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Abstract. In this work, we proposed a new method to classify long-
period and volcano-tectonic spectrogram images using eight different
deep learning architectures. The developed method used three deep con-
volutional neural networks named DCNN1, DCNN2, and DCNN3, three
deep convolutional neural networks combined with deep recurrent neural
networks named DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3, and
two autoencoder neural networks named AE1 and AE2, to maximize the
area under the curve of the receiver operating characteristic scores on a
dataset of volcano seismic spectrogram images. The three deep recurrent
neural network-based models reached the worst results due to the over-
fitting produced by the small number of samples in the training sets. The
DCNN1 overcame the remaining models by obtaining an area under the
curve of the receiver operating characteristic and accuracy scores of 0.98
and 95%, respectively. Although these values were not the highest values
per metric, they did not represent statistical differences against other
results obtained by more algorithmically complex models. The proposed
DCNN1 model showed similar or superior performance compared to the
majority of the state of the art methods in terms of accuracy. Therefore
it can be considered a successful scheme to classify LP and VT seismic
events based on their spectrogram images.

Keywords: Volcanic seismic event classification · Deep-learning
models · Artificial intelligence · Spectrogram images

1 Introduction

Volcanic activity monitoring systems are essential to detect early signs of vol-
canic unrest and possible reawakening that can lead to eruptions [31]. Amongst
the techniques used by scientists to estimate activity inside a volcano, the seis-
micity is one of the most effective tools for monitoring and forecasting eruptions
[29]. In this regard, a wide variety of approaches have been used in recent years
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Fig. 1. An LP (top row) and VT (bottom row) seismic signals examples and their
respective spectrogram. Taken from [27].

to address the problem of volcano seismic events classification, e.g., long-period
(LP) and volcano-tectonic (VT) seismic events, as shown in Fig. 1. Machine
learning classifiers (MLC) such as hidden Markov models (HMM) [1], boosting
strategies [34], decision trees (DT) [16], random forest (RF) [26,28], Gaussian
mixture models (GMM) [33], support vector machine (SVM) methods [7,26],
and artificial neural networks (ANN) [2,5] were combined with classical time,
frequency and scale domain features and non traditional features such as inten-
sity statistic, shape and texture features extracted from the spectrogram images
[26] to differentiate seismic events.

On the other hand, convolutional neural networks (CNN) are particular ANN
architectures that are gaining more attention in image analysis contexts [30].
They avoid using intermediate, fully connected layers to employ pooling ones and
thus optimizing the information pass-through from layer to layer. Lately, there
is evidence of using deep learning techniques to analyze the seismic activity of
volcanoes, e.g., deep neural networks to classify feature vectors computed from
the time-domain signals [32], deep CNN models to classify spectrogram images
[6]. Another well known deep learning architecture is the one based on recurrent
neural network (RNN) where information flows sequentially, it is shared between
layers and kept as a factor for decision making during the weight calculations
[18]. The combination of both the CNN and RNN approach is quite possible,
as demonstrated in [36], to classify different objects on individual images. How-
ever, the model growing is a must concern aspect. The more internal layers are
included in the desired model, the more complex it will be [3].
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There are other deep learning-based approaches for object detection [18,36]
and classification [37]. But, the use of deep learning techniques in the context
of volcano seismic event classification based on their spectrogram images is still
limited. Therefore, in this work, we explore the use of eight different deep learn-
ing architectures to classify LP and VT spectrogram images to maximize the
area under the curve (AUC) of the receiver operating characteristics curve on
a dataset of volcano seismic spectrogram images from the Cotopaxi volcano, in
Ecuador.

2 Materials and Methods

2.1 Spectrogram Images Dataset

This work considered the use of a public dataset (MicSigV1 ) from the ESeis-
mic1 repository, which contains several seismic event samples recorded at the
Cotopaxi volcano [27]. It has a total of 1187 seismic records from two differ-
ent seismic stations (VC1 and BREF) installed at the Cotopaxi volcano. This
dataset contains samples distributed in five classes: LP, VT, regional (REG),
hybrid (HB), and icequakes (ICE). Due to the small number of samples from
REG, HB, and ICE events, we considered only the LP and VT events belonging
to the same seismic station (BREF) to guarantee the same acquisition protocol
and to avoid mixed signals. Therefore, the formed experimental dataset contains
668 spectrogram images (587 of LP and 81 of VT).

