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Chapter 4
Mental and Neural Foundations 
of Numerical Magnitude

David Maximiliano Gómez and Nicolás Morales

Abstract  Number symbols allow learners to communicate and operate on quanti-
tative information. For more than 50 years, research in mathematics education, cog-
nitive psychology, and neuroscience has investigated the mechanisms underlying 
the understanding and processing of numerical magnitude, an essential property of 
numbers. From single-digit and multidigit natural numbers to rational numbers and 
beyond, learning numerical magnitude presents learners with challenges of increas-
ing complexity across the schooling process. Here, we review interdisciplinary 
research that has contributed to understanding how people’s minds and brains pro-
cess numerical magnitude through diverse number systems. We focus on main 
issues during the development of this research, which has mostly relied on number 
comparison tasks, but it has also incorporated quantity estimation and number line 
positioning. We include key themes across number systems, such as the emergence 
of number-space associations and whether perceiving a numerical symbol automati-
cally activates its numerical magnitude.

Keywords  Numerical magnitude · Numerical cognition · Mental calculation · 
Educational neuroscience · Mathematics education

4.1  �Introduction

The study of the understanding of quantity and number, particularly by humans, has 
garnered increasing interest in the last 50 years both worldwide (LeFevre 2016) and 
in the Latin American context (Haase et al. 2020), giving rise to the field of numeri-
cal cognition. From its very beginnings, this field of research has played a key role 
in understanding human mental processing and development. Mehler and Bever 
(1967) took an empirical approach to assess the well-known Piagetian observation 
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that 4-year-old children fail to distinguish between the spatial extent occupied by a 
set of objects and the quantity of its elements. This lack of distinction was com-
monly assumed to imply that children of this age have not yet learned that the spa-
tial rearrangement of a set’s elements conserves their quantity. Piaget’s demonstration 
consisted of presenting children with sets of objects and asking them whether both 
sets were the same or if one of them had more. Most 4-year-old children failed to 
indicate a set of six objects as having more than one of four objects when both sets 
are displayed in a linear array and the smaller set is more spatially spread than the 
larger set. Mehler and Bever examined Piaget’s findings and conclusions by con-
ducting two similar experiments, each of them with a specific methodological 
variation.

First, they presented the same task not only to 4- and 5-year-olds, but also to 
children younger than 4 years old. According to Piaget’s theory, younger children 
are in an earlier stage of development than 4-year-olds, so if the latter fail in the 
task, the former should fail as well. Contrary to this prediction, Mehler and Bever 
(1967) found that even children younger than 3 years old answered the task in a 
manner consistent with quantity conservation.1

The second variation introduced by these authors was the use of candy sets 
instead of sets of arbitrary objects. In this version of the task, children were asked 
not which set had more, but rather, to choose one of the sets and eat those candies. 
The results revealed that most of the children across all the age ranges tested 
(2.5–4.5 years, in total) displayed knowledge of quantity conservation.

More than 50 years after Mehler and Bever’s (1967) study, the field of numerical 
cognition has grown significantly. In this period, it has actively and continuously 
contributed to the understanding of children’s learning and development (Alcock 
et al. 2016; Beller et al. 2018).

4.2  �Number Symbols and the Problem 
of Numerical Magnitude

Many species have been shown to perceive and use quantitative information from 
their surroundings, such as monkeys (Cantlon and Brannon 2006), dogs (Bonanni 
et  al. 2011), crows (Ditz and Nieder 2016), fish (Agrillo et  al. 2008), and even 
insects (Pahl et al. 2013).

However, a critical point where the human journey to mathematics departs from 
the quantitative capacities of other animals is the association of arbitrary symbols to 
quantities of objects. In this sense, the most basic symbols, widely shared across 
cultures, are linguistic objects such as words denoting approximate 

1 That is to say, 2- and 4.5-year-old children demonstrated knowledge of quantity conservation, but 
children in between these ages did not. Mehler and Bever (1967) interpreted this peculiar outcome 
as stemming from a difference between implicit and explicit understandings of quantity conserva-
tion (see Dehaene 2011, Ch. 2, for an explanation based on children’s developing theory of mind).
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quantities—one, some, many—and words denoting exact quantities (Núñez 2017). 
It is worth noting that extracting the quantity of items in a collection and associating 
it to a word is a task that requires a high level of abstraction, since quantity is not a 
property of any particular object but rather of a collection of objects. For example, 
in the phrase, three red cars, the property red can be recognized as true of each car, 
but the property three refers to no individual car.

Once quantities have been associated with symbols, these symbols are used to 
represent the quantities and make inferences such as that a set of five toys has more 
elements than a set of two toys, even if one cannot directly experience either set. 
Most importantly, in principle, symbols are arbitrary: any symbol could be used to 
represent any quantity, meaning that there are no systematic cues in the symbol 
allowing someone to infer how large a represented quantity is (without knowledge 
of the symbol-quantity mapping).

A pervasive question in cognition relates to the semantics of symbols. In the case 
of quantitative or numerical symbols, their semantics directly relate to the magni-
tude of their associated quantities. These symbols may then inherit at least some of 
the properties of the quantities they stand for. In this chapter, we focus on the issue 
of numerical magnitude: When an educated person perceives or mentally works 
with a numerical symbol, is the magnitude of the associated quantity necessarily 
activated in their mind? We begin with a review of seminal studies in the field of 
numerical cognition and present evidence for the hypothesis that the educated 
human mind processes numbers in a manner akin to a mental number line. We then 
review studies relevant to the processing of numerical magnitude across different 
number systems: natural numbers, rational numbers, integer numbers, and irrational 
numbers.

4.2.1  �Seminal Studies

Among the many studies focused on the processing and learning of numerical sym-
bols, three of them can be considered as foundational because they led to the view 
that our mental representations of numbers behave in a way akin to a mental num-
ber line.

