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Preface

The computational intelligence (CI) area is increasingly employed in engineering
problems in the Latin America (LA) region. LA scientists have focused their efforts on
the CI field as a way to deal with problems of interest for the international community
but also of great impact in the LA region. Many different areas including optimization
of energy and transportation systems, computer-aided medical diagnoses, bioinfor-
matics, mining of massive data sets, robotics and automatic surveillance systems,
among many others, are commonly addressed problems from this part of the world,
because of the great potential those applications could also have in developing
countries.

In its third edition, the IEEE Colombian Conference on Computational Intelligence
(IEEE ColCACI 2020) was fortified with contributions from scientists, engineers and
practitioners working on applications/theory of CI techniques. In this version of IEEE
ColCACI, we received 65 papers by authors from 8 countries, and accepted 28 oral
presentations in virtual mode due to the COVID-19 pandemic. In this way, the con-
ference was an international forum for CI researchers and practitioners to share their
recent advancements and results. The present proceedings include the best 12 papers
presented as extended versions of the works exhibited at the conference, attending to
this call for extended selected versions in these difficult times. We will continue
working on offering an excellent IEEE ColCACI in future editions.

Finally, we would like to thank the IEEE Colombia Section, the IEEE Computa-
tional Intelligence Colombian Chapter, the IEEE Computational Intelligence Society,
the Universidad Autónoma de Occidente, the Universidad del Rosario, the Universidad
Distrital Francisco José de Caldas and the Universidad de Antioquia. Also, special
thanks to all volunteers, participants, and the whole crew that worked together to have a
successful conference. See you at IEEE ColCACI 2021!

November 2020 Alvaro David Orjuela-Cañón
Julián David Arias Londoño

Jesus Lopez
Juan Carlos Figueroa-García
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Understanding the Cotopaxi Volcano
Activity with Clustering-Based

Approaches

Adrián Duque, Kevin González, Noel Pérez , and Diego S. Beńıtez(B)

Colegio de Ciencias e Ingenieŕıas “El Politécnico”, Universidad San Francisco
de Quito USFQ, Quito 170157, Ecuador

{aduque,kgonzalezc}@alumni.usfq.edu.ec, {nperez,dbenitez}@usfq.edu.ec

Abstract. We explored four different clustering-based classifiers to cat-
egorize two different volcanic seismic events and to find possible over-
lapping signals that could occur at the same time or immediately after
seismic events occurrence. The BFR classifier with k = 2 was chosen as
the best out of 36 explored models statistically (p < 0.05), reaching a
mean of accuracy score of 88%. This result represents a satisfactory and
competitive classification performance when compared to the state of
art methods. The CURE classifier with k = 3 achieved a mean of accu-
racy value of 87% at p < 0.05, allowing it to be the only model capable
of detecting seismic events with overlapping signals. Therefore, the pro-
posed clustering-based exploration was effective in providing competitive
models for seismic events classification and overlapped signal detection.

Keywords: Volcanic seismic event categorization · k-means ·
Agglomerative · BFR · CURE · Clustering methods · Unsupervised
learning

1 Introduction

Volcanic eruptions have been responsible for thousands of deaths since the
year 1500 [34]. Historical records show that between 1986 and 2019, approx-
imately 7670 deaths were reported from direct and indirect volcanic activity
worldwide. There are many highly populated cities around the world where peo-
ple reside within a 30 km radius to volcanoes [26,32] such as Quito (Ecuador)
near to Cotopaxi (last active in 2012), Guagua Pichincha (last active in 2000),
and Reventador (last active in 2002) volcanoes, Mexico City (Mexico) near to
Popocatepetl volcano, Tokyo (Japan) near to Mt. Fuji, Naples (Italy) close to
Vesuvius, Seattle (USA) close to Mount Rainier among others [30]. Currently,
volcanic observatories worldwide use seismic monitoring as the most effective tool
for forecasting eruptions [30]. However, most of these methods involve manual
seismic events classification which could lead to errors due to human subjectivity.

Work funded by Universidad San Francisco de Quito (USFQ) through the Poli-Grants
Program under Grants no. 10100, 12494, and 16916.

c© Springer Nature Switzerland AG 2021
A. D. Orjuela-Cañón et al. (Eds.): IEEE ColCACI 2020, CCIS 1346, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-69774-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69774-7_1&domain=pdf
http://orcid.org/0000-0003-3166-745X
http://orcid.org/0000-0001-6219-067X
https://doi.org/10.1007/978-3-030-69774-7_1


4 A. Duque et al.

Machine learning classifiers with supervised or unsupervised learning have
been employed during the last decade to different application contexts. Success-
fully supervised learning approaches used to tackle the problem of seismic events
classification include artificial neural networks (ANN) [15], random forest [29],
hidden Markov models [4], Gaussian mixture models [36] and support vector
machine methods [6]. On the other hand, unsupervised learning methods intend
to form structured groups or clusters in datasets without prior knowledge of any
class labels [37].

The majority of previously developed approaches have been applied to dif-
ferent problems. Some studies reported in the literature include: principal com-
ponent analysis (PCA) [35], mixtures of Gaussian [9], hidden Markov models [3]
and self-organizing map (SOM) [14]. However, approaches focusing on volcanoes
and their seismic activities have been less explored, but the SOM models seeing
to be the most popular. In [12], a SOM model focused on volcanic wavefield pat-
terns was used to analyze the Mount Merapi (Indonesia), classification errors of
6% and 26% were obtained for volcano-tectonic and rockfall events, respectively.
However, when both events were combined into one cluster class, the error value
was significantly reduced to 12%. In [28], SOM and k-means models were used
to classify volcanic signals recorded from the Tungurahua volcano (Ecuador),
attaining accuracy (ACC) values of 91% and 86% for noise and infra-sound sig-
nals, respectively. In [17], SOM and clustering-based models were integrated to
built the KKAnalysis software, a tool that takes less than a minute to classify
events, reaching an ACC value of 90%.

Despite the several developed approaches, the problem of volcano seismic
event classification remains as an interesting and important challenge. This paper
aims to explore four different clustering-based classifiers in the context of vol-
cano seismic events classification and overlapped signals detection. The employed
models belong to the unsupervised learning type of machine learning algorithms.
They have the advantage of being trained without knowing the output label of
input instances, making it a real-life problem application. The main drawback
is that they are less accurate than supervised learning models.

2 Materials and Methods

2.1 Volcano Seismic Event Dataset

This work used a public dataset (SeisBenchV1 ) of the ESeismic1 repository,
which contains several seismic event samples recorded at the Cotopaxi volcano
[25]. Each event sample is described by an 84-dimensional feature vector, includ-
ing 13 features from time-domain, 21 features from frequency-domain, and 50
features from scale-domain. More detailed information about these features and
their calculation can be found in [25].
1 ESeismic repository was provided by courtesy of the Instituto Geof́ısico of

Escuela Politécnica Nacional (IGEPN) and collaborators, and it is available at
http://www.igepn.edu.ec/eseismic web site/index.php. Please note that you must

register and complete a disclaimer agreement to obtain the data.

http://www.igepn.edu.ec/eseismic_web_site/index.php
http://www.igepn.edu.ec/eseismic_web_site/index.php
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Fig. 1. Example of LP, LPo (LP with overlapped signal), VT, and VTo (VT with over-
lapped signal) seismic event in time-domain signals (top) and their respective spectro-
gram (bottom) from the MicSigV1 dataset. The time signals were normalized by their
maximum absolute value.

We formed an experimental dataset by extracting a subset of the Seis-
BenchV1 dataset, containing 668 feature vectors distributed in 587 samples of
LP and 81 samples of VT event classes. Since this dataset comes from a real-life
scenario, there are some samples with overlapped signals of non-volcanic origin
events, e.g., rockfalls or icequakes that occurred at the same time or immediately
after volcanic origin seismic events occurrence. This situation produces a mixed
signal in the seismometer used to record the event. Figure 1 shows examples of
LP and VT seismic signals, without and with overlapped waveform signatures
on non-volcanic origin, respectively.

2.2 Clustering-Based Classifiers

As mention before, clustering methods have been effectively applied in a variety
of engineering and scientific disciplines [13]. Clustering is a term used for the
process of data grouping. Data are represented as points in a multidimensional
space and are placed in different clusters according to a given metric, commonly,
distance measures [22]. We considered three different clustering-based models
instead of PCA or factor analysis, which are unsupervised learning models as
well, since clustering-based models are not sensitive to the internal data corre-
lation as could be the others. In real-life data, the correlation of features is an
inherited problem; thus, the use of non-sensitive models are preferred to avoid
data preprocessing steps. A brief description of the selected models are presented
below:
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k-Means Method: The k-means algorithm partitions the whole dataset into
small number (k) of clusters of data in a way that the resulting intra-cluster
similarity is high, but the inter-cluster similarity is low. The cluster similarity
is measured regarding the euclidean distance to the mean value of the samples
in a cluster (centroid) [33]. Selecting the right value of k is a hard decision
due to the unknown class number. Thus, the basic in the k-means model is to
optimize the k value in a range of possible clusters [22]. Additionally, k-means
is mainly based on the distance computation using (1) between the randomly
selected sample (instance to be assigned) and the centroid (cluster mean) of
the considered clusters [21]. In the last step, the model recomputes the cluster
centroid in which the sample was assigned [31]. The process is repeated until all
the samples are analyzed.

S =
k∑

j=1

n∑

i=1

||xj
i − cj ||2 (1)

where ||xj
i − cj ||2 is the distance from any sample xj

i to the centroid cj ; k is the
total number of clusters; n is the number of samples in the dataset and S is the
similarity value of the ith sample respect to the k clusters.

BFRMethod: BFR stands for Bradley, Fayad, and Reina, who developed a vari-
ant of the k-means algorithm, which is mainly used for clustering large amounts
of data [22]. The BFR algorithm assumes that clusters are typically distributed
around centroids in a euclidean space. On its first iteration, the whole data is read
and loaded to memory. Then, it computes some simple statistic variables such as
the number of points N , vector SUM and SUMSQ [7] that will serve to avoid
memory full-load in the next iterations. The initial k centroids are also estimated
in the first iteration, usually by taking a random sample, picking up random points
(instance of data), and then taking k−1 more points (far as possible from the pre-
vious ones). There are three classes of points that are using to represent the data
and to perform the inclusion of a given point to a cluster [7]:

– Discard set (DS): the points that are close to a known centroid can be dis-
carded for further iterations.

– Compression set (CS): the points that are close together, but not really close
to any k centroid, are summarized but not assigned to any existing cluster.

– Retained set (RS): the isolated points are the set of data points that are not
recognized to belong to any cluster and need to be retained in the buffer,
waiting to be assigned.

Once the DS, CS, and DS sets are conformed (in the first iteration), the BFR
iterates over the CS and RS to assign their points to a specific cluster. Before
each inclusion, the data dispersion (using the Mahalanobis distance) is calculated
among the internal elements of the cluster with the highest probability of hosting
the new point [2]. After a new point was included, the internal distances of the
cluster are recalculated.
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CURE Method: CURE (clustering using representatives) is a specialized
model used to cluster the data in non-spherical shapes [8], usually ring or S-
shape, and its main application is related to process large amounts of data (big
data). The clusters formation starts by considering a group of representative
points instead of centroids like the other methods do [22]. CURE treats each
sample in the data as an individual class. Then, the closest samples (without
taking into consideration the class) are merged until reach the number of desired
clusters. After that, the samples are multiplied by an appropriate shrinkage fac-
tor to make them closer to the center of the cluster and to diminish the mis-
leading effect of noise [18]. CURE is the most robust model for outliers and size
variances.

Agglomerative Method: The Agglomerative clustering method is the most
common Hierarchical clustering algorithm. It starts by splitting the data set into
individual singleton nodes, treating each object as an independent cluster. In
each subsequent step, the two ‘closest’ clusters are merged until only one cluster
remains. To define the agglomerative strategy properly, we have to specify a
distance measure between clusters [20]:

– Single linkage strategy: the distance between two clusters is defined as the
distance between their closest pair of data objects.

– Complete linkage strategy: the distance between two clusters is defined as the
distance between their farthest pair of data objects

– Average linkage strategy: the distance is defined as the average distance
between data objects from the two clusters.

This agglomerative clustering can be shaped like a ‘dendrogram’, a continuous
tree that starts with all the nodes as branches and ends with ‘n’ branches,
depending on the desired number of clusters [1].

2.3 Experimental Setup

This section outlines the experimental evaluation carried out with the selected
three clustering-based models using the SeisBenchV1 dataset containing feature
vectors of LP and VT seismic events. Dataset normalization, model configura-
tion, assessment metrics, and selection criteria are important aspects that are
described next.

Dataset Normalization: All the values of the dataset were normalized using
the min-max method [11] for bringing them into the range between 0 to 1 and
thus, avoiding data dispersion.

Model Configuration: For all models, the k parameter was optimized in the
range from 2 to 10 (empirically selection). Other hyperparameters, e.g., the
random seed was tuned from 0 to 10000 units; the children per node varied
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from 0 to the number of instances in the dataset (688), and the threshold value
was set from 10−8 to 10−1. All of then were estimated using a brute force-
based approach. A brief description of the individual optimal settings for each
clustering method are:

– K-means: the initialization algorithm for centroid selection and the maximum
of iterations for each run were set to k-means++ method and 1000 units,
respectively.

– BFR: the merge threshold, which determines the approximation of two clus-
ters, was set to 2 units. The Mahalanobis factor, which measures the closeness
between points and clusters, was tuned to 3 units. The euclidean threshold,
which determines the closeness of two points in the retained set, was tuned
to 3 units, and the initial number of iterations was set to 40 units.

– CURE: the affinity metric used to compute the distance between sets was set
to the euclidean distance algorithm.

– Agglomerative: the linkage criterion between sets was set to use the maximum
distances. Also, the affinity metric used to compute the distance between sets
was the l1-norm (Manhattan distance).

Assessment Metrics: The classification performance of all employed mod-
els was based on the mean of accuracy (ACC) metric over 25 runs (the mini-
mum sample needed for accomplishing the statistical test). Also, for supporting
the obtained ACC results, the true-positive rate (TPR) and true-negative rate
(TNR) metrics of a single class were computed. It is worth noting that in binary
classification tasks, the TPR and TNR metrics of a one-class complement the
other. The SeisBenchV1 used in this work is a benchmarking dataset and pro-
vides all the needed information about the samples, including the class labels
required to assess classification performance.

We used the Wilcoxon statistical test with a significance decision value of
5% (α = 0.05) for a two-tailed test [10] to conduct the ACC-based statistical
comparison between clustering methods. This test provides a fair comparison
among them, and therefore a reasonable selection of the best classification model.

Selection Criteria: Since the considered classifiers explore several k values,
it was mandatory to select the best model using the following criteria: (1) the
highest statistically ACC score and, (2) if there is a tie rating in performance, the
one with less algorithmic complexity is preferred. Despite not existing a universal
rule to select the best classifier, we stated the “rule of gold” for the selection
based on the particularity of the experimental SeisBenchV1 dataset. Thus, we
ranked the model complexity in an ordered sequence of k-means, Agglomerative,
BFR, and CURE classifiers.

We used the t-SNE (t- Distributed Stochastic Neighbor Embedding) tech-
nique [16] to visualize the multidimensional feature space presented in the Seis-
BenchV1 dataset into a bi-dimensional one. It was always applied after the clas-
sification process to avoid transforming the data before feeding the classifiers.
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Table 1. Classification performance based on the TPR, TNR and the mean of ACC
metrics for the explored models

LP classification

Model k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

k-means 0.58 0.56 0.74 0.38 0.39 0.64 0.36 0.32 0.11 0.30 0.35 0.27 0.09 0.09 0.28 0.09 0.13 0.7

BFR 0.88 0.37 0.83 0.21 0.64 0.25 0.85 0.30 0.26 0.28 0.47 0.34 0.62 0.27 0.48 0.40 0.10 0.15

CURE 0.94 0.19 0.81 0.47 0.90 0.25 0.85 0.31 0.86 0.27 0.14 0.25 0.16 0.22 0.80 0.18 0.87 0.15

Agglomerative 0.89 0.33 0.76 0.33 0.12 0.42 0.10 0.26 0.10 0.17 0.08 0.23 0.13 0.27 0.70 0.07 0.55 0.10

Binary classification

ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD

k-means 57 0.02 56 0.07 56 0.09 33 0.08 15 0.07 31 0.07 10 0.04 24 0.03 12 0.03

BFR 88 0.03 71 0.06 61 0.08 78 0.05 28 0.02 43 0.05 57 0.03 46 0.04 6 0.04

CURE 87 0.01 87 0.02 84 0.05 83 0.03 82 0.02 16 0.05 16 0.03 78 0.07 80 0.05

Agglomerative 82 0.01 70 0.03 16 0.07 10 0.08 8 0.05 4 0.06 15 0.03 60 0.02 40 0.03

TPR - true positive rate; TNR - true negative rate; ACC - accuracy values rounded to
the closest integer and are represented in percent (%); STD - standard deviation

The implementation of all classifiers was done in Python language version 3.7.4
[27] with the scikit-learn (Sklearn) library [23] and the BFR implementation
posted at [5].

3 Results and Discussion

According to the experimental setup section, a total of 36 clustering-based mod-
els were evaluated on the experimental dataset which contains 668 features vec-
tors. The straightforward statistical comparison based on the mean of ACC
performance highlighted interesting results for the classification of LP and VT
seismic events, as are described next:

3.1 Performance of Explored Models

Regarding the first selection criteria, only one out of 36 models were obtained
after exploring the whole classification space. Table 1 shows the obtained results
based on the mean of ACC metric for the binary classification of both types of
seismic events and in terms of TPR and TNR of the LP samples. From this table,
the BFR classifier with k = 2 was able to reach the highest ACC value of 88%.
This result was statistically superior at p < 0.05 against the rest of the models.
The CURE with k = 2 and k = 3 accomplished the same ACC value of 87%. The
agglomerative method obtained a reasonable ACC score of 82% for k = 2, but
a poor ACC value of 70% for k = 3. The k-means classifier obtained the worst
performance, but the ACC value attained with k = 2 was the higher among all
the presented results of this classifier. Concerning the TPR and TNR metrics,
the CURE method reached the highest TPR score of 0.94 when compared to the
remaining methods, but, the TNR score of 0.19 was the lowest among the rest.
The agglomerative method was slightly better than the BFR method in terms
of TNR scores, reaching 0.89 against 0.88. But, a bit worst in terms of TNR
scores, obtaining 0.33 versus 0.37. Thus, the BFR method better compensated
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(a)

(b)

Fig. 2. Data visualization using the t-SNE technique for k = 2 clusters. The LP (red
circles) and VT (green triangles) seismic events in the (a) original space and (b) as
clusters obtained by the k-means, BFR (top row) and CURE, Agglomerative (button
row) classifiers. (Color figure online)

both metrics. That means it was able to successfully classified the predominant
class (LP events) and overcome the CURE method in the classification of the less
represented class (VT events) in the dataset. Once again, the k-means method
touched a limited score on both metrics.

Overall, the better performances was obtained with k = 2 for all classifiers,
this was expected since the experimental dataset contains only LP and VT seis-
mic events. Beyond this fact, the CURE classifier still assigned the same ACC
value of 87% to a new cluster (k = 3). This value was statistically superior at
p > 0.05 when compared to the remaining methods. This situation is related
to the internal configuration of the SeisBenchV1 dataset, in which some sam-
ples of LP or VT have signals overlapped. Eventually, this situation leads to
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(a)

(b)

Fig. 3. Data visualization using the t-SNE technique for k = 3 clusters. The LP (red
circles), VT (green triangles) and LP or VT (blue squares) seismic events in the (a)
original space and (b) as clusters obtained by the k-means, BFR (top row) and CURE,
Agglomerative (button row) classifiers. (Color figure online)

an incorrect classification when using supervised learning models due to the
inaccurate event segmentation and, therefore, the calculation of the wrong fea-
tures used to feed the classifiers [24]. However, the unsupervised learning CURE
classifier was able to categorize and understand this particular data behavior.
Figures 2 and 3 show an approximation of the data clustering at k = 2 and k = 3
using the t-SNE technique. From this figure, it is possible to corroborate that
the CURE classifier was able to detect most of those samples with overlapped
signals, enabling it as a non-sensitive model to be use in real-life environments.
However, the BFR classifier with k = 2 constituted the best model selection for
the problem under analysis.
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3.2 State of Art-Based Comparison

Concerning the classification performance, it is not possible to make a statis-
tically direct comparison against previously developed methods in the litera-
ture. However, we aimed to carry out the comparison based on the ACC scores
reported by the state of art methods, as shown in Table 2.

Table 2. Comparison based on the ACC between previous works available in the
literature and the selected best model

Method Number of
samples

Balanced
dataset

Number of
features

ACC* (%)

PCA [35] 672 Yes 57 99

SOM [12] 40 No 26 88

KKAnalysis [17] 5465 Yes 62 90

BFR (k = 2) 668 No 84 88

ACC - accuracy; *values rounded to the closest integer

From Table 2 it is possible to notice that the ACC value of 88% reached
by the BFR classifier was similar to the SOM [12] and inferior to the PCA [35]
and KKAnalysis [17]. The superior performance demonstrated by the PCA and
KK Analysis methods could be linked to the employed datasets; while more
and better distributed are the samples, better intraclass variation will have the
model during the training process and, therefore, a more accurate classification
can be achieved. Nevertheless, in volcano real-life environments, the likelihood of
having balanced datasets is very low. For example, although LP and VT are the
main type of events recorded at Cotopaxi, the occurrence of LP events is higher
than VT events [19]. The ACC performance score of 88% reached by the SOM
model in [12] was similar to our best model. However, it is impossible to draw
comparative conclusions since in [12] the model was validated on a dataset with
a lower amount of samples and features. Therefore, the obtained result could be
considered as a non-generalizable model for further application.

4 Conclusions and Future Work

In this work, we made an ACC based exploration of four different unsupervised
learning classifiers within the context of volcano LP and VT seismic events clas-
sification. According to the experimental setup, only one out of 36 models was
selected by the first selection criteria. Afterward, the BFR classifier with k = 2
was chosen as the best model statistically (p < 0.05), reaching a mean of ACC
score of 88%. This value represented a satisfactory and competitive classifica-
tion performance when compared to the state of art methods. There was another
model composed by the CURE with k = 3 that attained a mean of ACC value
of 87%, which performed slightly lower than the selected best model. However,
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the CURE model was the only one able to detect LP or VT events with over-
lapped signals statistically (p > 0.05). Therefore, the proposed clustering-based
exploration was effective in providing competitive models in the classification of
LP and VT seismic events and in the detection of signals with overlapping.

Future work is aimed to increase the number of samples of existent classes
and the inclusion of other types of events in the current experimental dataset.
Also, to include other clustering-based models to enlarge the exploration of the
classifiers space.

Acknowledgment. Authors thank the Applied Signal Processing and Machine Learn-
ing Research Group of USFQ for providing the computing infrastructure (NVidia DGX
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20. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv
preprint arXiv:1109.2378 (2011)

21. Oliveira Martins, L.D., Braz Junior, G., Corrêa Silva, A., Cardoso de Paiva, A.,
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Abstract. In this work, we proposed a new method to classify long-
period and volcano-tectonic spectrogram images using eight different
deep learning architectures. The developed method used three deep con-
volutional neural networks named DCNN1, DCNN2, and DCNN3, three
deep convolutional neural networks combined with deep recurrent neural
networks named DCNN-RNN1, DCNN-RNN2, and DCNN-RNN3, and
two autoencoder neural networks named AE1 and AE2, to maximize the
area under the curve of the receiver operating characteristic scores on a
dataset of volcano seismic spectrogram images. The three deep recurrent
neural network-based models reached the worst results due to the over-
fitting produced by the small number of samples in the training sets. The
DCNN1 overcame the remaining models by obtaining an area under the
curve of the receiver operating characteristic and accuracy scores of 0.98
and 95%, respectively. Although these values were not the highest values
per metric, they did not represent statistical differences against other
results obtained by more algorithmically complex models. The proposed
DCNN1 model showed similar or superior performance compared to the
majority of the state of the art methods in terms of accuracy. Therefore
it can be considered a successful scheme to classify LP and VT seismic
events based on their spectrogram images.

Keywords: Volcanic seismic event classification · Deep-learning
models · Artificial intelligence · Spectrogram images

1 Introduction

Volcanic activity monitoring systems are essential to detect early signs of vol-
canic unrest and possible reawakening that can lead to eruptions [31]. Amongst
the techniques used by scientists to estimate activity inside a volcano, the seis-
micity is one of the most effective tools for monitoring and forecasting eruptions
[29]. In this regard, a wide variety of approaches have been used in recent years
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A. D. Orjuela-Cañón et al. (Eds.): IEEE ColCACI 2020, CCIS 1346, pp. 16–30, 2021.
https://doi.org/10.1007/978-3-030-69774-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69774-7_2&domain=pdf
http://orcid.org/0000-0002-7468-3364
http://orcid.org/0000-0001-8815-4060
http://orcid.org/0000-0003-3166-745X
http://orcid.org/0000-0001-6219-067X
https://doi.org/10.1007/978-3-030-69774-7_2


Seismic Event Classification Using Spectrograms and Deep Neural Nets 17

Fig. 1. An LP (top row) and VT (bottom row) seismic signals examples and their
respective spectrogram. Taken from [27].

to address the problem of volcano seismic events classification, e.g., long-period
(LP) and volcano-tectonic (VT) seismic events, as shown in Fig. 1. Machine
learning classifiers (MLC) such as hidden Markov models (HMM) [1], boosting
strategies [34], decision trees (DT) [16], random forest (RF) [26,28], Gaussian
mixture models (GMM) [33], support vector machine (SVM) methods [7,26],
and artificial neural networks (ANN) [2,5] were combined with classical time,
frequency and scale domain features and non traditional features such as inten-
sity statistic, shape and texture features extracted from the spectrogram images
[26] to differentiate seismic events.

On the other hand, convolutional neural networks (CNN) are particular ANN
architectures that are gaining more attention in image analysis contexts [30].
They avoid using intermediate, fully connected layers to employ pooling ones and
thus optimizing the information pass-through from layer to layer. Lately, there
is evidence of using deep learning techniques to analyze the seismic activity of
volcanoes, e.g., deep neural networks to classify feature vectors computed from
the time-domain signals [32], deep CNN models to classify spectrogram images
[6]. Another well known deep learning architecture is the one based on recurrent
neural network (RNN) where information flows sequentially, it is shared between
layers and kept as a factor for decision making during the weight calculations
[18]. The combination of both the CNN and RNN approach is quite possible,
as demonstrated in [36], to classify different objects on individual images. How-
ever, the model growing is a must concern aspect. The more internal layers are
included in the desired model, the more complex it will be [3].
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There are other deep learning-based approaches for object detection [18,36]
and classification [37]. But, the use of deep learning techniques in the context
of volcano seismic event classification based on their spectrogram images is still
limited. Therefore, in this work, we explore the use of eight different deep learn-
ing architectures to classify LP and VT spectrogram images to maximize the
area under the curve (AUC) of the receiver operating characteristics curve on
a dataset of volcano seismic spectrogram images from the Cotopaxi volcano, in
Ecuador.

2 Materials and Methods

2.1 Spectrogram Images Dataset

This work considered the use of a public dataset (MicSigV1 ) from the ESeis-
mic1 repository, which contains several seismic event samples recorded at the
Cotopaxi volcano [27]. It has a total of 1187 seismic records from two differ-
ent seismic stations (VC1 and BREF) installed at the Cotopaxi volcano. This
dataset contains samples distributed in five classes: LP, VT, regional (REG),
hybrid (HB), and icequakes (ICE). Due to the small number of samples from
REG, HB, and ICE events, we considered only the LP and VT events belonging
to the same seismic station (BREF) to guarantee the same acquisition protocol
and to avoid mixed signals. Therefore, the formed experimental dataset contains
668 spectrogram images (587 of LP and 81 of VT).

2.2 Deep-Learning Networks

Deep learning can enhance computational models by including multiple layers to
process large amounts of data and to improve the learning process. Thus, severe
problems regarding image classification and recognition in the past are presently
easier to tackle. The deep CNN and RNN are two exclusive deep learning models
[18,36], which are increasing their popularity on sequential data analysis and
image labeling, respectively.

The deep CNN is a multilayered approach of conventional convolutional neu-
ral networks that include an input layer, a set of hidden layers (which could
vary depending on the network architecture from two to hundreds of layers),
and an output layer (fully connected layer). In deep CNN learning, each hidden
layer is mainly composed of the CNN architecture core, consisting of at least
the convolutional and max-pooling layers. Other configurations extend the basic
scheme by adding dropout and flatten layers. This multi-layer structure enables
the network to learn different data abstractions while transitioning from layer
to layer until reaching the output result [6].

1 ESeismic repository was provided by courtesy of the Instituto Geof́ısico of
Escuela Politécnica Nacional (IGEPN) and collaborators, and it is available at
http://www.igepn.edu.ec/eseismic web site/index.php. Please note that you must

register and complete a disclaimer agreement to obtain the data.

http://www.igepn.edu.ec/eseismic_web_site/index.php
http://www.igepn.edu.ec/eseismic_web_site/index.php
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The deep learning RNN is based on the classic feed-forward ANN archi-
tecture, but it includes an extra working piece called loops in connections. In
contrast to the feed-forward ANN, the RNN architecture processes the inputs
in a sequential way considering a recurrent hidden state in which the current
activation is dependant on the previous step activation. The main drawback is
related to long-term sequential data, where the gradients tend to vanish during
the training. However, there is a more sophisticated approach to design recurrent
units and to avoid vanishing problems known as long short-term memory [10].
It allows for recurrent units to learn long-term dependencies, which are a vital
key when developing deep RNN models [24].

The deep learning autoencoder (AE) architecture is based on a classic AE
artificial neural network. It efficiently learns compressed representations (encod-
ings) of the data, typically for dimensionality reduction, by training the network
to ignore the noise (signal). This type of architecture utilizes a bottleneck struc-
ture reducing the neurons in each layer as well as the volume of information that
passes through the entire network reaching the latent space representation. Sev-
eral variants to the basic AE model have been proven to be effective in learning
representations for classification tasks [35], face recognition [9], and to extract
the semantic meaning of words [19]. Thus, an adequate AE architecture will
be able to recognize the useful features of the input data, while avoiding the
redundant ones and the overfitting.

2.3 Proposed Method

We adopted the deep CNN, RNN, and AE neural networks to build the proposed
method, which extends these neural networks to eight different deep learning
architectures: DCNN1, DCNN2, DCNN3, DCNN-RNN1, DCNN-RNN2, DCNN-
RNN3, AE1, and AE2. For a better explanation of the proposed method, we
focus our description in the DCNN1, DCNN-RNN1, and AE1 models.

The DCNN1 architecture is composed of several layers, as it is shown in
Fig. 2. From this figure, it is possible to read that the spectrogram images are
used to feed the first convolutional layer composed of 16 convolutional filters with
a 3 × 3 kernel size each. This layer aims to predict the class probabilities of the
input sample by creating a feature map representation computed by the struc-
ture of the filters. Subsequently, the feature map enters the pooling layer with a
4× 4 kernel size each to reduce irrelevant features (information) while retaining
the relevant ones. Then, the reduced feature space is used to feed another con-
volutional and pooling layer with the same configurations as the previous ones.
This second convolutional module concentrated the most relevant (important)
features to classify the input sample. Finally, the fully connected layer consists of
two dense layers, the flatten to convert the reduced bi-dimensional input feature
space into a single feature vector with its corresponding weights and the output
layer, which provides the final classification of the feature vector using a sigmoid
function.

The DCNN-RNN1 architecture is a mixed model that combines a two con-
volutional layer based deep CNN architecture with some extra RNN layers, as
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Fig. 2. The DCNN1 architecture of the proposed method; F - number of filters; KS -
convolutional kernel size; S - max pool kernel size; N - number of neurons.

Fig. 3. The DCNN-RNN1 architecture of the proposed method; F - number of filters;
KS - convolutional kernel size; S - max pool kernel size; N - number of neurons; RF -
repeat factor; RU - recurrent units; TS - time stamp; IU - input units.

Fig. 4. The AE1 architecture of the proposed method; N - number of neurons; LSR -
latent space representation

it is shown in Fig. 3. In such a sense, the first convolutional layer (Conv1.)
used 32 convolutional filters with a 2 × 2 kernel size each and a pooling layer
(Max pool1) with a 3 × 3 kernel size. The second convolutional unit (Conv2.
and Max pool2 layers) used the same number of filters as in the Conv1., but it
increased the convolutional kernel size to 5 × 5. The Max pool2 layer remained
as equal as the Max pool1 in terms of configurations. Then, a flatten and dense
layer transforms the bidimensional feature space into a single feature vector that
is the input to a repeat vector layer. The later transforms the input feature vec-
tor into a data stream that is propagated with a repeat factor of 30 as input to
the first long-short term memory (LSTM) unit. The LSTM1 unit is composed
of 1024 recurrent units (RU) with input shape (IS) size of 30 and input units
(IU) number of 32. Then, the LSTM1 layer output feeds the LSTM2 unit that
is set to 512 RU and the same input shape size and number of input units as the
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LSTM1 layer. After that, a fully connected layer containing a flatten and dense
layers with sigmoid function provide the final classification.

On the other hand, the AE1 architecture is composed of multiple dense lay-
ers that are gradually reducing the number of neurons per layer, simulating a
bottleneck workflow, as shown in Fig. 4. From this figure, it is possible to observe
that the input image transits throughout this architecture, starting with a dense
layer with 256 neurons. Subsequently, there are five more dense layers, in which
the total number of neurons is reduced from layer to layer by a power factor of
two until reaching a total of 8 neurons in the fifth layer. After that, it is possible
to find the latent space representation (LSR) layer, which holds the compressed
data that passed through all the layers and uses them to generate the prediction.
Then, a flattened layer that is connected to the final dense layer with one neuron
returns the final output. The deep-learning of this architecture is benefited from
the data compression for better representation [20].

