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Preface

CPS4CIP 2020 is a forum for researchers and practitioners working on cyber-physical
security for critical infrastructures protection that supports finance, energy, health, air
transport, communication, gas, and water. The secure operation of critical infrastruc-
tures is essential to the security of nations and, in an increasingly interconnected world,
of unions of states sharing their infrastructures in order to develop their economies, and
to public health and safety. Security incidents in critical infrastructures can directly lead
to a violation of users’ safety and privacy, physical damage, interference in the political
and social life of citizens, significant economic impact on individuals and companies,
and threats to human life while decreasing trust in institutions and questioning their
social value. Because of the increasing interconnection between the digital and physical
worlds, these infrastructures and services are more critical, sophisticated, and inter-
dependent than ever before. The increased complexity makes each infrastructure
increasingly vulnerable to attacks, as confirmed by the steady rise of cyber-security
incidents, such as phishing or ransomware, and cyber-physical incidents, such as
physical violation of devices or facilities in conjunction with malicious cyber activities.
To make the situation even worse, interdependency may give rise to a domino effect
with catastrophic consequences on multiple infrastructures.

To address these challenges, the workshop aimed to bring together security
researchers and practitioners from the various verticals of critical infrastructures (such
as the financial, energy, health, air transport, communication, gas, and water domains)
and rethink cyber-physical security in the light of the latest technological developments
(e.g., Cloud Computing, Blockchain, Big Data, AI, Internet-of-Things) by developing
novel and effective approaches to increase the resilience of critical infrastructures and
the related ecosystems of services.

The workshop attracted the attention of the critical infrastructures protection
research communities and stimulated new insights and advances with particular
attention to the integrated cyber and physical aspects of security in critical infras-
tructures. The first International Workshop on Cyber-Physical Security for Critical
Infrastructures Protection (CPS4CIP 2020) was held online. The workshop was
organized in conjunction with the 25th European Symposium on Research in Computer
Security (ESORICS 2020), Guildford, the United Kingdom on 14–18 September 2020.
The format of the workshop included two keynotes and technical presentations. The
workshop was attended by around 28 people on average.

The workshop received 24 submissions, of which one was withdrawn and 23 were
sent for reviews, from authors in 15 distinct countries. After a thorough peer-review
process, 14 papers were selected for presentation at the workshop. The review process
focused on the quality of the papers, their scientific novelty, and their applicability to
the protection of critical financial infrastructure and services, and the acceptance rate
was 58%. The accepted articles represent an interesting mix of techniques for security
threat intelligence, data anomaly detection (predict and prevent), computer vision and



datasets for security, security management and governance, and impact propagation
and power traffic analysis. The workshop was proactive with two important and
stimulating keynotes in the areas of “Digital twins in industrial ecosystems: challenges,
security issues, and countermeasures”, and “Cyber-physical security in automotive: the
new challenge for smart cities”.

The workshop was supported by projects of the ECSCI (European Cluster for
Securing Critical Infrastructures) cluster (https://bit.ly/35YKnyE), mainly FINSEC
(www.finsec-project.eu), ANASTACIA (www.anastacia-h2020.eu/), DEFENDER
(https://defender-project.eu/), InfraStress (www.infrastress.eu/), RESISTO (www.
resistoproject.eu/), SAFECARE (www.safecare-project.eu/), SATIE (http://satie-
h2020.eu), SecureGas (www.securegas-project.eu/), SPHINX (sphinx-project.eu/),
and STOP-IT (stop-it-project.eu/). The organizers would like to thank these projects for
supporting the CPS4CIP 2020 workshop.

Finally, the organizers of the CPS4CIP 2020 workshop would like to thank the
CPS4CIP 2020 Program Committee, whose members made the workshop possible
with their rigorous and timely review process. We would also like to thank the
University of Surrey for hosting the workshop and the ESORICS 2020 workshop chair
for valuable help and support.

December 2020 Habtamu Abie
Silvio Ranise

Luca Verderame
Enrico Cambiaso

Rita Ugarelli
Gabriele Giunta

Isabel Praça
Federica Battisti
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Privacy-Preserving CCTV Analytics
for Cyber-Physical Threat Intelligence

Jürgen Neises1(B), Adrien Besse2, and Jean-Baptiste Rouquier2

1 Fujitsu Technology Solutions GmbH, Düsseldorf, Germany
juergen.neises@fujitsu.com

2 Fujitsu Technology Solutions SAS, Paris, France
{adrien.besse,jeanbaptise.rouquier}@fujitsu.com

Abstract. This paper describes the FUJITSU CCTV Analytics service (FCAS),
a privacy-preserving CCTV surveillance module using AI based video analytics
for cyber-physical threat intelligence. The design and architecture of a privacy
preserving and thus GDPR friendly way to improve security by automatically
analysing video feeds and sending events that can be interpreted as a threat to
further analytics is illustrated. The system has been applied to several scenarios
like data centre and at ATMs. The developments can also be applied to general
public safety requests and may be utilized coping with the COVID-19 impacts.
Finally, the solution shall be adapted to edge computing. First steps illustrate the
capabilities of small form factor systems.

Keywords: CCTV · Cyber-physical-threat-intelligence · Privacy · Human pose
detection

1 Introduction

This document is about physical threat intelligence provided by the FUJITSU CCTV
Analytics service (FCAS). Video surveillance is by essence dedicated to monitor assets
and interactions with them within a camera scene. Today most security systems are not
designed for proactive use but for forensics when a breach has already happened. In our
case, the goal is a privacy preserving and thus GDPR friendly way to improve security
by interpreting video feeds and sending events that can be interpreted as a threat to
further analytics. FCAS will not store any biometric data. Moreover, FCAS is by design
agnostic of the security or business use cases it is supposed to support pushing events.
The goal is to be able to detect bodies and body parts (e.g. heads, hands, etc.) and capture
their interactions with each other and with physical objects (e.g. ATMs or racks). The
observations generate events that shall be pushed to data collection for further analytics
and correlation.

FCAS provides a set of AI models, able to detect objects out of the box, by using
human pose estimation. They are able to detect series of human actions, e.g., opening a
door or interacting with an ATM. These interactions result in events indicating potential
physical threats. These events can be correlated by AI and analytics identifying physical

© Springer Nature Switzerland AG 2021
H. Abie et al. (Eds.): CPS4CIP 2020, LNCS 12618, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-69781-5_1
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4 J. Neises et al.

threats and indicate to the human operator where to focus his attention or automatically
initiatemitigation actions. Thisway, CCTV systems can be leveraged in order to improve
security.

The FCAS CCTV probe relies on one or more CCTV cameras watching a scene, i.e.
the complete camera picture. Moreover, relevant static areas – so-called zones – can be
easily defined by drawing a polygon around them, thus defining a separated detection
area. Then the FCAS can track interactions of dynamic objects within those zones.

FCAS combines the detection of objects, e.g. body parts, and the detection of body
poses for analysing the CCTV images. Based on the results FCAS generates action
related events. Some models are already available for those tasks, but they often need
to be retrained for the specific purpose. Such existing technologies for object detection
and pose analysis are combined and retrained to process the video feed in real-time
using CPUs or preferably GPUs as in FCAS and to generate events for further security
analysis.

1.1 Object Detection

Object detection aims to detect all instances of objects from a known class, such as
people, or body parts as heads in an image. Typically, only a small number of instances
of the object are present in the image, but they can occur at a large number of possible
locations and scales that need to somehow be explored.

Each detection is reported with some form of pose information. This could be as
simple as the location of the object, a location and scale, or the extent of the object
defined in terms of a bounding box. Providing even more information, a face detector
might compute the locations of the eyes, nose and mouth, in addition to the bounding
box of the face. The pose could also be defined by a three-dimensional transformation
specifying the location of the object relative to the camera.

Object detection systems construct a model for an object class, e.g. heads, from a
set of training examples. In the case of a fixed rigid object, only one example may be
needed, but more generally, multiple training examples are necessary to capture certain
aspects of class variability.

We therefore focus on typical security elements that appear in common video
surveillance:

• Counting People: The probe sends timestamped events when someone enters or exits
the area, allowing getting the number of people in each area.

• DiscriminatingAdults fromChildren:This element is not implemented in the probe
yet but could be added in later versions of FCAS. Most predictions on age are based
on face image analysis and require a sufficient level of details for the model to give a
reliable age prediction.

• Face Detection: The FCAS uses a pose estimation model to detect and track different
face attributes such as the nose, eyes and ears of people (cf. Fig. 1). One of the
advantages of using pose estimation models instead of pure face detection model is
that it can detect people evenwhen the faces are hidden (somebodywearing a balaclava
or somebody facing in the opposite direction) from the presence of other body parts.
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• Weapon Detection: The current version of FCAS focuses on human body parts posi-
tions in the scene. FCAS models detecting particular weapons in the hands of some-
body are not assessed yet. Major challenges of this approach are creating the training
datasets gathering a suitable amount of weapon annotated images extracted from sim-
ilar security CCTV camera visual context (images from movies contain plenty of
weapons but are quite different from CCTV images).

Fig. 1. Body parts definition used by the pose estimation model. Image source Platte et al. [1]

1.2 Human Pose Detection

HumanPose Estimation attempts to find the orientation and configuration of human body
parts. 2D Human Pose Estimation, or Keypoint Detection, generally refers to localize
body parts of humans, e.g. finding the 2D location of the knees, eyes, feet, etc. Body
parts, which are typically used are depicted in Fig. 1.

Pose estimation is a difficult problem and an active research subject partly because
the human body has 244 degrees of freedom with 230 joints. Although not all move-
ments between joints are needed, a common approach is to model the human body by
10 large parts with 20 degrees of freedom [1]. Algorithms must account for large vari-
ability introduced by differences in appearance due to clothing, body shape, size, and
hairstyles. Additionally, the results may be ambiguous due to partial occlusions from
self-articulation, such as a person’s hand covering their face, or occlusions from external
objects. Other issues include varying lighting and camera configurations. In the FINSEC
case, we estimate pose from monocular (two-dimensional) images, taken from a normal
camera.

Human pose estimation is crucial for video surveillance [2]. Recently, significant
progress has been made in solving the human pose estimation problem in uncon-
strained single images. However, human pose estimation in videos is a relatively new
and promising problem and needs much further improvement.

Obviously, single image-based pose estimationmethods can be applied to each video
frame to get an initial pose estimation as illustrated in Fig. 2.A further refinement through
frames can be applied to make the pose estimation consistent and more accurate and
reliable.
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Fig. 2. Human Pose detection.

2 CCTV Analytics Technology Description

Within the global architecture in the FINSEC project, FCAS is a probe working in the
edge: the FCAS probe uses local CCTV surveillance for analytics and generating events.
Converting videos to events is done locally. The events occurring in the local scene are
generated in the edge by the FCAS analytics and pushed to a data layer. Anomaly
detection and threat prediction utilize the events stored in the data layer for security
analysis.

The CCTV FCAS probe architecture is composed of modules that hierarchically
process the information contained in the video stream. Figure 3 illustrates the processing
flow by the probe from the camera video stream to the events sent to the data layer of
the FINSEC platform.

The main modules:

• The video reader receives the video frames from the camera
• The detectionmodule detects defined body parts and infers their coordinates in those
video frames.

• The tracking module matches new detections in the last frame to detections in the
previous ones, for each body part, thus keeping track of the body part positions.
The tracking algorithm uses distances between the current detection and the predicted
position (derived form aKalmanfilter). (Currently the configuration takes into account
frames from the last 12 s). The position of a human body is taken as the position of
one key body part (cf. Fig. 4) which in our case is the ‘Neck’ for the pose estimation
model or the head for the head detection model.

• The event generation module looks for tracking results and generates events about
body parts entering or exiting configured areas in an open STIX related format to a
security analytics platform.

The body parts illustrated in Fig. 4 can be detected and tracked by the pose estimation
model and the human tracker.
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Fig. 3. High-level architecture of the probe.

To control the number of emitted events, the body parts effectively taken into account
for event generation can be set through the FCAS configuration API. By this configura-
tion, the lists of body parts taken into account at event level can be defined to be used
for detection of a suspicious event.

In the current version of the FCAS probe with pose estimation, the ‘Neck’ position
is selected as the key body part, representative of the body position. Secondary parts are
other tracked body parts, e.g. right and left wrists.

Fig. 4. Body parts for pose estimation

2.1 Detection

The detection module uses a pose estimation model or a head detection model to infer
the coordinates of body parts in video frames received from the camera. The detection
module is responsible for processing a frame and outputs the positions of body parts.
The module detects the position of heads, neck or right and left wrists depending on a
parameter indicating which body part to track.
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The models to detect human bodies are obtained from a pose estimation library,
in this case the NVIDIA library “Real-time pose estimation accelerated with NVIDIA
TensorRT” [3]. The library authors follow the approach in references [4] and [5], based
on part affinity fields and key point detections, for pose estimation. That library provides:

• a pre-trainedmodel zoo for human pose estimation, resulting from several experiments
on theMSCOCOKeypoints Challenge 2017 [6]. The experiments are based on several
backbone network architectures such as densenet121, densenet169 [7], resnet18 and
resnet50 [8].

• a training script allowing to fine-tune the pre-trained model on our specific datasets
• a module to compile model, e.g. using the NVIDIA TensorRT library as described
above, allowing to optimize model inference on NVIDIAHardware such as the Jetson
platforms. The library authors report throughputs on Jetson Nano and Jetson AGX
Xavier respectively of 22 FPS and 251 FPS with a resnet18 network architecture [3].
The range of available backbone architectures in the library zoo allows optimizing
performances versus throughput and latency of the finally deployed model.

The model for head detection uses a MobileNet [9] deep neural network architecture
trained on two datasets, namely the Open images dataset [9–11] and the Brainwash
dataset [12].

2.2 Tracking

The tracking module is responsible for initializing and updating the following informa-
tion:

• The object id (here an object is a human body)
• The positions (x, y) in pixels of its body parts
• The area names in which the body parts are present
• The timestamp of entry in the area
• The current timestamp

The tracking algorithm applied in FCAS is based on the SORT algorithm [13]. This
algorithm is effective and uses position extrapolation. The first approach of this algorithm
is that objects do not move a lot between frames: if the FCAS system detects an object in
one frame, 100 ms seconds later it cannot be far from where it was before. In addition, it
computes a direction and predicts the new location in the current frame. The FCAS probe
searches for the object next to where it is predicted to be. Predicting the path of the object
allows following the object even if someone else temporarily occludes it, which means
that only the occluding person is detected. Note that this algorithm preserves privacy as
the FCAS tracks objects by predicting their future position and not by recognizing them.

In order to efficiently address the tracking of human bodies through video, we have
developed a human model using individual trackers for each body parts and combin-
ing the information of all the body part trackers to keep track of the human body. The
building blocks are trackers based on Kalman filters [14] for each body part position
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prediction. The matching between tracker predictions and detection is performed fol-
lowing the Hungarian algorithm [15]. Open source implementation of those are Python
packages filterpy.kalman and scipy.optimize.linear_sum_assignment. From the building
block consisting in one tracker, we have developed a global human tracker combining
a set of body part trackers. Each human model tracker has a unique ID. This way pose
estimation outputs based on various body parts make humanmodel tracking more robust
than a tracker based on a single human detection, as relies on more information than just
on a unique bounding box detection.

The Human model tracker has internal states such as centre positions and velocities
for each part of the body. The event generator to monitor human bodies in the video can
access the human model internal state. In particular, left and right ankle positions can
be used to map the human positions on a floor map of the scene.

2.3 Event Generation

The FCAS collects and processes the video stream of a camera and stops if the video
stream ends. The event generator module is responsible for sending events generated
from the tracker inputs in a STIX like format. We outline in this section the various
events that can be generated by the FCAS.

New Agent Events
When a new body is detected in the camera field or scene for more than a defined period
(e.g. 2 s), the FCAS creates a new agent instance with new id and sends an ENTER
event.

Fig. 5. Enter/Exit Event

When a body disappears from the camera field of view, the FCAS generates and
sends an EXIT event for this from the last area it appeared in, and cleans the information
of this body.

Enter/Exit Events
When a body part enters a scene area, e.g. Zone A for the time, FCAS sends an “entering
area ‘Zone A’” event. Later, when a body part (e.g. LWrist as illustrated in Fig. 5),
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exits from the ‘Zone A’ area and enters into the ‘Zone B’ an area, FCAS sends the
corresponding events “ENTER (Zone B)” and “EXIT (Zone A)”.

Velocity Related Events
These events are related to the velocity of bodies moving through the scene. The neck
is the default reference point defining the body and thus its velocity. The events are
illustrated in Fig. 6.

Fig. 6. High Velocity and Slow Down

The configurable value body_speed_threshold defines the threshold above which to
trigger high velocity events.

If the velocity of a reference point, e.g. 10 cm per second is shrinking an event
indicating slow down of the agent is issued.

Proximity Related Events
These events consider the proximity of two bodies. The value parts_body_proximity
specifies a list of body parts used to determine if two human bodies are closer than
a given threshold (cf. Fig. 7). The values defined in body_radius_proximity set the
corresponding thresholds defining body proximity.

Fig. 7. Approaching and Distancing
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Two events are related to body proximity:

• APPROACHING when the distance is below the set threshold and shrinking
• DISTANCING when the distance is above the defined threshold and increasing

Trajectory Related Events
Loitering is a major security event and is worth monitoring. Thus, the body trajectories
are tracked on a floor map within the scene. Additionally, their length is compared with
length_floormap_trajectory and length_trajectory_threshold. When the length of the
trajectory in the floor map exceeds the defined threshold (cf. Fig. 8), the TRAJECTORY
event is triggered. In combination with the time an agent is in the scene this event
indicates loitering,

Fig. 8. Trajectory Event

3 Application to Common Physical Security Scenarios

In this section, the impact of the FCAS are outlined related to two common physical
security scenarios. These comprise physical security in the data centre and at ATMs.

3.1 Scenario Data Centre

A well known security scenario in the data centre is the protection of access toracks,
containing secured servers. By a common security policy, a secure rack has to be opened
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by two people, each one using an authorized key. All the other configurations (one person
using two keys, two people coming sequentially, etc.) are unauthorized in this case.

A camera on top of the rack may survey the scene. This way it can be detected, when
someone enters the area in front of a rack and if the person uses the keyhole with one
of their wrists. The FCAS probe allows tracking interactions of humans with key holes,
counting the number of people, and tracking their positions in different areas. Events
indicating the activities and potential protocol violations are submitted to a security
platform and may be used by anomaly detection to trigger security actions at the data
centre scale. In case, an anomaly triggers alarms and pushes them to the data centre
operations.

3.2 Scenario ATMs

ATMs continue to be a profitable target for criminals. While some rely on physically
destructive methods with metal cutting tools or explosives (including injecting gas),
others choosemalware infections. Criminals use different tools and techniques (physical,
logical or combined) to access ATMs as a “black box” and bypass all security controls
forcing the cash-out of all its money, cut communication with the ATM host in order to
avoid any interference from operational personnel monitoring the smooth operation of
the ATMs.

In this scenario, two camera feeds shall be utilized in the FCAS solution. Typically,
a dome camera is monitoring the scene at an ATM. Additionally, a portrait camera on
top of the ATM can be used to ensure detection of a person in the zones close to the ATM
using head detection (cf. Fig. 9). This way, the precise position of the person related to
the ATM left, centre, right can be detected.

Fig. 9. CCTV Analytics in the ATM Pilot

In addition, FCAS can monitor the number of people, the time spent in front of the
ATM on in the monitored area and if they arrived in the same time in front of the ATM.

Among others, there are fivewell-known use cases in this scenario and several CCTV
related events can be used for combined cyber-physical threat intelligence:

• Attack to a person at the ATM. To indicate such an attack, two or more persons
need to be in the scene and they need to get close to each other.
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• Attack to an ATM. To attack an ATM, one or more people need to be in the ATM
zone.

• Loitering. A person staying in the scene for longer than a specific time indicates this.
In addition, a trajectory longer than a defined length may add confidence to this.

• Introduction of malware to the ATM. From CCTV point of view, this is analogous
to Attack to an ATM since the ATM needs to be manipulated

• Jackpotting. This also relates to the second use case “Attack to an ATM” considering
CCTV events Since the ATM needs to be manipulated.

Moreover, events of cyber and physical probes can be correlated by an anomaly
detection and when attacks are detected, alarms can be issued or other mitigating actions
can be initiated.

3.3 Application to Other Segments

The FCAS development is based on an early very general Proof-of-Concept in the retail
segment. Beyond the described scenarios the ongoing FCAS development has been
considered for retail based use cases.. Among those, use cases counting people entering
shops, monitoring how long people stay in front of items, and interactions with sellers.

With the spring 2020 COVID-19 crisis, the requests for counting people inside an
area and monitoring their distances generated further application scenarios for this tech-
nology. Especially limited access to shops can be controlled counting people. Moreover,
utilizing floor maps of critical areas, e.g. at the cashiers desk, distances between people
can be monitored. The latter might be applied also to critical public spaces.

4 Deployment – from Server to Edge Computing

During the FCAS development, a trend towards application of AI in the edge has been
observed. Therefore, a deployment in the edge has been explored.

The development starting point was applying existing technology based on a system
with a powerful GPU, e.g. an X64 system and at least a GPU as powerful as an NVIDIA
1080GTX. This limits the utilization of the FCAS due to the system requirements and
related cost. Therefore, the system was not easily deployed in the edge.

This is the reason to evaluate small form factor systems, in this case the NVIDIA Jet-
son platform, namely the Jetson AGX Xavier, which is expected to provide the required
performance at lower cost than a typical server-based GPU and at a small form factor, as
a first step towards edge computing or even embedded application, e.g. inside an ATM.

With this process applying a further specialized computer architecture, i.e. ARM in
addition to×64, we faced common issues in the dynamic development of new hardware
and open source software as depicted in Fig. 10.

Even between servers with the same operating system (Ubuntu 18.04) the libraries
andversions of the underlying software change.This implies problems infinding the right
Python packages version in repositories for the specific ARM architecture. Moreover,
conflicts occurred as some parts required different versions of a given Python library.
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Fig. 10. From Server to Edge Computing

The precise list of packages and versions would be fastidious to list. The main libraries
that faced such issues are scikit-learn and scipy (both needed for the tracking algorithm).

To speed up deep learning inference as compared to TensorFlow, we moved to the
TensorRT framework published by NVIDIA. It provides optimizations for GPU-based
platforms. This requires usage of a distinct, dedicated open source code repository for
pose estimation instead of the original one (https://github.com/NVIDIA-AI-IOT/trt_
pose). The latter is written in pytorch and needs to be compiled to be optimized on
each hardware (Jetson GPU or common GPU), while the former one used an open
source TensorFlow implementation of pose estimation. However, this replacement may
be advantageous for both hardware environments (edge and server) as it the optimisation
through TensorRT may be used for underlying hardware compatible with the library.
This way an optimization can be achieved for both computing environments by this
pose estimation implementation.

5 Conclusion

This paper shows a privacy-preserving CCTV surveillance module using AI based video
analytics for cyber-physical threat intelligence. It is based on common technologies for
detection of body parts and human pose detection. There is an ongoing development to
move the solution towards and edge based intelligent sensor of potential physical threats.
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Abstract. We present the integration of TLSAssistant, a tool for TLS
vulnerability scanning and mitigation, with an online platform of services
for cybersecurity in critical infrastructure. We highlight the added value
of intelligence sharing and synergies with other services on the platform,
as well as the non-trivial challenges encountered in the process.
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1 Introduction

Sharing threat intelligence, evaluating risk exposure and responding to threats
in a timely manner are an open challenge - particularly in complex systems and
critical infrastructures. Security platforms are emerging as innovative answers.
There is no wide consensus on a common definition of the term security platform.
Three crucial capabilities that seem to be recurring in several descriptions [12]
are the following: (i) run a number of different security tools simultaneously
across as many environments as possible; (ii) integrate the various tools in a
uniform solution so to share threat intelligence information, contribute to the
timely evaluation of the risk exposure, and participate to respond to threats;
(iii) automate as much as possible security operations so to keep up with the
sheer number and speed of transactions and attacks in complex systems and
critical infrastructures.

While there exist many tools able to provide security-related functionalities,
such as penetration testing and intrusion detection, being able to integrate them
in a security platform and guarantee the features described above is a non-trivial
task. This is so because individual tools are designed in isolation with little
or no attention to information sharing in both input and output. This is not
surprising as the tools are often developed by different vendors to maximize
their effectiveness when used stand-alone.
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In summary, the main challenges to re-using the wealth of security techniques
available in stand-alone tools and effectively integrate them in a security platform
are the following:

1. merging heterogeneous sources of security intelligence in a coherent way
makes integration a complex task;

2. the results returned by the various tools must be integrated in a coherent and
meaningful way to be able to calculate a risk exposure of the system under
analysis.

With the arrival of the revised Payment Services Directive (PSD2) [3] and
its standardization effort by the Berlin Group [1], the focus on securing TLS
has become more and more important and relevant in financial contexts. In
this paper, we present the integration of TLSAssistant [25], an open source tool
that combines state-of-the-art TLS analyzers with a report system that suggests
appropriate mitigations, in the FINSEC platform [5], which is an integrated
framework for predictive and collaborative security of financial infrastructures.

The goals and added value in transitioning TLSAssistant from a command-line
tool to a cloud service integrated in the FINSEC platform were (i) sharing the
long-term mitigation intelligence provided by TLSAssistant reports; (ii) sharing
the immediate per-scan intelligence of vulnerabilities sighted at specific URLs;
and (iii) potentially enhancing the functionality of other services, based on indi-
vidual integration. Achieving these goals let us face the two aforementioned
challenges. In particular, the first challenge allows us to introduce in TLSAs-
sistant the use of STIX, a language for exchanging cyber threat intelligence to
simplify the integration; while the second challenge allows us to introduce the
importance of defining appropriate risk metrics and associate them to the vul-
nerabilities detected by the tools so that they can be integrated and used by the
Risk Assessment Engine available in the platform.

Plan of the Paper. Section 2 provides the necessary background notions on TLS,
its vulnerabilities and the impact of its use when securing Financial APIs. The
section also introduces TLSAssistant, a tool developed to assist system adminis-
trator to secure their TLS deployments. Section 3 gives an overview of the FIN-
SEC platform by describing its structure, how it works and the parties involved.
Section 4 describes how we addressed the challenges arising from the integration
of TLSAssistant in FINSEC, and Sect. 5 further details the integration with the
Risk Assessment Engine as deployed in FINSEC. Section 6 concludes the paper
and highlights future work.

2 Assisted Hardening of TLS Configuration

Transport Layer Security (TLS) was first introduced in 1999 [15] to provide both
confidentiality and integrity between communicating entities. Unfortunately, the
secure configuration of TLS instances is far from trivial and requires time and
security insight. In this section, we first give a concise description of two known
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vulnerabilities (Sect. 2.1); then we present TLSAssistant, a tool proposed to assist
system administrators and app developers to deploy resilient instances of the
TLS protocol (Sect. 2.2); finally we describe the role of TLS for financial services
(Sect. 2.3).

2.1 Vulnerabilities on TLS

TLS has been updated several times [9,16,17] to improve its security. The latest
version, TLS 1.3, removes several now-deprecated cipher suites that made the
protocol prone to a large number of vulnerabilities. Nevertheless, the most widely
supported version is currently TLS 1.2. On this protocol version or prior, TLS
suffers from a wide set of vulnerabilities [26]. In this paper, we focus on two
representative examples:

Bar Mitzvah. [10] By exploiting the invariance weakness of the RC4 stream
cipher, an attacker is able to retrieve the session cookie by guessing the least
significant bits of the keystream. RC4 is a very widely used cipher suite. It
has been known since 2013 that some RC4 weaknesses also affect SSL/TLS;
nevertheless, almost 10% of the most popular sites in the world (based on
Alexa’s list) is still supporting it [22].

ROBOT. [2] (Return Of Bleichenbacher’s Oracle Threat): due to the availability
of the PKCS#1v1.5 padding algorithm in RSA, an attacker is able to extract
the private key of the session and breaking the message confidentiality. By
using an adaptive chosen-ciphertext attack, based on Daniel Bleichenbacher’s
chosen-ciphertext attack, the victim is forced to leak information that help the
attacker to guess the key. The key can then be used to decrypt HTTPS traffic
sent between the TLS server and the user’s browser. Even though the most
popular sites in the world are not vulnerable to ROBOT [22], researchers are
still discovering different ways to exploit the same vulnerability with small
variations to the Bleichenbacher attack, some of them affecting even TLS
1.3 [23].

2.2 TLSAssistant

TLSAssistant is an open-source tool [13] proposed to assist system administrators
and app developers to deploy resilient instances of the TLS protocol. By bringing
together different powerful analyzers, TLSAssistant is able to cover a full-range
of analysis on all the parties involved in a secure communication and to provide
a set of mitigation measures that aim to mitigate the impact of the identified
vulnerabilities.

Architecture. TLSAssistant is written in Bash and can thus be invoked via
command-line. The tool takes as input the target to be evaluated (e.g., the
IP address of a server) and outputs a report file. The content of the report
depends on the detected weaknesses and on the level of verbosity the user chose.
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Fig. 1. TLSAssistant architecture.

Figure 1 shows the architecture with its two main components: Analyzer and
Evaluator.

Analyzer takes as input the address of the target webserver. TLSAssis-
tant v1.2, the version we integrated in the FINSEC platform, included the
following command-line tools: testssl.sh [29], MalloDroid [4] and tlsfuzzer [11],
HTTP/HSTS checker. Once loaded, the Analyzer module will run each of the
tools related to the required scan, collect their reports and forward them to the
Evaluator.

Evaluator is responsible for the enumeration of the detected vulnerabili-
ties and the generation of the report that will guide the system administrator to
apply the appropriate mitigations. It is currently able to generate reports that
contain the vulnerabilities detected by the Analyzer and the related mitiga-
tions described at various levels of abstraction:

Textual Description: natural language description of the TLS vulnerability,
identification of the respective CVE ID, CVSS score and related mitigations
(brief explanation of the actions to perform).

Code Snippet: a fragment of code that can be copy-pasted into the webserver’s
configuration to seamlessly fix the weakness. TLSAssistant can detect any
webserver but is currently only able to provide snippets for Apache and nginx
HTTP server. Together with the snippet, the report will provide a set of steps
on how to find the correct file/line to edit.

For example, in the case of an Apache server vulnerable to Bar Mitzvah, the
report will contain the information shown in Fig. 2.

As described in Sect. 4.1, from version v1.2, TLSAssistant is able to export
the analysis result in STIX (Structured Threat Information eXpression) lan-
guage, which supports cyber threat intelligence activities and facilitates integra-
tion within security platforms (e.g., FINSEC).

2.3 TLS and Financial API

Under the revised Payment Services Directive (PSD2) [3], Account Servicing
Payment Service Providers (ASPSP) are to provide an interface for third parties
to access account information and perform operations (e.g., payments) on behalf
of the account holder.
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Fig. 2. TLSAssistant report for Bar Mitzvah - Apache webserver.

The Berlin Group standards and harmonization initiative proposes several
possible approaches in its detailed “Access to Account (XS2A) Framework” [1],
providing a detailed description of RESTful Application Programming Interfaces
(APIs) and their usage for the purposes of authentication of involved parties and
authorization to access service resources, such as account information, payment
initiation, and confirmation of funds. The security of these APIs is based on
both the transport and application layers. The first core technology explicitly
identified by the guidelines is the TLS protocol: in particular, “the communica-
tion between the Third Party Provider (TPP) and the ASPSP is always secured
by using a TLS-connection using TLS version 1.2 or higher.” [1].

Recommendations for security and identification standards in XS2A have
been published by Open Banking Europe [21], which explicitly assume the use
of TLS to guarantee confidentiality and integrity. The deployment of TLS is also
assumed by the Financial-grade API (FAPI) specification [19] for authentication
and authorization.

While PSD2 APIs are one of the most recent examples of online financial
services relying on the security of TLS, there are several other examples such as
home banking web and mobile applications; is also explicitly cited as an example
of how to comply with the Payment Card Industry Data Security Standard (PCI-
DSS) [20] Requirement 4.1, to “Use strong cryptography and security protocols
to safeguard sensitive cardholder data during transmission over open, public
networks”.
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Beyond online services, TLS is deployed in many IoT devices [24] and client-
end TLS proxies (e.g., in anti-virus products) [28]. Vulnerabilities in their TLS
configuration and implementation can significantly downgrade the overall cyber
and physical security, affecting many different enterprise sectors. For example,
in the financial sector, the CCTVs are essential for the ATM surveillance.

3 FINSEC Platform Overview

FINSEC (Integrated Framework for Predictive and Collaborative Security of
Financial Infrastructures) is a Horizon 2020-funded project being developed by
a consortium of 23 international partners [5]; its aim is to provide an integrated
service platform for the cyber-physical security of critical financial infrastruc-
tures.

Figure 3 shows a simplified version of the FINSEC architecture [6], highlight-
ing the main components related with TLSAssistant, which can be seen as a
three-layered set of components with different roles:

Presentation Layer composed by a Dashboard and any External Services with
access to the APIs. In particular, the Dashboard is an interactive interface
developed within the FINSEC project capable of showing the overall security
status of the infrastructure;

Service Layer contains the services integrated in the FINSEC platform. The
services can be either called on-demand (like TLSAssistant) or have an ongoing
monitoring activity (e.g., the Risk Assessment Engine);

Data Layer hosts a collection of security policies, vulnerabilities (imported
CVE), system logs and other intel. It is where all the knowledge is stored
and retrieved by upper layer entities. Its content is written in FINSTIX, a
proprietary extension of the STIX language (see Sect. 4.1 and [7]).

From a developer’s perspective, the FINSEC platform has a microservice archi-
tecture. This means that each integrated service is completely virtualized, inde-
pendent from the others and must therefore handle its own dependencies and
deployment. In FINSEC, this has been achieved by using the containerization
technology provided by Docker. Thanks to the high level of independence, this
approach aims to simplify both the overall management and each maintainer’s
work on condition that they handle their containers as if they were partially
cloud-deployed. This because, while each service can maintain its own private
state, it has to store all the relevant information in the shared database and
handle its own access queue.

The communication among containers is managed through the use of REST
APIs that each maintainer must provide. The set of APIs exposed by the services
is called SECaaS API while the one provided to access the Data Layer is called
Data Access API.
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Fig. 3. Simplified FINSEC architecture.

4 Integration with FINSEC Platform

Having been developed outside the FINSEC context, TLSAssistant is the result
of design choices driven by the use-case of a system administrator wanting to
check his own TLS deployment by downloading TLSAssistant and being able
to use it even when offline. This specific use case, notably different from the
FINSEC platform, led to (i) the creation of an internal database containing
the vulnerability mitigations and other information that help address the issues,
(ii) the ability to run a single analysis at a time, and (iii) the generation of a
human-readable report.

To maintain TLSAssistant’s autonomy while being able to satisfy all the FIN-
SEC requirements, the integration was divided in three parts:

1. extension of TLSAssistant’s output capabilities to allow a STIX-generated
report option;

2. creation of a Connector able to translate TLSAssistant’s STIX output in FIN-
STIX and to link our tool with the FINSEC’s Data Layer , avoiding data
redundancy and to maintain consistency across multiple analysis;

3. creation of a set of REST APIs and of a queue manager to allow concurrent
requests to be served sequentially.

4.1 STIX Output In TLSAssistant

Sharing intelligence with automated services required producing structured data
that are consumable by other services through a persistent data store. For this
reason, from version v1.2, TLSAssistant is able to export the analysis result
in STIX (Structured Threat Information eXpression) [18], a language used to
share cyber threat intelligence (CTI) that can be represented with objects and
their descriptive relationships. The STIX Domain Objects (SDOs) and STIX
Relationship Objects (SROs) are visually summarized in Fig. 4.

An implementation of TLSAssistant with STIX version 2.0 is available on
GitHub [25]. To clarify how the TLSAssistant report has been modified to map
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Fig. 4. A simplified SDO ecosystem with its possible relationships.

the vulnerability and mitigation output to STIX objects and relationships, Fig. 5
shows an example for the Bar Mitzvah attack. In general, after every scan and
for each discovered vulnerability, TLSAssistant generates a JSON file containing
the following entries:

vulnerability is an SDO that indicates a weakness that can be used
by an attacker to compromise a system. The CVE ID [14] that pro-
vides a common name for known vulnerabilities is usually present in the
external references property. In TLSAssistant, the vulnerability SDO
contains the name and description of the detected vulnerability.

course of action is an SDO used to give a recommendation on the actions that
might be taken in response to a CTI. It describes technical responses (e.g.,
patches) or higher level actions (e.g., policy changes). In TLSAssistant, the
course of action SDO contains the textual description of the mitigation
(in the description field) and the actionable mitigation in the form of code
snippets (in the x actions custom field).

relationship is an SRO used to link together two SDOs or STIX Cyber-
observable Objects (SCOs) in order to describe how they are related to each
other. STIX defines many relationship types, e.g. uses, targets, mitigates.
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Type: course-of-action
Id: course-of-action--655febbb-2063-4a01-87c0-
Created: 2020-04-20T13:19:25.347Z
Modified: 2020-04-20T13:19:25.347Z
Name: Bar Mitzvah_coa

Description: Disable the RC4 stream cipher.

X actions:

  1. open your Apache configuration file (default:
      /etc/apache2/sites-available/default-ssl.conf);  
  2. find the line starting with: SSLCipherSuite;  
  3. add the string :!RC4 at the end.    

N.B. restart the server by typing: sudo service
apache2 restart.

Type: observed-data

Id: observed-data--4c487cd2-c9d8-4592-
af05-f3f36b2ffdbc

Created: 2020-04-20T13:16:49.836Z
Modified: 2020-04-20T13:16:49.836Z

First observed: 2020-04-20T09:16:49.834124Z

Last observed: 2020-04-20T09:16:49.834124Z
Number observed: 1

Objects:

{"0": {
            "type": "url",
             "value": "www.example.com"
        }}

Type: sighting

Id: sighting--c892b89a-af13-4efe-
ad16-851949831e47

Created: 2020-04-20T13:16:49.837Z

Modified: 2020-04-20T13:16:49.837Z

Sighting of: vulnerability--1a2c1635-6923-
472d-8d32-1a90d80decd8

Observed
data:

observed-data--4c487cd2-
c9d8-4592-af05-f3f36b2ffdbc

Bar Mitzvah

Bar Mitzvah_coa

sighting

observed-data

sighting-of

mitigates
observed

Type: vulnerability

Id: vulnerability--1a2c1635-6923-472d-8d32-
1a90d80decd8

Created: 2020-04-20T13:19:25.347Z

Modified: 2020-04-20T13:19:25.347Z

Name: Bar Mitzvah

Description:

By exploiting the invariance weakness of the RC4
stream cipher, an attacker is able to retrieve the
session cookie by guessing the LSBs (least
significant bits) of the keystream. After a phase in
which the attacker sniffs the connection between
two parties, it detects a weak key usage and tries
to exploit the weakness.

Fig. 5. STIX output for the Bar Mitzvah attack.

In TLSAssistant, a course of action is linked with a vulnerability -
through the mitigates relationship type.

observed data is an SDO that contains information about entities (e.g., files
and systems) using the SCOs to provide supporting context. It is not an
intelligence assertion, it is simply the raw information without any context
for what it means. In TLSAssistant, the observed data SDO contains info
about the asset observed (e.g., the URL analyzed and the timestamp of the
scan).

sighting is an SRO that denotes the belief that something in CTI was seen.
In TLSAssistant, the sighting SRO links the vulnerability SDO and the
observed data SDO through the observed and sighting of relationship
types.

4.2 FINSEC Connector

The Connector is a Python script written to integrate TLSAssistant in the FIN-
SEC platform. Figure 4 shows its two modes of operation: on deployment and
on scan.

on deployment. The script is called once during the container’s deployment
phase. To avoid data inconsistencies or duplicates, once invoked it checks if a
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deployment had already occurred. In this mode, the connector has the role of
linking TLSAssistant’s intelligence to the Data Layer content. In particular:

1. it exports TLSAssistant’s internal database. This will create a set of STIX
bundles (see Sect. 4.1) containing three objects: a vulnerability, a -course
of action, and a relationship of type mitigates;

2. using the exported vulnerabilities, it retrieves their IDs from the Data Layer
then edits all the relationship objects. By doing this, each course of
action -will be linked with the proper object within the shared database.
Two edge cases can occur:

– if a single course of action is able to mitigate more than one vulner-
ability, the connector will create an “aggregated” vulnerability object
and link it to the mitigation (to avoid SRO redundancy);

– if a vulnerability extracted from TLSAssistant does not have a CVE (hence
the Data Layer will not contain its object), a new vulnerability-object
will be created and uploaded;

3. it extends the structure of each course of action by adding FINSTIX prop-
erties (see Sect. 3). These (e.g., ‘x subtype’ = ‘to dashboard’) are used to
extend the STIX language and manage the integration with the Dashboard ;

4. lists all the created and linked vulnerabilities in a file stored locally (this is
the file whose existence will be checked on startup) and uploads all course
of action and mitigates objects.

on scan. The script is called after every completed scan. Once started, the
connector retrieves the JSON files generated by TLSAssistant (see Sect. 4.1), and
performs the following operations (for each file):

1. extracts the sighting, the observed data (see Fig. 5) and the name of the
detected vulnerability;

2. matches the name of the vulnerability and links the sighting to its ID in
the Data Layer (value retrieved or generated during the deployment);

3. tags each sighting object with a custom scan id field so that the initiating
service could retrieve the results;

4. finally, it uploads both the sighting and the observed data to the Data
Layer , allowing the Dashboard , the initiating service, and any other services
to retrieve the results of the scan, now available within the shared database.

4.3 API and Queue Handling

Each TLSAssistant scan can take anywhere between 1 and 5 min, and an installa-
tion of TLSAssistant was never designed to handle concurrent requests. Making
the service available therefore required not only the definition of an API to initi-
ate scans, but also a message queue for requests to be passed to worker threads,
and a data store for states and results to be queried.

Figure 6 shows a component diagram of TLSAssistant integrated in the FIN-
SEC platform, with our contribution (colored) composed of the following:
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Fig. 6. Integration of TLSAssistant in the FINSEC architecture.

– TLSAssistant+Connector to analyze the deployments and interact with the
Data Layer (see Sects. 2.2 and 4.2);

– a set of Service APIs exposed using Flask and leveraging the Celery task
queue;

– rabbitmq broker for scan requests;
– redis to store scan states.

In detail, our service expose the following Service APIs:

POST /scan a JSON object with a url key on which to initiate a vulnerability
scan; returns a scan id - a UUID as per RFC 4122.

GET /state/{scan id} returns the current scan state as reported by Celery (e.g.
pending, success and failure).

GET /result/{scan id} retrieves all sighting for the given scan id, and all
associated objects such as vulnerability and course of action, from the
Data Layer .

Finally, enhancing the functionality of other services to achieve a synergy
beyond their consumption of the generated STIX objects required individual
integration, e.g. Risk Assessment - see Sect. 5.

5 Integration with Risk Assessment

As discussed in the introduction, one of the most important advantages in inte-
grating a tool like TLSAssistant in the FINSEC platform is to enhance the func-
tionality of other services. Particularly relevant to any security platform is to

https://docs.celeryproject.org


TLSAssistant Goes FINSEC 27

provide a comprehensive evaluation of the security risks of an infrastructure or
system. We thus consider how TLSAssistant can contribute information to refine
the calculation of the Risk Assessment Engine (RAE) available in the FINSEC
platform in order to support a continuous risk evaluation process.

The RAE is designed to support a continuous monitoring of assets; this allows
a Security Officer at a financial institution to maintain a list, for instance, of TLS
servers in their infrastructure, including but not limited to Online Banking or
PSD2 API servers, and have them regularly scanned for vulnerabilities. While
changes in server configurations should only occur infrequently and as a conse-
quence of manual intervention by a system administrator, a regular scan also
mitigates against undetected malicious changes, unintended consequences e.g. of
upgrades to dependencies, or automated changes. The regular scans may return
observations of vulnerabilities that trigger a re-evaluation of the current risk
level. If the vulnerabilities are tied to a specific CVE, this can be cross-referenced
with those potentially present on the asset by manufacturer and model, and its
impact can be assessed based on CVSS scores.

