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Preface

From the different languages on the molecular level of life, only the genome has
become a subject of wider public interest, while the proteome and even more the
glycome remain reserved for specialists.

Biopharmaceuticals – also known as biologicals or biologics – include purified
and recombinantly expressed therapeutic proteins like monoclonal antibodies, eryth-
ropoietin, insulin, growth and coagulation factors, hormones, interferons, and others.
In addition, vaccines mainly developed and applied as inactivated or attenuated
intact pathogens or as purified or recombinantly expressed major antigens play a
major role. Recombinant human insulin was among the first substances to be
approved for therapeutic purpose, and currently, there are nearly 300 biopharma-
ceutical products which have been approved and are available in the market. The
global biopharmaceutical market size was about $240 billion in 2019 and is expected
to grow at a compound annual growth rate (CAGR) of 14.20% during the forecasting
period (2020–2027). Most biopharmaceuticals are glycoproteins, which are com-
prised of proteins and glycans – complex carbohydrates consisting of glycosidically
linked monosaccharides. Out of the top 10 drugs by global sales in 2019, seven were
recombinant glycoproteins. In terms of value, monoclonal antibodies represent the
largest market share with vaccines being second.

Glycosylation is not only important for the correct folding of glycoproteins, it has
a large impact on the mechanisms of action of biopharmaceuticals, their pharmaco-
kinetics and their pharmacodynamics. Moreover, it plays a crucial role in various
biological processes such as cell proliferation, cell–cell recognition, pathogen–host
interaction, and immune responses. For recombinant therapeutic glycoproteins,
glycosylation is therefore classified by the authorities as a critical quality attribute
(CQA). However, in contrast to proteins that are defined by the nucleotide sequence
of genes, glycans are synthesized from a complex matrix of enzymes without a
predefined template. This results in large heterogeneity in biomanufacturing glyco-
proteins with consequent high variability in their properties. Therefore, in
glycobiotechnology, the engineering and analysis of glycosylation is of critical
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interest, and significant efforts have been made to improve glycoengineering and
glycoanalytical toolboxes.

In order to present the complex field of glycobiotechnology and its latest devel-
opments in full breadth, our book “Advances in Glycobiotechnology” will address
the following topics:

– The impact of the expression system on glycosylation
– The influence of culture conditions on glycosylation
– Synthetic and biosynthetic glycoengineering
– Glycoengineering via cell line design
– Technologies and methods for glycoanalysis
– Challenges in the industrial production of therapeutics and vaccines

Written by selected experts in the field, and divided into 14 chapters, this book
will provide a wide coverage on the state of the art in analytics, pharmaceutical
process technologies, and medical applications in glycobiotechnology.

Magdeburg, Germany Erdmann Rapp
Udo Reichl
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Abstract The glycan profile of therapeutic recombinant proteins such as mono-

clonal antibodies is a critical quality attribute, which affects the efficacy of the final

product. The cellular glycosylation process during protein expression is dependent

upon a number of factors such as the availability of substrates in the media, the

intracellular content of nucleotide sugars, and the enzyme repertoire of the host

cells. In order to control the variability of glycosylation it is important to understand

the critical process parameters and their acceptable range of values to enable

reproducible production of proteins with a predetermined glycan profile providing

the desired biological function or therapeutic effect. The depletion of critical

nutrients such as glucose or galactose, which may occur toward the end of a culture

process, can lead to truncated glycans. Terminal galactosylation and sialyation are

particularly variable but may be controlled by the presence of some key media

components. Ammonia accumulation, pH, and dissolved oxygen levels are also

known to be key bioprocess parameters that affect the glycosylation of recombinant

proteins. Specific enzyme inhibitors can be added to the media to drive the

formation of selected and predetermined glycan profiles. Various attempts have

been made to predict the glycan profiles of cellular expressed proteins and have led

to metabolic models based upon knowledge of metabolic flux and the kinetics of

individual glycosylation reactions.

In contrast to single recombinant proteins, the glycan profiles of viral vaccines

are far more complex and difficult to predict. The example of influenza A virus

shows that hemagglutinin, the major antigenic determinant, has three to nine

N-glycans, which may influence the antigenicity and efficacy of the vaccine.

Glycosylation of the influenza A virus has been largely unmonitored in the past

as production has been from eggs, where glycan profiles of antigens are difficult if

not impossible to control. Over the past decade, however, there have been various

commercial influenza vaccines made available from cell technology using animal

host cells. Analysis of glycosylation control shows that the type of host cell has the

greatest influence on the final analyzed glycan profile. Other factors such as the

virus strain, the cultivation system, or various process parameters have been shown

to have only a minor effect on the glycosylation pattern. We predict that the analysis

of glycan profiles in viral vaccines will become increasingly important in the

development and consistent manufacturing of safe and potent vaccines.

2 M. Butler and U. Reichl



Graphical Abstract

Keywords ADCC, Ammonia, Castanospermine, Galactosylation, Glycosylation,

Hemagglutinin, Influenza, MDCK cells, Oxygen, Process conditions, QbD,

Sialylation, Swainosine, Vero cells

Abbreviations

GDP Guanosine diphosphate

Glc Glucose

GlcNAc N-Acetylglucosamine
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HexNAc N-Acetyl hexosamine

IgG Immunglobulin G

Man Mannose

ManNAc N-Acetylmannosamine

UDP Uridine diphosphate

1 Introduction

The global biopharma market is growing rapidly, with a recent report showing an

annual growth rate of 8.6% and an expectation that the global market will reach US

$ 291 billion by 2021 [1]. Current products include more than 200 protein-based

therapeutics that have been approved for the treatment of unmet medical needs such

as cancer, multiple sclerosis, rheumatoid arthritis, and many other serious human

conditions [2]. In terms of value, monoclonal antibodies represent the largest

market share, with vaccines being second. In contrast, the worldwide production

volume of vaccines far exceeds all other biopharmaceuticals.

The availability of biopharmaceuticals has come about through the ability to grow

animal cells in large-scale bioreactors and to design these cells for the production of

specific glycoprotein targets. Most biopharmaceuticals are glycoproteins, which are

composed of proteins and complex carbohydrates. Although the protein structure is

determined by the sequence of nucleotides in the gene, the carbohydrates or glycans are

far more complex because of their branched structures and the fact that they are

synthesized from a complex matrix of enzymes without a predefined template. This

results in considerable heterogeneity in biomanufacturing, with consequent variability

in the clinical efficacy of the final products. We first address the production of mono-

clonal antibodies and then the manufacturing of viral antigens. The focus is on Chinese

hamster ovary (CHO) cells and various other cell lines used for virus replication.

2 Production of Glycosylated Proteins for Therapeutic Use

Glycosylation of proteins is now identified as crucial quality attribute (CQA) that is

essential for the effective clinical function of the final drug product. The glycosyl-

ation profile is unique to each glycoprotein in terms of attachment of a glycan at a

specific peptide site (macroheterogeneity) and structural variation at each site

(microheterogeneity). Variability in the profile can affect physicochemical proper-

ties, including solubility, thermal stability [3], protease resistance [4], and aggre-

gation [5, 6], and result in clinical variation in serum half-life [7], immunogenicity

[8, 9], and therapeutic efficacy [10]. Unlike proteins and nucleic acids, the poly-

saccharide structure of a glycan is not governed by a template. This means that the

variability is affected by the portfolio of enzyme activities in the producer cell line,

the availability of precursors, and the environmental conditions of the bioprocess.

4 M. Butler and U. Reichl



2.1 Process Variables

There are several aspects of process control associated with the glycosylation of a

protein destined as a therapeutic product. First, it is essential to maintain batch-to-

batch consistency so that the structure and function of the final product does not

vary. For this, it is important to identify the process parameters that cause variabil-

ity and determine the range of values that are permissible in limiting product

variability. This is the intrinsic method of quality by design (QbD), a procedure

recommended by the Food and Drug Administration (FDA) to understand how the

variables of a manufacturing process influence product quality.

Second, it is important to determine the range of process variables that produce a

glycoprotein with a predetermined glycan profile that will provide the desired

biological function or therapeutic effect. This second level is not so easy because

it requires both an understanding of the structure-to-function relationship of a single

glycoform and the ability to produce a restricted glycoform product consistently

during biomanufacture. An example is the discovery that a nonfucosylated antibody

can elicit significantly higher clinical efficacy than its fucosylated counterpart

through enhancement of the antibody-dependent cellular cytotoxicity (ADCC).

Rituxan (rituximab) was developed by Biogen and Genentech as a humanized

anti-CD20 monoclonal antibody (Mab) and since 1997 has been used as a highly

effective treatment for chronic lymphocytic leukemia. However, more recently, a

nonfucosylated form of rituximab was obtained by gene manipulation of the

producer cell to manufacture Ganzya (obinutuzumab). This nonfucosylated form

of the antibody has a 35-fold enhanced ADCC compared with rituximab [11].

2.2 Culture Media: The Contribution of Nutrients
to Glycosylation

The composition of the complex medium required to grow animal cells is a key

factor in ensuring consistent recombinant protein production from a producer cell.

Media formulations can contain 60–100 components, which change in concentra-

tion during a batch culture [12]. The gradual depletion of nutrients during the course

of culture certainly results in time-dependent effects on glycosylation. Glucose and

glutamine are key nutrients utilized for energy metabolism during cell growth.

However, there are also precursors for glycosylation and several studies suggest

that when the concentration of either of these compounds reaches a critically low

level in the medium then the glycosylation process is compromised in preference to

primary energy metabolism.

The control of microheterogeneity by nutrient feeding is crucial in producing

consistent biopharmaceuticals and in avoiding significant batch-to-batch product

variation and diminished therapeutic efficacy. However, each cell line and clone

may have specific metabolic characteristics that can affect protein glycosylation

[13]. Accordingly, to ensure consistent product quality, metabolic analysis of

Animal Cell Expression Systems 5



culture parameters and high-throughput glycan analytics are necessary in order to

monitor factors that affect glycosylation.

It was recognized some time ago that underglycosylation and abnormal trun-

cated glycans could result from glucose depletion in the medium [14]. Glucose

starvation is attributed to a shortage of glucose-derived precursors and results in an

intracellular depleted state, giving rise to a higher proportion of high mannose

glycans [15]. Curling et al. showed a reduction in glycan site occupancy of gamma-

interferon toward the end of a batch culture of CHO cells [16]. In a follow-up

experiment using a different mode of culture but with the same cells, Hayter et al.

detected a high proportion of nonglycosylated gamma-interferon from a glucose-

limited chemostat; however, normal levels of glycosylation were restored by pulsed

additions of glucose [17]. Furthermore, it was shown that there is a critical

concentration of glucose (<0.5 mM) below which reduced site-occupancy of

N-glycans is observed in IgG produced from mouse myeloma cells [18].

Liu et al. showed that depletion of glucose resulted in synthesis of a reduced size

glycan in the lipid-linked oligosaccharide precursor, from the 14-oligomer

dolichol-GlcNAc2-Man9-Glc3 structure to the shorter dolichol-GlcNAc2-Man5,

correlating with a reduction in glycan occupancy on a Mab [19]. This effect also

correlated with a reduced concentration of intracellular nucleotide sugars,

GDP-sugars. and UDP-hexosamines [20]. It was also shown that the time of cell

exposure to glucose-depleted medium was tightly correlated with reduced

galactosylation of the fraction of Mabs that were glycosylated [19]. This finding

is pertinent to the operation of fed-batch cultures, which operate with cycles of

nutrient feeding. These periodic cycles may include times of depleted nutrients,

which might not affect cell growth but could increase glycan heterogeneity.

Intracellular nucleotide sugars are the immediate precursors of protein glyco-

sylation in the endoplasmic reticulum (ER) and Golgi apparatus. So, it is not

unexpected that low or depleted levels of glucose or glutamine in the medium

can result in decreased intracellular concentrations of these precursors, which in

turn affects glycosylation with enhanced macroheterogeneity (glycan occupancy)

and microheterogeneity (variable glycan structures) [20–23]

In several studies, elevated intracellular levels of UDP-HexNAc resulted in

higher antennarity of the glycan structures of several proteins [24–27]. This has

been attributed to higher ammonia levels, although this does not have to be the case,

as shown with cells adapted to glutamine-free medium but still showing a correla-

tion between elevated UDP-HexNAc and glycan antennarity [28].

Media supplementation with nucleotide precursors such as glucosamine and

uridine for UDP-GlcNAc synthesis [29, 30], uridine and galactose for UDP-Gal

synthesis [31, 32], galactose, glucosamine, or N-acetylmannosamine (ManNAc)

[33] have been successful in increasing the nucleotide sugar availability and promot-

ing specific glycosylation targets. However, it is well recognized that the ratios of

sugar nucleotides are also important. For example, it has been shown that elevated

levels of UDP-HexNAc impair cytidine monophosphate (CMP)-acetylneuraminic

acid transport into the Golgi apparatus, thus reducing sialylation [34]. Furthermore,

enhanced sialylation has been shown in gamma-interferon production by supplemen-

tation with ManNAc [35].

6 M. Butler and U. Reichl



However, other factors such as enzymes for nucleotide sugar biosynthesis or

transporters may be limiting in some cell lines [36]. Thus, enhanced sialylation was

improved by overexpression of a CMP-sialic acid transporter [23] and supplemen-

tation of the culture with galactose, glucosamine, and ManNAc [33]. In human

embryonic kidney (HEK293) cells, the hexosamine biosynthetic pathway and the

N-acetylglucosamine (GlcNAc) transferases, which control glycan branching, may

influence the uptake of glutamine and essential amino acids under low nutrient

conditions and allow increased cell growth [37].

2.3 Galactosylation

Terminal galactosylation of glycans of recombinant antibodies exhibits significant

variability, depending on the state of the medium. Because of the sequential nature

of the transferase enzymes, the addition of galactose to a glycan chain is a

prerequisite for terminal sialylation. Feeding cultures with galactose can ensure

high levels of terminal galactosylation, as shown in the production of a number of

antibodies [38]. Galactose feeding was shown to increase uridine diphosphate

(UDP)-galactose pool in the cell up to 20-fold compared with control levels and

corresponded to a concentration of 7 fmol/105 viable cells. However, in a separate

study, Clark et al. showed that the sialic acid content of a glycoprotein is not

increased by galactose feeding [39]. They attributed this to enhanced intracellular

sialidase activity in the galactose-fed cultures that increased the potential for

desialylation. Kildegaard et al. determined the effect of eight independent supple-

ments on the glycoprofile of an immunoglobulin produced from CHO cells in

fed-batch cultures. This work showed that supplementing the medium with galac-

tose consistently enhanced galactosylation, whereas addition of GlcNAc or man-

nose caused a small but significant decrease [40]. Addition of up to 40 mM

galactose to culture media resulted in enhanced galactosylation and sialylation of

a recombinant fragment crystallizable region (Fc)-fusion protein, with minimal

effect on culture performance apart from a reduction in glucose uptake [41].

Specific glycosyltransferase reactions could be enhanced by the availability of

substrates and specific cofactors. A cocktail of supplements comprising uridine,

manganese, and galactose (UMG) was found to stimulate the galactosylation

process [32], which is often measured by the galactosylation index (GI ¼ 0–1)

[42]. Figure 1 shows how the availability of glucose to the cells directly correlates

with the extent of galacatosylation and sialylation of the synthesized antibody

[19]. Although commercially available Mabs are associated with a relatively low

GI level (<0.35) [43], use of UMG supplement enhanced the galactosylation of a

chimeric human–llama Mab to an even higher level than shown in Fig. 1, giving GI

values up to 0.83 [19]. Galactosyltransferase requires manganese for activity and

manganese addition alone can increase galactosylation in late day cultures [44]. It

has been shown that the individual components of the UMG cocktail can be altered

through a statistical design-of-experiment (DOE) to control the galactosylation of a

protein to the desired level [31].

Animal Cell Expression Systems 7



2.4 Sialylation

The addition of neuraminic acid to the terminal end of a glycan is known as

sialylation or “capping.” The two predominant forms of neuraminic acid are N-
acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA).

Sialylated human glycoproteins contain almost exclusively NANA. Although

NGNA can be synthesized by other mammals, including mice, it may be immuno-

genic to humans. The sialylation of CHO-secreted products gives predominantly

NANA, whereas glycoproteins from murine producer cells may have both forms of

neuraminic acid, giving rise to the possibility of immunogenicity [45, 46]. Glyco-

sylation from CHO cells is often described as “human-like,” but the linkage of

NANA to the adjacent galactose is predominantly α2-6 in humans and exclusively

α2-3 in hamster [47]. The extent of protein sialylation can vary considerably in

bioprocesses, but its control is important in order to maintain consistent clinical

efficacy of the final product. The residence time of a therapeutic glycoprotein in the

blood stream is highly dependent on the extent of sialylation. The bioprocess

parameters that influence sialylation were investigated by Lewis et al., who found

that lower sialylation levels during large-scale production could be attributed to low

levels of dissolved oxygen (DO) [48]. They attributed this relationship to a lower

flux through the hexosamine pathway, resulting in a reduced intracellular level of

NANA, as the key precursor of sialylation. It is interesting to note that this effect

appears to be independent of the effect of reduced DO levels on galactosylation,

observed earlier in a murine hybridoma [49].

Enhanced sialylation of a glycoprotein can be attained by cell engineering

through transfection and expression of a sialyltransferase. Most of these studies
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involved use of the α2-6 sialyltransferase to enable the human-like linkage [47, 50,

51]. The protein structure can also influence the extent of sialylation, with only

modest levels (<10%) reported for Mabs because of the restricted space within the

protein pocket for glycosylation. In this case, greater accessibility of the enzyme

can be enabled by removal of an aromatic group, which occurs in the F243A

(replacement of phenylalanine 243 by alanine) mutation in an antibody, allowing

increased sialylation to >30% [52].

