
Max-Diversity Orthogonal Regrouping
of MBA Students Using a GRASP/VND

Heuristic

Mat́ıas Banchero1, Franco Robledo1, Pablo Romero1(B), Pablo Sartor2,
and Camilo Servetti1

1 Instituto de Computación, INCO, Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{matias.banchero,frobledo,promero,camilo.servetti}@fing.edu.uy
2 IEEM Business School, Universidad de Montevideo, Lord Ponsomby 2542,

Montevideo, Uruguay
psartor@um.edu.uy

Abstract. Students from Master in Business Administration (MBA)
programs are usually split into teams. Many schools rotate the teams at
the beginning of every term, so that each student works with a different
set of peers during every term. Diversity within every team is desirable
regarding gender, major, age and other criteria. Achieving diverse teams
while avoiding -or minimizing- the repetition of student pairs is a time-
consuming complex task for MBA Directors.

The Max-Diversity Orthogonal Regrouping (MDOR) problem is here
introduced, where the goal is to maximize a global notion of diversity,
considering multiple stages (i.e., terms) and intra-diversity within the
teams. A hybrid GRASP/VND heuristic combined with Tabu Search
is developed for its resolution. Its effectiveness has been tested in real-
life groups from the MBA program offered at IEEM Business School,
Universidad de Montevideo, Uruguay, with a notorious gain regarding
team diversity and repetition level.

Keywords: MBA teams · Orthogonal regrouping · Diversity ·
GRASP · VND

1 Motivation

The collaborative team-formation and staffing/scheduling problems in workforce
management is of paramount importance in projects deployment and large/scale
corporations. Given the intrinsic hardness of multidisciplinary team-formation
and clustering techniques, it is necessary to develop tools for this task. In this
work we are focused on a maximum diversity regrouping assignment of MBA
students; nevertheless, the reader can find potential applications in similar clus-
tering problems. Experience shows that the student skills and learning process
benefit significantly from highly-diverse teams when regarding prior experience,
c© Springer Nature Switzerland AG 2021
N. Mladenovic et al. (Eds.): ICVNS 2021, LNCS 12559, pp. 58–70, 2021.
https://doi.org/10.1007/978-3-030-69625-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69625-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-69625-2_5

Max-Diversity Orthogonal Regrouping of MBA Students 59

age, gender, major and other features. MBA programs are usually split into four
to six terms. Many MBA rotate the groups in every term so that students train
their ability to adapt to different groups, benefit from new points of view and
expand their peer network. Creating highly-diverse teams while keeping at a min-
imum the repetition of peer-pairs between terms is a very challenging problem
faced by program directors at the beginning of every trimester.

The contributions of this paper can be summarized in the following items:

1. A novel combinatorial optimization problem called Max-Diversity Orthogonal
Regrouping (MDOR) is here introduced. The goal is to find as many cluster-
ings as terms, maximizing cluster diversity while keeping at a minimum the
repetitions of pairs.

2. A GRASP/VND methodology combined with Tabu Search is developed.
3. The effectiveness of our proposal is tested with real-life students from the

MBA program offered at IEEM Business School, Universidad de Montevideo,
Uruguay.

The document is organized in the following manner. The related work is
presented in Sect. 2. A mathematical programming formulation for the MDOR
is introduced in Sect. 3. A full GRASP/VND heuristic combined with Tabu
Search is presented in Sect. 4. Computational results based on real-life students
are presented in Sect. 5. Section 6 contains concluding remarks and trends for
future work.

2 Related Work

We identify the closest works of ours from the scientific literature in [2,3,7]. A
simplified model with a large similarity in the team formation is presented in [3],
which considers the dining philosophers problem for the assignment of students
into groups. In [7], the problem is modeled using integer linear programming.
This work considers a centroid for each cluster. Two approaches are studied: the
min-sum approach tries to minimize the distances with respect to the centroid;
the second is a min-max approach whose goal is to minimize the maximum (i.e.,
the worst) distance.

The case-study in [2] consists of the assignment of 235 students to 8 advi-
sors. This work considers integer linear programming, and it is equivalent to the
min-sum approach given by [7]. The problem belongs to the NP-Hard class, and
heuristics are available to tackle it [10]. A hybrid Genetic Algorithm is proposed
in [9]. There, the authors suggest Tabu Search combined with strategic oscila-
tions. Independently, [12] proposed an artificial bee-workers approach. In [8], a
competitive General Variable Neighborhood Search (GVNS) is also proposed.
An extension of this GVNS is offered in [4], with a Skewed VNS combined with
a Shaking process to better explore the search-space. The goal in the Orthog-
onal Regrouping Problem is to partition a given set repeatedly, in such a way
that every pair is included only once in some cluster. Well known instances have

60 M. Banchero et al.

been extensively treated, e.g., the Kirkman’s Schoolgirl Problem and the Social
Golfer Problem.