The RAE integrated in the FINSEC platform [8] takes an approach based on
graphical risk modeling described in [27]. To summarize, this entails the creation
of a CORAS model, based on an understanding of the overall risk pattern to be
modeled, and the definition of risk assessment algorithms - Bayesian networks in
R and decision diagrams in DEXi - for an automated quantitative and qualitative
risk assessment.

The RAE has been adapted to consume STIX sighting objects to trig-
ger re-evaluation of risk models. As noted in Sect. 4.1, TLSAssistant produces
sighting objects linked to cyber observables; the RAE however measures risks
associated with an x-asset object, developed specifically for the FINSTIX data
model [7]. This object links specific cyber-physical entities, e.g. servers, with
their cyber-physical address (e.g. LAN IP) and/or physical location, as well as
parameters relevant to risk assessment. A synergy between our vulnerability
scanning service and the Risk Assessment Engine can be achieved by (a) linking
each scan of an address with a known x-asset, on the part of the scanning
service, and (b) adding sighting of the relevant vulnerability objects to the
RAE risk models.

The following modifications were made specifically to integrate with the RAE.

x-asset objects in the Data Layer had a url property added
scan/ API endpoint calls can be made with an x-asset-id JSON element; the

API will retrieve the corresponding object from the Data Layer and read its
url property.

x-asset-id provided to the API is added to the x asset refs[] property in
sighting objects produced by TLSAssistant.

CORAS risk models were updated to include some of the specific CVE that
TLSAssistant can produce sighting of. A simplified model of how sighting-
of vulnerability may be represented in CORAS is shown in Fig. 7.
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Fig. 7. Integration of TLSAssistant in a Risk Assessment Engine model.

6 Conclusions and Future Work

Combining different security services and merging their results in a coherent view
presents some interesting challenges and opportunities. In this paper, we present
how we addressed them in the integration in the FINSEC platform of an open-
source tool (TLSAssistant) proposed to assist system administrators to deploy
resilient instances of the TLS protocol. Firstly, for sharing TLSAssistant’s output
with FINSEC services, we extended our tool with STIX 2.0, a language used to
share structured cyber threat intelligence data. Secondly, as TLSAssistant was
never designed to handle concurrent requests, we provided – together with the
APIs to initiate scans and retrieve the results – an API to request the state of
the scan and a data store for states and results to be queried. Finally, we showed
how the TLSAssistant service integrated in the FINSEC platform can be easily
modified to support the integration with other FINSEC services (e.g., the risk
assessment engine).

As future work, we plan to further improve the TLSAssistant integration (e.g.,
by managing the edge cases) and the orchestration of TLSAssistant requests (e.g.,
by adding a scan scheduling to manage both on-demand and scans repeated on
a regular basis).
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Abstract. Cyber-attacks are becoming more sophisticated and thereby
more difficult to detect. This is a concern to all, but even more to Criti-
cal Infrastructures, like health organizations. A Cyber Threat Monitor-
ing System (CTMS), providing a global approach to detect and analyze
cyber-threats for health infrastructures is proposed by combining a set
of solutions from Airbus CyberSecurity with a machine learning pipeline
to improve detection and provide awareness from cyber side to a more
global approach that will combine them with physical incidents. The
work is being carried out in the scope of SAFECARE project. In this
work, we present the CTMS architecture and present our experimental
findings with ensemble learning methods for intrusion detection.

Several parameters of six different ensemble methods are optimized,
using Grid Search and Bayesian Search approaches, in order to detect
intrusions as soon as they occur. Then, after the determination of best
set of parameters for each algorithm, the attack detection performance of
these six different ensemble algorithms using the CICIDS 2017 dataset
are calculated and discussed. The results obtained identified Random
Forest, LightGBM and Decision Trees as the best algorithms, with no
significant difference in the performance, using a 95% confidence interval.

Keywords: Machine Learning · Intrusion Detection System (IDS) ·
Ensemble learning · Parameters optimization · Random Forest ·
Decision Trees · LightGMB · Adaboost · Rusboost · CICIDS2017

1 Introduction

Over the last decade, the European Union has faced numerous threats that
quickly increased in their magnitude, changing the lives, the habits and the
fears of hundreds of millions of citizens. The sources of these threats have been
heterogeneous, as well as weapons to impact the population. Health services are
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at the same time among the most critical infrastructures and the most vulnerable
ones. They are widely relying on information systems to optimize organization
and costs, whereas ethics and privacy constraints severely restrict security con-
trols and thus increase vulnerability. The aim of SAFECARE project is to bring
together the most advanced technologies from the physical and cyber security
spheres to achieve a global optimum for systemic security and for the man-
agement of combined cyber and physical threats and incidents, their intercon-
nections and potential cascading effects. SAFECARE cyber security solutions
include a IT threat detection system, an Advanced file analysis system, a threat
detection system for Building Monitoring Systems (BMS) and a E-health device
security analytics system, all monitored in an overall Cyber Threat Monitoring
System (CTMS) that feeds a data exchange layer, where all physical and cyber
security incidents are analysed in a combined way through an impact propagation
model. These detected incidents are then available through a Threat Response
and Alert system, providing awareness to different stakeholders, from SOC oper-
ators to National health agency, Police, Firefighters, etc. In this paper, we will
describe the CTMS and detail our experimental findings in using ensemble tech-
niques for intrusion detection. The main objective of the IT Threat detection
system is to improve network traffic incident/threat detection and investiga-
tion. Machine Learning methods have been widely used for this analysis since
it can understand the behavior of an attack using known traffic datasets, and
then can detect attacks in the network. The first experimental findings we will
share in this paper rely on the application of Ensemble learning techniques.
Ensemble learning [4] is a machine learning paradigm where multiple models
are trained independently to solve the same problem, and then combined to get
better results. As they often outperform single models for many types of prob-
lems [16], this technique has been widely used in intrusion detection [8,11,15]. Six
different ensemble algorithms were considered for this study. In order to deter-
mine the best set of parameters for each ensemble algorithm, different parameter
optimization techniques (Grid Search and Bayesian optimization) were applied.
Then, after the determination of best set of parameters for each algorithm, their
attack detection performance was calculated using a macro averaged score of
the recall, precision and F1-score metrics. This way it is possible to understand
the performance of each algorithm but also the trade-offs between precision and
recall, so important in the attack detection field. The results showed that Ran-
dom Forest and LightGBM are the best algorithms with no significant difference
in the performance. The rest of the algorithms can be classified according with
its attack detection performance in the following order: Decision Tree, Rusboost,
Balanced Random Forest and Adaboost.

2 Cyber Threat Monitoring System

One of the main outcomes of the SAFECARE project is a cyber threat moni-
toring system (CTMS) that aims at improving the detection of Advanced Per-
sistant Threats (APTs) [2] and zero-day attacks on IT and BMS systems, as
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Fig. 1. SAFECARE - CTMS global structure.

shown in Fig. 1. The e-health device analytics solution collects data from medi-
cal devices, combines it with other (public) data sources and performs analytics
to derive meaningful security data to help identify, assess and manage threats
and risks affecting the e-health devices. The advanced file analysis system per-
forms an in-depth analysis of the files extracted from network traffic by the IT
and BMS threat detection systems, and the cyber threat monitoring systems
receives all security events produced by the IT and BMS threat detection sys-
tem. The advanced file analysis system detects malicious files based on different
approaches: static analysis such as signature matching, heuristic analysis and
dynamic analysis [3]. Signature matching is a deterministic method only effec-
tive if the malware is already known. Heuristic methods are able to identify
several variants of a virus but can generate false-positive events. Dynamic anal-
ysis consists in sand boxing the file in a suitable environment in order to high-
light suspicious behaviours. IT threat detection system supports the objective
of improving incident detection by providing network monitoring and producing
relevant information. The IT threat detection system captures the network traf-
fic and performs near-real time analysis in order to detect suspicious behaviour
and scale up security events to the cyber threat monitoring system. The IT
threat detection system uses a hybrid approach combining both non-supervised
methods and supervised methods in order to improve threat investigation and
threat detection on the network traffic. The current solution is based on the net-
work threat detection engine Suricata and is associated with a correlation engine
Graylog. A machine learning module includes different techniques combined in a
hybrid approach. In this paper we study, analyze and compare the performance
of Ensemble Techniques and our experimental findings based on the training
with public datasets.
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3 Ensemble Methods in Intrusion Detection

Ensemble models are particularly adept at dealing with large datasets due to the
ability to partition the data to train different classifiers with different samples
and combining their results. Diversity is also essential since it allows classifiers to
correct each other’s errors. Random Forest, Adaboost, Rusboost and LightGBM
are some of the most used ensemble methods in intrusion detection systems.
Decision trees are the basic method of all these ensemble methods.

Stefanova and Ramachandran [20] proposed a two-stage classifier for network
intrusion detection. Experimental tests led the authors to state that the approach
presented is a superior method compared to the existing data mining models in
network security, since the time for performing the analysis is relatively short,
and the accuracy is remarkable.

Due to its nature, intrusion detection evaluation datasets are composed by
imbalanced data where the proportion of attack events across all data is not
evenly distributed. Random Forest is more robust than other widely known
methods when considering imbalanced datasets. Even then, in some situations,
the imbalance may influence the accuracy. Balanced Random Forest improves
the ability of Random Forest models deal with imbalanced data [1].

Adaboost has been employed in several intrusion detection approaches but
it is most commonly used in signature detection. Mazini et al. [14] proposed
a hybrid solution where the Artificial Bee Colony (ABC) algorithm is used to
optimize the search for the best feature space (feature selection) and Adaboost.
M2 (a multiclass adaboost [23]) is used in a multiclass classification setting. In
order to validate their results, the authors used False Positive Rate (FPR), recall
and accuracy on the NSL-KDD and ISCXIDS2012 datasets. It was concluded
that the proposed solution outperformed other methods with 99.61% detection
rate, 0.01 FPR, and 98.90% accuracy.

Latah and Toker [13] presented a comparative study on the choice of an
efficient anomaly-based intrusion detection method. The authors focused on
supervised machine learning approaches, using several typical classifiers, such
as decision trees, bagging trees, AdaBoost, Rusboost, etc. Using the well-known
NSL-KDD dataset and based on experimental studies, the authors concluded
that decision trees approach shows the best performance in terms of accu-
racy, precision, F1-score, area under the curve and McNemar’s test. In addition,
approaches like bagging trees, AdaBoost and Rusboost outperformed other con-
ventional machine learning methods with a confidence level over 99.5%. Yulianto
et al. [22] improved AdaBoost-based IDS Performance on CICIDS 2017 Dataset.
The method proposed by the authors outperforms the performance of previous
works with the accuracy of 81,83%, precision of 81,83%, recall of 100%, and F1
Score of 90,01%.

4 Datasets

Data are the most valuable asset to develop an efficient intrusion detection sys-
tem. In the literature, exist several public available datasets that are intended



CTMS - Comparing Attack Detection Performance of Ensemble Algorithms 35

to resemble real data traffic, such as KDD-99 [5], DARPA 98/99 [21] and
ISCX2012 [19]. In this work we will use the CICIDS2017 dataset [6], which
was created to overcome the issues of existing datasets. This dataset is available
in eight different (csv) files, containing five days of normal and 3 days of intrusive
traffic.

Despite ensemble learning techniques are capable of handling large datasets,
we have decided to sample the dataset for training and testing purposes, since
it is more efficient and cost-effective than surveying the entire dataset. Thus,
30% of the data were chosen using a stratified sampling method, i.e., the new
dataset had the same proportion of attacks and benign traffic as the complete
dataset. Nevertheless, this proportional cut affected attacks with less representa-
tion, namely infiltration, heartbleed, and SQl injections, which had less than 40
instances each. To solve this problem it was decided to include, all these attacks
in the new dataset. It is important to note that this addition changed the original
distribution of traffic, and can create an undesired bias in the data. However,
this bias it would be similar to the bias present in any other oversampling or
undersampling method. Moreover, since we are only resample a small amount of
instances (around 100 in total) the bias is even less significant. Therefore, it can
be said that the dataset was sampled twice, in a first instance it was sampled
to 30%, using a stratified method, making the underrepresented classes almost
nonexistent; in a second instance all the underrepresented classes were included.
Lastly, before starting the training phase, the new dataset was partitioned in
train (77%) and test (23%) sets using again a stratified sampling strategy.

5 Ensemble Optimization

Most machine learning algorithms have several parameters that should be
adjusted properly, otherwise the selected algorithm will not achieve optimal
results. Several studies have been successfully proposed in parameter optimiza-
tion to obtain the most accurate classification models [7]. In this paper, we
mainly used three different methods: Grid Search, Bayesian Search and man-
ual tuning. Grid Search is an exhaustive search based on defined subsets of
the parameter space. Ramadhan et al. [18] applied the Grid Search method for
tuning parameters in the well-known classification algorithm Random Forest.
Also in this work, we have tuned Random Forest, Rusboost and Decision Tree
parameters using Grid Search. The process was done as follows: first, a range to
test the parameters was chosen by examining previous works and estimating the
boundaries; second, a Grid Search was applied using the boundaries and some
values in between. This process was accompanied by a 3-fold cross-validation
to ensure that the results were stable in the training data and did not depend
on random chance. k-fold cross-validation is a re-sampling procedure used to
evaluate machine learning models, increasing the consistency and the quality of
the results. In this procedure the training test is divided into k non-overlapping
parts of equal proportion (randomized). Following this division k models are
trained, each using its part as a validation set, and the other k − 1 parts as a
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training set. Finally, all k models’ performance is averaged to give a final result
without overfitting the test set.

A common alternative to Grid Search is Bayesian Optimization which could
be employed when the number of parameters and, consequently, the computa-
tional cost of doing a Grid Search are high. Bayesian optimization is an iterative
algorithm. In each iteration, a probabilistic surrogate model is fitted to all obser-
vations of the target function made so far. Then, an acquisition function, which
uses the predictive distribution of the probabilistic model, determines the utility
of different candidate points, trading off exploration and exploitation [9]. We
will use Bayesian optimization to tune LightGBM parameters. In the following
sections we will describe the tuning of each individual algorithm as well as the
parameters that are being tuned.

5.1 Random Forest and Balanced Random Forest

The optimization of parameters for Random Forest and Balanced Random Forest
are very similar. Moreover the parameters that needs to be tuned are exactly
the same:

– Number of trees: number of trees that are part of the Random Forest;
– Max depth: maximum depth of each tree;
– Max features: number of features that should be used to train each tree;
– Splitting Criterion: the criterion to test the quality of the splits.

Random Forest is a bagging method that ensembles several decision trees. So,
as for any other bagging method, random samples of training sets (bootstrap
samples) for each Random Tree are produced. The number of trees is then an
important parameter to analyse. Thus, we built two plots (Fig. 2). As can be
seen, the number of trees does not increase the F1-score beyond a small number
of trees, in this case only about 100 trees are needed for performance improve-
ments to be halted. This behavior is expected and in accordance with the litera-
ture [17]. According to the results, we can conclude that if F1-score was the only
performance metric of interest any number of trees greater than 50 would be an
acceptable choice. However, in the case of anomaly detection, execution time is
also a concern. By analyzing the plot on the right (see Fig. 2), it is possible to

Fig. 2. Plot of F1-score (left) and execution time (right) against the number of trees.
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Fig. 3. Plot of F1-score (left) and execution time (right) against the maximum depth
of the trees.

Fig. 4. Plot of F1-score (left) and execution time (right) against maximum number of
features.

conclude that time and number of trees are positively correlated, which suggests,
together with the graph on the left, that the ideal number of trees necessary to
reach a plateau in performance could be any number above 50 trees. However, to
account for the inherent randomness of the process 100 trees will be considered.

Another important parameter to tune is the depth of each individual tree,
which is the only mechanism that Random Forest has to control the bias. Deci-
sion trees when grown sufficiently deep have relatively low bias. However, this
can bring high variance, since the learned parameters, such as the structure of
the decision tree, will vary considerably with the training data. The problem
is that the model learns not only the actual relationships in the training data,

Fig. 5. Pilot of F1-score (left) and execution time (right) against the splitting criteria.
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but also any noise that is present. In Random Forest, this variance is controlled
by the bagging of the various trees, which means that by averaging out each
prediction it is possible to reduce the error of the model on the test data, com-
paratively to the error of a single tree. Thus, the entire forest will have lower
variance but not at the cost of increasing the bias. As can be seen in Fig. 3,
the performance improves with tree depth, and execution time stays somewhat
stable for each value. This indicates that growing trees to the maximum depth
(until all leaves are pure) has a small computation cost but can bring good per-
formance improvements. In the Random Forest only a subset of all features are
considered for splitting each node in each decision tree. Therefore, the maximum
number of features to use in every single split is one of, if not the most, important
parameter in a Random Forest. With the analysis of the Fig. 4 it is possible to
observe that the performance plateaus after 70%. This means that the algorithm
could only produce meaningful splits with a high number of features probably
due to a large amount of noise variables. This type of values point to the need
to select the more relevant features.

Finally, a not so important parameter when building a Random Forest is
the splitting criteria. Although the small importance for Random Forest due its
ensemble nature, split criterion is a fundamental issue in decision trees. There
are two main criteria: Gini Impurity and Information Gain (entropy). The Gini
Impurity represents the probability that a randomly selected sample from a
node will be incorrectly classified according to the distribution of samples in the
node [12].

Changes in splitting criteria parameter rarely cause significant performance
differences in Random Forest. Figure 5 shows that using Gini Impurity results
slightly lower performance and slightly longer training time. In this case entropy
was chosen, but the choice of Gini Impurity would not significantly affect the
final results. Therefore, the final parameters chosen were:

– Number of trees: 100;
– Max depth: None;
– Max features: 70%;
– Splitting Criterion: Entropy.

Note that the Max depth parameter is None in order to expand the nodes
to the maximum depth.

5.2 Decision Tree

In the case of decision trees, the parameters are very similar to those of Random
Forest: Max depth, Max features and Splitting Criterion. This happens
because the parameters used in Random Forest focus on controlling each indi-
vidual tree instead of controlling the interaction between them. As such the
descriptions will be similar to those used in the previous section.

In Fig. 6, it is easily observable that the maximum F1-score occurs when the
maximum depth is about 17. Training time stabilizes when the maximum depth
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Fig. 6. Plot of F1-score (left) and execution time (right) against maximum depth.

approaches 10. This means that, contrarily to Random Forest choosing a higher
maximum depth will not increase training time. However, there is no mechanism
for reducing the variance of deep trees, which can make deep trees to outperform
training data and to perform poorly on test data. As such, deep trees are not
recommended and a depth of around 17 should be enough to meet performance
needs.

Figure 7 presents the graphs for maximum number of features. As in Ran-
dom Forest case, it is possible to notice two plateaus in the both functions, one
between 40% and 60% and another between 80% and 100% features. This sug-
gests a high number of noise variables, which indicates that using a low number
of features, such as 10% or 20%, would highly contaminate the samples, leading
to bad splits and consequently to poor results.

Interestingly, the best splitting criterion in decision trees is not the same as
Random Forest. As can be observed in Fig. 8, although the training time is very
similar, the criterion that leads to the best F1-score is Gini Impurity instead
of entropy, with a 2% increase. Despite it seems very negligible, it can make a
difference by reducing metrics like false positives and false negatives, that already
have very low values. Thus, the final parameters for decision trees are:

– Max depth: 17;
– Max features: 80%;
– Splitting Criterion: Gini Impurity.

5.3 Adaboost and Rusboost

Adaboost and Rusboost, due to its nature, have almost the same parameters
that can be tuned:

– Max Number of estimators: number of trees to fit in the model (can be
reduce by early stopping);

– Learning rate: Rate of convergence of evaluation metric (higher converges
faster);

– Max depth: depth of each boosted tree;
– Sampling strategy: which classes to undersample (exclusive to rusboost).
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Fig. 7. Plot of F1-score (left) and execution time (right) against maximum number of
features.

Fig. 8. Plot of F1-score (left) and execution time (right) against splitting criteria.

The number of estimators of a boosting model is one of the most important
parameters. It represents the number of trees in the forest. Usually the higher the
number of trees the better to learn the data. However, adding a lot of trees can
slow down the training process considerably. Moreover, the number of estimators
or trees needs to be balanced with the learning rate to tune the model.

Fig. 9. Plot of F1-score (left) and execution time (right) against number of estimators.

In Fig. 9, it can be seen that for a given learning rate (0.05) the F1-score
seems to increase monotonically when the number of trees is increased. This
means that the F1-score increases rapidly in the early stages and stabilizes later.
Therefore, choosing the number of trees is not so important as long as it is not
too small or too high (may result in overfitting). A good starting point would
be around 100 trees.
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Another extremely important parameter is the learning rate or shrinkage.
This parameter can be interpreted as the contribution scale of each tree to the
prediction. This means that when there is a low shrinkage the model takes longer
to converge, and as such will need more trees. Therefore, the learning rate and
the number of trees are often seen together, as a tradeoff: when one is decreased
the other must be increased, or the model is at risk of overfitting. A good way to
ensure stability is to choose a low learning rate value and then select the number
of trees. Another reason for adjusting shrinkage first is the computational cost.
Usually, the algorithm looks for the convergence point when training. Thus, if
the shrinkage is selected beforehand, the algorithm can select an optimal number
of trees, reducing the computational cost.

Fig. 10. Plot of F1-score (left) and execution time (right) against learning rate.

Figure 10 shows that shrinkage does not improve after 0.05, due to the low
number of estimators (100), that limits the extent to which the convergence can
be delayed. If the number of trees was increased, the learning rate would be
expected to decrease. In terms of training time the model has erratic compu-
tational costs with expected monotonic trends when randomness is accounted
for.

Fig. 11. Plot of F1-score (left) and execution time (right) against max depth.



42 E. Maia et al.

Normally, the depth of the boosted trees is not a concerning fact when train-
ing a boosting algorithm. Tree stumps (trees with one root and two leaves) are
often good models for weak learners and rarely need adjustment. When using
trees deeper than one, there is a risk of increasing the variance, since mod-
els make fewer mistakes in each iteration. Thus, it is hard to train subsequent
models using the misclassified samples of the previous model. Therefore, Hastie
et al. [10] recommend a depth between 3 and 7, and mention that rarely more
is needed and may result in a significant variance addition. As can be seen in
Fig. 11, the model seems to stabilize the depth around 5. However, the score
would be expected to fall if the depth continued to increase more than the chart
boundaries. Finally, the training time follows a similar function and plateaus the
depth around 5.

Fig. 12. Plot of F1-score (left) and execution time (right) against sampling strategy.

In the case of RusBoost there is one more parameter to take into account:
the sampling strategy. Sampling strategy dictates which of the classes will be
undersampled in each iteration of the boosting algorithm. There are 4 options for
undersampling: undersample the majority class, all classes but not the majority
class, all classes but not the minority class and finally it is possible to under-
sample all classes. In the case of intrusion detection, it is intuitive to want to
undersample the majority class and leave the few samples of attack without any
sampling. However, in the left plot of Fig. 12, it is possible to observe that the
most successful undersampling technique is not majority as expected but under-
sampling every single class. This type of sampling is unexpected and as such
would need a more thorough study. Finally, when it comes to the computation
cost undersampling every class but the not majority displays the worst perfor-
mance with around 200% more training time when compared to undersampling
every class. Therefore, in this case the final parameters are:

– Max Number of estimators: 150;
– Learning rate: 0.05;
– Max depth: 5;
– Sampling strategy: all.
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5.4 LightGBM

In the case of gradient boosting machines like LightGBM the tuning of param-
eters is not as straight forward as in the algorithms previously described. The
solution is use Bayesian optimization, which uses an underlying gaussian pro-
cess as a heuristic to find the parameters that optimize a black box model, i.e.,
it constructs a posterior distribution of functions (gaussian process) that best
describes the function that needs to be optimized. There are many parameters
that can be used in Bayesian optimization, nonetheless, the most important ones
are: the number of iterations and the number of random explorations. The first
dictates how many steps the model will execute to try to find the best parameters
and the second tries to prevent the process from getting stuck in local minima
by exploiting random solutions.

To find the best number of boosted trees a LightGBM model with 600 max
trees was ran using 10-fold cross-validation together with an early stopping
parameter of 200 iterations. It was possible to conclude that in all folds the
model did not improve after 350 trees. As such, this number was chosen as an
immutable parameter in the optimization process, along with other LightGMB
parameters such as the objective function as multiclass, the number of classes
as 15, class weight as balanced and bagging frequency as 5.

The parameters eligible for optimization were:

– Bagging Fraction: percent of data to sample (a value of 1 means all the
data are used at each iteration, so no bagging is used), ranging from 0.8 to 1;

– Feature Fraction: fraction of features to select in each iteration, ranging
from 0.1 to 0.9;

– Max depth: depth of each boosted tree, ranging from 5 to 9;
– Number of leaves: maximum number of leaves of each boosted tree, ranging

from 50 to 80 leaves;
– Learning rate: rate of convergence of evaluation metric (higher converges

faster), ranging from 0.001 to 0.1.

Table 1 presents the results of Bayesian optimization for these parameters. The
line with the best results is highlighted.

Table 1. Bayesian optimization of LightGBM model.

Iteration F1 Bagging Feature Learning Max Number

Score Fraction Fraction Rate Depth Leaves

0 0.918 0.875 0.861 0.073 7.0 55.0

1 0.908 0.831 0.146 0.086 7.0 71.0

2 0.914 0.804 0.876 0.083 6.0 55.0

3 0.778 0.808 0.162 0.005 9.0 50.0

4 0.932 1.0 0.9 0.1 9.0 80.0

5 0.576 1.0 0.9 0.001 5.0 80.0

6 0.712 0.8 0.1 0.001 9.0 63.0

7 0.737 1.0 0.9 0.001 9.0 75.0

8 0.923 1.0 0.9 0.1 5.0 66.0

9 0.923 1.0 0.9 0.1 5.0 50.0

10 0.874 0.8 0.1 0.1 5.0 71.0

11 0.667 1.0 0.1 0.001 5.0 53.0

12 0.923 1.0 0.9 0.1 5.0 61.0
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Bagging fraction is normally used to speed training and/or reduce overfit-
ting, since it resamples the data for a specific iteration using only the percent-
age specified in the parameter. Since LightGBM is a gradient boosting machine
implementation, it is needed to define how often boosted trees will be created in
a bootstrap. In this case, 5 will be used, which means that every five trees one
would be created using a bootstrap containing between 80% to 100% of the data.
This bagging fraction parameter, as can be seen in the Table 1, was optimized
to 1, i.e., 100% of the data in each bootstrap. This behavior is expected since
the Bayesian process was optimizing for F1-score and not for training time.

Feature fraction behaves similarly to the Max features parameter in
Random Forest. Its goal is to reduce the number of predictors used in each
iteration to improve training times and reduce the variance across all trees. As
can be seen in the Table 1, feature fraction parameter has a behavior similar
to Max features in Random Forest, tending to higher values, 0.7 in the case of
Random Forest, 0.9 in this case. This usually means that most features constitute
noise and offer no additional predictive value.

Following the previous parameters, comes the parameter that most influences
the model’s performance, the maximum depth of the tree. LightGBM uses a
leaf-wise (best-first) tree growth, i.e., it chooses to grow the branch whose split
leads to maximum reduction of impurity. By doing so, LightGBM can often
achieve better results than methods that use depth-wise growth. Neverthless,
the algorithm still provides a maximum depth parameter, which means that
the leaf-wise growth is limited in height by this parameter, in order to reduce
overfitting by controlling the variance of each tree. Looking at Table 1 it can be
seen that the maximum depth can vary between 5 and 9, with the maximum
value being chosen (9). Another common parameter is the number of leaves
which, contrarily to maximum depth parameter, regulates the growth of the tree
in a leaf-wise manner. However, the objective of this parameter is the same, it
is used to control overfitting. The analysis of Table 1 suggests again that this
parameter should be maximized using 80 as the maximum number of leaves. This
points to the potential increase in the model score, by increasing the number
of leaves. However, the computational costs of increment the number of leaves
would increase an already long training time of 8 min. Finally, the last parameter
is learning rate which, as in Rusboost, is used to delay the convergence of the
model, since the slower the model learns the less likely it is to get stuck in
local minima. This parameter is easier to optimize when there are many trees.
Thus, in this case, with 350 trees, only lower learning rates can be explored. As
such, Bayesian optimization chose the highest value with which the model could
converge in only 350 trees - 0.1 (see Table 1).

5.5 Experimental Results and Analysis

To better understand the performance of the algorithms, a macro-averaged score
of the recall, precision and F1-score was calculated for each model (see Fig. 13).
With this information it is possible not only to gain insight into the performance
of the algorithm but also into the trade-offs between precision and recall.
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Fig. 13. Comparison of precision, recall and F1-score for all algorithms.

It is possible to notice that Random Forest, LightGBM and decision trees
stand as the best performing models with 92%, 91% and 89% F1-score, respec-
tively. This can be attributed, in the case of Random Forest and decision trees,
to the depth of the trees used, since deepest trees achieve better results. In the
case of LightGBM the trees depth is still high (9 levels), but the most impor-
tant factor is the 80 leaf nodes that increase the method’s ability to learn com-
plex behavior together with boosting strategies. On the other hand, the rest of
the boosting algorithms (Adaboost and RusBoost), performed poorly, attaining
only 25% and 56% F1-score, respectively. This could be explained, as previously
noted, for two reasons: first the depth of the trees, since both algorithms were
modeled using only trees of depth 3 to not incur in unnecessary variance; and
the low number of trees that did not provide enough iterations for the model
to converge. As such, the solutions to these problems would be to increase the
number of trees from 150 to 600, for example, to try to regulate the learning rate
in order to converge the solution; and use deeper trees, preferably not exceed-
ing 10 in depth, with a risk of performance degradation. Another remarkable
property is the recall of the balanced Random Forest algorithm, which is highest
among all algorithms along with LightGBM, despite having an exceedingly low
precision. This indicates that the undersampling of the majority class had sig-
nificant impact on reducing the number of false negatives but it also increased
the amount of benign traffic labeled as an attack (false positives). This trade-off
could be better regulated by adjusting the probability thresholds of the balanced
Random Forest.

6 Conclusion

In this paper we present SAFECARE Cyber Threat Monitoring System and
detail the IT threat detection systems, by comparing the attack detection per-
formance of six different ensemble algorithms (Adaboost, Rusboost, Random
Forest, Balanced Random Forest, Decision Tree and LightGBM) using the
CICIDS2017 dataset. For each algorithm a study of the optimal parameter was
made using Grid Search and Bayesian search approaches. After, the parame-
ter optimization three different metrics were chosen to compare the algorithms
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performance: recall, F1-score and precision. The results identified, using a 95%
confidence interval, Random Forest, LightGBM and Decision Trees as the best
algorithms with no significant difference in performance and the rest of the algo-
rithms in the following order: Rusboost, Balanced Random Forest, Adaboost.
The selected techniques are now deployed and being used for attack detection
on data resultant from the simulation of different attacks under Airbus cyber
range tool.
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Abstract. Cyber-physical security of financial institutions is a criti-
cal and sensitive topic. In this context, the FINSEC project aims to
design and build a reference architecture for the integrated physical and
cyber security of financial institutions. To make feasible, the interactions
among the different services of the FINSEC platform, a proper data
model defining the exchanged information semantic is fundamental. One
of the objectives of the FINSEC project is to integrate cyber and physical
security measures in the financial services industry. To do so, the data
model must consider both cyber and physical systems. In this paper, the
authors present FINSTIX, namely the data model adopted in the FIN-
SEC platform. In particular, they extended the Structured Threat Infor-
mation eXpression (STIX) standard creating custom objects to describe
the financial organization’s infrastructure and then to integrate cyber
and physical security measures. The paper also reports an example of
the use of FINSTIX in a relevant use case scenario.

Keywords: Data model · FINSEC · STIX · Cyber-Physical Threat
Intelligence

1 Introduction

In the last few years, the number of cybersecurity incidents against financial insti-
tutions has been kept growing. According to the CLUSIT (the Italian association
for cybersecurity) 2019 report, the number of financial attacks has increased by
33% from 2017 to 20181, thereby underlining how financial institutions are a
primary target for cyber-attacks nowadays. This is mainly due to the grow-
ing sophistication of the IT technologies and the complex processes involving

1 The report is available at the following link: https://clusit.it/pubblicazioni/.
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multiple organizations. It is clear that financial institutions must increase their
robustness against attack vectors. To deal with such a problem, the European
Commission funded the Integrated Framework for Predictive and Collaborative
Security of Financial Sector (FINSEC)2 as an H2020 project. FINSEC aims
to design and build a reference architecture for integrating physical and cyber
security of financial institutions: in fact, in the financial services industry, cyber
and physical security measures usually act in isolation, thus entailing inaccurate
vulnerability assessment and risk analysis and, in general, poor-quality security
guarantees.

Beyond architecture design, the definition of the semantic used to represent
the information inside the FINSEC platform was one of the most demanding
tasks. A proper data model is fundamental to:

– Enable the interactions between the FINSEC platform and third parties;
– Enable the interactions among the different services within the FINSEC plat-

form;
– Provide the FINSEC services with a sufficiently fine-grained information gran-

ularity: in fact, too coarse-grained data may not be sufficient to support the
activities of the services, while too fine-grained data may reveal to be unman-
ageable in actual cases;

– Enable the integration of cyber and physical security measures.

In this paper, the authors present the data model used by the FINSEC platform.

2 Background

2.1 FINSEC Reference Architecture

As shown in Fig. 1, the FINSEC core platform consists of different services
divided into three distinct tiers:

– Edge Tier: it receives input data from the external probes and carries out
activities on the probes, upon request from the upper layers. The probes
are systems that collect and produce security information and events related
to the organizations physical and cyber assets. Example of probes are logs,
Security Information and Event Management (SIEM) systems, Closed Cir-
cuit Television (CCTV) systems and Simple Network Management Protocol
(SNMP) agents;

– Data Tier: it stores information coming from the other tiers of the FINSEC
platform or from external Cyber Threat Intelligence (CTI) sources;

– Service Tier: it contains the kernel applications and exposes the FINSEC
functionalities to external parts. It consumes the information stored in the
Data Tier.

2 https://www.finsec-project.eu.

https://www.finsec-project.eu
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Fig. 1. The FINSEC platform Reference Architecture (logical view)

More details about the Reference Architecture are available in Deliverable 2.5
-“FINSEC Reference Architecture - II”3. In Sect. 3.1, the authors will present a
practical example of the use of FINSTIX on a real use case scenario. There, the
following architectural components will be considered:

– Probes: devices adopted in the financial field to collect cyber-physical infor-
mation (e.g., CCTV probe, syslog probe, SIEM probe);

– Data Collector: collects data generated by the probes. Before storing them in
the Data Layer, the Data Collector sanitizes data to remove eventual pieces
of information violating the GDPR (personal references, etc.);

– Anomaly Detection: service that monitors events produced by the FINSEC
probes in order to correlate them according to the models of attacks stored
in the Data Layer as FINSTIX “x-attack”;

– Mitigation Service: service aimed to generate information that will be used
to mitigate the attack detected by the Anomaly Detection;

– Mitigation Enabler: service acting on the field level to send notifications and
to provide the probes with mitigation actions: some situations will require an
active response of the platform onto the assets, such as locking a rack under
attack, or shutting down a server that is threatened by a cyber attack.

3 https://ec.europa.eu/research/participants/documents/downloadPublic?
documentIds=080166e5ce3a941d&appId=PPGMS.

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ce3a941d&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5ce3a941d&appId=PPGMS
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2.2 STIX - Structured Threat Information eXpression

The Structured Threat Information eXpression (STIX) standard is a language
and serialization format used to exchange CTI [4]. In particular, it was designed
to support four use cases4:

– Analyzing Cyber Threats;
– Specifying Indicator Patterns for Cyber Threats;
– Managing Cyber Threat Response Activities;
– Sharing Cyber Threat Information.

STIX is a trademark of the MITRE Corporation, but it has been transitioned
to OASIS, aiming to foster both the development of STIX and its adoption.
STIX defines two kinds of objects: the STIX Domain Objects (SDOs) and the
STIX Relationship Objects (SROs)5. The SDO corresponds to domain concepts
commonly used in CTI, while the SROs are the relationships between the SDOs.
From a graph standpoint, the SDOs are the nodes, while the SROs are the edges,
as shown in Fig. 2.

Fig. 2. SDOs and RDOs can be seen respectively as nodes and edges of a graph.

In STIX 2, SDOs and SROs are represented in JSON. More information
on SDOs and SROs are available in the specification STIX™ Version 2.0. Part
2: STIX Objects6. The STIX standard enables customization by two different
means: custom properties and custom objects. The first one consists in adding
properties not defined by the specification to existing SDOs, while the second
one consists in creating brand new objects. Independently from the customiza-
tions, STIX defines a set of requirements that must be enforced to preserve the
conformity with the standard. For a description of such requirements, we refer
the interested reader to the STIX™ Version 2.0. Part 1: STIX Core Concepts
specification7.
4 STIX Use Cases web page, http://stixproject.github.io/usecases/.
5 STIX web page, https://oasis-open.github.io/cti-documentation/stix/intro.
6 STIXTM Version 2.0. Part 2: STIX Objects, http://docs.oasis-open.org/cti/stix/v2.

0/stix-v2.0-part2-stix-objects.html.
7 STIXTM Version 2.0. Part 1: STIX Core Concepts, http://docs.oasis-open.org/cti/

stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html.

http://stixproject.github.io/usecases/
https://oasis-open.github.io/cti-documentation/stix/intro
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part2-stix-objects.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
http://docs.oasis-open.org/cti/stix/v2.0/cs01/part1-stix-core/stix-v2.0-cs01-part1-stix-core.html
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2.3 State of the Art on the Use of STIX

CTI is a holistic approach to the automated sharing of threat intelligence [5].
Nowadays, it is considered one of the most promising strategies in the cyber-
security topic [10]. In the CTI context, [32] propose a classification and dis-
tinction among existing threat intelligence types. [16,23] instead summarize
and compare the most prevalent information-sharing models adopted. Simi-
larly, [24,27] propose a survey of the current platforms and formats available
for threat information sharing. There are indeed different CTI formats avail-
able, like OpenIOC [15], Trusted Automated eXchange of Indicator Informa-
tion (TAXII) [10,16], Real-Time Inter-network Defense (RID) [13,16], Incident
Object Description Exchange Format (IODEF) [5,25]. Among the available CTI
formats, Structured Threat Information Expression (STIX) [10] is considered
the most commonly used CTI standard [29], although CyBOX and TAXII are
considered good alternative solutions [7]. STIX provides a modular format that
can also efficiently incorporate other standards [5].

STIX is adopted in different contexts of different nature. In this context,
[18] adopts STIX as an input format for analyzing data for machine learn-
ing algorithms to increase new threat detection ability and responsiveness. In
addition, [28] presents an innovative approach to automatically generate Cyber-
Threat Intelligence data as STIX documents, starting from raw threat data. [19]
adopts STIX to share threats and security information in IoT contexts, while
[6,22] make use of a blockchain-based system to share CTI data using STIX
format. [1] proposes an industrial adoption of STIX to exchange information
between Integrated Management System (IMS) and Security Information and
Event Management systems (SIEM). [20] presents an alternative use of STIX,
to describe the actual state of the reference system, instead of exchange attack
information. [34] presents a collaborative platform to share cyber threat infor-
mation using STIX by focusing on anonymity exploitation. [26] makes use of
STIX for threat information inputs, combining it with other similar information
sources to develop a collaborative cognitive system, able to detect threats by
combining different collaborative agents, covering both host and network infor-
mation. Also, [11] combines STIX concepts with Markov chains ones, for cyber
threats modeling. [9] proposes a cyber threat protection solution based on a
Threat Intelligence Platform (TIP), based on both STIX and TAXII. Instead,
[8] proposes MANTIS, a threat intelligence platform that makes use of different
standards for threat data correlation, accomplished through a novel similarity
algorithm. [17] proposes CyTIME, a framework that integrates CTI data like
STIX under a global JSON format and automatically generates network secu-
rity rules from the incorporated data seamlessly. Another innovative framework
is proposed in [35], making use of STIX to exchange information about detected
incidents, generated alerts, and applied mitigations. [14] introduces STIXGEN,
a framework based on STIX able to generate meaningful, properly placed and
error-free structured data. Although it is widely used, STIX presents different
limitations: [3] analyses STIX by detailing the advantages and limitations of
the format. STIX is indeed considered very complex to implement [16] and its
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limits include the lack of support to reasoning [31]. In virtue of this, different
extensions of STIX are proposed: UCO: A Unified Cybersecurity Ontology is a
semantic-based alternative of STIX [31]. Also, [7] proposes some extensions of
STIX, while [33] extends it to support the inclusion of relevant attack details
on sophisticated attacks through the description of complex patterns. Similarly,
while [30] extends STIX to support network and security events, [36] proposes a
STIX extension to integrate and support additional cyber threats. Such exten-
sion is used in ChainSmith, a system able to extract Indicators of Compromise
(IOC) by analyzing technical articles and industry reports.

The proposed work represents an extension of STIX in the fintech context.
FINSTIX represents an innovative extension of STIX that considers both the
cyber and the physical domain, thus modeling the entire financial infrastructure.
Indeed, FINSTIX describes information like organization assets, how they are
inter-connected, or monitoring probes and event types.

3 FINSTIX Cyber-Physical Data Model

Thanks to its expressiveness, flexibility, and extensibility, STIX is surely one of
the most famous industrial standards used to represent and share Cyber Threat
Intelligence. By the way, it has two weaknesses that prevent to use it as it is for
the FINSEC purposes:

– It does not provide for an accurate representation of the financial institution
infrastructure;

– It does not envisage physical systems; it is just limited to the cyber ones.

For those reasons, an extension to STIX was inevitable. The FINSEC exten-
sion to STIX 2 was driven by the FINSEC project use cases, which caused the
introduction of some custom objects, among them:

– Organization: FDO used to represent an organization;
– Area of Interest : logical or physical area, such as a server room. An area of

interest can be part of an organization or can be a sub-area of another area
of interest;

– Asset : an organization valuable asset, such as a PC, an ATM, an application,
or whatever is crucial for the organization. It can also be part of another
asset;

– Probe: monitoring infrastructure that generates events and/or observed data.
It can be related to one or more sensors, CCTVs, etc. A probe monitors one
or more areas of interest;

– Event : event produced by a probe. Events, observed data, assets model and
external CTI are used by the Analytics/Predictive modules to produce Cyber-
Physical Threat Intelligence;

– Attack : cyber-physical attack. Differently from the Attack Pattern SDO, it
also considers physical attacks, thus enabling an integration among cyber and
physical scopes. An attack can be a sequence or a concurrency of events;
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– Cyber-Physical Threat Intelligence (CPTI ): the result of the analytic tools.
One or more CPTI objects are used to generate the output of the intelligence
process, which is a report about ongoing or possible future attacks on one
or more assets belonging to the infrastructure. This object is still a work-in-
progress.

The resulting data model was named FINSTIX (from FINSEC-STIX). All
the domain objects defined in FINSTIX, including those already introduced in
STIX, take the name of FINSTIX Domain Objects (FDOs). The introduction
of the FDOs Organization, Area of Interest, Asset, and Probe is due to the
poor granularity of the Identity SDO. Instead, FINSTIX presents an ontology
for a hierarchical representation of the organization infrastructure. As a con-
sequence, any part of the infrastructure can be referenced during the Cyber-
Physical Threat Intelligence process performed by the FINSEC platform. The
introduction of Event, Attack, and CPTI is motivated by the need to cope with
both the cyber and the physical domains. In fact, STIX is adequate for Cyber
Threat Intelligence, but not for Cyber-Physical Threat Intelligence. The details
of every custom object are not discussed here for reasons of space; however, the
description of the FDOs is available in Deliverable 3.9 -“Security Knowledge
Base”8.

