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1 Introduction

It is necessary to have data on future transportation volumes in order for man-
agement decisions to be correctly developed during the planning phase. At which
the forecast should have an error of not more than 5%. Information on grain
transshipment volumes through the offshore terminal is key for organizing the
transportation process based on research object essence.

An increase in cargo turnover of Ukrainian seaports is evidence of growth
dynamics in the future period compared to previous years according to their
operation results during 2019 [1]. At the same time, certain loads may arise on
logistics chain main links, especially in hubs of interaction between different kinds
of transport. Therefore, there is a need to ensure the continuity and efficiency of
transport processes.

Agricultural goods share transferred through Ukrainian seaports amounted to
about 37.4% of the total volume of transshipment (160 million tons in 2019).
This information was obtained according to statistical information, during the last
reporting year. These were primarily cereals exported to European Union countries
and other world regions.

The trend towards an increase in cargo flows processed by Ukrainian seaports
is observed based on recent statistical data. Therefore, this aspect indicates an
increase in storage capacity and processing capacity by overloading mechanisms
[2]. However, significant investments and long payback periods are required for
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Fig. 1 Overloading of grain cargoes from trucks to ship using mobile loading mechanism

increasing these indicators of transport hub operations. Therefore, the search
for alternative ways of interacting between different kinds of transport is more
pragmatic for logistics operators during agricultural cargo transshipments [3].

As a result, the direct option of uploading a ship from trucks is increasingly used
in European ports (Fig. 1).

The financial and time costs of the company will be minimal, using a direct
interaction option. Forwarders should plan the process of interaction between road
and sea kinds of transport considering the exact forecast to avoid port malfunctions
during grain transshipment. Error-free forecasting of transshipment volumes allows
optimizing works of all participants in grain supply chains [4]. However, the random
nature of transportation processes complicates the forecasting and often leads to
unacceptable error.

It is recommended to use integrated solutions to organize and plan production
processes based on the latest researches in Industry 4.0. Such a concept involves
the significant use of smart technologies, which helped to simplify distribution pro-
cesses while sharing production resources. Mentioned-above significantly increases
the efficiency of management decision-making, especially in conditions of difficulty
in predicting future volumes [5, 6].

The mathematical tool of self-learning and self-tuning neural networks has
become more often used recently as an adequate solution to indicated problems
[7]. This approach allows for obtaining an adequate forecast of cargo transshipment
volumes through port terminals. Application of approaches based on evolutionary
principles allows us to significantly save time when making the right management
decisions in conditions of constant distribution of material flow [8, 9] or multi-
criteria [10] based on conceptual solutions according to the Industry 4.0 principles.
The presented variation of simulation of various parameters of material flow allows
achieving optimal solutions when researchers have a small amount of information.
It is also suggested that neural network-based modeling should be used to make
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correct management decisions in logistics systems, same as using managerial skills
for innovation support [11].

The presented approach to modeling delivery processes is acceptable from the
point of view of interests rationalizing of port operators responsible for logistics
at transshipment terminals, as well as costs reducing of agricultural business for
renting trucks for transporting grain to ports. Accurate forecasting allows the
carrier to determine the required truck quantity for transporting grain to ports
bypassing warehouses [12]. This will significantly reduce the cost of paying for
grain transportation services by truck renters.

The issue of transport reliability has, at the same time, the highest priority
in each delivery level of supply chains. It is because increasing transshipment
volume through ports increases the probability of certain failures in multimodal
transportation processes, especially in bulk goods delivery [13]. Products of agro-
industrial manufacturing (AIM) are primarily mass shipments [14] for Ukraine, as
an agrarian state.

Given that the ports of Ukraine export grain most than other agricultural products
(according to data for 2018), we can talk about the relevance of the chosen research
area. This makes it necessary to develop a forecast model considering modernity
factors. A similar approach can be successfully applied when forecasting cargo
flows during regular mass shipments.

Therefore, the research aim is to develop an approach that enables management
decision-making to organize logistical issues at the port during interactions between
two kinds of transport, considering forecasting results using evolutionary self-
learning models.

2 Literature Review

Research study [15] describes the interaction problems of road and river transports
in freight transportation. The example of cargo transshipment simulation from
trucks to ships through the Boom Baru river pier (Indonesia, Palembang) proves
the necessity for correct forecast models that predict volumes of cargo brought to
the port by road immediately before of ship arriving.