The remaining architectures, DCNN2, DCNN3, DCNN-RNN2, DCNN-RNN3,
and AE2, follow the same base architecture (described here), varying the lay-
ers configurations and hyperparameters. The other architectures are summarized
next:

The DCNN2 model contains three convolutional layers with 32, 64, and 128
filters with a kernel size of 3 × 3 each. Three max-pooling layers (one by each
convolutional layer) with a pool size of 6 × 6 each, one flatten layer and a fully
connected layer (output) composed of three dense layers (32, 32 and 1 neurons).
The DCNN3 model uses two convolutional layers with 20 filters each, and a
kernel size of 2 × 2 and 3 × 3, respectively. Two max-pooling layers (one by
each convolutional layer) with a pool size of 3× 3, one flatten layer, and a fully
connected layer (output), containing three dense layers (32, 32, and 1 neurons).

The DCNN-RNN2 model employs three convolutional layers with 20 filters
each and kernel size of 2 × 2, 2 × 2, and 5 × 5, respectively. Three max-pooling
layers (one by each convolutional layer) with a pool size of 3 × 3, one flatten
layer, one dense layer with 32 neurons, one repeat vector layer with a repetition
factor of 30 units, two LSTM layers: the first one with 1024 recurrent units and
input shape 30 × 32, and the second one with 512 recurrent units and a fully
connected layer (output), composed of three dense layers (32, 32 and 1 neurons).
The DCNN-RNN3 model involves three convolutional layers with 32 filters each
and with a kernel size of 2 × 2 each. Three max-pooling layers (one by each
convolutional layer) with a pool size of 3 × 3, one flatten layer, one dense layer
with 32 neurons, one repeat vector layer with a repetition factor of 30 units,
two LSTM layers with 512 and 256 recurrent units, an input shape of 30 × 32,
and a fully connected layer (output), containing three dense layers (32, 32 and
1 neurons).

The AE2 model used a similar architecture as the AE1 model, but with
four dense layers in its composition. In this case, the input image enters the
initial dense layer with 32 neurons and transits through three more layers with
a reduced number of neurons each (by the power of two of the previous layer),
until reaching the last dense layer with four neurons. Then, the LSR and the
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flatten layers evaluate the final characteristics to obtain the final result in the
output layer.

2.4 Experimental Setup

Spectrogram Image Preprocessing: All spectrogram images were down-
scaled to 50% from their original size, thus decreasing the volume of informa-
tion used to feed the learning models. The dataset provides spectrogram images
without noise; therefore, the seismic event pattern presented on each image is
invariant to the downscaling operation. This operation is use frequently in image
analysis context with deep learning [6]. Besides, the pixels values of each spec-
trogram image were normalized using the min-max method [12] to bring them
into the range of 0 to 1, thus, avoiding data dispersion. Besides, we used a data
augmentation technique to increase and balance the number of samples per class.
Thus, each spectrogram image underwent shearing, scaling, and rotation opera-
tions, as defined in [23]. Affinity transformations are widely used [6] and allowed
us to reach a total of 1108 spectrogram images, which reinforces the models
learning process by training them with more samples per class, helping to avoid
overfitting.

Training and Test Partitions: The stratified 10-fold cross-validation
method [21] was applied before the classification step to build disjoint training
and test partitions and to ensure the sample ratio between both types of events
for all folds. Thus, individual deep learning models were trained using different
training sets, which enable it to learn from different input space representations.
Testing on these different sets promotes trustworthy resulting variability in the
classification of individual samples.

Deep Architectures Configurations: For all models, we configured three
main hyperparameters to explore the proposed method limits. Thus, the number
of iterations (epochs) was set from 50 to 150 with increment step of 50 units;
the batch size was tuned to 16, 32 and 64 units, and the learning rate used the
adam optimizer, which is based on adaptive estimation of lower-order moments
[14]. This optimizer was designed to combine the advantages of the well-known
optimizers AdaGrad and RMSProp [15].

Validation Metrics: The classification performance of the proposed method
was based on the AUC and accuracy (ACC) metrics. The statistical comparison
among all classification schemes was conducted using the Wilcoxon test with a
significance decision value of 5% (α = 0.05) for a two-tailed test [11]. This test
ranks the differences in performances of two MLCs [8] and thus, allowed us to
select the best classification model.
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Selection Criteria: The best model was selected based on the following crite-
ria: (1) the model with the statistically highest AUC score by architecture, (2)
if there was a tie rating performance in the AUC scores, the one that has the
lowest algorithm complexity is preferred, and (3) the statistically highest AUC
score among all models selected according to the previous two rules. More than
one model can be chosen per architecture if there is no significant AUC-based
difference between them. This exception is only valid for intra-architectural anal-
ysis. Therefore, the proposed method provides only one classification model as
a result.

All implementations were done in Python programming language version
3.7.4 using scikit-learn (SKlearn) [25], Keras [4] with ImageDataGenerator and
TensorFlow backend, and sciPy for statistical analysis [13].

3 Results and Discussion

3.1 Performance Evaluation of the Proposed Method

The DCNN1 architecture provided seven out of nine classification models using
the first selection criterion. This set of classifiers did not represent statistical
differences in terms of AUC performance when compared to each other. The
AUC range of variation was above the 0.95, which is an outstanding classifica-
tion threshold for any classification problem. Although the highest AUC score
of 0.99 was reached by the model using a batch size of 32 units and 150 epochs
(iterations), the remaining models performed similarly statistically. According
to the second selection criterion, the selected classification model in this archi-
tecture is the one implementing a batch size of 32 units, 50 epochs, and AUC
score of 0.98 (see Table 1, bold line).

Likewise, DCNN2 architecture was able to produce six out of nine classifi-
cation models that were similar statistically in AUC performances. The range
of AUC variation in this set was between 0.71 and 0.79, which are not good
enough scores to tackle the problem at hand. The highest AUC score of 0.79
was reached by the model with 16 units of batch size and 100 epochs. But, the
model composed of the same batch size and 50 epochs, which obtained an AUC
value of 0.71 was selected as the best model from this architecture, taking into
consideration the second selection criterion (see Table 1, bold line). Similarly, in
the DCNN3 architecture, a total of five out of nine classifiers were highlighted as
classification models without statistical difference among them. The AUC scores
varied from 0.90 to 0.94, which are considered reasonable scores in the context of
spectrogram images classifications. The highest AUC value of 0.94 was obtained
by the model composed of a batch size of 64 units and 50 epochs. However, there
was another model using the same number of epochs as the highest model, batch
size of 16, and AUC score of 0.91, which was selected as the best model inside
this architecture according to the second selection criterion (see Table 1, bold
line).

The AE1 architecture produced six out of nine models using the first selection
criterion. They did not present a statistically significant difference among them
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Table 1. Performance results of deep learning models selected by the first selection
criterion.

Architecture AE Dense Conv. Kernel Pool size FC Batch Epochs AUC Wilcoxon at α = 0.05 ACC

layer (n). layer (f) size per layer layer (n) size (u) (p value) (%)

DCNN1 − (16, 16) (3 × 3) (4 × 4) (32, 1) 32 50 0.98 0.19 95

64 50 0.99 0.45 97

16 100 0.99 0.41 96

32 100 0.98 0.16 98

64 100 0.99 0.50 99

32 150 0.99 − 99

64 150 0.98 0.45 99

DCNN2 − (32, 64, 128) (3 × 3) (6 × 6) (32, 32, 1) 16 50 0.71 0.15 90

32 50 0.74 0.45 91

64 50 0.73 0.33 92

16 100 0.79 − 92

32 100 0.72 0.23 93

64 100 0.72 0.33 94

DCNN3 − (20, 20) (2 × 2) (2 × 2) (3 × 3) (32, 32, 1) 16 50 0.91 0.26 94

64 50 0.94 − 97

32 100 0.92 0.33 98

64 100 0.91 0.17 99

32 150 0.90 0.08 99

AE1 (256, 128, 64, 32, 16, 8) − − − (1) 16 50 0.89 0.24 89

64 50 0.93 − 92

32 100 0.89 0.50 89

64 100 0.89 0.40 91

32 150 0.87 0.40 87

64 150 0.90 0.40 90

AE2 (32, 16, 8, 4) − − − (1) 16 50 0.84 − 88

32 50 0.80 0.41 92

64 50 0.73 0.30 95

16 100 0.70 0.41 92

Conv.- convolutional; f- number of filters per layer; n- number of neurons per layer; FC- fully;
connected; u- units; AUC and ACC - mean of AUC and ACC metrics over ten folds; underlined
AUC value is the Wilcoxon test pivot value; ACC - mean of accuracy.

in terms of AUC performances. The variation of AUC scores was in the range
between 0.87 to 0.93, which is considered as a reasonable performance. Even
though the highest score of 0.93 was obtained by the model with a batch size
of 64 units and 50 epochs, the selected classification model in this architecture
was the one using a batch size of 16 units, 50 epochs, and AUC score of 0.89
(see Table 1, bold line). Similarly, in the AE2 architecture, only four out of
nine models did not produce AUC-based statistical differences among them.
The AUC scores varied between 0.70 and 0.84. These results evidenced poor
performances in the volcano activity context. In this architecture, the highest
AUC performance (0.84) and the lowest algorithm complexity (batch size of 16
units and 50 epochs) were reached by the same classification model. Thus, it was
selected as the best model on this architecture (see Table 1, bold line).

The combined classification models based on deep CNN and RNN architec-
tures were the worst in terms of AUC performances. The three explored architec-
tures provided AUC scores of 0.50 on all classification models, which means very
poor schemes generalization. This effect is extremely linked to the number of
samples employed during the models training. Despite using the data augmen-
tation technique and the 10-fold cross-validation method on the experimental
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Fig. 5. Performance of proposed deep learning models based on the mean of the accu-
racy (left) and loss function (right) over ten folds.

dataset before feeding the classifiers, they incur in a poor generalization power
(see Fig. 5, top plot) and a week learning (Fig. 5, bottom plot); both causes are
symptoms of overfitting. It should be noted that the mean of the loss function
never meets the established learning rate on these models, suggesting that more
samples are required in the training process.

According to the first two selection criteria, the deep CNN-based classifica-
tion models provided evidence of successful performance without incurring on
overfitting. They performed over the 90% of the mean of ACC in the valida-
tion and the loss values converged to the learning rate across the defined epochs
(see Fig. 5, top and bottom plots). Despite the good classification performances,
the best selection model in the DCNN2 based architecture reached AUC and
ACC scores of 0.71 and 90%, respectively. These values are statistically lower
(p < 0.05) when compared to the best model selection inside the DCNN3 archi-
tecture, which achieved AUC and ACC scores of 0.91 and 94%, respectively.
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Table 2. Comparison based on the ACC between related previous works and the best
selected model produced in this work.

Method Number of Computed Spectrogram ACC*

samples features images (%)

ANN [16] 914 6 No 97

DT [16] 914 3 No 96

ANN [26] 637 17 No 95

RF [26] 637 17 No 93

Linear SVM [17] 914 5 No 97

ANN [5] 1033 8 No 94

HMM [1] 512 39 No 90

GMM [33] 667 2 No 94

CNN [6] 15895 Yes 97

SVM [22] 105000 102 Yes 92

DCNN1 model 1108 Yes 95

ACC - accuracy; *values rounded to the closest integer

The difference in performance is linked to the model complexity inherited from
its architecture and the number of samples used to train it. The DCNN2 archi-
tecture is the most complex among all the developed deep CNN architectures.
Thus, it is very reasonable to assume that this model needs more samples and
epochs to learn the feature space properly (see Fig. 5, bottom plot).

Moreover, the selected classification model using the DCNN1 architecture
provided the best performances on both validation metrics. It obtained scores
of 0.98 and 95% for the AUC and ACC metrics, respectively. It statistically
(p < 0.05) overcomes the performance of the remaining models (see Table 1).
This success is related to the DCNN1 architecture, which employed two convo-
lutional layers with only 16 neurons (filters) per layer (lower than the DCNN3
architecture). Thus, it was able to learn from the provided features space satis-
factorily (see Fig. 5, bottom plot). Regarding the third selection criterion, the
selected classification model of the DCNN1 architecture constituted the pro-
posed method output and the most appropriate classifier to face the problem of
volcano spectrogram image classification.

3.2 State of the Art Based Comparison

Although it is not possible to make a direct statistical comparison against some
previously developed state of the art methods such as those developed in [1,5,
6,22], because they used different experimental conditions, we aimed to carry
out the comparison based on the ACC scores reported by them, as it is shown
in Table 2. The majority of presented machine learning models reached ACC
scores ranging from 90 to 97%, being the linear SVM and ANN the models which
provided the higher classification performance. The proposed method has similar
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and superior performance compared to several states of the art methods in terms
of ACC scores. That was possible because deep learning-based approaches are
able to learn data abstraction from layer to layer, using different mathematical
functions. Meanwhile, machine learning methods, except for nonlinear models
like ANN, attempt to fit the data with a single mathematical function, which
limited the learning ability.

On the other hand, the method developed in [6], used a deep CNN model
that achieved an ACC score of 97%. This result was superior when compared to
the 95% obtained by the proposed method. However, they classified four types
of seismic events instead of two, like in this work. Also, they made the training-
test validation using an extensive dataset, which provided a decent number of
samples during the model learning.

4 Conclusions and Future Work

We explored the use of eight different deep learning architectures based on deep
CNN (DCNN1, DCNN2, and DCNN3), RNN (DCNN-RNN1, DCNN-RNN2, and
DCNN-RNN3) and AE (AE1 and AE2) models to classify LP and VT seismic
events on a dataset of seismic spectrogram images. The models based on the
combination of deep CNN and RNN architectures reached the worst classifi-
cation performances. The data augmentation operation helped to reinforce the
learning of the DCNN1, DCNN2, DCNN3, AE1, and AE2 models. But it was not
enough for the deep RNN based models, leading then to the overfitting anyway.
The DCNN1 was the best model when compared with the other deep CNN based
models, attaining AUC and ACC scores of 0.98 and 95%, respectively. Although
these values were not the highest values per metric, they did not represent statis-
tical differences against other results that were obtained by more algorithmically
complex models. Furthermore, the proposed DCNN1 model showed similar or
superior performance when compared to the majority of the state of the art
methods in terms of the ACC metric. Therefore it can be considered as a suc-
cessful scheme to classify LP and VT seismic events based on their spectrogram
images.

As future work, we plan to increase the number of samples per class to
experiment with more complex architectures like the deep CNN+RNN mod-
els and improve the hyperparameter configurations to explore the limits of the
implemented models.
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Automatic recognition of long period events from volcano tectonic earthquakes
at cotopaxi volcano. IEEE Trans. Geosci. Remote Sens. 54(9), 5247–5257 (2016).
https://doi.org/10.1109/TGRS.2016.2559440

https://doi.org/10.1109/TGRS.2006.882264
https://doi.org/10.1109/TGRS.2019.2941494
https://doi.org/10.1109/TGRS.2019.2941494
http://arxiv.org/abs/1605.07678
https://keras.io
https://doi.org/10.1109/IJCNN.2018.8489285
https://doi.org/10.1109/IJCNN.2018.8489285
https://doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.1007/978-3-642-21735-7_6
http://www.scipy.org/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ColComCon.2016.7516377
https://doi.org/10.1109/TGRS.2016.2559440


Seismic Event Classification Using Spectrograms and Deep Neural Nets 29

18. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015).
https://doi.org/10.1038/nature14539

19. Liou, C.Y., Cheng, W.C., Liou, J.W., Liou, D.R.: Autoencoder for words. Neuro-
computing 139, 84–96 (2014). https://doi.org/10.1016/j.neucom.2013.09.055

20. Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and
feature extraction. In: 2011 International Conference on Computer Vision, pp.
1615–1622 (2011)
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Abstract. Culicoides biting midges are transmission vectors of various
diseases affecting humans and animals around the world. An optimal
and fast classification method for these and other species have been a
challenge and a necessity, especially in areas with limited resources and
public health problems. In this work, we developed a mobile applica-
tion to classify two Culicoides species using the morphological pattern
analysis of their wings. The app implemented an automatic classification
method based on the calculation and reduction of seven morphological
features extracted from the wing images, and a naive Bayes classifier
to produce the final classification of C. pusillus or C. obsoletus class.
The proposed app was validated on an experimental dataset with 87
samples, reaching an outstanding mean of the area under the curve of
the receiver operating characteristic score of 0.973 in the classification
stage. Besides, we assessed the app feasibility using the mean of execu-
tion time and battery consumption metrics on two different emulators.
The obtained values of 5.54 and 4.35 s and 0.0.02 and 0.11 mAh for the
tablet Pixel C and phone Pixel 2 emulators are satisfactory when devel-
oping mobile applications. The achieved results enable the proposed app
as an excellent approximation of a practical tool for those specialists who
need to classify C. pusillus or C. obsoletus species in wildlife settings.

Keywords: Culicoides species classification · Android application ·
Digital image processing · Machine learning classifiers · Feature
selection
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1 Introduction

Culicoides is a genus of biting midges implicated in the transmission of var-
ious human and animal diseases [3]. They are also responsible for insect-
transmitted protozoan parasites such as Haemoproteus, Leucocytozoon that can
attach birds, and Onchocerca which can produce blindness in humans. More than
50 arboviruses have also been isolated from Culicoides including viruses from
Bunyaviridae, Reoviridae, and Rhabdoviridae families [14]. Thus, it is important
to have fast and accurate identification methods to detect the different species
of these midges, in order to determine vectors and conduct entomological moni-
toring programs for evaluating the diversity of species in a specific area and to
take defensive actions against such gnats.

Morphological characteristics such as: wing pigmentation pattern, antennal
segment length and shape, male genitalia characteristics, antennae sensillae dis-
tribution, and the spermathecae number and size in females have been used to
identify Culicoides species [23]. Adults are remarkable for their wing patterns
and pigmentation (distribution and color of spots). These patterns can be used
in certain species as the main criteria for identification. Biting midges wing geo-
metric morphometrics is an established, inexpensive, and reliable identification
technique of Culicoides species [9]. Consequently, the wing appears to be a good
character for species discrimination.

In the recent scientific literature, other studies and methods have been
applied for mosquito species classification. A convolutional neural network
(CNN) model was implemented in [16] to extract features from images and iden-
tify species like the genus Aedes known for being transmitter of the Zika virus.
In [12], the authors implemented ionization time of flight mass spectrometry
with protein mass fingerprints as an alternative to identify Culicoides species.
Furthermore, an artificial neural network (ANN), using ribosomal DNA data,
was implemented in [2] for classification of the genus Anopheles known for being
a malarial transmission vector. Moreover, in [22] the classification of anopheline
mosquitoes using cluster analysis was carried out based on the characteristics of
the habitat were specimens were collected. Finally, the authors in [25] used DNA
barcodes to identify the main mosquito specie in China based on morphological
characteristics using a Neighborhood-Joining tree.

Despite the recently developed methods for biting midges classification,
this problem remains as a challenge. Besides, there is a need for implement-
ing portable tools associated with developed methods. Therefore, in this work,
we proposed the development of a mobile application called MosCla to clas-
sify Culicoides species based on the morphological pattern of their wings. The
proposed application implements an automatic Culicoides species classification
method using the Android development environment to produce the final app.
An experimental dataset containing wing images from two species: C. pusillus
(French Guyana), and C. obsoletus (France) will be used to benchmark the pro-
posed approach. Also, a feasibility study is carried out to know how practical in
terms of classification performance, execution time, and battery consumption,
the implemented app could be.
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2 Materials and Methods

2.1 Automatic Culicoides Species Classification

We used a set of computer vision functions for image processing to obtain mor-
phological features from the wings images [19] and a set of classifiers to distin-
guish amongst the species under analysis. Thus, the image pre-processing, wing
particles detection and zones segmentation, feature calculation and selection,
and machine learning classifiers (MLC) are essential aspects to describe here. It
should be pointed out that all the employed functions in this work were carefully
selected to maximize performance while minimizing the battery consumption on
the target devices.

Image Pre-processing. This module aims to the correctly extraction of a wing
binary mask and their corresponding bounding box. Thus, the original RGB (red,
green, blue) image was first transformed to a gray-scale (pixels values up to 255)
color space. Then, a filtering operation was carried out using a (3 × 3) median
filter to remove possible noises while conserving the contours of the objects of
interest in the wing’s image [7]. Other mask sizes like (5 × 5) and (7 × 7) were
tested, but the (3× 3) was ideal to carefully clean small objects contours inside
the wing, such veins, holes, among others. A morphological erosion operation
was then applied to remove all the non-desired objects that were still presenting
in the filtered wing, such as isolated pixels or noise. The eroded wing image
was followed by a filling operation to obtain the final binary mask of the wing
and, subsequently, its bounding box, which was determined by using the Otsu’s
method [18]. Finally, opening and closing morphological operations were applied
to conserve the shape and size of particles inside the wing image without other
objects overlapping.

Wing Particles Detection and Zones Segmentation. The Moore-Neighbor
tracing algorithm [7] with the Jacob’s stopping criteria was applied on the binary
wing images to detect the particles inside the wing contour. The presence of
particles was verified by tracking whether or not there are changes in the pixel
intensity value of the 8-connected pixels in the neighborhood of the current pixel
(pixel under analysis), any intensity change was used as the stopping criteria by
the algorithm. Moreover, the watershed method [15] was applied to segment the
zones inside the wing. This method discovers “basins” and “ridges” in the image
surface. The algorithm assumes that light and dark pixels represent elevations
and depressions linked to the particles and zones, respectively.

Feature Calculation. A set of seven morphological features [19] (number of
particles, number of zones, elongation, solidity, circularity, hydraulic radius, and
eccentricity) were computed from the binary images. All the values were nor-
malized using the min-max method [11] to bring them into the range [0,1].
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Feature Selection. This technique is efficient when using high-dimensional
data to reduce the heavy load of inputs to the MLCs. They are related to avoid
overfitting, to improve the model performance, and to provide faster and more
cost-effective models [21]. In this work, the feature space is composed of seven
numerical variables (features) regarding morphological descriptors of the wing
images. Despite the small number of computed features, the feature space is
still significant to be explored on equipment with limited resources like mobile
devices. Thus, we used a wrapper method with a greedy step-wise search method
(to avoid stuck in local minimums) to reduce the feature space. It this way, a
minimum set of features was obtained according to their predictive power related
to the output class [21].

Classification. The classification of Culicoides species is a problem that
involves two discrete output classes: C. pusillus and C. obsoletus species. Hence,
it can be modeled as a two-class classification problem. Among the vast number
of available MLCs that can be employed, we decided to use the naive Bayes (NB),
support vector machine (SVM), and k-nearest neighbors (kNN) classifiers. Since
mobile devices have limited resources, it was mandatory to consider a classifier
with an acceptable trade-off between successful performance and low battery
consumption. A brief description of selected MLCs are next:

NB Classifier. The NB is based on probabilistic models with strong (naive)
conditional independence assumptions [6]. It assumes that c is a class variable
depending on n input features: x1, x2, · · · , xn and estimates the probability dis-
tribution p(c) of the features. Any test sample will follow the decision rule accord-
ing to the Bayes’ theorem that provides the most probable value of the class as
given by:

p(c|x1, x2, · · · , xn) =
1
z
p(c)

n∏

i=1

p(xi|c)

where z is a normalization constant.

SVM Classifier. The SVM is based on the definition of an optimal hyperplane,
which linearly separates the training data. In comparison with other classification
methods, it aims to minimize the empirical risk and maximize the distances
(geometric margin) of the data points from the corresponding linear decision
boundary [20].

kNN Classifier. The kNN is a non-parametric technique that assigns a test
sample to the class of the majority of its k-neighbors (usually by the Euclidean
distance). That is, assuming that the number of voting neighbors is k = k1 +
k2 + · · · + kn (where n is the number of samples from class i in the k-sample
neighborhood of the test sample), the test sample is assigned to class m if km =
max(ki), i = 1, 2, . . . , n [26].
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2.2 Development Environment

Integrated Development Environment (IDE). We used Android Studio
version 3.6 for developing the MosCla app source code efficiently and neatly.
This allowed us to design the Android activities UI’s visually together with the
XML code. Besides, the java OpenJDK (Java development kit) version 11.0.6
for 64-Bits operating systems was selected as the run-time environment and
development tools, respectively. Thus, the developed application will be on the
base of the Android mobile operating system with the Android SDK version 9.0
(Pie).

External Libraries. The employed IDEs and development tools do not provide
enough support to implement the digital image processing functions needed to
fulfill the wing image pre-processing as well as the classification. Thus, we added
two third-party’s libraries: OpenCV (Open Source Computer Vision Library)
release 3.4.8 [17], which will help to store the images as a MAT object, facil-
itating the heavy image processing operations and transformations on devices
with limited resources, and the LIBSVM (Library for Support Vector Machines)
version 3.24 [4] for the Android platform. Since both libraries were developed
in native C and C++ languages, it was necessary to include the NDK (Native
development KIT) version 21.0.6113669 to operate with them. Additionally, the
Google API play-services-location version 17.0.0 will be used in the developed
app to estimate the latitude and longitude based localization of newly acquired
or existing images.

Source Code Optimization. Although using native C, C++ libraries, the
performance of some modules like the digital image processing functions, the
watershed transform, the particle analysis, and the training-test process of the
MLCs are not optimal enough when performing them sequentially. Thus, the
Android asynchronous tasks will be exploited to carry out these modules on
separate threads, avoiding possible application crashes, and speeding up associ-
ated processes.

2.3 Proposed MosCla App

The workflow of the proposed application using the defined development environ-
ment to produce an Android application able to classify two Culicoides species
on limited resources devices is shown in Fig. 1. The application receives as input
the wing images. Each entry transits throughout several digital image process-
ing steps to produce a feature vector linked to the entry (wing image). Then,
a subset of the computed feature vector is used to feed a MLC, which provides
the final classification of C. pusillus or C. obsoletus class.

Additionally, the initial feature vector together with the final classification
of each processed entry is saved in a database file, such files are used for a
feature selection process using an external wrapper features selection method.
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Fig. 1. Workflow of the proposed MosCla app implemented on mobile devices.

The wrapper method was implemented outside the app (on the WEKA toolkit
version 3.8.3 [8]) and selected three out of seven computed features. Thus, the
training - test feature vectors sets were formed with a total of three features
and the output class. Besides, these sets are employed for re-training the imple-
mented MLC by the user at any time. The later option of reinforcement learning
guarantees the progressive model specialization.

Configuration. For better user experience, the proposed MosCla app requires
special configurations regarding permissions and initialization. These settings
are defined in the AndroidManifest.xml file and help to avoid run-time errors.
Therefore, the application always checks if the user has granted the following
android permissions: INTERNET, CAMERA, READ EXTERNAL STORAGE,
WRITE EXTERNAL STORAGE, ACCESS COARSE LOCATION, and ACC-
ESS FINE LOCATION.

Otherwise, it prompts the user to accept missing permissions. This permission
check is done at some control points during the running app because the camera,
location, and storage are vital settings to exploit the maximum benefits of the
app.

Initialization. There are two actions that the MosCla app offers when it starts,
either choose an image from the device’s photo gallery (ChooseTakePhoto) or
take a new photo (TakeNewPhoto). Choosing a storage image starts an activity
through an ACTION.PICK intent, which allows the user to select and load the
image into memory. On the other hand, the action of taking a new photo starts
an implemented activity that checks the camera’s existence before displaying the
real-time picture. This activity also defines a real-time region of interest (ROI)
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Fig. 2. The proposed MosCla app execution on a Pixel C device with Android 9.0 (API
28) based emulator using a C. pusillus test sample. From left to right and up to bottom:
loading the image from the photo gallery, image enhancement by the CLAHE function,
image filtering by a (71×71) median filter, background removing, binary mask creation,
bounding box determination, wing region isolation, wing particles determination, par-
ticles isolation, wing region coloring, zones segmentation and features calculation with
the final classification.

with a rectangle shape to enclose the wing image under analysis. It should be
noted that the defined ROI should constitute the maximum area containing
the wing image. Enclosing the wing’s image inside the ROI is essential for the
successful performance of some of the digital image processing functions like the
watershed transform, which overflows when desired objects are very close to the
image border. An example of execution of the implemented MosCla app using a
C. pusillus test sample is shown in Fig. 2.

2.4 Experimental Setup

Culicoides Wing Image Dataset: C. pusillus samples (n = 45) were captured
at French Guyana (3◦59′56′′N, 53◦00′00′′W) and C. obsoletus samples (n = 42)
at France (49◦59′69′′N, 4◦01′45′′E; 43◦58′55′′N, 3◦42′58′′E) by using ultraviolet
traps. Samples were stored in 70% ethanol before any morphological analysis.
The specimens were separated from other insects according to their wing char-
acteristics using a stereomicroscope [1]. The digital wing images were obtained
using an Olympus BX53 microscope equipped with an Olympus SC100 camera
magnified at x10 with stream motion software (Olympus). For our study, left
and right wings were used indistinctly because of the systematic selection of one
side may bias the results in case of differential directional asymmetry between
species, the comparison of wings from catalogs and original descriptions with sta-
tus (left or right) are mostly unknown, and the distribution and color spots on
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the twice wings are similar [19]. Thus, we formed an experimental dataset with
a total of 45 and 42 wing images of C. pusillus and C. obsoletus, respectively.

Table 1. Summary of experimental mobile device emulators.

Device Specification Value

Tablet Model Pixel C

CPU/ABI Google Play intel Atom (x86)

API 8 (Android 9.0 Pie)

Target google apis [Google APIs] (API level 28)

Skin pixel c

Resolution 2560 × 1800 xhdpi

Camera Host Camera (Acer Nitro 7 Laptop)

Internal storage 2048 MB

RAM 2048 MB

VM heap 127 MB

Phone Model Pixel 2

CPU/ABI Googel Play Intel Atom (x86)

API 29 (Android 10.0 Q)

Target google apis playstore[Google Play] (API level 29)

Skin pixel 2

Resolution 1080 × 1920 xxhdpi

Camera Host Camera (Acer Nitro 7 Laptop)

Internal storage 6144 MB

RAM 1536 MB

VM heap 256 MB

API - application program interface; RAM - random-access memory; VM - virtual
machine

Experimental Mobile Devices: Two mobile device emulators were considered
for installing and testing the proposed MosCla app. They were selected based
on the minimum device specifications required to host the proposed app. It
should be noted that some digital image processing functions and the classifier
itself demand a certain amount of resources to fulfill the assigned tasks. The
specifications of the selected devices are summarized in Table 1.

Training and Test Sets: We applied five times the stratified 10-fold cross-
validation (CV) method [13] before the classification stage to form separate
training and test sets. Therefore, the selected MLCs were trained on different
training sets and learned from different input space representations. Testing on
these different sets leads to variability in the classification results and allows us
to avoid overfitting. Setting the 10-fold CV to be stratified method ensured the
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observation ratio between both types of Culicoides species along all folds. The
use of the five times 10-fold CV method provides us a 50-dimensional output
vector from each classification model that will serve to perform the statistical
comparison according to the selected validation metric.

MLCs Configuration: Except for the NB classifier (a parameterless model),
the SVM classifier used a linear kernel to speed up the processing time. The regu-
larization parameter C (cost) was optimized in the range of 10−3 to 103 (increas-
ing by a factor of 10). The gamma (γ) parameter was tuned to 0, which means an
impartial influence on new features. The bounded regularization parameter (μ)
was set to 0.5 units, the cache size used was set to 20 (MB) for data exchange
size, and the epsilon margin of tolerance (ε) was tunned to 10−3 units. The kNN
classifier involved the estimation of an optimal value of k in determining the size
of the neighborhood. The k value was optimized in the range from 1 to 11 with
2 units of increment (the odd values are preferred for helping in the final voting
scheme), and the contribution of neighbors always used the weighted Euclidean
distance to the instance being classified.

Validation Metrics: The proposed app was validated using a two-step proce-
dure involving (1) the individual assessment of the employed MLCs using the
area under the receiver operating characteristic curve (AUC) score, and (2) the
feasibility of the implementation using the mean of execution time (mET) and
battery consumption (mBC) metrics gathered when running the app. Both vali-
dation steps were made on the experimental Culicoides wing image dataset. We
used the AUC metric over the accuracy because the problem under analysis is a
binary classification task. Thus, it allows us to measure how optimal the selected
MLCs performance are [24]. Moreover, we used the Wilcoxon statistical test at
α = 0.05 significant level [10] one time per comparison to assess the importance
of the differences between classification models.

Energy Measurement Protocol: The android debug bridge service (adb com-
mand line tool) [5] facilitated us a satisfactory way to recover two logs from
the emulated mobile devices. The battery stats log, containing important stats
regarding the battery consumption of every single process (for our purpose, we
took only the information from the process that executed the MosCla app) and
the process activity log, containing stats about the execution time (in nanosec-
onds) of the developed app.

Selection Criteria: Since the classification step explored three classifiers with
different parameter configurations, the best model to be implemented in the
MosCla app was selected based on the following criteria: (1) the model with
the highest AUC score statistically per classifier, (2) if there is a tie rating
performance between AUC scores, the model with lowest algorithm complexity
is preferred, and (3) among the three selected candidates by the two previous
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rules, the model that performs with the lowest mET and mBC scores, would be
considered. Thus, the proposed app implements only one classification model.

3 Results and Discussion

According to the experimental setup section, a total of 87 wing images from both
classes were analyzed to produce a three-dimensional feature vectors dataset used
to feed the employed MLCs. The classification performance results according to
the mean of the AUC metric were outstanding using the five times 10-fold CV
method, as shown in Table 2.

Table 2. Summary of the statistical comparison based on the AUC performance of
the best model per classifier.