2.2 Deep-Learning Networks

Deep learning can enhance computational models by including multiple layers to
process large amounts of data and to improve the learning process. Thus, severe
problems regarding image classification and recognition in the past are presently
easier to tackle. The deep CNN and RNN are two exclusive deep learning models
[18,36], which are increasing their popularity on sequential data analysis and
image labeling, respectively.

The deep CNN is a multilayered approach of conventional convolutional neu-
ral networks that include an input layer, a set of hidden layers (which could
vary depending on the network architecture from two to hundreds of layers),
and an output layer (fully connected layer). In deep CNN learning, each hidden
layer is mainly composed of the CNN architecture core, consisting of at least
the convolutional and max-pooling layers. Other configurations extend the basic
scheme by adding dropout and flatten layers. This multi-layer structure enables
the network to learn different data abstractions while transitioning from layer
to layer until reaching the output result [6].

1 ESeismic repository was provided by courtesy of the Instituto Geof́ısico of
Escuela Politécnica Nacional (IGEPN) and collaborators, and it is available at
http://www.igepn.edu.ec/eseismic web site/index.php. Please note that you must

register and complete a disclaimer agreement to obtain the data.

http://www.igepn.edu.ec/eseismic_web_site/index.php
http://www.igepn.edu.ec/eseismic_web_site/index.php
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The deep learning RNN is based on the classic feed-forward ANN archi-
tecture, but it includes an extra working piece called loops in connections. In
contrast to the feed-forward ANN, the RNN architecture processes the inputs
in a sequential way considering a recurrent hidden state in which the current
activation is dependant on the previous step activation. The main drawback is
related to long-term sequential data, where the gradients tend to vanish during
the training. However, there is a more sophisticated approach to design recurrent
units and to avoid vanishing problems known as long short-term memory [10].
It allows for recurrent units to learn long-term dependencies, which are a vital
key when developing deep RNN models [24].

The deep learning autoencoder (AE) architecture is based on a classic AE
artificial neural network. It efficiently learns compressed representations (encod-
ings) of the data, typically for dimensionality reduction, by training the network
to ignore the noise (signal). This type of architecture utilizes a bottleneck struc-
ture reducing the neurons in each layer as well as the volume of information that
passes through the entire network reaching the latent space representation. Sev-
eral variants to the basic AE model have been proven to be effective in learning
representations for classification tasks [35], face recognition [9], and to extract
the semantic meaning of words [19]. Thus, an adequate AE architecture will
be able to recognize the useful features of the input data, while avoiding the
redundant ones and the overfitting.

2.3 Proposed Method

We adopted the deep CNN, RNN, and AE neural networks to build the proposed
method, which extends these neural networks to eight different deep learning
architectures: DCNN1, DCNN2, DCNN3, DCNN-RNN1, DCNN-RNN2, DCNN-
RNN3, AE1, and AE2. For a better explanation of the proposed method, we
focus our description in the DCNN1, DCNN-RNN1, and AE1 models.

The DCNN1 architecture is composed of several layers, as it is shown in
Fig. 2. From this figure, it is possible to read that the spectrogram images are
used to feed the first convolutional layer composed of 16 convolutional filters with
a 3 × 3 kernel size each. This layer aims to predict the class probabilities of the
input sample by creating a feature map representation computed by the struc-
ture of the filters. Subsequently, the feature map enters the pooling layer with a
4× 4 kernel size each to reduce irrelevant features (information) while retaining
the relevant ones. Then, the reduced feature space is used to feed another con-
volutional and pooling layer with the same configurations as the previous ones.
This second convolutional module concentrated the most relevant (important)
features to classify the input sample. Finally, the fully connected layer consists of
two dense layers, the flatten to convert the reduced bi-dimensional input feature
space into a single feature vector with its corresponding weights and the output
layer, which provides the final classification of the feature vector using a sigmoid
function.

The DCNN-RNN1 architecture is a mixed model that combines a two con-
volutional layer based deep CNN architecture with some extra RNN layers, as
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Fig. 2. The DCNN1 architecture of the proposed method; F - number of filters; KS -
convolutional kernel size; S - max pool kernel size; N - number of neurons.