2.5 Ammonia

Glutamine is an effective substrate for cell growth because of its rapid transfer

through the cell membrane and incorporation into tricarboxylic acid cycle interme-

diates. However, this process is associated with the accumulation of ammonia,

which eventually becomes inhibitory to cell growth [53], an effect shown to be

greater at high pH values [54].

Accumulated ammonia also exerts an effect on glycosylation by decreasing

terminal sialylation [27, 55, 56]. There are two possible mechanisms to explain this

effect. First, an increase in intracellular UDP-GlcNAc levels occurs through incor-

poration of ammonia into glucosamine. This enhanced UDP-GlcNAc competes with

the transport of the sialic acid precursor CMP-NANA into the Golgi apparatus, which

is an essential step prior to sialylation [24]. The second possible mechanism for

reduced sialylation in the presence of ammonia is that the pH value of the Golgi

apparatus increases, shifting away from the optimal pH for the sialyltransferase

enzyme [57]. Glycosylation-related gene expression in non-immunoglobulin-

secreting murine myeloma (NS0) cells was shown to be insensitive to moderate

increases in ammonia, which suggests that the mechanistic effects of ammonia on

glycosylation are probably metabolic and not at the transcriptional level [58].

It was shown some time ago that the substitution of glutamine in the medium by

less ammoniagenic substrates could be effective in reducing the accumulation of

ammonia, as shown in several cell lines, but to the detriment of cell growth

[59]. More recently, enhanced sialylation was shown for an Fc-fusion protein

expressed in CHO cells by replacing glutamine in the medium with

α-ketoglutarate [60]. This effect was attributed to the lowering of metabolically

produced ammonia by 75%, but at the expense of a longer lag phase and reduced

cell growth.

2.6 pH Value

Cells are normally cultured at neutral pH, with various reports showing that optimal

growth and/or cell productivity occurs at a pH range of 7.0–7.8 [61–63]. Glycan site

occupancy decreases at lower (<6.9) and or higher (>8.2) pH values, a phenomenon

that can be explained by the effect of adverse external pH conditions on the internal pH

Animal Cell Expression Systems 9



of the Golgi apparatus, resulting in reduced activity of glycosylation enzymes

[62]. Some reports have also indicated specific changes in glycan microheterogeneity

caused by changes in pH. The galactosylation of an antibody produced from human

cells decreased with increasing pH value in the range of 6.8–7.6 [63]. This effect was

confirmed by Aghamohseni et al. for Mab production from CHO cells [61]. In this

report, a shifted pH strategy is described, in which cells are grown at a normal pH of

7.8 to maximum cell density, followed by a shift to pH 6.8 during a stationary phase.

This strategy had the benefit of increasing galactosylation and sialylation while

enabling maximum cell growth and antibody productivity.

Zalai et al. reported a link between high specific productivity (Qp) and the

formation of high mannose glycan structures [64]. They also showed in their system

that the high mannose structures were more likely to occur at a lower pH value (6.9)

than the control (pH 7.2). A relationship between premature glycan structures,

including high mannose glycans, has also been shown for higher Qp produced

under hypothermic conditions [65].

2.7 Oxygen

The DO level is a key parameter for the intracellular metabolism of producer cells

in bioprocesses [66, 67]. A high rate of oxygen consumption occurs during aerobic

metabolism and may decrease during depletion of nutrients in the medium [64]. A

change in the glycoform profile of a recombinant protein may well result from such

metabolic changes [68]. Control of the DO set-point in a bioreactor is important for

minimizing the possibility of an altered metabolism affecting a change in the glycan

profile. The terminal galactosylation of an antibody has been directly related to the

DO level, with a gradual decrease in the digalactosylated (G2) form from 30% at

the higher oxygen level to 12% at low DO [49]. The mechanism for the effect of DO

is unclear, but it is probably caused by a change in cellular metabolism rather than a

direct effect through the activity of the galactosyltransferase enzyme [69].

2.8 Use of Inhibitors to Control Glycosylation

A number of highly specific alkaloid-based inhibitors of glycosylation can be added

to the growth medium to cause predetermined changes in the glycan profile.

Kifunensine blocks the removal of mannose by inhibiting mannosidase I, resulting

in a high mannose structure [70, 71]. Because the mannosidase reaction occurs prior

to fucosylation in the glycosylation process, this can lead to a nonfucosylated

oligomannose glycan structure when an antibody is expressed. This structure

demonstrates the ADCC normally associated with nonfucosylated antibodies [72].

Other inhibitors include Castanospermine (Cas), which is a glucosidase inhibitor

preventing the removal of terminal glucose sugars from the high mannose glycan

attached to protein in the ER [73]. A third example is Swainsonine (Swa), which is a
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mannosidase II inhibitor. Mannosidase II is the second mannosidase in the glyco-

sylation pathway and removes mannose from one arm of the glycan structure; its

inhibition results in the formation of hybrid glycan structures [74]. A typical glycan

profile resulting from the addition of these inhibitors to antibody-secreting CHO

cells is shown in Fig. 2.

2.9 Predictive Metabolic Models of Glycosylation

The unpredictability of glycosylation is amajor problem in the bioindustry. This applies

to the unpredictability of the relationship between clinical efficacy and the glycoprofile

structure, as well as the unpredictability of process control of glycosylation [76].

Metabolic modeling analysis could improve the understanding of how shifts in

nutrients affect key cellular metabolites in glycan synthesis and glycosylation

outcomes, as well as cell growth and productivity during process development

[77, 78]. However, this is a difficult task because glycosylation is such a complex

system, affected by many aspects of cellular metabolism, some of which may yet be

unknown. Furthermore, because glycosylation is highly variable between cell types

and clones [13], new parameters must be established for each one.

The glycosylation process occurs inside the Golgi apparatus of the cell and is a

sequential attachment/detachment of nucleotide sugars to the backbone of the protein

to form a complex glycan. The series of successive reactions are catalyzed in theGolgi

apparatus by a small number of enzymes, which can be classified into two main

groups: (a) exoglycosidases that act on one substrate and detach a mannose from the

oligosaccharide chain and (b) glycotransferases (GTs) that act on two substrates and

attach a particular monosaccharaide to the chain. There are reported to be over

250 mammalian GT enzymes, which can be classified into groups based on the type

of monosaccharide they act on [79]. Due to the sequential nature of the glycosylation

process, GTs are distributed along the Golgi apparatus [79, 80]. Thus, glycan structure

can be affected significantly by the localization of the enzymes.

A relatively simple model based on the probability of reactions that transition

glycans from one structure to the next was developed based on random walking

(a Markov chain model) and analysis of pre-existing glycan profiles [81]. This

model does not require kinetic data, but relies on an in silico flux balance analysis

and glycosylation as a stochastic process. The model predicts the effect of a specific

enzyme deletion, but does not take into account changes in enzyme activity that

lead to variations in kinetics or variable access to substrates.

Metabolic flux analysis in continuous culture can be useful in understanding the

effects of altering key nutrients (glucose and glutamine) on the glycan profile.

Hossler et al. [80] assumed 341 glycans and addressed this complex network of

reactions with a relationship matrix [80] and the development of vizualization

software, GlycoVis [82]. Two metabolic models, a dynamic model based on flux

analysis and the GlycoVis software model, were used to study and visualize the

relationships between glutamine, glucose, pH value, ammonia, and glycosylation in
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batch cultures [61]. Reducing glutamine levels can lower glucose consumption

along with cell yield, but increase galactosylation and sialylation. Expression of this

data using the GlycoVis software is shown in Fig. 3. Extracellular ammonia

concentration was correlated with UDP-GlcNAc synthesis, and pH value with

inhibition of sialylation. In another similar study, low glutamine conditions reduced

sialylation and antennarity of human chorionic gonadotropin and correlated with

reduced UDP-GlcNAc [83].

Data on the reaction kinetics of specific glycosylation enzymes based upon

values reported in the literature were used to produce one of the first detailed

kinetic models [84]. This was extended by Krambeck et al. to embrace the kinetics

of 19 glycosylation enzymes into a reaction network to predict glycan profiles

analyzed by mass spectrometry [85, 86]. An application of this type of kinetic

analysis was prediction of galactosyl transferase (GalT) IV as a major control point

Fig. 3 Glycan distribution network for Mab-producing CHO cells grown under different condi-

tions: (a) 4 mM glucose at day 5, (b) 4 mM glutamine (Gln) at day 7, (c) 0 mM Gln at day 5, (d)

0 mM Gln at day 7, (e) reduced pH at day 5, and (f) reduced pH at day 7. The representation is

based on the GlycoVis program [61]
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for glycosylation branching. Computer simulation and, subsequently, experimental

data showed that the downregulation of GalT increased the tri- and tetra-antennary

glycan structures of human chorionic gonadotropin expressed in CHO cells [87].

Nucleotide sugars are the direct precursors of glycosylation in the ER and Golgi

apparatus and their abundance or depletion determines the extent of glycosylation.

They form a matrix of interrelated reactions in the cytoplasm, which is supplied by

extracellular nutrients. Two models have been proposed to describe the effect of

extracellular conditions on the glycoprofiles forCHOcell cultures [88] and for amurine

hybridoma [89]. Both of thesemodels propose to connect the extracellular environment

described by a metabolic flux model to the glycosylation processes occurring in the

Golgi apparatus through nucleotide sugars. In general, both reported dynamic models

are of very large dimensions. For example, the model of Ohadi et al. involves 10 mass

balances for extracellular species, 8 differential equation for nucleotides and nucleotide

sugars, 104 differential equations describing the component balances of individual

glycans, and 4 nucleotide sugars serving as substrates for the glycosylation reactions.

The in silico metabolic model established by Jedrzejewski et al. also has a

framework of reactions of nucleotides and nucleotide sugars in the cytoplasm,

including kinetic measurements into the pool from extracellular culture compo-

nents and out of the pool through nine transport rate equations of the nucleotide

sugars feeding into the ER and Golgi apparatus (thus feeding the glycosylation

reactions). This matrix of nucleotide sugar reactions was developed in an attempt to

predict the pathway of glycosylation for different levels of extracellular metabolites

[89]. The model gives good predictive results compared with experimental data

generated from a murine hybridoma.

The analysis of nucleotide sugar metabolism was extended by del Val et al., who

took into account the stoichiometric requirements of host cell proteins, glycolipids,

and secreted recombinant proteins [90]. Following an analysis of the requirements

for glycosylation, it was concluded that the consumption rates of nucleotide sugars

toward cellular and recombinant proteins were of the same order of magnitude.

However, the partition of requirements between these demands depends on the

relative values of cell-specific productivity and growth rate, both of which can

change during the time course of a culture. Undoubtedly, this type of mathematical

framework can lead to an understanding of the specific requirements of nucleotide

sugars and allow the development of rational feeding strategies.

There is considerable value in the development of robust mathematical models

that can be predictive in terms of the effect of changes of media components on the

glycosylation profile of the final product. Such models are aided by multivariate

data analysis to indicate critical bioprocess parameters associated with alterations

in glycan profiles [91]. Many of the existing models are product-specific and/or cell

line-specific. A robust model that could be extended to multiple culture systems

would be valuable for bioprocess control so that culture conditions could be altered

predictably to enable the formation of a predetermined glycan profile. This would

also offer the possibility of reverse analysis, which would be applicable to the

diagnosis of clinical conditions such as congenital disorders of glycosylation. Here,

the objective would be to pinpoint the precise metabolic defect associated with the

abnormal glycan profile obtained from a patient sample.
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3 Production of Cell Culture-Derived Viral Antigens

Immunization is one of the most powerful and cost-effective ways to prevent

disease and save millions of lives. Vaccination can significantly reduce virus

spreading and, therefore, the emergence of endemics and pandemics. This includes

new challenges such as SARS-coronavirus or HIV/AIDS, viruses that evolve very

quickly (e.g., influenza A virus) or spread to a new population (e.g., Ebola virus,

West Nile virus), and reemerging diseases (e.g., drug-resistant tuberculosis). The

complete list of bacterial and viral vaccines licensed for human use in the USA

currently comprises more than 160 entries [92]. Vaccines can contain live attenu-

ated viruses that do not cause disease, inactivated organisms or viruses, inactivated

toxins, or segments of pathogens (subunit and conjugate vaccines). In addition,

nucleic acid vaccines, often called “third generation” vaccines, are currently being

developed. These are relatively inexpensive, easy to produce, and offer the chance

to reduce lead times in vaccine manufacturing in the case of pandemics [93]. This

section focuses on cultivation processes for production of viruses and viral antigens

using cells of higher animals and mammals (i.e., from avian, canine, ape, and

human origin).

Historically, viruses were propagated only on whole organisms such as mice,

rats, rabbits, foxes, or monkeys. With the establishment of viral tissue culture

methods in the 1950s, the first generation of inactivated polio vaccines (Salk) and

live attenuated oral polio vaccines (Sabin) became available; polio is now close to

being eradicated worldwide. During the same period, egg-based systems for virus

production were established that are still in use for viruses such as influenza,

measles-mumps-rubella (MMR), rabies, and yellow fever vaccines. The advent of

modern cell culture techniques enabled the manufacture of today’s large range of

biological pharmaceutical products at the industrial scale, including viral vaccines

for human and veterinary use [94]. Early attempts to use primary cell lines for

research and vaccine production date back to the 1920s and 1930s. Today, primary

cell lines, diploid cells, and spontaneously transformed continuous cell lines are

routinely used for production of viral vaccines [95–99]. In addition, designed

continuous cell lines such as PER.C6 [100, 101], AGE1.CR [102], and EB66

[103–105] are considered as substrates for virus propagation. For example, licensed

vaccines against measles and mumps are still produced in chicken embryo fibro-

blasts [106], diploid cell lines are used for rabies vaccine production [107], and

Vero cell cultures have been established for inactivated polio vaccine production

[108]. In addition, following a WHO recommendation in 1995 [109] the first

generation of cell culture-derived seasonal human influenza vaccines was approved

in 2007 for a manufacturing process using a MDCK suspension cell line [110].

Like the recombinant therapeutic proteins produced in hybridoma cells and CHO

cells, vaccines are highly complex products. In contrast to chemically synthesized low

molecular weight drugs, biologics cannot be fully characterized by existing analytical

methods. For establishment of cell culture-derived viral vaccine production processes

according to current good manufacturing practice (cGMP), the main focus is on
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potency and safety of the final products. Quality control includes characterization of

sourcematerials (virus strains, cells, media), monitoring of cultivation conditions (cell

concentrations, virus yields, process parameters), and analysis of in-process samples

and testing of the samples before release of the final product. For example, for control

of a cell culture-derived monovalent influenza virus pool (whole virus, inactivated),

the following tests need to be performed: (1) effective inactivation, (2) antigen

concentration (hemagglutinin (HA) content), (3) presence of neuraminidase (viral

surface protein that enables virus release after replication), (4) identity (antigenic

specificity), (5) extraneous agents, (6) purity (contaminating protein, DNA), and

(7) contamination with chemicals used in production (e.g., detergents, organic sol-

vents, inactivant) [111]. Interestingly, and in stark contrast to regulations for produc-

tion of therapeutic proteins discussed at the beginning of this chapter (e.g. [112]),

except for the potency of the final product, physicochemical and specific immunolog-

ical and biological properties of the antigen are not considered for viral vaccines. This

concerns, in particular, the N-linked glycosylation of whole virus particles and viral

antigens (split and subunit vaccines) using attenuated (live vaccines) or nonattenuated

(inactivated vaccines) virus strains. However, and in line with the guidelines for

production of therapeutic proteins, the glycosylation patterns, purity, amino acid

sequence, and molecular size of recombinant proteins are considered for quality

control in the manufacture of vaccines involving the expression of virus surface

proteins in recombinant bacteria, yeast, animal cells, or plants [113].

For monoclonals and other recombinant proteins, it is well known that glycosyl-

ation has a significant impact on the pharmacokinetics of theses product and modu-

lates several of their immunogenic properties. Accordingly, tests and acceptance

criteria need to be defined for relevant glycosylation structures of therapeutic proteins

and protein drug products to comply with cGMP guidelines and to realize process

analytical technology (PAT) and QbD objectives. For cell culture-derived viral

antigens, however, questions regarding the impact of glycosylation on the immuno-

genicity of a vaccine are so far only addressed in research [114–117], and no specific

requirements exist regarding glycoprofiling of viral antigens for the quality control of

conventional viral vaccines. Nevertheless, it is widely accepted that the presence or

absence of host cell-derived carbohydrates can modulate the antigenicity of antigens

by either preventing the binding of neutralizing antibodies or masking epitopes that

are recognized byCD4+T cells that help other lymphocytes to lyse virus-infected cells

[118]. In the case of HIV, for example, the high density of HIV-1 envelope glycosyl-

ation is considered an evolving “glycan shield” mechanism, whereby specific changes

in glycan packing prevent neutralizing antibody binding but not receptor binding

[119]. Similar findings were reported for other viral antigens, for instance the HA of

influenza A virus, or the envelope glycoproteins E1 and E2 of hepatitis C [120–

124]. However, the impact of glycosylation should be carefully evaluated because

other findings suggest that changes in the glycosylation pattern of antigen domains do

not necessarily influence the immunogenicity of vaccines. For a DNA vaccine

encoding the HA of avian H5N1 influenza viruses, for example, modifications of the

influenza virus HA1 domain had little impact on the antibody response in a mouse

model [125]. Obviously, differences in the glycosylation of viral antigens as a result of
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host cell selection or modification of glycan structure and composition caused by

changes in process condition have to be carefully evaluated to assess their impact on

potency. The N-linked glycosylation of viral antigens is involved in various other

crucial functions such as entry into host cells, proteolytic processing, protein traffick-

ing, and virus release that can have a significant impact on the establishment and

optimization of cell culture-derived vaccine production.