The first study in this list was conducted by Moyer and Landauer (1967), who 
tested a sample of young adults by showing them pairs of single-digit numbers and 
asking them to decide—as quickly as possible—which digit in each pair was 
numerically larger. They recorded not only the correctness of each answer, but also 
precise measurements of how long participants took to answer each item. These 
authors observed that participants’ error rates and response times increased with the 
numerical distance between the digits (a distance effect). In other words, partici-
pants were more accurate and faster when comparing numerically distant digits 
(e.g., 2 vs. 7) rather than numerically close digits (e.g., 6 vs. 7). This result reveals 
that the mental comparison of numerical symbols works in an analogical manner, in 
sharp contrast with the numerical processing of a computer, for example.

4  Mental and Neural Foundations of Numerical Magnitude
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Inspired by psychophysical research and modeling, these authors also observed 
that their participants’ response times could be modeled as a function of the ratio 
between the digits’ values: if one defines the ratio Q as the smaller value divided by 
the larger value, then higher values of Q were associated with longer response times. 
The appearance of this ratio between numerical values has deep implications for our 
understanding of the mental organization of numerical representations, as it implies 
that the absolute difference between the digits’ numerical values is not the best 
description of the distance between their mental representations. This implies, for 
instance, that comparing 2 vs. 5 (Q = 0.4) is just as difficult as comparing 10 vs. 25 
(Q = 0.4), and less difficult than comparing 12 vs. 15 (Q = 0.8). This pattern of 
results would come as no surprise if we were referring to the comparison of sets of 
objects according to their quantity. Imagine two boxes containing toys: Box A con-
tains 10 red toys and 25 green toys, while and Box B contains 12 red toys and 15 
green toys. If you are asked to determine whether each box contains more red toys 
or green toys by only taking a quick look at their contents, you will naturally antici-
pate experiencing more difficulty with Box B because the amount of toys of each 
color is somehow more balanced than in Box A. Moyer and Landauer’s (1967) work 
demonstrated that this intuitive pattern also applies to the comparison of numerical 
symbols or, in other words, that the comparison of numerical symbols according to 
their magnitude behaves consistently with a model in which numerical symbols are 
mentally associated with the magnitude of their corresponding quantities before 
comparison.

The ratio effect is also consistent with Weber’s Law, which summarizes a regu-
larity about people’s perception of stimuli that differ in a continuous magnitude, 
such as brightness, loudness, and weight. Weber’s Law states that whenever a per-
son has to determine if two stimuli are different or not, the smallest discriminable 
difference is proportional to the reference magnitude being used (Nutler 2010): a 
person might successfully discriminate between a weight of 100 g and another of 
103 g (3% difference) and between a weight of 1000 g and another of 1030 g (3% 
difference), but be unable to distinguish between a weight of 1000 g and another of 
1003  g (0.3% difference). This observation has led researchers to believe that 
numerical symbols are mentally processed in a manner similar to physical magni-
tudes such as those mentioned above.

The task used by Moyer and Landauer (1967) asked participants to focus explic-
itly on the numerical magnitude of the digits presented. Nevertheless, this is not the 
only possible criterion to compare number symbols, because any visual symbol 
must be drawn with a given physical size. This allows people to compare digits in 
terms of their numerical size or their physical size (e.g., 2 vs. 4). Later studies 
looked further into the contrast between comparing digits’ numerical sizes and 
physical sizes.

Henik and Tzelgov (1982) asked adults to compare single-digit numbers in terms 
of each of these dimensions. They presented pairs of digits varying in both physical 
and numerical size, and asked participants to select the largest one in terms of either 
physical size or numerical size, while disregarding the other dimension. In this task, 
the two size dimensions could lead to congruent or incongruent answers. Comparing 
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2 vs. 4 is an example of a congruent stimulus because the latter has a larger numeri-
cal size and a larger physical size. In contrast, comparing 2 vs. 4 is an example of 
an incongruent stimulus, as the latter has a larger numerical size but a smaller physi-
cal size. With this design, these authors were able not only to measure performance 
when comparing stimuli in terms of the dimension that participants were asked to 
attend, but also to examine how this performance is modulated by the congruency 
between the attended and the unattended dimensions. Whereas physical size is a 
perceptual property of the stimuli, and it is therefore accessed immediately upon 
stimulation, numerical size depends on the meaning of each symbol and must be 
retrieved from memory. Henik and Tzelgov’s (1982) results showed that comparing 
digits’ physical sizes was more difficult (higher error rates, longer response times) 
in incongruent pairs than in congruent pairs, which demonstrated that numerical 
size information interferes with physical size judgments. Their findings suggested 
that the retrieval of a digit’s numerical magnitude is not an optional process that 
people use only when needed, but one that occurs automatically (i.e., even when the 
task requires one to ignore numerical magnitude).

A third seminal study is that of Dehaene et al. (1993). These authors observed a 
different kind of automatic processing of numerical magnitude in people’s perfor-
mance in a task where magnitude is irrelevant, a parity judgment task. Participants 
were instructed to press keys with their left or right hand to indicate if a single-digit 
number presented on a screen was even or odd. As it was expected that participants 
would respond more quickly with their dominant hand, the authors took care that in 
half of the experimental session the even response key was pressed with the left 
hand and in the other half with the right hand. While numerical magnitude was 
completely irrelevant to this task, the authors observed that participants responded 
more quickly to numerically larger digits when the answer (even or odd) was given 
with their right hand, and to numerically smaller digits when the answer was given 
with their left hand. This difference, named spatial-numerical association of 
response codes (SNARC) effect, provided further support for the automaticity of 
processing numerical magnitude. It also indicates that numerical mental representa-
tions are intimately associated with space.

Many studies aiming to assess the nature of the mental representations of more 
advanced number symbols and, in particular, if their numerical magnitude is pro-
cessed automatically, have resorted to variants of one of these tasks. Comparison 
tasks based on numerical magnitude may lead to the observation of distance effects; 
comparison tasks based on symbols’ physical sizes may lead to the observation of 
interference or congruency effects; and tasks involving magnitude-related or 
magnitude-unrelated judgments about numbers may reveal SNARC effects.