Fig. 3. The DCNN-RNN1 architecture of the proposed method; F - number of filters;
KS - convolutional kernel size; S - max pool kernel size; N - number of neurons; RF -
repeat factor; RU - recurrent units; TS - time stamp; IU - input units.

Fig. 4. The AE1 architecture of the proposed method; N - number of neurons; LSR -
latent space representation

it is shown in Fig. 3. In such a sense, the first convolutional layer (Conv1.)
used 32 convolutional filters with a 2 × 2 kernel size each and a pooling layer
(Max pool1) with a 3 × 3 kernel size. The second convolutional unit (Conv2.
and Max pool2 layers) used the same number of filters as in the Conv1., but it
increased the convolutional kernel size to 5 × 5. The Max pool2 layer remained
as equal as the Max pool1 in terms of configurations. Then, a flatten and dense
layer transforms the bidimensional feature space into a single feature vector that
is the input to a repeat vector layer. The later transforms the input feature vec-
tor into a data stream that is propagated with a repeat factor of 30 as input to
the first long-short term memory (LSTM) unit. The LSTM1 unit is composed
of 1024 recurrent units (RU) with input shape (IS) size of 30 and input units
(IU) number of 32. Then, the LSTM1 layer output feeds the LSTM2 unit that
is set to 512 RU and the same input shape size and number of input units as the
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LSTM1 layer. After that, a fully connected layer containing a flatten and dense
layers with sigmoid function provide the final classification.

On the other hand, the AE1 architecture is composed of multiple dense lay-
ers that are gradually reducing the number of neurons per layer, simulating a
bottleneck workflow, as shown in Fig. 4. From this figure, it is possible to observe
that the input image transits throughout this architecture, starting with a dense
layer with 256 neurons. Subsequently, there are five more dense layers, in which
the total number of neurons is reduced from layer to layer by a power factor of
two until reaching a total of 8 neurons in the fifth layer. After that, it is possible
to find the latent space representation (LSR) layer, which holds the compressed
data that passed through all the layers and uses them to generate the prediction.
Then, a flattened layer that is connected to the final dense layer with one neuron
returns the final output. The deep-learning of this architecture is benefited from
the data compression for better representation [20].

The remaining architectures, DCNN2, DCNN3, DCNN-RNN2, DCNN-RNN3,
and AE2, follow the same base architecture (described here), varying the lay-
ers configurations and hyperparameters. The other architectures are summarized
next:

The DCNN2 model contains three convolutional layers with 32, 64, and 128
filters with a kernel size of 3 × 3 each. Three max-pooling layers (one by each
convolutional layer) with a pool size of 6 × 6 each, one flatten layer and a fully
connected layer (output) composed of three dense layers (32, 32 and 1 neurons).
The DCNN3 model uses two convolutional layers with 20 filters each, and a
kernel size of 2 × 2 and 3 × 3, respectively. Two max-pooling layers (one by
each convolutional layer) with a pool size of 3× 3, one flatten layer, and a fully
connected layer (output), containing three dense layers (32, 32, and 1 neurons).

The DCNN-RNN2 model employs three convolutional layers with 20 filters
each and kernel size of 2 × 2, 2 × 2, and 5 × 5, respectively. Three max-pooling
layers (one by each convolutional layer) with a pool size of 3 × 3, one flatten
layer, one dense layer with 32 neurons, one repeat vector layer with a repetition
factor of 30 units, two LSTM layers: the first one with 1024 recurrent units and
input shape 30 × 32, and the second one with 512 recurrent units and a fully
connected layer (output), composed of three dense layers (32, 32 and 1 neurons).
The DCNN-RNN3 model involves three convolutional layers with 32 filters each
and with a kernel size of 2 × 2 each. Three max-pooling layers (one by each
convolutional layer) with a pool size of 3 × 3, one flatten layer, one dense layer
with 32 neurons, one repeat vector layer with a repetition factor of 30 units,
two LSTM layers with 512 and 256 recurrent units, an input shape of 30 × 32,
and a fully connected layer (output), containing three dense layers (32, 32 and
1 neurons).

The AE2 model used a similar architecture as the AE1 model, but with
four dense layers in its composition. In this case, the input image enters the
initial dense layer with 32 neurons and transits through three more layers with
a reduced number of neurons each (by the power of two of the previous layer),
until reaching the last dense layer with four neurons. Then, the LSR and the
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flatten layers evaluate the final characteristics to obtain the final result in the
output layer.