Every custom object introduced in FINSTIX contains all the mandatory keys
defined by STIX. In addition, FINSTIX defines the following mandatory keys
for all the custom objects:

– domain: it can be “Cyber”, “Physical”, or “Hybrid”;
– datatype: it can be “Model” or “Instance”. When datatype is “Model”, then

the object is used to define a concept, such as an event, an attack, a counter-
measure, etc. Instead, if datatype is “Instance”, the object is used to represent
something that actually happened/is happening;

– x organization: contains the identifier of the organization that owns the infor-
mation. This key was introduced for multi-tenant applications, in order to
avoid data disclosure. x organization is also a custom parameter for the
objects already defined by STIX;

– reference: is the identifier of the parent object. It is used to generate a hier-
archy of objects;

– model ref : when datatype is “Instance”, model ref contains the identifier of
the object used to define the specific concept. The latter has the same type,
but its datatype is “Model”.

Most of the custom objects introduced by FINSTIX are used to describe
the financial organization infrastructure. Figure 3 shows a graph representing
the infrastructure of an imaginary bank, SuperBank. The latter has an indoor
area, which includes the entrance area and the ATM area. The indoor, entrance,
and ATM areas are modeled through Area of Interest FDOs. In the ATM area,

8 https://ec.europa.eu/research/participants/documents/downloadPublic?
documentIds=080166e5c8e14437&appId=PPGMS.

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c8e14437&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c8e14437&appId=PPGMS
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there is an ATM, which is composed by a vault and a computer. The ATM, the
vault, and the computer are modeled through Asset FDOs. Finally, there is the
monitoring infrastructure, which consists of four probes:

– Entrance CCTV: monitors the entrance area;
– ATM CCTV: monitors the ATM;
– Screen CCTV: monitors the person in front of the screen of the ATM;
– Network probe: monitors the ATM computer.

Each probe is also conceived as an asset. For this reason, it is modelled through
both a Probe and an Asset FDOs. In particular, the Probe FDO refers to the
Asset FDO, which in turns refers to an Area of Interest or to another Asset.
For example, the Probe ATM CCTV refers to the Asset ATM CCTV, which
refers to the Asset ATM. A concrete example of the use of FINSTIX inside the
FINSEC Platform is presented in Sect. 3.1.

Fig. 3. Hierarchy of FINSTIX Domain Objects describing the infrastructure of a finan-
cial institution.

Events and observed data produced by the organization probes are pushed into
the FINSEC platform, which correlates and aggregates information gathered
from asset models and external CTI through the machine learning analytics and
prediction algorithms. The result of this process is the Cyber-Physical Threat
Intelligence, which integrates important information coming from both the cyber
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and the physical world. The CPTI produced in the FinTech sector is the added-
value information produced by the FINSEC platform that could be exchanged
(in-out) between financial organizations and security organizations (CERT/C-
SIRT like). The integration between cyber and physical security aspects intro-
duced by FINSTIX is an innovation attributable to the FINSEC project.

3.1 Data Flow

This section shows the use of FINSTIX in a concrete use case scenario, in which
the FINSEC platform detects a jackpotting attack to the organization Super-
Bank, whose infrastructure is described in Sect. 3. In particular, the use case
describes how FINSTIX Domain Objects are used to exchange data between:

– The probes and the FINSEC Platform:
• From the probes to the Data Collector;
• From the Mitigation Enabler to the probes;

– The different services composing the FINSEC platform;
– The FINSEC platform and the Dashboard.

Step 1 and Step 2. In Step 1, the Network probe represented by the Probe
FDO having id “x-probe--network” generates the instance of Event presented
in Listing 1.1. The Event has “x-event--cyber instance” as id and “x-event--
cyber model” as model ref. The Probe, as well as all the FDOs used in this
example, is owned by SuperBank, whose id is “x-organization--superbank”. The
probe sends the Event to the Data Collector through the FINSEC Data Collec-
tion API. In Step 2, the Data Collector stores the Event in the Security Database
through the FINSEC Data Access API.

Listing 1.1. Cyber Event generated by the Network probe

1 {

2 "type": "x-event",

3 "domain": "Cyber",

4 "id": "x-event --cyber_instance",

5 "created ": "2020 -06 -22 T20 :02:45.028Z",

6 "modified ": "2020 -06 -22 T20 :02:45.028Z",

7 "datatype ": "Instance",

8 "name": "Cyber event",

9 "description ": "Cyber event detected by network probe",

10 "x_organization ": "x-organization --superbank",

11 "reference ": "x-root --generic_root",

12 "model_ref ": "x-event --cyber_model",

13 "coordinates ": [41.899163 , 12.473074] ,

14 "probe_ref ": "x-probe --network",

15 "observed_refs ": ["observed -data --netflow"],

16 "asset_refs ": ["x-asset --ATM"]

17 }
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Step 3 and Step 4. In Step 3, the CCTV probe generates an instance of Event
having “x-event--tampering instance” as id and “x-event--tampering model” as
model ref, as shown in Listing 1.2. The probe sends the Event to the Data Col-
lector through the FINSEC Data Collection API. In Step 4, the Data Collector
stores the second Event in the Security Database through the FINSEC Data
Access API.

Listing 1.2. Tampering Event generated by the ATM CCTV probe

1 {

2 "type": "x-event",

3 "id": "x-event --tampering_instance",

4 "datatype ": "Instance",

5 "name": "Tampering",

6 "description ": "CCTV camera tampering",

7 "model_ref ": "x-event --tampering_model",

8 ...

9 }

Step 5 and Step 6. In Step 5, through the FINSEC Data Access API, the
Anomaly Detection retrieves from the Security Database the instances of Event
FDOs owned by “x-organization--superbank” and generated in a certain time
window. As a result, in Step 6, the Event FDOs sent by the probes to the
FINSEC platform in Step 1 and Step 3 are returned to the Anomaly Detection.

Step 7 and Step 8. In Step 7, the Anomaly Detection retrieves from the Secu-
rity Database the models of attack owned by the organization identified by the
id “x-organization--superbank”. As a result, in Step 8, the Attack FDOs match-
ing the query are provided to the Anomaly Detection. The Anomaly Detection
finds out that the Attack identified by the id “x-attack--model” has “x-event--
cyber model”, “x-event--tampering model” as event refs, as shown in Listing 1.3.
These Event FDOs correspond to the models of the Event FDOs “x-event--
cyber instance” and “x-event--tampering instance” respectively.

Listing 1.3. Model of Attack for the Jackpotting attack

1 {

2 "type": "x-attack",

3 "id": "x-attack --model",

4 "datatype ": "Model",

5 "name": "Jackpotting",

6 "description ": "Cyber -physical attack to send consecutive

money dispense command to ATM device to empty the

Cassettes",

7 "event_refs ": ["x-event --cyber_model", "x-event --

tampering_model "],

8 "rules ": [{...} , ...],

9 ...

10 }
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Step 9 and Step 10. Consequently to Step 8, in Step 9, the Anomaly Detec-
tion analyses the Observed Data referenced by the observed refs of the Event
“x-event--cyber instance” (namely “observed-data--netflow”). By using the rules
described in the Attack rules, the Anomaly Detection detects something mali-
cious. As a consequence, it generates the instance of Attack “x-attack--instance”
presented in Listing 1.4, having “x-attack--model” as model ref and “x-event--
cyber instance” and “x-event--tampering instance” as event refs. The Attack is
then stored in the Security Database. The Mitigation Service listens to inser-
tions of Attack FDOs and consequently receives the Attack “x-attack--instance”
in Step 10.

Listing 1.4. Instance of Attack generated by the Anomaly Detection

1 {

2 "type": "x-attack",

3 "id": "x-attack --instance",

4 "datatype ": "Instance",

5 "name": "Jackpotting",

6 "description ": "Cyber -physical attack to send consecutive

money dispense command to ATM device to empty the

Cassettes",

7 "model_ref ": "x-attack --model",

8 "event_refs ":

9 ["x-event --cyber_instance", "x-event --tampering_instance "],

10 ...

11 }

Step 11 and Step 12. The Mitigation Service needs to find a countermeasure
for any attack modelled by “x-attack--model”. This information is contained in
the Cyber Physical Threat Intelligence (CPTI ) FDO. In Step 11, the Mitigation
Service retrieves the CPTI characterized by “x-attack--model” as attack ref from
the Security Knowledge Base, through the FINSEC Data Access API. Then, in
Step 12, the CPTI “x-cpti--model” presented in Listing 1.5 is returned to the
Mitigation Service. From the CPTI, the Mitigation Service can find the id of the
Course of Action necessary to mitigate the attack, namely “course-of-action--
model”.

Listing 1.5. Model of Cyber-Physical Threat Intelligence for the Jackpotting attack

1 {

2 "type": "x-cpti",

3 "id": "x-cpti --model",

4 "datatype ": "Model",

5 "name": "CPTI for jackpotting",

6 "description ":" CPTI for jackpotting attacks",

7 "attack_ref ": "x-attack --model",

8 "coa_refs ": ["course -of-action --model"],

9 ...

10 }
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Step 13 and Step 14. In Step 13, the Mitigation Service uses the id of the
Course of Action learned in Step 12 (“course-of-action--model”) to request the
FDO in Listing 1.6 to the Security Knowledge Base. In Step 14, the Course
of Action “course-of-action--model” is returned to the Mitigation Service. The
Course of Action is characterized by x subtype set to to mail : then the Mitiga-
tion Service knows that the mitigation consists in sending a mail notification.
x actions contains all the information regarding the mail to sand, in particular
the recipient address (to), the mail subject (subject) and the message (body). In
the body, there are two markers, that must be replaced with information on the
occurring attack, in particular the id of the asset involved in the attack and the
timestamp of the attack. markers contains all the information needed by the
Mitigation Service to perform this task.

Listing 1.6. Model of Course of Action used to mitigate the Jackpotting attack

1 {

2 "type": "course -of-action",

3 "x_subtype ": "to_mail",

4 "id": "course -of -action --model",

5 "x_datatype ": "Model",

6 "name": "CoA for jackpotting",

7 "description ": "CoA to mitigate jackpotting attacks",

8 "x_actions ": [{

9 "to": [{

10 "type": "fixed",

11 "address ": "finsec@superbank .eu"

12 }],

13 "subject ": "Jackpotting attack detected",

14 "body": "FINSEC system detected an activity attributable

to a possible jackpotting attack on the ATM identified by

%% asset_id %%. The activity has been detected at %%time

%%".

15 "markers ": [{

16 "marker ": "%% asset_id %%",

17 ...

18 }, {

19 "marker ": "%% time%%",

20 ...

21 }]

22 }],

23 ...

24 }

Step 15 and Step 16. The Mitigation Service has to generate an instance of
Course of Action to mitigate the attack “x-attack--instance”. To do so, it needs to
retrieve the instance of Event involved in the attack and modelled by “x-event-
-cyber model”, to obtain the id of the asset involved. The Mitigation Service
learned from the Attack “x-attack--instance” retrieved in Step 10 that the Event
FDOs involved in the attack are identified by “x-event--cyber instance” and
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“x-event--tampering instance”. As a consequence, in Step 15, the Mitiga-
tion Service retrieves from the Security Database the Event having “x-
event--cyber instance” or “x-event--tampering instance” as id and “x-event--
cyber model” as model ref. The Security Database returns the Event “x-event--
cyber instance” to the Mitigation Service in Step 16.

Step 17 and Step 18. In Step 17, the Mitigation Service generates the instance
of Course of Action “course-of-action--instance”, whose x actions contains the
information needed to send the mail notification. The FDO is shown in Listing 1.7.
Notice that the Mitigation Service replaced the markers contained in body with
the id of the asset involved in the attack and the timestamp of the attack. The
Mitigation Service inserts the FDO into the Security Database. In Step 18, the
Mitigation Enabler, who listens to the insertion of instances of Course of Action
FDOs into the Security Database, receives the FDO.

Listing 1.7. Instance of Course of Action used to mitigate the Jackpotting attack

1 {

2 "type": "course -of-action",

3 "x_subtype ": "to_mail",

4 "id": "course -of-action --instance",

5 "x_datatype ": "Instance",

6 "name": "CoA for jackpotting",

7 "description ": "CoA to mitigate jackpotting attacks",

8 "x_model_ref ": "course -of -action --model",

9 "x_organization ": "x-organization --superbank",

10 "x_actions ": [{

11 "to": [" finsec@superbank .eu"],

12 "subject ": "Jackpotting attack detected",

13 "body": "FINSEC system detected an activity attributable

to a possible jackpotting attack on the ATM identified by

x-asset --ATM. The activity has been detected at

2020 -06 -22 T20 :03:05.142Z".

14 }],

15 ...

16 }

Step 19 and Step 20. Since in the Course of Action “course-of-action--
instance” x subtype is to mail, the Mitigation Enabler knows that the mitigation
consists in a mail notification. It then extracts to, subject, and body contained in
x actions and performs a request to the Mailserver. The latter finally sands the
mail notification in Step 20.

4 Conclusions and Discussions

This paper presents the design of the FINSTIX data model as an extension of
the Structured Threat Information eXpression standard version 2. In particular,
FINSTIX introduces many custom objects to describe the financial organiza-
tion’s infrastructure and integrates both cyber and physical security domains.
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Moreover, the paper reports an example of the use of FINSTIX in a relevant
use case scenario. The use case refers to the FINSEC platform. Albeit explicitly
designed for the Finsec domain, the FINSTIX model could be easily extended
to other critical infrastructures that require to model both cyber and physical
security threats, e.g., cellular networks [21], industrial plants [2] or other finan-
cial services [12]. To the best of our knowledge, FINSTIX is the first data model
coping with both cyber and physical domains and can thus be considered an
innovation introduced by the FINSEC project.
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Abstract. Cyber physical systems are becoming ubiquitous devices in
many fields thus creating the need for effective security measures. We pro-
pose to exploit their intrinsic dependency on the environment in which
they are deployed to detect and mitigate anomalies. To do so, sensor
measurements, network metrics, and contextual information are fused
in a unified security architecture. In this paper, the model of the pro-
posed framework is presented and a first proof of concept involving a
telecommunication infrastructure case study is provided.

Keywords: Anomaly detection · Cyber physical system · Critical
infrastructure protection

1 Introduction

Cyber Physical Systems (CPSs) can be defined as the result of the integration
of computing, communication, and control capabilities for monitoring and man-
aging physical world objects [5]. The “Industry 4.0” paradigm is pushing the
spread of CPSs in many fields: smart manufacturing, e-health, smart city, smart
vehicles, wearable devices, telecommunication systems, defense systems, etc. As
can be easily understood, the security of CPSs is an open and critical issue [5].

A CPS can be described with a three-layer architecture: perception, trans-
mission, and application. The first layer is responsible for data collection in real-
time, the second deals with data exchange, and the third layer provides data
processing and control functionalities. Even if the security can be addressed
for each layer separately, to counteract the attacks in an effective manner, a
multi-layer approach can be beneficial. The intrinsic dependency between CPSs
and the sensing environment can further expand the attack surface. However,
this connection can also be exploited to design effective security measures. The
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idea of context aware security has been introduced in [14], where the context is
defined as “the set of environmental states and settings that either determine an
application’s behaviour or in which an application event occurs”. Moreover, four
context classes are introduced: system, user, physical environment, and time.
This concept has been applied to CPSs in [8], where context is considered as
a new class of information to be exploited for improving the safety and secu-
rity of CPSs. The authors suggest that contextual data can be used both for
inferring information about the system state, and for preventing wrong detec-
tion decisions due to bad-data scenarios. In [7], moreover, a general introduction
about CPS security issues is provided together with the presentation of a con-
text aware biometric security framework. The proposed approach fuses real-time
mechanisms with contextual information such as the client setting area, lighting,
temperature, climate and time. Context is considered also in the security infras-
tructure for Internet of Things (IoT) systems proposed in [11]. The presented
architecture includes some contextual information, such as the amount and rate
of collected data, which may be correlated to security indicators. Furthermore,
the environmental impact has been exploited in [12], where device fingerprint-
ing for IoT authentication is analyzed. More specifically, the authors propose to
exploit the environmental effects on IoT fingerprints to detect emulation attacks.
The idea is that an attacker will not be able to imitate the true environmen-
tal changes experienced by the legitimate device thus failing in reproducing an
environment-based fingerprint. At last, in [10], the concept of context aware
intrusion detection systems is realized by including the operating environment
information in the collected data. This category involves for instance networking
conditions (e.g. start and goal address/port, access frequency, and data traffic),
and systematic operation conditions (e.g. the presence of idle CPU or memory
occupation conditions). In this paper, we focus on the impact of the physical
environment context to design a CPS anomaly detection framework, and we
apply the introduced model to a telecommunication infrastructure case study.
More specifically, according to [4], here we define an anomalous situation as a
malicious or a genuine but unusual behaviour of the system. We propose the
CPS Context Aware Security Protection for Enhanced Robustness (CCASPER)
model, to identify anomalies in the system behaviour exploiting both the phys-
ical aspect of the CPS and the information that can be collected through their
networking capabilities. In more details, sensor outputs, network performance
indicators, and the surrounding context conditions are fused together for select-
ing the mitigation strategy. A multi-metric approach which treats each metric
independently, in fact, would ignore the possible correlations or cause-effect rela-
tionships between them, thus resulting less effective [2].

The rest of the paper is organized as follows. In Sect. 2 the security framework
is presented, in Sect. 3 the model is applied to a communication infrastructure
scenario, and in Sect. 4 the conclusions are drawn.
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2 Proposed Method

The proposed CCASPER model is based on the fusion of the information gath-
ered from two sources: the system (i.e. the deployed CPSs) and the context.
Concerning the first source, information may be collected both in the perception
layer (which gathers data about a physical process) and in the communication
layer (which allows to share information). Nominal value ranges for sensor out-
puts and network performance indicators may be defined, so that when the
measurements deviate from their nominal values, an anomaly is detected and
an alarm is triggered. However, using only system indicators could give a par-
tial representation of the real scenario leading to a misclassification of anomalies.
The physical process and the communication link, in fact, are considerably influ-
enced by the surrounding context. If sensor outputs and network performance
indicators do not match the expected values, then, at least four causes should
be investigated: a fault, a cyber-attack, or a physical attack may be occurring,
or the surrounding ecosystem may be affecting network performances and/or
sensor measurement. Therefore, before triggering an attack alarm, it is worth
to collect contextual information to verify if a natural event (a storm, an earth-
quake, or strong wind) may cause such anomaly. To this aim, the proposed model
relies on a context monitoring algorithm localized around the CPS position. In
fact, adverse environment conditions may cause a temporary decrease of network
performance or, even, damages to the physical system (e.g., antenna collapsing
or broken sensor). In the first case, once the environmental emergency is over,
the normal operating level of the network has to be quickly restored. On the
contrary, a physically damaged system must be repaired. The proposed security
model can be described through the state machine architecture shown in Fig. 1.

Fig. 1. Security framework: state machine model.

The state machine model is detailed as follows. In the normal state the
system monitoring is performed through the analysis of application-dependent



70 S. Baldoni et al.

quantitative attributes. For example, in a point to point connection, network
performance metrics could be delay or throughput values while the sensor mea-
surements could be temperature, humidity, or antenna tilt. If a relevant deviation
from the nominal behavior occurs, the model moves to the deep analysis state.
In this state, a first consistency analysis is performed to verify if the system
behaviour can be justified through the current context conditions. To do so, sev-
eral additional information sources can be analysed: weather news, local news,
exceptional events such as flooding or fire, etc. Moreover, due to the distributed
nature of CPSs, information gathered from neighbouring devices can be included
in the consistency analysis. The context, in fact, should cause a similar deviation
from the nominal behaviour for CPSs deployed on the same area. The gathered
data are exploited to perform the consistency check between the current context
and the quantitative attributes, leading to one of the following outcomes:

– anomalous context/anomalous system: the environmental context may have
caused a temporary network performance decrease or a change in the moni-
tored physical process so that the measured values deviate from the nominal
range. In this case a joint monitoring is performed until when the context
anomalous behaviour is over. Two outcomes are possible:
• the system returns in the nominal range: the event is saved in a log file,

and the system goes back to the normal state.
• the system anomaly persists thus requiring a further analysis. The model

moves to the security consistency analysis state.
– normal context/anomalous system: a further analysis is needed, the model

goes in the security consistency analysis state.

If the model goes in the security consistency analysis state an additional moni-
toring is performed in order to identify the possible causes for system anomaly.
This state can be further expanded as shown in Fig. 2.

Depending on the use case, different combinations of the monitored param-
eters may lead to four states which, in turn, represent the anomaly cause:

– cyber attack a cyber attack to the sensor may be on going;
– cyber-physical attack an attack involving both physical and cyber aspects

of the system may be on going.
– physical attack a physical damage of the system may have occurred;
– fault a system fault (e.g. a component damage) may have occurred.

Once the cause has been identified, the associated recovery procedure is deployed.
If such procedure is effective, the event occurrence is saved and the model returns
to the normal state, otherwise a new security consistency check is performed. Let
us note that in case of cyber-physical attacks, a further study is needed to select
the most suitable recovery procedure. As first proof of concept, here we present
the case in which the choice between cyber and physical recovery plans is per-
formed based on cost. However, depending on the application, other parameters
could be considered such as the time needed for the solution deployment. In some
scenarios, in fact, restoring the system availability is the most crucial issue.
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Fig. 2. Security framework: consistency analysis model.

3 Case Study

In this paper we deal with a use case scenario involving a mobile network opera-
tor radio infrastructure. The strict 5G requirements lead to the need of relevant
improvements in the Radio Access Network (RAN). To this aim, the classic
rule-based network functionalities can be replaced by their Artificial Intelligence
(AI) based counterparts. However, a key enabler for the application of AI in this
context is a deep insight into the nature and role of the different network per-
formance contributors [1]. Moreover, the satellite segment of 5G networks is one
of the main topics in the 5G development in 2020–2025 [13] and, as highlighted
in [9], for such applications the antenna pointing and the mobile tracking are
crucial. More specifically, for pointing purposes, the AI-based method proposed
in [9] exploits data acquired by the inclinometer and an electronic compass. In
addition, antenna tilting is considered as a key enabler for RAN optimization
also in [1]. Let us note that tilt monitoring is of utmost importance both for
mechanical and electronic tilting systems. In the former case it is needed to
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correctly set the beam pointing, whereas in the latter the physical orientation of
the antenna has to be set and kept with sufficient accuracy. For this reason, we
included a tilt sensor installed on the base station antennas in our case study.

Concerning the network performance metrics, we referred to the security
studies performed on the existing LTE infrastructure. In [6], for instance, the
authors analyzed three metrics: throughput, end to end delay, and packet deliv-
ery rate. Their simulations show a significant impact on these parameters due
to malicious user equipment devices, malicious base stations, malicious connec-
tions, and malicious femtocells. To show the operating principle of the proposed
framework, in this work we considered only the throughput, but the analysis can
be extended to the other network parameters as well. In this case, the general
framework presented in Fig. 1 can be modified as shown in Fig. 3.

Fig. 3. Security framework: case study model. In the figure, Cc and Cp represent the
cyber and physical action cost, respectively.

As in the general model, once an anomalous parameter is detected, the sys-
tem moves to the deep analysis state. More in details, we included in the context
monitoring the analysis of: weather, terrorism, civil protection department alerts,
earthquakes, floods, severe storm, and fire. Moreover, in this scenario, the mea-
surements collected by nearby base stations can be considered as an additional
information source. As a consequence, the context information includes both the
surrounding environment and the neighbouring infrastructure. The deep analy-
sis correlates these data with the current quantitative attributes. For instance, a
heavy rain may cause a severe attenuation phenomenon which, in turn, causes a
throughput reduction without any impact on the antenna tilting. A strong wind,
on the contrary, may cause an antenna movement which will produce a pointing
inaccuracy. In this case, the first phenomenon will be detected by the tilt sen-
sor, whereas the latter will have an impact on the measured throughput. Under
these circumstances, the system stays in the deep analysis state until when the
environmental emergency is over.
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If the contextual cause can be excluded, or if the system parameters are
still anomalous when the context emergency is over, a consistency check of the
remaining inputs is performed. The analysis of the throughput indicator and the
antenna tilt sensor, in fact, can lead to different scenarios. A normal tilt value
in conjunction with an anomalous throughput can suggest a channel attack.
The opposite situation can be due to a cyber-attack to the tilt sensor. If both
indicators fail to satisfy their requirements, a physical attack to the antenna, or
the combination of a channel and sensor attacks, should be considered. Moreover,
the anomalous context may have caused a network damage which has to be
physically repaired. If both cyber and physical recovery hypothesis need to be
checked, the mitigation scheduling is chosen according to the cost of the required
operations (Cc and Cp respectively). As a consequence, the cheaper recovery
procedure is deployed first and, if it is not effective, the other one is performed.
Let us note that when a “Physical action” is required, a technical team will
be sent to the antenna location. This solution will thus be required in case of
physical antenna damage.

Fig. 4. Context data collection: the CCASPER GUI

As first proof of concept of the proposed security framework we implemented
the CCASPER model and a user interface. In order to gather up-to-date envi-
ronmental context information, the antenna position has to be retrieved. To this
aim, we used the antenna map provided in [3]. Moreover, in the implemented
system, antennas can be deleted or added directly from the Graphical User Inter-
face (GUI). From the tool GUI, it is possible to select a specific antenna and run
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the simulation. In the performed tests, as a proof of concept, tilt and throughput
data have been entered by the user. The implementation of the complete frame-
work which collects the tilt information from the sensor and uses the measured
throughput will be the object of future research. Once the tilt and through-
put data have been entered, context information about the location where the
antenna is placed is collected and shown as presented in Fig. 4. The button
“Deep analysis” allows to move to the corresponding state in which, as first
step, the context analysis is performed. In case of normal environmental con-
ditions, according to the tilt and throughput values, a cost analysis or a cyber
action can be suggested as shown in Fig. 3.

Fig. 5. Cost analysis output.

Concerning the cost analysis, the physical action cost may be computed
depending on the distance of the antenna from the actual position of the tech-
nical team. More specifically, we assumed to have an office for each town and
we considered a total cost made of a fixed component plus a variable cost linked
to the distance from the antenna. However, it is possible to configure the costs
directly from the GUI main page. An example of the cost analysis output is
provided in Fig. 5.

The proposed model allows to process the information coming from several
data sources to figure out the reason behind an anomalous behaviour of the
system, thus suggesting a suitable mitigation strategy. Although limited to the
analysis of two quantitative attributes, the presented approach can be easily
extended for including other performance indicators (e.g. delay) and/or other
sensor measurements (e.g. temperature). According to the analyzed case study,
we argue that the fusion of environmental, technical, and financial information
sources is a key enabler to provide prompt reactions to communication infras-
tructure anomalies.
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4 Conclusions

In this contribution, a model for inferring anomaly situations is proposed. Tech-
nical and environmental inputs are considered for defining the best mitigation
technique in terms of effectiveness and financial feasibility. We implemented the
proposed security framework through a state machine model which provides the
general architecture of the proposed approach. As first proof of concept we ana-
lyzed a telecommunication infrastructure case study. To do so, we realized a tool
for collecting and fusing the information coming from the different sources, and
exploited a user friendly graphical interface for entering input data.

The proposed framework can be applied to every scenario involving CPSs,
after the definition of application-dependent quantitative attributes. We believe
that the fusion of several information sources is a crucial facilitator for inferring
anomalous situations in CPS-based critical infrastructures.
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Abstract. In this paper, we present a multimodal deep model for detection of
abnormal activity, based on bidirectional Long Short-Term Memory neural net-
works (LSTM). The proposed model exploits three different input modalities:
RGB imagery, thermographic imagery and Channel State Information fromWi-Fi
signal reflectance to estimate human intrusion and suspicious activity. The fused
multimodal information is used as input in a Bidirectional LSTM, which has the
benefit of being able to capture temporal interdependencies in both past and future
time instances, a significant aspect in the discussed unusual activity detection sce-
nario. We also present a Bayesian optimization framework that fine-tunes the
Bidirectional LSTM parameters in an optimal manner. The proposed framework
is evaluated on real-world data from a critical water infrastructure protection and
monitoring scenario and the results indicate a superior performance compared to
other unimodal and multimodal approaches and classification models.

Keywords: Abnormal activity detection · Human intrusion · Multimodal data
fusion · Bidirectional LSTM · Critical infrastructure monitoring

1 Introduction

Abnormal activity detection is a research problem that attracts significant interest in the
image and video analysis research community (e.g. [9, 10]). Many different techniques
have been proposed in the field of computer vision and video analysis, includingmethods
based on trajectory analysis [12], pixel-level processing [11], combined trajectory and
low-level analysis [1], background modelling [14], object detection [13] and tracking
[15], activity recognition [16], and crowd behavior analysis [17]. Despite the efficacy of
such techniques, their dependence on strictly visual information makes them susceptible
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to occlusions, difficult fields of view and poor illumination circumstances. This limi-
tation has motivated the exploration of vision techniques beyond the visible spectrum.
Thermographic data can provide a useful alternative stream of information. Thermal
camera sensors are not sensitive to illumination changes [4]; on the other hand, thermal
information does not entail texture or color information. Since both RGB and thermal
sensing are actually based on visual cues, an interesting idea is to supplement them by
additional data that are not limited by the restrictions of visual information (such as
occlusions).

Recent studies have indicated that wireless signal reflection can be effectively lever-
aged to sense human presence. Different kinds of techniques have been described in the
literature, including device-free Software Defined Radio (SDR) methods, which process
the Received Signal Strength of a transmitted signal. However, the accuracy of such tech-
niques is often not sufficiently high [18]. In contrast, it has been shown that techniques
based on commercial off the shelf (COTS) equipment [5] can yield good performance
rates in human presence detection, by making use of Channel State Information (CSI)
[7].

Moving on from the input modalities to the machine learning models used for abnor-
mal activity detection, it is clear that deep learning techniques, and especially Convo-
lutional Neural Networks (CNN), have been shown to outperform traditional classifiers
[1, 6, 16], which is explained by their high representational capabilities. However, one
limitation of CNNs is that they cannot inherently capture temporal interdependencies
in a bidirectional manner, i.e. from both past and future time instances, which is an
important aspect in time series modeling problems.

In this work, we propose a model based on a Bayesian optimized multimodal bidi-
rectional LSTM neural network for abnormal activity detection. Our model harnesses
the power of LSTM networks to capture long and short term dependencies, while the
backward and forward pass of the bidirectional version of LSTM ensure the consid-
eration of both past and future time instances. Our proposal also includes a Bayesian
optimization framework that optimally tunes the parameters of the utilized bidirectional
LSTM. Finally, the combination of heterogeneous input modalities, such as RGB and
thermal imagery with Channel State Information (CSI) from wireless signal reflection
leads to a significantly improved detection performance compared to cases that are solely
based on a single information modality.

2 Fusion of RGB and Thermal Imagery with Channel State
Information

2.1 RGB Imagery

Contrary to traditional abnormal activity detection systems which are usually based on
RGB video sequence input, in the work at hand an additional modality is considered,
that of thermographic imagery. Visual streams fromRGB cameras are initially processed
using the object detection module YOLO (You only look once) [13]. YOLO locates
spatial bounding areas on the frame and allocates each area a probability for an object
class. A Convolutional Neural Network is used for object detection, comprising 24
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convolutional layers and 2 fully connected layers. Each image frame is described as a
class image CLRGB, having the same size as the initial RGB image, where the (x,y) pixel
of the RGB image I(x,y) is denoted as ok,RGB(x, y), in the class in the following way:

CLRGB(x, y) = ok,RGB(x, y) (1)

where k denotes the object with identity k in the object detection module employed.

2.2 Thermal Imagery

Data acquired by thermographic sensors undergo background subtraction [14]. A class
label image CLT is extracted, having the same size as the input thermal frame T, where
the (x,y) pixel of T is denoted in the class label image as:

CLT (x, y) = ob,T (x, y), b = {Background ,Foreground} (2)

In order to facilitate the subsequent processing steps, the RGB and thermal image
frames are resized so as to become of identical sizes, NxM . In other words, xRGB(n) ∈
RNxM stands for an image, whereby each pixel indicates the object ID that pixel belongs
to. In a similar manner, tensor xthermal(n) ∈ RNxM denotes the class label image of the
thermographic modality.

2.3 Channel State Information

Channel State Information (CSI) can be leveraged for human movement detection using
WiFi devices, based on propagation modeling of a signal from the transmitter to the
receiver, supporting many subcarriers due to the Orthogonal Frequency Division Multi-
plexing (OFDM) principle. CSI includes physical attributes of the wireless channel, such
as scattering, power decay per distance, fading, shadowing and effects of interference
[7], which are measured by the amplitude/phase over all K available subcarriers:

H (n) = [H (n, f1),H (n, f2), ...,H (n, fk)]T (3)

where H(n, fi) refers to the amplitude and the phase of the i-th subcarrier with central
frequency fi.. Therefore, we have that: H(n, fi) = |H(n, fi)|ej � H(n,fi).

Usually, H (n) input data contain noise and are distorted by outliers. For this reason,
CSI signals H(n) need to undergo a pre-processing stage. First, outliers are removed
using a Hampel identifier [8] or density-based clustering algorithms such as DBSCAN
[23]. In the sequel, noise is removed with wavelet denoising, followed by normalization,
correlation of subcarriers and, finally, eigenvector processing of the signals. After pre-
processing, CSI data are used as input to a linear SVM for human intrusion detection.
The SVM’s output classification IDs, say CCSI (n), will be used as input to our proposed
multimodal bidirectional LSTM framework. The CSI related input xCSI (n) is given by:

xCSI (n) = [H (n)CCSI (n)]T (4)

For spatial coherency with the visual input data, tensor xCSI (n) is expanded over the
RNXM grid, forming an additional input channel.
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2.4 Fusion of RGB, Thermal and CSI Modalities

Approaches based on solely one of the above types of information are unavoidably
plagued by the limitations of each information modality (e.g. occlusions, noise, etc.).
We hereby propose the fusion of the above described information channels to create a
multimodal input tensor x(n):

x(n) = [xRGB(n), xthermal(n), xCSI (n)]T (5)

where xRGB(n) is the data tensor pertaining to RGB visual signals, xthermal(n) the respec-
tive data tensor of the thermal component, and xCSI (n) the data tensor pertaining to the
WiFi reflection signal.

3 Bayesian Optimized Multimodal Bidirectional LSTM

3.1 Bidirectional LSTM

LSTMs is a type of Recurrent Neural Network (RNN) which was designed to address
the problem of exploding and vanishing gradient that can arise when training traditional
RNNs. LSTM networks are a good fit to classifying, processing and making predictions
based on time series data, since there can be lags of unknown duration between important
events in a time series [25–27]. In LSTMs, each node in the hidden layer is replaced
by a memory cell, instead of a single neuron [25]. The structure of a memory cell is
illustrated in Fig. 1.

The LSTM memory cell is composed of the following: the forget gate, the input
node, the input gate, and the output gate. The input gate controls the extent to which a
new value flows into the cell, the forget gate controls the extent to which a value remains
in the cell and the output gate controls the extent to which the value in the cell is used to
compute the output activation of the LSTM unit. The activation function of the LSTM
gates is often the logistic sigmoid function.

(a) (b)

Fig. 1. (a) The memory cell of a LSTM network. (b) Bidirectional LSTM unfolded in time

The goal of the forget gate is to decide what information should be discarded out of
the memory cell [24]. The output, denoted as f (n) ranges between 0 and 1, according
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to the sigmoid activation function. The forget gate learns whether a previous or future
vector state is necessary for the estimation of the current value state. The input node
performs the same operationwith that of a hidden neuron of a typical recurrent regression
model. We denote the output of this node as In(n). The goal of this node is to estimate
the way in which each latent state variable contributes to the final model.

As far as the input gate is concerned, its role is to regulate whether the respective
hidden state is sufficiently important. The output of this gate is denoted as Ig(n). It has
the sigmoid function, therefore its response ranges between 0 and 1. This gate addresses
problems related to the vanishing of the gradient slope of a tanH (·) operator. Finally,
the output gate regulates whether the response of the current memory cell is sufficiently
significant to contribute to the next cell. Therefore, this gate actually models the long
range dependency together with the forget gate. The output of this gate is denoted as
O(n).

One of the disadvantages of the memory cell of Fig. 1, is that it considers only past
state information. On the contrary, bi-directional forms of LSTMcan process data in both
directions, and include, therefore, apart from the forward pass an additional backward
operation. The structure of a bi-directional LSTM, unfolded in time is presented in
Fig. 1(b). Detection of abnormalities in video and CSI time series is an application
which can inherently benefit from this additional backward operation of the bidirectional
LSTM, which is the base model adopted in this work.

3.2 Bayesian Optimization

We hereby present a Bayesian optimization method for the selection of the bidirectional
LSTM model parameters. In lieu of employing manual tuning of model parameters,
we hereby present and use a probabilistic Bayesian approach through which model
parameters are optimally tuned.

As in all models, let us denote by πi the set of configurable parameters, e.g. in our
case the number of memory cells, the learning rates, etc. Supposing a set Q of differ-
ent configurations, i.e., D1:Q = {π1 . . . πQ}, we can then evaluate the error E(x, d , π)

yielded when (i) the model receives input data x, (ii) its output is compared against the
target outputs d and (iii) we consider a specific model configuration π . Let Emin be the
minimum Mean Square Error across all Q configurations. The following can then be an
improvement function:

I(x, d , π) = max{0,Emin − E(x, d , π)} (6)

In the sequel, the expectations of Eq. (6) can be computed in a probabilistic con-
text. The probability distribution of the error function for a given set of configurations,
P
(
E|D1:Q

)
, is written in a Bayesian context as:

P
(
E|D1:Q

) ∝ P
(
D1:Q|E)

P(E) (7)
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Usually P(E) follows a Gaussian distribution and P
(
D1:Q|E)

is then expressed as a
Gaussian process of mean μ(π) and standard deviation � [28]:

� =
⎡

⎢
⎣

k(π1, π1) . . . k(π1, πQ)
...

. . .
...

k(πQ, π1) . . . k(πQ, πQ)

⎤

⎥
⎦ (8)

where k(•) is a kernel function. The target of our optimization is to find out a new
configuration π∗ ≡ πQ+1, which will further reduce the MSE or equivalently increase
the improvement I(x, d , π∗). Then, for the new augmented set D1:Q+1, that includes
π∗ ≡ πQ+1, P(D1:Q+1|E) will again be a Gaussian process of standard deviation

[
� b
bT k(πQ+1, πQ+1)

]
(9)

Where b = [k(πQ+1, π1) . . . k(πQ+1, πQ). Then, according to [28], it can be proven
that the P(EQ+1|D1:Q, πQ+1) is also a Gaussian with mean value and standard deviation
related with previous variables. Therefore, the new configuration π∗ is estimated, which
is actually the integral of I(•) and P(EQ+1|D1:Q, πQ+1), that is the probability that I(•)

follows.

4 Experimental Evaluation

4.1 Experimental Setup

To scrutinize the effectiveness of the proposed model, we have used a dataset that has
been created in the context of the European Horizon 2020 STOP-IT Project (https://stop-
it-project.eu/). STOP-IT aims at tackling the protection of critical water infrastructure
using novel methods. The dataset includes RGB and thermal video sequences as well as
Channel State Information. The RGB data were captured using an OB-500Ae camera
with 1280 × 720 pixel resolution at 30 fps. The thermal data were obtained by means of
a Workswell InfraRed Camera 640 (WIC) with a 640 × 512 pixel resolution at 30 fps.
WiFi data were acquired using a transmitter-receiver couple that comprised aWiFi router
(TP-Link N300 TL-WR841N) and an Intel 5300 NIC receiver, with a 0.1 Hz capturing
frequency. Data annotation was performed on the basis of pre-determined scenarios by
end users that prescribed whether the captured activity over all data modalities should
be considered as irregular/abnormal.

The entirety of data across all modalities were normalized so as to be in the same
range (0–1). The computer used for all training and testing was an Intel® Core™ i7-
6700 CPU@ 4000 GHz CPU with 16GB RAM and an NVIDIA GeForce GTX 1070
with 8GBDDR5memory. CUDA 9.2 Toolkit was also used for deep learning classifiers.

4.2 Experimental Results

The first round of experiments focuses on the impact of using fused multimodal data as
input, instead of solely considering a single modality. We have initially experimented

https://stop-it-project.eu/
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with the following popular machine learning models: (i) a linear kernel SVM, (ii) a
non-linear Radial Basis Function SVM (RBF-SVM), two different architectures of a
traditional feedforward neural network: (iii) with 1 hidden layer of 10 neurons/layer and
(iv) 2 hidden layers of 10 neurons/layer respectively, (v) a CNN and (vi) a plain LSTM
(without bidirectionality or optimization). Fig. 2 depicts the accuracy rates attained by
the above classifiers in cases with (a) only RGB and thermal input, (b) CSI (WiFi) and
(c) multimodal input. From the results, it is evident that the proposed data fusion scheme
of significantly increases the achieved performance detection performance regardless of
classification scheme.

In the second round of experiments, we conduct experiments to validate the effec-
tiveness of the proposed multimodal Bayesian optimized bidirectional LSTM. Focusing
on the multimodal case, we compare the performance of the proposed model with the six
models mentioned above (SVM-linear, SVM-RBF, FNNs, CNN, LSTM). The results
of the experiments in terms of precision, recall, F1-score and accuracy are depicted in
Table 1. We observe that all deep learning models (CNN, LSTM) clearly outperform
shallow classifiers, which is explained by the greater representational and understanding
power of the deep models in complex scenarios such as the discussed abnormal activity
detection application. Moreover, the proposed approach based on optimized bidirec-
tional LSTM attains higher performance rates compared to the other examined deep
learning models, revealing the contribution of both the bidirectionality and the proposed
framework for Bayesian optimization of the network parameters.

Table 1. Performance metrics on multimodal experiments

Method Precision Recall Accuracy F1 score

SVM-Linear 68.51% 61.71% 77.36% 64.93%

SVM-RBF 66.99% 60.06% 76.11% 63.34%

FNN1 69.95% 63.30% 78.52% 66.46%

FNN2 70.13% 63.50% 78.66% 66.65%

CNN 80.62% 76.09% 86.56% 78.29%

LSTM 81.14% 76.12% 87.11% 78.55%

Proposed Optimized Bidirectional LSTM 90.01% 87.42% 88.70% 88.77%

Finally, we have experimented with providing as input to the classifiers a “window”
of past frames of different sizes, in other words feeding the model with “memory”. We
have explored three cases for window length: no window, brief window (50 frames) and
longer window (100 frames). The results for the multimodal case are depicted in Fig. 3.
We can see that the presence of a time window in the input increases the performance
in the examined cases of CNN, LSTM and the proposed optimized bidirectional LSTM,
but the improvement ratio decreases as the window length increases. Furthermore, the
improvement attained by the window is less significant in the proposed model compared
toCNNandplainLSTM,where there ismore room for improvement. In any case, though,
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the performance attained by the proposed model steadily outperforms the remaining
examined approaches by a considerable difference.

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

SVM-linear SVM-RBF NN1 NN2 CNN LSTM
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Fig. 2. Attained F1-score of shallow and deep learning models for: (i) visual (RGB + thermal),
(ii) WiFi-CSI, and (iii) multimodal input.
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Fig. 3. AttainedF1-score for different inputwindow lengths (number of frames) in themultimodal
case for: (i) CNN, (ii) plain LSTM, and (iii) the proposed optimized bidirectional LSTM.

5 Conclusion

In this paper, we proposed a multimodal bidirectional Long Short-TermMemory neural
network (LSTM) model for detection of abnormal activity in critical infrastructures.