Here we introduce the MDOR problem, which is suitable to the assignment
of MBA students to teams that are re-built in every term. It is worth to remark
that our approach has potential applications to other scenarios, such as staffing
and scheduling in workforce management [5], team formation models for collabo-
ration [14], and team-formation algorithms for faultline minimization [1], among
others.

3 Problem

In this section, we describe the main features of our problem, and then we present
a mathematical programming formulation. A brief discussion covers particular
cases, which will be considered to address the problem heuristically.

3.1 Problem Description

Our problem formulation requires a definition of distance between any two items.
In the context of grouping MBA students, the distance between two students
would represent how different they are in terms of a set of criteria (age, type
of major, gender, work experience, admission test score, etc.) that the MBA
Director chooses. In the case of the real-life sets used in our test, the criteria are:

– Career (subdivided in percentage of Social Sciences, Natural and Exact Sci-
ences content).

– Score in the Admission Test.
– Residence (urban or countryside).
– Gender.
– Age.

Career is split into three attributes in [0, 1] which account for the relative levels
of Social Sciences, Natural and Exact Sciences. The score in the Admission
Test and the Age are natural numbers, while the remaining attributes assume
binary domain. Once the attributes are selected, a distance function between
the different individuals dij must be specified. In what follows, the normalized-
Euclidean distance is considered:

dij = d(xi, xj) =
‖xi − xj‖2

maxu�=v‖u − v‖2 , (1)

where the distance between each pair of students is found by a numerical assign-
ment to the different attributes (i.e., different coordinates). Observe that this
normalization implies that 0 ≤ dij ≤ 1 for all the pairs of students i and j with
corresponding attributes xi and xj .

Max-Diversity Orthogonal Regrouping of MBA Students 61

3.2 Problem Formulation

Consider the following variables:

– N the number of students.
– G the number of teams (clusters).
– K the number of attributes.
– M the number of students per team: M = N

G (if integer).
– S the number of terms (clusterings).
– dij the distance between the students i and j.
– R is the number of terms that any pair of students can share (R= 1 for a

SGP instance).

Consider the set of binary decision variables xigs, such that xigs = 1 if and
only if the student i is assigned to the group g in term s, and xigs = 0 otherwise.
We introduce the MDOR problem as the following Integer Quadratic Problem:

max
xigs

S∑

s=1

G∑

g=1

N−1∑

i=1

N∑

j=i+1

dijxigsxjgs, (2)

s.t.

G∑

g=1

xigs = 1, ∀(i, s) ∈ {1, . . . , N} × {1, . . . , S} (3)

N∑

i=1

xigs = M, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (4)

S∑

s=1

G∑

g=1

N−1∑

i=1

N∑

j=i+1

xigsxjgs ≤ R, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (5)

xigs ∈ {0, 1}, ∀(i, g, s) ∈ {1, . . . , N} × {1, . . . , G} × {1, . . . , S} (6)

The goal is to maximize the diversity-sum among all clusters and clusterings,
where the intra-cluster diversity is precisely the distance-sum among all the pairs
of that cluster. Constraint 3 states that each student is included in a single team.
Constraint 4 states that the teams have precisely M students. Constraint 5 limits
the number of times any pair of students can meet in different terms. Finally,
Constraint 6 defines the binary domain for the decision variables.

3.3 Discussion

Observe that the previous MDOR model is adequate when M = N
G is an inte-

ger. Next we comment on how to overcome this limitation and to minimize the
number of repetitions as well.

62 M. Banchero et al.

Number of Students per Group. If M = N
G is not an integer, we can replace

Constraints 4 with a minimal variation. In fact, consider the Euclidean division:
N = G × M + r for some remainder r : 0 ≤ r < G. We can arrange M + 1
students in r groups, and M students in the remaining G − r groups.

As a more general setting, pick two vectors a and b representing lower and
upper-bounds on the number of students per group. Replace Constraints 4 with:

G∑

g=1

xigs ≥ ag, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}

G∑

g=1

xigs ≤ bg, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}.