4  Mental and Neural Foundations of Numerical Magnitude
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4.2.2  �A Mental Number Line

Altogether, the presence of distance effects in number comparison, the automaticity 
of the activation of single digits’ numerical magnitude, and the association between 
numbers and space (with smaller numbers associated to the left side and larger 
numbers associated with the right side) have been interpreted by many researchers 
as an indication that people’s mental representation of single-digit numbers is simi-
lar to a mental number line oriented from left to right. To account for the variability 
in participants’ responses to multiple presentations of a given numerical stimulus, 
this number line is assumed to work analogically: numbers are represented in an 
approximate manner rather than in an exact one.

While the mental number line interpretation has not been unanimous (e.g., 
Fischer 2006), it has received support from the study of the behavior of patients who 
have suffered a brain injury leading to a condition known as hemispatial neglect 
(Zorzi et al. 2002, 2006; Umiltà et al. 2008). These patients often fail to be aware of 
objects—sometimes even of people—located in the side of space opposite to their 
lesion: a right-hemisphere brain lesion might lead to left neglect and an inability to 
acknowledge objects located on the left side of the patient’s extrapersonal space 
(Husain 2008). When asked to point to the middle of a visually presented line, left 
neglect patients tend to point to a position that is shifted to the right with respect to 
the real midpoint. More surprisingly, a similar pattern holds when they are asked to 
indicate the midpoint of a numerical interval. For example, they may state 17 as the 
midpoint of the interval 11–19 (Zorzi et  al. 2002). Further evidence from non-
human animals and young human infants suggests that the association between 
number symbols and space might be a reflection of an association between quanti-
ties and space that is present early in development (De Hevia et al. 2012).

The scaling of the mental number line has also been a matter of debate. One 
widely known model assumes linear scaling (Gallistel and Gelman 1992), where 
pairs of numbers with a fixed absolute difference are located in equidistant posi-
tions. For instance, in such a number line, the mental representations of 2, 4, 6, and 
8 form a uniformly spaced sequence. This model further states that larger numbers 
are represented in a less precise manner than smaller numbers.2 Another well-known 
model poses logarithmic scaling (Dehaene and Mehler 1992), where pairs of num-
bers with a fixed ratio are located in equidistant positions. In contrast to the linear 
model, in this number line the mental representations of larger numbers are com-
pressed: 4 and 6 are closer than 2 and 4, and 6 and 8 are closer than 4 and 6. An 
example of a uniformly spaced sequence in a logarithmic number line is 2, 4, 8, and 
16, where each element is obtained by doubling the previous one. In the logarithmic 

2 A more precise statement requires conceptualizing the representation of each number as a random 
position on the number line. The standard deviation of the associated probability distribution can 
be taken as an inverse measure of how exact the representation is. The linear model states that the 
standard deviation corresponding to a number representation grows proportionally to the value of 
the number (e.g., the standard deviation of the mental representation of 8 is twice as large as that 
of the mental representation of 4).
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model, it is assumed that all numbers are mentally represented with a similar degree 
of precision.3

Both models successfully reproduce the distance effect, since in both of them the 
number representations are ordered and, therefore, increasing numerical distance 
between numbers translates into numerical representations that are farther away on 
the number line. Both models also account for the size effect: in the linear model, 
the numerical representations of a pair of numbers become less precise with increas-
ing numerical quantity, leading to a more difficult discrimination. In the logarithmic 
model, instead, two numbers with a fixed difference become closer with increasing 
numerical magnitude, leading again to higher difficulty.

Dehaene (2001) suggested that both models led to essentially indistinguishable 
predictions in some settings and conjectured that animal behavior data alone would 
be unable to choose a model as better than the other. In recent years, however, novel 
modeling approaches that take into consideration not only participants’ error rates 
and response times, but also the interplay between them, have succeeded in differ-
entiating between these models (e.g., Ratcliff and McKoon 2018). This suggests 
that we are closer to understanding if one of these models should be preferred, and 
under which conditions.

4.2.3  �Neuronal and Neural Data

Researchers studying number sense have also analyzed neuronal and neural4 data. 
Nieder and Miller (2003) investigated the neuronal activity of rhesus monkeys 
while they watched sets of dots and decided if pairs of these sets depicted the same 
or a different quantity. Neurons in the monkeys’ prefrontal brain cortex showed a 
pattern of performance similar to that predicted by the logarithmic model: noisy 
responses that, once plotted in a logarithmic scale, could be described as random 
distributions with the same degree of precision.

A later study by the same authors (Nieder and Miller 2004) revealed that neurons 
located in the posterior parietal cortex also responded in a selective manner to the 
quantity of a set of objects. Moreover, they observed that the response of parietal 
neurons occurred closer in time to the presentation of the sets of objects than the 
response of prefrontal neurons, suggesting that the processing of numerical infor-
mation in the brain flows from the parietal to the prefrontal cortex.

The type of recordings that Nieder and Miller (2003, 2004) used to evaluate 
neurons’ responses in monkeys cannot be usually used to study humans. Researchers 

3 In terms of random positions and probability distributions, the logarithmic model states that all 
number representations share the same standard deviation.
4 Although these terms are sometimes exchangeable, neuronal refers to neurons whereas neural 
refers to nerves. In the context of this review, neuronal activity is used for a single neuron or a small 
group of neurons, while neural activity is used for large populations of neurons where single units 
cannot be distinguished.
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wanting to investigate brain activity in response to numerical information in humans 
have thus resorted to other techniques, such as positron emission tomography (PET) 
and, more recently, functional magnetic resonance imaging (fMRI).

Piazza et al. (2004) conducted an fMRI study to search for evidence of neural 
activity responsive to numerical magnitude in human adults. They asked partici-
pants to passively observe a sequence of dot sets representing different quantities. 
Most of the time the sets in these sequences represented a fixed quantity such as 16, 
with occasional changes to quantities which were numerically close (e.g., 14 or 18) 
or far (e.g., 8 or 32) from the fixed standard. These researchers reasoned that, if 
there are brain regions that respond specifically to the quantity of objects in a set, 
these regions should get habituated after the frequent repetition of the fixed stan-
dard quantity and thus reduce their activity. Moreover, after habituation, these 
regions should reactivate in response to the presentation of novel quantities, and this 
reactivation should be larger for novel quantities that are far away from the standard. 
Neural data revealed the presence of a brain region that showed precisely this pat-
tern of responses, located within the parietal brain lobe: the intraparietal sulcus. 
Results from previous studies have demonstrated that this brain area plays a role in 
several numerical tasks, such as number comparison, subtraction, and detection of 
number symbols (Eger et al. 2003; Lee 2000; Pesenti et al. 2000), suggesting that it 
plays a role in the processing of magnitudes associated to both numerical symbols 
and quantities. This interpretation received further support from another study by 
Piazza et al. (2007), who observed that the pattern of neural habituation and reacti-
vation in the intraparietal sulcus occurred even if the presented stimuli switched 
between formats (number symbols and quantities), as well as from other works 
(e.g., Venkatraman et al. 2005).