Fusing RGB and Thermal Imagery with Channel State Information 85

Three input modalities are considered: RGB, thermal and Channel State Information,
the fusion of which is proved to provide significant added value in the unusual activ-
ity detection scenario. The multimodal input is fed into a bidirectional LSTM, which
allows for an effective capturing of both forward and backward temporal dependencies.
Moreover, a Bayesian optimization method is used to optimally select the parameters of
the employed model. The presented methods have been experimentally evaluated with a
real-world critical water infrastructure monitoring and protection dataset, and have been
shown to achieve very promising detection rates.

Funding. The research leading to these results has received funding from the EUH2020 research
and innovation programme under grant agreement No. 740610, STOP-IT project.
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Abstract. Security of IoT systems is a growing concern with rising risks
and damages due to successful attacks. Breaches are inevitable, attacks
have become more sophisticated, and securing critical infrastructure has
become a greater challenge. Anomaly detection is an established app-
roach for detecting security attacks, without relying on predefined rules
or signatures of potential attacks. However, existing outlier detection
techniques require adaptation if they are to be applied in a Big Data
cloud context. We describe a novel outlier detection solution, which is
currently being used by hundreds of customers with highly variable data
scales. We describe our work in adapting this technology to handle IoT
on a Big Data cloud setting. Specifically, we focus on efficient outlier
analysis and managing large numbers of alerts using automatically con-
trolled alert budgets.

Keywords: Cyber-security · Anomaly detection · Outliers · IoT big
data · Cloud · Critical infrastructure

1 Introduction

IoT security is of the utmost importance. The impact of a security breach can
go far beyond the attacked device. Attacks can range from a privacy breach and
the exposure of sensitive and personal information, to a life threatening attack
on an automotive system, or a distributed bot-nets attack with major financial
ramifications. A breach can also lead to diminished customer trust or even to
customer turnover.

Attacks have also become wider and more sophisticated. A survey of IoT-
enabled cyber attacks [15] assessed the increasing attack paths to critical infras-
tructures and services for all application domains. DDoS attacks are on the rise,
getting more complex and increasing in power with the average attack in 2020
using more than 1 Gbps of data with most attacks now lasting 30 min to an
hour [8].
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Breaches are inevitable and securing critical infrastructure has become a
greater challenge. Moreover, many attacks cannot be stopped by standard policy-
based or rule-based security systems. In cases of accounts stolen from privileged
users or internal attacks, firewalls, access control levels, and rule-based manage-
ment are not sufficient. There is a real need for a different approach that detects
malicious activities beyond the abilities of rule-based systems.

Anomaly detection is one such established approach, and it has already been
used in a wide range of security settings. This approach unites a rich family
of techniques [10] and doesn’t rely on predefined rules or signatures of poten-
tial attacks. Instead it learns the typical behavior of the monitored system and
triggers an alert when abnormal behavior is detected.

1.1 Challenges and Our Contribution

Compared to rule-based and signature-based approaches, anomaly detection is a
more complex process that includes advanced analytics for training and analysis.
This in turn imposes higher demands on disk space, memory, and CPU resources.
Even in organizations that recognize the importance of data security, typically
only a small portion of the overall computational resources can be allocated for
security analytics.

The growing data volumes of industrial use cases make the performance and
scalability requirements for this kind of analytics increasingly difficult to meet.
This has become a critical factor in the acceptance of anomaly detection solu-
tions. The need to adapt anomaly detection techniques to large scalable sys-
tems is especially vital for IoT platforms. Here, large numbers of highly diverse
devices, from different domains and behavioral aspects, need to be analyzed to
detect anomalies. IoT platforms often include many devices with high commu-
nication frequencies. The size of the IoT platform, and thus the amount of data
to be analyzed, can also grow or change over time. This raises the requirements
of the anomaly detection platform to automatically scale, while preserving per-
formance and resilience, in the face of a dynamically growing IoT system.

Another challenge in anomaly detection is the number of false positives, i.e.,
cases when an alert is triggered, but no attack is actually taking place. Even
a false positive rate of one per mille (0.1%) would make an anomaly detection
system impractical in a large scale setup. It would produce too many alerts to be
handled by the limited resources of security operators. Such a high rate of alerts
would cause the security operators to become less sensitive and might result in
their missing an alert triggered for a real attack.

In this work, we present a novel scalable platform for anomaly detection. Our
main contributions are:

– An industrially proven generic and extendable anomaly detection architecture
that can be easily customized for different domains.

– A number of techniques that enable the significant reduction of computational
resources and disk space requirements, geared for scalable anomaly detection.



A Cloud-Based Anomaly Detection for IoT Big Data 89

– A novel approach to control a number of generated alerts within a predefined
budget, while preserving the most significant outliers by learning historical
outlier distribution.

– A scalable cloud-based architecture that can analyze the Big Data produced
by large IoT systems.

1.2 Related Work

The main approaches of anomaly detection use statistical methods, machine
learning, and data mining techniques. A wide range of anomaly detection tech-
niques is reviewed in [10]. One of the most well-studied applications of anomaly
detection in the security domain is network intrusion detection. Bhuyan et al.
[6] provides a comprehensive survey on anomaly-based network intrusion detec-
tion techniques. However their usage for data protection is limited. Deorankar
et al. [9] survey anomaly detection techniques based on Machine Learning for
IOT cyber-security. A number of intrusion detection techniques, datasets and
challenges are surveyed in [11]. IoT anomaly detection has been suggested at
the device, router, and cloud levels. Butun et al. [7] survey different anomaly
methods and their applicability to IoT and cloud applications. Yu et al. [17]
proposed unsupervised contextual anomaly detection method in IoT through
wireless sensor networks. Yan et al. [16] use a classification algorithm based on
mini-batch gradient descent with an adaptive learning rate and momentum to
detect network anomalies in IIoT. Liu et al. [13] and Arrington et al. [4] use
artificial immunity to detect anomalous behavior of IoT devices at the router
level. Mehnaz and Bertino [14] designed a privacy-preserving real-time anomaly
detection using edge computing that detects point, contextual, and collective
anomalies in streaming large scale sensor data while preserving the privacy of
the data. A scalable, cloud-based model to provide a privacy preserving anomaly
detection service for quality assured decision-making in smart cities desrbided
in [2].

Scalability is a well known challenge for anomaly detection. Koufakou [12]
proposes the Attribute Value Frequency (AVF) algorithm as an efficient app-
roach for anomaly detection of categorical data. AVF is compared to a number
of Frequent Itemset Mining algorithms based on the Apriory algorithm [1] and
shows much better run-time without losing accuracy. Another efficient tech-
nique is described by Bertino et al. [5]. Here the Naive Bayes Classifier method
is used to obtain linear scalability for the training phase and very fast analysis.
Moreover, Bertino et al. compare the use of three different levels of information
granularity: coarse, medium-grained, and fine. They show that on real data the
achieved precision and accuracy of outlier detection is very similar for all the
levels, but the execution times are a few orders of magnitude faster for coarse
information granularity. We chose a multi-level approach to improve scalability.
At the algorithmic level, we pervasively use exponential smoothing. At the archi-
tecture level, deploying the system in IBM’s cloud environment Apache SparkTM

for a quick and easy storage and performance scale-up.
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2 Cloud-Based Architecture

The architecture we use to deploy the outlier detection system on the cloud is
depicted in Fig. 1. The main input to the system is an Apache KafkaTM stream of
event descriptions, where each event is described in terms of specific features. For
example, Table 1 shows part of a stream of events, each corresponding to some
communication between a particular device and the IoT management system
being used. The features include some meta data describing the communica-
tion, such as the time, device owner (Client), device ID, action type (e.g., send,
connect, or disconnect), and whether the action failed or not. In the case of a
send action - the sent payload can also be analyzed. Thus, the system can detect
anomalies related to meta-data of the message, such as the software used to send
the message (SW), and the message size and format (which can be automati-
cally computed). We can also analyze semantic features of the message, such as
temperature readings (T).

Table 1. An event stream of a camera IoT system

Time Client Device Action Fail Payload

07:06 C1 Cam1 Send 0 { T=20, SW=S1...}
07:07 C2 Cam2 Send 0 { T=19, SW=S2...}
07:07 C2 Cam5 Connect 1

07:10 C1 Cam1 Send 0 { T=56, SW=S1...}
07:13 C1 Cam4 Connect 1

07:14 C1 Cam4 Connect 1

Our outlier detection system defines a specific interface for the event stream.
The event stream arrives on a dedicated Kafka stream and in a particular format,
which includes an identification of the device involved in the event and the set
of event features in JSON form. The outlier detection system is thus general
purpose in the sense that it can analyze any event stream that conforms with
this interface. The IoT devices communicate using messages of different forms
and purposes arriving on multiple MQTT topics. Messages are then forward to
a central Message Hub cloud service from which they arrive at the input bridge
shown in Fig. 1. The input bridge converts all these variously formed messages
into the specific form defined by the interface. Beyond simple formatting, the
input bridge can also compute features from the incoming messages. For example,
it might compute the payload size, determine the message format (as features
to analyze), or extract other feature from the payload data.

The outlier analysis takes place on a cloud environment, the same cloud
environment used. The outlier detection runs on a Spark service. Using Spark
makes the solution very scalable because the resources needed for the analysis
(memory, disk, CPU, communication) can be adjusted if the analyzed IoT system
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grows (or shrinks) without any manual changes required in the code or in other
parts of the system.

The outlier detection includes two main units running in a pipeline: aggrega-
tion and scoring (see Fig. 1). The aggregation unit takes the input event stream
described above and converts it into a stream of features aggregated for pre-
defined time windows (termed analysis periods). For example, it could compute
the total payload size sent by a device during the last 15 min. When the analysis
period ends, the aggregator streams all the aggregations to the scoring unit. In
the example just given, the aggregated input feature is the payload size, the
aggregation type is summation, and the analysis period is 15 min. This specific
setting is defined in a configuration kept on a Cloud storage service (Object
Storage shown in Fig. 1). The configuration typically defines several aggrega-
tions; some are general purpose (e.g., the number of failures, or communication
frequency) and some are specific to the IoT domain.

The scoring unit receives the stream of aggregations and uses these to update
behavioral models of the analyzed entities. The entities being modeled are defined
for every specific domain; they typically include all the devices, device types, and
clients in the system. We model the devices so that we can detect anomalous
device behavior. We model the device types so that we can detect an attack on
an entire class of devices, for example via malware that attacks some particular
firmware. Modeling clients can help detect a broad attack where many devices
exhibit minor changes in behavior that only appear abnormal when examined
together in aggregate.

The scoring unit can now compare the incoming aggregations with the behav-
ioral models of the entities involved. If the difference is large enough, an alert is
sent on the output alerts Kafka stream. The alert is sent along with enough infor-
mation to justify and explain the reason for the alert. This includes the observed
anomalous feature along with the corresponding statistical information from the
model (e.g., the historic average and standard deviation). An alerts-consumer
now reads this stream of alerts and can store or display these in a dedicated
GUI.

The data continuously streams along the system units, from the devices send-
ing their events to Watson IoT, to the output alerts stream. Thus, data is almost
never at rest, except for the short terms during the windowed aggregation and
for the summaries kept in the models for longer periods. This means we do not
have to keep the very large quantities of data that can be expected in IoT system
logs. That said, the system only knows the summary information in the model
and does not have access to the entire precise historical data. If such historical
data is needed (e.g. for detailed post-mortem attack analysis), then the history
should be backed up via a separate facility.
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Fig. 1. Cloud architecture

2.1 Anomaly Detection Unit

As described above, the system models the typical behavior of certain modeled
entities such as devices, device-types, clients, end-users, and geographic loca-
tions. This allows the system to later detect deviations from the normal modeled
behavior. We model these behaviors using various features that are aggregated
during analysis periods of fixed length. For example, the model may note the
average and variance of the number of failures the entity has per analysis period.

The events streaming into the system are described in terms of features,
some of which are used to identify the modeled entity involved in the event (e.g.,
the Device and Client features in Table 1). Other features are aggregated over
time periods for analysis purposes. These are termed aggregated features (e.g.,
the payload size, and failure counts). An event meta-type is a tuple of event
features names. Consider the example features SW , Action of the event stream of
Table 1, and the computed feature of the message format - Format. The defined
event meta-types may include, for example, <SW ,Format>,<SW ,Action>,
and <Action>. An event type is an instantiation of an event meta-type
that assigns specific values to the features named in the event meta-type. For
example, <SW = S1 ,Format = JSON> is an event-type of the event meta-
type <SW ,Format>. Every specific event in the event stream may corre-
spond to a number of event types, each relating to different event features.
For example, the first record in Table 1 corresponds to (at least) the event
types <SW = SW1 ,Format = JSON>, <SW = SW1 ,Action = Send>, and
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<Action = Send>. The system uses a fixed collection of event meta-types for
every modeled entity type. So, for example, the system may define the event
meta-types <SW ,Format>,<SW ,Action>, and <Action> for device entities,
and the event meta-types <device>, <SW ,Action> for client entities. For
every event, the system creates a list of modeled entities and corresponding
event types that match the event. For example, for the first record in Table 1,
the system identifies the modeled entity <Device = Cam1> and corresponding
event types <SW = SW1 ,Format = JSON>,<SW = SW1 ,Action = Send>,
and <Action = Send>. It also identifies the modeled entity <Client = C1> and
corresponding event types <Device = Cam1>, <SW = SW1 ,Action = Send>.
Note that the feature Device sometimes serves to identify a modeled entity and
sometimes serves as part of an event type. Every analysis period (e.g., 15 min),
the aggregation unit (see Fig. 1) creates an event type summary for every
modeled entity. The summary specifies the number of events of each event-type
that occurred with the entity. The summary also includes aggregations of fea-
tures for every event type used by the entity - such as the total number of failures,
or maximum payload size. In our example, the system would calculate that dur-
ing the period 7:00–7:15, the modeled entity <Client = C1> had 2 events of the
event type <Device = Cam4>, aggregated with 2 fails. It also had 2 events of
the event type <SW = SW1 ,Action = Send> aggregated with no fails. Thus,
the aggregation unit aggregates the aggregated features for every event type per
modeled entity in the event type summary. It can also compute the total aggre-
gation of the aggregated features for every entity, regardless of the event types
involved. Thus, we can configure the aggregator to compute the total number of
fails, and average or maximum payload size for every entity.

The aggregation unit runs on a Spark service as a collection of distributed
processes that perform the aggregations jointly in a map-reduce approach. Even
in very large IoT systems, where Big Data scales of traffic information needs
to be analyzed, the system can still perform the aggregation with reasonable
performance and can be simply scaled by adding more resources to the Spark
cluster. The system was designed to keep a minimal amount of data during its
operation. Once any piece of the data is streamed into the system and analyzed, it
can be dropped. The temporary event summaries need only be stored, in the form
of Spark RDDs (Resilient Distributed Dataset), for the duration of the analysis
periods. Even the entity models that need to be kept for longer time spans while
the entity remains active, keep relatively small amounts of summary data per
entity. This is possible because the averages in the models are all smoothing
averages; these can be updated incrementally after every period of activity. See
Sect. 3.

2.2 Anomaly Scoring

The anomaly scoring is carried out concurrently by multiple Spark processes.
Every analysis process is responsible for analyzing the activities of several
modeled entities during the last analysis period. An analysis process considers
all the event types and corresponding aggregated features from the event type
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summary of the analyzed modeled entity. It compares the behavior observed
in the last analysis period to the entity’s normal behavior as modeled. It then
updates the behavioral model of the entity. This is carried out by a collection of
anomaly scorers, each scorer responsible for analyzing, modeling, and checking
a particular behavioral aspect and producing a score. The scores represent the
risk or probability of an attack and are therefore given as numeric values between
0 and 1. A higher value corresponds to a higher probability of an attack.

For example, the volume scorer looks for an unusually high number of events
of some event type during the analyzed period. For this purpose, for every mod-
eled entity, the scorer maintains some volume related statistics for every event
type (e.g., <SW = SW1, Action = Connect>). This includes the average vol-
ume observed so far, the average of the volume squares (to compute the variance),
the top volume scores with representatives from recent weeks, and the number
of samples that were used for computing the statistics i.e., the number of events
the modeled entity had of this event type in the past. All the averages and
counts here are computed using smoothing average techniques (see Sect. 3) and
are computed in a logarithmic scale. Using logarithmic scales is a conventional
approach when analyzing volumes, since their order of magnitude is typically
more interesting than the precise volume.

These statistics are, in effect, the volume-related part of the model for each
entity. The volume scorer is responsible for updating this part of the model by
referring to the aggregated volume in the event type summary of the entity.
But before doing so, the scorer would give a volume anomaly score to the event
type by comparing the count in the event type summary to the related statis-
tics in the model. For example, it could compute a risk based on the Z-score
from the newly observed volume and from the modeled average and variance; it
would then “moderate” the score by considering the number of samples and the
maximal values observed so far. A combined volume score is then computed for
the modeled entity by taking the top scoring event types and computing some
weighted average of their scores.

The volume-related part of the model includes statistics for individual event
types alongside general statistics of the modeled entities. Most other scorers
require more compact models that only include general statistics of the modeled
entities. For example, a new activity types scorer models the typical number of
new behaviors that a modeled entity (client or device) exhibits every period. A
variability scorer tracks the general variability of a device’s activity. If a device
normally exhibits small variability (i.e., repeats having more or less the same
diversity of activities) and suddenly behaves with much greater variability, this
could indicate an account hijacking.

Alert generation is the final step in the analysis process for a period. Here,
the multiple scores coming from the various scorers are weighted and combined
for every modeled entity. If the resulting score is above some threshold (auto-
matically set by the budgeting scheme - see Sect. 4), an alert is produced and
displayed in the system GUI. The GUI also gives the reasons for the alert in a
user friendly display of the related statistics, and allows the end user to further
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investigate the root causes for the alert (e.g., by displaying all the related device
activities).

2.3 Generic Architecture

The system is generic in the sense that it can easily be configured to find anoma-
lies in completely different domains, in logs of different types of systems, and
for different purposes. As mentioned above, beyond the IoT use case, the tool
is currently part of an IBM product where it reports possible insider attacks by
analyzing the logs of user database activity. The tool was also configured to serve
other use cases, including detecting anomalies in logs of storage devices to pre-
dict pending device failures, and to detect anomalies in the logs of a cloud-based
object store.

Configuring the tool for a specific domain includes the following steps:

Model Design: The model consists of entities and corresponding event meta-
types. These are defined in terms of event features that are available or that can
be computed. This step is carried out by experts in the domain and depends on the
particular use case for the anomaly detection. In our example above, the experts
decided to model the behavior of devices, device types, and clients. When selecting
meta-types, the choice of the meta-type <SW ,Action> was made so that abnor-
mal volumes of different types of actions by some software can be detected. The
choice of the meta-type <Action> was made so that abnormal usage volumes for
specific action can be detected, regardless of the software involved.

Preparing the Event Stream: The IoT system should forward the events to be
analyzed to the dedicated Kafka topic used by the input-bridge. The input-bridge
must be set up to collect or compute the chosen event features from the input event
stream before forwarding them to the outlier detection units (see Fig. 1).

Domain Specific Scorers: During system configuration, one can select relevant
scorers from a library of available generic scorers. The overall volume and failure
scorers described above are generic in the sense that they are relevant to many
IoT domains. However, one can also add new scorers that are relevant only to
the specific domain being configured. In a camera IoT for example, a scorer can
be added to detect anomalies in the number of automatic movement operations
that the camera reports in its message payloads.

3 Exponential Smoothing Averages

The behavioral models we use for anomaly detection rely on computing the aver-
age and standard deviation of various properties, e.g., the number of operations
of a particular type that a particular device performs per hour. These statistics
can then be used to detect anomalies. If in the current hour, the number of oper-
ations of this type is far from the average by a large enough number of standard
deviations, an alert is issued.
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Say V1, V2, V3, . . . is a stream of observed values, where Vi is observed at the
i’th period. One way to compute the average at time i is simply as the average
of values observed until this point in time, (V1 + V2 + . . . + Vi)/i. This has the
advantage of being easy to update incrementally, without the need to store the
values observed prior to period i. However, it has the disadvantage that it gives
equal weight to all observed values, old and new. In reality, a device’s behavior
is gradually changing, so older values should have a decreased impact on the
current estimate of the average.

Another approach is to store a sliding window of the last k observed values,
Vi−k+1, Vi−k+1, . . ., Vi, and compute the average over this window. This has
several disadvantages. One disadvantage relates to the way old values are treated.
Older values within the window are weighted the same as the newer values in
the window. When a value drops off the window, it abruptly gets completely
forgotten and no longer has any effect on the current estimate of the average.
Another disadvantage is that performance issues may arise. Assuming we are
tracking a large number of properties and use large windows, storing this data
may require a large space, and maintaining it as new data arrives may be slow.

Since our system must work on Big Data, efficiency considerations are crucial.
Therefore, we chose a third approach: exponential smoothing averages, referred
to as smoothing averages below. Denoting the smoothing average at time i by
Si, the basic formula is as follows.

Si = Viα + Si−1(1 − α), (1)

where α is some predefined constant. A possible method for choosing α is to select
the window size that will have a total influence weight of 0.5 on the smoothing
average result. For a window of n periods, this is α = 1 − 0.51/n.

A model composed of a set of smoothing averages has several advantages:
much smaller model size, efficient model updates and accounting for both recent
and historical data.

3.1 Smoothing Average Behavior

We demonstrate the behavior of the smoothing average scheme over specific
test cases. We created the test cases by generating independent and identically
distributed samples of normal distributions with a standard deviation of 1 and
with means that were chosen to simulate various changes in behavior, as detailed
below. One additional test case was taken from real data gathered on a running
instance of our system at a customer site. In all test cases, we show the smoothing
average approach with initialization and gap handling. The α is configured such
that the weight of 25 time periods will be equal to 0.5 (“smoothing average” in
the figures). We compare this to a simple sliding window scheme of 50 periods
(“sliding window” in the figures).
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Fig. 2. Comparison of sliding window and our scheme of smoothing average: Behavior
during and after an abrupt change in input

Figure 2 shows the reaction to an abrupt change in the input. Both
approaches are similar, except the smoothing average takes a bit longer to fully
adapt to the change. In Fig. 3a, we show the same thing, except there’s also a
gap of inactivity between the old (high) values and the new (low) ones. Since
it gives lower weights to older values, here the smoothing average adapts to the
change more quickly.

Figure 3b shows real data giving the number of different unique operations
per hour performed by a user. During most of the sampled period there are no
gaps and only moderate changes. As a result, the two measures behave similarly,
but employing the smoothing average is more efficient computationally. Some
differences do exist and can be explained. During hours 130–150 the sliding
window average increases with no apparent justification. This happens because
the very low measures of hours 80–90 are being removed from the window. The
smoothing average more intuitively tracks the data and actually decreases during
hours 130–150, by giving higher weights to the new measures.

4 Alert Budgeting

Outlier detection systems are characterized by the dominance of legitimate
behaviors in the training data. Malicious examples are typically missing from
the training data or are too few to be representative. The commonly used app-
roach in such a setup is to train models that describe the typical behavior of
entities, including typical deviations from the average behavior. The trained
models are then used to score the entities’ current behaviors according to their
deviations from the typical historical behavior.

In an ideal world, the malicious behaviors’ deviations would be much larger
than the deviations of legitimate behaviors. Thus, one could just look for large
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(a) Behavior during and after an abrupt
change in input that occurs after a gap of
inactivity

(b) Behavior over real-world counts of
unique number of operations per hour per-
formed by a user

Fig. 3. Comparison of sliding window and our scheme of smoothing average

enough deviations from the historical data and expect to detect all malicious
events, without producing any false positives for legitimate behaviors. In prac-
tice, it is not exceptional that some legitimate behaviors exhibit a high level of
abnormality. Meanwhile, sophisticated attacks try to mimic legitimate behaviors
to escape detection by outlier detection systems. One of the important questions
is how to choose the threshold above which a behavioral deviation should trigger
an alert to the security operator. If the threshold is set too low, the rate of false
alerts is too high and exceeds the capacity of the operators. On the other hand, if
it is set too high, the chance of missing malicious behaviors significantly increases.

There are a number of existing approaches for the selection of a threshold. The
most basic approach requires security operators to manually select the threshold.
The problem with this approach is that it is not clear how to come up with a good
threshold. A good threshold can differ in different domains and may also change
over time. It can lead to too many alerts emitted at some periods, and to no alerts
at all even when high risk events occur. Another approach allows you to define
a limited budget for the number of alerts emitted per a predefined interval, such
as 48 alerts per day. In this case, waiting 24 h and reporting 48 top alerts intro-
duces a reporting delay that is impractical. On the other hand, reducing the delay
by reporting alerts each hour (in this case 2 alerts per hour) is also not optimal.
The top scoring events typically have low scores for most of the hours, but the sys-
tem would still trigger 2 alerts per hour. This makes operators less sensitive to the
alerts. In addition, hours with many events with high scores will be limited to 2
alerts, so some high risk events might be missed. A number of works [3] propose
various optimization methods for thresholds selection (see Sect. 1.2).

In this work, we developed a novel approach that defines an alert budget
B as the rate of alerts that operators decide they can handle. Given the alert
budget, the system periodically re-adjusts the threshold automatically based on
historical scores, so the average rate of emitted alerts matches the predefined
alert budget.
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The alert budget is designed to be satisfied on average and not for every
period, so one can expect some fluctuations in the number of alerts per period.
To constrain the variation of the number of triggered alerts, we introduce a max
alert number parameter K. The max alert number is a “hard” constraint, so
if for a specific period there are more than K events with scores above the
threshold, only the top K events with the highest scores are reported. The max
alert number should be set to a large enough value to allow a reasonable level of
alert fluctuations, but not too large to avoid a situation where a few non-typical
hours (e.g., system upgrade) produce too many alerts and, as a result, raise the
threshold too high. A possible way to select K is K = max(10, 10Bd), where d
is the duration of a single period. This restricts one period from producing more
than 10 times more alerts than the average per period, or more than 10 alerts
for the case that B < 1.

The alert budgeting approach has two important aspects for anomaly detec-
tion in a Big Data setup. First, it allows us to define and automatically control
the average rate of alerts produced by the anomaly detection system. So even
for very high rates of monitored events, only a predefined rate of alerts will
be produced. The target alert rates should be selected according to the human
resources available. Second, as we show below, our approach uses a fixed amount
of disk space that doesn’t depend on the volume of monitored data and takes
only a small portion of the processing time.

4.1 High-Level Budgeting Flow

The high-level flow for alert budgeting is depicted in Fig. 4. Given the alert
budget B, the flow starts from scores that are periodically produced by the
scorers. For each period and for each scorer, the top K scores are inserted into
the top scores tables, where K is the max alert number parameter.

The top scores table keeps a sliding window of t historical periods. The size t
of the sliding window determines how fast alert budgeting reacts to the changes
in scores. For example, when a one-day sliding window is used, the system is
significantly influenced by a local change of a few hours duration, which makes
the system unstable. On the other hand, a one-year sliding window makes the
system react very slowly to the changes, so it might take a few months for the
system to start reacting to a change. For our industrial use case, we used a
one-week sliding window; that gave us the right balance between the agility and
stability of the system.

Based on the historical top scores, the threshold calculation step computes
scorers thresholds. The score thresholds are computed in such a way that the
number of historical events above the threshold matches the target alert budget.
If the top scores of new periods have a similar distribution to the historical top
scores, the average number of future events above the threshold will also match
the target alert budget. However, if the score distribution changes, (e.g., higher
scores appear more frequently) the historical scores gradually accumulate in the
new distribution and the score thresholds will change accordingly.
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The score thresholds are used in the scores normalization step to normalize
different scores to the same scale. Only scores from previous periods are used
to compute the current period thresholds; in this way the thresholds can be
calculated before starting the analysis. This allows scores to be normalized in a
distributed way, without having to wait for the processing of all the events of
the current period.

The final score is computed based on the normalized scores and is used to
determine whether an alert should be reported.

Fig. 4. Alert budgeting

4.2 Scalability

While the alert budget is not guaranteed to produce the same number of alerts
for each period, on average it provides the required rate of the alerts. This
allows the planned allocation of the resources needed to investigate the alerts
and enables security operators to effectively monitor systems with high volumes
of activities.

Using the alert budget scheme doesn’t require keeping a full record of histor-
ical events; only a very limited portion is required. The critical parameters here
are the number of scorers (N), the length of the sliding window of historical
periods (t), and the number of top scores held for each scorer K that equals
the max alert number parameter. The total number of records R required to be
stored is tKN.
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For example, for 5 scorers (N = 5), a sliding window of historical periods
equal to one week (t = 168) and a max alert number K = 10, the resulting
total number of records is R = 8400 and doesn’t depend on the total volume of
activities.

5 Results

To evaluate budgeting quality we used real production data collected over
3 months (from an undisclosed European telecom company). Traffic from 7949
internal-system users was recorded and analyzed. We fixed the anomaly budget
goal to B = 2 alerts per day, and the history training sliding window length to
t = 7. Next, we compared the budgeting quality for a variety of budget-factor
update frequencies. Thus, we are able to compare our proposed automatic, hourly
threshold update frequency to a manual update at different frequencies. This test
can be used to assess how frequently a human operator would have to change
the budget factor in order to match the performance of an automatic system.
The performance is measured as the difference between the actual alert rate
and the target budget goal line. To this end we compare B with the number of
cumulative alerts up to each day, divided by the cumulative number of days.

Figure 5 plots for every date the number of alerts during a 7-day sliding
window. It can be observed that for a 30-days update frequency, the 14 alerts
per week goal (B = 2 alerts per day) is hardly met. Specifically, there is a strong
under-budget trend from mid-September till mid-October. At the beginning of
November, the 7-day and 30-day update lines are much higher than the goal line,
while towards mid-October they are both much lower than the goal line. These
drastic fluctuations result from the specific day when the factor is calculated.
Since both the 30-day and 7-day factors are static for a very long time, calculating
the budget factor at a peak or a low point of a monthly cycle has a lasting
effect. In contrast the 1-hour update frequency is much more dynamic and is
consistently much closer to the 14 alerts per week goal line. It can quickly adjust,
and so it is impacted much less intensely from calculating the budget factor at a
local low point (as can be seen at the beginning of November) and for a shorter
time frame. If fact, when we compute the mean absolute difference from the
14 weekly alerts goal, we find that the hourly update frequency has by far the
lowest mean of 3.8 as compared to 10.7 for the 30 day frequency.

Finally, we used a configurable simulator to assess speed performance, mea-
sured as the number of records analyzed per second. This is dependent on the
number of instances, the CPU, and memory specifications. We tested our system
on a local machine with 16 GB RAM and an i7 Intel 8-core processor (2.7 GHz)
and were able to reach 200K records per second. Deploying the system to the
cloud, we observed a near-linear scale up in performance dependent on the num-
ber of executors. Speed almost doubled when we went from a single executor to
2 and again from 2 to 4. Thus, we have confirmed our assumption of scalability
under the Spark framework.
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Fig. 5. Alerts per previous 7 days. The dashed line represents the 14 alerts per week
goal line.

6 Summary

We presented a novel, scalable, generic, and industrially-proven system that
uses anomaly detection to identify security attacks on IoT cloud platforms. The
system includes a novel approach that handles the alerts, offloading the cognitive
burden of the human through semi-automaton. The system uses historical data
to calibrate alert thresholds and achieve the target rate on average, while still
properly handling periods where anomalous behavior is exceptionally high or
low.

The scalability of the system is achieved using a distributed cloud-based
scalable architecture (i.e., Spark and Kafka), and efficient modeling techniques,
specifically smoothing averages with gaps. The system can be deployed in mul-
tiple settings using a configuration interface to define the modeled entities (the
objects that are being tracked for anomalous behavior), and the event meta types
(combination of features that define distinct events). The configuration interface
further allows users to select the scoring algorithms used from a library, and to
extend it with new ones.

Our future work plans include continuing and enhancing the system’s use
in the IoT domain, and for additional fields beyond security. We have already
had success in early experiments predicting device failures in storage systems,
and we plan to further explore using the outlier system for quality-related use
cases. For algorithm enhancement and improved precision, we plan to introduce
the clustering of modeled entities based on similarity of behavior. The anomaly
detection for an individual modeled entity will consider the particular entity as
well as similar entities in its cluster. More future directions include addressing
adaptivity and increased automation.
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Abstract. Over the past decade, there has been unprecedented advance-
ments in the field of computer vision by adopting AI-based solutions.
In particular, cutting edge computer vision technology based on deep-
learning approaches has been deployed with an extraordinary degree of
success. The ability to extract semantic concepts from continuous process-
ing of video stream in real-time has led to the investigation of such solu-
tions to enhance the operational security of critical infrastructure against
intruders. Despite the success of computer vision technologies validated
in a laboratory environment, there still exists several challenges that limit
the deployment of these solutions in operational environment. Address-
ing these challenges, the paper presents a framework that integrates three
main computer vision technologies namely (i) person detection; (ii) per-
son re-identification and (iii) face recognition to enhance the operational
security of critical infrastructure perimeter. The novelty of the proposed
framework relies on the integration of key technical innovations that sat-
isfies the operational requirements of critical infrastructure in using com-
puter vision technologies. One such requirement relates to data privacy
and citizen rights, following the implementation of General Data Protec-
tion Regulation across Europe for the successful adoption of video surveil-
lance for infrastructure security. The video analytics solution proposed in
the paper integrates privacy preserving technologies, high-level rule engine
for threat identification and a knowledge model for escalating threat cate-
gorises to human operator. The various components of the proposed frame-
work has been validated using commercially available graphical processing
units for detecting intruders. The performance o the proposed framework
has been evaluated in operational environments of the critical infrastruc-
ture. An overall accuracy of 97% is observed in generating alerts against
malicious intruders.
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1 Introduction

Modern critical infrastructures are increasingly turning into distributed, com-
plex cyber-physical systems that require proactive protection and fast restoration
against physical or cyber incidents or attacks. Addressing the challenges faced
by the critical infrastructure operators especially responsible for the production
and distribution of energy services, DEFENDER1 project has developed several
cyber-physical detectors and operational blueprints to safeguard the future Euro-
pean Critical Energy Infrastructure (CEI) operation against new and evolving
threats. In complementary to the cyber threats, the nature of physical threats
is compounded by the use of drones in addition to the human intrusion against
the infrastructure with malicious intent.

Following the increasing threat of malicious activity carried out against criti-
cal infrastructure by human actors there is an exponential increase in the deploy-
ment of surveillance infrastructure such as Closed Circuit Television (CCTV) for
monitoring the perimeter of critical infrastructure. Traditionally in computer
vision research, the task of object detection is to classify a region for any prede-
fined objects from the training data set. Early attempts at object classification
also adopted a similar approach for the detection of an image region to be con-
sisting of a drone or not. In this context, the application of computer vision was
applied for the selection of suitable representations of objects using handcrafted
features. The most successful approaches using handcrafted features require Bag
of Visual Words (BoVW) was reported in [24] that includes representations of
the objects with the help of local feature descriptors such as Scale Invariant Fea-
ture Transform (SIFT) [18], Speeded-Up Robust Features (SURF) [2], and His-
togram of Oriented Gradients (HOG) [8]. After training a discriminative Machine
Learning (ML) model such as Support Vector Machines (SVM) [6], with such
representations the images are scanned for occurrence of learned objects with
sliding window technique. In contrast to classical machine learning approaches,
the increasing use of deep-learning algorithms has led to the development of
object classification and localisation. Two main approaches have been reported
in the literature that adopt two different strategies namely (i) two-stage detector,
the most representative one, Faster R-CNN; and (ii) one-stage detector, such as
YOLO, SSD. Two-stage detectors have been reported to indicate high localiza-
tion and object recognition accuracy, whereas the one-stage detectors achieve
high inference speed. The two stages of two-stage detectors can be divided by
RoI (Region of Interest) pooling layer. For instance, in Faster R-CNN (Region
based Convolutional Neural Network), the first stage, called a Region Proposal
Network (RPN), proposes candidate object bounding boxes. The second stage,
features are extracted by RoI Pool(RoI Pooling) operation from each candidate
box for the following classification and bounding-box regression tasks [15]. The
research presented in the article focusses on the use of two-stage detector due to
the high-accuracy of the deep-learning network model.

1 https://defender-project.eu/.

https://defender-project.eu/
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Despite the success of computer vision technologies in addressing real-world
applications within research environments, the deployment of such solutions
within operational environment requires additional services that takes into con-
sideration the data privacy and citizen rights. Addressing these crucial require-
ments, the paper presents the activities carried out in DEFENDER project, for
the development of the an intelligent framework using computer vision tech-
nologies for enhancing the critical infrastructure security. The proposed frame-
work integrates three key technologies namely (i) person detection; (ii) person
re-identification (RE-ID) and (iii) facial recognition (FR) components to enrich
critical infrastructure security. The overall complementarity of these technologies
are leveraged to enhance the perimeter security of critical infrastructure against
physical attacks. The processed outcome from these three components are sub-
sequently analysed based on stream analytics to enhance the robustness of the
detection through metadata association between individually processed frames
captured from the camera sensor. Additionally, the use of privacy-preserving
technologies based on Gaussian blur algorithm ensures the compliance of the
framework for data privacy. The framework interfaces with the command cen-
tre to visualise the alerts generated from the critical infrastructure. The frame-
work integrates an encrypted media repository to comply with privacy-by-design
(PbD) principles.

The rest of the paper is structured as follows. Section 2 an overview of the
studies presented in the literature for person detection, person re-identification
and face recognition are presented. Subsequently, in Sect. 3 the proposed intel-
ligent situational awareness framework is presented, which incorporates several
key technical innovations including the use of privacy preserving technologies
and secure encryption services. Following a detailed analysis of each of the tech-
nical innovation, the outcome of the proposed framework is presented in Sect. 4.
The paper concludes with observations, remarks and roadmap for the design of
physical security detector in Sect. 5.

2 Literature Review

Intelligent video surveillance has been one of the most active research areas in
computer vision [29]. Within the computer vision community, the research of
person detection has attracted studies from interdisciplinary scientists, inter-
ested in the design of autonomous vehicles to intelligent surveillance [14], robot
navigation [10,16]. In this section the literature review of three technologies are
summarised in two categories as follows.

2.1 Person Detection and Person Re-identification

Person detection is considered as an object detection problem for which the
deep-learning models are trained on a number of human representations that
takes into account the changes to appearance, cloths, and environment param-
eters among others. Prior to the recent progress in Deep-Convolutional Neural
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Network (DCNN) based methods [26], researchers combined boosted decision
forests with hand-crafted features to obtain pedestrian detectors [30]. In the lit-
erature, the problem of person detection has been extended to associate human
representation captured from multiple-cameras. This has led to the research in
single camera Multi-object Tracking (MOT) algorithms. In contrary the Multi-
Target Multi-Camera Tracking (MTMCT) algorithms reported in literature are
based on off-line method which requires to consider before and after frames to
merge tracklets, and do post processing to merge the trajectory. In the liter-
ature, hierarchical clustering [33] and correlation clustering [22] are reported
for merging the bounding box into tracklets from neighbor frames. Addressing
the need to generate real-time tracker without the apriori knowledge of person
tracks, an online real-time MTMCT algorithm has been reported in the litera-
ture which aims to track a person cross camera without overlap through a wide
area. The framework utilises a person detection based on Openpose [4], building
on a multi-camera tracker extended by a single camera tracker MOTDT [5]. In
order to improve the performance, lots of research focus on local feature instead
of the global feature of the whole person, such as slice [27], pose and skeleton
alignment [34]. While matching local features help to improve in Person Re-
ID, the challenge of pose variation remain open due to the different view from
camera.

2.2 Face Recognition

Face recognition (FR) has been the prominent biometric technique for identity
authentication and has been widely used in many areas, such as military, finance,
public security and daily life [28]. In 2014, DeepFace [25] achieved the state of
the art accuracy on the famous LFW benchmark [12], approaching human per-
formance on the unconstrained condition for the first time(DeepFace: 97.35% vs.
Human: 97.53%), by training a 9-layer model on 4 million facial images. Inspired
by this work, research focus has shifted to deep-learning-based approaches, and
the accuracy was dramatically boosted to above 99.80% in just three years.
Deep learning technique has reshaped the research landscape of FR in almost all
aspects such as algorithm designs, training/test datasets, application scenarios
and even the evaluation protocol. In 2015 a system named Multi-task Cascaded
Convolutional Networks (MTCNN) showed that a joint implementation for face
alignment and detection could achieve higher levels of accuracy and thus has
been integrated in the current implementation. Some noteworthy face recogni-
tion surveys include [3,13,23,32]. These comprehensively survey face recognition
systems prior to DeepFace. Hence, these surveys do not discuss the new sophis-
ticated deep learning approaches that emerged during the last decade. Surveys
that discuss deep face recognition have singled out face recognition as an indi-
vidual discipline rather than a collection of components adopted from different
studies. These surveys generally discuss the face recognition pipeline: face pre-
processing, network, loss function, and face classification [17,19] or discuss a
single aspect of face recognition such as 3-D face recognition [28], illumination
face recognition [20] or pose invariant face recognition [9]. Although these surveys
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are important and provide an excellent basis for the analysis of the state-of-the-
art in the field, they do not provide conclusive comparisons or analysis of the
underlying network architectures.

3 Critical Infrastructure Protection Framework

The proposed critical infrastructure protection framework interfaces directly
with the three detectors developed in the project and enables the construction
of high-level surveillance events such as intrusion, loitering and access control
authentication for early stage identification of malicious actions against critical
infrastructure. The proposed framework is presented in Fig. 1 and consists of
three stages namely (i) video sequence, captured from the sensor deployed at
the perimeter of the infrastructure; (ii) computer vision technologies, capable of
processing multiple video streams using deep-learning network and (iii) the situ-
ational awareness components, in which the organisational policies and practices
are encoded to ensure the security restrictions are not violated by intruders. In
order to protect the privacy and citizen rights, the proposed framework incor-
porates the use of privacy preserving technologies as outlined in Sect. 3.4. The
processed outcome from the situational awareness component is then integrated
into the command centre to categorise the threat and also the severity with
which the mitigation actions should be carried out according to the organisa-
tional policies.

Fig. 1. Framework

3.1 Computer Vision Technologies

In this section, an overview of the implementation details carried out in the
project for the integration of computer vision technologies is presented.
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Person Detection and Person Re-identification (RE-ID). One of the
challenges of MTMCT framework presented in the literature is the inability
of the framework to anchor against a specific Person of Interest (POI) for
modelling threat events such as loitering. In this regard, the MTMCT com-
ponent has been further developed to include “unsupervised multi-camera per-
son re-identification” framework. The overall framework design of the proposed
framework is presented in Fig. 2. The implementation of the person detection
component relies on the use of Region based Fully Connected Neural Network
(RFCN), followed by the feature extraction of the detected person with a set of
deep-learning features. The deep-learning features extracted from the identified
bounding boxes are then subjected to the application of an unsupervised algo-
rithm for clustering the people. The processing of the deep-learning features are
further exploited to ensure the infrastructure operators can provide an anchor
image of a POI, to retrieve the appearance of the person across several surveil-
lance cameras.