2.4 Experimental Setup

Spectrogram Image Preprocessing: All spectrogram images were down-
scaled to 50% from their original size, thus decreasing the volume of informa-
tion used to feed the learning models. The dataset provides spectrogram images
without noise; therefore, the seismic event pattern presented on each image is
invariant to the downscaling operation. This operation is use frequently in image
analysis context with deep learning [6]. Besides, the pixels values of each spec-
trogram image were normalized using the min-max method [12] to bring them
into the range of 0 to 1, thus, avoiding data dispersion. Besides, we used a data
augmentation technique to increase and balance the number of samples per class.
Thus, each spectrogram image underwent shearing, scaling, and rotation opera-
tions, as defined in [23]. Affinity transformations are widely used [6] and allowed
us to reach a total of 1108 spectrogram images, which reinforces the models
learning process by training them with more samples per class, helping to avoid
overfitting.

Training and Test Partitions: The stratified 10-fold cross-validation
method [21] was applied before the classification step to build disjoint training
and test partitions and to ensure the sample ratio between both types of events
for all folds. Thus, individual deep learning models were trained using different
training sets, which enable it to learn from different input space representations.
Testing on these different sets promotes trustworthy resulting variability in the
classification of individual samples.

Deep Architectures Configurations: For all models, we configured three
main hyperparameters to explore the proposed method limits. Thus, the number
of iterations (epochs) was set from 50 to 150 with increment step of 50 units;
the batch size was tuned to 16, 32 and 64 units, and the learning rate used the
adam optimizer, which is based on adaptive estimation of lower-order moments
[14]. This optimizer was designed to combine the advantages of the well-known
optimizers AdaGrad and RMSProp [15].

Validation Metrics: The classification performance of the proposed method
was based on the AUC and accuracy (ACC) metrics. The statistical comparison
among all classification schemes was conducted using the Wilcoxon test with a
significance decision value of 5% (α = 0.05) for a two-tailed test [11]. This test
ranks the differences in performances of two MLCs [8] and thus, allowed us to
select the best classification model.
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Selection Criteria: The best model was selected based on the following crite-
ria: (1) the model with the statistically highest AUC score by architecture, (2)
if there was a tie rating performance in the AUC scores, the one that has the
lowest algorithm complexity is preferred, and (3) the statistically highest AUC
score among all models selected according to the previous two rules. More than
one model can be chosen per architecture if there is no significant AUC-based
difference between them. This exception is only valid for intra-architectural anal-
ysis. Therefore, the proposed method provides only one classification model as
a result.

All implementations were done in Python programming language version
3.7.4 using scikit-learn (SKlearn) [25], Keras [4] with ImageDataGenerator and
TensorFlow backend, and sciPy for statistical analysis [13].

3 Results and Discussion

3.1 Performance Evaluation of the Proposed Method

The DCNN1 architecture provided seven out of nine classification models using
the first selection criterion. This set of classifiers did not represent statistical
differences in terms of AUC performance when compared to each other. The
AUC range of variation was above the 0.95, which is an outstanding classifica-
tion threshold for any classification problem. Although the highest AUC score
of 0.99 was reached by the model using a batch size of 32 units and 150 epochs
(iterations), the remaining models performed similarly statistically. According
to the second selection criterion, the selected classification model in this archi-
tecture is the one implementing a batch size of 32 units, 50 epochs, and AUC
score of 0.98 (see Table 1, bold line).

Likewise, DCNN2 architecture was able to produce six out of nine classifi-
cation models that were similar statistically in AUC performances. The range
of AUC variation in this set was between 0.71 and 0.79, which are not good
enough scores to tackle the problem at hand. The highest AUC score of 0.79
was reached by the model with 16 units of batch size and 100 epochs. But, the
model composed of the same batch size and 50 epochs, which obtained an AUC
value of 0.71 was selected as the best model from this architecture, taking into
consideration the second selection criterion (see Table 1, bold line). Similarly, in
the DCNN3 architecture, a total of five out of nine classifiers were highlighted as
classification models without statistical difference among them. The AUC scores
varied from 0.90 to 0.94, which are considered reasonable scores in the context of
spectrogram images classifications. The highest AUC value of 0.94 was obtained
by the model composed of a batch size of 64 units and 50 epochs. However, there
was another model using the same number of epochs as the highest model, batch
size of 16, and AUC score of 0.91, which was selected as the best model inside
this architecture according to the second selection criterion (see Table 1, bold
line).