4.2.4  �Debates

Although the view described above has reached wide agreement in the numerical 
cognition community, several points are still under debate. One of these points 
refers to whether the numerical representations hosted by the parietal cortex are 
actually abstract, namely, if they encode numbers’ magnitudes regardless of the 
sensory means by which these numbers are presented to a person (sets of objects, 
number symbols, or even spoken number words). While many studies, including 
those mentioned above, have favored the belief in a truly abstract number represen-
tation in the parietal cortex, several researchers have challenged this view (e.g., 
Ansari 2016; Cohen Kadosh and Walsh 2009; Wilkey and Ansari 2020). Cohen 
Kadosh and Walsh (2009) argued that several pieces of evidence for non-abstractness 
have been reported, but they have been ignored or explained by alternative means. 
They also noted that most of the support for abstractness has arisen from an actual 
lack of evidence for differences in processing numbers presented in diverse formats, 
which could be ascribed to small sample sizes and low statistical power. Wilkey and 
Ansari (2020) also indicated that the brain’s involvement in numerical tasks is not 
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restricted to the intraparietal sulcus, but it is configured as a widely distributed net-
work that has not yet been fully understood. Moreover, they noted that many com-
mon tasks to measure numerical processing require not only numerical capacities, 
but also other cognitive functions (e.g., executive functions) that need to be disen-
tangled before drawing conclusions.

Other debates relate to the extent to which the behavioral and neural results 
obtained so far reflect innate dispositions or uniquely human capacities. In contrast 
to basic quantitative capacities, which are shared across many species, number sym-
bols seem to be uniquely human and culturally learned. Therefore, should people’s 
mental representation of symbolic numbers be akin to a left-to-right oriented num-
ber line, this representation must be acquired through experience (Núñez 2011). 
Furthermore, even though not all human cultures possess number symbols as com-
monly understood, they may still utilize quantitative symbols such as the verbal 
quantifiers a few and a lot (Pica et al. 2004). These verbal quantifiers seem to share 
some properties with quantities and numbers in terms of human perception (Pezzelle 
et al. 2018). Núñez (2017) called for a clearer distinction between quantitative and 
numerical cognitive capacities, with quantitative capacities being biologically 
evolved and shared across species, and numerical capacities being culturally 
mediated.

As Wilkey and Ansari (2020) argue, the link between cognitive capacities and 
brain activity is difficult to assess. The brain is a system whose complexity is well 
beyond our current understanding, and its mechanisms resist simplistic explana-
tions. This becomes a challenge for interdisciplinary dialogues such as those 
between neuroscience and mathematics education, two disciplines with different 
histories, aims, and focus of interest.

4.3  �Numerical Magnitude Across Different Number Systems

In this section, we review research on numerical magnitude in specific number sys-
tems: natural numbers, rational numbers, integers, and irrational numbers.

Following the lead of Moyer and Landauer (1967), most studies in numerical 
cognition dealing with magnitude have used number comparison tasks. Here, par-
ticipants are typically asked to determine which one of two visually presented num-
ber symbols represent a number greater than the other. The usual empirical outcomes 
measured are response accuracy and/or response time. Other tasks ask participants 
to locate a given number on a visually presented number line (e.g., Siegler and 
Opfer 2003) and estimate the number of objects in a collection (e.g., Izard and 
Dehaene 2008). In the following sections, we review findings on the mental and 
neural processing of numerical magnitude, considering these different tasks as well 
as number systems from natural to irrational numbers.

4  Mental and Neural Foundations of Numerical Magnitude
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4.3.1  �Natural Numbers

Many major number systems use a place value codification, where arbitrarily large 
numbers are built from a finite set of symbols—called digits—that are arranged in 
space so that a symbol’s value depends on its relative location within the number. 
For instance, the digit 1  in 145 means a hundred, but in 514 it means ten. 
Consequently, the study of the numerical magnitude of natural numbers can look 
into at least two levels. First, how the numerical magnitude of isolated, visually 
presented digits is processed; and second, how the numerical magnitude of com-
pound, multidigit numbers is processed.

Many of the earliest investigations of numerical magnitude, such as that of 
Moyer and Landauer (1967) presented above, focused on the processing of single 
digits. As we have described, the study of single-digit numbers has reached a 
broad—though not unanimous—agreement on the idea that these numbers are men-
tally represented in a manner akin to a number line, in many cases oriented from left 
to right so that numerically small digits are associated with the left side of space and 
numerically large digits are associated with the right side of space.

Regarding multidigit numbers, a natural first step was to examine if a similar 
pattern of results to that of single digits holds. Hinrichs et  al. (1981) and later 
Dehaene et al. (1990) extended Moyer and Landauer’s (1967) work to investigate if 
a numerical distance effect emerges in the comparison of two-digit numbers. In both 
studies, researchers asked participants to compare a given two-digit number (e.g., 
39) against a given reference (e.g., 55), while recording the accuracy and timing of 
their responses. If participants processed these numbers purely according to their 
magnitude, their responses would be expected to show a distance effect similar to 
that of comparing single digits (holistic model). Alternatively, responses could 
reflect strategies similar to those taught in school: participants might examine the 
tens digits in order to compare the numbers, and resort to the units digits only when 
the tens were equal (lexicographic model). Yet another option was possible: that 
participants would process two-digit numbers as independent single digits and only 
later integrate them into a representation of the magnitude of the two-digit number 
(interference model). Results showed a mixed pattern: while there was an overall 
effect of numerical distance, response times showed discontinuities depending on 
the tens digits at least when using some reference values (Dehaene et al. 1990). The 
researchers interpreted these findings as supporting the holistic model instead of the 
other two. Still, even then it was known that there is a limit to the capacity of pro-
cessing multidigit numbers in a holistic manner: when presented with numbers 
comprising four or six digits, a pattern of results consistent with the lexicographic 
model emerges clearly (e.g., Poltrock and Schwartz 1984).

