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Preface

This volume edited by Nenad Mladenović, Andrei Sleptchenko, Angelo Sifaleras, and
Mohammed Omar contains peer-reviewed papers from the 8th International Confer-
ence on Variable Neighborhood Search (ICVNS 2021) held in Abu Dhabi, U.A.E.,
during March 21–25, 2021.

The conference follows previous successful meetings that were held in Puerto de la
Cruz, Tenerife, Spain (2005); Herceg Novi, Montenegro (2012); Djerba, Tunisia
(2014); Malaga, Spain (2016); Ouro Preto, Brazil, (2017); Sithonia, Halkidiki, Greece
(2018); Rabat, Marocco (2019).

This edition was organized by Nenad Mladenović, Andrei Sleptchenko, and
Mohammed Omar from Khalifa University (United Arab Emirates), together with
Angelo Sifaleras, from the University of Macedonia (Greece).

Like its predecessors, the main goal of ICVNS 2021 was to provide a stimulating
environment in which researchers coming from various scientific fields could share and
discuss their knowledge, expertise, and ideas related to the VNS Metaheuristic and its
applications. Due to the COVID-19 pandemic, the ICVNS 2021 was organized in
hybrid (online and offline) mode with the help of the Office of Marketing and Com-
munications of Khalifa University.

The following three plenary lecturers shared their current research directions with
the ICVNS 2021 participants:

• Panos M. Pardalos, from the Center for Applied Optimization, Department of
Industrial and Systems Engineering, of the University of Florida, USA,

• Yury Kochetov, from the Sobolev Institute of Mathematics, Novosibirsk, Russia,
• Bassem Jarboui, from the Higher Colleges of Technology, U.A.E.

Around 40 participants took part in the ICVNS 2021 conference, and a total of 27
papers were accepted for oral presentation. A total of 14 long papers were accepted for
publication in this LNCS volume after thorough peer review by the members of the
ICVNS 2021 Program Committee. These papers describe recent advances in methods
and applications of Variable Neighborhood Search.

The editors thank all the participants in the conference for their contributions and for
their continuous effort to disseminate VNS and are grateful to the reviewers for
preparing excellent reports. The editors wish to acknowledge the Springer LNCS
editorial staff for their support during the entire process of making this volume. Finally,
we express our gratitude to the organizers and sponsors of the ICVNS 2021 meeting:

• The Research Center for Digital Supply Chains and Operations Management,
Khalifa University,

• the Office of Marketing and Communications of Khalifa University



• The EURO Working Group on Metaheuristics (EWG EU/ME),
• The Department of Culture and Tourism of Abu Dhabi.

Their support is greatly appreciated for making ICVNS 2021 a great scientific event.

January 2021 Nenad Mladenovic
Andrei Sleptchenko

Angelo Sifaleras
Mohammed Omar

vi Preface
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Finding Critical Nodes in Networks Using
Variable Neighborhood Search

Iván Mart́ın de San Lázaro , Jesús Sánchez-Oro(B) , and Abraham Duarte

Universidad Rey Juan Carlos, C/Tulipán S/N, Móstoles, Spain
{ivan.martin,jesus.sanchezoro,abraham.duarte}@urjc.es

Abstract. Several problems related to networks are based on the identi-
fication of certain nodes which can be relevant for different tasks: network
security and stability, protein interaction, or social influence analysis,
among others. These problems can be modeled with the Critical Node
Detection Problem (CNDP). Given a network, the CNDP consists of
identifying a set of p nodes whose removal minimizes the pairwise con-
nectivity of the network. In this work, a Basic Variable Neighborhood
Search (BVNS) algorithm is presented with the aim of generating high
quality solutions in short computing times. The detailed experimental
results show the performance of the proposed algorithm when compar-
ing it with the state of the art method, emerging BVNS as a competitive
algorithm for the CNDP.

Keywords: Critical Node Detection Problem · Variable Neighborhood
Search · Constructive procedure · Metaheuristics

1 Introduction

The stability of a network usually relies on a small set of the nodes that conforms
it, which can be labeled as critical nodes. A node can be considered critical if
the network performance is deteriorated when the node fails or it is affected by
an external attack. Therefore, identifying these critical nodes is a relevant task
which has been the focus of researchers and practitioners in the last years. These
critical nodes can be found in the literature under different names: most vital
nodes [11], key-player nodes [8], most influential nodes [19], or most k-mediator
nodes [21], among others. In the context of network connectivity, in which this
paper is focused, they are usually known as critical nodes [20].

Identifying critical nodes in networks can be useful in several tasks. In com-
putational biology, several biological organisms are interconnected proteins that
interact among them to form a protein-interaction network. These networks are
usually modeled by a graph where nodes are proteins and edges are interactions
between them. Critical nodes are proteins that maintain connectivity among all
proteins, and they can provide useful information for many biological applica-
tions. For instance, in drug design [18,22], these critical proteins are the objective
to neutralize the studied harmful organism [7,30].
c© Springer Nature Switzerland AG 2021
N. Mladenovic et al. (Eds.): ICVNS 2021, LNCS 12559, pp. 1–13, 2021.
https://doi.org/10.1007/978-3-030-69625-2_1
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In the context of network security, the CNDP is able to find relevant vulner-
abilities in a network. In general, a vulnerability in a network usually consists in
a node failure that deteriorates the network performance. Therefore, identifying
critical nodes in a network can allow us to reinforce them in order to guarantee
the network performance [8,14]. For instance, a method based on the critical
nodes concept [15] is presented for analyzing network vulnerability in the case
of unexpected events.

Identifying critical nodes is also interesting for analyzing telecommunication
networks, since the failure of these nodes can lead to disable the network [25,26].
From the attacker point of view, the CNP has been studied to destroy communi-
cations on terrorist networks [5]. The Wireless Network Jamming Problem was
also formulated as a CNDP variant [10], where critical nodes are the ones that
need to be jammed.

The CNDP is also interesting in transportation problems, where the man-
agers need to analyze the relevance of certain points in the road network [9].
Additionally, identifying critical nodes can help to prevent from disasters by
planning good emergency evacuations [34].

The problem of identifying these critical nodes in networks is usually known
as Critical Node Detection Problem (CNDP). The CNDP is an optimization
problem that aims to find the set of nodes in a network that leads to maximize
or minimize a certain criteria related to the network connectivity. Since there
exists different objective function to be optimized in the context of critical node
detection, we will firstly describe the objective function considered in this work.

Let G = (V,E) be a network modeled as an undirected and unweighted
graph where V is the set of nodes, with |V | = n, and E is the set of edges, with
|E| = m. The objective of the CNDP considered in this work is to find a subset of
nodes S, with S ⊆ S, of size p, whose removal leads to a graph G′ = (V \S,E′),
with E′ = E \ {(u, v) ∈ E : u ∈ S} with the minimum pairwise connectivity.
Then, the graph G′ can be represented by a set of connected components G′ =
{C1, C2, . . . , Cc}. Notice that each pair of nodes in a connected component Ci

is connected through a path, then existing |Ci|·(|Ci|−1)
2 paths in it. A solution

S for the CNDP is then evaluated as the number of paths between two nodes
that exists in the graph G′ that results after removing all nodes in S from the
original graph G. More formally,

CNDP(S) =
c∑

i=1

|Ci| · (|Ci| − 1)
2

Then, the CNDP consists of finding a solution S� with the minimum
CNDP(S) value among all possible sets of p nodes, S, that can be conformed
from V . In mathematical terms,

S� = arg min
S∈S

CNDP(S)

Notice that, given a network with n nodes and a certain value of p, the
number of solutions in the search space can be evaluated as

(
n
p

)
. Since this value
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increases extremely fast with the n and p values, and the real-life networks are
usually large, it is necessary to propose new efficient algorithms that provides
high quality solutions in small computing times.

Figure 1(a) shows an example network G with 12 nodes and 16 edges, as
well as two feasible solutions S1 and S2 for the CNDP considering p = 2. The
initial network is represented in Fig. 1(a). In both presented solutions the selected
nodes are highlighted in black and the edges that are removed as a consequence
of this critical node selection are represented with a dashed line. Additionally,
we have highlighted in gray the resulting connected components after removing
the critical nodes.

(a) Example network G.

(b) S1 = {G, H}. (c) S2 = {C, H}.

Fig. 1. Example network with 12 nodes and 16 edges and two feasible and two feasible
solutions for the CNDP, S1 and S2.

Solution depicted in Figure 1(b) is S1 = {G, H}, resulting in two con-
nected components, C1 and C2, with 7 and 3 nodes, respectively. Therefore,
CNDP(S1) = 7·6

2 + 3·2
2 = 24, i.e., there exists a path between 24 pairs of nodes

in the resulting graph. If we now evaluate solution S2, presented in Fig. 1(c), there
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are three connected components, C1, C2, and C3, with sizes 3, 4, and 3, respec-
tively. The objective function value for S2 is CNDP(S2) = 3·2

2 + 4·3
2 + 3·2

2 = 12.
Therefore, analyzing these results, S2 is better than S1, since it is able to find a
solution that allows a smaller number of pairwise connections than S2.

The CNDP has been widely studied in the literature from both exact and
heuristic perspectives. Due to the problem complexity, the exact approaches are
designed for finding the optimal value in networks with a particular topology.
For instance, the CNDP was proven to be polynomially solvable for trees using
dynamic programming [12], and this result was later generalized for graphs with
a bounded treewidth [2]. A branch and cut algorithm was also proposed for
general graphs [13], presenting an integer linear programming model. The main
drawback of this approach is that it is able to solve graphs when n ≤ 150. Finally,
a more efficient mathematical model [33] was tested in larger sparse networks.

Analyzing the heuristic approaches, both simple heuristics and more com-
plex metaheuristics have been proposed. From the heuristic perspective, one of
the first approaches was a greedy algorithm that iteratively adds elements to
the solution until obtaining a feasible solution following a greedy criterion [6].
The opposite approach, i.e., remove elements from an initial solution that con-
tains all the nodes until it becomes feasible was also proposed [32]. Later, some
hybrid approaches that mix both constructive and destructive approximations
were proposed [1], as well as a multi-start approach [27]. Two local improve-
ments based on iterated local search and variable neighborhood search were
presented in [4], as well as a fast implementation of iterated local search [35]
whose success relies in an effective two-phase node exchange procedure. More
complex algorithms have been also proposed for solving the CNDP. In particular,
a population-based incremental learning algorithm [31] uses a novel representa-
tion of the problem, while an evolutionary framework was presented in [3]. As far
as we know, the best results for the CNDP are presented in [28], where a Greedy
Randomized Adaptive Search Procedure is proposed for generating a set of high
quality solutions that are later combined with a Path Relinking algorithm.

2 Algorithmic Approach

The CNDP is an NP-hard problem [6] and, therefore, exact approaches are
not suitable for solving it. In this work we propose a metaheuristic algorithm
based on the Variable Neighborhood Search (VNS) methodology for providing
high quality solutions in reasonable computing times. The main idea of VNS
is to perform systematic changes in the neighborhood structures in order to
avoid stagnating the search in attraction basins. VNS was initially proposed as
a simple metaheuristic algorithm [23], but it has evolved until becoming a com-
plete framework with several extensions [17]: Basic VNS, Reduced VNS, General
VNS, Variable Neighborhood Descent, and Variable Formulation Search, among
others. This work is focused in the Basic VNS (BVNS) variant, since the main
objective is to generate competitive solutions without requiring high computa-
tional efforts. BVNS performs both random (diversification) and deterministic



Finding Critical Nodes in Networks Using Variable Neighborhood Search 5

(intensification) changes of neighborhood structures with the aim of avoiding
getting stuck in local optima during the search. Algorithm1 presents the pseu-
docode of the proposed BVNS.

Algorithm 1. BVNS (S, kmax, T )
1: for i ∈ 1 . . . T do
2: k ← 1
3: while k ≤ kmax do
4: S′ ← Shake(S, k)
5: S′′ ← Improve(S′)
6: k ← NeighborhoodChange(S, S′′, k)
7: end while
8: end for
9: return S

BVNS requires three input parameters: an initial feasible solution S to start
the search, the maximum neighborhood to be explored kmax, and the maximum
number of iterations of BVNS that will be performed, T . In the context of VNS,
the initial solution can be generated either at random or using a more elaborated
constructive procedure. Starting the search from a promising solution usually
allows the algorithm to reduce the computational effort required to converge
and, therefore, we propose a constructive procedure for the CNDP (see Sect. 2.1).
We refer the reader to Sect. 3 where the impact of kmax and T is thoroughly
discussed.

BVNS starts from the first neighborhood (step 2), iterating until reaching the
maximum predefined neighborhood (steps 3–7). In each iteration, the incumbent
solution S is randomly perturbed to find a neighbor solution S′ in the neighbor-
hood k under exploration (step 4), by using a Shake procedure which is described
in Sect. 2.2. Since S′ has been selected at random from the current neighborhood,
it is not necessarily a local optimum with respect to the neighborhood consid-
ered in the improvement procedure. Therefore, a local improvement is applied
to S′, producing local optimum S′′ (step 5). The local improvement proposed
in this work is deeply described in Sect. 2.3. Finally, the neighborhood change
method (see Sect. 2.4) is responsible for selecting the next neighborhood to be
explored, as well as updating the incumbent solution if necessary (step 6). A
complete iteration ends when reaching the largest neighborhood to be explored,
kmax. The BVNS ends when performing T complete iterations, returning the
best solution found during the search, S (step 9).

2.1 Initial Solution

This work proposes a fast greedy constructive procedure to generate an promis-
ing solution that will be the starting point of the BVNS. The proposed greedy
procedure starts from an empty solution S and iteratively adds to S the most
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promising node in each iteration. In order to select which is the most promising
node, a greedy function is necessary, which evaluates each candidate node before
inserting it in the solution.

Analyzing the CNDP, a node is a good candidate if it is able to disconnect
several paths. Therefore, we propose to use an adaptation of a centrality measure
derived from Social Network Analysis, called betweenness [16]. Given a vertex
v, the betweenness centrality b(v) is evaluated as

b(v) =
∑

s,t∈V \{v}

σ(s, t|v)
σ(s, t)

where σ(s, t|v) is the number of paths between s and t in which v appears and
σ(s, t) is the total number of paths between s and t.

Following this idea, the greedy criterion considered in this work consists in
performing a breadth first search (BFS) from each node in the network to evalu-
ate the shortest paths between every pair of nodes. During this exploration, the
method evaluates how many times the vertex under evaluation appears in the
shortest path between two nodes. Then, the candidate vertex with the largest
number of appearances in shortest paths is included in the solution. More for-
mally, the greedy function used in this constructive procedure is defined as

g(v) =
∑

s,t∈V \{v}
σS(s, t|v)

where σS(s, t|v) takes value 1 if v is in the shortest path between s and t and 0
otherwise. Notice that this greedy function reduces the complexity with respect
to b(v), since it is not necessary to evaluate all the paths between two nodes but
evaluate just the shortest path. In particular, the best approach for evaluating
the betweenness presents a complexity of O(m · n + n2 log n) [24], while the
complexity of the proposed method is O(m · n + n2).

These steps are repeated until including p nodes in the solution. It is worth
mentioning that, in each iteration, the nodes that are already included in the
solution are not considered for the BFS. This behavior allows the greedy function
to be more accurate, selecting the nodes that appears in most of the remaining
paths after having removed those edges in which the nodes already in the solution
are endpoints.

2.2 Shake

The Shake method in the VNS methodology is responsible for diversifying the
search, allowing BVNS to escape from local optima. In order to do so, the method
finds a neighbor solution with respect to the neighborhood under evaluation.
Therefore, we first need to define the neighborhood considered in this work. The
neighborhood of a given solution S is defined as the set of solutions that can be
reached by performing a single move to S. We propose the swap move for CNDP,
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which consists of removing a selected node from the solution and inserting a non-
selected node in it. In mathematical terms, the move Swap(S, u, v) is defined as

Swap(S, u, v) = S \ {u} ∪ {v}

Then, the neighborhood N1
s (S) is conformed by all the solutions that can be

reached by removing a node from S and inserting a new one from V \ S. More
formally,

N1
s (S) = {S′ ← Swap(S, u, v) : ∀u ∈ S ∧ ∀v ∈ V \ S}

Without loose of generality, let us define neighborhood N i
s(S) as the set of

solutions that can be reached by performing i swap moves over solution S.
Having defined the neighborhood under consideration, the Shake procedure

randomly selects a neighbor solution in Nk
s (S) to continue the search. Notice

that the objective function value of the selected neighbor solution is not relevant
for this procedure since it is focused on diversification and, therefore, solutions
with larger objective function value (i.e., worse solutions) are accepted.

2.3 Improvement

The improvement phase in VNS aims to find a local optimum of a given solution
with respect to a certain neighborhood. In the context of VNS, the improvement
phase is usually conformed with a local search method, but it can be replaced
with a more complex heuristic or even a complete metaheuristic algorithm [29].
Regarding the CNDP, as we aim to design a fast algorithm, we propose the use
of a simple but effective local search method.

The first key element in a local search method is the neighborhood to be
explored. Given a solution S, we propose the exploration of the neighborhood
N1

s (S), defined in Sect. 2.2. There are two main strategies for exploring the
neighborhood: Best Improvement and First Improvement. The former evaluates
all the solutions in the neighborhood, returning the best solution found in it.
The latter, however, explores the neighborhood following a certain order, con-
tinuing the search through the first solution that improves the incumbent one.
We propose the use of a First Improvement strategy since it does not require
to explore the complete neighborhood, thus resulting in a more efficient local
search method.

In the First Improvement approach it is important to decide the order in
which the neighborhood is explored, since the first improving move is accepted,
the search can be skewed due to this ordering. Therefore, we try to include in
the solution the most promising nodes before, with the aim of finding improving
moves faster. The local search proposed sorts the candidate nodes to enter in
the solution in descending order with respect to its degree, since a node with
a high degree have more probabilities of being in the path of several pairs of
nodes. Then, a swap move between the candidate node and each node already
in the solution is performed, restarting the search every time an improvement is
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found. The method stops when the complete neighborhood is explored without
finding any improvement in the incumbent solution.

Notice that a direct implementation of this local search is very computation-
ally demanding, since it requires to evaluate the objective function value in each
iteration. However, we propose to maintain the connected components in cache
and update them every time a node is removed or inserted in a solution. This
idea allow the local search to evaluate the solution with a complexity of O(c),
being c the number of connected components, since the number of paths in each
connected component can be evaluated in O(1).

2.4 Neighborhood Change

The Neighborhood Change method is applied at the end of each BVNS iteration,
being responsible for selecting the next neighborhood to be explored. Algorithm2
depicts the pseudocode of the Neighborhood Change method considered.

Algorithm 2. NeighborhoodChange(S, S′′, k)
1: if CNDP(S′′) < CNDP(S) then � Improvement
2: S ← S′′

3: k ← 1
4: else
5: k ← k + 1
6: end if

The method receives as input parameters the best solution found S, the local
optimum found in the improvement phase S′′, and the current neighborhood k.
Then, if the candidate solution S′′ presents a better objective function value
than the incumbent one S (step 1), it is updated (step 2), restarting the search
from the first neighborhood (step 3). Otherwise, the search continues in the next
neighborhood (step 5).

3 Computational Results

This section has two main objectives: 1) determine the best values for the param-
eters of the proposed algorithm and 2) evaluate the performance of the BVNS
when comparing it with the best methods found in the state of the art. All the
algorithms have been coded in Java 9, and the experiments have been performed
in an Intel Core i7 2,1 GHz with 16 Gb of RAM.

The testbed of instances used in this work has been directly derived from the
literature [31], which has been also used in the state of the art for the CNDP
[28]. It is conformed with a set of 16 instances where the number of vertices
ranges from 235 to 5000, while the number of edges ranges from 250 to 4999.
The value of p is pre-established for each instance, from 50 in the smallest one
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to 265 in the largest. We refer the reader to [28] for a detailed description of
each instance included in the testbed.

We have performed two types of experiments: preliminary and competitive
testing. The former are devoted to evaluate the impact of each element included
in the algorithm and to select the best value for the input parameters kmax and
T . The aim of the latter is to evaluate the performance of the presented algorithm
when comparing it with the best algorithm found in the state of the art for the
CNDP. With the aim of avoiding overfitting, the preliminary experimentation
only considers 5 representative instances out of 16.

All the experiments report the following metrics: Avg., the average objective
function value; Time (s), the average computing time in seconds; Dev(%) the
average deviation with respect to the best solution of the experiment; # Best,
times that the algorithm matches the best solution of the experiment.

The first preliminary experiment is designed to evaluate the impact of the
local search when coupled with the constructive procedure isolated (i.e., with-
out including it in the VNS framework). To that end, we compare the results
obtained by the constructive procedure with the ones resulting from applying
the local search procedure to the constructed solution. Figure 2 shows the per-
formance of the constructive procedure when executed either isolated (black
bars) or coupled with the local search procedure (gray bars). The vertical axis
represent the objective function value, while the percentage over each instance
indicates the average deviation of the constructive procedure with respect to the
solution improved.

Fig. 2. Comparison of constructive procedure isolated and coupled with the local search
procedure.

As it can be seen in the figure, even in the smallest instance considered in
the preliminary experiment, the local search procedure is able to improve the
constructed solution in a 1.94%. Furthermore, the results suggest that the local
search method performance grows with the size of the instance. The computing
times are not included in the graph since they are all negligible.

The second preliminary experiment is designed to establish the best values
for kmax and T . In this case, a full-factorial experiment is proposed, considering
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kmax = {0.1, 0.2, 0.3, 0.4, 0.5} and T = {1, 2, 3, 4, 5}. Table 1 shows the average
objective function value obtained when considering these kmax and T values. The
cell color indicates the quality of that combination of parameters, being black
the best combination and white the worst one (i.e., the darker, the better).

Table 1. Average objective function value of the different configurations for kmax and
T parameters inside the BVNS algorithm. The darker the cell color, the better the
value.

T
kmax 0.1 0.2 0.3 0.4 0.5

1 5594.40 5736.60 5586.20 5700.60 5700.40
2 5594.40 5623.40 5586.00 5597.00 5566.00
3 5585.80 5623.00 5520.00 5590.80 5566.00
4 5544.00 5608.20 5519.00 5589.60 *
5 5531.00 5606.00 5509.40 5589.60 *

First of all, we would like to highlight that the cell that contains an asterisk
are those combination of parameters that have not been able to report a solution
for one or more instances in a time limit of three hour. This behavior indicates
that those combinations of parameters are not suitable for being considered in
a fast algorithm.

Regarding the average objective function value, the best results are obtained
when considering kmax = 0.3. Obviously, the larger the number of BVNS itera-
tions, the better. Then, it is mandatory to analyze the computing time required
for those T values. In particular, the values 3, 4, and 5 for T require from 308, 489,
and 667 s, respectively. Considering that the average objective function value is
similar, we then select T = 3 for the final version of the algorithm, in order to
configure a fast BVNS variant.

It is worth mentioning that, in line with the main idea of VNS [17], larger
values of kmax does not necessarily lead to better solutions. In particular, the
results show how kmax = {0.4, 0.5} are not the best options to set the maximum
predefined neighborhood. This can be partially explained because performing a
vast perturbation in the incumbent solution is equivalent to start the search from
a completely different point, which may not be the best option for the problem
under consideration.

Once the best parameters for the proposed algorithm have been selected, the
competitive testing evaluates its performance when comparing it with the best
previous method found in the state of the art. This method, named GRASP+PR,
consists in a Greedy Randomized Adaptive Search Procedure to generate a set of
solutions that are later combined using a traditional Path Relinking procedure.
In this experiment the full set of 16 instances are considered. Table 2 shows the
comparison of the proposed algorithm, BVNS, with the current state of the art
method, GRASP+PR.
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Table 2. Comparison of the BVNS algorithm considering kmax = 0.3 and T = 3 and
the best algorithm found in the state of the art, GRASP.

Algorithm Avg. Time (s) Dev (%) #Best

BVNS 85749.69 551.38 0.76 12

GRASP+PR 87482.19 12774.25 9.51 10

As it can be seen in the table, BVNS is able to reach a smaller objective func-
tion value on average (85749.69 versus 87482.19), as well as a smaller deviation
with respect to the best solution (0.76% versus 9.51%). The average deviation
close to zero indicates that, even in the instances in which BVNS is not able to
reach the best solution, it remains very close to it. Furthermore, the number of
best solutions found in better in the case of BVNS (12 versus 10). Finally, BVNS
is two orders of magnitude faster than GRASP+PR, which confirms that it is
able to provide high quality solutions in small computing times, one of the high-
lights of this work. This results confirms that BVNS emerges as a competitive
method for solving the CNDP without requiring high computational efforts.

4 Conclusions

This paper proposes a Basic VNS algorithm for generating high quality solutions
in short computing times. The initial solution is generated by a novel greedy
constructive procedure that leverages the idea of betweenness centrality from
Social Network Analysis, while the local improvement consists of a fast first
improvement local search procedure based on swap moves which perform an
intelligent exploration of the neighborhood. The combination of the constructive
procedure and local search method inside a Basic VNS framework results in a
competitive algorithm with the best method found in the state of the art, which
is able to generate high quality solutions in reasonable computing times.
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Abstract. This paper deals with the Green Electric Vehicle Routing
Problem with Time Window and Mixed Fleet and presents a Mixed
Integer Linear Programming formulation for it. Initially, we applied the
CPLEX solver in this formulation. Then, to reduce the computatio-
nal time, we used Local Branching and Variable Neighborhood Descent
Branching (VNDB) methods. We did computational experiments with a
simple adaptation of the 100-customers Solomon’s benchmark instances.
The results showed that the three solution strategies reached the optimal
solution. However, the running time of the VNDB is considerably smaller
than those required by the other two solution methods. Therefore, this
fact proves that the VNDB is the more efficient technique in the tested
scenario.

Keywords: Green Vehicle Routing Problem · Variable neighborhood
search · Variable Neighborhood Descent Branching · Matheuristics ·
Mathematical programming

1 Introduction

In the last few decades, the Logistics and Transport (L&T) systems have been
intensively studied by the scientific community because the activities of this
sector represent a considerable impact on world economic expenses. A classic
problem in L&T is the Vehicle Routing Problem (VRP), which aims to mini-
mize the costs of the routes designed as a path for the vehicles of a given fleet
[23]. Variations of the VRP are being proposed over time by the scientific com-
munity due to their applicability in real transport situations. For example, the
Capacitated Vehicle Routing Problem (CVRP) defines a load capacity for the
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fleet of vehicles. The Vehicle Routing Problem with Time Window (VRPTW)
extends the CVRP by adding a time window to the depot and the customers.
The addition of new constraints to the VRP generates several variations of the
problem [4]. However, most of them consider that the fleet of vehicles has an
internal-combustion engine, but this fact does not reflect the current scenario in
L&T [13].

Evaluating L&T systems from an environmental and sustainable perspective
goes beyond the exclusively economic context and makes them more efficient [6].
L&T is responsible for a large percentage of oil consumption in North Ameri-
can and European countries. This fact makes necessary the presence of efficient
proposals for systems in this sector. Hence, L&T also is responsible (on a global
scale) for a large percentage of the emission of carbon dioxide (CO2) in the
Earth’s atmosphere. A possible solution for this scenario is to incorporate car-
bon footprint costs into the problem’s model [2]. Adding this feature to the VRP
generates a variation known as the Green Vehicle Routing Problem (GVRP),
which includes variants with constraints of fuel consumption, pollutant control,
and reverse logistics [17]. Another solution that aims to minimize the carbon
footprint is the use of alternative vehicles (e.g., electric vehicle, or EV). Includ-
ing this type of vehicle in the VRP defines a variation known as the Electric
Vehicle Routing Problem (EVRP) [13].

The use of EVs is a less polluting transport alternative. However, an efficient
L&T system must also deal with energy sources [9]. For example, consider a
country in which the principal source of energy is hydroelectric. This source
does not emit CO2 (or other pollutants) during the energy generation process.
The EVs will use this electricity as fuel, and this type of vehicle emits fewer
pollutants than the conventional vehicle (i.e., internal-combustion engine vehicle,
or CV). Now, consider a country in which the principal source of energy is
thermoelectric. In this case, the burning of coal emits the same amount (or even
exceeds it) of CO2 compared to the carbon footprint corresponding to the use
of CVs. However, the energy source is not the only barrier to the establishment
of EVs in L&T. Their autonomy is also another one. Nowadays, the average
driving range of most EVs is 150 miles, and this value can decrease significantly
due to cold temperatures [5]. The last barrier identified in the energy scenario
is the availability of recharging stations. The absence of these stations is one of
the biggest challenges to the success of using EVs in L&T [13].

The use of a mixed fleet of vehicles is a strategy to overcome the barriers
coming from the incorporation of EVs in L&T systems. This concept was intro-
duced in the VRP more than thirty years ago. However, the works with a mixed
fleet approach in the EVRP are recent [9]. This strategy becomes interesting if
we consider the context of technology migration (i.e., from CVs to EVs) [11].
This technological transition is noticeable since some European and Asian coun-
tries plan to shut down the CVs’ factories in a decade. Moreover, using a mixed
fleet provides a balance to the conflicting interests of the problem (i.e., economic
versus environmental), and improves routing strategies within the scope of the
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EVRP. Hence, it optimizes the proposed models, which result in efficient L&T
systems [12].

This paper deals with the Green Electric Vehicle Routing Problem with Time
Window and Mixed Fleet (G-EVRPTWMF). This problem does not add the
costs of carbon footprint or energy consumption to the problem’s objective func-
tion, as in the formulation proposed by Figliozzi [6]. We add these features to
the problem in the form of constraints. Unlike the variation defined by Yu et
al. [24], the G-EVRPTWMF has a mixed fleet of CVs and EVs that have the
same load capacity, as in the classic version of the CVRP. The G-EVRPTWMF
considers that the EVs leave the depot with a fully charged battery and must
return before a recharge is needed, unlike the variants presented by Andelmin
and Bartolini [1] and Hiermann et al. [11], who define recharging stations, or by
Macrina et al. [18], who establish a partial battery recharging. This feature is
quite common in the classic VRPTW formulations, which do not consider filling
the CVs’ tank at gas stations. Another difference in the G-EVRPTWMF is the
definition that the fuel consumption of both types of vehicles is proportional to
the travel distance, unlike the model proposed by Goeke and Schneider [9].

The main contributions of this paper are as follows. First, we present the
formal definition of the mathematical model of the G-EVRPTWMF, which is
a new variation of the problem. Second, we present the implementation of the
Variable Neighborhood Descent Branching matheuristic as a solution strategy
for the G-EVRPTWMF. This approach shows that it is possible to solve the
problem instances in a computational time shorter than that spent by the IBM
ILOG CPLEX Optimizer and by the Local Branching matheuristic (i.e., we also
applied the proposed mathematical model in both methods).

This paper is structured as follows. Section 2 provides the mathematical for-
mulation of the G-EVRPTWMF, including the parameters and decision vari-
ables of the model. Section 3 shows the most recent related works, highlight-
ing the problems and the solution techniques that the authors have proposed.
Section 4 explains the methodology applied in this work, as well as the imple-
mentation details of the proposed matheuristic. Section 5 defines the testing
environment and the benchmark instances used in this work. Also, it shows the
computational results and the analysis of them. Finally, Sect. 6 concludes this
work.

2 Problem Statement

The G-EVRPTWMF is mathematically defined on the complete graph G =
(V,E), where V = {0, 1, 2, . . . , N,N + 1} is the vertex set. The vertices 0 and
N + 1 represent the depot, creating a concept of source vertex and sink vertex,
respectively. Also, vertices 1 to N represent the customers. Let V ∗ = V \{0, N +
1}, V − = V \{N + 1}, and V + = V \{0}. Every route defines a simple path
in G, which starts at vertex 0 and ends at vertex N + 1. Each vertex has a
demand (D), a service time (ST ), an initial time window (ITW ) and a final
time window (FTW ). Let D0 = ST0 = 0 and DN+1 = STN+1 = 0. The range
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[ITW , FTW ] indicates the time window in which the vehicle must reach the
customer’s location. In other words, the service cannot be started before ITW
or after FTW .

The set of edges E = {(i, j) : i, j ∈ V, i �= j} represents paths between each
pair of customers. For example, the edge (i, j) defines the path which starts at
i and ends at j. Every edge has a cost (Cij), which denotes the travel distance
from i to j. We define the set of CVs (KCV ), as well as the upper bound (UB)
for its number of elements. The emission factor (Θ) helps to control the carbon
footprint of the CVs, which must not exceed the allowed environmental bound
(EB). We also define the set of EVs (KEV ). Each route is traveled by a single
CV or EV. The load capacity (LC) is identical for both types of vehicles. In
addition to the parameters previously stated, the G-EVRPTWMF has three
decision variables. The first and second variables are binary, while the last one
assumes real value:

Xijk =

{
1, if the CV k ∈ KCV travels the edge (i, j);
0, otherwise.

Yijk =

{
1, if the EV k ∈ KEV travels the edge (i, j);
0, otherwise.

Zik = arrival time of vehicle k (unrestrictedly to the type) at the customer i

The Mixed Integer Linear Programming (MILP) formulation, which mathe-
matically defines the G-EVRPTWMF, is given by:

Minimize
∑

k∈KCV

∑

i∈V

∑

j∈V

CijXijk +
∑

k∈KEV

∑

i∈V

∑

j∈V

CijYijk (1)

Subject to:
∑

k∈KCV

∑

j∈V ∗
Xijk +

∑

k∈KEV

∑

j∈V ∗
Yijk = 1, ∀i ∈ V

∗
, i �= j (2)

∑

k∈KCV

∑

j∈V +

Xijk − Xjik = 0, ∀i ∈ V
∗
, i �= j (3)

∑

k∈KEV

∑

j∈V +

Yijk − Yjik = 0, ∀i ∈ V
∗
, i �= j (4)

∑

j∈V ∗
X0jk ≤ 1, ∀k ∈ KCV (5)

∑

j∈V ∗
Y0jk ≤ 1, ∀k ∈ KEV (6)

∑

k∈KCV

∑

j∈V ∗
X0jk ≤ UB, ∀k ∈ KCV , ∀j ∈ V

∗ (7)

∑

i∈V ∗
Di

∑

j∈V ∗
Xijk ≤ LC, ∀k ∈ KCV , i �= j (8)
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∑

i∈V ∗
Di

∑

j∈V ∗
Yijk ≤ LC, ∀k ∈ KEV , i �= j (9)

Zik + Xijk(Cij + STi) − FTW0(1 − Xijk) ≤ Zjk, ∀i ∈ V
−

, ∀j ∈ V
+

, i �= j, ∀k ∈ KCV (10)

Zik + Yijk(Cij + STi) − FTW0(1 − Yijk) ≤ Zjk, ∀i ∈ V
−

, ∀j ∈ V
+

, i �= j, ∀k ∈ KEV (11)

ITWi ≤ Zik ≤ FTWi, ∀i ∈ V, ∀k ∈ KCV (12)

ITWi ≤ Zik ≤ FTWi, ∀i ∈ V, ∀k ∈ KEV (13)

∑

k∈KCV

∑

i∈V

∑

j∈V

ΘCijXijk ≤ EB (14)

Zik ≥ 0, ∀i ∈ V, ∀k ∈ KCV (15)

Zik ≥ 0, ∀i ∈ V, ∀k ∈ KEV (16)

Xijk ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, ∀k ∈ KCV (17)

Yijk ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, ∀k ∈ KEV (18)

The formulation of this paper is based on the classic model of the VRPTW
(see Toth and Vigo [23]). The objective function minimizes the sum of the total
distance traveled by the vehicles used to solve the problem (i.e., CVs and EVs).
Constraints (2) ensure that each customer is visited exactly once. Constraints (3)
and (4) determine the flow conservation. Constraints (5) and (6) ensure that each
vehicle (CV or EV, respectively) is assigned to a single route at maximum.

Constraints (7) insert a cover cut in the problem’s formulation (see Kalle-
hauge et al. [14]). Constraints (8) and (9) represent the load capacity limitations
for the CVs and EVs, respectively. This capacity (LC) is identical for both
types of vehicles because the mixed fleet is homogeneous. Constraints (10) link
the arrival times of the CV k in customers i and j to determine the visit order.
These constraints also eliminate any sub-route. Constraints (11) do the same
to the EVs. Constraints (12) and (13) ensure that the vehicle k (CV and EV,
respectively) will arrive at the customer i (including the depot) within its time
window.

Constraints (14) impose an environmental bound on the carbon footprint of
the CVs. The emission factor (Θ) is calculated based on the data available in
Macrina et al. [18]. In this work, we did not consider the weight variation of
the vehicle (i.e., full load versus empty) along the path. Therefore, we measured
Θ as the average of the carbon footprint produced by a full load CV and an
empty one. Finally, constraints (15), (16), (17), and (18) define the domains of
all variables of the G-EVRPTWMF.
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In the context of the vehicles’ mixed fleet, we adapted our model based on
Goeke and Schneider [9], and the modifications are as follows. First, we intro-
duced a new binary decision variable (Yijk) for the EVs. Second, we add another
parcel referring to the sum of the EVs’ total traveled distance in the objective
function (1). Third, we add another parcel referring to the single visit for the EVs
in constraints (2). Finally, we duplicated the constraints (3), (5), (8), (10), (12),
(15), and (17).

3 Literature Review

Lazić et al. [16] proposed a hybrid heuristic for MILP. This method is a two-level
variable neighborhood search scheme. In the first level (i.e., the hard variable
fixing strategy), they use a variable neighborhood decomposition search frame-
work. In the second one (i.e., the soft variable fixing strategy), these authors
introduce pseudo-cuts as a local search branching method based on a variable
neighborhood descent scheme. This combined technique is interesting since it
showed better results in some aspects, e.g., average percentage gap, average rank
according to objective values and the number of times that the method managed
to improve the best known published objective. Bruglieri et al. [3] introduced
a MILP formulation for the EVRP with time window constraints. Unlike this
work, the authors deal with recharging stations and consider a partial battery
recharging. The innovation mentioned by them is that the battery level reached
is a decision variable of the optimization process. Bruglieri et al. [3] compare their
model with an already existing mathematical formulation that always assumes
a full recharge of the EVs. Finally, these authors used a variable neighborhood
search branching [10] as a solution method.

Goeke and Schneider [9] used an adaptive large neighborhood search algo-
rithm to solve the EVRP with time window and mixed fleet constraints. Unlike
this work, the authors do not deal with the carbon footprint. Also, they add
recharging stations to the problem. A local search method enhanced the algo-
rithm. This approach is interesting because it expands the search strategy, diver-
sifying the generated solutions. However, at certain times, this search is reduced
to refine these solutions. Hiermann et al. [11] dealt with a similar problem. How-
ever, these authors use a heterogeneous fleet, whose EVs differ in load capacity,
battery size, and acquisition cost. In addition to the strategy proposed by Goeke
and Schneider [9], Hiermann et al. [11] also use an exact method. These authors
make a comparison between heuristic and exact results because they introduced
a new variation of the problem.

Koç and Karaoglan [15] proposed an exact algorithm for a GVRP variation
that uses a fleet of alternative energy-powered vehicles, which run on alternative
fuels such as biodiesel, ethanol, hydrogen, natural gas, among others. Unlike this
work, the authors define recharging stations and assume that no more than one
stop at these stations will be necessary during the travel of any vehicle. Their
algorithm applies valid inequalities and uses a heuristic method to improve its
bounds. Despite presenting a mathematical formulation that uses fewer vari-
ables and constraints, these authors also use a simulated annealing method.
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This metaheuristic enhances the initial solution of the algorithm. Andelmin and
Bartolini [1] used an exact two-phase algorithm to deal with a similar problem.
However, these authors define several gas stations in the geographic space and
do not use EVs, despite citing them as another example of alternative energy-
powered vehicles. The first phase to the method defines partitions for the problem
to form columns of feasible routes, and the second one heuristically lists these
routes, but it exactly solves each partition.

Schiffer and Walther [20] proposed an exact algorithm as a solution strat-
egy for the EVRP with time window and partial battery recharging constraints.
Unlike this work, the authors solve two problems. At first, the location problem
of the recharging stations. Then, the EVRP variation. Schiffer and Walther [20]
state that their algorithm can only solve small instances in a reduced compu-
tational time. Due to this fact, in Schiffer and Walther [21], they also proposed
an adaptive large neighborhood search algorithm to solve large-scale problems.
Paz et al. [19] dealt with a similar problem, which has the addition of multiple
depots. Also, these authors consider that EVs can be recharged convention-
ally or by batteries swap. They used an exact algorithm to solve this EVRP
variation. The alternative solution proposed by Paz et al. [19] to improve the
computational time required by their algorithm was a pre-processing strategy
in the constraints that involve the problem’s dummy vertices. In this case, this
approach is interesting because these authors deal with multiple depots.

Yu et al. [24] used an exact algorithm to solve the GVRP with time window
and heterogeneous fleet constraints. Unlike this work, the authors do not use
EVs, neither a mixed fleet. Their solution strategy was enhanced by an approxi-
mate dynamic programming method and a column generation algorithm. These
authors highlight the importance of the integer branch method, which is respon-
sible for obtaining tight upper bounds in a more quickly manner. Foroutan et
al. [8] dealt with a GVRP variation that presents a heterogeneous fleet and
reverse logistics constraints. The authors solve simultaneously two problems: a
scheduling problem, which considers weighted earliness and tardiness costs, and
a routing problem. They proposed a non-linear formulation for their problem
to solve small instances and heuristic algorithms based on simulated annealing
method and genetic algorithm to treat large instances of this GVRP variation.

Macrina et al. [18] proposed an iterated local search algorithm as solution
strategy for a similar problem to the G-EVRPTWMF. However, these authors
include recharging stations, consider a partial battery recharging, and calculate
the carbon footprint and the fuel consumption based on the vehicle load. The
authors admit the existence of a set of recharging stations in the geographic
space. However, the availability of these stations is not yet a reality (e.g., in
emerging countries). As mentioned before, the absence of these stations is one
of the biggest challenges to the success of using EVs in L&T [13]. A possible
solution would be to solve the location problem of recharging stations and the
EVRP together, as is done in Paz et al. and Schiffer and Walther [19–21]. Another
solution would be to deal with the fact that EVs will take on smaller routes due
to their limited driving autonomy, as is done in this work.
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4 Variable Neighborhood Descent Branching Framework

At first, we apply the CPLEX solver for the proposed MILP model to validate
it. This optimizer was executed in standard mode. In this paper, we propose an
implementation of the Variable Neighborhood Descent for MILP, named Variable
Neighborhood Descent Branching (VNDB), for solving the G-EVRPTWMF to
reduce the computational time spent by CPLEX. VNDB matheuristic is a deter-
ministic variant of Variable Neighborhood Search Branching (VNSB), which was
introduced by Hansen and Mladenović [10]. Its operation consists of adding lin-
ear constraints (i.e., pseudo-cuts) to the problem to systematically change the
neighborhoods. Fischetti and Lodi [7] introduced the concept of a local search
that adds pseudo-cuts into the MILP model in their proposed method known
as Local Branching (LB). A common feature between VNSB and LB is that
they both use a MILP solver (e.g., CPLEX) as a black box for exactly solving
problems in an iterative process [10,16]. Algorithm 1 shows the pseudo-code of
the VNDB matheuristic.