Avoiding Repetitions. Avoiding repetitions is not always possible, depending
on the parameters G,M,S of a MDOR instance. Even when it is possible, no
polynomial-complexity algorithm is known for the general case; variations like
the SGP-completion problem are known to be NP-complete [6,13].

Let us consider a certain student, and let ws be the number of feasible peer
students for him/her during the term s. The sequence ws satisfies the following
recurrence:

w1 = N − 1;
wi+1 = wi − (M − 1),

since M−1 new students are met in the last term s = i. A straight solution of the
recurrence leads to ws = N − 1 − (s− 1)(M − 1). When the courses are finished
we get s = S and wS = N−1−(S−1)(M−1). Hence, if N < (S−1)(M−1)+1,
it is impossible to avoid repetitions.

Two possible heuristic approaches arise to cope with the repetition problem.
One might build high-diversity solutions while controlling the repetition level.
Alternative, one might generate repetition-free solutions and then choose and/or
modify them seeking for improved diversity. In this paper we introduce an algo-
rithm that follows the first approach. A parameter GLOBAL REP is set; once
more than GLOBAL REP times a solution is generated including a repetition
for a certain pair, the algorithm accepts the repetition.

4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a pow-
erful multi-start process which operates in two phases. A feasible solution is built
in a first phase, whose neighborhood is then explored in the Local Search Phase.
The second phase is usually enriched by means of different variable neighbor-
hood structures. For instance, VND explores several neighborhood structures

Max-Diversity Orthogonal Regrouping of MBA Students 63

in a deterministic order. Its success is based on the simple fact that different
neighborhood structures do not usually have the same local minimum. Thus,
the resulting solution is simultaneously a locally optimum solution under all
the neighborhood structures. The reader is invited to consult the comprehen-
sive Handbook of Heuristics for further information [11]. Here, we develop a
GRASP/VND methodology.

4.1 GRASP/VND Methodology for the MDOR

We followed a traditional VND flow diagram, that consists of three local searches:

– Insert: moves a student to another group.
– Swap: swaps two students from different groups.
– 3 − Chain: exchanges three students from three different groups.

The most simple local searches appear at the beginning. Therefore, the order is
respectively Insert, Swap and 3 − Chain. A greedy randomized Construction
phase takes effect first.

To speed-up the evaluation of the objective function, the internal structures
in the main algorithm consider two vectors:

– xc[i]: current group for student i, and
– sdc[i][g]: current sum-diversity between the student i and his/her peers in

group g.

Observe that sdc[i][g] =
∑

j:x[j]=g di,j , and if we link the students in a graph
with link-weights di,j , by Handshaking Lemma we get that the objective is:

f(xc) =
1
2

N∑

i=1

sdc[i][xc[i]]. (7)

In the following, the details of the construction and local searches are pre-
sented, in the respective order.

4.2 Construction Phase

The search space is the set of all student assignments to the groups, where
each student belongs to exactly one group. A feasible solution also meets the
respective lower and upper bounds ag and bg. In our Construction phase, an
iterative student insertion into groups takes effect, meeting the lower bounds
ag. Finally, in order to fulfill feasibility, all the students are assigned in some
group, meeting the upper-bound bg. Two factors are considered for these group-
insertions: diversity and repetitions. In this construction phase, the priority is
given to repetitions. Therefore, a memory with the previous terms is used, and
if two assignment have identical number of repetitions, the assignment with

64 M. Banchero et al.

maximum diversity is chosen. During the process, the diversity per group g for
some student x is found using the following expression:

d′(x, g) =
∑

y∈g

d(x, y)
|g| .

Observe the relation with the cardinality |g|; otherwise, groups with larger num-
ber of students are always preferred (Fig. 1).

Algorithm 1 Construction(studentGroup, a, b, atrsStandard, repMatrix)
1: studentVector ← {1, 2, .., N}
2: groupVector ← {1, 2, .., N}
3: assignOneRandomStudentToEachGroup(studentGroup, repMatrix)
4: while groupV ector �= {} do
5: selGroup ← assignGroupToStudForMinRepetitions(
6: studentGroup, repMatrix)
7: if groupCount[selGroup] = a[selGroup] then
8: groupVector ← groupVector − selGroup
9: end if
10: end while
11: for g ← 1 to G do
12: if groupCount[g] = b[g] then
13: groupVector ← groupVector − g
14: end if
15: end for
16: while groupV ector �= {} do
17: selGroup ← assignGroupToStudentForMinRepetitions(
18: studentGroup, repMatrix)
19: if groupCount[selGroup] = b[selGroup] then
20: groupVector ← groupVector − selGroup
21: end if
22: end while

Fig. 1. Construction phase

The following variables are considered during the Construction phase:

– studentGroup[s]: the group assigned to student s ∈ {1, . . . , N}.
– atrsStandard[i, j]: the value of attribute j ∈ {1, . . . ,K} for the student i.
– groupCount[g]: the number of students in the group g ∈ {1, . . . , G}.

