kinetic equation describing this
situation. This equation was proposed by Jeans [20] as a model for galaxies. Its use
in the plasma context dates back to the work of Vlasov [33]. The most commonly
known version of the system models the electrons in the plasma. The electrons are
described by a density function f = f (t, x, v), which is the unknown in the following
system of equations:

(V P) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + qe
me

E · ∇v f = 0,

∇x × E = 0,

ε0 divx E = Ri + qeρ f ,

ρ f (t, x) :=
∫

Rd

f (t, x, v) dv,

f |t=0 = f0 ≥ 0.

(1)

Here qe is the charge on each electron, me is the mass of an electron and ε0 is the
electric permittivity. Ri : Rd → R+ is the charge density contributed by the ions,
which is independent of time since they are assumed to be stationary. The electrons
experience a force qeE , where E is the electric field induced by the plasma itself.
This is found from the Gauss law

∇x × E = 0, ε0 divx E = Ri + qeρ f ,

which arises as an electrostatic approximation of the full Maxwell equations.
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The system (1) expresses the fact that each electron in the plasma feels the influ-
ence of the other particles in the plasma in an averaged sense, through the electric
field E induced collectively by the whole plasma. This is a long-range interaction
between particles. In particular, this equation does not account for collisions between
particles of any species.

The Vlasov–Poisson system as written in Eq. (1) does not yet include a boundary
condition. In this note we focus on two cases: either the periodic case where the
spatial variable x lies in the d-dimensional flat torus Td and the velocity variable v
lies in the whole Euclidean space Rd , or the whole space case where both x and v
range over Rd . We will use the notation X to denote the spatial domain, either Td

or Rd as appropriate, so that throughout this note we have (x, v) ∈ X × R
d .

It is common to restrict in particular to the case where the background ion density
Ri is spatially uniform. In the case of the torus,X = T

d , this results in the system

(V P) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + qe
me

E · ∇v f = 0,

∇x × E = 0,

ε0 divx E = qe

(

ρ f −
∫

Td×Rd

f dx dv

)

,

f |t=0 = f0 ≥ 0.

(2)

The ion charge density is chosen to be

Ri ≡ −qe

∫

Td×Rd

f dx dv

so that the system is globally neutral. This is required from the point of view of
the physics under consideration due to the conservation of charge, since the plasma
forms from an electrically neutral gas. Note that any solution f of (2) satisfies a
transport equation with a divergence free vector field, which implies that the mass
of f is conserved by the evolution. Thus in fact

Ri ≡ −qe

∫

Td×Rd

f0 dx dv.

In mathematical treatments, it is common to see (2) written in the rescaled form

(V P) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇v f = 0,

∇x × E = 0,

divx E = ρ f − 1,

f |t=0 = f0 ≥ 0,
∫

Td×Rd

f0 dx dv = 1.

(3)

In the whole space case X = R
d , one often considers a vanishing background, in

order to have a system with finite mass. This results in the system
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇v f = 0,

∇x × E = 0,

divx E = ρ f ,

f |t=0 = f0 ≥ 0,
∫

Rd×Rd

f0 dx dv = 1.

(4)

1.2 The Vlasov–Poisson System with Massless Electrons: The
Ions’ View-Point

The previous section presented the Vlasov–Poisson system as a model for the elec-
trons in a dilute, unmagnetised, collisionless plasma.A variant of theVlasov–Poisson
system may be used to model the ions in the plasma instead.

To derive an appropriate model, once again we make use of the large disparity
between the masses of the two species. The resulting separation of timescales allows
an approximation in which the two species are modelled separately. From the point
of view of the ions, the electrons have a very small mass and so are very fast moving.
Since the electrons are not stationary, a model of the form (3) is not appropriate.

Instead observe that, since the electrons move quickly relative to the ions, the
frequency of electron-electron collisions is high in comparison to ion-ion or ion-
electron collisions. Electron-electron collisions are expected to be relevant on the
typical timescale of evolution of the ions, evenwhile the frequencies of other kinds of
collisions remain negligible. The expected effect of the electron-electron collisions is
to drive the electron distribution towards its equilibrium configuration. In ion models
it is therefore common in physics literature to assume that the electrons are close to
thermal equilibrium.

In the limit of massless electrons, the ratio between the masses of the electrons
and ions,me/mi , tends to zero. Hereme is the mass of an electron andmi is the mass
of an ion. In the limiting regime, it is assumed that the electrons instantaneously
assume the equilibrium distribution. This approximation is often made in the physics
literature, motivated by the fact that me/mi is close to zero in applications.

1.2.1 The Maxwell–Boltzmann Law for Electrons

The equilibrium distribution can be identified by studying the equation for the evo-
lution of electrons. Let the ion density ρ[ fi ] be fixed, and assume that all ions carry
the same charge qi . We have discussed that a possible model for the evolution of
the electron density is the Vlasov–Poisson system (1). However, the Vlasov–Poisson
system is a collisionless model. As discussed above, in the long time regime we
consider we expect the effect of electron-electron collisions to be significant.

Collisions in a plasma are described by the Landau-Coulomb operator QL [21,
Chap. 4], which is an integral operator defined as follows: for a given function g =
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g(v) : Rd → R,

QL(g) := divv

∫

Rd

a(v − v∗) : [g(v∗)∇vg(v) − g(v)∇vg(v∗)] dv∗.

The tensor a is defined by

a(z) = |z|2I − z ⊗ z

|z|3 .

We add this term to the Vlasov–Poisson system to model a plasma with collisions.
This results in the following model for the electron density fe:

⎧
⎪⎪⎨

⎪⎪⎩

∂t fe + v · ∇x fe + qe
me

E · ∇v fe = Ce

m2
e

QL( fe),

∇x × E = 0, ε0 divx E = qiρ[ fi ] + qeρ[ fe].
(5)

Here Ce is a constant depending on physical quantities such as the electron charge
qe and number density ne, but not on the electron mass me. For the derivation of the
scaling Ce/m2

e in front of the Landau-Coulomb operator, see Bellan [4, Chap. 13,
Eq. (13.46)].

Consider the rescaling

Fe(t, x, v) = m
− d

2
e fe

(

t, x,
v√
me

)

.

Notice that this scaling preserves the macroscopic density: ρ[Fe] = ρ[ fe]. Then Fe

satisfies ⎧
⎨

⎩

√
me∂t Fe + v · ∇x Fe + qeE · ∇v Fe = CeQL(Fe),

∇ × E = 0, ε0∇ · E = qiρ[ fi ] + qeρ[Fe].
(6)

We assume that Fe converges to a stationary distribution f̄e = f̄e(x, v) as me tends
to zero, and focus on formally identifying f̄e.

To identify the possible forms of f̄e, we consider the entropy functional

H [ f ] :=
∫

X ×Rd

f log f dx dv.

For a solution Fe of Eq. (6),

d

dt
H [Fe] = m−1/2

e

∫

X ×Rd

(1 + log Fe)
[−divx,v ((v, E)Fe) + QL(Fe)

]
dx dv.

Integrating by parts formally, the transport term vanishes:



306 M. Griffin-Pickering and M. Iacobelli

−
∫

X ×Rd
(1 + log Fe)divx,v ((v, E)Fe) dx dv =

∫

X ×Rd
(v, E) · ∇x,v Fe dx dv

=
∫

X ×Rd
divx,v ((v, E)Fe) dx dv = 0.

Thus
d

dt
H [Fe] = m−1/2

e

∫

X ×Rd

(1 + log Fe)QL(Fe) dx dv.

By substituting the definition of QL , one can calculate formally (see [10]) that

d

dt
H [Fe] = − C√

me

∫

X ×Rd

1

|v − v∗| ·

·
∣
∣
∣P(v−v∗)⊥

[
∇v

√
Fe(x, v)Fe(x, v∗) − ∇v∗

√
Fe(x, v)Fe(x, v∗)

]∣
∣
∣
2
dv∗ dv dx, (7)

where P(v−v∗)⊥ denotes the operator giving the orthogonal projection onto the
hyperplane perpendicular to v − v∗. For a stationary solution f̄e, we must have
d
dt H [ f̄e] = 0, that is, the functional on the right hand side of (7) must vanish. If
f̄e ∈ L1, it follows (see for example [32, Lemma 3]) that f̄e is a local Maxwellian of
the form

f̄e(x, v) = ρe(x) (πβe(x))
d/2 exp

[−βe(x)|v − ue(x)|2
]
. (8)

The electron density ρe, mean velocity ue and inverse temperature βe can then be
studied using an argument similar to the one given in the proof of [2, Theorem 1.1].
Substituting the form (8) into Eq. (5), we obtain the following identity for all x such
that ρe(x) �= 0 and all v ∈ R

d :

− ∇xβe · (v − ue)|v − ue|2 − ue · ∇xβe|v − ue|2 + βe(v − ue)
�∇xue(v − ue)

+ (v − ue) · [∇x log (ρeβ
d/2
e ) − qeβeE + ue · ∇xue

] + ue · ∇x log (ρeβ
d/2
e ) = 0.

For each fixed x , the left hand side is a polynomial in v − ue(x), whose coefficients
must all be equal to zero. For example, by looking at the cubic term we see that
∇xβe = 0 and thus βe must be a constant independent of x .

The quadratic term then gives

v�∇xuev = 0 for all v ∈ R
d ,

which implies that ∇xue is skew-symmetric. On a spatial domain for which a Korn
inequality holds, this restricts the class of ue that can occur. For example, in the case
of the torusX = T

d , the fact that the symmetric part of ∇xue vanishes implies that
ue is constant [11, Proposition 13].

Finally, from the linear term we obtain that
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∇x log (ρeβ
d/2
e ) − qeβeE = 0.

Since ∇x × E = 0, E is a gradient—that is, it can be written as E = −∇U for some
function U . Then

∇x log (ρeβ
d/2
e ) = −qeβe∇xU.

From this we deduce that ρe should be of the form

ρe(x) = A exp (−qeβeU ) ,

for some constant A > 0. This is known as a Maxwell–Boltzmann law.
In the whole space case X = R

d , we include an additional spatial confinement
of the electrons, by adding an additional potential Ψ to the electron dynamics. The
equivalent of Eq. (6) is then

{√
me∂t Fe + v · ∇x Fe + (qeE − ∇Ψ ) · ∇v Fe = CeQL(Fe),

∇ × E = 0, ε0∇ · E = qiρ[ fi ] + qeρ[Fe].

Repeating the previous argument, we can derive the following limiting distribution
in the regime me → 0:

ρe = Ae−βe(qeU+Ψ ) = Age−βeqeU ,

where we let g = e−βeΨ . We assume that the confining potentialΨ grows sufficiently
quickly at infinity so that g ∈ L1 ∩ L∞(Rd × R

d).
Bardos, Golse, Nguyen and Sentis [2] studied the problem of rigorously identi-

fying the Maxwell–Boltzmann law as the distribution of electrons in the massless
limit. They consider coupled systems of the form

⎧
⎪⎨

⎪⎩

∂t fi + v · ∇x fi + qi
mi
E · ∇v fi = 0,

∂t fe + v · ∇x fe + qe
me

E · ∇v fe = C(me)Q( fe),

∇x × E = 0, ε0 divx E = qiρ[ fi ] + qeρ[ fe].
(9)

In the above, Q denotes a collision operator such as a BGK or Boltzmann operator.
Under suitable hypotheses on the spatial domain and the collision rate C(me), and
assuming the existence of sufficiently regular solutions of the coupled system (9),
they derive that, in the limit as me/mi tends to zero, the electrons indeed take on
a Maxwell–Boltzmann distribution. Moreover, solutions of the system (9) converge
to a solution of a system of a similar form to Eq. (12) below, but where the electron
temperature depends on time and is chosen to respect the conservation of energy.
Other works on this topic include, for example, the work of Bouchut and Dolbeault
[7] on the long time limit for the Vlasov–Poisson–Fokker–Planck system for one
species—the massless electrons limit can be related to a long time limit since (6) can
also be seen as a time rescaling. Herda [17] also considered the massless electron
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limit in the case with an external magnetic field. In this case the limiting system is a
fluid model for the electrons, coupled with a kinetic model for the ions.

1.2.2 The Vlasov–Poisson System in the Limit of Massless Electrons

From Eq. (5), we see that the electrostatic potentialU induced by a distribution ρ[ fi ]
of ions with a background of thermalised electrons should satisfy the following
semilinear elliptic PDE:

− ε0ΔU = qiρ[ fi ] + Aqe g exp

(

− qeU

kBTe

)

, (10)

where in the torus case X = T
d we let g ≡ 1. The normalising constant A should

be chosen so that the system is globally neutral, that is, the total charge is zero:

∫

X
qiρ[ fi ] + Aqe exp

(

− qeU

kBTe

)

dx = 0. (11)

Indeed, on the torus X = T
d , the Poisson equation

ΔU = h

can only be solved if h has total integral zero. Thus if (10) has a solution, global
neutrality must hold automatically. Adjusting the choice of A corresponds to adding
a constant to U . Thus without loss of generality we choose A = 1.

Then, the nonlinear equation (10) replaces the standard Poisson equation for the
electrostatic potential in the Vlasov–Poisson system (1). After a suitable normalisa-
tion of physical constants, this leads to the following system for the ions:

(V PME) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇v f = 0,

E = −∇xU,

ΔU = eU − ρ f ,

f |t=0 = f0 ≥ 0,
∫

Td×Rd

f0 dx dv = 1.

(12)

This is known as the Vlasov–Poisson system with massless electrons, or VPME
system.

In the whole space caseX = R
d , we consider two versions of the VPME system,

depending on the choice of the constant A. In one case, we let A = 1. With a suitable
choice of dimensionless variables, this results in the following system:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇v f = 0,

E = −∇xU,

ΔU = geU − ρ f ,

f |t=0 = f0 ≥ 0,
∫

Rd×Rd

f0 dx dv = 1.

(13)

This system is structurally similar to the torus case (12) considered above. Note
however that in this model the system is not necessarily globally neutral. In order to
enforce global neutrality, we can instead choose A to be a normalising constant

A = 1
∫

Rd geU dx
.

Thus we obtain the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + E · ∇v f = 0,

E = −∇xU,

ΔU = geU∫

Rd geU dx − ρ f ,

f |t=0 = f0 ≥ 0,
∫

Rd×Rd

f0 dx dv = 1.

(14)

The VPME system has been used in the physics literature in, for instance, numer-
ical studies of the formation of ion-acoustic shocks [24, 29] and the development of
phase-space vortices behind such shocks [5], as well as in studies of the expansion
of plasma into vacuum [25]. A physically oriented introduction to the model (12)
may be found in [14].

In [13], we consider the problem of proving well-posedness for the VPME system
(12) under reasonable conditions on the initial datum f0. The well-posedness of the
systems (13) and (14) is considered in a forthcoming paper.

2 Well-Posedness for Vlasov Equations with Smooth
Interactions

The Vlasov–Poisson system is an example of a more general class of nonlinear
scalar transport equations known as Vlasov equations. A Vlasov equation takes the
following form: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + F[ f ] · ∇v f = 0,

F[ f ](t, x) = −∇xW ∗ ρ f ,

ρ f (t, x) =
∫

Rd

f (t, x, v) dv,

f (0, x, v) = f0(x, v) ≥ 0.

(15)
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The system (15) is a mean field model for a system of interacting particles with
binary interactions described by a pair potentialW : X → R. The electron Vlasov–
Poisson systems (3), (4) can be seen to be of the form (15) by choosing W to be
the Green’s function of the Laplacian on X . By this we mean that G is a function
satisfying the relation

− ΔG = δ0 − 1 for X = T
d , or − ΔG = δ0 for X = R

d . (16)

The function U = G ∗ (ρ f − 1) is a solution of the Poisson equation, respectively

−ΔU = ρ f − 1 on T
d or − ΔU = ρ f on R

d .

Thus the Vlasov–Poisson systems (3), (4) are of the form (15).
The available well-posedness theory for the system (15) depends on the choice

of the interaction potential W , and in particular on the regularity of the force −∇W .
For example, if∇W is a Lipschitz function, then the system (15) is well-posed in the
class C

([0,∞);M+(X × R
d)

)
—the space of continuous paths taking values in

the spaceM+(X × R
d) of finite measures onX × R

d equipped with the topology
of weak convergence of measures. This case was considered for example by Braun
and Hepp [8] and by Dobrushin [12].

A path f ∈ C
([0,∞);M+(X × R

d)
)
is a weak solution of the Vlasov equation

(15) if, for all test functions φ ∈ C1
c

([0,∞) × X × R
d
)
,

∫ ∞

0

∫

X ×Rd

[
∂tφ + v · ∇xφ − (∇xW ∗x ρ f

) · ∇vφ
]
f (t, dx, dv) dt

+
∫

X ×Rd

φ(0, x, v) f0(dx, dv) = 0. (17)

Under the assumption that∇W is a Lipschitz function, it is known thatweak solutions
of the Vlasov equation (15) exist [8, 12] and are unique [12].

Theorem 1 Assume that ∇W : X → R
d is a Lipschitz function. Let f0 be a finite

non-negative measure with finite first moment:

∫

Td×Rd

(1 + |x | + |v|) f0(dx dv) < +∞.

Then there exists a unique weak solution f ∈ C
([0,+∞);M+(X × R

d)
)
of the

Vlasov equation (15).
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3 Well-Posedness for the Vlasov–Poisson System

In the case of the Vlasov–Poisson system for electrons (3), the interaction potential
W is chosen to be the function G defined by the relation (16). The resulting force
K = −∇G is known as the Coulomb kernel. However, K is not a Lipschitz function
and so the Vlasov–Poisson system does not satisfy the assumptions of Theorem 1.
For example, in the whole space case,X = R

d , G takes the form

GRd (x) =
{

− 1
2π log |x |, d = 2,
1

4π |x | , d = 3,
(18)

The Coulomb kernel KRd = −∇GRd takes the form

K (x) =
{

x
2π |x |2 , d = 2,

x
4π |x |3 , d = 3,

(19)

and thus has a singluarity at x = 0.
On the torusX = T

d , it can be shown that GTd is smooth away from the origin:
GTd ∈ C∞(Td \ {0}). Near the singularity it is of the form

GTd = GRd + G1,

where G1 is a C∞ function. Thus KTd possesses a singularity similar to that of KRd .
Consequently, Theorem 1 does not apply to the Vlasov–Poisson system. It is not

known whether the Vlasov–Poisson system is well-posed in the class of measure
solutions. However, global well-posedness has been shown for solution classes with
greater regularity.

Arsen’ev [1] introduced a notion of weak solution for the Vlasov–Poisson system
(3) in dimension d = 3 and proved the existence of such solutions, globally in time,
for initial data f0 belonging to the space L1 ∩ L∞(R6). The boundedness condition
f0 ∈ L∞(R6) was later relaxed to f0 ∈ L p(R6), for p sufficiently large, by Horst
and Hunze [19].

In the case of classical C1 solutions, in the two-dimensional case d = 2 Ukai and
Okabe [31] proved global existence for initial data f0 ∈ C1(R4) decaying sufficiently
fast at infinity. This result was extended under similar assumptions to the case d = 3
by Pfaffelmoser [27]. Schaeffer gave a streamlined proof of the same result in [30],
focusing however on the case of compactly supported initial data for clarity. Horst
[18] extended these results to include non-compactly supported initial data with
sufficiently fast decay at infinity, obtaining improved bounds on the time growth of
the velocity of the particles. The methods of proof for these results are based on an
analysis of the characteristic trajectories associated to system (3). This approach was
adapted to the torus by Batt and Rein [3], who proved the existence of global-in-time
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classical solutions for (3) posed on T3 × R
3, for initial data f0 ∈ C1(T3 × R

3) with
sufficiently fast decay at infinity.

An alternative approach to the construction of global-in-time solutions in dimen-
sion d = 3 was provided by Lions and Perthame [22]. Their method is based on
proving the propagation of moments. They showed global existence of solutions,
provided that the initial datum f0 ∈ L1 ∩ L∞(Rd × R

d) has moments in velocity of
sufficiently high order. However, their strategy is for the whole space case x ∈ R

d ,
and differs from the strategies currently available for the torus.

Pallard [26] then extended the range of moments that could be propagated in
the whole space case and showed propagation of moments on the torus T3, using a
method based on an analysis of trajectories (more similar to [3, 27, 30]). Chen and
Chen [9] adapted these techniques to further extend the range of moments that could
be propagated for the torus case.

Lions and Perthame [22] proved a uniqueness criterion for their solutions under
the additional technical condition that, for all R, T > 0,

sup
{
|∇ f0(y + vt,w)| : |y − x | ≤ R, |w − v| ≤ R} ∈ L∞ (

(0, T ) × R
3
x ; L1 ∩ L2(R3

v)
)}

.

Robert [28] then proved uniqueness for solutions that are compactly supported in
phase space for all time. Subsequently, Loeper [23] proved a uniqueness result which
requires only boundedness of the mass density ρ f , and therefore includes the com-
pactly supported case. Loeper’s result is based on proving a stability estimate on
solutions of the VPME system (12) with bounded density, with respect to their initial
data f0—in particular, a quantitative estimate in terms of the second order Wasser-
stein distanceW2. In a similar vein, in the one dimensional case Hauray [16] proved a
weak-strong uniqueness principle, showing that if a bounded density solution exists,
then this solution is unique amongmeasure-valued solutions. This result is also based
on a Wasserstein stability result.

4 Well-Posedness Theory for the Vlasov–Poisson System
with Massless Electrons

TheVPMEsystem for ions is in general lesswell understood than theVlasov–Poisson
system for electrons, due to the additional nonlinearity in the elliptic equation for
the electrostatic potential. In the case of the well-posedness theory, weak solutions
for the VPME system were constructed in dimension d = 3 in the whole space
by Bouchut [6], globally in time. In one dimension, global-in-time weak solutions
were constructed by Han-Kwan and Iacobelli [15] for measure data with a first
moment.Aweak-strong uniqueness principlewas also proved for solutions satisfying
ρ f ∈ L∞

loc ([0,+∞); L∞(T)): namely, if a solution with this regularity exists, then
it is unique among measure solutions. However, a well-posedness theory for strong
solutions in higher dimensions remained open.
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In the article [13], global well-posedness is proved for the VPME system on
the torus in dimension d = 2 and d = 3. The main result is stated in the following
theorem.

Theorem 2 (Global well-posedness: Td ) Let d = 2, 3. Let the initial datum f0 ∈
L1 ∩ L∞(Td × R

d) be a probability density satisfying

f0(x, v) ≤ C0

1 + |v|k0 for some k0 > d,

∫

Td×Rd

|v|m0 f0(x, v) dx dv < +∞ for some m0 > d(d − 1).

Then there exists a global-in-time weak solution f ∈ C([0,∞);P(Td × R
d)) of

the VPME system (12) with initial data f0. This is the unique solution of (12) with
initial datum f0 such that

ρ f ∈ L∞
loc([0,+∞); L∞(Td)).

In addition, if f0 has compact support, then at each time t, f (t) has compact support.

This theorem asks for no regularity on f0, only that f0 ∈ L1 ∩ L∞(Td × R
d).

The resulting solutions are therefore not C1 classical solutions in general. It is
thus useful to introduce a concept of strong solutions: the class of bounded dis-
tributional solutions f of (12) whose density ρ f is uniformly bounded: ρ f ∈
L∞
loc([0,+∞); L∞(X )). Strong solutions have several convenient properties: in par-

ticular, their characteristic ODE system is well-posed and the resulting flow can be
used to represent the solutions. A consequence of this is that if the initial datum f0
is additionally assumed to be C1, then the resulting strong solution is in fact a C1

classical solution. Therefore we may also deduce global well-posedness for classical
solutions of the VPME system.

In a forthcoming paper, we also consider the problem posed on the whole space;
we are able to prove the following global well-posedness result for the whole space
systems (13)and (14).

Theorem 3 (Global well-posedness: R3) Let f0 ∈ L1 ∩ L∞(R3 × R
3) be a prob-

ability density satisfy

f0(x, v) ≤ C

(1 + |v|)r for some r > 3,

∫

R3×R3
|v|m0 f0(x, v) dx dv < +∞ for some m0 > 6.