There are several reasons for the lack of monitoring of large-scale vaccine

production regarding the glycosylation of virus particles (whole virus vaccines) and

viral proteins (split and subunit vaccines). First, during the early years of vaccine

development, the focus in vaccine development was on potency and safety aspects. In

addition, knowledge of carbohydrate structures, their composition, and the impact of

glycosylation of viral antigens on immunogenicity was very limited. Second, licensed

viral vaccines (whole virus presentations, split and subunit vaccines) significantly

exceed other biologicals (i.e., recombinant proteins) in complexity regarding the

number of antigens involved in the immune response and the high number of glycan

structures involved (i.e., whole virus preparations). Third, it is not clear which specific

glycosylation patterns/glycan structures of viral antigens are required for the genera-

tion of high potency vaccines. Fourth, besides macro- and microheterogeneity of

glycosylated antigens caused by host cell processes, the high mutation rate of many

viruses and the complex and dynamic distribution of variants (viral quasispecies)

increase the overall heterogeneity of vaccine preparations. Fifth, until very recently

there were only limited options for detailed characterization of how antigens shape the

human antibody repertoire, which is crucial to our understanding of B-cell immunity

and the targeted design of effective immunogens [114, 126, 127].

Over the last few years, protein glycosylation analysis has seen significant

methodological progress with improvements in mass spectrometry (MS)-based

platforms [121, 128, 129] and the establishment of methods using capillary gel

electrophoresis for high-throughput analysis of glycosylation patterns of viral

antigens and native virions with high resolution [130, 131]. In addition, there

have been significant advances in clinical glycoproteomics and in high-throughput

antibody repertoire sequencing using large-scale computational structural modeling

and analysis [127, 132, 133]. Based on these analytical tools, it will be possible to

make significant progress in the characterization of adaptive responses following

vaccination. Such progress will broaden our understanding of the role of antigen

glycosylation on infectivity and the modulation of immunogenicity at an unprece-

dented scale, which opens exciting perspectives for the development of viral

vaccines with improved potency and safety profiles.

Recent advances in high-throughput glycan profiling [128, 130, 131] using

multiplexed capillary gel electrophoresis with laser-induced fluorescence detection

(xCGE-LIF) have enabled the characterization of virus seeds, monitoring of virus

replication in animal cell culture regarding the number of infectious and

noninfectious virus particles produced, and detailed study of the impact of cultiva-

tion conditions on the status and changes in antigen glycosylation patterns over the

course of virus replication. These affect not only the selection of virus strains and

the host cells used for vaccine manufacture, but also the choice of media, adherent
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or suspension growth, process parameters (temperature, pH, DO), and inactivation

conditions.

3.1 Impact of Cultivation Conditions on Glycosylation
of Hemagglutinin of Influenza A Virus

In contrast to the processes established for production of recombinant proteins, there

is very limited information available on the impact of host cells, virus strains, and

process parameters on the glycosylation of virus particles and viral antigens in animal

cell culture-derived vaccine production. The rest of this section gives some examples

of upstream processing of influenza A virus using various animal cell lines.

3.2 Influenza A Virus Hemagglutinin

Influenza A virus expresses two membrane-bound surface glycoproteins, hemag-

glutinin (HA) and neuraminidase (NA). Both proteins carry N-linked glycosyla-

tions, which can contain a mixture of high-mannose, complex, or hybrid-type

oligosaccharides. As a result of the action of viral NA during the budding process,

the complex-type oligosaccharides of the released virus particles lack sialic acid but

the glycans can be sulfated as a further structural modification [124].

HA is a homotrimeric integral membrane glycoprotein of rod-like shape that

protrudes approximately 13.5 nm from the viral surface. During virus replication,

HA monomers are transcribed and translated, and then undergo complex post-

translational modifications (glycosylation, phosphorylation, sulfation, acylation,

etc.) in the ER and Golgi apparatus. After export to the cell surface, the HAmonomer

is cleaved from HA0 into a globular head (HA1) and a long helical chain anchored in

the membrane (HA2); they are linked by a disulfide bond. Typically, three to nine

N-linked glycans are attached to the intact HA protein backbone (Fig. 4).

HA is the major antigenic determinant of commercial influenza vaccines, and

modifications of the glycosylation sites of the globular head of the HA1 influence

not only receptor binding and fusion activity but also antigenicity, virulence, and

the immune evasion of influenza viruses [94, 124, 134]. Recently, broadly protec-

tive vaccine candidates targeting the conserved HA2 stalk domain have been

identified and efforts are being made by several research groups toward the

development of universal influenza vaccines and therapeutic monoclonal antibodies

[92, 135–137].

18 M. Butler and U. Reichl



Fig. 4 HA with N-glycans attached. Homotrimeric HA (PDB ID: 1ru7) and attached N-glycans
(LinucsID 1893, retrieved from http://www.glycosciences.de) generated using Chimera (version

1.10.2). The six hypothetical N-glycosylation sites of the HA monomer (UniProtKB: P03452) are

highlighted in magenta. Five N-glycosylation sites (N27/N28, N40, N285, and N303) are located

within the HA1 domain (green). The HA2 domain (cyan) harbors site number six (N497).

Complex tri-antennary N-glycan structures attached to N27/N28, N285, and N303 represent a

possible glycome of the HA monomer. N-Glycosylation of the remaining HA monomers (greyed
out) has been omitted to facilitate visualization (Source: Alexander Pralow, Max Planck Institute

for Dynamics of Complex Technical Systems, Magdeburg, Germany)
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3.3 Impact of Host Cells on the Hemagglutinin Glycosylation
Pattern

Egg-based human influenza vaccines have been available for more than 70 years

and the majority of vaccine doses are still produced in embryonated chicken eggs

[138]. Since the 1990s, however, cell culture-derived veterinary (equine influenza)

and human influenza vaccines have been developed to overcome problems associ-

ated with egg-based production. This has led to a reduction in lead times and easier

logistics compared to egg supply, propagation of influenza strains that are difficult

to isolate in eggs (i.e., avian strains), no need for egg-adapted high growth

reassortants, and an aseptic closed environment in upstream and downstream

processing [95, 139, 140].

In 2001, the first cell culture-derived seasonal human influenza vaccine was

licensed (Influvac® TC, Solvay Pharmaceuticals Inc.) but discontinued after acqui-

sition by Abbott Laboratories [141]. A few years later, in 2007, the cell culture-

derived (trivalent, inactivated) human influenza vaccine (Optaflu®, Novartis) was

approved by the European Medicines Agency (EMA), followed in 2012 by US

FDA licensing of Flucelvax® produced by the same manufacturer [110, 142]. In

addition, cell culture-derived pandemic whole virion influenza vaccines are prop-

agated in African green monkey kidney (Vero) cells (H5N1, Baxter AG) [108] and

duck embryonic stem cells (EB66®, Valneva SE, GSK) [105], and various other

production systems are under development (Per.C6, etc.) [103]. A recombinant

protein influenza vaccine, Flublok® (SF+ insect cells, Protein Sciences Corpora-

tion), was licensed in 2013 [143].

It was shown in early studies and in recent work that the host cell line is one of

the major determinants for the glycosylation of influenza virus HA [121, 144–

146]. In particular, newer studies performed for a wide range of cell lines, including

egg-derived virus, demonstrated clear differences in the complexity and composi-

tion of HA N-glycosylation. As an example, N-glycan fingerprints obtained by

xCGE-LIF (one peak corresponds to at least one distinct N-glycan structure) of

influenza A virus (H1N1, Puerto Rico/8/34) propagated in MDCK, Vero, AGE1.CR®

(immortalized and modified designer cell line originating from the Muscovy

duck, ProBioGen AG), CAP® (immortalized designer cell line originating from

primary human amniocytes, Cevec Pharmaceuticals GmbH), and embryonated eggs

(IDT Biologika GmbH) are shown in Fig. 5 [146].

As expected, the N-glycan fingerprints show strict host cell specificity. HA N-
glycan fingerprints clearly differ, as reported previously by Schwarzer et al. [146],

who also showed by exoglycosidase digestions that all N-glycan structures attached
to MDCK cell-derived HA are of the complex type with either terminal α- or

β-galactose, whereas most N-glycan structures of Vero cell-derived HA are of the

complex type with terminal β-galactose (with a few other structures of the high

mannose type). These results correspond to studies by An et al. [121], who
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characterized H5N1 HA expressed in three insect cell lines, a human cell

(HEK283), and embryonated chicken eggs using MS-based analytics. In particular,

the authors reported quantitative and qualitative differences in the overall N-
glycosylation patterns and structures produced by different cell types, and

addressed the identification of α1,3-fucosylated structures in the core region of N-
glycans on HA produced by High Five™ cells, which may be allergenic in humans.

In a more general experimental setup, species-specific differences in N-glycosyla-
tion were also shown by Raju et al. [147] for peptide-N-glycosidase-F (PNGase F)-

treated IgG from 13 different animal species using MALDI-TOF-MS. Furthermore,

intracellular glycosylation processing is affected by the enzyme repertoire of the

host cell, transit time in the Golgi apparatus, and the availability of intracellular

sugar nucleotide donors [148, 149].

A major determinant of HA glycosylation is the selection of the host cell line

used in vaccine manufacturing. However, various changes in cultivation conditions

to optimize virus production can also have a significant impact on HA glycosylation

patterns. In particular, the adaptation of adherent cell lines to growth in suspension

using a serum-free medium drastically altered not only the proteome of MDCK

cells [150] but also their HA N-glycan fingerprints (Fig. 6). The total number of

different N-glycan structures was reduced, and the N-glycans expressed show a

Fig. 5 Impact of host cell line on the HA N-glycosylation pattern. Overlay of N-glycan finger-

prints. Relative fluorescence units (RFU) are plotted over the migration time (tmig) in normalized

migration time units (MTU0). Influenza A virus (H1N1, Puerto Rico/8/34) was produced in

adherent Vero cells (i), adherent MDCK cells (ii), human-derived CAP® suspension cells (iii),
duck-derived AGE1.CR.pIX suspension cells (iv), and embryonated chicken eggs (v)
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Fig. 6 Impact of host cell adaptation to serum-free suspension growth on the HA N-glycosylation
pattern of influenza A virus (H1N1, Puerto Rico/8/34). (a) HA N-glycan fingerprints. Relative

fluorescence units (RFU) are plotted over the migration time (tmig) in normalized migration time

units (MTU0). All peaks exceeding the 10� baseline noise threshold of at least one fingerprint are

annotated. Serum-requiring adherent MDCK cell line (i), MDCK cell line adapted to serum-free

suspension growth (ii; MDCK.SUS1), and further adapted MDCK.SUS1 cell line to better growth

characteristics (iii; MDCK.SUS2) [151]. Biological duplicate of the first adaptation step (iv:
MDCK.SUS3). The number of high abundant peaks (RPH >5%) with migration times below or

above 320 MTU0 is indicated. (b) Overlay of all four N-glycosylation fingerprints. (c) Relative N-
glycan structure abundance (RPH) as percentage of the total peak height (TPH, sum of all

annotated peaks). Peaks <5% RPH (dashed lines) are defined as low abundance
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tendency toward smaller structures [152]. Interestingly, without adaptation to

growth in suspension, the switch from serum-containing to serum-free growth of

adherent MDCK cells caused no significant changes in the total number of

HA-associated N-glycan peaks but only their relative abundance (not shown).

This suggests that adaptation of host cells to a new medium or changes in medium

composition to optimize cell growth or process yields have only a slight impact on

the host cell’s glycosylation machinery.

3.4 Impact of Virus Strains on the Hemagglutinin
Glycosylation Pattern

Besides the impact of host cells, the HA glycosylation patterns are influenced by the

specific virus type and subtype used for the generation of seed virus. Typically,

candidate vaccine viruses matching those recommended for inclusion in seasonal

and pandemic vaccines are produced in fertilized eggs and distributed by WHO

Collaborating Centers for Reference and Research. In addition, genetic

reassortment of influenza A viruses is performed to improve yields and robustness

of vaccine production processes [153–155]. Identity testing and sequence analysis

is performed to confirm their similarity to the reference strains, but comparison of

the glycosylation patterns of the field strains with the virus strains used for vaccine

production and evaluation of the impact of differences on immunogenicity of

vaccines are not required. In addition, it is well known that egg propagation can

affect antigenicity [156, 157] and egg-derived high growth reassortants do not

necessarily result in high yield cell culture processes. Therefore, the use of cell-

only passaged virus instead of one that has been egg-derived might be favorable and

should be considered for cell culture-derived vaccine production [158, 159].

In contrast to the host cell, the selection of virus strain has only a modest

influence on the N-glycan fingerprint. A comparison of various MDCK cell-derived

influenza A subtypes [H1N1, Puerto Rico/8/34, reassortant California/07/2009

(pandemic) and H3N2, reassortant Uruguay/716/2007 (H3N2) � PR8/34 (H1N1),

reassortant Victoria/210/2009 (H3N2) � PR8/34 (H1N1)] showed that most peaks

were present for all tested viruses (except for some low abundance peaks; Fig. 7a,

b). Overall, the relative peak abundance varied with a maximum difference of

25.2% (peak 22, Fig. 7c) whereas strain-specific differences were less than 12.4%

(H1N1 strains) and 9.8% (H3N2 strains).

The results suggest a closer relation between the H1N1 and H3N2 strains.

Differences in N-glycan structure abundance (i.e., missing peaks) are probably a

result of minor variations in the three-dimensional conformation of HA monomers

of the four analyzed IVA strains, as already highlighted in 1997 byMirShekari et al.

[160]. The authors demonstrated for Madin Darby bovine kidney cells that N-
glycosylation is site-specific, and that glycans at the same site of the HA1 subunit

are occupied by more or less conserved N-glycan structures depending on the
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Fig. 7 Impact of virus strain on MDCK cell-derived HA N-glycosylation patterns. (a) Overlay of
HA N-glycan fingerprints. Relative fluorescence units (RFU) are plotted over the migration time

(tmig) in normalized migration time units (MTU0). Influenza A virus (IVA)-PR8 (i; H1N1, Puerto
Rico/8/34), IVA-California (ii; H1N1, reassortant California/07/2009, pandemic), IVA-Uruguay

[iii; reassortant Uruguay/716/2007 (H3N2) � PR8/34 (H1N1)], and IVA-Victoria [iv; reassortant
Victoria/210/2009 (H3N2) � PR8/34 (H1N1)] were produced in MDCK cell culture. All peaks

exceeding the 10� baseline noise threshold of at least one fingerprint are annotated. (b) Direct

overlay of HA N-glycan fingerprints. (c) Relative N-glycan structure abundance (RPH) as per-

centage of the total peak height (TPH, sum of all annotated peaks). Peaks are defined as high

abundance if RPH >5% (dashed lines)
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specific site characteristic. In loop regions, bi-, tri- and tetra-antennary complex

N-glycans are present. In contrast, the glycosylation site buried in the α-helix is

mostly occupied by high mannose structures, indicating that these glycans are not

easily accessible for glycosylation modulating enzymes. Specific glycosylation

characteristics also influence glycan processing; for example, Harpaz and Schachter

[161] demonstrated that the presence of bisecting GlcNAc inhibits GlcNAc trans-

ferases and, therefore, further glycan branching.

In addition, Roedig et al. [158] showed that extended passaging of influenza A

virus (H1N1, Puerto Rico/8/34) in adherent MDCK cells had little influence on HA

N-glycosylation [159]. Over a total number of 10 passages in roller bottles, the HA

fingerprints of all passages featured the same 15 main peaks, with the maximum

difference in the relative peak heights not exceeding 3.5% (not shown). For the

same subtype, neither the harvest time point (24–96 h after infection) nor

β-propiolactone inactivation (37�C, 24 h, final β-propiolactone concentration

3 mM) had a significant impact on HA N-glycosylation [152].

3.5 Impact of Cultivation Vessels and Process Parameters
on the Hemagglutinin Glycosylation Pattern

In contrast to the production of recombinant proteins, relatively little is known

about the impact of cultivation conditions on viral antigen glycosylation. For the

HA of influenza A virus (H1N1, Puerto Rico/8/34) produced in adherent MDCK

cells in serum-containing medium, changes in cultivation vessel (T75 flask, roller

bottle, spinner vessel, stirred tank reactor), cultivation scale (50 mL–4.5 L working

volume), cell concentration (standard batch versus high cell density), and temper-

ature during virus replication (33–39�C) had no significant impact on the HA

N-glycosylation pattern. At best, minor changes in the relative N-glycan structure

abundances were identified [162]. As an example, HA glycosylation patterns for a

wide range of cultivation vessel are shown in Fig. 8.