Forwarding companies must have proven forecast transportation volumes
obtained using self-learning systems in order to apply innovative technological
solutions (direct grain overload). Forwarders can predict transshipment volumes
with minimal error based on smart approaches. Different structures of neural and
hybrid networks (based on a genetic algorithm) have shown their expediency as an
excellent predictor [16] to find optional decisions of such problems.

The efficiency of ports functioning has been increased by using neuro-network
mathematical tools in practice, considering the possibility of self-training and the
ability to evolve [17–19]. Nevertheless, forecast models of this category have a
drawback that does not allow them to be used with significant fluctuations in cargo
flow with a small sample for the formation of the time series [20–22]. The volume
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increasing of grain transshipment through Ukrainian seaports is usually associated
with an increase in the cost of this category of agricultural products in world
markets. It explains big errors in classical predictors that are used for forecasting.

The design of initial databases (input signals) must be carried out, focusing on
the principles of the fuzzy logic theory. It will ensure that a wide range of values,
according to considered processes, are taken into account [23–25]. This nuance
makes it possible to find many factors characterizing each value of the time series
in order to reduce randomness in prediction.

The implementation of neural models makes it possible to abandon from the
formation of a significant dataset when predicting cargo flows for medium terms.
This nuance was established from the analysis of previous studies in this area
[26, 27].

Article [28] describes patterns of possible oscillations for cargo flow arriving
at transport hubs. Of particular importance in the development of cargo supply
chains [29–31] is the interaction specificity of various categories of enterprises.
The synchronization of logistics events [32] has a significant impact on the stability
of supply chains, which guarantees the greatest synergy. This ensures the correct
generation of management decisions based on the forecast values of cargo flows
[33, 34].

It should be noted that there is a certain specificity that occurs when cereals
are delivered to ports. It manifests itself primarily in the technological aspects
of transportation. The railway is the main transport which delivery cargoes to
Ukrainian seaports. However, a significant deficiency of specialized grain railway
carriages has created a situation where road carriers carry out a long-distance
delivery by trucks. The big transportation prime cost using trucks increases grain
export prices, which negatively affects the competitiveness of domestic agricultural
products in world markets.

On the other hand, using a large number of grain-trucks poses many techno-
logical problems, especially in terms of ensuring coordinated operation between
two kinds of transport [35, 36]. It is firstly due to practical aspects of technical
capabilities for grain transshipment according to the direct option of “automobile—
ship.”

3 Research Methodology

The reliability of supply chain functioning directly depends on the reliability of each
element according to the studies carried out and also if the supply chain considers
based on principles of systems theory. The negative impact can be reduced on the
delivery process from possible failures of certain elements of the system during
agricultural goods transportation. Following actions should be taken to achieve these
improving:
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1. Innovative models must be developed to predict future volumes of agricultural
transportation. Process organization, in terms of technological aspects, will be
improved using fuzzy-logic theory [37] and smart technology elements, such
as a neural network. It will help to predict the volume of cargo transshipment
through a port or using a blockchain system to design a flexible set of manage-
ment decision-making in cargo transportation in Industry 4.0 [38] conditions,
especially during an interaction between two kinds of transport in ports during
transshipment according to the direct option.

2. The modern management decision support system is appropriate for flexible
decision-making in the operational planning period and direct delivery of agricul-
tural goods. This system can improve the quality of transportation management
and must be designed according to the last tendencies in Industry 4.0. The best
is using in this situation specialized software products, which can speed up
processes of obtaining rational solution sets. Especially if the virtual complex
is able not only to carry out certain calculations but also to carry out simulation
of processes.

These two main actions will improve management issues in the transportation
process of agricultural goods. Moreover, they also reduce the negative impact of
possible delivery system failures, which will keep the reliability indicator in supply
chains at required levels.

Mathematical tools of fuzzy-neural networks apparatus were chosen for predic-
tion. Some elements of this specifical approach can be found in parallel researches
[39–43].

The primary structure of the neural network was represented by seven inputs,
which received signals about the corresponding values of transshipment volumes
for each day of the week. A set of initial data is generated to identify the function
y(k) from statistical processing results. The original time series (1095 transshipment
volume signals for the previous period) was divided in the next step into two
identical halves (547 and 548 signals, respectively, in each part): the first 547
values used as input signals and the remaining 548 as output values. It is possible
to approximately train the neural network in the first step using this research
technology. Figure 2 shows changes in cargo transshipment volumes over time of
network training.