Classifier Best model AUC ± SD Other models AUC ± SD Wil (α = 0.05)

NB – – – 0.973 ± 0.07 –

SVM c = 102 0.975 ± 0.05 c = 10−3 0.500 ± 0.00 p < 0.05

c = 10−2 0.500 ± 0.00 p < 0.05

c = 10−1 0.550 ± 0.06 p < 0.05

c = 101 ∗0.975 ± 0.05 p = 1.00

c = 103 ∗0.967 ± 0.06 p = 0.41

kNN k = 11 0.996 ± 0.02 k = 1 0.949 ± 0.07 p < 0.05

k = 3 ∗0.977 ± 0.05 p = 0.05

k = 5 0.973 ± 0.05 p < 0.05

k = 7 ∗0.981 ± 0.05 p = 0.17

k = 9 ∗0.985 ± 0.04 p = 0.69
∗similar statistically; c-Cost; k-number of neighbors; SD-standard deviation; bold line

means the selected model

3.1 Classification Performance

From Table 2, it is possible to read that the NB classifier was able to obtain
an excellent AUC performance. Since this classifier is parameterless, we selected
the only model as a candidate to be implemented in the app. The SVM classifier
provided six classification models, but only three of them provided significant
classification results. The highest performance was obtained by the model using
a cost c = 102, but this AUC score of 0.975 was not statistically superior to the
AUC scores of 0.975 and 0.967 obtained by the models with cost c = 101 and
c = 103, respectively. According to the third selection criteria, we considered
the SVM with c = 101 (less complex among all) as the candidate model inside
this classifier.

On the other hand, the kNN classifier provided six successful classification
models. All of them obtained AUC scores above a 0.94 value, which means this
classifier performed excellently on the experimental feature space. The model
with k = 11 obtained the best AUC score of 0.996. However, this result was not
statistically superior to the AUC scores of 0.977, 0.981, and 0.985 obtained by
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the models with k = 3, 7, and 9, respectively. In this case, we selected the model
with k = 3 as the best candidate, which represented the less computationally
cost model inside this classifier.

Overall, these results evidence that the majority of the evaluated classifica-
tion schemes provided successful performances. This situation could be related
to the feature space used to feed these models. As it was demonstrated, the three
features determined by the external wrapper method provided enough discrimi-
nation power to distinguish between classes. The separation of both Culicoides
species on the whole experimental dataset using the three-dimensional feature
space could be seen in Fig. 3. From this figure, it is possible to notice that
these features provided a positive environment to find out the class’s decision
boundary (see Fig. 3).

Fig. 3. Separation of both the C. pusillus (blue circles) and C. obsoletus (red squares)
samples according to the reduced feature space. (Color figure online)

3.2 MosCla App Feasibility

Regarding the maximization of resources on mobile devices, we have not yet
implemented the proposed app on real tablets or phone devices, and this is the
practical limitation of this work. Instead of that, we implemented each of the
selected classification models (see Table 2, bold lines), and approximated the
time and battery consumption by using the established energy measurement
protocol. This evaluation was carried out by implementing the proposed app
on two device emulators (see Table 1). Then, the experimental Culicoides wing
images dataset was processed by the app.

Results in terms of mET and mBC metrics for the three implemented clas-
sification models on both emulators are shown in Fig. 4 and 5, respectively. As
can be seen from Fig. 4, the NB and kNN based classification models performed
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faster in the phone Pixel 2 (right plot) emulator than the tablet Pixel C (left
plot) emulator. The obtained mET scores of 4.35 s (NB) and 4.43 s (kNN) ver-
sus 5.54 s (NB) and 5.99 s (kNN) corroborated the excellent performance in the
phone Pixel 2 emulator. However, it should be noted that the difference in the
mET scores was insignificant. Only the SVM-based model was faster in the tablet
Pixel C (left plot) emulator than the phone Pixel 2 (right plot) emulator, reach-
ing mET scores of 6.12 s against 11.09 s, respectively. This result represented a
notable difference in terms of mET scores between both emulators.

From Fig. 5, it is possible to observe that the three implemented classification
models consumed less battery in the tablet Pixel C emulator than the phone Pixel
2 emulator, reaching mBC scores of 0.02 (NB), 0.03 (SVM), and 0.02 (kNN) mAh
versus 0.11 (NB), 0.13 (SVM) and 0.13 (SVM) mAh, respectively. These results
depicted a successfully performance, since the worst case (SVM) consumed less
than 0.15 mAh (see Fig. 5, right plot).

Fig. 4. MosCla app performance according to the mean of execution time on a Pixel
C (left) and phone Pixel 2 (right) emulators, using the NB (red box), SVM (blue box),
and kNN (green box) classifiers. (Color figure online)

Fig. 5. MosCla app performance according to the battery consumption on a Pixel C
(left) and phone Pixel 2 (right) emulators, using the NB (red box), SVM (blue box),
and kNN (green box) classifiers. (Color figure online)
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According to the selection criteria, the NB classifier was selected as the best
model to be implemented in the proposed MosCla app. This model performed
excellently in terms of the mean of AUC, mET, and mBC metrics on both
emulators, beating the remaining classification models.

4 Conclusions and Future Work

In this work, we developed an Android-based mobile application called MosCla
to classify two Culicoides species. The proposed app implemented an auto-
matic classification method based on the calculation of morphological features
extracted from wing’s images and a NB classifier to produce the final classifica-
tion between C. pusillus or C. obsoletus species. The application of an external
wrapper method to reduce the features space from seven to three features guar-
anteed the successful AUC-based classification performance of the NB classifier
(0.973) on the experimental wing’s images dataset. The MosCla app reached
satisfactory mean execution time values of 5.54 and 4.35 s and a mean battery
consumption values of 0.02 and 0.11 mAh for the tablet Pixel C and phone
Pixel 2 emulators, respectively. These results are generalizable, thus, the pro-
posed app could be considered as a valuable tool for those specialists that need
a practical tool to classify Culicoides species in the wildlife environment. As
future work, we plan to include other Culicoides species like as cryptic species
(C. foxi and C. insignis) or others species to the experimental dataset. We also
plan to implement the app on real mobile devices.
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Abstract. In this paper, we propose a new automated method based on
deep convolutional neural networks to detect and track critically endan-
gered hammerhead sharks in video sequences. The proposed method
improved the standard YOLOv3 deep architecture by adding 18 more
layers (16 convolutional and 2 Yolo layers), which increased the model
performance in detecting the species under analysis at different scales.
According to the frame analysis based validation, the proposed method
outperformed the standard YOLOv3 model and was similar to the mask
R-CNN model in terms of accuracy scores for the majority of inspected
frames. Also, the mean of precision and recall on an experimental frames
dataset formed using the 10-fold cross-validation method highlighted
that the proposed method outperformed the remaining architectures,
reaching scores of 0.99 and 0.93, respectively. Furthermore, the methods
were able to avoid introducing false positive detection. However, they
were unable to handle the problem of species occlusion. Our results indi-
cate that the proposed method is a feasible alternative tool that could
help to monitor relative abundance of hammerhead sharks in the wild.

Keywords: Hammerhead shark detection and tracking · Real-time
detector · Deep convolutional neural networks · YOLOv3 architecture ·
Mask R-CNN architecture

1 Introduction

Object detection and tracking play an important role in real world applications
such as: surveillance [22], aiding people with physical disabilities [4], microscopic
examination [35] and marine species analysis [36]. The monitoring of marine
species has been carried out widely during the past decade. However, the asso-
ciated analytical tasks still rely heavily on the biologists, which could introduce
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errors by the manual process. Implementing automated detection and track-
ing systems can mitigate these errors by reducing human interaction with the
environment and providing a second opinion tool for biologists on a range of
applications.

Advances in machine learning topics and especially deep learning using convo-
lutional neural networks (CNN) are significant in object detection [16,25,26,33],
where they have proven to outperform traditional machine learning methods in
accuracy and speed metrics. These improvements make such algorithms favor-
able for use in real-world applications.

Automated marine species detection and tracking constitute a vital area of
application due to the need to track the population status of threatened and
endangered species in the aquatic ecosystem. In [13], a method based on region
segmentation was proposed, which included deep CNN to improve the recall
and precision metrics in detecting marine mammals. The method was tested
using a dataset of aerial images retrieved from wildlife surveys. In [36], a study
using more complex computer vision techniques in conjunction with deep CNN
models was proposed to detect and classify different species of fish. In [32], the
YOLO method was implemented to detect and track marine organisms, including
sharks. The method obtained satisfactory results when it was tested in deep-sea
videos. In [23], an improved version of the YOLOv3 method was proposed for
detecting fish and sharks, which overcame the standard YOLOv3 method in
the mean of precision score performance. Furthermore, in [6], the Mask R-CNN
architecture was used to successfully locate fish in static images using instance
segmentation, obtaining high accuracy scores when there is a single fish: 0.994
and when there are overlapping fish 0.984. Also, overlapping fish was tackled
since a new evaluation metric that penalizes a single fish’s detection when two are
present was developed. Additionally, in [31] Mask R-CNN was used to count and
identify various species of harvested fish (including sharks) in videos recorded at
fishing vessels. Specifically, for the shark class, 400 images were used to train the
model, and in the identification task, the model obtained precision and recall
scores of 70.96 and 84.61, respectively.

One shark in particular, lends itself to the development of species recogni-
tion techniques due to its unique body shape. The scalloped hammerhead shark
(Sphyrna lewini) is a medium sized coastal-pelagic shark that can attain a size
of over 4 m (but usually not more than 2–3 m) [29], which is under considerable
threat from fishing activity, and is the main source of hammerhead shark fins in
Hong Kong markets [5]. Hammerhead sharks, along with all other shark species,
are not officially targeted in countries such as Costa Rica and Ecuador, yet a
legal loophole allowing for the sale of sharks caught as “by-catch” has resulted
in at least 200,000 sharks landed each year in Ecuador alone [9,14].

Both Ecuador and Costa Rica have made efforts to protect their marine
biodiversity, notably the creation of marine protected areas (MPAs) around their
oceanic islands of Galapagos and Cocos, respectively. However, scientists have
found that hammerheads migrate between the reserves, becoming vulnerable
to fishing pressure once they leave protected waters [10]. In late 2019, the red
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listing status for the species as a whole was amended from “Endangered” to
“Critically Endangered” [29]. As yet, neither reserve has a formal process for
evaluating the population trends for sharks, but diver observations over a >20
year period at Cocos Island suggested severe declines in numbers, while a study
of dive guide perceptions in the Galapagos Islands obtained similar results [19].
There is a need to develop low cost, standardized tools to evaluate their trends
in reserves where fishing is not permitted, and thus landings data not an option.
In recent years, several tools have been developed which involve the use of video
footage, either operated by SCUBA divers or remotely [1]. However, the analysis
of the resulting footage can be labor-intensive and would benefit greatly from
automation.

Thus, in this study, we propose a new automated method based on a deep
CNN architecture to detect and track hammerhead sharks in video sequences
recorded at the Galapagos and Cocos Islands. The proposed method improved
the standard YOLOv3 deep architecture [26] by including 18 more layers, which
increased the model performance in detection and tracking of the species under
analysis. With this approach, the biology research community could have a viable
tool to help them analyze this shark species.

2 Materials and Methods

2.1 YOLOv3 Framework

This method is a recent deep neural network used for object detection and real-
time tracking [26]. Its core consists of a backbone network named Darknet-53 for
feature extraction, and YOLO layers for predicting the bounding box of desired
objects at three different scales. That means, it is possible to detect little and
large objects at the same time, becoming a powerful architecture in the context
of object detection.

The Darknet-53 network is composed of residual blocks, containing convo-
lutional layers inside. These blocks serve mainly as feature extractors and since
this network needs to explore the whole feature space from block to block, it
does not involve any max-pooling layer in its configuration. On the other hand,
the YOLO layers are composed of 7 convolutional layers, and 3 upsampling
layers between the convolutional ones, to scale up the input RGB (red, green,
blue) images with dimensions of (416× 416× 3) at each time. A brief schematic
description of the YOLOv3 architecture is shown in Fig. 1.

This architecture has demonstrated to be competitive in object recognition
against other developed methods. Even though it is considered a heavy archi-
tecture that consumes significant resources, it is more efficient than ResNet-101
or ResNet-152 [26]; it is three times faster than the SSD (Single Shot Detector
neural network) and its variants. Additionally, it is similar in performance to the
RetinaNet on the COCO dataset and is optimized for speed as it runs at 51 ms
per image.
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Fig. 1. A brief description of the YOLOv3 architecture.

2.2 Mask-RCNN Framework

This framework is a simple and general state of the art approach for object
detection. It has been developed as an extension of the Faster R-CNN framework
[27], which is aimed for object detection too. Mask R-CNN is based on two main
stages: the region proposal network (RPN) that performs the bounding boxes
proposing, and the step of classification and bounding box regression, which
provided the segmented mask outputs. The last step highlights the region of
interest (ROI) to make the detected objects more evident.

The mask R-CNN model structure comprises a feature extractor backbone
architecture (modifiable part) and a network’s head to perform the recognition
tasks. This model’s flexibility allows us to use different backbone architectures
such as ResNet, ResNeXt, and ResNet-50-FPN, being the later our selection,
and a network’s head similar to the employed in [11]. The selected configuration
was made based on the development of a successful detector. This model has
demonstrated to outperform several variations of the Faster R-CNN framework
and the standard YOLOv3 in detecting small and medium objects [26,27]. But,
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Fig. 2. A brief description of the Mask R-CNN architecture.

its execution time is compromised due to the lack of model optimization. A brief
description of the mask R-CNN architecture is shown in Fig. 2.

2.3 Proposed Method

Detecting and tracking marine species, such as hammerhead sharks, is considered
to be a challenge. Although the shark silhouette is easy to recognize, there are
uncontrolled environmental conditions such as poor lighting, occlusions by other
non-desired fish species, and projection against the sunlight, making the task
difficult. We proposed a new method to overcome this, which improved the
YOLOv3 standard architecture by including 18 more layers. This improvement
aims to detect and track the hammerhead sharks species accurately.

Figure 3 shows an overall perspective of our developed method, which com-
bined the standard YOLOv3 architecture plus some specific layers designed
to tackle the problem under analysis. The major improvement over the stan-
dard YOLOv3 architecture was scaling up the input images, which passed from
(416× 416× 3) to (608× 608× 3) dimensions. This operation previously demon-
strated a successful increase in the model’s overall performance [35]. The remain-
der of the method consists of attaching some layers at the end of the standard
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Fig. 3. A brief description of the proposed architectures.

YOLOv3 architecture distributed in the following order: 7 convolutional layers
as feature extractors, and 1 upsampling layer to scale up the input image size,
both inclusions with similar configurations to the standard YOLOv3 architec-
ture, 1 YOLO layer for predicting a set of bounding boxes at the new scale. This
structure was repeated one more time to complete the designed architecture,
which accomplished a total of 18 added layers.

It should be noted that the YOLO layers in the proposed method were set to
perform at the 4th and 5th scales, respectively. Also, the anchor box size on both
layers was tuned to be smaller than the one employed by the standard YOLOv3
architecture (see Fig. 3). This property represents the ideal size and location
of predicted objects in the image, in this case, hammerhead sharks. Thus, the
better the property adjustment, the better bounding box prediction, indepen-
dently of the object size. In contrast, this property in the standard YOLOv3
architecture is pre-determined for the COCO dataset [12]. Since the standard
YOLOv3 architecture is configured to detect medium-large objects, adding these
improvements enabled the proposed method to detect smaller objects, increase
the model’s learning rate, and improve real-time detection.
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2.4 Shark Database

We used three footage sources as our main shark database. These sources were
filmed at the Galapagos [0◦ 39′ 59.99′′ N−90◦ 32′ 59.99′′ W] and Cocos [5◦

31′ 4.79′′ N−87◦ 04′ 10.80′′ W] Islands. Both sets of islands are surrounded by
marine reserves and are UNESCO World Heritage Sites due to their outstanding
biodiversity, including large aggregations of several shark species.

The video footage used in this study is mostly of scalloped hammerhead
sharks, but other marine species, including other sharks, also feature in the
same video samples. The duration of each sample varied between 30 to 50 s, the
recording format was file.mp4 at 24 fps (frames per second) and they were taken
by biologists in uncontrolled environments. That means, the sharks are far from
the camera lens, the illumination is poor and the projection view is against the
sunlight most of the time, thus we used footage that might be considered of
typical quality from non-professional film crew with underwater cameras.

2.5 Experimental Setup

This section describes the experimental setup created to validate the proposed
deep learning architecture.

Video Pre-processing and Dataset Creation: We applied a decoding oper-
ation for all video data sources to extract all the frames contained by the video
source by using the ffmpeg framework [7]. Each video sequence of 50 s of duration
at 24 fps provided 1200 frames. However, we discarded around 50% of frames by
removing those who are too blurry or contain species occlusions. After processing
the videos, we gathered a total number of 1012 valid frames.

Since the number of collected frames does not fulfill the need to have enough
samples for training deep learning models without incurring on overfitting, a
data augmentation technique [3] was applied to increase the number of frames
containing hammerhead sharks. Thus, each frame was rotated by 30, 45, and 210
degrees to form an experimental dataset containing a total number of 2000 frames
with dimensions of (800× 422). Besides, a labeling operation was carried out on
the frames to mark the regions that belong or not to the hammerhead shark
class. This operation provided an annotation file, in which each row contains
information about the bounding box and output class label of each marked region
within the frame. The experimental dataset of frames and its corresponding
annotation file are mandatory to train the standard YOLOv3 model and, thus,
the proposed method.

Training and Test Partitions: We applied the stratified 10-fold cross-
validation method [20] to build disjoint training and test partitions. In this
way, the proposed method is trained using different training sets, which enable
it to learn from other input space representations. Testing on these different sets
encourages the resulting variability in the classification of individual samples.
The use of this method helps to avoid overfitting.
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Anchor Box Values: These values were determined experimentally by observ-
ing the smallest hammerhead sharks’ dimensions (in pixels) across all exper-
imental dataset images (frames). With this information, the objectness score
parameter was computed and set to the proposed architecture’s YOLO layers.
The objectness score manages whether or not found hammerhead shark objects
are presented in the frame under analysis [28].

Validation Metrics: A video source that was not considered during the model’s
training step was used to test the proposed method in real-time. The performance
of the method was based on the accuracy (ACC) of hammerhead sharks detec-
tion and tracking across a set of retrieved frames of the test video. A variation
of this validation protocol was previously used in [30] to assess fish detection
in real-time. Thus, we established a three-step procedure for conducting the
evaluation as follow: (1) selecting nine frames (empirical selection) in the test
video starting at time 0 to the video duration (vd) with an increment factor
determined by the splitting time sp = truncate(vd9 ); (2) counting the number of
correct hammerhead shark detections out of the total presented in the current
frame under analysis and (3) tracking the hammerhead sharks by counting how
many of them were correctly detected across all the inspected frames.

Additionally, for the performance comparison among the standard YOLOv3,
mask R-CNN, and the proposed method, we computed the mean value of the
precision, recall, and loss function, using the 10-fold cross-validation method in
the training-test steps.

All implementations were done in Python language version 3.5 [21] with the
scikit-learn (SKlearn) [18], Pytorch version 0.4 [17], OpenCV version 4.0.2.32
[2], Numpy [15] and scikit-image (SKimage) [34] libraries, and using Darknet
[24] as backend. We trained the model using a NVidia DGX workstation with
4 T GPUs but did not use multi-GPU training mode. The elapsed time to train
was around 26 h.

3 Results and Discussion

According to the experimental setup section, we validated the detection perfor-
mance of the proposed method in a real-time scenario by analyzing nine frames
recovered from the employed test video. The performance comparison against
the standard YOLOv3 and mask R-CNN architectures was made using the 10-
fold cross-validation method applied to the frames of the experimental dataset.
The obtained ACC, mean of precision, recall, and loss function scores revealed
interesting results in detecting hammerhead sharks.

3.1 Performance of Proposed Method

Regarding the detection performance of hammerhead sharks using the frames
analysis, the proposed method was able to detect the target species with ACC
scores above the 50% for most inspected frames, as shown in Table 1.
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Table 1. Comparison based on the ACC per frame among implemented deep-learning
models.

Frame

(ID)

Time

(s)

Sharks per

frame (u)

Correct detection ACC-based detection (%)

YOLOv3 Mask R-CNN Our

method

YOLOv3 Mask R-CNN Our

method

1 2 11 0 6 7 0 55 64

2 4 9 0 4 6 0 44 67

3 6 10 0 4 6 0 40 60

4 8 10 2 5 2 20 50 20

5 10 7 2 6 3 29 86 43

6 12 6 3 5 4 50 83 66

7 14 4 1 4 1 25 100 25

8 16 4 2 4 2 50 100 50

9 18 0 0 0 0 100 100 100

ACC - accuracy; *values rounded to the closest integer

Fromthis table, it is possible to read that only the frameswith ID4, 5, and 7pro-
vided a low ACC score of detection. These results could be explained by the filming
conditions associated with the marine environment, where camera movements and
projections against the sunlight are common issues. In all the database videos, the
hammerhead sharks performed random trajectories by approaching and moving
away from the camera lens. This behavior provoked either the distortion or blur-
ring of the targets and, consequently, detection failure.

Two additional factors contributed to the non-detection of sharks: the par-
tial shape of the shark in the frame, and the target occlusion by other marine
species (see Fig. 4). For example, at the top of the frames with ID 1 and
3 (Fig. 4, top row), there was one hammerhead shark showing half of its sil-
houette. Although it was close to the camera lens like other sharks captured in
the frame, this one was not considered by the proposed method. In terms of
occlusions, the proposed method failed to detect several hammerhead sharks in
the range of frames with ID from 4 to 8 because fishes occluded them. However,
in the frame with ID 3, one hammerhead shark was identified without taking
into consideration the other closest fish (see Fig. 4), frame ID 3, (middle-right
target). This situation occurs when sharks look bigger than fishes. In opposite,
when fishes look similar in size than the sharks, the detector was not activated
like in the frame with ID 6 (see Fig. 4, at the center), which is a good sign of
performance.

Similarly, the fishes in the frames with ID 7 and 8 are in between the camera
lens and the hammerhead sharks, but the detector focused only on the sharks
while ignoring the fishes (see Fig. 4). Finally, in the last frame with ID 9, there
was only the presence of a fish. As it was expected, the proposed method did
not record any detections. Thus, it did not introduce false-positive detection on
any inspected frames, which is an excellent detection performance.
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Fig. 4. Performance of the proposed method across the frames under analysis: suc-
cessfully (green box) hammer shark detection in a test video. (Color figure online)

Fig. 5. Performance of the YOLOv3 method [26] across the frames under analysis:
successfully (green box) hammer shark detection in a test video. (Color figure online)
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Fig. 6. Performance of the Mask R-CNN method [8] across the frames under analysis:
successfully hammer shark detection in a test video.

3.2 Deep-Learning Models Comparison

From Table 1, it is possible to observe that the proposed method outperformed
the standard YOLOv3 architecture. But, it performed very similarly to the mask
R-CNN architecture. These results could be related to the internal configuration
of each method. The proposed method added 18 more layers, including convo-
lutional units (convolutional and upsampling layers), and two Yolo layers for
predicting bounding boxes at scales fourth and fifth, which are missing in the
standard YOLOv3 architecture. The inclusion of these layers enabled the pro-
posed method to detect hammerhead sharks of different sizes. For example, by
analyzing the first three frames, the proposed method could detect 19 versus 0
(by the YOLOv3 architecture) out of 30 hammerhead sharks presented on those
frames. On the other hand, the mask R-CNN model incorporated a two-step
validation block (bounding box prediction and mask head) as a refinement layer
to the relevant features (possible ROIs with hammerhead sharks) determined in
the previous layer. That could explain why this model performed similarly to
the proposed method. For example, this model correctly detected 14 versus 19
out of 30 shark samples on the first three frames. However, the three models
were unable to overcome the problem of occlusions by other subaquatic species.
Figures 4, 5, and 6 show a visual comparison among them on the nine recovered
frames of the test video.

We also compared these models by analyzing the mean of precision and recall
metrics using the 10-fold cross-validation method on the experimental frames
dataset. The precision measured the model’s ability to predict the shark bound-
ing boxes correctly. Meanwhile, the recall provided the model’s importance to
detect the sharks in the frames appropriately. Thus, the higher the precision and
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recall scores, the better performance of the model. The obtained results, accord-
ing to both metrics, are shown in Fig. 7, left plot. From this figure, we can
state that the precision and recall values of 0.99 and 0.93 obtained by the pro-
posed method were superior to the 0.95 and 0.89 reached by standard YOLOv3
architecture, and the 0.98 and 0.91 obtained by the mask R-CNN architecture.
Further, neither model incurred in overfitting during the training processes. The
mean of the loss function of both methods decreased across the epochs to meet
the learning rate value, as can be seen in Fig. 7, right plot.

Fig. 7. Performance of the proposed method and the standard YOLOv3 architecture
in terms of the mean of precision and recall (left) and mean of the loss function (right)
over ten folds.

4 Conclusions and Future Work

In this study, we developed a new automated method based on deep CNN archi-
tecture to detect and track hammerhead sharks in video sequences recorded at
the Galapagos and Cocos Islands. The proposed method improved the standard
YOLOv3 deep architecture by including 18 more layers (convolutional and Yolo
layers), which increased the model performance in detecting the species under
analysis at different scales. According to the frame-based validation analysis, the
proposed method outperformed the standard YOLOv3 model and performed
similarly to the mask R-CNN model in terms of ACC scores for most inspected
frames. Concerning the mean of precision and recall on an experimental dataset
of frames constructed using the 10-fold cross-validation method, the proposed
method was better than the standard YOLOv3 and mask R-CNN architectures,
reaching scores of 0.99 and 0.93 versus 0.95 and 0.89 (for YOLOv3), and 0.98
and 0.91 (for mask R-CNN), respectively. It should be stated that the three
methods were able to avoid introducing false positive detection. However, they
were unable to handle the problem of species occlusion. These results provided
clear evidence that the proposed method is a feasible alternative tool to help
analyze this shark species in the wild. Future work includes a comparison with
other methods.



Hammerhead Shark Species Monitoring with Deep Learning 57

Acknowledgment. The authors thank the Applied Signal Processing and Machine
Learning Research Group USFQ for providing the computing infrastructure (NVidia
DGX workstation) to implement and execute the developed source code. The ham-
merhead shark videos used in this study were provided by Jonathan R. Green, Chris
Rohner, and Alex Hearn. The publication of this article was funded by the Academic
Articles Publication Fund of Universidad San Francisco de Quito USFQ.

References

1. Bouchet, P.J., Meeuwig, J.J.: Drifting baited stereo-videography: a novel sam-
pling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere
6(8), art137 (2015). https://doi.org/10.1890/ES14-00380.1. https://esajournals.
onlinelibrary.wiley.com/doi/abs/10.1890/ES14-00380.1

2. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 120, 122–125 (2000)
3. Curilem, M., Canário, J.P., Franco, L., Rios, R.A.: Using CNN to classify spec-

trograms of seismic events from Llaima Volcano (Chile). In: 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018). https://doi.org/
10.1109/IJCNN.2018.8489285

4. Dionisi, A., Sardini, E., Serpelloni, M.: Wearable object detection system for the
blind. In: 2012 IEEE International Instrumentation and Measurement Technology
Conference Proceedings, pp. 1255–1258. IEEE (2012)

5. Fields, A.T., Fischer, G.A., Shea, S.K.H., Zhang, H., Feldheim, K.A., Chap-
man, D.D.: DNA zip-coding: identifying the source populations supply-
ing the international trade of a critically endangered coastal shark. Anim.
Conserv. https://doi.org/10.1111/acv.12585. https://zslpublications.onlinelibrary.
wiley.com/doi/abs/10.1111/acv.12585

6. Garcia, R., et al.: Automatic segmentation of fish using deep learning with appli-
cation to fish size measurement. ICES J. Mar. Sci. 77(4), 1354–1366 (2020)

7. GNU Lesser General Public License (LGPL) version 2.1: Ffmpeg tools. https://
www.ffmpeg.org/. Accessed 23 Mar 2020

8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

9. Hearn, A.R., Bucaram, S.J.: Ecuador’s sharks face threats from within. Science
358(6366), 1009 (2017)

10. Hearn, A.R., et al.: Elasmobranchs of the Galapagos Marine Reserve. In:
Denkinger, J., Vinueza, L. (eds.) The Galapagos Marine Reserve. SEIGI, pp. 23–59.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02769-2 2

11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

13. Maire, F., Alvarez, L.M., Hodgson, A.: Automating marine mammal detection
in aerial images captured during wildlife surveys: a deep learning approach. In:
Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 379–385.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2 33

14. Martinez-Ortiz, J., Aires-da Silva, A.M., Lennert-Cody, C.E., Maunder, M.N.: The
Ecuadorian artisanal fishery for large pelagics: species composition and spatio-
temporal dynamics. PLOS ONE 10 (2015)

https://doi.org/10.1890/ES14-00380.1
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/ES14-00380.1
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/ES14-00380.1
https://doi.org/10.1109/IJCNN.2018.8489285
https://doi.org/10.1109/IJCNN.2018.8489285
https://doi.org/10.1111/acv.12585
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1111/acv.12585
https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1111/acv.12585
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://doi.org/10.1007/978-3-319-02769-2_2
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-26350-2_33


58 A. Peña et al.

15. Oliphant, T.: NumPy: A guide to NumPy. Trelgol Publishing, USA (2006). http://
www.numpy.org/. Accessed <today>

16. O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Arai, K.,
Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128–144. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-17795-9 10

17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8026–8037
(2019)

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

19. Peñaherrera-Palma, C., et al.: Evaluating abundance trends of iconic species using
local ecological knowledge. Biol. Conserv. 225, 197–207 (2018)

20. Purushotham, S., Tripathy, B.K.: Evaluation of classifier models using stratified
tenfold cross validation techniques. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.)
ObCom 2011. CCIS, vol. 270, pp. 680–690. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29216-3 74

21. Python Core Team: Python 3.6.9: A dynamic, open source programming language.
Python Software Foundation (2019). https://www.python.org/

22. Raghunandan, A., Raghav, P., Aradhya, H.R., et al.: Object detection algorithms
for video surveillance applications. In: 2018 International Conference on Commu-
nication and Signal Processing (ICCSP), pp. 0563–0568. IEEE (2018)

23. Raza, K., Hong, S.: Fast and accurate fish detection design with improved YOLO-
v3 model and transfer learning. Int. J. Adv. Comput. Sci. Appl. 11, 7–16 (2020)

24. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

26. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

27. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 28, pp. 91–99. Curran Associates, Inc. (2015)

29. Rigby, C., et al.: Sphyrna Lewini. The IUCN red list of threatened species 2019:
e. t39385a2918526 (2019)

30. Sung, M., Yu, S., Girdhar, Y.: Vision based real-time fish detection using convo-
lutional neural network. In: OCEANS 2017, Aberdeen. pp. 1–6 (2017)

31. Tseng, C.H., Kuo, Y.F.: Detecting and counting harvested fish and identifying
fish types in electronic monitoring system videos using deep convolutional neural
networks. ICES J. Mar. Sci. 77, 1367–1378 (2020)

32. Uemura, T., Lu, H., Kim, H.: Marine organisms tracking and recognizing using
YOLO. In: Lu, H., Yujie, L. (eds.) 2nd EAI International Conference on Robotic
Sensor Networks. EICC, pp. 53–58. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-17763-8 6

33. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning
for computer vision: a brief review. Comput. Intell. Neurosci. 2018 (2018)

http://www.numpy.org/
http://www.numpy.org/
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1007/978-3-642-29216-3_74
https://doi.org/10.1007/978-3-642-29216-3_74
https://www.python.org/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://arxiv.org/abs/1804.02767
https://doi.org/10.1007/978-3-030-17763-8_6
https://doi.org/10.1007/978-3-030-17763-8_6


Hammerhead Shark Species Monitoring with Deep Learning 59

34. van der Walt, S., et al.: The Scikit-image contributors: Scikit-image: image pro-
cessing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453

35. Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., Yang, S.: Deep learning approach
to peripheral leukocyte recognition. PLoS ONE 14(6) (2019)

36. Xu, L., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: Deep learning for marine
species recognition. In: Balas, V.E., Roy, S.S., Sharma, D., Samui, P. (eds.) Hand-
book of Deep Learning Applications. SIST, vol. 136, pp. 129–145. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11479-4 7

https://doi.org/10.7717/peerj.453
https://doi.org/10.1007/978-3-030-11479-4_7


Towards Automatic Comparison of Online
Campaign Versus Electoral Manifestos
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1 Introduction

The modern concept of democracy has had many attributes included in its defini-
tion, depending on the author or the time in which democracy has been studied.
However, one attribute present in every single definition of democracy is the
nature of the government appointment. This appointment must be originated,
directly or indirectly, in the will of the people [3]. To reach that people’s support
in an election, at least since the 1800 United States presidential elections, in mod-
ern democracies, politicians have depended on campaigning. These campaigns,
until the emergence of mass and social media depended on a well-organized
group of people able to feed and then transform the candidate’s political pro-
posal into a clear message that can be internalized and supported by voters.
Once in office, the social function of the government (that is to formulate and
carry out policies) could be understood as a by-product of their private motive
which was to be elected [5]. So, to ensure that these policies are those that are in
the interest of the electorate, democracy counts on its vertical accountability in
which, theoretically, voters can reward or punish with their vote the party that
has or has not complied with its campaign offerings. In order to keep track of
what was promised, the democratic system counts on the electoral manifestos.

However, this basic notion of how democracies work has been challenged
by theorist and politicians who state that with our current technology (social
networks included), citizens should be able to participate directly and in real time
in policy decisions [2]. This emerging idea of democracy, as well as the current
technology available, shows us how crucial is to develop new approaches of data
analysis that allows political scientist, politicians and the society as a whole to
understand how the government is being elected and even more importantly,
how it is making its decisions.

Electoral manifestos, as it has been stated, are an important part of any polit-
ical campaign and serve a twofold purpose vis-à-vis voters: to help them make
an informed decision and to hold politicians accountable for their work once
elected [14]. Moreover, electoral manifestos also play a role within the party
itself by coherently grouping the public policy proposal based on the party’s ide-
ology and by strengthening accountability among its members and decreasing
the probability that the elite of the political party or a particular leader will dis-
connect from their base or from the voters who brought them to the democratic
elected government.