VNDB starts its execution generating a feasible solution x for the original
MILP model (Line 1 of Algorithm 1). Note that x = (X,Y,Z). CPLEX generates
this initial solution (i.e., the first solution found by the solver). Then, the best
solution so far x∗ is updated (Line 2) and τ = 2 (Line 3). At this point (Line 4),
VNDB starts its iterative loop. In the Line 5, the pseudo-cuts are added to the
original MILP model to reduce the search space S using a distance function
δ(x, x̄) that generates another space S̄ = S ∩ Nτ (x), where:

Nτ (x) = {x̄ | δ(x, x̄) ≤ τ} (19)

In Eq. (19), Nτ (x) represents the neighborhood structure of the solution x.
The distance between the incumbent solution x̄ and the previous solution x is
defined by the Hamming distance. In other words, this distance is calculated by
the number of positions in which their binary variables differ, which is limited
by τ . This parameter (i.e., the size of the neighborhood) was adapted to the
scope of the G-EVRPTWMF by the fact that any change of position requires,
at least, two modifications, similarly a swap move. In terms of the problem’s
formulation, the pseudo-cut added to the original MILP model is as follows:∑

k∈KCV

∑
i∈V

∑
j∈V

(1 − Xijk) ≤ τ/2 (20)

In constraint (20), the Xijk binary decision variable represents the CVs of
the resulting MILP model. However, only the values of Xijk that have been
changed from 1 to 0 are considered. As G-EVRPTWMF has a mixed fleet,
another pseudo-cut must be inserted:∑

k∈KEV

∑
i∈V

∑
j∈V

(1 − Yijk) ≤ τ/2 (21)

In constraint (21), the Yijk binary decision variable represents the EVs of
the resulting MILP model. The values must be accounted for it in the same
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Algorithm 1: VNDB Algorithm
Input: original MILP model
Output: x∗

1 Find a feasible solution x for the original MILP model by using CPLEX;
2 Set x∗ ← x;
3 Set τ ← 2;
4 while stopping condition is not satisfied do
5 Insert the pseudo-cuts δ(x, x̄) ≤ τ and δ(x, x̄) ≥ τ into the original MILP

model;
6 Find an incumbent solution x̄ for the resulting MILP model by using

CPLEX;
7 if x̄ is an optimal local solution then
8 if x̄ is better than x then
9 Set x ← x̄;

10 Remove the pseudo-cuts δ(x, x̄) ≤ τ and δ(x, x̄) ≥ τ from the
resulting MILP model;

11 if x̄ is better than x∗ then
12 Update the bounds of the problem by using the CPLEX

information;
13 Set x∗ ← x̄;
14 Set τ ← 2;

15 else
16 Set τ ← τ + 2;

17 else
18 Remove the pseudo-cuts δ(x, x̄) ≤ τ and δ(x, x̄) ≥ τ from the

resulting MILP model;
19 Set τ ← τ + 2;

20 else
21 Remove the pseudo-cuts δ(x, x̄) ≤ τ and δ(x, x̄) ≥ τ from the resulting

MILP model;
22 Set τ ← τ + 2;

23 Update the stopping condition by using the CPLEX information;

way as in the constraint (20). See Fischetti and Lodi [7] to understand how the
asymmetric shape of these pseudo-cuts was defined.

In Line 6 of Algorithm1, CPLEX is called again, but to solve the sub-problem
generated after adding the pseudo-cuts. If an optimal local solution was found
(Line 7), then VNDB proceeds its operation. Otherwise, CPLEX reports the
proven infeasibility of the space S̄. Therefore, VNDB removes the previously
inserted pseudo-cuts (Line 21) and updates τ (Line 22). If x̄ improves the objec-
tive function value of x (Line 8), then VNDB proceeds its operation. Otherwise,
CPLEX reports the optimal local solution found within the space S̄. However,
x̄ is not an improvement solution. Therefore, VNDB removes the previously
inserted pseudo-cuts (Line 18) and updates τ (Line 19).
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At this point (Line 9 of Algorithm1), x is updated by the improvement
solution x̄. In Line 10, VNDB removes the previously inserted pseudo-cuts. If
x̄ is the best solution so far (Line 11), then the problem bounds are updated
(Line 12), x∗ also is updated (Line 13), and the search returns to the initial
neighborhood (Line 14). Otherwise, CPLEX reports the optimal local solution
found within the space S̄. However, x̄ is not the best solution so far. Thus, the
search proceeds to the next neighborhood (Line 16). As mentioned before, VNDB
is a deterministic variant of VNS for MILP. It is true because the maximum time
per node in the search tree was not stipulated. Hence, CPLEX can report only
two situations, i.e., optimal local solution found in S̄ or proven infeasibility of
this space. Furthermore, the diversification mechanism was not used in this work
(see more details in Fischetti and Lodi [7]).

In each iteration of the algorithm, the stopping criterion is updated (Line 23
of Algorithm 1). VNDB ends its operation if the maximum execution time is
exceeded or if the optimality gap is reached. This total execution time limit was
set based on the running time of obtained by the CPLEX solver. Besides, the
optimality gap is the positive difference between the bounds obtained in the last
iteration of the method. This interval indicates that such a difference may not
be exactly zero, but a value very close to zero.

5 Computational Experiments

The mathematical model and the proposed algorithms were coded in C++
by using the ILOG Concert Technology. The MILP model was solved using
the IBM CPLEX Optimizer 12.9, with its parameters assuming the default
values. All experiments were conducted on an Intel Core i7-4510U 3.1GHz
with 16GB RAM, running Ubuntu 18.04.4. Instances of Solomon [22] involv-
ing 100 customers were used to test the solution methods. They are avail-
able at https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-
customers. Altogether, there are 56 instances divided into 6 classes: C1, C2, R1,
R2, RC1, and RC2. Customers are distributed geographically in a grouped man-
ner in classes C1 and C2, randomly in R1 and R2, and classes RC1 and RC2
present a mixture of these two characteristics. Moreover, in classes C1, R1, and
RC1, customers’ time windows are short. Whereas, in classes C2, R2, and RC2,
customers’ time windows are wide. These instances were proposed for VRPTW.
However, for treating G-EVRPTWMF, we consider that the number of EVs
is the same as the number of CVs. In other words, if there are 25 CVs in a
particular instance, there will also be the same number of EVs.

Table 1 shows the average results obtained by CPLEX, LB, and VNDB, which
were grouped by class. Column (η) indicates the number of instances that each
class has. Column (η∗) represents the number of instances solved optimally by
the method in question. Column (CVs + EVs) shows the number of CVs and EVs
(i.e., average number grouped by class) used in the solution, respectively. For
example, instances of class C1 use 7 CVs and 8 EVs in their solution, resulting
in a total of 15 used vehicles. Column (Distance) shows the average traveled

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers
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distance, and Column (Time) informs the average computational time consumed
by the methods, in seconds, to solve the specific class of the instances. The
bottom row of the table totals the average values for each column.

Table 1. Average results per class of the 100-customers benchmark instances.

Class η CPLEX LB VNDB

η∗ CVs + EVs Distance Time η∗ CVs + EVs Distance Time η∗ CVs + EVs Distance Time

C1 9 9 7 + 8 1,127.1 4,153.5 9 7 + 8 1,127.1 2,146.1 9 7 + 8 1,127.1 680.1

C2 8 8 2 + 5 1,037.7 4,247.3 8 2 + 5 1,037.7 2,241.2 8 2 + 5 1,037.7 781.7

R1 12 12 8.9 + 8.9 2,507.9 4,441.4 12 8.9 + 8.9 2,507.9 2,453.8 12 8.9 + 8.9 2,507.9 925.4

R2 11 11 3.5 + 7.4 2,089.3 4,542.8 11 3.5 + 7.4 2,089.3 2,557.5 11 3.5 + 7.4 2,089.3 1,028.5

RC1 8 8 8.4 + 9.3 2,406.7 4,744.5 8 8.4 + 9.3 2,406.7 2,767.5 8 8.4 + 9.3 2,406.7 1,173.3

RC2 8 8 4.5 + 8.5 1,967.3 4,849.3 8 4.5 + 8.5 1,967.3 2,857.3 8 4.5 + 8.5 1,967.3 1,269.3

Total 56 56 34.3 + 47.1 11,136.0 26,978.8 56 34.3 + 47.1 11,136.0 15,023.4 56 34.3 + 47.1 11,136.0 5,858.3

According to Table 1, the three methods achieved optimal results on all 56
instances of Solomon [22]. However, the difference between them occurs regard-
ing the computational time consumed. Evaluating the total average time, VNDB
showed a reduction of 2.5 h concerning the average time consumed by LB and
almost 6 h to the average time consumed by CPLEX to solve G-EVRPTWMF.
Also, in each class, the average time was reduced (practically) by half in both
comparisons, i.e., from CPLEX with LB and from LB with VNDB. One expla-
nation for this behavior, especially between LB and VNDB, is how the neigh-
borhood structure varies in each iteration.

Let τ = 2. The pseudo-cut inserted by LB is the type δ(x, x̄) ≤ τ . So, the
algorithm will explore all solutions that differ by one or two positions away
(since τ is an integer and positive value). However, as stated before, in the
scope of the G-EVRPTWMF, any change of position requires, at least, two
modifications to be performed, as a swap move. This fact determines that the
neighborhood N1(x) does not generate any feasible solution. This obstacle is
avoided by VNDB. This is done by inserting two pseudo-cuts, which are δ(x, x̄) ≤
τ and δ(x, x̄) ≥ τ . Together, these pseudo-cuts define that only the neighborhood
N2(x) will be explored. This simple modification prevents VNDB from wasting
time in odd neighborhoods, which do not generate feasible solutions for the G-
EVRPTWMF. Also, LB performs a search in neighborhoods in an exclusively
increasing way. On the other hand, VNDB returns to the initial neighborhood
whenever the best current solution is updated, which generates a more efficient
search through variable neighborhoods.

Figure 1 shows the convergence curve of matheuristics in the six classes of
instances. In this figure, one can see the advantage of VNDB over CPLEX and
LB. The quality of the solution produced by VNDB is always better than that
of the other methods in the same processing time, in seconds.
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Fig. 1. Convergence curve of the methods per class.

In Fig. 1, it is possible to observe the progression of the optimality gap as a
function of the average time consumed by the three methods in the 6 classes of
the problem. The final processing times, computed when the stopping criterion
for each method is reached, can be seen in Table 1. For example, the time spent
by the 9 instances of class C1 was 4153.3 (CPLEX), 2146.1 (LB), and 680.1
(VNDB) seconds. Regarding the difficulty of generating good solutions for G-
EVRPTWMF, the classes R1 and R2 are the most complexes (note that the
initial gaps are the highest). Regarding the time spent to find better solutions
to the problem, the classes RC1 and RC2 are the most difficult (note that the
average times consumed are the longest in all methods). Finally, it is also possible
to verify that the search strategies in variable neighborhoods of VNDB proved
to be effective since the matheuristic convergence curve reduces considerably
before the first 500 s.

6 Concluding Remarks

In this paper, we present the G-EVRPTWMF, which is a problem that combines
two conflicting elements in L&T (i.e., the economic and the environmental one).
Also, we propose a MILP formulation for it. Initially, we applied the CPLEX
solver in this formulation. Then, to reduce the computational time, we used LB
and VNDB methods. We explain in detail all the VNDB’s adaptations to deal
with the mixed fleet (i.e., a fleet that has CVs and EVs). We did computational
experiments with a simple adaptation of the 100-customers Solomon’s instances.
The results showed that the three solution strategies reached the optimal solu-
tion. However, the running time of the VNDB is considerably smaller than those
required by the other two solution methods. Therefore, this fact proves that
the VNDB is the more efficient technique to solve the G-EVRPTWMF. Future
research will concentrate on the following issues. First, within the scope of the
VNDB, it is possible to implement a version of the method with a more heuristic
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behavior to try to reduce the computational time even further. Second, within
the scope of the problem, it would be interesting to see how other matheuristics
work when dealing with the G-EVRPTWMF.
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Abstract. The current trend of the modern smart cities applications
towards a continuous increase in the volume of produced data and the
concurrent need for low and predictable latency in the response time
has motivated the shift from a cloud to a fog computing approach. A
fog computing architecture is likely to represent a preferable solution
to reduce the application latency and the risk of network congestion by
decreasing the volume of data transferred to cloud data centers. How-
ever, the design of a fog infrastructure opens new issues concerning not
only how to allocate the data flow coming from sensors to fog nodes
and from there to cloud data centers, but also the choice of the num-
ber and the location of the fog nodes to be activated among a list of
potential candidates. We model this facility location issue through a
multi-objective optimization problem. We propose a heuristic based on
the variable neighborhood search, where neighborhood structures are
based on swap and move operations. The proposed method is tested in
a wide range of scenarios, considering a smart city application’s realistic
setup with geographically distributed sensors. The experimental evalua-
tion shows that our method can achieve stable and better performance
concerning other literature approaches, supporting the given application.

Keywords: Smart cities · Fog networking · Facility location problem

1 Introduction

Smart city applications that require the processing of huge volumes of data pro-
duced by geographically distributed sensors represent a typical scenario where
fog computing is likely to be a winning approach. Its potential has been demon-
strated, indeed, by several studies in literature [6,16–18]. The main characteristic
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of fog computing is the ability to push on the network edge functions such as
data filtering and aggregation [17,18], with a twofold advantage. First, it reduces
the data volume reaching the cloud data center, thus avoiding the risk of poor
performance due to high network utilization and reducing the non-negligible
economic costs related to the cloud pricing model. Second, the fog layer located
on the network edge can guarantee a fast response to latency-sensitive applica-
tions (e.g., traffic monitoring and support for autonomous driving) that cannot
accept delays in the order of hundreds of milliseconds due to the potentially high
round-trip-time latency with the cloud data center.

Fig. 1. Cloud and fog infrastructures.

In Fig. 1, we compare fog and cloud approaches. In the cloud architecture
(left part of the figure), a set of sensors sends data directly to the cloud data
center for processing. In the fog case (right part of the figure), a layer of fog nodes
is placed on the network edge to host pre-processing, filtering, and aggregation
tasks.

The introduction of the intermediate layer of fog nodes represents an addi-
tional degree of freedom that arises new issues for the overall infrastructure
design. In particular, many studies [6,19] consider just the fog to cloud commu-
nication, adopting a naive approach in the allocation (i.e., mapping) of data flows
coming from the sensors over the fog layer, assuming that every sensor sends data
to the nearest fog node. On the other hand, recent studies demonstrated that
optimized data flow allocation could provide a significant advantage [3]. How-
ever, even when some optimization is performed in the sensors-to-fog mapping,
no attention has been devoted to minimizing the number of fog nodes required
to satisfy the Service Level Agreement (SLA) to reduce the costs and the energy
consumption related to the management of the fog infrastructure.

In the operational research field, this issue is named facility location prob-
lem [7,8] and concerns the identification of facilities, so the costs incurred from
allocating customers to the selected facilities are minimized, and represents
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nowadays a very active field of research. A recent survey on service facility loca-
tion problems can be found in [5]. While this aspect has been widely explored
at the level of managing resources in a cloud data center [1,12], it has not been
considered so far in the fog computing field.

In this paper, we formalize the facility location problem through an optimiza-
tion model aiming to map sensors data flow over the fog layer with a two-fold
objective: minimize the number of turned on fog nodes while guaranteeing the
respect of a service level agreement on response time; and, minimize the response
time for the given number of selected fog nodes. In the model, we consider both
network delays and processing time at the level of fog nodes. Furthermore, a
qualifying point of this study is the development of a heuristic, based on the
Variable Neighborhood Search (VNS) [9], to solve the facility location problem
over a fog computing infrastructure.

As pointed out in [9], the VNS can be seen as a framework for building
heuristics to solve different optimization problems. In the recent survey of [15],
it was discussed how the VNS had been successfully applied to solve problems
in reverse logistics and closed-loop supply chain networks. Concerning facility
location related problems, a VNS with path-relinking was proposed in [20] for
the location routing problem, where neighborhood structures based on insertion,
swap, 2-opt, and CROSS-exchange moves were used. Recently, a basic variable
neighborhood search, based on the less is more concept, was developed in [13]
for an obnoxious p-median problem. The obnoxious effect occurs when a facility
should be located as far as possible from an inhabited center.

We evaluate the proposed VNS in the realistic scenario of a smart city appli-
cation with geo-referenced sensors collecting data for traffic monitoring in the
city of Modena in Italy. The VNS is compared with the optimization model
solved by a state-of-the-art solver in terms of its capability of reducing costs
and response times. Moreover, a sensitivity analysis is performed concerning
the infrastructure size. The experimental results demonstrate that our proposal
can outperform the alternatives with stable results concerning a wide range of
scenarios.

The rest of the paper is organized as follows. Section 2 presents the theoreti-
cal modeling for the considered problem. Section 3 presents the VNS to solve the
facility location problem in fog computing infrastructures. Section 4 presents the
experimental setup and the considered scenarios, providing a thorough evalua-
tion of the proposed model against the alternatives. Finally, Sect. 5 gives some
concluding remarks and outlines some future work direction.

2 Problem Definition

In this section, we formalize the location-allocation problem in a fog architecture
as a multi-objective optimization problem that aims to minimize two aspects: 1)
the delay in the transit of the data from sensors to fog nodes to the cloud data
center; 2) the cost associated with the number of fog nodes turned on.

To model this problem, let us assume a stationary scenario with a set S of
geographically distributed sensors producing data at a steady rate: we denote
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as λi the frequency of sensor i. The data are sent to an intermediate layer of a
set F of fog nodes. These nodes can perform operations on data such as filtering
and aggregation or specific analysis, such as anomaly detection with low latency.
We denote as μj the processing rate of the fog node j, and as δij the delay from
sensor i to fog node j. The model also includes a set C of cloud data centers that
receive data from the fog nodes, where δjk represents the delay from fog node
j to cloud data center k. To formalize the problem, we use the following binary
decision variables: a) xij , indicating whether sensor i sends data to fog node j;
b) yjk, indicating whether fog node j sends data to cloud data center k; c) Ej ,
defining whether the fog node located at position j is turned on and available
to process data from sensors. The main symbols of the model are summarized
in Table 1.

Table 1. Notation and parameters for the proposed model.

Model parameters

S Set of sensors

F Set of fog nodes

C Set of cloud data centers

λi Outgoing data rate from sensor i

λj Incoming data rate at fog node j

1/μjProcessing time at fog node j

δij Communication latency between sensor i and fog node j

δjk Communication latency between fog j and cloud k

cj Cost for locating a fog node at position j (or for keeping the fog node turned on)

Model indices

i Index for a sensor

j Index for a fog node

k Index for a cloud data center

Decision variables

Ej Location of fog node j

xij Allocation of sensor i to fog node j

yjk Allocation of fog node j to cloud data center k

For the problem of sensors allocation on the fog nodes, introduced in [3],
we consider the application average response time TR, which depends on three
components (Eq. (1)): the network delay due to the sensor-to-fog latency TnetSF

(Eq. (2)), the network delay due to the fog-to-cloud latency TnetFC (Eq. (3)),
and the processing time on the fog nodes Tproc (Eq. (4)).



32 T. Alves de Queiroz et al.

TR = TnetSF + TnetFC + Tproc (1)

TnetSF =
1

∑
i∈S λi

∑

i∈S

∑

j∈F
λixijδij (2)

TnetFC =
1

∑
j∈F λj

∑

j∈F

∑

k∈C
λjyjkδjk (3)

Tproc =
1

∑
j∈F λj

∑

j∈F
λj

1
μj − λj

(4)

In the components TnetSF and TnetFC , each delay is weighted by the amount
of traffic exchanged on the corresponding link, which is λi for TnetSF and λj in
TnetFC . The incoming data rate on each fog node λj , indeed, can be defined as
the sum of the data rates of the sensors allocated to that node:

λj =
∑

i∈S
xijλi, ∀j ∈ F (5)

The component concerning the processing time Tproc is modeled using the
queuing theory considering an M/G/1 system and is consistent with other results
in literature [1,4]. Specifically, the generic fog node j is characterized by an aver-
age processing time 1/μj and receives an incoming stream of jobs with frequency
λj (where λj is defined as in Eq. (5)). It is worth mentioning that we do not
consider the cloud layer’s details in our problem modeling, such as the computa-
tion time at the cloud data center level, as this aspect has been widely covered
in literature [2].

Finally, we consider that a fixed cost cj is associated with the fog node j if it is
turned on to model the overall cost due to the fog node activation. In our model,
we do no consider other constraints, such as the amount of memory required by
the fog nodes’ application. Such additional constraints can be straightforwardly
added to the model. However, in our experience, the most critical constraint for
fog infrastructures deployment is the processing power rather than the available
memory. Hence, we opted for a more streamlined model. The complete model
for the fog node location-allocation problem may be defined as follows.

Minimize:

C =
∑

j∈F
cjEj (6)

TR = TnetSF + TnetFC + Tproc (7)
Subject to:

TR ≤ TSLA (8)
λj < Ejμj , ∀j ∈ F (9)

∑

j∈F
xij = 1, ∀i ∈ S (10)

∑

k∈C
yjk = Ej , ∀j ∈ F (11)
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Ej ∈ {0, 1}, ∀j ∈ F (12)
xij ∈ {0, 1}, ∀i ∈ S, j ∈ F (13)
yjk ∈ {0, 1}, ∀j ∈ F , k ∈ C (14)

The two objective functions, (6) and (7), are related, respectively, to the
minimization of: cost, which is associated with the number of fog nodes turned
on; and, latency, which is the delay in sensor to fog to cloud data transit
expressed through the function introduced as TR in (1). The second objective
is subordinated to the first one, meaning that we aim to minimize (7) as long
as the improvement for this objective function does not introduce an increase
for (6).

The model includes several constraints. Constraint (8) introduces a limit for
the average response time that should not exceed a Service Level Agreement
(SLA), which is typically defined as a multiple of the average response time
1/μ [1]. We also introduce a term due to the network delays in a distributed
architecture (non-negligible) that we consider depending on the average network
delays δ. The SLA limit in (15) can be formalized as follows, with K defined
depending on the network requirements:

TSLA =
K

μ
+ 2δ (15)

Constraints (9) ensure that no overload occurs on each fog node, imposing
that the incoming data flow does not exceed the processing rate. For a node
that is powered down, no processing must occur. Constraints (10) guarantee for
each sensor that one fog node processes its data, while constraints (11) ensure
for each fog node that exactly one cloud data center receives its processed data.
Constraints (12), (13) and (14) describe the domain of the decision variables.

3 Variable Neighborhood Heuristic

A Variable Neighborhood Search (VNS) is proposed to solve the facility location
problem that arises in fog computing infrastructures. The VNS methodology was
initially proposed in [14]. It has a systematical change of neighborhoods to look
for a globally optimal solution concerning all neighborhoods.

The VNS for the problem has the following main steps: to create an initial
solution, which is the current solution; to obtain a neighbor solution of the cur-
rent solution by using a neighborhood operator (shake-phase); to perform a local
search on the neighbor solution (local-search-phase); and, to accept the solution
of the local search if it is better than the current solution, besides updating the
current solution. If the current solution is updated, the VNS restarts from the
first neighborhood; otherwise, it proceeds to the next neighborhood, repeating
the steps above until reaching the last neighborhood [9,10].

In the proposed VNS, a solution x is coded as a vector of lists of integers.
Each position of the vector represents a fog node and contains a list of integers
with the sensors. There is another integer indicating which cloud data center is
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serving the fog node. A position with an empty list of integers represents a fog
node turned off. Notice the vector has size |F|, and each list of integers has size
at most |S|. Moreover, the lists of integers have a null intersection since a sensor
is serviced by exactly one fog node.

The initial solution of the VNS is created as follows. For each fog node, we
select the closest cloud data center to allocate it. For each sensor, we choose
the closest fog node to assign it. If a fog node has already reached the TSLA,
no other sensor can be allocated to it. It means the second closest fog node
is used to allocate the sensor, and so on until all sensors are allocated to fog
nodes. Once the initial solution is created, it has its two objectives calculated:
(i) the cost associated with the number of fog nodes turned on; and (ii) the
delay in sensor to fog to cloud transit of data, where the first objective is used to
guide the VNS. We do not accept solutions that violate constraints (8) to (11)
in the optimization process. A solution x′ is better than another x′′ if (i) the
first objective of x′ is smaller than that of x′′, or if (ii) the two first objectives
are equal but the second objective of x′ is smaller than the second of x′′.

As the VNS iterates through K neighborhood structures, we propose five
structures based on swap and move operations. In particular:

– N1: select (randomly) a fog node f1, the farthest sensor s1 allocated to f1,
the fog f2 that is the closest to s1, and the sensor s2 allocated to f2 that is
the closest to f1. Hence, swap s1 and s2 from their respective fog nodes, if
this new solution is feasible.

– N2: Let Fon be the set of fog nodes turned on. Compute the load of each fog
node j ∈ Fon as rj = λj/μj and, then, the average load of fog nodes turned

on as: r̄ =
(∑

j∈Fon
rj

)
/|F|. Select (randomly) f1 ∈ Fon whose load r1 > r̄.

If one exists, select the farthest sensor s1 allocated to f1. Then, select the fog
node f2 ∈ Fon with the lowest load r2 and closest to s1. Remove s1 from f1
and move it to f2, if this new solution is feasible.

– N3: Let Fon be the set of fog nodes turned on. Select (randomly) a fog node
f1 ∈ Fon. Compute the average load with all sensors and fog nodes turned
on, except f1, as: r̃ =

(∑
i∈S λi

)
/
(∑

j∈Fon\{f1} μj

)
. If r̃ < 1, then for each

sensor s1 allocated to f1, remove s1 from f1 and move it to the closest fog
node in Fon\{f1}, if this new solution is feasible.

– N4: Let Fon be the set of fog nodes turned on. Let Foff be the set of fog
nodes turned off. If Foff is not empty, select (randomly) a fog node f1 ∈ Foff .
Select the fog node f2 ∈ Fon whose average response time is the highest one.
Remove all sensors from f2 and move them to f1, then turning off f2, if this
new solution is feasible.

– N5: if the number of available cloud data centers is greater than one, select
(randomly) a fog node turned on and allocate it to the closest cloud data
center, if this new solution is feasible.

Regarding the shake-phase of the VNS, the selection of fog nodes in the
neighborhood structures occurs randomly if the contrary is not imposed. On the
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other hand, in the local-search-phase, we use a variable neighborhood descent
based procedure, in which the solution from the shake-phase is passed as the
input parameter [9]. In this procedure, two neighborhood structures are used.
It consists of performing all possible (i) allocations of sensors in fog nodes and
(ii) swaps of sensors in fog nodes. The procedure restarts from the first struc-
ture whenever the current solution is improved and continues until no improved
solution can be achieved.

4 Experimental Results

We discuss next the performance of the VNS by evaluating it on a realistic sce-
nario of fog computing. We start this section with the description of the experi-
mental setup, and we proceed with the comparison between the performance of
the proposed VNS and other alternatives.

4.1 Experimental Scenario

As a realistic fog computing scenario, we refer to a smart city project devel-
oped into the medium-sized Italian city of Modena (around 180.000 inhabitants).
We consider a smart city application for monitoring car and pedestrian traf-
fic where geographically distributed sensors collect information comprising data
from proximity sensors and possibly low-resolution images. In our scenario, sen-
sors are wireless devices located in the city’s main streets: the location of the
sensors is obtained by geo-referencing the selected streets. The sensors send the
collected data to the fog nodes, which in turn perform pre-processing tasks by
filtering the proximity sensor readings and, if available, analyze images from the
camera to detect cars and pedestrians. We assume the fog nodes to be located
in government buildings. The pre-processed data are then sent to a cloud data
center located on the municipality premises.

In the performed experiments, we consider sensors equipped with long-range
wireless connectivity, for example, LoRaWAN1 or IEEE 802.11ah/802.11af [11].
Hence, the sensors can potentially connect to every fog node: we assume that the
network delay depends on the physical distance between two nodes as in [3,4],
due to the growing delay and decreasing bandwidth limitations as the distance
from a sensor to the fog node increases. Specifically, we model the communication
latency through the Haversine distance, starting from a given latitude and two
locations’ longitude.

In the experimental evaluation, we consider scenarios of different sizes to
understand the proposed method’s capability to scale with growing numbers
of sensors and fog nodes. Specifically, we consider a number of sensors |S| ∈
{50, 100, 200}, and a number of fog nodes |F| ∈ {5, 10, 20}.

We consider different scenarios, each of them described by three main param-
eters. First, the sensor data rate λ. Based on a preliminary evaluation of smart

1 https://lora-alliance.org/.

https://lora-alliance.org/
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city applications for traffic monitoring, we consider that each sensor provides a
reading every 10 s; hence, the data rate λi = 0.1, ∀i ∈ S. Second, the average
utilization of the system ρ, that can be defined as

∑
i∈S λi∑
j∈F μj

. For this parameter,
we consider a wide range of values: ρ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}. For each value
of ρ, considering sensors and fog nodes homogeneous and knowing the value of
λi, we derive the value of μj = μ, which is assumed the same for each j ∈ F .
Third, the parameter δμ, defining the CPU-bound or network-bound nature of
the scenario and expressed as the ratio between the average network delay δ
and the average service time of a request (1/μ). For this parameter we consider
values ranging multiple orders of magnitude: δμ ∈ {0.01, 0.1, 1, 10}. In this way,
we can explore both CPU-bound scenarios (e.g., when δμ = 0.01), where com-
puting time is much higher than transmission time, and network-bound cases
(e.g., when δμ = 10). We derive the average network delay from the δμ param-
eter and the previously computed parameter μj . It is worth noticing that, even
if our analysis may consider very high network delays, these scenarios can still
be considered realistic if we consider that the network contribution may involve
the transfer of images over low-bandwidth links.

The evaluation of the proposed model considers a wide range of different
scenarios related to the introduced parameters. Each scenario is named according
to the format ins-ρ-δμ (e.g., instance ins-0.1-0.01 indicates the scenario with
ρ = 0.1 and δμ = 0.01). Moreover, for the SLA in Eq. (15), the constant K
is set to 10, which is a typical value in the literature [1]. Finally, we assume
the cost cj of a fog node at position j equal to 1, for all j ∈ F . This means
that the fog nodes are equal from the operating cost point of view, and the
objective function will try to reduce the overall number of active nodes. For the
experimental comparison, we evaluate the following three models:

– Simplified model (SM): this is the simplified version of the problem described
in Sect. 2 and presented for the first time in [3]. In this model, all fog nodes
are assumed on, that is Ej = 1,∀j ∈ F . The energy consumption may be
high, but the infrastructure provides good performance from a response time
point of view (Eq. (7));

– Complex model (CM): this is the problem described in Sect. 2 that aims to
minimize both energy consumption in Eq. (6) and response time in Eq. (7);

– Proposed model (VNS): this is the heuristic introduced in this study and
described in Sect. 3;

For the Simplified and Complex models’ numeric results, we rely on Local-
Solver2 version 9.0, with a time limit of 300 s (5 min) as a stopping crite-
rion. LocalSolver is a general mathematical programming solver that hybridizes
local and direct search, constraint propagation and inference, linear and mixed-
integer programming, and nonlinear programming methods. It can handle multi-
objective problems, where the objectives are optimized in the order of their dec-
laration in the model. For the sake of fairness, we run the proposed VNS heuristic
for 300 s or 3000 iterations (the first to reach stops the VNS).
2 http://www.localsolver.com.

http://www.localsolver.com
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Table 2. Results for 100 sensors and 10 available fog nodes.

Simplified Model Complex Model (Dev. CM vs. SM) VNS (Dev. VNS vs. CM)
Instances Iter. Obj1 Obj2 Iter. Obj1 Dev. (%) Obj2 Dev. (%) Iter. Obj1 Dev. (%) Obj2 Dev. (%)

ins-0.1-0.01 23655 10 0,1163 52421 2 -80,00 0,2337 100,96 1 2 0,00 0,2332 -0,23
ins-0.1-0.1 31809 10 0,1544 50876 2 -80,00 0,5520 257,45 1 2 0,00 0,5305 -3,90
ins-0.1-1 29173 10 0,5219 61189 2 -80,00 3,7795 624,22 1 2 0,00 3,2555 -13,86
ins-0.1-10 36088 10 4,1912 31853 6 -40,00 8,6976 107,52 1 3 -50,00 17,9568 106,46
ins-0.2-0.01 26833 10 0,2613 25242 3 -70,00 0,6482 148,07 1 3 0,00 0,6443 -0,61
ins-0.2-0.1 19049 10 0,3429 30661 3 -70,00 1,0125 195,30 6 3 0,00 1,0125 0,00
ins-0.2-1 28671 10 1,0829 33141 3 -70,00 4,9492 357,05 4 3 0,00 4,5140 -8,79
ins-0.2-10 38641 10 8,4215 46185 3 -70,00 45,6711 442,31 1 3 0,00 38,9263 -14,77
ins-0.5-0.01 39481 10 1,0300 13903 6 -40,00 3,1153 202,46 1 6 0,00 3,1148 -0,01
ins-0.5-0.1 24610 10 1,2825 15566 6 -40,00 3,5829 179,37 176 6 0,00 3,5344 -1,35
ins-0.5-1 21598 10 3,3132 7802 7 -30,00 5,9867 80,70 86 6 -14,29 8,1437 36,03
ins-0.5-10 25093 10 21,9581 10851 7 -30,00 34,4636 56,95 315 6 -14,29 44,9171 30,33
ins-0.8-0.01 52087 10 4,0480 11032 9 -10,00 8,3199 105,53 40 9 0,00 8,3160 -0,05
ins-0.8-0.1 51989 10 4,4799 14790 9 -10,00 8,8266 97,03 295 9 0,00 8,7628 -0,72
ins-0.8-1 38901 10 8,7654 14729 9 -10,00 13,1785 50,35 305 9 0,00 13,2132 0,26
ins-0.8-10 32297 10 44,1912 7335 9 -10,00 60,2917 36,43 455 9 0,00 63,1833 4,80
ins-0.9-0.01 57507 10 9,0540 11832 10 0,00 9,0540 0,00 16 10 0,00 9,0540 0,00
ins-0.9-0.1 45581 10 9,5399 15801 10 0,00 9,5399 0,00 20 10 0,00 9,5399 0,00
ins-0.9-1 54009 10 14,3987 10055 10 0,00 14,3987 0,00 16 10 0,00 14,3987 0,00
ins-0.9-10 50609 10 62,9869 12502 10 0,00 62,9869 0,00 50 10 0,00 62,9869 0,00

4.2 Performance Evaluation

The comparison between the models performance considers two main metrics:
the cost related to the number of turned on fog nodes, namely Obj1, correspond-
ing to Eq. (6); and, the average response time, Obj2, corresponding to Eq. (7).
To facilitate the comparison between models, we also consider a deviation mea-
sure expressing the performance of a model with respect to an alternative one.
Specifically, the deviation function of a model M1 with respect to a model M2
is considered for each objective function (Obj1 and Obj2), which is defined as:

ε(ObjM1
1 ) =

ObjM1
1 − ObjM2

1

ObjM2
1

(16)

ε(ObjM1
2 ) =

ObjM1
2 − ObjM2

2

ObjM2
2

(17)

In Table 2, we present the complete results for the scenario with 100 sensors
and 10 fog nodes since the others follow the same tendency. The table also shows
the number of iterations required by LocalSolver and VNS to reach the reported
values. Despite that, we focus the analysis on the deviation measure previously
introduced to compare the models. Specifically, we consider the CM model’s
deviation to the SM and the deviation of the VNS to the CM.

In comparing the CM model with the SM, we note that the differences
strongly depend on ρ. On the one hand, the SM model uses all the available
fog nodes, even if, especially when ρ is low, the processing of sensors data may
require just a fraction of the computational infrastructure power. On the other
hand, the system load has a significant impact on the number of fog nodes used
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Fig. 2. Deviation between the VNS and CM model. (Color figure online)

by the CM model. For low values of ρ, indeed, the deviation on Obj1 shows a
reduction of the costs related to the activated fog nodes up to 80%. A higher
number of active fog nodes can provide lower response time, as testified by the
CM’s positive deviation versus the SM on Obj2. While in the SM model, we have
an abundance of computational power due to all fog nodes’ use, the CM uses
the minimum amount of resources to satisfy the SLA constraint to reduce costs
effectively.

Figures 2a and 2b have the deviation of the VNS with respect to the CM
model in terms of cost (ε(ObjV NS

1 ) and response time (ε(ObjV NS
2 )), respectively.

Data are represented as heat maps, with red hues when the solution performs
worse than the CM model, white color when the performances are similar, and
blue hues in the opposite case.

Focusing on ε(ObjV NS
1 ) in Fig. 2a, we observe how the VNS achieves equal or

better performance for the CM model in every considered scenario. In all white
areas of the chart, the number of nodes used by the VNS is the same concerning
the CM model (see third and fourth columns of Table 2). Moreover, we observe
that in some Network-bound scenarios (e.g., for ρ = 0.1 and δμ = 1 as well
as ρ = 0.5 and δμ ∈ {1, 10}) the VNS allows a further reduction of fog nodes
concerning the CM model, which decreases the costs up to the 50% in case of
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low system load (ρ = 0.1). The results of ε(ObjV NS
2 ) in Fig. 2b show that the

VNS can reduce the response times in scenarios where the number of turned on
fog nodes is the same as the CM model (blue areas in Fig. 2b corresponding to
white areas in Fig. 2a) thanks to a more optimized mapping between sensors data
flow and fog nodes. This can be explained by the fact that the CM, in the time
limit of 300 s, could not reach such an optimized mapping as the proposed VNS.
On the other hand, we observe some red areas corresponding to the scenarios
where the number of fog nodes activated by the VNS is lower concerning the
CM model: in this case, as expected, the response time increased, but it remains
within the defined SLA. The effect is particularly evident for the scenario with
ρ = 0.1 and δμ = 1, where the VNS presents an increase in response times. Still,
it can achieve a very significant reduction (50%) of the required fog nodes.

We also present two sensitivity evaluations of the proposed VNS. First, we
consider a varying number of sensors |S| while keeping constant the number of
fog nodes |F| = 100 in Fig. 3a. Second, we evaluate how the performance changes
for different sizes of scenarios, keeping constant the ratio between sensors and
fog nodes (|S| = 10·|F|) and varying the number of sensors (|S| ∈ {50, 100, 200})
in Fig. 3b.
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Fig. 3. Sensitivity analysis of the VNS.
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The results of the first sensitivity analysis are presented in Fig. 3a. They show
the deviation of the VNS concerning the CM model in terms of costs (Obj1) and
response time (Obj2) for different numbers of fog nodes, where |F| varies from
5 to 10 up to 20, and the number of sensors |S| is fixed to 100. For each case,
we evaluate scenarios defined by different values of ρ and δμ. These parameters’
values have been chosen among the more interesting points that emerged in
the previous analysis. These are the points where the VNS behaves differently
from the CM model. We observe that for a network-bound scenario with low
system load (ρ = 0.1 and δμ = 10), the VNS can significantly reduce the costs
due to turn on fog nodes for every number of sensors, with an increase of the
response times that remain within the SLA. As ρ increases, we note a different
behavior depending on the number of fog nodes available. If this number is low
(|F| = 5), the VNS activates all the fog nodes as the CM model; however, it
achieves in some cases (ρ = 0.5) a reduction of the response time thanks to
better mapping of sensor data flows on the fog nodes. For a higher number of
fog nodes (|F| = 10, 20), the VNS can reduce the number of required fog nodes
with a low increase in the average response time.

The second sensitivity analysis is presented in Fig. 3b, where we consider
systems with the ratio between the number of sensors and fog nodes fixed to
10. This analysis confirms the conclusions of the previous one, which is our
proposal’s stability concerning different scenarios. Also, in this case, the most
significant gain in terms of required fog nodes is achieved for low system loads
(ρ ∈ {0.1, 0.2}) and bigger sizes of the infrastructure (|F| ∈ {10, 20}). In the
smallest scenario, (|S| = 50 and |F| = 5), it is interesting to note that, in
three scenarios out of four, the VNS can reduce the response time while using
the same number of fog nodes concerning the CM model. Furthermore, in the
largest scenario, (|S| = 200 and |F| = 20), the VNS can significantly reduce the
number of required fog nodes without increasing the response time.

5 Concluding Remarks

The facility location problem related to the management of a fog infrastructure
is investigated in this work. Specifically, we propose a VNS to solve the opti-
mization problem of mapping sensors data flows to the fog nodes to reduce costs
and response time. A qualifying point of our proposal is that starting from a
list of potential fog nodes, it selects a minimal subset of them to guarantee the
satisfaction of a service level agreement.

We test the proposed heuristic against alternative models from the literature.
The VNS is evaluated in a realistic scenario of a smart city application over a
wide range of scenarios characterized by different load intensities and varied
nature of the application (network-bound vs. CPU-bound). The experiments
show that the VNS outperforms the best alternative model in 13 out of 20
instances, finding equivalent or very close solutions in the other seven. Moreover,
we perform two sensitivity analyses concerning infrastructure size.

From the sensitivity analysis, we conclude that the VNS has a very stable
behavior for varying the size of the considered fog infrastructure and smart city
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application characteristics. In each scenario, the proposed VNS had equal or bet-
ter performance concerning a state-of-the-art solver in optimizing the mapping
of sensor data flows and fog nodes. It reduced the costs due to the turned-on fog
nodes keeping the response time within the SLA limits.

In future works, we plan to extend the VNS to handle the fog nodes’ hetero-
geneity and dynamic scenarios in which the load can change through time.
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Abstract. The object under study is a combinatorial optimization prob-
lem motivated by the topological network design of communication sys-
tems, meeting reliability constraints. Specifically, we introduce the Gen-
eralized Steiner Problem with Node-Connectivity Constraints and Hos-
tile Reliability, or GSPNCHR for short. Since the GSPNCHR belongs
to the class of NP-Hard problems, approximative algorithms are ade-
quate for medium and large-sized networks. As a consequence, we develop
a GRASP/VND methodology. The VND includes three local searches,
that replace special elementary paths or trees, preserving feasibility. Our
goal is to find a minimum-cost solution, meeting a reliability threshold,
where both nodes and links may fail with given probabilities. We adapted
TSPLIB benchmark in order to highlight the effectiveness of our pro-
posal. The results suggest that our heuristic is cost-effective, providing
highly-reliable networks.

Keywords: Combinatorial optimization problem · Computational
complexity · Network reliability · GSPNCHR · GRASP · VND

1 Motivation

Currently, the backbone of the Internet infrastructure is supported by fiber-
optics communication. Fiber-To-The-Home (FTTH) services have a large pene-
tration throughout the world, and provides high data rates to the final customers.
However, there are several shortcomings that should be addressed urgently. The
physical design of FTTH is not suitable for large-scale natural disasters and/or
malicious attacks [16]. The monitoring and detection of failures are sometimes
slow, and a service disruption of hours is extremely harmful for business mod-
els. Furthermore, FTTH services are suffering the capacity crunch problem, and
elastic optical networks combined with smart traffic engineering and additional
redundancy is currently in order.
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Consequently, a smart augmentation of the physical network is mandatory.
Since the deployment of fiber-optics is an important economical investment, the
topological network design of FTTH networks should be revisited. The goal is
to interconnect distinguished nodes, called terminals, using large level of redun-
dancy, and simultaneously, meeting large reliable constraints.

Reliability analysis deals with probabilistic failures on the components of a
system. The reliability is precisely the probability of correct operation of the
whole system, subject to random failures. Here, we consider a realistic hostile
model, where both nodes and links could fail. Our goal is to understand the cost-
reliability trade-off, and how the reliability is naturally increased adding levels
of redundancy between distinguished terminals. The contributions of this paper
can be summarized in the following items:

1. The Generalized Steiner Problem with Node-Connectivity Constraints and
Hostile Reliability (GSPNCHR), is introduced.

2. We formally prove that the GSPNCHR belongs to the NP-Hard class.
3. As a consequence, a GRASP/VND methodology is proposed.
4. Our results highlight that the model is robust under non-terminal node-

failures, rather than link-failures.

The document is organized in the following manner. The related work is
presented in Section 2. A formal description for the GSPNCHR is presented
in Section 3; its NP-Hardness is also established. A GRASP/VND solution is
introduced in Section 4. Numerical results are presented in Section 5. Section 6
contains concluding remarks and trends for future work.

2 Related Work

Here, we extend the Generalized Steiner Problem (GSP), adding node-
connectivity requirements and a hostile network reliability model with proba-
bilistic failures on its components. We cover the main body of related works in
the fields of network reliability analysis, topological network design and joint
problems from the scientific literature.