The database used in the experiment consists of values set for training (k = 1,
. . . , 274) and a subset of the signals used for network testing (k = 275, . . . , 548).
It is possible to generate the number of inputs for future predictors using the ARX
model due to such a previous separation of the source database. The best model
structure can be found by retrieving the entire possible set of combinations [m, n,
d]. The signals values [m, n, d] varied randomly in the interval [1–110] during the
ranking (Fig. 3).

A variant of the optimal predictive model based on ARX was found, which
corresponds to the following quantitative structure: [m, n, d] = [4, 4, 11]. The
proposed predictor ensures obtaining the value 8.3 of a square root of a mean square
error (RMSE) on the training sample and on the test RMSE = 7.9.
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Fig. 2 Graphical interpretation of input signals (y) (grain transshipment volumes in the port) from
output signals (u) of the same parameter

Fig. 3 Finding a rational structure for an ARX model
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Fig. 4 Comparisons of simulation results between training samples (top graph) and checking
(bottom graph) by ARX model

Graph (Fig. 4) shows the forecast trend obtained by the ARX model for
predicting grain transshipment volumes at the port. Here, the blue curve denotes
experimental data, and simulation results are represented by green dots.

A more accurate prediction can be obtained using a quasi-neural simulation. The
best accuracy of identification is created using elements of fuzzy logic (fuzzy logical
conclusion).

It includes elements of probability theory using a sequential forward search
(SFS) approach. This simulation technology allows researchers to refine the input
parameters of a future predictor. The model received an additional one variable at
each experiment stage. This minimizes a mean square error of forecasting when
applying SFS.

Figure 5 displays simulation results. Mean deviation values (forecast error)
are highlighted in red circles when using a training sample. Deviation values are
indicated by markers with green asterisks for a checking sample.

Table 1 presents the comparison results of different predictor identification
methods. The ARX model is identified fastest but shows less accurate than others. At
the same time, ANFIS using the SFS method for determining input signals has the
best prediction accuracy, but a significant identification time. This is why the ARX
model is useful for solving problems where the minimum time factor is important
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Fig. 5 Choosing input values of signals for a model using SFS method

Table 1 Results of comparison for various model identifications

Method of definition ARX ANFIS by using SFS method

Quantity of nodes for input signals 7 4
Value of RMSE for training sample 8.3 6.7
Value of RMSE for checking sample 7.9 5.3

for obtaining results. The ANFIS hybrid system is more suitable for predicting grain
transshipment volumes since the error will be less than using heuristic models.

The number of input nodes for the ANFIS hybrid system has become less by
three units (from 7 to 4) according to simulation results. That is why the first node
receives a signal about volumes of grain transshipment on Monday and Tuesday;
the second indicator inputs information about the values on Wednesday; third – data
about volumes of cargo incoming on Thursday and Friday; information on values of
cargo flows on weekends is supplied to the fourth node of the network.

Predictor error is 5.62% of empirical values after network training. The training
period of the hybrid system does not exceed 15 eras, which in terms of machine
time is 3.56 s. Figure 6 displays the visualization of ANFIS control using a training
sample.

The designed ANFIS hybrid network makes it possible to generate 81 rules
according to the previously described type of membership functions and the
calculated number of nodes for supplying input signals. The optimal set of rules
is determined using a genetic algorithm in this case.

In this case, the models become more adaptive to the appearance of sharp
fluctuations in time series. After all, the hybrid network will be based not only on
the local extremum but also considering a wider range of critical values of grain
transshipment volumes in the port, which do not describe the general trend of time
series.
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Fig. 6 Management of hybrid system ANFIS using a training sample

Fig. 7 Dependence surface of forecasted results from incoming signals. Notes: Input 1—values
of grain cargoes volume for training sample, ton*10; Input 2—values of grain cargoes volume for
training sample, ton*10; Output—results of forecasting, ton*10

The hybrid network is trained based on a test sample to reduce prediction error.
The trained ANFIS network showed an error of 4.49% as a result of checking it on
the control sample.

The graphical dependence of input signals of volumes of grain transshipment in
the port from the forecast results is shown in Fig. 7.

4 Results

The ANFIS hybrid system made it possible to predict seven values for potentially
possible volumes of grain transshipment in the port zone. The forecast results made
it possible to determine the error size in actual units (Fig. 8).
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Fig. 8 Curves of empirical (real) and forecast (fuzzy-neural model) input signals. Notes: Qreal—
empirical (real) input volumes of grain cargoes, ton; Qforec—forecast (fuzzy-neural model) input
volumes of grain cargoes, ton

Figure 8 proves that the deviation from the prediction results is less in actual units
than when compared through the program. It further demonstrates the feasibility of
using ANFIS to solve such forecasting problems.