Now, to fulfill all these purposes, it is not only necessary that the electoral
manifesto be constructed with the objective of presenting the electoral proposal
of a political party, but the political system of a country must promote strong,
well-organized political parties as the principal actor in electoral politics. When
this is not the case, we attend personalized electoral scenarios where the impor-
tant thing is the personal recognition that the candidates have and not the
public policy offer that is associated with them. In the latter case, the role of the
electoral manifestos loses relevance and the offer of the candidates is focused on
marketing the candidate and not the public policy offer that the political party
proposes.
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In general, if the country’s political system has allowed the strengthening
of political parties, and thus of democracy, politicians during elections will pro-
mote and detail their work plans (electoral pledges or manifestos) through media,
and if this is not the case, they will promote the image and personal opinions
of the candidate. Nonetheless, voters not necessarily cast their votes based on
election pledge fulfilment (in a reelection) or party-voter and party-goals congru-
ence [14,21,25]. In fact, previous research has shown that several other factors
such as economic performance and even internal security matters can influence
voter preferences which are specially critical in the rise of populist parties that
challenge democratic structures [14].

The previous depicted panorama is studied by political scientists that seek
ways to strengthen democracy through vertical and horizontal accountability. In
fact, the manifesto project provides open digital access to multilingual annotated
text corpus of electoral programs around the world since 2009. This project offers
1,800 machine readable documents of 40 different countries [16]. In fact, this
project includes a large set of papers using their data and, in the past 5 years,
there are no evidence of studies tracking elections based on online campaigning
and electoral pledges. Our intention with this research is to start filling this
gap by offering tools that allow political scientists to study the effects of online
campaigning and electoral manifestos.

In the past decades, Internet has become an utter important means for
politicians to communicate with citizens and encourage a political discussion.
According to Vergeer et al. [24], at first politicians displayed in their websites
specific content and functionality on the political party. Later on, many politi-
cians adopted this form of communication under the standard of informing fea-
tures, but soon they realized that it was a one-sided thing, this caused to be
a disappointing effort for those who expected the main feature of the Internet,
interactivity.

Years later, with the development of new web applications that used tech-
nology to enable content sharing, collaboration and socializing (social media),
politicians were provided with a new way of interaction with the community.
For example, web applications like weblogs, social networks (Facebook, Twitter,
MySpace, YouTube, etc.) let users to give status updates, upload images and
build social networks. These applications meant an improvement compared to
static sites and provided politicians with a new set of marketing strategies. For
instance, politicians use social media to create social networks and share con-
tent. Thereupon, improve the dissemination of information and benefit from the
general network effect [24].

With the introduction of the Web 2.0 era, parties, politicians and candidates
started to actively use all of the tools available through social media platforms.
Thus, politicians were able to customize their campaign style in a more direct
and personal communication level. Interestingly, the results of the paper written
by Vergeer and Hermans, entitled “Campaigning on Twitter: Micro blogging and
Online Social Networking as Campaign Tools in the 2010 General Elections in
the Netherlands”, showed that the overall adoption of Twitter among candidates
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was fast and that these online networks were likely to grow instead of declining.
Thus, ensuring larger audiences over time [24].

For these reasons, it is essential to better understand the use of social net-
works in electoral campaigns, as mechanisms for socializing the proposals of the
candidates and their parties, but also as mechanisms for the production of voters
in the information age and the communications. This knowledge will contribute
to a better understanding of the characteristics of a political context in which
political parties (as we know them) are in decline, in which political commitments
(previously established in party manifests) are less and less observed, especially
in presidential systems, and where it is increasingly complex to identify the ideo-
logical, regional cleavage, etc., to which a party responds. A region characterized
by this decline in political parties and their commitments, as well as by political
instability resulting from this decline is the Andes in Latin America [10,12], and
especially Ecuador, where the characteristics of the political system have weak-
ened political parties, favoring the emergence of individual political figures [6],
for which reason it has been decided to choose this country for this case study.

Hence, in the context of this paper, we use Twitter as a tool that allows us to
conduct an electoral analysis regarding candidates who are socially active within
this network. In fact, Twitter is one of the most popular micro-blogging platforms
that enables users to send and read short text messages, known as Tweets. The
platform provides an easy way of communication that enables users to share their
personal activities, opinions and status [9]. This social platform has been used
to analyze user behavior applied in areas of marketing such as user similarities
[7] and sentiment analysis [8] and predictions such as presidential elections [11]
and new trends [4].

This research proposes a simple application prototype based on natural
language processing techniques (NLP), using common text-mining similarity
metrics, that tracks political digital campaigns and provides a direct com-
parison against candidate’s manifestos. We tested our application during the
2019 Ecuadorian sectional elections in Quito and tracked 16 candidate Twitter
accounts during the campaign and compared them to their electoral manifestos.

The goal of this preliminary research is to understand how social media is
used by politicians during elections. For this, we use a popular set of similarity
functions approach, i.e. L1-norm, L2-norm, distance correlation, and the cosine
similarity, in order to compare each candidate manifesto against all timeline
tweets collected during the campaign. In addition, we use these same NLP tech-
niques to measure how each candidate engaged social media in common critical
issues of the city using a designed query based on a set of selected words.

The remainder of the paper is structured as follows. In Sect. 2, the materials
and methods used for the development of the research are described. In Sect. 3,
the results obtained from the experiments as well as the corresponding discussion
are presented. Finally, Sect. 4 reports our conclusions and presents future work
paths.



64 D. Riofŕıo et al.

2 Materials and Methods

The following Section describes the application architecture and the case study.
In terms of the text mining functions used, we provide a further description to
facilitate the discussion of our results.

2.1 Architecture

The application built for this study consists of three mayor components. A social
media collector (currently specialized in Twitter), a manifesto collector (a file
system interlocutor to save and load manifestos in pdf format) and the Text
Miner core which pre-process the data sources (Twitter timelines associated
with a candidate and his/her manifesto), applies different similarity functions
and produces a comparative result. In fact, Fig. 1 shows the components of
this application. The arrows show how Tweets travel from Twitter as well as
from Manifestos data sources into our collectors. These collectors store incoming
data either on a PostgreSQL database (for tweets) or the local file system (for
manifestos). Our text miner cleans data and transforms tweets and documents
into vectorized versions of each. Finally, a set of similarity functions (i.e. L1-
Norm, L2-Norm, distance correlation and the cosine similarity) are applied to
provide a comparison. This comparison in general terms provides an idea whether
both manifestos and Twitter timelines are close to each other (similar) or far
from each other (different).

The idea behind this architecture is that one can add specialized collectors to
different online data sources to gather campaign related information from candi-
dates. And, this data can be processed as either a unique document or different
documents and compared to each candidate’s manifesto. In particular, in our case
study we used Twitter as our social media main source. We also gathered the offi-
cial publicly available manifestos from each candidate in pdf format. And, we pro-
duced meaningful quantitative results to enrich the social and political discussion.
Further detail about the implemented process is discussed in Sect. 2.2.

Collector and Database
In particular, for this initial prototype we implemented a specialized Twitter
collector. For this collector we decided to collect Twitter data in a relational
database manager: PostgreSQL. Figure 2 shows the entity relationship diagram
used to store specific candidate timelines and the reactions chained to their
tweets. We decided to unwrap some fields from the json object provided by the
Twitter API to facilitate and accelerate data analysis. Nonetheless, we reserve
a field tweet json to store tweet copies as provided by the API.

This relational database allowed us to implement fast and accurate queries
based on configuring candidate’s known twitter screen name. Together, the Twit-
ter free API (application programming interface) and a list of candidates’ twitter
screen names were used to download candidate’s twitter user information and
create a process to listen to activity related to each account. Notice that we did
not only collect the timeline of each candidate but also the reactions by others
related to tweets from any candidate.
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Fig. 1. Application architecture: data travels through the application and produces a
comparison output between online campaign and electoral manifestos.

In addition, we realized that the entity relationship diagram summarizes the
most important information for most online data sources. In fact, if we remove
the prefix tweet, we will generally rely on an id, a date, a parent id (if circular
or hierarchical relationships are allowed in that social media, otherwise it is not
used), a text, an account name or id, raw data from the source (this can even
been used for storing images from Instagram), and a candidate id related to
the study. This allow us to re-use most of our implementation to create new
specialized collectors.

Fig. 2. Entity relationship diagram

Text Mining Similarity Functions
With the aim of finding similarities between documents or text files, Russell and
Klassen [20] mention the convenience of modeling a document using a vector
space model. The foundation of this model consists of having a large multidi-
mensional space that contains one vector for each document. The similarity of
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the corresponding documents is determined by calculating the distance between
any two vectors. Furthermore, a query can also be represented as a vector in
order to determine similarities with the queried documents. In this case, the
shortest distance between the query vector and the documents being analyzed
is found.

The concept of similarity is subjective and affine to content-based image
retrieval systems that gives meaning to the relationship among a set of feature
vectors [26]. By using an abstract similarity function between a query (feature
vector) and a database (set of feature vectors), it is possible to measure the
similarity score between vectors, and thus, to determine how similar or dissim-
ilar they are. Depending on the application environment, the similarity func-
tion could represent different semantic contents [22], e.g., in image retrieval, the
images are ranked according to the similarity score, where close images (lower
score) are similar regarding use and purpose.

In this work, we focused on viewing each document of the candidate’s mani-
festo as a unit vector (q), and each candidate’s Twitter timeline as a unit vector
(t) with components corresponding to each term in the global “bag of words”,
along with a weight (frequency) for each component given. If a word does not
occur in a particular document, the corresponding weight is zero. By represent-
ing the data in a vectored model, we are able to compute the similarity score
s(q, t) of each vector in the feature space V (·).

We implemented four different similarity functions. Three of them based
on distances such as the L1−norm (Manhattan distance) defined by (1) in [26],
L2−norm (Euclidean distance) defined by (2) in [15] and the distance correlation
defined by (3), which is an improvement of the Pearson’s correlation to measure
nonlinear association between two random vectors as well [23]. The other was
the traditional cosine similarity defined by (4) in [13]. All the metrics were suited
to the problem under analysis and are defined as:

s(q, t) =
m∑

i=1

∣∣∣V (q)i − V (t)i
∣∣∣ (1)

s(q, t) =

√√√√
m∑

i=1

(V (q)i − V (t)i)2 (2)

We modified both the original distance correlation and the cosine similarity
equations by analyzing the complement of the obtained scores. This modification
only changes the interpretability of the results. In this sense, a higher value
means a lower correlation between features vectors or a larger angle between the
vectors, respectively. Thus, the employed distance correlation equation is given
by:

s(q, t) = 1 − dcov(q, t)√
dvar(q) dvar(t)

(3)



Towards Automatic Comp. of Online Campaign Vs. Electoral Manifestos 67

subject to:

dcov(q, t) =
m∑

i=1

(
V (q)i − V (q)

) (
V (t)i − V (t)

)

dvar(x) =
m∑

i=1

(
V (x)i − V (x)

)2

And, the modified cosine similarity equation:

s(q, t) = 1 − V (q) · V (t)
|V (q)||V (t)| (4)

2.2 Case Study

The 2019 Ecuadorian Sectional Elections took place on March 24th and the
campaign period lasted from February 5th until March 20th, 2019. We focused on
the Quito’s Major election, since together with the Major of Guayaquil’s election,
it is probably the second most important electoral process for the election of an
executive authority in the country, after the election of the president. In this
election, 18 individuals registered their candidacies.

We searched for all candidates’ twitter accounts but only 16 had a twitter
account and engaged on political campaign in that social media. For each candi-
date twitter id, twitter screen name and twitter date (account’s date of creation)
were gathered into our Twitter collector database. In addition, manifestos related
to these 16 candidates were collected by our manifesto collector in pdf format.

Data gathering (tweet collection) started a few days after the beginning of
campaign period on February 17th and spanned for 84 days until May 12th,
2019. During that period of time, a permanent process collected data using the
Twitter API following all API terms of use described in their developer policies.
The data were stored on a local server running PostgreSQL 10 on Ubuntu 18.04
LTS. At the end of this period, a total of 964,440 tweets were collected. Out
of this number 58.4% were directly related to our candidates timelines (562,940
tweets). The complement, 41.6%, are reactions to tweets that mention or are in
response to candidate’s screen names.

As Sect. 2.1 explains, a document or text file can be modeled and manipulated
as vectors. This method follows a document-centric or “bag of words” approach.
According to Russell and Klassen [20], although a document-centric approach
performs well most of the time, the context and semantic of the words are not
really appreciated. In this light, a context-driven approach that analyzes in detail
the semantics of human language data is more appropriate. Nonetheless, as a
first approach we follow a document-centric approach combined with a set of
natural language processing (NLP) techniques prior to the application of the
similarity functions. Next, we provide a detailed explanation of the NLP and
text mining pipelines defined for this study case.



68 D. Riofŕıo et al.

The text mining process was divided in several problems that needed to
be tackled in a sequential order to accomplish our research goals. First, tweets
and electoral manifestos were collected as described above. Second, the data
extraction process initiated. This process consisted of reading, formatting and
problem solving any issue that may occur from the tweets and pdf files, for
instance, a few manifestos were not standard text-based documents and required
to remove images and then it was possible to extract text. Third, the data
processing phase consisted of removing stop words, i.e., words that are irrelevant
to the analysis or that do not contribute with meaning such as articles and
prepositions which are commonly used in Spanish.

Furthermore, a text frequency counter was implemented in order to obtain
the number of times a word repeats in a document and a tweet. This was an
iterative process done for each candidate. Table 1 depicts the outcome of this
process.

Table 1. Words and text frequency by candidate: (from left to right) the highest
frequency words are displayed first followed by the lowest frequency words.

Candidate’s last name First frequency term Second frequency term . . . Hundredth frequency term

benavides (‘plan’, 266) (‘ciudad’, 261) . . . (‘discapacidad’, 18)

buendia (‘quito’, 94) (‘ciudad’, 69) . . . (‘diferentes’, 9)

corral (‘transporte’, 188) (‘quito’, 152) . . . (‘destino’, 17)

davalos (‘metropolitano’, 161) (‘distrito’, 153) . . . (‘av’, 17)

erazo (‘ciudad’, 16) (‘quito’, 12) . . . (‘taxis’, 1)

guayaquil (‘metropolitano’, 53) (‘concejo’, 47) . . . (‘cultura’, 6)

holguin (‘quito’, 320) (‘ciudad’, 210) . . . (‘vanguardia’, 19)

jacome (‘ciudad’, 55) (‘quito’, 39) . . . (‘mascotas’, 9)

maldonado (‘desarrollo’, 92) (‘quito’, 79) . . . (‘verdes’, 4)

moncayo (‘dmq’, 504) (‘quito’, 155) . . . (‘mejorar’, 23)

montufar (‘ciudad’, 206) (‘quito’, 102) . . . (‘centros’, 13)

pasquel (‘metropolitano’, 129) (‘gobierno’, 104) . . . (‘coordinación’, 10)

sarsoza (‘poĺıticas’, 24) (‘quito’, 21) . . . (‘llegar’, 2)

vazquez (‘eje’, 320) (‘garantizar’, 192) . . . (‘toda’, 10)

vintimilla (‘quito’, 18) (‘provincial’, 16) . . . (‘constitucionales’, 3)

yunda (‘quito’, 149) (‘ciudad’, 135) . . . (‘mayor’, 14)

sevilla (‘quito’, 7) (‘mayor’, 5) ... (‘talento’, 1)

Afterwards, following the methodology discussed in Manning’s book [13],
we made a data transformation into a vector space model using a min-max
normalization. It is important to note that each candidate’s timeline as well as
his/hers manifesto are considered as individual vectors. These vectors are the
ones used for comparison by the similarity functions discussed in Sect. 2.1.

3 Results and Discussion

Four different criteria were used to compare candidate’s timelines versus their
own manifestos: L1-Norm, L2-Norm, distance correlation, and cosine similarity.
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Figure 3 shows these results in a heat map, where lighter blue tones mean a
greater concordance between timelines and manifestos, and darker blue tones the
opposite. In addition, this figure shows the ranking in ascending order (lower rank
means higher concordance as well) in parenthesis and the value of the similarity
function calculated by equations in Sect. 2.1.

In general terms, Fig. 3 shows coherence among three similarity functions
while comparing how all candidate’s timelines and manifestos behaved; hence,
L2-Norm, distance correlation, and the cosine similarity rank candidate’s time-
lines and manifestos relative closeness exactly the same while L1-Norm differs
significantly. For instance, for candidate ‘Sevilla’ L1-Norm ranks him first while
the others rank him thirteenth. This disagreement is the result of the nature of
the metric that is influenced by the higher dimensionality of the vector space
V (·) (please refer to Sect. 2.1 for more information) and the fact that timelines
and manifestos with very few text will generate sparse vectors in V (·) and there-
fore will give an idea of “closeness” or agreement, which is misleading. L1-Norm
seems more suitable to describe manifestos and timelines that were more rich in
terms of its content.

According to Fig. 3, candidate ‘Montúfar’ has the highest online campaign
and electoral manifesto concordance. This means that candidate ‘Montúfar’
wrote tweets using similar language and addressing topics related to his elec-
toral manifesto than any of the remaining candidates. On the other hand, the
candidate ‘Guayaquil’ has the lowest online campaign and electoral manifesto
concordance, which means that he did not refer or use language related to his
electoral manifesto while addressing the public during his online campaign.

Fig. 3. Candidate’s similarity based on comparing timeline tweets and own manifesto.
Lighter blue means higher concordance between the timeline and manifesto. The first
value is the overall ranking, and the second is the similarity function result.

Even though the similarity score for candidate ‘Montúfar’ is the lowest, this
value is still relative high (0.55 for distance correlation, 0.54 for the cosine simi-
larity, and a relative 74% for the L2-Norm with respect to the maximum) showing
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that social media interactions of any candidate tend to significantly drift from
each correspondent electoral manifesto. Although these results are consistent
with the political science literature that indicates that in a weak party system,
such as the Ecuadorian, the probability of the existence of political personali-
ties increases to the detriment of political parties. Nonetheless, this could have
several other meanings, for instance, that social media is not necessarily used as
a mean to share electoral pledges or that language used in social media tend to
target a different audience.

In order to enrich our discussion and provide a different perspective to analyze
our results, we designed a query based on a set of words relevant to the elec-
tion and compare it against all tweets collected per candidate using the same
similarity functions. An example of these words are: ‘development: desarrollo’,
‘transportation: transporte’, ‘employment: empleo’, among others of citizens’
interest. Figure 4 shows results obtained from this analysis. As we mentioned
in our first set of comparisons, there is a strong relationship among L2-Norm,
distance correlation and the cosine similarity results, but in this case the lower
dimensionality of the designed query reduces the impact of the L1-Norm. In fact,
for candidates ‘Corral’, ‘Benavides’, and ‘Buendia’ this metric produces the same
overall ranking. It can also be observed that candidate ‘Corral’ has the lowest
score, meaning that this candidate uses Twitter to informally address common
issues of interest for citizens.

Fig. 4. Candidate’s similarity based on comparing timeline tweets to designed query.
Lighter blue means higher concordance between the timeline and designed query. The
first value is the overall ranking, and the second is the similarity function result.

Both charts show important and interesting information about each candi-
date and the use of their social media account. However, since any similarity
function achieves low relative values (less than 50%), it can be said that candi-
dates use their Twitter account for other purposes. This interpretation of data
may require the understanding of a sentiment breakdown in conjunction of a
emoji contextualization since this may be key elements in order to a clearer
understanding of the use of the candidate’s Twitter Account. In terms of the
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importance of this data in the field of political science, one might wonder if the
information of the electoral manifestos is published through other channels or if
it is simply not published at all.

Last but not least, regarding the data collection and text processing, data was
collected almost two weeks after the campaign period started. Therefore, some
data relevant to the study may have not been collected. Also, because tweets
and pdf files were written in Spanish, some accent marks may cause duplicates.
As the study does not consider roots of words due to the lack of context, some
words that have the same meaning, are included, modifying the vector size and
the metric score between documents. Additionally, pdf files reading is format
dependent. As each candidate developed their electoral pledges using their own
design and structure, further cleaning techniques must be added to our collectors
to avoid truncating words.

4 Conclusions and Future Work

Our study presents a path for building applications that allow political scien-
tist and political analysts compare candidates’ social media interactions to their
electoral manifestos. Our case study results show how a vector based analysis of
candidate’s timeline tweets and hers/his electoral manifesto provide interesting
insights about how a candidate engage citizens during an electoral campaign.
In particular, we show how L2-Norm, distance correlations and the cosine simi-
larity are well suited to compare these documents. We also show that L1-Norm
disagrees with the other similarity functions when the vector space V (·) has a
higher dimensionality. We understand that our results demand further research
to provide stronger conclusions. As one future work path, we plan to continue
this research using neural networks to convert documents or words into a vector
space (doc2vec or word2vec [17]) and review the metrics used by political scien-
tists from the R package “quanteda” [1] as well as trying to compare or correlate
the election results with the implemented similarity functions in future elections.

Also, it was possible to determine the similarity between a candidate’s time-
line and a designed query composed by words selected by the researchers about
known problems and solutions that were mainstream during the election. Accord-
ing to the results, no candidate’s electoral manifesto has a close relation to hers
or his timeline tweets. Based on the designed query of relevant words, ‘Corral’ is
the candidate that has a closest concordance. These results are consistent with
the political science literature that indicates that in political systems that do
not strengthen the structure of political parties, as the personalization of pol-
itics increases, the accountability of elected authorities decreases [18,19]. The
Ecuadorian political system, since the return to democracy in 1979, has gener-
ated norms that have systematically weakened the structure of political parties
and have led to the personalization of politics [6]. As a result, we can under-
stand that the electoral manifestos, a fundamental tool of accountability, are
not widely disseminated.

Apart from a sentiment and emoji analysis. As future work, the feature space
of words could be reduced using synonyms or special characters elimination.
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This promises to eliminate potential language ambiguities and reduce language
specific usages from an electoral pledge to social media micro blogging. In addi-
tion, we plan on reverse engineer our results to get samples of relevant tweets
that contributed the most to either high score similarity or low score similarity
in order to provide further empirical evidence of our findings.

Finally, from a political point of view, this type of analysis could be used
as a real-time tool to help voters and analysts detect populist engagement in
social media by candidates, which is of great importance to maintain healthy
democratic structures targeted by populist parties. It could also be used as a
tool to measure what other candidates are doing during a political campaign,
to understand the political landscape and to adjust strategies accordingly. In
this context, our research could contribute and dialogue with different fields of
political science such as the democracy theory and democracy quality studies,
political parties’ studies, electoral and political accountability (vertical and hor-
izontal accountability), public policy and political marketing.
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Abstract. The brain computer interface area has increased the number of appli-
cations in the last years, searching to improve the quality of life in injured people.
In spite of the progress in the field, different strategies are analyzed in order to
contribute in specific problems related to the main applications. Present proposal
shows a comparison between the use of time or frequency domain for feature
extraction in upper limbs motor imagery. Four machine learning techniques as K-
Nearest Neighbor, Support Vector Machine, Neural Networks and Random Forest
were trained to detect motor imagery from EEG signals. Comparison for feature
extraction and the employed detection models were analyzed to find the best elec-
tion in an application for close-open fist in hands for two scenarios, according to
two or three classes classification. The results achievedmore than 90% in accuracy
for both domain approaches in the two classes case. For the three classes detection,
the results dropped out to 87% in accuracy. In general, the frequency domain is
preferable for feature extraction and the KNN classifier was the best strategy for
the present study.

Keywords: Brain computer interfaces · Feature extraction ·Motor imagery ·
Machine learning · Time domain · Frequency domain

1 Introduction

According to theWorldHealthOrganization (WHO), around 500.000 people in theworld
suffer some type of spinal cord injury. A complete lesion is consideredwhen the sensitive
and motor function below the injury level is lost, representing the 45% of all spinal
cord injury cases [1]. This condition prevents the movement of lower and upper limbs,
reducing the mobility of people under this physical state. For this, the independence
to develop any activity is the primary objective of rehabilitation processes, involving
people with quadriplegia mainly. In this case, the improvement of the functional scale
reaches a probability of 10% [1]. In addition, due to the motion impossibility in upper
and lower limbs, mobility alternatives are usually associated with wheelchairs controlled
by lingual, facial, shoulder or other devices to regulate these artificial movements.
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From the beginning of this millennium, technologies as brain computer interface
(BCI) have been increased in an exponential mode [2, 3]. This is due to the analysis
of the electroencephalographic (EEG) signals, which allow obtain information from
different mind tasks in a decoding process. One of most important action to identify in
BCI is related to the motor imagery [4–6]. For this purpose, it is necessary to acquire a
registration close to the primarymotor cortex from the brainwhile a subject is performing
the imagination task. Then, it is possible to extract important information from the
recorded signal related to the planning or performingmovements in upper limbs, mainly.

BCI in the motor imagery (MI) context is composed by four stages mainly: acqui-
sition, preprocessing, processing and interface device [7]. Therefore, one of the areas
of study is related to processing stage, where the feature extraction and classification
represent two challenges to treat. For this, different techniques and models have been
employed to find the best performance in terms of detection rate. The first one problem
associated to the feature extraction has been analyzed in different studies. For example,
Resalat and Saba employed autoregressive models and other computations strategies in
time domain, using a classification stage based on linear discriminant analysis [8].Taking
advantage of the time domain, other proposals include kernel methods as support vector
machines (SVM), neural networks (NN), and principal component analysis (PCA), and
in this way, to analyze performance behavior for discriminating the mentioned mental
exercises [9–11].

In addition to the time domain, frequency domain has been used for this cerebral
tasks, comparing different techniques as frequency distribution, fast Fourier transform,
and eigenvectors, mainly [12]. Strategies based on the short time Fourier transform has
been employing with the use of the Hjorth parameters, too [13]. Combining two men-
tioned domains simultaneously, the time-frequency domain exploits these two informa-
tion sources, studying the use of Wavelet transform broadly [14–16]. A more current
technique known as common spatial pattern (CSF) filters has been employed due the
relevance in the feature extraction process for BCI applications [17, 18]. However, the
results reached by this strategy, especially in motor imagery applications is extremely
susceptible to artifacts and non-stationarities [19]. Furthermore, CSP has been proven
mostly for feature extraction in applications related to two classes in EEG, evincing
problems for more classes [19, 20]. A final aspect is associated to high number of chan-
nels necessary to its implementation due to the technique is based on a complete EEG
acquisition, which has between 32 to 64 channels in most of cases.

Other important aspect in the processing stage corresponds to the classification task,
where models from machine learning (ML) area are mainly used. Making use of these
techniques as support vector machines (SVM), reported results reached accuracy values
upper than 76% and 82% in performance. This, employing features extracted from time
and frequency domains and relative power relation in alpha and beta bands [21–23].
The non-parametric supervised learning algorithms as the k nearest neighbors (KNN),
achieved a performance of 82% with the use of eleven neighbors and a Minkowski
distance measurement [24, 25]. Models based on classification trees also have been
employed to determine motor imagery actions, obtaining accuracies upper than 94%
in specific cases [26]. As it is common, frequency domain features were employed to
determine the class of a new sample that would corresponds to right or fist imaginary
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movement, and foot movement imaginary movement. More recently, some complex
models from the deep learning have been used lastly [27, 28]. However, these models
have the disadvantage of a high number of samples for training and more computational
resources than ML approaches due to the parameters that have to be adjusted [29].
Finally, neural networks (NN) have presented different architectures driven to classify
different scenarios and domains [5, 30, 31].

In relation to the exhibited aspects for BCI in MI applications, where the number
of channels and participants is reduced, more analyses are important to contribute to
this field. In order to improve the number of studies in the feature extraction stage, the
present work deals with a comparison of features computed from two domains: time and
frequency. The objective is the MI detection for upper limbs, employing four different
models from the machine learning techniques.

2 Methodology

This section resumes information about the employed database, feature extraction
and classification stages. As the feature extraction comparison is the main objec-
tive of this work, two different groups of features are explained: time and frequency
domains. Finally, three machine learning techniques aspects are described in terms of
the parameters for training and validation.

2.1 Database

Database consists of signal registration from five subjects in a similar way to described
in [31], having as a main difference the number of subjects employed in relation to
the present study. For every subject, ten different EEG acquisitions were stored in a
registration called run. Each run is composed by 12 trials, where the subject developed
the experiment of motor imagery. This trial had three different actions to guide the
volunteer in the performing (see Fig. 1).

The first type of action consisted on being on a rest state for three seconds, where it
is necessary to pay attention to develop the motor imagery. Then, the subject imagines
over three seconds the opening and closing the right or left fist (depending on row
indication), and finally, the subject had to be relaxed three more seconds (see Fig. 1).
Themotor imagery indication for left and right handswas equivalent and sorted randomly
throughout each one, completing six events for each hand out the 12 total trials.

Signals from the relaxed state (last three seconds) were removed because in this
segment of the trial the subject could move, blink and relaxing, generating artifacts and
noise in the signals without relevant information for MI application.

The employed device for signals recording was the g.Nautilus from g.Tec company,
which offers a sampling rate at 250 Hz. This acquisition system holds thirty-two active
electrodes over the cortex connected wirelessly, employing the 10–20 reference system.
It was decided to work only with C3, Cz, and C4 electrodes due to their proximity with
the primary motor cortex. For each signal was applied a Butterworth bandpass filter with
cutoff frequencies at 0.5 Hz and 35 Hz, according to the EEG spectrum bandwidth. At
the same way, the signal trend was removed by overriding the DC component.
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Fig. 1. Two types of trials implemented to acquire data from right and left open fistmotor imagery.

2.2 Feature Extraction

The signals were divided into segments of 500 ms and an overlapping of 50%, due to
the promising results in other studies using this approach [23, 25, 31], obtaining six
segments for every state (rest and motor imagery).For each segment of the signals were
extracted different time and frequency features, according to the previous studies [9, 23].

Time domain features. Statistical measures were obtained from each segment: mean
(1), variance (2), skewness (3), kurtosis (4), Hjorth mobility (5), and Hjorth complexity
(6). These last parameters are indicators of statistical properties used to represent a signal
in time domain. Hjorth activity was not used due to similarity with the variance (2) value.

mean = 1

N

∑N

m=1
xm (1)

variance = 1

N

∑N

m=1
(xm−x)2 (2)

skewness =
∑N

m=1 (xm−x)3

σ 3 (3)

kurtosis = 1

N

∑N
m=1 (xm−x)4

σ 4 (4)

Hjorthmobility =
√

σ 2(x)

σ 2(x)
(5)

Hjorth complexity =
√
Hjorthmobility (x)

Hjorthmobility (x)
(6)

where xm represents each value of the signal segment with N samples, x is the mean of
the segment, ẋ is the derivative computed on x, σ is the standard deviation, and σ 2 is the
variance.

Frequency Domain Features. A computation was developed after the employment of
Fourier transform. For this, the root mean square (RMS) value (7) was used and the
relative power bands for δ, θ, α, β and γ. Table 1 shows the features computed for each
domain.

RMS =
√

1

N

∑N

m=1
x2m (7)
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Table 1. Features extracted to partitioned EEG signals.

Domain Features

Time Mean, Variance, Skewness, Kurtosis, Hjorth mobility, Hjorth complexity

Frequency Root mean square (RMS), and relative power for δ, θ, α, β and γ bands

For both approaches, the mentioned features were obtained for each one of the three
channels, obtaining a vector with 18 attributes or features to represent the input to the
ML technique.

2.3 Machine Learning Techniques

Three ML techniques were applied: Fine KNN, Bagged Trees, and SVM. The specifi-
cations for these models were found in a heuristically way, searching for the best result
according to the features described in the previous subsection.

Fine K-Nearest Neighbors. This is a technique which find a predefined number of
samples closest in distance to a new point to be classified. The Euclidean distance with
eleven neighbors were the parameters with better results.

Support Vector Machine. It is a supervised method from the ML where support vec-
tors are obtained from training data. In the beginning, the SVM were developed for a
classification based on a lineal function [3, 32]. However, a solution for this problem is
to employ a kernel function, which is based on a polynomial kernel with a third order for
the present case. At the same time, the SVM is trained to classify dichotomy problems
[33]. This was solved through the strategy known as one vs. All, adjusting N classifiers
when it is demanded, for example the three classes classification.

Bagged Trees. This method, based on ensemble of several decision trees, where the
variance of the decision tree is reduced with the employment of a bootstrap aggregation.
For this, thirty learners and a maximum number of 2880 splits of data were parameters
to determine the best configuration with thirty epochs in the training.

Neural Networks. This model takes advantage of the capacity to extract hidden linear
and non-linear relationships between the data through an association between input
and output mapping [34]. From the different architectures that can be employed, the
multilayer perceptron was chosen for this work. One hidden layer was implemented,
modifying the neurons from two to ten and finding the best architecture. The resilient
backpropagation was the algorithm preferred to train the model, according to the speed
and performance related to the local minima [35].

ML models were trained under the same validation specifications. For this, a five-
fold cross validation folds was carried out. A natural way to develop a BCI application
is implemented by subject. For this, the fold division was performed for each subject,
according to the acquisition. This means that each run was divided into five subsets to
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validate the models. The strategy was applied to all models in the same way to have an
equally comparison.

Two scenarios were implemented: i) Two class classification was driven, where the
ML techniques were trained to discriminate between rest and somemotor imagery (right
or left). For this, the features from left and right hand were joined in a one class. ii) This
scenario was given by three classes, training the ML models to discriminate the specific
side of the movement: right, left and rest. This implies more complexity in the models,
according to the number of classes that the model has to learn. For example, in the SVM
case, it was necessary to develop a multiclass where three models are combined from
the three class vs. no class possibilities. All experiments were developed using Matlab
© software and toolboxes related to machine learnings and classification learners.

3 Results

Accuracy and the variance due to the cross validation strategy for the four models,
employing the time domain feature extraction is shown in Table 2 for the two classes
scenario and Table 3 for the three classes scenario.

Table 2. Results for features extracted from the time domain and two classes classification.

Subject Accuracy

Fine NN SVM Bagged trees MLP

1 94.66% 90.25% 75.89% 88.33%

2 93.50% 93.63% 74.55% 86.67%

3 92.09% 91.26% 74.14% 75.83%

4 93.96% 85.97% 77.28% 74.17%

5 92.13% 91.25% 78.87% 71.67%

Mean 93.26% 90.47% 76.14% 79.33%

Variance 0.010% 0.063% 0.030% 0.076%

Table 4 and 5 show the results for the feature extracted from the frequency domain
and two and three classes scenarios. Differences can be visualized in terms of classifi-
cation rates. Table 2 and 4 show that the use of frequency domain features increased the
performance in a 6% approximately.