Scarce works jointly deal with a topological network optimization under reli-
ability constraints. J. Barrera et al. proposed a topological network optimization,
trying to minimize costs subject to K-terminal reliability constraints [3]. The
authors consider Sample Average Approximation method, which is a powerful
tool for stochastic optimization and for the resolution of NP-Hard combinatorial
problems with a target probability maximization [13]. They conclude that subop-
timal solutions could be found if dependent failures are ignored in the model. The
scientific literature also offers topological optimization problems meeting relia-
bility constraints, or reliability maximization under budget constraints, which is
known as network synthesis. The reader can find a survey on the synthesis in
network reliability in [4]. More recent works propose a reliability optimization
in general stochastic binary systems [7], even under the introduction of Sam-
ple Average Approximation [20]. Building uniformly most-reliable graphs is an
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active and challenging research field, where the goal is to find graphs with fixed
nodes and links with maximum reliability evaluation in a uniform sense. The
interested reader can consult [2] for conjectures in this field. A close problem to
ours is to consider topological transformations (i.e., moving links or path/tree
replacements) in order to increase the reliability measure. This problem is not
mature, and a recent work propose a novel reliability-increasing network trans-
formation [6]. There, E. Canale et al. show that any graph with a cut-point
can be transformed into a biconnected graph with greater reliability. Using this
remarkable property, our design does not include cut-points.

Most works in the field of network reliability analysis deal with its evaluation
rather than its maximization. The literature on network reliability evaluation is
abundant, and here we can mention distinguished works on this field. A trade-off
between accuracy and computational feasibility is met by simulations, given the
hardness of the classical network reliability models [11]. Macroscopically, Monte
Carlo methods consider independent replications of a complex system, and by
means of statistical laws find pointwise estimations, in order to make decisions
on the system. The reader is invited to consult an excellent book on Monte Carlo
methods authored by Fishman [9], which was inspirational for network reliability,
numerical integration, statistics and other fields of knowledge. In our particular
case we deal with the hostile network reliability model, where both links and non-
terminal nodes fail independently. Its reliability evaluation belongs to the class
of NP-Hard problems as well [11]. Recursive Variance Reduction (RVR) is an
outstanding technique for the reliability estimation [8]. This formulation allows
a meaningful variance reduction, and the product between time and variance is
also reduced when compared to Crude Monte Carlo (CMC). Furthermore, the
variance is mathematically proved to be always better in RVR than in CMC.
More recently, the applicability of RVR is extended to Stochastic Monotone
Binary Systems (SMBS) [5]. Since the hostile model is a SMBS, in this work we
consider RVR for the network reliability estimation.

In the Generalized Steiner Problem (GSP), the goal is to communicate a given
subset of terminal-nodes at the minimum cost, meeting connectivity require-
ments either by link-disjoint (GSP-EC) or node-disjoint (GSP-NC) paths. Since
the problem is NP-Hard, the literature offers approximation algorithms as well
as metaheuristics. K. Agrawal and Ravi [1] developed an approximation algo-
rithm with logarithmic factor for the GSP-EC. Jain [12] presented a factor-2
approximation algorithm for the GSP-EC, using the primal-dual schema for
linear programming. A deep inapproximability result for the GSP-NC without
Steiner nodes was introduced by Kortsarz in [14]. In [24] an enumeration of
optimal solutions for the GSP is carried out with a compact data structure,
called Zero-Suppressed Binary Decision Diagrams. The authors show that this
method works for several real-world instances. Heuristics are also available for
the GSP. Sartor and Robledo developed a GRASP methodology to address the
GSP-EC [23]. In [19], S. Nesmachnow presents an empirical evaluation of several
simple metaheuristics (VNS is included) to address the GSP, with promising
results. Several implementations of VNS have been developed for the particular
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Traveling Salesman Problem as well, showing that VNS is competitive. Exact
solutions for the TSP and extensions can also be found in [22]. The CPU-times
provided by the exact solutions are longer than the heuristics, and in particular
VNS proposal for the TSP.

3 Problem and Complexity

In this section, we first present a general description of the GSPNCHR. Then,
a formal combinatorial optimization problem is introduced, and the hardness is
established.

Definition 1 (GSPNCHR). Consider a simple undirected graph G = (V,E),
terminal-set T ⊆ V , link-costs {ci,j}(i,j)∈E and connectivity requirements R =
{ri,j}i,j∈T . Further, we assume that both links and non-terminal (Steiner) nodes
fail with respective probabilities PE = {pe}e∈E and PV −T = {pv}v∈V −T . Given
a reliability threshold pmin, the goal is to build a minimum-cost topology GS ⊆
G meeting both the connectivity requirements R and the reliability threshold:
RK(GS) ≥ pmin, being K = T the terminal-set.

Recall that the K-Terminal reliability is the probability that all the ter-
minals belong to the same component, after node and link failures. The exact
computation of the reliability RK(G) is NP-Hard [11]. Consider an instance
(G,C,R, T, PE , PV −T , pmin) of the GSPNCHR, and the following decision
variables:

yu,v(i,j) =
{

1 if(i, j) ∈ E is used in a path u − i − j − v
0 otherwise

x(i,j) =
{

1 if(i, j) ∈ E is used in the solution
0 otherwise

x̂i =
{

1 if the Steiner node i ∈ V − T is used in the solution
0 otherwise

Here, we introduce the GSPNCHR as the following combinatorial optimiza-
tion problem:

min
∑

(i,j)∈E

ci,jxi,j

s.t. xij ≥ yu,v(i,j) + yu,v(j,i) ∀ (i, j) ∈ E, ∀u, v ∈ T, u �= v (1)∑
(u,i)∈E

yu,v(u,i) ≥ ru,v ∀u, v ∈ T, u �= v (2)

∑
(j,v)∈E

yu,v(j,v) ≥ ru,v ∀u, v ∈ T, u �= v (3)

∑
(i,p)∈I(p)

yu,v(i,p) −
∑

(p,j)∈I(p)

yu,v(p,j) ≥ 0, ∀p ∈ V − {u, v}, ∀u, v ∈ T, u �= v (4)
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∑
(s,i)∈E

xs,i ≤ Mx̂s, ∀s ∈ V − T (5)

RK(GS) ≥ pmin (6)
x(i,j) ∈ {0, 1} ∀(i, j) ∈ E (7)

x̂i ∈ {0, 1} ∀i ∈ V − T (8)
yu,v(i,j) ∈ {0, 1} ∀(i, j) ∈ E, ∀u, v ∈ T, u �= v (9)

The goal is to minimize the global cost of the solution. The set of Con-
straints 1 state that links are one-way. The connectivity requirements are
expressed by means of Constraints 2 and 3. Constraints 4 represent Kirchhoff
law, or flow conservation. Constraints 5 state that an incident link to a Steiner
node can be used only if the Steiner node is considered in the solution. Observe
that M is a large real number; M = |E| can be used in the model without loss of
generality. The minimum reliability threshold is established with Constraint 6,
being GS ⊆ G the subraph with all the constructed links xi,j . Finally, the set
of constraints 7-9 state that all the decision variables belong to the binary set
{0, 1}. Now, we establish the hardness for the GSPNCHR.

Theorem 1. The GSPNCHR belongs to the class of NP-Hard problems.

Proof. By inclusion. Recall that Hamilton Tour belongs to Karp list of NP-
Complete problems [11]. Consider a simple graph G = (V,E). Consider the
trivial instance (G,C,R, T, PE , PV −T , pmin) with unit costs, perfect nodes/links,
no Steiner nodes and requirements ri,j = 2 for all i, j ∈ V . The cost is not greater
than n = |V | if and only if G has a Hamilton tour.

The GSPECHR is also NP-Hard; the proof is analogous. Theorem 1 can be
strengthened considering strong inapproximability results [10].

In order to tackle the GSPNCHR, first we provide full solution for the relaxed
version without the reliability threshold, this is, without Constraint 6. Then, we
count the number of feasible solutions that meet that constraint. We use this
approach, since we want to determine if the topological robustness has an impact
in the resulting network reliability.

4 Algorithmic Proposal

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a
powerful multi-start process which operates in two phases [21]. A feasible solu-
tion is built in a first phase, whose neighborhood is then explored in the Local
Search Phase [21]. The second phase is usually enriched by means of different
variable neighborhood structures. For instance, VND explores several neighbor-
hood structures in a deterministic order. Its success is based on the simple fact
that different neighborhood structures do not usually have the same local mini-
mum. Thus, the resulting solution is simultaneously a locally optimum solution
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under all the neighborhood structures. The reader is invited to consult the com-
prehensive Handbook of Heuristics for further information [17]. Here, we develop
a GRASP/VND methodology.

4.1 General Scheme

A pseudocode of our full proposal is presented in Fig. 1. It receives the ground
graph GB , a number of iterations iter and a positive integer k to find the k
shortest paths during the Construction Phase, a reliability threshold pmin, the
elementary reliabilities PE , PV −T and number of iterations simiter during the
simulations carried out in the Reliability Phase. If the resulting solution respects
Constraint 6, it is included in the set sol, that is returned in Line 10. Observe that
RVR method is considered in order to test this reliability constraint [8]. Our goal
is to determine how many solutions for the relaxed problem meet Constraint 6,
as a function of the robustness (connectivity matrix R, elementary reliabilities
and threshold pmin).

Algorithm 1 sol = NetworkDesign(GB , iter, k, pmin, PE , PV −T , simiter)
1: i ← 0; P ← ∅; sol ← ∅
2: while i < iter do
3: g ← Construction(GB , P, k)
4: gsol ← V ND(g, P )
5: reliability ← RVR(gsol, PE , PV −T , simiter)
6: if reliability > pmin then
7: sol ← sol ∪ {gsol}
8: end if
9: end while
10: return sol

Fig. 1. Pseudocode for the main algorithm: NetworkDesign.

4.2 Construction Phase

This algorithm trades simplicity and effectiveness, building paths iteratively.
Figure 2 receives the ground graph GB , the matrix with link-costs C, the con-
nectivity matrix R, and the parameter k. Denote S

(I)
D the set of terminal nodes,

following the terminology of the backbone design from Wide Area Networks. In
Line 1, the solution gsol is initialized only with the terminal nodes SI

D without
links, M = {mi,j}i,j∈T stores the unsatisfied requirements, so initially mi,j = ri,

for all i, j ∈ S
(I)
D , and the matrix P = {Pi,j}i,j∈S

(I)
D

that represents the col-
lection of node-disjoint paths is empty for all Pi,j . Additionally, the matrix
A = {Ai,j}i,j∈S

(I)
D

that controls the number of attempts that the algorithm
fails to find ri,j node-disjoint paths between i, j is initialized correspondingly:
Ai,j = 0∀i, j ∈ S

(I)
D .
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Algorithm 2 (sol, P ) = Construction(GB, C,R, k)

1: gsol ← (S(I)
D , ∅); mi,j ← ri,j; Pi,j ← ∅, ∀i, j ∈ S

(I)
D ; Ai,j ← 0, ∀i, j ∈ S

(I)
D

2: while ∃mi,j > 0 : Ai,j < MAXATTEMPTS do
3: (i, j) ← ChooseRandom(S(I)

D : mi,j > 0)
4: G ← GB \ Pi,j

5: for all (u, v) ∈ E(G) do
6: cu,v ← cu,v × 1{(u,v)/∈gsol}
7: end for
8: Lp ← KSP (k, i, j, G,C)
9: if Lp = ∅ then
10: Ai,j ← Ai,j + 1; Pi,j ← ∅; mi,j ← ri,j
11: else
12: p ← SelectRandom(Lp); gsol ← gsol ∪ {p}
13: Pi,j ← Pi,j ∪ {p}; mi,j ← mi,j − 1
14: (P,M) ← GeneralUpdateMatrix(gsol, P,M, p, i, j)
15: end if
16: end while
17: return (gsol, P )

Fig. 2. Pseudocode for the Construction Phase.

The purpose of the while-loop (Lines 2-13) is to fulfill all the connectiv-
ity requirements in a randomized fashion. Observe that we selected a large
Restricted Candidate List (RCL) in our GRASP proposal for diversification
purposes. A pair of terminals (i, j) is uniformly picked at random from the
set S

(I)
D , provided that mi,j > 0 (Line 3). The graph G defined in Line 4 dis-

cards the nodes that were already visited in the previous paths. Therefore, if
we find some path between i and j in G, it will be included. In the for-loop
of Lines 5-7, an auxiliary matrix with the costs C = ci,j allows to use already
existent links from gsol without additional cost, and add them to build a new
node-disjoint path. The KSP from i to j are computed in Line 8 using Yen algo-
rithm [18], that finds the k-Shortest Paths between two fixed nodes in a graph.
In Line 9, we test if the list Lp is empty. In this case we re-initialize Pi,j , mi,j ,
and add a unit to Ai,j , since i and j belong to different connected components.
If the list Lp is not empty, a path p is uniformly picked from the list Lp, and
it is included in the solution (Line 12). The path p is added to Pi,j , and the
requirement mi,j is decreased a unit (Line 13). The addition of the path p could
build node-disjoint paths from different terminals. Consequently, the function
GeneralUpdateMatrix finds these new paths. Construction returns a feasi-
ble solution gsol equipped with all the sets P = {Pi,j}i,j∈S

(I)
D

of node-disjoint
pairs between the different terminals (Line 17). The reader can observe that
Construction returns a feasible solution for the GSPNC, which is the relaxed
version of the GSPNCHR.
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4.3 Local Search Phase - VND

The goal is to combine a rich diversity of neighborhoods in order to obtain an
output that is locally optimum solution for every feasible neighborhood. Here, we
consider three neighborhood structures to build a VND [17]. First, the concept
of key-nodes, key-paths and key-trees are in order:

Definition 2 (key-node). A key-node in a feasible solution v ∈ gsol is a
Steiner (non-terminal) node with degree three or greater.

Definition 3 (key-path). A key-path in a feasible solution p ⊆ gsol is an ele-
mentary path where all the intermediate nodes are non-terminal with degree 2 in
gsol, and the extremes are either terminals or key-nodes.

A feasible solution gsol accepts a decomposition into key-paths: Kgsol =
{p1, . . . , ph}.

Definition 4 (key-tree). Let v ∈ gsol be a key-node belonging to a feasible
solution gsol. The key-tree associated to v, denoted by Tv, is the tree composed
by all the key-paths that meet in the common end-point (i.e., the key-node v).

Now, we are in conditions to define three neighborhood structures that com-
bine the previous concepts. Consider a feasible solution gsol for the GSPNC.

Definition 5 (Neighborhood Structure for swap key-paths). Given a
key-path p ⊆ gsol, a neighbor solution for gsol is ĝsol = {gsol \ p}∪ {m}, being m
the set of nodes and links that will be added to preserve the feasibility of ĝsol.

Definition 6 (Neighborhood Structure for key-paths). Given a key-path
p ∈ gsol, a neighbor-solution is ĝsol = {gsol \ p} ∪ {p̂}, where p̂ is other path
that connects the extremes from p. The neighborhood of key-paths from gsol is
composed by the previous operation to the possible members belonging to Kgsol .

Definition 7 (Neighborhood Structure for key-tree). Consider the key-
tree Tv ∈ gsol rooted at the key-node v. A neighbor of gsol is ĝsol = {gsol \ Tv} ∪
{T}, being T another tree that replaces Tv with identical leaf-nodes.

Our full algorithm NetworkDesign considers a classical VND implementa-
tion, calling the three respective local searches in order, after the Construction
phase:

1. SwapKeyPathLocalSearch
2. KeyPathLocalSearch
3. KeyTreeLocalSearch

Even though the last two local searches are the most simple, preliminary exper-
iments suggested that SwapKeyPathLocalSearch should take effect first. The
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respective pseudocodes for the different local searches are presented in Figs. 4-3.
It is worth to remark that these local searches take effect only if the resulting
solution is both feasible and cheaper than the original one. The respective codes
from each local search are self-explanatory, and strictly follow the corresponding
neighborhood structures, trying to find better replacements. For completeness,
two auxiliary functions called during these searches are here explained, in terms
of inputs and outputs. We invite the reader to consult [15] for implementation
details:

– GeneralRecConnect: receives the ground graph GB , cost-matrix C, current
solution gsol and a key-node v. It tries to replace the key-tree Tv with a better
key-tree T spanning the same leaf-nodes, preserving feasibility. It returns
another solution and a boolean improve (if improve = 0, an identical solution
is returned).

– FindSubstituteKeyPath: receives the current solution gsol, the key-path p
and a matrix P with the collection of disjoint path between the terminals.
It replaces the current path p by p̂, exploiting the information given by P
in order to reconstruct a new feasible solution. If this solution is cheaper,
it returns improve = 1 and the resulting solution (otherwise, an identical
solution is returned).

In the last step, RVR is introduced in order to determine if Constraint 6
is met. The reader is invited to consult authoritative works on RVR and cites
therein [8] (Fig. 5).

Algorithm 3 gsol = SwapKeyPathLocalSearch(GB, C, gsol, P )
1: improve ← TRUE
2: while improve do
3: improve ← FALSE
4: K(gsol) ← {p1, . . . , ph} /* Key-path decomposition of gsol */
5: while not improve and ∃ key-paths not analyzed do
6: p ← (K(gsol)) /* Path not analyzed yet */
7: (gsol, improve) ← FindSubstituteKeyPath(gsol, p, P )
8: end while
9: end while
10: return gsol

Fig. 3. Pseudocode for Local Search 3: SwapKeyPathLocalSearch.
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Algorithm 4 gsol = KeyPathLocalSearch(GB, C, gsol)
1: improve ← TRUE
2: while improve do
3: improve ← FALSE
4: K(gsol) ← {p1, . . . , ph} /* Key-path decomposition of gsol */
5: while not improve and ∃ key-paths not analyzed do
6: p ← (K(gsol)) /* Path not analyzed yet, with extremes u and v */
7: µ̂ ←< NODES(p) ∪ SD \ NODES(gsol) > /* Induced subgraph µ̂ */
8: p̂ ← Dijkstra(u, v, µ̂)
9: if COST (p̂) < COST (p) then
10: gsol ← {gsol \ p} ∪ {p̂}
11: improve ← TRUE
12: end if
13: end while
14: end while
15: return gsol

Fig. 4. Pseudocode for Local Search 1: KeyPathLocalSearch.

Algorithm 5 gsol = KeyTreeLocalSearch(GB, C, gsol)
1: improve ← TRUE
2: while improve do
3: improve ← FALSE
4: X ← KeyNodes(gsol) /* Key-nodes from gsol */
5: S ← SD \ NODES(gsol)
6: while not improve and ∃ key-nodes not analyzed do
7: v ← X /* Key-node not analyzed yet */
8: [gsol, improve] ← GeneralRecConnect(GB , C, gsol, v, S)
9: end while
10: end while
11: return gsol

Fig. 5. Pseudocode for Local Search 2: KeyTreeLocalSearch.

5 Numerical Results

In order to understand the effectiveness of this proposal, an extensive compu-
tational study was carried out using our main algorithm NetworkDesign. The
experimental analysis was carried out in a laptop (Pentium Core I5, 8GB). Since
there are no benchmark for our specific problem we adapted the well-known
TSPLIB instances, adding node/link failure probabilities and node connectivity
requirements. We selected k = 5 for Construction, which showed acceptable
results in a training set. In our reliability-centric design, we fixed pmin = 0.8;
lower values make no sense. The elementary reliabilities for both Steiner nodes
and links are close to the unit, since we are focused on the design of highly-reliable
networks. Specifically, the nine combinations for pv, pe ∈ {0.99, 0.97, 0.95} were
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Table 1. GRASP/VND effectiveness

Instance % T % IC % IV ND CPU (s) R V ar

att48 20 99.27 34.61 11.466 0.967 7.608E−07

att48 35 98.6 36.83 29.769 0.943 3.448E−06

att48 50 98.22 37.1 65.904 0.927 5.322E−06

berlin52 20 98.98 30.55 30.605 0.937 3.294E−06

berlin52 35 99.06 33.93 33.433 0.938 3.19E−06

berlin52 50 98.02 33.48 106.945 0.907 6.487E−06

brazil58 20 98.92 31.96 62.377 0.885 6.722E−06

brazil58 35 99.25 39.45 68.891 0.86 8.347E−06

brazil58 50 98.75 35.26 103.553 0.91 7.093E−06

ch150 20 99.76 37.51 222.552 0.8559 1.029E−05

ch150 35 99.72 36.65 546.652 0.8803 9.033E−05

gr202 20 99.89 32.43 100.162 0.8231 1.224E−05

gr202 35 99.75 34.56 200.698 0.8414 1.11E−05

gr202 50 99.74 33.36 600.629 0.8303 1.279E−05

rd400 20 99.94 35.84 88.214 0.8094 14.22E−05

rd400 35 99.94 33.54 504.103 0.8537 11.89E−05

rd400 50 99.93 33.16 980.701 0.8643 11.51E−05

Average 35 99.28 34.72 220.980 0.884 3.28E−05

considered in different instances, being pv and pe the elementary reliabilities
for Steiner nodes and links e = (i, j) respectively. The number of iterations for
NetworkDesign is established in iter = 100, and the number of iterations for
the RVR method is 104. We want to understand the sensibility of the solution
to perturbations in the elementary reliabilities. Therefore, different values for
the elementary reliabilities for both Steiner nodes and links were used. Table 1
shows the results for each adapted TSPLIB instance. Each column contains,
respectively, name of the TSPLIB instance, percentage of terminal nodes (% T ),
relative improvements of Construction (% IC) and V ND phases (%IV ND),
in relation to the cost of the corresponding input graphs, CPU-time per itera-
tion of NetworkDesign, reliability estimation R and estimated variance V ar.
From Table 1, we can appreciate that the cost of the resulting graph after
the Construction is practically one-half the cost of its input. The improve-
ment of V ND is consistently bounded between 30.55% and 39.45%, according
to the instance and its characteristics on the test-set. The minimum threshold
pmin = 0.8 is widely exceeded in all the instances under study, considering the
RVR estimation R. The elementary reliabilities were established in pv = 0.99
and pe = 0.95 respectively for nodes and links, and the range of reliabilities
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Table 2. Feasible solutions with R ≥ 0.98, pv = 0.99 fixed and variable link reliability

Instance pe = 0.99 pe = 0.97 pe = 0.95

att48 T20 100 90 12

att48 T35 100 53 0

att48 T50 100 20 0

berlin52 T20 100 41 0

berlin52 T35 100 50 0

berlin52 T50 100 1 0

brazil58 T20 99 15 0

brazil58 T35 97 0 0

brazil58 T50 100 5 0

ch150 T20 100 0 0

ch150 T35 100 0 0

ch150 T50 100 0 0

gr202 T20 99 0 0

gr202 T35 100 0 0

gr202 T50 100 0 0

rd400 T20 100 0 0

rd400 T35 100 0 0

rd400 T50 100 0 0

Average 99.72 15.28 0.67

is bounded between 0.8094 and 0.967, meeting the reliability constraint. The
estimated variance V ar is reduced in average in all the instances under study.
These facts highlight the activity of the V ND phase, the accuracy of RVR and
the global effectiveness of our proposal. Furthermore, the CPU times are accept-
able, even under large-sized graphs with 400 nodes.

Tables 2 and 3 illustrate the number of feasible solutions obtained when we fix
the elementary node-reliability and modify the link-reliabilities, and vice-versa.
The suffix TXY in each instance indicates the percentage XY % of terminal
nodes. The feasibility is 100% in almost all the instances under study when both
pe = pv = 0.99. However, the feasibility is dramatically deteriorated as soon as
the link-reliabilities are decreased (see the last column of Table 2). This effect
is not pronounced when the node-reliabilities are reduced, as we can appreciate
from the last column of Table 3. This fact shows that the system is robust under
failures of Steiner nodes.
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Table 3. Feasible solutions with R ≥ 0.98, pe = 0.99 fixed and variable node-reliability

Instance pv = 0.99 pv = 0.97 pv = 0.95

tt48 T20 100 100 99

att48 T35 100 98 96

att48 T50 100 100 99

berlin52 T20 100 100 80

berlin52 T35 100 99 93

berlin52 T50 100 100 100

brazil58 T20 99 59 41

brazil58 T35 97 43 9

brazil58 T50 100 99 81

ch150 T20 100 60 20

ch150 T35 100 98 76

ch150 T50 100 100 97

gr202 T20 99 80 30

gr202 T35 100 69 16

gr202 T50 100 100 76

rd400 T20 100 16 2

rd400 T35 100 98 80

rd400 T50 100 100 100

Average 99.72 84.39 66.39

6 Conclusions and Trends for Future Work

We studied the topological design of highly reliable networks. Our goal is to com-
bine purely deterministic aspects such as connectivity with probabilistic models
coming from network reliability. For that purpose, the Generalized Steiner Prob-
lem with Node-Connectivity Constraints and Hostile Reliability (GSPNCHR) is
here introduced. The GSPNCHR belongs to the class of NP-Hard problems,
since it subsumes the Generalized Steiner Problem (GSP). Therefore, exact
methods are prohibitive, even for networks with moderate size. A GRASP/VND
solution is here developed, which shows to be both flexible and effective. Since
the reliability evaluation for the hostile model also belongs to the NP-Hard class,
we adopted an outstanding pointwise reliability estimation, known as Recursive
Variance Reduction (RVR) method. This method is unbiased, accurate and it
presents small variance, as the results show. The model is more sensible to link-
failures rather than node-failures.

The interplay between topological network design and network reliability is
not well understood yet. Some local searches were here proposed, essentially
using key-path and key-tree replacements, in order to reduce costs preserving
feasibility. A current research line is to introduce reliability-increasing transfor-
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mations. The development of local searches that increase reliability and reduce
costs would enrich the current solution. Another possibility for future work is
to enrich the number of local searches and consider probabilistic transitions
between them.
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Abstract. Students from Master in Business Administration (MBA)
programs are usually split into teams. Many schools rotate the teams at
the beginning of every term, so that each student works with a different
set of peers during every term. Diversity within every team is desirable
regarding gender, major, age and other criteria. Achieving diverse teams
while avoiding -or minimizing- the repetition of student pairs is a time-
consuming complex task for MBA Directors.

The Max-Diversity Orthogonal Regrouping (MDOR) problem is here
introduced, where the goal is to maximize a global notion of diversity,
considering multiple stages (i.e., terms) and intra-diversity within the
teams. A hybrid GRASP/VND heuristic combined with Tabu Search
is developed for its resolution. Its effectiveness has been tested in real-
life groups from the MBA program offered at IEEM Business School,
Universidad de Montevideo, Uruguay, with a notorious gain regarding
team diversity and repetition level.

Keywords: MBA teams · Orthogonal regrouping · Diversity ·
GRASP · VND

1 Motivation

The collaborative team-formation and staffing/scheduling problems in workforce
management is of paramount importance in projects deployment and large/scale
corporations. Given the intrinsic hardness of multidisciplinary team-formation
and clustering techniques, it is necessary to develop tools for this task. In this
work we are focused on a maximum diversity regrouping assignment of MBA
students; nevertheless, the reader can find potential applications in similar clus-
tering problems. Experience shows that the student skills and learning process
benefit significantly from highly-diverse teams when regarding prior experience,
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age, gender, major and other features. MBA programs are usually split into four
to six terms. Many MBA rotate the groups in every term so that students train
their ability to adapt to different groups, benefit from new points of view and
expand their peer network. Creating highly-diverse teams while keeping at a min-
imum the repetition of peer-pairs between terms is a very challenging problem
faced by program directors at the beginning of every trimester.

The contributions of this paper can be summarized in the following items:

1. A novel combinatorial optimization problem called Max-Diversity Orthogonal
Regrouping (MDOR) is here introduced. The goal is to find as many cluster-
ings as terms, maximizing cluster diversity while keeping at a minimum the
repetitions of pairs.

2. A GRASP/VND methodology combined with Tabu Search is developed.
3. The effectiveness of our proposal is tested with real-life students from the

MBA program offered at IEEM Business School, Universidad de Montevideo,
Uruguay.

The document is organized in the following manner. The related work is
presented in Sect. 2. A mathematical programming formulation for the MDOR
is introduced in Sect. 3. A full GRASP/VND heuristic combined with Tabu
Search is presented in Sect. 4. Computational results based on real-life students
are presented in Sect. 5. Section 6 contains concluding remarks and trends for
future work.

2 Related Work

We identify the closest works of ours from the scientific literature in [2,3,7]. A
simplified model with a large similarity in the team formation is presented in [3],
which considers the dining philosophers problem for the assignment of students
into groups. In [7], the problem is modeled using integer linear programming.
This work considers a centroid for each cluster. Two approaches are studied: the
min-sum approach tries to minimize the distances with respect to the centroid;
the second is a min-max approach whose goal is to minimize the maximum (i.e.,
the worst) distance.

The case-study in [2] consists of the assignment of 235 students to 8 advi-
sors. This work considers integer linear programming, and it is equivalent to the
min-sum approach given by [7]. The problem belongs to the NP-Hard class, and
heuristics are available to tackle it [10]. A hybrid Genetic Algorithm is proposed
in [9]. There, the authors suggest Tabu Search combined with strategic oscila-
tions. Independently, [12] proposed an artificial bee-workers approach. In [8], a
competitive General Variable Neighborhood Search (GVNS) is also proposed.
An extension of this GVNS is offered in [4], with a Skewed VNS combined with
a Shaking process to better explore the search-space. The goal in the Orthog-
onal Regrouping Problem is to partition a given set repeatedly, in such a way
that every pair is included only once in some cluster. Well known instances have



60 M. Banchero et al.

been extensively treated, e.g., the Kirkman’s Schoolgirl Problem and the Social
Golfer Problem.

Here we introduce the MDOR problem, which is suitable to the assignment
of MBA students to teams that are re-built in every term. It is worth to remark
that our approach has potential applications to other scenarios, such as staffing
and scheduling in workforce management [5], team formation models for collabo-
ration [14], and team-formation algorithms for faultline minimization [1], among
others.

3 Problem

In this section, we describe the main features of our problem, and then we present
a mathematical programming formulation. A brief discussion covers particular
cases, which will be considered to address the problem heuristically.

3.1 Problem Description

Our problem formulation requires a definition of distance between any two items.
In the context of grouping MBA students, the distance between two students
would represent how different they are in terms of a set of criteria (age, type
of major, gender, work experience, admission test score, etc.) that the MBA
Director chooses. In the case of the real-life sets used in our test, the criteria are:

– Career (subdivided in percentage of Social Sciences, Natural and Exact Sci-
ences content).

– Score in the Admission Test.
– Residence (urban or countryside).
– Gender.
– Age.

Career is split into three attributes in [0, 1] which account for the relative levels
of Social Sciences, Natural and Exact Sciences. The score in the Admission
Test and the Age are natural numbers, while the remaining attributes assume
binary domain. Once the attributes are selected, a distance function between
the different individuals dij must be specified. In what follows, the normalized-
Euclidean distance is considered:

dij = d(xi, xj) =
‖xi − xj‖2

maxu�=v‖u − v‖2 , (1)

where the distance between each pair of students is found by a numerical assign-
ment to the different attributes (i.e., different coordinates). Observe that this
normalization implies that 0 ≤ dij ≤ 1 for all the pairs of students i and j with
corresponding attributes xi and xj .
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3.2 Problem Formulation

Consider the following variables:

– N the number of students.
– G the number of teams (clusters).
– K the number of attributes.
– M the number of students per team: M = N

G (if integer).
– S the number of terms (clusterings).
– dij the distance between the students i and j.
– R is the number of terms that any pair of students can share (R= 1 for a

SGP instance).

Consider the set of binary decision variables xigs, such that xigs = 1 if and
only if the student i is assigned to the group g in term s, and xigs = 0 otherwise.
We introduce the MDOR problem as the following Integer Quadratic Problem:

max
xigs

S∑

s=1

G∑

g=1

N−1∑

i=1

N∑

j=i+1

dijxigsxjgs, (2)

s.t.

G∑

g=1

xigs = 1, ∀(i, s) ∈ {1, . . . , N} × {1, . . . , S} (3)

N∑

i=1

xigs = M, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (4)

S∑

s=1

G∑

g=1

N−1∑

i=1

N∑

j=i+1

xigsxjgs ≤ R, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S} (5)

xigs ∈ {0, 1}, ∀(i, g, s) ∈ {1, . . . , N} × {1, . . . , G} × {1, . . . , S} (6)

The goal is to maximize the diversity-sum among all clusters and clusterings,
where the intra-cluster diversity is precisely the distance-sum among all the pairs
of that cluster. Constraint 3 states that each student is included in a single team.
Constraint 4 states that the teams have precisely M students. Constraint 5 limits
the number of times any pair of students can meet in different terms. Finally,
Constraint 6 defines the binary domain for the decision variables.

3.3 Discussion

Observe that the previous MDOR model is adequate when M = N
G is an inte-

ger. Next we comment on how to overcome this limitation and to minimize the
number of repetitions as well.
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Number of Students per Group. If M = N
G is not an integer, we can replace

Constraints 4 with a minimal variation. In fact, consider the Euclidean division:
N = G × M + r for some remainder r : 0 ≤ r < G. We can arrange M + 1
students in r groups, and M students in the remaining G − r groups.

As a more general setting, pick two vectors a and b representing lower and
upper-bounds on the number of students per group. Replace Constraints 4 with:

G∑

g=1

xigs ≥ ag, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}

G∑

g=1

xigs ≤ bg, ∀(g, s) ∈ {1, . . . , G} × {1, . . . , S}.

Avoiding Repetitions. Avoiding repetitions is not always possible, depending
on the parameters G,M,S of a MDOR instance. Even when it is possible, no
polynomial-complexity algorithm is known for the general case; variations like
the SGP-completion problem are known to be NP-complete [6,13].

Let us consider a certain student, and let ws be the number of feasible peer
students for him/her during the term s. The sequence ws satisfies the following
recurrence:

w1 = N − 1;
wi+1 = wi − (M − 1),

since M−1 new students are met in the last term s = i. A straight solution of the
recurrence leads to ws = N − 1 − (s− 1)(M − 1). When the courses are finished
we get s = S and wS = N−1−(S−1)(M−1). Hence, if N < (S−1)(M−1)+1,
it is impossible to avoid repetitions.

Two possible heuristic approaches arise to cope with the repetition problem.
One might build high-diversity solutions while controlling the repetition level.
Alternative, one might generate repetition-free solutions and then choose and/or
modify them seeking for improved diversity. In this paper we introduce an algo-
rithm that follows the first approach. A parameter GLOBAL REP is set; once
more than GLOBAL REP times a solution is generated including a repetition
for a certain pair, the algorithm accepts the repetition.

4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems. GRASP is a pow-
erful multi-start process which operates in two phases. A feasible solution is built
in a first phase, whose neighborhood is then explored in the Local Search Phase.
The second phase is usually enriched by means of different variable neighbor-
hood structures. For instance, VND explores several neighborhood structures
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in a deterministic order. Its success is based on the simple fact that different
neighborhood structures do not usually have the same local minimum. Thus,
the resulting solution is simultaneously a locally optimum solution under all
the neighborhood structures. The reader is invited to consult the comprehen-
sive Handbook of Heuristics for further information [11]. Here, we develop a
GRASP/VND methodology.

4.1 GRASP/VND Methodology for the MDOR

We followed a traditional VND flow diagram, that consists of three local searches:

– Insert: moves a student to another group.
– Swap: swaps two students from different groups.
– 3 − Chain: exchanges three students from three different groups.

The most simple local searches appear at the beginning. Therefore, the order is
respectively Insert, Swap and 3 − Chain. A greedy randomized Construction
phase takes effect first.

To speed-up the evaluation of the objective function, the internal structures
in the main algorithm consider two vectors:

– xc[i]: current group for student i, and
– sdc[i][g]: current sum-diversity between the student i and his/her peers in

group g.

Observe that sdc[i][g] =
∑

j:x[j]=g di,j , and if we link the students in a graph
with link-weights di,j , by Handshaking Lemma we get that the objective is:

f(xc) =
1
2

N∑

i=1

sdc[i][xc[i]]. (7)

In the following, the details of the construction and local searches are pre-
sented, in the respective order.

4.2 Construction Phase

The search space is the set of all student assignments to the groups, where
each student belongs to exactly one group. A feasible solution also meets the
respective lower and upper bounds ag and bg. In our Construction phase, an
iterative student insertion into groups takes effect, meeting the lower bounds
ag. Finally, in order to fulfill feasibility, all the students are assigned in some
group, meeting the upper-bound bg. Two factors are considered for these group-
insertions: diversity and repetitions. In this construction phase, the priority is
given to repetitions. Therefore, a memory with the previous terms is used, and
if two assignment have identical number of repetitions, the assignment with
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maximum diversity is chosen. During the process, the diversity per group g for
some student x is found using the following expression:

d′(x, g) =
∑

y∈g

d(x, y)
|g| .

Observe the relation with the cardinality |g|; otherwise, groups with larger num-
ber of students are always preferred (Fig. 1).

Algorithm 1 Construction(studentGroup, a, b, atrsStandard, repMatrix)
1: studentVector ← {1, 2, .., N}
2: groupVector ← {1, 2, .., N}
3: assignOneRandomStudentToEachGroup(studentGroup, repMatrix)
4: while groupV ector �= {} do
5: selGroup ← assignGroupToStudForMinRepetitions(
6: studentGroup, repMatrix)
7: if groupCount[selGroup] = a[selGroup] then
8: groupVector ← groupVector − selGroup
9: end if
10: end while
11: for g ← 1 to G do
12: if groupCount[g] = b[g] then
13: groupVector ← groupVector − g
14: end if
15: end for
16: while groupV ector �= {} do
17: selGroup ← assignGroupToStudentForMinRepetitions(
18: studentGroup, repMatrix)
19: if groupCount[selGroup] = b[selGroup] then
20: groupVector ← groupVector − selGroup
21: end if
22: end while

Fig. 1. Construction phase

The following variables are considered during the Construction phase:

– studentGroup[s]: the group assigned to student s ∈ {1, . . . , N}.
– atrsStandard[i, j]: the value of attribute j ∈ {1, . . . ,K} for the student i.
– groupCount[g]: the number of students in the group g ∈ {1, . . . , G}.

The following functions are also considered:

– assignOneRandomStudentToEachGroup(): assigns, in each group, one ran-
dom student uniformly picked at random.

– assignGroupToStudForMinRepetitions(): picks a random student, and
assigns him/her to the group that leads to the least number of repetitions.
Ties are solved using the maximum diversity.
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4.3 Insertion

In this local search, a student i is moved from a different group. We remark that
a local search takes place whenever the resulting solution is both better and
feasible. To test feasibility, we just check the lower and upper bounds for the old
and the new group, respectively. The difference in the objective is the change in
the diversity:

f(xn) − f(xc) = sdc[i][g2] − sdc[i][g1],

being xn the new solution and xc the current solution (Fig. 2).

Algorithm 2 Insertion(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for g ← 1 to G do
4: if studentGroup[i] �= g
5: and groupCount[g] < b[g] and
6: groupCount[studentGroup[i]] > a[g] then
7: diffSol ← sd[i][g] − sd[i][studentGroup[i]]
8: if diffSol > 0 and updateTabuSearchMatrix(
9: i, g, studentGroup, tabuMatrix) then
10: studentGroup[i] ← g
11: solCurrent ← solCurrent + diffSol
12: updateSD(studentGroup, sd, i, g)
13: res ← true
14: end if
15: end if
16: end for
17: end for
18: return res

Fig. 2. Local Search I: Insertion

4.4 Swap

In this local search, two students i and j, originally belonging to different groups
gi �= gj , are exchanged, and the difference in the objective is:

f(xn) − f(xc) = (sdc[i][gj ] − sdc[i][gi]) + (sdc[j][gj ] − sdc[j][gi]) − 2dij

A pseudocode for Swap is presented in Fig. 3.
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Algorithm 3 Swap(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for j ← 1 to N do
4: if studentGroup[i] �= studentGroup[j] then
5: diffSol ← sd[i][studentGroup[j]] + sd[j][studentGroup[i]]
6: −sd[i][studentGroup[i]] − sd[j][studentGroup[j]] − 2di,j
7: if diffSol > 0
8: and updateTabuSearchMatrix(
9: i, studentGroup[j], studentGroup, tabuMatrix)
10: and updateTabuSearchMatrix(
11: j, studentGroup[i], studentGroup, tabuMatrix) then
12: oldI ← studentGroup[i]
13: oldJ ← studentGroup[j]
14: studentGroup[i] ← oldJ
15: studentGroup[j] ← oldI
16: updateSD(studentGroup, sd, i, studentGroup[i])
17: updateSD(studentGroup, sd, j, studentGroup[j])
18: solCurrent ← solCurrent + diffSol
19: res ← true
20: end if
21: end if
22: end for
23: end for
24: return res

Fig. 3. Local Search II: Swap

4.5 3-Chain

Consider three different students i, j y k belonging to three different groups gi,
gj and gk. Student i is moved to gj , j is moved to gk and k is moved to gi
(Fig. 4):

f(xn)− f(xc) = (sdc[i][gj ]− sdc[i][gi]) + (sdc[j][gk]− sdc[j][gj ]) + (sdc[k][gi]− sdc[k][gk])

− (dij + djk + dki)

4.6 Shake

In order to increase the diversity in the search-space, a shake process takes place.
Consider a k-neighborhood of Swap operation, this is, an arbitrary application
of k swaps. Shake picks a k-neighbor, and the VND phase is re-started with the
obtained solution, provided that the Tabu List allows for the shake to be done
(i.e., controlling the repetitions threshold). Figure 5 presents a full pseudocode
for Shake. In the general algorithm, k starts equal to a parameter K MIN and
is increased by a second parameter K STEP until the solution is improved or
up to a third parameter K MAX.
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Algorithm 4 3−Chain(studentGroup, sd, solCurrent, atrsStandard, tabuMatrix)
1: res ← false
2: for i ← 1 to N do
3: for j ← 1 to N do
4: for k ← 1 to N do
5: if studentGroup[i] �= studentGroup[j]
6: and studentGroup[j] �= studentGroup[k] then
7: diffSol ← sd[i][studentGroup[j]] + sd[][studentGroup[k]]
8: +sd[k][studentGroup[i]] − sd[i][studentGroup[i]]
9: −sd[j][studentGroup[j]] − sd[k][studentGroup[k]]
10: −2di,j − 2dj,k − 2dk,i
11: if diffSol > 0
12: and updateTabuSearchMatrix(
13: i, studentGroup[j], studentGroup, tabuMatrix)
14: and updateTabuSearchMatrix(
15: j, studentGroup[k], studentGroup, tabuMatrix)
16: and updateTabuSearchMatrix(
17: k, studentGroup[i], studentGroup, tabuMatrix) then
18: oldI ← studentGroup[i]
19: oldJ ← studentGroup[j]
20: oldK ← studentGroup[k]
21: studentGroup[i] ← oldJ
22: studentGroup[j] ← oldK
23: studentGroup[k] ← oldI
24: updateSD(studentGroup, sd, i, studentGroup[i])
25: updateSD(studentGroup, sd, j, studentGroup[j])
26: updateSD(studentGroup, sd, k, studentGroup[k])
27: solCurrent ← solCurrent + diffSol
28: res ← true
29: end if
30: end if
31: end for
32: end for
33: end for
34: return res

Fig. 4. Local Search III: 3 − Chain

4.7 Main Algorithm

The main algorithm iterates over all terms. For each one, it starts by invoking
Construction a number of times MAX TRIES that acts as a parameter. The
most diverse solution is passed to the following step, where the following cycle
is repeated a number of times T MAX (another parameter): Shake - Insertion
- Swap - 3 − Chain. The best solution found (the most diverse clustering) is
chosen for the term, moving on to the next one.
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Algorithm 5 Shake(studentGroup, k, sd, solCurrent, atrsStandard, tabuMatrix)
1: while k > 0 do
2: randomI ← getRandom(N)
3: randomJ ← getRandom(N)
4: if studentGroup[randomI] <> studentGroup[randomJ ] then
5: if updateTabuSearchMatrix(randomI,
6: studentGroup[randomJ ], studentGroup, tabuMatrix)and
7: updateTabuSearchMatrix(randomJ,
8: studentGroup[randomI], studentGroup, tabuMatrix) then
9: oldI ← studentGroup[i]
10: oldJ ← studentGroup[j]
11: studentGroup[i] ← oldJ
12: studentGroup[j] ← oldI
13: updateSD(studentGroup, sd, i, studentGroup[i])
14: updateSD(studentGroup, sd, j, studentGroup[j])
15: k ← k − 1
16: end if
17: end if
18: end while
19: updateSolCurrent(solCurrent, sd, studentGroup
20: return res

Fig. 5. Perturbation Step: Shake

5 Computational Results

We carried out a comparison between the algorithm here introduced and the
manual team assignment that was done in real-life with two IEEM Business
School MBA cohorts from 2014 and 2015: “MBA1314” (34 students, 6 teams)
and “MBA1415” (45 students, 8 teams).