Assume that g ∈ L1 ∩ L∞(R3), with g ≥ 0 satisfying
∫

R3 g = 1. Then there exists a
unique solution f ∈ L∞([0, T ]; L1 ∩ L∞(R3 × R

3)) of (13) (resp. (14)) with initial
datum f0 such that ρ f ∈ L∞([0, T ]; L∞(R3)).
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Remark 1 In particular, these results provide well-posedness for the VPME system
under the same conditions as were previously known for the Vlasov–Poisson system.

4.1 Strategy for Td

4.1.1 Analysis of the Electric Field

The first step of the proof is to obtain estimates on the regularity of the electric field
E . We begin with a decomposition of the electric field, as was used in [15] for the
one dimensional setting. The electric field E can be seen as a sum of the electric field
appearing in the electron model (3), plus a more regular nonlinear term. For this, we
use the notation E = Ē + Ê , where

Ē = −∇Ū , Ê = −∇Û ,

and Ū and Û solve respectively

ΔŪ = 1 − ρ f , ΔÛ = eŪ+Û − 1. (20)

We expect Ê to be more regular than Ē . The key point is to prove this rigorously,
taking into account the nonlinearity in the equation satisfied by Û . In particular we
need to quantify the gain of regularity carefully.

To analyse Ê , we use techniques from the calculus of variations which allow us
to deal with the nonlinearity in the equation for Û . We then wish to quantify the
gain of regularity in terms of its dependence on ρ f . The key lemma is the following
regularity estimate.

Lemma 1 Let d = 2, 3. Assume that ρ f ∈ L
d+2
d . There exist unique Ū , Û ∈ W 1,2

(Td) such that
ΔŪ = 1 − ρ f , ΔÛ = eŪ+Û − 1.

Moreover, there exists α > 0 such that Û ∈ C2,α(Td), with the quantitative estimate

‖Û‖C2,α(Td ) ≤ Cα,d exp exp
(
Cα,d

(
1 + ‖ρ f ‖L

d+2
d (Td )

))
, α ∈

{
(0, 1) if d = 2

(0, 1
5 ] if d = 3.

The choice of (d + 2)/d as the integrability exponent is relevant because this is
a quantity that we expect to be bounded uniformly in time, as a consequence of the
conservation of the following energy functional associated to the VPME system:

E [ f ] := 1

2

∫

Td×Rd

|v|2 f dx dv + 1

2

∫

Td

|∇U |2 dx +
∫

Td

UeU dx . (21)
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Lemma 2 Let f ≥ 0 satisfy, for some constant C0 > 0,

‖ f ‖L∞(Td×Rd ) ≤ C0, E [ f ] ≤ C0,

where E is the energy functional defined in (21). Then the mass density

ρ f (x) :=
∫

Rd

f (x, v) dv (22)

lies in L(d+2)/d(Td) with
‖ρ f ‖L

d+2
d (Td )

≤ C1. (23)

for some constant C1 > 0 depending on C0 and d only.

Using these estimates on the electric field, the proof of well-posedness is carried
out in twomain steps. First we prove the uniqueness of solutions for VPME under the
condition that the mass density ρ f is bounded in L∞(Td). Then, we show the global
existence of solutions with bounded density, given the assumptions of Theorem 2.

4.1.2 Uniqueness

The first part of the proof of well-posedness is to prove the uniqueness of strong
solutions, i.e. uniqueness under the condition that

ρ f ∈ L∞
loc

([0,+∞); L∞(Td)
)
.

For the electron Vlasov–Poisson system (3), Loeper [23] proved uniqueness of solu-
tions under this condition. In the VPME setting, we make use of Loeper’s strategy
to handle the electric field Ē . However, to deal with Ê further nontrivial estimates
are necessary. We prove the following estimate, which quantifies the stability of Ê
with respect to the charge density ρ f .

Lemma 3 For each i = 1, 2, let Ūi and Ûi be respectively solutions of

ΔŪi = hi − 1, ΔÛi = eŪi+Ûi − 1.

where hi ∈ L∞ ∩ L(d+2)/d(Td). Then there exists a constant Cd > 0 such that

‖∇Û1 − ∇Û2‖2L2(Td )

≤ exp exp

[

Cd

(

1 + max
i

‖hi‖L(d+2)/d (Td )

)]

max
i

‖hi‖L∞(Td ) W
2
2 (h1, h2). (24)

Using these estimates, we are able to prove the following stability estimate for
solutions of the VPME system (12) relative to the initial datum, quantified in the
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second order Wasserstein distance W2. Uniqueness of strong solutions then follows
immediately.

Proposition 1 (Stability for solutions with bounded density) For i = 1, 2, let fi be
solutions of (12) satisfying for some constant M and all t ∈ [0, T ],

ρ[ fi (t)] ≤ M. (25)

Then there exists a constant C, depending on M, such that, for all t ∈ [0, T ],

W2 ( f1(t), f2(t))
2 ≤

⎧
⎪⎨

⎪⎩

16de exp

[

log W2( f1(0), f2(0))
2

16de e−Ct

]

if t ≤ t0

max
{
W2 ( f1(0), f2(0))

2 , d
}
eC(1+log 16)(t−t0) if t > t0.

where the time t0 is defined by

t0 = t0
(
W2 ( f1(0), f2(0))

)

= inf

{

t ≥ 0 : 16de exp
[

log
W2 ( f1(0), f2(0))

2

16de
e−Ct

]

> d

}

.

4.1.3 Existence of Solutions

The proof of existence is based on controlling the moments of solutions. We first
show an a priori estimate, proving that the VPME propagates velocity moments
of sufficiently high order. This approach was previously used to prove global exis-
tence for the electron Vlasov–Poisson system, going back to the work of Lions and
Perthame [22] for the problem posed on R

3. Pallard [26] proved propagation of
moments on the torus and extended the range of moments that could be propagated
in the whole space, while Chen and Chen [9] further extended the range of moments
available for the torus case. By extending these methods to the VPME case, we
show global-in-time existence of solutions for the VPME system, for any initial
datum f0 ∈ L1 ∩ L∞(Td × R

d) that has a finite velocity moment of order m0 > d.
Note that Theorem 2 requires moments of higher order than this, for the reason that
stronger assumptions are required to show uniqueness.

The proposition below shows the propagation of moments for classical solutions
of the VPME system. In the proof, the estimates from Lemma 1 on the nonlinear
part of the potential Û are crucial.

Proposition 2 Let the dimension d = 2 or d = 3. Let 0 ≤ f0 ∈ L1 ∩ L∞(Td × R
d)

have a finite energy and finite velocity moment of order m0 > d:

E [ f ] ≤ C0 < +∞,

∫

Td×Rd

|v|m0 f0(x, v) dx dv = M0 < +∞.
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Let f be a C1 compactly supported solution of the VPME system (12). Then, for all
T > 0,

sup
[0,T ]

∫

Td×Rd

|v|m0 f (t, x, v) dx dv ≤ C(T,C0, M0,m0, ‖ f0‖∞).

Using this estimate, we then prove the global existence of solutions for the VPME
system under these assumptions.We first consider a regularized version of the VPME
system:

⎧
⎪⎪⎨

⎪⎪⎩

∂t f + v · ∇x f − χr ∗x ∇xU · ∇v f = 0,

ΔU = eU − χr ∗x ρ f ,

f |t=0 = f0,
∫

Td×Rd

f0 dx dv = 1.
(26)

Here χr is a mollifier defined for r > 0 by

χr (x) := r−dχ
( x

r

)
, χ ∈ C∞

c (Td; [0,+∞)),

where χ is a fixed smooth, radially symmetric function with compact support.
The regularized system (26) is globally well-posed. This can be proved using

standard methods, for example by adapting the approach of Dobrushin [12]. The
proof of Proposition 2 then provides moment estimates for the solutions of (26) that
are uniform in the regularization parameter.We can then extract a limit point and show
that it is a global solution of the VPME system. With this method of construction,
no regularity is required on the initial datum f0. Moreover, the conservation of the
energy E [ f ] defined in (21) also follows—in comparison, the energy of the weak
solutions constructed byBouchut [6] is non-increasing but not necessarily conserved.
We obtain the following existence result.

Theorem 4 Let d = 2, 3. Consider an initial datum f0 ∈ L1 ∩ L∞(Td × R
d) sat-

isfying ∫

Td×Rd

|v|m0 f0(x, v) dx dv < +∞, for some m0 > d.

Then there exists a global-in-time weak solution f ∈ C([0,∞);P(Td × R
d)) of

the VPME system (12) with initial data f0, such that for all T > 0,

sup
t∈[0,T ]

∫

Td×Rd

|v|m0 f (t, x, v) dx dv < +∞.

The proof of Theorem 2 is then completed by showing that, under the speci-
fied decay and moment assumption on f0, the solution provided by Theorem 4 has
bounded density. Proposition 1 then applies, proving the uniqueness of this solution.
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4.2 Strategy for R3

In the whole space case, the overall strategy is similar to the torus case: we first
analyse the electrostatic potential using the decomposition U = Ū + Û , where

−ΔŪ = ρ f , lim|x |→0
Ū (x) = 0,

and the remainder Û satisfies either

ΔÛ = geŪ+Û or ΔÛ = geŪ+Û

∫

R3 geŪ+Û dx
.

Once again, by using techniques from the calculus of variations we can show that the
nonlinear remainder Û is more regular than Ū . However, one first difference with
the torus case is that we have to account for the behaviour of the potential at infinity.

A more significant difference occurs for the fixed charge model. Due to the nor-
malisation of the electron charge, the nonlinearity takes a different form compared
to the torus case. To deal with this, we use a different functional in the calculus of
variations approach to the analysis of Û .

For the uniqueness of strong solutions, once again we prove a stability estimate
inW2 using stability estimates for the electric field with respect to the charge density
ρ f . For Ē we use estimates devised by Loeper [23]. For Ê we again need a version
of Lemma 3, modified in the fixed charge case to handle the different nonlinearity.

To prove existence, we again use the propagation of moments. However the proof
of the propagation of moments in the whole space is very different with respect to
the propagation of moments on the torus, and we rely on the approach of Lions and
Perthame [22], making use of the regularity estimates on Û .
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Charge-Current Correlation Identities
for Stochastic Interacting Particle
Systems

Dragi Karevski and Gunter M. Schütz

Abstract We adapt a recent proof of generic quantum-mechanical charge-current
correlation identities with local conservation laws to stochastic interacting particle
systems. Unlike in earlier proofs no translation invariance is required. We clarify
the validity of an Onsager-type current symmetry that generally appears in hyper-
bolic systems of conservation laws that arise as hydrodynamic limits of stochastic
interacting particle systems.

Keywords Stochastic interacting particle systems · Local conservation laws ·
Charge-current correlations · Current symmetry · Hydrodynamic limit

1 Introduction

The large-scale behaviour of d-dimensional translation invariant stochastic inter-
acting particle systems with n local conservation laws is, in the presence of macro-
scopic stationary currents, onEuler scale generically describedbyhyperbolic systems
of conservation laws [1]. The coarse-grained locally conserved quantities qα(x, t),
α ∈ {1, . . . , n} (that we shall call charges and arrange as a vector q ∈ R

n) and their
associated currents jαi (x, t) in space direction i ∈ {1, . . . , d} (arranged as vectors
ji ∈ R

n) evolve according to the system of partial differential equations

∂

∂t
q +

d∑

i=1

∂

∂xi
ji (q) = 0, q, ji ∈ R

n, (x, t) ∈ R
d × R (1)
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with a smooth family of currents jαi that depend on (x, t) only implicitly via the n
charges q1(x, t), . . . , qn(x, t). The specific form of the current functions arises from
the stationary current-charge relation of the particle system. The current Jacobian
J (q) := Dj(q) has real eigenvalues vα(q) at each point q, see [2] with a focus on
one dimension and references therein for the general case.

We do not discuss the conditions under which (1) is valid for a given particle
system, but point out that hyperbolicity is a fundamental property that any Eulerian
hydrodynamic limit of a physicallymeaningful particle systemwithmacroscopic sta-
tionary currentsmust satisfy since, if (1) is valid, the eigenvalues vα are the velocities
of the fluctuation fields of the conserved charges [3] and as such take real values. In
terms of the compressibility matrix K (q)—whose matrix elements are the stationary
covariances of the space-integrated fluctuation fields—hyperbolicity is guaranteed
by the current symmetry

J K = (J K )T (2)

since by the chain rule this implies that J expressed as a function of generalized
fugacities of a grandcanonical ensemble is a real-symmetric matrix and hence has
real eigenvalues.

This current symmetry—which is somewhat reminiscent of the Onsager
relations—is significant not only on macroscopic level. It also guarantees that the
thermodynamic entropy is a globally convex Lax entropy of the system (1) [4].
This fact plays an important role in extending Yau’s relative entropy method [5] to
prove rigorously the hydrodynamic limit (1) for particle systems with more than one
conservation law up to times when no shocks are present.1

The current symmetry (2) has been known for a long time in different guises,
see e.g. [8, 9]. However, its first rigorous proof dates back only to 2003 [4] and is
specific to a family of particle systemswhose invariant measure is a product measure.
However, the product form of the invariant measure should not play a role for the
current symmetry, as neither heuristic nor rigorous derivations of hydrodynamic
limits require this property [10]. Indeed, subsequently a different proof [11] for
rather general particle systems demonstrates that the assumptions on the invariant
measure can be much weakened. Only mild assumptions, in particular, translation
invariance, a grandcanonical form of the invariant measure with some conditions on
differentiability, and a spatial decay of certain correlations involving the conserved
charges and their associated currents, are sufficient to guarantee the current symmetry
(2).

Further progresswasmadevery recently,when itwas shown in aquantummechan-
ical setting that the current symmetry (2) actually arises from an underlying general
identity for space and time dependent correlations between local charges and currents

1Solutions of (1) generically develop shocks after a finite time that depends on the initial data [6,
7].
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[12, 13], assuming implicitly a grandcanonical form of the stationary density matrix
again with some conditions on differentiability and, explicitly, translation invariance
and some assumptions on the decay stationary charge-current correlations.

The reliance on microscopic translation invariance in all arguments and rigorous
proofs might appear natural as also in the macroscopic setting of the PDE (1) transla-
tion invariance is assumed. However, requiring translation invariance onmicroscopic
scale is unsatisfactory as real macroscopic physical systems—for which one expects
the current symmetry to be valid and for which one would like to derive it from
the microscopic dynamics—are not microscopically translation invariant since any
physical particle system has a boundary with some spatial structure on microscopic
scale. This conceptual problem was finally resolved in [14] where it was proved,
again in the quantum setting, that modified charge-current equalities—from which
the current symmetry also follows under well-defined assumptions—are valid for
systems that are not microscopically translation invariant.

It is the purpose of this article to adapt the results of [14] to the classicalMarkovian
setting of stochastic interacting particle systems with more than one local conser-
vation law [15, 16] and to discuss the significance of the decay of correlations and
the differentiability conditions. In Sect. 2 we describe the setting and state the main
results which are proved in Sect. 3. In Sect. 4 we conclude with the discussion of
correlations and differentiability in the presence of shocks.

Themain result from the perspective of large scale dynamics is Theorem 3 in Sect.
2. The more fundamental charge-current correlation identity from which Theorem 3
follows under further assumptions is established in Theorem 1. Additional details on
the underlying assumptions can be found in [14] where a more extended discussion
in the quantum setting is provided.

2 Classical Setting and Results

To begin with, we note that we work in one dimension on the discrete finite torus
TL := Z/LZ with L ≥ 2 sites, counted from 0 to L − 1 modulo L . The lattice sites
are denoted by small letters k, l, . . . . It will transpire that the extension of the results
and the proofs to the d-dimensional torus Td

L is obvious, as the one-dimensional
argument can be applied to each space direction separately.

2.1 Notation and General Properties of the Interacting
Particle System

We consider a stochastic interacting particle system with the state on site k ∈ TL

denoted by ηk ∈ S where S is a countable set. A full configuration of the system is
denoted by η := (η0, . . . , ηL−1) ∈ S

L . The lattice translation operator T : SL → S
L
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acting on a configuration η is defined by the forward shift ηk �→ ηk+1. The lattice
translation operator acting on functions f : SL → R is defined by

T f (η) := f (Tη). (3)

The Markovian stochastic dynamics is defined by a generatorL (see e.g. [15]) with
an invariant measure that we denote by πL . We stress that we not assume translation
invariance T L = LT of the generator.

Specifically, we assume that the process has n locally conserved quantities qα
k :

S
L → R, α ∈ {1, . . . , n}, indexed by k that satisfy the discrete continuity equation

L qα
k = jαk−1 − jαk , k ∈ {0, . . . , L − 1} (4)

with the instantaneous currents jαk and the definition jα−1 := jαL−1. As mentioned
above, we refer to the quantities qα

k as charges. As a consequence of the continuity
Eq. (4) the global charges

Qα :=
L−1∑

k=0

qα
k (5)

are conserved. Since we do not assume translation invariance of the generator one
has in general jαk−1 �= T jαk .

The generator of the time-reversed process (w.r.t. the invariant measure πL ) is
denoted by L̃ . The time-reversed currents are defined by the discrete continuity
equation

L̃ qα
k = j̃α

k−1 − j̃α
k (6)

that is induced by the conservation law (4) [17].
We point out that the continuity equation does not uniquely define the instanta-

neous currents as without changing (4) one can add a function f α : SL → R that
does not depend on k. In more than one dimension there is even more freedom to
add functions. E.g. in the discrete two-dimensional continuity equation with current
components jα,i

k,l for space direction i ∈ {1, 2} also the modified current components

j̃α,1
k,l := jα,1

k,l + gk,l+1 − gk,l , j̃α,2
k,l := jα,2

k,l − (gk+1,l − gk,l) with an arbitrary measur-

able function gk,l : SL2 → R satisfy the same two-dimensional continuity equation.
However, this ambiguity in the definition of the instantaneous current which is due
to gauge invariance is not relevant to our discussion which can be straightforwardly
generalized to the d-dimensional discrete torus in any dimension d > 1.
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2.2 Some Important Expectation Values and General
Properties of the Invariant Measure

Expectations of ameasurable function f : SL → Rw.r.t.πL are denotedby 〈 f 〉L and
covariances are marked by an additional superscript c, i.e., 〈 f1 f2 〉cL := 〈 f1 f2 〉L −
〈 f1 〉L〈 f2 〉L . Due to stationarity, one-time expectations do not depend on time t . We
define the stationary charge densities

qα
L (k) := 〈 qα

k 〉L . (7)

Notice that the stationary currents

jαL := 〈 jαk 〉L (8)

do not depend on k and one has

j̃α
L := 〈 j̃α

k 〉L = − jαL . (9)

Here the subscript L denotes the dependence on the system size L .
Two-time expectations depend only on the time difference. Specifically, we con-

sider the time-dependent correlation functions

Sαβ

L (k, l, t) := 〈 qα
k (t)qβ

l (0) 〉cL , (10)

Cαβ

L (k, l, t) := 〈 jαk (t)qβ

l (0) 〉cL , (11)

C̃αβ

L (k, l, t) := −〈 qα
k (t)j̃β

l (0) 〉cL . (12)

By identifying all lattice sites modulo L , the correlation functions can be defined
for all k, l ∈ Z with periodicity L for both space arguments k, l.2 We note that when
the distance rk,l := |(k − l) mod L| between the sites k, l is much larger than the
distance rmax(t) := (t maxα {|vα|} mod L) travelled by the fastest fluctuation field
and if charges and currents are local, then one expects by the classical analog of
the quantum mechanical Lieb-Robinson bound [18] the correlation functions (10)–
(12) to take their stationary values [19]. Otherwise, these correlations are, in general,
highly nontrivial and encode the dynamical universality class of the fluctuation fields
[20].

We do not assume reversibility of the process w.r.t. πL nor uniqueness of πL . The
only assumptions on πL that we shall make use of are the content of the following
definition.

2(a) Notice the negative sign and the appearance of the time-reversed current in the definition of
C̃αβ
L (k, l, t), in contrast to the quantum case [14]. (b) For the distance r = l − k between two sites

the periodicity implies that distance r = L − 1 is the same as distance r = −1.
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Definition 1 LetL be the generator of stochastic interacting particle systemdefined
onTL that has n local conservation laws. An invariantmeasure of the process is called
good if the expectations (7)–(12) all exist for any fixed L and have well-defined
thermodynamic limits L → ∞.

To discuss some special cases we also introduce the notion of overlap between
functions.

Definition 2 Two functions f : SL → R and g : SL → R are said to overlap if the
intersection of the sets of occupation numbers ηk on which they depend non-trivially
is not empty. Otherwise the two functions are called non-overlapping.

If a function f (·) has no overlap with either the instantaneous current jαl or with
the reversed instantaneous current j̃α

l then one has 〈 f jαl 〉L = −〈 f j̃α
l 〉L . An example

of approximately non-overlapping functions are the charges and currents appearing
in (7)–(12) if the Lieb-Robinson condition rkl 
 r∗(t) is met. On the other hand,
these functions may be overlapping at all times for nonlocal charges in integrable
systems [21] or in stochastic dynamics conditioned on large currents [22]. This is
relevant to the present discussion in so far as overlap may prevent the decay of
stationary correlations between these quantities that will play a role below.

2.3 Results

In Theorem 1 we present the fundamental charge-current identity in its local form. It
requires only very fewandmild assumptions on the stochastic dynamics andunderlies
all further results. In particular, it is valid also for finite lattices. In Theorem 2 some
consequences of this fundamental identity are explored in the thermodynamic limit,
with some mild assumptions on the decay of stationary charge-current correlations.
Finally, Theorem 3 (along with Remark 5) establishes the validity of the current
symmetry (2) for a generic class of grandcanonical invariant measures.

Definition 3 The quantities

Aαβ

L (k, t) := 1

L

L−1∑

l=0

Cαβ

L (k, l, t), Ãαβ

L (l, t) := 1

L

L−1∑

k=0

C̃αβ

L (k, l, t) (13)

are called the global charge-current correlations and

Bαβ

L (r, t) := 1

L

L−1∑

k=0

Cαβ

L (k, k + r, t), B̃αβ

L (r, t) := 1

L

L−1∑

k=0

C̃αβ

L (k, k + r, t) (14)

are called the space-averaged charge-current correlations.
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These are the main quantities of interest.3 Notice that for a translation invariant
process with an invariant measure πL that is also translation invariant one has

Bαβ

L (r, t) = 〈 jα−r (t)q
β

0 (0) 〉cL , B̃αβ

L (r, t) = −〈 qα
−r (t)j̃

β

0 (0) 〉cL . (15)

Proposition 1 (Global charge-current correlation equality) LetL be the generator
of a stochastic interacting particle system with n local conservation laws and a good
invariant measure πL . For every α, β ∈ {1, . . . , n} the charge-current correlations
(11), (12) satisfy the fundamental charge-current equality

Cαβ

L (k − 1, l, t) − Cαβ

L (k, l, t) + C̃αβ

L (k, l − 1, t) − C̃αβ

L (k, l, t) = 0 (16)

and the global charge-current correlations (13) are constants

Aαβ

L (k, t) = aαβ

L , Ãαβ

L (l, t) = ãαβ

L (17)

independent of space and time.

Remark 1 In a good canonical invariant measure where the conserved charges Qα

(5) have fixed (i.e. nonfluctuating) values one has aαβ

L = ãαβ

L = 0 for any system size
L .

Theorem 1 (Local charge-current correlation equality) LetL be the generator of a
stochastic interacting particle system with n local conservation laws and a good
invariant measure πL . Then for all r ∈ TL , t ≥ 0, α, β ∈ {1, . . . , n} the space-
averaged charge-current correlations (14) satisfy the charge-current equality

Bαβ

L (r + 1, t) − B̃αβ

L (r, t) = dαβ

L (18)

with the constant dαβ

L := aαβ

L − ãαβ

L given by the constants in Proposition 1.

Remark 2 In a good invariant canonical measure one has dαβ

L = 0 and therefore the
correlation equality Bαβ

L (r + 1, t) = B̃αβ

L (r, t) for all r ∈ TL , t ≥ 0 and for any L .

Remark 3 For an invariant product measure and for charges and currents that do
not overlap for some distance |r | > |r0| one has Bαβ

L (r + 1, 0) = B̃αβ

L (r, 0) = 0 for
|r | > |r0|. This implies dαβ

L = 0 and thus also Bαβ

L (r + 1, t) = B̃αβ

L (r, t) for all r ∈
TL , t ≥ 0 and L large enough to allow for non-overlap.