For the three classes scenario, the increment was less than for two classes case,
improving the performance in around 3%.

For the NN models, employing the time domain feature extraction, the number of
units in hidden layer for the MLP with the better results were obtained with two, ten,
six, ten and nine for the subjects one to five in Table 2. For Table 3, models had three,
four, ten, four and ten neurons in the hidden layer for the five subjects, respectively. For
frequency domain, the NN models with better results had five, ten, nine, nine and ten
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Table 3. Results for features extracted from the time domain and three classes classification.

Subject Accuracy

Fine NN SVM Bagged trees MLP

1 85.24% 76.00% 70.24% 71.67%

2 87.91% 84.54% 73.85% 67.50%

3 90.97% 85.00% 66.59% 66.39%

4 84.75% 73.78% 70.62% 61.67%

5 86.49% 76.94% 74.51% 66.67%

Mean 87.07% 79.25% 71.16% 66.78%

Variance 0.049% 0.21% 0.08% 0.035%

Table 4. Results for features extracted from frequency domain and two classes classification.

Subject Accuracy

Fine NN SVM Bagged trees MLP

1 98.68% 94.35% 84.31% 98.33%

2 97.08% 92.92% 80.80% 97.92%

3 98.89% 92.22% 77.82% 96.39%

4 97.60% 88.65% 82.08% 91.88%

5 98.33% 96.94% 84.29% 89.00%

Mean 98.11% 93.01% 81.86% 94.70%

Variance 0.0045% 0.073% 0.058% 0.04%

Table 5. Results for features extracted from frequency domain and three classes classification.

Subject Accuracy

Fine NN SVM Bagged trees MLP

1 89.24% 84.24% 74.24% 75.83%

2 91.25% 88.30% 73.74% 76.67%

3 93.13% 86.91% 68.54% 80.83%

4 88.37% 79.97% 71.91% 80.83%

5 89.55% 89.13% 76.87% 72.50%

Mean 90.31% 85.71% 73.06% 77.33%

Variance 0.02% 0.10% 0.076% 0.035%
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neurons in the hidden layer in the two classes scenario. In the three classes problem,
these numbers of units were eight, three, six, seven and seven for the five subjects.

4 Discussion

Results exhibited how the simplest model obtained the best results for all scenarios and
feature extraction domains. In second place in terms of accuracy, the SVM achieved
comparative results for almost four cases, having the NN better results for the three
classes with features in the frequency domain.

Analyzing the SVM models, the necessity of using a multiclass classification for
determine three classes in the second scenario, indicate that the one vs. All strategy is
more demanding, worsening the results for this application. The mechanism used to
compute every response of each SVM depends of this recategorization of the classes.
Therefore, the final accuracy value is directly affected by the performance of every single
class vs. no class SVM classifier.

For the frequency domain, other aspect to analyze is the employment of the relative
powers bands computed from alpha and beta for detecting motor imagery (right, left
and rest states). The technique used was a multilayer perceptron NN applying a back-
propagation algorithm, obtaining accuracies around 75%. It is important to note, that the
database employed for that study was also used in the present work [26]. This suggest
that the number the subjects contributes to improve the results. In addition, it may be
due to the selected features, because in the created models five more training samples
can imply a substantial improve, because the model has more samples to recreate the
output, obtaining better generalization for the classification.

Continuing with the analysis of the results for the frequency domain, it is possible
to see that are comparable to the reported in the literature. Accuracies around 82% have
been exhibited in relative power for the five EEG signals bands [21–23]. In the present
work, the accuracy value reached 90% for the scenario with three classes, showing an
increment in relation to the reported results. This does not implies that the methodology
employed here is better than the previously exhibited, the context of the experimentation
as acquisition and preprocessing can represent significant differences, making difficult
to compare the result values in a similar mode. In terms of the present proposal, the
objective is to visualize more alternatives for motor imagery classification, evaluating
two approaches: frequency and time domains.

Related to this last aspect, the use of time domain features reached results compared
to the described in previous works with accuracies around 87% measures [24, 25]. It
is evident that the fine KNN technique shows better performances than SVM, Badged
Tree and NN, improving the classification from 3% to 17% approximately between the
analyzed models. In addition, the percentage of the variance between the results for this
technique shows that a good generalization is done, maintaining the minimum variance
between subjects for the KNN model.

As limitations of present study, there are the number of subjects employed in the
experimentation and the chosen MLmodels used, mainly. For this, future work includes
the acquisition more participants in the study. Furthermore, more techniques for the
feature extraction and more ML models also are considered to extend the analyses.
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Furthermore, deeper analysis in relation to identification of left or right hand is necessary.
In the present case, the left hand discrimination holds the worst results, exhibiting more
complexity. This phenomenon happened to all the analyzed classifications, requiring
more analyses to determine the causes out of the scope in this work.

5 Conclusions

A comparison between time and frequency domains methods for feature extraction
related to the motor imagery detection was developed for upper limbs. The results show
that a proposal based on features obtained from frequency domain represents a better
option.

At the same time, from the implemented experiments it was possible to see that the
motor imagery detection for the left hand it was more difficult to discriminate. This work
took as classification three machine learning techniques, evincing the fine KNN as the
best.

Future work considerations as the increment of the number of participants, explore
the combination of the time and frequency domains and to train more models from the
ML must be taken into account. Classification techniques as deep learning can be other
alternative to analyze for the problem studied here.
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Abstract. The optimization of the resources used in hospitals is a key
problem in hospital management. In this sense, the development of tools
that can help health care providers to ensure that inpatients can be dis-
charged at the times indicated by international standards according to
their pathological condition is of great interest for the optimization of
resources, especially in developing countries. There are different stan-
dards for grouping patients according to their diagnoses and procedures
information, this work focuses on the Diagnosis-Related Groups (DRG)
patient classification system. Typically, DRG are obtained after hospital
discharge, only for billing and payment purposes, which reduce the abil-
ity of health providers to take corrective actions when the health care
attention deviates from the standard attention of specific patient condi-
tions. This work focuses on the use of ML techniques as an alternative to
DRG regular classification methods. The main aim is to evaluate whether
ML methods can classify patients according to the DRG standard, using
the information available at the hospital discharge. This result would be
the base line for further analysis focused on the prediction of DRG in
early stages of the inpatient. The results shown that DRG classification
using ANN and Ensemble methods can achieve up to 96% of accuracy
in a real database of more than 57.032 health records.

Keywords: Diagnosis-related groups · DRG · Patient costs · Case
mix · Machine learning · Patients classification

1 Introduction

Healthcare systems in developing countries face many challenges to provide
appropriate attention to patients from very limited resources. Commonly, two
kinds of entities are involved in patients’ attention: Healthcare Providers Insti-
tutes (HPIs) and Health Promoting Entities (HPEs) (i.e. insurance companies).
As their name stand for, HPIs are the organisations that actually provide health-
care services to patients, including medical consultation, laboratory analysis,
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surgeries, etc. Consequently, HPIs face high pressures from HPEs in order to
optimize services costs without lowering the quality of the healthcare services.
Moreover, users and government claim to HPI for improving the quality of ser-
vice and expand the portfolio of services provided to the general public. Under
this context, clinics and hospitals are adopting techniques that allow the stan-
dardization and optimization of the costs of patients admitted to hospital and
thus meet the needs of health care systems. In this sense, Diagnosis-Related
Groups (DRG) is one of the most used methods for standardizing the grouping
of patients. DRGs are based on demographic information, significant charac-
teristics of diagnoses and procedures performed throughout hospital stay, and
allow to determine the level of resources that should have been consumed by a
patient according to his/her primary diagnosis and to the treatments applied
until discharge [1,2]. DRGs are required by HPEs, mainly for billing and pay-
ment purposes, as a way to control the increment of costs associated with health
care procedures that do not have a clear support according to the diagnoses and
also to explain the variability of clinical practices in apparently similar patients
[3]. In a GRD-based patient classification system, typically called DRG-grouper,
patients are classified according to their clinical characteristics and similarities in
the resources used for their treatment during the hospital stay. Such a classifica-
tion is carried out deterministically after patient discharge, when the diagnosis,
comorbidities and medical procedures applied to the patient are known. All this
information is what insurance companies use to fix payments for each patient.
The problem with this approach is that HPIs do not have any monitoring tool
that allow them to control expenses (or at least monitoring them) according to
the corresponding DRG, since it is unknown during the patient’s stay, which
can yield to financial problems if the final payment does not recognise some of
the procedures performed on the patient. One of the alternatives to tackle this
problem, is to make available a system able to predict the most likely DRG of
a patient from partial information (preventing the use of DRG-groupers), which
could be used by HPIs to monitor the expenses and budget consumption from
the HPEs’ point of view.

Bearing this in mind, the present work addresses the problem of classifica-
tion of inpatients according to DRG using Machine Learning (ML) techniques,
as an alternative to DRG traditional classification method. The first aim is to
evaluate whether ML techniques are able to classify patients according to the
DRG standard, using the information available at the patient discharge, as a
first step in the search of a system capable of predicting DRGs using partial an
incomplete information1. The second aim raised in this work is to determine if
ML techniques need to use the same number of attributes as traditional groupers
or if they can exclude some variables that do not contribute or that contribute
little to the classification process.

1 Note that in this case we differentiate between classification and prediction, depend-
ing on the moment (and therefore on the available information) at which the esti-
mation of the DRG is made.
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The remainder of the paper is structured as follows. Section 2 provides a sur-
vey of relevant literature. Section 3 includes an analysis about the ML techniques
used in this study. Section 4 describes the dataset along with the set of features
included. Experiments and results are summarized in Sect. 5. Finally in Sect. 6
some conclusions derived from the results are discussed.

2 Related Works

This section is divided into three parts; the first part deals with the basic con-
cepts behind DRGs, their creation and use in hospital management. The second
part is aimed at describing the traditional classification method based on a well-
known flowchart and the last part deals with recent DRG classification methods
supported by computational intelligence techniques.

2.1 Diagnosis-Related Groups - DRG

A DRG-based system is a patient classification system that has four main charac-
teristics: (1) the data routinely collected during the hospital stay (mostly related
to the patient, the treatment and the characteristics provided) are used to clas-
sify the patients; (2) a manageable number of groups (i.e., DRG), which claim
to be (3) clinically significant and (4) economically homogeneous [4]. The DRGs
consolidate the large number of different (individual) patients treated in hospi-
tals in a considerable number of clinically significant and economically homoge-
neous groups, thus providing a concise measure of hospital activity or, in other
words, defining hospital products. As a result, the implementation of DRGs facil-
itates comparisons of costs, quality and efficiency of hospitals, and contributes to
greater transparency [4]. Another use of DRG is to standardize the estimate of
expenses in the treatments performed on patients. The HPEs and the National
Health Systems take them as a basis to make their payments to the HPIs; for
this, fixed costs are established for patients grouped in the same DRG. This
reimbursement system has in turn a weight associated with the DRG that are
the result of the common routines that are carried out in the different treatments
of the majority of the patients, this is where the utility of the weights assigned to
the DRG of the patients is seen, since they have a variety of uses among which
are the comparative standards, the execution of payments and the elaboration
of budgets, among others [2].

2.2 Traditional Method of DRG Classification

There are several software used for the classification of patients according to
DRG standards, some of these computer tools are free to use and others are
commercial. In general all those tools are called DRG-Groupers and are based
on a hierarchical classification algorithm described in Fig. 1.

The traditional algorithm implemented in the DRG-groupers has three
phases. In the first stage (section A of the diagram in Fig. 1), it determines
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Fig. 1. Flow chart of the traditional algorithm for classifying patients in DRG. Image
taken from [5]

1 of 23 Major Diagnostic Categories (MDC), which are defined by the primary
diagnosis. In case of the primary diagnosis is not available, the algorithm pro-
vides an Error-DRG label [6]. There are different variants of DRG according
to the number of MDC considered. The variant described in Fig. 1 corresponds
to the International Refined DRG (IR-DRG) which, like the G-DRG variant
(from Germany), contains 23 MDC. There are other variants such as AP-DRG,
APR-DRG and HCFA-DRG that uses 25 MDC and the GHM-DRG variant
that contains 26 MDC, among others [7]. The dataset used in this work uses
the LAT-GRC grouper variant that contains 21 MDC, which according to their
authors, is the only DRG grouper adapted to the epidemiology and information
systems in Latin America [8]. After determining the MDC, in the second phase
of the algorithm clinical procedures and comorbidities enable the classification
of a patient into a DRG that can be surgical, procedural or other types. Finally
in section C, the algorithm classify the patient into different DRG subtypes. At
this point, the age of the patient or his/her weight in the case of newborns,
are taken into account to establish the potential level of resources consumption.
These characteristics can be used to determine the stage of the pathology, which
leads to a different consumption of resources and finally to a specific DRG [6].

Note that, in early stages of hospitalization, DRG cannot be identified clearly,
due to incomplete information and non-standardized input parameters such as
the patient review using free text [9]. For this reason the traditional algorithm
conceives the classification of patients in DRG after they are discharged, when
the information about the hospital stay of patient has been consolidated.

2.3 Classification of Patients in DRG Using ML

Computational intelligence methods have recently been used in various applica-
tions in the area of health [10]. Thus, the automatic classification of DRG using
ML techniques have been recently addressed as a way to overcome the problems
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of traditional groupers. Moreover, ML techniques can also be used to provide
classifications about potential DRG in early stage of the inpatient’s stay, which
could yield to improvements in patient monitoring, health-care procedures and
lastly in the optimization of resources. The first work focused on the classification
of DRG using ML techniques was published in [11], and reports the comparison
of models for the determination of medical costs of Spinal Fusion in Diagnosis-
Related Groups by using ML algorithms. The authors concluded that methods
of this type can also be used to address related problems, such as predicting the
costs of other DRGs.

Other studies have been proposed to classify patients in DRG, at an early
stage of the patient’s stay and after discharge. In [9], the authors evaluate
whether an early classification and after discharge of a DRG using computational
intelligence techniques, can improve both contribution margins and the alloca-
tion of resources such as operating rooms and beds. This study focused on the
accuracy of the classification at the time the patient seeks admission, and after it,
i.e., since admission to discharge. This work used a dataset with 16.601 patients
who were admitted during the year 2011 in a hospital near Munich, Germany.
Every patient was described using 47 features and assigned to 680 different DRG.
The ML techniques compared were Näıve-Bayes, Bayesian Networks, Classifica-
tion Trees, Voting-Based Combined Classification, among others. The results
showed that computational intelligence techniques can significantly increase the
accuracy in the early classification of patients in DRG and obtain results very
similar to the classification after discharge. Additionally, it was shown that ML
techniques combined with mathematical programming can increase contribu-
tion margins and improve the allocation of scarce resources. According to the
authors, the best result obtained using ML techniques achieved an accuracy of
99.4% using all the information available after patient’s discharge.

The work published in [12] addresses the problem of predicting the inpatient’s
mean stay. Although that work does not classify a patient according to a DRG
category, it tries to determine whether the patient will stay more than five days
(long stay) or less than or equal to five days (short stay), which is strongly related
to the DRG classification problem, since the DRGs are directly linked to the days
of hospital stay, i.e., each DRG has a maximum patient stay associated with it.
In [12] the authors used a vanilla neural network with two hidden layers for the
classification of short or long stay using samples from the MIMIC database [13].
The variables used included: diagnoses, procedures, demographic information,
among others. The authors reported a prediction accuracy between 75.3% and
82.3%.

To the best of our knowledge, no work has addressed the problem of DRG
prediction in the sense that we treat this concept here, i.e., even though there
are some approaches with good results regarding the classification of patients
in DRG using ML, this classification was made after the patient discharge. Fur-
thermore, it is also noteworthy that each work uses a variant of DRG adapted to
the epidemiology of each country or at least, from a very similar context. This
work uses a database labeled according to the a Latin American epidemiology
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standard developed by [8] that has not been tested before for DRG prediction
nor classification purposes using ML techniques.

3 Methods

In this work, the classification of DRG is performed using two extensively used
ML techniques: Artificial Neural Network (ANN) and eXtreme Gradient Boost-
ing (XGBoost). ANNs are well-known for their flexibility and adaptation capac-
ity to many different problems. On the other hand, ensemble methods such as
XGBoost have shown high performance in many health-related task, and they
are equipped with a natural way to evaluate the importance of the features in
the addressed ML task; according to [14], the features importance depends on
whether the prediction performance changes significantly when that feature is
replaced with random noise. XGBoost is also scalable, that is a desirable char-
acteristic when the problem involves the processing of dozens of thousand of
samples. Furthermore, both models are part of the most popular ML techniques
today, e.g., in 11 out 29 kaggle competitions during 2017, the winner solution
was based on ANN, and in many of those cases, ANNs were combined with a
XGBoost model [15].

4 Dataset

For the development of this work, a database of clinical discharge composed of
57.032 health records grouped into 47 DRG was used. The database includes
information of patients hospitalized during the years 2016, 2017 and 2018 at
the IPS Universitaria Cĺınica León XIII, a complexity third-level Hospital in
Medelĺın-Colombia which, according to the management indicators of 2018, had
626 beds distributed in: Adult hospitalization 531, Pediatric hospitalization 21
and Intensive Care Unit - Especial Care Unit (ICU-ECU) 74.

The dataset was labeled using a DRG-grouper which uses a total of 168 vari-
ables as input. The 168 variables can be split into three groups: 1) Administrative
Information as insurer, hospital code, type of income; 2) Patient Information
such as gender, age, date of birth, age group and 3) Medical Information such
as primary diagnosis and other diagnoses all coded according to ICD-10 (Inter-
national Statistical Classification of Diseases and Related Health Problems 10th
Revision) standard, and Unique Classification of Health Procedures (in Span-
ish Clasificación Única de Procedimientos en Salud - CUPS) coded procedures.
However, based on the scientific literature, the opinion of expert physicians and
after a simple analysis it is clear that many of those features corresponds to
unique identifiers no related with neither the patients diagnoses nor health care
procedures. Some of those features include information about the insurance com-
pany, hospital code, etc., so all of those features were removed from the dataset.
In this sense, the features that according to medical criteria could contribute
the most to the ML models were selected. The final set of features is listed in
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Table 1. The ICD-10 standard is a code assigned by the treating physician and
represents the primary diagnosis, is the reason for the patient admission.

Additionally to the features described above, Table 1 also includes a couple
of additional variables related to ICD-10 primary diagnoses. 1) ICD-10 - MDC :
the Major Diagnostic Categories is the first character of any particular ICD-10
code. This corresponds to a single organ system or etiology and in general, it
associates the diagnosis with a particular medical specialty. In this work, 20 dif-
ferent MDCs were present in database; 2) ICD-10 - category : corresponds to the
three-character block in every ICD-10 code, which points to specific categories
of diseases that have characteristics in common [16]. The database contains 1057
different ICD-10 - categories.

Table 1. Features description in the dataset.

No Feature Data type Features numbers

1 Month of admission Nominal 12

2 Age in years Continue 1

3 Gender Nominal 2

4 Type of admission Nominal 2

5 Age group Nominal 5

6 ICD-10 - MDC Nominal 20

7 ICD-10 - category Nominal 1057

8 ICD-10 Nominal 1692

9 ICD-9 Proc. Nominal 1592

Regarding the procedures, DRGs are separated into two groups: medical
and surgical, the latter referring to the procedures that were performed to the
patients during their length of stay. For this work, 14.566 patients were under-
went at least to one procedure during stay and were classified as surgical DRG.
The rest, that is, 42.466 patients were labeled as medical DRG. The patients
classified into surgical DRG have information about the procedures performed
with the CUPS code. Additionally, this information is organized in chronological
order so it is possible to know what procedures were performed day by day. This
information is going to be helpful for further analysis on DRG prediction using
partial or incomplete information.

The number of procedures vary in quantity according to the days of the hos-
pital stay. Unlike the ICD-10 diagnosis codes, where only the primary diagnosis
was considered, all the different procedures per patient were taken into account,
which could even meant that, in many cases, a procedure was done several times
to the same patient. For this reason, the procedures were coded using frequency
variables, where each different procedure became a new feature representing the
number of times that a specific procedure was applied to the patient. It is clear
that not all the available procedures were applied to every patient, so in those
cases the corresponding features were marked as “zero”.
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4.1 Cohort of Study

Several of the DRG groups included in the database contain a small number of
samples. Therefore, in this study a cohort of 57.032 health records representing
the 70% of whole database was used. This cohort includes the 47 most frequent
DRG in the dataset. Figure 2 shows the distribution of the samples in the differ-
ent DRGs selected. It is possible to observe that, even after the selection of the
cohort, there is a strong imbalance among the 47 classes. For example, the class
more frequent (C-09-07) has 4.765 records, while the class less frequent (C-10-14
label) has 496 records. After the cohort selection, and by using the feature codi-
fication described above, the number of features was finally set to 4.370. Table 2
shows a summary of the number of features per attribute in the dataset.

Fig. 2. Samples distribution among the most frequent DRGs in the dataset, which
represent 70% of all cases.

Table 2. Total number of features per attribute

Demog.
Info.

ICD-10 ICD-10
category

ICD-10
MDC

ICD-9
Proc.

Total
features

9 1692 1057 20 1592 4370

5 Experiments and Results

5.1 Experimental Setup

To evaluate the performance of the models, a cross-validation methodology with
five folds was used. The hyperparameters of the models and learning algorithms
were adjusting following a grid search approach. The grid evaluated for every
parameter can be seen in Tables 3 and 4, corresponding to XGBoost and ANN
models respectively. During training stage, different seeds were used in each fold
in order to evaluate sensitivity to the initial conditions and convergence issues of
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the models. Additional, the class weight parameter was set following a balanced
heuristic rule [17] in order to compensate the imbalance problem in the dataset.

Table 3. Grid search intervals for XGBoost hyperparameters tuning. Note: Objective:
multi:softma

Parameter Values grid Best values

Estimators number [100, 200, 300, 1000] 300

Max depth [3, 5, 10, 15] 5

Min child weight [1, 3, 5] 1

Gamma reg [0.0, 0.1, 0.2, 0.3, 0.4] 0.2

Subsample [0.6, 0.7, 0.75, 0.8, 0.85, 0.9] 0.8

Colsample bytree [0.6, 0.7, 0.75, 0.8, 0.85, 0.9] 0.8

L1 reg [0, 1e-5, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 100] 0

Booster gbtree, dart gbtree

Stratifed True True

Table 4. Grid search intervals for ANN hyperparameters tuning

Parameter Values grid Best values

Epochs [20, 50, 100, 500, 1000] 20

Batch size [256, 512, 1024, 2048] 1024

Optimizer adam, SGD, RMSprop adam

Dropout [0, 0.1, 0.2, 0.5, 0.8] 0.1

The set of experiments for ANN started from a vanilla neural network archi-
tecture (M1 model) similar to that in the study [12], that was discussed in Sect. 2.
Furthermore, the model architecture was varied to include several hidden lay-
ers with different numbers of neurons, in this experiment 12 models were built;
Table 5 shows the model architectures evaluated. Moreover, every architecture
was evaluated also according to the grid search of the remaining set of considered
hyperparameters in Table 4. For the XGBoost technique, 12 model architectures
were evaluated (see Table 6) too and like the RNA technique, each architecture
of the XGboost was evaluated with the grid search of the remaining set of hyper-
parameters considered in the Table 3. Lastly, the performance of the models was
evaluated in terms of accuracy and F1 for each of the classes.

In addition to the classification experiments, the gain index extracted from
XGBoost which is based on the variance of the impurity in the nodes of the
generated trees, was used to find the most relevant features in the classification
of DRGs.
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Table 5. Specific ANN model configurations evaluated in Fig. 3

Model Layers Nodes per Layer

M1 2 5, 3

M2 1 4

M3 1 8

M4 1 16

M5 1 32

M6 1 64

M7 2 256, 128

M8 1 512

M9 2 1024, 512

M10 5 1024, 512, 256, 128, 64

M11 5 1024, 1024, 1024, 1024, 1024

M12 5 2048, 2048, 2048, 2048, 2048

5.2 Results

Figure 3 shows the behavior of the ANN and XGBoost techniques when the two
more important hyperparameters are varied during the tuning process. No major
changes in XGBoost performance are observed when the number of estimators
and maximum depth were changed. While in the case of ANN, it is observed
that the performance of the models improves as the complexity of the network
increases, that is, when more layers and more numbers per layer are added, but

Table 6. Specific XGBoost model configurations evaluated in Fig. 3

Model Estimators Max. Depth

M1 100 3

M2 100 5

M3 100 10

M4 200 3

M5 200 5

M6 200 10

M7 200 15

M8 300 3

M9 300 5

M10 300 10

M11 300 15

M12 1000 5
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Fig. 3. Performance for different model architectures

this complexity has a limit, from M12 model an overfitting in the results begins
to be observed. The best results during this stage were obtained with the M7
and M9 models for ANN and XGBoost respectively.

Table 7 shown the best results obtained for the classification of DRG using
both XGBoost and ANN models. Tables 3 and 4 shown in bold the configura-
tion of parameters that yield to the best results in both XGBoost and ANN
models, respectively. According to the results in Table 7, the performance of the
models is very consistent for training and test stages; that the standard devia-
tion estimated over the different folds and parameters initialization is less than
0.04% in both models, which indicates that regardless of the seed the model is
converging to a similar minimum of the cost function. Most importantly, the
results show high classification accuracy for both techniques, but specially for
ANN, indicating that ML models are able to mimic, in more than 96% of the
cases, the class assigned by a conventional DRG grouper. These positive results
are also due to the management of class imbalance implemented in both of the
evaluated techniques.

It is also worth to highlight that, as expected, most of the relevant informa-
tion to determine the DRG class is included in the attributes containing patient
and medical information, so many of the administrative attributes required by
conventional groupers are useless to determine the correct DRG class. In this
sense, using only 9 out of the original 168 attributes used by the grouper, the
XGBoost can correctly classify 93% and the ANN 96% of the patients at the
hospital discharge.

Table 7. Best results obtained for the DRG classification

Model Train accuracy Test accuracy

XGBoost 97.04% ± 0.01 93.55% ± 0.02

ANN 99.00% ± 0.02 96.56% ± 0.04
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Figure 4 shows F1 statistic for each of the DRG classes using the ANN model.
It is important to highlight that the classes with the lowest F1 value correspond
to DRGs categorized as surgical, which are those where the label begins with the
letter P, as in the case of P-12-02 that corresponds to Procedures for Vertebral
Fusion or P-12-15 (Other procedures in knee and leg except arthroplasty). This
poor behaviour could be explained because of the variability in the number of
different ICD-10 diagnoses in those classes, which prevent the model from finding
a clear pattern to classify correctly those DRGs. In order to clarify this argument,
lets take a look to the P-12-15 class; in the database it contains 1186 samples, but
those samples can take 170 different diagnosis and up to 129 different procedures.
This is in contrast to some of the classes with the best F1, where all the samples
take the same primary diagnosis.

Fig. 4. F1 obtained using the ANN model for each of the 47 DRG classes

Regarding features importance, Fig. 5 shows the average gain across all splits
when every feature is used in the training of XGBoost model. The figure shows
only the top 30 most relevant features according to the gain index. The highest
gain is obtained for the feature Z511 - Encounter for antineoplastic chemotherapy
and immunotherapy, that is directly related with the DRG C-02-02 - Admission
for chemotherapy session. As it can be observed in Fig. 4, the F1-score obtained
for C-02-02 was equal to 1, that is, the 100% of the inpatients who were given
the ICD-10 diagnosis code Z511 were classified correctly by the ANN model.
From a prediction perspective, this kind of behaviour is very promising since
only one feature can be the indicator of some the DRGs, and that information
could be available in an early stage of the patient’s stay. Figure 5 shown the
top 30 most important features determined by XGBoost technique. From Fig. 5
it can be seen that 16 out of the 30 features correspond primary diagnoses; 13
of the remaining features correspond to the ICD-10 categories, and only one of
30 selected features is related with the chapters of the MDC, specifically the
E chapter which corresponds to Sect. 4 - Endocrine, nutritional and metabolic
diseases.
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Note: the characteristics related here are primary diagnoses and are coded with the
ICD-10 standard

Fig. 5. Top 30 of the most relevant features according to XGBoost feature important
index.

6 Conclusions

This work addressed the automatic classification of DRG using ML techniques.
The set of selected features includes demographic information, ICD-10 Diagnosis,
and ICD-9 Procedures. The best classification accuracy obtained was around
96% for 47 different DRG and was achieved by an ANN with not a quite complex
architecture. Although a perfect classification of the DRGs using a DRG-grouper
as ground truth was not possible, the performance can be considered high taking
into account that only 9 out of the 168 original attributes used by the grouper
were included for the ML models, making the follow-up of the attributes involved
in the DRG classification more manageable. Moreover, this 9 attributes are more
likely to be available in early stages of hospitalization, which is a key element to
develop DRG prediction systems.

As observed in the analysis of the features importance, the most important
attributes are the primary diagnoses, which are the code assigned by the treating
physician to the patient at admission. For the XGBoost to correctly classify
the 93% of the patients, it does not require the information of the procedures
performed on the inpatient, this conclusion is reached because according to the
gains obtained in the analysis of features importance from XGBoost, none of
the codes of procedures appears in the top 30 of the most important features.
Additionally, regarding the MDC chapters represented by the first letter of the
ICD-10 code, only one of them was included in the top 30 of the features that
more influence had in the classification of patients according to the DRG. At this
point it is worth to highlight that many of the 4.370 variables used as features
for the training of the ML models, came from a one-hot-encoding strategy of 9 of
the original attributes used by the conventional grouper (see Table 1). Therefore,
if the XGBoost gain obtained by the features is grouped (summed) according
to the original 9 attributes, the two most important attributes are the ICD-10
diagnosis and the ICD-10 category.
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Lastly, the network architecture proposed in [12] was used as a starting point
for comparison purposes. This ANN obtained less than 60% of accuracy for the
DRG classification. That results is understandable since the problem addressed
in [12] was a two class classification problem, whilst in this work the number
of different classes rose to 47. Using a similar architecture but by increasing
the number of neurons, the performance improved yielding to more than 96%.
Notwithstanding, special care must be taken to set regularization parameters
in order to avoid overfitting. Further analysis should be performed in order to
establish how much discriminative power is lost, when only partial information
about the patient’s stay is available. Those analyses will be a step forward aiming
the development of a DRG prediction system.
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Abstract. The hybrid electric vehicle (HEV) is an alternative to reduce
fuel consumption and increase vehicle performance, maintaining the
safety and trustworthiness of conventional vehicles. The power man-
agement strategy (PMS) influences directly the fuel economy and per-
formance of HEVs. This paper presents two different management
approaches for the power management: rule-based control and fuzzy con-
trol. Through analysis of the engine consumption map, the results of the
simulation show that the fuzzy strategy demonstrates better performance
than a rule-based strategy. Therefore, this study indicates that the fuel
economy can be substantially enhanced with a correct power manage-
ment strategy.

Keywords: Hybrid electric vehicle · Power management strategy ·
Rule-based control · Fuzzy logic

1 Introduction

Hybrid electric vehicles (HEVs) are widely rated as one of the most feasible
solutions to the world’s necessities for cleaner and more fuel-efficient vehicles.
The adoption of hybrid propulsion technology has contributed to reduce the
emission of particulate materials and gases [1]. Furthermore, HEV maintains the
characteristics attributed to conventional vehicles such as performance, safety
and reliability.

Comparing with a classic vehicle, the hybrid one is more complex. In order to
obtain the maximum efficiency in HEV, the main control strategy seeks to select
the propulsion source, e.g. internal combustion engine (ICE) or electric motor
(EM), depending on the load [2]. The ICE has a low efficiency at low load,
for transient regimes and for idling [3]. However, considering full loads and high
speed, the engine has the maximum efficiency. The HEV control strategy intends
to avoid the low efficiency by using the control algorithms to manage the energy
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sources in order to minimize the fuel consumption and the gas emissions [1,4],
sustaining the battery state of charge (SoC).

According to [5] various methods and solutions have been proposed in the
literature to HEV management control. The rule based strategies are based on
heuristics, intuition, human expertise and even mathematical models without
a previous knowledge of a predefined driver cycle [6]. The rules depend on the
power demand, the driver’s acceleration and the SoC of the battery. Then taking
into account the value of such variables a powertrain configuration is adopted.
In [7], a rule-based controller is designed and simulated for a two-modes power-
split hybrid electric vehicle, whose powertrain is modeled using the bond-graph
technique. Moreover, the rule base power split control for HEV is also applied
in [2,4], considering rules optimized by genetic algorithm.

A similar approach to rule-based control has been followed using fuzzy logic
technique [3,8]. Thermostat strategy, power follower strategy and fuzzy rule-
based strategy are the examples and their purpose is load-leveling [9]. On the
other hand, optimization-based strategies try to find a global optimum using lin-
ear programming, dynamic programming, genetic algorithm etc. However, these
strategies show the limit of non-availability in the real-time environment [6].

In this context, this work focuses on the development and the analysis of
PMS in a HEV parallel configuration with EM coupled in the rear wheels. For
this, two management strategies are developed, the first is rule-based and the
second strategy is using fuzzy systems. The results of this study allow to observe
when each propulsion system is triggered and to analyze the fuel consumption
for each power management strategy.

2 Vehicle Longitudinal Dynamic

The vehicle studied in this paper is a parallel electric hybrid and is shown
schematically in Fig. 1. It has a 1.0L gasoline engine coupled to the front axle
through a 5-speed transmission. Two EM are directly coupled in each rear wheel
and the energy is stored in a battery pack.

The vehicle power demand is a function of the movement resistance torque
Tr [Nm] like the aerodynamic drag, rolling resistance, powertrain inertia and the
driving behavior [10] as shown in Eq. (1), as a function of the drag coefficient
CD, vehicle frontal area A [m2], air density ρ [kg/m3], gravitational acceleration
g [m/s2], vehicle speed V [m/s], mass M [kg] and the tire radius r [m].