4 Conclusions

As more is understood about the glycan structures attached to glycoproteins, it has

become increasingly obvious that they have a crucial role in the therapeutic effects

of recombinant biopharmaceuticals. Notable examples are the role of sialylation on

the residence time of erythropoietin in the blood stream, and the inflammatory

properties of antibodies. Even small structural changes such as fucosylation can

have a dramatic effect on receptor binding, which is crucial to targeted cancer

treatment using therapeutic antibodies.
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Fig. 8 Impact of cultivation scale and vessel on the HA N-glycosylation pattern of two influenza

A virus strains. (a, b) Puerto Rico/8/34 (H1N1) was produced in T75-flask (i), T175-flask (ii),
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Precise control of glycosylation leading to a homogenous glycoform profile can

be performed at the cellular level through metabolic engineering by the functional

addition or removal of specific genes associated with glycosylation. However, the

success of this approach is dependent upon the availability of precursors present in

the culture media. A limited supply of substrates or cofactors in the medium limits

full glycosylation, irrespective of the activity of enzymes.

Some of the bioprocess parameters explained in this chapter can influence

glycosylation. To maintain a consistency of glycosylation it is important to identify

the critical parameters and their optimal set points. Consistent glycosylation during

a large-scale bioprocess requires sufficient information about the “design space”

around these set points. This concept is consistent with the regulatory important

QbD approach, which defines the limited boundaries of each identified bioprocess

parameter. This leads to confidence in product consistency if there is a deviation

from a set point but within the boundaries of the design space.

Compared with recombinant glycoproteins produced in animal cell culture,

relatively little is known regarding the impact of host cells, virus strain/recombinant

protein, and cultivation conditions on N-glycosylation of viral antigens. Based on

the limited studies performed so far, it seems that selection of the expression system

(host cell, adherent/suspension growth) has the largest impact on the glycan finger-

print. In addition, the virus strains and their passage history (egg-based versus

animal cell-derived virus seeds) should be considered carefully. Interestingly,

cultivation vessel, process parameters, choice of medium, harvest time point, and

inactivation only seem to modulate peak abundance but not peak presence. Appli-

cation of the powerful new analytical approaches developed over the last few years

(i.e., MS-based platforms and xCGE-LIF), should be encouraged for monitoring the

glycosylation status of viral antigens in vaccine production processes. In addition,

the impact of changes in the N-glycosylation of viral antigens on cellular and

humoral immunity of virus preparations should be carefully evaluated to enable

the design of potent and safe vaccines using the optimal production platform.

⁄�

Fig. 8 (continued) roller bottle (iii) or 1 L stirred tank reactor (STR, iv) using MDCK cell culture.

(c, d) The reassortant Uruguay/716/2007 (H3N2) � PR8/34 (H1N1) was produced in T75 flask (i)
and 5 L STR (ii) using MDCK cell culture. (a, c) Overlay of HA N-glycan fingerprints, relative

fluorescence units (RFU) are plotted over the migration time (tmig) in normalized migration time

units (MTU0). All peaks exceeding the 10 � baseline noise threshold of at least one fingerprint are

annotated. (b, d) Relative peak height (RPH) in % of the total peak height (TPH, sum of all

annotated peaks). Peaks are defined as high abundant if RPH >5% (dashed lines)

Animal Cell Expression Systems 27



References

1. Mordor Intelligence (2016) Global biopharmceuticals market growth, trends and forecasts

(2016–2021). Mordor Intelligence, Hyderabad

2. Research and Markets (2013) Biopharmaceuticals – a global market overview. Research and

Markets, Dublin

3. Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody

conformation and stability. MAbs 3:568–576

4. Sareneva T, Pirhonen J, Cantell K, Julkunen I (1995) N-glycosylation of human interferon-

gamma: glycans at Asn-25 are critical for protease resistance. Biochem J 308(Pt 1):9–14

5. Onitsuka M, Kawaguchi A, Asano R, Kumagai I, Honda K, Ohtake H, Omasa T (2013)

Glycosylation analysis of an aggregated antibody produced by Chinese hamster ovary cells in

bioreactor culture. J Biosci Bioeng 117:639–644

6. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric

interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog

21:22–30

7. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for

genetic engineering. Trends Biotechnol 15:26–32

8. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM,

Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA (2008)

Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J

Med 358:1109–1117

9. Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1995) Immunogenicity of N-glycolylneuraminic

acid-containing carbohydrate chains of recombinant human erythropoietin expressed in

Chinese hamster ovary cells. J Biochem 117:59–62

10. Sola RJ, Griebenow K (2010) Glycosylation of therapeutic proteins: an effective strategy to

optimize efficacy. BioDrugs 24:9–21

11. Ratner M (2014) Genentech’s glyco-engineered antibody to succeed Rituxan. Nat Biotechnol
32:6–7

12. Butler M (2015) Serum and protein free media. In: Al-Rubeai M (ed) Animal cell culture,

Cell engineering, vol.9. Springer, Dordrecht, pp 223–236

13. van Berkel PH, Gerritsen J, Perdok G, Valbjorn J, Vink T, van de Winkel JG, Parren PW

(2009) N-linked glycosylation is an important parameter for optimal selection of cell lines

producing biopharmaceutical human IgG. Biotechnol Prog 25:244–251

14. Davidson SK, Hunt LA (1985) Sindbis virus glycoproteins are abnormally glycosylated in

Chinese hamster ovary cells deprived of glucose. J Gen Virol 66(Pt 7):1457–1468

15. Rearick JI, Chapman A, Kornfeld S (1981) Glucose starvation alters lipid-linked oligosac-

charide biosynthesis in Chinese hamster ovary cells. J Biol Chem 256:6255–6261

16. Curling EM, Hayter PM, Baines AJ, Bull AT, Gull K, Strange PG, Jenkins N (1990)

Recombinant human interferon-gamma. Differences in glycosylation and proteolytic

processing lead to heterogeneity in batch culture. Biochem J 272:333–337

17. Hayter PM, Curling EM, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM, Bull AT

(1992) Glucose-limited chemostat culture of Chinese hamster ovary cells producing recom-

binant human interferon-gamma. Biotechnol Bioeng 39:327–335

18. Tachibana H, Kim JY, Shirahata S (1997) Building high affinity human antibodies by altering

the glycosylation on the light chain variable region in N-acetylglucosamine-supplemented

hybridoma cultures. Cytotechnology 23:151–159

19. Liu B, Spearman M, Doering J, Lattova E, Perreault H, Butler M (2014) The availability of

glucose to CHO cells affects the intracellular lipid-linked oligosaccharide distribution, site

occupancy and the N-glycosylation profile of a monoclonal antibody. J Biotechnol 170:17–27

20. Villacres C, Tayi VS, Lattova E, Perreault H, Butler M (2015) Low glucose depletes glycan

precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO cell

culture. Biotechnol J 10:1051–1066

28 M. Butler and U. Reichl



21. Kochanowski N, Blanchard F, Cacan R, Chirat F, Guedon E, Marc A, Goergen JL (2008)

Influence of intracellular nucleotide and nucleotide sugar contents on recombinant interferon-

gamma glycosylation during batch and fed-batch cultures of CHO cells. Biotechnol Bioeng

100:721–733

22. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolic

effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese

hamster ovary cells. Biotechnol Bioeng 62:336–347

23. Wong DCF, Wong KTK, Goh LT, Heng CK, Yap MGS (2005) Impact of dynamic online

fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell

cultures. Biotechnol Bioeng 89:164–177

24. Grammatikos SI, Valley U, Nimtz M, Conradt HS, Wagner R (1998) Intracellular UDP-N-

acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on

protein glycosylation. Biotechnol Prog 14:410–419

25. Ryll T, Valley U, Wagner R (1994) Biochemistry of growth inhibition by ammonium ions in

mammalian cells. Biotechnol Bioeng 44:184–193

26. Yang M, Butler M (2002) Effects of ammonia and glucosamine on the heterogeneity of

erythropoietin glycoforms. Biotechnol Prog 18:129–318

27. Zanghi JA, Mendoza TP, Knop RH, Miller WM (1998) Ammonia inhibits neural cell

adhesion molecule polysialylation in Chinese hamster ovary and small cell lung cancer

cells. J Cell Physiol 177:248–263

28. Taschwer M, Hackl M, Hernandez Bort JA, Leitner C, Kumar N, Puc U, Grass J, Papst M,

Kunert R, Altmann F, Borth N (2012) Growth, productivity and protein glycosylation in a

CHO EpoFc producer cell line adapted to glutamine-free growth. J Biotechnol 157:295–303

29. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic

control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol

Bioeng 73:188–202

30. Hills AE, Patel A, Boyd P, James DC (2001) Metabolic control of recombinant monoclonal

antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75:239–251

31. Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant

monoclonal antibody N-glycosylation. Biotechnol Bioeng 110:2970–2983

32. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den

Bremer ET, Gerritsen J, van Berkel PH (2011) Modulation of antibody galactosylation

through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng

108:1591–1602

33. Wong NS, Wati L, Nissom PM, Feng HT, Lee MM, Yap MG (2010) An investigation of

intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor

feeding. Biotechnol Bioeng 107:321–336

34. Pels Rijcken WR, Overdijk B, van den Eijnden DH, Ferwerda W (1995) The effect of

increasing nucleotide-sugar concentrations on the incorporation of sugars into

glycoconjugates in rat hepatocytes. Biochem J 305(Pt 3):865–870

35. Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster

ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58:642–648

36. Fan Y, del Val Jimenez I, Muller C, Wagtberg Sen J, Rasmussen SK, Kontoravdi C,

Weilguny D, Andersen MR (2015) Amino acid and glucose metabolism in fed-batch CHO

cell culture affects antibody production and glycosylation. Biotechnol Bioeng 112:521–535

37. Abdel Rahman AM, RyczkoM, Nakano M, Pawling J, Rodrigues T, Johswich A, Taniguchi N,

Dennis JW (2015) Golgi N-glycan branching N-acetylglucosaminyltransferases I, V and VI

promote nutrient uptake and metabolism. Glycobiology 25:225–240

38. Kiss R, Magreta P, Gray B, Stupp T, Kaneshiro S, Ryll T (1999) Control of glycosylation by

environmental manipulations in CHO cell cultures: ll culture effects on the glycosylation.

American Chemical Society, Division of Biochemical Technology, Anaheim

Animal Cell Expression Systems 29



39. Clark KJ, Griffiths J, Bailey KM, Harcum SW (2005) Gene-expression profiles for five key

glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine

trap. Biotechnol Bioeng 90:568–577

40. Kildegaard HF, Fan Y, Sen JW, Larsen B, Andersen MR (2016) Glycoprofiling effects of

media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng

113:359–366

41. Liu J, Wang J, Fan L, Chen X, Hu D, Deng X, Poon HF, Wang H, Liu X, Tan WS (2015)

Galactose supplementation enhance sialylation of recombinant Fc-fusion protein in CHO

cell: an insight into the role of galactosylation in sialylation. World J Microbiol Biotechnol

31:1147–1156

42. Majid FA, Butler M, Al-Rubeai M (2007) Glycosylation of an immunoglobulin produced

from a murine hybridoma cell line: the effect of culture mode and the anti-apoptotic gene,

bcl-2. Biotechnol Bioeng 97:156–169

43. Raju S (2003) Glycosylation variations with expression systems and their impact on bioac-

tivity of therapeutic immunoglobulins. Bioproc Int 1:44–53

44. Crowell CK, Grampp GE, Rogers GN, Miller J, Scheinman RI (2007) Amino acid and

manganese supplementation modulates the glycosylation state of erythropoietin in a CHO

culture system. Biotechnol Bioeng 96:538–549

45. Brooks SA (2004) Appropriate glycosylation of recombinant proteins for human use: impli-

cations of choice of expression system. Mol Biotechnol 28:241–255

46. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A (2012) Production platforms for

biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.

Biotechnol Genet Eng Rev 28:147–175

47. Lin N, Mascarenhas J, Sealover NR, George HJ, Brooks J, Kayser KJ, Gau B, Yasa I,

Azadi P, Archer-Hartmann S (2015) Chinese hamster ovary (CHO) host cell engineering to

increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase

expression. Biotechnol Prog 31:334–346

48. Lewis AM, Croughan WD, Aranibar N, Lee AG, Warrack B, Abu-Absi NR, Patel R, Drew B,

Borys MC, Reily MD, Li ZJ (2016) Understanding and controlling sialylation in a CHO

Fc-fusion process. PLoS One 11:e0157111

49. Kunkel JP, Jan DC, Jamieson JC, Butler M (1998) Dissolved oxygen concentration in serum-

free continuous culture affects N-linked glycosylation of a monoclonal antibody. J

Biotechnol 62:55–71

50. Raymond C, Robotham A, Spearman M, Butler M, Kelly J, Durocher Y (2015) Production of

alpha2,6-sialylated IgG1 in CHO cells. MAbs 7:571–583

51. Yin B, Gao Y, Chung CY, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF,

Andersen MR, Zhang H, Betenbaugh MJ (2015) Glycoengineering of Chinese hamster

ovary cells for enhanced erythropoietin N-glycan branching and sialylation. Biotechnol

Bioeng 112:2343–2351

52. Mimura Y, Kelly RM, Unwin L, Albrecht S, Jefferis R, Goodall M, Mizukami Y, Mimura-

Kimura Y, Matsumoto T, Ueoka H, Rudd PM (2016) Enhanced sialylation of a human

chimeric IgG1 variant produced in human and rodent cell lines. J Immunol Methods

428:30–36

53. Butler M, Spier RE (1984) The effects of glutamine utilisation and ammonia production on

the growth of BHK cells in microcarrier cultures. J Biotechnol 1:187–196

54. Doyle C, Butler M (1990) The effect of pH on the toxicity of ammonia to a murine

hybridoma. J Biotechnol 15:91–100

55. Andersen DC, Goochee CF (1994) The effect of cell-culture conditions on the oligosaccha-

ride structures of secreted glycoproteins. Curr Opin Biotechnol 5:546–549

56. Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin produc-

tion, and glycosylation. Biotechnol Bioeng 68:370–380

30 M. Butler and U. Reichl



57. Valley U, Nimtz M, Conradt HS, Wagner R (1999) Incorporation of ammonium into

intracellular UDP-activated N-acetylhexosamines and into carbohydrate structures in glyco-

proteins. Biotechnol Bioeng 64:401–417

58. Brodsky AN, Caldwell M, Bae S, Harcum SW (2014) Glycosylation-related genes in NS0

cells are insensitive to moderately elevated ammonium concentrations. J Biotechnol

187:78–86

59. McDermott RH, Butler M (1993) Uptake of glutamate, not glutamine synthetase, regulates

adaptation of mammalian cells to glutamine-free medium. J Cell Sci 104(Pt 1):51–58

60. Ha TK, Lee GM (2014) Effect of glutamine substitution by TCA cycle intermediates on the

production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. J

Biotechnol 180:23–29

61. Aghamohseni H, Ohadi K, Spearman M, KRAHN N, Moo-Young M, Scharer JM, Butler M,

Budman HM (2014) Effects of nutrient levels and average culture pH on the glycosylation

pattern of camelid-humanized monoclonal antibody. J Biotechnol 186:98–109

62. Borys MC, Linzer DI, Papoutsakis ET (1993) Culture pH affects expression rates and

glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary

(CHO) cells. Biotechnology 11:720–724

63. Seo JS, Kim YJ, Cho JM, Baek E, Lee GM (2013) Effect of culture pH on recombinant

antibody production by a new human cell line, F2N78, grown in suspension at 33.0� C and

37.0� C. Appl Microbiol Biotechnol 97:5283–5291

64. Zalai D, Hever H, Lovasz K, Molnar D, Wechselberger P, Hofer A, Parta L, Putics A, Herwig

C (2016) A control strategy to investigate the relationship between specific productivity and

high-mannose glycoforms in CHO cells. Appl Microbiol Biotechnol 100:7011–7024

65. Sou SN, Sellick C, Lee K, Mason A, Kyriakopoulos S, Polizzi KM, Kontoravdi C (2015)

How does mild hypothermia affect monoclonal antibody glycosylation? Biotechnol Bioeng

112:1165–1176

66. Heidemann R, Lutkemeyer D, Buntemeyer H, Lehmann J (1998) Effects of dissolved oxygen

levels and the role of extra- and intracellular amino acid concentrations upon the metabolism

of mammalian cell lines during batch and continuous cultures. Cytotechnology 26:185–197

67. Jan DC, Petch DA, Huzel N, Butler M (1997) The effect of dissolved oxygen on the metabolic

profile of a murine hybridoma grown in serum-free medium in continuous culture. Biotechnol

Bioeng 54:153–164

68. Chotigeat W, Watanapokasin Y, Mahler S, Gray PP (1994) Role of environmental conditions

on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced

by recombinant CHO cells. Cytotechnology 15:217–221

69. Kunkel JP, Yan WY, Butler M, Jamieson JC (2003) Decreased monoclonal IgG1

galactosylation at reduced dissolved oxygen concentration is not a result of lowered

galactosyltransferase activity in vitro. Glycobiology 13:875

70. Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the

glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

71. Weng S, Spiro RG (1996) Endoplasmic reticulum kifunensine-resistant alpha-mannosidase is

enzymatically and immunologically related to the cytosolic alpha-mannosidase. Arch

Biochem Biophys 325:113–123

72. Zhou Q, Shankara S, Roy A, Qiu H, Estes S, Mcvie-Wylie A, Culm-Merdek K, Park A,

Pan C, Edmunds T (2008) Development of a simple and rapid method for producing

non-fucosylated oligomannose containing antibodies with increased effector function.