Later studies showed that the interference model should not be quickly discarded. 
Nuerk et al. (2001) made a slight modification to the previous comparison tasks, in 
which numbers were compared against a fixed reference, through a design in which 
participants compared pairs of numbers. Crucially, they chose number pairs in 
which the tens and units digits varied more systematically, leading the researchers 
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to introduce the concept of unit-decade-compatibility: a number pair such as 42 and 
57 was named compatible because the larger number is composed by both the larger 
tens digit and the larger units digit. In contrast, a number pair such as 47 and 62 was 
named incompatible because one of the numbers had the larger tens digit but the 
smaller units digit. The authors reasoned that these pairs provided a stringent test for 
the interference model against the holistic and the lexicographic models. Since both 
number pairs share the same numerical distance between numbers, the holistic 
model predicted similar performance in both of them. Moreover, both numbers have 
different tens digits, so the lexicographic model can also predict similar perfor-
mances or, at most, better performance when comparing the incompatible pair 
because of a larger difference in the tens digits with respect to the compatible pair. 
Only the interference model provided an opposite prediction: that the incompatible 
item would prove more difficult than the compatible one. This prediction follows 
from the fact that in the compatible item, both the comparison of units and the com-
parison of tens lead to the same answer; however, in the incompatible one, the com-
parison of these digits leads to conflicting answers. The data supported Nuerk et al.’s 
(2001) intuition, showing that participants were quicker and more accurate when 
comparing compatible pairs. Further studies have provided additional support to the 
idea that multidigit number processing differs in many aspects from single-digit 
processing (e.g., Macizo and Herrera 2008). Nuerk et al. (2011) reviewed a number 
of phenomena that are proper to the processing of multidigit numbers, which a 
simple holistic model cannot successfully explain. Moeller et al. (2010) conducted 
a computational modeling study and suggested that the distance effects that have 
been typically interpreted as supporting the holistic model could also emerge from 
a non-holistic representation. In other words, this means that the human mind could 
have no specific representation of a multidigit number’s magnitude but still produce 
patterns of behavior consistent with it.

The work by Nuerk et al. (2001, 2011, among others) suggested that the identi-
ties and magnitudes of each of the digits composing a two-digit number are pro-
cessed automatically, but that it is not so for the magnitude of the full number. An 
intermediate step would be to ask if the place value of each digit is automatically 
processed. Kallai and Tzelgov (2012a) tackled this question by presenting adult 
participants with strings of digits and asking them to decide which string contained 
the larger non-zero digit. For instance, when presented with 030 and 005, partici-
pants were expected to select the latter. The authors reasoned that if the mind 
accesses not only the digits’ identity, but also their place value, such as the 3 in 030 
being interpreted as 3 tens, a conflict would occur when a smaller digit has a larger 
place value. This led them to measure people’s performance in a congruent (e.g., 
050 vs. 003) and an incongruent (e.g., 030 vs. 005) condition. Their results showed 
that participants’ accuracy rates and response times were indeed affected by congru-
ency—more specifically, by an interference of place value information in digit mag-
nitude judgments— suggesting that participants processed the digits’ place value 
despite its being irrelevant for the task at hand. They also applied an adaptation of 
the physical comparison task described above (Henik and Tzelgov 1982), where 
participants were presented with digit strings of different physical sizes and asked 
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which string was physically larger than the other. In this second step, they used 
items with the same digits but different place values (e.g., 0300 vs. 0003) to isolate 
the place value component. Although the identity and positions of the non-zero 
digits were irrelevant to the task, Kallai and Tzelgov (2012a) observed an interfer-
ence effect of place value information in participants’ physical size judgments: 
these judgments were easier when the physically larger digit string corresponded to 
the number with larger magnitude. These findings demonstrate that the numerical 
magnitude of digits within multidigit numbers can also be automatically activated; 
however, it is still unclear if the magnitude of complex multidigit numbers is the 
main driving force behind people’s mental numerical judgments. Whereas behav-
ioral data show similar signatures to the processing of single digits (e.g., distance 
effects), it cannot be taken for granted that they rely on the same underlying mecha-
nism such as a mental number line.

While most studies of natural number magnitude have used comparison tasks, 
there have been other interesting tasks that have contributed to understanding how 
the human mind processes numerical magnitude.

Izard and Dehaene (2008) used an estimation task from psychophysics research 
(e.g., Indow and Ida 1977), in which adult participants were presented with pictures 
of sets of 1–100 dots and asked to estimate their quantity. The authors observed that 
participants’ responses were consistent in the sense that larger quantities led to 
larger estimates, although in general participants underestimated the target quanti-
ties (but see Crollen et al. 2011). Furthermore, the authors probed participants’ abil-
ity to adjust their responses based on calibrating information: the presentation of a 
given picture said to contain 30 dots. Participants successfully adjusted their esti-
mates to this information, even when in some cases the calibrating picture did not 
actually contain the stated quantity of dots. The estimation task taps directly into 
people’s ability to connect number symbols and nonsymbolic quantities (Mundy 
and Gilmore 2009), sparking interest in the study of the mental representations of 
magnitude in children and adults with developmental dyscalculia (Castro Cañizares 
and Reigosa-Crespo 2011; Mejias et al. 2012).