Tr =
(

1
2
ρV 2CD A + 0.01

(
1 +

0.62 V

100

)
Mg + Mareq

)
r (1)

The driving behavior can be simulated by means of standard cycles [11] that
define the vehicle required acceleration areq [m/s2] calculate by Eq. 2 accord-
ing to the target speed Vt [m/s] (located time step Δt [s] ahead the current
simulation time), compared to the current vehicle speed V . In this study the
FTP-75 standard driving cycle is applied as its speed profile. Once the applied
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Fig. 1. Parallel HEV power management controller.

drive cycle does not provide any information regarding the track altimetry, the
climbing resistance effects are neglected in this study.

areq(t) =
Vt(t + Δt) − V (t)

Δt
(2)

This required traction torque is the divided by the HEV PMC, with split the
Tr value between the ICE T ICE

r [Nm] and the electric motors TEMs
r [Nm]. The

engine required torque TICE [Nm] in then defined by Eq. 3 as a function of the
gearbox Nt and differential Nd gear ratios, inertias of the rotation components
Ie [kgm2] (engine), It [kgm2] (gearbox), Id [kgm2] (differential) and Iw [kgm2]
(wheels) and the overall powertrain efficiency ηtd. On the other hand, the EMs
are coupled directly to the vehicle rear wheels (Fig. 1) and it required torque
TEM [Nm] is then defined by Eq. 4 by adding the EMs inertia IEMs [kgm2].

TICE =
T ICE
r

NtNdηtd
+

(
(Ie + It)(NtNd)2 + IdN

2
d +

Iw
2

)
areq

r
(3)

TEM = TEMs
r +

(
Iw
2

+ IEMs

)
areq

r
(4)

Bout requested torque values Te and TEM are the evaluated by its avail-
able torque curves. If the requested values exceeds the available one, its value is
replaced by the maximum available torque. After these constrains, the current
HEV acceleration ax [m/s2] is given by Eq. (5). The resulting ax value is numer-
ically integrated twice by the SimulinkTMODE113 (Adams Solver) that define
the HEV speed V displacement.

ax =
TICENtNdηtd + TEM − Tr

rM + (Ie + It)(NtNd)2 + IdN2
d + Iw + IEMs

(5)
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The vehicle parameters are shown by Table 1. The gear shifting strategy is
based in standard gear shifting speeds developed to fuel economy previously
studied by [2,3] with satisfactory results for a urban driving behavior.

Table 1. Vehicle parameters [3]

Components Units Speed

1st 2nd 3rd 4th 5th

Engine inertia kgm2 0.1367

Transmission inertia kgm2 0.0017 0.0022 0.0029 0.0039 0.0054

Transmission ratio - 4.27 2.35 1.48 1.05 0.8

Differential inertia kgm2 9.22E−04

Differential ratio - 4.87

Wheels inertia kgm2 2

EMs inertia kgm2 0.1

Vehicle frontal area m2 1.8

Drag coefficient - 0.33

Tires - 175/65 R14

ICE vehicle mass kg 980

HEV mass kg 1120

2.1 Engine Model

Due to the high complexity of the ICE, in this study it was modeled based on
throttle and specific fuel consumption maps. The ICE torque curves (Fig. 2a),
present the available torque in function of the its throttle percentage and speed,
which is applied as constrain for the TICE torque as mentioned previously. If the
required torque exceeds the 100% throttle available torque, the simulation will
use the maximum torque of the curve and there will be a speed decrease and a
loss in the vehicle acceleration performance [2].

In the simulations it was used a Otto cycle gasoline ICE model and the fuel
consumption was estimated by the specific consumption map shown in Fig. 2b
as a function of ICE operation pointy (speed and torque). The volume of fuel
consumption (Cl) for each simulation step dt is calculated by (6) as a function
of the engine power (Pe), the fuel density (ρf ) and the fuel specific consumption
(Ce) obtained from the consumption map. The total fuel consumption is given
by the sum of all the consumption steps.

Cl =
CePedt

ρf
(6)
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Fig. 2. Engine torque curves and consumption map.

2.2 Electric Motor Model

EM was modeled according to the dynamic equations for a DC electric machine
with independent field. The direct relationship between the armature current
(Ia) and the electrical torque (Tel) developed by the rotor is given by torque
constant (KT ):

Tel = KT Ia (7)

Through of the union of this with (8) that produces the armature current
and (9), that produces the angular velocity it is possible to construct a block
diagram equivalent for modeling the EM, as represented by Fig. 3.

Ia(s) =
(Vt(s) − Ea(s))

(ra + sLa)
(8)

where: Vt - motor voltage, Ea - back EMF, ra - armature resistance, La -
armature inductance.

ω(s) =
(Tel(s) − Tload(s))

(D + sJ)
(9)

where: ω(s) - angular velocity, Tload - load torque, D damping constant, J
motor inertia.

Fig. 3. DC electrical motor block diagram.
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It is possible to obtain the angular velocity (ω(s)) of the EM through vehicle
velocity using the (10), where r is the wheel radius.

ω(s) =
VelNη

r
(10)

Based on the study by [12], and as shown in Fig. 3, a controller uses pro-
portional and integral coefficients (PI) for generating the voltage value of the
armature circuit (Vt(s)) of (8).

When the vehicle is at braking mode, the EM is able to act as a generator.
Therefore, all or a portion of the regenerated energy is used to charge the battery.
The recharging process is limited due to maximum battery power charging for
each time instant. Another feature of this model is about slight loss coefficient
(or drain) by iron and/or copper. In other words, the proposed model shows an
ideal case with 100% efficiency for electric machine operating as a motor and
also as a generator. The constants used for solving the EM modeling were: KT

- 1.98 V/rad, ra = 0.082 Ω, La - 0.2 mH.

2.3 Battery Model

The battery used as source of energy for parallel HEV is the lead acid. The model
inputs are the battery power demand (Pb) from PMS, the depth of discharge
(DoD) and the total charge removed (CRn). DoD and CRn are feedback to
battery model to control the charging and discharging energy at each instant
of the simulation. The main output of this model is the available power from
battery (Pot) to the propulsion system.

For appropriate execution of the battery power in study, was chosen a bench
composed of two batteries, each one with 10 cells, capacity of 32 Ah and Coeffi-
cient of Peukert, (k) equal to 1.2. In the simulations the DoD operates between
predetermined values of charging and discharging (DoDmax and DoDmin), 0.45
and 0.4 respectively, which are considered to extend the battery life lead-acid
used in this work. DoD was limited to maintain the battery life, because if the
battery is completely discharged, its life cycle is dramatically reduced.

3 Power Management Strategy

The PMS must determine the power necessary to drive the wheels based on
the driver inputs, control the charge and discharge of the battery and share the
power between ICE and EMs.

Two different approaches of PMS were developed and implemented in the
co-simulation program. The first strategy was based on rule-based due to clean
implementation. Owing to some inaccurate information and variations in the
current plant operating condition, the second approach was the fuzzy logic.
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3.1 PMS Rule-Based

In this strategy, the power demand corresponding to vehicle power request will
be called Pdem, the power requested by the ICE (PICE), the power requested by
the (PEM ) and the power requested from the battery will be Pb.

The rules of PMS are determined in accordance with DoD of battery, Pdem

and also the required torque (Treq) which are identified as inputs, and the PICE ,
PEM , Tbrake which are identified as PMS outputs (Table 2).

Table 2. Set of rules used in the PMS

Acceleration Condition Braking Condition

If Pdem < 7500 and DoD ≤ DoDmax If Pdem < −Pload and DoD > DoDmin

PEM = Pdem PEM = −Pload

PICE = 0 PICE = 0
TBRAKE = 0 TBRAKE = Tre

PB = PEM PB = PEM

If Pdem < 7500 and DoD > DoDmin If Pdem < −Pload and DoD < DoDmin

PEM = 0 PEM = Pdem

PICE = Pdem + Pload PICE = 0
TBRAKE = 0 TBRAKE = Tre

PB = −Pload PB = PEM

If 7500 < Pdem < 35000 If Pdem > −Pload and DoD > DoDmin

PEM = 0 PEM = Pdem

PICE = Pdem PICE = 0
TBRAKE = 0 TBRAKE = 0

PB = 0 PB = 0
If Pdem > 35000 and DoD ≤ DoDmax If Pdem > −Pload and If DoD < DoDmin

PEM = Pdem − PICE PEM = Pdem

PICE = 25000 PICE = 0
TBRAKE = 0 TBRAKE = 0
PB = PEM PB = PEM

If Pdem > 35000 and DoD >DoDmin -
PEM = 0 -

PICE = Pdem + Pload -
TBRAKE = 0 -
PB = −Pload -

In this PMS, the EM operates by providing the requested power value (Pdem)
and operates at maximum capacity when it is necessary (PEMmax

) until the
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maximum DoD (DoDmax) be reached. Therefore, when the DoD maximum is
reached, the EM acts as a generator, recharging the battery. When Pdem exceeds
the value of PEMmax

and DoD is the maximum (DoDmax), the ICE become the
source responsible for supplying additional power. ICE also acts alone when Pdem

is greater than PEMmax
and less than 35 kW, featuring a region of good efficiency

about ICE operation. However, if the value of DoD is below the maximum limit
(DoDmax), the ICE will work together with the EM providing the Pdem to HEV.

However, if the value of Pdem is negative it denotes that the value of the
required torque (Treq) is also negative, which indicates a vehicle deceleration.
During braking, when the EM acts as a generator transforming kinetic energy
into electricity, the energy can be stored in the battery in case of it is below
its maximum load limit (DoDmax). The amount of power that the battery can
absorb in the charging process is limited by the maximum power value of charge
(Pcharge) that can be absorbed, and the excess amount must be discarded (Ploss).

3.2 PMS Based Fuzzy

Fuzzy systems are known by approaching the computational decision to human
decision. A major feature is the independence of mathematical modeling and
the ability to approach complex nonlinear models. The fuzzy systems were quite
suitable for the control of HEVs.

The fuzzy system based on PMS was used to control the power supplied by
the propulsion systems based on Pdem and DoD of the battery.

For adjusting the membership functions, the number of functions used as well
as the intervals for which were defined in their respective universes of discourse,
preliminary tests were performed using results from rule-based strategy. The
purpose of these tests was the reduction of fuel consumption compared with
strategies based on rules. In this context, linguistic variables, which represent
the fuzzy sets of inputs for PMS in question were determined as follows:

– Demand power (Pdem): this input variable was specified in the universe of
discourse between −20000 and 60000 W, with set of terms NM (negative
medium), LN (low negative), Z (zero), L (low), M (medium) and H (high)
represented by their respective sets fuzzy. The limits of the universe of dis-
course for this variable were obtained from maximum and minimum values
assumed by the power demand of the vehicle operating in urban cycle.

– Depth of discharge of the battery (DoD): is specified in the universe of dis-
course between 0 and 1, with a set of terms VL (very low), L (low), M
(medium) and H (high) represented by their respective sets fuzzy. The limits
for the universe of discourse are the same for which DoD is defined in the
battery model.

– Request braking (Treq): This variable was specified in the universe of discourse
between −5000 and 0, with sets of terms represented by their respective sets
fuzzy. The limit of the universe of discourse defined, in this case, is the limit
of braking required by HEVs added the safety margin.
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Linguistic variables which represent the outputs fuzzy sets to PMS based on
fuzzy are listed below:

– Electric motor power (PEM ): This output variable is specified in the uni-
verse of discourse between −8000 and 7500 W with set of terms NC (negative
constant), N (negative), Z (zero), P (positive) and PC (positive constant)
represented by their respective sets fuzzy. Similar to other variables, the lim-
its of the universe of discourse for this variable were obtained from maximum
and minimum values that the electric motor can take over its operation. For
the validation of the fuzzy inference process is necessary to map the knowl-
edge related to the system studied through fuzzy rules. These rules can be
implemented from the expert knowledge of the process being described in lin-
guistic form using the If-Then structure. Therefore, the process of knowledge
expressed by the rules is shown in Table 3.

Table 3. Set of rules fuzzy.

PEM

Pdem \DoD VL L M H

NM Z P NC NC

LN N N N N

Z Z Z Z Z

L P P Z Z

M P P P Z

H PC PC P Z

PICE

Pdem \DoD VL L M H

NM Z Z Z Z

LN Z Z Z Z

Z z Z Z Z

L Z Z ML ML

M ML ML ML M

H H M Z H

Pb

Pdem \DoD VL L M H

NM Z Z Z NC

LN Z Z N N

Z Z Z Z Z

L P P NC NC

M P P P Z

H PC PC P Z

Tbreak

Breq \DoD VL L M H

L M M L L

M M M M M

H M H H H

– Engine power (PICE) was specified in the universe of discourse between 0 and
55000 W by the limit of operation of ICE, with term set Z (zero), L (low),
ML (medium low), M (medium) and H (high) represented by their respective
sets fuzzy. The fuzzy rules for engine power are presented in Table 3.

– Power Battery (Pb): This output variable is specified in the same way as
the electric motor, the universe of discourse between −8000 and 7500 W,
since the battery must provide the same power as the required by the electric
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motor. In this same way of the EM, the output variable is the set of terms
NC (negative constant), N (negative), Z (zero), P (positive) and PC (positive
constant) represented by their respective sets fuzzy. The rules are given by
Table 3.

– Braking Torque (Tbreak): This output variable corresponding to variable input
braking request (Breq), thus the variable output responds in proportion to
the input variable related to it, this case Breq. Therefore, this output variable
is specified in the universe of discourse between −5000 and 0 with the set of
terms L (low), M (medium) and H (high) as present in the Table 3. This out-
put variable is enabled only if the demand power (Pdem) is on NM (negative
medium).

The rules were drawn up so that the DoD kept the value around its max-
imum equal to 0.45. This PMS was chosen using the operator Mandani which
is responsible for the relation of inference through minimum values between
input and output of the system. The last step (defuzzification) is required in
the replacement of this region by a single fuzzy value that acts as the controller
output. For this, it was used the maximum area of the first region fuzzy result
and determined the output value of the point at which the degree of relevance
reaches the first maximum value.

4 Simulation Results

The results are conducted by observing the fuel consumption and battery DoD
behavior during the simulated driving cycle. For the HEV simulations, the vehi-
cle mass increases in 140 kg because the addition of EMs and batteries pack. The
simulations start with the battery fully charged (DoD = 0), the Table 4 presents
the fuel consumption and the consumption average (km/l) for the analyzed vehi-
cles. Also is important to highlight that all simulated configurations were able
to fulfill the velocity profile of the FTP-75 standard, presenting a satisfactory
performance.

Even with the mass increase, the HEV configuration presents a lower fuel
consumption as compared to the conventional vehicle. Figure 4 show a compar-
ison of the ICE operation points of the conventional and both analyzed HEV
control strategies, regarding the specific and volumetric fuel consumption maps.

Table 4. Fuel consumption (liter) by varying the mass of the vehicle.

Simulated vehicles Mass [kg] Fuel
consumption [ml]

Average
consumption [km/l]

Conventional ICE 980 660.0 18.18

HEV rules 1120 484.9 24.75

HEV fuzzy 1120 443.9 27.09
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(b) Conventional (Volumetric)
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(d) Rule based PMS (Volumetric)
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(f) Fuzzy PMS (Volumetric)

Fig. 4. HEV fuel consumption dispersion

According to the presented results is possible to see that the conventional
vehicle ICE operates at lower efficiency regions if compared with the results
reached by the HEV. The HEV avoids these low efficiency regions, due to its
capacity of single electric propelling at low speed when the power demand is low.
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Fig. 5. HEV (PMS by rules) drive system profile.

Figure 5 shows that the HEV operates only when the power demand increases
and overcomes the EM system capacity. In that condition, the EMs operate
at maximum capacity and the ICE fulfill the power demand, keeping the ICE
running in a good consumption region.

When the battery DoD reaches 45% the PMS based on rules cuts off the use
of EMs (200 s) and the vehicle is propelled only by the ICE until the battery
recharges, by regeneration, a minimum charge. In the simulated cycle it happens
during the high speed stretch that represents a long period of discharge when
the use of the EMs is limited in the next three acceleration stretches.

The HEV with PMS based on fuzzy shows a similar drive system profile as
compared with the rule based PMS. However, the PMS based on fuzzy presents
a better power management between both drive systems when the two systems
propel the vehicle. The PMS based on fuzzy acts to reduce the ICE fuel con-
sumption controlling the power demand so that the ICE operates consuming less
fuel and at the same time the PMS based on fuzzy avoids the EMs operation at
the maximum capacity to reduce the battery discharges.

Comparing the PMS based fuzzy (Fig. 4e, f) with the PMS rule based
(Fig. 4c, d), it is possible to observe that the ICE operation points dispersion,
in the case of rule based, is concentrated at the lower specific fuel consumption
region of the map. However, the fuzzy PMS presents a large concentration of
operation points in a region of lower engine torque, which represents a worst
efficiency region as compared to rule based PMS results. Although, the fuzzy
PMS presents lower fuel consumption between the simulated vehicle configura-
tions (Table 4).

The fuzzy PMC reaches fuel savings by means of meeting the power demand
in a ICE region, with a minimum fuel consumption, however it is not necessarily
the best efficiency region of the ICE. These maps show that the fuel consumption
increases with the engine torque and speed. The engine speed is defined by the
vehicle longitudinal speed and the powertrain transmission ratio, however it is
possible to reduce the ICE torque by transferring part of the power demand to
the EMs system that will reduce the engine fuel consumption. By this reason, the
PMS based fuzzy does not operate at the excellent efficiency region even though
operates in a good efficiency with less fuel consumption. Moreover, keep the
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engine running at the best efficiency region cloud decrease the battery charge
drive range, resulting in the bets combustion performance, while the electric
auxiliary driving is available, but limiting the HEV PMC after the maximum
DoD is reached. Figure 6 shows the DoD behavior for the both HEV PMS
strategies.

As demonstrated, in the PMS using rules the DoD reaches the maximum
discharge in 200 s of the driving cycle, and consequently oscillates between max-
imum and minimum values of charge and discharge because of the EMs breaking
regeneration process. Using the PMS based on fuzzy, the battery is discharged
until the limit of 300 s and after the battery is between maximum and mini-
mum limits of charge and discharge due to constant request from EMs opera-
tion. However, the battery and hence the EM are ordered at a lower frequency
when considering PMS using fuzzy, so this PMS performs better management
of propulsion sources.

5 Conclusion

In this paper, two PMS were studied and developed. The proposed methods
are classified into deterministic: based on rules and fuzzy. Both PMS strategies
were developed in order to obtain the lower fuel consumption of the ICE. The
presented results, shown that the HEV presented an expressive 30% fuel savings
as compared to the conventional vehicle, keeping similar performance in urban
driving conditions.

Comparing the performance of the rule-based and the fuzzy logic controllers,
the fuzzy PMC was 8% more efficient, regarding fuel consumption, due to its
better power split distributions between the ICE and EMs, which decreases the
battery discharges, extending its range. Once the battery is not fully discharged
in the implemented controllers, the power supply will not be compromised. When
the battery reaches the maximum DoD value, the regenerative braking enables
the its recharge until a minimum charge value that allows a new discharge.

Finally, the fuzzy PMC was selected, due to its robustness and adaptation
capabilities, which are superior to the deterministic rule-based method. Conse-
quently, for online implementation, the fuzzy method is an appropriate choice.
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7. Cipek, M., Pavković, D., Petrić, J.: A control-oriented simulation model of a power-
split hybrid electric vehicle. Appl. Energy 101, 121–133 (2013)

8. Schouten, N.J., Salman, M.A., Kheir, N.A.: Fuzzy logic control for parallel hybrid
vehicles. IEEE Trans. Control Syst. Technol. 10(3), 460–468 (2002)

9. Wu, J., Zhang, C.H., Cui, N.X.: Fuzzy energy management strategy for a hybrid
electric vehicle based on driving cycle recognition. Int. J. Automot. Technol. 13(7),
1159–1167 (2012). https://doi.org/10.1007/s12239-012-0119-z

10. Eckert, J.J., de Alkmin Silva, L.C., Dedini, F.G., Corrêa, F.C.: Electric vehicle
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Abstract. Image segmentation in satellite images is a task widely inves-
tigated since we can extract some information of an image and analyze
it. We propose to use a weighted factor for each of the distances used
to calculate the degree of membership of each element to the cluster.
In this way, we seek to reduce the influence of the upper and the lower
bounds on the FCM equation. This paper reports preliminary results of
the experiments and shows that the proposed algorithm performs accu-
rately on a real dataset. For the evaluation of the algorithm, different
cluster validity indexes are employed.

Keywords: Satellite image · Clustering · Segmentation · Fuzzy
C-means · Fuzzy clustering

1 Introduction

Image Segmentation is an essential step in image processing because we can
divide the image into multiple sub-images. Generally, each sub-image has dif-
ferent kinds of information, or many of them are similar in such a way that we
can group or classified them. The information we can obtain could be the color,
intensity, or texture. For solving the problem, we should find a technique or algo-
rithm that helps to split the image taking into consideration several aspects such
as the type of image, the characteristics that the image has or the characteristics
that should be extracted, etc.

Image segmentation of Satellite images is used in many areas such as mining,
military, agriculture, etc. Those images contain information to analyze and to
process. The problems related to these activities could be solved by identifying
the better solution or proposing efficient methods. There are many techniques
to help us to split the image such us Fuzzy theory, Partial Differential Equation
(PDE), Artificial Neural Network (ANN), threshold based image segmentation,
and Region based image segmentation [8].
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The process to classify the patterns in an image is named clustering. There
are two main clustering strategies: the hard clustering and the fuzzy cluster-
ing [9]. Hard clustering assigns each point of the dataset only to one cluster,
and on the other hand, Fuzzy clustering is a soft segmentation method since it
employes Fuzzy set theory [13] and introduces the idea of partial membership.
The Fuzzy C-means (FCM) algorithm [2] is one of the most used in image seg-
mentation because it has robust characteristics for ambiguity, it captures more
information [11] than hard segmentation, and it is robust to noise and to other
imaging artifacts [9].

Many authors proposed different algorithms to solve the problem, for exam-
ple, Krinidis and Chatzis [9] have developed the Fuzzy Logic Information C-
Means Clustering (FLICM) algorithm, where the authors incorporate a new
factor in the objective function of FCM. This method is independent of the
types of noise, incorporates local spatial and the local gray level relationship.
The fuzzy local constraints can automatically be determined, and the balance
between image details and noise is automatically achieved by the fuzzy local
constraints. Likewise, Kannan et al. [7] proposed a Novel Fuzzy Clustering C-
Means Algorithm (NFCM) where they presented a center knowledge method to
reduce the running time of the algorithm. The advantage of NFCM is that it can
be applied at an early phase of automated data analysis, and it deals effectively
with image intensity inhomogeneities and noise of the image.

Other authors combine the FCM with space color such as Kalista et al. [6],
who created the PFCM (Possibilistic Fuzzy C-Means) where clustering avoids
various shortcomings of FCM and PCM (Possibilistic C-Means). The PFCM
addresses the noise sensitivity problem of FCM and answers the coincident clus-
ters problem in PCM clustering. Furthermore, the authors incorporate the color
based segmentation, i.e. they transformed images from RGB color space into
HSL space. Ganesan and Rijini [5] proposed an efficient satellite image segmen-
tation based in YIQ and Modified FCM, where first the satellite image in RGB
color space is transformed into YIQ; next the component Y (luminance which
is very similar to the grayscale) is equalized using a histogram to increase the
contrast on the luminance image; and finally, apply Modified FCM clustering
(FCM + spacial information).

Feng et al. [4] created FQABC, in which they combine fuzzy C-means (FCM)
and four-chain quantum bee colony optimization (QABC). In the FQABC algo-
rithm, firstly, the four chains quantum encoding method is introduced to the
artificial bee colony (ABC) algorithm to propose the QABC algorithm. Then,
QABC algorithm is applied to search for the optimal initial clustering centers
of FCM. The FQABC algorithm overcomes the drawbacks of FCM, which is
sensitive to initial clustering centers and noisy data. It performs better in con-
vergence, segmentation accuracy, time complexity, and robustness.

Singn and Garg [12] proposed a SCFCWmf approach for satellite image
segmentation to extract relevant class information, which shows the existing
objects, namely, concrete area, healthy trees and vegetation, shadow, and road
area. The image segmentation process requires some prior knowledge; there-
fore, SCFCWmf incorporates it to express the unsupervised FCM algorithm
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in a better way and hence obtain the most accurate clustering results, so that
the SCFCWmf approach has flexible initialization for satellite and added spa-
tial constraints (SCs). The objective function is also modified iteratively by the
semi-supervised approaches. However, the well-defined weights correspond to
each attribute for comparing and differentiating between the desired class and
the classified one, using the proposed approach. Furthermore, this SCFCWmf

approach is also used to speed up the clustering process to achieve the finest ini-
tial clustering centers close to the actual clustering centers with the adjustment
of prior knowledge.

Finally, Mantilla et al. [10] created a novel Fuzzy Probabilistic Clustering
Algorithm. The authors added a factor into the objective function, whose esti-
mation needs the probability of occurrence of the intensity values of pixels.
Besides, the proposed model computes the parameter of the Gaussian function,
which determines the weight of the contribution of the neighbors of a pixel.

In this paper, we present the revision of the variables that compose the FCM
equation, especially the degree of membership. In order to evaluate this term,
it is necessary to apply mathematical analysis to determine the more relevant
terms, and in this way, be able to analyze the upper and lower bounds. Next, we
conclude that the sum of the distances between the centroids and each element
has a high degree of influence on the FCM equation. Therefore, we propose
to employ a Gaussian model, which provides a weighted factor to each of the
distances; and as a result, it reduces the influence of the bounds of the FCM
equation.

The rest of this paper is organized as follows. In Sect. 2, we present the details
about Fuzzy clustering. Thereafter, we analyze the FCM equation in Sect. 3. Our
proposed method is described in Sect. 4, and the results are presented in Sect. 5.
Finally, the conclusions and some analyses about future works are drawn in
Sect. 6.

2 Clustering and Fuzzy Clustering

The elements of a dataset can be quantitative, qualitative or both. In this paper,
the dataset used contains quantitative features, which were obtained by discretiz-
ing the light spectrum.

Let be X a dataset of n elements, where each element xj is composed by k
features that are stored in a vector, i.e., xj = [x1, x2, x3, . . . , xk], xj ∈ R

k. Notice
that we use the consensus notation of pattern recognition, i.e., the columns of
the X matrix represent patterns or elements, and the rows represent features or
attributes. For our case of study, each column represents the values for a range
of the light spectrum.

On the other hand, a cluster is a group of elements that are similar to each
other compared to the elements of other groups. In this paper, the term similarity
must be understood as a mathematical similarity, which is usually defined by
norms.
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The process of clustering can be approached from two perspectives: one called
hard clustering, in which each element of a dataset belongs to one cluster and do
not belongs the rest of them; and the other called soft clustering, in which each
element can belong to more than one cluster with a certain degree of membership.
Under these perspectives, fuzzy clustering is a particular type of soft clustering.

In hard clustering, a set of c clusters is a partition of X, i.e., a set whose
elements Ai are subsets of X such that these three constraints are met:

c⋃

i=1

Ai = X, (1)

Ai ∩ Aj = ∅, i ≤ i �= j ≤ c, (2)

∅ ⊂ Ai ∈ X, 1 ≤ i ≤ c. (3)

The degree of membership μij of the j-th element to the i-th cluster can be 0
or 1, i.e., μij ∈ {0, 1}.

Generally, a cluster i is represented by its centroid, vi. On the other hand, in
fuzzy clustering, the degree of membership μij must meet the following restric-
tions:

μij ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ j ≤ n, (4)
c∑

i=1

μij = 1, 1 ≤ j ≤ n, (5)

0 <
n∑

j=1

μij < n, 1 ≤ i ≤ c. (6)

3 Fuzzy C-Means Method

The Fuzzy C-Means algorithm (FCM), introduced by Dunn [3] and developed
by Bezdek in 1980 [1] is one of the most well-known fuzzy clustering algorithms.
A great number of fuzzy algorithms have been derived from it. FCM algorithm
aims to minimize the objective function J(U, V ),

J(U, V ) =
c∑

i=1

n∑

j=1

μm
ij ||xj − vi||2, (7)

where, ||xj − vi|| is the Euclidean distance between j-th element and the cen-
troid of cluster i; m is a parameter that determines the fuzziness of the obtained
clusters, and it lies in the interval [1,∞). Generally, μij ’s are stored in a
matrix, denoted U ∈ R

c×n, i.e., U = [μij ], and vi’s are stored in a vector
V = [v1, v2, . . . , vc]. Besides, for sake of simplicity, we denote ||xj − vi|| as dji.
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3.1 Fuzzy C-Means Algorithm

In order to minimize the objective function defined in Eq. (7), the FCM algorithm
iterates by alternating between the minimization of J(U |V ∗) and J(V |U∗). More
precisely, for a specific iteration, the FCM algorithm minimizes the function J
for a fixed V ∗, by updating U ; and subsequently, it minimizes the function J for
a fixed U∗, by computing V .

Hence, both the estimation of U , computed via,

uij =
1

∑c
k=1

( ||xj−vi||
||xj−vk||

) 2
m−1

, (8)

and V , calculated via,

vi =

∑n
j=1 (uij)

m
xj∑n

j=1 (uij)
m , (9)

mainly describe the behavior of the algorithm.

Algorithm 1. Fuzzy C-Means (FCM)
Input: c is the number of clusters, c > 1, n is the number of examples of the dataset
X, and ε is an error, ε > 0, defined by the user.

1: Set t = 0.
2: Initialize randomly μ

(0)
ij , ∀ij , 1 ≤ j ≤ n, 1 ≤ i ≤ c

� The superindex in μ
(0)
ij indicates the value of μij computed in time t = 0.

3: Initialize randomly V = [v1, v2, . . . , vc].
4: repeat
5: t = t + 1

6: Compute vj =
∑n

i=1 µm
ij∑n

i=1 µm
ij

xj , ∀j , 1 ≤ j ≤ c

7: Compute μ
(t)
ij , ∀i, 1 ≤ i ≤ n, 1 ≤ j ≤ c

μ
(t)
ij =

1
∑c

k=1(
dij

dik
)(

2
m−1 )

, dij = ||xj − vi||2

8: until maxi,j(|μ(t)
ij − μ

(t−1)
ij |) < ε

3.2 Analysis of FCM Algorithm

In this section, we focus on the analysis of the fuzzy membership function of a
particular example to a specific cluster.

Analysis of the Estimation of µij . We analyze the function used to calculate

the degree of membership μij , and show that the term d
2

m−1
ij plays an essential

role in the estimation of μij . Also, we show the behavior of μij , by using limits
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when d
2

m−1
ij tends both to infinity and to zero. For doing so, we take the Eq. (8)

and obtain that:

uij =
1

∑c
k=1

( ||xj−vi||
||xj−vk||

) 2
m−1

=
1

(
dji

dj1

) 2
m−1

+
(

dji

dj2

) 2
m−1

+ · · · +
(

dji

djc

) 2
m−1

=
1

d
2

m−1
ji

[(
1

dj1

) 2
m−1

+
(

1
dj2

) 2
m−1

+ · · · +
(

1
djc

) 2
m−1

]

=
1

d
2

m−1
ji

⎡

⎢⎢⎢⎢⎣

∏c
k=1 d

2
m−1
jk

d

2
m−1
j1

+

∏c
k=1 d

2
m−1
jk

d

2
m−1
j2

+···+
∏c

k=1 d

2
m−1
jk

d

2
m−1
jc

∏c
k=1 d

2
m−1
jk

⎤

⎥⎥⎥⎥⎦

=

∏c
k=1 d

2
m−1
jk

d
2

m−1
ji

[
∏c

k=1 d
2

m−1
jk

d
2

m−1
j1

+
∏c

k=1 d
2

m−1
jk

d
2

m−1
j2

+ · · · +
∏c

k=1 d
2

m−1
jk

d
2

m−1
jc

]

=

∏c
k=1 d

2
m−1
jk

d
2

m−1
ji

∏c
k=1 d

2
m−1
jk

d
2

m−1
j2

+ · · · +
∏c

k=1 d
2

m−1
jk

d
2

m−1
jc

=

c∏
k=1,k �=i

d
2

m−1
jk

c∏
k=1,k �=1

d
2

m−1
jk + · · · +

c∏
k=1,k �=c

d
2

m−1
jk

=

c∏
k=1,k �=i

d
2

m−1
jk

c∏
k=1,k �=i

d
2

m−1
jk +

c∏

k=1,k �=1

d
2

m−1
jk + · · · +

c∏

k=1,k �=c

d
2

m−1
jk

︸ ︷︷ ︸
all the terms include the factor d

2
m−1
ji

(10)
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=

c∏
k=1,k �=i

d
2

m−1
jk

[
c∏

k=1,k �=i

d
2

m−1
jk

]
+ d

2
m−1
ji

[
c∑

g=1

(
c∏

k=1,k �=i,k �=g

d
2

m−1
jg

)] (11)

We define a as,

a =
c∏

k=1,k �=i

d
2

m−1
jk ; (12)

then, by replacing a in uij , we obtain that

uij =
a

a + d
2

m−1
ik

[
c∑

g=1

(
c∏

k=1,k �=i,k �=g

d
2

m−1
jg

)] . (13)

Through the mathematical analysis of the membership function, we can
determine the limits for the different values of uij . To determine the influence

of the term a, we will analyze the behavior of the Eq. (13) when the term d
2

m−1
ji

tends to zero and when it tends to infinity, as shown below.

When d
2

m−1
ji → 0 we obtain that,

O(uij) = lim
d

2
m−1
ji →0

a

a + d
2

m−1
ji ∗ ∑c

g=1

(
∏c

k=1 d
2

m−1
jk

d
2

m−1
jg

) = 1. (14)

In Eq. 14, we found the upper bound of the membership function when d
2

m−1
ji

tends to 0 then O(uij) = 1.