Biotechnol Bioeng 99:652–665

73. van Leeuwen JE, Kearse KP (1997) Reglucosylation of N-linked glycans is critical for

calnexin assembly with T cell receptor (TCR) alpha proteins but not TCRbeta proteins. J

Biol Chem 272:4179–4186

74. Crispin M, Harvey DJ, Chang VT, Yu C, Aricescu AR, Jones EY, Davis SJ, Dwek RA, Rudd

PM (2006) Inhibition of hybrid- and complex-type glycosylation reveals the presence of the

GlcNAc transferase I-independent fucosylation pathway. Glycobiology 16:748–756

Animal Cell Expression Systems 31



75. Krahn N, Spearman M, Meier M, Dorion-Thibaudeau J, McDougall M, Patel TR, de

Crescenzo G, Durocher Y, Stetefeld J, Butler M (2017) Inhibition of glycosylation on a

camelid antibody uniquely affects its FcgammaRI binding activity. Eur J Pharm Sci

96:428–439

76. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov

Today 15:773–780

77. Gerdtzen ZP (2012) Modeling metabolic networks for mammalian cell systems: general

considerations, modeling strategies, and available tools. Adv Biochem Eng Biotechnol

127:71–108

78. Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R,

Dickson AJ (2015) Metabolite profiling of CHO cells: molecular reflections of bioprocessing

effectiveness. Biotechnol J 10:1434–1445

79. Stanley P (2011) Golgi glycosylation. Cold Spring Harb Perspect Biol 3:a005199

80. Hossler P, Mulukutla BC, Hu WS (2007) Systems analysis of N-glycan processing in

mammalian cells. PLoS One 2:e713

81. Spahn PN, Hansen AH, Hansen HG, Arnsdorf J, Kildegaard HF, Lewis NE (2016) A Markov

chain model for N-linked protein glycosylation--towards a low-parameter tool for model-

driven glycoengineering. Metab Eng 33:52–66

82. Hossler P, Goh LT, Lee MM, Hu WS (2006) GlycoVis: visualizing glycan distribution in the

protein N-glycosylation pathway in mammalian cells. Biotechnol Bioeng 95:946–960

83. Burleigh SC, van de Laar T, Stroop CJ, van GrunsvenWM, O’Donoghue N, Rudd PM, Davey

GP (2011) Synergizing metabolic flux analysis and nucleotide sugar metabolism to under-

stand the control of glycosylation of recombinant protein in CHO cells. BMC Biotechnol

11:95

84. Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis.

Biotechnol Bioeng 55:890–908

85. Krambeck FJ, Bennun SV, Narang S, Choi S, Yarema KJ, Betenbaugh MJ (2009) A

mathematical model to derive N-glycan structures and cellular enzyme activities from mass

spectrometric data. Glycobiology 19:1163–1175

86. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation.

Biotechnol Bioeng 92:711–728

87. McDonald AG, Hayes JM, Bezak T, Gluchowska SA, Cosgrave EF, Struwe WB, Stroop CJ,

Kok H, van de Laar T, Rudd PM, Tipton KF, Davey GP (2014) Galactosyltransferase 4 is a

major control point for glycan branching in N-linked glycosylation. J Cell Sci 127:5014–5026
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Abstract Mammalian expression systems such as Chinese hamster ovary (CHO),
mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role
in the biotechnology industry as the production host of choice for recombinant protein
therapeutics. Most of the recombinant biologics are glycoproteins that contain complex
oligosaccharide or glycan attachments representing a principal component of product
quality. Both N-glycans and O-glycans are present in these mammalian cells, but the
engineering of N-linked glycosylation is of critical interest in industry and many efforts
have been directed to improve this pathway. This is because altering the N-glycan
composition can change the product quality of recombinant biotherapeutics in mamma-
lian hosts. In addition, sialylation and fucosylation represent components of the glyco-
sylation pathway that affect circulatory half-life and antibody-dependent cellular
cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation,
sialylation, and fucosylation networks in mammalian cells, specifically CHO cells,
which are extensively used in antibody production. Next, genetic engineering technol-
ogies used in CHO cells to modulate glycosylation pathways are described. We provide
examples of their use in CHO cell engineering approaches to highlight these technolo-
gies further. Specifically, we describe efforts to overexpress glycosyltransferases and
sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally,
this chapter covers new strategies and future directions of CHO cell glycoengineering,
such as the application of glycoproteomics, glycomics, and the integration of ‘omics’
approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells.

Graphical Abstract

Keywords Chinese hamster ovary, CHO, CRISPR/Cas9, Fucosylation,
Glycoengineering, Glycomics, Glycoproteomics, Mammalian expression systems,
N-linked glycosylation, O-linked glycosylation, Sialylation, TALEN, ZFN
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Abbreviations

ADCC Antibody-dependent cellular cytotoxicity
Asn Asparagine
BHK Baby hamster kidney
CDC Complement-dependent cytotoxicity
CHO Chinese hamster ovary
CMP-SAT cytidine 50-monophosphate (CMP)-sialic acid transporter
CRISPR Clustered regularly interspaced short palindromic repeats
Dol-P Dolichol phosphate
EPO Erythropoietin
ER Endoplasmic reticulum
ESI-MS Electrospray ionization mass spectrometry
Fc Fragment crystallizable
FcγRIIIa Fc gamma receptor IIIa
FUT8 α-1,6-fucosyltransferase
FX GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-

galactose reductase
GFPP GDP-fucose pyrophosphorylase
GFT GDP-fucose transporter
GlcNAc N-acetylglucosamine
GMD GDP-fucose 4,6-dehydratase
GNE/MNK Uridine diphosphate-N-acetyl glucosamine 2-epimerase/N-

acetyl mannosamine kinase
GnT-1 or Mgat1 N-acetylglucosaminyltransferase I
GnT-II or Mgat2 Beta-1,2-N-acetylglucosaminyltransferase II
GnT-III or Mgat3 Beta-1,4-N-acetylglucosaminyltransferase III
GnT-IV or Mgat 4 Beta-1,2-N-acetylglucosaminyltransferase IV
GnT-V or Mgat 5 Beta-1,2-N-acetylglucosaminyltransferase V
HEK Human embryonic kidney
HNF1-alpha Hepatocyte nuclear factor 1-alpha
HPLC High-performance liquid chromatography
LacNAc Acetyl lactosamine
mAb Monoclonal antibody
MALDI-TOF Matrix-assisted laser desorption/ionization time-of-flight
ManII Alpha-mannosidase II
Neu5Gc N-glycolylneuraminic acid
NK Natural killer
OST Oligosaccharyltransferase
RCA-I Ricinus communis agglutinin I
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Ser Serine
shRNA Short hairpin RNA
siRNA Small interfering RNA
SPEG Solid phase extraction of glycosylated peptides
TALEN Transcription activator-like effector nuclease
Thr Threonine
tPA Tissue plasminogen activator
ZFN Zinc finger nuclease

1 Introduction

Both N-glycosylation and O-glycosylation pathways serve as key targets for mam-
malian cell engineering efforts. The efficiency and control of glycosylation in
recombinant protein production is critical, because changes in protein glycosylation
can affect circulatory half-life, bioactivity, and product quality. Improving the
degree of glycosylation and sialylation can reduce clearance of the therapeutic
product from the patient. Additionally, control of glycan antennarity helps to
maintain lot-to-lot consistency during the drug production. Controlling fucosylation
has important effects on therapeutic efficacy by regulating antibody-dependent
cellular cytotoxicity (ADCC). Decreasing core fucosylation can improve antibody
effector function and clinical efficacy. In summary, glycosylation control is crucial
during the process of biotherapeutics development. This section introduces the
Chinese hamster ovary (CHO) glycosylation pathway, as well as the importance of
sialylation and fucosylation.

1.1 Glycosylation

Therapeutic glycoproteins include several classes, such as monoclonal antibodies
(mAbs), immunoglobulin G fragment crystallizable domain (Fc)-fusion proteins
(Fc-fusion proteins), enzymes, hormones, cytokines, growth factors, and hormones
[1–3]. Overall, the biotechnology industry generates billions of dollars of sales from
these glycoproteins [4]. The increasing demand for biotherapeutics for the treatment
of cancer, autoimmune disorders, infectious diseases, genetic disorders, and meta-
bolic disorders requires the development and precise control of glycotherapeutics
production.

An overview of both N-glycosylation and O-glycosylation is shown in Fig. 1.
During N-glycosylation, various carbohydrate chains are added to asparagine (Asn)
[5] residues of proteins [5]. In contrast, O-glycosylation involves the addition of
carbohydrate chains to serine (Ser) or threonine (Thr) [6]. While N-glycans are the
most common modification in biotherapeutics such as mAbs, there are examples of
therapeutic glycoproteins, such as erythropoietin (EPO) and etanercept, that also
contain O-glycosylation [7]. Glycosylation is a critical post-translational modifi-
cation found in most biotherapeutics; interestingly, the cellular process generates
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structural diversity that includes a number of different structures even for a single
protein from one organism. The variety of glycoforms expands dramatically when
the protein is produced in another host cell or species even under different reactor
conditions. Most importantly, the pattern of glycosylation can play a major role in
modulating a number of product quality characteristics [8].

A prerequisite for N-glycosylation is the requirement that N-glycans be linked to
the Asn of the Asn-X-Ser/Thr consensus sequence, where X represents any amino
acid except for proline [9]. A similar consensus sequence for O-linked glycosylation
has not been identified [8]. As proteins are processed through the endoplasmic
reticulum (ER) and Golgi apparatus prior to secretion, a number of enzymes can
act to shorten or extend the N-glycan chain, as shown in Fig. 2. Since the enzymes do
not act on every protein that traverses a particular compartment, the stochastic nature
of the interactions creates heterogeneity, owing to the variability in glycosylation site
occupancy and the diversity of glycoforms that are formed during passage through
the secretory apparatus. In addition, there is continuous interplay between enzymes
and oligosaccharide substrates. Since more than one enzyme can act on a glycan
substrate, a wide arsenal of glycoproteins can be generated [10, 11].

The complex N-linked glycosylation reaction network shown in Fig. 2 involves
glycosidases and glycosyltransferases that catalyze enzymatic modifications in dif-
ferent cellular compartments. First, the biosynthesis of mammalian N-glycans begins
with the transfer of N-acetylglucosamine-1-phosphate (GlcNAc-P) from uridine
diphosphate-N-acetylglucosamine (UDP-GlcNAc) to the dolichol phosphate
(Dol-P) lipid carrier to generate dolichol pyrophosphate N-acetylglucosamine
(Dol-P-P-GlcNAc) at the cytoplasmic face of the ER membrane [12]. Next, sugars
are sequentially added to Dol-P-P-GlcNAc to form an oligosaccharide precursor

Fig. 1 Examples of N- and O-linked glycosylation. N-linked glycosylation involves the asparagine
(Asn) [5] residue, whereas O-linked glycans extend from serine (Ser) or threonine (Thr) residues.
GlcNAc: N-acetylglucosamine, GalNAc: N-acetylgalactosamine
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known as Dol-P-P-GlcNAc2Man5 [12]. The structure is then flipped to the ER side
and further extended to generate Glc3Man9GlcNAc2-P-P-Dol.
Oligosaccharyltransferase (OST) identifies the consensus sequence (Asn-X-Ser/
Thr) in the nascent polypeptide and transfers Glc3Man9GlcNAc2 from the
dolichol-linked donor to the side chain amide of Asn, while releasing the Dol-P-P
during the process [13]. The glucose residues on the precursor are then sequentially
trimmed by ER alpha-glucosidase I and ER alpha-glucosidase II to form a
monoglucosylated glycan. This intermediate plays a role in the ER lectin chaperones
calnexin/calreticulin-associated glycoprotein folding control cycle [14]. When the
precursor is folded, it is next trimmed to yield Man8GlcNAc2-protein before exiting
the ER; this step is catalyzed by ER alpha-mannosidase I. The Man8GlcNAc2
glycoform is translocated into the cis-Golgi apparatus, where it is trimmed again,
to Man5GlcNAc2, a key intermediate along the pathway to form hybrid and complex
N-glycans, and sometimes found as a final glycan product; this step is catalyzed by
Golgi alpha-mannosidases I.

Glucose Fucose Mannose Galactose GlcNAc Sialic acid

Endoplasmic Reticulum

Golgi Apparatus

Fucose Mannose Galactose GlcNAc Sialic acid

ER Man I

Man I GnT I FucT C6 Man II GnT II β4GalT SiaT

Glc I/II

Endoplp asmic Reticulum

Golgi Apparatus

Man I GnT I FucT C6 Man II GnT IIMan I G T I F T C6 Man II GnT II ββ4GalT4GalT SiaTSiaT

ERER ManMan IIGlGlc I/I/IIII

Fig. 2 Overview of N-linked glycosylation generating biantennary sialylated glycans. During
N-linked glycosylation, various enzymes extend and trim the glycoprotein as it passes from the
endoplasmic reticulum to the Golgi apparatus. Abbreviations: Glc I/II glucosidase I/II, ER Man I
endoplasmic reticulum mannosidase I, Man I mannosidase I, GnT I N-acetylglucosaminyl-
transferase I, FucT C6 α(1,6)-fucosyltransferase, Man II mannosidase II, GnT II N-acetylgluco-
saminyltransferase II, β4GalT β-1,4-galactosyltransferase, SiaT sialyltransferase
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In order to generate hybrid and complex N-glycans, N-acetylglucosaminyl-
transferase I (GnT-1 or Mgat1) is required to add GlcNAc to Man5GlcNAc2 in the
medial Golgi apparatus [12]. N-Glycans are trimmed by Golgi alpha-mannosidase II,
which removes two mannoses from GlcNAcMan5GlcNAc2 to generate GlcNAc-
Man3GlcNAc2. Hybrid N-glycans result from the incomplete removal of mannose
residues, which occurs when a structure such as GlcNAcMan5GlcNAc2 undergoes
no further extension or trimming and the structure ends up with one or two terminal
Man residues. In an alternative process, GlcNAc can be added to the innermost Man
group by the enzyme beta-1,4-N-acetylglucosaminyltransferase III (GnT-III or
Mgat3) in the medial Golgi apparatus, a process which generates bisecting GlcNAc
structures that alter the capacity for other downstream enzymes to act on the glycan
structure.

The precursor for all multi-antennary complex N-glycans is
GlcNAc2Man3GlcNAc2, which is generated by the action of beta-1,2-N-
acetylglucosaminyltransferase II (GnT-II or Mgat2) that adds GlcNAc to the
GlcNAcMan3GlcNAc2 structure. Tri-antennary and tetra-antennary branches are
created through the addition of GlcNAc at the alpha-(1,3)-mannose site by
N-acetylglucosaminyltransferase IV (GnT-IV or Mgat 4) and at the alpha-(1,6)-
mannose site by N-acetylglucosaminyltransferase V (GnT-V or Mgat 5).

There can be further modifications, such as fucosylation, branch extension, and
sialylation, which generate even more complex glycans. Fucosylation occurs in the
trans Golgi apparatus with the addition of core alpha-(1,6)-fucose to the GlcNAc
adjacent to Asn of the N-glycan by alpha-(1,6)-fucosyltransferase. Branch extension
involves the addition of a beta-linked galactose residue to GlcNAc, which yields
Gal-beta-1-4GlcNAc, also known as acetyl lactosamine (LacNAc). For sialylation,
terminal Gal residues can be acted upon by alpha-(2,3)- or alpha-(2,6)-
sialyltransferases that add sialic acid residues to the glycan [12].

One reason for the widespread use of CHO cell lines in biotechnology is their
capacity to produce complex glycans that are compatible with the human immune
system [1, 15]. Alternative mammalian cell lines can also produce
biopharmaceuticals, but their use is not as widespread in industry because of their
potential for immunogenicity and difficulty in manufacturing scale-up; examples
include baby hamster kidney (BHK), murine myeloma and hybridoma cell lines
(NS0 and Sp2/0), and human host cell lines, such as human embryonic kidney
(HEK-293) and human retinal cells (PER.C6) [1, 2, 16].

When glycans are generated outside of human hosts, it is critical to avoid the
production of non-human glycans, such as terminal Gal-alpha-1,3-Gal linkages
(alpha-Gal) and N-glycolylneuraminic acid (Neu5Gc) residues, which may result
in adverse immunogenic reactions if given to humans with a sensitivity to these
residues [1, 17]. Mouse cells such as NS0 have an alpha-1,3-galactosyltransferase
enzyme that produces glycans containing the alpha-Gal linkage [18]. The second
potential immunogenic reaction from Neu5Gc is common in all non-primate mam-
malian cells, owing to the presence of the enzyme N-acetylneuraminic acid hydro-
xylase, which converts cytidine monophosphate (CMP)-N-acetylneuraminic acid
(Neu5Ac) to CMP-Neu5Gc in all mammals other than old-world primates
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[1, 19]. Humans exhibit a circulating polyclonal anti-Neu5Gc antibody response, so
it is desirable to avoid Neu5Gc in biotherapeutics production [1, 17]. In contrast to
the alpha-Gal epitope, Neu5Gc can be metabolically incorporated into glycoforms
during cell culture from metabolites in cell culture media. Mouse myeloma cells
(NS0 and Sp2/0) thus exhibit the highest potential for immunogenicity because they
express higher levels of alpha-Gal and Neu5Gc than CHO cells, which can be an
issue if biotherapeutics with these modifications are provided to patients at large
doses or for long periods [19–21]. These subtle differences in glycosylation
processing are one of the principal reasons why CHO cells are preferred for
bioproduction.