Next we elaborate on the consequences of decay of correlations.

Theorem 2 (Charge-current correlation equality with decay of correlations) LetL
be the generator of a stochastic interacting particle system with n local conservation
laws and a good invariant measure πL . If condition

3We have redefined Aαβ
L (k, t) by a factor of L compared to [14]. This makes formulas that appear

in the proofs neater.
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C : lim
r→∞ Bαβ

∞ (r, t) = lim
r→∞ B̃αβ

∞ (r, t) = 0 (19)

on the decay of correlations in the thermodynamic limit L → ∞ holds, then for
every α, β ∈ {1, . . . , n}, r ∈ Z, t ≥ 0 the space-averaged charge-current correla-
tions (14) satisfy the charge-current equality

Bαβ
∞ (r + 1, t) = B̃αβ

∞ (r, t). (20)

Remark 4 We recall that no translation invariance is assumed. For a translation
invariant process with πL also translation invariant, Theorem 1 asserts that

〈 jαr (t)qβ

0 (0) 〉cL + 〈 qα
r+1(t)j̃

β

0 (0) 〉cL = dαβ

L ∀r ∈ TL , t ≥ 0 (21)

which for dαβ

L = 0 (due to a canonicalmeasure or decay of correlations as in Theorem
2) yields the classical lattice analog

〈 jαr (t)qβ

0 (0) 〉c∞ = −〈 qα
r+1(t)j̃

β

0 (0) 〉c∞ (22)

of the quantum continuum correlation equality of [13]. Taking the sum over r leads
to the global correlation equality of [12] reproduced in Eq. (1) of [14].

Theorem 3 (Current symmetry) LetL be the generator of a stochastic interacting
particle system with n local conservation laws and a good invariant measure πL with
the further properties that for φ ∈ R

n the large deviation function

ZL(φ) := 〈 e
∑n

α=1 φαQα 〉L (23)

is finite and twice differentiable inside a non-empty domain X ⊂ R
n around the

origin of Rn and retains the modified invariant measure

πφ,L := πL
exp (

∑n
α=1 φαQα)

ZL(φ)
(24)

good inside X. If the condition

C′ : lim
L→∞ L[Bαβ

L (�L/2� + 1, 0) − B̃αβ

L (�L/2�, 0)] = 0 (25)

on the decay of correlations holds for some index pair α, β with expectation taken
w.r.t. πφ,L , then, with the short-hand notation ∂α := ∂/(∂φα) and jα = limL→∞ jαL ,
one has the current symmetry

∂α j
β = ∂β j

α, φ ∈ X (26)

for the stationary currents in the thermodynamic limit.
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Remark 5 The differentiability property of the large deviation function yields the
current symmetry in the form (2).

3 Proofs

The proofs of the results use mostly the same ideas as in the quantum case [14]. One
exception is the appearance of the time-reversed current. Throughout this section we
assume L to be the generator of a particle system for which the discrete continuity
Eq. (5) are valid and which has a good invariant measure.

3.1 Proposition 1

Proof The summation yields

Aαβ

L (k, t) = 〈 jαk (t)Qβ 〉cL , Ãαβ

L (l, t) = −〈 Qα(t)j̃β

l (0) 〉cL . (27)

Since global charges Qα are conserved, the sums are independent of time. The con-
servation law also implies for the equal-time joint expectation taken in the invariant
measure that 0 = 〈L (

qα
k Q

β
) 〉L = 〈 ( jαk−1 − jαk )Qβ 〉L . This is true for any pair

α, β and thus independence of the space coordinate of 〈 jαk Qβ 〉L (and similarly of

〈 Qα j̃
β

l 〉L ) follows. Because of the space- independence of the currents (8), (9) this
applies also to the covariances. �

3.2 Theorems 1 and 2

Theorem 2 is a consequence of Theorem 1 since under condition C one obtains
dαβ

∞ = 0. Hence we focus on Theorem 1.

Proof To prove the fundamental charge-current equality (16) we note that the time-
derivative of the stationary charge-charge correlation function (10) can be taken in
two different ways as

d

dt
Sαβ

L (k, l; t) = 〈 (L qα
k (t))qβ

l (0) 〉 = 〈 qα
k (t)(L̃ qβ

l (0)) 〉. (28)

Using the discrete continuity Eqs. (4), (6) yields (16).
Next we define the two auxiliary functions
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Gαβ

L (k, l, t) :=
k∑

k ′=1

[
C̃αβ

L (k ′, 0, t) − C̃αβ

L (k ′, l, t)
]

(29)

gαβ

L (r, t) := 1

L

L−1∑

k=0

Gαβ

L (k, k + r, t) (30)

which allow us to eliminate the requirement of local translation invariance in the
existing proofs of Theorem 1. The periodicity of the correlation functions in the
space arguments k and l implies Gαβ

L (k, 0, t) = Gαβ

L (0, l, t) = 0 and the periodicity
properties

Gαβ

L (k + mL , l + nL , t) = Gαβ

L (k, l, t), gαβ

L (r + mL , t) = gαβ

L (r, t). (31)

From the periodicity and (16) one gets

Cαβ

L (k, l, t) = Cαβ

L (0, l, t) + Gαβ

L (k, l, t) − Gαβ

L (k, l − 1, t) (32)

C̃αβ

L (k, l, t) = C̃αβ

L (k, 0, t) + Gαβ

L (k − 1, l, t) − Gαβ

L (k, l, t). (33)

The next step is to set l = k + r in (32) and sum over k and similar for (33). Using
Theorem (1) this yields

Bαβ

L (r, t) = aαβ

L + gαβ

L (r, t) − gαβ

L (r − 1, t) (34)

B̃αβ

L (r − 1, t) = ãαβ

L + gαβ

L (r, t) − gαβ

L (r − 1, t). (35)

Substracting the second from the first equality yields (18). �

Remark 6 The space-averaged charge-charge correlation function

sαβ

L (r, t) := 1

L

∑

k

Sαβ

L (k, k + r, t) (36)

satisfies [14]

d

dt
sαβ

L (r, t) = gαβ

L (r + 1, t) + gαβ

L (r − 1, t) − 2 gαβ

L (r, t) (37)

where the r.h.s. has the form of a discrete Laplacian.

3.3 Theorem 3

Proof Because of the conservation law (5) the measure πL ,φ is an invariant measure
and by hypothesis it is good inside the domain X . By construction, one has
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∂β

1

ZL
= − 1

ZL
〈 Qβ 〉L (38)

and therefore
∂β〈 jαk 〉L = 〈 jαk Qβ 〉cL . (39)

Taking into account Proposition 1 thus yields

∂β〈 jα 〉L = Laαβ

L . (40)

Similarly, considering j̃α
k and taking the derivative w.r.t. φβ yields with Proposition

1 and the change of sign in the second equality in (9),

∂β〈 j̃α 〉L = Lãαβ

L . (41)

From Theorem 1 one concludes that ∂β〈 jα 〉L − ∂β〈 j̃α 〉L = L[Bαβ

L (r + 1, t) −
B̃αβ

L (r, t)]. Condition C′ on the decay of correlations then yields (26) by choosing
r = �L/2� and taking the thermodynamic limit.

4 Comments on Phase Separation and the Decay of
Correlations

Even in one space dimension, particle systems with more than one local conservation
law exhibit very rich stationary behaviour [16], including a nonequilibrium analog of
phase separation [23–25], albeit in certain cases with a random walking domain wall
[26–29] rather than an immobile one. Such a domain wall is the microscopic real-
ization (on lattice scale) of macroscopic shocks. Invariant measures with fluctuating
microscopic shock position are an example where the differentiability condition in
Theorem 4 may not be fullfilled.

This can be demonstrated explicitly for the discrete-time sublattice totally asym-
metric simple exclusion process (dsTASEP) whose invariant measure is obtained in
explicit form and studied in detail in [30, 31]. This process is a single-species exclu-
sion process with a slow bond where particles jump with probability p, as opposed
to deterministic hopping across all other bonds. With the critical density ρc = p/2
the current-density relation is given by

j (ρ) =
{
2ρ 0 ≤ ρ < ρc

p ρc ≤ ρ ≤ 1/2
(42)

The density regime with ρ > 1/2 follows from particle-hole symmetry. One sees
that j (ρ) is not differentiable at ρ = ρc and in the grandcanocical ensemble with
chemical potential φ(ρ) = ln [2ρ/(1 − 2ρ)] the derivative dφ/dρ is infinite at φc =
ln [p/(1 − p)] as can be shown [31] using the matrix product approach of [32]
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that expresses the invariant measure of the process in terms of scalar products in
R

2. The fact that the invariant measure is a convex combination with measures
with a fluctuating microscopic shock position follows directly from the canonical
approach of [30], but is actually a generic feature of matrix product measures with
two-dimensional representations [33, 34].

Despite the failure of the differentiability condition of Theorem 3, the decay of
correlations holds. Nevertheless, a macroscopically translation invariant description
in terms of a conservation law of the form (1) cannot be expected to hold for arbi-
trary values of the blockage parameter p. This is in agreement with the rigorously
established hydrodynamic limit for the usual (continuous-time) TASEP with a single
defect [35–37]. An interesting open problem is the question whether condition C′
is valid for any physical system where the charges qα

k and associated instantaneous
currents jαk are cylinder functions that depend only on a finite number of occupation
variables in a finite distance around k.

Acknowledgements It is a pleasure to acknowledge stimulating discussions with B. Doyon and
A. Klümper on charge-current correlations in quantum systems.
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From the Hartree to the Vlasov
Dynamics: Conditional Strong
Convergence

Chiara Saffirio

Abstract We review the recent results [45, 46] concerning the semiclassical limit
from theHartree dynamics to theVlasov equationwith singular potentials and extend
them to the case of more general radial interactions. We prove that, at positive tem-
perature, the Hartree dynamics converges in trace norm to the Vlasov one, for a
particular class of initial states.

Keywords Hartree equation · Vlasov equation · Semiclassical limit · Mean-field
limit · Mixed states

1 Introduction

The Hartree dynamics. We consider the nonlinear Hartree-Fock equation

i � ∂t ωN ,t = [HHF , ωN ,t ] , (1)

whereωN ,t is a one-particle fermionic operator, i.e. a nonnegative trace class operator
over L2(R3) such that tr ωN ,t = N , 0 ≤ ωN ,t ≤ 1 and N = �

−3. In (1) [A ,B]
denotes the commutator between the operator A and the operator B, HHF is the
Hamilton operator given by

HHF = −�
2Δ + (V ∗ ρt ) − Xt , (2)

where Δ is the Laplace operator, V : R
3 → R is a two-body interaction potential,

ρt : R
3 → R is the density of fermions in the position space at time t , i.e. for x ∈ R

3

ρt (x) = N−1ωN ,t (x; x), andXt is the exchange operator defined through its kernel
Xt (x; y) = N−1V (x − y)ωN ,t (x; y), where we have used the notation A (·; ·) to
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denote the kernel of the operator A . We notice that the Hartree-Fock equation (1)
propagates in time the fermionic structure of the operator ωN . Namely if ωN is a
fermionic operator its evolution at time t according to the Hartree-Fock equation
ωN ,t is also a fermionic operator, i.e. it satisfies the properties tr ωN ,t = N and
0 ≤ ωN ,t ≤ 1.

It has been shown in [5–7, 9, 11, 16, 20, 39, 41, 43, 44] that the Hartree-
Fock equation is the mean-field approximation of the N -body fermionic Schrödinger
dynamics for a class of quasi-free states exhibiting a semiclassical structure (see [12]
for further readings). In particular, as first observed in [16], the mean-field scaling
for a system of interacting fermions is naturally coupled with a semiclassical scaling
through a rescaling of time, since the Planck constant � is proportional to N− 1

3 , where
N is the number of fermions.

As pointed out in [11], the energy contribution associated with the exchange term
can be shown to be subleading. Hence, from now on we will drop the exchange term
and consider the fermionic Hartree equation

i � ∂t ωN ,t = [HH , ωN ,t ] , (3)

whereHH is the Hamilton operatorHHF defined in (2) with exchange termXt = 0.
The Vlasov equation. The Hartree equation (3) is N dependent because of the

relation � = N− 1
3 and the choice tr ωN ,t = N . As we perform the limit N → ∞, we

are simultaneously performing the semiclassical limit � → 0. As first established by
Narnhofer and Sewell in [37], the dynamics of N interacting fermions converges in
the mean-field and semiclassical regime to a solution to the Vlasov equation

∂t ˜Wt + v · ∇x ˜Wt + (∇V ∗ ρ̃t ) · ∇v ˜Wt = 0 , (4)

where, for each t ∈ R+, ˜Wt : R
3 × R

3 → R is a probability density on the phase
space representing the probability that a particle at time t is in position x ∈ R

3 with
velocity v ∈ R

3. The function ρ̃t : R
3 → R is the spatial density of particles defined

for each t as ρ̃t (x) = ∫

R3
˜Wt (x, v) dv and V : R

3 → R is a two-body interaction
potential.

The Cauchy problem associated with Eq. (4) has been largely investigated. In [15]
Dobrushin proved wellposedness in the case of potentials satisfying V ∈ C 2

c (R3).
When the interaction is Coulomb or gravitational, existence of classical solutions
under regularity assumptions on the initial datum has been established in [28] and
[38] respectively in one and two dimensions. The three dimensional case has been
addressed in [4] for small initial data and in a more general setting by Pfaffelmoser
in [42] and by Lions and Perthame in [35].

The goal of this paper is to review recent results on the strong convergence of the
Hartree equation (3) towards the Vlasov equation (4) when the interaction potential
is singular.

Weyl and Wigner transforms. To study the semiclassical limit of Eq. (3), we
observe that the solution of theHartree equation (3) is an operator on L2(R3), whereas
the solution to the Vlasov equation (4) is a function on the phase space R

3 × R
3.
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To compare them, we need to set the problem either on the space of operators on
L2(R3) or on the space of functions onR

3 × R
3. To this end, we introduce the notion

of Wigner transform. We define the Wigner transform of the one-particle operator
ωN ,t with kernel ωN ,t (· ; ·) as

WN ,t (x, v) =
(

�

2π

)3 ∫

R3
ωN ,t

(

x + �y

2
; x − �y

2

)

e−iv·ydy . (5)

Thus, for each t > 0, WN ,t : R
3 × R

3 → R and it is normalized, indeed

∫

R3×R3
WN ,t (x, v)dxdv = �

3tr ωN ,t = �
3 N = 1 ,

where in the last identitywe used the relation� = N−1/3. DespiteWN ,t is normalized,
in general it is not a probability density as it is not nonnegative.

The inverse transformation is called Weyl quantization. Given a functionWN ,t on
the phase space, we define the Weyl quantization of WN ,t by

ωN ,t (x; y) = N
∫

WN ,t

(

x + y

2
, v

)

eiv·(x−y)/�dv , (6)

where ωN ,t (x; y) is the kernel associated with the one-particle operator ωN ,t . There-
fore, theWeyl quantization transforms a function on the phase space into the kernel of
a one-particle operator. Moreover, the quantity

∫

R3 WN ,t (x, v)dv describes the den-
sity of fermions in position space at point x ∈ R

3 and
∫

R3 WN ,t (x, v)dx represents
the density of particles with velocity v ∈ R

3.
Initial states. We are interested in solutions to Eq. (3) which are evolutions of

initial states describing equilibrium states of trapped systems. In the mean-field
regime such equilibrium states are expected to be approximately quasi-free. In this
paper we are interested in the evolution of quasi-free states at positive temperature,
usually referred to as mixed states. More precisely, Shale-Stinespring condition (see
Theorem9.5 in [32]) guarantees that every one-particle operatorωN such that trωN =
N and 0 ≤ ωN ≤ 1 is the one-particle reduced density of a quasi-free state with N
fermions. When looking at the semiclassical limit, the advantage of considering
mixed quasi-free states is that the associated Wigner transform is a regular function
on the phase space. This is in general not the case when looking at zero temperature
states (the so called pure states). See [10] for further reading on this matter.

State of art. The problem of obtaining the Vlasov equation as a classical limit
of a dynamics of interacting quantum particles has been largely investigated. The
first result in this direction is due to Narnhofer and Sewell. In [37] the authors
consider a system of N fermions interacting through a two-body analytic potential
V ∈ C ω(R3) and they obtain the Vlasov equation directly from the dynamics given
by the N -fermion Schrödinger equation. In [47] the assumption on the interaction
potential has been relaxed to V ∈ C 2(R3). The case of N bosons given by WKB
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states in themean-field regime combinedwith a semiclassical limit has been analysed
in [26].

The semiclassical limit from the Hartree dynamics towards the Vlasov equation
has been proven inweak topology for regular and singular interactions (here included
theCoulombpotential) in [18, 34, 36]. This analysis has been extended to theHartree-
Fock equation in [21].

The above cited references establish weak convergence towards the solution to
the Vlasov equation, but do not provide any control on the rate of convergence. The
problem of obtaining explicit bounds on the convergence rate has been first addressed
in [3] where the convergence from the Hartree equation to the Vlasov dynamics has
been established in strong topology for regular interactions and later extended in
[1, 2, 10, 41] and in [45, 46] for inverse power law potentials (included Coulomb
interaction).

We also mention that a new approach has been initiated in [22, 23], where a
notion of pseudo-distance reminiscent of the Monge-Kantorovich distance for clas-
sical probabilitymeasures has been introduced. Explicit bounds on the rate of conver-
gence in the topology induced by such quantumanalogous of theMonge-Kantorovich
distance have been obtained for smooth (Cf. [23]) and singular potentials, including
the Coulomb interaction (Cf. [29, 30]).

More recently, in the context of regular interactions, the joint mean-field and
semiclassical limit for the dynamics of N fermions has been studied also in [14] by
means of BBGKY type of hierarchy for the k-particle Husimi measure.

Main result. In this paper we are concerned with the strong convergence of
the Hartree dynamics towards the Vlasov equation with interactions satisfying the
following assumptions:

(a) letV : R
3 → Rbe a radially symmetric potential that is three times differentiable

away from x = 0 and denote

V (m)(|x |) := dm

d|x |m V (x) ;

(b) for 0 ≤ m ≤ 3, assume

lim|x |→∞ |x |mV (m)(|x |) = 0 ;

(c) for δ ∈ (0, 3/2], fix k ∈ R+ and assume

∫ k

0
|r2V (3)(r) − rV (2)(r)|r 9

2 −δdr < ∞ .

Wecan think for instance to inverse power law interaction potentials, butmore general
interactions satisfying the above assumptions are included in the analysis performed
in this paper. More precisely, assumptions (a) and (b) are needed to use a generalised
version of Fefferman - De la Llave representation formula (see [27]), that is a key
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tool in the proof of the main result of this paper. Assumption (c) is technical and has
the advantage of making the presentation shorter and easier to read.

For some a > 0 and k ∈ N, we introduce the weighed Sobolev spaces Hk
a , defined

as the space of all square integrable functions f on the phase space R
3 × R

3 such
that the following norm is finite

‖ f ‖Hk
a

:=
⎛

⎝

∑

|β|≤k

∫

(1 + x2 + v2)a |∇β f (x, v)|2 dx dv
⎞

⎠

1
2

where β is a multi-index and ∇β can act on both x and v variables.
We are now ready to state our result.

Theorem 1 Let V be a two-body potential satisfying assumptions (a), (b) and (c)
above and � = N− 1

3 . Let ωN be a sequence of fermionic operators, i.e. tr ωN = N
and 0 ≤ ωN ≤ 1, and denote by ωN ,t the solution to the Hartree equation (3) with
initial dataωN . Let WN be theWigner transform of the operatorωN and assume1 that
there exists a unique smooth solution ˜WN ,t of the Vlasov equation (4)with initial data
WN such that ∇2ρt ∈ L∞(R3) for all t ∈ [0, T ] and ‖WN‖H 6

4
is bounded uniformly

in N.
Assume moreover that there exists a time T > 0 and a constant C > 0 such that

sup
t∈[0,T ]

3
∑

i=1

[‖ρ|[xi , ω̃N ,t ]|‖1 + ‖ρ|[xi , ω̃N ,t ]|‖∞
] ≤ C N � (7)

where
ρ|[xi ,ω̃N ,t ]|(x) := |[xi , ω̃N ,t ]|(x; x) . (8)

Then there exist constants Ck, k = 0, . . . , 4, depending only on T and on the H 2+k
4

norm of the Wigner transform of the initial data WN such that

tr
∣

∣ωN ,t − ω̃N ,t

∣

∣ ≤ C0 N �
[

1 + C1� + C2�
2 + C3�

3 + C4�
4
]

. (9)

Remark 1 We recall that tr ωN ,t = N , hence the bound (9) is non-trivial, showing
that the Vlasov equation is a good semiclassical approximation for the fermionic
dynamics given by the Hartree equation with singular interaction potential V .

Remark 2 We observe that the exchange term in (1) is subleading in the limit of N
large, i.e. as � → 0. For this reason the bound (9) is expected to remain correct if we
consider the Hartree-Fock equation (1) instead of the Hartree equation (3).

1Such a solution indeed exists if the initial data are sufficiently regular. For the precise assumptions,
see Remark 3 below.
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Remark 3 In the statement of Theorem 1, we assumed a smooth solution to Eq. (4)
to exist and to be unique. This is indeed the case whenever the following assumptions
on the initial datum WN are satisfied (Cf. [45, 46].):

(i) WN ∈ L1 ∩ L∞(R3 × R
3) and Mm(WN ) < ∞ for all m < m0, with m0 > 6.

(ii) For all R, T > 0,

ess sup
y,w

{|∇kWN |(y + vt,w) : |y − x | ≤ R, |w − v| ≤ R}

∈ L∞((0, T ) × R
3
x ; L1(R3

v) ∩ L2(R3
v))

(10)

for k = 0, 1, . . . , 5.
(iii) There exists C > 0 independent of N such that ‖WN‖H 6

4
≤ C .

Remark 4 Hypothesis (7) is a stringent assumption. At the moment we are not able
to prove the bound (7) for the solution of the Vlasov equation. Nevertheless, there
is a special situation in which the assumption is satisfied, that is for regular steady
solutions of the Vlasov equation (4) when V is the gravitational potential. See [46]
for extended explanations and examples.

Remark 5 In Theorem 1 we consider fermionic operators, i.e. operators ωN such
that 0 ≤ ωN ≤ 1. However, the exact same proof holds in the bosonic case.

Strategy of the proof. The idea of the proof is to obtain aGrönwall type inequality
to compare the solution ωN ,t of the Hartree equation (3) with a solution ω̃N ,t to the
Weyl transformed Vlasov equation, i.e. at the operator level and not as functions on
the phase space. The operatorsωN ,t and ω̃N ,t are fermionic operators, i.e. they satisfy
0 ≤ ωN ,t ≤ 1 and 0 ≤ ω̃N ,t ≤ 1, with the normalisation tr ωN ,t = tr ω̃N ,t = N .

In the Grönwall type inequality we look for there are two terms appearing: the first
one is the dominant term that will allow us to close the inequality; the second one
is an subleding term and it will determine the rate of convergence of ωN ,t towards
ω̃N ,t , as � = N−1/3 → 0. In the dominant term, the Laplace operator related to the
kinetic part of the Hartree Hamiltonian (2) appears. To deal with it, we make use of a
unitary transformation that acts as a change the reference frame, canceling the kinetic
factor.Moreover,wedealwith the singularity of the potentialV byusing a generalised
version of the Fefferman andDe la Llave representation formula. For general radially
symmetric and fast decreasing potentials such a formula was provided in [27] (see
Proposition 2). This is the key tool in the proof of Theorem 1, as it allows isolating
the singularity of the potential V at zero and close the Grönwall inequality. To
this end, we need to control the trace norm of the commutator between the Weyl
transformed solution ω̃N ,t of the Vlasov equation and the multiplication operator by
a Gaussian χ(r,z)(x) = exp(−|x − z|2/r2) (see Lemma 2). This is the point at which
the quantities (7)–(8) appear and the main reason why we have to restrict to initial
data satisfying the bound (7) at time t > 0. To bound the error term, and therefore
determine the convergence rate, we use again the generalized Fefferman - De la Llave
representation formula for rapidly decreasing, radially symmetric interactions.
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Thepaper is organised as follows: inSect. 2wepresent someauxiliary results, such
as the precise statement of the generalized Fefferman - De la Llave representation
formula and the key estimate on the commutator tr |[χ(r,z), ω̃N ,t ]|; in Sect. 3 we give
the main steps to prove Theorem 1, focusing on the parts of the proof that differ from
the Coulomb interaction case treated in [46].