The algorithm was coded in C++ and executed in a home-PC (Intel-core
i7 2.2GHz, 8GB RAM). One hundred independent iterations were run (since
GRASP is a multi-start metaheuristic) and the best solution was finally returned.
As a preliminary stage, an adjustment of all the parameters was performed run-
ning several experiments. MAX TRIES and T MAX were set to 100 and 500
respectively. The Shake parameters were finally set to K MIN = K STEP = 1
and K MAX = 3. There is a trade-off between diversity and number of repeti-
tions. A larger freezing-factor GLOBAL REP in the Tabu List implies a lower
level of diversity as one test with MBA1415 shows in Table 1. All results next
reported were obtained with Tabu-list parameter to a freezing factor of 285.000
to keep repetitions at a minimum level.

Table 2 compares the diversity achieved by our algorithm vs the manual team
assignment for the two cohorts and the five terms that the program spans; Table 3
does a similar comparison for repetitions per term. Our algorithm consistently
outperformed the manual assignment when considering diversity and repetitions.
It also took less time, since the longest execution took 50 min, while the manual
assignment was reported to take more than 4 hours for each cohort.
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Table 1. Diversity and repetitions per term, MBA1415: manual vs algorithm.

Table 2. Diversity per term, MBA1314 and MBA1415: manual vs algorithm.

Table 3. Repetitions per term, MBA1314 and MBA1415: manual vs algorithm.

6 Conclusions and Trends for Future Work

A novel combinatorial optimization problem is introduced named Max-Diversity
Orthogonal Regrouping (MDOR). It was conceived to cope with the problem of
partitioning MBA cohorts into high-diversity teams, rotating the teams in every
term and keeping under a given (low) threshold the repetitions. Nevertheless, the
MDOR has potential applications in workforce management or team formation
models for collaboration. The mathematical programming formulation is similar
to a quadratic assignment problem, and the MDOR is presumably hard, even
though a formal proof is not available in the literature.
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A GRASP/VND methodology enriched with Tabu Search is here proposed
in order to address the MDOR. A Shaking process in order to further explore
the search-space is also included. The tests presented show that this algorithm
produces clusterings faster, with fewer repetitions and higher diversities than the
manually-built clusters applied to the real-life cohorts of the test cases. Future
work includes formally establishing the computational complexity of the MDOR,
and comparing our GRASP/VND methodology with alternative heuristics.
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Abstract. In this paper we study the Parallel machine scheduling prob-
lem with Two Servers in the Restrictive case (PTSR). Before its pro-
cessing, the job must be loaded on a common loading server. After a
machine completes processing one job, an unloading server is needed to
remove the job from the machine. During the loading, respectively the
unloading, operation, both the machine and the loading, respectively
the unloading, server are occupied. The objective function involves the
minimization of the makespan. A Mixed Integer Linear Programming
(MILP) model is proposed for the solution of this difficult problem. Due
to the NP-hardness of the problem, a Variable Neighborhood Search
(VNS) algorithm is proposed. The proposed VNS algorithm is compared
against a state-of-the-art solver using a randomly generated data set.
The results indicate that, the obtained solutions computed in a short
amount of CPU time are of high quality. Specifically, the VNS solution
approach outperformed IBM CPLEX Optimizer for instances with 15
and 20 jobs.

Keywords: Scheduling · Parallel machine · Mixed integer
programming · Variable neighborhood search · Single server

1 Introduction

Sequencing and scheduling decisions are crucial in manufacturing and service
industries. Scheduling jobs on parallel machines consists of determining the start-
ing time of each job and the machine that will process this job. The problem
has a myriad of applications in logistics, manufacturing, and network computing
etc. The literature on this subject is abundant as it is for the problem of parallel
machine scheduling problem with single server [1,2,6,12].

Formally the problem of minimizing the makespan Cmax on the parallel
machine with a single server is denoted by Pm,S1|pi, si|Cmax. In this nota-
tion, m represents the number of machines, S1 represents the server, and pi, si
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represent the processing time and setup time (or loading time) of job i, respec-
tively.

Considering this problem, Liu et al. [13] studied the objective of minimizing
the total weighted job completion time. They proposed a branch-and-bound
algorithm, a lower bound, and dominance properties.

In [12] the authors proposed two mixed integer programming formulations
for the problem with several machines. They proposed also a hybrid heuristic
algorithm combining Simulated Annealing (SA) and Tabu Search (TS) to min-
imize the total server waiting time. Recently El Idrissi et al. [7] proposed two
additional mixed integer programming formulations for the same problem with
better performance given especially by the time-indexed variables formulation.

In the paper of Torjai and Kruzslicz [17], the authors consider the situation
where the shared server is used to unload the jobs. As an application, the authors
studied a biomass truck scheduling problem. The trucks represent the machines
in charge of delivering biomass from different locations to a single refinery oper-
ating a single server.

The problem of considering both loading and unloading operations in order to
minimize the makespan was studied by Jiang et al. [11]. In their work the authors
considered only two parallel machine and a single server that is capable of doing
the loading and unloading operations. In addition to these assumptions, the
authors considered the non-preemptive case in which the loading and unloading
durations are both equal to one time unit. Given the NP-hardness nature of
the problem, they applied a List Scheduling (LS) and Longest Processing Time
(LPT) to solve this problem. Also they showed that LPT and LS have tight
worst-case ratios of 4/3 and 12/7, respectively.

Some authors considered the problem with several servers. Ou et al. [15]
studied the parallel machine scheduling with multiple unloading servers in order
to minimize the total completion time of the jobs. As an application the authors
cite milk run operations of a logistics company that faces limited unloading
docks at the warehouse. The authors show that, the shortest-processing-time-
first (SPT) algorithm has a worst-case bound of 2. They also provide heuristics
and a branch-and-bound algorithm to solve the problem.

In [18] the authors studied the problem of scheduling non preemptively a
set of jobs on identical parallel machines. Each job has to be loaded, on a given
machine, by one of multiple servers available. The authors show that, the problem
Pm,Sk|si = 1|Cmax is binary NP-hard and that the problem Pm,S(m−1)|si =
1|Cmax can be solved by a pseudo-polynomial algorithm. For a fixed number of
machines and servers the problem is unary NP-hard when considering maximum
lateness minimization.

As seen above, there are several articles dealing with the problem of parallel
machine scheduling with loading and unloading operations. In some cases only
one server was considered, and in other cases several servers were considered.
Also several researchers considered only the loading or unloading operations
whereas other researchers considered that the server can do both the loading
operation and the unloading operation.
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To the best of our knowledge, the case where two servers are available has not
been studied before. One server is dedicated only for loading jobs on the machines
and the other server is dedicated for unloading them from the machines. This
problem is NP-hard as it is more difficult that the special case P2, S1|pj , sj |Cmax

which is NP-hard (cf. [4]). The research contributions of this work are summa-
rized as follows:

– This paper considers the parallel machine scheduling problem with loading
and unloading servers.

– The general problem with restrictive and non-preemptive case is considered
for the first time.

– An efficient VNS algorithm is proposed to solve this problem.

The remaining of the paper is organized as follows. The description of the
problem and an illustrative example are given in Sect. 2. Section 3 presents the
mathematical formulation of the restrictive model. Section 4 provides a VNS
method for the solution of the PTSR. Finally, Sects. 5 and 6 present our exper-
imental results and draw some conclusions, respectively.

2 Problem Description

This paper considers the parallel machine scheduling problem with loading
and unloading servers. In this problem, we consider two machines and a set
Ω1 = {1, 2, . . . , n} of n independent jobs with integer processing times have to
be processed non-preemptively on a set of parallel machines with two servers.
The first server is dedicated to the loading of jobs on the machines and the
second server realizes the unloading of jobs immediately after their execution.
During the loading (respectively unloading) operation, both the machine and
the loading server (respectively unloading server) are occupied and after this
operation, the server becomes available for loading (respectively unloading) the
next job. It is assumed that, the jobs are simultaneously available for process-
ing at the beginning of the scheduling horizon, and that their processing times
are fixed and known in advance. The objective function in the PTSR problem
consists of minimizing the makespan.

2.1 Numerical Example

Let’s assume we are given an instance with two parallel machines M1 and M2,
eight jobs, and two servers. One server is used to load the jobs on one of the
machines (denoted as L) and the other is used to unload them (denoted as U).
The other data are displayed in the following Table 1. For each job i, pi, li, and
ui represent the processing time, the loading time, and the unloading time of
this job, respectively.

The optimal objective function value can be obtained by solving the MIP for-
mulation described in Sect. 3. IBM CPLEX Optimizer v12.6 requires 11.82 min
to solve this problem. Figure 1 represents the corresponding schedule.



74 R. Benmansour and A. Sifaleras

Table 1. Example instance for n = 8.

Job 1 2 3 4 5 6 7 8

pi 6 5 10 7 7 9 6 5

li 4 2 3 1 1 2 1 3

ui 3 1 1 1 2 3 4 3

In this schedule the server L loads first the job J7 on the machine M1. This
operation take one unit of time. Then the processing of this job begins from
time t = 1 until t = 7. At this time the second server U is used to unload the
J7 from machine M1. This operation takes four units of time. The makespan in
this schedule is equal to 46.

Fig. 1. The optimal schedule for the n = 10 problem instance

The problem is called restrictive because:

– once the job is loaded on the machine by the server L, it must be processed
immediately by the machine.

– once the job is processed by the machine, it must be unloaded immediately
by the server U.

If one of these conditions is not met, then the value of the optimal solution
can be improved. In this case, a non-restrictive version of the problem occurs.

3 Mathematical Formulation of the Restrictive Model

In this case, the unloading of a job is carried out immediately after the end of
its processing.

Notations:

– n the number of jobs
– M = {1, 2, ...,m} set of the machines
– pi the processing time of job i
– li the loading time of job i
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– ui the unloading time of job i
– B A large positive integer
– Ω1 = {1, 2, ..., n} set of jobs to be processed on the machines
– Ω2 = {n + 1, ..., 2n} set of jobs to be processed on the loading server, each

job i has a duration li
– Ω3 = {2n + 1, ..., 3n} set of jobs to be processed on the unloading server,

each job i has a duration ui

– Ω = {1, 2, ..., 3n} set of all the jobs

For the needs of modeling, we adopt the following notations: the ρ parameter
will represent the duration of jobs, whether on the machine or on the servers.
Thus:

∀i ∈ Ω1 ρi = pi + li + ui

∀i ∈ Ω2 ρi = li−n

∀i ∈ Ω3 ρi = ui−2n

Variables:
Ci : the completion time of the job i
xik = 1 if job i ∈ Ω1 is processed on machine k and 0 otherwise
zij = 1 if job i is processed before job j and 0 otherwise.

min Cmax (1)
s.t. Cmax ≥ Ci, ∀i ∈ Ω1, (2)
m∑

k=1

xik = 1, ∀i ∈ Ω1, (3)

Ci ≥ ρi, ∀i ∈ J (4)
Ci ≤ Cj − ρj + B(3 − xik − xjk − zij), ∀i �= j ∈ Ω1, k ∈ M (5)
Ci ≤ Cj − ρj + B(1 − zij), ∀i �= j ∈ Ω2 (6)
Ci ≤ Cj − ρj + B(1 − zij), ∀i �= j ∈ Ω3 (7)
zij + zji = 1, ∀i �= j ∈ Ω (8)
Ci − (pi + ui) = Ci+n, ∀i ∈ Ω1 (9)
Ci = Ci+2n, ∀i ∈ Ω1 (10)
xij , zik ∈ {0, 1}, ∀i, j ∈ Ω, j > i (11)

In this MIP model we aim to minimize the makespan Cmax (1). Constraints
set (2) states that makespan of an optimal schedule is greater than or equal to the
completion time of all executed jobs. In turns, the completion time of each job is
at least greater than or equal to the duration of this job (4). Constraints (3) state
that each job must be processed on exactly one machine. Constraints sets (5),
(6) and (7) guarantee, respectively, that all jobs are scheduled on the loader, on
the machines, and on the unloader without overlapping. The next constraints (8)
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impose that for each couple of jobs (i, j), one must be processed before the other.
Next, constraints (9) are used to calculate the completion time of each job i. Since
we are dealing with the restrictive case, which states each job is immediately
unloaded from the machine after its execution, then the completion time of the
job, Ci, is equal to the completion time of the loading operation, Ci+n, plus
the processing time and the unloading time pi + ui. Finally, constraints (10) are
added to state that the completion time of the job i on the machine is equal to
the completion time of unloading operation of the same job. Constraint sets (11)
define variables xi,j and zi,k as binaries.

4 Variable Neighborhood Search

4.1 General Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic method based on sys-
tematic changes in the neighborhood structure initially proposed by Mladenović
and Hansen [14]. The simplicity and efficiency of the VNS method has attracted
several researchers the last decades and has lead to a large number of successful
applications in a wide range of areas [3,16].

In this paper, we use the General VNS (GVNS) variant to solve the problem
in hand. GVNS employs the Variable Neighborhood Descent (VND) which con-
sists of a powerful local search step in each neighborhood rather than a simple
local search step in only one neighborhood per iteration. Thus, the VND method
constitutes the intensification part of the VNS and it is analytically described
in [5]. The pseudo-code of the algorithm is presented below (Algorithm 1).

Algorithm 1: GVNS
Data: x, lmax, kmax, tmax

Result: Solution x
Generate an initial solution x;
repeat

l ← 1 ;
repeat

x′ ← Shake(x, kmax, lmax);
x′′ ← VND(x′, lmax);
x, l ← NeighborhoodChange(x,x′′,l);

until l = lmax;
t ← CpuTime() ;

until t > tmax;

The method NeighborhoodChange(x, x′′, l) is used to change (or not)
the current neighborhood structure. If the local optimum x′′ is better than the
incumbent x, then NeighborhoodChange keeps this solution instead of x (i.e.
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x ← x′′), and the search returns to N1; otherwise, it sets l ← l + 1 in order to
find, if possible, a better solution in a different neighborhood.

VND (Algorithm 2) starts with an initial solution x0 and continuously tries
to construct a new improved solution from the current solution x by exploring
its neighborhood Nl(x). The process continues to generate neighboring solutions
until no further improvement can be made. In our implementation, we use the
first improvement search strategy as we choose a random solution as the initial
solution [9].

Algorithm 2: VND method
Data: x, lmax

Result: Solution x
repeat

l ← 1;
repeat

Select x′ ∈ Nl(x) such that f(x′) < f(x);
NeighborhoodChange(x,x′,l);

until l = lmax;

until no improvement is made;
return x

The aim of a Shaking procedure used within a VNS algorithm is to escape
from local minima traps; thus, the Shaking method constitutes the diversification
part of the VNS. The Shaking procedure performs a number of random jumps
(k ∈ {1, 2, . . . , kmax}) in a neighborhood Nl(x), l ∈ {1, 2, . . . , lmax} from a
predefined set of neighborhoods. Note that, the l index is given as input by
Algorithm 1. In this work, kmax was set equal to five based on some preliminary
experiments.

Algorithm 3: Shake method
Data: x, kmax, lmax

Result: Solution x
for k = 1 to kmax do

Select randomly x′ ∈ Nl(x);
x ← x′;

end
return x

VNS uses a finite set of neighborhood structures denoted as Nl, where l ∈
{1, 2, . . . , lmax}. The lth neighborhood of solution x, Nl(x), is a subset of the
search space, which is obtained from the solution x by small changes. The VNS
(Algorithm 1) includes an improvement phase in which a VND method is applied
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and a shaking phase used to escape local minima traps. These procedures are
executed alternately until fulfilling a predefined stopping criterion. The stop-
ping criterion of the proposed solution methodology was a maximum CPU time
allowed for the VNS, equal to five minutes.

4.2 Neighborhood Structures

To design an efficient VNS algorithm one must carefully select the neighbor-
hoods structure to use. Some authors recommend the use of less than three
neighborhood structures [8]. We have developed the following three neighbor-
hood structures (lmax = 3) for the computational experiments:

– Neighborhood N1(x) = Swap(x): The neighborhood set consists of all per-
mutations that can be obtained by swapping two adjacent jobs in the solution
x.

– Neighborhood N2(x) = Swap2(x): It consists of all solutions obtained from
the solution x swapping two random jobs.

– Neighborhood N3(x) = Reverse(x): Given two jobs j and k we reverse the
order of jobs being between those two jobs.

4.3 Initial Solution

The initial solution is chosen as a random permutation of the jobs. From any
sequence of the jobs, we can build the solution as follows: We start by loading
the first job on the machine M1, and the second one on machine M2. In this
case, the second job is directly loaded after the end of loading job 1 (i.e., without
idle time). For each one of the following jobs j, as soon as the server L becomes
available, we can load job j on one of the two available machines for processing.
Otherwise, one should wait for one of the machines to be available before loading
this job. It should be noted that, each time it must be checked that the end date
of the unloading of job j does not overlap with another job which is being
unloaded. If it is the case, it is necessary to shift the starting time of loading job
j adequately.

4.4 Evaluation Function

Consider a permutation of jobs σ = {1, 2, . . . , n}. To evaluate the value of the
solution corresponding to σ we will proceed as follows. At t = 0 all resources are
available. The job 1 is scheduled on machine 1. This means that the job is loaded
on L which will take l1 units of time. The machine M1 that is busy up to this
point will start the processing of this job. At the end of this operation, the job
is unloaded immediately from the machine using the resource U ). Then we will
schedule job 2 as soon as possible on machine 2. We may face two possibilities
here. The first case is i) we will start loading this job on L just after the end of
loading operation of job 1. In this case, the resource U is available when job 2 is
to be unloaded (i.e. job 1 has finished unloading). The second case is ii) we will
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postpone the loading of job 2 so that at the time of unloading the resource U
will be available. For the following jobs, we must choose the earliest starting date
on the server and on one of the two machines so as to have an execution without
idle time and the smallest completion time possible on the resource U. Finally,
the value of the solution σ will be the completion time of the last scheduled job.

5 Computational Results

We generated the data as suggested by Hasani et al. [10]. Hence, we randomly
generated server load η in the interval {0.5, 1, 2} for each server, where η =
E(si)/E(pi) and E(x) denotes the mean of x, and si can either represents the
loading time li for the server L or the unloading time ui for the server U. The
processing times pj were uniformly distributed in the interval (0, 100), and the
loading and unloading times, respectively lj and uj were uniformly distributed
in the interval (0, 100η). Furthermore, we generated instances for n ∈ {15, 20}.
Ten instances were randomly generated for each of the above values of η and for
the additional values of n.

All tests presented in this section were conducted on a personal computer
running Windows 7 with an Intel®Core(™) i7 vPro with a clock speed at 2.90
GHz CPU and 16 GB of RAM. Also, IBM CPLEX Optimizer v12.6 was used
for the solution of the MIP optimization problems.

In Table 2, which is subdivided into two parts, we have reported the results
of 60 instances solved by VNS and by CPLEX. These cases relate to problems of
size n = 15 jobs and problems of size n = 20 jobs. For n = 15, the first column
represents the instance k. The second represents the values of the server load η.
The third column represents the best value found by VNS in a time limit of five
minutes. The fourth column represents the best value (upper bound) found by
CPLEX in one hour. Finally, the last column, represents the relative MIP gap
(difference between the lower and upper bounds) computed by CPLEX.

In Table 2, for instances with 15 jobs, VNS finds a better solution than
CPLEX in 87% of the cases. VNS performance is even better for large instances.
In fact, for n = 20, VNS always finds a better solution for each case than CPLEX,
whether the time limit is five minutes or five seconds. We report here only the
solutions found in five minutes since they were better than those found in five
seconds. Note that in both cases, we have written in bold the best values found
by VNS. Finally, we should highlight the fact that, the MIP model for n = 20,
m = 2, η = 0.5 was not able to solve optimally the first instance even after six
hours.

6 Conclusions and Future Work

This work studied the parallel machine scheduling problem with two servers
in the restrictive case. Also, a mixed integer linear programming model and a
variable neighborhood search approach were presented for the solution of the
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Table 2. Computational results

n = 15 n = 20

k η GVNS CPLEX GAP (%) k η GVNS CPLEX GAP (%)

1 0.5 818 818 45.35 1 0.5 1055 2342 88.95

2 0.5 873 873 39.09 2 0.5 1156 2450 89.14

3 0.5 784 782 43.48 3 0.5 991 2466 89.45

4 0.5 845 845 39.43 4 0.5 1151 2496 89.51

5 0.5 785 785 33.20 5 0.5 1052 2616 89.77

6 0.5 816 816 34.80 6 0.5 987 2399 88.22

7 0.5 697 695 21.57 7 0.5 1140 2631 90.07

8 0.5 832 832 39.06 8 0.5 989 2755 88.85

9 0.5 724 724 35.90 9 0.5 1033 2522 88.90

10 0.5 723 723 29.05 10 0.5 957 2756 90.28

1 1 1053 1053 33.20 1 1 1486 3897 89.09

2 1 1178 1177 41.83 2 1 1643 3801 87.57

3 1 1063 1064 28.20 3 1 1646 3548 87.78

4 1 1075 1079 32.43 4 1 1526 4090 90.56

5 1 1197 1198 39.65 5 1 1456 3774 88.45

6 1 1007 1008 31.80 6 1 1601 3968 88.82

7 1 1280 1283 42.18 7 1 1377 4227 89.70

8 1 1394 1395 45.96 8 1 1660 3560 88.07

9 1 1171 1168 36.30 9 1 1448 4041 89.58

10 1 1324 1325 40.24 10 1 1336 4207 89.46

1 2 2215 2224 39.53 1 2 2610 6323 88.40

2 2 2042 2049 36.12 2 2 2959 6149 87.75

3 2 2003 2009 37.36 3 2 2323 7413 88.17

4 2 1920 1926 34.74 4 2 2828 6366 86.30

5 2 1771 1777 33.65 5 2 2465 6605 88.49

6 2 1786 1786 41.71 6 2 2270 6450 88.62

7 2 1908 1914 33.52 7 2 2373 6191 87.70

8 2 2058 2059 44.52 8 2 2839 6368 88.08

9 2 2027 2040 39.69 9 2 2520 6936 90.58

10 2 2206 2210 40.32 10 2 2727 7182 89.23

proposed problem. The VNS solution approach showed a very good computa-
tional performance and computed solutions of better quality than CPLEX for
instances with 15 or 20 jobs. Studying problems with more than two machines
consists an interesting research idea for future work. Also, a similar model cor-
responding to the non-restrictive case is also interesting as a generalization of
the proposed model.
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Abstract. A number of artificial intelligence and machine learning
problems need to be formulated within a directional space, where clas-
sical Euclidean geometry does not apply or needs to be readjusted into
the circle. This is typical, for example, in computational linguistics and
natural language processing, where language models based on Bag-of-
Words, Vector Space, or Word Embedding, are largely used for tasks
like document classification, information retrieval and recommendation
systems, among others. In these contexts, for assessing document clus-
tering and outliers detection applications, it is often necessary to gen-
erate data with directional properties and units that follow some model
assumptions and possibly form close groups. In the following we pro-
pose a Reduced Variable Neighbourhood Search heuristic which is used
to generate high-dimensional data controlled by the desired properties
aimed at representing several real-world contexts. The whole problem
is formulated as a non-linear continuous optimization problem, and it is
shown that the proposed Reduced Variable Neighbourhood Search is able
to generate high-dimensional solutions to the problem in short computa-
tional time. A comparison with the state-of-the-art local search routine
used to address this problem shows the greater efficiency of the approach
presented here.

Keywords: Optimization · Reduced Variable Neighbourhood Search ·
Synthetic directional data generation · Circular statistics

1 Introduction and Background

The analysis and interpretation of directional data requires specific data rep-
resentations, descriptions and distributions. Directional data occurs in many
application areas like, e.g. earth sciences, astronomy, meteorology and medicine.
Note that directional data is an “interval type” data: points are typically consid-
ered on the unit radius circle, or sphere, and the focus is on the direction of the
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data vectors. The position of the “zero degrees” is then arbitrary, and the angle
between two unit length vectors is used as a natural measure for their distance.
Although the angular distances can be used sometimes also with general data
vectors defined in the Euclidean space, usual statistics, such as the arithmetic
mean and the standard deviation, are not appropriate because they do not have
this rotational invariance property [34], and one must rely on proper directional
(or circular) statistics [26]. In this context classical Euclidean geometry laws do
not apply or need to be properly reformulated into the circle.

Nowadays also a number of popular artificial intelligence and machine learn-
ing problems are modelled using directional statistics. This is typical, for exam-
ple, in computational linguistics and natural language processing, where lan-
guage models based on Bag-of-Words [42], Vector Space [35], or Word Embed-
ding [25], are largely used for tasks like document classification, information
retrieval and recommendation systems, among others. In these models, docu-
ments are represented by feature vectors. Specifically, in Bag-of-Words, a text
(such as a sentence or a document) is represented as the bag (multiset) of its
words, disregarding grammar and even word order but keeping multiplicity. A
Vector Space model is a special Bag-of-Words representing a document by a fea-
ture vector, where each feature is a word (term) and the feature’s value is a term
weight. The term weight might be, either, a binary value (with 1 indicating that
the term occurred in the document, and 0 indicating that it did not); a term fre-
quency value (indicating how many times the term occurred in the document);
or a TF-IDF (term frequency-inverse document frequency) value [1], a numeri-
cal statistic that is intended to reflect how important a word is to a document
into a collection or corpus. The entire document is thus a feature vector, and
each feature vector corresponds to a point in a vector space. The model for this
vector space is such that there is an axis for every term in the vocabulary, and
so the vector space is v-dimensional, where v is the size of the vocabulary. For
long documents, where the vocabulary can be excessively large to handle, Word
Embedding models can be a preferred option [25]. In Word Embedding model,
like e.g. the popular Word2Vec [27], GloVe [31], or the most recent BERT [18],
words or phrases from the vocabulary are mapped to lower-dimensions vectors of
real numbers. Conceptually it involves a mathematical embedding from a space
with many dimensions per word to a continuous vector space with a much lower
dimension [25]. Although these representation models have been largely used
in computational linguistics and natural language processing, they have found
also applications for generic visual categorization in computer vision [6,16,40],
among others.

Typically, reasons for preferring a directional approach in these contexts are
driven by the problem. For example, the angular distance is known to favor
vector components with higher variance (see e.g. [33]), which in linguistics is
desirable for giving more weight to the more informative terms. Other reasons
are of computational nature. When the space dimension v and sample size n may
be both very large, the computation of the ordinary distances may become time
consuming. In addition, the high dimensional vectors are often very sparse and an
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angular distance, namely the cosine similarity, would neglect the 0-components
and save time compared to an ordinary Euclidean distance. Besides, v is often
considerably larger than n, leading to singular covariance matrices and compli-
cating the use of the Mahalanobis distance (see e.g. [20], [15] and [19]), which
otherwise is in general a good choice for taking into account data correlations.

In cluster analysis, as in many statistical and data science problems, the dis-
tance measure plays a crucial role [8,10]. Points are assigned to groups according
to their distance from the closer group centroid, and points that cannot be firmly
assigned to any group are considered outliers [13]. A clustering method, e.g. K-
means [36], may produce equivalent results with different distance measures (and
centroid definitions) but behaves very differently with others.

To study the relationship between distance measures and objectively com-
pare the performance of clustering, outliers detection, or other data analysis
frameworks, it is often necessary to conduct systematic tests on a big number of
different data sets artificially generated with known properties. In fact, it is well
known that there is always some bias in the use of standard collections of data
from real life applications1 which should be rather used to confirm the properties
of methods previously studied under controlled settings [12].

As an example, [38] have extended the Forward Search [2] method to the
automatic detection of outliers in human label documents set. These outliers
are documents that are wrongly assigned to a category or weakly correlated to
other documents, and that need to be removed before training a learning system
on these data. The synthetic datasets produced with our method allow to cali-
brate the outliers detection strategy and to assess the quality of the information
retrieval process [38].

While it is rather easy to generate synthetic multivariate data according to
some probability distribution or covariance structure in the Euclidean space,
efficient methods that at the same time impose constraints on the distribution
of the pairwise angular distances of the generated data vectors have been less
explored in the literature. In [14] we have proposed a simple local search app-
roach for addressing the problem of high-dimensional directional data generation
controlled by specific properties. In particular, motivated by problems in com-
putational linguistics, it is hypothesized that data are power-law distributed
[19,34], and that their pairwise cosine similarities are distributed as a von Mises
distribution [41], i.e. the analogous of the normal distribution in circular statis-
tics [26], around a desired cosine value. This represents a common realistic setting
in several computational linguistics applications [22,32].

In this contribution we propose an efficient optimization approach based on
a Reduced Variable Neighbourhood Search (RVNS) heuristic [9,21,30] which is
characterized by a very high speed and some interesting implementation improve-
ments with respect to the local search approach in the literature [14]. This algo-
rithm is characterized by an ease of implementation and simplicity, and it takes

1 see for example the UC Irvine Machine Learning Repository (UCI): https://archive.
ics.uci.edu/ml/index.php, a popular open-source repository of annotated datasets
for machine learning tasks.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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inspiration from the recently proposed “less is more approach” [10,29], which
supports the adoption of non-sophisticated and effective metaheuristics instead
of hard-to-reproduce and complex solution approaches. We will show how the
proposed RVNS heuristic is able to generate efficiently high-dimensional direc-
tional data controlled by the desired properties. The generation algorithm is
computationally efficient and flexible as well in terms of adaptability to other
distributions and problems.

The rest of the paper is organized as follows. Section 2 formulated the whole
problem as a non-linear continuous optimization problem. Section 3 describes
the implementation details of the considered optimization algorithms, namely
the state-of-the-art local search routine in the literature and our proposed RVNS
approach. Our computational analysis is reported in Sect. 4, where it is shown
that the proposed RVNS is able to generate high-dimensional solutions to the
problem in shorter computational time with respect to the local search routine,
demonstrating the efficiently of the approach presented here. Finally the paper
ends with conclusions and suggestions for possible future research in Sect. 5.

2 Problem Formulation

The problem has been firstly formulated by [14] distinguishing between two
general settings. The first is the ideal case of a single homogeneous group of
n documents represented in a vector space of size v (vocabulary size). Here,
high recall and precision are achieved by minimizing the sum of the pairwise
similarities between documents,

F =
n∑

i=1

n∑

j=1,j �=i

cs(Zi, Zj) (1)

where cs is the cosine similarity function that for two vectors Zi and Zj is:

cs(Zi, Zj) =
Zi · Zj

‖Zi‖2 · ‖Zj‖2 =
∑v

k=1 z(i, k) · z(j, k)√∑v
k=1 z2(i, k) ·

√∑v
k=1 z2(j, k)

. (2)

Clearly, 0 ≤ cs(Zi, Zj) ≤ 1. In the second setting we assume K > 1 homogeneous
groups and a number of isolated outliers. Now, the quantity F computed within
a given homogeneous group should be maximized, while it should be minimized
when computed on the set of the K estimated centroids2. The “density” of the
documents within an homogeneous group is determined by the average value
of the quantity F for that group. Therefore, to generate artificial data suitable
for benchmarks in the two general settings we can use the following constrained
non-linear continuous optimization problem formulation [24].

Given a cosine similarity value c̃s ∈ (0, 1), a tolerance ξ ∈ (0, 1), ξ << c̃s, find
a set Z of n v-dimensional vectors with v >> n non-negative variables, such
2 It can be shown that the mean vector estimated within a group is a centroid with

good properties (see e.g. [37], Section 8.2.6).
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that the set of n(n−1)/2 pairwise cosine similarity values C = {cs(Zi, Zj) ; j =
2, · · · , n ; 1 < i < j} satisfies:

1. cs(Zi, Zj) ∈ [c̃s − ξ, c̃s + ξ],
2. C is a random sample drawn from a von Mises distribution

f(x|μ, κ) =
expκ(cos(x−μ))

2πI0(κ)
0 < x ≤ 2π

with mean μ(C ) ≈ c̃s and concentration parameter κ(C , ξ), being I0(·) the
modified Bessel function of order 0.

We use the Watson goodness-of-fit test [39] to assess whether C is consistent
with the hypothesized von Mises null distribution with known mean (c̃s) and
concentration parameter estimated from C itself.

In the von Mises, the concentration parameter κ is the analogous of the recip-
rocal of the variance for the normal distribution and links the sample standard
deviation σ(C ) with the chosen tolerance ξ. This is done by using the well-known
empiric three-sigma rule [34] and monitoring the constraint σ(C ) ≈ ξ/(10/3)
during the data generation process, which corresponds to a concentration param-
eter κ(C , ξ) ≈ 9, ensuring that the data are representative of more than 99.9%
of the generating von Mises distribution.

3 Optimization Methods

This section contains the implementation details of the considered optimization
algorithms, namely the state-of-the-art local search routine implemented in [14]
and the RVNS approach that we propose here. For a survey on the basic con-
cepts of approximate optimization methods, including stochastic local search
and metaheuristics, the reader is referred to [3,4,23]. The algorithms have been
implemented using the commercial software package Matlab, R2019b 64-bit,
version 9.7.0 3.

3.1 Local Search Algorithm

The local search algorithm starts from an initial solution, Z 0, of n data vectors
with v variables, constructed as described in [14] such that all the vectors have
exactly the same pairwise cosine similarity value c̃s [11]. Consider the set Z of
n data vectors with v >> n variables, where all the vector tails are equal from
variable index n + 1 onwards, i.e. z(i, k) = z(j, k) ∀k ≥ n + 1 and ∀i, j ≤ n,
with i �= j. For simplicity, all equal tail variables will be denoted without the
vector index, e.g. z(k) for variable index k ≥ n + 1, where z(k) = z(i, k) = z(j, k)

∀i, j ≤ n, i �= j. Furthermore, the vectors share the same diagonal variable value,
say zD, i.e. z(i, i) = z(j, j) = zD ∀i, j ≤ n. The remaining variables of the vectors

3 c©TMThe MathWorks Inc., Natick, MA (US). The source code of the algorithms is
available to download upon request from the authors.
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of Z are all set equal to a same constant value, say zC , i.e. z(i, k) = z(j, k) = zC

∀k ≤ n and ∀i, j ≤ n, with i �= j. As proved in [14], all row vectors of such
initial solution, referred to as Z 0, have the same pairwise distance for geometric
construction. This allows our local search algorithm to start from a solution
which already satisfies the first constraint of the problem. Summarizing, the
initial solution Z 0 is [14]:

Z 0 =

⎛

⎜⎜⎜⎜⎝

Z1

Z2

. . .
Zn−1

Zn

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

zD zC . . . . . . zC z(n+1) . . . z(v)

zC zD zC . . .
... z(n+1) . . . z(v)

...
. . . . . . . . .

...
...

...
...

...
... zC zD zC z(n+1) . . . z(v)

zC . . . . . . zC zD z(n+1) . . . z(v)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Consider an arbitrary cosine similarity value c̃s ∈ (0, 1), and let
zC , z(n+1), . . . , z(v) be an arbitrary set of non-negative reals (i.e. ∈ �+). Then,
∀i, j ≤ n, with i �= j, cs(Zi, Zj) = c̃s i.i.f.

zD =
zC +

√
z2C − c̃s · {z2C + (c̃s − 1)[(n − 1)z2C +

∑v
k=n+1 z2(k)]}

c̃s
. (4)

Calculate cs(Zi, Zj), ∀Zi, Zj ∈ Z 0, directly by the definition of cosine simi-
larity, and by replacing the component values with those specified in Eq. 3–4. By
computing the resulting term, the expression is invariant ∀i, j ≤ n, i �= j, and it
ends exactly in c̃s. For more details on these calculations the reader is referred
to [14].

It is worth noting in Eq. 4 that Δ = z2C − c̃s · {z2C + (c̃s − 1)[(n − 1)z2C +∑v
k=n+1 z2(k)]} is always non-negative. By computing directly Δ ≥ 0, trivially it

is obtained:

z2C ≥ −
c̃s · ∑v

k=n+1 z2(k)

1 + (n − 1)c̃s
, (5)

which is always true because: c̃s ≥ 0;
∑v

k=n+1 z2(k) > 0; (n − 1)c̃s > 0 as n is
always > 1; and then, being the second member of the inequality a negative
number, the first member, z2C , is always bigger than the second member [14].

Such produced initial solution Z 0 represents a good starting point for the
whole optimization algorithm because it already satisfies the first constraint of
the problem (i.e. cs(Zi, Zj) ∈ [c̃s−ξ, c̃s+ξ],∀Zi, Zj ∈ Z ). However Z 0 violates
the second problem constraint, i.e. that the distribution of the data in C is a
random sample drawn from a von Mises distribution with mean μ(C ) ≈ c̃s
and and concentration parameter κ(C , ξ) ≈ 9, i.e. σ(C ) ≈ ξ/(10/3). Indeed, by
construction of the initial solution Z 0, the distribution of the data in C is a
Dirac centered in c̃s.

The local search routine proceeds now by perturbing such initial solution Z 0

in order to move gradually the distribution of the data in C from the Dirac to
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a von Mises distribution with the desired properties. This recurring disturbance
is performed by an iterative process which, at each iteration, injects a noise
N normally distributed, with μ = 0, to the incumbent solution. The perturba-
tion is greedily accepted iif the modified solution does not violate both the first
and second constraints of the problem; otherwise the perturbation is rejected.
The satisfaction of the second problem constraint is checked by performing a
Watson goodness-of-fit test [39] at 1% significant level to ensure that the modi-
fied intermediate solution is consistent with the Von Mises distribution with the
desired properties. The first problem constraint is validated instead by making
sure that all pairwise cosine similarities among the perturbed vectors fall within
the desired interval [c̃s− ξ, c̃s+ ξ]. For this reason, it is needed to inject a noise
being small enough to be very likely to be accepted, but not excessively small
otherwise the local search routine would become to slow in terms of convergence
within a reasonable number of steps. [14] found experimentally that a random
noise N whose components follows a normal distribution with μ(N ) = 0 and
σ(N ) = 0.01 is a good choice yielding a satisfactory tradeoff between conver-
gence speed and constraints violations given by the random perturbation.

The overall local search routine stops when it is reached a perturbed solution
satisfying all problem constraints and having a standard deviation of the pairwise
cosine similarities equal or larger than the desired threshold value of ξ/(10/3)
given by the second problem constraint.

3.2 Reduced Variable Neighbourhood Search Heuristic

An important drawback of the local search routine just described in the previous
section is that the normal perturbation that is applied to the incumbent solution
is static and does not adapt automatically to the size of the problem to handle.
Although in [14] it has been fixed experimentally a random normal noise N
having μ(N ) = 0 and σ(N ) = 0.01 as a good perturbation setting, on average,
it is very likely that, either, this σ(N ) value will be too small for large size prob-
lems, yielding to an excessively slow convergence time for the algorithm, or too
large for small size problem instances, producing a large number of constraints
violations which will increase as well exponentially the computational running
time of the entire procedure.

For this reason we propose here an intelligent optimization approach based on
Reduced Variable Neighbourhood Search (RVNS) [9,21,30] aimed at achieving
high-quality performance for the problem by automating the resulting optimiza-
tion strategy and adapting online to the size of the problem to tackle. The aim it
to lead the local search to achieve a proper balance of diversification (exploration)
and intensification (exploitation) during the search process, a fundamental objec-
tive for any effective heuristic solution approach. The diversification capability
of a metaheuristic refers to its aptitude of exploring thoroughly different zones
of the search space in order to identify promising areas. When a promising area
is detected, the metaheuristic needs to exploit it intensively to find the relative
local-optimum, but at the same time without wasting excessive computational
resources. This is referred as the intensification capability of the metaheuristic.
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Finding a good balance between diversification and intensification is indeed an
essential task for the proper effectiveness of a metaheuristic [3,4,23].

RVNS is a variant of the classic Variable Neighbourhood Search (VNS) algo-
rithm [5,10,21], which is a popular metaheuristic based on dynamic changes of
neighbourhood structures of an incumbent solution during the search process
[9,21]. The VNS methodology is based on the core concept of searching for new
solutions in increasingly distant neighbourhoods of the current solution, jumping
only if a better solution is found, without being limited only to a fixed trajectory
[30]. RVNS is a variant that has been shown to be successful for many combinato-
rial problems where local optima with respect to one or several neighbourhoods
are relatively close to each other [28].

The variable metric method has been suggested by [17]. The idea is to change
the metric in each iteration such that the search direction (steepest descent with
respect to the current metric) adapts better to the local shape of the function.
The RVNS method is obtained if random points are selected from the current
neighbourhood under exploration and no descent is followed. Rather, the values
of these new points are compared with that of the incumbent and updating takes
place in case of improvement. RVNS is a typical example of a pure stochastic
heuristic, akin to a classic Monte-Carlo method, but more systematic [28]. It
is useful especially for very large problem instances for which the local search
within the classic VNS approach might become costly, as it is the case with our
problem.

The details of our heuristic based on Reduced Variable Neighbourhood Search
for the given problem are specified in Algorithm1. The algorithm starts with
an initial solution Z equal to Z 0, that is the same starting solution in Eq. 3
described previously in Sect. 3.1. It is by construction a Dirac centered in c̃s,
already satisfacting the first constraint of the problem but not the second.

Then, the shaking phase, which represents the core idea of RVNS, is applied
to Z . The shaking phase aims to change the neighbourhood structure, Nk(·),
of the incumbent solution to achieve a larger algorithm diversification. The new
incumbent solution, Z , is generated at random in order to avoid cycling, which
might occur if a deterministic rule is used.

The simplest and most common choice for the neighbourhood structure con-
sists of setting neighbourhoods with increasing cardinality: |N1(·)| < |N2(·)| <
... < |Nkmax

(·)|, where kmax represents the maximum size of the shaking phase.
Let k and kstep be, respectively, the current size and the step size of the shaking
phase.

The algorithm starts by selecting the first neighbourhood (k ← 1) and, at
each iteration, it increases the parameter k if the new incumbent solution vio-
lates one of the problem constraints (k ← k + 1), until the largest neighbour-
hood is reached (k = kmax). The process of changing neighbourhoods when no
improvement occurs diversifies the search trajectory. In particular, the choice
of neighbourhoods of increasing cardinality yields a progressive diversification
of the search process. Note that the kstep parameter has been introduced in
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order to adapt the classic RVNS schema from a combinatorial to a continuous
optimization setting.