Aside from immunogenic epitopes, glycosylation patterns in CHO cells and
humans often differ in other ways too [22]. One reason is that CHO cells lack
bisecting GlcNAc residues because they typically do not express GnT-III; the
resulting difference may affect the efficacy of the glycotherapeutics [23]. Human
cells contain GnT III and can produce glycans with bisecting GlcNAc; in compar-
ison, NS0 and SP2/0 cells are able to generate only a portion of glycans with
bisecting GlcNAc residues [24].

Overall, the glycoform profiles on glycoproteins can vary widely depending on
the cell lines, growth, and bioreactor conditions such as pH, temperature, media, and
feeding strategies. The interplay of various glycosylation enzymes is responsible for
the great diversity of glycoproteins. Some examples relevant to glycotherapeutics are
shown in Fig. 3. Specifically, the degree of antennarity varies across glycoproteins.
Glycosylation in biotherapeutics directly affects product quality because it plays a
role in solubility, stability, protease resistance [25], aggregation [1, 2], serum half-
life [26], immunogenicity [8], efficacy [27, 28], and ligand binding [29].

These impacts of glycosylation highlight the need for glycoengineering in order
to yield glycotherapeutics with consistent and desirable glycoform profiles. In the
next section of the chapter, we examine targets and review genetic engineering

Fig. 3 Examples of N-glycans with different antennarities. The differences between bi-antennary,
tri-antennary, and tetra-antennary glycoforms are shown. These correspond to 2, 3, and 4 branches,
respectively. Poly-N-acetyllactosamine (Poly-Lac)
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approaches to control glycosylation, such as increasing the expression of glycosyl-
ation and sialylation enzymes, or reducing the expression of sialidase cleavage and
fucosylation enzymes. Recently, multiple genes have been modified simultaneously,
and new strategies such as zinc finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs), and clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) offer new technologies for
glycoengineering applications.

1.2 Sialylation

Sialic acid addition is the final step of the N-glycosylation pathway. While both
Neu5Ac and Neu5Gc are present in CHO cells, humans lack Neu5Gc. Sialic acid is a
negatively charged acidic 9-carbon sugar moiety that is typically attached by an
alpha-glycosidic linkage on the C3- or C6-hydroxyl group of terminal galactose by
alpha-2,3-sialyltransferases (ST3) or alpha-1,6-sialyltransferases (ST6) individually
[30–33]. The sialic acid moiety may also on occasion be attached to the C8 position
of sialic acid to form sialic acid multimers, but this is not typically observed for
glycoprotein therapeutics [34]. As the terminal end cap, sialic acid is especially
relevant for the half-life and bioactivity of recombinant glycoproteins. The removal
of sialic acid by sialidase exposes the terminal galactose, and its cleavage often
decreases circulatory half-life. Without sialic acid capping the glycoprotein, the
galactose molecule is recognized by the hepatocyte asialoglycoprotein receptor
and is cleared from the body [32, 35, 36]. For improving the circulatory half-life
of recombinant therapeutics, preventing recognition by this receptor is desirable.
Additionally, fully sialylated glycoproteins can increase the size and overall charge
of the molecule. Therefore, it is often desirable to enhance or maximize sialylation in
CHO cells to improve the production of recombinant therapeutics [14]. Of course,
for the case of biosimilars, it may also be relevant to match the sialylation profile of
the innovator molecule. If the host cell line of the innovator and biosimilar are
different from each other, matching the sialylation profile can be even more difficult.
Therefore, both sialyltransferases and sialidases are targets for genetic engineering,
because they affect opposing processes.

1.3 Fucosylation

Fucosylation, or the addition of fucose to glycoforms, occurs through both de-novo
and salvage pathways. In the first pathway, D-glucose uptake into the cytoplasm
generates guanosine diphosphate (GDP)-mannose. The enzymes GDP-mannose
4,6-dehydratase and GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase convert
GDP-mannose into GDP-fucose [37]. In contrast, the salvage pathway utilizes
L-fucose from extracellular and lysosomal sources. Fucokinase phosphorylates
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L-fucose into L-fucose-1-phosphate, and GDP-fucose pyrophosphorylase (GFPP) con-
verts L-fucose-1-phosphate to GDP-fucose. GDP-fucose is subsequently transported to
the Golgi apparatus by the GDP-fucose transporter and fucose is added onto the
glycan chains of maturing glycoproteins by fucosyltransferases. Thus, enzymes are
important in fucosylation and they are also important targets for cell engineering.

This step of glycosylation is critically important for antibody fragment crystal-
lizable (Fc) receptor-mediated activity, which can strongly affect ADCC activity.
During ADCC, an antibody first binds to a cell-surface antigen and then recruits the
immune effector cells to destroy the target cells, such as cancer cells carrying
antigens recognized by antibodies. The Fc gamma receptor IIIa (FcγRIIIa) on natural
killer (NK) cells binds to the Fc region of the antibody, which region has a major
antibody effector function in the immune system. This binding results in lysis and
apoptosis of the targeted cell by NK-cell-mediated killing. A decrease of fucosyl-
ation at Asn297 in the antibody Fc domain significantly increased antibodies’
binding affinity to FcγRIIIa and, further, improved ADCC potency [38, 39, 40].

2 Technologies for Glycoengineering Through Gene
Knocking Down, In, and Out

Strategies for CHO glycoengineering include the knockdown or knockout of
enzymes such as sialidase or fucosyltransferase, along with the overexpression or
knocking-in of glycosylation enzymes, such as glycosyltransferases and sialyl-
transferases. Genetic engineering approaches, including small interfering RNA
(siRNA), short hairpin RNA (shRNA), ZFN, TALEN, and CRISPR/Cas9, aim to
modify gene expression [37, 41–51], while other methods can amplify the expres-
sion of a target gene, such as by overexpression and knockin. Both siRNA and
shRNA have extensive use in decreasing gene expression, thus playing a role in both
reduced fucosylation and sialidase cleavage. Table 1 compares the current

Table 1 Comparison of genetic engineering technologies

Technology Established Design Specificity
On-
target

Target
site Reference

Zinc finger nucleases
(ZFN)

2003 Hard Low Low-
medium

18–36 bp [46, 47,
51]

Transcription
activator-like effector
nucleases (TALEN)

2011 Easy Medium-
high

Medium-
high

24–38 bp [48, 51]

Clustered regularly
interspersed short pal-
indromic repeats
(CRISPR)/CRISPR-
associated protein-9
(Cas9)

2013 Easy High High >22 bp [49–51]
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technologies for ZFN, TALEN, and CRISPR/Cas9, all of which can be used to
modify expression in glycosylation pathways.

As an example, fucosylation is often controlled by gene knockdown and knock-
out strategies. The removal of core fucose can be highly advantageous for improving
the therapeutic efficacy of mAbs. The core fucosylation is defined by the transferring
of fucose from GDP-fucose to GlcNAc in an α-1,6 linkage catalyzed by an α-1,6-
fucosyltransferase (encoded by α-1,6-fucosyltransferase [FUT8]). In one study,
overexpression of GnT-III was able to compete with native fucosyltransferase and
produce a afucosylated antibody [52]. The results in that study indicated that GnT-III
inhibited the core FUT8, increasing the production of a bisected afucosylated
antibody with enhanced ADCC activity [52]. Coexpression of GnT-III with Golgi
alpha-mannosidase II (ManII) resulted in more complex oligosaccharides compared
with the expression of GnT-III alone [52]. The overall results indicate the importance
of decreased fucosyltransferase activity for improving ADCC. A number of strate-
gies can be implemented to lower or silence fucosyltransferase activity, including
siRNA, shRNA, ZFN, TALEN, and CRISPR/Cas9 [37, 41–51].

2.1 siRNA

siRNA can be used as a transient or a stable method to suppress specific gene
expression using RNA interference. Two siRNA sequences were found that reduced
the expression of FUT8 in CHO DG44 cells to 20% of the level in parental controls
[45]. The decrease in mRNA expression corresponded to a 40% fucosylated anti-
body with 100 times the ADCC of that for control cells [45]. Additionally, clone
stability was demonstrated, as the ability to produce antibody with decreased
fucosylation continued over repeated passages and fed-batch culture [45]. Interest-
ingly, FUT8 knockdown was more effective in the exponential phase than in the
stationary phase of culture [45]. In summary, this siRNA approach did not
completely knockout FUT8 expression, but the decreased expression resulted in
decreased fucosylation and enhanced ADCC.

In another study, a CHO cell line, also with FUT8 knocked down using siRNA,
was created and compared with two lectin-mutated defucosylation cell lines—an
endogenous GDP-fucose 4,6-dehydratase (GMD)-deficient cell line (Lec13) and an
endogenous GnT-1-deficient cell line (Lec1) [41, 53]. These lectin-mutated cell lines
produced afucosylated antibody, but over culture time, the percentage of fucosylated
antibody increased [41]. In contrast, in this study, the FUT8 siRNA cell line
produced completely afucosylated antibody throughout cell culture [41]. Subsequent
scaling of the experiment to bioreactors with pH and dissolved oxygen control
yielded similar results, including afucosylated antibody and enhanced ADCC,
from the FUT8 siRNA cells [41]. Thus, siRNA is an important tool for controlling
fucosylation at different scales in bioprocess development.
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Moreover, three key enzymes in the fucosylation pathways in CHO cells have
been identified, and knockdown of these key enzymes—FUT8, GDP-fucose trans-
porter (GFT), and GDP-fucose 4,6-dehydratase (GMD)—using separate siRNA
vectors, has also been achieved to study the effect on fucosylation of recombinant
glycoproteins. Both the FUT8 and GMD siRNA cell lines were separately found to
produce afucosylated antibodies [37]. In contrast, knockdown of 98% GFT expres-
sion at the mRNA level yielded only 40% reduction of the Fc fucosylated oligosac-
charide [37]. After it was demonstrated that GMD inhibition with siRNA removed
intracellular GDP-fucose and yielded afucosylated antibodies, it was shown that
GMD-KO CHO DG44 cells produced fucosylated antibodies upon medium supple-
mentation of L-fucose during culture [37]. Cell culture samples were obtained and
the level of UDP-glucose and the oligosaccharide profiles were determined with
high-performance liquid chromatography (HPLC) and matrix-assisted laser desorp-
tion/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS), respectively
[37]. These findings highlight that the degree of fucosylation can be controlled
through both cell engineering and media manipulation.

In related experiments, knockdown of FUT8, GFT, or GMD resulted in low
levels of fucosylated antibody [43]. Furthermore, the combined knockdown of FUT8
and GMD, using siRNA, synergistically improved the fraction of afucosylated
antibody [43]. From these results, a tandem expression vector was designed to
simultaneously knockdown FUT8 and GMD expression in CHO cells [43]. This
strategy produced completely afucosylated antibody at constant levels during pas-
saging and adaptation to serum-free medium for 2 months [43]. This result highlights
that combined knockdown of fucosylation enzymes can result in antibodies that are
completely devoid of fucosylation.

2.2 shRNA

One disadvantage of siRNA is the quick degradation of the RNA in the cell. shRNA
is more stable because, following transfection, the shRNA becomes an active double
strand. Using an alternative strategy,CHO DG44 cells transfected with FUT8
shRNA showed less than 5% FUT8 mRNA expression, which resulted in the
production of 12% fucosylated antibody and enhanced ADCC compared with that
in the parental cells [42]. Glycoform profiles were determined by electrospray
ionization mass spectrometry (ESI-MS) [42]. One benefit of shRNA over siRNA
technology is the extended efficacy of the former. Stability studies demonstrated that
FUT8 knockdown was maintained for over 4 weeks [42]. After prolonged culture,
the mRNA expression of FUT8 and the percentage of fucosylated antibody remained
consistently low [42]. Thus, it is possible to achieve significant reduction in antibody
fucosylation using either siRNA or shRNA.
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2.3 Random Mutagenesis and Homologous Recombination
Knockout Selection

Originally, the knockout of genes such as FUT8 required the screening of numerous
clones to find one in which the gene had been randomly mutated. Sequential
homologous recombination was used to knockout both alleles of FUT8 [44]. Gene
targeting by homologous recombination is a useful strategy to genetically modify
any chosen allele in a predetermined way without affecting any other locus in the
genome [54]. This strategy produced completely afucosylated antibodies, with
the growth and viability of the cell culture being similar to that in the parental
controls [44]. Assays to determine binding activity, ADCC, and complement-
dependent cytotoxicity (CDC) revealed no effect on the binding activity or CDC
of the FUT8�/� knockout, whereas the ADCC was increased 100-fold over that of a
commercial antibody, Rituxan (rituximab; Genentech), without the FUT8 knockout
[44]. The FUT8�/� knockout showed significantly stronger binding to FcγRIIIa
than the parental FUT8+/+ antibodies [44]. Additionally, knockout of one or both
alleles of FUT8 was compared and it was found that a hemizygous FUT8+/�
knockout did not reduce fucosylation completely [44]. Thus, knockout of both
FUT8 alleles can be used as a strategy to produce completely afucosylated antibody
therapeutics from CHO cells.

Mutants can also be used to understand glycosylation and identify new targets for
intervention. Treating CHO cells with the cytotoxic lectin Ricinus communis agglu-
tinin I (RCA-I), which is specific for terminal beta-1,4-linked galactose [55], was
designed to select mutants with defects in the N-glycosylation pathway upstream of
galactose addition. Surprisingly, RCA-I-resistant CHO mutants contained mutations
in the N-acetylglucosaminyltransferase I (GnT-I) gene similar to those in the Lec1
mutant [56]. Possibly, RCA-I may not be specific for terminal beta-1,4-linked
galactose, and may bind other glycan structures, except for Man5GlcNAc2
[57]. Without functional GnT-I, cells fail to transfer GlcNAc to Man5GlcNAc2. By
restoring functional GnT-I in these mutants, the sialic acid content of recombinant
proteins in transient expression and stably transfected clones increased [56]. While
the molecular mechanism for this phenomenon remains unknown [58], recombinant
EPO generated in the RCA-I-restored mutant cell line with GnT-1 exhibited an
increase in sialylation of 30% over the control [59]. In addition, the percentage of tri-
and tetra-antennary glycans on EPO produced by the GnT I-restored CHO-GnT
I-deficient cells increased, as measured by MS [59].

2.4 ZFNs

An alternative to random mutagenesis is to apply ZFN technology. Zinc fingers are
transcription factors that recognize three to four bases of a sequence and can be used
to target a specific sequence. ZFNs contain the zinc finger domain and FokI
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endonuclease domain, which must dimerize for activity that ensures specificity
[60]. In one of the initial applications, ZFNs were designed to eliminate FUT8
function [46]. The benefit of this technique is the applicability of the created ZFNs
to any CHO cell line [46]. The technology allows for targeting point mutations with
in-frame, short deletions [46]. Zinc finger-transfected cells had growth, antibody
productivity, and glycosylation patterns similar to those in the parental controls;
however, the antibodies produced were completely afucosylated [46].

In another experiment, ZFNs were used to generate CHO cell lines deficient in
mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase
(GnT-I) [47]. This resulted in the production of glycoproteins with high Man5
species [47]. Using ZFNs reduced off-target effects and maintained the same growth
and productivity as that in the parental cell line, thus demonstrating process robust-
ness and potential for scale-up [47]. An application of this knockdown is to generate
mannose receptor targeted biologics. ZFNs offer an alternative to generating knock-
outs and may have important applications in future cell engineering strategies to
control glycosylation.

2.5 TALENs

Another novel technology for genetic engineering is TALENs. This technology is
more flexible than ZFN technology, because TALENs are dimeric transcription
factor nucleases—composed of 33–35 amino acid modules—that can each target a
single nucleotide [60]. Many companies offer custom design of TALENs, thus
reducing the cost of TALENs compared with that of ZFNs. In recent research,
knockout of CHO FUT8 via the simultaneous TALEN-mediated integration of an
antibody cassette was demonstrated, and this process produced afucosylated anti-
bodies [61]. Another novel technology applied TALEN and precise integration into
target chromosome (PITCh) vector-mediated integration of long gene cassettes in
CHO cells [48]. Results showed over 9 kb whole plasmid integration and over 7 kb
backbone-free integration at the defined genomic locus, and the production of a
recombinant single-chain Fv (variable region)-Fc(constant region) protein [48]. The
method demonstrated the applicability of TALENs for high-throughput knockin of
large DNA into CHO cells. Thus, TALENs can serve as a beneficial tool for
biotechnology applications, such as improving the generation of high-producing
cell lines with desirable glycosylation.

2.6 CRISPR/Cas9

Finally, CRISPR/Cas9 represents one of the newest and most rapidly expanding
methods for genome engineering in CHO cells. First, Cas9 generates a double-strand
DNA break at a site determined by the guide RNA; the system is different from those
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of ZFNs or TALENs because it relies on bacterial adaptive immunity [60]. Multiple
guide RNAs can be used to facilitate simultaneous mutations, and the system can be
applied to activator or repressor domains to control gene expression [60]. One
potential disadvantage, however, is the shorter length of the guide RNA compared
with ZFNs and TALENs, which could result in off-target effects [60]. The first
published results of CRISPR/Cas9 genome editing in CHO cells demonstrated the
successful disruption of C1GALT1 specific chaperone 1 (COSMC) and FUT8
[49]. The single guide RNAs generated an indel frequency of 47.3% in COSMC
and 99.7% in FUT8 (with lectin selection) [49]. In addition, the bioinformatics tool
CRISPy was established to identify the single guide RNA sequences in the CHO
genome [49]. In related research, CRISPR/Cas9 was used to simultaneously disrupt
FUT8, BCL2 antagonist/killer, and BCL2 associated X in CHO cells [50]. Single
cell sorting revealed that, among 97 clones, there were 34 triple-, 23 double-, and
four single-disrupted cell lines [50]. The triple-disrupted clones were confirmed to
have removal of BAK and BAX, as well as decreased fucosylation [50]. Addition-
ally, the disrupted cell lines were more resistant to apoptosis than the parental cells
[50]. Further, instead of targeting the FUT8 gene, the knockout of key enzymes in
fucosylation pathways provided alternatives to suppress fucosylation, such as
knockout GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-D-
deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase (FX), which are
involved in the de-novo synthesis of GDP-fucose [62]. Disruption of both alleles
of the FX gene via CRISPR/Cas9 led to the expression of an antibody with fully
afucosylated glycan profiles [62]. CRISPR/Cas9 can thus serve as a useful tool for
glycoengineering, because of its potential to affect multiple genes involved in
glycosylation, sialylation, and fucosylation. These successes highlight the applica-
bility of CRISPR/Cas9 for genome editing.