On the other hand, when d
2

m−1
ji → ∞ we get that,

Ω(uij) = b = lim
d

2
m−1
ji →∞+

a

a + d
2

m−1
ji ∗ ∑c

g=1

(
∏c

k=1 d
2

m−1
jk

d
2

m−1
jg

) = 0, (15)

i.e. the lower bound of uji when it tends to ∞+ equals 0.
Then, by using the definition of limit, we see that there is a value εb, small

enough such that ‖uij − b‖ < εb. Following Eqs. (14) and (15), we see that
the function is upper bounded by O(uij) and lower bounded by b = Ω(uij),
respectively. The existence of this numerical value allows us to show the influence

of the d
2

m−1
ji in the calculation of the degree of membership. Figure 1 can be

interpreted as the value assigned to each of the elements, being the existence of
εb the main cause of the values assigned to uji and also shows the existence of
εb and its influence on the membership function.
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(a) Fuzzy member-
ship calculated with
respect to the cen-
troid v.

(b) Degree of mem-
bership of the cen-
troids v1 and v2.

(c) Color Bar
v1 and v2.

Fig. 1. This image shows graphically the scattering elements in a multispectral image
within a three-dimensional space and we add the information concerning the degree of
membership using color. (Color figure online)

In other words, we can say that there exists uij that complies with ‖uij −b‖ >
εb, which results in the value assigned to uij � umi, j �= m = 1, 2, . . . , n, where
i ∈ c.

For a better understanding of the implications of the existence of these limits
in the calculation of the degree of membership, we plot, in Fig. 1, a dataset and
two centroids with their respective membership value assigned to each of the
clusters. From this, we can say that the number of elements that influence mostly
on an estimation of uij is smaller in comparison with the other elements.

Finally, as part of the analysis, we show the implications of the different values
assigned to m. The degree of belonging was calculated for one of the centroids,
then a color was assigned by taking the color bar shown in the Fig. 2(r). Each of
the images shows the degree of belonging of the elements to the centroid when
the exponent m changes. We can state that when m = 2 the variation of the
degrees of belonging between two close elements is small and that it follows a
Gaussian dispersion of the probability values.

4 Proposal

The Gaussian distribution is a probability distribution extensively used by the
scientific community for modeling purposes, not only because it provides a good
approximation for many processes in nature, but also because it follows the
central limit theorem, which states that the sampling distribution of the mean
for a particular variable approximates a Gaussian distribution irrespective of the
original distribution in the population as long as we are given a large enough
sample size.

From the previous analysis of the membership function, we conclude that if

the sum of
( ||xj−ui||

||xj−uk||
) 2

m−1
exceeds (is greater or is lower) the lower bound of the

membership function then there will be no distinction between the calculated
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(a)
m=1.0001

(b) m=1.01 (c) m=1.1 (d) m=1.2 (e) m=1.3 (f) m=1.4

(g) m=1.5 (h) m=1.8 (i) m=2 (j) m=2.1 (k) m=2.2 (l) m=2.3

(m) m=2.4 (n) m=2.8 (o) m=3 (p) m=3.5 (q) m=5 (r) Color
Bar.

Fig. 2. Images obtained by computing the degree of membership for one centroid. The
color assignment was carried out according the color bar presented in 2(r). (Color figure
online)

values for different elements. As a solution to this problem, we propose to weight

each value
( ||xj−ui||

||xj−uk||
) 2

m−1
, such that the difference of the elements is increased.

For this purpose, we used the Gaussian function, which allows to estimate
the contribution factor of each value calculated in the overall sum, avoiding that
the equation reaches its lower level. We used the Eq. (16), which estimates the
probability density at point k, where k is replaced by the value calculated for( ||xj−ui||

||xj−uk||
) 2

m−1
, that is,

f(xj , vi, vk) =
1

σ
√
2
e

−

⎛

⎜
⎝

( ||xj−vi||
||xj−vk||

)2

2σ2

⎞

⎟
⎠

∑c
l=1

1
σ

√
2
e

−

⎛

⎜
⎝

( ||xj−vi||
||xj−vl||

)2

2σ2

⎞

⎟
⎠

, l �= i; (16)

where, is the standard deviation σ, defined as:

σ =

√√√√
∑c

k=1

( ||xj−vk||
||xj−vi||

)2

c
, k �= i (17)
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Finally, we include the new term f in the fuzzy membership equation as a
weighting factor. So, the line 7 in the Algorithm1 is replaced by Eq. (18).

uij =
1

∑c
k=1 f(xj , vi, vk) ∗

( ||xj−vi||
||xj−vk||

) 2
m−1

. (18)

Finally, the proposed Algorithm is presented as follows.

Algorithm 2. Gaussian Fuzzy C-Means (GFCM)
Input: c is the number of clusters, c > 1, n is the number of examples of the dataset
X, and ε is the error defined by a user, ε > 0.

1: Set t = 0.
2: Initialize randomly μ

(0)
ij , ∀ij , 1 ≤ j ≤ n, 1 ≤ i ≤ c � The superindex in μ

(0)
ij

indicates the value of μij computed in time t = 0.
3: Initialize randomly V = [v1, v2, . . . , vc].
4: repeat
5: t = t + 1
6: Compute

vj =

∑n
i=1 μm

ij∑n
i=1 μm

ij

xj , ∀j , 1 ≤ j ≤ c

7: Compute μ
(t)
ij , ∀i, 1 ≤ i ≤ n, 1 ≤ j ≤ c

uij =
1

∑c
k=1 f(xj , vi, vk) ∗

( ||xj−vi||
||xj−vk||

) 2
m−1

.

8: until maxi,j(|μ(t)
ij − μ

(t−1)
ij |) < ε

5 Experiments and Results

5.1 Dataset and Parameter Setting

For conducting the experiments, we used a dataset of 16 multispectral images
of 500 × 500 pixels with 5 bands. In Fig. 3, we show a graphic representation of

−5000

0

5000

−5000

0

5000
−5000

0

5000

Fig. 3. Graphic representation in the three-dimensional space of the dispersion of the
pixels within the test images.



FCM: Analysis of the Membership Function Influence 129

the dispersion of the pixels in one of the test images is shown. The equivalent
distribution of the elements was generated using the PCA algorithm. This image
shows a general overview of the dispersion of the elements within the image.
However, the density of the elements have a greater influence on the clustering
process, this phenomenon has the greatest relevance.

The algorithms were implemented using the Julia v1.0 language, on a com-
puter with Intel Core (TM) i5-4200H, 2.80 GHz, and 8 GB memory. The exper-
iments confirm the existence of the upper and lower bounds in the fuzzy mem-
bership equation and its influence on the clustering algorithms. To compare the
different structures generated by the clustering algorithms, we used the internal
validation indices. Each of the algorithms was executed over a number of clusters
comprised between the range [2, 6], for each of the images. Besides, the initial
matrix of fuzzy membership was the same for each of the algorithms. By doing
so, both algorithms were provided with the same initial conditions.

5.2 Experimental Results and Discussions

The analysis of the results obtained from each of the algorithms begins by orga-
nizing the data relative to each index (Partition Coefficient (PC), Modified Par-
tition Coefficient (MPC), Partition Entropy (PE), Fuzzy Hypervolume (FHV),
Fukuyama and Sugeno (FS) and Xie-Beni (XB)). For this, the results are sum-
marized in the Tables 1, 2. Each one is referred to each of the two algorithms. In
addition, each table consists of 6 rows, which present the results obtained for the

Table 1. Results obtained using the FCM algorithm, with clusters between [2, 6] and
the set of test images.

c PC PCM PE FS FHV XieBeni

2 0.780864 0.561728 0.51198 −3.01663e8 4.18728e13 0.285753

3 0.686266 0.529399 0.80249 −3.54486e8 2.79487e13 0.292027

4 0.618501 0.491335 1.03491 −4.71458e8 2.07936e13 0.3004

5 0.586959 0.483698 1.17584 −5.14159e8 1.75036e13 0.284291

6 0.539916 0.447899 1.35479 −5.29014e8 1.67295e13 0.283133

Table 2. Results obtained using the GFCM algorithm, with clusters between [2, 6]
and the set of test images.

c PC PCM PE FS FHV XieBeni

2 0.901084 0.802169 0.241928 −4.28989e8 5.33099e13 0.310064

3 0.910211 0.865317 0.366916 −4.70885e8 5.83018e13 0.373774

4 0.912296 0.883061 0.467469 −6.88955e8 6.10213e13 0.408728

5 0.908239 0.885298 0.518834 −7.50304e8 7.91679e13 0.418227

6 0.900885 0.881062 0.595458 −8.69357e8 1.04626e14 0.440777
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algorithm executed with a certain number of clusters. Each of the rows contains
the average of the calculated indexes for the 16 test images.

Finally, the data collected in the previous tables are presented in Fig. 4.
As can be seen, the main advantage of the proposed modification is a better
organization of the objects in the clusters. In addition this is evidenced in the
Fig. 5, in this it can be seen that the smaller the entropy, the greater similarity
that the pixels present and consequently more regular areas are observed.
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Fig. 4. Graphs of the values obtained for each of the indices, with reference to each of
the algorithms.

As we can see there are numerous ways in which the results of the algorithms
can be affected, among them we have; the distribution of the data will have a
great impact on the groups to be generated, in the same way the equations that
minimize the mean square error have an impact on the groups formed. Finally,
a phenomenon not studied in this article is the influence of the intersections of
the clusters formed in the final results.



FCM: Analysis of the Membership Function Influence 131

(a) Image. (b) FCM, c = 2. (c) FCM, c = 3. (d) FCM, c = 4.

(e) FCM, c = 5. (f) FCM, c = 6. (g) GFCM, c = 2. (h) GFCM, c =
3.

(i) GFCM, c = 4. (j) GFCM, c = 5. (k) GFCM, c =
6.

(l) Image.

(m) FCM, c = 2. (n) FCM, c = 3. (o) FCM, c = 4. (p) FCM, c = 5.

(q) FCM, c = 6. (r) GFCM, c = 2. (s) GFCM, c = 3. (t) GFCM, c = 4.

(u) GFCM, c =
5.

(v) GFCM, c = 6.

Fig. 5. Resulting images obtained from the segmentation process over the test images
using the GFCM algorithm with [3, 7] clusters.
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6 Conclusions

The present study sought to know the influence of the limits of the equations
used in the FCM algorithm that minimizes the mean square error, as a result of
the analysis it was possible to know that the analysis of the upper bound and the
lower bound is essential in the clustering process, because they have an influence
into the FCM equation. It is also necessary to know the distribution and scale
of the elements because they have an influence on the minimization process of
the mean square error. Finally, it is necessary to develop new models capable of
not only increasing the difference between elements of different groupings, but
also proposing models that do not have influence of their bounds.
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Abstract. Echo State Network (ESN) has been widely studied and
applied to many problems due to the simplicity of its training phase.
This is because since in this network only the output weights are trained,
avoiding to deal with the gradient’s vanishing problem presents in most
of the recurrent neural networks. However, this technique has been crit-
icized recently because of the echo property limitation and its random
topology that may cause chaotic activity in the reservoir layer. In this
paper, we present an application of the classic ESN model modifying the
reservoir topology to a non-random approaches: clustered and complex
networks, as an alternative solution to the chaotic activity problem. Fur-
ther, the modified and classical models are compared considering two
study cases: Rössler and Lorenz systems. Numerical experiments show
that the proposed model has a better performance than the classical
model.

Keywords: Echo State Network · Reservoir Computing · Dynamics
systems · Time series · Network complex

1 Introduction

Artificial Neural Networks are powerful techniques inspired by biological neural
networks. At first, McCulloch and Pitts introduced an artificial neural network
with simple threshold units called perceptrons, which can solve simple classifica-
tion tasks in linearly separable datasets [2]. Later, feed-forward neural networks
have been proposed to face more complex tasks that the perceptron network can
not solve, like XOR function. Since then, more complex networks structures have
been developed like, well-known, recurrent neural network (RNN) which differs,
with the already mentioned networks, on having at least one cyclic pathway of
synaptic connections. RNNs work well for non-linear dynamical system approxi-
mation however they have some disadvantages such as hyperparameters settings
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and, mainly, the training phase, where all network weights need to be trained
[4]. As an alternative solution to these, Reservoir Computing (RC) technique
was proposed.

RC is a type of RNN, that is aroused as result of several approaches uni-
fication in literature work for time series prediction. Their main characteristic
relies on the simplicity of its training phase because only the output weights
are trained [15]. Liquid State Machines (LSMs), Backpropagation Decorrela-
tion Neural Networks, and Echo State Network model (ESN) are types of RC.
This model has one hidden layer that is called reservoir. It is built with sparse
and random connections using a big number of neurons. ESN model is suitable
for non-linear approximation problems such as: Identification Systems [5], Time
Series Prediction [7], Pattern recognition [12], Modeling Neural Plasticity for
Classification and Regression [20], among others.

The reservoir of ESN model is used as a processing layer and is not modi-
fied during its training phase. The reservoir state is determined by the history
of its inputs and outputs. For good performance, this reservoir must satisfy a
condition about its dynamics state (echo property). The dynamic state of the
reservoir is influenced by the spectral radius, the highest eigenvalue of a matrix,
which is a parameter that has a high impact over the performance model and
the capacity of good estimations [3,18]. Although the ESN model inherits the
main benefit of RC techniques (simple training phase), they have been criticized
because the reservoir connections and the internal units are generated randomly.
In consequence, when the tasks turn more difficult, the stability of the trained
dynamics becomes a critical issue for the ESN training phase [6]. Besides, an
optimal configuration about the reservoir settings is not guaranteed because of
its lack of information about how the reservoir works. This is the main reason
that has motivated the development of this work.

As an alternative to face the mentioned issue, modifications to the reservoir
topology are being studied, such as [1,13] that proposed the implementation of
complex networks to the reservoir topology of the classical ESN model, like Small
World and Scale Free. In [10], it was proposed the incorporation of clusters to the
reservoir topology. These changes were inspired in order to imitate some forms
and learning mechanisms from the human brain which have hierarchical and
distributed structure [8]. In the present work, we present an application of the
classic ESN model modifying the reservoir topology to a clustered and complex
networks topology as an alternative solution to the chaotic activity problem.
Additionally, we compare the proposed and classical models in two study cases:
Rössler and Lorenz systems.

The remaining sections are organized as it follows. In Sect. 2, it is presented
some related works. A description of ESN is summarized in Sect. 3. Then, in
Sect. 4, the results of experiments with the modify architecture of ESN model
are presented. Finally, in Sect. 5, the conclusions and future works are presented.
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2 Literature Review

As a solution to the randomness problem in the classical ESN model, several
studies have been proposed, finding two main approaches: modification of weights
[17] and modification of the reservoir’s structure such as Multiple Loops Reser-
voir structure (MLR) model [14]. This last one is compared with the Adjacent-
feedback loop Reservoir (ALR) model which strengthens connections within the
reservoir and improves the skills of the classic model for the non-linear problems.
The work also analyzes the influence of the parameters of the proposed model
based on the prediction accuracy.

According to [4], the effectiveness of the ESN is strongly influenced by the
size of the reservoir. For this reason, evolutionary algorithms have been used [11]
to find an optimal number of neurons for the reservoir. The disadvantage is the
computational cost, experience, and skill abilities that are required for those who
use them. Attending to the same objective, a new ESN model known as Simple
Cycle Reservoir Network (SCRN) [16] was introduced, where the reservoir was
constructed deterministically. Initially, the proposed model considered a reservoir
with a larger size than required using a pruning algorithm (Sensitive Iterated
Pruning Algorithm) to optimize the numbers of neurons in the reservoir. So, the
less sensitive neurons are turned off to optimize the number of required neurons
to reach a good approximation.

Some references show a better performance of the ESN model than classical
when modified the reservoir topology [1,10,13,19]. In [1,13], networks complex
like Scale Free and Small World were used instead random connections as reser-
voir topology. In [10], three types of clustered networks were proposed using
three clustering algorithms to generate the clusters. Finally, a clustered echo
state network was formulated for the forecast of mobile communications traffic
using the Fourier spectrum as prior knowledge to generate the functional clusters
in [19].

3 Echo State Network Model

The Echo State Network (ESN) model is a new and robust type of recurrent
neural network that has a hidden layer called reservoir with a fixed number of
neurons known as reservoir units, where only the weights of the output layer
are trained. We are going to consider an ESN constituted by K inputs units
x = (x1, x2, x3, . . . , xK), one hidden layer that consists of a reservoir with N
internal units, r = (r1, r2, r3, . . . , rN ), where r represents the system state vector
for some time t, and one output layer with L units, y = (y1, y2, y3, . . . , yL).

The weights of the connections between the neurons are stored in the adja-
cency matrices: Win,W,Wout,Wback (the last one only exists is there is feed-
back), where W is the reservoir matrix which stores the weights of the units.
These matrices have respectively the following dimensions: N × K,N × N,L ×
(K + N + L), N × L, respectively. Figure 1 is shown an example of an ESN
classical model architecture.
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Fig. 1. Basic architecture of Echo State Network model [9].

For the ESN model to work, the dynamics of the reservoir must be damped. This
condition is possible when the reservoir matrix satisfies the echo state property.
According to Jaeger (2002) [4], we define the previous assumption in the next
definition.

Echo State Property: A network has the echo state property if the current
state of the network is only determined by the values of the past inputs and
outputs. In other words for each internal unit of the reservoir, ri, there is a
ei function, which is known as an echo function, which maps the input/output
pair (xi, yi) of its history to the current state. Thus the current state for one
reservoir’s unit ri(n) in the time instance n is given by the Eq. (1)

ri(n) = ei((x(n), y(n)), (x(n − 1), y(n − 1)), . . . ) (1)

The echo state property is connected to algebraic properties of the reservoir
matrix. In the practice is more difficult to guarantee the echo state property in
a neural network, instead is useful to know when this property is not satisfied.
In [4], Jaeger proposed a sufficient condition for the non-existence of echo states.
This condition is based on the fact that if the corresponding reservoir matrix of
an ESN model has a spectral radius greater than unity, the neural network does
not have the echo states. The spectral radius of a matrix A, described in Eq. 2,
is defined as the highest eigenvalue of a matrix.

ρ(A) := max
i

(|λi|), λi is eigenvalue of A (2)

In consequence, the choice of the spectral radius ρ is very important for the
success of ESN training. Small values of ρ means a fast dynamic reservoir, large
values of ρ (close to the unity) mean slow dynamic reservoir. The model proposed
here is inspired by the ideas and the network designed in [7]. The activation
function for the internal units of the reservoir is given by:

r(n + 1) = (1 − α)r(n) + αf(Wr(n) + Winx(n) + ζ) (3)

where 0 < α ≤ 1 is the “leakage rate” which causes the reservoir to evolve more
slowly as α −→ 0, ζ represents the bias and the function f = tanh. The output
of the network is given by:
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y(n) = Woutr(n) + c (4)

In the next section, we show the results of the experiments with the implemen-
tation of the clusters and complex networks in reservoir topology.

4 Experiments and Results

In this section, we show the results obtained based on the modifications pro-
posed. For this, the classical ESN model is compared with clustered and complex
reservoir topology, considering two study cases: Rössler and Lorenz systems to
predict time series. Initially, the study cases for the prediction task are described
and details of the preparation and implementation of the model are shown. The
numerical results are summarized in tables and graphics.

4.1 Problem Statement

Lets consider two dynamic systems defined in (5) and (6). The input and output
vectors of the system: x(t), y(t), z(t) ∈ R, s(t) ∈ R

2 are known during the
interval of time [0, T ] para T ∈ R. The main objective is to estimate the values
of s(t) = (y(t), z(t)) for a time t > T , from knowledge of variable x.

– Rössler System ⎧
⎪⎨

⎪⎩

dx/dt = −y − z,

dy/dt = x + ay,

dz/dt = b + z(x − c)
(5)

where a, b, c > 0 are constants known as bifurcation parameters.
– Lorenz System ⎧

⎪⎨

⎪⎩

dx/dt = r(y − x),
dy/dt = x(s − z),
dz/dt = xy − pz

(6)

where r, s, p > 0 are constants known as bifurcation parameters and they are
system parameters proportional to the Prandtl number1, Rayleigh number2,
and certain physical dimensions of the layer itself.

In this work, we have chosen the parameter values according to those found
in the literature because the system exhibits chaotic behavior for these.

1 https://www.sciencedirect.com/topics/chemistry/prandtl-number.
2 https://www.sciencedirect.com/topics/engineering/rayleigh-number.

https://www.sciencedirect.com/topics/chemistry/prandtl-number
https://www.sciencedirect.com/topics/engineering/rayleigh-number
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4.2 Dataset Preparation

For the implementation model, we created two sampling datasets by the imple-
mentation of 4th Runge Kutta (using MATLAB):

– Rossler delta 0.1.csv
– Lorenz delta 0.1.csv

In the Rössler case we used the Eq. 5 where a = 1/2, b = 2 and c = 4. For the
Lorenz case we used the Eq. 6 where r = 10, s = 28 and p = −8/3. The time
step used for both implementations was delta = 0.1 over the interval [0, 500],
resulting in 5000 samples without the initial condition for each dataset. Both
datasets were preprocessed (standardize) for each study case. The training and
testing sets for two cases was defined as follows:

Training set: the first 1000 samples of each set are discarded in both
datasets in order to make the reservoir state essentially independent of its ini-
tial state by time t = 0, as was made in [7]. The training set is formed for two
subsets: the subset of samples of the available variable, x, and the subset of
samples of the variables to predict, y, z. Regarding the x variable, we have 4000
samples as available knowledge and respect to the variables we wish to predict,
2000 samples are taken.

Testing set: the remaining 2000 samples of the variables we wish to predict
are taken from each dataset.

4.3 Implementation Setup

We implemented the ESN model that consists of three layers with 1 input node
and 2 output nodes. Connections of the neurons between layers are stored in
Win,W,Wout respectively. For the input layer, the ith input signal is connected
to N reservoir nodes with connection weights in the ith column of Win. Each
reservoir node receives input from exactly one input signal. The non-zero ele-
ments of Win are randomly chosen from a uniform distribution in [−1, 1]. The
hidden layer is a reservoir of neurons, which we are interested in analyzing its
configuration of connections to improve the performance of the model. For this,
we incorporate topologies based on clusters and complex networks as a configu-
ration of connections between the neurons into reservoir. The weights stored in
W are randomly chosen from an uniform distribution in [−1, 1]. Also, we scale
W matrix in order to guarantee the condition for the echo property. The acti-
vation function for the state of neurons is according to the Eq. 3 where α = 1
and bias = 1. For the implementation, we used the same parameters for both
datasets. The parameters used are defined in the Table 1. In the next section
we describe the neural network architecture implemented with the proposed
modifications.



ESN Performance Analysis Using Non-random Topologies 139

Table 1. Configuration setup.

Definitions Value

Initial condition [1, 1, 0]

Number of reservoir nodes N = 400

Spectral radius ρ = 1

Average degree D = 20

Bias constant ζ = 1

Leakage rate α = 1

Time step delta t = 0.1

Initial time T0 = 100

Initial time of training phase T1 = 260

Final time of predicted phase T2 = 500

Grid of points (L × L) L = 300

Backbone connections nc inter = 1

Local neuron connections nc intra = 2

4.4 Methodology

The artificial neural network implemented in this work is described as follows:

1. Input Layer: For this network we use one neuron in the input layer corre-
sponding to a x−signal in both cases (Rössler and Lorenz). This neuron is
connected with all neurons in the next layer (hidden layer), and connected
with the output layer.

2. Hidden Layer: Also known as the Reservoir Layer. In this layer, we con-
struct the reservoir weight matrix, W , which is inserted in the network to
obtain the reservoir state matrix, r, by applying the Eq. 3. The weight matrix,
W , represents the topology connections between reservoir nodes. Inspired in
the modular structure of a human brain, we propose ESN using non-random
topologies as reservoir. Thus, the adjacency matrix of the reservoir W is
obtained through the different configurations using clusters and complex net-
work topologies. To achieve a structure similar to biological networks, we
modified the original reservoir topology of the classical ESN model to clus-
tered and complex network topologies. The connections topologies based on
complex networks used in the reservoir are: Erdös, Barabási, and Small World.
These networks were generated using Networkx modules3. To generate the
clustered networks, we proposed the next clustering algorithm: Initially, we
cluster a grid of points using three classic clustering algorithms: K-Means,
Partitioning Around Medoids, and Ward algorithm, based on [10], to simu-
late a community structure. For a cluster, we refer backbone to mean neuron

3 https://networkx.github.io/documentation/networkx-1.9.1/reference/generators.
html.

https://networkx.github.io/documentation/networkx-1.9.1/reference/generators.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/generators.html
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and local neurons for the rest. The connections topologies for clustered net-
works are defined as follows:
(a) Interclusters connections: These connections are between backbones. Each

backbone has a limited number of connections defined by nc inter.
(b) Intraclusters connections: These connections are between local neurons.

Intraclusters connections are according the following statements:
– All nodes in the same clusters are connected to its backbone.
– All nodes have a limited numbers of connections defined by nc intra

(don’t include backbone connection).
– Each backbone is a hub of the current cluster.
– Attachment rule for local neurons: if nc intra is less than number of

neighbors, the local neuron is connected to nc intra closer neighbors,
otherwise, the local neuron is fully connected to all neighbors.

– The neighborhood of a local neuron is defined by the open ball whose
radius is the distance between the local neuron to its backbone. This
process is illustrated in Fig. 2a. The red point refers to backbone of
a current cluster, black point refers to current node to link and gray
points refer to the remaining nodes in a cluster.

Figure 2b shows an example how internal units look like after clustering, the
black points refer to backbones. In the Table 2, the characteristics of clustered
and complex networks used in the ESN models are presented.

3. Training Phase: After T1 times, we collect the states in r obtaining the
reservoir state matrix, a N × T1 matrix, which is used in the training phase.
To train the network, we take the target training set and solve the simple
linear regression task formed using sklearn modules of python4.

4. Output Layer: This layer has two neurons, one neuron per signal predicted.
After training phase, we take the testing set to predict the y, z−signals.

(a) (b) (c)

Fig. 2. (a) Illustration of a neighborhood in a clustering process. (b) Clustering internal
units using kmeans. (c) Illustration of the dynamic reservoir in the ESN model.

4 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.Ridge.
html.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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Table 2. Characteristics of complex and clustered networks used in ESN models.

Topology/Char Size Av. Length Cluster Coef.

Erdös 400 2.30038 0.05041

Barabási 400 3.72219 0.04538

Small world 400 2.9852 0.60843

Cluster 1 400 4.1878 0.53963

Cluster 2 400 2.8055 0.12705

Cluster 3 400 4.1117 0.45571

5 Results

The results of this paper is divided in two parts: First, we studied the perfor-
mances of the modified models compared against [7], to predict, in both study
cases, the measures of the variables y, z over the interval [T1, T2]. In order to show
the performance of this proposed model, we used Mean Square Error (MSE),
defined in (7), like a benchmark measure.

Hidden Layer

Input Layer

Output Layer

Reservoir
State Matrix

rx

Fig. 3. Neural Network architecture implemented.
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MSE :=
1
n

n∑

i=1

((Ytrue) − (Yesn))2 (7)

where n is the number of samples entering the network, Ytrue, Yesn, are the true
value and predict value of measured variables respectively. In order to compare
the performance of the proposed model with the classical model, we took the
values of the parameters based on [7], detailed in the Subsect. 4.3. Second, we
made experimental analysis of some parameters in the proposed model. Accord-
ing to [3,6], the parameter with the greatest impact on the reservoir’s dynamics
is the spectral radius ρ. So, in this work, we performed some experiments varying
ρ to visualize the error’s behavior and confirm its impact on the performance
of ESN models. Other parameters studied are the number of reservoir nodes,
N , ridge parameter, β, leakage rate (reservoir memory capacity), α, bias term,
bias, and number of clusters (n clusters) to check the optimal value of these
parameters in the experiments. In Table 3 is shown the ESN model performance
of each topology implemented. The results registered in this table, show the
performance of ESN model for a mean of 30 trials in both study cases. The
main approximation capability of ESN model is concentrated in its reservoir,
which evokes periodic signals inside the reservoir dynamic as shown in the Fig.
2c, some reservoir states are plotted in the testing phase [260, 500]. According
to the results, it is possible to observe that in both study cases, a non-random
topology showed a better performance of model than classical. These results con-
firm that a reservoir with clustered topology could improve the performance of
the ESN model. The dynamics of the reservoir is influenced by the parameters of
the model, affecting the stability and accuracy of the prediction. The following
is an initial experimental analysis of two important and influential parameters
according to the literature on the performance of the ESN Model. In Figs. 4a–
4b is shown the influence of the spectral radius in the performance of the ESN
model. From the results, it possible to note that the approximation capability
of this model is considerably affected by the spectral radius value. For complex
network topologies, if the spectral radius is small, the reservoir dynamic is fast
and if it is larger (close to unity) has a slow reservoir dynamic. For this reason,
the best performance is obtained when ρ is closer than 1. An interesting result
according to Figs. 4a–4b is the fact that the echo property is less influential in
clustered topologies, allowing a higher range of values for this parameter.

As we mentioned before, to evaluate how much the reservoir’s size can influ-
ence the performances of the ESN model we varied the number of reservoir units,
N. This information can help to obtain an optimal number of reservoir units,
needed to find an adequate estimation of the desired values to be predicted. In
Figs. 4c–4d is shown the influence of the number of reservoir units in the per-
formance of the ESN model. According to the obtained results, in general, it
seems to be that in the experiments we can obtain a better performance for all
topologies when N increase however, we can obtain good performance with a low
amount of neurons in the reservoir N ∼ [250, 750] too. Thus, we avoid using an
unnecessarily large amount of reservoir units to generate a reservoir, which could
imply a higher computational cost. For the case in which we performed with
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Table 3. MSE error for ESN models using network complex.

Topology/Case Rössler Lorenz

Erdös 4.17e−7 2.01e−5

Barabási 3.24e−7 2.12e−5

Small world 4.07e−7 1.87e−5

Cluster 1 1.06e−5 5.06e−6

Cluster 2 8.98e−6 5.890e−6

Cluster 3 1.08e−5 4.320e−6

Fig. 4. ESN models performance analysis varying some parameters for study cases.

clustered topologies, Figs. 4e–4f show the error behavior of Rössler and Lorenz
systems varying number of clusters. According to the results, we can observe
that the network performance, in both study cases, is possible to obtain good
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Fig. 5. ESN models performance analysis varying some parameters for study cases.

performance with a small number of clusters, avoiding as we mentioned higher
computational cost in the weights reservoir matrix formation, W . Figures 5a–5f
show the influence of parameters α, β, and bias term inside the proposed ESN
model. From the results, we can observe that in a general way, all the parameters
studied had influenced in the performance of the proposed model. In one hand,
the memory capability in both cases is affected for small α values as can be seen
in Figs. 5a and 5b. On the other hand, the training of the model through the
solution of linear regression task obtained from the reservoir states matrix and
target training set is suitable for small β values (β ≤ 1) in the proposed model,
as can be seen in Figs. 5c and 5d. Finally, Figs. 5e and 5f show that incorporate
bias in the model improve the performance of the proposed model. According to
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the previous results, the influence of these parameters within the performance
of the model is evidenced. The choice of these parameters can vary from one
set to another and depends on the nature of the data. Finally, based on the all
obtained results, We can confirm that clusters inside the reservoir improve the
ESN model performance.

6 Conclusion

In this paper, we presented an application of the classic ESN model modifying the
reservoir topology to clustered and complex networks. The modified and classical
models were compared in two study cases: Rössler and Lorenz systems. From
the results obtained in the experiments, we can conclude that a non-random
topology improved the ESN model performance. Also, we confirmed the influence
that the number of the reservoir units and spectral radius have in the network
performance, indicating adequate results (in terms of computational cost) when
N ∼ [250, 750], like so the others parameters in the model: α, β, n clusters, and
bias term. For future works, we believe that the network performance could be
improved optimizing the clusters formed by the creation of a new algorithm,
based on the distribution of the neurons in the human brain.
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Abstract. Spectral images contain valuable information across the elec-
tromagnetic spectrum, which provides a useful tool for classification
tasks. Most of the traditional machine learning algorithms for spectral
images classification such as support vector machine (SVM), k-nearest
neighbor, or random forest required complex handcrafted features extrac-
tion of the data, in contrast with these approaches deep learning-based
methods realize the feature extraction automatically. This paper pro-
poses a procedure to classify spectral images with a Convolutional Neural
Network (CNN) approach which consists in the experimental acquisition
of two datasets, medicines and honey, pre-processing of the raw data,
which includes segmentation of the area of interest and a dimensionality
reduction process by selecting the most informative spectral bands to
reduce the computational cost of the training stage; the design of the
(CNN) and finally the classification results performed by the designed
CNN. Using all the spectral bands acquired the proposed CNN for the
medicines dataset show accuracy in the validation set of up to 97.3%
and for the honey dataset of up to 92.11% for the honey dataset com-
pared with 86.84% ResNet-18 architecture accuracy. The dimensionality
reduction method reduces the training time up to 40% by only decreas-
ing a 10% of the test accuracy. Finally, simulations with noise show an
improvement in the robustness of the CNN in the medicines dataset.

Keywords: Spectral images classification · Band selection ·
Convolutional neural network · Transfer learning · Classification

1 Introduction

Spectral imaging consists of the acquisition of more spectral bands across the
electromagnetic spectrum than an ordinary image (RGB) which captures only
3 spectral bands. Spectral imaging captures wavelengths from the infrared [8],
visible spectrum, ultra-violet [19], x-ray [12] and some above. The most common
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optical systems for spectral images acquisition are scanning devices such as push-
broom cameras [16] or imaging Fourier transform spectrometer [17] and compres-
sive coded measurements such as coded Aperture snapshot spectral image [2] or
single-pixel architecture [13].

With the recent advances in optics, spectral images record simultaneously
high quality spectral and spatial scene information which is widely use in art con-
servation [11], remote sensing applications [25], medical applications [23] among
others. Most of these applications require classification of different objects and
materials, for that purpose, many algorithms have been used such as Spectral
Angle Mapper (SAM) [21,29] which looks for the spectral similarity by cal-
culating the angle between the spectral signature of a pixel with a reference
signature, the reference signature corresponds to a determined signature of a
dictionary with all reference signatures for each class, this method will be per-
formed in Sect. 3 as a comparison with the proposed method. There are also
machine learning algorithms such as Support Vector Machines (SVM), k-Nearest
Neighbor (kNN), or Random Forest (RF) [27], these methods require complexly
handcrafted of the extraction and selection of features from the data for the
learning process [22].