For the given problem, a shaking phase of size k consists of perturbing the
incumbent solution Z with a random noise N normally distributed with μ =
0 and σ(N ) = k · kstep, producing a perturbed solution in the Nk(·) of the
current solution. Note that each perturbation corresponds just to a limited local
modification of the incumbent solution Z which hopefully will not violate both

Input: The number of vectors to generate, n, with v >> n non-negative data variables; the
reference cosine similarity value c̃s ∈ (0, 1); and the tolerance ξ << c̃s to bound the
cosine similarities in [c̃s − ξ, c̃s + ξ]

Output: A set Z of n vectors with v non-negative data variables;
Initialization:
- Let C =

⋃n
i,j=1,j>i cs(Zi, Zj) be the distribution of the pairwise cosine similarities of the

vectors in Z ;
- Let k, kstep, and kmax, respectively the current size, the step size, and the maximum size,
of the shaking phase;
begin

· Generate the initial solution Z 0 of n vectors with v variables:
(Z 0,C ) ←Initial-solution-construction(n, v, c̃s);

· Set Z = Z 0;
· Set kstep and kmax arbitrarily;
repeat

Set k ← 1;
while k < kmax do

· Set Z ′ = Z ;
· Select at random the noise matrix N n,v whose components follows a normal
distribution with μ(N ) = 0 and σ(N ) = k · kstep;
· Perturb Z : z(i, j) = z(i, j) · (1 + N(i, j)) ∀i = 1, . . . , n; ∀j = 1, . . . , v;
· Evaluate the pairwise cosine similarities of the modified vectors in
Z : C =

⋃n
i,j=1,j>i cs(Zi, Zj);

foreach c ∈ C do
if (c /∈ [c̃s − ξ, c̃s + ξ]) then //first constraint violated

· Restore the previous solution: Z = Z ′;
if k == kmax then

· Halve the step size of the shaking phase kstep ← kstep/2;
else

· Increase the current size of the shaking phase: k ← k + 1;
end
· break;

end

end

if (χ2-test(C , c̃s) == False) then //second constraint violated

· Restore the previous solution: Z = Z ′;
if k == kmax then

· Halve the step size of the shaking phase kstep ← kstep/2;
else

· Increase the current size of the shaking phase: k ← k + 1;
end

end

if Z �= Z ′ then //new perturbed solution accepted
· Double the step size of the shaking phase kstep ← kstep · 2;
· Restart with the first neighbourhood structure: k ← 1;

end

end

until σ(C ) ≥ ξ/(10/3);
⇒ Return(Z ).

end

Algorithm 1: Reduced Variable Neighbourhood Search heuristic
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problem constraints, as already described for the basic local search procedure in
Sect. 3.1. Otherwise, if one of the two constraints are violated by Z , the new
solution is discarded by restoring the previous solution (Z = Z ′), and this is
perturbed again in a larger neighbourhood (k ← k + 1).

The process of increasing progressively the parameter k in case of no improve-
ments occurs until the maximum size of the shaking phase, kmax, is reached.
When this happens, meaning that the value of kstep may be too large having
produced already kmax consecutive unsuccessful perturbations with the same
kstep, the step size of the shaking phase is halved (kstep ← kstep/2) in order
to produce next perturbations having standard deviation proportionally smaller
(σ(N ) = k ·kstep). In this way when the algorithm restarts from the first neigh-
bourhood (k ← 1) of Z , a fine-grained noise will be iteratively produced such
that to increase the acceptance chances of the next perturbations.

Conversely, if the perturbed solution Z does not violate both problem con-
straints (i.e. Z �= Z ′), this is accepted as the new incumbent solution and the
search is restarted from its first neighbourhood (k ← 1). In this case, the value
of kstep is doubled (kstep ← kstep · 2) in order to produce next perturbations
having standard deviation proportionally larger. This simple reactive schema is
aimed at achieving an optimal setting of kstep in order to speeding up the con-
verge speed of the algorithm. Given this reactive schema, the value of kmax is
not relevant to the overall performance of the algorithm, as this value depends
directly from kstep which is optimally tuned on-line. Therefore the value of kmax

is set equal to 5 at the beginning of the algorithm and is not required to change.
The algorithm continues iteratively with the same procedure and stops when

the standard deviation of the pairwise cosine similarities of the obtained solution
Z is equal or larger than the expected standard deviation, ξ/(10/3), that is the
prefixed problem goal, giving Z as the final output.

4 Computational Analysis

This section reports our computational experiments on the comparison of the
performance of the proposed RVNS approach with respect to that of the local
search routine in the literature. The heuristics are identified with the following
abbreviations: LS, for the local search routine described in Sect. 3.1; and RVNS,
for the Reduced Variable Neighbourhood Search implementation described in
Sect. 3.2.

In the experiments we generate data vectors drawn from a power-law distri-
bution [7]4, which is a realistic setting in computational linguistics [35], and con-
sidering a number of components, v, ranging from 1 ·103 to 100 ·103 components.

As shown in [14], the easiest setting for our problem is to fix the desired cosine
similarity value, c̃s to 0.5. This setting is sufficient for comparing the performance
of the two optimization algorithms by varying the number of components v only.

4 Although we generate data from a power-law distribution the approaches can be
easily generalized to any kind of distribution of the data.
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Table 1. Computational results of the compared algorithms (LS and RVNS) for c̃s =
0.5 and v ranging from 1·103 to 10·103 components. The reported results are the average
values over 10 problem instances for each components dimension v. For each algorithm,
the first column is the average computational running time in seconds (time); the
second column is the average of the number of unsuccessful iterations (unsucc), that is
when the perturbed solutions violated one of the problem constraints; the third column
is the average of the total number of iterations required by the algorithm to stop (tot
iter).

size v LS RVNS

time unsucc tot iter time unsucc tot iter

1000 1.00 123.2 172.7 0.43 66.1 77.4

2000 2.21 114.9 162.2 1.41 80.8 94.3

3000 3.18 123.5 169.0 1.60 70.7 82.9

4000 3.86 104.8 154.7 2.40 84.3 98.8

5000 5.23 122.7 167.6 2.97 83.7 98.2

6000 6.67 125.4 176.9 4.98 118.4 137.4

7000 7.04 111.0 158.3 4.47 94.5 110.1

8000 9.29 126.2 180.4 3.40 61.5 71.7

9000 8.88 109.2 156.2 6.65 105.9 123.3

10000 10.29 106.1 149.1 6.67 88.6 103.8

Total: 57.65 1167.0 1647.1 34.98 854.5 997.9

Indeed the computational times to generate the vectors increase proportionally
with the number of components v of the vectors. In particular, for high values
of v, the computational times may become quite large. In addition, the desired
tolerance value, ξ, is set to 0.1, yielding to a bounded interval for the pairwise
cosine similarities: [c̃s − 0.1, c̃s + 0.1] = [0.4, 0.6] for each considered cosine
similarity value c̃s. The number of vectors to be generated is also an arbitrary
user choice; in our study we have chosen to generate 100 vectors for each of the
controlled circular data group, as in [14].

Our computational results are reported in Table 1 and Table 2, which report
a comparison of LS and RVNS respectively for small a large instances of the
problem. In particular, Table 1 contains the results obtained by the two algo-
rithms by setting c̃s = 0.5 and letting v range from 1 · 103 to 10 · 103 number of
components, with a step of 1 · 103. Table 2 contains instead the results obtained
by the two algorithms for larger instances with c̃s = 0.5 and v ranging from
10 · 103 to 100 · 103, with a step of 10 · 103 components. In both tables, for each
dataset having components dimension v we have generated 10 different prob-
lem instances, therefore the results reported in the tables are the average values
among the 10 generated problem instances5. For each algorithm, the first column

5 All the computations have been made on an Intel Core i7 microprocessor at 2.6 GHz
with 16.0 GB RAM.
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Table 2. Computational results of the compared algorithms (LS and RVNS) for larger
problem instances with c̃s = 0.5 and v ranging from 10·103 to 100·103 components. The
reported results are the average values over 10 problem instances for each components
dimension v. For each algorithm, the first column is the average computational running
time in seconds (time); the second column is the average of the number of unsuccessful
iterations (unsucc), that is when the perturbed solutions violated one of the problem
constraints; the third column is the average of the total number of iterations required
by the algorithm to stop (tot iter).

size v LS RVNS

time unsucc tot iter time unsucc tot iter

10 · 103 10.29 106.1 149.1 6.67 88.6 103.8

20 · 103 20.92 103.1 149.9 12.41 85.6 101.4

30 · 103 32.09 118.1 164.2 19.34 87.8 102.3

40 · 103 44.15 116.1 166.7 31.54 102.4 119.5

50 · 103 52.55 113.1 159.8 40.87 107.6 126.1

60 · 103 63.86 114.2 160.6 40.56 88.2 103.8

70 · 103 68.16 100.9 146.4 50.82 95.7 111.4

80 · 103 91.59 123.1 173.7 44.55 73.4 85.9

90 · 103 105.11 127.5 178.3 59.42 86.8 101.6

100 · 103 111.04 121.6 170.4 71.74 89 104.3

Total: 599.76 1143.8 1619.0 377.92 905.1 1060.1

in the tables is the average computational running time in seconds (time); the
second column is the average of the number of unsuccessful iterations (unsucc),
that is when the perturbed solutions violated one of the problem constraints;
the third column is the average of the total number of iterations required by the
algorithm to stop (tot iter).

Looking at Table 1 containing smaller problem instances, RV NS performed
better than LS in all cases. It was able to generate the required controlled
datasets in almost half of the time required by LS. The superiority of RV NS
with respect to LS is also highlighted by the smaller number of unsuccessful
perturbations, unsucc, and the smaller number of iterations, tot iter, obtained
by RV NS. Practically the heuristic based on Reduced Variable Neighbourhood
Search results to be a smarter optimization routine than the classic local search
in the literature, being able to produce recurrent perturbations with a higher
acceptance likelihood.

As shown in Table 2, these results are also confirmed for larger instances of
the problem. RV NS generated the desired controlled circular data in shorter
computational time than LS, requiring an inferior number of total iterations
and producing a smaller number of unsuccessful perturbations as well. As we
can see from this table, for higher values of v the computational times become
quite large (see e.g. the case with v = 100 · 103), confirming the high complexity
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of the problem. Nevertheless RVNS was able to generate the controlled data
in considerably shorter computational time with respect to LS, confirming the
superiority of the Reduced Variable Neighbourhood Search approach. As shown
in our computational analysis RVNS is able to produce quickly circular data
with the desired properties for vectors with very large components dimension v,
which represents an important achievement.

Figure 1 shows an example of a circular dataset generated by the RVNS
procedure. The histogram of the pairwise cosine similarities distribution in the
figure has the typical shape of a normal distribution, which is in fact very similar
in the circle to a von Mises of concentration parameter 9. The values fall within
the expected interval [c̃s − 0.1, c̃s + 0.1] = [0.4, 0.6], showing the ability of the
algorithm to produce the data with the desired characteristics.

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0
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Fig. 1. An example of a circular dataset generated by the RVNS procedure with
c̃s = 0.5. As expected the histogram of the pairwise cosine similarities distribution
for samples of the generated power-law data vectors has the shape of a von Mises
distribution, i.e. the analogous of the normal distribution in the circle.

5 Conclusions

In many artificial intelligence and machine learning environments where stored
entities are compared with each other or with incoming patterns, it is often
necessary to compute artificially similar data to be used for experiments, simu-
lations, or generally for test purposes. Hypothesizing a computational linguistic
setting, we have modelled this problem as a constrained non-linear continuous
optimization problem where the goal is to generate controlled datasets of similar
circular vectors satisfying the conjecture in Eq. 1 for n documents in a vector
space of size v (vocabulary size), and leaving the user the choice of the degree
of closeness between the data (i.e. the setting of the pairwise similarity value
among the generated vectors). Assuming a cosine similarity metric among the
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data, the problem has been conduced to the artificial generation of similar data
in the circular space, further increasing the complexity of the problem. In addi-
tion, as these controlled datasets are aimed to represent real-world settings in
computational linguistics, we have added the further constraint that such circu-
lar data need to be power-law distributed, while their pairwise cosine similarity
values should follow a von Mises distribution within a desired bounded similarity
interval.

In order to address the problem and to produce solutions within reason-
able computational running time we have elaborated an optimization procedure
based on Reduced Variable Neighborhood Search. In our computational expe-
rience we have shown the superiority of the proposed approach with respect to
a local search routine in the literature in terms, in particular, of convergence
speed. The proposed Reduced Variable Neighbourhood Search is efficient and
scale well by adapting automatically to the dimension of the problem to tackle.
The presented optimization strategy allows the generation of high-dimensional
controlled datasets in the circular space having the desired properties within
small computational running time.
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Abstract. Japanese pencil games have been the subjects of innumerable
papers. However, some problems - like Sudoku - receive far more atten-
tion than others - like Nurikabe. In this paper we propose a novel algo-
rithm to solve Nurikabe puzzles. We first introduce a sequential hybrid
algorithm that we call Scattered Variable Neighborhood Search. We then
propose a method of parallelizing this algorithm, examining the empirical
benefits of parallelization. We conclude that our parallel implementation
performs best in almost all scenarios.

Keywords: Variable Neighborhood Search · Scatter Search ·
Nurikabe · Parallel algorithms

1 Introduction

Nurikabe which is a Japanese pencil game like Sudoku is played on an n by m
grid of squares, some of which initially contain numbers. The goal of Nurikabe
is to create a board that does not violate any of the following rules:

1. Every numbered cell must occupy a white region (an ‘island’) formed of con-
tiguous white squares. The island must be sized to the number contained in
the cell - for instance, an island that contains the integer ‘3’ must be of size
three. A violation of this rule can be seen in Fig. 2.

2. Black cells must form a contiguous wall around the individual islands. In
other words, no black cell or set of black cells can be ‘disconnected’ from any
other set of black cells. A violation of this rule can be seen in Fig. 3.

3. The ‘wall’ of black squares cannot, at any point, form a 2 by 2 block. A
violation of this rule can be seen in Fig. 4.

The board shown in Fig. 1 is a valid Nurikabe solution.
Nurikabe is compared to Sudoku, a game on which extensive research has

been conducted [1,2]. Comparatively, very little known is known about meta-
heuristic approaches to solving Nurikabe. Inspired by the results of [3], we pro-
pose an alternative hybrid algorithm that can be used to solve Nurikabe puzzles.
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Fig. 1. A valid Nurikabe solution

Fig. 2. An example of a
violation of rule 1

Fig. 3. An example of a
violation of rule 2

Fig. 4. An example of a vio-
lation of rule 3

Nurikabe is NP-complete as proved by Holzer et al. [4]. Their work caused
researchers to shift focus from exact algorithms to metaheuristic and approxima-
tion algorithms. There exists, however, some work on direct solutions to Nurik-
abe [5]. Answer set programming has been used to create solutions to Nurikabe
- however, due to Nurikabe’s NP-complete status, such direct approaches may
take longer time while solving the larger problem sizes.

In a recent paper, Amos et al. applied an ant colony metaheuristic algorithm
to Nurikabe [3]. Rather than beginning with an all white board and adding black
cells to create white islands - the method employed by the aforementioned direct
solver - their algorithm begins by setting all non integer cells as walls and creates
islands by sending out ‘ants’ from each integer cell. Their algorithm took less
time than the their proposed logic based solver on smaller puzzles. Furthermore,
the ant colony algorithm takes into account the game rules stated above, rather
than attempting to generate a violation-free board from scratch using a brute
logic approach.

We propose a hybrid metaheuristic algorithm for solving Nurikabe. Our algo-
rithm combines Scatter Search [6] and Variable Neighborhood Search (VNS) [7].
At a high level, our algorithm generates a set of diverse solutions, selects the
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fittest subset of solutions, and searches the space around those solutions to find
a correct, solved puzzle using a VNS.

We then parallelize our hybrid algorithm (Scattered-VNS), both allowing us
to work with larger populations, and to cover more of the solution space with
our neighborhood search.

2 Scattered-VNS for Nurikabe

Our algorithm can, roughly, be subdivided into two sub processes: board con-
struction and neighborhood search.

2.1 Solution Representation

We encode each Nurikabe board using a n by m array of integers. We represent
black squares using −1, white squares using 0, and integer squares using the
corresponding positive integer.

2.2 Fitness Function

We use the following formula to determine a given board’s fitness:

(w1 ∗ D) + (w2 ∗ W ) + (w3 ∗ B)

D, W , and B are variables that, respectively, correspond to the following Nurik-
abe rule violations:

1. D - The sum total of the following formula for each island: |Island Integer −
Island Size|, where ‘island integer’ denotes the integer found in the integer
cell for a given island

2. W - The number of disjoint wall (black block) fragments
3. B - The number of 2× 2 black blocks present on the board

Further, w1 through w3 determine how we weight each of these violations. These
weights help us ‘rank’ how severe each violation is, helping us to answer questions
like: if we fix a 2× 2 block by increasing an island’s size, causing said island to
become larger than it ought to be, is our new board better or worse than our
old one? We determined experimentally that the following weights allow us to
solve the most puzzles: w1 = 1, w2 = 2, w3 = 5.

2.3 Initial Solution: Board Construction

Our construction algorithm is based on Scatter Search. Scatter Search was first
proposed by Fred Glover in 1977 [8] and it has been applied by researchers many
times to solve various combinatorial optimization problems.

Scatter search generates a set of candidate solutions, selects the most fit
subset of those solutions, and attempts to use that fit subset (using a crossover
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algorithm) to generate new, fitter candidate solutions [6]. Therefore, a Scatter
Search can be explained in three steps:

1. Initial candidate generation
2. Candidate subset selection
3. Candidate crossover generation

Our construction algorithm employs (1) and (2), but does not use a crossover
function. We first place the integer cells on the board, and initialize every other
cell as a black square. We then create a pool of wsq white squares, where wsq
is equal to the number of white squares that are present in a valid solution -
in other words, boards are always initialized with the correct number of white
cells.

A weighted random distribution is used to distribute white cells among exist-
ing islands such that no two islands overlap. This ‘no-overlap’ criteria will never
be violated - all islands will always remain distinct. The weighted random distri-
bution is more likely to add cells to islands with larger integers - in other words,
an island containing 6 is twice as likely to receive a white square as an island
that contains 3. This process ensures that islands are generated semi-randomly,
but also that islands that should be larger end up with more white squares than
those that should be smaller. We then repeat this process, creating a diverse (due
to the random nature of our generation algorithm) set of population members.
After generation, we select a top percentage of the boards by fitness, and use
those as our population pool for the subsequent neighborhood search.

2.4 Neighborhood Structures

We propose four neighborhood structures. All neighborhoods must follow our
‘no overlap’ rule: white islands cannot overlap. So, any neighborhood operation
in which a white cell is selected and removed does not split an island, and any
neighborhood operation in which a black cell is removed or added neither splits
a white island, nor merges two white islands.

Surplus Island Swap. This neighborhood is intended to help decrease the
number of violation on island sizes. We first check which islands have too many
white cells, adding all these islands to a set L. We then create a set of islands
that are too small (call it S). We select an island IL from L and an island IS
from S. We then remove a white cell from IL without splitting it into two islands,
and add a white cell to IS without creating an overlap with another island. This
procedure decreases the size of islands that are too large and increases the size
of islands that are too small. An illustration of this process can be seen in Fig. 5.
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(a) Before surplus swap operation (b) After surplus swap operation

Fig. 5. Surplus swap operation

Unify Wall. This neighborhood is intended to help decrease the number of
isolated black cells (or ‘wall fragments’). We first make a list of wall fragments,
then, using a selection weighted towards smaller fragments, select a random
fragment. We then swap a random black square from the selected fragment with
a random white square abutting another wall fragment. An illustration of this
process can be seen in Fig. 6.

This, over time, unifies the black blocks into a single monolithic, contigu-
ous structure. Since the selection process is weighted towards choosing smaller
fragments, we are more likely to remove blocks from smaller fragments and add
them to larger fragments.

(a) Before unify wall operation (b) After unify wall operation

Fig. 6. Unify wall operation

Break up 2×2 Black Blocks. This neighborhood, like unify wall, selects a
random block that both makes up a 2× 2 block and abuts an island. We then
swap that black block with a white block from an island, unless said swap would
create another 2 × 2 square. An illustration of this process can be seen in Fig. 7.
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(a) Before break up operation (b) After break up operation

Fig. 7. Break up 2× 2 operation

Regenerate Island. This neighborhood is intended to help move our search
out of ‘ruts’ in which none of the above neighborhoods can make moves without
violating the overlap constraint. An illustration of this process can be seen in
Fig. 8. We select a random island, set its size to 0, and then regenerate it. This
generates a new island equal in size to the original, but with a different shape,
thereby giving other neighborhoods new search options.

(a) Before the regenera-
tion operation

(b) During the regenera-
tion operation

(c) After regenerating the
island

Fig. 8. Regeneration operation

2.5 Scattered-VNS

We combine our Scatter Search and VNS as shown in Algorithm1. First four
lines of the algorithm generate many boards using Scatter Search principle. For
each board provided by our scatter search generation and selection method, our
VNS iterates a certain number of times. For each VNS iteration, we run each
neighborhood search once, attempting to find the first best improvement for that
neighborhood. If we can find an improvement over the current global best (call
this improved board Bi), we do two things. We first update the current and best
boards, terminating if the best board’s fitness value reaches 0, indicating that it
has been solved. We then iterate through every other board (call a given board
Bo) that hasn’t been searched yet. During this iteration there is a small chance
that Bo will be replaced with Bi.
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Algorithm 1. Scattered Variable Neighborhood Search
procedure ScatteredVNS(board, popSize, fitPercent, probReplace, LSIters)

popSize ← max(puzzle x-dimension, puzzle y-dimension)3

startingBoards[] ← Generate(popSize, board)
∀ startingBoard in startingBoards, calculateFitness(startingBoard)
topBoards[] ← most fit fitPercent% of boards in startingBoards
globalBest ← topBoards[0]
for currBoard in topBoards do

for LSIters many iterations do
currBoard ← SurplusIsland(currBoard)
currBoard ← UnifyWall(currBoard)
currBoard ← BreakUp2x2(currBoard)
currBoard ← RegenerateIsland(currBoard)
if Fitness(currBoard) == 0 then

globalBest ← currBoard
Break

if Fitness(currBoard) < Fitness(globalBest) then
globalBest ← currBoard
for Board in topBoards do

Replace(Board, globalBest, probReplace)

Return globalBest

3 Parallel Scattered-VNS for Nurikabe

We propose a parallel implementation of Scattered-VNS to solve Nurikabe. We
employ the same solution representation and fitness function as Algorithm1.
While we employ the same neighborhood structures, we do remove the ‘island
replace’ chance, and thus do not modify our population at all after the initial
generation process.

Our sequential Scattered-VNS algorithm is parallelized on two levels. First,
our root process (S1) generates a board population using the process discussed in
Sect. 2.3. It then divides board population into M many subsets and distributes
the sets among M many processes (P1, P2...PM ). In our case, M equals 8. Then,
in each of the processes, each of the K neighborhoods is run (N1, N2...Nk) - in
our case, K equals 4, as our neighborhoods are identical to those in Sect. 2.4.
After each neighborhood finishes its search, it returns the best (fittest) board
found, determining fitness using the previously discussed fitness function from
Sect. 2.2. After all neighborhoods return, the parent process then takes the fittest
of these boards, and returns it to the root process (S1). After all M processes
return, S1 then accepts the fittest board.

This parallelization strategy benefits from the lack of communication between
population members in our sequential Scattered VNS algorithm. Since, in the
parallel implementation, each subset of our population is independent of all
other population subsets, we can avoid traditional parallelization slowdowns like
locks and semaphores, and avoiding common threading bugs like race conditions.
The same is true of each neighborhood thread. Conversely, our main source
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of slowdown comes from waiting for processes to terminate. We visualize this
process in Fig. 9.

Fig. 9. A flowchart of Parallel Scattered-VNS

4 Experimental Results

4.1 Dataset

We use boards from Janko, a puzzle repository, as our algorithm’s test dataset
[9]. From this repository, we selected a set of 38 puzzles ranging from 9 to 255
cells. Our sequential Scattered-VNS and VNS algorithms were only tested on
the first 20 boards.

4.2 Parameter Setting

Both algorithms, as seen above, takes the following parameters:

1. fitPercent - This parameter determines what percentage of the initialized
boards are selected for our VNS

2. Iterations - This parameter determines how many neighborhood searches we
run before moving on to the next candidate board

3. ProbReplace - This parameter determines how likely we are to replace a given
board with a newly discovered global best - for our parallel implementation,
this is set to 0.
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Experimentally, we determined that our sequential algorithms performs best
with a fitPercent value of 0.2, an iterations value of 100, and a probReplace
value of 0.05. For our parallel algorithm, we set probReplace to 0 and (due to
the time savings) increase the number of iterations to 250.

We ran and tested our algorithm using the same criteria as in [3], running
our algorithm 30 times. If any of the 30 runs found a solution, the puzzle was
marked as solved. Both algorithms were implemented using python 3.71, and
tested on a machine running Ubuntu 18.04 using an Intel core i-7 8700k.

4.3 Results

Using the above criteria, we tested Sequential VNS, Sequential Scattered-VNS
and Parallel Scattered-VNS on 20 boards. Sequential VNS uses the same neigh-
borhoods, but does not use any of the scatter search elements (i.e. the neigh-
borhoods are only run on one initially generated board). Sequential algorithms
run 100 iterations. Results are listed in Table 1. The ‘Cells’ column keeps track
of how many cells a given puzzle has - this can be used as a proxy for puzzle
difficulty. The ‘Hit %’ column tracks robustness by tracking what fraction of
attempts found a solution to the puzzle. Finally, ‘Sol. Time’ measures the num-
ber of seconds needed to solve a given puzzle. Unsolved boards, or boards that
timed out2, are denoted by ‘unsol’. Because our Sequential VNS failed to solve
the overwhelming majority of problems it was given, we have included a “best
fitness” column. This column contains the fitness value of the best board the
algorithm found, serving as a proxy for how “close” the algorithm got to a valid
solution; fitness is calculated using the fitness function from Sect. 2.2.

Our Sequential Scattered-VNS was able to solve every problem. However,
[3]’s ACO implementation was only allowed to run for one minute before a
run was counted as a failure. Were our algorithm subjected to the same con-
straint, it would have failed to solve several of the above puzzles. Our Sequential
Scattered-VNS algorithm is, per the provided hit percentage, quite robust. Every
hit percentage except one is 100, meaning that every attempt found a valid solu-
tion for the puzzle. Our algorithm struggled with one puzzle in particular (19),
implying that there are some edge cases, or particular kinds of puzzles, it is not
well suited to solving. As can be seen in Figs. 10 and 11, our Scattered-VNS
algorithm improves solution fitness very quickly, and does not get stuck in local
optima.

Our Sequential VNS couldn’t solve most of the puzzles it was given, and for
the puzzles it could solve, had a very low hit percentage. However, for those
puzzles that it did solve our Sequential VNS outperformed our Scattered-VNS

1 Due to Python’s global interpreter lock, which limits the number of actual threads
running at a given time to 1, we used processes instead of threads in our parallel
implementation. Since processes are consume more memory than threads, and data
had to be duplicated across processes, this may have caused some slowdown due to
high memory, and thus high swap, usage.

2 More than five minutes elapsed before a solution was found.
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Table 1. Results of Sequential VNS, Sequential Scattered-VNS and Parallel Scattered-
VNS

Board data Sequential VNS Sequential Scattered-VNS Parallel Scattered-VNS

ID Cells Sol. Time Hit % Best Fitness Sol. Time Hit % Sol. Time Hit %

0 9 0.27 6 0 1.12 100 3.76 100

1 16 0.29 80 0 1.23 100 1.25 100

2 25 0.31 20 0 3.22 100 6.08 100

3 25 unsol 0 7 5.16 100 1.34 100

4 25 unsol 0 3 2.29 100 1.78 100

5 25 0.44 23 0 4.46 100 3.83 100

6 25 unsol 0 4 2.62 100 1.58 100

7 25 unsol 0 6 4.26 100 2.33 100

8 25 0.91 13 5 3.17 100 1.07 100

9 36 unsol 0 11 6.49 100 3.01 100

10 36 unsol 0 6 7.13 100 6.78 100

11 36 unsol 0 12 17.49 100 7.84 100

12 36 unsol 0 5 22.73 100 4.93 100

13 36 unsol 0 7.5 9.96 100 2.66 100

14 36 unsol 0 5 12.44 100 6.16 100

15 36 unsol 0 5 14.72 100 5.92 100

16 36 unsol 0 12 25.55 100 15.03 100

17 36 unsol 0 7 31.61 100 9.27 100

18 36 unsol 0 11 16.38 100 8.49 100

19 36 unsol 0 7 38.55 3 22.72 10

algorithm in terms of speed. This indicates that the hybrid nature of our algo-
rithm dramatically improves its robustness at the cost of increased run-time.

Table 1 also demonstrates that (per the provided hit percentages) our parallel
Scattered-VNS both performs better and runs faster than the sequential version.
While our parallel implementation didn’t solve puzzle 37 as shown in Table 2, it
reached a final fitness level of 14, a large improvement from the initial board’s
fitness level of 164. If we take [3]’s one minute limit into account, the Sequential
Scattered-VNS solved 23/33 Nurikabe boards. The parallel version, over the
same 32 boards, solved 31/33, a substantive increase.

Interestingly, the efficiency benefits of our parallel implementation only begin
to manifest for larger boards - in smaller boards the parallel algorithm sometimes
performs worse (as in the case of board 2, where it takes twice as long). The
most likely explanation for this is that the constant-time overhead of creating
32 processes is quite large, and that with a smaller board, the constant time
overhead of creating a thread overshadows any benefits threading may have.

Our algorithm also possibly performed better due to the removal of the pro-
bReplace variable and the increase in the number of iterations. By removing
probReplace, we ensured that the population remained diverse over time, and
by increasing the number of iterations we increased the portion of the solution
space our neighborhood search was able to cover. Further, these results suggest
that increasing the number of iterations does not result in this algorithm getting
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Table 2. Results of sequential and parallel scattered-VNS on larger Nurikabe boards

Board data Sequential scattered-VNS Parallel scattered-VNS

ID Cells Sol. Time Sol. Time Hit percentage

20 36 52.22 33.25 100

21 36 193.29 25.34 100

22 36 102.82 19.57 100

23 49 34.15 33.29 100

24 49 71.22 32.45 100

25 49 23.15 43.66 100

26 49 74.15 58.29 100

27 49 91.15 37.45 100

28 64 246.15 53.66 20

29 64 102.21 41.25 76

30 81 132.32 52.13 43

31 100 201.11 71.87 50

32 100 231.74 68.29 26

33 121 – 81.38 13

34 144 – 99.55 16

35 169 – 147.82 3

36 196 – 162.05 6

37 225 – 204.76 0

Fig. 10. Convergence graph of solu-
tion fitness over time for scattered VNS
solution to puzzle 9

Fig. 11. Convergence graph of solu-
tion fitness over time for scattered VNS
solution to puzzle 14

stuck in local optima, suggesting that further increasing the number of iterations
could result in even better performance.

Further, we argue that our parallel algorithm would perform even better on
newer, higher core hardware. Since the 8700k only has 12 logical processors, all
32 processes cannot run simultaneously. Therefore, on a higher core processor
our parallel algorithm should, in theory, perform even better compared to the
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non-parallel version. Since processor core counts are increasing every year while
single-core clock speeds aren’t3, the parallel version of our algorithm is both
better today and is far more future-proofed.

5 Conclusion

We proposed a Scattered-VNS for Nurikabe, then examined how to parallelize
our Scattered-VNS algorithm. We first explored how to generate a diverse set of
Nurikabe boards, and how to refine those boards using a neighborhood search.
We then examined how to speed up our neighborhood search using paralleliza-
tion. After examining both approaches, we conclude that our parallel implemen-
tation exceeds the sequential implementation in almost every way, except for
performance on very small puzzles.

We believe that, were we less concerned with runtime, our parallel algorithm
would perform even better if we found a local optima for each board generated
by our scatter search rather than giving up after a certain number of iterations.

Further, we are excited to apply similar techniques to other, similar puzzles
like Ken-Ken and Kakuro.
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Abstract. In a growth scenario of the world economy, it is essential to increase
the integration between the different actors in the companies’ supply chain, reduc-
ing operational costs, and improving efficiency. Ship routing is a crucial part of
this integration regarding global maritime commerce. In this work, we present a
hybrid VNS metaheuristic to tackle a real Maritime Inventory Routing Problem
(MIRP) in a company that explores oil and gas in the Brazilian offshore basin. In
the methodology proposed, a linear mathematical model is embedded in the local
search procedure to minimize inventory costs. The approach, validated within
realistic data, provides low and not regular inventory violations. When compared
with a previously developed method, it presents an improved performance, with
reduced costs and computational time.

Keywords: Maritime Inventory Routing Problem · Oil and gas industry ·
Variable Neighborhood Search

1 Introduction

In offshore oil and gas exploration, operating companies often have to manage prod-
ucts’ transportation within their fleet, respecting inventory levels at ports and vessels
in an integrated manner. The combination of these elements takes into account the
ship’s routing and scheduling with the inventory management, known in the literature
as Maritime Inventory Routing Problem (MIRP) [3]. In these problems, the routing and
scheduling steps define which ports will be visited by each vessel, in which sequence
and time. Meanwhile, the inventory management step determines each port and vessel’s
inventory levels at each instant of time within a given planning horizon [3,5].

This work deals with a MIRP with multiple products applied to a Brazilian offshore
oil and gas company to minimize operational and routing costs, respecting the ship’s
capacities and inventory levels in the ports. The company is responsible for the entire
production process, from oil exploration, refining, and transportation. The company’s
planners are responsible for scheduling their available fleet, focusing on meeting spe-
cific demands and their respective delivery dates. da Costa [5] developed a combination
of relax-and-fix and fix-and-optimize heuristics, testing the approach in a set of ten real-
life instances. We extend their work by introducing a hybrid Variable Neighborhood
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Search (VNS) approach to solve the problem. The method combines the VNS structure
to optimize the routes with an embedded linear mathematical formulation used to opti-
mize the inventory levels. Moreover, the proposed model contemplates the possibility
of transforming products, which represents adaptability for the model to choose which
product to use to serve a customer with flexible quality demand [5]. The main contri-
butions of our work are: (1) Propose a new hybrid approach that combines the VNS
structure with a linear mathematical formulation to deal with a realistic MIRP in rea-
sonable computational times; (2) Address a real-life multi-product MIRP, considering
ten instances with real data from a Brazilian offshore oil and gas company.

The outline of the paper is organized as follows. Section 2 presents a brief review of
works applying heuristics to solve different realistic and theoretical variations of MIRP.
Section 3 describes the real multi-product MIRP problem considered in this paper. In
Sect. 4, the proposed hybrid VNS is presented, including the linear mathematical for-
mulation used to optimize the inventory levels. In Sect. 5, computational experiments
are conducted as discussed, considering a set of real instances provided by the studied
company. Finally, conclusions and future remarks are given in Sect. 6.

2 Literature Review

The basic MIRP and some of its extensions are described by Christiansen and Fager-
holt [3]. The basic case considers only one product, known storage capacities in the
ports, and constant production and demand rates. The main goal is to develop routes and
schedules for a fleet of ships, minimizing transportation and inventory costs, and meet-
ing the demand within a given planning horizon. Real-life problems are more complex,
with other aspects, such as consumer or central supplier, stock constraints for distinct
subsets of ports, variable production or demand rates, several products, charters, and
others.

Several authors have applied heuristics and hybrid methods to solve different MIRPs
in the literature, in theoretical and real-life contexts. Dauzère-Pérès et al. [6] designed
a decision support system using a memetic algorithm to deal with a problem related to
a calcium carbonate paste supplier. Christiansen et al. [4] dealt with a real-life prob-
lem in a cement industry using a multi-start constructive procedure guided by a genetic
algorithm. They focused on maximizing a multi-criteria objective function, defining a
weight for each criterion. Siswanto et al. [14] addressed a ship routing and schedul-
ing problem with many technical and physical constraints and non-dedicated compart-
ments. The authors developed a hybrid approach with a Mixed Integer Linear Pro-
gramming (MILP) formulation, using heuristics to solve sub-problems of route selec-
tion, vessel selection, loading, and unloading quantities. Song and Furman [15] also
used a hybrid approach combining mathematical formulation with heuristics to solve
sub-problems and improve a set of given solutions for a MIRP. Uggen et al. [17] has
developed a heuristic approach based on relax-and-fix and fix-and-optimize for a MIRP.
Hemmati et al. [9] proposed a two-phase iterative hybrid metaheuristic called Hybrid
Cargo Generating and Routing to solve a short distance inventory routing problem with
multiple products. In the first phase, a simplified version of the problem is solved by
a mathematical formulation. An Adaptive Large Neighborhood Search is applied to
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improve the solutions in the second phase. Diz et al. [7] developed relax-and-fix and
fix-and-optimize heuristics to deal with a real problem related to the Brazilian offshore
oil industry. Papageorgiou et al. [12] presented an extensive computational study, com-
paring variants of rolling horizon heuristics, K-opt heuristics, local branching, solution
polishing, and hybrid approaches to solve a MIRP. Munguı́a et al. [11] developed a
hybrid approach using MILP formulations to solve sub-problems iteratively. Bertazzi
et al. [2] designed a three-phase matheuristic to solve a MIRP. Their approach grouped
costumers by similarity (clustering phase), designing routes based on the clusters (rout-
ing construction phase), and searching for improvements on the solution using a binary
linear mathematical formulation (optimization phase). da Costa [5] handled a realis-
tic multi-product MIRP from a Brazilian oil and gas company. The objective was to
develop a decision support tool to automate the company’s ship scheduling process.
The author applied a combination of relax-and-fix and fix-and-optimize heuristics to
solve the problem, overcoming the company’s current solutions, with an average exe-
cution time of three hours. We refer the reader to the work of Papageorgiou et al. [13]
for a complete overview of the MIRP literature.

We extend the work of da Costa [5] by developing a hybrid VNS to deal with the
same multi-product MIRP from a Brazilian oil and gas company, intending to develop
improved solutions to the practical problem with less computational time. A new math-
ematical formulation is introduced, based on the one presented by Christiansen and
Fagerholt [3], using continuous instead of discrete-time, allowing a vessel to stay for
less than one day in each port.

3 Problem Description

Let G = (N ,E) denote a graph where N is the set of ports, and E the set of edges con-
necting them. To meet a given demand, the company has a heterogeneous fleet of ships,
defined in the set V, transporting different oil products, defined in the set P, between
ports within a given planning horizon H. Each port i ∈ N has a product handling rate
Ri, and a known production or demand PDip for product p ∈ Pi (positive values repre-
sent production, while negative ones represent demands), where Pi ⊆ P is the subset of
products that are produced or demanded by port i. Moreover, inventory levels, at each
port i ∈ N for each product p ∈ Pi, must be within a given interval [S MN

ip , S
MX
ip ] during

the planning horizon. To meet the demand, the company has a heterogeneous fleet of
ships, defined in the setV, transporting the products between ports. The time taken by
a ship v to traverse an edge (i, j) ∈ E is given by Ti jv. Each ship v ∈ V has a capacity Kv

and it is only able to visit ports in the subsetNv ⊆ N . Draft constraints are also consid-
ered in the problem, taking into account the cargo on the ships and the characteristics
of the ports. To accomplish the draft constraints, the total loading on-board each ship
v when visiting port i must be within a given interval [LMN

iv , L
MX
iv ]. Ports and ships may

have initial inventory levels, indicated by parameters S 0ip and L0vp, respectively.
As mentioned above, each port has a demand or production for a specific product

p ∈ Pi. However, some demands can be met by different products, as long as they have
the necessary quality. Thus, we define Pp as the subsets of products allowed to meet
a specific demand for product p. This transformation allows the model the possibility
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to choose which product to use to meet demand with flexible quality, aiming for the
lowest inventory violation and cost. The transformation of one product into another is
only allowed during a ship’s loading operation in a port.

The objective is to define routes for the available ships, stipulating which ports to
visit and the number of products to be loaded and unloaded at each visit, minimizing
routing and operational costs. Each port can be visited several times by the same ship
during the planning horizon. Route’s costs relate to the total distance that each ship
must travel in a given solution, where CT

i j is the traveling distance associated to edge
(i, j) ∈ E. Operational costs regard product handling and inventory holding costs at the
ports. CH

iv is the handling cost of loading or unloading one product unit by ship v at
port i, while CS

i is the inventory holding cost at port i. Products delivered to ports might
generate earnings that reduce operational costs. EU

ip is the amount that the company
earns for each product p ∈ P unit delivered at port i ∈ N .

To solve the problem, we developed a hybrid VNS approach, presented in the next
section, where neighborhood procedures define the vessel’s routes, while the total oper-
ational cost (considering inventory holding costs, cargo handling costs, delivery earn-
ings, and violation penalties) is optimized by a linear mathematical formulation embed-
ded in the local search. In real applications, it is challenging to find solutions for the
problem that meets the limits of cargo on-board ships and draft and inventory limits at
the ports. Based on this, we relax the draft and inventory limits constraints, penalizing
each violation with a parameter μ. The proposed method searches for solutions with
minimum penalties, aiming to achieve feasible solutions if possible.

4 Hybrid VNS Approach

In this section, we detail our hybrid VNS approach. VNS is a metaheuristic based on
a systematic change of neighborhoods to solve combinatorial optimization problems.
It has been successfully applied to several logistic problems in the literature [8]. Our
hybrid VNS applies perturbation movements and local searches iteratively, searching
for neighbor solutions that improve the current solution. Each neighbor solution is
defined by a single change in the routing structure of the current solution, triggering
a change in the inventory values obtained by a linear mathematical formulation.

To represent the solution, we introduce the concept of a port call. The calls account
for the number of port visits during the planning horizon regardless of the ship that
performs it. Thus, if a port i is visited twice by different vessels, two calls are performed
in this port. Therefore, we define a setMi of calls to sequence the visits in the ports. A
specific solution for the MIRP can be defined as a permutation of pairs (i,m) ∈ Nv×Mi,
indicating the sequence of ports that each ship visits with its respective call.

Figure 1 shows an example of a solution following the proposed structure, with each
element on the solution represented as a pair indicating a port and its call. Two ships
and four ports are considered in the case given, with up to two calls performed at each
port. Note that Ship 1 and Ship 2 visit the ports in the following order: 1–2–4–3, and
2–3–1, respectively. Regarding Port 1, its first call is performed by Ship 2, followed by
a visit from Ship 1. Note that when solving the inventory part of the problem, Visit (1, 2)
of Ship 1 will only be performed after the completion of Ship 2 route, due to Visit (1, 1).
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Ship 1

Ship 2

(1, 2)

(2, 1)

(2, 2)

(3, 1)

(4, 1) (3, 2)

(1, 1)

Fig. 1. Solution representation considering an instance with two ships and four ports.

The Hybrid VNS proposed in this work, presented in Algorithm 1, needs two param-
eters to run: the total number of iterations (η) and the maximum number of neighbor-
hoods used during the local search (�max). We designed four different neighborhoods,
using �max equal to four in every execution of the VNS. The proposed neighborhoods
are as follows.

– Swap: exchanges two visits in the solution;
– Relocate: removes a visit in the solution, inserting in another position;
– Insert: inserts a new visit in a route;
– Delete: deletes a visit from a route.

The first two neighborhoods are considered in its intra-route (on the same route) and
inter-route (between two different routes) versions. The Insert neighborhood always
inserts a visit to the next possible call of the port, and the Delete neighborhood always
deletes the visit for the last call of the port. Regardless of which neighborhood is
selected, the solution cannot result in the same port being visited consecutively by the
same ship.