The following functions are also considered:

– assignOneRandomStudentToEachGroup(): assigns, in each group, one ran-
dom student uniformly picked at random.

– assignGroupToStudForMinRepetitions(): picks a random student, and
assigns him/her to the group that leads to the least number of repetitions.
Ties are solved using the maximum diversity.

Max-Diversity Orthogonal Regrouping of MBA Students 65

4.3 Insertion

In this local search, a student i is moved from a different group. We remark that
a local search takes place whenever the resulting solution is both better and
feasible. To test feasibility, we just check the lower and upper bounds for the old
and the new group, respectively. The difference in the objective is the change in
the diversity:

f(xn) − f(xc) = sdc[i][g2] − sdc[i][g1],

being xn the new solution and xc the current solution (Fig. 2).

Algorithm 2 Insertion(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for g ← 1 to G do
4: if studentGroup[i] �= g
5: and groupCount[g] < b[g] and
6: groupCount[studentGroup[i]] > a[g] then
7: diffSol ← sd[i][g] − sd[i][studentGroup[i]]
8: if diffSol > 0 and updateTabuSearchMatrix(
9: i, g, studentGroup, tabuMatrix) then
10: studentGroup[i] ← g
11: solCurrent ← solCurrent + diffSol
12: updateSD(studentGroup, sd, i, g)
13: res ← true
14: end if
15: end if
16: end for
17: end for
18: return res

Fig. 2. Local Search I: Insertion

4.4 Swap

In this local search, two students i and j, originally belonging to different groups
gi �= gj , are exchanged, and the difference in the objective is:

f(xn) − f(xc) = (sdc[i][gj] − sdc[i][gi]) + (sdc[j][gj] − sdc[j][gi]) − 2dij

A pseudocode for Swap is presented in Fig. 3.

66 M. Banchero et al.

Algorithm 3 Swap(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for j ← 1 to N do
4: if studentGroup[i] �= studentGroup[j] then
5: diffSol ← sd[i][studentGroup[j]] + sd[j][studentGroup[i]]
6: −sd[i][studentGroup[i]] − sd[j][studentGroup[j]] − 2di,j
7: if diffSol > 0
8: and updateTabuSearchMatrix(
9: i, studentGroup[j], studentGroup, tabuMatrix)
10: and updateTabuSearchMatrix(
11: j, studentGroup[i], studentGroup, tabuMatrix) then
12: oldI ← studentGroup[i]
13: oldJ ← studentGroup[j]
14: studentGroup[i] ← oldJ
15: studentGroup[j] ← oldI
16: updateSD(studentGroup, sd, i, studentGroup[i])
17: updateSD(studentGroup, sd, j, studentGroup[j])
18: solCurrent ← solCurrent + diffSol
19: res ← true
20: end if
21: end if
22: end for
23: end for
24: return res

Fig. 3. Local Search II: Swap

4.5 3-Chain

Consider three different students i, j y k belonging to three different groups gi,
gj and gk. Student i is moved to gj , j is moved to gk and k is moved to gi
(Fig. 4):

f(xn)− f(xc) = (sdc[i][gj]− sdc[i][gi]) + (sdc[j][gk]− sdc[j][gj]) + (sdc[k][gi]− sdc[k][gk])

− (dij + djk + dki)

4.6 Shake

In order to increase the diversity in the search-space, a shake process takes place.
Consider a k-neighborhood of Swap operation, this is, an arbitrary application
of k swaps. Shake picks a k-neighbor, and the VND phase is re-started with the
obtained solution, provided that the Tabu List allows for the shake to be done
(i.e., controlling the repetitions threshold). Figure 5 presents a full pseudocode
for Shake. In the general algorithm, k starts equal to a parameter K MIN and
is increased by a second parameter K STEP until the solution is improved or
up to a third parameter K MAX.