2 Preliminary Estimates

Lemma 1 Let ωN ,t be a solution to the Hartree equation (3) with initial datum ωN .
Denote by WN the Wigner transform of ωN and let ˜WN ,t be the solution of the Vlasov
equation (4) with initial data WN . Denote by ω̃N ,t the Weyl transform of ˜WN ,t . Then

tr |ωN ,t − ω̃N ,t | ≤ 1

�

∫ t

0
tr

∣

∣

[

V ∗ (ρs − ρ̃s), ω̃N ,s
]∣

∣ ds + 1

�

∫ t

0
tr |Bs | ds (11)

where, for every s ∈ [0, t], Bs is the operator with kernel

Bs(x; y) =
[

(V ∗ ρ̃s) (x) − (V ∗ ρ̃s) (y) − ∇ (V ∗ ρ̃s)

(

x + y

2

)

· (x − y)

]

ω̃N ,t (x; y) .

(12)

Proof Applying the Weyl quantization to the Vlasov equation (4), we obtain the
following equation for the operator ω̃N ,t :

i � ∂t ω̃N ,t = [−�
2 Δ, ω̃N ,t ] + At (13)

where At is the operator with integral kernel

At (x; y) = ∇ (V ∗ ρ̃t )

(

x + y

2

)

· (x − y) ω̃N ,t (x; y) .

We introduceU (t; s), the two-parameter group of unitary transformations generated
by the Hartree Hamiltonian HH(t) := −�

2Δ + V ∗ ρt

{

i � ∂s U (t; s) = HH(t)U (t; s)
U (s; s) = 1

so that ωN ,t = U (t; 0) ωN U ∗(t; 0). The role ofU (t; s) is to cancel the kinetic part
of the HamiltonianHH(t) by conjugating the difference between ωN ,t and ω̃N ,t with
U (t; s) and performing the time derivative. This leads to
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i � ∂s (U ∗(t; s) (ωN ,s − ω̃N ,s)U (t; s))
= U ∗(t; s) [HH(s), ωN ,s − ω̃N ,s]U (t; s)
+ U ∗(t; s) ([HH(s), ωN ,s] − [−�

2Δ, ω̃N ,s] − As)U (t; s)
= U ∗(t; s) ([

V ∗ ρs, ω̃N ,t
] − As

)

U (t; s)
= U ∗(t; s) ([

V ∗ (ρs − ρ̃s), ω̃N ,s
] + Bs

)

U (t; s)

where Bs is the operator with integral kernel (12). Recalling that ω̃N ,0 = ωN ,
Duhamel’s formula yields

U ∗(t; s) (ωN ,s − ω̃N ,s)U (t; s) = 1

i �

∫ t

0
U ∗(t; s) [

V ∗ (ρs − ρ̃s), ω̃N ,s
]

U (t; s) ds

+ 1

i �

∫ t

0
U ∗(t; s)Bs U (t; s) ds.

(14)
The bound (11) follows by taking the trace norm in the above expression and using
that U (t; s) is a family of unitary operators.

Proposition 1 Under the same assumptions of Lemma 1 and Theorem 1, there exists
a constant C > 0 such that

tr
∣

∣

[

V ∗ (ρs − ρ̃s) , ω̃N ,s
]∣

∣ ≤ C � tr |ωN ,s − ω̃N ,s |. (15)

The proof of Proposition 1 relies on the generalization proved in [27] of the
Fefferman - De la Llave representation formula established in [17] for the Coulomb
potential.

Proposition 2 (Theorem 1 in [27]) For n ≥ 2, let V : R
n → R be a radial func-

tion that is [n/2] + 2 times differentiable away from x = 0, where [a] denotes
the integer part of a. For m ∈ N0 denote V (m)(|x |) = dm/d|x |m V (x). Assume that
lim|x |→∞ |x |mV (m)(|x |) = 0 for all 0 ≤ m ≤ [n/2] + 1. Then

V (x) =
∫ ∞

0

∫

Rn

g(r) 1{|x−z|≤r}1{|z|≤r} dz dr (16)

where

g(r) = (−1)[ n2 ]

Γ
(

n−1
2

)

2

(π r2)
(n−1)

2

(

∫ ∞

r
ds V ([ n2 ]+2)(s)

(

d

ds

)n−1−[ n2 ]
s(s2 − r2)

1
2 (n−3)

+ 1{n=2k+1, k∈N}V ([ n2 ]+2)(r) r(2r)
1
2 (n−3)Γ

(

n − 1

2

))

(17)
where Γ (·) denotes the Gamma function.
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Remark 6 Weobserve that the Coulomb potential V (x) = 1

|x | satisfies the assump-

tions in Proposition 2. In that case g(r) has a simple expression and the Fefferman -
De la Llave representation formula writes

1

|x − y| = 1

π

∫ ∞

0

∫

Rn

1

r5
1{|x−z|≤r} 1{|y−z|≤r} dz dr

Remark 7 We can easily replace the characteristic function 1{|x−z|≤r} by a smooth
function varying on the same scale at the price of having a different constant in front
of the expression. In what follows, we choose to use the Gaussian

χ(r , z)(x) := exp

(

−|x − z|2
r2

)

. (18)

Hence, with the notations introduced in Proposition 2, the generalised Fefferman -
De la Llave representation formula reads

V (x) = 4

π

∫ ∞

0

∫

Rn

g(r) χ(r,z)(x) χ(r,z)(0) dz dr (19)

Moreover, integrating out the z variable, we get

V (x) = 4

π

∫ ∞

0
r3 g(r) χ(

√
2r,x)(0) dr (20)

For later use, we recall here the definition of the Hardy-Littlewood maximal
function:

Definition 1 For z ∈ R
3 and B ball in R

3 centred at zero, the Hardy-Littlewood
maximal function of a function f is defined as

f ∗(z) = sup
B : z∈B

1

|B|
∫

B
f (x) dx

We can now state the following Lemma, which gives a bound in trace norm on
the commutator of ω̃N ,t and the multiplication operator χ(r,z).

Lemma 2 (Lemma 3.1 in [43]) Let χ(r , z)(x) be as in (18) and assume
[

xi , ω̃N ,t
]

to be trace class for all t ∈ [0; T ] and i = 1, 2, 3. Then, for all δ ∈ (0, 1/2), there
exists a positive constant C such that the bound

tr |[χ(r,z) , ω̃N ,t ]| ≤ C r
3
2 −3δ

3
∑

i=1

‖ρ|[xi , ω̃N ,t ]|‖
1
6+δ

L1

(

ρ∗
|[xi , ω̃N ,t ]|(z)

) 5
6−δ

(21)
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holds pointwise, where ρ|[xi , ω̃N ,t ]| is defined in (8) and ρ∗
|[xi , ω̃N ,t ]| denotes the Hardy-

Littlewood maximal function of ρ|[xi , ω̃N ,t ]| introduced in Definition 1.

Proof We consider the integral kernel of the commutator [χ(r,z), ω̃N ,t ] and write it
as

(x; y) = (

χ(r , z)(x) − χ(r , z)(y)
)

ω̃N ,t (x; y)
=

∫ 1

0
ds

d

ds
e− (x−z)2

r2
s
ω̃N ,t (x; y)e− (x−z)2

r2
(1−s)

= −
∫ 1

0
ds e−s (x−z)2

r2

[

(x − z)2

r2
, ω̃N ,t

]

(x; y) e−(1−s) (y−z)2

r2 .

We can therefore write the commutator as

[χ(r , z), ω̃N ,t ]

= −
3

∑

i=1

∫ 1

0
ds χ(r/

√
s , z)(x)

(

(x − z)i
r2

[

xi , ω̃N ,t
] + [

xi , ω̃N ,t
] (x − z)i

r2

)

χ(r/
√
1−s , z)(x)

=
3

∑

i=1

A
(1)
i + A

(2)
i . (22)

where, with an abuse of notation, we denote by χ(.,.)(x) both the function of x and
the corresponding multiplication operator.

We focus on the first term of the r.h.s. of (22) and fix i = 1. The other components
of the first term, and the three components of the second term can then be treated
similarly. By the spectral decomposition of the commutator

[

x1, ω̃N ,t
]

we have

[x1, ω̃N ,t ] = i
∑

j

λ j |ϕ j 〉〈ϕ j |

for a sequence of eigenvalues λ j ∈ R and an orthonormal system ϕ j in L2(R3) (we
introduced i = √−1 on the r.h.s., because the commutator is anti self-adjoint). We
find

A
(1)
1 = −

∫ 1

0
ds χ(r/

√
s,z)(x)

(x − z)1
r2

[

x1, ω̃N ,t
]

χ(r/
√
1−s,z)(x)

= − i

r

∑

j

λ j

∫ 1

0

ds√
s

∣

∣

∣

∣

χ(r/
√
s , z)(x)

(x − z)1
r/

√
s

ϕ j

〉〈

χ(r/
√
1−s , z)(x)ϕ j

∣

∣

∣

∣

.

Using that tr ||ψ1〉〈ψ2|| = ‖ψ1‖ ‖ψ2‖ we obtain
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tr |A(1)
1 | ≤ 1

r

∑

j

|λ j |
∫ 1

0

ds√
s

∥

∥

∥

∥

χ(r/
√
s , z)(x)

|x − z|
r/

√
s

ϕ j

∥

∥

∥

∥

∥

∥χ(r/
√
1−s , z)(x)ϕ j

∥

∥

≤ 1

r

∫ 1

0

ds√
s

⎛

⎝

∑

j

|λ j |
∥

∥

∥

∥

χ(r/
√
s , z)(x)

|x − z|
r/

√
s

ϕ j

∥

∥

∥

∥

2
⎞

⎠

1/2

×
⎛

⎝

∑

j

|λ j |
∥

∥χ(r/
√
1−s , z)(x)ϕ j

∥

∥

2

⎞

⎠

1/2

.

(23)

We compute

∑

j

|λ j |
∥

∥χ(r/
√
1−s,z)(x)ϕ j

∥

∥

2 =
∫

dx e−2(1−s)(x−z)2/r2ρ|[x,ω̃N ,t ]|(x)

≤ C
r3

(1 − s)3/2
ρ∗

|[x,ω̃N ,t ]|(z)

(24)

where ρ∗
|[xi ,ω̃N ,t ]| is the Hardy-Littlewoodmaximal function associated with ρ|[xi ,ω̃N ,t ]|.

To prove (24), we write

e−2(1−s)(x−z)2/r2 =
∫ 1

0
χ(t ≤ e−2(1−s)(x−z)2/r2)dt

=
∫ 1

0
χ

⎛

⎝|x − z| ≤
√

r2 log(1/t)

2(1 − s)

⎞

⎠ dt

and, using Fubini, we find

∫

dx e−2(1−s)(x−z)2/r2ρ|[x,ω̃N ,t ]|(x)

=
∫ 1

0
dt

∫

dx χ

⎛

⎝|x − z| ≤
√

r2 log(1/t)

2(1 − s)

⎞

⎠ ρ|[x,ω̃N ,t ]|(x)

≤ C
r3

(1 − s)3/2
ρ∗

|[x,ω̃N ,t ]|(z)
∫ 1

0
(log(1/t))3/2

≤ C
r3

(1 − s)3/2
ρ∗

|[x,ω̃N ,t ]|(z)

which shows (24). Similarly to (24), we also find

∑

j

|λ j |
∥

∥

∥

∥

χ(r/
√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥

∥

∥

∥

2

≤ C
r3

s3/2
ρ∗

|[x1,ω̃N ,t ]|(z) .
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Combining this bound with the simpler estimate

∑

j

|λ j |
∥

∥

∥

∥

χ(r/
√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥

∥

∥

∥

2

≤ C
∑

j

|λ j | = ‖ρ|[x1,ω̃N ,t ]|‖1

we obtain

∑

j

|λ j |
∥

∥

∥

∥

χ(r/
√
s,z)(x)

|x − z|
r/

√
s

ϕ j

∥

∥

∥

∥

2

≤ C
r3γ ‖ρ|[x1,ω̃N ,t ]|‖1−γ

1

s3γ /2

(

ρ∗
|[x1,ω̃N ,t ]|(z)

)γ

for any 0 ≤ γ ≤ 1. Inserting the last bound and (24) on the r.h.s. of (23) we conclude

tr |A(1)
1 | ≤ Cr (1+3γ )/2‖ρ|[x1,ω̃N ,t ]|‖(1−γ )/2

1

(

ρ∗
|[x1,ω̃N ,t ]|(z)

)(1+γ )/2

×
∫ 1

0
ds

1

s1/2+3γ /4(1 − s)3/4
.

Hence, for all δ > 0 we find (putting γ = 2/3 − 2δ)

tr |A(1)
1 | ≤ Cr3/2−3δ‖ρ|[x1,ω̃N ,t ]|‖1/6+δ

1

(

ρ∗
|[x1,ω̃N ,t ]|(z)

)5/6−δ

which concludes the proof.

Proof (Proof of Proposition 1) We write explicitly the convolution appearing on the
l.h.s. of (15) and get the following expression for the commutator

[V ∗ (ρs − ρ̃s) , ω̃N ,s] =
∫

(ρs(z) − ρ̃s(z)) [V (· − z) , ω̃N ,s] dz .

By (19) and (18), we can rewrite the potential V as

V (x − z) = 4

π

∫ ∞

0
r3 g(r) χ(

√
2r,z)(x) dr .

Plugging (2) into (27) and taking the trace norm of (27), we obtain the bound

tr |[V∗(ρs − ρ̃s) , ω̃N ,s]|
≤ C

∫

|ρs(z) − ρ̃s(z)|
∫ ∞

0
r3 |g(r)| tr |[χ(

√
2r,z) , ω̃N ,s]| dr dz.

Wechoose k > 0 and split the integral in the r variable into twoparts: the set r ∈ [0, k)
and the set r ∈ [k,∞).

For r ∈ [0, k), we use Lemma 2 and get
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∫ k

0
r3 |g(r)| tr |[χ(

√
2r,z) , ω̃N ,s]| dr

≤
∫ k

0
r

9
2 −3δ|g(r)|

3
∑

i=1

‖ρ|[xi ,ω̃N ,s ]|‖
1
6+δ

L1

(

ρ∗
|[xi ,ω̃N ,s ]|(z)

) 5
6−δ

dr

≤
∫ k

0
r

9
2 −3δ|g(r)|

3
∑

i=1

‖ρ|[xi ,ω̃N ,s ]|‖
1
6+δ

L1 ‖ρ∗
|[xi ,ω̃N ,s ]|‖

5
6−δ

L∞ dr

≤ C
3

∑

i=1

‖ρ|[xi ,ω̃N ,s ]|‖
1
6+δ

L1 ‖ρ|[xi ,ω̃N ,s ]|‖
5
6−δ

L∞

where in the last inequality we used that ‖ρ∗
|[xi ,ω̃N ,s ]|‖L∞ ≤ ‖ρ|[xi ,ω̃N ,s ]|‖L∞ and that the

integral in r converges by assumption c) on the potential V .
As for r ∈ [k,∞), following the same lines of the proof of Lemma 2 and choos-

ing the parameter γ = 0, we simply bound the trace norm of the commutator
[χ(

√
2r,z), ω̃N ,s] as

tr |[χ(
√
2r,z), ω̃N ,s]| ≤ C‖ρ|[xi ,ω̃N ,s ]|‖L1 .

Then we are left with the integral in r . Using assumption b) on the potential V , we
conclude that

∫ ∞

k
r3 |g(r)| dr = C

∫ ∞

k

∣

∣ r V (2)(r) − r2 V (3)(r)
∣

∣ dr < +∞ .

Hence

tr |[V∗(ρs − ρ̃s) , ω̃N ,s ]|

≤ C
∫

|ρs(z) − ρ̃s(z)|
3

∑

i=1

(

‖ρ|[xi ,ω̃N ,s ]|‖
1
6+δ

L1 ‖ρ|[xi ,ω̃N ,s ]|‖
5
6−δ

L∞ + ‖ρ|[xi ,ω̃N ,s ]|‖L1

)

.

Moreover, using the dual definition of L1 norm, we get

∫

|ρs(z) − ρ̃s(z)| dz = sup
O∈L∞

‖O ‖∞≤1

∣

∣

∣

∣

∫

O(z) (ρs(z) − ρ̃s(z)) dz

∣

∣

∣

∣

≤ 1

N
sup
O∈B‖O ‖≤1

∣

∣tr O (ωN ,s − ω̃N ,s)
∣

∣

= 1

N
tr |ωN ,s − ω̃N ,s |

where B denotes the set of bounded operators and ‖ · ‖ the operator norm. This
concludes the proof.



348 C. Saffirio

Proposition 3 LetBt be the operator associated with the (12). Then, there exists a
constant C > 0 depending on ‖ ˜WN ,t‖H 2

4
, ‖∇2ρ̃t‖ such that

tr |Bt | ≤ C N �
2

(

1 +
4

∑

k=1

�
k‖ ˜WN ,t‖Hk+2

4

)

. (25)

The proof can be found in [44] and it is based on the following procedure: we write
the identity operator as

1 = (1 − �
2Δ)−1(1 + x2)−1(1 + x2)(1 − �

2Δ).

By Cauchy-Schwarz inequality we have

tr |Bt | ≤ ‖(1 − �
2Δ)−1(1 + x2)−1‖HS ‖(1 + x2)(1 − �

2Δ)Bt‖HS. (26)

We notice that for some C > 0 the following bound holds

‖(1 − �
2Δ)−1(1 + x2)−1‖HS ≤ C

√
N

where we have used the explicit form of the kernel of the operator (1 − �
2Δ)−1 and

the fact that �
3 = N .

We denote byUs the convolution of the interaction with the spatial density at time
s

Us := V ∗ ρ̃s . (27)

We introduce the notation
˜B := (1 − �

2Δ)Bs

and observe that the kernel of ˜B reads

˜B(x; x ′) :=
7

∑

j=1

˜B j (x; x ′) (28)

where

˜B1(x; x ′) = N

[

Ut (x) −Ut (x
′) − ∇Ut

(

x + x ′

2

)

· (x − x ′)
] ∫

˜WN ,t

(

x + x ′

2
, v

)

ei v·
(x−x ′)

� dv

˜B2 (x; x ′)

= −N�
2
[

ΔUt (x) − 1

4
Δ∇Ut

(

x + x ′

2

)

· (x − x ′) − 1

2
ΔUt

(

x + x ′

2

)]∫

˜WN ,t

(

x + x ′

2
, v

)

ei v·
(x−x ′)

ε dv

˜B3 (x; x ′)

= − N�
2

4

[

Ut (x) −Ut (x
′) − ∇Ut

(

x + x ′

2

)

· (x − x ′)
] ∫

(Δ1 ˜WN ,t )

(

x + x ′

2
, v

)

ei v·
(x−x ′)

� dv
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˜B4(x; x ′) = N

[

Ut (x) −Ut (x
′) − ∇Ut

(

x + x ′

2

)

· (x − x ′)
] ∫

˜WN ,t

(

x + x ′

2
, v

)

v2ei v·
(x−x ′)

� dv

˜B5 (x; x ′)

= − N�
2

2

[

∇Ut (x) − 1

2
∇2Ut

(

x + x ′

2

)

(x − x ′) − ∇Ut

(

x + x ′

2

)] ∫

(∇1 ˜WN ,t )

(

x + x ′

2
, v

)

ei v·
(x−x ′)

� dv

˜B6(x; x ′)

= − N�

[

∇Ut (x) − 1

2
∇2Ut

(

x + x ′

2

)

(x − x ′) − ∇Ut

(

x + x ′

2

)] ∫

˜WN ,t

(

x + x ′

2
, v

)

vei v·
(x−x ′)

� dv

˜B7(x; x ′) = −N�

[

Ut (x) −Ut (x
′) − ∇Ut

(

x + x ′

2

)

· (x − x ′)
] ∫

(v · ∇1 ˜WN ,t )

(

x + x ′

2
, v

)

ei v·
(x−x ′)

� dv

where we used the notation ∇1 and Δ1 to indicate derivatives with respect to the first
variable.

In order to gain extra powers of �, we write

Ut (x) −Ut (x
′) − ∇Ut

(

x + x ′

2

)

· (x − x ′)

=
∫ 1

0
dλ

[

∇Ut
(

λx + (1 − λ)x ′) − ∇Ut

(

(x + x ′)
2

)]

· (x − x ′)

=
3

∑

i, j=1

∫ 1

0
dλ

(

λ − 1

2

) ∫ 1

0
dμ∂i∂ jUt

(

h(λ, μ, x, x ′)
)

(x − x ′)i (x − x ′) j ,

where h(λ, μ, x, x ′) := μ(λx + (1 − λ)x ′) + (1 − μ)
(x + x ′)

2
.

We notice thatUt defined in (27) has a convolution structure. Therefore derivatives
of Ut are equivalent to derivatives of the spatial density ρ̃t . Hence, Fefferman - De
la Llave representation formula (19) leads to

Us(x) −Us(x
′) − ∇Us

(

x + x ′

2

)

· (x − x ′)

=
3

∑

i, j=1

∫ 1

0
dλ

(

λ − 1

2

)∫ 1

0
dμ

∫ ∞

0
r3g(r)

∫

dy χ(r,y)
(

h(λ, μ, x, x ′)
)

∂i∂ j ρ̃s(y) (x − x ′)i (x − x ′) j .

(29)

Plugging (29) into the definition of ˜B1 and using twice the identity

(x − x ′)
∫

˜WN ,t

(

x + x ′

2
, v

)

eiv·
x−x ′

� dv = −i�
∫

∇v ˜WN ,t

(

x + x ′

2
, v

)

dv (30)

and Young’s inequality, we get
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| ˜B1(x; x ′)|

≤C N �
2

3
∑

i, j=1

∫ 1

0
dλ

∣

∣

∣

∣

λ − 1

2

∣

∣

∣

∣

∫ 1

0
dμ

∣

∣

∣

∣

∫ ∞

0
r3g(r)

∫

dy χ(r,y)(h(λ, μ, x, x ′))∂2i, j ρ̃s(y)
∫

dv ∂2vi ,v j
˜WN ,s

(

x + x ′

2
, v

)

eiv·
(x−x ′)

�

∣

∣

∣

∣

.

Therefore, the Hilbert-Schmidt norm of the operator (1 + x2) ˜B1, where (1 + x2)
is the multiplication operator, can be estimated as follows:

‖(1 + x2) ˜B1‖2HS

=N�
4
∫

dq
∫

dp′ [1 + q2 + �
2 p2

]2

∣

∣

∣

∣

∣

∣

3
∑

i, j=1

∫ 1

0
dλ

(

λ − 1

2

)∫ 1

0
dμ

∫ ∞
0

r3g(r)

∫

dy χ(r,y)(q + �μ(λ − 1/2)p)∂2vi ,v j ρ̃s(y)
∫

dv ∂2vi ,v j
˜WN ,s (q, v) eiv·p

∣

∣

∣

∣

2

where we performed the change of variables

q = x + x ′

2
, p = x − x ′

�
(31)

with Jacobian J = 8 �
3 = 8 N−1.

We fix k > 0 and divide the integral into the two sets A< := {r ∈ R+ | r ≤ k}
and A> := {r ∈ R+ | r > k}, so that
‖(1+x2) ˜B1‖2HS

≤CN�
4
∫

dq
∫

dp[1 + q2 + �
2 p2]2

3
∑

i, j=1

∫ 1

0
dλ

∣

∣

∣

∣

λ − 1

2

∣

∣

∣

∣

∫ 1

0
dμ

∣

∣

∣

∣

∫

A<

r3g(r)
∫

dy χ(r,y)(q + �μ(λ − 1/2)p)∂2vi ,v j ρ̃s(y)
∫

dv ∂2vi ,v j
˜WN ,s (q, v) eiv·p

∣

∣

∣

∣

2

+CN�
4
∫

dq
∫

dp[1 + q2 + �
2 p2]2

3
∑

i, j=1

∫ 1

0
dλ

∣

∣

∣

∣

λ − 1

2

∣

∣

∣

∣

∫ 1

0
dμ

∣

∣

∣

∣

∫

A>

r3g(r)
∫

dy χ(r,y)(q + �μ(λ − 1/2)p)∂2vi ,v j ρ̃s(y)
∫

dv ∂2vi ,v j
˜WN ,s (q, v) eiv·p

∣

∣

∣

∣

2

.