Siegler and Opfer (2003) asked school children and adults to convert natural 
numbers from a symbolic representation to a position on a 0–1000 number line and 
vice versa. Adults’ responses, as expected, showed proportionality between number 
size and number line positioning, which was evident from a strong linear relation 
between their responses and the target positions and numbers. Sixth-grade children 
showed a pattern of responses very similar to adults, but second- and fourth-graders 
differed from them: the relation between the numbers presented and the locations 
they selected on the number line showed not a linear shape but a logarithmic one, 
meaning that small numbers were more spaced than large numbers. For example, 
the median responses of second- and fourth-graders located numbers in the range 
200–250 close to the midpoint of the 0–1000 number line. These authors also 
showed that the numerical context was relevant to second graders’ responses, 
because in spite of showing a logarithmic pattern in locating numbers on a 0–1000 
number line, they positioned numbers on a 0–100 line proportionally to their mag-
nitudes (i.e., with linear rather than logarithmic spacing). Further studies have 
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investigated the development of children’s mapping of numbers on the number line 
(e.g., Berteletti et al. 2010; Siegler and Booth 2004) and its relation to mental cal-
culation (e.g., Domínguez Suraña and Aguilar Villagrán 2017). Although it is 
debated whether children actually switch over development between two mental 
models of numerical mapping or there is just one model that gets tuned with experi-
ence (Barth and Paladino 2011; Opfer et  al. 2011, 2016), the overall behavioral 
pattern is uncontested. This task has been used to measure children’s mathematical 
knowledge with several aims, such as assessing children’s learning in response to 
interventions (Navarrete et al. 2018; Siegler and Ramani 2008).

4.3.2  �Rational Numbers

Rational numbers represent ratios between natural numbers. They constitute one of 
the very first instances of non-natural numbers that children encounter in school, 
challenging learners to find novel ways to understand number, numerical magni-
tude, and arithmetic (Charalambous and Pitta-Pantazi 2007; Van Dooren et  al. 
2015). Rational numbers are often presented as fractions and are visually displayed 
as a couple of natural numbers—numerator and denominator—separated by a line. 
Children may struggle to understand that fractions are not merely two numbers put 
together but single numbers by themselves (Stafylidou and Vosniadou 2004). As 
such, fractions have a numerical magnitude of their own, related but somewhat 
independent of the numerical magnitudes of the natural numbers composing them: 
these natural numbers can change without affecting the magnitude of the fraction 
(e.g., 5/6, 10/12, and 4440/5328 are all the same rational number).

The study of the cognitive basis of people’s processing of fractions is much more 
recent than that of natural numbers. Bonato et al. (2007) investigated the nature of 
our mental representation of fractions, asking if these are represented as pairs of 
natural numbers or as integrated entities. In the first case, termed a componential 
representation, the only numerical magnitudes immediately available to a person 
would be those of the numerator and denominator, whereas the magnitude of the 
fraction would be inferred from these. In the second case, named a holistic repre-
sentation, the numerical magnitude of the fraction would be automatically available 
to the person. Following the results obtained from the study of natural numbers, 
Bonato et al. (2007) looked for a distance effect and a SNARC effect in a task where 
individual unit fractions (1/n) had to be compared against 1/5 to decide if they were 
numerically smaller or larger. Although their results confirmed the presence of a 
distance effect, they also found a reversed SNARC effect: responses to fractions 
larger than 1/5 were quicker with the left hand, while responses to fractions smaller 
than 1/5 were quicker with the right hand. This pattern of results was interpreted as 
an indication that participants were not answering the task based on the fractions’ 
numerical magnitudes, but on the numerical magnitudes of their denominators.

It must be noted that an absence of evidence in favor of a holistic representation 
is not evidence for the absence of such a representation, so several researchers 
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challenged Bonato et  al.’s (2007) results on methodological grounds. Kallai and 
Tzelgov (2009) argued that the reported results were driven by the authors’ choice 
to use unit fractions and other fractions that varied only in one component at a time. 
They investigated whether adults would automatically process the magnitudes of 
fractions by using a physical size comparison task, obtaining results that did not 
support the hypothesis that fractions are automatically associated with their numeri-
cal magnitude. Schneider and Siegler (2010) used a richer set of fractions than 
Bonato et al. (2007) and reported a distance effect of a similar shape to that attested 
with natural numbers. These authors inferred that participants had accessed a men-
tal representation of the fractions’ magnitudes similar to the mental number line for 
naturals. Their results notwithstanding, in two of their three experiments partici-
pants took extremely long to respond to many items (showing median response 
times of 5–30 s), preventing any claims about the automaticity of participants’ cog-
nitive processing. Later, Toomarian and Hubbard (2018) revisited this issue, show-
ing that the same task used by Bonato et al. (2007) could lead to a reversed SNARC 
(as attested by Bonato and colleagues) or to a regular SNARC effect depending on 
the specific set of fractions used, which suggests that participants adapted their 
responses to the fraction sets.

Ischebeck et al. (2009) investigated the neural representation of fractions using 
fMRI and focusing on the aforementioned componential-holistic debate. They 
devised a set of fraction comparison items that pitted the magnitudes of the fractions 
and of their components against one another (similar to Nuerk et al.’s 2001 design 
with natural numbers). For instance, in items like 2/5 vs. 4/5 and 1/3 vs. 4/7, the 
larger fraction is the one with the larger natural number components, whereas in 
items like 1/3 vs. 1/4 and 2/3 vs. 4/9, the larger fraction is the one with the smaller 
components. Their results showed that, although brain activity was significantly 
modulated by the congruency relation between fractions’ and components’ magni-
tudes, the intraparietal sulcus responded significantly to the numerical distance 
between fractions (Ischebeck et al. 2010), involving the same brain area associated 
with processing the magnitude of natural numbers (see also Jacob and Nieder 2009).