Therefore, the prediction error will be even smaller with larger time-series sizes.
It allows the researcher to better train and configure the network, especially if there
are no significant fluctuations in the original database, which will make it possible
to achieve an almost optimal result of forecasting.

4.1 Practical Aspects

The obtained forecast values allow planning the operation of overloading mech-
anisms and vehicles, which will carry grain to ports. Choosing transshipment
mechanisms shall be at that time carried out based on technical parameters. Hourly
capacity of the overloading mechanism must be first taken into account. This
indicator will affect the following aspects of logistics processes:

• Sea ship service time (idle time under upload)
• Quantity of grain trucks required to provide combined work between vehicles

and mechanization facilities
• Number of simultaneously used cargo mobile loaders
• Daily dispatch volumes, i.e., berth capacity
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Mechanisms should possess a second specific feature. It is their mobility. This
characteristic is particularly important when servicing several ships for a short time.

A trained neural network [44] was used to predict grain volumes that import into
the port before the ship’s arrival. The sample size for the experiment was six ships
with a load capacity of up to 40,000 tons.

Predictive values are very important for making timely management decisions
that must be consistent with Industry 4.0 policy. It is recommended to provide
logistics nuances in the port when transferring cargo from one kind of transport
to another based on three main factors related to port (terminal) capacities:

• Assessment of maximal port capacity in trucks at an hour according to technical
features of infrastructure

• Definition of necessity port capacity in trucks at an hour based on coordinated
interactions of vehicles and transshipment mechanisms

• Calculation of actual port capacity in trucks at hour based on results of cargo
overload volumes forecast according to the fuzzy-neural model

4.2 Assessment of Maximal Port Capacity in Trucks at an Hour
According to Technical Features of Infrastructure

The trucks’ number is determined based on technical aspects according to terms of
maximal quantities of vehicles that can accept by port zones per hour of operation.
In this regard, the example of Mariupol seaport is one of the largest in quantities of
trucks serviced. Port terminal can serve a maximum of 240-grain road-train trucks
per day according to the maximum capacity. A comparison number of railway grain-
carriages is 100 wagons in 24 h, which can be served by this port.

This study is ordered to determine the limitation of port capacity in management
decision-making. It is assumed that trucks arrive at the port in an even flow.
Grain overload occurs during an 8-h working day. Therefore, calculations of hourly
capacities according to technical restrictions of the port are carried out by the next
dependence:

CAPhour
tech = CAPmax

tech

T
port
work

, (1)

where CAPmax
tech—maximal port capacity in trucks at day according to technical

aspects of loading infrastructures, trucks/day; T port
work—operation time of transship-

ment mechanisms in the port during worker’s duration, hour.
This condition shows that within an hour, no more than 30-grain road-train trucks

can be serviced in the port. This nuance will be used in determining rational areas
of management decisions regarding the organization of correct logistics in the port.
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4.3 Definition of Necessity Port Capacity in Trucks at an Hour
Based on Coordinated Interactions of Vehicles
and Transshipment Mechanisms

Following condition must be met in order to ensure coordinated operation of
transshipment mechanisms and vehicles:

INTERVAL = OPERATION RHYTHM, (2)

where INTERVAL—trucks arrival time interval to the port, trucks/hour;
OPERATION RHYTHM—operation rhythm of transshipment mechanisms,
operation/hour.

It should be noted that two parameters play a key role in determining the required
number of trucks to be serviced by the port. They are cargo capacity of grain
road-train trucks and hourly operational productivity of overloading mechanisms.
Mathematical dependency was derived to determine the required port capacity
considering uninterrupted operation condition:

CAPhour
neces =

T
parking
1 h · TRANSCAPtotal

oper

LCAPaverage
truck

, (3)

where T
parking
1 h —the time during which port achieve necessity volumes of grain

cargoes for beginning to overload process, hour; TRANSCAPtotal
oper—total cargo over-

loading capacity of transshipment mechanisms per hour, ton/hour; LCAPaverage
truck —

average loading capacity of trucks, ton.
The total cargo overloading capacity of transshipment mechanisms was calcu-

lated per hour by the following formula:

TRANSCAPtotal
oper =

k∑

i=1

Nmech
i · TECHCAPmech

i ·Kustime
i , (4)

where Nmech
i —number of transshipment mechanisms of ith type, unit;

TECHCAPmech
i —technical cargo overloading capacity of transshipment mecha-

nisms of ith type, ton/hour; Kustime
i —coefficient of operation time using by ith type

of transshipment mechanisms which load a ship, percent.
The distribution surface of the number of vehicles has been built based on

calculations results of formulas (3) and (4) to ensure coordinated work between
elements of grain supply chains to ports (Fig. 9).