The algorithm starts by building the set L of neighborhoods to be used during the
local search step (Line 1). Then, it calls a procedure that builds an initial solution s con-
sidering only each ship’s initial position, calling the local search before returning the
solution. Thus, we do not define initial routes for the ships, allowing the local search to
build the solution iteratively while the mathematical formulation optimizes the inven-
tory levels. The main loop is executed η times (Lines 4–23) and consists of a pertur-
bation procedure that moves the solution s to a random neighbor solution s′ in neigh-
borhood k (Lines 5–6), followed by a Randomized Variable Neighborhood Descent
(RVND) [16] local search applied on s′ (Lines 7–16). The RVND procedure starts by
shuffling the set of neighborhoods L (Line 7) and running the local search following
the defined random order of neighborhoods (Lines 8–16). For each neighborhood �, the
mathematical formulation is executed to optimality (Line 10), and the algorithm checks
whether the new neighbor solution s′′ is better than s′, updating s′ accordingly, moving
to the next neighborhood if true. After the RVND, the algorithm decides if the new solu-
tion s′ will be accepted by a pre-established criterion (Lines 17–22). This criterion is
fulfilled if the cost of the new solution s′ is better than the cost of s. Also, it is possible
to accept a worse solution by a probability factor [10]. Once accepted, s is updated, and
then it is verified if s is better than the best solution obtained so far s∗ (Lines 19–21).
The method returns the final solution s∗ in Line 24.
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Algorithm 1: Hybrid VNS (η, �max)

1 L ← {1, .. , �max}
2 s← Construct()
3 s∗ ← s
4 for η iterations do
5 k ← Random(L)
6 s′ ← Perturb (s, k)
7 shuffle(L)
8 for � ∈ L do
9 for s′′ ∈ N�(s′) do

10 s′′ ← Formulation(s′′)
11 if f (s′′) < f (s′) then
12 s′ ← s′′

13 break
14 end
15 end
16 end
17 if Accept(s′, s) then
18 s← s′

19 if f (s) < f (s∗) then
20 s∗ ← s
21 end
22 end
23 end
24 return s∗

4.1 Mathematical Formulation

The proposed mathematical formulation is based on the one described by Christiansen
and Fagerholt [3], but disregarding routing variables and including some particular con-
straints related to the real problem. Based on a given routing solution, we defineMi as
the set of calls on port i, andMiv as the set of calls on port i performed by ship v. A
parameter MF

i indicates the last call on port i. Moreover, the network flow part of the
formulation works on an extended graph, considering nodes (i,m) ∈ Nv×Miv, and arcs
(i,m, j, n) ∈ Av ⊆ (Nv ×Miv)× (Nv ×Miv), for each ship v. Moreover, each ship v ∈ V
starts at portN0

v performing call M0
v . Finally, let V

B
im be the ship performing the call just

before call m on port i, i.e., (m− 1) ∈ MiVB
im
, and VF

i be the ship performing the last call
of port i, i.e., MF

i ∈ MiVF
i
.

The amount loaded and unloaded by each ship v ∈ V, on each port i ∈ Nv, in call
m ∈ Miv, of each product p ∈ Pi, are given by variables qLivmp and qUivmp, respectively.
Variables simp indicate the inventory level on port i ∈ N in call m ∈ Mi of each product
p ∈ Pi, while variables livmp compute the total load on-board ship v ∈ V when visiting
port i ∈ Ni to perform call m ∈ Miv of product p ∈ P. As mentioned before, we use
a penalty strategy to accept infeasible solutions. To achieve this, two slack variables
sslackimp , i ∈ N ,m ∈ Mi, p ∈ Pi, and lslackivm , v ∈ V, i ∈ Nv,m ∈ Miv, p ∈ Pi are included to
allow inventory levels outside the limit ranges. To obtain the scheduling, variables tim
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indicate the time in which a callm ∈ Mi at port i ∈ N starts. Variables rimvpp′ , v ∈ V, i ∈
Nv,m ∈ Miv, p ∈ Pi, p′ ∈ Pp indicates the amount of product p′ replacing the demand
of product p during a loading operation in call m of ship v at port i. The formulation to
minimize the operational costs including the objective function is as follows.

min
∑

i∈N

∑

m∈Mi

∑

p∈Pi

CS
i simp + (inventory cost)

∑

v∈V

∑

i∈Nv

∑

m∈Miv

∑

p∈Pi

CH
iv (q

L
ivmp + q

U
ivmp) − (waiting and handling costs)

∑

v∈V

∑

i∈Nv

∑

m∈Miv

∑

p∈Pi

EU
ipq

U
ivmp + (delivery earnings) (1)

μ

⎛⎜⎜⎜⎜⎜⎜⎝
∑

i∈N

∑

m∈Mi

∑

p∈Pi

sslackimp +
∑

v∈V

∑

i∈Nv

∑

m∈Miv

lslackivm

⎞⎟⎟⎟⎟⎟⎟⎠ (infeasibility penalization)

subject to

l jvnp = livmp + q
L
jvnp − qUjvnp −

∑

p′∈Pp

r jvnpp′ +
∑

p′∈Pp

r jvnp′ p
∀v ∈ V, (i,m, j, n) ∈ Av,

p ∈ P (2)

LMN
iv − lslackivm ≤

∑

p∈P
livmp ≤ LMX

iv + l
slack
ivm ∀v ∈ V, i ∈ Nv,m ∈ Miv (3)

LMN
jv − lslackjvn ≤

∑

p∈P
livmp ≤ LMX

jv + l
slack
jvn ∀v ∈ V, (i,m, j, n) ∈ Av (4)

qLivmp ≤ livmp
∀v ∈ V, i ∈ Nv,m ∈ Miv,

p ∈ Pi
(5)

∑

p∈P
livmp ≤ Kv −

∑

p∈Pi
qUivmp ∀v ∈ V, i ∈ Nv,m ∈ Miv (6)

t jn ≥ tim + Ti jv +
∑

p∈P

(
qLivmp + q

U
ivmp

)

Ri
∀v ∈ V, (i,m, j, n) ∈ Av (7)

tim ≥ ti(m−1) +
∑

p∈P

(
qL
iVB

im(m−1)p
+ qU

iVB
im(m−1)p

)

Ri
∀i ∈ N ,m ∈ Mi \ {1} (8)

si1p = S 0ip + (PDipti1) ∀i ∈ N , p ∈ Pi (9)

simp = si(m−1)p + (qUiVB
im(m−1)p

− qL
iVB

im(m−1)p
) + PDip(tim − ti(m−1))

∀i ∈ N ,m ∈ Mi \ {1},
p ∈ Pi

(10)

S MN
ip − sslackimp ≤ simp ≤ S MX

ip + sslackimp ∀i ∈ N ,m ∈ Mi, p ∈ Pi (11)

siMF
i p − (qLiVF

i MF
i p
− qU

iVF
i MF

i p
) + PDip(H − tiMF

i
) ≤ S MX

ip + sslack
iMF

i p
∀i ∈ N ,MF

i � 0, p ∈ Pi (12)

siMF
i p − (qLiVF

i MF
i p
− qU

iVF
i MF

i p
) + PDip(H − tiMF

i
) ≥ S MN

ip − sslack
iMF

i p
∀i ∈ N ,MF

i � 0, p ∈ Pi (13)

tim ≤ H ∀i ∈ N ,m ∈ Mi (14)
lN0

v vM
0
v p
= L0vp ∀v ∈ V, p ∈ Pi (15)

qLivmp, q
U
ivmp, livmp ≥ 0

∀v ∈ V, i ∈ Nv,m ∈ Miv,

p ∈ Pi
(16)
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lslackivmp ≥ 0 ∀v ∈ V, i ∈ Nv,m ∈ Miv, (17)

simp, s
slack
imp ≥ 0 ∀i ∈ N ,m ∈ Mi, p ∈ Pi (18)

tim ≥ 0 ∀i ∈ N ,m ∈ Mi (19)

rimvpp′ ≥ 0
∀v ∈ V, i ∈ N ,m ∈ Mi,

p ∈ Pi, p′ ∈ Pp
(20)

As mentioned before, the objective function (1) minimizes the operational costs,
considering holding and inventory costs at the ports, unloading earnings and infeasi-
bility penalties. Constraints (2) compute the cargo on-board the ship at each port call.
Constraints (3) and (4) limit the total cargo on-board the ship to be within interval
[LMN

iv , L
MX
iv ], with the slack variable lslackivm used to relax the constraints, allowing viola-

tions in the limits. Constraints (5) and (6) limit the cargo on-board the ship to respect
the ship capacity and the amount to load and unload. Constraints (7) and (8) compute
the starting time of a port call. Constraints (9) and (10) compute the inventory level
at the ports at each call. Constraints (11)–(13) force the inventory level to respect lim-
its [S MN

ip , S
MX
ip ], using the slack variable sslackimp to relax these constraints, allowing limit

violations. Constraints (14) limit the time to start visits to be within the planning hori-
zon. Constraints (15) set the initial load on each ship. Constraints (16)–(20) specify the
variables’ domains.

5 Computational Experiments

This section presents the results of the experiments conducted on a set of ten real-life
MIRP instances from a Brazilian oil and gas company. All experiments were performed
on a computer with an Intel i7-8700K CPU of 3.70GHz and 64 GB of RAM running
Linux. The Hybrid VNS and the mathematical formulation were coded using Julia lan-
guage v1.0.5, and the model was solved by CPLEX 12.8 solver, running in a single
thread. We ran each instance ten times, limiting the Hybrid VNS execution to 250 iter-
ations.

5.1 Instances Details

In the set of ten realistic MIRP instances considered in this work, ports are split
into national (located on the Brazilian coast) or international ones. National ports are
producers and consumers, while international ports are exclusively consumers. The
demand for international ports is not mandatory but generate earnings for the com-
pany. Each instance is composed of 18 ports (15 national and three international ports),
a fleet size ranging between 12 and 15 ships, nine different oil products, and a planning
horizon of about 60 days. Another critical aspect of the instances is that, in general, it is
hard to find feasible solutions for them. In many cases, the company needs to find alter-
native ways to dispose of excess production or meet incomplete demands, increasing
the operational costs.
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5.2 General Results

Aiming to compare the obtained results with the Hybrid VNS method, we took the
final routes generated by da Costa [5] and calculated their solution values using our
approach. The operational costs not considering the penalties are shown in Table 1.
The table shows the name of each instance in the first column, followed by their Best-
Know Solutions (BKS), considering routing and operational costs, disregarding penal-
ization costs. The hybrid VNS results are presented in terms of the minimum cost (min),
average cost (avg), maximum cost (max), standard deviation (sd), and average compu-
tational time (time), for ten runs on each instance. The results indicate a significant
difference in the costs of our solutions and the ones obtained by da Costa [5].

One can note that new BKSs are provided for all instances, as the VNS improves the
solutions obtained by da Costa [5], even if we consider only the worst-case solutions
(max). Another important aspect concerns the low values for standard deviations. It
shows that the method performs well in realistic instances, providing solutions with low
variability in practice, regardless of the chosen seed. When it comes the computational
time, the results are also good. The worst-case (instance 20171011) had an average
computational time of approximately 26min.

5.3 Violations Analysis

In this section, we compare the violations found by each approach, regarding inventory
and draft limits in ports. In Fig. 2, we analyse the distributions of the violations for the
minimum inventory level at each port (S MN

ip ), shown in Fig. 2(a), and for the maximum
inventory limit at each port (S MX

ip ), shown in Fig. 2(b). We present the violations in a
log10 scale for better visualization.

Note that, in both cases, the VNS performs considerably better than the method
proposed by da Costa [5]. The average values for violating the minimum inventory

Table 1. General results for routing and operational costs without penalization.

Instance BKS Hybrid VNS

min avg max sd time

20170809 2.83 1.47 1.60 1.87 0.11 1278

20170910 2.71 1.05 1.14 1.18 0.04 1383

20171011 2.57 0.98 1.02 1.09 0.03 1574

20171112 2.73 1.43 1.48 1.54 0.03 1176

20171201 2.42 1.08 1.24 1.44 0.12 1337

20180102 2.65 0.78 0.89 1.05 0.08 1506

20180203 2.06 0.94 1.05 1.14 0.07 1427

20180304 1.80 0.79 0.85 0.96 0.06 1413

20180405 1.93 0.65 0.71 0.80 0.05 1428

20180506 2.23 1.10 1.14 1.28 0.05 1408
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limit are 119.33 for the BKS and 6.30 for the VNS. Regarding maximum limits, these
values are 71.99 and 2.88, respectively.
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(a) Minimum Inventory Violation.
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(b) Maximum Inventory Violation.

Fig. 2. Boxplots for the Violations distributions of each method.

Regarding the violation of draft constraints, the hybrid VNS also performed better
than the solutions provided by da Costa [5]. For the maximum limit (LMX

iv ), the VNS
violated it in only 1% of the runs with an average violation value of 0.33 against 30% of
the runs and 7.27 on the average violation value for the BKS. Regarding the minimum
limit (LMN

iv ), these values are 10% and 2.00 for the VNS, and 90% and 16.40 for the
BKS.

6 Conclusions

The problem of routing ships with stock is widely studied in the literature, with differ-
ent extensions of the basic case being considered [3], as well as different methods of
solution. Through the literature review, it was noticed that there are opportunities for
improving the solution methods and extending formulations to consider realistic aspects
of the problem.

We achieved good results for a real-life multi-product maritime inventory rout-
ing problem (Multi-product MIRP), applied to the oil and gas industry, through a
hybrid metaheuristic approach, combining a VNS framework with a linear mathemat-
ical model. The developed method applies random movements to modify the routing
solution, running the mathematical formulation to optimize the inventory levels itera-
tively in the search for better solutions.

Experiments were conducted in a set of ten real-life instances with considerably
large size, with nine products, 18 ports, and a fleet size ranging between 12 and 15
ships. A relevant aspect is a difficulty of finding feasible solutions to these instances.
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Another interesting characteristic regards the fact that some ports do not have manda-
tory demands, while in other cases, products can be replaced by others with similar
or higher quality without affecting the cost of the solution, giving more opportunity to
meet the demands in some ports. Our approach presents good results with low variabil-
ity, showing to be useful in practice. To evaluate our approach, we compared it with
the solutions provided by da Costa [5]. All routes proposed by the author were reeval-
uated according to our criteria, making it possible to compare with the hybrid VNS.
New best solutions were provided for all instances with fewer inventory violations and
at a lower cost. Furthermore, computational times are within an acceptable range for
the company’s planning, allowing multiple re-planning on the same day.

There are still aspects not covered in this work and maybe the object of study of
future works, such as testing the approach on larger instances and on the stochastic
version of the MIRP. Few studies take into account the various uncertainties associ-
ated with this problem [1]. In maritime transport, uncertainties are frequent and often
related to climatic conditions, ship reliability, port delays, and others. These uncertain-
ties impact the ship’s operation, whether in navigation or operation times, and might
cause undesirable effects such as higher planning costs, inefficient fleet usage, or higher
stock violations.
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Abstract. This paper considers a fast solving the practical problem
in railway planning and scheduling. i.e., the problem of assigning given
arrival and departure railway paths to routs. This problem is to execute
as fully as possible the train traffic across the railway station, using
a fixed amount of the resources. It appears that the problem may be
solved by using any efficient maximum Independent set algorithm, which
is known to be NP–hard. On the other hand, Simplicial vertex test is
known heuristic that gives good quality solutions on sparse graphs. So,
for solving the maximum independent set on sparse graphs, we propose
an efficient heuristic based on the extended simplicial vertex test.

Keywords: Path assignment problem · Maximum independent set ·
Railway logistics

1 Introduction

Railway logistics is a huge area for applications of numerous combinatorial and
graph based models. The most important stages of railway control are trans-
portations planning, and also management of the technical and energy resources
including their logistics and assignment. Among best known results in solving
railway control problems it should be mentioned papers [1,2], where there are
presented useful surveys on different applied combinatorial and graph based
approaches.

Assignment problems often occur in railway locomotives logistics. So, in the
paper [3] it is presented optimization model for this class of railway control
problems. In the paper [4] authors developed an optimization locomotives assign-
ment model with using stochastic programming methods. The same locomotives
assignment problem was solved by schedule theory in the paper [5] and also by
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graph based methods in the paper [6]. But railway arrival and departure paths
assignment problem is not known very well. So, we introduce in the present
paper some special terms and original statement of this optimization problem.

Railway arrival and departure paths assignment problem is very important
stage of transportation management. Indeed, an effective execution of this stage
implies increasing of bandwidth of the network. At the same time it could also
increase a correct execution of transportations plan and efficient of railway man-
agement from economical point of view.

So, for solving railway arrival and departure paths assignment problem we
propose in the present paper a graph based approach. This approach allows
to reduce this problem to the well known NP-hard maximum independent set
problem.

To solving maximum independent set problem there are numerous fast heuris-
tics, including branch-and-bound methods and simplicial vertex test. Among the
most effective algorithms for solving maximum independent set problem it should
be mentioned papers [7–9] and [10]. In the present paper we propose a modi-
fied heuristic algorithm which combines approaches from [9] and [10]. Following
initial terminology this heuristic was named as extended simplicial vertex test
with interchange step.

The paper presents a detailed description of mathematical model for investi-
gation of the applied problem under consideration and also heuristic algorithm
for solving corresponding optimization problem. The conclusion contains the
results of computational experiments with data obtained from real railway con-
trol problem.

2 Railway Arrival and Departure Paths Assignment
Problem (ADPA Problem)

Let P = {1,m} be the set of arrival and departure paths (ADP) available for
trains assignment. And let T = {1, n} be the set of trains, such that for each
train there defined parameters of the form

i : (arr(i), dep(i),p(i)) , i ∈ {1, n} . (1)

Here arr (i) , dep (i) ∈ [T0, T ] are arrival and departure times for the i-th train,
which both belong to the planning period [T0, T ], and p(i) ⊆ P is the set of
arrival and departure paths available for the assignment of the i-th train. Note,
that regarding to real application of the trains assignment problem, such a set
p(i) depends on direction of the i-th train route and also on topological scheme
of the railway station.

Let us denote a phantom arrival and departure path as p0, and let us assume
that p0 ∈ p (i) for any i ∈ {1, n}.

Definition 1. A feasible assignment of the arrival and departure paths to the
set of trains given by parameters of the form (1) with fixed value of the parameter
Δt(Δt > 0), is the map of the form
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f : T −→ P ∪ {p0} (2)

such that for any i, j : f (i) = f (j) = k, i, j ∈ {1, n} , k ∈ {1,m} the following
condition holds{

dep (i) + Δt ≤ arr (j) or dep (j) + Δt ≤ arr (i) ,

k ∈ p (i) ∩ p (j) .
(3)

The condition (3) from the Definition 1 means, that in case of the assignment
of both i-th and j-th trains to the same k-th arrival and departure path, there
should be the time delay between trains not less than the value of the parameter
Δt. So, using the Definition 1 we can formulate an optimisation problem on the
arrival and departure paths assignment (ADPA Problem).

Problem 1. For the given T,P, p0 and Δt, one need to find a map fsol such that

|{i : fsol (i) = p0}| = min
f∈F

|{i : f (i) = p0}| ,

where F is the set of all feasible assignments of the form (2) which satisfy con-
dition (3).

In other words, ADPA Problem is to assign the maximal possible number of
trains to the given number of paths with satisfying the constraint (3) for trains
assigned to the same path. To solve Problem 1 we propose a graph based app-
roach to reduce an applied problem under consideration to the maximum inde-
pendent set problem.

3 The Maximum Independent Set in the ADPA Problem

Let us consider an undirected graph G = (V,E) such that each vertex of this
graph corresponds to a pair of the form “train-path”, that is

V = {vi : traini-pathi, traini ∈ {1, n} , pathi ∈ p (traini)} , (4)

where i ∈
{

1,
∑

j∈{1,n}
|p (j)|

}
. And let each pair of vertices vi, vj are connected

by edge (vi, vj) ∈ E if the following condition holds

traini = trainj , (5)

or ⎧⎪⎨
⎪⎩

traini �= trainj ,

pathi = pathj ,

dep (i) + Δt > arr (j) or dep (j) + Δt > arr (i) .

(6)
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Definition 2. An arrival and departure paths assignment graph (ADPA graph)
is an undirected graph G = (V,E), which satisfies conditions (4–6).

We will explain rules (4)–(6) using simple instance.

Example 1. Let P = {1, 2} and T = {1, 2, 3, 4}, such that

T =

⎧⎪⎪⎨
⎪⎪⎩

1: (2 : 16, 2 : 43, {1, 2})
2 : (1 : 54, 2 : 20, {1, 2})
3 : (2 : 43, 3 : 14, {1, 2})
4 : (0 : 48, 1 : 16, {1, 2})

⎫⎪⎪⎬
⎪⎪⎭ and T

′ =

⎧⎪⎪⎨
⎪⎪⎩

1: (0 : 48, 1 : 16, {1, 2})
2 : (1 : 54, 2 : 20, {1, 2})
3 : (2 : 16, 2 : 43, {1, 2})
4 : (2 : 43, 3 : 14, {1, 2})

⎫⎪⎪⎬
⎪⎪⎭ ,

where T
′ is obtained by sorting of the set T regarding to values of parameter

arr (i). According to (4) from the set T
′ we have

V = {1-1, 1-2, 2-1, 2-2, 3-1, 3-2, 4-1, 4-2} .

Using the value of the parameter Δt = 0 : 10 (that is Δt will be equal to 10 min),
from (5) and (6) we have the following set of edges

E =
{

(1-1, 1-2) , (2-1, 2-2) , (3-1, 3-2) , (4-1, 4-2) ,

(2-1, 3-1) , (2-2, 3-2) , (3-1, 4-1) , (3-2, 4-2)
}
.

Thus, the adjacent matrix of the ADPA graph will have the form of Table 1.

Table 1. Adjacent matrix of the ADPA graph.

1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2
1-1 1 1 0 0 0 0 0 0
1-2 1 1 0 0 0 0 0 0
2-1 0 0 1 1 1 0 0 0
2-2 0 0 1 1 0 1 0 0
3-1 0 0 1 0 1 1 1 0
3-2 0 0 0 1 1 1 0 1
4-1 0 0 0 0 1 0 1 1
4-2 0 0 0 0 0 1 1 1

The colored elements in the table above correspond to edges, which satisfy con-
dition (5). From applied point of view it means that some fixed train could not
be assigned to several different paths.

For further explanation we need the following additional result from graph
theory. Let 〈Ṽ 〉G be an induced subgraph of a graph G = (V,E), which was
generated by a subset of vertices Ṽ ⊆ V . That is

〈Ṽ 〉G =
(
Ṽ , Ẽ

)
:

⎧⎪⎨
⎪⎩

Ṽ ⊆ V,

Ẽ ⊆ E,

(u, v) ∈ Ẽ if and only if u, v ∈ Ṽ ,

where u, v ∈ V, (u, v) ∈ E.
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Proposition 1. Let V be a set of vertices of a graph G = (V,E), and let V
could be represented by n subsets Vi ⊆ V , such that

V =
n⋃

i=1

Vi, Vi ⊆ V.

Let also for any i ∈ {1, n} the corresponding induced subgraph 〈Vi〉G is a complete
subgraph (in other words, let for any i ∈ {1, n} the corresponding subset of
vertices Vi is a clique of the initial graph). Then

|MaxIndSet (G)| ≤ n, (7)

where MaxIndSet (G) is the maximum independent set of the graph G = (V,E).

Proof. As input we have that each subgraph of the form 〈Vi〉G is complete. So,
for any i ∈ {1, n} and for any pair of vertices u, v ∈ Vi there holds either

if u ∈ MaxIndSet (G) , then v �∈ MaxIndSet (G) ,

or
if v ∈ MaxIndSet (G) , then u �∈ MaxIndSet (G) .

Let us continue the proof using a mathematical induction method.

1. Let n = 1. Then G = (V,E) is a complete undirected graph and

|MaxIndSet (G)| = 1 = n.

2. Let n = k and k > 1. Following mathematical induction method we suppose
that

|MaxIndSet (G)| ≤ k.

3. Let n = k + 1. Let us denote

S = MaxIndSet

(
〈

k⋃
i=1

Vi〉G
)

and consider all possible cases.
Case 1
Let for any vertex u ∈ Vk+1 there is a vertex v ∈ S such that either (u, v) ∈ E
or (v, u) ∈ E. Then according to induction step 2, we have

|MaxIndSet (G)| = |S| ≤ k.

Case 2
Let there exists a vertex u ∈ Vk+1 such that for any vertex v ∈ S we have
both (u, v) �∈ E and (v, u) �∈ E. Then

|MaxIndSet (G)| = |S| + 1 ≤ k + 1 = n.
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Thus, the proposition is proven for n = 1 and for n = k + 1 where k > 1. So,
according to induction, the proposition holds for any n.

Note, that upper bound of the form (7) holds for any set of cliques of the
graph. In particular, subsets 〈Vi〉G, i ∈ {1, n} could be intersecting to each other
by vertices (or edges).

Now we will return to explanation of the graph based approach to solve
ADPA Problem 1. We state that any independent set of vertices of the ADPA
graph G = (V,E) corresponds to arrival and departure paths assignment as
following rule

vi : traini-pathi ⇐⇒ f (traini) = pathi, (8)

where vi ∈ V, traini ∈ {1, n} , pathi ∈ {1,m}.

Proposition 2. The maximum independent set of the ADPA graph G = (V,E)
corresponds to optimal solution of the ADPA Problem 1.

Proof. Using (5) one can conclude that any ADPA graph G = (V,E) contains n
complete subgraphs of the form Gk = (Vk, Ek), such that

Vk = {vi ∈ V : traini = k} , |Ek| = |p (k)| ,

and ⋃
k∈{1,n}

Vk = V,

where Vk ⊆ V,Ek ⊆ E and p (k) ⊆ {1,m} for any k ∈ {1, n}. In other words,
condition of Proposition 1 holds for any ADPA graph G = (V,E).

Then, for any independent set S of the ADPA graph G = (V,E) the following
holds

|S| ≤ n, (9)

and moreover, for any vi, vj ∈ S either{
traini �= trainj ,

pathi �= pathj

or ⎧⎪⎨
⎪⎩

traini �= trainj ,

pathi = pathj ,

dep (i) + Δt ≤ arr (j) or dep (j) + Δt ≤ arr (i) .

Thus, it is right that for any independent set S the corresponding rule (8) satisfies
to condition (3) for trains assigned to the same arrival and departure path.

Further, if |S| = n, than the proposition is proved, and for corresponding
assignment of the form (2) the following equality holds

|{i : f (i) = p0}| = 0.
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Let us suppose that |S| �= n, and let there exists the assignment of the form (2),
such that

|S| < |{i : f (i) �= p0}| ≤ n.

In this case due to (6) and (8), corresponding vertices of the ADPA graph need
to be not adjacent. However, this conclusion contradicts to maximality of the
set S by cardinality.

It should be also mentioned, that inequality (9) provides an additional stop-
ping condition from algorithmic point of view.

4 Extended Simplicial Vertex Test with Interchange Step
(ESVTwICS)

In the paper [11] there was developed an inference algorithm for monotone
Boolean functions, generated by undirected graphs. In the paper [9] the algo-
rithm mentioned above was applied to solving the problem on the maximum
independent set of the undirected graph (MIS problem). Following terminology
from [12] this algorithm was named as extended simplicial vertex test (ESVT)
(thanks to some vertices features used as selecting criterion for candidates to be
included in the solution). In the paper [13] the ESVT was effectively used for
solving an applied problem on the railway management on the stage of forming
the set of feasible trains schedules.

In the paper [10] there was developed an algorithm for solving the maxi-
mum clique problem, which is known to be equivalent to MIS Problem. One
of steps of this algorithm is an interchange step. The meaning of interchange
step is to exclude the random vertex from local solution and try to extend the
last one using remained vertices, which were earlier not used for local solution
construction. So, an interchange is a step of local search in frame of variable
neighborhood metaheuristic (VNS).

Finally, the extended simplicial vertex test with interchange step
(ESVTwICS) which we propose in the present paper for solving an applied
problem, is a constructive heuristic algorithm which uses an interchange step
for local solution obtained by ESVT.

For further explanation we need to introduce some additional notes and def-
initions. Let

N (v, V,E) = {u : u, v ∈ V, (u, v) ∈ E}
be a neighborhood of vertex v ∈ V in a graph G = (V,E), that is a subset of
vertices from V which are adjacent to vertex v by edges from E. And let

A (v, V,E) = {(u,w) ∈ E : u,w ∈ N (v, V,E)}

be a subset of edges (u,w) ∈ E of a graph G = (V,E) which both ends belong
to a neighborhood of vertex v ∈ V .
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Definition 3. Parameters k and m of a vertex v ∈ V of a graph G = (V,E)
are the following values

k = |N (v, V,E)| ,

m =
k · (k − 1)

2
− |A (v, V,E)|

corresponding.

In other words, a parameter k is a number of neighbors of a vertex v and a
parameter m is a number of edges missed in the neighborhood of this vertex to
be a complete induced subgraph. Note, that a vertex with parameter m = 0 is
a simplicial vertex by definition from [10].

A figure below shows a general scheme of ESVTwICS (Fig. 1).

Require: G = (V, E) , n an undirected graph and an integer number n
Ensure: S ⊂ V an independent set of vertices
1: V0 ←− V current set of candidates
2: E0 ←− E
3: S ←− {} an independent set under construction
4: while V0 = {} do ESVT step
5: for all v ∈ V0 do
6: for all u ∈ V0 do
7: visited (u) ←− false

8: k (v) ←−calculate-k(v, V0, E0)
9: m (v) ←−calculate-m(v, V0, E0)
10: v0 ←−min-max-param(k,m,V0)
11: S ←− S ∪ {v0}
12: V0 ←− V0 \ {v0} \ N (v0, V0, E0)
13: E0 ←− E0 \ {(v0, u) : u ∈ V0} \ {(u, w) , (w, u) : u ∈ N (v0, V0, E0) , w ∈ V0}
14: if |S| = n then stopping condition
15: go to step 21
16: for all v ∈ S do interchange step
17: S ←−interchange(v,S, V, E)
18: if |S | > |S| then
19: S ←− S
20: go to step 14
21: return S

Fig. 1. Algorithm ESVTwICS(G,n).

As one can see from Fig. 1 the ESVT step (lines 4–13) calculates values of
parameters k and m for vertices from current set V0 on each iteration of an
external loop. Pseudo-codes of corresponding procedures are shown by Fig. 2
and 3.

A boolean array visited() used in lines 6–7, Fig. 1 and lines 2, 5–6 and 8, Fig. 3
has a length |V | and allows one to check only relevant vertices. Further, both
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1: procedure calculate-k(v, V, E)
2: k (v) ←− 0
3: for all u ∈ V do
4: if (u, v) ∈ E then
5: k (v) ←− k (v) + 1
6: return k (v)

Fig. 2. Procedure calculate-k(v, V,E).

1: procedure calculate-m(v,V, E)
2: visited (v) ←− true
3: m (v) ←− 0
4: for all u ∈ V do
5: if visited (u) = false & (u, v) ∈ E then
6: visited (u) ←− true
7: for all w ∈ V do
8: if visited (w) = false & (v, w) ∈ E & (u, w) E then
9: m (v) ←− m (v) + 1
10: return m (v)

Fig. 3. Procedure calculate-m(v, V,E).

1: procedure min-max-par(k,m, V )
2: min-m ←− 0
3: max-k ←− 0
4: ind ←− false
5: while ind ←− false do
6: for all v ∈ V do
7: if m (v) = min-m & k (v) > max-k then
8: max-k ←− k (v)
9: v0 ←− v
10: ind ←− true
11: if ind=false then
12: min-m ←− min-m + 1

Fig. 4. Procedure min-max-par(k,m, V ).

integer arrays k() and m() also have a lengths |V | and store a data regarding to
values of corresponding values of parameters k and m for each vertex from the
current set.

The main idea of ESVT is to add to a solution under construction (S) a
vertex v with minimum value of the parameter m and the maximum one of the
parameter k. So, let’s describe corresponding procedure to extracting a vertex
with features mentioned above.
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Procedure min-max-par(k,m, V ) uses a boolean variable ind to check a stop-
ping condition of an external loop (line 5, Fig. 4). By the other hand, if this
stopping condition is not executed one need to increase a value of parameter m
(line 10, Fig. 4). Note, that an original simplicial vertex test (not extended) use
only criterion m = 0.

Finally, the last procedure which we need to discuss is an interchange
(lines 16–20, Fig. 1). The figure below shows a pseudocode of this procedure.

1: procedure interchange(v,S, V, E)
2: S ←− S \ {v}
3: V ←− V \ S
4: for all u ∈ S do
5: for all w ∈ V do
6: if (u, w) ∈ E then
7: V ←− V \ {w}
8: if |V | > 1 then
9: for all u ∈ V do
10: visited (u) ←− true
11: for all w ∈ V do
12: if visited (w) = false & (u, w) E then
13: S ←− S ∪ {u, w}
14: break
15: return S’

Fig. 5. Procedure interchange(v, S, V,E).

As earlier (Fig. 2 and 3) an interchange procedure also uses boolean array
visited() to check only relevant vertices. So, we declare all vertices from V ′ as
unvisited (lines 6–7, Fig. 5) to run interchange correctly (lines 16–20, Fig. 1) in
case of multiple checking of stopping condition (lines 18–20, Fig. 1).

The main idea of interchange is to exclude 1 vertex from local solution S
(line 2, Fig. 5) and change it with 2 another vertices. For this goal one need
to construct a special set V ′ (line 3, Fig. 5) which contains the only vertices
adjacent to this excluded vertex. Note, that a candidate v for excluding could be
chosen at random or using some heuristic rule. For example, a candidate could
have a minimal degree in an initial graph.

Next step of interchange (lines 8–9, Fig. 5) is to check, whether there are in
constructed set V ′ a pair of vertices, which are not adjacent with each other.
If so, then each of them is not adjacent with other vertices from S′ and could
be added to independent set under construction (line 13, Fig. 5). Thus, one can
change 1 (excluded) vertex from local solution with 2 another vertices. The same
principals could be used in case of change 2 vertices with 3 ones and so on.

For more efficiency we use interchange for all vertices from local solution
obtained by ESVT (line 16, Fig. 1).
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Example 2. Let us consider an undirected graph G = (V,E) shown by Fig. 6.

2

31

4

5

6

Fig. 6. An undirected graph G = (V,E).

Using Proposition 1 one can state n = 3 as a stopping condition for the
ESVTwICS. Indeed, a set of vertices of a given graph could be represented by
V = {1, 2, 3} ∪ {1, 3, 4} ∪ {5, 6}, where each of subsets {1, 2, 3}, {1, 3, 4}, {5, 6}
is a clique of the initial graph. So, we have |MaxIndSet (G)| ≤ 3 and n = 3.

Implementation of ESVTwICS with instance G = (V,E) (Fig. 6) is repre-
sented by Table 2 below.

First of all we run ESVT for given set of vertices and then calculate param-
eters k and m for each vertex in view of the given set of edges. The loop run
until the current set of vertices becomes empty. So, we have got an independent
set, which contains 2 vertices. But this independent set does not satisfies the
stopping condition, that’s why the algorithm go to interchange step. Running
interchange twice for each vertex from local solution obtained by the ESVT step,
we are getting an optimal one, for which the stopping condition holds.

4.1 Computational Results

We run ESVTwICS with instances obtained from real trains schedule in the
period from Jan, 1st until Jan, 30th. Note, that as usually each train has its
own calendar plan. That is why for different dates we have different number of
transportations across the station. At the same time less number of transporta-
tions does not imply any simplification of the model. Indeed, although number of
transportations is not very large, but it could be often occur that trains schedule
are very close to each other and in this case it is impossible to execute arrival
and departure paths assignment without changing the trains schedule.

Let us describe assumptions of the model.

1. Δt = 10 (min). It is a usual management condition on the delay between
trains assigned to the same arrival and departure path.
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Table 2. Running of the ESVTwICS (G,n).

ESVT step
S V0 E0 k m Comments
{} 1 (1, 2) (1, 3) (1, 4) 3 1 V0 = {}

2 (2, 1) (2, 3) (2, 6) 3 3 calculate-k (v, V0, E0)
3 (3, 1) (3, 2) (3, 4) (3, 5) 4 3 calculate-m (v, V0, E0)
4 (4, 1) (4, 3) (4, 6) 3 3 min-max-par (k, m, V0)
5 (5, 3) (5, 6) 2 1
6 (6, 2) (6, 4) (6, 5) 3 2

{1} 5 (5, 6) 1 0 V0 = {}
6 (6, 5) 1 0 calculate-k (v, V0, E0)

calculate-m (v, V0, E0)
min-max-par (k, m, V0)

{1, 5} {} V0 = {}
|S| = 3

Interchange step
S S V v u w Comments

5 for all u ∈ S do
{1, 5} {1} {2, 3, 4, 6} 1 for all w ∈ V do

2 (1, 2) ∈ E
{3, 4, 6} 3 (1, 3) ∈ E
{4, 6} 4 (1, 4) ∈ E
{6} 6 (1, 6) E
{6} |V | = 1

return S

{1, 5} {5} 1
{2, 3, 4, 6} 5 2 (5, 2) E
{2, 3, 4, 6} 3 (5, 3) ∈ E
{2, 4, 6} 4 (5, 4) E
{2, 4, 6} 6 (5, 6) ∈ E
{2, 4} |V | > 1

2 for all u ∈ V do
2 visited (2) = true

for all w ∈ V do
4 visited (4) = false &(2, 4) E

{2, 4, 5} return S
{1, 5} |S | > |S|
{2, 4, 5} S ←− S

|S| = 3

2. Δt = 20 (min). We use such value of the parameter Δt to demonstrate a
stability of the approach proposed. And moreover it could be rather useful
in view of possible deviations in real execution of transportations plan.

3. P = {1, 2, 3, 4, 5, 6}—the set of arrival and departure paths available for
assignment. We use only 6 paths instead of 9 existing, to get stronger con-
straints for ADPA Problem.
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4. p (i) = P for any train during any date. This is the basic case which can
often occur in real stations, when some paths maintenance actions need to
be organized.

The Table 3 below shows the computation results which we get by using
ESVTwICS with assumptions described.

Table 3. Computational results

Instance Δt = 10 Δt = 20
70 70 69
78 77 74
72 72 70
77 76 74
74 74 71
79 78 75
70 70 67
76 76 72
68 68 67
72 72 70

Instance Δt = 10 Δt = 20
72 72 69
80 80 76
72 72 68
76 75 73
68 68 67
78 77 73
70 70 68
77 76 74
74 74 71
79 78 75

Instance Δt = 10 Δt = 20
70 70 67
76 76 72
68 68 67
72 72 70
72 72 69
80 80 76
72 72 68
76 75 73
68 68 67
78 77 74

In columns “Instance” there are shown numbers of trains, which need to be
assigned to 6 paths (e.g., for each line of the Table 3 the corresponding ADPA
graph will contain “number of trains” ×6 vertices). In both columns “Δt = 10”
and “Δt = 20” there are presented the cardinalities of independent sets obtained
by ESVTwICS run for corresponding ADPA graphs with given values of the
parameter Δt.

As it could be seen from Table 3, in many cases ESVTwICS allows to assign
all trains to given paths. In particular, for 21 instances among 30 there were
obtained an exact solutions with using 10 min as a value of the parameter Δt.

Thus, observing results obtained by ESVTwICS we can conclude its efficiency
to solving real problems regarding to station paths resources assignment and
maintenance planning.

5 Conclusion

The paper proposes an efficient graph based approach to solving a railway arrival
and departure paths assignment problem. There was developed a mathematical
model which allow to reduce an applied problem to the classical NP-hard max-
imum independent set problem. There are also described rules for constructing
a special graph connected with applied input data. This graph was named as
ADPA graph and serve as instance for modified simplicial vertex test heuristic
(ESVTwICS).

The ESVTwICS heuristic use two extensive steps—extended simplicial vertex
test and interchange step.
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The paper also presents computational results with using real railway trans-
portations schedule. These results show the efficiency of the approach proposed
in railway management and logistics.

The future researches in the discussed direction will be devoted to combina-
torial comparison of different graph based models in frame of their application
to solving railway arrival and departure paths assignment problem. At the same
time it seems to be interesting to increase the complexity of the problem by
using additional constraints such as different types of trains and paths available
for assignment.

As for direction of algorithms development for solving ADPA, it seems to
be efficient to implement VNS approach using 2 neighborhoods described in the
paper. Such a way has the highest priority due to its powerful in solving different
problems regarding to transportations and assignments.
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for finding the maximum independent set with absolute estimate of the accuracy.
In: CEUR-Workshop Proceedings, vol. 2098, pp. 141–149 (2018)
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Abstract. The dynamic scheduling of patients to doctors in an emer-
gency department environment is tackled in this work. We consider the
case in which patients arrive dynamically during the working hours, and
the objective is to minimize the weighted tardiness. We propose a greedy
heuristic based on priority queues and a general variable neighborhood
search (GVNS). In the greedy heuristic, patients are scheduled by observ-
ing their urgency, while in the GVNS, the schedule is optimized every
time a patient arrives. The GVNS uses six neighborhood structures and
a variable neighborhood descent to perform the local search. The GVNS
also handles the static problem whose solution can be used as a reference
for the dynamic one. Computational results on 80 instances show that
using the GVNS better approximates the static problem, besides giving
an overall reduction of 66.8% points over the greedy heuristic.
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1 Introduction

Emergency Department (ED) overcrowding has been continuously reported for
decades in various regions in the world [6,26,28]. Since ED is a 24/7 gateway
to the hospital for patients who require immediate emergency medical services,
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required treatments promptly. Such delays in the necessary medical treatments
can lead to life-altering (or even life-ending) cases.

ED overcrowding’s adverse consequences include public safety at risk, pro-
longed suffering, patient dissatisfaction, violence at the ED waiting room, and
increased chances of decision errors [5]. One of the most effective ways to alleviate
the ED overcrowding situation is to expand the facility’s capacity and resources.
This may not be feasible for most hospitals, particularly for public hospitals, due
to financial constraints. Therefore, hospital management and operations man-
agers have kept investigating possible ways to improve patient flow by optimizing
the processes and services of the ED.

The flow of patients and the prolonged patient waiting times within EDs
have always been studied and discussed. This macro-topic is relevant to various
optimization problems, ranging from the scheduling of work shifts to the min-
imization of service costs. Our research is motivated by the recent advance in
information technologies adopted by EDs. By modern information systems at the
hospital, most of the ED activities are now tracked in real-time for more effective
communications and responsive actions. Traditionally, as information might not
be updated and comprehensive, protocols were set up to guide daily operations
(e.g., patient prioritization, professional medical assignment, and process flow).

A conventional and commonly adopted practice is prioritizing patients
according to the level of urgency or patient criticality. While this is a sensible
way of giving priority to patients, the utilization of additional information about
patients and resource availability may potentially further enhance the efficiency
of the ED and effectiveness of emergency medical services provided to patients,
thereby leading to better patient outcomes. For example, studies are suggesting
that taking patient complexity into account would benefit ED performance [27].

The intervention strategies suggested by research work and adopted in prac-
tice for patient prioritization is mainly based on the triage category [8,29]. The
more urgent a patient, the higher the priority is. [19] adopted a simulation app-
roach to examine the impacts of the adoption of a fast track. They found that the
fast track is more effective for EDs with a higher proportion of urgent patients.
They provided conditions for which this scheme is incredibly useful. However,
recent research found that patient complexity is still not a significant factor
considered in patients’ prioritization decisions [7].

Scheduling has been an essential topic in the optimization of ED systems. The
leading research is on staff scheduling. Because of the stochastic environment of
EDs, queuing and simulation models have been incorporated into optimization
frameworks. For example, [12] used a Lag stationary independent period-by-
period queuing model to determine the number of service providers in each hour.
On the other hand, simulation-optimization approaches require the execution of
simulation models at each iteration of an optimization procedure and, therefore,
are computationally expensive [18,20].

Our work addresses the ED patient scheduling problem, where information
about the patient characteristics and doctors’ availability are provided. With
such useful information, the scheduling of patients in the ED can be more
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productive and dynamic. More specifically, this paper focuses on minimizing
the patients’ waiting time by optimizing patients’ schedules to doctors. The
problem is further complicated by the heterogeneous patients presenting to the
ED, characterized by the urgency and time required for medical treatments. The
problem is dynamic, where no information about the patients is known before
they arrive in the ED. Then, we propose a greedy heuristic based on priority
queues to schedule patients. A General Variable Neighborhood Search (GVNS)
[13] is used to optimize the schedule whenever a new patient arrives. We also
solve the static version of the problem with the GVNS once it has all information
available at time zero, and an ideal solution would be expected.