Meert et al.’s (2009, 2010) studies marked the beginning of a departure from a 
rigid debate about a single mental representation for fractions, claiming that these 
representations may be hybrid: a holistic approach would be used when a rational 
number and its magnitude are well known (e.g., by means of extensive practice), 
whereas fractions that are less familiar or more complex would elicit componential 
processing. The field slowly moved from an initial focus on discovering the nature 
of fractions’ mental representations to investigating the conditions in which one 
type of processing or the other is preferred. Gabriel et al. (2013) asked adult partici-
pants to decide whether pairs of fractions were numerically equal or visually equal. 
For example, 1/2 and 1/2 are numerically and visually equal, 1/2 and 2/4 are numer-
ically equal but visually different, and 1/2 an 3/5 are different numerically and visu-
ally. These researchers reported distance effects for the comparison of fractions 
according to their numerical magnitude, but not according to their visual appear-
ance, suggesting that the numerical magnitude of fractions is not automatically 
accessed but only accessed when required by the task.
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The evidence against automatic processing of fractions was accumulating, but no 
explanations were given. Kallai and Tzelgov (2012b) carried out a study where 
adult participants were trained to associate arbitrary figures with unit fractions. 
After training, they asked participants to perform a physical comparison task with 
these fractions, using the traditional notation and the newly learned symbols in sep-
arate moments. Their results confirmed that standard fractions were not automati-
cally processed according to their holistic magnitude; in contrast, the newly learned 
symbols elicited automatic processing. These results highlight a possible role of the 
usual mathematical notation in people’s struggle with fractions, that is, the high 
familiarity and automaticity of processing of natural numbers impairs the develop-
ment of a similar type of processing for the fractions’ magnitudes.

Another line of research has focused on the development of rational numbers’ 
concept of magnitude. It has been suggested that, for children to learn fractions and 
rational numbers, a conceptual reorganization is needed (Stafylidou and Vosniadou 
2004; Vamvakoussi et al. 2013). The school mathematics curriculum usually pro-
vides extensive practice with natural numbers before introducing rational numbers, 
and hence the intuitions developed by children in the context of natural numbers 
might interfere with their later learning of rationals. Ni and Zhou (2005) introduced 
this problem as a whole number bias or natural number bias affecting children’s 
reasoning in the initial stages of learning (e.g., Gómez and Dartnell 2019; Stafylidou 
and Vosniadou 2004; Van Hoof et al. 2013). Later studies suggested that this bias 
persists into adulthood and might affect even mathematics experts’ intuitive 
responses (Obersteiner et al. 2013; but see Morales et al. 2020). This natural number 
bias would be manifest in many aspects of rational number knowledge, such as 
numerical magnitude, arithmetic operations, representations, and density (Van 
Dooren et al. 2015; Van Hoof et al. 2015).

With respect to numerical magnitude, rational numbers behave according to 
principles different from those of natural numbers. A fraction composed of large 
natural numbers (e.g., 4440/5328) does not necessarily have a large magnitude in 
itself. Many children fail to understand fraction magnitude. A classic example was 
documented by Reys et al. (1982): when asked to estimate the value of the outcome 
of 12/13 + 7/8, a large share of children selected 19 or 21 as the answer, indicating 
that they reasoned about the fractions by naively adding their components. In oppo-
sition to focusing on numerical magnitude, children and adults may deploy a variety 
of strategies, such as component-wise comparison, benchmarking, and gap thinking 
to solve problems about fractions (Clarke and Roche 2009; Gómez and Dartnell 
2019; Obersteiner and Tumpek 2016; Obersteiner et al. 2020). All these strategies 
involve fraction magnitude to different extents.

Several studies have looked into the predictive power of rational number knowl-
edge in mathematics achievement (Booth and Newton 2012; Siegler et  al. 2012; 
Torbeyns et al. 2015). Overall, their results point to the crucial role of understanding 
fraction magnitude for future achievement in advanced mathematical topics such as 
algebra.

Although our focus in this section has been on fractions, rational numbers can 
also be represented as decimal numbers. Given the large body of literature that has 
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addressed learners’ difficulties with understanding and processing decimal num-
bers’ magnitude (e.g., Resnick et al. 1989, 2019), we cannot delve into this due to 
space constraints. In addition, it should be noted that there is an emerging line of 
research on the perception and processing of ratios or proportional relations, under-
stood as being to rational numbers what nonsymbolic quantities are to natural num-
bers. Lewis et al. (2016) and Jacob et al. (2012) argue that the mind and brain have 
specialized mechanisms to process ratios akin to those for processing natural num-
bers. Such mechanisms would challenge long-held views in the field that assume 
that humans lack basic intuitions on which rational numbers could be grounded 
(e.g., Gallistel and Gelman 1992; Ni and Zhou 2005).

4.3.3  �Numerical Magnitude in Other Number Sets

In the previous sections, we have presented an overview of studies dealing with the 
numerical magnitude of natural and rational numbers. Although other number sets 
have been studied as well, most efforts have concentrated in these previous ones. In 
this last section, we review research on the numerical magnitude of integer (nega-
tive) numbers as well as irrational numbers.

4.3.3.1  �Integers

The set of natural numbers is not closed under subtraction (e.g., no natural number 
is the result of an operation such as 4–7), and integers fill this gap by extending the 
set of natural numbers so that subtraction becomes a closed operation. The set of 
integers comprises natural numbers, zero, and the negative natural numbers, extend-
ing the natural number line to the left. It is important to note that negative numbers 
challenge our definition of numerical magnitude in a novel manner. Within the 
domains of natural numbers and (positive) rational numbers, large numbers are 
always located in the number line to the right side of small numbers. Mathematically, 
an integer’s magnitude is defined as its distance to zero in the number line—its 
absolute value. Therefore, a negative number can have a larger magnitude than a 
positive number despite being located to its left (e.g., −5 vs. 2) or, in more general 
terms, numerical magnitude and numerical ordering become dissociated. This novel 
context requires reassessing several concepts. For instance, how should the SNARC 
effect be hypothesized to extend to integers? The spatial dimension might become 
associated with numerical magnitude or with numerical ordering, leading to oppo-
site conclusions.

Fischer (2003), Shaki and Petrusic (2005), and Fischer and Rottmann (2005) 
made early attempts at studying negative numbers and how they are mentally pro-
cessed. Fischer (2003), as well as Shaki and Petrusic (2005), investigated whether 
negative numbers were represented in the same mental number line as natural num-
bers by asking adults to compare pairs of integers and looking for a SNARC effect. 
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When the task presented negative and positive numbers in a mixed manner, 
responses were quicker for negative numbers with the left hand and for positive 
numbers with the right hand, implying a standard SNARC effect with respect to 
number line ordering. Shaki and Petrusic (2005) also included a condition in which 
participants answered only to pairs of negative numbers, and in this case, they 
observed a different pattern: negative numbers closer to zero were associated with 
quicker left-hand responses, and negative numbers farther from zero were associ-
ated with quicker right-hand responses. This outcome can be interpreted in two 
ways: as a reverse SNARC effect in terms of number line ordering, since negative 
numbers closer to zero are located on the number line to the right side of negative 
numbers farther from zero; or as a standard SNARC effect with respect to the mag-
nitude of negative numbers, since negative numbers closer to zero have a smaller 
magnitude than negative numbers farther from zero. This result, therefore, suggests 
that the mental representation of negative numbers is not automatically associated 
with the left-side portion of the mental number line, which implies that the mental 
processing of negative numbers depends on the experimental task and items (simi-
larly to the research on rational numbers).