The AE1 architecture produced six out of nine models using the first selection
criterion. They did not present a statistically significant difference among them
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Table 1. Performance results of deep learning models selected by the first selection
criterion.

Architecture AE Dense Conv. Kernel Pool size FC Batch Epochs AUC Wilcoxon at α = 0.05 ACC

layer (n). layer (f) size per layer layer (n) size (u) (p value) (%)

DCNN1 − (16, 16) (3 × 3) (4 × 4) (32, 1) 32 50 0.98 0.19 95

64 50 0.99 0.45 97

16 100 0.99 0.41 96

32 100 0.98 0.16 98

64 100 0.99 0.50 99

32 150 0.99 − 99

64 150 0.98 0.45 99

DCNN2 − (32, 64, 128) (3 × 3) (6 × 6) (32, 32, 1) 16 50 0.71 0.15 90

32 50 0.74 0.45 91

64 50 0.73 0.33 92

16 100 0.79 − 92

32 100 0.72 0.23 93

64 100 0.72 0.33 94

DCNN3 − (20, 20) (2 × 2) (2 × 2) (3 × 3) (32, 32, 1) 16 50 0.91 0.26 94

64 50 0.94 − 97

32 100 0.92 0.33 98

64 100 0.91 0.17 99

32 150 0.90 0.08 99

AE1 (256, 128, 64, 32, 16, 8) − − − (1) 16 50 0.89 0.24 89

64 50 0.93 − 92

32 100 0.89 0.50 89

64 100 0.89 0.40 91

32 150 0.87 0.40 87

64 150 0.90 0.40 90

AE2 (32, 16, 8, 4) − − − (1) 16 50 0.84 − 88

32 50 0.80 0.41 92

64 50 0.73 0.30 95

16 100 0.70 0.41 92

Conv.- convolutional; f- number of filters per layer; n- number of neurons per layer; FC- fully;
connected; u- units; AUC and ACC - mean of AUC and ACC metrics over ten folds; underlined
AUC value is the Wilcoxon test pivot value; ACC - mean of accuracy.

in terms of AUC performances. The variation of AUC scores was in the range
between 0.87 to 0.93, which is considered as a reasonable performance. Even
though the highest score of 0.93 was obtained by the model with a batch size
of 64 units and 50 epochs, the selected classification model in this architecture
was the one using a batch size of 16 units, 50 epochs, and AUC score of 0.89
(see Table 1, bold line). Similarly, in the AE2 architecture, only four out of
nine models did not produce AUC-based statistical differences among them.
The AUC scores varied between 0.70 and 0.84. These results evidenced poor
performances in the volcano activity context. In this architecture, the highest
AUC performance (0.84) and the lowest algorithm complexity (batch size of 16
units and 50 epochs) were reached by the same classification model. Thus, it was
selected as the best model on this architecture (see Table 1, bold line).

The combined classification models based on deep CNN and RNN architec-
tures were the worst in terms of AUC performances. The three explored architec-
tures provided AUC scores of 0.50 on all classification models, which means very
poor schemes generalization. This effect is extremely linked to the number of
samples employed during the models training. Despite using the data augmen-
tation technique and the 10-fold cross-validation method on the experimental
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Fig. 5. Performance of proposed deep learning models based on the mean of the accu-
racy (left) and loss function (right) over ten folds.

dataset before feeding the classifiers, they incur in a poor generalization power
(see Fig. 5, top plot) and a week learning (Fig. 5, bottom plot); both causes are
symptoms of overfitting. It should be noted that the mean of the loss function
never meets the established learning rate on these models, suggesting that more
samples are required in the training process.

According to the first two selection criteria, the deep CNN-based classifica-
tion models provided evidence of successful performance without incurring on
overfitting. They performed over the 90% of the mean of ACC in the valida-
tion and the loss values converged to the learning rate across the defined epochs
(see Fig. 5, top and bottom plots). Despite the good classification performances,
the best selection model in the DCNN2 based architecture reached AUC and
ACC scores of 0.71 and 90%, respectively. These values are statistically lower
(p < 0.05) when compared to the best model selection inside the DCNN3 archi-
tecture, which achieved AUC and ACC scores of 0.91 and 94%, respectively.
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Table 2. Comparison based on the ACC between related previous works and the best
selected model produced in this work.