Despite the relevance of scheduling problems, which have been studied since
the 1950s, the number of works addressing the same problem here is minimal. To
our knowledge, the paper by [14] is the most recent work dedicated to our prob-
lem. These authors investigated dominance rules and proposed a branch-and-
bound algorithm. In [1], the problem and its unweighted versions were studied.
In addition to these works, we highlight the contributions by [15], who proposed
a metaheuristic and provided an annotated bibliography review, and [2], who
developed a branch-cut-and-price algorithm.

Concerning the use of the VNS to solve scheduling problems, a resource-
constrained project scheduling was solved in [9]. A solution was coded as a
sequence of valid activities in terms of precedence constraints. The nurse roster-
ing problem was solved with a basic VNS combined with an integer programming
model in [3], considering real instances arising in a Dutch hospital. A hybrid
flow shop problem was tackled in [22] with a hybrid VNS that combines the
chemical-reaction optimization and the estimation of distribution methods. In
[4], the problem of scheduling surgeries over a medium-term horizon was solved
with a VNS, outperforming a commercial solver for many real instances of a
Dutch cardiothoracic center. On the other hand, the home healthcare routing
and scheduling problems were tackled in [10] with a general VNS whose solutions
could outperform other literature approaches. Recently, a variable neighborhood
descent was used to handle the bicriteria parallel machine scheduling problem
in [25], where a set of neighborhood structures based on swap, remove, and
insertion moves were used.

The contributions of our work are as follows.

1. We address a dynamic ED patient scheduling problem, which is not well-
studied in the existing literature.

2. A priority queue-based greedy heuristic and a GVNS algorithm are proposed
to provide fast and effective solutions, which are novel to the dynamic ED
patient scheduling problem.

3. A new design of computational experiments that simulate an ED dynamic
environment was adopted to demonstrate the GVNS approach’s effectiveness.

The present work is organized as follows. Section 2 provides the problem
definition, while Sect. 3 has the solutions methods we proposed. Section 4 shows
the computational experiments. Section 5 brings the concluding remarks and
draws perspectives for future works.
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2 Problem Definition

We address a particular scheduling problem that arises in the ED context. In
this problem, we are given a set J = {1, . . . , n} of patients to be served, without
preemption, by a set M = {1, . . . , m} of parallel doctors with identical efficiency.
Each patient j ∈ J has a service time pj , an arrival date at the ED rj , a priority
weight wj , and a due date dj . One doctor must serve each patient.

The objective is to find a schedule of patients such that the sum of weighted
tardiness of the patients, i.e.,

∑
j∈J wjTj , is minimized. The tardiness of a patient

j is defined as Tj = max{0, Cj − dj}, where the completion time Cj is defined as
the time at which the patient’s service is finished. Using the scheduling classifica-
tion of [11], this problem can be referred to as P |rj |

∑
wjTj . The P |rj |

∑
wjTj

is NP-hard, because it is a generalization of the 1|rj |
∑

wjCj that was proven
NP-hard by [21].

When all data is deterministic and known in advance, we have the static ver-
sion of the problem. On the other hand, in the dynamic version, data are made
available only immediately after the arrival of a patient in the ED. Figure 1
shows an example of a problem instance of five patient arrivals. In the static
version of the problem, scheduling decisions are made at time t = 0, with
{(rj , pj , wj , dj)}5

j=1 known in advance. In the dynamic version, decisions are
determined sequentially at time points t = r1, r2, ..., r5, where only the informa-
tion about the patient arrivals prior to the current arrival is known. For example,
at t = r3, {(rj , pj , wj , dj)}3

j=1 are known but {(rj , pj , wj , dj)}5
j=4 are unknown.

Fig. 1. An example of a problem instance of five patient arrivals.

In the next section, we describe a general variable neighborhood search for
both the static and the dynamic versions, besides a greedy heuristic based on
queues for the dynamic problem.

3 Solution Methods

The variable neighborhood search (VNS) was proposed by [23] and considers
the systematical change of neighborhood structures to obtain a globally optimal
solution for all neighborhood structures. It may include a local search phase.



142 T. Alves de Queiroz et al.

When the local search is the variable neighborhood descent (VND), we have the
general version of the VNS (GVNS). In the next subsections, we start describing
the GVNS we proposed for the static problem. Next, the neighborhood structures
we used in GVNS are explained. Finally, we discuss the proposed heuristics for
the dynamic problem, including an adaptation of the GVNS.

3.1 General Variable Neighborhood Search

We describe the GVNS for the static version of the P |rj |
∑

wjTj in Algorithm
1. As mentioned, this version assumes that information is known in advance.
The GVNS has the following main steps: to create an initial solution randomly;
to obtain neighbor solutions of the current solution by using a neighborhood
structure; to do the local search with the VND on a neighbor solution; and, to
accept the solution of the VND if it is better than the current solution. Whenever
a solution is accepted, the GVNS restarts to the first neighborhood structure;
otherwise, it goes to the next neighborhood.

In Algorithm 1, a solution x is coded as a vector of lists of integers. Each
vector position represents a machine (i.e., a doctor), so the vector has size m, and
it contains an ordered list of jobs (i.e., patients). The initial solution is created
as follows: for each patient j ∈ J , select randomly a doctor mt ∈ M and then
assign j to be the last patient of mt. The start time of each patient j is defined
as the maximum between its release date rj and the completion time Ci of its
predecessor patient i served by the same doctor. The value of a solution x, given
by f(x), is defined as

∑
j∈J wjTj , where Tj is the patient’s tardiness. The start

time of patient j is defined as sj . In the loop of line 4, kmax is the number of
neighborhood structures that are discussed in the next subsection.

Algorithm 1: GVNS for the P |rj |
∑

wjTj .

1 Let x be an input initial solution.
2 while do not reach the stopping criteria do
3 k ← 1.
4 while k ≤ kmax do
5 x′ ← obtain a random neighbor in Nk(x).
6 x′′ ← VND(x′).
7 if f(x′′) > f(x) then
8 s ← s′′.
9 k ← 1.

10 else
11 k ← k + 1.

12 return x.

Regarding line 5 of Algorithm 1, the doctors and patients in the neighborhood
structures are selected at random. On the other hand, in line 6, where the VND
is called, we use the same neighborhood structures, but now instead of random
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selections, all the possibilities for doctors and patients are explored. The local
search is described in Algorithm 2 and consists of the VND, where x is the
solution passed as an input parameter.

Algorithm 2: VND.
1 Let x be an input solution.
2 k ← 1.
3 while k ≤ kmax do
4 x′ ← the best neighbor solution in Nk(x).
5 if f(x′) > f(x) then
6 x ← x′.
7 k ← 1.

8 else
9 k ← k + 1.

10 return x.

3.2 Neighborhood Structures

We consider six neighborhood structures that are used in lines 5 and 4 of Algo-
rithms 1 and 2, respectively. These structures are based on swap, remove, and
insertion movements. In particular, they are:

– N1: one doctor, mt, is selected and then two patients, j1 and j2, assigned to
this doctor are also selected. Hence, swap j1 for j2 and vice-versa;

– N2: one doctor, mt, is selected and then two patients, j1 and j2, assigned to
this doctor are also selected. Hence, insert j1 before j2;

– N3: two doctors, mt and ms, are selected and then two patients, j1 from mt

and j2 from ms, each one assigned to each doctor, are also selected. Hence,
swap j1 for j2 and vice-versa;

– N4: two doctors, mt and ms, are selected and then two patients, j1 from mt

and j2 from ms, each one assigned to each doctor, are also selected. Hence,
remove j1 from mt and insert it before j2;

– N5: one doctor, mt, is selected and then tree patients, j1, j2 and j3, assigned
to this doctor are also selected, where j1 < j2, j3 is not in the sequence of
patients {j1, . . . , j2}, and the size of this sequence is limited to half of the
number of patients assigned to mt. Hence, insert the sequence {j1, . . . , j2}
before j3;

– N6: two doctors, mt and ms, are selected and then tree patients, j1 and j2
from mt, and j3 from ms are also selected, where j1 < j2 and the sequence
of patients {j1, . . . , j2} has its size limited to half of the number of patients
assigned to mt. Hence, remove the sequence {j1, . . . , j2} from mt and insert
it before j3.
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3.3 Dynamic Version

We firstly propose a greedy heuristic that schedules patients to doctors according
to the patients’ weight. Each weight is associated with a queue Q that holds the
patients organized (i.e., sorted) according to their due date (i.e., the earliest due
date first). The first queue, Q1, holds the patients with the highest priority (i.e.,
the maximum weight), and so on, until the last queue, Ql, which contains the
patients with the lowest weight.

The proposed greedy heuristic is described in Algorithm 3. We assume the
time horizon starts at t = 0, and it continues while patients are arriving. The
rule consists of assigning the highest priority patients as soon as possible to
the free doctors. Notice that low priority patients may wait indefinitely for free
doctors. To avoid this, patients are moved from their current queues to the next
ones if their due dates are violated. A new due date is then set for these patients
following the priority weights that the queues represent.

Algorithm 3: DYN1 - Greedy heuristic for the dynamic version.
1 for t ← 0, 1, . . . do
2 Add the patients that arrive at time t into the queues Q1, . . . , Ql according

to the patients’ priority weight.
3 foreach doctor mf ∈ M that is free at time t do
4 for q ← 1, . . . , l do
5 if Qq �= ∅ then
6 j ← (remove) the first patient in Qq.
7 Assign j to mf .
8 Go to line 3.

9 Update the queues according to the patients’ due date.

The other heuristic proposed for the dynamic version is in Algorithm 4,
taking advantage of the GVNS. For each time t on the horizon, we create a list
L with the patients that have just arrived at time t, so their release date is equal
to t. If L is not empty, we optimize the current solution x taking into account
the patients of L. Given the current schedule at x, we fix all the patients whose
start time is less than t. Notice that there is no preemption after a patient starts,
and if the start time of a patient is set after its due date, its tardiness will be
greater than zero. We initially schedule the patients of L randomly to x (their
start times are always equal to or greater than t). Next, the GVNS optimizes
all the non-fixed (i.e., non-served yet and that have just arrived) patients in x,
considering the patients already fixed.

4 Computational Experiments

All the algorithms were coded in the C++ programming language. The exper-
iments were carried out in a computer with processor Intel Core i5 2.9 GHz,
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Algorithm 4: DYN2 - GVNS for the dynamic version.
1 Let x be an empty solution.
2 for t ← 0, 1, . . . do
3 L ← list with the patients that have just arrived at time t.
4 if L is not empty then
5 Fix all the patients j in x whose sj < t.
6 Assign randomly the patients of L to doctors in x.
7 Apply the GVNS (Algorithm 1) to optimize the schedule of all non-fixed

patients in x.

8 return x.

16 GB of RAM, and macOS Mojave 10.14 as the operating system. The algo-
rithms’ parameters consider the number of neighborhood structures, which is
set to 6, and the stopping criteria for the outer loop (line 2 of Algorithm 1). We
assume a maximum number of iterations and a maximum number of consecutive
iterations without improving the best solution for the latter. We defined these
parameters after a trial and error process of calibration, achieving the values of
250 and 20, respectively, for the while loop in line 2 of Algorithm 1 (i.e., static
problem), and 20 and 5 iterations, respectively, for each call of the GVNS in
line 7 of Algorithm 4 (i.e., dynamic problem). We first detail the benchmark
instances used to evaluate our algorithms, and then we present and discuss the
obtained results.

4.1 Benchmark Instances

We generated a set of random instances to evaluate the proposed algorithms.
For that, the service times pj and priority weights wj of the patients were
generated from a uniform distribution in the intervals [30, 180] and [1, 5],
respectively. The arrival dates of the patients at the ED were generated
based on the scheme used by [17] and [24] to generate release dates for a
machine scheduling problem. Following this scheme, the arrival dates rj were
drawn from an uniform distribution in the interval [0, 50.5 n

mα], where α ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0, 3.0} is a parameter that controls how dis-
persed are the arrival dates. The due dates dj , in turn, depend on rj and wj in
such a way that dj = rj + 60(wj − 1). Also, for the dynamic case, information
about each patient is available when the patients arrive at the ED. We created
instances with n ∈ {20, 50, 100, 150, 200} and m ∈ {3, 5}. Then, for each combi-
nation of n, m, and α, we generated one instance called Nn-Mm-Rz, where z = 0
means the first α value (0.2), z = 1 means the second α value (0.4), and so on.

4.2 Computational Results

Tables 1 and 2 present the results of all instances. Each row of these tables
contains the following information: instance name, time in seconds, and solution
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value (i.e., weighted tardiness) for the static and dynamic problems. In the algo-
rithms for the dynamic problem, we also present the percentage deviation in the
solution value when compared to the static problem’s solution. Solutions (i.e.,
the patients’ weighted tardiness) whose values are equal to zero are marked in
bold.

Observing the results of Table 1, the GVNS obtained 7 solutions equal to zero
for the static problem on the instances with 20 patients. This number reduces to
1 with DYN1 and 5 with DYN2. For the instances with 50 patients, the number
of solutions equal to zero is 2, for the static problem solved with the GVNS,
and 1, for the dynamic problem solved with the DYN2 heuristic, while DYN1
was not able to achieve this. Regarding the percentage deviation between the
solutions of the dynamic problem with those of the static problem, the average
value is 118.2%, for DYN1, and 54.4%, for DYN2, if considering the instances
with 20 patients. For the instances with 50 patients, these numbers are 95.4%
and 29.2%, respectively. As the problem is dynamic, we notice that DYN2, which
uses the GVNS each time a patient arrives, has performed better than DYN1,
which schedules according to queues of priorities. About the computational time,
the average value considering all the 40 instances in the table is 4.9 s, for the
GVNS in the static problem, 0.1 s, for DYN1, and 2.0 s, for DYN2.

The results of Table 2 refer to the instances with 100 and 150 patients. For the
instances with 100 patients, the GVNS obtained 2 solutions with a value equal to
zero for the static problem, while DYN1 was not able to do this, and DYN2 did
it for 1 instance. For the instances with 200 patients, this was not achieved for
any problem (static or dynamic). Considering the percentage deviation between
the solutions of DYN1 and DYN2 with the solutions of the GVNS for the static
problem, the average values are 89.5% and 19.8%, respectively, for the instances
with 100 patients. These values are 85.7% and 18.2% for the instances with
150 patients. Once again, DYN2 has outperformed DYN1 in terms of solution
cost. In terms of computational time, the average value considering all the 40
instances in the table is 505.4 s, for the GVNS in the static problem, 0.1 s, for
DYN1, and 301.2 s, for DYN2.

When considering all results in Tables 1 and 2, the overall average percentage
deviation between the solutions of DYN1 and DYN2 with the solutions of the
GVNS for the static problem are 97.2% and 30.4%, respectively. Concerning the
computational time, the GVNS for the static problem has an overall average of
255.2 s, while this value is 0.1 s, for DYN1, and 151.6 s, for DYN2. DYN1 is
a greedy heuristic that is relatively easy to apply in practice and requires less
computational time to run, even for many patients. On the other hand, DYN2
is more sophisticated. It uses the GVNS to optimize the schedule. However,
it is more efficient than DYN1 in terms of solutions, with a lower percentage
deviation between its solutions and the GVNS for the static problem.
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Table 1. Results of the instances with 20 and 50 patients.

Instance VNS - static DYN1 - with queues DYN2 - with VNS

Time Sol. Time (s) Sol. Dev. (%) Time (s) Sol. Dev. (%)

N20-M3-R0 0.2 7606 0.1 14720 63.7 0.2 7624 0.2

N20-M3-R1 0.4 5216 0.1 8459 47.4 0.2 5236 0.4

N20-M3-R2 0.2 4543 0.1 8081 56.1 0.2 4545 0.0

N20-M3-R3 0.3 2926 0.1 5740 64.9 0.1 3516 18.3

N20-M3-R4 0.5 0 0.1 463 200.0 0.1 77 200.0

N20-M3-R5 0.3 241 0.1 431 56.5 0.1 873 113.5

N20-M3-R6 0.5 3964 0.1 8039 67.9 0.1 4239 6.7

N20-M3-R7 0.3 796 0.1 2177 92.9 0.1 1295 47.7

N20-M3-R8 0.4 52 0.1 135 88.8 0.1 316 143.5

N20-M3-R9 0.1 0 0.1 5 200.0 0.1 0 0.0

N20-M5-R0 0.3 769 0.1 1413 59.0 0.2 796 3.5

N20-M5-R1 0.2 1085 0.1 2862 90.0 0.1 1182 8.6

N20-M5-R2 0.3 192 0.1 2178 167.6 0.1 412 72.8

N20-M5-R3 0.5 130 0.1 438 108.5 0.1 277 72.2

N20-M5-R4 0.2 0 0.1 122 200.0 0.1 0 0.0

N20-M5-R5 0.1 0 0.1 140 200.0 0.1 0 0.0

N20-M5-R6 0.1 0 0.1 120 200.0 0.1 0 0.0

N20-M5-R7 0.2 0 0.1 235 200.0 0.1 20 200.0

N20-M5-R8 0.1 0 0.1 200 200.0 0.1 78 200.0

N20-M5-R9 0.1 0 0.1 0 0.0 0.1 0 0.0

Average 0.3 − 0.1 − 118.2 0.1 − 54.4

N50-M3-R0 13.4 48190 0.1 89687 60.2 13.3 48495 0.6

N50-M3-R1 22.0 49556 0.1 98229 65.9 13.2 49784 0.5

N50-M3-R2 16.6 39662 0.1 73301 59.6 8.1 39994 0.8

N50-M3-R3 14.0 26157 0.1 64560 84.7 6.2 26819 2.5

N50-M3-R4 12.0 37305 0.1 75064 67.2 6.0 41144 9.8

N50-M3-R5 11.2 19506 0.1 47331 83.3 1.7 19506 0.0

N50-M3-R6 13.8 7657 0.1 23996 103.2 0.9 9343 19.8

N50-M3-R7 8.3 1594 0.1 4335 92.5 0.4 3118 64.7

N50-M3-R8 7.0 252 0.1 2126 157.6 0.1 1016 120.5

N50-M3-R9 3.8 0 0.1 175 200.0 0.1 0 0.0

N50-M5-R0 7.1 27692 0.1 44234 46.0 7.7 28258 2.0

N50-M5-R1 5.0 21486 0.1 44119 69.0 5.2 22495 4.6

N50-M5-R2 5.7 14482 0.1 33754 79.9 5.0 15004 3.5

N50-M5-R3 10.1 12517 0.1 32416 88.6 4.6 13362 6.5

N50-M5-R4 7.4 13769 0.1 28113 68.5 2.2 14572 5.7

N50-M5-R5 10.7 7394 0.1 18988 87.9 1.2 9115 20.8

N50-M5-R6 8.4 2764 0.1 6182 76.4 0.9 5136 60.1

N50-M5-R7 6.0 7900 0.1 18803 81.7 0.9 9525 18.7

N50-M5-R8 6.9 264 0.1 1389 136.1 0.2 405 42.2

N50-M5-R9 2.9 0 0.1 224 200.0 0.1 185 200.0

Average 9.6 − 0.1 − 95.4 3.9 − 29.2
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Table 2. Results of the instances with 100 and 150 patients.

Instance VNS - static DYN1 - with queues DYN2 - with VNS

Time Sol. Time (s) Sol. Diff. (%) Time (s) Sol. Diff. (%)

N100-M3-R0 248.4 263437 0.1 434323 49.0 352.9 265621 0.8

N100-M3-R1 243.6 229351 0.1 421520 59.0 219.1 229351 0.0

N100-M3-R2 225.3 146126 0.1 300384 69.1 170.9 147851 1.2

N100-M3-R3 171.9 139286 0.1 260380 60.6 114.9 141554 1.6

N100-M3-R4 90.5 117357 0.1 264841 77.2 93.0 119129 1.5

N100-M3-R5 163.5 65989 0.1 182378 93.7 33.0 70582 6.7

N100-M3-R6 281.9 60700 0.1 123764 68.4 24.3 67205 10.2

N100-M3-R7 189.3 23643 0.1 55736 80.9 4.6 24455 3.4

N100-M3-R8 239.8 22923 0.1 62755 93.0 3.4 26725 15.3

N100-M3-R9 96.1 0 0.1 799 200.0 0.1 68 200.0

N100-M5-R0 132.9 120418 0.1 210010 54.2 180.8 120918 0.4

N100-M5-R1 128.0 113361 0.1 197608 54.2 118.9 114741 1.2

N100-M5-R2 88.0 100983 0.1 205304 68.1 136.1 101509 0.5

N100-M5-R3 78.1 78868 0.1 155045 65.1 68.7 82185 4.1

N100-M5-R4 133.9 78029 0.1 158456 68.0 67.7 78170 0.2

N100-M5-R5 261.5 25251 0.1 79036 103.1 37.4 29274 14.8

N100-M5-R6 115.7 23463 0.1 68326 97.8 11.1 30789 27.0

N100-M5-R7 159.0 6273 0.1 23999 117.1 4.2 10467 50.1

N100-M5-R8 192.9 4480 0.1 15901 112.1 2.7 8062 57.1

N100-M5-R9 26.9 0 0.1 145 200.0 0.2 0 0.0

Average 163.3 − 0.1 − 89.5 82.2 − 19.8

N150-M3-R0 1061.5 648760 0.1 1067988 48.8 2396.9 650043 0.2

N150-M3-R1 1756.3 483268 0.1 941882 64.4 1901.9 483268 0.0

N150-M3-R2 576.4 432851 0.1 813579 61.1 1313.5 432851 0.0

N150-M3-R3 779.6 287406 0.1 611584 72.1 706.1 287406 0.0

N150-M3-R4 1025.2 257484 0.1 542107 71.2 584.6 267243 3.7

N150-M3-R5 1920.2 174018 0.1 452553 88.9 217.6 174018 0.0

N150-M3-R6 893.0 88666 0.1 221176 85.5 88.7 98642 10.7

N150-M3-R7 959.3 61445 0.1 214027 110.8 34.0 67316 9.1

N150-M3-R8 1234.9 36568 0.1 106471 97.7 10.9 42389 14.7

N150-M3-R9 596.0 487 0.1 3351 149.2 0.3 1617 107.4

N150-M5-R0 977.3 302481 0.1 574030 62.0 904.9 304115 0.5

N150-M5-R1 451.1 257798 0.1 476820 59.6 864.9 262776 1.9

N150-M5-R2 738.1 212477 0.1 440777 69.9 595.9 212477 0.0

N150-M5-R3 945.3 181907 0.1 418622 78.8 377.0 185250 1.8

N150-M5-R4 641.6 134576 0.1 324238 82.7 249.4 144552 7.1

N150-M5-R5 1135.8 80342 0.1 204213 87.1 78.3 84210 4.7

N150-M5-R6 377.8 64906 0.1 175178 91.9 55.4 71206 9.3

N150-M5-R7 318.8 32488 0.1 109132 108.2 20.5 39969 20.6

N150-M5-R8 315.7 7686 0.1 20016 89.0 3.2 14167 59.3

N150-M5-R9 246.3 175 0.1 897 134.7 1.0 634 113.5

Average 847.5 − 0.1 − 85.7 520.2 − 18.2
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5 Concluding Remarks

The scheduling of patients to doctors in emergency departments is a dynamic
problem that requires fast and accurate decisions while minimizing the weighted
tardiness related to the waiting time of patients. We proposed a greedy heuristic
based on weighted queues in which the patients’ weight is increased when they
wait beyond their due date. We also proposed a heuristic that uses a general
variable neighborhood search to optimize the schedule. The GVNS has the vari-
able neighborhood descent as the local search, where six structures based on
swap, remove, and insertion movements are defined. The GVNS is also applied
to solve the static problem and then provide a reference solution for the dynamic
problem.

Results of 80 instances have indicated that the best solutions are achieved if
information about the problem is known in advance (i.e., the static problem).
As this is not possible in real situations, the dynamic problem is better solved
when the GVNS is used instead of only a greedy heuristic based on weighted
queues. While in the static problem, the number of solutions with zero tardiness
is equal to 12, in the dynamic problem, this number reduces to 1, with the greedy
heuristic, and 7, when the GVNS is considered. In terms of computational time,
the greedy heuristic is much less expensive; however, its solutions are far from
those of the static problem. As an emergency department should have to be
concerned with the patients’ satisfaction and health, a method that performs
better should be preferable, even if it requires more computational power to
run.

Future works will consider a mathematical model for the static version (see,
e.g., [16]). Besides that, other characteristics the problem may assume will be
investigated, for example, to reveal some information of patients before the
arrival to the emergency department. We are also interested in exploring other
neighborhood structures and local searches in the VNS framework.
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Abstract. The Heterogeneous Fleet Vehicle Routing Problem with
Time Windows (HFVRPTW) is here introduced. This combinatorial
optimization problem is an extension of the well-known Vehicle Routing
Problem (VRP), which belongs to the NP-Hard class. As a corollary,
our problem belongs to this class, a fact that promotes the development
of approximative methods.

A mathematical programming formulation for the HFVRPTW is pre-
sented, and an exact solution method using CPLEX is implemented. A
GRASP/VND methodology is also developed, combining five different
local searches. The effectiveness of our proposal is studied in relation
with the exact solver. Our proposal outperforms the exact CPLEX in
terms of CPU times, and finds even better solutions under large-sized
instances, where the exact solver halts after ten hours of continuous exe-
cution.

Keywords: Combinatorial optimization problem · Vehicle routing
problem · HFVRPTW · Computational complexity · GRASP · VND

1 Motivation

The transport industry employs more than 10 million people and it represents
roughly the 5% of the Gross Domestic Product (GDP) of the European Union.
Furthermore, logistics such as transport and storage account for 10%–15% of
the cost of a finished product. In practice, this means that even a small relative
reduction in the cost of logistics and transportation means huge savings.

Usually, large-scale corporations in the transport sector are mostly dedicated
to savings, and an efficient delivery of goods and services. However, transport
also represents an important source of CO2 emissions, and traffic congestion. In
synthesis, a smart vehicle routing engineering is not only meaningful in terms of
savings, but also implies a responsible care of the environment.

Operational researchers are engaged with society, and try their best to
develop mathematical models that are suitable for realistic transportation prob-
lems. A celebrated combinatorial problem is known as the Traveling Salesman
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Problem, or TSP. We are given non-negative costs in the edges of a complete
network, and the goal is to find the cheapest Hamiltonian tour (i.e., visiting all
the nodes of the network). The decision version for the TSP belongs to the class
of NP-Complete problems, and it is included in Karp list [8]. A natural gener-
alization is the Vehicle Routing Problem, or VRP. In the VRP, we are given a
fleet of vehicles, and we should determine the optimal set of routes in order to
serve a given number of customers, starting and ending at the depot. The reader
can appreciate that the TSP is a special VRP with a single vehicle; thus, the
VRP belongs to the NP-Hard class. Given its paramount importance, several
variations in the basic VRP model appear in the literature, adding time-windows
for customer delivery, heterogeneous fleets, one-way or two-way routes, dynamic
demands, among many others. The reader can consult the recent survey for the
different variants of the VRP and its applicability to different contexts [9].

To the best of our knowledge, there is no model that simultaneously combines
heterogeneous fleets and time-windows, with a penalty factor due to overtime.
The contributions of this paper can be summarized in the following items:

1. The Heterogeneous Fleet Vehicle Routing Problem with Time Windows
(HFVRPTW) is introduced.

2. We formally prove that the HFVRPTW belongs to the NP-Hard class.
3. As a consequence, a GRASP/VND methodology is proposed.
4. A novel mathematical programming formulation for the HFVRPTW is pre-

sented. It represents an adaptation of the previous formulation proposed in [7],
adding a penalty due to overtime.

5. The effectiveness of our proposal with respect to an exact solution imple-
mented in CPLEX is studied. The activity of the different local searches of
our GRASP/VND methodology is also studied.

The document is organized in the following manner. The related work is pre-
sented in Sect. 2. A formal description for the HFVRPTW is presented in Sect. 3;
its NP-Hardness is also established. A GRASP/VND solution is introduced in
Sect. 4. Numerical results are presented in Sect. 5. Section 6 contains concluding
remarks and trends for future work.

2 Related Work

The classical VRP is presented by Dantzig as a generalization of the TSP [4]. The
problem is there motivated by fuel distribution, trying to find the optimal routing
of a fleet between a depot and several stations. In general, the VRP consists of
how to share customers geographically distributed by a given fleet of vehicles,
based on one or multiple depots. The goal is to fulfill the customer demands,
finding adequate routes starting and ending at the depot. Rapidly, the VRP
found an impressive diversity of applications, ranging from transport network
design to efficient garbage collectors. Current VRP models include more realistic
assumptions (such as traffic congestion and time-windows for the customers),
given the greater possibilities in processing resources. In [1], Baldacci presents a
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framework for exact algorithms useful for several variations of the VRP, such as
capacitated VRP, VRP with Time Windows (VRPTW), pick-up and delivery,
multi-depot VRP, among others. In the Heterogeneous Fleet VRP, we are given
vehicles with different capacities, and the goal is to design a minimum cost
solution meeting the customer demands, starting and ending at the central depot.
A fixed cost is associated to the vehicle-type, while a variable cost is proportional
to the distance of the tours.

An exact Branch and Cut solution for the HFVRP is proposed in [11], adapt-
ing the most competitive exact algorithms for the problem such as route enu-
meration and extended capacity cuts for large-sized instances.

Other works address the VRP with Time-Windows (VRPTW), where the
TW have either soft or hard constraints. In the hard constraint, an early vehicle
can wait until the customer is available. In a soft constraint, a penalty is carried
to the objective when the constraint is not satisfied. Historical works for the
soft VRPTW show that an incorrect usage of a Tabu Search the TW can have
a negative impact in the cost [10,14,17]. A hybrid solution for the VRPTW is
proposed in [16], that jointly considers Large Neighborhood Search (LNS) and
a Bat Algorithm (BA), inspired by the eco-location of bats. The results were
satisfactory, under benchmarks with 100 customers.

In [2], a two-phase solution combines a Construction phase with Tabu Search,
to avoid locally optimum solutions. The solution reduce the distances, in a prac-
tical industrial application. A hierarchic cluster-first route-second solution for
a large super-market chain is proposed in [3], with remarkable benefits with
respect to a naive solution.

In this work, we combine Heterogeneous Fleet with a new concept of soft
constraint with overtime. Our formulation is adapted from the mathematical
programming presented in [7]. The reader is invited to consult the recent review
on the VRP for other variations of this problem [9].

3 Problem and Complexity

In this section, a formal combinatorial optimization problem is introduced. The
hardness of the problem is also established.

3.1 Formulation

The exact formulation is based on the integer linear programming model defined
in [7]. However, we consider flexible time-windows instead, where delays are
penalized with a cost (i.e., an additive term in the objective function). Consider
a complete graph G = (V,E) where:

– V = {0, 1, . . . , n} , being 0 the depot and N = {1, ..., n} the customers.
– E = {(i, j) : 0 ≤ i, j ≤ n, i �= j} represent the links between the nodes.
– tij is the required time to cross the link (i, j).

All the customers must be visited, and the following information is known
for each customer i ∈ N :
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– di is a fixed demand for customer i.
– si represents the required time for a vehicle to service the customer i.
– [ei, li] is the time-window (available and deadline) for customer i. This window

is not a hard constraint (a penalty occurs if it is not respected).
– oti is the overtime, or the tolerance after the deadline. It is found with the

following expression: oti = ω(li − ei) for some known factor ω : 0 ≤ ω ≤ 1.
The extended Time Window (TW) is then [ei, li + oti]. A penalty occurs if
the vehicle meets customer i during the interval [li, li + oti].

With respect to the depot, we know that:

– [e0, l0] = [E,L] is the time-window for the depot.
– d0 = s0 = 0, since in the depot there is no demand nor service.

The fleet is modeled as K = {1, ..., k}, C represents the vehicle-types, and
Sc the set of c-type vehicles. For each vehicle, we are given:

– qc is the capacity.
– fc is its fixed-cost.
– αc is its variable-cost.
– nc is the number of available type-c vehicles.

We consider the following set of decision variables:

– xk
ij = 1 iff the vehicle k visits the link (i, j); 0 otherwise.

– aik: time which the vehicle k reaches the customer i.
– oik: overtime of vehicle k for the customer i.

We also assume that the following parameters are known:

– M = max
(i,j∈V )

(li + oti + tij + si − ej): represents the longest time consumed

between any two customers.
– ρ: represents the penalty associated to overtime.

The HFVRPTW can be formulated as follows:

min
∑

c∈C

fc
∑

k∈Sc

∑

j∈N

xk
0j +

∑

c∈C

αc

∑

k∈Sc

∑

i,j∈V,
i�=j

tijx
k
ij +

∑

k∈K,i∈N

oik ∗ ρ (1)

s.t.: ∑

k∈K

∑

j∈V,
i�=j

xk
ij = 1 ∀i ∈ N (2)

∑

j∈N

xk
0j ≤ 1 ∀k ∈ K (3)

∑

i∈N

xk
i0 ≤ 1 ∀k ∈ K (4)
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∑

i∈V

xk
ij =

∑

i∈V

xk
ji ∀j ∈ V, k ∈ K (5)

∑

i∈N

di
∑

j∈V,
i�=j

xk
ij ≤ qc ∀k ∈ Sc, c ∈ C (6)

aik + si + tij − M(1 − xk
ij) ≤ ajk ∀k ∈ K, i ∈ N, j ∈ V, i �= j (7)

t0i ∗ xk
0i ≤ aik ∀k ∈ K, i ∈ N (8)

aik ≤ (li + oti)
∑

j∈V,
i�=j

xk
ij ∀k ∈ K, i ∈ N (9)

ei
∑

j∈V,
i�=j

xk
ij ≤ aik ≤ (li + oti)

∑

j∈V,
i�=j

xk
ij ∀k ∈ K, i ∈ N (10)

E ≤ a0k ≤ L + ot0 ∀k ∈ K (11)
∑

k∈Sc

∑

j∈N

xk
0j ≤ nc ∀c ∈ C (12)

oik ≥ max(0, aik − li) ≥ 0 ∀k ∈ K, i ∈ V (13)

aik ≥ 0 ∀k ∈ K, i ∈ N (14)

xk
ij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ E (15)

The objective function 1 is an additive cost, considering fixed and variable
costs in the vehicles, as well as penalties related to overtime. Constraints 2
state that all the customers must be visited by only one vehicle. The set of
Constraints 3, 4 and 5 represent flow conservation, and state that all the vehicles
start and end at the depot. Constraints 6 state that the customer demands
cannot exceed the capacities of the vehicles. Constraints 7 state the precedence
relation between the arrival times of the vehicles to the customers.

Constraints 8 state the first arrival time to the first node in the route. The
set of Constraints 9, 10 and 11 model the time-windows for both the customers
and the depot, while Constraints 12 bounds the number of available vehicles for
each type. Finally, the set of Constraints 13, 14 and 15 define the domain of the
respective decision variables.

3.2 Hardness

The hardness of the corresponding decision version for the HFVRPTW is straight
from the NP-Completeness of Hamiltonian Tour. Recall that a graph G is Hamil-
tonian if there exists an elementary cycle C ⊆ G that contains all the nodes.

Definition 1 (Hamiltonian Tour). Given a simple graph G = (V,E). Is G
Hamiltonian?
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It is known that Hamiltonian Tour belongs to the class of NP-Complete
decision problems [5,8].

Proposition 1. The HFVRPTW belongs to the NP-Hard class.

Proof. By reduction from Hamiltonian Tour. Consider an arbitrary graph G =
(V,E). We will see that there exists a feasible solution for the HFVRPTW whose
cost is not greater than n = |V | if and only if there exists a Hamiltonian tour
for G.

Consider an instance of HFVRPTW with the complete graph Kn as a ground
graph, where n = |V |, a single vehicle with cost α = 1 and sufficient capacity
qc = n rooted at some arbitrary depot v ∈ V , no penalties and customers with
infinite patience. The time to traverse the links (i, j) ∈ E is always ti,j = 1, but
ti,j = n if (i, j) /∈ E. A feasible solution must be a Hamiltonian tour, and its
cost is not greater than n if and only if it is strictly included in G = (V,E).
Therefore, the HFVRPTW is at least as hard as Hamiltonian Tour. �

Recall that Hamilton Tour is strongly NP-Hard. Thus, the HFVRPTW is
hard in the strong sense, and there is no FPTAS for our problem, unless P = NP.

4 Solution

GRASP and VND are well known metaheuristics that have been successfully
used to solve many hard combinatorial optimization problems [13]. GRASP
is a powerful multi-start process which operates into two phases. A feasible
solution is built in a first phase, whose neighborhood is then explored in the
Local Search Phase. The second phase is usually enriched by means of different
variable neighborhood structures. For instance, VND explores several neigh-
borhood structures in a deterministic order. Its success is based on the sim-
ple fact that different neighborhood structures do not usually have the same
local minimum. Thus, the resulting solution is simultaneously a locally opti-
mum solution under all the neighborhood structures. The reader is invited to
consult the comprehensive Handbook of Heuristics for further information [6].
Here, we develop a GRASP/VND methodology. The main building-blocks of
our Main algorithm are presented in Fig. 1. An arbitrary input instance
I = (G, tij , di, si, ei, li, oti, ω,K, qc, fc, αc, nc) for the HFVRPTW is considered,
where the symbols represent the aforementioned variables in the problem for-
mulation. Observe that the whole GRASP/VND solution is executed iter times,
and the best solution is returned. The parameter α ∈ [0, 1] trades greediness
for randomization during the Construction phase, by means of a Restricted
Candidate List (RCL). The VND is composed by five local searches, to know,
FleetOpt, Exchange, Relocate, 2 − opt and 3 − opt, in the respective order. In
the following paragraphs, we describe the Construction phase, as well as the
local searches.
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Algorithm 1 sol = Main(I, iter, α)
1: i ← 0; sol ← ∅
2: while i < iter do
3: sol ← Construction(I, α)
4: sol ← V ND(sol, I, F leetOpt, Exchange, Relocate, 2 − opt, 3 − opt)
5: if cost(sol) < cost(sol) then
6: sol ← sol
7: end if
8: end while
9: return sol

Fig. 1. Pseudocode for the Main algorithm.

4.1 Construction Phase

Figure 2 presents a full pseudocode for the Construction phase. The following
functions are considered:

– GetClients(data): returns the clients in a list for a given dataset.
– SelectV ehicles(vehicles): returns a vehicle that is available, and updates the

number of available vehicles.
– GetCapacity(vehicle): returns the capacity of a given vehicle.
– CreateRoute(vehicle, path): creates a route using the given path. This route

is performed with the given vehicle.
– IsFeasible(route, client): determines whether it is feasible or not to append

the given client at the end of the given route, or not.

We need to select vehicles and routes for them, in order to build feasible
solutions. We collect all the customers that were not yet visited in the variable
clients. A metric is considered to decide the priority for the different vehicles.
The route is then constructed, that starts and ends at the depot, for that vehi-
cle. A Restricted Candidate List (RCL) is built in order to include different
customers in the route, always picking customers from the collection of non-
visited customers in order to meet feasibility. The marginal cost to include some
customer is found using the following expression:

incr = V ariableCost × t + overtime × penalty + arrival,

being arrival the arrival time at the new candidate. Observe that incr represents
an estimation for the marginal increase in the objective, since we need to adjust
all the time-windows for the other customers. Nevertheless, the marginal costs
are useful to build the RCL, following a classical implementation. We find the
least and the greatest marginal costs imin and imax, and the RCL consists of
the candidates e such that incr(e) ≤ imin + α × (imax − imin), being α ∈
[0, 1] the GRASP parameter that trades greediness for randomization. Finally, a
random member belonging to the RCL is inserted into the partial route, and the
whole collection of non-visited customers are updated accordingly, with a new
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Algorithm 2 sol = Construction(instance, vehicles)
1: sol ← φ
2: clients ← GetClients(instance)
3: newRoute ← true
4: while clients �= φ do
5: candidates ← φ
6: if newRoute then
7: path ← {depot}
8: vehicle ← SelectVehicle(vehicles)
9: q ← GetCapacity(vehicle)
10: route ← CreateRoute(vehicles, path)
11: newRoute ← false
12: end if
13: for client ∈ clients do
14: if IsFeasible(route, client) then
15: candidates ← candidates ∪ {client}
16: end if
17: end for
18: if candidates �= φ then
19: incr(e) ∀ e ∈ candidates
20: imin ← min{incr(e) : e ∈ candidates}
21: imax ← max{incr(e) : e ∈ candidates}
22: RCL ← {e ∈ candidates : incr(e) ≤ imin + α(imax − imin)}
23: client ← Random(RCL)
24: path ← path ∪ {client}
25: q = q − GetDemand(client)
26: clients ← clients\{client}
27: end if
28: if candidates = φ ∨ q = 0 then
29: path ← path ∪ {depot}
30: sol ← sol ∪ {route}
31: newRoute ← true
32: end if
33: end while
34: return sol

Fig. 2. Construction phase

evaluation of marginal costs. The route is closed whenever the vehicle capacity
is reached, or when there are no more candidates to be included. In that case,
the depot node is included.

4.2 Local Search Phase - V ND

Five local searches are called in order, after the Construction phase:

1. Fleet − opt
2. Exchange
3. Relocate
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4. 2 − opt
5. 3 − opt

We followed a strict time-complexity order of the local searches, as suggested
in [12]. For practical reasons, we assume that there are more customers than
vehicle-types.

Definition 2 (Fleet-Opt). The goal is to change the vehicles. There are two
different flavors of this local-search:

– Fleet-opt A: given two node-disjoint routes p and q associated to the respective
vehicles vp and vq. We exchange the vehicles, such that vq is associated to p
and vp is associated to q.

– Fleet-opt B: we can replace a given vehicle vp associated to the route p by
some different available vehicle vd.

Definition 3 (Exchange). Consider two node-disjoint routes p and q that
serve two distinct customers i ∈ p and j ∈ q. We literally exchange the customers
as follows. The edges (i − 1, i), (i, i + 1) ∈ p are replaced by (i − 1, j), (j, i + 1),
and the edges (j −1, j), (j, j +1) ∈ q are replaced similarly, by (j −1, i), (i, j +1).
Figure 3 illustrates this local search.

Definition 4 (Relocate). Given two node-disjoint routes p and q, and some
customer i that belongs to p. We relocate the customer i to the route q, as follows.
First, replace the edges (i − 1, i) and (i, i + 1) by (i − 1, i + 1), and then replace
the edge (j, j + 1) ∈ q by the edges (j, i) and i, j + 1. An illustration is presented
in Fig. 4.

Definition 5 (2-opt). Pick two non-adjacent edges (i, i+1) and (j, j +1) from
a fixed tour of a feasible solution, such that i < j. Replace both links by (i, j)
and (i + 1, j + 1). Figure 5 illustrates this local search in a fixed tour.

Definition 6 (3-opt). Pick three non-adjacent edges (i, j), (k, l) and (m,n).
We can either delete two, or the three edges. In the former, we replace as in
2-opt. In the latter, consider the four non-isomorphic reconstructions of the tour
illustrated in Fig. 6.

The reader can appreciate that 3-opt is dominant, with cubic time-complexity
in terms of the number of links.

Fig. 3. Exchange
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Fig. 4. Relocate

Fig. 5. 2-opt

Fig. 6. 3-opt

5 Numerical Results

In order to understand the effectiveness of our proposal, an extensive computa-
tional study was carried out using our Main algorithm versus the exact CPLEX
solver, with an halting time of 10 h. Therefore, CPLEX returns either the globally
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Table 1. Activity of the different local searches (instances with 50 customers).