(32)
Denote by A< and A> the first and the second term of the sum on the r.h.s. of (32)
respectively. ForA< we use Young inequality and Hölder inequality with conjugated
exponents θ = 1 and θ ′ = ∞, thenwe perform the integral in the y variable to extract
r3 which cancels the singularity at zero in the expression for g(r) (Cf. (17)) together
with assumption c) on V , thus leading to the bound
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A< ≤ CN�
4
∫

dq
∫

dv(1 + q2)2|∇2
v

˜WN ,s(q, v)|2 + CN�
8
∫

dq
∫

dv |∇4
v

˜WN ,s(q, v)|2
(33)

where C depends on ‖∇2ρ̃s‖L∞ .
ForA>, we integrate by parts twice in the y variable and recall that e−|z−y|2/r2(1 +

|z − y|2/r2) is bounded uniformly in z ∈ R
3. Since ρ̃s ∈ L1(R3) we get the bound

A> ≤ CN�
4
∫

dq
∫

dv(1 + q2)2|∇2
v

˜WN ,s(q, v)|2 + CN�
8
∫

dq
∫

dv |∇4
v

˜WN ,s(q, v)|2
(34)

where C depends on ‖ρ̃s‖L1 and we have used the expression (17) for g(r) and
assumption b) for V .

Whence, the estimates (33) and (34) lead to

‖(1 + x2) ˜B1‖HS ≤ C
√
N�

2‖ ˜WN ,s‖H 2
2
+ C

√
N�

4‖ ˜WN ,s‖H 4 (35)

where C = C(‖ρ̃s‖L1 , ‖∇2ρ̃s‖L∞).
The Hilbert-Schmidt norms ‖(1 + x2) ˜B3‖HS, ‖(1 + x2) ˜B4‖HS and ‖(1 + x2)

˜B7‖HS can be handled analogously, thus obtaining

‖(1 + x2) ˜B3‖HS ≤ C
√
N�

4‖ ˜WN ,s‖H 4
4
+ C

√
N�

6‖ ˜WN ,s‖H 6
4

(36)

‖(1 + x2) ˜B4‖HS ≤ C
√
N�

2‖ ˜WN ,s‖H 2
4
+ C

√
N�

4‖ ˜WN ,s‖H 4
4

(37)

‖(1 + x2) ˜B7‖HS ≤ C
√
N�

3‖ ˜WN ,s‖H 2
3
+ C

√
N�

5‖ ˜WN ,s‖H 5
2

(38)

To bound the ˜Bi terms, i = 2, 5, 6, in which higher order derivatives of U appear,
we proceed as for ˜B1 and obtain the following bounds:

‖(1 + x2) ˜B2‖HS ≤ C
√
N�

4‖ ˜WN ,s‖H 2
2
+ C

√
N�

6‖ ˜WN ,s‖H 4 (39)

‖(1 + x2) ˜B5‖HS ≤ C
√
N�

4‖ ˜WN ,s‖H 4
2
+ C

√
N�

6‖ ˜WN ,s‖H 6 (40)

‖(1 + x2) ˜B6‖HS ≤ C
√
N�

3‖ ˜WN ,s‖H 2
2
+ C

√
N�

5‖ ˜WN ,s‖H 4 (41)

where C = C(‖ρ̃s‖L1 , ‖∇2ρ̃s‖L∞). We refer to [46] for a detailed proof.
Gathering together all the terms, we get

‖(1 + x2) ˜B‖HS
≤ C

√
N

[

�
2‖ ˜WN ,s‖H2

4
+ �

3‖ ˜WN ,s‖H3
4

+ �
4‖ ˜WN ,s‖H4

4
+ �

5‖ ˜WN ,s‖H5
4

+ �
6‖ ˜WN ,s‖H6

4

]

.

(42)
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3 Proof of Theorem 1

From Lemma 1 we have

tr |ωN ,t − ω̃N ,t | ≤ 1

�

∫ t

0
tr |[V ∗ (ρs − ρ̃s), ω̃N ,s]| ds + 1

�

∫ t

0
tr |Bs | ds . (43)

From Propositions 1 and 3, we get the following estimate on the terms on the r.h.s.
of Eq. (43):

tr |ωN ,t − ω̃N ,t | ≤ C
∫ t

0
tr |ωN ,s − ω̃N ,s | ds + CN�

∫ t

0

(

1 +
4

∑

k=1

‖ ˜WN ,s‖Hk+2
4

)

ds .

(44)
We further observe that the quantity ‖ ˜WN ,s‖Hk+2

4
is bounded uniformly in N if

‖WN‖Hk+2
4

≤ C for k = 1, . . . , 4. These regularity estimates can be obtained by sim-
ply adapting the proof of Lions and Perthame (cf. [35]). The details can be found in
[45].

Whence, by Grönwall lemma we have

tr |ωN ,t − ω̃N ,t | ≤ CN�

(

1 +
4

∑

k=1

‖WN‖Hk+2
4

)

,

where C = C(t, ‖ρ̃‖L1 , ‖∇2ρ̃s‖L∞). The boundedness of ‖∇2ρ̃s‖L∞ follows from
an adaptation of [35] (cf. [45] for the details of the proof).
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From the Boltzmann Description for
Mixtures to the Maxwell–Stefan
Diffusion Equations

Francesco Salvarani

Abstract This article reviews some recent results on the diffusion limit of the Boltz-
mann system for gaseous mixtures to the Maxwell–Stefan diffusion equations.

Keywords Boltzmann system · Maxwell–Stefan equations · Cross-diffusion

1 Introduction

TheMaxwell-Stefan system [25, 29] has been derived in the 19th century for describ-
ing the diffusion behaviour of multicolored gaseous mixtures. These equations are
very popular in the context of chemical engineering [30] and have been extensively
studied in the 20th century from the numerical point of view [17, 18]. Starting from
[10, 12], a renewed interest in the Maxwell–Stefan equations arose in the mathe-
matical community and several colleagues have worked for better understanding the
mathematical properties of these equations.

The goal of this article is to review the recent literature devoted to a specific topic:
the Maxwell–Stefan limit of kinetic equations for gaseous mixtures.

The starting point, in the case of non-reacting mixtures, is the standard extension
of the Boltzmann equation [5], derived by Ludwig Boltzmann in 1872. However,
many other variants of this model exist: we quote, for example, [26, 28], which
provide two very popular examples of kinetic equations for gaseous mixtures. In
the reactive case, the situation is similar. Several models have been proposed (for
example, [21]), but theMaxwell-Stefan asymptotics has beenmainly studied starting
from the models proposed and studied in [16] and in [24].

The structure of the article is the following. We first introduce the Maxwell–
Stefan equations and two of the main kinetic models for non-reactive and reactive
mixtures. Then, we consider the diffusive limit of the non-reactive system to the
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Maxwell–Stefan equations at the formal level. The scaling has been introduced in
[13], and subsequently developed in [11, 23]. After describing these formal results,
we summarize the result by Bondesan and Briant [8], which provides a rigorous
description of the limiting procedure. The next chapter is devoted to the reactive
case, and is essentially based on the recent articles [2–4]. We conclude this review
by quoting the most recent literature on some strictly related subjects.

2 The Maxwell–Stefan Equations

The classical Maxwell–Stefan system describes the diffusive behaviour of an ideal
gaseous mixture, composed by I ∈ N

∗ species. Let Ω ⊂ R
3 be a bounded domain

with regular boundary. The unknowns of the problem are theI densities ci : R
+ ×

Ω → R and the I fluxes Ji : R
+ × Ω → R

3, which obey to the following cross-
diffusion relationships:

⎧
⎪⎨

⎪⎩

∂t ci + ∇x · Ji = 0, (t, x) ∈ R
+ × Ω

∇xci = −
∑

j �=i

ki j (c j Ji − ci J j ). (1)

Here we use a notation which is more adapted from the mathematical point of view
with respect to the traditional notation used in the applications: ki j = 1/Ði j , where
the constants Ði j are suitable symmetric binary diffusion coefficients (i.e. Ði j = Ð j i

for all i, j = 1, . . . ,I ) .
Because of the symmetry of the whole set of binary diffusion coefficients, it is

immediate to see that the flux-gradient relationships in (1) are linearly dependent.
For this reason, an additional constitutive equation has to be added to (1) in order to
have a closed set of equations. The usual assumption –which guarantees the diffusive
behaviour of the mixture – is the equimolar diffusion condition

I∑

i=1

Ji = 0. (2)

Usually, the system of PDEs (1) is supplemented with appropriate initial and
boundary conditions. When dealing with isolated systems, it is standard to suppose
that the solution of (1)–(2) satisfies homogeneous Neumann boundary conditions:

ci (0, x) = cini (x) ∈ L∞(Ω), Ji (t, x) · nx |(t,x)∈(0,∞)×∂Ω = 0 (3)

for all i = 1, . . . ,I , where nx ∈ S
2 is the outward normal unit vector to the domain

Ω starting from a given point x ∈ ∂Ω . The Maxwell–Stefan system (1)–(2) is often
written in terms of molar fraction. In this case, it is supposed that cini ≥ 0 and that
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I∑

i=1

cini (x) = 1.

This normalization property is conserved by the time evolution of the system. It
means that

I∑

i=1

ci (t, x) = 1 for a.e. (t, x) ∈ R
+ × Ω. (4)

3 The Boltzmann System for Monatomic Inert Gaseous
Mixtures

The Boltzmann system for a mixture of ideal monatomic non-reacting gases Ai ,
i = 1, . . . ,I with I ≥ 2, subject to elastic mechanical collisions, describes the
time evolution of the species by means of I distribution functions fi , defined on
the phase space of the system. The particles of each species are identical and can
be modelled as point masses. Their main physical quantities are therefore the mass
mi ∈ R

+ and the velocity v ∈ R
3. The standard assumption on the density function

is of L1-type, i.e. fi (t, ·, ·) ∈ L1
loc(R

3
x ; L1(R3)), for all t ∈ R

+. This requirement
guarantees that the systemhas finitemass. Inwhat follows,we assume that the system
is isolated, so that no external force acts on the particles. Moreover, we suppose that
only elastic binary collisions are allowed. Therefore, momentum and kinetic energy
are conserved during the interaction process. Under the previous hypotheses, the
time evolution of the distribution functions fi is governed by the Cauchy problem

∂t fi + v · ∇x fi =
I∑

j=1

Qi j ( fi , f j ) for (t, x, v) ∈ (0,∞) × R
3 × R

3 (5)

fi (0, x, v) = f ini (x, v) for (x, v) ∈ R
3 × R

3 (6)

for each i = 1, . . . ,I , where Qi j (·, ·) denotes the bilinear integral operator describ-
ing the collisions of molecules of species Ai with molecules of species A j .

A given particle follows a rectilinear trajectory, until it collides with another
particle. When two particles belonging to the species Ai and A j , with masses mi ,
m j , and pre-collisional velocities v′, v′∗ collide, they exchange kinetic energy and
momentum. A microscopic collision is a local in space and instantaneous in time
phenomenon. It modifies the velocities of the particles, which become v and v∗, under
the constraint of conserving the total kinetic energy and the total momentum:

miv
′ + m jv

′
∗ = miv + m jv∗,

1

2
mi |v′|2 + 1

2
m j |v′

∗|2 = 1

2
mi |v|2 + 1

2
m j |v∗|2.

(7)
The previous equations can be easily inverted:
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v′ = 1

mi + m j
(miv + m jv∗ + m j |v − v∗| σ), v′∗ = 1

mi + m j
(miv + m jv∗ − mi |v − v∗| σ),

(8)
where σ ∈ S

2 is a unit vector which allows to keep into account the two degrees of
freedom arising in inverting (7).

If fi and f j are two nonnegative functions, the operator describing the collisions
between molecules of species Ai and molecules of species A j is defined by

Qi j ( fi , f j )(v) :=
∫∫

R3×S2

Bi j (v, v∗, σ )
[
fi (v

′) f j (v′
∗) − fi (v) f j (v∗)

]
dσ dv∗. (9)

The expressions of v′ and v′∗, are given by (8).
The quantities Bi j (i, j = 1, . . . ,I ) are usually called cross sections. They satisfy

the Galilean invariance and the microreversibility assumptions

Bi j (v, v∗, σ ) = Bji (v∗, v, σ ) = Bi j (v
′, v′

∗, σ ).

Because of the Galilean invariance, it is possible to prove that the collision kernels
Bi j only depend on the modulus of the relative velocity and on the cosine of the
deviation angle:

Bi j (v, v∗, σ ) = Bi j (|v − v∗|, cos θ) with cos θ = v − v∗
|v − v∗| · σ.

The choice of the collision kernels Bi j has a deep influence on the properties of
the Boltzmann equation. In the classical elastic case,

Bi j (σ, v − v∗) = Ki j |v − v∗|, Ki j > 0, (10)

for a gas of three-dimensional hard spheres. This type of cross section is called hard-
sphere cross section. When the binary forces between particles are proportional to
the inverse of the s-th power of the relative distance (for example, s = 2 corresponds
to the gravitational force or to the Coulomb force and s = 7 corresponds to the
Van der Waals interaction, see [31] for more details), Bi j can be factorized:

Bi j (σ, v − v∗) = Φi j (|v − v∗|)bi j (cos θ).

In particular, in three space dimensions,

Φi j (|v − v∗|) = |v − v∗|γ , γ = (s − 5)/(s − 1),

and all the bi j are locally smooth functions with a non integrable singularity when
θ → 0:

bi j (cos θ) sin θ ∼ Ki jθ
−(1+η), η = 2/(s − 1).
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The quantities Φi j are known in the literature as the kinetic collision kernels,
and the terms bi j are the angular collision kernels. The family of collision kernels
whose kinetic term has the form Φi j (|v − v∗|) = |v − v∗|γ is usually classified in
the literature in three sub-classes: hard potentials, when γ > 0, soft potentials, when
γ < 0, and Maxwellian potentials when γ = 0.

For simplifying the mathematical treatment of the angular cross section, Grad
introduced an angular cut-off assumption, by supposing that angular collision kernel
is integrable with respect to the angular variable [19, 20].

The link between themacroscopic description and the kinetic formulation is given
by the moments of the distribution functions fi (t, x, v). In particular, the number
densities ci , mass densities ρi , mean velocities ui and kinetic temperatures Ti of
each species are respectively given by

ci (t, x) =
∫

R3
fi (t, x, v) dv, (11)

ρi (t, x) = mini (t, x), (12)

ui (t, x) = 1

ci (t, x)

∫

R3
v fi (t, x, v)dv, (13)

Ti (t, x) = 1

3kBci (t, x)

∫

R3
mi |v − ui (t, x)|2 fi (t, x, v)dv, (14)

where kB = 1.380649 × 10−23 m2 kg s−2 K−1 is the Boltzmann constant.
It is important to underline that the Boltzmann constant has an exact value. It is

indeed one of the seven defining constants in the 2019 redefinition of SI base units.
In particular, the value of the Boltzmann constant kB allows to define the unit of
temperature T (the kelvin), in terms of the SI unit of energy (the joule), because
it is the proportionality constant between the thermodynamic temperature and the
average thermal energy of a gas. Unfortunately, the numerical value of the Boltzmann
constant has not been, in the mathematical community, the focus of attention and
often, for simplifying the computations, many articles and books simply suppose
that kB = 1. In the author’s opinion, however, this attitude should change because
of the central meaning of the Boltzmann constant as defining constant of the SI
base units, and therefore kB should explicitly appear in all the computations. This
approach would allow moreover an easier transfer of the mathematical studies in
kinetic theory to other scientific communities.

A central role in the study of kinetic equations and systems is played by local and
global Maxwellians (i.e. Gaussians in the language of kinetic theory).

In three space dimensions, Local Maxwellians have the form

M(c∗
i , u

∗
i , T

∗
i ) = c∗

i (t, x)

(
mi

2πkBT ∗
i (t, x)

)3/2

e
−mi

|v−u∗
i (t,x)|2

2kB T∗
i (t,x) , (15)
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for some space-time dependent functions c∗
i , u

∗
i and T ∗

i (1 ≤ i ≤ I ) . Global
Maxwellians have the same structure as local Maxwellians, but the quantities c∗

i ,
u∗
i and T ∗

i are constant in space and time. It is clear that

ci (t, x) =
∫

R3
M(ci , ui , Ti ) dv,

ui (t, x) = 1

ci (t, x)

∫

R3
vM(ci , ui , Ti )dv,

Ti (t, x) = 1

3kBci (t, x)

∫

R3
mi |v − ui (t, x)|2M(ci , ui , Ti )dv,

in agreement with Eqs. (11)–(14).
It is possible to prove that, in the mono-species case, a local Maxwellian is a local

equilibrium of the system for any choice of velocity and temperature. However,
when the mixture is composed of more than one species, the local Maxwellian state
is still an equilibrium for the whole system only when the velocities and the kinetic
temperatures of the species composing the mixture are exactly the same.

4 The Boltzmann System for Polyatomic Reactive or
Non-reactive Gas Mixtures

The model described in the previous section is designed for mixtures of monatomic
gases. However, when the species which compose the mixture are of polyatomic
type, it is not possible to neglect the additional – rotational and vibrational – degrees
of freedom induced by the polyatomic structure of the molecules. In this case, not
only the kinetic energy, but also the internal energy of the molecules must be taken
into account in the energy balance. Moreover, when chemical reactions are allowed,
the collisions may modify the species involved in the process: the species of the
incoming particles may be different from the species of the outgoing particles. This
behaviour needs to be carefully modelled both at the level of the binary encounters
and at the level of the time evolution of the density functions.

In this section, we describe the kinetic system proposed in [16], based on the
Borgnakke-Larsen procedure [9], which describes a mixture of polyatomic gases,
either of reactive or non-reactive type. The model is defined on an enlarged phase-
space: the independent variables of the unknowns fi have the physical meanings of
time (t ∈ R

+), space (x ∈ R
3), velocity (v ∈ R

3) and internal energy (I ∈ R
+).

Note that the internal energy is defined on R+. This choice allows to “forget” the
complicate structure of the discrete energy levels predicted by quantum mechanics,
once implemented a strategy for capturing the correct macroscopic behaviour of the
mixture. This goal is achieved by introducing a set of suitable measures ϕi (I )dI ,
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which allow to relate, in a simple and computable way, the Boltzmann level with the
macroscopic parameters of the corresponding reactive fluid equations and guarantee
that the model is consistent at the macroscopic level, with the energy law of virtually
any type of polyatomic gas.

Among the various possible dynamics of a chemically reacting mixture, the
authors of [16] have chosen to describe a mixture of four species A1, A2, A3 and
A4, which may react in a reversible way through the formula

A1 + A2 � A3 + A4 . (16)

For each species Ai , with i = 1, 2, 3, 4, the authors introduce the corresponding
distribution function fi = fi (t, x, v, I ), the molecular mass mi , the chemical bind-
ing energy Ei and the weight ϕi (I ). During a chemical reaction of type (16), the
conservation of mass requires that

m1 + m2 = m3 + m4 = M, (17)

and the balance of binding energies, i.e.

E = E3 + E4 − E1 − E2, (18)

means that the forward reaction A1 + A2 → A3 + A4 is endothermic when E > 0
or exothermic if E < 0.

In this description, the moments of the distribution function fi (t, x, v, I ) are
defined in L1 (ϕi (I )dIdv). In particular, the number density ci , mass density ρi ,
mean velocity ui and temperature Ti of each species are respectively given by

ci (t, x) =
∫

R3

∫ +∞

0
fi (t, x, v, I )ϕi (I ) dI dv, ρi (t, x) = mici (t, x),

ui (t, x) = 1

ci (t, x)

∫

R3

∫ +∞

0
v fi (t, x, v, I )ϕi (I ) dI dv,

Ti (t, x) = 1

3kBci (t, x)

∫

R3

∫ +∞

0
mi |v − ui (t, x)|2 fi (t, x, v, I )ϕi (I ) dI dv.

The possible collisions – of binary type – between the molecules of the mixtures
are either elastic or reactive.

In the case of elastic encounters, the particles involved in the collision modify
their velocities and internal energies, but the chemical composition of the particles is
unchanged. If we denote the velocities and internal energies of the colliding particles
before the collision by vi , v j and Ii , I j respectively, and their corresponding post-
collisional values by v′

i , v
′
j and I ′

i , I
′
j , the conservation laws of momentum and total

energy for elastic collisions are given by
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mivi + m jv j = miv′
i + m jv′

j , (19)

1

2
mi |vi |2 + Ii + 1

2
m j |v j |2 + I j = 1

2
mi |v′

i |2 + I ′
i + 1

2
m j |v′

j |2 + I ′
j . (20)

In particular, i �= j for bi-species collisions and i = j for mono-species collisions.
Reactive collisions occur among particles of species A1, A2 or A3, A4. In this case,

the velocities and the internal energies are modified by the collision and, moreover,
the reactants are transformed into the products of the reaction. By following the
notation of [2], the rearrangement of mass and the redistribution of chemical binding
energy are formalized as follows.

If Ai , A j and Ak , Al represent the reactants and products of the chemical reaction,
with (i, j, k, l) ∈ {(1, 2, 3, 4), (2, 1, 4, 3)} and (i, j, k, l) ∈ {(3, 4, 1, 2), (4, 3, 2, 1)}
for the forward and backward chemical reactions respectively, the conservation laws
ofmomentumand total energy (kinetic energy, internal energies and chemical binding
energy) for reactive collisions are given by

mivi + m jv j = mkv
′
k + mlv

′
l , (21)

1

2
mi |vi |2 + Ii + Ei + 1

2
m j |v j |2 + I j + E j = 1

2
mk |v′

k |2 + I ′
k + Ek + 1

2
ml |v′

l |2 + I ′
l + El .

(22)
Note that Eq. (22) can be written in an equivalent form as

1

2
mi |vi |2 + Ii + 1

2
m j |v j |2 + I j − E

2
= 1

2
mk |v′

k |2 + I ′
k + 1

2
ml |v′

l |2 + I ′
l + E

2

where E has been defined in (18).
The post-collisional velocities can be expressed in terms of pre-collisional veloc-

ities and the corresponding expressions are derived from the conservation laws for
reactive collisions (21), (22) and for non-reactive collisions (19), (20). They are
deduced by applying the Borgnakke-Larsen procedure [9], which distributes the
total energy of the colliding pair into kinetic and internal energies, when the colli-
sions are non-reactive, or into kinetic, internal and chemical binding energies, when
the collisions are reactive.

If we denote with μi j = mim j/(mi + m j ) the reduced mass of the colliding pair
and introduce the two Borgnakke-Larsen parameters R, r ∈ [0, 1], we have, in the
case of non-reactive elastic collisions,

v′
i = mivi + m jv j

mi + m j
+ m j

mi + m j

√
2RE

μi j
Tω

[
vi − v j
∣
∣vi − v j

∣
∣

]

v′
j = mivi + m jv j

mi + m j
− mi

mi + m j

√
2RE

μi j
Tω

[
vi − v j
∣
∣vi − v j

∣
∣

]

,
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where E = (μi j |vi − v j |2/2 + Ii + I j ) = (μi j |v′
i − v′

j |2/2 + I ′
i + I ′

j ) is the energy
in the center of mass reference frame, ω ∈ S

2 is a unit vector and Tω[x] = x − 2(ω ·
x)ω is the symmetry with respect to the plane {ω}⊥.

Suppose now that the collisions induce a forward chemical reaction and denote
by E ∗ the total energy of the colliding pair. In this case, the conservation laws (21)
and (22), give the post-collisional velocities, parameterized by a unit vector ω ∈ S

2:

v′
3 = m1v1 + m2v2

m1 + m2
+ m4

m3 + m4

√
2

μ34

(

RE ∗ − E

6

)1/2

Tω

[
v1 − v2
|v1 − v2|

]

v′
4 = m1v1 + m2v2

m1 + m2
− m3

m3 + m4

√
2

μ34

(

RE ∗ − E

6

)1/2

Tω

[
v1 − v2
|v1 − v2|

]

.