Max-Diversity Orthogonal Regrouping of MBA Students 67

Algorithm 4 3−Chain(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for j ← 1 to N do
4: for k ← 1 to N do
5: if studentGroup[i] �= studentGroup[j]
6: and studentGroup[j] �= studentGroup[k] then
7: diffSol ← sd[i][studentGroup[j]] + sd[][studentGroup[k]]
8: +sd[k][studentGroup[i]] − sd[i][studentGroup[i]]
9: −sd[j][studentGroup[j]] − sd[k][studentGroup[k]]
10: −2di,j − 2dj,k − 2dk,i
11: if diffSol > 0
12: and updateTabuSearchMatrix(
13: i, studentGroup[j], studentGroup, tabuMatrix)
14: and updateTabuSearchMatrix(
15: j, studentGroup[k], studentGroup, tabuMatrix)
16: and updateTabuSearchMatrix(
17: k, studentGroup[i], studentGroup, tabuMatrix) then
18: oldI ← studentGroup[i]
19: oldJ ← studentGroup[j]
20: oldK ← studentGroup[k]
21: studentGroup[i] ← oldJ
22: studentGroup[j] ← oldK
23: studentGroup[k] ← oldI
24: updateSD(studentGroup, sd, i, studentGroup[i])
25: updateSD(studentGroup, sd, j, studentGroup[j])
26: updateSD(studentGroup, sd, k, studentGroup[k])
27: solCurrent ← solCurrent + diffSol
28: res ← true
29: end if
30: end if
31: end for
32: end for
33: end for
34: return res

Fig. 4. Local Search III: 3 − Chain

4.7 Main Algorithm

The main algorithm iterates over all terms. For each one, it starts by invoking
Construction a number of times MAX TRIES that acts as a parameter. The
most diverse solution is passed to the following step, where the following cycle
is repeated a number of times T MAX (another parameter): Shake - Insertion
- Swap - 3 − Chain. The best solution found (the most diverse clustering) is
chosen for the term, moving on to the next one.

68 M. Banchero et al.

Algorithm 5 Shake(studentGroup, k, sd, solCurrent, atrsStandard, tabuMatrix)
1: while k > 0 do
2: randomI ← getRandom(N)
3: randomJ ← getRandom(N)
4: if studentGroup[randomI] <> studentGroup[randomJ] then
5: if updateTabuSearchMatrix(randomI,
6: studentGroup[randomJ], studentGroup, tabuMatrix)and
7: updateTabuSearchMatrix(randomJ,
8: studentGroup[randomI], studentGroup, tabuMatrix) then
9: oldI ← studentGroup[i]
10: oldJ ← studentGroup[j]
11: studentGroup[i] ← oldJ
12: studentGroup[j] ← oldI
13: updateSD(studentGroup, sd, i, studentGroup[i])
14: updateSD(studentGroup, sd, j, studentGroup[j])
15: k ← k − 1
16: end if
17: end if
18: end while
19: updateSolCurrent(solCurrent, sd, studentGroup
20: return res

Fig. 5. Perturbation Step: Shake

5 Computational Results

We carried out a comparison between the algorithm here introduced and the
manual team assignment that was done in real-life with two IEEM Business
School MBA cohorts from 2014 and 2015: “MBA1314” (34 students, 6 teams)
and “MBA1415” (45 students, 8 teams).

The algorithm was coded in C++ and executed in a home-PC (Intel-core
i7 2.2GHz, 8GB RAM). One hundred independent iterations were run (since
GRASP is a multi-start metaheuristic) and the best solution was finally returned.
As a preliminary stage, an adjustment of all the parameters was performed run-
ning several experiments. MAX TRIES and T MAX were set to 100 and 500
respectively. The Shake parameters were finally set to K MIN = K STEP = 1
and K MAX = 3. There is a trade-off between diversity and number of repeti-
tions. A larger freezing-factor GLOBAL REP in the Tabu List implies a lower
level of diversity as one test with MBA1415 shows in Table 1. All results next
reported were obtained with Tabu-list parameter to a freezing factor of 285.000
to keep repetitions at a minimum level.

Table 2 compares the diversity achieved by our algorithm vs the manual team
assignment for the two cohorts and the five terms that the program spans; Table 3
does a similar comparison for repetitions per term. Our algorithm consistently
outperformed the manual assignment when considering diversity and repetitions.
It also took less time, since the longest execution took 50 min, while the manual
assignment was reported to take more than 4 hours for each cohort.

Max-Diversity Orthogonal Regrouping of MBA Students 69

Table 1. Diversity and repetitions per term, MBA1415: manual vs algorithm.

Table 2. Diversity per term, MBA1314 and MBA1415: manual vs algorithm.

Table 3. Repetitions per term, MBA1314 and MBA1415: manual vs algorithm.