Fischer and Rottmann (2005) further investigated the processing of negative 
numbers, focusing specifically on automaticity. Following the lead of the original 
SNARC study (Dehaene et al. 1993), they asked participants to classify positive and 
negative integers as even or odd. Results supported the idea that numerical magni-
tude (absolute value) was automatically activated, but that it was not so for numeri-
cal ordering. This suggests a componential mental representation for negative 
numbers: while their magnitude is automatically accessed, their sign (or polarity) 
must be later integrated with magnitude. Tzelgov et al. (2009) investigated if this 
component-based processing was due to the presentation of magnitude and sign via 
independent symbols by replacing the negative sign with color. Their results indi-
cated that, still, negative numbers were processed with disintegrated magnitude and 
sign. The researchers carried out an additional test, replacing the number symbols 
with Japanese letters (unfamiliar to the participants) so that the magnitude and sign 
information were not associated to different portions of the symbol but rather to 
each symbol as a whole. Even in this new setting, participants did not display auto-
matic processing of numerical ordering, suggesting that the componential nature of 
integer representations is not due to the specific standard notation used for them. 
Negative numbers seem to be initially processed based on their magnitude, and their 
sign is later integrated when relevant.

There is also research on children’s learning of integer number ordering, specifi-
cally using number line tasks (Young and Booth 2015; Brez et al. 2015). Overall, it 
has been observed that response times and accuracy for negative numbers are lower, 
indicating that children probably process negative numbers via strategies different 
from those for positive numbers.
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4.3.3.2  �Irrational Numbers

Irrational numbers challenge learners from their very definition. Unlike the previous 
number sets, irrational numbers are defined by what they are not: they are all real 
numbers that are not rational, that is to say, all real numbers that cannot be expressed 
as the ratio of two integers. Whereas some irrational numbers can be interpreted in 
terms of measurement (e.g., 2 as the length of the diagonal of a unit square, and π 
as the length of the contour of a circle of radius 1/2), many others are defined in 
algebraic terms (e.g., ɸ is the larger solution of x2 = x + 1), and others even lack an 
algebraic characterization (e.g., e cannot be expressed as a root of a polynomial with 
integer coefficients). The only common ground across irrational numbers seems to 
be the fact that, when written in decimal notation, they are infinitely long and non-
periodic (e.g., Chapernowne’s number, obtained by concatenating all natural num-
bers as 0.123456789101112131415…). Hence, the mathematical interest in 
irrational numbers stems more from their algebraic and analytical properties than 
from their magnitude.

Interpreting the ability to estimate the magnitude of number symbols as crucial 
for number sense, Obersteiner and Hofreiter (2017) asked if skilled mathematicians 
would be able to automatically access a mental representation of irrational num-
bers’ magnitudes. In a comparison task, participants were asked to select the largest 
of two positive irrational numbers as quickly as possible. The task included number 
pairs such as 213  and 143 . The results showed that mathematicians struggled to 
utilize numerical magnitude, resorting instead to strategies specific to the number 
pairs. Another study about irrational numbers is the one by Patel and Varma (2018). 
They asked undergraduate students to compare pairs of square roots such as 2, 3, 
 4 , and 9. Additionally, participants completed a number line estimation task in 
four blocks: natural numbers, roots of single-digit numbers, roots of perfect square 
numbers, and roots of two-digit numbers, and finally, they completed a knowledge 
test about irrational numbers. Their results showed, similarly to Obersteiner and 
Hofreiter’s (2017) work, that students tended to compare these radical expressions 
by focusing on their subradical components (e.g., 3 > 2 because 3 > 2). For the 
number line task, students also used strategies such as comparison against a perfect 
square. As pointed out by Patel and Varma (2018), it seems likely that the relevance 
of numerical magnitude representations diminishes as the abstraction of numbers 
increases.

4.4  �Final Remarks

This chapter aimed at providing a general introduction to the processing of numeri-
cal magnitude to early researchers, as it is an entry point to the field of numerical 
cognition. Because of space constraints, several important topics have been left out, 
such as the effect of individual differences in task performance on mathematics 
achievement.
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All the research described herein investigated number sets contained within the 
set of real numbers, where numerical magnitude is intimately related to ordinality 
(although the link is not perfect, as evidenced by negative numbers). Nonetheless, 
ordinality is not necessary for a well-defined concept of numerical magnitude, as it 
is the case of complex numbers. There is a lack of research of numerical magnitude 
in such settings, which needs researchers and mathematics educators to work 
together to define interesting research questions. In contrast, a line of research on 
the mental mechanisms underlying number ordinality has emerged in recent years 
(see Lyons et al. 2016, for a review), revealing interesting differences with numeri-
cal magnitude, such as a reversal of the distance effect (i.e., the numerically closer 
two numbers are, the easier it is to judge if they are in ascending order).

Numerical magnitude has been proposed as a crucial understanding in the study 
of numbers at school (Fazio et al. 2014; Siegler et al. 2012). While that certainly 
seems to be the case for natural and rational numbers, it is unclear if this statement 
holds for more advanced number sets such as negative, irrational, and complex 
numbers, where the focus shifts toward more algebraic properties of numbers. In 
this sense, the development of intuitions for progressively more advanced number 
systems might partly account for the relations observed between proficiency in 
rational number knowledge and later achievement in algebra (Booth and Newton 
2012; Siegler et al. 2012; Torbeyns et al. 2015). The shift from a concrete, measure-
based conception of number toward an algebraic one has traditionally challenged 
school children and, now, also researchers in numerical cognition.
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