The reactive post-collisional velocities for the backward reaction in terms of pre-
collisional velocities are

v′
1 = m3v3 + m4v4

m3 + m4
+ m2

m1 + m2

√
2

μ12

(

RE ∗ + E

6

)1/2

Tω

[
v3 − v4
|v3 − v4|

]

v′
2 = m3v3 + m4v4

m3 + m4
− m1

m1 + m2

√
2

μ12

(

RE ∗ + E

6

)1/2

Tω

[
v3 − v4
|v3 − v4|

]

.

The evolution of the distribution functions fi , with i = 1, . . . , 4, is governed by
the system of kinetic equations

∂ fi
∂t

+ v · ∇x fi =
4∑

j=1

Qe
i j ( fi , f j ) + Qreact

i , i = 1, . . . , 4. (23)

In the sum written above, when i �= j , the notation Qe
i j represents the bi-species

elastic operator associated to collisions between one particle of constituent i and
another one of constituent j .When i = j , the operator Qe

ii is nothing but the standard
mono-species elastic collisional operator. Moreover, Qreact

i represents the reactive
collisional operator. The operators Qe

i j and Qreact
i are defined as follows. For non-

reactive interactions, the operators are

Qe
i j ( fi , f j ) =

∫

R3

∫ +∞
0

∫ 1

0

∫ 1

0

∫

S2

[
fi (v

′
i , I

′
i ) f j (v

′
j , I

′
j )− fi (v, I ) f j (v j , I j )

]

×Bi j (v, v j , I, I j , R, r, ω)(1 − R)
∣
∣v − v j

∣
∣−1

ϕi (I )
−1 dω dr dR dI j dv j ,

where Bi j are suitable cross sections and v′
i , v

′
j , I

′
i and I ′

j are given by
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v′i = miv + m jv j
mi + m j

+ m j

mi + m j

√
2RE

μi j
Tω

[
v − v j
∣
∣v − v j

∣
∣

]

,

v′j = miv + m j v j
mi + m j

− mi

mi + m j

√
2RE

μi j
Tω

[
v − v j
∣
∣v − v j

∣
∣

]

,

I ′i =
(μi j

2
|v − v j |2 + I + I j

)
r(1 − R), I ′j =

(μi j

2
|v − v j |2 + I + I j

)
(1 − r)(1 − R).

The reactive collisional operators are more involved. Let Breact : R
3 × R

3 ×
R

+ × R
+ × [0, 1]2 × S

2 → R
+ be a suitable cross-section.

In the case of the forward reaction, we define the total energy as

E ∗
1 = 1

2
μ12|v − v2|2 + I + I2 − E

2
.

Then, the reactive post-collisional velocities and internal energies can be written in
terms of the pre-collisional quantities in the following way:

v′
3 = m1v + m2v2

m1 + m2
+ m4

m3 + m4

√
2

μ34

(

RE ∗
1 − E

6

)1/2

Tω

[
v − v2
|v − v2|

]

,

v′
4 = m1v + m2v2

m1 + m2
− m3

m3 + m4

√
2

μ34

(

RE ∗
1 − E

6

)1/2

Tω

[
v − v2
|v − v2|

]

,

I ′
3 = r(1 − R)E ∗

1 − E

6
, I ′

4 = (1 − r)(1 − R)E ∗
1 − E

6
.

Consider the set

F1=
{

(I, I2, r, R, v, v2) : I ≥ E

6
, I2 ≥ E

6
, RE ∗

1 ≥ E

6
,

μ12

2
|v−v2|2 ≥ E

6
, (1−R)rE ∗

1 ≥ E

6
, (1−R)(1−r)E ∗

1 ≥ E

6
.

}

.

Then, the collisional integral describing the forward chemical reaction is

Qreact
1 (v, I ) =

∫

R3

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2

[(
m1m2

m3m4

)3

f3(v
′
3, I

′
3) f4(v

′
4, I

′
4) − f1(v, I ) f2(v2, I2)

]

× 1ξ∈F1 Breact (v, v2, I, I2, R, r, ω)
(1 − R)

(m1m2)2 |v − v2| ϕ1(I )
dω dr dR dI2 dv2.

The structure of Qreact
2 is similar. We define the total energy
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E ∗
2 = 1

2
μ12|v − v1|2 + I + I1 − E

2
,

the reactive post-collisional velocities and internal energies

v′
3 = m1v1 + m2v

m1 + m2
+ m4

m3 + m4

√
2

μ34

(

RE ∗
2 − E

6

)1/2

Tω

[
v1 − v

|v1 − v|
]

,

v′
4 = m1v1 + m2v

m1 + m2
− m3

m3 + m4

√
2

μ34

(

RE ∗
2 − E

6

)1/2

Tω

[
v1 − v

|v1 − v|
]

,

I ′
3 = r(1 − R)E ∗

2 − E

6
, I ′

4 = (1 − r)(1 − R)E ∗
2 − E

6
,

and the set

F2=
{

(I, I1, r, R, v, v1) : I ≥ E

6
, I1 ≥ E

6
, RE ∗

2 ≥ E

6
,

μ12

2
|v−v1|2 ≥ E

6
, (1−R)rE ∗

2 ≥ E

6
, (1−R)(1−r)E ∗

2 ≥ E

6

}

.

The collisional integral Qreact
2 describing the forward chemical reaction is hence

Qreact
2 (v, I ) =

∫

R3

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2

[(
m1m2

m3m4

)3

f3(v
′
3, I

′
3) f4(v

′
4, I

′
4) − f2(v, I ) f1(v1, I1)

]

× 1ξ∈F2 Breact (v, v1, I, I1, R, r, ω)
(1 − R)

(m1m2)2 |v − v1| ϕ2(I )
dω dr dR dI1 dv1.

In the case of the backward reaction we treat two collisional terms. Denote

E ∗
3 = 1

2
μ34|v − v4|2 + I + I4 + E

2

the total energy. We can write the reactive post collisional velocities and internal
energies as follows:

v′
1 = m3v + m4v4

m3 + m4
+ m2

m1 + m2

√
2

μ12

(

RE ∗
3 + E

6

)1/2

Tω

[
v − v4
|v − v4|

]

,

v′
2 = m3v + m4v4

m3 + m4
− m1

m1 + m2

√
2

μ12

(

RE ∗
3 + E

6

)1/2

Tω

[
v − v4
|v − v4|

]

,

I ′
1 = r(1 − R)E ∗

3 + E

6
, I ′

2 = (1 − r)(1 − R)E ∗
3 + E

6
.

The admissible set F3 is
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F3=
{
(I4, r, R, v4) : I4 ≥ 0, v4 ∈ R

3, r, R ∈ [0, 1]
}
.

The collisional integral Qreact
3 describing the backward reaction is defined by

Qreact
3 (v, I ) =

∫

R3

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2

[(
m3m4

m1m2

)3

f1(v
′
1, I

′
1) f2(v

′
2, I

′
2) − f3(v, I ) f4(v4, I4)

]

× 1ξ∈F3 Breact (v, v4, I, I4, R, r, ω)
(1 − R)

(m3m4)2 |v − v4| ϕ3(I )
dω dr dR dI4 dv4.

Finally, let

E ∗
4 = 1

2
μ34|v − v3|2 + I + I3 + E

2

be the total energy of the binary encounter. Then, we can write the reactive post-
collisional velocities and internal energies in the following way:

v′
1 = m3v3 + m4v

m3 + m4
+ m2

m1 + m2

√
2

μ12

(

RE ∗
4 + E

6

)1/2

Tω

[
v3 − v

|v3 − v|
]

,

v′
2 = m3v3 + m4v

m3 + m4
− m1

m1 + m2

√
2

μ12

(

RE ∗
4 + E

6

)1/2

Tω

[
v3 − v

|v3 − v|
]

.

I ′
1 = r(1 − R)E ∗

4 + E

6
, I ′

2 = (1 − r)(1 − R)E ∗
4 + E

6
.

The admissible set F4 is

F4=
{
(I3, r, R, v3) : I3 ≥ 0, v3 ∈ R

3, r, R ∈ [0, 1]
}
,

and the reactive collisional integral Qreact
4 , describing the backward reaction, is

defined by

Qreact
4 (v, I ) =

∫

R3

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2

[(
m3m4

m1m2

)3

f1(v
′
1, I

′
1) f2(v

′
2, I

′
2) − f4(v, I ) f3(v3, I3)

]

× 1ξ∈F4 Breact (v, v3, I, I3, R, r, ω)
(1 − R)

(m3m4)2 |v − v3| ϕ4(I )
dω dr dR dI3 dv3.

In [16], the equilibria for the kinetic system (23) have been studied in two steps,
first by assuming that themechanical equilibrium is reached, and then by considering
the chemical equilibrium associated to the reactive collisional operator.
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These equilibria are again called Maxwellians, because they play the same role
as the Maxwellian functions of the classical Boltzmann equation. Let ci ≥ 0, i =
1, . . . , 4, u ∈ R

3 and T > 0. Then, the reactive Maxwellians of the model have the
form

M (ci , u, T )= ci (t, x)

qi (T (t, x))

(
mi

2πkBT (t, x)

)3/2

exp

(

−mi |v−u(t, x)|2
2kBT (t, x)

− I

kBT (t, x)

)

where

qi (T (t, x)) =
∫ +∞

0
ϕi (I ) exp

(

− I

kBT (t, x)

)

dI (24)

can be interpreted as a Laplace transform of ϕi for all i .
Note that this model may describe a non-reactive mixture of polyatomic gases,

by simply neglecting the reactive collision kernels. In this case, it can be viewed as
a generalization of [14], which studied non-reactive polyatomic gaseous mixtures.

5 The Maxwell–Stefan Diffusion Limit for Non-reactive
Boltzmann Systems

In the previous section, we have described two kinetic models for reactive and non-
reactive mixtures. The diffusive limit of these systems is based on the study of the
asymptotic behaviour, as the mean free path tends to zero, of the rescaled kinetic
system in the diffusive scaling, by supposing that the solutions are perturbations of
the local Maxwellian state. It is indeed clear that, if the initial conditions are local
Maxwellians, there are no reasons which guarantee that the Maxwellian structure is
kept by the time evolution. However, it is possible to prove that the solutions of the
system stay close to Maxwellian functions, with a reminder which is small as the
mean free path tends to zero.

We first describe the formal asymptotics, then we consider the rigorous derivation
of the diffusive system.

5.1 The Formal Asymptotics

In [13], Boudin, Grec, and Salvarani study theBoltzmann systemdescribed in Sect. 3,
in a spatial domain Ω , in the case of Maxwellian molecules, i.e. by supposing that
each cross section Bi j depends on v, v∗ and σ only through the deviation angle
θ ∈ [0, π ] between (v − v∗) and σ . This means that, for each (i, j), there exists a
function bi j : [−1, 1] → R

+ such that
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Bi j (v, v∗, σ ) = bi j

(
v − v∗
|v − v∗| · σ

)

= bi j (cos θ) .

In the article is moreover supposed that bi j is even and that bi j ∈ L1(−1, 1)
(Grad’s angular cutoff assumption).

After introducing the mean free path ε > 0, the authors wrote the kinetic system
in the diffusive scaling. By denoting with ( f ε

i )1≤i≤I the corresponding unknowns
in this regime, each distribution function f ε

i solves

ε ∂t f
ε
i + v · ∇x f

ε
i = 1

ε

I∑

j=1

Qi j ( f
ε
i , f ε

j ), on R
+
∗ × Ω × R

3. (25)

The analysis has been carried out in the isothermal case, i.e. by supposing that the
temperature T is constant with respect to the time variable and homogeneous with
respect to the spatial variable. Once introduced the quantities

cε
i : R

+ × Ω → R
+, uε

i : R
+ × Ω → R

3, 1 ≤ i ≤ I ,

the article assumes that the system evolution leaves the distribution functions, up to
a correction of lower order, in the local Maxwellian state,

f ε
i = cεi (t, x)

(
mi

2πkBT

)3/2
e−mi |v−εuε

i (t,x)|2/2kBT (1 + O(ε)), t > 0, (x, v) ∈ Ω × R
3,

where the quantity εuε
i is the bulk velocity, of order ε, whose precise form may

depend on the considered species of the mixture. By supposing that all the initial
quantities

cini : Ω → R
+, uini : Ω → R

3, 1 ≤ i ≤ I ,

do not depend on ε and that
I∑

i=1

cini = 1 on Ω,

the authors prove that, in the limit ε → 0, for (t, x) ∈ R
+ × Ω , by supposing the

existence of the limits

ci (t, x) = lim
ε→0+

cε
i (t, x), Ji (t, x) = lim

ε→0+
cε
i (t, x)u

ε
i (t, x)

and that

c :=
I∑

i=1

ci =
I∑

i=1

cini = 1 on Ω,
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the pairs (ci , Ji ) formally satisfy the Maxwell–Stefan diffusion system (1) and give
an explicit form of the binary diffusion coefficients:

ki j = 2π mim j‖bi j‖L1

(mi + m j )kBT
. (26)

These binary diffusion coefficients are symmetric (ki j = k ji for all i, j = 1, . . . ,I )
and depend on the cross-section (in this case, the cross-section ofMaxwell molecules
with Grad’s angular cutoff).

The authors have not deduced, in the limiting procedure, the equimolar closure
relationship (2). However, they have proved that, formally,

∇x ·
(

I∑

i=1

Ji

)

= 0.

Other cross sections give different forms of the binary diffusion coefficients.
In particular, Hutridurga and Salvarani [23] derived the expression of the binary
diffusion coefficients under suitable assumptions on the collision kernels Bi j . They
suppose that the collision kernels Bi j depend on the modulus of the relative velocity
|v − v∗| and on the cosine of the deviation angle θ , i.e.

Bi j (v, v∗, σ ) = Φ(|v − v∗|)bi j (cos θ). (27)

Moreover, they assume that the angular collision kernels bi j belong to the class
L1(−1,+1) and that they are even functions with respect to their argument. Fur-
thermore, they suppose that the kinetic collision kernel Φ(|v − v∗|) is analytic in the
following sense: there exists a family {an}n∈N∗ ⊂ R such that Φ can be written as a
uniformly converging even power series:

Φ(|v − v∗|) =
∑

n∈N∗
an|v − v∗|2n.

Under these hypotheses, the binary diffusion coefficients computed in [23] have the
form

ki j =
{

a0
2πmim j‖bi j‖L1

(mi + m j )kBT
+ a110π‖bi j‖L1+

∑

n≥2

an
2π‖bi j‖L1(mim j )

(mi + m j )kBT

( ∑

n1+n2+n3=n

n!
n1!n2!n3!

∑

α,β,γ,δ,ρ,η∈2N∗
α+β=2n1
γ+δ=2n2
ρ+η=2n3

(2n1)!
α!β!

(2n2)!
γ !δ!

(2n3)!
ρ!η!

×E (α, β, γ, δ, ρ, η)

(
kBT

mi

)(α+γ+ρ)/2 (kBT

m j

)(β+δ+η)/2 )}

,
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where

E (α, β, γ, δ, ρ, η)=((α − 1)(α − 3)· · ·1)((β − 1)(β − 3)· · ·1) ((γ − 1)(γ − 3)· · ·1)
× ((δ − 1)(δ − 3) · · · 1) ((ρ − 1)(ρ − 3) · · · 1) ((η − 1)(η − 3) · · · 1) .

The binary diffusion coefficients depend on the reduced mass of the species, on the
temperature and on the cross sections of the kinetic model. Therefore, by tuning
the coefficients an in the kinetic cross section (27), it is possible to obtain several
forms of temperature dependency for the binary diffusion coefficients and compare
them with the experiments. When ai = 0 for all i ≥ 1, the formula written above
corresponds to the binary diffusion coefficients already deduced in Eq. (26).

A gas of hard spheres of fixed diameter is not included in the previous analysis.
The study of this case has been carried out by Anwasia [1].

In [11], Boudin, Grec and Pavan provide another approach for going beyond
Maxwellian molecules. They propose a semi-explicit link between the Maxwell–
Stefan diffusion coefficients and the cross sections of the corresponding rescaled
Boltzmann system for monatomic gaseous mixtures in the diffusive scaling, for
general cross sections Bi j = Bi j (v, v∗, σ ) satisfying the Galilean invariance and the
microreversibility assumptions, under Grad’s angular cut-off hypothesis. They prove
that

ki j =
∫ ∫ ∫

Bi j (v, v∗, σ ) exp

[

− mi

2πkBT
|v|2 − m j

2πkBT
|v∗|2

]
[
mi (v

′ − v)
]2 dσ, dv∗dv

= mim j

6(kBT )2(mi + m j )

(
mi

2πkBT

)3/2 ( m j

2πkBT

)3/2 ∫ ∫ ∫

Bi j (v, v∗, σ )×

exp

[

− mi

2πkBT
|v|2 − m j

2πkBT
|v∗|2

]
(
v − v∗ + |v′ − v|σ ) · (miv − m j v∗

)
dσ, dv∗dv.

These two equivalent forms of the binary diffusion coefficients show their positivity
as well as their symmetry.

We moreover quote [22], which derived, by using the same approach, a system
of Maxwell–Stefan type when the temperature is not uniform in space nor constant
in time. In the diffusive limit, the authors show that the kinetic temperature of each
species of the mixture tends to the same temperature function T = T (t, x), (t, x) ∈
(0,∞) × Ω , Ω ⊆ R

3 as ε → 0. The structure of the system they derived is:

⎧
⎪⎪⎨

⎪⎪⎩

∂t ci + ∇x · Ji = 0 in (0,∞) × Ω, i = 1, . . . ,I

∇x (ci T ) = −
∑

j �=i

k∗
i j

(
c j Ji − ci J j

)
in (0,∞) × Ω, i = 1, . . . ,I ,

(28)
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The binary diffusion coefficients k∗
i j , as in the previously described articles, depend

on the cross sections. In particular, if the hypotheses on the cross sections are the
same as in [1, 11, 13] or [23] respectively, then the binary diffusion coefficients in
(28) are of the form k∗

i j = T (t, x)ki j , where ki j are the binary diffusion coefficients
described in [1, 11, 13] or [23].

5.2 The Rigorous Diffusive Asymptotics

The article by Bondesan and Briant [8] studies the Maxwell–Stefan asymptotics,
in the 3-dimensional torus T3, of the system of coupled Boltzmann equations for
mixtures (5)–(6), with collisional integrals of the form (8)–(9) and suitable cross
sections (of cutoff Maxwellian type, or hard potentials, or hard spheres). The starting
point is the Cauchy theory, proved by the same authors in [7], whose precise result
is the following.

Theorem 1 Let s > 3 be an integer, ū : R+ × T
3 → R

3 be in L∞(R+; Hs(T3))

with ∇x · ū = 0, and consider c̄ > 0. Suppose that there exist δMS, CMS, C ′
MS, λMS >

0 such that for all ε ∈ (0, 1] and for any initial datum (c̃ in, ũ in) ∈ Hs(T3) ×
Hs−1(T3), for almost any x ∈ T

3 and for any 1 ≤ i ≤ I , the following require-
ment are satisfied:

(i) Mass compatibility:
I∑

i=1

c̃ in
i (x) = 0 and

∫

T3
c̃ in
i (x)dx = 0,

(ii) Mass positivity: c̄i + εc̃ in
i (x) > 0,

(iii) Moment compatibility: ∇x c̃
in
i =

∑

j �=i

ki j c
in
i c in

j

(
ũ in
j − ũ in

i

)
,

(iv) Smallness assumptions:
∥
∥c̃ in

∥
∥
Hs

x
≤ δMS and ‖ū‖L∞

t Hs
x

≤ δMS.

Then, there exists a unique weak solution

(c,u) = (c̄ + εc̃, ū + εũ
)

in L∞(
R

+; Hs(T3)
)× L∞(

R
+; Hs−1(T3)

)
to the incompressible Maxwell–Stefan

system

∂t ci + ∇x · (ciui ) = 0, (29)

− ∇xci =
I∑

j=1

ki j ci c j (ui − u j ), (30)

∇x ·
(

I∑

i=1

ciui

)

= 0, (31)
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such that initially (c̃, ũ) t=0 = (c̃ in, ũ in
)
a.e. on T

3. In particular, if s > 4 and
ū ∈ C0

(
R

+; Hs(T3)
)
, then the pair (c,u) also belongs to C0

(
R

+; Hs−1(T3)
)×

C0
(
R

+; Hs−2(T3)
)
. Moreover, c is positive and the following relations hold a.e.

on R+ × T
3:

〈c, ũ〉 =
I∑

i=1

ci (t, x)ũi (t, x) = 0 and
∫

T3
c̃i (t, x)dx = 0.

Finally, for almost any time t ≥ 0

‖c̃‖
Hs

x

(
c̄− 1

2

) ≤ e−tλMS
∥
∥c̃ in

∥
∥
Hs

x

(
c̄− 1

2

) , ‖ũ‖Hs−1
x

≤ CMSe
−tλMS

∥
∥c̃ in

∥
∥
Hs

x

(
c̄− 1

2

) ,

∫ t

0
e2(t−τ)λMS ‖ũ(τ )‖2Hs

x
dτ ≤ C ′

MS

∥
∥c̃ in

∥
∥2
Hs

x

(
c̄− 1

2

) .

The constants δMS, λMS, CMS andC ′
MS are constructive and only depend on s, the number

of species I , the diffusion coefficients (ki j )1≤i, j≤I and the constant vector c̄. In
particular, they are independent of the parameter ε.

This theorem guarantees the possibility of building a Cauchy theory around the
macroscopic state (c̄, ū), instead of considering the equilibrium (c̄, 0). It is hence
possible to give a complete description of systems having an equilibrium state with a
constant mass vector c̄. Actually, this theorem does not provide strong uniqueness for
the solutions, because infinitelymany solutions to theMaxwell–Stefan system can be
constructed by considering different constant c̄ and ū satisfying the incompressible
condition. However, as soon as it is possible to fix a macroscopic equilibrium (c̄, ū),
then strong uniqueness is recovered around this specific state.

The next step byBondesan andBriant has been aCauchy theory for theBoltzmann
system (5) having the property of being uniformwith respect to the Knudsen number
ε. Their result allows to prove that, in the limit ε → 0, the Maxwell–Stefan equation
are rigorously derived. The authors work in the three-dimensional torus T3.

The assumptions on the cross sections Bi j at the kinetic level are the following:

(H1) All the Bi j satisfy a symmetry property with respect to the interchange of the
indices i and j , i.e.:

Bi j (|v − v∗|, cos θ)=Bji (|v − v∗|, cos θ), for all v, v∗ ∈ R
3 and for all θ ∈ R.

(H2) All cross sections Bi j can be decomposed as the product of a kinetic part
Φi j ≥ 0 and of an angular part bi j ≥ 0:

Bi j (|v − v∗|, cos θ) = Φi j (|v − v∗|)bi j (cos θ), for all v, v∗ ∈ R
3 and for all θ ∈ R.

(H3) The kinetic part is derived from an hard or a Maxwellian (γ = 0) potential:

Φi j (|v − v∗|)=CΦ
i j |v − v∗|γ , CΦ

i j > 0, γ ∈ [0, 1], for all v, v∗ ∈ R
3.
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(H4) The angular part satisfies Grad’s angular cutoff in strong form [19]: there
exists a constant C > 0 such that

0 < bi j (cos θ) ≤ C | sin θ || cos θ |, b′
i j (cos θ) ≤ C, θ ∈ [0, π ].

Moreover,

inf
σ1,σ2∈S2

∫

S2
min{bii (σ1 · σ3), bii (σ2 · σ3)}dσ3 > 0.

The precise statement of their theorem is the following [8]:

Theorem 2 Let the collision kernels Bi j satisfy assumptions (H1)–(H2)–(H3)–
(H4), and let μμμ be the unique global equilibrium of the mixture. Consider the local
Maxwellian vector Mε = (Mε

1 , . . . , M
ε
I ), where

Mε
1 = ci (t, x)

(mi

2π

)3/2
exp
(
−mi

2
|v − εui (t, x)|2

)
, i = 1, . . . ,I .