Fig. 2. Person re-identification

The novelty of the RFCN network relies in the consideration of two-stage
object detection strategy namely (i) region proposal and (ii) region classification.
The scientific rationale behind the use of the two-stage proposal is elaborated
in [7]. Following the extraction of the regions (RoIs), the R-FCN architecture is
designed to classify the RoIs into object categories and background. In R-FCN,
all learnable weight layers are convolutional and are computed on the entire
image. The last convolutional layer produces a bank of k2 position-sensitive
score maps for each category, and thus has a k2(C + 1) - channel output layer
with C object categories (+1 for background). The bank of k2 score maps cor-
respond to a k × k spatial grid describing relative positions. For example, with
k×k = 3×3, the 9 score maps encode the cases of top-left, top-center, top-right,
..., bottom-right of an object category. R-FCN ends with a position-sensitive RoI
pooling layer. This layer aggregates the outputs of the last convolutional layer
and generates scores for each RoI. In comparison with the literature [11], the
position sensitive RoI layer in RFCN conducts selective pooling, and each of the
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k× k bin aggregates responses from only one score map out of the bank of k× k
score maps. With end-to-end training, this RoI layer shepherds the last convolu-
tional layer to learn specialized position-sensitive score maps. Subsequent to the
extraction of the people, the next steps is to extract deep-learning features from
the blobs that are identified as people. Thus, for the purposes of DEFENDER
project, where the infrastructure operator are only concerned tracking a specific
perpetrator, such as person of interest, it is vital to adopt the solution to iden-
tify the anchor points, which are provided as input to the system. To address
such a need, the use of unsupervised clustering is carried out, to cluster the
blobs extracted from the RFCN network. Subsequently, the features used is also
able to provide the infrastructure operator to identify and select a specific per-
son who is considered a POI for the identification across multiple cameras. The
implementation of the feature extraction has been carried out using two deep-
learning network models namely (i) RESNET-18 resulting in the deep-learning
feature of length 1× 512 and (ii) AlexNet deep learning feature resulting in the
feature length of 1×4096. For the overall evaluation of the proposed unsuper-
vised clustering framework, a set of videos across London has been captured
with actors playing the role of person of interest. The experimental results of
the component included a cluster size of 50 for each of the video footage, and the
aggregated result of the people detector was clustered using K-Means using both
the RESNET-18 and AlexNet deep-learning features. The results achieved 96%
accuracy in each cluster for the 4-actors embedded within the content capture
section for the validation of the component efficiency. Subsequent analysis will
be carried out for the evaluation of the retrieval performance for each of the
anchor as selected by the infrastructure operator.

Facial Recognition Component. The implementation of face recognition
component within DEFENDER project consists of two modules namely (i) face
detection and (ii) face recognition. The face detection mechanism begins with a
new image representation named “Integral Image”. The integral image is com-
puted on an image using some pixel based operations. This integral image enables
fast evaluation of features and hence is used compute a set of features which are
reminiscent of Haar Basis functions. However, the number of haar-like features
computed on an image sub-window is very large, far larger than the number of
pixels itself, and hence requires filtering to obtain only a small set of critical
features. This is carried out using an Adaboost based learning process which
excludes a majority of available features and narrows the feature-set down to
include only the critical features. The process itself is a slight modification intro-
duced to the AdaBoost procedure: Each step in the boosting process involves
a weak classifier that depends only on a single feature, and this is modified to
be used as a feature selection process. Next, the features are fed into a set of
complex classifiers, which are combined in a cascade structure. This method
of combination is said to enable an increase in speed by focusing attention on
promising regions of the image. The face recognition system integrated in the
DEFENDER detector is based on the specification of Facenet. Instead of training
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a face recognition system in the form of a conventional classifier, FaceNet imple-
ments a system which directly maps the input face thumbnails to the compact
Euclidean space. The Euclidean space is generated such that the L2 distance
between all faces of the same identity is small, whereas the L2 distance between
a pair of face images from different identities is large. This is enabled by triplet
loss which, by definition, aims at minimizing the distance between pairs of same
identity while maximizing the distance between pairs of different identities. For
more details on the implementation of the face recognition, readers are referred
to [31]. Additional details on the video analytics components integrated within
the platform can be found in [1].

3.2 Temporal Smoothing

The computation of media streams captured from the detectors are often sub-
jected to frame level processing as supported by the specification of the camera.
One of the challenges in performing a frame level analysis results in the lack of
ability to model the global situational awareness of the environment. To address
this challenge, the proposed security framework implements a stream analytics
solution with the use of latency processing that allows for buffering the input
media stream for a period between 0.15 to 0.6 s (for video streams captured
at 60 fps and 25 fps respectively) prior to the deployment of the computational
module. The stream analytics platform allows for the construction of global situ-
ational awareness through the consolidation of the media sources collected in the
buffer. The initial latency period of the detector does not affect the performance
of the detector, rather enhances the reliability and severity measure of the alerts
generated.

3.3 Encrypted Media Repository

Following the implementation of GDPR across Europe, data privacy and pro-
tection has become an inherent necessity to adopt privacy-by-design method-
ologies for system implementation. Therefore, the project has adopted the use
of encryption solution to process the media data captured from the detectors.
An overview of the system adopted within the project has been presented in
Fig. 3. The encryption is carried out using AES 256 Crypt specification2. All
the media data extracted from the computational units are encrypted using a
pre-determined password as configured within the system deployment.

3.4 Privacy Preserving Technologies

In the literature, there are seven privacy preserving techniques reported in the
literature including blur, pixelating, emboss, solid silhouette, skeleton, 3D avatar

2 https://www.aescrypt.com/.

https://www.aescrypt.com/
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Fig. 3. Encrypted media repository

and invisibility [21]. The new capabilities of such systems provide the compu-
tational tools the ability to collect and index a huge amount of private infor-
mation about each individual, approaching the perimeter of the critical infras-
tructure. However, based on the privacy by design methodology adopted within
the project, the framework transfers no personal data should be processed or
made available to the command centre until a threat has been identified, which
requires neutralisation. To this end, the use of privacy-by-design methodology
incorporated within the media processing framework adopts the use of Guassian
blur to mask the identity of the person against the extraction of usable features.
For the person re-identification component, the use of feature extraction module
based on AlexNet protects the identity of the person without compromising the
computational ability of the platform.

3.5 Knowledge Model

The knowledge model represents a set of high-level business rules that encodes
the notion of abnormal behaviour at the perimeter of critical infrastructure based
on temporal association of people detected using the surveillance infrastructure.
The syntax adopted for the rule definition is based on JavaScript Object Nota-
tion (JSON) representation that systematically formalises the attributes of the
detector, for anomaly detection. Each of the extracted person object from the
perimeter is indexed against a unique identifier. The encrypted media repository
creates a new index for every new person being detected. Internally, a large-index
of temporal occurrence of the individual people are stored. The occurrence index
consists of three categories of time stamps namely (i) past, (ii) current and (iii)
ignored. For each of the new person being detected, a similarity metric is applied
to associate the new person to existing index of person being treated. In addi-
tion, the high-level event representation syntax for event detection such as loi-
tering, reconnaissance are also encoded in the JSON format based on the times-
tamps. The detector outcomes following the media processing are also exported
in JSON format as specified in the knowledge base. The threat level severity
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are pre-determined based on the proximity of the threat against breaching the
perimeter of the critical infrastructure.

3.6 Threat Evaluator

The threat evaluator module receives input from privacy preserving technology
output and the organisational guidelines on the threat models and severity. In
addition, the module will also interact with the encrypted media repository to
present the decrypted media data to the command centre upon the detection of
the threat. The module evaluates the spatial constraints configured within the
platform to determine the threat level. As an instance, the intruder detector has
two levels of severity based on the proximity of threat to the critical infrastruc-
ture. The severity levels are appropriately identified and the evolution of the
threat in time will be continuously monitored through alerts shared with the
command centre. The spatial configuration of the infrastructure environment
are coded into spatial coordinates as viewed by the sensor. The 2D image coor-
dinates are internally mapped against the real-world distance measures A visual
description of the spatial mapping is presented in Fig. 5. For the determination
of high-level threat analyser such as reconnaissance or loitering, specification
of temporal rules have been defined within specific time windows to identify
malicious perpetrators. These rules are quantified through a JSON syntax as
outlined in Sect. 3.5. The anonymous identity labels assigned to the individual
extracted from the detectors are used to visually cluster and enable correlation
between the repeated appearance of the same individual near the vicinity of the
critical infrastructure. The command centre provides a unified interface for the
collection of media captured from distributed availability of the detectors. The
web-interface allows for the easy navigation for the selection of different detector
output that are spatio-temporal indexed.

3.7 Command Centre

The command centre is a central interface that interfaces with each of the detec-
tors and integrates the different modules within the proposed framework. Upon
the installation of the detector at the perimeter, the detector is configured with
the command centre through the specification of IP address through which the
detector will communicate with the command centre. The detector installation
at the Erchie trial site for the intruder detection is presented in Fig. 4. The regis-
tration of the detector installation is carried out using a RESTFul interface and
JSON metadata consumed by the command centre. Subsequently, the evidence
collected from the detector both raw data and the processed output are both
transmitted to the threat evaluator module, which upon the determination of
the data sources, decides to present the privacy protected results or the raw data
based on the severity of the threat level.
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Fig. 4. Detector installation for intruder detection

4 Experimental Results

The overall experimental results of the proposed security framework has been
evaluated within the context of operational environments of the critical infras-
tructure assets being protected against external threats. The results summarised
below are obtained from the two pilot trials carried out in DEFENDER namely
Erchie and Okrogolo. While the human intruder detection has been extensively
evaluated in the Erchie trial, the face recognition component has been evalu-
ated as a part of the Okrogolo trial. The voluntary participation of the actors
has been used to evaluate the system performance. The evaluation of the sys-
tem performance included the computational latency required for the detector
to send notifications to the command centre on the appearance of intruders and
the evolution of the threats sequence in time. To facilitate the deployment of the
countermeasures against the threat the alert sent to the command centre based
on the event are separated by 20 s. Based on the evolution of the threat, from
the proximity of the infrastructure to the approach of the perimeter, the status
flag embedded within the alerts are changed from LOW, MEDIUM, HIGH and
VERY HIGH. The experimental evaluation of the detector carried out in the
DEFENDER field trail, yielded an accuracy of 96.7% in the person detection.
The spatial depiction of the results obtained from the trail is presented in Fig. 5.

In order to evaluate the robustness of the framework, a continuous experimen-
tation process was adopted in which the detector was operated for long periods
of time for the detection of different threat levels. A summary of the evaluation
results are presented in Table 1. The long-term durability of the physical security
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Fig. 5. Intrusion detector

detectors were evaluated against the ability of the detector to identify the appro-
priate threat levels based on the critical infrastructure perimeter configuration.
A total of 4 participants volunteered to take part in the trial for the evaluation of
the detector. The infrastructure intrusion attack scenario was orchestrated with
several approaches to the perimeter being considered. During the operation of
the trial, a total of 267 events were identified resulting in a total of 350 threats.
The report of additional 83 alerts were attributed to the dual detection of person
intrusion due to mis-classification of non-human objects as intruders. For each of
the intruder detected, an alert was generated and transmitted to the command
centre.

Table 1. Robustness evaluation of the proposed framework for intrusion detection

Parameter of evaluation Metric

Total duration of the deployment 21,600 s

Total amount of video data processed 648,000 frames

Total number of participants in the trial 4

No. of incidents identified 267

No. of alerts generated 350

No. of repeated alerts generated with high severity 47

Computational latency of the component 25 m
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Table 2. Robustness evaluation of the proposed framework for face recognition

Parameter of evaluation Metric

Total number of participants in the trial 14

% accurate detections with single person in the frame 97.8

% detections with multiple persons in the frame 96.7

Computational latency of the component 35 m

The face recognition component has been evaluated against changing envi-
ronmental conditions with a total of 40 participant (consisting of 14 nationalities
and members from 9 ethnic background) features annotated within the database.
The media data captured from the street level camera has been integrated with
the module. In contrast to the scientific review of face recognition solutions,
the evaluation metrics applied here includes the distance measurement at which
faces can be detected and the distance at which the recognition takes place. The
integrated face recognition component has shown to deliver reliable performance
between 10 to 15 m distance between the detector and the subject annotated in
the database. The use of MTCNN face detector delivers performance at 20 m
and beyond depending on the availability of facial characteristics and features.
The results of continuous evaluation of experimental results are summarised in
Table 2. A total of 14 voluntary participants were evaluated within the con-
text of operational environment. An overall accuracy of 97.8% were observed

Fig. 6. Face Recognition in operational environment for authentication
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when a single person detection was carried out. Subsequently, the multi-person
recognition uptp 10 participants has yielded an average of 96.7% overall accu-
racy. The decreased efficiency of the algorithmic performance is attributed to
the configuration of thresholds required to against the L2 norm of the algorithm
output.

5 Conclusion and Future Work

The paper has summarised the integration of three computer vision technolo-
gies within DEFENDER project. The paper outlined the implementation of
additional computational components to enhance the operational capacity of
the laboratory validated solution. The real-world deployment of the solution
has been extensively evaluated in Erchie and as a part of the Okrogolo trails.
The security framework brings together several key innovations to deliver real-
time operational insight to the infrastructure operators for deploying mitigating
actions against perceived threats. The novelty of the proposed solution relies in
the use of privacy-by-design methodology for protecting the identity and rights of
citizen. The structured encoding of organisational policies for identifying threats
are considered by the threat evaluator to deliver alerts to the command centre of
the infrastructure operator. The future work will review the design of detectors
and enhance the communication protocol for enabling bi-directional transfer of
control and media signals between the command centre and the media detectors.
In addition, the performance of the detector will be continuously reviewed and
kept abreast with latest scientific innovations results reported in the literature.
Finally, the structure of the knowledge model will adopt the use of ontology and
semantic representation for encoding security specification of critical infrastruc-
ture.
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Abstract. Data-sets play a crucial role in advancing the research. How-
ever, getting access to real-world data becomes difficult when it comes
to critical infrastructures and more so if that data is being acquired
for security research. In this work, a comprehensive dataset from a real-
world smart electric grid testbed is collected and shared with the research
community. A few of the unique features of the dataset and testbed are
highlighted.

1 Introduction

Recent progress in technology is resulting in the digitization of the physical
world and things around us. It is expected that communication and computing
capabilities will soon be part of all the physical objects [14]. The integration
of cyber technologies (computing and communication) with the physical world
gives rise to complex systems referred to as Cyber Physical Systems (CPS). CPS
has changed the methods that humans used to interact with the physical world.
Some examples of CPS are manufacturing, transportation, smart grid, water
treatment, medical devices and the Industrial Control Systems (ICS) [17].

CPS is a broad term; in the following, we highlight a major sector applica-
ble to our daily life, that is, the electrical power system as shown in Fig. 1. It
shows the high-level architecture of an electrical power system. This is composed
of electricity generation (power plants), transmission (electric grid system) and
end-users (smart home). As one can imagine this power system is composed of a
multitude of devices and physical processes. Power generation and transmission
depend on the demand from the utilities and the users. To meet the requirements
of the energy demand the critical infrastructure is utilized to ensure a continuous
supply of power. Each of the processes in the critical infrastructure is a com-
plex engineering system and needs a sophisticated control to achieve its desired
objectives. For example, at the generation stage, we have generators, Intelligent
Electronic Devices (IEDs) also incorporating electric relays, all these devices are
autonomously controlled by the Programmable Logic Controllers (PLC). This
c© Springer Nature Switzerland AG 2021
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means that we have a lot of sensors monitoring the physical process, actua-
tors/generators and the physical infrastructure that communicate the current
physical states with each other and with the PLC. Such communication among
smart devices, on one hand, provides flexibility in controlling the complex CPS
but the vulnerabilities in the same technologies give rise to cyber attacks. In the
following, a famous recent attack on a power grid is discussed.

Fig. 1. A generic electrical power system as an example of CPS.

Ukrainian Electric Power Grid Attacks (2015,2016): In December 2015 cyber-
attacks on Ukrainian electric power grid cut off the power supply to customers
at the peak of the winter season. The attackers remotely controlled the SCADA
distribution system and forced operators to switch to the manual mode which
resulted in much longer recovery times [7]. This attack was over but for another
attack to come in the next year around the same time. In 2016 again Ukrainian
electric power grid met another cyber attack through the use of Crashoverride
malware [18], This attack switched circuit breakers in an unusual open-close
pattern in a fast manner, which resulted in cutting off the power supply to the
customers. These attacks call for a pro-active approach towards the security of
Critical Infrastructure (CI) like power grid.

Successful attacks on CI have led to a surge in the development of defense
mechanisms to prevent, contain, and react to cyber attacks. One such defense
mechanism is the anomaly detector that aims at raising an alert when the con-
trolled process in a CI moves from its normal to an unexpected, i.e. anomalous,
state. Approaches used in the design of such detectors fall into two broad cate-
gories: design-centric [1] and data-centric [5].

The use of machine learning to create anomaly detectors becomes attractive
with the increasing availability of data and advanced computational resources.
However, the data-based techniques rely on a rich dataset representing a real-
world scenario. Such datasets are not easily accessible to academia. Our goal is
to create a unique set of data that is 1) accessible and 2) represents real-world
settings. In this article based on our experiments in a smart electric grid testbed,
we have collected data for different states of the physical process under normal
and attack conditions.
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Fig. 2. Overview of dataset requests by year.

1.1 Motivation

EPIC: Electrical Power and Intelligent Control testbed are used in this study [2]
that is a part of other testbeds at iTrust labs [10]. The most notable CPS datasets
contributed by iTrust comes from water treatment (SWaT) [12] and water distri-
bution (WADI) [4] testbed. The focus of this work is on the electric grid therefore,
we have collected the data for EPIC testbed. To summarize the efforts carried
out at iTrust labs on three testbeds Fig. 2 shows the requests for the dataset
collected at these testbeds for each year. From Fig. 2 it can be observed that out
of the three testbeds data for EPIC is being requested the least. We hypothesize
that could be because there is not a comprehensive dataset for EPIC, unlike
other testbeds that explain the data scenarios clearly.

There are some other efforts for data collection beyond iTrust but those still
have few limitations. An interesting effort in electric grid testbed is simulation-
based Softgrid testbed [9] but there is no data generation and sharing. For an ICS
testbed in CPS [8] authors highlighted that their prototype lacked the collection
and distribution of data as it involves a manual process requiring time and
resources. [6] presented simulated IEC61850 traffic and no information regarding
the real process and dynamics.

Previous research studies have tried to collect data from CPS settings but
lack some desired features. We highlight a few of those,

– Simulated Data: Most of the datasets available are generated using simulated
models [6]. Lack of real-world scenarios prompted us to do this work.
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– Only Network Traffic Data: Previous data collection efforts only focused on
the network traffic and as mentioned those were too simulated most of the
time. One of the recent studies collected the network traffic from a realistic
electric traction substation [13]. There is a lack of process data available from
an electric grid based on realistic devices.

There have been efforts on building CPS testbeds for security research but
very few were able to represent real-world scenarios and collect data to share
with the academia and industry. We have focused on the process data from the
sensors and actuators and tried to run the normal process for a range of different
configurations. The idea is if we have enough real-world scenarios for the normal
data, it is not hard to generate a malformed data/signal as other researchers
have demonstrated in the past, e.g., using the mutation [16].

Fig. 3. Electrical layout of the testbed, electrical power lines are shown in red color
lines. (Color figure online)

2 EPIC Testbed Introduction

EPIC mainly consists of four zones as described in the following. All the four
zones are equipped with IEDs to collect Current, Voltage, Power and Frequency
for the three phases buses.

– Generation: Generation stage is driven by electric motors connected to the
main power supply.

– MicroGrid: Photo-voltaic cells, inverters and batteries compose this stage to
supplement the generation of power.
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– Transmission: This stage is composed of buses to transport power to the smart
home unit.

– Smart Home: A programmable load bank containing RLC loads represents a
home load environment. Besides, there are two water testbeds also connected
to EPIC as the load.

2.1 Electrical Layout

The testbed consists of the following components as shown in Fig. 3. 1) Two con-
ventional generators (10 KVA each) run by 15 kW VSD driven motors to repre-
sent the conventional combination of prime-mover and generator. 2) A 34 kW
PV system is available along with an 18 kW battery system to represent power
generation from the intermittent RES. 3) A 105 kVA 3 phase voltage regulator
for representing power supply from a transmission system. 4) Two load banks
capable of emulating 45 kVA load to represent critical and non-critical loads. It
can supply power to the other two water testbeds. 5) A 10 kW motor-generator
load to represent spinning load. 6) Industrial standard Molded Case Circuit
Breakers are used for short-circuit protection and switching functions.

Fig. 4. A simplified network diagram for EPIC is shown. This is to help the asso-
ciated network traces. IP addresses in the network traces correspond to respected
devices shown in the figure. Each dotted box represents a subnet with the respective
IP addresses. A X in the IP address means that a device in that subnet would have
the similar subnet mask and then unique X as its own IP. Typical devices are PLCs
and Intelligent Electronic Devices.
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Fig. 5. A sample network traffic flow between different devices.

2.2 Communication Network

Figure 4 shows the communication network architecture in EPIC testbed.
Figure 4 shows four major control zones, i.e., 1) Power Generation, 2) Trans-
mission, 3) Microgrid, and 4) Smart Home. All of these four zones have IEDs
and other devices to be controlled by dedicated PLCs. For example smart home
also contains smart meters that can communicate with the PLCs and then can
route the data through a central switch to the historian server and a SCADA
workstation. Table 2 in Appendix A shows a map of IP addresses of the specific
devices in the testbed. Network traffic is also collected at the SCADA station in
a pcap format. Using Table 2 it is possible to make sense of the packet capture
of the network traffic. For details on the communication protocols an interested
reader is referred to the EPIC testbed papers [2,15]. Figure 5 shows the sequence
of communication between the different devices in the EPIC network. In the
sequence diagram it can be seen that the SCADA workstation (IP: 172.18.5.60)
holds a central position and send data transfer requests to the rest of the PLCs.

Table 1. Header Explanation in the Data set. IED:= Intelligent Electronic Device,
GIED:= Generation stage IED, MIED:= Microgrid stage IED, SIED:= Smart home
IED, TIED:= Transmission stage IED.

Data Header Explanation Devices

Measurement.Apparent IED measures the apparent power GIED, MIED, SIED, TIED

Measurement.Frequency IED measures the signal frequency GIED, MIED, SIED, TIED

Measurement.Line Current IED measures the line current GIED, MIED, SIED, TIED

Measurement.V1 IED measures the voltage difference at L1 GIED, MIED, SIED, TIED

Measurement.Real IED measures the Real power GIED, MIED, SIED, TIED

Measurement.Reactive IED measures the Reactive power GIED, MIED, SIED, TIED

Measurement.Power Factor IED measures the power factor GIED, MIED, SIED, TIED

Q.mode close mode of an electric breaker (T/F) All Stages

VSD.property properties can be

.Current, .Speed,

.Ready, .Fault

Generation stage to

show the VSD

status



A Comprehensive Dataset from a Smart Grid Testbed 129

3 Data Collection and Process Scenarios

The data is collected at the different configuration and operational settings of
the EPIC testbed. Most of the physical process is driven by the demand from
the smart home unit, constituted of different load types. These loads are used
to simulate a real-world load requirement. Moreover, two other water plants are
also connected to EPIC as the loads. The collected data can be collected from
iTrust labs [10]. Network traffics is collected in pcap format and the process
data is provided a Comma Separated Values (CSV) files. To make sense of the
process data let us explain what each column in the data files means. Table 1
shows a list of data elements found in the dataset. The first column shows the
quantity being measured and the last column shows the devices that are mea-
suring that quantity. For example, the second row has Measurement.Apparent
element meaning that the IED is measuring apparent power in different zones
of the testbed. A column with header GIED.Measurement.Apparent means the
apparent power is measured by an IED at the generation stage. In the following,
we highlight the data collection scenarios and settings.
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(a) Generator Synchronization without load.
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(b) Generator Synchronization with 10KW resistive load.

Fig. 6. Two different smart home load scenarios.

Scenario 1: Synchronization Process without Load. This scenario shows
the process of synchronization for two generators without any load. Angle differ-
ence between two generators G1 and G2 changes in a cyclic manner from −180
to 0 to 180◦ until the synchronization is completed. Figure 6a shows this process
twice.

Scenario 2: Synchronization Process with Load. To depict the synchro-
nization for the two generators with a 10 kW resistive load at the smart home
stage. Angle difference between two generators G1 and G2 vary from −180 to
0◦ following a similar cyclic process as in Scenario 1. The additional load had
little to no effect on the process. Figure 6b shows the process.

Attack on Synchronization Process. Synchronization of two generators, a
new incoming generator i.e., the generator that needs to be connected in parallel
to rest of generators in the grid needs to ensure the following three parameters,
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Fig. 7. Scenario-4 with 10KW load and Scenario-5 with 7 KW resistive load.

– The frequency of the generator must be same as the frequency of the line/grid
– The magnitude of the generator’s voltage must be same as the magnitude of

line/grid voltage
– The phase angle of the generator’s voltage must be same as the phase angle

of the line/grid voltage (we will assume that the phase sequence is same)

The first two parameters do not depend on the state of the line/grid. However,
the third parameters i.e., phase angle depends on the state of the phase angle of
the line/grid. The parallel connection is enabled by circuit breaker which closes
once the phase angle difference is approximately equal to zero (usually around
10◦ in practical cases). We launched the attack on the synchronisation process to
delay it from the order of seconds to several minutes. The readers can refer [11]
for a detailed analysis on the attack and plausible demand (Fig. 8).
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Fig. 8. Experimental results of synchronisation process of two generators after the
launch of attack. Normal operation: Observe that φd changes from −180◦ to 180◦ at
significantly slower pace, the breaker is closed when the generators are synchronized
which took more than 1.5 h.
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Scenario 3: Steady State Behavior. Here both the generators are running
and synchronized. The resistive load is set to 10 kW at the smart home stage.
This scenario depicts a steady state behavior of the process. Any power plant,
substation or section of power system will be in this stage for most of the time.

Scenario 4: PV System with Generators. This scenario depicts a situation
where the user demand is being fulfilled using the two generators G1 and G2
and also using PV system With 10 kW resistive load. The scenario depicts the
operation of modern power system sections with renewable energy penetration.
Figure 7 shows the process behavior for the scenario 4 and 5 respectively.

Scenario 5: PV System with Generators. This scenario depicts a situation
where the user demand is being fulfilled using the two generators G1 and G2
and also using PV system With a reduced load of 7 kW resistive load. With
decreasing load the chances of creating power supply interruption attacks are
relatively high, such scenarios are presented in [3].

Scenario 6: Three Generators Running. In this case all the available three
generators G1, G2 and G3 are running with a load of 14 kW resistive load at the
smart home stage. This scenario depicts a system where there are motor loads
such as buildings with Heat Ventilation and Air-conditioning (HVAC) systems.

Malicious Power Generation Attack - An Use Case. In this case, we
manipulated the power generated from one generator to overload it in compar-
ison to the other generator, so that the maintenance schedule can be offset as
the overloaded generator needs more frequent maintenance due to additional
wear and tear. This eventually leads to accumulated damage in the long run,
as the overloaded generator was not serviced at the appropriate times due to
malicious operation. During normal operation, to supply power to the critical
loads, generators G1 and G2 will share the power equally. The SPLC has the
control code that issues a subsequent command to the VSDs to run at a specific
speed (1500 RPM in this case), for enabling equal power-sharing among the two
generators. The apparent power is equally shared between the generators. The
time-domain representation of power-sharing before the attack was launched is
shown in Fig. 9 and marked as normal.

After the attack was launched on generator G1, i.e, the speed of the prime
mover of G2 reduced by 0.2 RPM when generator G1 is supplying more power
and hence disabling the power-sharing process. This attack scenario is marked in
Fig. 9 where it can be observed that whenever G2 is supplying more power than
G1, G1 takes over until equal power is shared among the two. However, when
G1 is supplying more power, G2 fails to take over even after synchronization.
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This resulted in G1 supplying more power under scenarios where G2 is syn-
chronized as the second generator. The above condition will eventually result in
tripping of G1 due to prolonged overload condition.
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Fig. 9. Apparent power during load sharing between generators G1 and G2. When
G2 is unable to share the power, the vulnerability of G1 to trip under overload, i.e.,
during peak load conditions, increases dramatically. The time-domain representation of
power-sharing before the attack was launched is shown and marked as normal. Observe
that before attack launch at around 1900 s, G1 and G2 shared power irrespective of
the condition, whereas after the attack launch, G2 was unable to share the power, i.e.,
between 2400 and 4300 s.

Scenario 7: Cascading Effects. Two generators G1 and G2 running and the
load is a real world application. In this case the power is being supplied to the
Secure Water Treatment (SWaT) testbed. This scenario can be interesting to
see the cascading effects of attack on one CPS system to another. For example,
a power supply interruption attack [3] can affect the treatment process or the
distribution process of water supply system.

Scenario 8: Cascading Effects. Two generators G1 and G2 running and the
load is two CPS testbeds. In this case the power is being supplied to the Secure
Water Treatment (SWaT) and water distribution (WADI) testbed. This scenario
can be interesting to see the cascading effects of attack on one CPS system to
another.
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4 Discussion

It is not possible to collect data for a large number of scenarios and exhaust all
the possibilities. We have done it for a range of representative scenarios and then
we can use tools like mutation to generate more scenarios for both the normal
and abnormal scenarios [16]. However, we tried to present a realistic data from
both the process as well as network traffic perspective.

4.1 Normal Data for Real-World Process

We have presented the collected data for a range of normal process states from
a real world smart electric grid network. It has a very high importance since
the quantities measured are across the real process and devices giving an idea of
what to expect in real world and come up with the realistic anomaly detection
techniques.

4.2 Lack of Attack Scenarios on the Process

In this work we have presented the attack scenarios that could be executed
without damaging the plant. The attacks those cause physical damage could not
be executed on the plant as those pose dangers to the infrastructure and people
around it.

5 Potential Use Cases and Future Work

Potential use cases extend from pure network attacks to attacks targeting a
particular physical process. For instance, the attacker can explore the network
traffic during the circuit breaker closing operation; which can be identified from
the process data. Using the data the attacks with physical goal similar to [18]
can be re-created. Following which appropriate defense mechanisms could be
designed. Similarly, the data on the network traffic and the process status could
be coupled for spoofing attacks that can hide the above attack from the opera-
tors.

From the defense front, the authors are working on a defense based on nega-
tive selection algorithm using dataset for defense against malicious power gener-
ation attacks. The dataset is also useful for developing and testing design-centric
defense such as invariants based methods and authors are currently working on
one such system.
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A Supporting Data

Table 2. IP addresses for key devices in the network.

IP Address Device

172.16.1.41 Generation stage PLC

172.16.2.41 Transmission stage PLC

172.16.3.41 Microgrid stage PLC

172.16.4.41 Smart Home stage PLC

172.16.5.41 Control stage PLC

172.18.5.60 SACDA System

172.18.5.100 Historian Server

172.16.2.11 Transmission TIED1

172.16.2.12 Transmission TIED2

172.16.2.13 Transmission TIED4

172.16.3.11 Microgrid MIED1

172.16.3.12 Microgrid MIED2

172.16.4.11 Smart Home SIED1

172.16.4.12 Smart Home SIED2

172.16.4.13 Smart Home SIED3

172.16.4.14 Smart Home SIED4

172.16.1.11 Generation GIED1

172.16.1.12 Generation GIED2
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Abstract. Healthcare is one of the most peculiar between all Critical
Infrastructures due to its context and role in the society. The characteris-
tics of openness and pervasive usage of IT systems and connected devices
make it particularly exposed to both physical threats, such as theft and
unauthorized access to restricted areas, and cyber attacks, like the noto-
rious wannacry ransomware that abruptly disrupted the British National
Health System in May 2017. Even the recent COVID-19 pandemic period
has been negatively characterized by an increase of both physical and
cyber incidents that specifically targeted hospitals and undermined an
essential public service like healthcare. Effective security solutions are
necessary in order to protect and enhance the resiliency of the Criti-
cal Infrastructures. This paper presents the work being developed in the
context of the SAFECARE H2020 project, that specifically considers the
requirements for security of hospitals. A particular focus is given to the
asset management that consider cross-domain aspects of security, like the
physical location and virtual connections that link different components
of a hospital. This allows advanced knowledge that enables to infer and
forewarn of possible elaborated cyber-physical kill chains. This is par-
ticularly important and useful during crisis, as allows to have a holistic
overview of the status of the hospital and the potential impacts of one
or more incidents to the critical assets. The description and simulation
of an attack scenario is also given, together with the description of the
messages exchanged by the security systems and the information made
available to security operators.
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1 Introduction

Hospitals, power supplies, water supplies, telecommunications and transports
are just few examples of Critical Infrastructures (CIs). CIs provide vital func-
tions to modern societies, and the protection of such infrastructures is a key
issue at European level. Thus, the creation of systems able to provide threat
prevention, detection, response, and, in case of failure, mitigation of impacts
across infrastructures, populations, and environment, is now a primary concern.

Hospitals, and in particular typical European hospitals, are peculiar CIs,
because of their context and role. Hospitals, in several cases, are placed in urban
environments and sometimes in historical buildings. They are characterized by a
considerable influx of various people (patients, visitors, medical staff, administra-
tive staff, technicians) and the simultaneous presence of different organizations,
such as universities.

Unlike public offices or other public buildings, hospitals have limited possibil-
ities to restrict the access in one single point of entry and to create checkpoints
and visitors control desks to check or store identity documents. Therefore, it is
very challenging to manage and control the access to the hospitals public areas,
making them particularly vulnerable to physical threats.

Besides people, that are the most critical asset, healthcare infrastructures are
also characterized by the presence of a huge number of different technical equip-
ment. Cryogenic system, RX systems, radioactive isotopes, big magnetic field
systems, gases tanks, hyperbaric systems, picture archiving and communication
system (PACS), laboratory information systems (LIS), are a small representation
of the wide variety of critical assets that can be found inside hospital facilities.

Such components, as many others present in healthcare infrastructures, are
becoming increasingly integrated and connected. Indeed, nowadays hospitals
deeply rely on the IT network and IT systems. For example, the PACS and
the LIS systems manage and exchange data through the hospital IT network.
These systems allow the possibility to work with radiological images and lab-
oratory tests. Attacks to such systems or the internal network of the hospital,
could create several issues or seriously slow down the diagnosis process or patient
treatment.

For example, a set of 19 vulnerabilities has been recently disclosed under the
name of Ripple20 [1]. These vulnerabilities could allow the remote execution of
code on IoT devices and embedded systems, posing a serious risk for patient’s
health. It has been reported that the most affected sector is healthcare and more
that 50000 medical devices such as infusion pumps have already been identified
to be vulnerable [2].

Cyber-security solutions, implemented to protect these critical assets, provide
a reasonable level of security, preventing such types of attacks and increasing the
difficulty of reaching such systems from outside of the network.

While generally most of the cases of physical incidents are limited in scope, a
physical intrusion like an access with tailgating or burglary or otherwise fraud-
ulent could be preparatory for a following cyber attack, for example to exploit
the mentioned vulnerabilities.
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This combination of physical intrusion and the consequent cyberattack con-
stitutes an example of a new category of threats that includes more complex
but effective attacks. Thus, the border between physical and cyber domains is
increasingly blurred. From the security point of view, an integrated approach
that takes into account physical and cyber threats is then required.

During the recent COVID-19 pandemic, an increase of both cyber attacks
(malware) and physical incidents (theft) has been observed. At the time of writ-
ing, SAFECARE tracked more than 150 incident reported in news from all over
the world [3]. This is due to the opportunistic behaviour of criminals, that will
try to take advantage of critical situations to gain profit.

This paper describes the integrated cyber-physical security solution being
implemented in the context of the SAFECARE H2020 project1. A special focus
is dedicated to the Hospital Availability Management System (HAMS), a sub-
module of SAFECARE that provides a global overview of the hospital status
and is integrated with the SAFECARE incident detection and impact evalua-
tion functionalities. With its interfaces the HAMS shows what are the occurred
incidents, what are their impacts and provides assets availability, updated when
incidents occur.

2 Related Work

Asset management, resources availability and bed occupancy are very impor-
tant aspects to handle during the day-to-day operations of an hospital. This is
even more critical during emergency situations and events like natural disaster,
terrorist act or other hazards.

One of the most important example of software that is specifically designed for
emergencies is SAHANA Disaster Management System (DMS) [4,5]. SAHANA
DMS was adopted in 2010 during the earthquake emergency in Haiti, in the city of
Port-au-Prince. This system helped manage the flow of victims in Haiti, sharing
data about hospital assets (department service, bed availability, staff availability)
with emergency administrators.

Health Resources Availability Mapping System (HeRAMS) [6,7] developed
by the WHO and Global Health Cluster, is another important example. Its
objective is to estimate the availability of services and resources in the hospitals
placed in regions in crisis or health emergency. HeRAMS is based on question-
naires carried out in health care infrastructure to collect data concerning the
availability of health resources and services such as health care personnel, beds,
medical devices, and medicines. The questionnaires’ outcomes are published in
an interactive dashboard to reflect the situation of health care resources.

The analysis of these systems showed that the data related to the availability
of assets is updated manually (Sahana DMS); in the second case, the data of
assets is updated using the results of questionnaires (HeRAMS).

1 https://www.safecare-project.eu/.

https://www.safecare-project.eu/


142 F. Stirano et al.

More in general, a multitude of different solutions that handles various
aspects of asset management (e.g. tracking of non-fixed assets, maintenance,
inventory, bedding, software licensing, etc.) exists.

While the main objective of those systems is to enhance the efficiency of
the hospital in normal conditions, the asset availability management solution
described in this paper is specifically conceived to take into account the cyber
and physical incidents detected by the platform and accordingly update the
availability of impacted or potentially impacted assets.

3 SAFECARE Architecture

The EU-funded SAFECARE project aims at developing an integrated solution
to the cyber and physical threats which can affect healthcare infrastructures [8].
This is done through the implementation and deployment of multiple systems
that recognize, correlate and analyze those threats and, when incidents occur,
infer the impacts and start responses and damage mitigation mechanisms [9].
This will lead to an improvement in the security, protection and resilience of
such services, allowing for a better response in case of external attacks specially
during health related emergencies such as the current COVID-19 pandemic.

The SAFECARE architecture is composed of several modules, each with
specific role, in this paper we will focus just on a subset of them that can be
classified into two major functions:

– Cyber and physical incident detection systems
– A centralised structure capable of storing and combining incoming data and
of evaluating potential impacts when security incidents occur

A simplified schema of the global structure is represented in Fig. 1. The connec-
tion between the different components is ensured by the Data Exchange Layer
(DXL), which allows all the modules to communicate with each other in real
time and provide relevant interfaces to exchange data.

3.1 Threat Detection Systems

The Threat Detection Systems consists of physical and cyber security solutions
implemented by smart modules and integrated technologies.

More specifically, physical security solutions embed intelligent video mon-
itoring and interconnect building monitoring systems as well as management
systems. The Building Threat Monitoring System (BTMS) module is the aggre-
gation point for physical security and makes the link between physical systems
and the rest of the architecture.

In the same way, the Cyber Threat Monitoring System (CTMS) connects
the cyber systems to the rest of the architecture and is the central point for
cyber security solutions, which consist of threat detection systems related to
Information Technology (IT) and e-health systems.
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Fig. 1. SAFECARE global architecture.

Both physical and cyber security monitoring tools are interconnected thanks
to the cyber-physical security solutions. These consist of intelligent modules
whose role is to integrate different data sources and better take into account the
combination of physical and cyber security threats.

3.2 Central Database and Decision Modules

In order to cope with such a combined approach for the management of cyber
and physical security, the SAFECARE project implements a Central Database
(CDB): a single, unique repository that stores multiple types of data needed by
the other modules in the platform.

In particular, it stores all the information related to assets, facilities, build-
ings, services inside the hospital, the relations among the assets (static data)
and also the information that is generated by SAFECARE modules, such as
incidents, impacts, the relation between them and all the other responses/mes-
sages (dynamic data).

The modules responsible for inferring cascading impacts of physical and/or
cyber security incidents and providing information about health services avail-
ability are the Impact Propagation and Decision Support Model (IPDSM) [10]
and the Hospital Availability Management System (HAMS) [11], respectively.
In particular, the IPDSM’s role is to combine physical and cyber incidents that
occur on assets, infer cascading effects as impacts that could potentially affect
the same or related assets and, finally, alert other modules about the potential
impacts and severity. The HAMS, on the other hand, elaborates the messages
coming from the other modules to provide asset availability information.
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3.3 Incidents and Impacts Messages

The different modules communicate to each other by means of the MQTT pro-
tocol. In SAFECARE architecture, the broker is located in the DXL, while each
module implements its own client. Messages are exchanged through a publish/-
subscribe mechanism, where clients publish on a specific topic and receive mes-
sages only on the topics they have previously subscribed over. Messages are
encapsulated in the JSON format. While there are different kind of messages
exchanged between SAFECARE modules, in this paper we focus on messages
related to incidents and impacts.

An incident message is generated after a validation process carried out by a
security operator, in order to verify that an event detected by the monitoring
modules can be classified as an actual incident. The main fields contained in the
incident message are: incident identifier, a unique reference in the whole system
to a specific incident; category, the incident category that helps the analysis of
impacts and availability; severity, that indicates how severe the incident is (the
possible values are: LOW, MINOR, MAJOR, CRITICAL); events, a list of the
events that led to the incident. Each event includes the list of the assets involved
that may change their availability status, according to the procedure described
in Sect. 4.

The impact message is composed by a field with the incident identifier of
the related incident and a list of assets that are not directly involved by the
incident but that may be impacted by its propagation. In fact, assets are asso-
ciated to a set of parameters that express the likelihood that the asset can have
consequences, according to the analysis performed by the IPDSM. One of these
parameters is the ImpactScore, which gives a forecast of how much the asset is
indirectly impacted by the related incident, 1 being totally unavailable and 0 not
impacted at all, while intermediate values represent different degrees of impact.

Section 5.2 will provide an example of the incident and the impact messages
generated by the sample scenario described.

4 Hospital Availability Management System (HAMS)

This section describes the behavior of the Hospital Asset Availability Manage-
ment system in response to events detected by the security systems.

4.1 Evaluation of Impact and Asset Availability

When the HAMS receives an incident or an impact message, it must evaluate the
content of message to verify whether the availability status of an asset needs to
be modified or not. Asset availability status is represented with three parameters:

1. A Boolean value, stating if the asset is available or not.
2. A colour code (green, yellow, or red), acting like a traffic light. If the colour

code is green, the asset is working normally. If the colour code is red, the
asset has been heavily impacted by the incident and it is not available. If the
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colour code is yellow, the asset has been impacted by the incident, but it is
still partially working and available, for example locally but not remotely.

3. A stability value (stable, improving, deteriorating), providing a simple
description of the dynamic of status variations.

Upon arrival of an incident message, the system checks the incident category
and couples it with the category of each related event, as not all the categories
can provoke a change of availability in the assets. For each asset whose status
needs to be changed, the severity parameter is checked to define if the new status
colour for each asset will be yellow (in the case of LOW or MINOR severity) or
red (in the case of CRITICAL or MAJOR severity). Any other variation in the
availability of assets is computed after the reception of an impact message.

When an impact message is received, the ImpactScore value is checked to
decide whether an asset availability status value needs to be updated or not.
Using a threshold approach, an asset can be declared unavailable (with colour
red if ImpactScore ≥ 0.8), partially available (available with colour yellow if 0.5
≤ ImpactScore < 0.8) or fully available (with colour code green if ImpactScore
< 0.5) by the HAMS. The thresholds could be changed or customized depending
on the asset category or the different requirements of each hospital.

4.2 Asset-Centric Graph Visualization

The HAMS is implemented as a web application. Besides the server side, that
connects this software with the SAFECARE system and implement all the logic
to retrieve information from the database and receive all the useful messages,
the HAMS implements a Graphic User Interface (GUI).

End-users involved in SAFECARE project provided their feedback about
how to visualise asset affected by incident and taking into account the implicit
hierarchical dependencies of assets in an hospital, an asset-centric graph visual-
isation has been developed.

Figure 2 reports an example of this visualisation for a fictional hospital. Start-
ing from a facility level, the graph provides information about the status of ser-
vices and operations. In this terminology, services includes hospital departments
and a list of medical devices belonging to each service. On the other side, there
are operations, that include all the systems that are not related to the medical
activities but that are essential for the correct operation of the hospital. Each
node of the graph reports the status of the asset and in case an end node (an
asset) is involved in an incident, user can visualise details about the incident or
the incidents that caused the changes in the asset status.

4.3 Interoperable Information Exchange

During the management of an emergency in the hospital sector, one of the main
requirements is the capability to exchange the information in a timely manner,
with a common data format for all the actors involved (hospitals, first responders,
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Fig. 2. HAMS graph-based visualisation (Color figure online)

etc.). HAMS deeply relies on the EDXL-HAVE [12,13] standard to represent data
internally and to share them with other systems.