Method Number of Computed Spectrogram ACC*

samples features images (%)

ANN [16] 914 6 No 97

DT [16] 914 3 No 96

ANN [26] 637 17 No 95

RF [26] 637 17 No 93

Linear SVM [17] 914 5 No 97

ANN [5] 1033 8 No 94

HMM [1] 512 39 No 90

GMM [33] 667 2 No 94

CNN [6] 15895 Yes 97

SVM [22] 105000 102 Yes 92

DCNN1 model 1108 Yes 95

ACC - accuracy; *values rounded to the closest integer

The difference in performance is linked to the model complexity inherited from
its architecture and the number of samples used to train it. The DCNN2 archi-
tecture is the most complex among all the developed deep CNN architectures.
Thus, it is very reasonable to assume that this model needs more samples and
epochs to learn the feature space properly (see Fig. 5, bottom plot).

Moreover, the selected classification model using the DCNN1 architecture
provided the best performances on both validation metrics. It obtained scores
of 0.98 and 95% for the AUC and ACC metrics, respectively. It statistically
(p < 0.05) overcomes the performance of the remaining models (see Table 1).
This success is related to the DCNN1 architecture, which employed two convo-
lutional layers with only 16 neurons (filters) per layer (lower than the DCNN3
architecture). Thus, it was able to learn from the provided features space satis-
factorily (see Fig. 5, bottom plot). Regarding the third selection criterion, the
selected classification model of the DCNN1 architecture constituted the pro-
posed method output and the most appropriate classifier to face the problem of
volcano spectrogram image classification.

3.2 State of the Art Based Comparison

Although it is not possible to make a direct statistical comparison against some
previously developed state of the art methods such as those developed in [1,5,
6,22], because they used different experimental conditions, we aimed to carry
out the comparison based on the ACC scores reported by them, as it is shown
in Table 2. The majority of presented machine learning models reached ACC
scores ranging from 90 to 97%, being the linear SVM and ANN the models which
provided the higher classification performance. The proposed method has similar
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and superior performance compared to several states of the art methods in terms
of ACC scores. That was possible because deep learning-based approaches are
able to learn data abstraction from layer to layer, using different mathematical
functions. Meanwhile, machine learning methods, except for nonlinear models
like ANN, attempt to fit the data with a single mathematical function, which
limited the learning ability.

On the other hand, the method developed in [6], used a deep CNN model
that achieved an ACC score of 97%. This result was superior when compared to
the 95% obtained by the proposed method. However, they classified four types
of seismic events instead of two, like in this work. Also, they made the training-
test validation using an extensive dataset, which provided a decent number of
samples during the model learning.

4 Conclusions and Future Work

We explored the use of eight different deep learning architectures based on deep
CNN (DCNN1, DCNN2, and DCNN3), RNN (DCNN-RNN1, DCNN-RNN2, and
DCNN-RNN3) and AE (AE1 and AE2) models to classify LP and VT seismic
events on a dataset of seismic spectrogram images. The models based on the
combination of deep CNN and RNN architectures reached the worst classifi-
cation performances. The data augmentation operation helped to reinforce the
learning of the DCNN1, DCNN2, DCNN3, AE1, and AE2 models. But it was not
enough for the deep RNN based models, leading then to the overfitting anyway.
The DCNN1 was the best model when compared with the other deep CNN based
models, attaining AUC and ACC scores of 0.98 and 95%, respectively. Although
these values were not the highest values per metric, they did not represent statis-
tical differences against other results that were obtained by more algorithmically
complex models. Furthermore, the proposed DCNN1 model showed similar or
superior performance when compared to the majority of the state of the art
methods in terms of the ACC metric. Therefore it can be considered as a suc-
cessful scheme to classify LP and VT seismic events based on their spectrogram
images.

As future work, we plan to increase the number of samples per class to
experiment with more complex architectures like the deep CNN+RNN mod-
els and improve the hyperparameter configurations to explore the limits of the
implemented models.

Acknowledgment. We thank the Applied Signal Processing and Machine Learning
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2. Bueno, A., Beńıtez, C., De Angelis, S., Dı́az Moreno, A., Ibáñez, J.M.: Volcano-
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