There exist s0 ∈ N
∗, δ̄MS > 0 and ε0 ∈ (0, 1] such that the following statements

hold for any integer s ≥ s0.

(i) There exist three sets of positive constants
(
a(s)

α

)s
α
,
(
b(s)

α,k

)s
α,k and

(
d(s)

α,β

)s
α,β

such
that, for all ε ∈ (0, ε0], the following norms are equivalent:

‖·‖H s
ε

∼

⎛

⎜
⎜
⎝‖·‖2L2

x,v

(
μμμ

− 1
2

)+
∑

|α|≤s

∥
∥∂α

x ·∥∥2
L2
x,v

(
μμμ

− 1
2

)+ε2
∑

|α|+|β|≤s
|β|≥1

∥
∥∂β

v ∂α
x ·∥∥2

L2
x,v

(
μμμ

− 1
2

)

⎞

⎟
⎟
⎠

1
2

.

(ii) Let LLL be the vector of linearized mono-species Boltzmann operators around the
global Maxwellian equilibrium of the mixture μμμ,

Tε = ε−2LLL − ε−1v · ∇x

and πTε be the orthogonal projection onto kerTε in L2(R3,μμμ− 1
2 ).

There exists δB > 0 such that, for all ε ∈ (0, ε0], for all δMS ∈ [0, δ̄MS] and for any
initial datum f in in Hs

(
T
3 × R

3,μμμ− 1
2
)
with

∥
∥f in

∥
∥
H s

ε

≤ δB,
∥
∥πTε (f in)

∥
∥
L2
x,v

(
μμμ

− 1
2

) ≤ CδMS,

for some positive constant C > 0 independent of the parameters ε and δMS, there

exists a unique f ∈ C0
(
R

+; Hs
(
T
3 × R

3,μμμ− 1
2
))

such that Fε = Mε + εf is the
unique weak solution of the Boltzmann multi-species equation (25). Moreover,
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if Fε, in = Mε, in + εf in ≥ 0, then Fε(t, x, v) ≥ 0 almost everywhere on R
+ ×

T
3 × R

3. Finally, for any time t ≥ 0, Fε satisfies the stability property

‖Fε − Mε‖H s
ε

≤ εδB, for all ε ∈ (0, ε0].

The constant δB is explicit and only depend on the number of species I , on the
atomic masses (mi )1≤i≤I , and on the cross sections (Bi j )1≤i, j≤I . In particular, it
is independent of the parameters ε and δMS.

The strategy of proof consists in constructing perturbations of localMaxwellian states
whose fluid quantities are perturbative solutions of the Maxwell–Stefan equations
(29)–(31). Then, they plug the perturbation into the rescaled Boltzmann system (25).
They obtain a system composed of four terms: the rescaled free transport operator, a
linearized operator, a bilinear operator and a source term, which encodes the distance
between the Maxwell–Stefan system and the fluid part of the perturbed Boltzmann
equation.

However, the central spectral gap property cannot be directly recovered, because
local Maxwellians are not local equilibria of the system, unless they share the same
temperature and velocity (see Sect. 3). Nonetheless, the authors notice that the loss of
the spectral gap has a lower order of magnitude. By introducing a modified Sobolev
norm, they recover a coercivity property and close the energy estimates on the non-
linear terms.

Uniqueness is proved in a perturbative regime only.
A possible research direction consists in extending the previous strategy to the

rigorous derivation of the Maxwell–Stefan equations in the non-isothermal setting.

6 The Maxwell–Stefan Diffusion Limit for Reactive Kinetic
Systems

When chemical reactions are allowed, temperaturemay vary in space and time.More-
over, the structure of the target system depends on the relative order of magnitude of
the reactive collisional terms with respect to the non-reactive ones.

In what follows, we will describe the situation of a quaternary reacting mixture,
which is the most common situation considered in the literature. The extension to
other types of mixture is straightforward.

Starting from the SRS kinetic model [24] for a mixture of four ideal gases under-
going a reversible chemical reaction of bimolecular type, Anwasia, Gonçalves and
Soares derive in [4] the corresponding Maxwell–Stefan asymptotics in the diffusive
scaling, in the vanishing limit of the mean free path, when all the collisional integrals
have the same order of magnitude. The authors first define the reactive cross sections
for the direct and reverse chemical reactions in terms of their threshold relative veloc-
ities. Let di > 0 be the diameter of the particles of the i-th species (i = 1, . . . , 4)
and define, for any pair of species
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σ 2
i j = 1

4
(di + ds)

2, i = 1, . . . , 4, j = 1, . . . , 4.

Then

σ ′2
12 =

{
β12σ

2
12 〈ε, v1 − v2〉 ≥ Ξ12

0 〈ε, v1 − v2〉 < Ξ12
σ ′2
34 =

{
β34σ

2
34 〈ε, v3 − v4〉 ≥ Ξ34

0 〈ε, v3 − v4〉 < Ξ34

where the coefficients βi j ∈ [0, 1] represent the fraction of colliding pairs with
enough kinetic energy to produce a chemical reaction.

By neglecting external forces, the SRS kinetic equations are given by

∂ fi
∂t

+ vi · ∇x fi = Ji , in R+ × Ω × R
3,

with Ji = J E
i + J R

i , for i = 1, 2, 3, 4. For each species, J E
i denotes the elastic col-

lision operator and J R
i the reactive collision operator. Their precise form is

J Ei = σ 2
i i

∫

R3

∫

S
2+

[
fi

′ f ′
i∗ − fi fi∗

] 〈
ε, vi − vi∗

〉
dε dvi∗

+
4∑

s=1
s �=i

σ 2
is

∫

R3

∫

S
2+

[
fi

′ f ′
s − fi fs

] 〈ε, vi − vs〉 dε dvs

− βi jσ
2
i j

∫

R3

∫

S
2+

[
fi

′ f j ′ − fi f j
]
Θ
(〈
ε, vi − v j

〉− Ξi j
) 〈

ε, vi − v j
〉
dε dv j ,

J R
i = βi jσ

2
i j

∫

R3

∫

S
2+

[(
μi j

μkl

)2

f ◦
k f ◦

l − fi f j

]

Θ
(〈
ε, vi − v j

〉− Ξi j
) 〈

ε, vi − v j
〉
dε dv j ,

where f ′
i = f (t, x, v′

i ), f ′
i∗ = f (t, x, v′

i∗), f ′
s = f (t, x, v′

s), fk◦ = f (t, x, v◦
k ), fl◦ =

f (t, x, v◦
l ), and Θ is the Heaviside step function.

Then Anwasia, Gonçalves and Soares prove that, in the limit, the concentrations
ci and the diffusive fluxes Ji satisfy an equation of Maxwell–Stefan type:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ci
∂t

+ ∇x · Ji = σ 2
i j

(
2πμi j

kBT

)1
2

[(
μi j

μkl

)1
2

ck cl exp

(
E

kBT

)

− ci c j

]

×
[
2kBT

μi j
Γ (2, z∗

i ) −
(

Ξi j

c0

)2

Γ (1, z∗
i )

]

∇xci = 32

3

4∑

s=1
s �=i

σ 2
is

(
2πμi j

kBT

)1
2 (

ciJs − csJi
)
,
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with

μi j = mim j

mi + m j
, z∗

i = μi j

2kBT

(
Ξi j

c0

)2

,

where E is the reaction heat defined by the balance of chemical binding energies
(18), Γ denotes the incomplete gamma function, c0 denotes the characteristic speed
of sound in the mixture at a reference temperature T0, ζi is the activation energy for
each of the species and Ξi j = √2ζi/μi j is the threshold relative velocity.

It is worth noticing that no influence of the chemical reaction appears in the
limiting Maxwell–Stefan equations written above.

In [3], the same authors modify the scaling, by supposing that both mechanical
collisions and chemical reactions have comparable relaxation times, much smaller
than the characteristic time of the flow. The reactiveMaxwell–Stefan equations under
this scaling have the form:

∇x (ci T ) = −
4∑

s=1
s �=i

(
csJs − ciJs

Dis

)

+ c jJi − ciJ j

Di j
+ clJk

Dk
+ ckJl

Dl
− c jJi

Di
− ciJ j

D j
,

where the indices (i, j, k, l) take the values (1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2) or
(4, 3, 2, 1), and the quantities Dis , Di j , Dk , Dl , Di are explicitly computed diffusion
coefficients, based on the kinetic parameters of the model.

Weconclude this sectionwith the formal derivation of theMaxwell–Stefan asymp-
totics starting from the kinetic model for reactive gases by Desvillettes, Monaco and
Salvarani [16] whose precise form is described in Sect. 4, under the standard diffu-
sive scaling and whenmechanical collisions are predominant with respect to reacting
collisions.

The formal limit as ε → 0, when the angular collision kernels of both the elastic
bi-species and the reactive operators are odd functions of cos θ , has been studied by
Anwasia, Bisi, Salvarani and Soares [2]. The resulting target equations have the struc-
ture of a system of balance equations coupled with the corresponding temperature-
dependent flux-gradient relationships and with an equation describing the energy
balance:

∂ci
∂t

+ ∇x ·Ji = −λi A i = 1, 2, 3, 4

∇x

(
ci kBT

)
= −

4∑

j=1
j �=i

c jJi − ciJ j

Di j
i = 1, 2, 3, 4

∂

∂t

[
4∑

i=1

ci

(
3

2
kBT + q∗

i (T )

qi (T )

)]

+ ∇x ·
[

4∑

i=1

(
5

2
kBT + q∗

i (T )

qi (T )

)

Ji

]

= −E A,

where the production term A is given by
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A =
[(

m3m4

m1m2

)3/2 c1c2
q1(T (t, x))q2(T (t, x))

exp

(

− E

kBT (t, x)

)

− c3c4
q3(T (t, x))q4(T (t, x))

]
4√

π(m3m4)2
Γ

(
γ + 2

2

)(
2kBT

μ34

)(γ−1)/2

×
∫ +∞

0

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2
exp

(

− I+ I4
kBT

)

Φreact (I, I4, R, r)

× breact (cos θ) cos θ (1 − R) dσdrdRdI4dI,

and the diffusion coefficients Di j are

1

Di j
= 4

3
√

π
μ

(3−γ )/2
i j (2kBT (t, x))(γ−1)/2 1

qi (T (t, x))q j (T (t, x))

×Γ

(
γ + 4

2

)∫ +∞

0

∫ +∞

0

∫ 1

0

∫ 1

0

∫

S2
exp

(

− I+ I j
kBT (t, x)

)

Φi j (I, I j , R, r)

× cos θ(1−R)bi j (cos θ) dσdrdRdI jdI .

In the previous formulas,Γ denotes the complete Gamma function and the quantities
qi are given by (24), whereas

q∗
i (T (t, x)) =

∫ +∞

0
Iϕi (I ) exp

(

− I

kBT (t, x)

)

dI.

The structure of these equations takes into account the effects of the chemical
reactions and their consequences with respect to the evolution of the temperature of
themixtures.Weunderline that they are compatiblewith the energy lawof polyatomic
gases and the law of mass action. Indeed, at the equilibrium, it is possible to deduce
the law of mass action

c1c2
c3c4

=
(
m1m2

m3m4

)3/2 q1(T (t, x))q2(T (t, x))

q3(T (t, x))q4(T (t, x))
exp

(
E

kBT (t, x)

)

,

which depends on the choice of the functional forms of the weights ϕi . The choice
of these weights can be adapted to the physical situation of the mixture.

7 Some Related Research Directions

Some other articles consider problems with a strong relationship with the subject of
this note.

Bondesan, Boudin andGrec [6] derive a numerical method for the Euler equations
describing a mixture, stable with respect to the relaxation parameter, whose limit is
the Maxwell–Stefan system.
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Briant and Grec have studied in [15] the asymptotics of the Boltzmann system
(5)–(6) in a framework different from the one studied in [8]. They suppose that, at
the leading order, the species velocities are identical and obtain a cross-diffusion
system of Fick type, not equivalent to the Maxwell–Stefan systems because the two
matrices linking fluxes and concentrations are not invertible.

A relationship between the Fick diffusion andMaxwell–Stefan diffusion has been
investigated by Salvarani and Soares in [27]. They rigorously prove the relaxation
of the Maxwell–Stefan system, together with the equimolar closure relationship (2),
towards a system of uncoupled linear diffusion equations of Fickian type.
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Alternative Quantum Formulations and
Systems at the Classical-Quantum
Border

R. Vilela Mendes

Abstract There are, at least, three completely equivalent formulations of quantum
mechanics: the Hilbert space approach, the phase-space deformation approach and
the tomographic one. The Hilbert space approach is the most widely used to describe
dynamics at the microscopic level. However, with the recent emergence of “quan-
tum technology” it became important to have appropriate models for systems with
behavior at the classical-quantum border. For these systems, the deformation and
tomographic approaches turn out to be more convenient than the Hilbert space one.
This paper presents a short review of the alternative quantum formalisms as well as
some applications, one of them discussed at the Nice conference.

Keywords Phase-space deformation · Quantum tomography · Quantum kinetics ·
Quantum complexity

1 Introduction

There are, at least, three completely equivalent formulations of quantum mechanics:
the Hilbert space approach, the phase-space deformation approach and the tomo-
graphic one.1 In the Hilbert space approach quantum states are mapped to rays in
Hilbert space and physical measurable quantities are obtained from expectation val-
ues of the self-adjoint operators that represent observables. This is the most widely
used formalism to describe dynamics at the microscopic level. However, with the
recent developments in quantum technology it became important to have suitable
models for systems with a behavior at the classical-quantum border. For these sys-
tems, it would be convenient to have a “smooth” transition between the phase space

1For other formulations of quantum mechanics see D. F. Styer et al. Am. J. Phys. 70 (2002) 288–
297. Here however I have emphasized those that seem most useful to describe systems at the
classical-quantum border.
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description of classical dynamics and the quantum phenomena. This is achieved by
a phase space formulation of quantum mechanics, the quantum effects correspond-
ing to a replacement of the classical commutative algebra of velocity and momenta
by a non-commutative algebra. Likewise the non-commutative nature of quantum
observables is circumvented in the tomographic approach by dealing with linear
combinations of the noncommuting observables, the full scope of quantum dynam-
ics being obtained by varying the coefficients in the linear combination. The Hilbert
space approach being very familiar, this paper only presents a short review of the
other two quantum formalisms as well as some applications. Finally it is pointed
out that the alternative approaches corresponding to a replacement of the operators
by functions (operator symbols) with a non-commutative algebra, it is, in principle,
possible to develop many other equivalent formalisms for quantum mechanics. This
is formalized in a quantizer-dequantizer framework.

2 Quantum Mechanics and Deformation Theory

The phase space of classical mechanics is a symplectic manifold W = (T ∗M,ω)

where T ∗M is the cotangent bundle over the configuration space M and ω is a
symplectic form. In local (Darboux) coordinates (pi , qi ) the symplectic form is

ω =
∑

dpi ∧ dqi (1)

The Poisson bracket gives a Lie algebra structure to the C∞-functions onW , namely

{ f, g} =
∑

i

∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

(2)

in local coordinates.
The transition to quantum mechanics is now regarded as a deformation of this

Poisson algebra [1]. Let for example T ∗M = R2n . Then,

ω =
∑

1≤i, j≤n

ωi j dx
i ∧ dx j =

∑

1≤i≤n

dxi ∧ dxi+n (3)

Consider the following bidifferential operator

Pr ( f, g) =
∑

i1···ir
j1 ··· jr

ωi1 j1 · · ·ωir jr ∂ i1 · · · ∂ ir ( f )∂ j1 · · · ∂ jr (g) (4)

P1( f, g) is the Poisson bracket. P3( f, g) is a non-trivial 2-cocycle and, barring
obstructions, one expects the existence of non-trivial deformations of the Poisson
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algebra. Existence of non-trivial deformations have indeed been proved in a very
general context [2–5]. They always exist if W is finite-dimensional and for a flat
Poisson manifold they are all equivalent to the Moyal [6] bracket

[ f, g]M = 2

�
sin

(
�

2
P

)
( f, g) = { f, g} − �

2

4.3! P
3( f, g)+· · · (5)

Moreover [ f, g]M = 1
i� ( f ∗� g − g ∗� f ) where f ∗� g is an associative star-

product

f ∗� g = exp

(
i
�

2
P( f, g)

)
(6)

Correspondence with quantummechanics formulated in Hilbert space is obtained
by the Weyl quantization prescription. Let f (p, q) be a function in phase space and
f̃ its Fourier transform. Then, if to the function f we associate the Hilbert space
operator

Ω( f ) =
∫

f̃ (xi , yi )e
− i

�

∑
xi Qi+yi Pi dxidyi (7)

where Qiψ = xiψ and Pi = − i� ∂
∂xi

ψ , one finds

[Ω( f ),Ω(g)] = i�Ω ([ f, g]M) (8)

with, in the left-hand side, the usual commutator for Hilbert space operators and in
right hand side the Moyal bracket. Therefore quantum mechanics may be described
either by associating self-adjoint operators in Hilbert space to the observables or,
equivalently, staying in the classical setting of phase-space functions but deforming
their product to a ∗�- product and their Poisson brackets to Moyal brackets.

Time evolution of the observables is described by the Moyal equation

∂

∂t
f = [ f, H ]M = 1

i�
( f ∗� H − H ∗� f ) (9)

Somewhat related to quantization by deformation is the geometric quantization
theory. Geometric quantization [7] is a very nice and profound theory. Starting from
a classical phase-space it aims to construct, in a consistent manner, a Hilbert space
representing the corresponding quantum theory. The final product being a Hilbert
space, a setting quite different from the classical phase-space, geometric quantization
is probably not so useful to study systems at the classical-quantum border. I might
be wrong.

Here is a brief sketch of the geometric quantization scheme: One starts from a
manifold M with a symplectic structure ω and construct a Hermitean line bundle
L with a connection of curvature −iω. L is the prequantization line bundle and the
Hilbert space H0 of square-integrable sections of L is the prequantum Hilbert space.
Smooth functions on M are mapped to operators on H0 taking Poisson brackets to
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commutators. H0 is in general too big a space. H0 is then cut down by polarization,
which picks out a subspace Px of the complexified tangent space at x ∈ M . The
quantumHilbert space H is then defined to be the space of square-integrable sections
of L that yield zero when we take their covariant derivative at any point x in the
direction of any vector in Px .

3 Quantum Mechanics in the Tomography Approach

The tomography approach may be used both for classical and quantum mechanics,
which makes the classical-quantum transition quite easy. One therefore starts by
describing the tomography formulation of classical statistical mechanics. States in
classical statistical mechanics are described by a function ρ (x, p), which is the
probability distribution in phase space,

ρ (x, p) ≥ 0 ,

∫
ρ (x, p) dp = P(x) ,

∫
ρ (x, p) dx = P̃(p) , (10)

P(x) and P̃(p) being the (marginal) probability distributions for position and
momentum.

The density function ρ (x, p) is normalized

∫
ρ (x, p) dx dp = 1 .

Consider now a parametrized observable, a linear function on the phase space of the
system,

X (x, p) = μx + νp , (11)

The variable X (x, p) can be considered as the position of the systemwhenmeasured
in a rotated and rescaled reference frame in the classical phase space. All the position
andmomentum features of the systemare obtained byvarying theμ and ν parameters.
The tomography map is defined as

M (X, μ, ν) = 1

2π

∫
e−ik(X−μx−νp) ρ (x, p) dx dp dk . (12)

which is an homogeneous function,

M (λX, λμ, λν) = |λ|−1M (X, μ, ν) , (13)

and the Eq. (12) can be inverted,
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ρ (x, p) = 1

4π2

∫
M (X, μ, ν) exp [−i (μx + νp − X)] dX dμ dν . (14)

Therefore the classical systemmay be equivalently described by the phase space den-
sity ρ (x, p) or by the tomography map. The tomography map cannot be an arbitrary
function, it must be such that the corresponding ρ (x, p) in (12) is a nonnegative
function. As seen from (12) the classical tomography map is the Fourier transform
of a characteristic function

M (X) = 1

2π

∫
〈eikX 〉e−ikX dk (15)

which is a real nonnegative function. Furthermore

M (X) =
∫

ρ (x, p) δ (X (x, p) − X) dx dp . (16)

and ∫
M (X) dX =

∫
ρ (x, p) dx dp = 1 . (17)

The evolution equation for the classical phase space density of a particle with
mass m = 1 and potential V (x),

∂ρ (x, p, t)

∂t
+ p

∂ρ (x, p, t)

∂x
− ∂V (x)

∂x

∂ρ (x, p, t)

∂p
= 0 (18)

can be rewritten in terms of the tomography map M (X, μ, ν, t)

•
M − μ

∂

∂ν
M − ∂V

∂x
(q̃)

[
ν

∂

∂X
M

]
= 0 , (19)

with the argument of the function ∂V/∂x being replaced by the operator

q̃ = −
(

∂

∂X

)−1
∂

∂μ
. (20)

For the mean value of position in classical statistical mechanics, one has

〈x〉 =
∫

ρ (x, p) x dx dp = i
∫

M (X, μ, ν) ei X δ′ (μ) δ (ν) dX dμ dν . (21)

In quantum mechanics one considers the observable (� = 1)

X̂ = μq̂ + ν p̂ , (22)
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q̂ and p̂ being the quantum position and momentum. The quantum tomography map
may be defined directly from the wave function or the density matrix. However it
was originally defined [8–12] in terms of the Wigner function W (q, p) as follows:

M (X, μ, ν) =
∫

exp [−ik(X − μq − νp)]W (q, p)
dk dq dp

(2π)2
. (23)

One sees that the formula (23) is identical to (12) of the classical case. For a pure
state, with wave function 	 (y), the quantum tomography map has the form [13]

M (X, μ, ν) = 1

2π |ν|
∣∣∣∣
∫

	 (y) exp

(
iμy2

2ν
− iyX

ν

)
dy

∣∣∣∣
2

. (24)

From Eq. (24) one sees that the tomography map is the amplitude squared of a
projection of the quantum state on the eigenvectors of the operator X̂ in (22).

The formula (23) can be inverted and, as in the classical case, theWigner function
can be expressed in terms of the tomography map [8],

W (q, p) = 1

2π

∫
M (X, μ, ν) exp [−i (μq + νp − X)] dμ dν dX . (25)

As was shown in [10], for systems with the Hamiltonian

H = p̂2

2
+ V (q̂) , (26)

the tomography map satisfies a quantum time-evolution equation

•
M − μ

∂

∂ν
M − i

[
V

(
− 1

∂/∂X

∂

∂μ
− i

ν

2

∂

∂X

)

− V

(
− 1

∂/∂X

∂

∂μ
+ i

ν

2

∂

∂X

)]
M = 0 , (27)

which is an alternative to the Schrödinger equation.
The evolution Eq. (27) can also be presented in the form

ẇ − μ
∂w

∂ν
− ∂V

∂x
(̃q) ν

∂

∂X
w + 2

∞∑

n=1

V 2n+1 (q̃)

(2n + 1)!
(

ν

2

∂

∂X

)2n+1

(−1)n+1w = 0 ,

(28)
where q̃ is given by (20) and

V 2n+1 (q̃) ≡ d2n+1V

dq2n+1
(q̃) .
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This evolution equation is in fact Moyal equation (9) in the tomography representa-
tion.

The tomography approach has another interesting application in another classical,
but non-commutative, context. In signal processing one dealswith time and frequency
which, as q̂ and p̂, are also non-commutative variables. Then, the tomography map,
being a positive quantity with a probability interpretation, provides a robust and
unambiguous tool for feature extraction in signal processing [13–18].

4 Applications

In this section one illustrates the use of the alternative quantum formulations in two
situations where the classical-quantum border is quite apparent. The deformation
approach is quite appropriate to obtain the quantum formulation, or quantum cor-
rections, to the kinetic equations, because the natural setting of such equations is the
phase space of positions and momenta. On the other hand, another notion that is very
useful in classicalmechanics is the notionof sensitive dependence to initial conditions
or chaotic behavior. In classical mechanics this notion finds a rigorous formulation
through the Lyapunov exponents of the dynamics. However, it is not obvious how to
correctly carry the notion of Lyapunov exponent to quantummechanics in the Hilbert
space formulation. By first defining classical Lyapunov exponents in a tomographic
formulation it becomes an easy matter to carry them to quantummechanics and then,
if needed, to carry the definition to Hilbert space. Of course this is possible because
all the alternative formulations are equivalent. To use one or another is a question of
computational and conceptual convenience. Another situation of current interest at
the classical-quantum border is the cooling of levitated nanoparticles [19].