Recently, the combination of ZFNs, TALENs, and CRISPR/Cas9 was used for
CHO glycoengineering to inactivate the GDP-fucose transporter and improve
ADCC [51]. Mass spectrometry was used to identify that the EPO-Fc and anti-
Her2 antibody produced in the modified cell lines lacked core fucosylation
[51]. Removal of the core fucose did not affect cell growth or productivity as
compared with these properties of the parental cell lines [51]. This experiment
shows that genome editing techniques are applicable to CHO glycoengineering
and can provide results that aid bioprocess development.

3 CHO Glycoengineering

CHO glycoengineering efforts aim to alter glycosylation steps by either increasing or
decreasing specific glycan attachment, including terminal sialylation, or, alter-
natively, by reducing the cleavage of sialic acid by sialidase. The previous section
highlighted the efforts made to reduce core fucosylation by gene knockdown and
knockout. Glycoengineering strategies are described in this section, including the
overexpression of glycosyltransferases, overexpression of galactosyltransferases,
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overexpression of sialyltransferases, and reduction in sialidase cleavage. These
modifications also include efforts to alter terminal sialylation by overexpression
or, alternatively, by reducing the cleavage of sialic acid by sialidase.

3.1 Overexpression of GnT Genes

During N-glycosylation, various monosaccharides are added to the oligosaccharide
chains of glycoproteins. One strategy to improve glycosylation was through the
overexpression of rat GnT-III in CHO DG44 cells producing recombinant antibody
[63]. Glycan analysis by HPLC revealed that most glycoproteins displayed bisecting
GlcNAc residues [63]. This resulted in a 10- to 20-fold improvement in ADCC, as
determined by the increased affinity of the antibody to Fcγ receptor III (FcγRIII),
without affecting cell growth or antibody productivity [63]. Similarly, increased
expression of GnT-III increased the bisecting GlcNAc residues [64–66]. Improving
the proportion of glycans that have GlcNAc residues has positive effects on thera-
peutic efficacy. Additionally, it has been shown that GnT-III competes with beta-
1,4-galactosyltrasferase; as bisecting GlcNAc residues increase, there is a concom-
itant decrease in the complexity of the glycans [64–66]. Even more importantly,
GnT-III will compete with the core FUT8 enzyme, which leads to decreased
fucosylation, while increasing bisecting GlcNAc residues. Ultimately, the reduction
in fucosylation may be the primary reason for the increased ADCC observed in the
CHO cells that overexpress GnT-III. Recently, GnT-III was coexpressed with
fucosyltransferase 7 in order to optimize glycoengineering by localizing the
glycosyltransferase in the Golgi machinery [67]. The approach was able to control
the N-glycans with defined structural motifs; the addition of bisecting GlcNAc, as
measured by HPLC and MS, resulted in an increased ADCC for the therapeutic
agent cetuximab [67].

GnT-IV and GnT-V are involved in multiantennary glycan formation [64–
66]. Overexpression of branching genes can increase complexity, as well as increas-
ing sialylation acceptor sites. Shown in Fig. 3 are examples of bi-, tri-, and tetra-
antennary structures. The structures include complex-type N-glycans with GlcNAc
that can be extended to contain the disaccharide Gal-beta-1,4-GlcNAc, sometimes
capped by a terminal sialic acid. The formation of tri- and tetra-antennary N-glycans
is controlled by the enzymatic actions of GnT-IV and GnT-V. Cell proliferation,
cell-surface signaling [23], cancer metastasis, regulation of T-cell activation [68],
and the rate of therapeutics clearance by the kidneys are all affected by the actions of
GnT-IV and GnT-V [69]. In one study, only a small fraction of glycoproteins
produced in a CHO cell line contained GlcNAc beta-1-6 branching controlled by
GnT-V [66]. This suggested genetic engineering approaches targeting GnTs might
serve to improve the production of recombinant therapeutics. Overexpression of
GnT-IV or GnT-V individually was found to increase the antennarity of the
glycoform profile, as determined by an increase in reactivity with Datura stramo-
nium agglutinin [70] lectin blot [64–66].
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In order to control the multi-antennary glycoforms of recombinant proteins, the
overexpression of GnT-IV and GnT-V was used in CHO cells producing human
interferon (IFN)-gamma and EPO [66, 71]. In both cases, tri- and tetra-antennary
sugar chains comprised more than 50% of the total sugar chains [71]. At the same
time, this resulted in higher levels of poly LacNAc [66, 71]. In another study, mouse
ST3 and/or rat ST6 were incorporated into CHO cell lines stably transfected with
GnT-V that were producing IFN-gamma [65]. Results showed that over 60% of the
glycoforms were sialylated with alpha-2,3- and alpha-2,6-linkages [65].

Recently, a combined approach was used to increase both branching and
sialylation in CHO-K1 cells producing EPO [71]. Both GnT-IV and GnT-V, as
well as human alpha-2,6-sialyltransferase (ST6Gal1) were incorporated in the
CHO-K1 cells, resulting in a pool of 92% N-glycans with tri- and tetra-antennarity
[71]. This also improved sialylation, as measured by an increase of 45% in tetra-
sialylation [71]. The approach showed that combining the genetic integration of
complementary genes could significantly enhance glycosylation branching complex-
ity, as well as enhancing overall improvements in sialylation.

O-linked glycosylation can also be modified through cell engineering approaches.
Although studies of O-glycosylation are limited, there are important biological
applications of O-glycans. During O-glycosylation, various carbohydrate chains
are added to the serine or threonine residues of proteins. Cell engineering strategies
have attempted to control O-glycosylation by altering GnT activity. In one experi-
ment, the core 2 beta1-6GlcNAc transferase (C2GnT) was overexpressed in CHO
DG44 cells [72]. The increase in enzyme activity was hypothesized to play a role in
T-cell activation and immunodeficiency [72]. In another study, the combined
overexpression of C2GnT and the knockdown of CMP-sialic acid: Gal-beta-1,3-
GalNAc-alpha-2,3-sialyltransferase (ST3Gal1) was evaluated in CHO-K1 cells
[73]. ST3Gal1 inhibition was predicted to redirect O-glycosylation toward the
production of tetrasaccharide structures important for cell-cell interaction
[73]. This experiment suggests that cell engineering can be used to simultaneously
upregulate and downregulate competing enzymes involved in glycosylation.

Recently, extended C1 beta-3 GnT-III, C2 beta-3 GnT-I, and C3 beta-3 beta-1,4-
N-acetylglucosaminyltransferase VI were transiently transfected into CHO cells and
the resulting O-glycome was mapped by MS [39]. This transfection experiment
resulted in extended core 1 and core 3 O-glycans, as well as the increased expression
of core 2 O-glycans [39]. Overall, these results suggest that cell engineering can be
applied to O-glycosylation in order to control the branching of glycans. This will aid
bioprocess developments to generate mucin-type recombinant proteins.
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3.2 Overexpression of Sialyltransferase
and Galactosyltransferase Genes

Glycoengineering by increasing the expression of sialyltransferase enzymes has
been an effective strategy to control sialylation; these enzymes add the sialic acid
(Neu5Ac) residue to the terminal galactose. There are six beta-galactoside alpha
2,3-sialyltransferases (ST3GAL1-6) and two beta-galactoside alpha-2,6-
sialyltransferases (ST6GAL1-2) that generate terminal sialic acids in mammalian
cells. Whereas human glycoproteins contain both alpha-2,3- and alpha-2,6-linked
sialic acid, CHO cells natively contain almost exclusively alpha-2,3-linked sialic
acid on their glycoproteins. This means that efforts to generate more human-like
glycoforms can be implemented in CHO cells. As stated above, normally, CHO cells
produce almost exclusively alpha-2,3-linked sialic acid, whereas in humans, glyco-
proteins represent a pool of alpha-2,3- and alpha-2,6-linked sialic acid. Rat alpha-
2,6-sialyltransferase was transfected into CHO cells producing tissue plasminogen
activator (tPA) and it was observed that competing glycosyltransferases yielded
glycoproteins with different sialic acid linkages [74]. Thus, recombinant proteins
with a mixture of alpha-2,3- and alpha-2,6- sialic acid can be generated; this mixture
is similar to the pool of sialylated proteins in humans.

A combination of ST3GAL3, ST3GAL4, and ST3GAL6 knockdown using
siRNA has revealed that all three enzymes are involved in alpha-2,3-sialylation in
CHO cells [33]. Of these enzymes, ST3GAL4 was the most critical for glycoprotein
alpha-2,3-sialylation [33]. In contrast, in humans, ST6GAL1 prefers the Gal beta-1-
4GlcNAc disaccharide sequence linked to a protein, whereas ST6GAL2 prefers free
disaccharide Gal beta-1-4GlcNAc substrate [75].

Lee et al. found that competition between endogenous alpha-2,3-sialyltransferase
and heterologous alpha-2,6-sialyltransferase yielded glycoproteins with alpha-2,3-
and alpha-2,6- linkages in CHO cells [76]. As the expression of alpha-2,6-
sialyltransferase increased, enzymatic assays revealed only a slight increase in
total sialyltransferase activity in transfected cells; of this activity, 50% was corre-
lated to alpha-2,6-sialyltrasferase [76]. Furthermore, the transfected cells attached
alpha-2,6-sialic acid to 20% of terminal galactose [76]. Another group found that the
expression of human alpha-2,6-sialyltransferase in CHO cells [77] resulted in an
increased percentage of tri- (by 8%) and tetra- (by 16%) sialylated recombinant
thyroid-stimulating hormone [77]. The increase in more fully sialylated protein did
not affect hydrophobicity or bioactivity [77]. This research indicates the potential for
more human-like sialylation of recombinant therapeutics.

Another means to increase sialylation is to make more sites available for adding
sialic acid. This can be achieved by overexpressing human β 1,4-galactosyltransferase
in CHO cells in order to reduce the oligosaccharides terminatingwith GlcNAc [68]. In
one study, the overexpression of human β 1,4-galactosyltransferase in CHO cells
significantly reduced oligosaccharides terminating with GlcNAc compared with
results in controls [78].
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The engineering of galactosyltransferases is frequently used in combination with
sialyltransferase engineering. In order to increase the level of sialylation, the enzyme
alpha-2,3-sialyltransferase was overexpressed along with beta-1,4-
galactosyltransferase in CHO cells [78]. Similarly, the coexpression of alpha-2,6-
sialyltransferase with beta-1,4-galactosyltransferase effectively increased sialic acid
content [79]. Results indicated that the overexpression of galactosyltransferase
improved the homogeneity of glycoforms, while the overexpression of
sialyltransferase improved the sialylation of recombinant protein to 90% compared
with the level in parental cells [78]. The effect of increased sialylation was verified in
rat models, where it was shown that recombinant proteins with increased sialic acid
had increased circulation time [78]. Matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) MS was used to detect charged and neutral oligosaccharides
in negative and positive ion modes, respectively [78]. Despite overexpression,
glycoproteins that were not fully sialylated were detected, a finding which may be
attributed to sialidase cleavage or steric hindrance [78]. In another study, Jeong et al.
studied the effect of the overexpression of beta-1,4-galactosyltransferase and alpha-
2,3-sialyltransferase in CHO cells producing recombinant EPO [80]. The
coexpression of galactosyltransferase and sialyltransferase resulted in an increase
in sialic acid content, from 6.7 to 8.2 mol of sialic acid per mole of EPO, and an
increase in trisialylated glycans from 17.3% to 35.5% compared with levels in
parental cells [80]. At the same time, cell growth, metabolism, and protein produc-
tivity were not affected [80]. There was virtually no change in tetrasialylated
glycans, suggesting possible steric hindrance in attaching a fourth CMP-sialic acid
to the trisialylated glycans or sialyltransferases having branch specificity [80]. This
result highlights the importance of both galactosyltransferase and sialyltransferase in
producing homogenous, sialylated glycoproteins. Both enzymes are important for
maintaining the lot-to-lot consistency of glycoprotein therapeutics, which is required
for consistent manufacturing and drug efficacy.

The studies cited above [78, 79, 80] showed the effect of sialyltransferase and
galactosetransferase expression on the sialylation of glycoproteins. However,
transporting CMP-sialic acid to the Golgi apparatus is a potential bottleneck,
owing to the levels or activity of the CMP-sialic acid transporter (CMP-SAT) that
transports CMP-Neu5Ac into the Golgi apparatus. Overexpression of CMP-SAT
alone resulted in a 4–16% increase in the site sialylation of IFN-gamma [81]. Fol-
lowing these findings, combinatorial efforts have sought to engineer multiple genes
in the pathway in order to improve sialic acid content in the intracellular pool and
improve the transport of sialic acid substrates in the Golgi apparatus.

Another approach is to implement methods that increase the levels of the
sialylation substrate, CMP-Neu5Ac (or CMP-sialic acid). In order to enhance both
activities, human alpha-2,3-sialyltransferase and CMP-sialic acid synthase were
simultaneously overexpressed in CHO cells producing recombinant EPO
[82]. This resulted in increased sialylation; however, the increase was attributed to
alpha-2,3-sialyltransferase alone [82]. Coexpression was found to increase the pool
of intracellular CMP-sialic acid, suggesting that a bottleneck to sialylation is the
transport of sialic acid into the Golgi apparatus [82]. Following this finding, alpha-
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2,3-sialyltransferase, CMP-sialic acid synthase, and CMP-sialic acid transporter
were simultaneously overexpressed and there was an additional increase in tri- and
tetra- sialylated glycans concomitant with a decrease in monosialylated glycans
[82]. This result highlights how genetic engineering strategies can be used to
overcome pathway bottlenecks in both the generation of glycosylation substrates
and the transfer of the substrate to the oligosaccharide target, by using a transferase
enzyme in order to maximize the sialylation of recombinant proteins.

In another experiment, the enzymes uridine diphosphate-N-acetyl glucosamine
2-epimerase/N-acetyl mannosamine kinase (GNE/MNK), CMP-sialic acid trans-
porter, and alpha-2,3-sialyltransferase were simultaneously introduced in CHO
cells producing recombinant EPO [83]. GNE/MNK initiates sialic acid biosynthesis;
a mutant variant of the enzyme was used in order to eliminate feedback control by
the end product of the pathway. Subsequently, CMP-sialic acid transporter seques-
ters CMP-sialic acid into the Golgi apparatus, where sialyltransferase then adds
sialic acid to the maturing glycoprotein. Results indicated that the sialic acid content
of recombinant EPO increased by 43% compared with that in parental cells; addi-
tionally, there was a 32% increase in tetrasialylated EPO and declines of 50% in both
monosialylated and asialylated EPO [83]. This study provides further evidence that
the combined simultaneous transfection of multiple enzymes in the sialic acid
biosynthetic and transfer pathways can have a significant impact on overall product
sialylation.

3.3 Inhibition of Sialidase Activity

Sialidases are exoglycosidases that catalyze the hydrolytic removal of sialic acid
from sialoglycoconjugates (glycoproteins, polysaccharides, gangliosides) [84]. Four
sialidases (Neu 1–4) have been identified in human, mouse, rat, and CHO cells, and
their activity is localized to different subcellular compartments: Neu1 is located in
the lysosome, Neu2 is located in the cytoplasm, Neu3 is located in the plasma
membrane, and Neu4 is also located in the lysosome [84–86]. Thus, sialidase
function varies as a result of the different substrate specificities and subcellular
locations [32]. Sialidase cleavage occurs in cell culture as viability decreases, and
this cleavage leads to the desialylation of recombinant glycoproteins [32, 85].

In order to decrease sialidase activity, a CHO cell line was developed that
expressed sialidase antisense RNA [87]. Sialidase activity in this cell line was
reduced by 40%, compared with the control culture; this reduction corresponded
to an increase in sialic acid content ranging from 20 to 37% [87]. Over the culture
duration, sialidase concentration increased in both the control and antisense cultures
[87]. However, the sialidase level in the antisense culture remained 40% lower than
that in the control cells [87]. Another important finding was the consistent viability
between the control and antisense cultures, which suggests that sialidase antisense
RNA is a useful strategy for reducing sialidase cleavage [87]. The finding that
sialidase antisense RNA expression was not completely knocked out indicated the
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likelihood that no severe effects on growth or metabolism had occurred. This result
highlights the capacity to manipulate sialidase levels as a means to maintain
sialylated glycoforms for recombinant protein production.