Instance
fleet-
optA

fleet-
optB

exch-
ange

relo-
cate

2-opt 3-opt Instance
fleet-
optA

fleet-
optB

exch-
ange

relo-
cate

2-opt 3-opt

HC101 0 0 123 96 0 0 HC201 0 0 28 26 12 0
HC102 0 0 128 93 42 20 HC202 0 0 45 46 28 24
HC103 0 0 90 66 41 25 HC203 0 0 92 102 50 50
HC104 0 0 162 118 75 34 HC204 0 0 64 57 40 28
HC105 0 0 98 74 26 0 HC205 0 0 36 40 29 18
HC106 0 0 53 42 18 0 HC206 0 0 45 51 36 24
HC107 0 0 107 77 43 0 HC207 0 0 40 38 25 19
HC108 0 0 67 54 28 4 HC208 0 0 39 40 30 20
HC109 0 0 138 99 64 19
HR101 66 5 69 45 0 0 HR201 0 0 31 40 29 14
HR102 114 6 144 107 50 27 HR202 0 0 97 140 74 53
HR103 40 1 58 40 23 4 HR203 0 0 71 92 58 41
HR104 62 0 134 90 66 14 HR204 0 0 48 55 32 22
HR105 33 0 50 38 18 0 HR205 0 0 59 78 52 33
HR106 74 2 120 87 55 23 HR206 0 0 49 76 38 26
HR107 69 2 140 109 64 19 HR207 0 0 42 51 29 26
HR108 12 0 58 33 26 8 HR208 0 0 71 85 46 36
HR109 71 0 145 99 67 13 HR209 0 0 48 61 45 32
HR110 31 0 68 51 35 0 HR210 0 0 122 155 90 63
HR111 58 0 126 92 61 20 HR211 0 0 55 71 44 33
HR112 32 0 102 67 43 2
HRC101 43 4 87 43 41 4 HRC201 0 0 53 37 27 6
HRC102 38 1 80 46 37 7 HRC202 0 0 86 57 40 9
HRC103 18 1 65 37 27 5 HRC203 2 1 158 122 74 27
HRC104 26 0 78 47 34 2 HRC204 0 0 185 132 76 19
HRC105 29 1 87 45 39 3 HRC205 0 0 7 58 36 12
HRC106 47 0 152 91 71 12 HRC206 0 0 170 122 86 17
HRC107 19 0 63 38 28 5 HRC207 0 0 62 44 29 15
HRC108 36 0 110 69 52 8 HRC208 0 0 98 69 49 9

Total 256 7 722 416 329 46 Total 2 1 819 641 417 114

optimum solution, or the best solution found so far after 10 h. The experimental
analysis was carried out in a Home-PC (Intel Core i5 2.7 GHz). Since there are no
benchmarks for our specific problem we adapted Solomon instances [15], adding
penalties and time-windows, using ω = 0.3. This means that the time-window is
enlarged a factor 1.3, but a penalty is assumed in the last portion of the window.
Since the HFVRPTW with penalties in delays is novel, we cannot perform a fair
comparison with previous proposals. Instead, we study the effectiveness of our
methodology with respect to the exact CPLEX solver, and the activity of the
different local searches. Table 1 shows the activity of the five local searches of our
VND. Exchange and Relocate have the largest activity, followed by 2-opt and
3-opt. Fleet-opt has the least activity. However, Fleet-opt A has considerable
activity as well in many instances under study. Further experiments show that
Fleet-opt B has large activity when the number of customers is increased to 100
and 200.
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Table 2. CPLEX VS our GRASP/VND proposal (instances with 50 customers).

CPLEX GRASP/VND Difference

Instance Cost Cost Gap Relative error

HC101 828.912 936.61 107.70 12.99%

HC102 871.274 887.47 16.20 1.86%

HC103 994.16 887.86 −106.30 −10.69%

HC104 901.258 886.28 −14.98 −1.66%

HC105 832.252 936.34 104.09 12.51%

HC106 805.756 937.79 132.03 16.39%

HC107 872.714 921.04 48.33 5.54%

HC108 903.65 936.91 33.26 3.68%

HC109 1036.794 883.53 −153.26 −14.78%

HC201 691.32 738.45 47.13 6.82%

HC202 645.58 750.25 104.67 16.21%

HC203 828.57 706.99 −121.58 −14.67%

HC204 724.75 674.55 −50.20 −6.93%

HC205 690.93 737.47 46.54 6.74%

HC206 825.22 696.31 −128.91 −15.62%

HC207 843.96 716.15 −127.81 −15.14%

HC208 772.99 719.22 −53.77 −6.96%

HR101 2475.672 2,577.31 101.63 4.11%

HR102 2678.248 2,488.57 −189.67 −7.08%

HR103 2674.69 2,450.45 −224.24 −8.38%

HR104 2463.58 2,285.83 −177.75 −7.21%

HR105 2629.696 2,517.14 −112.56 −4.28%

HR106 2781.796 2,431.01 −350.78 −12.61%

HR107 2578.342 2,338.32 −240.02 −9.31%

HR108 2503.142 2,321.05 −182.09 −7.27%

HR109 2484.816 2,401.86 −82.95 −3.34%

HR110 2658.084 2,359.41 −298.68 −11.24%

HR111 2496.894 2,341.67 −155.22 −6.22%

HR112 2406.202 2,334.26 −71.94 −2.99%

Average – – −155.37 −6.12%

Tables 2 shows the performance of our proposal with respect to CPLEX
for 50 customers. The bold instances present negative gaps; this means that
our GRASP/VND proposal outperforms CPLEX and, naturally, CPLEX could
not find the globally optimum solution during 10 h. It is worth to remark that
the average gap is negative, meaning that our proposal outperforms the solver.
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Furthermore, the CPU time of our GRASP/VND solution ranges between sec-
onds and five minutes in the worst cases.

6 Conclusions and Trends for Future Work

Operational researchers are engaged with modeling variations of the cele-
brated Vehicle Routing Problem (VRP), given its paramount importance and
diverse applications. Here we introduced a novel Heterogeneous Fleet VRP
with Time Windows (HFVRPTW) version, with penalties due to overtime. The
HFVRPTW belongs to the class of NP-Hard problems, since it subsumes the
Traveling Salesman Problem. This result promotes the development of approx-
imative algorithms. A GRASP/VND methodology is here proposed, using five
different local searches. Numerical results suggest that the most simple local
searches have more activity; further experiments illustrate that fleet-opt local
search works when the number of customers is increased. The exact solution
show limited applicability, where the optimality is reached only under small-
sized instances.

As future work, we want to introduce key concepts of the VRP and vari-
ations in real-life metropolitan transportation systems. Further, we would like
to explore novel local searches and study different versions of VNS ruled by
probabilistic flow diagrams considering Markov chains.
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Abstract. This work presents a method for summarizing scientific arti-
cles from the arXive dataset using Variable Neighborhood Search (VNS)
heuristics to automatically find the best summaries in terms of ROUGE-
1 score we could assemble from scientific article text sentences. Then
vectorizing the sentences using BERT pre-trained language model and
augmenting the vectors with topic embeddings obtained by applying the
K-means algorithm. Finally, training the Random Forest classification
model to find sentences suitable for the summary and compile a sum-
mary from the selected sentences. The described algorithm produced
summaries with high ROUGE-1 scores (0.45 on average), so we are head-
ing for further developments on a larger dataset.

Keywords: Variable Neighborhood Search · VNS · K-means
clustering · Text summarization · NLP · Random Forest Classifier

1 Introduction

As Isaac Newton once said regarding his significant contribution to science that
“If I have seen further it is by standing on the shoulders of Giants” [1], meaning
that his discoveries were made possible by the numerous works of scientists
from as far as ancient times to his contemporaries. Nowadays, the Giants or
researchers with their scientific articles contribution has grown so large and
continues to grow at the accelerating rate with the information technologies
developments. Standing on their shoulders became both dangerous and brought
little use because we need tools to efficiently process a tremendous amount of
information. Moreover, here come the methods of text summarization1 with the

1 Automatic text summarization - is a process of extracting the most important infor-
mation from a text.

c© Springer Nature Switzerland AG 2021
N. Mladenovic et al. (Eds.): ICVNS 2021, LNCS 12559, pp. 166–175, 2021.
https://doi.org/10.1007/978-3-030-69625-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69625-2_13&domain=pdf
http://orcid.org/0000-0002-3221-9352
http://orcid.org/0000-0001-6655-0409
http://orcid.org/0000-0001-7283-5144
https://doi.org/10.1007/978-3-030-69625-2_13


Using K-Means and VNS for Automatic Summarization 167

research in the area starting in 1958 [7] and bringing new numerous papers and
methods every year since 2003 [2] when the large data sets for the purpose and
necessary computing equipment became available.

We present an extractive summarization approach2 using BERT [3] pre-
trained language model for sentence embeddings and Random Forest algo-
rithm [4] for classifier training.

As a superpower of our summarizer comes the Variable Neighborhood Search
(VNS) [5,6], the latter technique will help us search for the best extractive
summary available, allowing us to perform automatic sentence labeling avoiding
manual workload.

We show how blending the modern contextual embedding method (BERT),
Random Forest classification algorithm, and smart search heuristics (VNS) for
data labeling can build a text summarization method that can, in perspective,
achieve a new level of performance.

In Sect. 2, we give a short intro for the summarization task in Natural Lan-
guage Processing (NLP). Section 3 describes the data we have used for our exper-
iments and the methodology used. In Sect. 4, we present the results obtained,
and Sect. 5 comes with the conclusion and sets out prospects for future work.

2 Related Work

Many approaches have been developed since the first paper on the text summa-
rization subject was published by Luhn in 1958 [7], developing from the purely
statistical to more recent machine learning (ML) [8] and contemporary Deep
Learning methods [9–11].

Generally, we can classify the text summarization methods as follows:

1. Input
(a) Single document – summarization of one single document as a whole.
(b) Multi-document – using a series of documents related to a common sub-

ject, but occurring simultaneously. It can be used in the literature review
process of scientific work to receive short and concise information on a
subject reducing redundancy.

2. Output
(a) Extractive – summary uses the exact sentences from the source text with-

out paraphrasing or combining them. This type of summary resembles
bullet points to anchor for the main in-formation and often lacks transi-
tive phrases and sentences for smoothing the text.

(b) Abstractive – summarizes by the own words of a person who read the arti-
cle. The method is more complex than Extractive and involves sentence
templates or advanced Natural Language Generation (NLG) models.

2 The source code is available on GitHub at https://github.com/iskander-akhmetov/
Using-k-means-and-Variable-Neighborhood-Search-for-automatic-summarization-
of-scientific-articles/.

https://github.com/iskander-akhmetov/Using-k-means-and-Variable-Neighborhood-Search-for-automatic-summarization-of-scientific-articles/
https://github.com/iskander-akhmetov/Using-k-means-and-Variable-Neighborhood-Search-for-automatic-summarization-of-scientific-articles/
https://github.com/iskander-akhmetov/Using-k-means-and-Variable-Neighborhood-Search-for-automatic-summarization-of-scientific-articles/
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Fig. 1. Text summarization methods classification [12,13].

3. Content
(a) Informative – the summary captures all the main information from the

source text such that there is no need to read it after reading the summary.
(b) Indicative – the summary is a kind of teaser motivating a person to read

the whole article if it seems relevant to the current information query
(Fig. 1).

The silver bullet or a superpower we will use in this paper is the Variable
Neighborhood Search algorithm first introduced by N. Mladenovic [14] as a local
search heuristic for solving of the minimum sum of squares problem in the clus-
tering algorithms. Put merely, VNS takes the initial solution of a problem and
iteratively changes the volume of change when no improvement to finding the
objective function optima occurs and fixing the best result.

The text sentences will be vectorized by the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) English language model. BERT is
designed to pre-train deep bidirectional unlabeled text representations. The pre-
trained BERT model can be fine-tuned with just one additional output layer
to create state-of-the-art models for a wide range of NLP tasks, such as sum-
marization and question answering. BERT conceptual simplicity and empirical
power fullness allow obtaining new state-of-the-art results [3].

3 Methods and Data

3.1 Data

Firstly introduced along with the PubMed dataset in 2018 [15] it 215 K arXiv.org
repository scientific articles in English from the domains of physics, math, and
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other quant fields. The dataset articles contain abstracts, main articles, a list
of sections, and main article texts divided by sections. The average length of
articles and abstracts is 4938 and 220 words, respectively.

3.2 Methods

Attaining Best Achievable ROUGE-1 Score Using VNS. Using the orig-
inal article abstracts in our dataset as a reference, try to assemble, with the VNS
technique’s help, the best summary in terms of ROUGE-1 metric from article
sentences.

Applying VNS here is logically derived from the fact that finding the best
possible summary out of the text sentences by running through all possible
combinations is impractical due to the hyper exponential complexity of this
approach:

(
Nt

Na

)
=

Nt!
Na!(Nt −Na)!

(1)

where Na and Nt - are the number of sentences in summary and text, respec-
tively. While VNS gives a rather simpler alternative, which can provide us a
satisfactory solution for a reasonable amount of time.

VNS is a framework for building heuristics (meta-heuristic), which exploits
the idea of systematical initial solution neighborhood change to find optimums
of the objective function to select from [23].

VNS exploits systematically the following observation facts [23]:

1. A local minimum concerning one neighborhood structure is not necessarily
so for another.

2. A global minimum is a local minimum for all possible neighborhood struc-
tures.

3. For many problems, local minima to one or several neighborhoods are rela-
tively close to each other.

Fig. 2. General VNS algorithm pseudo code.
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In our case (Fig. 2), using VNS terminology:

– Initial solution - is the first, usually random approximation of the objective
function. We initialize our search for solution by a random set of sentences x
in Nk =

(
Nt

Na

)
space of possible neighborhood structures.

– Shaking - is the process of systematical modification of the initial solution to
the extent specified by the kmax parameter.

– Incumbent solution - is the best current solution achieved after shaking.
– Stop condition - the cycle is limited by 5000 iterations or 60 seconds time. If

no ROUGE-1 score improvement occurs after 700 consecutive iterations, the
cycle breaks.

We have randomly selected 100 articles from the arXive dataset and for each
of them performed the following steps in a cycle:

1. Initial solution - Calculating the ROUGE-1 [16] score for an initially ran-
dom set of sentences from the original document,

2. Shaking - Make changes starting from replacing one randomly selected sen-
tence by a new one from the text up to kmax sentence replacement if no
Rouge-1 score improvement occurs. The maximum amount of the changes is
kmax parameter.

3. Incumbent solution - Recalculate ROUGE-1 score and fix the result if
it is better than the initial score and reset the k to one sentence, or if no
improvement happens, gradually increase the k up to kmax.

Summarization Method. Our summarization method is supervised and will
consist of the following steps:

1. Creating the dataset to classify document sentences whether they belong to
the best available summary sentence set or not. The algorithm is described
in the “Attaining best achievable ROUGE score using VNS” section. Here we
add labels to each sentence for our classification algorithm.

2. BERT vectorization: using the pre-trained BERT-Base, Cased [3] along with
the PyTorch Pre-trained BERT [22] package for Python. We vectorize sen-
tences to obtain 768 elements feature vector for every sentence, specifically
the BERT model’s 12th layer, as it carries the most variance. As a result of
this step, we 23 K sentence BERT embeddings from a sample of 100 arXive
dataset articles labeled as to whether the sentence is good for the summary
or not (Figs. 3 and 4).

3. K-means clustering with VNS: applying basic K-means clustering algorithm
to obtain a quasi-topic attribution for the sentences and thus converting the
data to a new vector space, using VNS:
(a) Clustering the sentence vectors for 100 clusters (the number we chose

arbitrarily) using traditional K-means algorithm
(b) Enhance the quality metric (sum of squared distances from elements to

centroids) for clustering using the VNS algorithm
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(c) Calculate the similarity of each sentence vector to each cluster center

A =
(
ai,j

)
B =

(
cj,k

)
C = A×B

(2)

where A - BERT vectors of the sentences in the dataset, B - centroid
vectors, C – distance matrix from each matrix to each centroid, i - number
of sentences, j - length of BERT vector used, 768 in our case, k - number
of clusters, 100 in our case.

(d) For each sentence vector, calculate the probability of attribution to each
of 100 clusters by dividing the corresponding cosine similarities by the
sum of similarities.

Topicprob =
C

Csum

Csum = (
i∑

n=1

Cn,1,

i∑
n=1

Cn,2, ...,

i∑
n=1

Cn,k)
(3)

where C - are the vectors obtained on the previous step.
In this step, we obtain a topic embedding for each sentence.

4. Sentence classification: using the Random Forest Classifier algorithm, we clas-
sify sentences inputting topic embeddings as X and labels indicating whether
the sentence is good for summary(1) or not(0) which is by nature a supervised
binary classification task.

5. Summary assembly: applying classifier model trained on previous step to a
text sentences which are vectorized by BERT model, we are able to select the
same number of sentences from the text as in original article abstract, and
which are best for the summary, and assemble a summary from them.

6. Evaluation of the algorithm was made with ROUGE-1 metric of the produced
summary against the golden summary.

4 Results

Applying the VNS technique described above for labeling article sentences
whether they are good for summary or not on average we have got a ROUGE-1
metric of 0.55 for arXive y, whereas the best contemporary methods employing
sophisticated neural network architectures [9–11] are able to achieve ROUGE-1
of just 0.45 on arXive dataset. So there is definitely a room for improvement
for the summarization methods and techniques.

The Random Forest Classifier training was performed on a train/test split
of 0.33, achieving accuracy on the training sample of 0.99 and 0.95 on train and
test. High results are not surprising as the data is highly imbalanced for the
ratio of 1:20 in favor of the majority class, which are the sentences that are not
suitable for the summary (Tables 1, 2 and 3).
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Table 1. Comparison of the contemporary leader text summarization models.

Class Model ROUGE-1

Extractive SumBasic [15–17] 29.47

LexRank [15,18] 33.85

LSA [15,19] 29.91

Abstractive Attn-Seq2Seq [15,20] 29.30

PEGASUS [9] 44.70

Pntr-Gen-Seq2Seq [15,21] 32.06

Discourse-att [15] 35.8

Fig. 3. The best achievable ROUGE-1 score on a 100 sample of arXive dataset articles.

Table 2. Confusion matrix of the classification results on test sample.

Predicted

0 1

Actual 0 7,264 1

1 367 36

The confusion matrix shows that the classifier is reasonably good at detecting
the non-summary sentences miss classifying for negative, just a single sentence.
It is not that perfect at detecting the summary sentences with a false-negative
rate of 0.91.
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Table 3. Classification report.

Precision 0.97

Recall 0.09

Balanced accuracy 0.55

F1 0.16

The classification report shows the classifier’s weak side – the false-negative
rate and, thus, a low F1 score. We used the balanced accuracy metric here as the
dataset is highly imbalanced, and the standard accuracy metric is misleading,
as mentioned above.

Despite decent classification results, the algorithm was able to produce sum-
maries with a high ROUGE-1 score. Evaluating the proposed summarization
method on the combined train and test samples, we observe that 75% of the
generated summaries achieved a ROUGE-1 score of more than 0.41, and 50% of
summaries got a result greater than 0.49. On average, the method yields in 0.45,
and so it seems to be a good beginning for further algorithm development and
training it on a significant amount of texts.

Fig. 4. Evaluation of the summarizer on combined test/train set.

5 Conclusion

In this work, we have tried to show a promising approach to using the VNS
for NLP’s summarization task. We have applied the technique for the finding of
the best possible ROUGE-1 score on the extractive summaries. Considering the
drawbacks of the resulting algorithm in its classifier part, we aim to solve the
problem and try our algorithm on a much bigger data set.
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Abstract. The Order Processing in Parallel Picking Workstations is an
optimization problem that can be found in the industry and is related to
the order picking process in a warehouse. The objective of this problem
is to minimize the number of movements of goods within a warehouse in
order to fulfill the demand made by the customers. The goods are orig-
inally stored in containers in a storage location and need to be moved
to a processing area. The processing area is composed of several identi-
cal workstations. We are particularly interested in minimizing the time
needed to fulfill all demands, which corresponds to the highest number
of container movements to any given workstation. This problem is NP-
Hard since it is a generalization of the well-known Order Processing in
Picking Workstations which is also known to be NP-Hard. In this paper,
we provide a mathematical formulation for the problem and additionally,
due to its hardness, we have also developed several heuristic procedures
based on Variable Neighborhood Search, to tackle the problem. The pro-
posed methods have been evaluated over different sets of instances.

Keywords: Order picking · Parallel workstations · Variable
Neighborhood Search · Integer Linear Programming

1 Introduction

The Order Processing in Parallel Picking Workstations (O3PW) is an optimiza-
tion problem that occurs in warehouses during the order picking task. This task
is just one of the duties related to the supply chain and it involves the manage-
ment of activities, information, and people within the warehouse [11,14]. Other
related tasks are receiving, storing, and shipping goods to the customers. The
importance of the order picking is well documented and some studies indicate
that the picking process can be responsible of up to 55% of the operational costs
in the warehouse [6,26].

Problems within the order picking category can be divided in two main sub-
categories: parts-to-picker or picker-to-parts [4,5]. If the containers which hold
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the goods are moved to the workstations in the processing zone, avoiding any
travel time for the picker, we are in the parts-to-picker category [21]. On the
other hand, the picker-to-parts category includes problems where the picker
travels through the warehouse to collect the items demanded by the customers
[15,18,19]. In both previous situations, every order can be assigned to a picker
and collected in isolation [9] or packed together with other orders (order batch-
ing) [4,5] and collected at the same time as the orders in the same batch [2,16,18].
Also, some warehouses run with only one operator while others have more than
one [4,5,17,25] and, additionally, the warehouse can be manual or automated as
it was introduced in [4] and later adapted in [22]. We refer the reader to [4,24]
for surveys which review the previously described family of problems. In Fig. 1
we present the main categories aforementioned and reported in [22].

Order picking methods

Manual picking

Picking robot A-frame pickingPicker-to-parts Parts-to-picker

Automated picking

Fig. 1. Adaptation of the classification of order-picking methods previously proposed
in [4].

In this paper we tackle the O3PW problem, which can be classified in either
the manual or the automated picking category and, more specifically, within the
parts-to-picker or picking robots subcategory, depicted in Fig. 1. The O3PW
is a generalization of the Order Processing in Picking Workstations (OPPW),
since the former considers many workstations while the latter considers only
one. The OPPW was tackled in [10] where it was proved to be NP-Hard. Also,
the authors of this paper proposed a mathematical formulation and a heuristic
procedure for solving it. Another variant of the OPPW and also closely related
to the O3PW, named Mobile Robot based Order-Picking, uses containers which
have multiple types of products, while the containers in the OPPW and O3PW
have only one kind of product. The MROP variant was tackled in [3], where the
authors also proved the problem to be NP-Hard and proposed another heuristic
procedure to solve it.

As far as we know, the O3PW, has never been tackled in the literature
despite of its practical interest, since it illustrates real industry scenarios better
than the OPPW. However, it is important to notice that, since the O3PW is a
generalization of the OPPW, the O3PW is also NP-Hard, since, reducing the
number of picking workstations to one makes the O3PW identical to the OPPW,
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which is known to be NP-Hard. Therefore we can conclude that the O3PW is
at least as difficult to solve as OPPW.

The rest of the paper is structured in the following way. We begin by describ-
ing the O3PW problem in Sect. 2 followed by proposing a mathematical formu-
lation in Sect. 3 for the O3PW. Section 4 contains several resolution approaches,
such as a constructive heuristic and a Basic Variable Neighborhood Search [20],
which are then tested and compared to each other and to the mathematical model
in Sect. 5. Finally, Sect. 6 concludes this contribution with several remarks and
perspectives for future work.

2 Problem Definition

The O3PW studied in this paper looks for an efficient way of processing orders
arriving to a warehouse. Specifically, the O3PW looks for: i) a sequence of orders
to be processed on each of the workstations of the warehouse and ii) a sequence
of containers to be brought from the storage area to each workstation, to satisfy
the orders.

The general overview of the O3PW is illustrated in Fig. 2. In this case, the
warehouse is composed of: a storage area with containers of goods, a processing
area with multiple workstations, and a shipping area where the completed orders
are placed.

In the beginning of the picking process, all workstations are empty, so sev-
eral orders are assigned to each workstation. Then, the necessary containers are
brought from the storage area to each workstations to satisfy the orders. New
orders can be inserted afterwards when one or multiple slots are free (i.e., once
orders have been completed and sent to the shipping area). Notice that when a
new order enters a workstation, it can be served by the container already present
in this workstation. Once the container is in a workstation, one or more items
can be extracted from the container to satisfy any of the orders currently at
the workstation. The container is then returned to its original position in the
storage area. No more items can be then extracted from this container unless it
is retrieved again from the storage area and moved to the processing area (either
to the same or to a new workstation). Notice that, each container can hold only
one kind of item (single-item containers) and, additionally, containers can be
retrieved either manually or automatically.

In this paper we assume that there are enough items to satisfy the orders
being processed in the warehouse. As far as the processing area is concerned, it
contains several workstations which are all identical. A workstation can hold only
one container at a time and can manage simultaneously a number of orders which
is determined by a parameter which is set depending on the problem instance.
Notice, that this maximum capacity might be different from one instance to
another. Also, an order does not have a maximum capacity limit for either prod-
ucts or items. We also suppose that there are no stock restrictions and that all
the orders can be satisfied. Additionally, we suppose that containers cannot be
transferred between workstations, and that an order which enters a workstation
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cannot be removed nor assigned to another workstation, until it is fully pro-
cessed. Finally, let us remark that in this paper we are considering an offline
version of the problem, where all the client orders are available at the beginning
of the optimization process.

Following the previous remarks, the objective function of the O3PW is
defined as minimizing the largest number of moves of containers of any work-
station. In other words, the objective function can be also defined as the mini-
mization of time needed to fulfill all orders when handling these order in parallel
across multiple workstations.

Fig. 2. O3PW general overview.

3 Mathematical Formulation

In order to properly define the O3PW, in this section, we provide a mathematical
formulation for the problem. Let us consider the parameters and variables given
in Table 1 and Table 2, respectively, for the proposed model.

The retrieval process can be organized in multiple steps. At every step, several
moves of containers are performed in order to complete at least one order (notice
that when performing those moves, more than one order can benefit from them,
since they might share the same products. Therefore, more than one order might
be processed at the same step). As T is the maximum number of order slots
available in a workstation, we can define an upper bound K in the number
of steps needed as K = N − T + 1, that guarantees that all orders will be
processed. Given the previous definitions, we propose the following Integer Linear
Programming formulation for the O3PW:
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Table 1. Parameters of the mathematical model.

N Number of orders to prepare (i = 1, ..., N)

M Number of different containers (j = 1, ..., M)

L Number of workstations in the processing area (l = 1, ..., L)

T Size of a workstation (number of available order slots)

A Customer demands represented as a matrix of size N × M
where position ai,j = 1 if item j is demanded by order i and
ai,j = 0 otherwise

K Number of processing steps (k = 1, ..., K)

Table 2. Variables of the mathematical model.

xj,k,l binary : 1 if container j is brought at step k to workstation l

yi,k,l binary : 1 if order i is in the workstation l at step k

zi,j,k,l binary : 1 if order i is served with container j at step k in
workstation l

wi,k binary : 1 if order i enters a workstation at step k

δj,k,l binary : 1 if container j is the last to be retrieved at step k for
the Workstation l

λk,l binary : 1 if no containers are retrieved from the storage area
at step k for the workstation l

s integer : makespan of workstations

min s (1)

s.t. :
N∑

i=1

yi,k,l ≤ T k = 1, ..,K; l = 1, ..., L (2)

δj,1,l ≤ xj,1,l j = 1, ..,M ; l = 1, ..., L (3)
δj,k,l ≤ xj,k,l + λk,l j = 1, ..,M ; k = 2, ..,K; l = 1, ..., L (4)
M∑

j=1

δj,k,l = 1 k = 1, ..,K; l = 1, ..., L (5)

M∑

j=1

xj,k,l ≥ 1 − λk,l k = 2, ..,K; l = 1, ..., L (6)

M∑

j=1

xj,k,l ≤ C(1 − λk,l) k = 2, ..,K; l = 1, ..., L (7)

δj,k,l ≥ δj,k−1,l + λk,l − 1 j = 1, ..,M ; k = 2, ..,K; l = 1, ..., L (8)
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zi,j,1,l ≤ xj,1,l i = 1, .., N ; j = 1, ..,M ; l = 1, ..., L (9)
zi,j,k,l ≤ xj,k,l + δj,k−1,l i = 1, .., N ; j = 1, ..,M ; k = 2, ..,K; l = 1, ..., L

(10)

zi,j,k,l ≤ yi,k,l i = 1, .., N ; j = 1, ..,M ; k = 1, ..,K; l = 1, ..., L
(11)

L∑

l=1

K∑

k=1

zi,j,k,l ≥ ai,j i = 1, .., N ; j = 1, ..,M (12)

wi,1,l ≥ yi,1,l i = 1, .., N ; l = 1, ..., L (13)
wi,k,l ≥ yi,k,l − yi,k−1,l i = 1, .., N ; k = 2, ..,K; l = 1, ..., L (14)
L∑

l=1

K∑

k=1

wi,k,l = 1 i = 1, .., N (15)

s ≥
M∑

j=1

K∑

k=1

xj,k,l l = 1, .., L (16)

xj,k,l, δj,k,l ∈ {0, 1} j = 1, ..,M ; k = 1, ..,K; l = 1, ..., L (17)
yi,k,l, wi,k,l ∈ {0, 1} i = 1, .., N ; k = 1, ..,K; l = 1, ..., L (18)
λk ∈ {0, 1} k = 2, ..,K (19)

In this Integer Linear Programming formulation, the objective function is to
minimize the maximum number of container moves made to a workstation. Con-
straints (2) guarantee that the number of orders being processed in a given work-
station, at a particular step, does not exceed the number of available slots T .
Constraints (3) to (8) indicate the last retrieved container at step k for worksta-
tion l. Particularly, if some containers are retrieved from the storage area at step
k for workstation l (λk, l = 0) then, the model will set one of these containers
as the last one to be retrieved, otherwise when no containers are retrieved for
workstation l at step k (λk, l = 1), the last container of this step will be identical
to the last one brought at the previous step k−1. In fact, the orders that will be
assigned to the workstation l at a step k, will be served from the last retrieved
container at step k − 1 if its items are needed. The constant C in the formula-
tion must be a value big enough to satisfy the concerned constraints, for instance
C = N ×M . Constraints (9) to (12) mean that every order should be completely
processed according to its demand. Notice that, these constraints should only
be taken into consideration when ai,j of matrix A is equal to one. Constraints
(13), (14), and (15) guarantee that, when an order enters a workstation, it is not
removed from the slot until it is fully processed. Particularly, constraints (15)
indicate that an order can only enter once across all workstations.

Further than mathematically formulating the O3PW problem, we expect that
this model can be used within a solver to efficiently handle small-sized instances
of the problem. Unfortunately, since we are facing a NP-hard problem, other
techniques, as the ones that we present next, might be more suitable for large
instances.
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4 Heuristic Approaches

The hardness of the O3PW along with the size of the real industrial instances
for this problem, has led us to the use of heuristics and metaheuristics in order
to provide high quality solutions for large-sized instances. Also, it is important
to state that, when solving real problem instances, the quality of the solution
and the time needed to find it are both equally important.

In this section, we propose the use of a constructive heuristic which will be
used later as the procedure to produce a starting solution for the Basic Variable
Neighborhood Search (BVNS) algorithm. These approaches will be described
respectively in Sects. 4.1 and 4.2.

4.1 Constructive Heuristic

A constructive heuristic consists of a method of building a feasible solution for
an optimization problem, that can be used as a final solution, or as a initial
starting point for other heuristics or metaheuristics.

In order to design a constructive procedure for the problem, let us remind
that a feasible solution for the O3PW consists of a sequence of orders to be
processed on each workstation, and a sequence of containers to be brought from
the storage area to each workstation. Also, an instance of the O3PW is composed
of a set of orders to be processed and a predefined number of workstations
wmax. In addition, all workstations are identical, which means they have the
same number of slots smax to process orders, and to store containers (in this
case, the space for containers is restricted to one). In this section, we propose a
constructive procedure for the O3PW that will provide a solution used as the
initial point for a BVNS method.

The constructive heuristic starts by assigning to every available workstation
a randomly selected order. At this stage, every workstation has one order to
process. Then, we randomly choose a workstation and we assign additional orders
to it, as long as there are available slots, by choosing the most similar orders
among the candidate orders awaiting to be processed. We evaluate this similarity
by counting the number of products from the candidate order that appear in any
order already assigned to the workstation. Once all slots have been filled, we pass
onto another workstation and we repeat the process until all the workstations
have no more free slots.

After completing the first step, all workstations have one or more orders
assigned to their slots and the remaining orders are waiting to be assigned. Next,
we need to start retrieving containers from the storage area in order to satisfy
the demand made by the orders, and consequently to free slots for new orders. To
determine the sequence of moves for a particular workstation, we select the order
with the fewest remaining products and then we retrieve the products randomly,
by moving containers from the storage area to the workstation one by one. Notice
that, when a demanded product has been retrieved, other orders on the same
workstation can also benefit from it. Once the considered order is completed and
ready for shipping, it is sent to the shipping area and another order is assigned
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to the available slot. The first time we perform the order retrieving process
we select one workstation at random, however during the following iterations,
when one or multiple orders are completed, we select the workstation with the
smallest number of moves already made. In this way, the workload given through
the number of containers retrieved from the storage area is balanced across all
workstations. The process is repeated until all orders have been processed. Note
that any ties in this heuristic are broken at random.

4.2 Basic Variable Neighborhood Search

We propose the use of Variable Neighborhood Search (VNS) methodology in
order to improve the solutions provided by the constructive procedure presented
in Sect. 4.1. VNS is a metaheuristic procedure based on the idea of changes
of neighborhood. It was proposed by Pierre Hansen and Nenad Mladenovic in
1997 [20] as a general methodology to solve hard optimization problems [13].
VNS has been widely extended with different algorithmic variants. The main
extensions are the Reduced VNS, the Basic VNS, the Variable Neighborhood
Descent and the General VNS. See [12] for a recent and thorough review. Other
recent approaches are the Multi-Objective VNS [7], the Variable Formulation
Search [23], and the Parallel VNS [8].

Among the different variants of VNS we have chosen the BVNS as the spe-
cific method to tackle the O3PW, since it finds a balance between stochastic
and deterministic exploration of the space search. In Algorithm 1 we present
the pseudocode of the BVNS algorithm. BVNS receives three input parameters:
an initial solution s (provided by our constructive procedure); the maximum
number of neighborhoods to be explored (kmax); and rmax, which denotes the
maximum number of non-improving iterations the algorithm is allowed to per-
form. Also, the BVNS procedure has three main steps: the Shake procedure (step
5), the LocalSearch procedure (step 6); and the neighborhood change procedure
(represented here by steps 7 to 12). Next, we describe in detail each of them:

– The Shake procedure performs k perturbations to the current solution s in
order to escape from the current basin of attraction. In this case, each pertur-
bation consist of changing the assignment of and a randomly selected order
from its current workstation to a different one. The resulting solution (s′) is
provided as an input parameter to the LocalSearch procedure.

– The LocalSearch procedure tries to improve the solution by completely
exploring a neighborhood until a local optimum is reached. The neighbor-
hood is generated by performing a particular move to a solution. We consider
here two different moves and, therefore, two different local search procedures.
The first local search procedure (LS1) is based the insertion move used by the
Shake procedure. The second local search procedure (LS2) is based on a swap
move which consist of selecting two orders assigned to different workstations
and interchanging their assignments. For both local search procedures, per-
forming a move requires recalculating the sequence in which orders will enter
the workstations and also the sequence of containers to satisfy the orders (as
we described in the Sect. 4.1).



184 A. Ouzidan et al.

– The neighborhood change procedure compares the improved solution (s′′)
provided by the LocalSearch with the best previous solution found (s). If
(s′′) is better than (s), then (s′′) replaces (s) and will be used as a starting
point for the next iteration of the algorithm. Additionally, the value of the
variable k (which indicates the number of perturbations to be performed in
the Shake procedure) will be set to 1. Otherwise, if there is no improvement,
the method increases the value of k by one.

The three main steps of BVNS are repeated until the value of k equals kmax.
The whole procedure is run again from the beginning, for at most rmax times
but starting each time from the new best solution found. Notice that whenever
a better solution is found, the count of the r parameter is set to 1. Finally, the
algorithm returns the overall best solution found (step 16 in Algorithm 1).

Notice that, since we are proposing the use of two local search procedures,
we find two BVNS variants (BVNS1 based on LS1 and BVNS2 based on LS2).

Algorithm 1: Basic Variable Neighborhood Search.
1 BVNS(s, kmax, rmax)
2 repeat
3 k ← 1
4 repeat
5 s′ ← Shake(s, k)
6 s′′ ← LocalSearch(s′)
7 if f(s′′) < f(s) then
8 s ← s′′

9 k ← 1
10 r ← 1

11 else
12 k ← k + 1

13 until k = kmax

14 r ← r+1

15 until r > rmax

16 return (s)

5 Computational Results

In this section, we present the results of several experiments we have performed
in order to test the performance of the proposed approaches. All the experiments
were run on an Intel Xeon Gold CPU with 80 cores at 2.00 GHz, and with 64 Gb
RAM. The operating system used was Debian 9.6. Despite the parallel capacity
of the computer, each instance only used one core, hence the execution can be
considered sequential.
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In order to compare the different proposed algorithmic solutions, we first use
a dataset containing synthetic problem instances, and then the best performing
solution is tested on a larger problem instance derived from the industry.

The synthetic dataset is composed of 74 instances containing 5 to 25 orders.
The number of different items per instance is either 10 or 15, the number of
available slots in a workstation is either 2 or 3, and the number of workstations
was set to 2, since this is a common configuration in practice. This dataset has
been divided into three categories (small, medium, and large) based on different
combinations of these parameters.

The problem instance derived from the industry is much larger then the
synthetic instances, containing 291 orders.

5.1 Results on Synthetic Data

We begin by presenting the results obtained by the mathematical model proposed
from Sect. 3 over the synthetic instances using the CPLEX 12.8 solver [1] with
default parameters. In addition, we have limited the execution time for a single
instance to one hour. The results of this experiment are presented in Table 3,
where we report the number of optimal solutions found (#Opt.), the average
gap provided by the solver (Gap (%)), and the average CPU time spent (CPUt
(s)). The gap is calculated as follows: Gap = UB−LB

UB · 100, where UB stands for
Upper Bound, and LB stands for Lower Bound.

We can remark that the mathematical model was able to find the optimal
solution in 6 out of 20 small-sized instances, while it was unable to find any
optimal solution for the medium-sized and large-sized instances. As far as the
gap is concerned, we also observe that it grows exponentially with respect to the
size of the instances.

Table 3. Mathematical model results on synthetic instances

ILP

#Opt. Gap (%) CPUt (s)

Small (20) 6 32.68 2652.82

Medium (18) 0 84.28 3600.45

Large (36) 0 96.99 3600.39

All (74) 6 76.52 3344.31

As expected, the exact mathematical programming approach was able to find
the optimal solution for some small instances, however failed to do so for the
medium-sized and large-sized instances.

Next, we present in Table 4 the results obtained using the heuristic procedures
proposed in Sect. 4.1 and Sect. 4.2 over the synthetic instances.

The constructive heuristic was run 100 times for each instance, reporting the
best found solution. We also considered the two BVNS variants described in
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Sect. 4.2. As far as the parameters of the BVNS algorithms are concerned, they
are set as follows: kmax = �∗�2ln(N) + 1 and rmax = 20 where N is the total
number of orders to be processed and ln(.) is the Napierian logarithm function.

Again, the results are divided based on the size of the instances. For each
group we report the number of optimal (#Opt.) solutions (when available from
the exact approach), the number of best solutions (#Best) with respect to the
problem instance, the deviation with respect to the best solution (Dev. (%)) and
the CPU time (CPUt (s)) in seconds.

We can observe that BVNS2 managed to find the 6 optimal solutions
retrieved by the mathematical model. In addition, it found the best solution
compared to the other approaches over all the small-sized instances, achieving
therefore a deviation of 0.00%. Additionally, we can see that BVNS2 found the
largest number of best solution over all the instances with a better deviation
compared to the other approaches.

Table 4. Heuristics results on synthetic instances.

Algorithm #Opt. #Best Dev. (%) CPUt (s)

Small (20) Constructive (x100) 5 16 1.37 0.00

BVNS1 6 19 0.38 0.01

BVNS2 6 20 0.00 0.01

Medium (18) Constructive (x100) 0 4 5.90 0.00

BVNS1 0 13 2.14 0.08

BVNS2 0 14 1.54 0.08

Large (36) Constructive (x100) 0 0 9.59 0.01

BVNS1 0 21 2.59 0.46

BVNS2 0 24 1.78 0.46

All (74) H1 (x100) 5 20 6.47 0.00

BVNS1 6 53 1.89 0.24

BVNS2 6 58 1.24 0.25

5.2 Results on Realistic Data

In order to estimate the performance of the proposed algorithms for the O3PW in
practice, as well as tackle issues linked to the sizing of the picking infrastructure
in a warehouse, we consider a very large instance derived from the industry which
is composed by 291 orders. While in the previous experiments all the instances
were configured with only two workstations, we consider here multiple scenarios
where more than two workstations are used in parallel.

Figure 3 illustrates the quality of the solutions provided by the BVNS2, as
the largest number of movements of any of the parallel workstations, when con-
sidering different numbers of these workstations.
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Fig. 3. Decrease in largest number of movements when adding parallel workstations
for a real problem instance

As expected, the larger the number of available workstations, the shorter
the number of maximum movements per workstation, as the workload gets dis-
tributed among them. We observe that the largest differences occur when fewer
workstation are present, since for example, going from one workstation to two
would in the best case divide the workload in two. As more workstation are
added, the improvement become marginal. It should also be noted that the
results are not optimal, as the mathematical programming approach would not
have been able to solve such a large instance.

Next, we highlight the required execution time in Fig. 4.
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Fig. 4. Execution time for the BVNS2 algorithm on the real problem instance
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We notice that the execution time increases linearly with the number of
parallel workstations. This can be attributed to the local search operator, as the
size of a neighbourhood is proportional to the number of parallel workstations.
Nevertheless, the execution time remains reasonable in order to be used as a
decision aid when considering a warehouse sizing problem.

6 Conclusion

In this paper, we have identified a real optimization problem that appears in the
context of the order picking process. The problem is named Order Processing
in Parallel Picking Workstations and looks for an efficient way of processing the
orders arriving to a warehouse by minimizing the largest number of movements
made by a workstation. This problem is NP-Hard since it is a generalization of
the OPPW [10] which is known to be NP-Hard.

We have proposed a mathematical formulation for the O3PW that can be
helpful when we are dealing with small-sized instances and also, we proposed
several heuristics based on the VNS methodology that are useful when tack-
ling larger instances. Particularly, we proposed a constructive algorithm, and
two Basic Variable Neighborhood Search procedures. All the proposals were
empirically tested and compared among them. Finally, we studied the impact
of increasing the number of available workstations using our best performing
proposed algorithm on a real problem instance.

The practical application of our proposed algorithms is two-fold. The first
one consists in providing a day-to-day planning of the operations in the ware-
house that can be implemented in order to reduce the time needed to handle
a given amount of orders. We estimate this time through the number of move-
ments of containers from the storage area to the picking area, which is a good
approximation when the picking and dispatch times are negligible with respect
to the container retrieval time. Nevertheless, this approximation may be useful
for other types of warehouses and can be used for the second application, which
consists of determining the needed picking equipment for a given warehouse.
Indeed, this last application can be used to drive the sales of such equipment
and it is a critical factor for the industry.

Due to the complexity of real warehouses that contain picking systems, such
as the ones described in this paper, we have made multiple simplifications such as
considering that containers are single-product, that they have an infinite capac-
ity and that order setup, picking and order dispatch times are negligible when
compared to retrieval times from the storage location, just to mention a few.
Future contributions should consider several if not all of these elements within
the order picking problem.
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order batching problem in manual order picking systems. BuR - Bus. Res. 3(1),
82–105 (2010). https://doi.org/10.1007/BF03342717
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