EDXL [14] is a set of standards released by OASIS to manage the entire
emergency life cycle and provide a common framework to exchange and share
information between different emergency systems. In particular, EDXL-HAVE
(HAVE) is an XML messaging standard developed by OASIS in the context of
emergency management.

A HAVE schema consists of a root element that uniquely identifies the orga-
nization that is responsible for the reporting facilities. Each facility is described
through several attributes and a list of sub-elements that allow a complete
description of hospital departments, services, and resources.

As the HAMS data model is based on the HAVE standard, the updated
availability information can be easily exported in a XML message based on the
HAVE schema. In this way, the output file can be exchanged with other hospitals
or emergency management actors to better coordinate the operations in case of
necessity.

5 Sample Scenario

In order to design the modules and to test the developed solution, it is necessary
to define plausible scenarios that combine physical and cyber attacks. Health
organizations have a large variety of assets, which are essential for their opera-
tions. Therefore, it is necessary to firstly classify critical assets to have a global
knowledge of the context. In the SAFECARE project, the following categories
of assets that compose Healthcare organizations were identified:

– Specialist personnel assets, (e.g., employees);
– Buildings and facilities, (e.g., power and gas supply, PLC room);
– Identification system, (e.g., badges, digital credentials);
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– Networked medical devices, (e.g., medical devices connected to the internal
data network);

– Networking equipment, (e.g., laptop, internet network);
– Interconnected Clinical Information Systems, (e.g., HIS, PACS);
– Mobile client devices, (e.g., mobile applications);
– Remote care system assets, (e.g., medical equipment for tele-monitoring);
– Data and records, (e.g., health records);
– Operating resources, (e.g. sterilization material).

5.1 Methodology

In the SAFECARE project the scenarios are divided into strategic and tech-
nical [8]. The strategic scenario describes key variables to recognize the risk
source, opponent/objective, stakeholder/intermediate events, and impact/sever-
ity. The technical scenario describes a process of how an attacker can take control
of some assets and cause incidents in health care organizations. The model for
developing technical scenario consists of four phases:

1. Know : discover the vulnerabilities of health care organizations (ecosystem
mapping, information on key people, and systems). These activities are
directed by the attacker to prepare for his assault and increase his proba-
bilities of success.

2. Get in: actions are taken by the attacker to introduce himself in the planned
goal, either in cyber or physical assets (Hospital information System, Depart-
ment rooms, PLC room, etc.).

3. Find : during this phase, once the attacker has access to health care assets
physically or digitally, he identifies where are locate the desired material or
data.

4. Control : In the last stage, the attacker takes control of the assets or resources
(e.g., material, data). The consequence is sabotage, loss of patients’ data,
ransomware.

In the SAFECARE project, 12 different Cyber-Physical technical scenarios
were developed, involving the assets described. In the following of this paper we
will consider a simplified scenario to show the interactions between the different
modules of the platform.

5.2 Scenario Description

Based on one of the incident scenario developed in SAFECARE, a sample sce-
nario has been defined in order to test and show the functionalities of the system.
In this scenario, an attacker gets the control of a medical device connected to
the internal network in order to expose patients’ medical data. The main steps
followed by the attacker are:

1. Obtain information of the medical device. Before going to the hospital, the
attacker gets information on the medical devices, for example using Open
Source INTelligence (OSINT) techniques, in order to identify their possible
vulnerabilities.
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2. Obtain local access to the medical device. The attacker goes to the area where
the identified device is located.

3. Installation of malware on the medical device. The attacker install a malware
software on the medical device through, for example, the connection of an
USB flash drive. The malware propagates along the local network, in order
to infect also the server with the medical records of the hospital patients, the
final objective of the attack.

4. Exposition of medical data. When the malware infects the server with
patients’ health record data, the attacker can access the data and expose
them, with severe consequences on the reputation of the hospital as well as
the possibility to modify them, putting in danger the patients’ life.

This scenario is a good example of integration between physical and cyber
attacks, as in order to install the malware, the attacker must get the physical
access to the area where the device is located and then wait until nobody else is
present. BTMS is able to detect this suspicious loitering behaviour by analyzing
live video streams and generates an event. Afterwards, two cyber anomalies are
detected by CTMS: the installation of malicious software on the device and the
infection of the server that contains patients’ data, generating two security events
that are grouped by the operator in an cyber incident.

5.3 Scenario Simulation

In order to perform the simulation of a scenario, a sample hospital has been
defined, and represented in Fig. 3.

Fig. 3. HAMS view at start-up (Color figure online)

This sample scenario firstly generates an incident message from the BTMS,
detecting the loitering behaviour in a restricted area of the hospital. The main
fields of the corresponding JSON message contain:
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1 { "detector ": "BTMS",

2 "severity ": "LOW",

3 "type": "INCIDENT",

4 "category ": "Loitering",

5 "unique_identifier ": "A77788",

6 "event": [

7 { "description ": "Access the room",

8 "title ": "Loitering",

9 "unique_identifier ": "A77970 ,

10 "assets ": [

11 { "id": 2000001 ,

12 "name": "Intensive Care Unit",

13 "category ": "Building and Facilities"

14 }

15 ]

16 }

17 ]

18 }

Listing 1.1. Incident message example generated by BTMS

The event can include other parameters related to the equipment that ini-
tially detected the event as well as the links to media resources (videos records),
that triggered the suspicious behaviour alert.

Upon receiving this incident message, the HAMS verify that the category
of the incident is Loitering, with a severity level LOW. As a consequence, no
actions are required on the assets, thus the status of the asset with id 2000001
(the “Intensive Care Unit” in the example) doesn’t change.

The next step of the attack is the infection of a medical device with malware
in order to spread it over the network and expose patient health data. This cyber
incident is detected by CTMS, the module responsible for detecting malicious
cyber actions. The structure of the JSON message is similar to the previous one,
but more events are considered. An extract of the resulting JSON is as follows:

1 { "detector ": "CTMS",

2 "severity ": "MAJOR",

3 "type": "INCIDENT ".

4 "category ": "Impact",

5 "unique_identifier ": "A77988",

6 "event": [

7 { "description ": "Install malware",

8 "title ": "Execution",

9 "unique_identifier ": "A77972 ,

10 "assets ": [

11 { "id": 3000001 ,

12 "name": "Ventilator Unit",

13 "category ": "Networked Medical Devices"

14 }

15 ]

16 },
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17 { "description ": "information leaks",

18 "title ": "Execution",

19 "unique_identifier ": "A77974 ,

20 "assets ": [

21 { "id": 4000004 ,

22 "name": "Patient Health Information System",

23 "category ": "Data and Records"

24 }

25 ]

26 }

27 ]

28 }

Listing 1.2. Incident message example generated by CTMS

This message describes a major incident that involves two assets: a Ventilator
Unit (with asset id 3000001) and the Patient Health Information System (with
asset id 4000004). Both assets are heavily compromised and don’t work prop-
erly, thus their status must be changed to unavailable. According to the status
description provided in Sect. 4, the Boolean value is set to False, the colour code
is set to red and the stability is set to deteriorating (under the hypothesis that
both assets were properly functions before the incident).

Finally, the HAMS generates an availability message to make the other mod-
ule of the system aware of the change of the availability status of the involved
assets. The availability message is a JSON message that contains the id of the
incident and the list of the assets with their new status. The structure of the
message is as follows:

1 { "incident ": "A77988"

2 "assets ":

3 [

4 { "assetId ": 3000001 ,

5 "isOk": False ,

6 "colour ": "red",

7 "stability ": "deteriorating

8 },

9 { "assetId ": 4000004 ,

10 "isOk": False ,

11 "colour ": "red",

12 "stability ": "deteriorating

13 }

14 ]

15 }

Listing 1.3. Availability message example generated by HAMS

Figure 4 shows the HAMS graph after the elaboration of the incident message,
where it is possible to see that the Ventilator Unit in the Intensive Care ward
and the Patient DB service are not available anymore.
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Fig. 4. HAMS view after receiving an incident message (Color figure online)

The cyber incident has a cascade effect also on other hospital assets. HAMS
receives a further impact message generated by the IPDSM. This message con-
tains a list of assets indirectly affected by the incident, each one associated with
an ImpactScore parameter.

An example of impact message correlated with the incident message
described above is as follows:

1 {

2 "Impacts ": [

3 {

4 "IncidentID ": "A#77988" ,

5 "IncidentType ": "INCIDENT",

6 "IncidentCategory ": "Impact",

7 "Assets ": [

8 {

9 "AssetID ": 1000001 ,

10 "AssetName ": "Hospital Chieri",

11 "Risk_type ": "malware diffusion",

12 "ImpactScore ": 0.1

13 },

14 {

15 "AssetID ": 2000001 ,

16 "AssetName ": "Intensive Care",

17 "Risk_type ": "malware diffusion",

18 "ImpactScore ": 0.3

19 },

20 {

21 "AssetID ": 4000001 ,

22 "AssetName ": "Alarm System",

23 "Risk_type ": "malware diffusion",
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24 "ImpactScore ": 0.1

25 },

26 {

27 "AssetID ": 4000003 ,

28 "AssetName ": "Access Control System",

29 "Risk_type ": "malware diffusion",

30 "ImpactScore ": 0.1

31 },

32 {

33 "AssetID ": 4000005 ,

34 "AssetName ": "Staff Database",

35 "Risk_type ": "malware diffusion",

36 "ImpactScore ": 0.1

37 },

38 {

39 "AssetID ": 4000006 ,

40 "AssetName ": "IT Network",

41 "Risk_type ": "malware diffusion",

42 "ImpactScore ": 0.5

43 }

44 ]

45 }

46 ]

47 }

Fig. 5. HAMS after receiving an impact message (Color figure online)

As it can be seen by the message, the incident has impacted various assets
in the hospital. However, the majority of them reports an ImpactScore of 0.1,
meaning that the impact is quite marginal and there is no need to change the
status of the asset.



Cross-Domain Security Asset Management for Healthcare 153

The spread of a malware software on the network compromises the normal
operations of the IT Network service even if it is still working. A yellow status
is the updated availability value.

Figure 5 shows the HAMS graph after the elaboration of the impact message.
In the figure, it is possible to view that the status of IT Network becomes yellow
as a cascade effect from the incident.

As at least one asset changed its availability status, a new availability message
is generated, following the same structure of the one generated after the reception
of the incident message.

6 Conclusions and Future Work

The protection of Critical Infrastructures is a complex process that involves
many pitfalls. SAFECARE project, and the modules presented in this paper,
aim at enhancing the security and safety of healthcare and the knowledge about
asset status of an hospital. This has potentially a great impact in term of benefits,
especially during crisis situations like those experienced during COVID-19 peaks
in the hardest hit areas, where specialized assets became quickly saturated and
a percentage of patients needed to be transferred to other structures, in some
cases even abroad.

The automated updating of assets status is an important feature in a context
of evolving threats, where a single malware entering the internal communication
networks can lead to harmful effects and fatal impacts on essential services for
the people.

A further functionality that will be added to the platform will give the possi-
bility of running a “demo mode”, simulating events and incidents without affect-
ing the information stored in the database and trigger the other modules. This
will be particularly useful to train the operators and design security exercises as
a way of enhancing the awareness of all involved personnel.
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Abstract. Critical Infrastructures (CIs) face numerous cyber-physical threats that
can affect citizens’ lives and habits, increase their feeling of insecurity, and influ-
ence the seamless services provision. During such incidents, but also in general
for the security of CIs several internal and external stakeholders are involved, hav-
ing different needs and requirements, trying to cooperate, respond and recover.
Although CIs security management process is well analyzed in the literature there
is a need to set a common ground among different CIs, thus reducing administra-
tion/coordination overhead and rendering the decision making and crisis manage-
ment process more efficient. In this direction, this paper considers three different
CIs (airport facilities, gas infrastructures, and hospitals); presents the current and
emerging physical and cyber security related regulations and standards, opera-
tions, organisational and technical measure and; finally, through the discussion on
gaps and best practices identified, proposes a global, cyber-physical security man-
agement and joint coordination approach. The proposed approach recommends
among others that the adoption of a Holistic Security Operation Centre (HSOC)
in each CI and a National Coordination Centre (NCC), supervising them, which
will facilitate the communication and cooperation between the different CI oper-
ators and stakeholders, in case of an incident, that may have cascading effects to
interconnected Infrastructures. The findings presented and the conclusions drawn
are linked with three EU funded research projects (SATIE, SecureGas and SAFE-
CARE), that aim to improve physical and cyber security of CIs in a seamless and
cost-effective way.

Keywords: Critical infrastructures · Security management · Crisis management ·
Physical · Cyber · Stakeholders · Communication · Coordination centre · SOC

1 Introduction

The EC 114/2008 directive defines as Critical Infrastructure (CI) the assets, systems, and
networks located inMemberStateswhich are essential tomaintain the vital economic and
social functions such as health, food, transport, energy, information systems, financial
services, etc. The EC recognizes that these infrastructures must be protected from the
disruption by natural disasters and man-made threats, and as such has launched the
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European Programme for Critical Infrastructure Protection (EPCIP). The importance
of physical and cyber security in CIs has never been more explicit. CIs in general, and
especially in transport, energy and health sectors are exposed to various physical threats
(i.e. terrorism, technological accidents, natural disasters, etc.) and cyber-attacks which
are emerging especially with the increasing use of Information Systems. Nowmore than
ever, CIs must be vigilant in establishing safeguards against physical and cyber threats,
as it is imperative to have a solid understanding of the risks, vulnerabilities, security
processes and technologies available. In addition, it is of paramount importance for CIs
to establish a standardized crisis management process to deal with attacks that threaten
to harm the organisation and stakeholders.

The aim of this paper is to describe three different CI types (airports, gas infrastruc-
tures, and hospitals); present the current physical and cyber security related regulations
and standards adopted; identify their security operations, aswell as the organisational and
technical measures deployed by each CI; and finally describe a common, cyber-physical
crisis management process encompassing the involved stakeholders. Moreover, gaps
and best practices related to security issues are analysed and a global approach for CIs’
cyber-physical security management and joint coordination is proposed. This approach
recommends among others the adoption of aHolistic SecurityOperationCentre (HSOC),
which will facilitate the communication and cooperation/coordination between internal
stakeholders, and a National Coordination Centre (NCC) that will facilitate the commu-
nication/coordination between the HSOC and the external stakeholders. The NCC will
also support the communication and cooperation/coordination between the different CI
operators and stakeholders, in case of an incident that has cascading effects to inter-
connected Infrastructures. The findings and conclusions that are drawn, are linked with
SATIE (H2020-GA832969) [1], SecureGas (H2020-GA833017) [2], and SAFECARE
(H2020-GA787005) [3] projects, during the framework of which this research was con-
ducted. These projects aim to provide solutions that will improve physical and cyber
security in a seamless and cost-effective way and enhance threat prevention, threat detec-
tion, incident response and mitigation of impacts in airport facilities, gas and hospital
infrastructures accordingly.

2 Critical Infrastructures Description

In the following paragraphs, a short description of the three CI types is provided, pre-
senting information about their services, main functions and business operations, as well
as basic involved assets.

2.1 Airport Facilities

Airports, being CIs that belong to the Transport sector, play a key role in people and
goods transportation, as well as in regional, national, and international trade. Airports
incorporate in their operational agenda passenger comfort, cost-efficiency, environmen-
tal protection, and policies for corporate and social responsibility. The interconnections
and dependencies between the various systems and assets, combinedwith the presence of
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different actors and the complexity of airport operations, expose the entire environment
to cyber and physical threats and make it vulnerable to various attacks.

Being a complex ecosystem, various assets and systems are involved to support the
airport operations, such as staff, sensors, cabling andfiber infrastructure, networking, and
systems that support airport operations and the exchange of information and data among
them. There is a plethora of systems that support the airport operations such as i) the Air
Traffic Management (ATM) systems, the flight tracking systems, etc., which support the
Airside Operations, ii) the fuel management systems, the parking management systems,
the lightning detection systems, etc., which support the Landside Operations, iii) the
access control systems, the baggage screening systems, the video surveillance systems
(CCTV), the Explosive Detection Systems (EDS), etc., which support the Safety and
Security Operations, iv) the self-service check-in systems, the Passenger Name Records
(PNR), etc., which support the Passenger management, v) the building control systems,
the environmental management systems, etc., which support the Facility and Mainte-
nance Operations, and finally, systems that allow the exchange of information and data
sharing among the various systems. The most common systems found in this category at
airports are, among others, the Airport Operational Database (AODB), the Geographic
Information Display System, etc.

2.2 Gas Infrastructure

Natural gas is a fossil energy source with a diverse range of uses and applications. It
constitutes amajor source of electricity generation, a powerful fuel for domestic (heating
and cooking) and industrial use, a clean and cheap alternative as transportation fuel, and
is alsowidely used for the production of hydrogen, fertilizers and other products. TheGas
value chain can be divided in mainly three sectors: (a) Upstream (production) where the
gas is extracted and processed; (b) Midstream (transmission) which generally includes
the transport and storage. The gas is mainly shipped by means of high/medium pressure
pipelines to downstream facilities, or other transportation media in case of Liquefied
Natural Gas (LNG) (tankers, trucks and rails) and; (c) Downstream (distribution) which
involves the final refinement and distribution of the gas including low pressure transport
to the final users and sale. TheGas system is comprised of high-pressure gas transmission
pipelines, gas compressor stations to maintain and regulate pressure, gas metering and
distribution stations, cathodic protection systems installed to prevent corrosion of the
pipeline, remote data transmission and telecommunication systems. Gas storage is also
an important and critical part of the system. The distribution infrastructure enables the
transportation of gas to the end users. Local distribution companies receive the gas in city
gates, transfer points from transmission pipes and deliver it to individual customers. The
delivery/distribution is done through an extensive network of small-diameter distribution
pipelines throughoutmunicipal and suburban areas.Natural gas end-users are residential,
commercial, and industrial sectors and power-generation customers.

The complexity of the gas network, its diversity among transportation lines, the
peculiarity of the areas crossed (remote or densely populated), the various production
and storage facilities make it a challenging environment to cope with. Due to their dis-
tributed nature and often completely publicly known routings, the gas grids are prone to
physical attacks, cyber-attacks (e.g. SCADAmanipulations) and cyber-physical attacks.
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Moreover, as interconnections of gas elements, interfaces with other grids, automated
monitoring and regulation loops are increasing, besides cascading consequence effects,
the emergence of novel types of threatening behavior are also expected. As gas avail-
ability is critical to so many other CIs, disruption in distribution can lead to series of
consequent failures or disruptions causing cascading disasters. The overall objective
of the industry and the governments is to avoid such events and in case it occurs, to
minimize the impact of such events.

2.3 Hospitals

Health sector is responsible for delivering services that improve, maintain or restore the
health of individuals and their communities; protect population against health threats as
well as consequences of ill-health and; provide equitable access to people-centered care
[4]. According to WHO, hospitals complement and amplify the effectiveness of many
parts of the health system, providing continuous availability of services for acute and
complex conditions [4]. Hospitals depending on their mission, offer different services
such as pharmacy, pathology, radiology, nursing, acute (e.g. emergency department or
specialist trauma centre, burn unit, surgery etc.); specialized (e.g. cardiology or coronary
care unit, intensive care unit etc.) outpatient and chronic treatment etc. They are expected
to provide appropriate and responsive care and; ensure acceptability and accessibility to
its services.

Moreover, several new technologies, ranging from Internet of Things (IoT), wear-
able external and implanted medical devices (skin patches, insulin pumps and blood
glucose monitors), order entry and administrative Information Systems (IS) to labora-
tory and operation theatre IS, have been adopted in hospitals. There is a widespread
understanding of the need to balance utility and efficacy with privacy and security in
innovation; however, technology is boosting more quickly than the creation, applica-
tion, and adaptation/update of security measures. In addition to cyber-threats, physical
threats are increasingly growing and even healthcare facilities are not immune to them.
Hospitals are generally open to the public with multiple entrances, which means identi-
fication and baggage of visitors is almost never screened, leaving hospitals vulnerable to
physical attacks. It has been reported that hospitals are twice more likely to experience
a physical attack incident than a cyber-attack or breach [5].

3 Security and Protection of Critical Infrastructures in EU

In the following paragraphs, the three different CIs’ (airport, gas infrastructures, hos-
pital) crisis management related issues, such as regulatory framework, security opera-
tions, systems and technologies, as well as the crisis management process and engaged
stakeholders are described.

3.1 Operation and Security Regulatory Framework

The first official effort for the preparation of a strategy to protect CIs was initiated by the
European Council in 2004. In 2006, EU set the parameters for the implementation of the
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EPCIP [6]. In 2008, the European Council Directive 2008/114/EC (evaluated on 2019
through public consultation and pending to be revised) established a procedure for the
identification of and designation of European critical infrastructures (‘ECIs’), focusing
on the Energy and Transport sector, and the assessment of the need to improve their
protection [7]. In accordancewith theRegulation (EU)2016/679, organisations including
CIs, must protect natural persons while processing personal data and exchanging of
such data. The principles of the EU Directive 2016/1148 (NIS Directive) concerning
“measures of a high common level of security of network and information systems
across the Union” are also applicable to CIs [8].

In the context of airports and additionally to the aforementioned, one year after the
September 11 attacks, EU adopted a set of aviation safety and security rules based on
Regulation (EC) No 1592/2002 and Regulation (EC) No 2320/2002 [9, 10]. In 2008, the
EU extended the safety rules in order to cover the aircraft operations and aircrew licens-
ing and training (Regulation (EC) No 216/2008), while in 2009 the extended Regulation
(EC) No 1108/2009 covered the safety aspects of aerodromes, air traffic management
and air navigation services. Currently, EC regulation 300/2008 establishes common rules
in the EU to protect civil aviation against acts of unlawful interference, which pertain
to the screening of passengers, cabin baggage and hold baggage, the airport security
(access control, surveillance), the aircraft security checks and searches, the screening of
cargo, mail, airport supplies and the staff recruitment and training. In addition, a national
authority for aviation security must be appointed while establishing a national civil avi-
ation security and quality programme. The detailed measures for the implementation of
the common basic standards on aviation security are updated in “Commission imple-
menting Regulation (EC) No 2015/1998”. Moreover, the International Civil Aviation
Organization (ICAO) works with Member States and industry groups to reach consen-
sus on international civil aviation Standards and Recommended Practices (SARPs) and
policies. The regulations and policies suggested by ICAOare adopted by the ICAOMem-
ber States to ensure that their local civil aviation operations and regulations conform to
the suggested norms, to ensure safety and security. ICAO’s annex 17 sets the preventive
security measures relating to access control, screening of aircraft passengers and their
cabin baggage, screening of hold baggage, screening of cargo and mail, measures for
handling special categories of passengers, for protecting Information Systems (IS) etc.

With regards to Gas CIs, several initiatives and regulations specifically on the Gas
sector focus on security, pinpointing the need for enhancing protection of such CIs, such
as the European Energy Security Strategy [12], the stress tests on the resilience of the
EU gas system [13] and the EU Regulation 2017/1938 on Security of Gas Supply [14].
The Directive 2009/73/EC establishes common rules for the transmission, distribution,
supply and storage of natural gas. It lays down the rules related to the organisation and
functioning of the natural gas sector, access to the market, the criteria and procedures
applicable to the granting of authorisations for transmission, distribution, supply and stor-
age of natural gas and the operation of systems [15]. Regulation (EC) No 715/2009 sets
non-discriminatory rules for access conditions to natural gas transmission systems con-
sidering the special characteristics of the national and regional markets that ensure the
proper functioning of the internal market in gas, the access conditions to LNG facili-
ties and storage facilities taking into account the special characteristics of the national
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and regional markets, and facilitating the emergence of a well-functioning and trans-
parent wholesale market with a high level of security of supplying gas and providing
mechanisms to harmonise the network access rules for cross-border exchanges in gas.

In the context of hospitals, there is also regulation on medical devices (Regulation
(EU) 2017/745 of the European Parliament and of theCouncil of 5April 2017 onmedical
devices) [17]; on in-vitro diagnostic medical devices (Regulation (EU) 2017/746 of the
European Parliament and of the Council of 5 April 2017 on in vitro diagnostic medical
devices) [18] etc.

3.2 Security Measures and Technologies

For CIs of any sector, the selection among the security measures to be adopted depends
greatly on the assets that need to be protected, their location and operational specifica-
tions, the threats, vulnerabilities, and risks associated to them.Thus, applying appropriate
protection for the CI, by implementing the suitable security measures and technology,
requires an understanding of the environment under consideration as well as the threats
to which it is exposed.

3.2.1 Cyber Protection Measures

In order for CIs to: (a) prevent or at least reduce unauthorized access, use, disruption,
deletion, corruption etc.; (b) respond effectively, timely and efficiently and; (c) minimize
the impact of attacks to their network, information technology and systems, it is important
to take both organisational and technical measures, as analysed below.

Organisational measures might include (a) the assessment of cyber risks, which is
used to identify, estimate, and prioritize risk to organisational operations, organisational
assets, individuals, other organizations, and the Nation, resulting from the operation and
use of information systems [19]; (b) development and adoption of both generic and case
specific laws, standards, plans and policies that outline cyber security measures and
crisis management procedures, and; (c) staff training on cyber security protection and
crisis management issues, standards, plans and protocols.

Technical measures adopted, include among others the following: authentication,
access control (authorization), data confidentiality and integrity, backup, tracing systems,
log files, communication security, firewalls, traffic monitoring systems, etc. A security
by design approach should complete the aforementioned countermeasures, focusing on
the cyber security aspects for new devices or systems, that need to be planned and imple-
mented already from the beginning, meaning the procurement, design, development and
maintenance phases. For securing networked devices and assets inventories should be
created andmaintained, as they can ensure a sound understanding of the systems and their
components; support configuration and automated remediation management processes
[20] and software should be regularly patched and updated.

In addition, it is also crucial to have a clear understanding of actual cyber security
strategies and controls implemented at targeted infrastructures, such as: a) with regards
to airports: Passenger Data Records, Flight Display System and Management, etc., b)
with regards to Gas CIs: Supervisory Control and Data Acquisition (SCADA)which is
one of the most common types of industrial control systems (ICS), being responsible for
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providing automated control and remote human management of essential commodities
and services, c) with regards to hospitals: medical devices, e-health services etc.

3.2.2 Physical Protection Measures

Investments in CIs physical security monitoring are likely to increase (21). Even if
human observers theoretically offer greatest security, it is also necessary to take account
the drawbacks of human inattention and limited senses. Generally, security monitoring
requires several sensor devices that are based onmore or less sophisticated technologies,
basically according to the application need. Examples of tools and capabilities to create
safe and secure hospital environments for patients, staff and visitors include perime-
ter protection, physical barriers/bollards, guards, lighting, audio and video surveillance,
access control, intelligent controllers, Intrusion Detection System (IDS), Physical Secu-
rity Information Management (PSIM) systems, Unmanned Aircraft Systems (UAS),
anti-drone technologies, motion and temperature sensors, CBRNE sensors. These phys-
ical security measures though are applicable also to airports, Gas Networks or other
CIs.

Airports implement and adopt some additional measures and technology solutions,
such as baggage screening systems, baggage handling systems, Explosive Detection
Systems (EDS), passenger screening systems, standardized screening techniques, which
all passengers must undergo (e.g. baggage X-rays, metal detecting scans). Despite the
fact that these measures are used for physical security, cyber security measures must be
adopted to protect them.

In the context of Gas CIs the operation and integrity of the Gas system is usually
handled by SCADA system, which monitors and controls systems remotely, both for
operational and safety/security purposes. Remote Terminal Units (RTU) or local controls
systems on production sites, pipelines, compressor and pump stations, regulation and
metering stations, are connected to the SCADA by means of available communication
media.

3.3 Security Related Operation Centers

Critical Infrastructures, based on their aim, functionalities and regulatory frameworks
(as explained above), adopt several security related operations centers, given that any
damage to a critical infrastructure, its destruction or disruption by natural disasters,
manmade events or technological accidents, may have a significant negative impact for
the security of the EU and the well-being of its citizens.

In addition to the previous and in order to deal with security issues on an organ-
isational and technical level, airports have incorporated in their facilities, different
operation centers to safeguard them in their daily routine. The Security Operation Cen-
tre (SOC) is a generic term describing part of or the whole platform whose purpose
is to provide detection and reaction services to security incidents [21]. SOC monitors
the security level of an organisation on an ongoing basis and comprises of a security
team using various technological solutions in order to oversee security operations and to
collect data and syslog to detect, identify, analyse, investigate and report cybersecurity
incidents. SOC architecture models can differ based on airport’s needs and preferences.
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There are dedicated or internal SOC (team within organisation), virtual SOC (team
works remotely), and co-managed SOC (internal IT collaborating with outsourcing ven-
dor). The Emergency Operations Centre (EOC) is a facility operating to manage disaster
emergencies. It is the place where information management, allocation and coordination
of resources, and recovery actions take place. The Network Operations Centre (NOC)
manages, controls, monitors and maintains the network functionality and operations
across various platforms, media and communication channels (internal or external). The
Airport Operations Centre incorporates a selection of the centers (including the previous
ones) based on the operational needs of each airport. AOC constitutes an operational
management structure that allows a common operational view to airport stakeholders
in order to communicate, collaborate, coordinate and decide on the progress of airport
operations. In case of a security incident the SOC operators would detect the security
incident and immediately inform the AOC which is the focal point for information col-
lection and sharing once an emergency is declared. Depending on the nature of the attack,
the required stakeholders are determined, and the response and recovery measures are
decided.

A similar structure but in a less sophisticated level applies also in gas CIs, where the
Security Operation Centre, may include emergency and/or network operations centers.
TheSOCof a gas infrastructure is a secure control roomwithin each infrastructure,where
the SCADA, fire alarm systems, CCTV, and other sensors and systems are monitored
and communication systems with stakeholders are established.

Hospitals though most of the times and due to the “open” philosophy of being built
on in order to serve patients, they do have only security and network operational centers
of small scale, or in some cases they do not operate such centers.

3.4 Crisis Management Process and Stakeholders Involved

Crisis management has been defined as “the developed capability of an organisation
to prepare for, anticipate, respond to and recover from crises” [22]. The full cycle of
crisis management can be described in four phases (Preparedness, Response, Recovery,
mitigation), with several steps following. These steps are presented in Sect. 4, linked
with the proposed security coordination and operational centers of this paper.

Within these steps, several internal and external stakeholders are involved, having
different needs and requirements, trying to cooperate, respondand recover from the crisis.
Security stakeholders can be categorized according to their involvement and perceived
proximity to the organisation into internal and external.

Based on relevant literature review and information collected from the participating
CIs (airports, gas infrastructures, hospitals), the following list summarises the common
internal stakeholders: Board of Directors (BoD), Data Protection Officer (DPO), Crisis
ManagementTeam,Emergency responseTeam, Physical securitymanager/personnel, IT
Security manager/personnel, Technical manager/personnel, Health and Safety manager.
The common external stakeholders’ category includes individuals or groups outside the
organisation who can affect or can be affected by a security incident in the CI, as they
are conjoint into an interdependent relationship, namely: Law Enforcement Agencies,
Fire Brigade, Emergency medical services, Civil Protection, National Authorities (Pre-
fectures, Municipalities, etc.), Ministries (e.g. Energy, Transport, Health, etc.), National
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IntelligenceAgency,NationalData ProtectionAuthority, Interconnected/Interdependent
Critical Infrastructures (e.g. power, communication, surface transportation), Computer
Emergency Response Team (CERT).

In relation to airports, the following internal stakeholders were identified addi-
tionally to the aforementioned: Airport Duty Officer (ADO), Crisis Management
Centre (CMC), Airport Operations Centre (AOC), Emergency Operations Centre
(EOC)/EmergencyOperations Team (EOT), Security Operations Centre (SOC)/Security
Services Department, Media centre, Friends and relatives’ assistance centre. Exter-
nal stakeholders involved in case of crisis are: International and EU Organisations
(e.g. ICAO, EASA, EUROCONTROL), Air Accident Investigation and Aviation Safety
Board (AAIASB), Civil Aviation Authority (CAA)/Aviation Authority, Air Traffic Con-
trol (ATC) (e.g. ENAV), Information Security Service Providers, Telecommunication
Providers, Airlines, Ground Handlers, Cargo, Concessionaires,

In the context of Gas CI, external stakeholders that are also informed in case of
emergency are Regulatory Authorities (e.g. Energy RA).

As regards to hospitals, the group of external stakeholders includes additionally
the Public Health Control Centres (e.g. Disease Control and Prevention) and Regional
Health Authorities.

3.5 CIs Security Management Gaps and Best Practices

Standardization of safety and security procedures has followed a sectoral approachwhile
its maturity varies according to the criticality of the services provided. Thus, security
management in the three CIs presented complies with international guidelines and stan-
dards (e.g. ICAO, ENTSO-G, WHO), which though do not offer the same level of
integrity and maturity. Transfer of security organization approaches mainly from the
aviation (airports) sector to the gas and to the less securitized environment of hospitals,
is one of the opportunities identified in the paper to effectively address CI protection
challenges. This will contribute to develop and use common management approaches
and bring the security of the envisaged Cis at a comparable level.

TheEuropeanCommissionpaved theway to integrate themanagement of the security
of the ECIs through the EC Directive 114/2008, which was transferred to the national
legislation of the member states since 2010. However, this directive addressed only the
transport and energy sector and focused mainly to the threat of terrorism. Furthermore,
the interconnection and interdependencies of the infrastructures have not been included
at all as a systemic element of CI protection. Most of these challenges are planned to be
addressed in the new relative directive, currently under elaboration.

Based on the previous analysis, reports on security management, and the daily chal-
lenges faced by the CIs, the following gaps have been identified with regards to the
management of crisis and security as a whole:

Gap 1. Different physical-cyber security solutions implemented in different infras-
tructures: Among CIs, there is a lack of uniformity in the adoption and implementation
of solutions that can support and enhance crisis management processes.
Gap 2. De-centralised control and collection of information: According to current
usual practices, most CIs use multiple decentralised information gathering processes
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that run in parallel (potentially overlap). Usually, there is no single coordination point
acquiring the complete set of collected data for feeding it to the interested parties.
Gap 3. Lack of fast communication and information dissemination: CIs need to
effectively and efficiently manage and share information (incident detection, evolution,
resource allocation and management etc.), in different layers: within the CI, between
the CI and its response partners, between the CI and the public, as well as among
interconnected CIs.
Gap 4. Complexity of predicting the potential impact of an incident: a) within the
CI (i.e. fire propagation, terrorist attacks, plum dispersion, impact of toxic chemicals,
radioactivity etc.), and b) among interconnected CIs, as disruptions in one sector can
have cascading effects in other sectors, including cross-border.
Gap 5. Crisis management process understanding: Although the crisis management
process is well analyzed in literature there is a need for CIs to better understand the
process, as well as to identify the involved stakeholders.
Gap 6. Lack of training and exercising in crisis management: To enhance readi-
ness and cooperation to respond to any type of complex incidents and emergencies, all
involved stakeholders should perform continuous training.
Gap 7. Different or no security plans within each CI: Standards and guidelines for
the implementation of comprehensive plans for the security of a CI are needed at a
national level (and if possible per CI sector) in order to build a common ground for all
CIs. It is of high value to have a series of standardized plans (Risk and Vulnerability
Assessment, Security Operations, Crisis Management, Business Continuity) related to
preventive planning, day-to-day operations and business continuity management.

Despite the presented gaps, it appears that there are some best practices applied and
used by the different CIs, as follows: (a) Airports and Gas CIs appear to have regulatory
authorities/bodies that work withMember States and industry groups to reach consensus
at international Standards and Recommended Practices (SARPs) and policies in security
issues (related to Gap 5, 6 and 7); (b) Airports and Gas CIs use advanced physical and
cyber integrated security solutions (e.g. SCADA, PLC etc.) (related to Gap 1, 2 and 3)
and; (c) In order to deal with security issues, airports have incorporated in their structure
different operation centers, e.g. AOC, SOC, in more structured and detailed way than
the other two CIs (related to Gap 2, 3, 4 and 5).

4 Proposed Global CIs Cyber-Physical Security Management
and Joint Coordination Approach

Based on the consideration of the CIs security related issues, the gaps, and best prac-
tices described in the previous paragraphs, the following recommendations are made
that can enhance CIs’ crisis management process, but also security as a whole: (a) Rec-
ommendation 1. CIs need to develop security plans and implement integrated physical
and cyber security solutions (at a minimum common level depending on their needs)
to protect their critical assets across their infrastructure (related to gap 1 and 7); (b)
Recommendation 2. CIs should integrate in their organisational structure a Holistic
Security Operation Centre (HSOC) to detect, analyze, and manage cyber and physical
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attacks and to efficiently coordinate processes, people and technologies. Thus, a common
operational picture will be achieved, and efficient information sharing will be facilitated,
in order to alert operators and involved stakeholders to any potential threats or incidents
(related to gaps 2 and 3) and; (c) Recommendation 3. The establishment of a National
Coordination Centre (NCC) for CIP is also of high value. The NCC will interact with
the HSOC of each CI, but also with external stakeholders (see Sect. 3.4) and other Coor-
dination or Operational Centre (e.g. ERCC) on inter-national level. The main services
and capabilities provided to the CI operators include risk and impact assessment, infor-
mation gathering and sharing, and coordination of an incident (related to gaps 4 and
6) and; (d) Recommendation 4. A common cyber-physical crisis management process
should be established and followed within each CI and at Member States level (related
to gap 5). In the following sections, a global, cyber-physical security management and
joint coordination approach that addresses the aforementioned challenges, is presented.
The proposed approach will facilitate the communication and cooperation between the
different CI operators and stakeholders, in case of an incident, that may have cascading
effects to interconnected Infrastructures and enhance security of CIs.

4.1 CIs Joint Coordination Approach and Structure

Afundamental precondition for the enhancement of the security and protection ofCIs is a
common centre for information sharing, reporting of problems, and exchanging of good
practices. To this end, the implementation of a National Coordination Centre (NCC) for
CIP which interacts with a Holistic Security Operations Centre (HSOC) within each CI
is crucial. As depicted in the figure below, the HSOCs will manage internally in each
CI the cyber and physical security in a seamless and integrated way, while acting as the
single contact point between theCI and theNCC. TheNCCwill be the central node of the
proposed approach, fully compliant with European standards (CIWIN [23] & ERNCIP
[24]), used for: i) assessing risk and map hazards and threats, assisting in this way the CI
operator to assess a specific risk and gather information for setting the appropriate level of
security, ii) incident reporting and information sharing with external stakeholders, such
as Emergency Response Services (e.g. Police, Fire Service, Civil Protection, CERT,
etc.), Public Organizations/Bodies (e.g. Ministries, Regulatory Authorities, NIS, etc.),
iii) information sharing with inter-connected Infrastructures, providing the necessary
information about an incident and impact propagation, in order to be prepared and avoid
cascading effects, iv) exchange of information and further communication with other
Coordination or Operational Centres, on one hand at national level e.g. National Civil
Protection Coordination Centre, 112, etc., which in its turn would provide the necessary
information to the public in a structured and organised way; and on the other hand
at European or International level, e.g. the Emergency Response Coordination Centre
(ERCC) in Brussels, which will contact relevant Member States and organisations, if
needed.
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Fig. 1. Proposed global approach for CIs cyber-physical security management

The integration of the security of CIs at the national (and at the EU level for those
of European interest) is linked with the concept of interdependency and interconnection
of the infrastructures. It is common practice that each infrastructure takes care of the
needs to ensure their business continuity, but they are rather indifferent of the challenges
the disruption of their services may cause. Their responsibility ends up with providing
compensation for the related impact according to signed Service Level Agreements
(SLA). However, such compensation doesn’t address the impact to the national economy
and the societal disruption linked to loss of services due to interdependencies with CIs
that fail to address a security incident. This is what a State Security Organization must
ensure through a proper monitoring structure.

The main challenge to implement such structure is the lack of a concrete institutional
and legal frame. Security pretexts and business interests are major obstructions that
slow-down the required coming integration. The new European directive on CIP is a
milestone ahead in this direction. The centralized role of CSIRT (Computer Security
Incident Response Team) in the NIS Directive (EC 2016/1148) can be considered as
the equivalent of the National Coordination node for monitoring and strengthening the
physical protection of CIs at the national scale.

4.2 Global, Cyber-Physical Crisis Management Process

Further to the above proposed approach, a cyber-physical crisis management process
should be established and followed within each CI and at Member States level. This
process consists of four phases (Preparedness, Response, Recovery, mitigation), with
several steps linked with the proposed centers depicted in Fig. 1.



Towards a Global CIs’ Cyber-Physical Security Management 167

Preparedness: The aim of this phase is to prepare CIs and develop general capabilities
that will enable them to deliver an appropriate response in any crisis. It is a continuous
cycle of planning, organizing, training, equipping, exercising, evaluating, and taking
corrective actions that internal and external stakeholders should follow closely to ensure
readiness. CIs is important to know which assets are vital for conducting their core
activities, the potential threats against these assets, as well as their vulnerabilities. For
this phase, appropriate institutional structures, supported by comprehensive policies,
plans and legislation and the allocation of resources for all these capacities through
regular budgets are also instrumental for thorough preparedness to crisis (Step 1 –
Develop Plans). To improve the efficiency of the CI the appropriate tools must be in
place (Step 2 – Organise and equip). These tools might include among others a list of
contacts, hardware and software tools etc. Training and exercising are the cornerstones
of preparedness which focus on readiness of all involved stakeholders to respond to any
type of incidents and emergencies and on the identification of any discrepancies in terms
of resources (Step 3 – Train and exercise).

Response: Response initiates when an incident is detected by an internal or external
stakeholder or the Holistic Security Operation Centre (HSOC), in amanual or automated
way (e.g. monitoring networks and early-warning systems, public authorities, citizens,
media, private sector, etc.) (Step 4 – Incident Detection). Depending on the type of
the incident (cyber and/or physical) different stakeholders will collect the information
needed for further investigation. Additionally, information from multiple sources, such
as sensors, social media and crowdsourcing could be collected by the HSOC. The infor-
mation to be gathered usually includes details relevant to the type of incident, active and
passive threats, the number and the type of casualties, geospatial information, images,
video, etc. (Step 5 – Information gathering). The information should be collected and
assessed by the CrisisManagement Team (CMT) in cooperationwith relevant stakehold-
ers that identified the incident (Step 6 – Incident assessment). Getting a clear picture
of the crisis (e.g. what happened, how many assets/people are or might be affected) is
the basis for decision-making. The CMT should assess the extent of the crisis, eval-
uate the situation, determine, and define which response plan(s) should be activated
(e.g. evacuation plan, etc.), inform the HSOC, which in its turn will communicate it
to internal stakeholders and through the National Coordination Centre (NCC), external
stakeholders. Based on the activated plans, response processes and procedures are exe-
cuted, co-ordinated and adapted (Step 7 – Determine plan). It is also crucial to know
the availability and current status of resources, in order to allocate them efficiently (Step
8 – Resource Management). HSOC is also responsible for communicating in timely
and accurate manner information to internal stakeholders and to the NCC (Steps 9 -
Communication & 10 – Decision implementation). The aforementioned steps could
be repeated, until processes and assets return to business as usual or to another accepted
status (demobilization) and the crisis is terminated. Demobilisation will be communi-
cated by BoD and CMT coordinator to HSOC, which in its turn will communicate it to
internal and external stakeholders through the NCC. (Step 11 - Demobilisation).