Results of empirical observations of using mechanisms and trucks, which are
operating for transshipment of grain cargoes to ships, were used in order to build
the distribution surface of required port capacities in automobiles.
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Fig. 9 Necessity port capacity in trucks at an hour based on coordinated interactions of vehicles
and transshipment mechanisms

4.4 Calculation of Actual Port Capacity in Trucks at Hour
Based on Results of Cargo Overload Volumes Forecast
According to Fuzzy-Neural Model

The most important parameter is the actual port capacity in trucks. This factor helps
design the flexible solutions at time management decision-making during cargo
transshipment processes at the port. This indicator is determined by forecasting
results (Fig. 8) derived from a trained fuzzy-neural network.

Conversion of classical dependency is used in this case to calculate actual port
capacities to find the value of this indicator in trucks per hour. The final formula is
presented as follows:

CAPhour
fuzzy-neural =

Qforec

T idle
unload · TRANSCAPtotal

oper ·Karrival
uneven

, (5)

where Qforec—forecast volumes got by using fuzzy-neural model, ton; T idle
unload—

truck idle time under unloading, hour; Karrival
uneven—coefficient of vehicles uneven

arrival at the port.
The coefficient of vehicles uneven arrival in the port was defined from observa-

tion of statistical data. It has an average value distributed in interval 1.1–1.8.
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5 Discussion

The port capacity value was modeled in trucks per for different conditions based
on the calculation of the dependencies (1), (3), and (5). The calculations results are
presented in Table 2.

The graph of port capacity was designed to find dependency for different
conditions from total cargo overloading capacity of transshipment mechanisms per
hour (Fig. 10) and to define the management decision area.

Logistic operators should use a hatched area to develop management solutions,
which is limited to three curves that describe the port operation based on different
conditions.

System of making decisions on serviced trucks quantity in a specific time of
reloading front operation can be represented by the following mathematically:

Table 2 Calculated results of port capacity according to various aspects

Maximal port capacity in
trucks, trucks/hour

Necessity port capacity in trucks,
trucks/hour

Actual port capacity in
trucks, trucks/hour

30 13 28
30 25 33
30 38 34
30 50 26
30 63 23

Fig. 10 Scheme for finding an area of management decision-making
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MAN DEC (Qtrucks) = min

⎧
⎪⎨

⎪⎩

CAPhour
tech , technical condition,

CAPhour
neces, technological condition,

CAPhour
fuzzy-neural, actual condition,

(6)

where MAN DEC(Qtrucks)—management decision-making about logistics aspects
of port functioning based on maximal potential quantities of trucks which can be
serviced at the port during an hour, truck/hour.

Management decisions on this methodology allow port and carrier resources to
be allocated in a manner that minimizes losses of time and financial resources.
This approach is fully correlated with the Industry 4.0 concept on the appropriate
allocation of resources to achieve the maximum possible profit while maintaining
the high efficiency of manufacturing processes.

6 Conclusions

The methodology of management decision-making on logistics aspects organization
in the port was presented based on the research results. The approach considers
peculiarities of technical arrangements of overload fronts, technological aspects
during the interaction between two kinds of transport, as well as prediction
results obtained from the fuzzy-neural model. Obtained results of forecast about
transshipment volumes have a lower average error (not more than 4.99%) due to
using the ANFIS self-learning system than when using probabilistic methods.

The methodology presented advantages of management decision-making, as the
actual calculation of truck quantities that will supply grain to the port is used.
Therefore, planning with this indicator allows rational allocation of port resources,
which is consistent with Industry 4.0 manufacturing policy.

The presented field of management solutions allows developing technological
aspects in subsequent studies, in which logistics of port elements functioning will
be the most optimal. It will, firstly, reduce ship service time, which will not exceed
2–-3 days. It is in line with world standards and will improve supply chain efficiency
in wholes.

The next step of the study will be the determination of the reasonable time of
ships in port during loading considering management decisions-making based on
the presented methodology.

The study will be aimed at reducing ship serviced time not only by organizing at
a high level the interaction between two kinds of transport to ensure grain overload
according to the direct option but also by determining the necessary grain reserves
on port elevators, which should ensure the ship’s loading in continuous mode.
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