4.1 Kinetic Equations and Quantum Corrections

A kinetic equation deals with the evolution of a probability density f (t, x, p) of
particles in phase space. The typical form is

∂

∂t
f + p

m
· ∇x f + Fext · ∇p f = S ( f ) (29)

the left hand side being a drift term defining the characteristics along which the
particles move between collisions and the right hand side a collision term. It is
therefore an equation involving a probability distribution in the (x, p) phase space.
In quantummechanics f (x, p) cannot be a classical probability distribution because
x and p are non-commuting variables. However f (x, p) may be interpreted as a
functional of elements in an algebra with a deformed product and, as discussed
before, this leads to the correct quantum results.
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It is therefore tempting, to obtain the quantum corrections to Eq. (29), by simply
replacing all products by deformed products. However, recalling that at the basis of
the deformation interpretation of quantummechanics is the deformation of a Poisson
algebra, it is more appropriate to deform the kinetic equation when their (canonical
or non-canonical) Hamiltonian structure is exhibited. This is the approach that will
be followed.

4.1.1 The Poisson–Vlasov Equation

The Poisson–Vlasov equation describing a collisionless plasma with purely electro-
static interactions is

∂ f

∂t
+ p

m
· ∂ f

∂x
− e

∂φ

∂x
· ∂ f

∂p
= 0 (30)

with

�φ = −e
∫

dp f (x, p, t) (31)

It is a non-canonical Hamiltonian system [20], with Hamiltonian,

HPV = 1

2

∫ ∣∣∣
p

2m

∣∣∣
2
f (x, p, t) dxdp + e

∫
dxφ (x)

∫
f (x, p, t) dp (32)

the time evolution of arbitrary phase-space functions given by

dF

dt
= [F, HPV ] (33)

the Poisson structure [·, ·] being

[F,G] =
∫

f

{
δF

δ f
,
δG

δ f

}
dxdp (34)

where {·, ·} stands for the usual Poisson bracket for functions of x and p

{A, B} =
∑

i

(
∂A

∂xi

∂B

∂pi
− ∂A

∂pi

∂B

∂xi

)
(35)

and the functional derivative δF
δ f being related to the Fréchet derivative by

(
D f F

) · f
′ =

∫
δF

δ f
f

′
dxdv (36)

Taking into attention that
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δ f (y, μ, t)

δ f (x, p, t)
= δ3 (y − x) δ3 (μ − p)

δHPV

δ f (x, p, t)
= 1

2m
|p|2 + eφ (x) (37)

and using Eq. (34) one obtains the classical Poisson–Vlasov equation

d f

dt
= [ f, HPV ] = − p

m
· ∇x f + e∇xφ · ∇p f (38)

For the quantum version all one has to do is to replace in Eq. (34) the Poisson bracket
(35) by the Moyal bracket (5).

d f

dt
=

∫
d3xd3 p f (x, p, t)

2

�
sin

(
�

2
P

)(
δ f

δ f
,
δHPV

δ f

)
(39)

P being the bidifferential operator in (4).
Of special interest is the leading quantum correction. The 6-dimensionalω matrix

in the symplectic form (3) hasωi,i+3 = −ωi+3,i = 1with all the other elements being
zero.Because δHPV

δ f (x,p,t) is quadratic in p, all terms inωi,i+3ω j, j+3ωk,k+3 vanish. Finally

one obtains in leading �
2 order,

d f

dt
= [

f, HPV
]
M = − p

m
· ∇x f + e∇xφ · ∇p f − e

�
2

24

3∑

i, j,k=1

∂3 f

∂pi ∂p j ∂pk

∂3φ

∂xi ∂x j ∂xk
+ O

(
�
4
)

(40)

4.1.2 The Maxwell–Vlasov Equation

The Maxwell–Vlasov equation,

∂ f

∂t
+ v · ∇x f + e

m

(
E + v × B

c

)
· ∇v f = 0 (41)

describing a classical collisionless plasma in an electromagnetic field, is also a non-
canonical Hamiltonian system. There are several variational formulations of the
Maxwell–Vlasov system, the most complete one being probably the one byMarsden
and Weinstein [21]. However, in their formulation, part of the dynamics is coded on
the Poisson structure rather than on the Hamiltonian and to apply the deformation
theory for the transition to quantum mechanics, one would also need to handle the
deformation of the electromagnetic field dynamics, not just the replacement of the
Poisson bracket involving position and momentum of the particles. Hence, because
here one only wants to obtain the quantum corrections to the f dynamics, it is more
convenient to use the Low [22] Hamiltonian,
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HMV =
∫

d3xd3 p

{
1

2m

(
p − e

c
A
)2 + eφ (x)

}
f (x, p, t) +

∫
d3x

(
E2 + B2

)

(42)
where E = −∇xφ − 1

c
∂A
∂t , B = ∇ × A in terms of the independent variables (φ, A).

The Poisson structure is the same as in (34) for the f dynamics. With this Hamil-
tonian

δHMV

δ f (x, p, t)
= 1

2m

(
p2 − e

c
(p · A + A · p) + e2

c2
A2

)
+ eφ (x) (43)

Then, using (34) and (35) one obtains for the classical equation

∂ f

∂t
= − 1

m

(
p − e

c
A
)

· ∇x f +
(
e

m
∇xφ − e

mc
p · ∇x A + e2

2mc2
∇x A

2

)
· ∇p f

= − 1

m

(
p − e

c
A
)

· ∇x f +
(

−eE − e

c
v × B − e

c

d A

dt

)
· ∇p f (44)

with

d A

dt
= ∂A

∂t
+ v · ∇x A

v = 1

m

(
p − e

c
A
)

(45)

Equation (44) is the same as (41) written in the variables (x, p) instead of (x, v). The
first set is the most convenient one because the Moyal bracket deformation acts on
these variables. Then, the quantum Maxwell–Vlasov equation becomes2

∂ f

∂t
=

∫
d3xd3 p f (x, p, t)

2

�
sin

(
�

2
P

)(
δ f

δ f
,
δHMV

δ f

)
(46)

and, computing the leading quantum corrections, one obtains

∂ f

∂t
== − 1

m

(
p − e

c
A
)

· ∇x f +
(

−eE − e

c
v × B − e

c

d A

dt

)
· ∇p f

− e�2

24

3∑

i, j,k=1

∂3 f

∂pi∂p j∂pk

∂3

∂xi∂x j∂xk

(
φ + e

2mc2
A2

)

+ e�2

24mc

3∑

i, j,k=1

(
∂3 f

∂pi∂p j∂pk
p · ∂3A

∂xi∂x j∂xk
− 3

∂3 f

∂xi∂p j∂pk

∂2Ak

∂x j∂xk

)
+ O

(
�
4
)

(47)

2Notice that in the Hamiltonian, products should also be replaced by ∗-products. However p ∗ A +
A ∗ p = 2p · A.
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4.2 A Quantum Lyapunov Exponent

Bounded classical systems that are chaotic, display exponential growth of initial
perturbations and other interesting long-time asymptotics, like exponential decay
of correlations. In contrast, quantum Hamiltonians of bounded systems with time-
independent potentials, having discrete spectrum, their wave functions are almost
periodic functions. For this reason the work on “quantum chaos” has shifted from
consideration of long-time properties to the statistics of energy levels of quantum
systems with a chaotic classical counterpart.

However, quantum systemswith bounded configuration space but time-dependent
interactions (for example particles in an accelerator subjected to electromagnetic
kicks or the systems used in quantum control) may have continuous spectrum. There-
fore the estimation and control, of the rate of growth of the perturbedmatrix elements
of observables, becomes an issue of both theoretical and practical concern.

In classicalmechanics themost important asymptotic indicator of chaotic behavior
is the Lyapunov exponent (an ergodic invariant). Therefore a natural first step to
discuss rates of growth in quantum mechanics seems to be the construction of a
quantum Lyapunov exponent.

The tomography approach, because of the similarity of its structure in the classical
and the quantum cases, seems to be an appropriate setting to carry out this construc-
tion. As a precondition it is necessary to carry the definition of Lyapunov exponent,
usually defined in terms of orbits and tangent maps, to a definition in terms of densi-
ties. This was carried out in [23]. Given an initial density ρ (x, p, t = 0) ≡ ρ (x, p)
for a classical particle, let it have a general time evolution defined by a smooth kernel

ρ (x, p, t) =
∫

K
(
x, p, x ′, p′, t

)
ρ
(
x ′, p′) dx ′ dp′. (48)

The evolution of the distribution ρ (x, p, t), described by Eq. (48), is equivalent to
the action of the Frobenius–Perron operator used in [23, 24]. Consider now a small
perturbation in the initial condition

ρ̃ (x, p) = ρ (x, p) + ε (n∇) δ(q) δ(p) , (49)

where

n = (n1, n2) , n2 = 1 , ∇ =
(

∂

∂x
,

∂

∂p

)
,

and

(n∇) = n1
∂

∂x
+ n2

∂

∂p
.

The perturbed initial density evolves like
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ρ (x, p, t) =
∫

K
(
x, p, x ′, p′, t

) [
ρ
(
x ′, p′) + ε

(
n∇′) δ(x ′) δ(p′)

]
dx ′ dp′,

(50)
where

∇′ =
(

∂

∂x ′ ,
∂

∂p′

)
.

Let us now compare the expectation values, for example, of the position of the
perturbed and unperturbed initial densities at time t

�x(t) =
∫

x [ρ̃ (x, p, t) − ρ (x, p, t)] dx dp , (51)

which equals

�x(t) = ε

∫
xK

(
x, p, x ′, p′, t

) (∇′n
)
δ(x ′)δ(p′) dx ′ dp′. (52)

In order to obtain the Lyapunov exponent one computes

λ = lim
t→∞

1

t
log

∣∣∣
�x(t)

�x(0)

∣∣∣ . (53)

leading to

λ = lim
t→∞

1

t

{
log | ε

∫
xK

(
x, p, x ′, p′, t

)

× (∇′n
)
δ(x ′)δ(p′) dx ′ dp′ − log | �x(0) |} . (54)

To translate this procedure to the tomography framework of classical mechanics, the
initial probability density is transformed to an initial tomography map

ρ (x, p) → M (X, μ, ν, t = 0) ≡ M (X, μ, ν) . (55)

The density δ (x − x0) δ (p − p0) is mapped to the tomography map

Mδ (X, μ, ν) = δ (X − μq0 − νp0) , (56)

and the perturbed term

ρ̃ (x, p) − ρ (x, p) = (n∇) δ (x − x0) δ (p − p0) (57)

is mapped to the tomographic perturbation

Mη (X, μ, ν) = (n1μ + n2ν) δ′ (X − μq0 − νp0) , (58)
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The unperturbed and perturbed initial tomography maps evolve with the classical
propagator Πcl

(
X, μ, ν, X ′, μ′, ν ′, t2, t1

)
that connects the maps at times t1 and

t2 (t2 > t1)

M (X, μ, ν, t2) =
∫

Πcl
(
X, μ, ν, X ′, μ′, ν ′, t2, t1

)
M

(
X ′, μ′, ν ′, t1

)
dX ′ dμ′ dν ′.

(59)
the propagator satisfying the equation

∂Πcl

∂t2
− μ

∂

∂ν
Πcl − ∂V

∂x
(q̃) ν

∂

∂X
Πcl

= δ (t2 − t1) δ
(
X − X ′) δ

(
μ − μ′) δ

(
ν − ν ′) .

hence,

Mη (X, μ, ν, t) =
∫

Πcl
(
X, μ, ν, X ′, μ′, ν ′, t

)

× (
n1μ

′ + n2ν
′) δ′ (X ′ − μ′q0 − ν ′ p0

)
dX ′ dμ′ dν ′. (60)

The position perturbations at time zero and time t are

�x(0) = ε

∫
Mη (X, μ, ν) ei Xδ′(μ) δ(ν) dX dμ dν

�x(t) = ε

∫
Mη (X, μ, ν, t) ei Xδ′(μ) δ(ν) dX dμ dν

and by replacement in (53) the classical Lyapunov exponent is expressed as a function
of the tomography maps.

For the quantum Lyapunov exponent all one has to do is to obtain the quantum
values of �x(0) and �x(t). This is obtained by replacing, in the Eqs. (59) and (60),
the classical by the quantum propagator which satisfies the equation

∂Π

∂t2
− μ

∂Π

∂ν
− ∂V

∂x
(q̃) ν

∂Π

∂X
+ 2

∞∑

n=1

V 2n+1 (q̃)

(2n + 1)!
(

ν

2

∂

∂X

)2n+1

(−1)n+1Π

= δ (t2 − t1) δ
(
X − X ′) δ

(
μ − μ′) δ

(
ν − ν ′) , (61)

the quantum Lyapunov exponent being also obtained from (53).
After some algebra one arrives at the Lyapunov exponent expression in the

quantum-mechanical case,

λ = lim
t→∞

1

t
log |

∫
dX dμ′ dν ′ X

(
n1μ

′ + n2ν ′)

× ∂Π

∂X ′
(
X, 1, 0, X ′ → μ′q0 + ν ′ p0, μ′, ν ′, t

) | . (62)
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A satisfactory construction was thus achieved [25] in the sense that the phase-space
observables that are used are exactly the same in classical and quantum mechanics.
The only difference between the classical and the quantum exponent lies in the time
evolution dynamics.

It is of some interest to express this results in the Hilbert space framework of
quantummechanics [26]. The tomographic maps being related to traces of operators,
it turns out that the quantum Lyapunov exponent measures the rate of growth of the
trace of position and momentum observables starting from a singular initial density
matrix. A positive Lyapunov exponent would correspond to exponential growth of
these traces. However, the same quantities may serve to characterize other types of
growth, leading to a generalized notion of quantum sensitive dependence.

There are examples where exponential rates of growth (as in classical chaos)
are also found in quantum systems [25]. However, in many other cases, quantum
mechanics seems to have a definite taming effect on classical chaos. Therefore,
a generalized notion of quantum sensitive dependence, corresponding to rates of
growth milder than exponential, might be of interest to classify different types of
quantum complexity or to characterize the degree of accuracy achievable in quantum
control.

As a first step rewrite the result for the quantum Lyapunov exponent along the
phase-space vector v = (ν1ν2)

λv = lim
t→∞

1

t
log

∥∥∥∥
∫

dn X dnμ dnνei X•1
((∇μ

∇ν

)
δn(μ)δn (ν)

)
Mt (X, μ, ν)

∥∥∥∥

Mt (X, μ, ν) =
∫

Π
(
X, μ, ν, X ′, μ′, ν′, t, 0

)
M0 (X, μ, ν) dX ′ndμ′ndν′n

M0

(
X

′
, μ

′
, ν

′) = ((
v1 � μ′ + v2 � ν′) • ∇X ′

)
δn

(
X ′ − μ′q0 − ν′ p0

)
(63)

with (a � b)i = aibi .
For a system with Hamiltonian

H = p2

2
+ V (q) , (64)

the evolution equation for the quantum propagator of the tomographic densities is

∂Π
∂t − μ • ∇νΠ − ∇x V (q̃) • (ν � ∇XΠ)

+ 2
�

∑∞
n=1(−1)n+1

(
�

2

)2n+1 ∇i1 ···i2n+1V (q̃)

(2n+1)! (ν � ∇X )i1 · · · (ν � ∇X )i2n+1
Π

= 0
(65)

with initial condition

lim
t→t0

Π
(
X, μ, ν, X ′, μ′, ν ′, t, t0

) = δn
(
X − X ′) δn

(
μ − μ′) δn

(
ν − ν ′) (66)

reducing for � = 0 to the classical evolution equation.
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In the tomographic formulation, classical and quantum mechanics are both
described by a set of positive probability distributions Mt (X, μ, ν), the �-
deformation appearing only in the time-evolution. It is this fact that allows the notion
of Lyapunov exponent to be carried overwithout ambiguity fromclassical to quantum
mechanics. However, to relate the Lyapunov exponent to the behavior of operator
matrix elements and the spectral properties of the Hamiltonian, it is more convenient
to rewrite it as a functional of the density matrix ρ

(
x, x

′)
. The first step is to consider

the Fourier transform Gt (μ,μ) of the tomographic density Mt (X, μ, ν)

Gt (μ, ν)
.= Gt (1, μ, ν) =

∫
dn X ei X•1Mt (X, μ, ν) (67)

and perform the integrals in (63) to obtain

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
∇μGt (μ, ν) |μ=ν=0

∇νGt (μ, ν) |μ=ν=0

∥∥∥∥ (68)

Now, using the relation between the tomographic densities and the density matrix,
namely

Gt (μ, ν) =
(

1

2π

)n ∫
dn X dn pdnxdnx

′
e
i
(
X•1−p•

(
x−x

′))

ρt

(
x, x

′)
(69)

δn

(
X − μ �

(
x + x

′

2

)
+ v � p

)

one easily obtains

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
Tr {ρt x}
Tr {ρt p}

∥∥∥∥ (70)

the density matrix at time zero (corresponding to M0
(
X

′
, μ

′
, ν

′)
in Eq. (63)) being

ρ0

(
x, x

′) = −e
ip0•

(
x−x

′) {
(v1 • ∇) δ

n
(
q0 − x + x

′

2

)
+ iv2 •

(
x − x

′)
δn

(
q0 − x + x

′

2

)}

(71)
Equation (70) means that the quantum Lyapunov exponent measures the exponential
rate of growth of the expectation values of position and momentum, starting from
the initial singular perturbation ρ0. This is a rather appealing and intuitive form for
the Lyapunov exponent.

Using the time-dependent operators in the Heisenberg picture

xH (t) = U †xU
pH (t) = U † pU

(72)
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one has an equivalent form for λ→
v

λ⎛

⎝ v1
v2

⎞

⎠
= lim

t→∞
1

t
log

∥∥∥∥
Tr

′ {ρ0xH (t)}
Tr

′ {ρ0 pH (t)}
∥∥∥∥ (73)

where we have also defined

Tr
′ {ρ0xH (t)} = Tr {ρ0xH (t)} /Tr {ρ0xH (0)}

Whenever ρ0xH (t) is a trace class operator, the term corresponding to Tr{ρ0xH (0)}
has no contribution in the t → ∞ limit. On the other hand, by taking the appropriate
cut-off and a limiting procedure, the above expression may also make mathematical
sense even in some non-trace class cases.

5 Quantizers and Dequantizers: An Unified View of
Alternative Quantum Formulations

Tomographymapsmaybe framednot only as amplitudes of projections on a complete
basis of eigenvectors of a family of operators, as in (24), but also as operator symbols
[27]. That is, as a map of operators to a space of functions where the operators non-
commutativity is replaced by a modification of the usual product to a star-product.

Let Â be an operator in Hilbert spaceH and Û (x), D̂(x) two families of operators
called dequantizers and quantizers, respectively, such that

Tr
{
Û (x)D̂(x′)

}
= δ(x − x′) (74)

The labels x (with components x1, x2, . . . xn) are coordinates in a linear space V
where the functions (operator symbols) are defined. Someof the coordinatesmay take
discrete values, then the delta function in (74) should be understood as a Kronecker
delta. Provided the property (74) is satisfied, one defines the symbol of the operator
Â by the formula

f A(x) = Tr
{
Û (x) Â

}
, (75)

assuming the trace to exist. In view of (74), one has the reconstruction formula

Â =
∫

f A(x)D̂(x) dx (76)

The role of quantizers and dequantizers may be exchanged. Then
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f dA (x) = Tr
{
D̂(x) Â

}
(77)

is called the dual symbol of f A(x) and the reconstruction formula is

Â =
∫

f dA (x)Û (x) dx (78)

Symbols of operators can be multiplied using the star-product kernel as follows

f A(x) � fB(x) =
∫

f A(y) fB(z)K (y, z, x) dy dz (79)

the kernel being

K (y, z, x) = Tr
{
D̂(y)D̂(z)Û (x)

}
(80)

The star-product is associative,

( f A(x) � fB(x)) � fC(x) = f A(x) � ( fB(x) � fC(x)) (81)

this property corresponding to the associativity of the product of operators in Hilbert
space.

With the dual symbols the trace of an operator may be written in integral form

Tr
{
Â B̂

}
=

∫
f dA (x) fB(x) dx =

∫
f dB (x) f A(x) dx. (82)

For two different symbols f A(x) and f A(y) corresponding, respectively, to the
pairs (Û (x),D̂(x)) and (Û1(y),D̂1(y)), one has the relation

f A(x) =
∫

f A(y)K (x, y) dy, (83)

with intertwining kernel

K (x, y) = Tr
{
D̂1(y)Û (x)

}
(84)

Let now a wave function be identified with the projection operator Πψ on the
function ψ (t), denoted by

Πψ = |ψ〉 〈ψ | (85)

Then the tomography maps (tomograms), and also other transforms, are symbols of
the projection operators for several choices of quantizers and dequantizers.

Some examples:
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Denote position andmomentum by q and p (for signal processing the correspond-
ing set of non-commuting variable would be t and ω).

# The Wigner–Ville function: is the symbol of | ψ〉〈ψ | corresponding to the
dequantizer

Û (x) = 2D̂(2α)P̂, α = q + i p√
2

(86)

where P̂ is the inversion operator

P̂ψ(q) = ψ(−q) (87)

and D̂(γ ) is a “displacement” operator

D̂(γ ) = exp

[
1√
2
γ

(
q − ∂

∂q

)
− 1√

2
γ ∗

(
q + ∂

∂q

)]
(88)

The quantizer operator is

D̂(x) := D̂(q, p) = 1

2π
Û (q, p), (89)

The Wigner function is

W (q, p) = 2Tr
{
| ψ〉〈ψ | D̂(2α)D̂

}
(90)

or, in integral form

W (q, p) = 2
∫

ψ∗(q)D̂(2α)ψ(−q) dq (91)

# The symplectic tomogram (position-momentum or time-frequency in signal
processing) tomogram of | ψ〉〈ψ | corresponds to the dequantizer

Û (x) := Û (X, μ, ν) = δ
(
X 1̂ − μq̂ − ν p̂

)
, (92)

Here the notation δ
(
X 1̂ − μq̂ − ν p̂

)
stands for the projector on the eigenvector of

μq̂ + ν p̂ corresponding to the eigenvalue X and

q̂ψ(q) = qψ(q), p̂ψ(t) = −i
∂

∂q
ψ(q) (93)

and X, μ, ν ∈ R. The quantizer of the symplectic tomogram is
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D̂(x) := D̂(X, μ, ν) = 1

2π
exp

[
i
(
X 1̂ − μq̂ − ν p̂

)]
(94)

# The optical tomogram is the same as above for the case

μ = cos θ, ν = sin θ. (95)

Thus the optical tomogram is

M(X, θ) = Tr
{
| ψ〉〈ψ | δ

(
X 1̂ − μq̂ − ν p̂

)}

= 1

2π

∫
ψ∗(q)eikX exp

[
ik

(
X − q cos θ + i

∂

∂q
sin θ

)]
ψ(q) dq dk

= 1

2π | sin θ |
∣∣∣∣
∫

ψ(q) exp

[
i

(
cot θ

2
q2 − Xq

sin θ

)]
dq

∣∣∣∣
2

. (96)

One important feature of the formulation of tomograms as operator symbols is
that one may work with deterministic functions ψ (q) as easily as with probabilistic
ones. In this latter case the projector in (85) would be replaced by

Πp =
∫

pμ

∣∣ψμ

〉 〈
ψμ

∣∣ dμ (97)

with
∫
pμdμ = 1, the tomogram being the symbol of this new operator.

This also provides a framework for an algebraic formulation of signal processing,
perhaps more general than the one described in [28]. There, a signal model is a triple
(A ,M ,�) A being an algebra of linear filters,M aA -module and � a map from
the vector space of signals to the module. With the operator symbol interpretation,
both deterministic or random signals and linear or nonlinear transformations on
signals are operators. By the application of the dequantizer (Eq.75) they are mapped
to functions, the filter operations becoming star-products.
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