Recovery: When crisis occurs, CIs must be able to carry on with their tasks during cri-
sis, while simultaneously planning on how they will recover from the damage the crisis



168 V. Mantzana et al.

caused. Undeniably, required actions to return to normal operations and limit damage
to CI and stakeholders continue after the incident or crisis. The CMT should decide the
recovery actions to be taken (based on recovery plans), by cooperating closely with the
HSOC,NCC, aswell as internal and external stakeholders (Step 12 – Recovery actions).
The CMT should collect and analyse evidence from the incident (Step 13 – Collect and
analyse); and then should create an evidence report (Step 14 – Create evidence report).
The CMT in cooperation with its coordinator should share relative information with all
internal (Step 15 – Share relative information with internal stakeholders) and exter-
nal stakeholders (e.g. Ministries, LEAs, fire brigade, interconnected CIs). Moreover,
related investigations should be assisted (Step 16 – Share relative information with
external stakeholders). As a crisis serves as a major learning opportunity, stakeholders
should review the overall process as well as plans, procedures, tools, facilities etc., and
identify areas for improvement (Step 17 – Review incidence response). Following the
evaluation, lessons learnt should be identified (Step 18 - Debriefing) and recommen-
dations/revisions should be made to relevant plans, and processes (Step 19 – Update
plans).

Mitigation: Mitigation refers to the process of reducing or eliminating future loss of
life/injuries, assets and operations resulting from threats/risks through short and long-
term activities. The results of the evaluation of the response actions should lead to
recommendations for change, responsibilities allocation and relevant timelines in order
to ensure that it will be carried out (Step 20 – Take mitigation measures).

5 Conclusions

The work presented in this paper was based on the findings and conclusions drawn from
projects implemented on three different CIs, namely SATIE, SecureGas, and SAFE-
CARE, as well as on the normative literature. The existing operations and security reg-
ulatory framework, the security measures adopted by CIs to protect their infrastructure,
the security related operations centers incorporated in the CIs’ organisational structure
to safeguard them, as well as the crisis management process followed by the different
CIs and the involved stakeholders, were studied. Moreover, the main gaps and potential
areas of improvement of the CIs’ security management processes have been discussed.
Based on the conducted analysis, a global cyber-physical security management and joint
coordination approach is proposed and presented. This approach recommends, among
others, the adoption of a Holistic Security Operation Centre and a National Coordination
Centre, aiming to support the communication, coordination and cooperation i) between a
specific CI operator and its internal and external stakeholders, and ii) among the various
affected CI operators and involved stakeholders, in case of an incident that has cascading
effects to interconnected Infrastructures. Further to the proposed approach, a common
cyber-physical crisis management process is described and proposed to be established
and to be followed by CIs, at Member States level. Following the above, the proposed
CIs’ security approach aims to set common ground among stakeholders in managing
incidents, thus reducing administration overhead and enhancing the process of efficient
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decision making and information sharing, including best practices and lessons learned.
Thus, this paper offers a broader understanding of the CIs’ security management.
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Abstract. Conducting a cybersecurity assessment is a central activity
in protecting a generic organization from cyber-attacks. Several methods
exist in research and industry to assess the security level of an organiza-
tion, from manual activities to automated attack graphs. Unfortunately,
automated approaches fail in taking into account the governance aspect
that still need to be evaluated manually by the assessor, introducing
possible biases or problems deriving from the level of expertise. In this
paper, we provide a methodology to support the assessor in the task
of evaluating the coverage of cybersecurity controls coming from techni-
cal standards, regulations, internal practices. This is done by providing
him/her with a multi-layer model that takes into account several orga-
nizational layers, a mapping procedure to tie the security controls to the
multi-layer model, and the definition of a validation factor that can be
used to possibly refine the level of coverage and to suggest possible lay-
ers where evidences should be collected to verify and assess the coverage
of a security control. A usage scenario provides an initial validation of
our approach based on ISO 27001. Developments of this methodology
are on-going toward its application to the support of broader cyber-risk
assessment activities through discounting risk factors.

Keywords: Information Security Governance · Risk assessment · ISO
27001 · Multi-layer model

1 Introduction

According to NIST SP 800-100 [13], Information Security Governance (ISG)
can be defined as “the process of establishing and maintaining a framework and
supporting management structure and processes to provide assurance that infor-
mation security strategies (i) are aligned with and support business objectives,
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(ii) are consistent with applicable laws and regulations through adherence to poli-
cies and internal controls and (iii) provide assignment of responsibility, all in
an effort to manage risk”.

Said differently, ISG is the global effort needed to ensure the well-being of
the company’s electronic resources and it should be supported by effective and
efficient processes. In order to evaluate company’s cyber security posture and to
measure the adequacy and maturity of its ISG processes, periodic risk assessment
must be carried out in order to estimate (quantitatively or qualitatively) the
risk related to possible cyber incidents by evaluating (i) the level of exposure
to specific threats analyzing existing vulnerabilities and the maturity level of
the governance environment and (ii) the impact of the incidents generated by
threats materialization.

How to correctly structure the risk management process is suggested by mul-
tiple standards and best practices. However, how to support, through automatic
tools, assessors in this complex and delicate task is still an open problem, espe-
cially when assessing the governance aspects.

Currently, risk assessment is still mainly a manual process carried on by
expert assessors through interviews with relevant stakeholders, analysis of tech-
nical elements (e.g., data extracted from network and vulnerability scans) and
collection of evidences that allow them to properly evaluate the maturity of the
governance process. The result is a non-completely objective and time-consuming
activity where the result may be deeply influenced by the expertise of the asses-
sor and his/her personal sensitivity.

Recently, automated approaches to dynamic risk estimation have been pro-
posed to support risk assessors with a fast technical assessment (e.g., [7]). These
approaches are based on attack graphs to estimate the likelihood of possible
attack patterns and on mission impact models to estimate the consequences of a
successful attack. Unfortunately, they fail in taking into account the governance
aspects that still need to be evaluated manually by the assessor.

In this paper, we take a step to close this gap by providing a methodology
to support the assessor in the task of evaluating the coverage of cyber security
controls (e.g., the coverage of NIST Cybersecurity framework controls). This is
done by providing him/her with the definition of a validation factor that can be
used to possibly refine the level of coverage and to suggest possible layers where
evidences should be collected to verify and assess the coverage of a security
control.

This is done basically in two steps: (i) we map security controls performed by
the assessor to a multi-layer model representing the most relevant components of
an enterprise (i.e., we create a contextual map between controls and the company
under analysis) and (ii) based on the obtained mapping, we compute a validation
factor that provides the assessor with an indication about the need of a possible
further analysis of the control due to its incidence on multiple organizational
layers.

We also provide a usage scenario where we discuss how to apply our method-
ology to an assessment performed against ISO 27001.
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The rest of the paper is organized as follows: Sect. 2 provides an overview
of the main risk assessment methodologies and on attack graph models, Sect. 3
introduces the multi-layer model we used to identify relevant organizational lay-
ers used by the proposed methodology to map security controls, Sect. 4 presents
our methodology, Sect. 5 introduces the definition of the validation factor for
coverage, Sect. 6 discusses a usage scenario and finally Sect. 7 concludes the
paper.

2 Related Work and Background

Risk Assessment Methodologies. The most common risk model is based on
two factors: likelihood and impact. Currently, there exist different methodologies
and tools supporting the two-factor risk assessment. OWASP [10] includes a risk
assessment framework based on the two-factor evaluation. In the OWASP risk
rating methodology the likelihood is estimated by assessing parameters related
to threat agents (skill level, motive, opportunity and size) and vulnerabilities
(ease of discovery and exploit, awareness and intrusion detection) while, for the
impact, it takes into account technical impact (loss of confidentiality, integrity,
availability and accountability) and business impact (financial and reputation
damage, non compliance and privacy violation).

MEHARI (MEthod for Harmonized Analysis of RIsk) [6] is a free, open-
source risk management methodology where the risk assessment task is decom-
posed in three main activities: (i) risk identification i.e., identification of assets,
vulnerabilities and threats, (ii) risk estimation in terms of seriousness and (iii)
risk evaluation in terms of its acceptability. As for OWASP, also MEHARI con-
siders the two-factor risk but, in this case, both likelihood and impact are consid-
ered intrinsic (i.e., with no consideration of security measures) and then reduc-
tion factors may be applied (i.e., dissuasion and prevention for likelihood, and
protection and palliation for impact).

EBIOS [3] is a risk assessment tool supporting the two-factor risk model. Dif-
ferently from the others, it stresses the importance of the impact generated from
different sources as humans, services, financial, legal and reputation. The assess-
ment criteria used in EBIOS deal with exposure (dependency and penetration)
and cyber reliability (maturity and trust).

When considering cybersecurity frameworks, we can relate the mentioned
risk-assessment methodologies as follows. The mapping of OWASP risk rating
methodology to the security framework NIST is such that some NIST functions
are covered (Identify, Protect, Detect). However, considering the Respond and
Recover NIST functions, the methodology suggests the general rule to fix first
the most severe risks, but it does not offer a detailed approach to do it. Instead,
MEHARI and EBIOS are strictly compliant with ISO 27000 family, with direct
references to standard ISO 27005. Moreover, EBIOS offers details about security
principles (e.g., anticipation, protection, defense, resilience) very similar to NIST
functions, meaning that such tool can be applied to NIST framework.
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Attack Graph Model and Risk Estimation. An attack graph represents
possible ways via which a potential attacker can intrude into the target network
by exploiting a series of vulnerabilities on various network hosts and gaining cer-
tain privileges at each step. A huge body of literature exists about attack graph
generation and analysis and such models can be used both on-line (e.g. [2]) and
off-line (e.g. [1]) to support security operators in their decision making process.
More in details, focusing on the off-line usage, attack graphs can be used to

– determine optimal locations for the firewalls and intrusion detection/
prevention systems [9,14],

– compute network security evaluation metrics [12,18,21],
– perform network security risk analysis [2,4,7] and
– compute near-optimal proactive defense measures [7,22].

Depending on the way information are represented, we may have two main cat-
egories of graphs:

– State-based representations [19] depict the whole state of the network for each
node in the graph. The main advantage of this representation is its complete-
ness (given the set of vulnerabilities in the network, the Attack Graph is able
to represent all the possible attack scenarios). However, this is also its main
limitation as it brings to an exponential cost (computation, size of the graph)
with respect to the size of the network and the number of vulnerabilities.

– Logical Attack Graphs [16] are bipartite graphs representing the dependencies
between vulnerabilities and security conditions. In this representation, dupli-
cate paths are eliminated and a more compact representation is provided that
scales polynomially with the number of vulnerabilities.

There are a number of attack graph generating tools and techniques, i.e., TVA
(Topological Analysis of Network Attack Vulnerability) [15], NETSPA (A Net-
work Security Planning Architecture) [8] and MULVAL (Multihost, multistage,
Vulnerability Analysis) [17], that starting from a description of the environment
(mainly from topology, routing restrictions and vulnerability scans) are able to
generate the resulting attack graph. An alternative approach is to apply corre-
lation techniques on network datasets to create attack graphs.

It is interesting to note that almost all the attack graph models and tools
described here support the risk estimation. However, the risk is computed by con-
sidering only technical aspects, with governance aspects not taken into account.

3 Multi-layer Model

In this section, we briefly describe the multi-layer model defined in the context
of the PANACEA Project1 [5,11] that will be used as reference to identify rele-
vant layers considered by our methodology to map security controls. This model
extends the classical concept of attack graph by including multiple dimensions
1 https://www.panacearesearch.eu.

https://www.panacearesearch.eu
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where vulnerabilities can be identified and exploited to generate attack paths.
We can distinguish two main different but interconnected components in the
model:

– Multi-layer Attack Graph: modeling possible multi-step attacks exploiting the
organization’s vulnerabilities (both of the assets and the personnel) to reach
a target.

– Business Dependency Model : modeling the business processes of the organi-
zation and their dependencies to other business processes, services and assets.

Multi-layer Attack Graph. As pointed out in Sect. 2, existing attack graph
models are relatively easy to build, e.g., by scanning the corporate network for
technical vulnerabilities (i.e. CVEs) through automatic tools (e.g. [8,15,16]) but
unfortunately they do not consider other sources of vulnerabilities like, for exam-
ple, the human being. Indeed, an organization might install the most advanced
technical solutions to protect its assets, still an attacker may circumvent them
by exploiting a poorly trained employee which, e.g., leaves its credentials unpro-
tected or is prone to provide sensible information through a social engineering
attack or a phishing campaign.

The multi-layer attack graph model [5] is based on three interconnected layers
(cfr. Fig. 1): (i) the human layer aiming at modeling employees, their relation-
ships and personal vulnerabilities., (ii) the network layer modeling the ICT part
of the company and (iii) the access layer modeling the credentials that humans
(represented in the human layer) may use to access devices (residing in the
network layer).

The aim of the human layer is to model how an attacker can compromise indi-
vidual identities by exploiting human vulnerabilities of the personnel and their
relationships. As shown in Fig. 1, the human layer is a subgraph of the multi-
layer attack graph. Each node represents a possible level of use that an individual
may get on digital identities. Edges are associated to exploitable human vulner-
abilities. A directed edge from a node xi to a node xj , associated to a human
vulnerability v, represents the fact that the human hi having level of usage xi

on its own digital identity (or an attacker which has gained such usage privilege

Fig. 1. Overview of the multi-layer model.
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by exploiting a previous vulnerability) can get level of usage xj on the digital
identity of another individual hj by exploiting the human vulnerability v on
hj (e.g., a social engineering attack). Notice that the human layer is a multi-
graph, where multiple edges between the same pair of nodes are characterized
by different human vulnerabilities.

The network layer has the aim to represent the ICT network infrastruc-
ture serving the organization mission and used by individuals represented in the
human layer. Devices expose (technical) vulnerabilities that can be exploited
by an attacker to gain access on them. An important concept to model cyber-
attacks over IT devices is the privilege level that an attacker can gain on such
assets. For instance, an intruder might start an attack from the Internet, i.e.,
with no privilege on the internal IT infrastructure of the organization, or in the
case of an insider threat, they might have an initial given privilege on a machine.
As a consequence of attack steps that involve vulnerability exploits, they might
raise their privilege level on the current machine (privilege escalation) or gain
privileges on other machines (remote privilege gain). To model this, each node
of the network layer subgraph is associated to a given privilege level on a given
device. A directed edge from a node zi to a node zj , associated to a (technical)
vulnerability v, represents the fact that an attacker having privilege level zi on
a device di can get privilege level zj on a device dj by exploiting vulnerabil-
ity v on dj . Notice that also the network layer is a multi-graph, meaning that
there can be multiple edges between each pair of nodes associated to different
vulnerabilities.

Individuals are authorized to use assets via various kinds of access credentials,
such as badges, tokens, or user accounts, which provide, to various extents,
authorization/authentication mechanisms to the network assets. A credential
represents the ability of an individual, having a given digital identity, to access
a particular asset.

The aim of the access layer is to represent such credentials. Thus it is the layer
that connects the human layer with the network layer (cfr. Fig. 1). In particular,
nodes of the access layer subgraph represent credentials (e.g., a pair 〈username,
password〉, a badge, a biometric key, etc.) or a two-factor authentication that
is composed by multiple credentials. Nodes are characterized by a type (e.g.,
user/password pair, badge, token, etc.) and a level of robustness that can be
used in order to weight associated risks when computing attack paths.

The inter-layer edges (cfr. Fig. 1), are those that connect the subgraphs of
the three layers to form the multi-layer attack graph. An edge from a node x
in the human layer to a node y in the access layer, represents the fact that an
individual with digital identity x has a credential y, while an edge between y
and a node z in the network layer represents the fact that credential y allows to
get privilege z on the associated device.

Business Dependency Model. The business dependency model describes the
business-level entities and their interdependencies. The business-level entities are
partitioned into three disjoint sets: (i) business processes, (ii) services and (iii)
assets. The assets of the business layer are the direct counterparts of the assets
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of the network layer (e.g., physical/virtual hosts, network equipment, hardware
devices, etc.) The services are the direct counterparts of the services and applica-
tions running on network layer assets (e.g., software components, applications,
etc.). Therefore, there is an interconnection between the network layer of the
multi-layer attack graph and these two classes of nodes of the business depen-
dency model (cfr. Fig. 1). Conversely, business processes have no direct counter-
parts in the other layers of the model and represent the business processes of the
organization. However, there may be an interconnection between a business node
and a node in the human layer, e.g., modeling the fact that a particular member
of the organization is fundamental to run a given business process (cfr. Fig. 1).
The business dependency graph is a directed graph where there is a node for
each business-level entity. A directed edge from a business-level entity be to a
business-level entity be′ models the fact that be depends on be′. In other words,
in order for be to function properly, be′ has to function properly.

4 An Assessment Validation Methodology

In this section we present our methodology to support the assessor in the security
control coverage validation task and how it is supported by the multi-layer model.
The proposed methodology is composed mainly of three sequential steps:

1. performing a control-based security assessment
2. weighted mapping of each security control on the multi-layer model
3. computation of validation factors confirming or suggesting review for the

coverage level of the security controls.

In the first step, the security assessor conducts interviews with stakeholders to
evaluate the compliance with respect to a set of security controls, collected by
applicable technical standards, regulations, best practices. During this activity,
the assessor collects, for each relevant security control, a set of evidences that
will be used to finally score its coverage and the maturity of implementation. Let
us note that, in real scenarios, this activity is prominently conducted manually
by the assessor and his/her team, and is heavily based on the expertise of the
assessor and on an inherent bias that can influence the final coverage estimation.
Most of these activities tend to overweight technical aspects over other consid-
erations (e.g., business processes, human component). Finally, the results of the
evaluation can be biased also by the specific set of collected evidences.

The second step of our methodology provides the instrument to exploit the
multi-layer model in the security assessment, in the form of a mapping between
the set of security controls that is used during the assessment and the multi-
layer model. In this way, the assessor can, for each security control, focus the
attention on the specific layers one at a time and check if proper evidences have
been collected for it, refining in this way the initial activity. This effort puts the
focus on the construction of the mapping. Each security control can be mapped
along the following dimensions:
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Table 1. A sample of mapping for a subset of controls ISO 27001:2013 (H - Human,
N - Network, A - Access, B - Business).

Control ID Control name H N A B Compl Operat Design time Run time

A.5.1.1 Information

security policies

1 0 0 3 4 0 2 0

A.6.2.1 Mobile device

policy

1 3 2 0 4 3 2 0

A.7.2.3 Disciplinary

process

4 0 0 2 4 0 2 0

A.8.1.2 Ownership of

assets

NaN NaN NaN NaN 4 0 2 0

A.9.2.3 Management of

privileged access

rights

0 0 4 0 0 4 0 2

A.10.1.1 Policy on the use

of cryptographic

controls

0 4 0 2 4 2 2 2

A.11.2.1 Equipment siting

and protection

0 4 4 0 0 4 0 2

A.12.4.1 Event logging 0 0 0 3 0 4 0 2

A.13.2.4 Confidentiality or

non disclosure

agreements

4 4 4 4 3 4 2 0

A.14.2.2 System change

control procedures

0 0 0 4 4 0 2 1

A.15.1.3 Information and

communication

technology supply

chain

NaN NaN NaN NaN 4 0 2 0

A.16.1.7 Collection of

evidence

4 4 4 4 4 0 2 2

A.17.2.1 Availability of

information

processing

facilities

0 0 0 4 0 4 0 2

A.18.2.3 Technical

compliance review

0 0 0 4 4 0 2 0

– Lifetime: allows to link a security control to a specific part of the security
lifetime by distinguishing between controls verified against design aspects of
the system (e.g., policy design, network design, system configuration, etc.) and
those verified on aspects related to execution time. In most cases these two
dimensions are disjoint; however, some controls may be related, to different
degrees, to both. An example is represented by security control A.7.2.1 of ISO
27001. This control, which regards “management responsibilities”, deals with
compliance with policies and procedures, and therefore is mainly run-time.
However, it implies also that policies and procedures must be well-designed
in order to be applied, so it is linked to design time aspects too.

– Impacted layer weight : the controls are mapped to each layer of the multi-
layer model (i.e., network, human, access, business) with a certain weight
specifying how much they deal with human, access, network and business
layers.
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– Management level : models the impact of the security control over the busi-
ness operational structure or the security organizational structure. It follows
the definition by Von Solms [20] about the Information Security Governance
model.

Concerning layers and management levels we map each security control with
an integer weight between 0 (control totally not related to the layer/management
level) and 4 (control totally related to the layer/management level). With such
scale we can map the many different aspects that are inside layers and manage-
ment levels. Instead, for the lifetime we introduced an ordinal scale with values
LOW-MEDIUM-HIGH (translated in integer scale with values 0–1–2) defining
how much the security control is related to the design and/or run-time.

We mapped all the security controls of ISO 27001 to our multi-layer model.
Table 1 reports the mapping for a subset of these controls. We provide the
full mapping as a supplemental material2. Let us note that some controls (e.g.
A.9.2.3, A.14.2.2, A.17.2.1, A.18.2.3) are completely mapped in only one of the
layers of the multi-layer model while other controls such as A.6.2.1 and A.13.2.4
insist on multiple layers due to their generality.

In addition, there exist few controls for which a meaningful mapping cannot
be established. Indeed, for controls A.8.1.2 and A.15.1.3 a “NaN” value is set,
meaning that they cannot find a suitable mapping to the multi-layer model.

In the third and final step, we are going to review the assessment, based
on the obtained mapping, and we are going to compute the validation factor
as described in the following section. The steps of the methodology are then
repeated in sequence until all validation factors confirm the coverage levels.

5 Computing Coverage Validation Factors

Validation factors play a central role in the methodology described in this paper
because they support the understanding of how, in what way and to what degree
we can better fit the security controls coverage with respect to assessment results.
Once the validation factor has been figured out, then the cybersecurity assessor
has the information about how reliable the assessed coverage level is for each
security control. We can generally identify three main cases, identified by two
reliability thresholds T1 and T2:

– validation factor > T2: the coverage level of the security control resulting
from the assessment can be considered reliable enough (Confirmed - OK );

– T1 < validation factor < T2: the results of the assessment are partially
reliable, but a supplement of analysis could be necessary. At this point the
mapping described in the previous section suggests the assessor which are the
layers in which applying such procedures (Recommended Review - RR);

2 The complete mapping can be found at the following link: https://drive.google.com/
file/d/1PHEbU38H4NtyzLiqHrZ-YczN-4NhBe5z/view.

https://drive.google.com/file/d/1PHEbU38H4NtyzLiqHrZ-YczN-4NhBe5z/view
https://drive.google.com/file/d/1PHEbU38H4NtyzLiqHrZ-YczN-4NhBe5z/view
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– validation factor < T1: the procedures considered in the assessment are not
enough for covering the security control, therefore a revision of the security
control and evidences is critically necessary (Absolutely Review - AR).

Reasonable values for such thresholds are T1 = 0.3 and T2 = 0.6, but other
assignments are possible depending on the context. The computation of the
validation factor is based on the assessment information collected in step 1 and
the mapping produced in step 2. In the following we report how each of these
pieces of information is interpreted in the computation of the validation factor:

– Coverage (cv): is the coverage level of the security control (i.e., the extent
to which the provisions of the control are implemented). The coverage level
is derived directly from the assessment and can assume the values C (Fully
Covered), PC (Partially Covered) or NC (Not covered).

– Lifetime (lt): whether the control can be implemented at run-time or design-
time; the rationale for this parameter is that if a control is implementable at
run-time, it is generally easier to remedy and study. The parameter lt should
be put at 0 if the control is totally design-time, 2 if it is totally run-time and
1 in all cases in which the distinction between the two is not evident.

– Management Level (ml): represents the extent to which the control is related
to security operational management rather than compliance management.
We account for this information as, generally, operational actions are more
explicitly defined than compliance ones, thus, the coverage level of a secu-
rity operational level control has more significance with respect to that of
a compliance level control. Therefore, the confidence in a coverage level will
be higher if the control concerns operational actions rather than compliance
ones. We assign to this parameter a value between 0 and 4 (0: totally not
operational, 4: totally operational).

– gM : is the maximum gap between the level of mapping on the multi-layer
model. We assign to each security control a level of mapping to the layers
(human, access, network and business) with an integer scale [0, 4] (the same
we used for the ml value). The maximum gap between all the layers for a
specific control models the uncertainty of the mapping of the control to the
multi-layer model: the greater is the gap, the more the layers are disjoint,
meaning that the security control is more defined.

– pRC : is the reliability-coverage factor, interpreted as the degree of reliability
to which a security control coverage contributes to the analysis of the security
coverage of the assessment. We found three degrees of reliability:

• HIGH: the security control is implemented at run-time and it is mapped
in the multi-layer model;

• MEDIUM: the security control is implemented at design-time and it is
mapped in the multi-layer model;

• LOW: the security control is not mappable into the multi-layer model.
With such information and taking into account the coverage level, we pro-
duced the following table containing the values of pRC parameter for every
case:
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Reliability coverage HIGH MEDIUM LOW

C 4 3 1

PC 3 2 1

NC 1 1 1

Considering the parameters described above the validation factor can be
computed for each security control mapped in the multi-layer model with the
following formula:

validationfactor =
lt + ml + gM + pRC

ltmax + mlmax + gM,max + pRC,max

Let us remark that if the lifetime is run-time instead of design-time and the
management level is operational instead of compliance, then the validation factor
increases due to the fact that the coverage of the controls is more precise. The
more the gap between layers increases, the more the control is well positioned
into the multi-layer model and the aspects to take under observation are more
precise. Finally, the more the mapping is reliable, the more the formula is precise
and the validation factor is high. The validation factor is normalized in the
interval [0, 1] by having in the denominator the sum of maximum values for each
parameter ( ltmax = 2 and mlmax = gM,max = pRC,max = 4). Once calculated,
the validation factor represents the confidence of how much the coverage level of
the security control fits. As an example, if a security control coverage is assessed
as “completely covered” (C), and the computed validation factor is 0.4, then
it means that the security controls should be reviewed (RR). The additional
inspection of the relative mapping to the multi-layer model suggests which layers
and associated security elements should be reviewed.

Fig. 2. Validation factor distribution in different cases of controls coverage.

5.1 Measurement Accuracy

In this section we illustrate the accuracy and reliability of the validation factor.
For this purpose, we evaluate all possible cases of assessment for each security
control of ISO 27001:2013, and we use such information to analyze the statistical
distribution of data. The results are reported in Fig. 2: the behavior of the three
cases (C/PC/NC) is the normal distribution evaluated through mean (μ) and
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standard deviation (σ) in each case of coverage level (all C, all PC and all NC),
and then applying the normal distribution function:

f(x;μ, σ) =
1√
2πσ

e− (x − μ)2

2σ2

The mean and standard deviation in the three cases are respectively:

– μ = 0.701754 and σ = 0.243285 if controls are all covered;
– μ = 0.637845 and σ = 0.230917 if controls are all partially covered;
– μ = 0.545739 and σ = 0.198709 is controls are not covered.

We use such analysis for the evaluation of the accuracy and reliability of the
validation factor because it expresses how much the reliability of coverage level
can vary in the different cases, considering the average value. What the data
shows is that the more the security controls are covered, the more the disper-
sion increases; in other words, the more a security control has a high coverage
level, the more the variability of the validation factor increases (but still remains
limited). This is due to the fact that when a security control is assessed near
the full coverage, it means that many aspects of the control are assessed, and on
each of them, depending on the mapping, the multi-layer model can express their
validity or not. Instead, when a security control is assessed as not covered (or
near low values for coverage), it means that many aspects of the security control
has been found as not covered, or not considered, and the resulting validation
factor from the multi-layer model is more clear-cut, resulting in less variability.

The mean expresses the expectation of the impact over different layers: if the
validation factor has a very low value (e.g., lower than 0.3), it means that the
control under analysis impacts on many different layers with different weights
and thus the suggestion for the assessor is to verify that all the layers impacted
have been considered in the determination of the coverage level. The verifica-
tion can be done by using the mapping in order to identify layers that may be
included in the evaluation. Contrarily, if the validation factor has a high value
(i.e., between 0.7 and 1), it means that the control is clearly related to a specific
layer and thus the expectation is that the assessor already verified the relevant
elements in its analysis.

6 Usage Scenario

This section presents the application of the assessment validation methodology
to a realistic scenario. The context in which it is applied is related to the health-
care domain, that is showing an increased number of cyber-attacks in the last
two years (even exacerbated by COVID-19) and an attention to cybersecurity
that only lately is starting to become more deeply considered. As a resultant,
this domain represents a good scenario in which the multi-layer model can be
instantiated and provides benefits.

We applied our methodology considering as reference a unit of a hospital. The
scenario of application is based on the security controls defined in ISO 27001,
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with an assessment based on interviews and evidences collection limited only to
the technological layer. We denote this procedure as “classic assessment”. While
in principle this could be seen as a limitation, in practice many cybersecurity
assessments are based on these assumptions. We take this situation as a reference
for security assessment initiatives. ISO 27001 presents 18 categories for 114 secu-
rity controls. The usage scenario covers all the security control categories, while
not considering all the security controls for each category. Rationale behind this
choice is that some of the controls are not applicable in the scope of this usage
scenario and others are still under assessment or modeling. At the same time
all the security control categories are covered with at least 1 security control
bringing the total to 15 security controls.

Table 2. A sample of mapping with assessment for a subset of controls and the related
validation (H - Human, N - Network, A - Access, B - Business).

Control
ID

Control name H N A B Compl. Operat.
Design
time

Run
time

Cov.
Valid.
factor

Valid.
re-
sult

A.5.1.2
Review of the policies for
information security

1 0 0 3 4 0 2 0 PC 0.425 RR

A.6.1.1
Information security roles
and responsibilities

4 0 0 1 4 0 2 0 PC 0.429 RR

A.7.2.1
Management responsibili-
ties

3 0 0 3 3 4 1 2 NC 0.714 OK

A.8.1.3 Acceptable use of assets 3 3 3 4 1 4 2 0 C 0.571 RR

A.9.2.3
Management of privileged
access rights

0 0 4 0 4 0 0 2 C 0.714 OK

A.9.4.3
Password management
system

2 0 4 0 0 4 0 2 PC 0.929 OK

A.10.1.1
Policy on the use of cryp-
tographic controls

0 4 0 2 4 2 2 2 C 0.857 OK

A.11.1.2 Physical entry controls 3 2 4 1 0 4 1 2 C 0.928 OK
A.12.4.1 Event logging 0 0 0 3 0 4 0 2 PC 0.857 OK

A.13.2.4
Confidentiality or non dis-
closure agreements

4 4 4 4 3 4 2 0 NC 0.357 RR

A.14.3.1 Protection of test data NaN NaN NaN NaN 0 4 2 0 NC 0.357 RR

A.15.1.3
Information and commu-
nication technology sup-
ply chain

NaN NaN NaN NaN 4 0 2 0 PC 0.07 AR

A.16.1.7 Collection of evidence 4 4 4 4 4 0 2 2 NC 0.214 AR

A.17.2.1
Availability of informa-
tion processing facilities

0 0 0 4 0 4 0 2 PC 0.928 OK

A.18.1.4
Privacy and protection of
personally identifiable in-
formation

0 0 0 4 4 3 2 0 C 0.714 OK

Table 2 presents the results of this activity. The first two columns (Control
ID, Control Name) reports the used security controls, where the following eight
columns report the mapping to the multi-layer model valued for each of the
security controls on the usage scenario. Finally:

1. “Coverage” column reports the coverage level related to security controls
coming from the classic assessment;
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2. “Validation Factor” column reports for each security control the resulting
validation factor computed from the mapping;

3. “Validation Result” column reports the validity of each security control, com-
ing from the interpretation of the validation factor, in terms of three possible
results: assessment reliable (OK), assessment partially reliable (RR: Recom-
mended Review) and assessment not reliable (AR: Absolute Review).

Looking at the results, the classic assessment presents five security controls fully
covered, six partially covered and the remaining four not covered. We observe
that security controls A.5.1.2 (Security policies review) and A.6.1.1 (security
roles and responsibilities) represent similar situations in which the original
assessment set a partial coverage, and that both controls are mapped to two
layers with one layer prominent with respect to the other (Business layer for
the first and Human layer for the second). This brings to a moderate validation
factor that potentially could lower the coverage of the relative security control:
for this reason it is recommended to review the assessment looking at the rel-
ative mapped layers. Focusing on security control A.8.1.3 (Acceptable use of
assets), the classic assessment produced a full coverage for this control (C). The
multi-layer model identifies Human, Access and Business layers as important,
on top of the technical layer (Network). This mapping brings to a moderate
validation factor, meaning that the assessment should be verified for elements
concerning Human layer (e.g., misuse of organizations devices) or Access layer
(e.g., verification of permissions policies). For this reason the final outcome is a
recommended revision, that could probably lead to a PC coverage level. Secu-
rity control A.9.2.3 (Privileged access rights) is assessed as fully covered (C).
The multi-layer model identifies the Access layer as the only one interested by
this control, with some contributions coming from lifetime (Design time) and
management level. Overall the validation factor is above the T2 threshold and it
confirms the coverage level as fully covered. Finally, we observe that the security
controls A.14.3.1 (security of test data) and A.15.1.3 (ICT supply chain) have no
mapping with the multi-layer model. A.14.3.1 is mapped on the security domain
while A.15.1.3 is mapped on the operational domain, and both are labeled as
design-time activities. The difference in management level provides a very low
validation factor for the latter and a moderate one for the former, that weighted
with high contribution for lifetime (Design time for both) brings to recommended
review for the first and absolute review for the second security control. Overall,
our methodology confirms the coverage level for 8 out of 15 (54%) security con-
trols while asks review for the other half of them, with moderate revisions for 5
controls and strong revisions for other 2.

Concluding, the usage scenario showed where the proposed methodology can
help in validating the coverage level of security controls with respect to classic
security assessment procedures, supporting a more fit estimation for coverage
level, highlighting security controls that needs a supplement of analysis and
identifying for them the layers on which additional information should be col-
lected.
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7 Conclusion

This paper explored the idea of supporting the security assessment processes
through a methodology that allows to better estimate the coverage with respect
to security controls. The proposed methodology is based on a multi-layer model
that captures the cyber-exposure from multiple perspectives, like human com-
ponent and business inter-relations. It allows the derivation of validation factors
that help in better estimating the coverage level of a security control and eventu-
ally identifying parts of the original security assessment that needs a supplement
of analysis. The identification of additional areas on which to conduct the sup-
plemental analysis can be directly inferred by the layers of the multi-layer model.
The proposed usage scenario, even if of limited scope, successfully demonstrated
the validation capabilities of the proposed methodology and the added value it
provides with respect to classic security assessment methods, allowing to model
the reliability of a security assessment considering (but not limited to) informa-
tion security governance aspects.

Limitations exist in the proposed approach that we plan to resolve in future
works. The first limitation concerns the hypothesis of a purely technological
assessment conducted with classic methods. We plan to integrate the methodol-
ogy in order to be able to assign each collected evidence to one or more of the
layers of the multi-layer model, making the methodology able to support mixed
initiative assessments. The second limitation concerns the scope of the usage
scenario. We are currently working on broadening it, eventually obtaining a con-
trolled environment that better suits a more robust validation of the obtained
results. This aspect is linked to future enhancements of this methodology, to fully
exploit the multi-layer model in supporting a complete risk assessment process.
This future evolution will allow to consider not only the coverage level of a set
of security controls, but also a formal definition of cyber-risk. In this scenario
we are developing a “risk discount factor” supported by data computed through
the multi-layer model (e.g., attack paths, human vulnerabilities) that can posi-
tively or negatively affect the risk estimation instead of only the coverage level.
Finally we are working on generalizing the mapping to a broader set of security
assessment frameworks (e.g. NIST Cybersecurity framework, CIS CSC).
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Abstract. The effective protection of critical infrastructure against
cyber and physical security threats involves many different steps from
initially the identification of risks to finally the implementation of counter
measures in the infrastructure. To derive counter measures and to come
to intelligent decisions facing the identified risks, the impact calcula-
tion plays a central role. The impact of a specific threat can propagate
through the systems of the infrastructure and thus needs to be analysed
carefully. In this paper, the role of impact propagation of cyber-physical
threats for infrastructure protection is discussed, exemplified for airport
systems. In the ongoing EU-H2020 project SATIE (Security of Air Trans-
port Infrastructure of Europe) a toolkit is developed containing two tools
for impact propagation, namely the Business Impact Assessment (BIA)
and the Impact Propagation Simulation (IPS). Both tools are described
and for a small test case the propagation of a cyber threat and the trans-
formation into a physical threat is demonstrated in a network representa-
tion as well as an agent-based model of the airport’s systems employing
the IPS.
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1 Introduction

In the world of critical infrastructure, the systems involved have direct and
indirect interdependencies and are vulnerable to each others threats, risks,
impacts and disruptions, whether deliberate or accidental, [34]. Interdependen-
cies between systems are crucial for the protection of critical infrastructures
because they can allow a failure which is seemingly isolated in one system to cas-
cade and impact several other systems [39]. For example, when there are severe
weather conditions at one airport, turning down its throughput, this causes
delays and can cause a whole continent to feel the effects as the delays prop-
agate to all other connected airports, creating further delays as the aircrafts
continue their flight schedule to other destinations, but with the delays ever
more compounded [30]. This cascading effect is predictable with appropriate
propagation models.

Cyber-threats are by no means immune to this phenomenon as they can quite
easily spread across networks, especially in our increasingly connected world,
but also cyber-threats can even turn into physical or even safety threats [17].
Cyber-threat impact assessment allows organizations to understand how a cyber-
threat can damage their information technology (IT) infrastructure and identify
the critical services that could be impacted by the threat. These techniques
distinguish themselves in three key points: impact modelling, propagation and
assessment.
For impact modeling, a correlation model is often constructed using an inter-
connected graph [1,7,11,12,21,28,29,31,43] that profiles relationships between
organization assets and critical services. Some portray impact modelling [1] by
inspecting communication exchanged by IT devices to represent the organiza-
tion’s environment as an interconnected graph. Other works [12] expand this
graph to also include a higher-level mapping between assets and the organiza-
tion critical services. Also, some studies [43] integrate a security layer to include
information about how vulnerable assets can influence impact propagation.

Within the air transport environment, it is not difficult to imagine how risks
to a cyber-attack can result in potential physical damage. In fact, a ransomware
attack to a Cleveland Airport server in April of 2019 prevented the displaying
of the flight information to passengers, preventing them from finding the correct
gate, causing confusion, crowds, and panic among the passengers, then overbur-
dening the airport staff, and causing flights to be grounded [27]. There was no
further physical attack, but the risks to one were greatly increased because of
that single cyber-attack.

Airports in particular are highly complex systems with a multitude of stake-
holders, each of them with their own intentions and goals. Various interconnec-
tions exist between these stakeholders, and between the assets of the airports
(e.g. airports themselves, baggage, passengers, etc.), making it difficult to assess
the impact of a particular action on the whole airport and even system of con-
nected airports. Therefore, it is vital to quickly detect threats and understand
its potential impact on the rest of the complex system. This is not a novel
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issue, though, so there have been some attempts at aiding this understand-
ing of propagating threats and coordinating efforts between stakeholders. The
first was the airport collaborate decision making (A-CDM, [5,6]), which just
shared some basic airside information (e.g. the Target Off-Block Time, TOBT).
Then the Total Airport Management (TAM, [9,36]) research aimed to provide
stakeholders with a holistic view of the airport, its performance and causes for
degradations. The necessity of better collaboration was underpinned by a job
and task analysis at German airports which revealed that coordination was still
lacking between stakeholders, and airport performance was sub-optimal due to
the lack of timely or precise information [35]. As a concept, TAM is built around
the idea of an Airport Operations Centre (APOC) where the main stakeholders
are collaboratively working on a plan to improve the airport performance. More
recently, [41] presented a concept for a what-if tool for TAM, to support decision-
making and predicting overall effects of stakeholder actions and the comparison
between several alternatives.

The lessons learned in TAM can be transferred to security research in aviation
as shown by SATIE. Here it is foreseen that security practitioners and airport
managers collaborate more efficiently during a crisis to achieve its mitigation.
This can be done in a security operation centre (SOC), where the operators are
informed about alarms and the reasons of the alerts. In a SOC emergency, pro-
cedures can be triggered simultaneously through an alerting system in order to
reschedule airside/landside operations, notify first responders, cyber-security and
maintenance teams towards a fast recovery. Information about impact propaga-
tion information will ultimately improve the situational awareness of the decision
makers and will lead to better and faster decisions.

However, the availability of additional information may also overwhelm
human operators and, especially in these situations, an automated decision sup-
port has the potential to assist the quick resolution of a critical situation or
even a crisis [2]. Therefore, a unified tool, taking into consideration all of the
physical and digital assets involved, their interconnections, and how threats can
propagate through the system would be ideal.

The mechanisms of probabilistic propagation between assets is applicable in
a variety of fields, but is particularly critical in the air transport world where
lives are at stake. Effective prediction of such effects allow for much more effi-
cient and responsive countermeasures to reduce those risks at a single point
which could become devastating once they propagate through the system. In
this paper, impact propagation in airport infrastructure and the correspond-
ing systems is discussed in the context of the project SATIE. Two systems of
the SATIE toolkit perform this type of impact analysis, namely the Business
Impact Assessment (BIA) and the Impact Propagation Simulation (IPS), which
are described in Sect. 2. In Sect. 3, the IPS is applied to a small test scenario
where cyber-physical threats impact some specific airport systems. Note, we
present preliminary results of the tool development in the course of the ongoing
project. In Sect. 4 the results are summarized and an outlook is given.
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Fig. 1. Simplified architecture of the SATIE toolkit.

2 Approach

2.1 SATIE Toolkit and Ontology

SATIE proposes an architecture that combines new and existing tools in order to
timely detect cyber-physical incidents, simulate their impact and deliver infor-
mation to the Security and Airport Operation Centers. Live data is captured
through several sensors and existing tools in the airport systems, which is then
analysed through several threat prevention and detection systems. These systems
will analyse data according to different perspectives and may describe events and
trigger alarms. These are sent to the Security Operation Center, namely to the
Correlation Engine, which will attempt to find possible correlations between
the messages obtained through the different sources. Querying either the Vul-
nerability Management System and the Risk Assessment Platform will supply
additional information about the events that generated the alerts, particularly
regarding possible vulnerability exploitation and affected assets. Information is
centralized in the Incident Management Portal, where a human operator can
opt to aggregate different events into incidents and query the impact simula-
tion tools in order to know which assets could be affected by a single incident,
and obtain possible mitigation strategies. Figure 1 shows a simplified version
of the overall SATIE architecture. The IPS receives incidents from the Incident
Management Portal and requests for simulation. It facilitates to the Incident
Management Portal a visualization of possible threat propagation paths and
mitigation strategies, depending on the threat under consideration.

An ontology is developed in SATIE to describe the contexts of the exchanged
messages, namely the sub-domain of incidents, impacts and assessments. The
impact’s specification is directly related to the needs of the BIA and IPS,
describing how the performance of assets may be affected, how assets affect each
other and suggesting possible mitigation strategies, each with their own expected
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performances. How different events and assets may affect each other is described
by the threat propagation path and the threat propagation event concepts
respectively.

Organization
Profiling

Threat
Propagation

Impact
Assessment  breached entry-point

attack graph

Results

connectivity between assets
threats present on assets

critical services

          formatted infrastructure 
              & mission data

airport assets

Fig. 2. Architecture of the Business Impact Assessment (BIA)

2.2 Business Impact Assessment (BIA)

The SATIE toolkit includes the BIA, that analyses how cyber-threats propagate
to the organization assets and assesses the impact caused on the organization’s
business critical services and goals. As can be seen in Fig. 2, BIA performs impact
assessment in three stages, organization profiling stage, threat propagation stage
and impact assessment stage. At the first stage, BIA gathers information about
the organization’s infrastructure using reconnaissance techniques [22] that auto-
matically query inventory system and continuously inspect IT network traffic
to discover the organization assets, and how threats can propagate by means of
communications between organization assets. The system also resorts to process
mining techniques [45] for identifying asset involvement in the organization crit-
ical services by inspecting registry of operations performed by each asset. At the
second stage, BIA simulates the propagation of a user-chosen threat based on an
attack graph model, where the goal is to determine whether a compromised asset
is likely to deleteriously affect any of the critical services of the organization. To
this end, logic programming and attack graphs are used to express the rules
and preconditions that must be met for threat propagation to occur [33]. At the
third stage BIA traverses the attack graph to identify assets affected by threat
propagation and determine the critical services compromised. The result of this
final analysis produces a report of the cascading effects the simulated threat had
on the organization infrastructure, highlighting the assets affected in each threat
propagation steps and critical services potentially damaged by the threat. Ulti-
mately, this final report may be used to aid risk analysis by simulating impact
propagation of a potential exploited threat.