6 Conclusions and Trends for Future Work

A novel combinatorial optimization problem is introduced named Max-Diversity
Orthogonal Regrouping (MDOR). It was conceived to cope with the problem of
partitioning MBA cohorts into high-diversity teams, rotating the teams in every
term and keeping under a given (low) threshold the repetitions. Nevertheless, the
MDOR has potential applications in workforce management or team formation
models for collaboration. The mathematical programming formulation is similar
to a quadratic assignment problem, and the MDOR is presumably hard, even
though a formal proof is not available in the literature.

70 M. Banchero et al.

A GRASP/VND methodology enriched with Tabu Search is here proposed
in order to address the MDOR. A Shaking process in order to further explore
the search-space is also included. The tests presented show that this algorithm
produces clusterings faster, with fewer repetitions and higher diversities than the
manually-built clusters applied to the real-life cohorts of the test cases. Future
work includes formally establishing the computational complexity of the MDOR,
and comparing our GRASP/VND methodology with alternative heuristics.

Acknowledgements. This work is partially supported by Project ANII FCE 1 2019
1 156693 Teoŕıa y Construcción de Redes de Máxima Confiabilidad, MATHAMSUD
19-MATH-03 Rare events analysis in multi-component systems with dependent com-
ponents and STIC-AMSUD ACCON Algorithms for the capacity crunch problem in
optical networks.

References

1. Bahargam, S., Golshan, B., Lappas, T., Terzi, E.: A team-formation algorithm for
faultline minimization. Expert Syst. Appl. 119, 441–455 (2019)

2. Baker, B.M., Benn, C.: Assigning pupils to tutor groups in a comprehensive school.
J. Oper. Res. Soc. 52, 623–629 (2001)

3. Bhadurya, J., Mightyb, E.J., Damar, H.: Maximizing workforce diversity in project
teams: a network flow approach. Omega 28, 143–153 (2000)

4. Brimberg, Jack, Mladenovic, Nenad, Uroševic, Dragan: Solving the maximally
diverse grouping problem by skewed general variable neighborhood search. Inf.
Sci. 295, 650–675 (2015)

5. De Bruecker, P., Van den Bergh, J., Beliën, J., Demeulemeester, E.: Workforce
planning incorporating skills: state of the art. Eur. J. Oper. Res. 243(1), 1–16
(2015)

6. Colbourn, C.J.: The complexity of completing partial Latin squares. Discret. Appl.
Math. 8(1), 25–30 (1984)

7. Desrosiers, J., Mladenović, N., Villeneuve, D.: Design of balanced MBA student
teams. J. Oper. Res. Soc. 56, 60–66 (2005)

8. Dragan, Uroševic: Variable neighborhood search for maximum diverse grouping
problem. Yugoslav J. Oper. Res. 24, 21–33 (2014)

9. Fan, Z.P., Chen, Y., Ma, J., Zeng, S.: A hybrid genetic algorithmic approach to
the maximally diverse grouping problem. J. Oper. Res. Soc. 62, 1423–1430 (2011)

10. Feo, T.A., Khellaf, M.: A class of bounded approximation algorithms for graph
partitioning. Networks 20, 181–195 (1990)

11. Mart, R., Pardalos, P.M., Mauricio, G., Resende, C.: Handbook of Heuristics, 1st
edn. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-07124-4

12. Rodriguez, F.J., Lozano, M., Garćıa-Mart́ınez, C., González, J.D.: An artificial
bee colony algorithm for the maximally diverse grouping problem. Inf. Sci. 230,
183–196 (2013)

13. Triska, M.: Solution methods for the social golfer problem. Inf. Sci. 295 (2008)
14. Wi, H., Seungjin, O., Mun, J., Jung, M.: A team formation model based on knowl-

edge and collaboration. Expert Syst. Appl. 36(5), 9121–9134 (2009)

https://doi.org/10.1007/978-3-319-07124-4

	Max-Diversity Orthogonal Regrouping of MBA Students Using a GRASP/VND Heuristic
	1 Motivation
	2 Related Work
	3 Problem
	3.1 Problem Description
	3.2 Problem Formulation
	3.3 Discussion

	4 Solution
	4.1 GRASP/VND Methodology for the MDOR
	4.2 Construction Phase
	4.3 Insertion
	4.4 Swap
	4.5 3-Chain
	4.6 Shake
	4.7 Main Algorithm

	5 Computational Results
	6 Conclusions and Trends for Future Work
	References