The design of the handcrafted features extraction strategies of the machine
learning methods mentioned above can be tedious and suboptimal, for this
purpose deep learning provides a way to learn and extract features from the
data itself, specifically convolutional neural networks (CNN) realize this features
extraction by the convolutional layers. Due to this advantage and the increase of
hardware resources and labeled datasets, CNNs have been strongly exploited in
computer vision field tasks on RGB images such as, classification task [18,26],
object detection [15], semantic segmentation [7], instance segmentation [4] and
classification based in compressive acquisition [3]. With all these progress on
computer vision on grayscale and RGB images, they were extrapolated on the
field of spectral images bringing a very useful tool for object detection on aerial
spectral images [6,30] which exploits the rich spatial-spectral features of the
data, food quality [1] and food recognition [10], or in blood cell discrimina-
tion [28] among others applications.

Datasets acquisition

Reflectance Segmentation of 
area of interest

Pre-processing of the data

Random 
patch 

extraction

Features Extraction Classification

Input Image
Convolutional Layer
Max Pooling Layer
Fully Connected Layer
Softmax Layer

Predictions

CNN Architecture

Endmember 
extraction

Band selection

Dimensionality 
reduction

Fig. 1. Pipeline of the proposed method, which goes from the data acquisition in the
laboratory, the pre-processing of the raw data and the process of classification by the
CNN
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The proposed method in this paper consists in the classification of two
datasets; the first one is a dataset of 8 classes of medicines where there is a
great color and shapes similarity which would make hard the classification with
RGB images or exploiting spatial features, the second dataset is a dataset of 15
classes of honey which were extracted from different farms of Santander, Colom-
bia where there were different environmental situation and feeding to the bees
that affect the texture and the taste of the honey. It is clear that in this dataset
it is not possible to use spatial features as criteria for the classification of the
image. With this in mind, it was carried out a pre-processing of the raw data,
then a CNN architecture was design for each dataset, subsequently, the training
of the CNNs was performed and finally, the model trained was tested.

2 Method

The proposed method Fig. 1 consists in first, the pre-processing of the raw data
where the spectral images were corrected by calculating the reflectance values,
then in the reflectance image was applied a segmentation of the area of interest,
and specifically for the honey dataset it was made a random patches extraction
from the segmented images to increase the volume of the data, and balance the
histogram of the data in the classes avoiding overfitting at the moment of the
training process and the use band selection to reduce the dimensionality of data
and reduce the computational cost of the training of the CNN, finally, it was
performed the training of the designed CNN.

2.1 Data Acquisition

In the optics laboratory of the HDSP research group at Universidad Industrial
de Santander de Colombia1, two datasets were acquired using spectral scanning
technique [14]. The first is a dataset of 8 classes of medicines in tablet pre-
sentation. The second one is a dataset of 15 classes of honey that come from
different farms in Santander, Colombia, and where bees were fed with different
food, which changes the texture and the taste of the product. These datasets
were taken as a case of study since being classified from RGB images would be a
complex task since there are color similarities in their RGB representation and
similar spatial features in the medicines. Figure 2(a) shows the color similarities
in the 8 classes of medicines, and Fig. 2(b) shows the 15 classes of honey and
their respective spectral signatures in Fig. 2(c) and 2(d).

The optical architecture designed to acquire spectral images is presented in
Fig. 3, which consist of the following electronic instruments: A Cornerstone 130
monochromator whose function is to select a wavelength to illuminate the scene
which is transmitted by a fiber optic, also has a Stringray F-145 camera whose
function is to capture images in grayscale from the wavelength that delivers
the monochromator obtaining a spatial resolution of 776 × 1024 and a spectral
resolution of 29 spectral bands within a range from 360 to 920 nm.
1 http://hdspgroup.com/.

http://hdspgroup.com/
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Mioflex Acetaminofen Metocarbamol Aspirina

Acido Dolex Calmidol Ibuprofeno

(a)

Class1 Class 2 Class 3 Class 4 Class 5

Class 6 Class 7 Class 8 Class 9 Class 10

Class 11 Class 12 Class 13 Class 14 Class 15

(b)

(c) (d)

Fig. 2. False color RGB representation of the spectral images, (a) medicines and (b)
honey and the spectral signatures of the different classes of (c) medicines and (d) honey.

Fig. 3. Optical architecture for the acquisition of spectral images.
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2.2 Pre-processing of the Data

From the raw image acquired in the laboratory the next pre-processing of the
data was realized. To avoid the variance that produces the illumination in the
spectral signatures of each material, a correction of the spectral images was
performed [24], for that purpose, two more spectral images were acquired, a
white and black reference which consists in capturing a spectral image of a
white and black surface respectively. Thus, the corrected spectral image is given
by Eq. (1), where I(x, y, k) is the raw image, B(x, y, k) and W (x, y, k) are white
and black references spectral images, x, y, k are the spatial-spectral coordinates
of the images and finally R(x, y, k) is the reflectance values.

R(x, y, k) =
I(x, y, k) −B(x, y, k)
W (x, y, k) −B(x, y, k)

(1)

Then, to reduce the spatial dimensionality of the spectral image a segmentation
process was applied to extract only the area of interest. This process includes a
combination of handcrafted segmentation and some techniques like edge detec-
tion, thresholding, dilatation, and more morphological processing to extract the
area of interest of the spectral images. Specifically for the honey segmented
images, a random patch extraction was applied to increase the data volume and
balance the number of samples per class, which is useful to avoid overfitting at
the training stage (high training accuracy but low validation accuracy). Thus,
the medicines dataset is composed of 191 segmented spectral images and the
honey dataset, originally, was composed of 107 segmented spectral images, but
with the patch extraction, it ended with 1161 samples. Then a data augmenta-
tion was applied over the training and validation data to improve the learning
process, this process consisted of random rotation and translation images.

Due to the high correlation of the spectral information bands, it is useful to
extract only the most informative spectral bands for a dimensionality reduction
of the data and therefore, reducing the computational cost without affecting
significantly the performance of the classification for both datasets.

For this purpose, first, it is necessary to extract determining features of the
images as criteria for the band selection. Here it was used the endmembers as
criteria for the band selection, where an endmember is defined as an idealized
pure signature for an object. The extraction of these features was made by the
FIPPI (Fast Iterative Purity Pixel Index) algorithm [5]. This method is based in
the projection of the sample vectors onto a set of vectors called skewers and the
candidates for the endmembers set are those sample vectors whose projection
appears most times in the extreme positions of the skewers set, these vectors are
the endmembers of the spectral images.

After the characteristic endmembers of the scene were extracted, the algo-
rithm proposed in [9] was used to select the most informative bands. This method
is an unsupervised algorithm based on band similarity. It takes only 10% of the
total pixel of the image to reduce computational complexity and it tries to find
the most dissimilar subset of bands by minimizing a linear prediction error.
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2.3 CNN Architecture

The datasets described in the previous section were split into 3 sets: training,
validation, and test sets, in which the first two sets were used to train the net-
work, and the last one is used to check the model created in the training of the
network.

The architecture of the CNN is based on convolutional layers to realize the
feature extraction of the data, followed by a batch normalization to increase the
stability of the data through the network, and a max-pooling layer is used to
reduce the dimensionality of the data, these block of layers realize the feature
extraction on the spectral images. After this, fully connected layers were set to
apply the classification stage ending in a softmax layer which sets the predictions
of the model. In Fig. 4 the CNN architectures for both datasets are shown, the
difference between them is that there are fewer max-pooling layers in CNN-
Honey due to the spatial dimension of the data is small, therefore, it is not
necessary to use as many max-pooling layers as they were used in CNN-Med.

7x7 Conv, 8 5x5 Conv, 16 3x3 Conv, 64 3x3 Conv, 128 3x3 Conv, 256 3x3 Conv, 512 FC, 256 FC, 15
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Fig. 4. Proposed CNN architecture for medicines dataset (a) and honey dataset (b)

3 Results

This section evaluates the performance of the proposed approach for the clas-
sification of spectral images with all the acquired bands and with a reduced
number of bands using the band selection process described above. We compare
the results of our network with state-of-art architectures by applying transfer
learning to the ResNet-18 [18] and AlexNet [20] pre-trained architectures. To do
this, the input layer is modified to match the dimensions of our datasets, the
first convolutional layer is also modified to match the dimensions of the previous
layer and finally, the last layer is modified with the number of classes we have in
our dataset, then the remaining layers are frozen in order to reuse the pre-trained
weights of from each model. Also, it was performed training with Gaussian noise
in the images, and finally, using the spectral responses of the RGB colors the
CNN was trained with the RGB representation of the spectral image.
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3.1 Simulation with 29 Spectral Bands

The proposed CNN of the Fig. 4 was trained on a Dell computer with dual
Intel(R) Xeon(R) CPU ES- 2697 v3 @ 2.60 GHz, which has a 192 GB RAM
memory and a 12 GB NVIDIA Quadro K6000 GPU.

The dataset is divided into training, validation, and testing, which were done
in two simulations, in the first simulation the training datasets were formed
with 76% of the dataset, 19% was used to form the validation dataset, and
the remaining 5% to form the test dataset. The dataset was divided in this
way because the best results were obtained for the classification task, for the
second simulation the training dataset was formed with 47% of the dataset, 12%
was used to form the validation set, and the remaining 41% to form the test
dataset, the dataset was divided with a smaller amount of training data, trying
to determine the effect of the reduction of the spectral image set on the model.

To perform the training of the proposed model with the dataset of the
medicines was made with 99 epochs as they were sufficient for the network to
generalize with satisfaction the training dataset. The Table 1 shows the results
for two different distributions of the data in the training, validation, and test
datasets.

Table 1. Accuracy in training, validation, and testing for the two simulations of the
proposed model

CNN-Med Dataset Number of samples Accuracy

Simulation 1 Training 149 100%

Validation 37 97.3%

Testing 8 87.5%

Simulation 2 Training 89 95.5%

Validation 22 72.7%

Testing 80 75%

The Table 2 shows the results obtained for the proposed model and the pre-
trained models, the model that presents the best results is CNN-Med obtaining
97.3% of accuracy in the validation dataset.

For the honey dataset, we created 5 datasets with 5 different patch size
10× 10, 40× 40, 50× 50, 60× 60, and 80× 80, these values were chosen to eval-
uate the performance of the network at small patch size which accelerates the
training process but reduce the performance, until an optimal patch size between
time-consuming training process and high performance. This patch extraction
produces, not only an increase in the data volume but also an equalization of
the number of samples per class. For this dataset, we employ the CNN archi-
tecture Fig. 4(b) and it was used the algorithm Stochastic Gradient Descent
with Momentum (SGDM) with a momentum of 0.985, a regularization factor of
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Table 2. Accuracy in training, validation, and testing with our proposed network,
ResNet-18 and AlexNet.

Model Dataset Accuracy

CNN-Med Training 100%

Validation 97.3%

Testing 87.5%

ResNet-18 Training 100%

Validation 94.6%

Testing 87.5%

AlexNet Training 93.8%

Validation 89.2%

Testing 87.5%

0.005, and 500 epochs, and the dataset was divided in 90% training, 5% valida-
tion and 5% test. Also, the ResNet-18 architecture was retrained completely as
a comparison. According to this, the Table 3 shows the obtained results.

From the Table 3, it can be observed that the proposed CNN obtained the
highest accuracy level on the validation set with a 92.11%, this shows that the
proposed CNN can create a better generalization model for this type of data.
The simulation without patches is an exception, however, ResNet-18 performed

Table 3. Training, validation and testing results with our proposed network and
ResNet-18.

Patch size Dataset Accuracy

CNN-Honey ResNet-18

10× 10 Training 87.5% 88.67%

Validation 53.15% 58.77%

Testing 66% 50.00%

40× 40 Training 99.22% 99.61%

Validation 76.32% 72.81%

Testing 78.8% 75.4%

50× 50 Training 99.61% 99.22%

Validation 79.82% 82.4%

Testing 85.6% 81.4%

60× 60 Training 99.61% 99.61%

Validation 85.96% 78.95%

Testing 86.84% 79.7%

80× 80 Training 100% 100%

Validation 92.11% 86.84%

Testing 90.7% 89.9%

Without patches Training 97.65% 96.88%

Validation 55.56% 80.95%

Testing 54.5% 62.7%
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a low accuracy compared with the other cases. Another factor is the time that
ResNet-18 simulations consume for the training stage because of the depth of
this network which is composed of 71 layers while the proposed CNN is only
composed of 26 layers.

Ground Truth SAM
Accuracy : 54.4%

CNN-HoneyResNet-18
Accuracy : 82.5% Accuracy : 85.8%

Class 12 Class 8Class 1 Class 3Class 6 Class 9 Class 13Class 7 Other Class

Fig. 5. Comparison of a ground truth image (a) with the performance of SAM algo-
rithm (b), ResNet-18 architecture (c) and our proposed architecture (d).

Then it was performed the following test to measure the precision of the
network: The net with the best performance on the training stage (the 80 × 80
patch size net), and a test spectral image which was not used in the training
process is used to classify each pixel of the image by introducing into the net an
80 × 80 patch centered in determined pixel, the process is applied to all pixels
of interest (those who belongs to any sample of honey). As one pixel is classified
several times, the mode of the total predictions realized over that pixel was
taken as the final prediction. According to the mentioned process an 85.84%
accuracy was obtained with our CNN proposal Fig. 5(c), with ResNet-18 it was
performed an 82.52% Fig. 5(d) subject to the ground-truth Fig. 5(a). Also, the
SAM algorithm was applied to perform the classification of the pixel of the test
image where an accuracy of 54.4% was obtained Fig. 5(b).

The low accuracy of the SAM algorithm is caused by the similitude between
the spectral signatures Fig. 2(d), which differences are due to the changes in the
feeding of the bees, the places where they were raised. For example, there is a
big similitude between class 12 and class 8 which explains the inaccuracy at the
moment of classifying the sample corresponding to class 12 in Fig. 5(c) and in
the case of class 1, class 6, and class 9 they are the most different signatures
among the classes which are shown in an almost 100% in the predictions. Due to
this low-performance, the SAM algorithm was not employed in the simulations of
Table 2 and Table 3. It is to clarify that the sample of the middle of the image was
not used to the test due to the saturation produced by the spectral illumination
in the image.

3.2 Dimensinality Reduction

To analyze the performance of the CNN for a dimensionality reduction of the
spectral images of both datasets two methodologies were used; the first one was
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using the spectral responses of the RGB colors to create an RGB representation
of the spectral images and do classification with these images. The second one
was using the band selection method described in the previous section.

For the first type of simulations, it was used the 80 size patch dataset for the
honey dataset, and for the medicines dataset, it was used the same condition
of simulation with 29 spectral bands. In Table 4 are shown the results of the
average of 10 experiments under the conditions previously mentioned.

Table 4. Results of the classification using the RGB representation

Dataset Accuracy

Validation Test

Medicines 81.69% 79.7%

Honey 81.08% 78.4%

The accuracy of the classification of the RGB representation is lower than the
ones obtained with all the spectral information of the 29 spectral bands images
in Table 2 and 3 showing in this way that the more spectral information used the
better will be the classification of the different objects due to the similarities in
the color visualization and also in the shape of the different classes of medicines

For the second type of simulations, 10 experiments were carried out using
the, 10, 15, 20, and 25 most informative spectral bands for the classification,
with 150 epochs for each dataset and a learning rate of 0.0005.
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Fig. 6. Accuracy of medicines and honey dataset using the 10, 15, 20, and 25 most
informative bands and the time consumption respect the 29 bands simulation.

In Fig. 6 the plots show the average and the standard deviation of the accu-
racy in the 10 experiments, showing that using more spectral bands helps the
training of the CNN to generalize in a better way the dataset since the highest
mean accuracy is obtained in the 25 spectral bands simulation, although, the
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highest mean values in the validation set was obtained in the 20 spectral bands
simulation. Also, in Fig. 6 is shown the time used for training in percentage
respect to the time consumed for the training of the 29 bands spectral images
for both datasets, it can be observed that the 10 bands simulation reduces the
time in 30% for the honey dataset and almost a 40% for the medicines dataset
and only decreasing the accuracy of the test by a 10%.

3.3 Simulation Applying Different Levels of Gaussian Noise

Since the spectral images were taken in a laboratory, which has a controlled
environment to reduce as much as possible the noise in the images, some exper-
iments were realized adding an additive white gaussian noise (AWGN) to test
the robustness of the CNN with the presence of this noise. The AWGN was used
with a signal to noise ratio (SNR) of 10, 15, 20, and 25 dB. The results for these
simulations are shown in Fig. 7.
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Fig. 7. Accuracy for the medicine and honey datasets with AWGN

In Fig. 7, for the medicines dataset, it can be appreciated that using a 15 and
20 dB in the SNR of the AWGN improves the robustness of the classification
because it achieved higher accuracy than the noiseless classification in Table 2.
The classification honey datasets showed to be more sensitive to the presence
of noise because the test accuracy was reduced but the validation accuracy was
not reduced, in other words, the CNN lost robustness because of the noise.

4 Conclusions

In this work was demonstrated that it is possible to design and implement an
optical architecture to acquire spectral images, it was also possible to create a
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model of convolutional neural networks for the classification of the acquisition of
spectral images, with the proposed models it was to classify medicines and honey
that had similar RGB visualization, obtaining accuracy in the validation of up to
97,3% for the medicines dataset and accuracy in the validation set of 92.11%
for the classification of the honey dataset, evaluated by patches, both cases
outperformed the results of ResNet-18 architecture. Training with a reduced
number of bands shows that the training time could be reduced up to 40% of
the original 29 bands simulation by selecting only a third of the total number of
bands reducing just 10% of the accuracy in the test dataset. Training with noise
shows an improvement of the robustness in the medicines dataset classification
improving up to 8% in the test accuracy, but for the honey dataset, the accuracy
was reduced.
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Abstract. Spectral image reconstruction from RGB images has
emerged as a hot topic in the computer vision community due to easy-
access and low-cost acquisition compared with traditional spectral imag-
ing acquisition methods. With the growth of the available spectral data-
sets, this reconstruction problem has been effectively addressed using
deep convolutional neural networks (CNN). The goal is to learn a non-
linear mapping from 3-RGB bands to L spectral bands. However, these
methods demand many spectral images to train the CNN to obtain
a good recovery. In contrast, the proposed process consists of a pre-
training step where the weights of a convolutional neural network fit with
a large number of RGB image data sets available without its correspond-
ing ground-truth spectral images, taking into account the RGB spectral
response of the camera which is modeled as a non-trainable layer. Then,
some layers of this pre-trained network are frozen to retrain it with the
available spectral data-set to generate a spectral image with L bands.
The proposed training scheme can be used with any pre-existing deep
network that maps RGB to spectral images, and it is here evaluated with
a “U-net” architecture. The RGB sensing is based on the Bayer filter pat-
tern from a Nikon D90 DSLR camera. The simulated and experimental
data demonstrate the effectiveness of the proposed approach compared
to training without transfer learning, showing a gain of up to 4 dB, with
less spectral data.

Keywords: Spectral and RGB images · Convolutional neural
network · Transfer learning

1 Introduction

Spectral imaging captures spatial information across different ranges of the
electromagnetic spectrum by forming cubes of 3D images [5,15]. Due to the
great wealth of spectral information present in these images, they allow differ-
ent objects and materials to be distinguished accurately and consistently [17].
Therefore, spectral images have been used in various applications such as
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medicine [17,21,23], food quality [20,27], remote sensing [22,32], and environ-
mental monitoring [26]. Traditional methods for acquiring this type of images
are based on spatial scanning methods [18], which capture the spectrum pixel
by pixel (whisk-broom) by lines (push-broom) to generate a spectral data
cube [11,14]. However, they are time-consuming systems, and therefore, their
usage in dynamic scenes is prohibited [25].

More recently, different alternatives have been proposed to solve the time-
consuming problem, such as the single snapshot cameras which used compressive
sensing theory [9,12,19,31]. This new sensing protocol involves a recovery process
to obtain the spectral image [4]. Although these technologies allow solving the
time-consuming sensing process, these acquisition devices are costly both to
purchase from a company and to produce them [4,8].

Spectral image reconstruction methods with only RGB images have become
a hot topic due to their easy access and low cost. State of the art methods
use deep neural networks to obtain this reconstruction; learning a non-linear
mapping from RGB to a spectral image, for instance, [29] uses Deep space-
spectral correlations, [30] uses a modified U-net, [1] employs Gaussian processes.
Even in the NTIRE 2018 and 2020 challenges, [2,3] some CNN architectures
were developed to learn this reconstruction mapping. The problem with many
of these architectures lies in the large number of spectral images required to learn
optimal non-linear mappings. Besides, there is the restriction of going from only
three bands (RGB) to a higher number of bands for a successful reconstruction.

Since the RGB cameras map the incoming spectral light into three channels,
using an RGB filter response physically presented in the CCD-sensors, the RGB
images can be seen as a spectral degradation of the spectral images. Therefore,
the proposed process takes advantage of available RGB data-sets without spec-
tral ground-truth but with the filter response of the camera to first pre-train a
convolutional network without any spectral information. In particular, the pro-
posed approach consists of a two-step procedure to train a CNN architecture,
(in this work, we focus on the U-net [24]). The first step learns a first step learns
a CNN in which input is the RGB images and map to 31-band spectral image,
where then, the Bayer filter response of the NikonD90 camera is added as the
last layer of the model to obtain again RGB images. This network is trained
with a broad set of RGB data where its input and output are the same. After
pre-training the net, the last layer is removed, and a new learning process begins
with spectral images, where some already trained net weights freeze, and the
trainable weights do not start with random values, which makes training more
efficient, showing gains of up to 4 dB in PSNR.

2 RGB Acquisition

Traditional RGB cameras use 3 color filters on the sensor to map the incoming
light into three channels according to human perception of colors [6]. These three
filters have their spectral response matching the human perceptual vision (Red,
Green, Blue) wavelengths. The spatial distribution of the filters is based on the
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Fig. 1. Visual representation of the impulse response implemented in the proposed
architecture. (Color figure online)

Bayer RGB pattern and uses demosaicing to obtain the final image [28]. Figure 1
represents the RGB acquisition. Assuming that the RGB image is obtained
under the same atmospheric and illumination conditions; the RGB image can
be approximated as a linear spectral degradation of the spectral image as

Y(m,n,k) =
L∑

λ=1

hk
(λ)X (m,n,λ), (1)

for k = 1, 2, 3, where X ∈ R
M×N×L represents the spectral image, with M × N

pixels and L spectral bands; Y ∈ R
M×N×3 is the RGB image, and {hk ∈ R

L}3k=1

represents the spectral response for the red, green and blue filter, respectively.
Equation (1) can be written in a matrix form as

Y = HX, (2)

where H = [h1,h2,h3]T represents the sensing matrix and X ∈ R
L×MN stands

for the vectorization of the spectral image where each column represents a spec-
tral signature and Y ∈ R

3×MN is the matrix form of the RGB image.

3 Transfer Learning Strategy

Deep neural networks have been used as spectral image generators, where the
goal is to learn a non-linear mapping fθ from Y to X, i.e., X = fθ(Y) [7]. The
structure of this mapping is usually a filtering operator, such as convolution,
up and down sampling, followed by a non-linear activation where the trainable
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Fig. 2. Proposed architecture. This scheme is divided into two steps. The first step
consists of pre-training a convolution model using RGB images as an input. The sensing
process H is applied to the output of the final convolutional layer to train with the
same RGB image. The second step consists in learning the same model using RGB
as input and spectral image as output, where the convolutional layers will contain the
trained [1 : n] parameters of the first step model. (Color figure online)

parameters are denoted by θ [13]. The proposed method uses the sensing model
and the generator network as

Y = Hfθ(Y). (3)

With the purpose to take advantage of the RGB images without full spectral
information, the proposed method only uses the RGB image of a big dataset,
where the weights of the net (θ) can be learned or initialized, solving the following
optimization problem

θ∗ = arg min
θ

T∑

l=1

||Yl − Hfθ(Yl)||2F , (4)

where θ∗ are the learned network parameters, and Yl is the l-th RGB element
of a dataset of T images without spectral ground-truth. The last layer of the
neural network fθ produces an image with L bands from Y, and finally, the
sensor response H gives us the equivalent RGB images as illustrated in Fig. 2
with the green dotted rectangle labeled as the first step.

After solving the optimization problem described in Eq. (4), the θ∗ parame-
ters are used to create the following TL model

f̃θ[1:n] = fθ∗
[1:n]

, (5)

which freezes the already learned parameters θ∗
[1:n], and fit some weights of the

model using a new spectral dataset. This freeze is based on the fact that deep
features in the first layers can be preserved for RGB to RGB as for RGB to
Spectral. Finally, this network is tuned for the trainable parameters θ∗

[n:end] which
is described with the following optimization problem

θ∗
[n:end] = arg min

θ[1:end]

W∑

l′=1

||Xl′ − f̃θ(Yl′)||2F , (6)
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with W � T data, which includes the ground-truth X. This tuning process is
denoted in Fig. 2 with the orange dotted rectangle. Unlike the previous problem
raised in the Eq. (4), the sensing process, which is represented with the sensing
matrix H, is removed. In terms of network design, the first model builds a network
with the same RGB image as input and output, and the second has the RGB and
the spectral image. However, both models recover the spectral representation of
the input image, but the first just before the sensing operator H.

Raise Nikon D90 RGB images ARAD HS spectral images

Fig. 3. Visual representation of the dataset used (a) RAISE dataset obtained with
Nikon D90 and (b) false RGB mapping of the ARAD HS spectral images.

4 Simulations and Results

4.1 Datasets

Two datasets were used in this work: The first is the RAISE [10], which con-
tains 2276 standard RGB images corresponding to different natural landscapes
obtained with the Nikon D90 camera; this dataset was augmented, generating
a total of 6828 images, each image is resized to 512 × 512 and normalized to a
[0, 1] intensity range. The second is the ARAD HS dataset [3], which contains
450 normalized spectral images to train the model, and 10 spectral images to
test; the RGB mappings were calculated using the spectral response of Nikon
D90 camera obtained from [16]. Furthermore, each spectral image is resized to
512 × 512 in spatial resolution, and they have 31, spectral bands.
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Fig. 4. Convolutional layers specified. This is a U-net based scheme that takes an image
with H ×W × 3 dimensions and obtains a reconstruction of H ×W × L images.

4.2 Models

The proposed scheme can be used with any CNN used for the RGB to spectral
recovery task. Therefore, our experiments are performed using a UNet-based
architecture with skip-connections [30], as shown in Fig. 4, since some of the
state-of-the-art methods used variations of this network. This architecture is
composed of three main blocks (Fig. 3):

– Double Conv2D: Consists of two convolutions with 3 × 3 filters in spatial
resolution and a variety of scalar numbers of L filters in-depth, with zero
padding and a RELU activation function.

– MaxPool2D: This layer reduces the feature map in spatial resolution.
– UpSampling2D + Conv2D + Concat: This block performs three opera-

tions, which consist of expanding the feature map in the spatial domain, fol-
lowed by a 3 × 3 convolution and multiple filters of L, and finally, generating a
skip connection between the encoder and decoder in the same depth level.

It is essential to highlight that the two main steps of the proposed scheme
are based on the same network architecture, as illustrated in Fig. 2, the main
difference is the loss function where in the first training takes into account the
sensing model. The second step inherits the information acquired from the pre-
vious step, experimentally freezing some weights that are considered optimal
for the current state of the model. Finally, with the second dataset, the desired
spectral images are recovered more efficiently using the retrained weights.

4.3 Metrics and Configurations

Three metrics were used to measure the quality of the reconstruction. The first
metric is the peak signal-to-noise ratio (PSNR), it is described in the following
equation
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PSNR = 10 log10
||In||∞NM

||Ie − In||2F
, (7)

where In and Ie are the spectral images of the ground-truth images and the esti-
mated, respectively. The second metric is the root mean square error (RMSE),
and it is given by

RMSE =

√√√√ 1
n

n∑

i=1

(Ii
n − Ii

e)2. (8)

Finally, the last metric is a spectral angle mapper (SAM) and it is follows the
equation

α = cos−1

(
In · Ie

|In||Ie|
)

= cos−1

( ∑n
i=1 Ii

nIi
e√∑n

i=1(Ii
n)2

√∑n
i=1(Ii

e)2

)
, (9)

where α is the spectral angle between In and Ie.
The results shown are the mean of the test dataset. All simulations were

implemented in python 3.6.9 and using the TensorFlow 2.0 library on Google
Colaboratory with its GPU runtime environment. The first step of the train-
ing strategy was carried out with the RGB dataset applying 10 epochs using
the initial weights of the traditional spectral reconstruction network [23] and,
Adam optimizer, where the learning rate was settled through cross-validation.
The second step for the proposed strategy and the traditional method without
transfer learning (Without TF) was carried out for 100 epochs, also using Adam
optimizer with the best learning rate obtained.

4.4 Results

In this section, the efficiency of the proposed strategy, denoted as With TL is
evaluated and compared with the results of the trained network without using
TL denoted as Without TL. For this, two main tests are evaluated; the first test
with the full dataset, i.e., 450 images for training, and 10 images for testing. The
second test using a quarter of the dataset, i.e., (120 images for training, and the
same 10 for testing), these networks are denoted as With TL 25% and Without
TL 25%, this last experiment aims to show the effectiveness of the proposed
method when the available data is limited. Additionally, in the second test, the
weights of the first four convolutional layers were frozen.

Tables 1, 2 and 3 summarize the reconstruction quality for the four methods
measured in PSNR, RMSE, and SAM, respectively. There, the optimal value of
each image is shown in bold, and the second-best result is underlined. From the
tables, it can be seen that the proposed approach obtained a lower RMSE and
SAM and a higher PSNR, which expresses a better quality in the reconstruction
of the spectral images for all cases. In particular, the proposed method outper-
forms the traditional method is up to 4 dB. Additionally, notice that when the
dataset decreases, the quality is preserved in which shows the advantage of the
weights already trained in the first step of the proposed method.
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Furthermore, Fig. 5 and 6 shows a visual representation of three spectral
image reconstructions for the different methods. There, it can be seen that the
proposed method preserve more the intensity value in all the pixel compared
with the other approach.

Table 1. PSNR values for each image in the test dataset.

Image PSNR

With TL Without TL With TL 25% Without TL 25%

Image 1 33.75338 27.93111 32.48454 26.28385

Image 2 35.35452 29.71847 30.98698 24.97993

Image 3 33.37145 34.12948 33.07933 31.58570

Image 4 39.87241 35.56417 35.07691 33.52659

Image 5 31.42445 29.42103 31.18411 27.48576

Image 6 32.48617 28.09273 31.02556 26.78852

Image 7 31.70981 25.35291 28.73195 25.42376

Image 8 39.57919 38.42656 39.17162 36.15251

Image 9 37.83101 34.39092 31.91504 29.27065

Image 10 34.83979 30.72731 33.03563 28.98412

Mean 35.02222 31.37547 32.66917 29.04814

Table 2. RMSE values for each image in the test dataset.

Image RMSE

With TL Without TL With TL 25% Without TL 25%

Image 1 0.02018 0.03839 0.02318 0.04411

Image 2 0.01661 0.03127 0.02680 0.05168

Image 3 0.02099 0.01926 0.02144 0.02611

Image 4 0.00947 0.01614 0.01729 0.02023

Image 5 0.02651 0.03331 0.02731 0.04177

Image 6 0.02229 0.03730 0.02709 0.04151

Image 7 0.02589 0.05257 0.03599 0.05082

Image 8 0.01017 0.01148 0.01084 0.01468

Image 9 0.01251 0.01846 0.02498 0.03409

Image 10 0.01738 0.02862 0.02159 0.03492

Mean 0.01821 0.02868 0.02365 0.03599
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Table 3. SAM values for each image in the test dataset.

Image SAM

With TL Without TL With TL 25% Without TL 25%

Image 1 0.04632 0.07546 0.06423 0.07682

Image 2 0.07123 0.13371 0.11269 0.16092

Image 3 0.08833 0.09742 0.08999 0.09249

Image 4 0.10821 0.11338 0.09978 0.11693

Image 5 0.06931 0.06684 0.05479 0.06275

Image 6 0.07321 0.11217 0.09693 0.12639

Image 7 0.05641 0.09603 0.08842 0.10495

Image 8 0.08166 0.09398 0.08085 0.10035

Image 9 0.03832 0.04255 0.03929 0.03665

Image 10 0.04265 0.03691 0.03884 0.03958

Mean 0.06756 0.08684 0.07658 0.09178

Some features maps of the four frozen convolutional layers are shown in Fig. 7.
Notice that this map preserved deep features such as texture and color, which
help to reconstitution images in the second step of the proposed approach even
when the data are limited.

Finally, to see the spectral behavior, three spectral signature of the three
recovered images were randomly chosen and shown in Fig. 8 and also include
the ground-truth signature. Notice that with the full dataset and with a quar-
ter of the spectral dataset, the spectral signatures obtained by the proposed
method closely resemble the ground-truth. Furthermore, when the training data
is decreased, the proposed method provides an improved spectral composition
compared to the methodology without TL.
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Fig. 5. Spectral image comparison and visualization of two recovered images for each of
the trained models, comparing the proposed With TF strategy against the traditional
Without TF method. Five spectral bands can be observed corresponding to 400, 450,
500, 550, 600, and 650 nm, respectively.
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Fig. 6. Spectral image comparison of an additional test image.

Fig. 7. Some feature maps extracted from the first step of the proposed method.
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Fig. 8. Spectral signature results for testing images.

5 Conclusions

A training methodology was proposed to reconstruct spectral images using RGB
images based on the TL of a network that was trained only with RGB images
and then refined using the available spectral dataset. According to the results
obtained through experimentation, we can see that the objective of this archi-
tecture is achieved by offering a gain of up to 4 dB even with a small training
dataset.
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