For impact propagation, a model-based analysis is used and can be catego-
rized into logic-based models [1,3,4,12,14,18,21,28,29], probabilistic-based mod-
els [3,23,37,42] and sensitivity-based models [7,20,24–26,31]. Logic-based anal-
ysis approaches are based on an attack graph model that gradually analyzes the
cascading effects a cyber-threat can have on the organization assets and how
they can be exploited to compromise the critical services. Probabilistic-based
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impact propagation often uses Bayesian Networks to express how assets can be
compromised and how critical services are impacted by conditional probabilities.
Sensitivity-based approaches use active perturbation by purposely compromising
an asset to identify how it impacts the critical services. For impact assessment,
several works distinguish themselves on how they evaluate the impact propaga-
tion cascading effects on asset and critical services operability. Some use qual-
itative metrics [8,15,16,21,37,38], to evaluate the overall impact based on risk
categorization on how vulnerable assets and critical services are to cyber-threats
and how easily they can be exploited by attackers. Other works use quantitative
metrics [12,14,16,43], to measure how cyber-threats impacts the operationality,
exposure and efficiency of assets and critical services.

2.3 Impact Propagation Simulation (IPS)

The IPS follows a different approach than the BIA, i.e. the focus is more on sys-
tem’s assets and passenger behaviour than on business processes. Furthermore,
the IPS accounts for cyber and also physical threats. Even if this is not foreseen
in the project, the BIA and IPS approaches could be integrated in future work.
The IPS is based on two complementary modeling approaches, namely a network
and an agent-based model.

Network Model. The network model of IPS is based on CaESAR (Cascad-
ing Effects Simulation in urban Areas to assess and increase Resilience), a tool
developed at Fraunhofer EMI [10]. This tool simulates networks topologically
as nodes and edges. In the context of airports, the nodes are assets such as
serves, card readers, switches and edges are e.g. cables, information exchange or
influence in case of an incident. Using node and edge lists, more details can be
implemented into the simulation, including the direction of flow with the edges,
and the mean time to repair for the nodes.

Different types of threats can be modelled including ones that only attacks
certain types of nodes, or threats that change or move over time (such as a natu-
ral disaster), or ones that only affect nodes in a specific region. Once an adverse
event is simulated, nodes are removed from the model as they are damaged.
Once the threat has completed its propagation, the recovery begins with the
nodes being added back to their network once the repair times have finished.

Mitigation measures can also be implemented into this simulation tool which
allows for resilience improvements to be made. Different measures are selected
and the simulations are completed again. The effectiveness of the measures are
compared utilizing the performance time curves that the tool outputs. The mea-
sures can have different effects on the different aspects of the curve, and thus
effect the system’s resilience. Effects can be seen for example, on the damage
sustained, or the recovery required. Depending on the goal for the resilience of
the networks, the best mitigation measures can be determined. Additional mod-
els can be combined in CaESAR to determine how the threat can propagate to
other networks and investigate cascading effects. This can be done with very
different networks such as e.g. telecommunications, power and water networks.
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(a) Network structure. (b) Cyber-physical attack.

Fig. 3. Network structure for test scenario, involved systems are: Physical Access
Control System (green), Flight Information Display System (FIDS) (blue), Public
Announcement (PA) System (yellow) and others (grey). During the cyber-attack: The
initial attack is placed on node #42 (red) and propagates to #43 finally impacting
#44 and #16. The impacted nodes and the nodes of the propagation path are given
in orange. (Color figure online)

Agent-Based Model (ABM). To observe an infrastructure in various threat
situations and to explore possible states of the system, ABM can be employed
[44]. ABM has been applied in different fields such as e.g. train logistics [32],
air traffic management [40] and evacuation in case of fire [13] and respective
languages and platforms have been developed [19,46]. In this paper, we present
an ABM approach especially developed in SATIE to model and simulate the
behaviour of passengers in an airport. Passengers are modelled as individual
agents that move independently in the airport dependent on their current situa-
tion and state. The path in the airport depends on passenger attributes such as
number of bags to check-in, online check-in, walking speed, memory, flight num-
ber and airport attributes such as treatment times and general layout. The walk-
ing speed, number of bags and online check-in vary randomly. The flight number
decides on the check-in desk and gate. The memory of each agent influences
how often they check the Flight Information Display System (FIDS) monitors
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to get information on their flights. Further, they follow public announcements
(PA) and will receive new goals to walk to as announced. For both, FIDS and
PA it is assumed that passengers follow the requests announced or displayed
without questioning. However, more aspects of human behaviour will be taken
into account in the further development of the implementation.

Hybrid Model. The transformation of threats from cyber to physical moti-
vated the creation of a combined model. In the project SATIE, a hybrid model
consisting of a network representation and an ABM is developed. The network
threat propagation is triggered by received incidents, as described in Sect. 2.1 and
the ABM is executed once a transformation from cyber to physical is detected
or critical nodes such as employees or passengers are endangered. The network
model enables the holistic overall view and the ABM gives insight into detailed
processes and passenger behaviour in the airport infrastructure. The goal of
the hybrid model is to combine the holistic and detailed view to enable impact
propagation on each level of detail whenever it is required.

3 Application

3.1 The Test Scenario

The airport network structure for impact propagation is based on three airport
systems, namely the Physical Access Control System, the FIDS and the PA
System. The corresponding network representation is give in Fig. 3(a). These
networks are interrelated and the main connecting nodes are #16 and #44,
which represent employees and passengers respectively. This finding underlines
the importance of the ABM. A detailed representation of passengers and employ-
ees in the infrastructure enables to better understand the interrelations between
airport systems. The test scenario that is employed in this paper to test and
demonstrate the impact propagation using the hybrid model is based on a cyber-
attack on the PA system. During normal operation and without any threat or
interruption, the attacker announces an evacuation of the whole terminal. Here,
we simulate (i) the propagation of the cyber-attack in the network and (ii) the
impact of the evacuation announcement on the passengers with the ABM.

3.2 IPS Results Based on the Network Model

The scenario assumes an attack on the workstation, node #42, which is linked to
the remote PA server via connecting components #37, #36, #35 (in this order).
The PA server holds the database (DB) of pre-recorded messages to be used
for announcements in the airport. Another node, the remote station, node #41,
directly depends on the server and is also connected to it in the same manner
(see Fig. 3(b)). The scenario is divided into two simulations, i.e. (i) when no
mitigation option is applied during the scenario and (ii) when the PA server
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Fig. 4. Performance of the network during the test scenario. The vertical solid red
lines shows the impact on the workstation and the vertical dashed green line shows the
full recovery. The blue area above the curve represents the impact and the system’s
resilience. Top: No mitigation option. Bottom: With mitigation option. (Color figure
online)

has installed a software for mitigation which identifies unauthorized requests for
modification in the DB.

In absence of this mitigation measure, the workstation is attacked at t = 15
mins in the simulation. This is shown in the upper graphic in Fig. 4 as the red
vertical line. With the access to the workstation, the server credentials are stolen
and a faulty entry is updated in the DB. The attack on the DB is placed in the
simulation at t = 30 mins. As a result, all the connected components and the
PA amplifiers (node #39) are assumed to be compromised and as an impact
the employees and the passengers are supposed to evacuate the airport building.
It is assumed that it takes 30 min to identify and clear the workstation of the
malware and another 30 min to restore the server to the previous working stage.
As soon as the server is restored, all the connected components are considered to
be working as expected in the next time step (5 min later). The passengers take
another 35 min from this stage to get to their normal operating stage (represented
by the green vertical line in Fig. 4).

In presence of the mitigation technique, the workstation is attacked at t = 15
mins, but the server is not impacted. So, all the connected components are
shielded from the attack and the airport operates in normal manner, but with
reduced performance, as the workstation is not functioning properly (see the
lower graphic in Fig. 4). It takes 30 min to restore the workstation and the per-
formance of the system is back to 100% at t = 45 mins (green vertical line).
These results are not very surprising but demonstrate the principal that applies
in small networks with limited mitigation possibilities. The impact propagation
and mitigation gets easily quite complex in larger networks which will be con-
sidered in the course of the project.
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3.3 IPS Results Based on the ABM

Once the server and the adjacent nodes are compromised, it is assumed that the
PA system can be manipulated. In this scenario, the evacuation of all passengers
is announced which is represented in the network model by an effect on asset #44.
However, the degradation and restoration of this node in the network can only
be roughly assumed. At this point the hybrid model triggers the ABM to better
understand and estimate the impact on the passengers. First, normal operation
is simulated with the ABM, which is passengers entering the airport from the
outside area, going to check-in and bag-drop in the landside area and moving
though security to the airside area and gates. In the simulation, passengers are
assumed to move from the gates directly to their planes. The airport layout and
simulation under normal conditions is presented in Fig. 5.

Fig. 5. Layout for the ABM containing doors (blue), check-in areas (yellow), security
screening area (green), gates (brown) and FIDS monitors (red). Agents are presented
as black dots. (Color figure online)

Second, at t = 30 mins during the simulation (vertical red line in Fig. 4), the
evacuation is announced. Passengers in the airside area, will leave the airport
towards the gates. All other passengers leave the airport towards the outside or
parking area. The respective number of passengers in each area are shown in
Fig. 6.

Note, that the number of passengers in the airside area is not given in Fig. 6
for readability of the graphic. From minute t = 10 on passengers arrive at the
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Fig. 6. Passenger behaviour in two of the airport areas, i.e. outside (parking area)
and landside as a function of time during the test scenario. The area below the curve
for passengers on the landside is given in blue (dark area) and for passengers on the
outside in yellow (bright area). At t = 30 mins the evacuation is announced (vertical
solid red line). At t = 90 mins the passengers are allowed to enter the airport again. For
reference the time the network has fully restored after the attack without mitigation
option is given as vertical dashed green line at t = 125 mins. Top: No mitigation
option. Bottom: With mitigation option: The time for passing the security check was
reduced assuming more desks have been opened. (Color figure online)

airside and converge to a relatively constant number of around 5 passengers.
During the evacuation they leave to the gates and after the reopening of the
airport the number rises again to around 5 passengers. Further, the time of the
simulation starts at t = −16 mins representing a correcting factor to align the
time of the announcement of the evacuation between the network model and the
ABM at t = 30 mins. In the ABM the evacuation was triggered 16 min later
than in the network model as it needs some time to converge. This needs to be
taken into account when further developing the hybrid model.

It is shown in the upper plot of Fig. 6 that the original number of passengers
before the attack happened, is no longer reached because a crowd of people is
entering the airport after the evacuation and additional passengers arrive at the
airport. It is observed that the current layout of the airport and the respective
number of security check desks is not sufficient to handle the large number of
passengers. Therefore, a mitigation option has been introduced (see Fig. 6, lower
plot). The treatment time at security check desks is reduced which is assumed to
be equivalent to opening additional desks. The number of passengers after the
evacuation again increases but the additional capacities at the security check
helps to normalize the number of passengers landside at around t = 150 min.

Finally, we observe for the small airport layout and the basic principals in use
that attack situations impact the airport processes and that normal operation
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is interrupted. The test scenario shows how the passengers gather in the outside
area which represents the transformation of the attack and the corresponding
impact from cyber to physical. Further, the crowd of passengers forming in
the parking area might be an easy target for additional physical attacks. In
comparison to the results using the network model and the assumptions made
for restoration of nodes, it is observed that only with mitigation options in place
after the evacuation, a restoration to normal operation is possible even in this
very simple example. The IPS will allow for a more complex infrastructure to
quantitatively describe the impact taking into account resilience principals.

4 Conclusion

Small changes in one place, to one object, can proliferate and spread through-
out connected networks causing devastating and seemingly unpredictable large
changes elsewhere. Critical infrastructure is fundamental to protect and yet is
quite vulnerable to these kinds of effects due to its complexity and interconnect-
edness, and to the fact that it is often sought after as a target for attacks because
of its potentially fatal repercussions. Therefore, having meaningful and accurate
modeling of how particular threats and risks can propagate through these critical
infrastructure systems would greatly enhance the stakeholders’ ability to better
determine where countermeasures would be most effective in limiting the effects,
should such an attack occur.

The described SATIE toolkit collects live data from airport systems, which is
then analysed by threat prevention and detection systems, which can then elicit
an event or even an alarm when a potential vulnerability is being exploited. The
centralized user interface allows the Airport Operation Center personnel to have
an easy overview of the situation, not requiring inquiring with multiple systems
and having to manually determine if suspicious activity is occurring. The two
described threat prevention and detection tools address two different subsets of
threats: the BIA assess cyber-threats and how they affect the performance of
business processes, while the ISP analyses both physical and cyber-threats and
how they impact assets negatively. The combination of the two ensures the full
coverage of assets and processes within an organization, to both physical and
cyber-threats.

Through the test cases of an attack on the PA system, demonstrating not only
how the cyber-attack can turn into a physical attack to people gathered outside
of the airport, also revealed how it can influence other systems and processes of
the organization (i.e. the check-in counters and security check desks). A hybrid
approach consisting of a network representation of the airport and an ABM was
employed to simulate the processes during the attack on the involved airport
systems. The simulations presented here are a first step in the development of
the hybrid model for the IPS in SATIE. The network model represents the top-
down view based on assumptions about connectivity of nodes and repair times
whereas the ABM enables to observe what will happen with only passenger
attributes being defined, representing the bottom-up perspective. Further work
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involves that the network model and ABM need to be aligned in time and the
communication between the tools needs to be automated. The ABM specifically
is still lacking some parts of human behaviour such as e.g.. group- and panic
dynamics. The network model in particular needs to be extended with further
airport systems and more mitigation options need to be defined. Finally, the
model will be designed to be applicable to other critical infrastructures and the
respective impact analysis.

Complex systems are ever-more present in our world as systems and people
become even-more connected. When the functioning of these systems is instru-
mental in upholding and supplying our society with its necessities (e.g. water,
electricity, food, movement, etc.), then a more holistic and complex threat mod-
elling is necessary to better predict, understand, and then mitigate its effects.
The toolkit used in SATIE aims to clear the sky for future endeavours of improv-
ing cyber- and physical security around the world.
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Linköping, Sweden

{chih-yuan.lin,simin.nadjm-tehrani}@liu.se

Abstract. Supervisory and Data Acquisition (SCADA) systems control
and monitor modern power networks. As attacks targeting SCADA sys-
tems are increasing, significant research is conducted to defend SCADA
networks including variations of anomaly detection. Due to the sensitiv-
ity of real data, many defence mechanisms have been tested only in small
testbeds or emulated traffic that were designed with assumptions on how
SCADA systems behave. This work provides a timing characterization
of IEC-104 spontaneous traffic and compares the results from emulated
traffic and real traffic to verify if the network characteristics appearing
in testbeds and emulated traffic coincide with real traffic. Among three
verified characteristics, two of them appear in the real dataset but in
a less regular way, and one does not appear in the collected real data.
The insights from these observations are discussed in terms of presumed
differences between emulated and real traffic and how those differences
are generated.

Keywords: SCADA · Traffic characterization · IEC-104 · Timing
analysis

1 Introduction

A modern power distribution system is a cyber-physical system comprising a
network of geographically distributed devices and processes. Supervisory Con-
trol and Data Acquisition (SCADA) systems are used to control and monitor
the network and processes. The emergence of attacks targeting SCADA systems
and the controlled processes makes SCADA security a pressing issue [6,8,18].
Research on defending SCADA networks against such intrusions requires traffic
datasets to develop, evaluate, and compare different defence mechanisms. Due
to the secrecy of SCADA systems as part of critical infrastructure, real traffic
is not openly available for the research community. Where data sharing from a
large testbed is available, for example, in the case of iTrust testbed data from the
EPIC and SWaT testbeds [11], the packet flows have been generated from one
of the many possible SCADA protocols (CIP, GOOSE, MMS). Unfortunately,
c© The Author(s) 2021
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many defence mechanisms that need to be tested with other protocols, e.g. Intru-
sion Detection Systems (IDS) for IEC-60780-5-104 and IEC-61850 protocols are
tested on a small-scale testbed [24] or with simulated/emulated datasets [13,25].
Hence, how reliable are the simulated/emulated datasets has become a crucial
question for the development of SCADA-specific IDS.

IEC-60780-5-104 (hereafter referred to as IEC-104) protocol is an interna-
tional standard of data transmission between an electric power SCADA cen-
ter and outstations over TCP/IP and widely used in Europe [7]. Unlike other
SCADA protocols, such as Modbus, comprising mainly request-response commu-
nications triggered by a polling mechanism from the SCADA center, IEC-104
traffic contains a great deal of spontaneous communications [21]. In the spon-
taneous communication mode, field devices in the outstations initiate messages
when the monitored measurements of process variables change or fall outside a
predefined range.

Most of the research on IDS for SCADA networks model the request-
response communications [5,12,23,25] but fewer solutions are available on spon-
taneous communications due to the lack of understanding of spontaneous traffic.
Although Lin and Nadjm-Tehrani [19] applied pattern mining techniques based
on Probabilistic Suffix Tree (PST) to two emulated IEC-104 datasets in order
to discover timing patterns, study of IEC-104 traffic characteristics is still in its
infancy. Detailed knowledge of how spontaneous traffic behaves in a real network
is necessary for the development of SCADA-specific IDS and improved SCADA
network simulations/emulations.

This work first reviews potential flow-based characteristics suggested in liter-
ature, and then provides an empirical study of spontaneous traffic generated in
a real-world utility with respect to the reviewed characteristics. It also performs
a comparison with the emulated traffic used in previous works [19,24].

Our primary contribution in this study is a detailed timing-based charac-
terization of IEC-104 spontaneous traffic collected from a real power station.
The results can be a first step to arrive at a traffic model when deciding about
features and modeling approaches for anomaly detection, expanding the possibil-
ity of testing those IDS so far only tested with simulated/emulated traffic. The
secondary contribution is the outcome of the comparison between behaviour of
traffic from real and emulated power networks. It suggests the emulated traffic
generated in earlier works may not be realistic enough. Some modifications could
be made in those testbeds to improve the usability of the datasets generated for
SCADA security research.

2 Related Work

To guide and facilitate intrusion detection research for SCADA systems, network
analysis and characterization of SCADA traffic has been an active research area.
Most of the works focus on characterizing high level attributes such as band-
width, port number, and the number of protocols. Barbosa et al. [3] conducted a
comparative analysis of SCADA traffic from water treatment facilities and nor-
mal IT traffic. This study found that SCADA traffic lacks traffic patterns that
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are used to model IT traffic. The results indicate the need for SCADA-specific
modeling approaches for anomaly detection. In separate work, Barbosa et al.
[4] conducted another comparative analysis of SCADA traffic and SNMP traffic
and found that both of them exhibit periodicity. Jung et al. [14] characterized
SCADA traffic of a power station with variations in frame sizes, TCP connects,
port number, and initial sequence number. In a later work, Formby et al. [9] fur-
ther studied the initial sequence number attribute in the same traffic and found
predictable patterns.

As more intrusion detection studies focus on protocol-specific models, more
protocol-specific attributes are explored. Formby et al. [10] characterized DNP3
power grid traffic and examined a few common hypotheses such as stable
traffic volume and regularity of DNP3 poll time. Mai et al. [22] character-
ized IEC-104 power grid traffic regarding the number of occurrences of dif-
ferent instructions and the directions and magnitude of IEC-104 flows, where
the flow is defined by the source and destination addresses with the 4-tuple
<srcIP, srcPort, dstIP, dstPort>. Lin and Nadjm-Tehrani [19] characterized
emulated IEC-104 spontaneous traffic with a focus on the predictability of tim-
ing patterns.

The current paper examines three characteristics of IEC-104 spontaneous
traffic using data collected from a real power station. Two of the characteristics
were proposed or observed in earlier work [19]. One characteristic observed in the
emulated datasets of the earlier work is confirmed when analysing the real traffic
while another characteristic is shown to exist only in the emulated datasets. The
third characteristic will be discussed in more detail in Sect. 5. The confirmed
characteristics have already guided the development of an anomaly detector [20]
for IEC-104 spontaneous traffic.

3 Background on the IEC-60780-5-104 Protocol

The IEC-104 protocol is widely used in modern SCADA systems to control and
monitor geographically dispersed processes, especially for power station automa-
tion. The main advantage of IEC-104 is that it connects a control station (Mas-
ter Terminal Unit, MTU) and one or more substations (Remote Terminal Unit,
RTU) via a standard TCP/IP network. The IEC-104 protocol defines two direc-
tions for data transmission: (1) monitor direction, the direction of transmission
from an RTU to the MTU and (2) control direction, the direction of transmis-
sion from the MTU to an RTU. The monitored data that are transmitted from
an RTU to the MTU are also known to be sourced at Monitor Points. Every
monitor point is configured to locate in a specific address in an RTU device and
will be identified by the address at application level.

In order to improve the communication efficiency, the IEC-104 protocol
enables not only the MTU to poll for monitor points periodically but also the
RTUs to generate spontaneous events about data changes at monitor points.
The following explains the important terminologies of IEC-104 protocols used in
this study.
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– Information Object: A piece of data containing information from a monitor
point such as measured value and time tag. A spontaneous packet may carry
more than one information object.

– Information Object Address (IOA): The address and identification of a mon-
itor point where an information object is issued from.

– Cause of Transmission (COT): A field in the application layer to specify the
type of the packet. A spontaneous packet is noted as SPONT.

– Type IDentification (TID): A field in the application layer to specify the type
of the monitor point(s) in a packet. The most common data type is Mon-
itored MEasured point in different formats such as M ME NA (normalized
value) and M ME NB (scaled value). This data type contains a measured
value from a certain IOA. The system administrator needs to set a deadband
(i.e., a range) for each monitored measured point and the RTU will send a
spontaneous event when the value falls outside the deadband. In addition,
Monitored Single Point (e.g., M SP NA) and Monitored Double Point (e.g.,
M DP NA) specifies the state of a point, such as a switch or circuit breaker.
For these points, the RTU will send a spontaneous event whenever the value
changes.

4 The Studied Datasets

This section first presents an overview of the examined datasets. Then, it
describes how the datasets are collected and preprocessed for the analysis.

In this study we analyze three different IEC-104 datasets: two emulated power
network datasets and one dataset collected in a real power station at a utility.

– SmallTB-RTUx: SmallTB-RTUx dataset is collected from a small testbed
with real commercial hardware maintained by the Royal Institute of Technol-
ogy (KTH). The setup contains four RTUs, one switch, and a user terminal
machine. The data is collected through a mirroring port on the switch. Traces
from two out of the four RTUs are used in previous work [24] and available
to us. For the sake of consistency, we follow the naming scheme of the RTUs
in the previous work and name the traffic as SmallTB-RTU1 and SmallTB-
RTU4.

– VirtualTB: VirtualTB dataset is collected in a virtual testbed developed
within the RICS project [1]. The testbed consists of an office network and a
SCADA network. The setup of SCADA network contains some twenty substa-
tions, two SCADA servers, and a virtual WAN (Wide Area Network) with 15
nodes connecting the control room and the substations. The data is collected
at the communication gateway to the WAN on the main SCADA server.
There are no network delays or traffic congestion in this virtual network.
Traces of one substation with an emulated RTU is used in earlier work [19]
and available to us.

– Real-RTUx: Real-RTUx dataset is collected from a real power facility. The
SCADA network contains several RTUs communicating with the SCADA
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server with different protocols. Among them, there are two RTUs that com-
municate through IEC-104 which are included in earlier work [20] and this
study. The traffic is collected by the utility personnel running our data collec-
tion software in their operation site, here named Real-RTUA and Real-RTUB.

To perform our timing-based characterization, we need to transform the col-
lected PCAP traces into desired formats: event sequence and time series of
flows. The process includes the following steps. (1) It starts by identifying spon-
taneous packets with COT = SPONT. (2) For all the spontaneous traffic, the
process separates them into unique flows, where a flow is defined by the tuple
<RTU(SrcIP ), IOA, TID>. Note that a packet may contain multiple informa-
tion objects and thus multiple IOA but only one TID as stated in Sect. 3. (3)
The next step in preprocessing that forms an event sequence for each flow and
records the PCAP timestamps as event arrival times for timing analysis. (4)
Finally, the process transforms each event sequence to time series by calculating
the number of events per some configurable interval of time.

No matter in which format, we split the events per flow into 10 parts, use
the first part for learning and the remaining nine parts to evaluate the stability
of the attributes. Table 1 shows an overview of the studied datasets with the
associated throughput for each RTU. The TID column lists instructions found
in the traffic from each RTU, and the last two columns present the number of
flows found and used. In the previous works, the flows with low event rates were
not included to avoid biased learning results. This study too excludes the flows
with an event rate of fewer than 0.3 events per hour since these flows contain
only sporadic events that apparently show very different attributes.

Table 1. Overview of time series obtained from the datasets.

Dataset Duration Throughput (#events/hr) TID # Flows # Used Flows

SmallTB-RTU1 12 days 19182 M ME NA 4 4

SmallTB-RTU4 12 days 10712 M ME NA 3 3

VirtualTB 6 days 2433 M ME NA 15 12

Real-RTUA 30 days 13981 M ME NA 21 19

M DP TB 8 0

M SP TB 3 0

Real-RTUB 30 days 401 M ME NA 16 14

5 Data Characterisation Methods

This section describes flow-based characteristics observed in the literature and
the way we examine the characteristics in this paper.
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5.1 A Review of Potential Characteristics

This subsection briefly reviews three hypotheses about spontaneous traffic timing
characteristics observed from earlier papers. [2,15,16,19].

– Spiky Distribution. Lin and Nadjm-Tehrani’s work [19] studies the timing
predictability of the spontaneous events based on an assumption, namely that
inter-arrival time distribution for events is spiky, without verifying it. A spiky
distribution means the probability of some inter-arrival time to be present is
higher than others as shown in Fig. 1(a).

– Timing Predictability. Timing predictability analysis addresses the
research question: can we predict when the next spontaneous event will come
by learning the historical timing data? In earlier work [19] it is shown that
in 11 out of 14 tested data sequences, there exists evidence of sequential
patterns. Hence, there is a hypothesis that historical data provides timing
predictability even in spontaneous traffic.

– Correlation. There are a number of works that model sensor signals with
clustering techniques based on correlations between sensors [2,15,16]. As
stated in Sect. 3, sensor measurements of the processes and spontaneous
events have a cause-effect relationship. The results indicate that sensors in
SCADA systems are correlated. Therefore, we propose the correlation hypoth-
esis that posits spontaneous events from different IOAs (i.e., connecting to
different sensors) could be also correlated.

Fig. 1. Distribution of inter-arrival times from a inter-arrival time sequence in the
emulated VirtualTB dataset [19]: (a) Histogram for inter-arrival times δi ≤ 10 s. (b)
The smoothed version of the sequence, bandwidth = 0.008

5.2 A Review of Characterization Methods

This subsection describes the known methods that will be used to analyze the
characteristics.

Spiky Distribution. Lin and Nadjm-Tehrani [19] propose an algorithm to learn
the areas with high probability to have spikes as legitimate areas. The algorithm
finds the relatively low point pairs on the smoothed curves of histogram as
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shown in Fig. 1(b), where the smoothing is done by the kernel density estima-
tion method with a bandwidth parameter that decides the smoothness level. The
low point pairs are considered as the boundaries of legitimate areas.

Timing Predictability. Following application of the algorithm mentioned in
the previous paragraph, the same work separates inter-arrival times into groups,
with one spike per group. The method translates the numeric event inter-arrival
time sequence observed in a PCAP file (e.g., 3.15, 3.17, 0.51, 0.48) into a sym-
bolic sequence by replacing each numeric inter-arrival time with its group symbol
in the symbolic alphabet (e.g., aabb). Then, using the symbolic sequences, the
method builds a PST for each flow in the learning phase and tests the pre-
dictability of the learned PST. In the testing phase, the method runs with a
sliding window over the symbolic sequence. With a given window size (6 sym-
bols in the mentioned study), the method queries the built PST for the next
element that is most likely to happen as its prediction.

The mentioned work evaluates the timing predictability with predication
accuracy and Kappa statistics [17]. With the resulting confusion matrix, the
observed prediction accuracy P0 is defined as:

P0 =
∑c

i=1 nii

N
(1)

where N is the number of predictions performed in the testing phase, c is the num-
ber of possible symbols (i.e., number of rows/columns of the confusion matrix),
and njk is the number of times the symbol k (ground truth) is predicted as j.
The expected prediction accuracy by a random observer is:

Pe =
c∑

i=1

(
ni+

N
× n+i

N
) (2)

where ni+ is the total number of times the symbol i appears in the testing
data and n+i is the total number of times any symbol is predicted as i. Kappa
statistics is:

Kappa =
P0 − Pe

1 − Pe
(3)

A random observer is a pseudo observer who randomly picks up a value from the
learned probability distribution of inter-arrival times. Kappa statistics compares
the observed accuracy and expected accuracy. If our prediction model is similar
to a random observer, the Kappa value will be around 0. On the other hand,
if our prediction model and the testing data contains clear sequential patterns,
the Kappa value will be close to 1.

Correlation. Spearman correlation coefficient (ρ) is a measure of the monotonic
relationship of two time series. For any two time series Xp = x− ip, . . . , xp

m and
Xq = xq

i , . . . , x
q
m, we have ranked time series R(Xp) = R(xp

1), . . . , R(xp
m) and

R(Xq) = R(xq
1), . . . , R(xq

m), where the numeric values are replaced by their rank
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in the sorting. Then, the Spearman correlation coefficient is:

ρpq =
COV (R(Xp), R(Xq))

σR(Xp)σR(Xq)
(4)

where COV (R(Xp), R(Xq)) denotes the covariance of the ranked time series and
σR(Xp) and σR(Xq) are the standard deviations.

The correlation coefficient values are between −1 and 1. The values close to
1 or −1 indicate a strong relation between the two time series in the same or
opposite direction, and values close to 0 indicate a low association between time
series.

5.3 Methods and Parameter Choices for the Comparative Analysis

The comparative analysis in this paper aims to not only understand whether the
above characteristics exist in the three datasets from Sect. 4 but also how persis-
tent they are. This subsection elaborates the workflows and parameter choices
for the comparative analysis.

Spiky Distribution. The analysis first illustrates and categorizes the Proba-
bility Density Function (PDF) of inter-arrival times. Then, it tests whether the
characteristics are stable and persistent. In this paper we will learn the legit-
imate areas with a high probability to have spikes as shown in Sect. 5.2. The
major difference between the implementation in this paper and the earlier work
is the limitation of maximum number of spikes. Our implementation can find as
many spikes as possible while the previous work has a limit on number of spikes
set as 12, which means only the twelve largest spikes can be modeled.

Further, we test if the learned results remain in the testing part of the data
using the metric of unknown data rate. The unknown data rate (UDR) is defined
as:

UDR =
nx

N
(5)

where nx denotes number of observations in the testing data that do not locate
in any of the learned legitimate areas, and N denotes number of observations in
the testing data. Thus, the lower the UDR, the higher the degree of stability of
the spiky distribution.

Timing Predictability. The timing predictability comparative analysis applies
the proposed method in Sect. 5.2 to all three datasets from Sect. 4. There are
two different enhancements compared to the earlier work. First, based on the
results of spiky distribution analysis, we can get as many symbolic alphabets
as possible from an inter-arrival time sequence. This change makes the PST
sequence model more accurate. Compared to the earlier work, the inter-arrival
times located in the spikes that are smaller than the twelfth largest spike won’t
be bundled together. Second, this study uses one-tenth of the datasets as learn-
ing data, which contains more observations than the 2-hour (short) learning



A Comparative Analysis of Emulated and Real Power Traffic 215

data in the earlier work. This change enables the PST model to discover longer
sequential patterns if there are any.

Correlation. We calculate how many pairs of time series are significantly cor-
related by computing p-values for null-hypothesis H0 : ρpq = 0, and compare
the correlation rates between different datasets. The bin size of the time series
in this study is 1 min. With the resulting correlation rate of flows, we further
examine how the spontaneous traffic flows are correlated with each other using
dendrograms and if there’s any change on the dendrograms for learning period
and testing period.

6 Observations and Discussions

This section summarises the results of our comparisons between the emulated
and real data sets, using the above hypotheses and applied methods.

6.1 Spiky Distribution

A few common patterns appear in the PDFs of event inter-arrival times for each
flow from the emulated datasets. These patterns contain multiple spikes with
different heights and weights that are distributed as different shapes of curves.
Figure 2(a) presents a centered pattern. The pattern contains one major spike
and a few minor spikes located around it. Figure 2(b) is a long-tail pattern.
The spikes are distributed with a long-tail. Figure 2(c) presents the multiple
centered pattern in a long-tail distribution. Figure 2(d) presents spikes in a
dispersed unknown distribution.

All the PDFs presented in emulated datasets show roughly equal spacing
between the spikes and all the flows from emulated datasets have a constant size
of gaps between spikes. The gap size between spikes in emulated datasets is the
update rate at which the emulated RTUs update the information of simulated
processes. If the value of monitored points changes or exceeds a predefined range
when an RTU updates the information, the RTU sends a spontaneous event.
VirtualTB has a gap size of 5 s and SmallTB has a gap size of 0.5 s.

As expected, most of the flows from the real traffic present spiky inter-arrival
time distributions and equal spacing between the spikes. However, not all of the
flows have the same gap size even if they are from the same RTU. The real data
has the lowest gap size of 0.625 s and the largest gap size of 7.5 s. Moreover, in this
dataset, traffic from different RTUs exhibit very different timing characteristics.
Table 2 presents the inter-arrival time distribution type and UDR in column
Spiky Distribution. Most of the flows issued by RTUA present centered patterns,
whereas, in 10 out of 14 flows issued by RTUB, we did not find clear spikes
as shown in Fig. 2(e). The flows without spikes have relatively low event rates
(around 20 events per hour). We speculate that the real system monitors the
processes with different granularities. Some are updated more often while some
are not regularly updated.
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Fig. 2. Common patterns in the PDF of event inter-arrival times. (a) A centered pat-
tern from VirtualTB, IOA 10091 (b) A long-tail pattern from SmallTB-RTU4, IOA 2
(c) A multi-center pattern from VirtualTB, IOA 10002. (d) A dispersed pattern from
VirtualTB, IOA 10010. (e) No clear pattern from Real-RTUB, IOA 3018.
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The flows with a resulting unknown data rate (see Eq. 5) below 3% are high-
lighted in gray. Except for the flows that have less than 23 events per hour, all
the flows with spiky inter-arrival time distributions exhibit a low UDR, which
means the learned characteristics are stable and persistent within the data col-
lection period. After a manual examination of the flows having low event rate
and showing higher UDR, we observe that there are not enough elements in the
learning period for the used algorithm to properly estimate the legitimate areas.

6.2 Timing Predictability

The timing predictability analysis results are presented in Table 2, the last two
columns.

There are a few insights obtained in this analysis. First, as discovered in
the earlier work [19], there are some flows in the emulated datasets that show
evidence of the existence of sequential patterns. In 14 out of the 19 flows, we
get a Kappa value that agrees on the existence of sequential patterns1 (i.e.,
Kappa is not around 0). Among them, 9 Kappa values show slight agree-
ment (Kappa values around 0.1) and 4 show medium agreement (Kappa values
0.3–0.4). However, most of the flows from the Real-RTUx datasets have a Kappa
value around 0 and only four flows have a slight agreement on the existence of
sequential patterns. We speculate that the underlying sequences found in the
emulated datasets could be generated by the repeated workflow of the process
simulation programs.

Second, a first look at prediction accuracy may provide an impression that
real data have lower accuracy. However, if we only look into the flows containing
sufficient elements for learning (i.e., rows highlighted in gray), prediction accu-
racy is more related to distribution type rather than the type of dataset. Among
all the highlighted flows, centered patterns give better accuracy in predictabil-
ity irrespective of evidence of sequential patterns or not. Most of the flows of
centered distribution type have high accuracy and a low Kappa value because
most of the intervals fall into the major spike2. Long-tail patterns have barely
predictability when the Kappa value is close to 03, whereas they show higher
prediction accuracy when there exists evidence of sequential patterns4. Multi-
centered patterns have higher prediction accuracy when the distribution is closer
to a centered distribution, i.e. most of the intervals fall into a few major spikes.

Third, compared with earlier work, our analysis gets improved accuracy for
some flows from the emulated datasets5 due to the choice of learning parameters.
The changes of the parameters include higher bandwidth for the kernel density

1 SmallTB-RTU1 IOA: 1, 3, SmallTB-RTU4 IOA: 2, 4, VirtualTB IOA: 10002, 10005,
10011, 10013 10014, 10015, 10016, 10017, 10091, 10092.

2 SmallTB-RTU1 IOA: 2, 4, SmallTB-RTU4 IOA: 3, Real-RTUA IOA: 3002, 3003,
3004, 3005, 3007, 3008, 3010, 3011, 3012, 3013, 3014, 3015, 3018, 3019, 3020.

3 Real-RTUB IOA: 3016, 3019.
4 SmallTB-RTU1 IOA: 1, 3, SmallTB-RTU4 IOA: 2, 4, VirtualTB IOA: 10002.
5 SmallTB-RTU1 IOA: 2, 4 and SmallTB-RTU4 IOA: 3.
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Table 2. Analysis results for spiky distribution and timing predictability hypotheses.
UDR stands for unknown data rate (Eq. 5).

Spiky distribution Timing predictability

Dataset IOA Event rate (#events/hr) Distribution Type UDR (%) Accuracy Kappa

SmallTB-RTU1 1 2384 long-tail ≈0 0.57 0.1

2 6955 centered ≈0 0.99 ≈0

3 2875 long-tail 0.08 0.38 0.1

4 6968 centered ≈0 0.99 ≈0

SmallTB-RTU4 2 2053 long-tail ≈0 0.52 0.1

3 7024 centered ≈0 0.99 ≈0

4 1095 long-tail 0.11 0.61 0.4

VirtualTB 10002 61 long-tail 3.00 0.20 0.1

10005 128 multi-center 0.63 0.26 0.2

10010 3 dispersed 80.36 0.67 ≈0

10011 763 centered 0.01 0.74 0.3

10012 23 multi-center 5.48 0.06 ≈0

10013 4 dispersed 68.95 0.38 0.1

10014 56 multi-center 1.81 0.22 0.1

10015 12 multi-center 18.48 0.09 0.1

10016 57 multi-center 1.18 0.23 0.1

10017 12 multi-center 17.46 0.08 0.1

10091 642 centered ≈0 0.65 0.3

10092 671 centered ≈0 0.68 0.3

Real-RTUA 3002 394 centered 0.19 0.71 ≈0

3003 372 centered 0.02 0.65 ≈0

3004 414 centered 0.07 0.49 ≈0

3005 628 centered 0.03 0.79 ≈0

3007 425 centered 0.02 0.76 ≈0

3008 372 centered 0.04 0.65 ≈0

3009 261 multi-center 0.14 0.32 ≈0

3010 683 centered 0.01 0.86 ≈0

3011 973 centered 0.09 0.78 0.1

3012 1051 centered 0.24 0.82 ≈0

3013 1088 centered 0.24 0.82 ≈0

3014 1084 centered 0.14 0.82 ≈0

3015 902 centered 0.02 0.67 0.1

3016 793 multi-center ≈0 0.52 ≈0

3017 886 multi-center ≈0 0.60 ≈0

3018 568 centered 0.19 0.88 ≈0

3019 1288 centered 0.01 0.86 ≈0

3020 1103 centered 0.01 0.73 ≈0

3021 697 multi-center 0.02 0.58 0.1

Real-RTUB 3002 28 no pattern 3.59 0.01 ≈0

3004 22 no pattern 5.93 ≈0 ≈0

3005 14 no pattern 10.86 ≈0 ≈0

3006 66 multi-center 0.73 0.09 0.1

3008 18 no pattern 6.87 0.01 ≈0

3009 28 no pattern 3.55 0.01 ≈0

3011 21 no pattern 6.11 0.01 ≈0

3012 21 no pattern 4.37 0.01 ≈0

3013 15 no pattern 9.52 ≈0 ≈0

3014 18 no pattern 6.43 ≈0 ≈0

3015 7 dispersed 18.86 0.05 ≈0

3016 63 long-tail 0.72 0.02 ≈0

3018 19 no pattern 6.37 ≈0 ≈0

3019 63 long-tail 0.83 0.02 ≈0
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estimation, extended learning phase, and unlimited number of symbols for the
PSTs as described in Sect. 5.3.

6.3 Correlation

With a p-value of 0.05, there are 86%, 89%, and 74% significantly correlated flows
respectively within SmallTB, VirtualTB, and Real datasets. Figure 3 presents
the dendrograms using Euclidean distance between observations/clusters based
on the absolute correlation. They show the observations/clusters for SmallTB,
VirtualTB, and Real datasets in learning (left side) and testing period (right
side), respectively. The leaves are the flow IDs, the height stands for Euclidean
distance and the dotted line is an example cut-off line that separates the flows
into clusters. The dendrograms of VirtualTB dataset have the same structure
for learning and testing data. That is, for every cut-off line in the learning den-
drogram, one can find a corresponding cut-off line in the testing dendrogram
that generates the same clustering results.

In the dendrograms for SmallTB and Real dataset, there are a few flows that
jump from one group to another but the structure remains the same for most of
the time. For example, the cut-off line for Real data generates 6 groups in both
the learning and testing period. There are two highlighted groups G1 and G2 in
both trees. Flow RTUA 3016 is included in G2 of the learning tree, but it moves
to G1 of the testing tree in the testing period.

The results suggest that correlations between flows are complicated. A flow
can be correlated with multiple flows and the magnitude of correlations between
different flows may change from time to time. We speculate that the virtual
testbed has fewer dynamical processes so that it exhibits overly stable relations
between flows.

7 Conclusions

Due to the secrecy nature of SCADA traffic, lack of openly available datasets for
intrusion detection research has been an open question. Many research efforts
on intrusion detection systems in SCADA networks are tested with emulated
or simulated datasets. This study examines three hypotheses about IEC-104
spontaneous traffic attributes that were proposed or observed in previous work
with a comparison between emulated and real datasets. The results show that
emulated datasets are prone to simple and regular patterns.

In the spiky distribution analysis, the emulated datasets exhibit a unified
update rate of information that shows up as a unique gap size between spikes in
the whole system. The real datasets, on the other hand, exhibit a wide variety of
gap sizes in a system. Some of the flows even do not present a spiky inter-arrival
time distribution.

In the predictability analysis, the emulated datasets exhibit evidence of
underlying inter-arrival time sequences that make the timing of the next event
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Fig. 3. Correlation dendrograms for learning and testing period. Top: the small emu-
lated network, Middle: the RICS-el virtual network, Bottom: the real utility network.

predictable. However, the real dataset suggests little evidence of underlying
sequences.

In the correlation analysis, both the emulated and real datasets indicate that
traffic flows are intricately correlated. However, the correlations between flows
seem to be less dynamic in emulated datasets.

The study of differences between emulated and real datasets ought to be a
precondition for intrusion detection research, especially learning-based anomaly
detection systems. The results in this paper show that traffic attributes that exist
in emulated datasets may be not valid in real datasets. Therefore, it’s crucial to
select explainable features for anomaly detection systems when only emulated
datasets are available for learning and testing. The simpler and more regular
attributes can lead to overestimation of performance as well. This indicates room
for improvement of emulated datasets, such as more detailed and complicated
system configurations or adding random events to the process simulators.
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One obvious future work is to find more attributes from different real datasets
and a systematic approach to generate realistic synthetic datasets. The results
in this study suggest the need to characterize the uncertainty of the selected
features. Another way is to make sanitized real datasets openly available by
applying traffic anonymization methods.
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