In another experiment, Neu2 knockdown was used to decrease cytosolic sialidase
activity in CHO cells producing IFN-gamma [85]. After siRNA sequences were
compared, the most active sequence was transfected into CHO cells, resulting in a
reduction in sialidase activity of 60% relative to control cells [85]. Cell culture
glycan samples were analyzed by MS and it was found that reducing sialidase
cleavage did not affect the glycan site distribution [85]. This finding is important
for the development of the cell culture process so that consistent batches of recom-
binant protein are produced. For one clone with decreased sialidase cleavage, there
was no change in the percentages of asialoglycans, monosialylated glycans, or
disialylated glycans [85]. However, over the duration of the control cell culture,
there was a decrease in disialylated glycans, with a concomitant increase in
asialoglycans and monosialylated glycans [85]. RNAi knockdown of Neu2 did
increase sialic acid content, but only when cells were in the death phase [85, 87,
88]. Although sialic acid content does not always increase during the growth phases
with sialidase RNAi, it is possible to maintain consistent glycoforms and prevent the
desialylation of glycoforms in later culture stages with this strategy.

In another study, siRNA and shRNA were used to knockdown Neu1 and Neu3
sialidase genes [89]. Reduced expression of Neu3 resulted in a 98% reduction in
Neu3 sialidase activity in CHO cells, corresponding to increases in sialic acid
content of 33% and 26% for samples from the cell stationary phase and death
phase, respectively [89]. Interestingly, application of the siRNA technique to knock-
down Neu3 (located in the plasma membrane) individually resulted in negligible
sialidase activity, whereas knockdown of Neu2 (located in the cytoplasm) individ-
ually only reduced sialidase activity to 40% of the control level [32]. Unlike Neu2
knockdown effects that acted exclusively in the death phase, protein sialylation was
increased throughout cell culture by Neu3 knockdown, suggesting different mech-
anisms of sialylation control by Neu2 and Neu3, respectively [32].

In summary, many strategies, involving both the upregulation and
downregulation of enzymes involved in the glycosylation pathways, can be manipu-
lated to control cellular glycosylation. Some of the approaches described in this
chapter are highlighted in Fig. 4, which shows the effect of specific gene over-
expression or the knockdown of enzymes involved in various glycan processing
steps, including sialylation and fucosylation. In the next section, we introduce the
importance of a systems biology approach to understand glycosylation and to
elucidate glycan compositions that can be used to drive genetic engineering strate-
gies in the future.
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4 CHO Glycoproteomics and Combined ‘Omics’

Since glycan patterns are exposed on cell surfaces, they are ready targets for high-
throughput technologies such as glycoproteomics [90, 91]. Indeed, the development
of sophisticated analytical techniques [92–95] and data analysis tools [96–100]
provides increasing opportunities to utilize high-throughput screening for glycans
as disease markers and for the structural classification of therapeutic proteins.
Glycogene microarrays, lectin chips, and RNA sequencing tools are widely used
to analyze the whole glycogenome and the changes in glycosylation enzymes, as
shown in Fig. 5. In addition to these tools, recent advances in MS)enable qualitative
and quantitative analyses of glycans, glycosites, glycopeptides, and intact
glycoproteins [101].

4.1 Glycoproteomics

Glycoproteomics, a field that evaluates glycosylated proteins and their glycosylation
sites [102], involves glycoprotein enrichment of the samples followed by sophisti-
cated proteomics methods, advanced MS techniques, and powerful bioinformatics
tools. Label-free quantification [103], stable isotope labeling (SILAC) [104], iso-
baric tag for relative and absolute quantitation (iTRAQ) [105], and tandem mass tags
(TMT) [106] are some of the methods that can be used to interpret the differential
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expression of glycoproteins between samples, such as different clones or changing
process conditions.

Solid phase extraction of glycosylated peptides (SPEG) enables the identification
of N-linked glycoproteins using hydrazide chemistry. In this method, a protein
mixture is equilibrated with a hydrazide resin, which binds to the carbohydrate
moieties on the glycoproteins. Then, polypeptides are oxidized and enzymatically
removed by peptide-N-glycosidase F for liquid chromatography tandem mass spec-
trometry (LC-MS) analysis [107]. A previous CHO proteome analysis used a label-
free approach to identify 6,164 total proteins and glycoproteins [108]. Of these, the
SPEG method revealed that at least 1,292 proteins were N-glycosylated [108]. In
recent years, more developments have been made to improve the identification and
quantification of glycoproteins. Glycan quantification using isobaric tags, such as
aminoxyTMT and iART, is difficult owing to their tertiary amine structure [109]. A
novel MS-based technology, called quaternary amine-containing isobaric tag for
glycan (QUANTITY), was recently developed to improve the complete labeling of
glycans and increase reporter ion intensity upon second stage of mass (MS2)
fragmentation [109]. The QUANTITY labeling approach has been coupled with
solid-phase immobilization techniques for the glycomic comparison of CHO cells
engineered with glycosyltransferases [109]. Samples are first denatured and
immobilized on AminoLink resin (Thermo Fisher Scientific). To stabilize sialic
acid groups, p-toluidine can be used with a carbodiimide coupling reagent, and
then PNGaseF releases N-glycans from the solid support. Next, the aldehyde group
of the GlcNAc at the reducing end of the glycans from each sample can be labeled
with QUANTITY, followed by an analysis with liquid chromatography tandem
mass spectrometry (LC/MS/MS). A global proteomics analysis can also be
conducted by performing on-bead digestion [109].

Site-specific glycan occupancy and alterations in glycoproteins are also signifi-
cantly important for bioprocess development. Previously, glycosites, glycopeptides,
and glycans were studied separately owing to difficulties with simultaneous analysis.
Solid-phase extraction of N-linked glycans and glycosite-containing peptides
(NGAG) can simultaneously analyze glycans, glycosites, and glycopeptides from
complex samples [110]. First, peptides are immobilized using an aldehyde-
functionalized solid support. Then, PNGaseF and endoproteinase Asp-N digestions
release the N-glycans and N-glycopeptides, respectively, through enzymatic cleav-
age. After MS analysis, a sample-specific intact glycopeptide database is created to
document the glycosites and glycans [110]. At the same time, intact glycopeptides
are isolated and run by MS. The spectra are subsequently mapped to a glycosylation-
specific database using GPQuest software [110, 111].

Finally, methods have recently been developed to improve our understanding ofO-
glycosylation. A microwave-assisted beta-elimination method has been optimized to
analyze O-glycans from cells, tissues, serum, and formalin-fixed paraffin-embedded
tissues [112]. In summary, the use of ‘omics’ has expanded our ability to elucidate
glycan structures, glycosites, and glycopeptide composition in order to understand the
glycoproteome and glycoform profiles from CHO cell cultures. These efforts seek to
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identify deficiencies in glycosylation profiles that may be overcome through genetic
engineering intervention.

4.2 Combined ‘Omics’

More recent efforts have combined glycoproteomics with other ‘omics’ technologies
for the validation and improved understanding of glycosylation. In one approach,
genome-wide association studies were combined with high-throughput HPLC anal-
ysis of plasma proteins from 2,705 individuals, to reveal polymorphisms in FUT6
and FUT8, as well as those in hepatocyte nuclear factor 1-alpha (HNF1-alpha)
[113]. The analysis was extended to 3,533 individuals to identify polymorphisms
in MGAT5 and B3GAT1 and the protein pump SLC9A9 [114]. Another study
combined epigenomics with proteomics to show that global changes in the DNA
methylation of ovarian cancer epithelial cells could affect glycans by reducing core
fucosylation, increasing branching, and increasing sialylation [115]. Altered expres-
sion of fucose biosynthetic genes and increased expression of MGAT5 were found
to modify the branching and sialylation of secreted glycans [116]. These studies
demonstrate how epigenomics and glycan structural analysis can be combined to
study the effects of genes and pathways in human glycosylation that may also be
important for CHO glycosylation processing.

In another approach, pathway mapping was used to correlate transcriptional
regulation and glycan expression [117]. Increased polysialylation and alpha-Gal
termination were observed in differentiated cell types, whereas alpha-Gal capped
glycans were more abundant in extra-embryonic endodermal cells [117]. Another
integration study mapped microRNA (miRNA) regulators onto glycan biosynthetic
pathways by the introduction of glycomics data. Lectin microarrays were used to
mimic miRNAs, enabling miRNA regulators of high mannose, fucose, and beta-
GalNAc networks to be determined [6].

Finally, N-glycan and glycogene expression during the epithelial-to-mesen-
chymal transition was studied using a systems glycobiology approach
[118]. Fucosylation and bisecting GlcNAc glycans were significantly decreased
during the transition, whereas levels of high mannose type N-glycans were increased
[118]. In this way, the integration of ‘omics’ tools has led to the improved under-
standing of how glycogene expression is controlled at genomic, transcriptomic,
proteomic, and epigenomic levels.

5 Conclusions and Outlook

This review has highlighted the role of glycosylation as a critical quality attribute in
the production of biotherapeutics, and more importantly it has highlighted how
these glycans can be manipulated in CHO expression systems through cell engi-
neering, as summarized in Table 2. Mammalian cell lines such as CHO can produce
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Table 2 Summary of glycoengineering efforts in Chinese hamster ovary (CHO) cells

Target Result Reference

B4GALT1 Expression increases galactose sites and sialic acid
content without affecting growth, metabolism, or pro-
tein productivity

[68, 78–80]

CMP-N-
acetylneuraminic acid
hydroxylase

Knockdown decreases the Neu5Gc content [120]

CMP-sialic acid
synthase

Overexpression increases CMP-sialic acid pool [82]

CMP-sialic acid
transporter

Expression increases sialic acid content and
tetrasialylated glycoforms and decreases
monosialylated and asialylated glycoforms

[81–83]

Core 1 β3 GnT-III Expression of extended core 1 and core 3 O-glycans is
increased, and there is increased expression of core
2 O-glycans

[59]

Core 2 β1-6GlcNAc
transferase

Overexpression increases GlcNAc transfer [72, 73]

Core 2 β3 GnT-I Expression of extended core 1 and core 3 O-glycans, as
well as increased expression of core 2 O-glycans

[59]

Core 3 β3 GnT-VI Expression of extended core 1 and core 3 O-glycans, as
well as increased expression of core 2 O-glycans

[59]

FUT8 Knockdown increases the percentage of
afucosylated antibodies and ADCC activity

[37, 41–46,
49, 50, 61]

GDP-fucose
4,6-dehydrogenase

Knockdown increases the percentage of
afucosylated antibodies

[37, 43, 62]

GDP-fucose transporter Knockdown increases the percentage of
afucosylated antibodies

[37, 43, 62]

GNE/MNK Expression increases sialic acid content and
tetrasialylated glycoforms and decreases asialylated
glycoforms

[83]

GnT-III Knockout eliminates bisecting GlcNAc and
overexpression inhibits core α-1,6-fucosylation

[52, 63–67]

GnT-IV Overexpression increases tri- and tetra-antennary sugar
chains

[66, 71]

GnT-V Overexpression increases tri- and tetra-antennary sugar
chains

[66, 71]

Sialidase Knockdown reduces sialidase cleavage and increases
sialylation without affecting viability

[85, 87, 89]

α-2,3-Sialyltransferase Expression increases sialic acid content and
trisialylated glycoforms without affecting growth,
metabolism, or protein productivity

[33, 73, 78,
80, 82, 83]

α-2,6-Sialyltransferase Expression increases 2,6 sialic acid linkages [74–77, 79,
121]

α-Mannosidase II Expression increases complex glycans with increased
ADCC activity

[52]

CMP cytidine monophosphate, Neu5Gc N-glycolylneuraminic acid, GnT-I Beta-1,4-N-
acetylglucosaminyltransferase I, GnT-V1 Beta-1,4-N-acetylglucosaminyltransferase VI, GDP gua-
nosine diphosphate, ADCC antibody-dependent cellular cytotoxicity, GNE/MNK uridine diphos-
phate-N-acetyl glucosamine 2-epimerase/N-acetyl 75 mannosamine kinase
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valuable recombinant proteins that can be accepted by humans as therapeutics.
However, subtle differences exist between glycosylation in humans and other
mammals, and understanding these differences requires knowledge of the physio-
logical characteristics of each cell type. Efforts to exert control over protein glyco-
sylation in CHO cells have been made by maximizing terminal sialylation through
the overexpression of N-acetylglucosaminyltransferases, the overexpression of
galactosyltransferases, the overexpression of sialyltransferases, the inhibition of
sialidases, and the manipulation of CMP-sialic acid pathways. Equally important
have been approaches to limit fucosylation through the overexpression of inhibiting
N-acetylglucosaminyltransferases such as GnTIII, suppressing fucosyltransferase
activity, and blocking the generation of the GDP-fucose substrate. The increasing
use of advanced technologies such as ZFN, TALEN, and more recently CRISPR/
Cas9, will greatly facilitate efforts to insert precise modifications of the glycosylation
pathways into the CHO genome in future. Indeed, recent efforts have achieved
comprehensive knockdown of multiple glycosyltransferases in order to control
N-linked glycosylation in CHO cells [119]. This approach allows users to tailor the
design of glycosylation for specific glycan profiles on recombinant glycoproteins.
Furthermore, combinatorial glycoengineering approaches, including knockdowns,
knockouts, knockins, and knockups, will be increasingly implemented to overcome
multiple interacting pathway bottlenecks. These tools will enable highly refined and
targeted modifications to be made to the processing capability of CHO cells in order
to meet the need for flexible production capabilities, as well as meeting the need for
the highly specified glycan targets required in biosimilar generation. Finally, the
generation of ‘omics’ data sets is propelling a systems biology revolution to increase
our understanding of CHO physiology and our capacity to modify glycans in
different ways. Our ability to elucidate, characterize, quantify, and finally modify
glycoproteins emerging from CHO, as well as the enzyme activities present in CHO,
will facilitate the development of a superior CHO production platform that will yield
consistent and desirable glycoforms in the future. In the coming decades, the
emerging systems glycobiology integration of glycogenomics, glycoproteomics,
glycomics, epiglycogenomics, and glycoinformatics, together with our ever-
expanding toolkit for genome engineering, promises to accelerate our understanding
of glycosylation in CHO and other mammalian cell lines, as well as increasing our
capacity to control glycan processing more effectively.
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Abstract The insect cell-baculovirus expression system technology (BEST) has a
prominent role in producing recombinant proteins to be used as research and
diagnostic reagents and vaccines. The glycosylation profile of proteins produced
by the BEST is composed predominantly of terminal mannose glycans, and, in
Trichoplusia ni cell lines, core α3 fucosylation, a profile different to that in mam-
mals. Insects contain all the enzymatic activities needed for complex N- and O-
glycosylation and sialylation, although few reports of complex glycosylation and
sialylation by the BEST exist. The insect cell line and culture conditions determine
the glycosylation profile of proteins produced by the BEST. The promoter used,
dissolved oxygen tension, presence of sugar precursors, bovine serum or
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hemolymph, temperature, and the time of harvest all influence glycosylation,
although more research is needed. The lack of activity of glycosylation enzymes
possibly results from the transcription regulation and stress imposed by baculovirus
infection. To solve this limitation, the glycosylation pathway of insect cells has been
engineered to produce complex sialylated glycans and to eliminate α3 fucosylation,
either by generating transgenic cell lines or by using baculovirus vectors. These
strategies have been successful. Complex glycosylation, sialylation, and inhibition
of α3 fucosylation have been achieved, although the majority of glycans still have
terminal mannose residues. The implication of insect glycosylation in the proteins
produced by the BEST is discussed.

Asn

Asn

Asn

Asn
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(HA) produced 
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Red Blood 
Cells Binding 
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UNDERSTANDING GLYCOBIOLOGY OF INSECT CELLS

Graphical Abstract

Keywords Baculovirus, Cell engineering, Glycobiotechnology, Glycosylation,
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Abbreviations

BEST Baculovirus expression system technology
CHO Chinese hamster ovary
CHST2 Carbohydrate sulfotransferase 2
CSAS Sialic acid synthetase
DOT Dissolved oxygen tension
eLH/CG Recombinant equine luteinizing hormone/chorionic gonadotropin
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ER Endoplasmic reticulum
FBS Fetal bovine serum
FDL Fused lobes protein
Fuc Fucose
FucT Fucosyltransferase
FucT3 α-1,3 Fucosyltransferase
GalT β-(1!4)-Galactosyltransferase
Gal Galactose
Gal3ST2 Gal-3-O-sulfotransferase 2
GalNAc N-Acetylgalactosamine
Glc Glucose
GlcNAc N-Acetylglucosamine
GlcNAcase β-N-Acetylglucosaminidase
GlcNAcT GlcNAc transferase
hpi Hours postinfection
IgG Immunoglobulin
Man Mannose
ManNAc N-Acetylmannosamine
MP Baculovirus basic protein promoter
ND Not detected
Neu5Ac N-Acetylneuraminic acid
NR Not reported
PAP Rat purple acid phosphatase
rHA Recombinant influenza hemagglutinin
rLRE Recombinant lutropin receptor ectodomain
RMD Guanosine-50-diphospho (GDP)4-dehydro-6-deoxy-D-mannose reductase
SAS Sialic acid 9-phosphate synthase
SeAP Secreted human alkaline phosphatase
SialT Sialyltransferase
TPA Tissue plasminogen activator
βhCG β subunit of human chorionic gonadotropin

1 Insect Glycobiology

The insect cell-baculovirus expression system technology (BEST) consists of the
expression of a recombinant gene delivered to an insect cell culture by a recombinant
baculovirus (reviewed by [1, 2]). The BEST is ideal for several applications, and
especially for the production of complex proteins. The possibility of simultaneous
expression of various proteins, the rapid and easy generation of new recombinant
baculovirus, and the high productivity are useful benefits. With research, it is
possible to evaluate different versions of a mutant protein in a eukaryotic context
in a fast an efficient way (for example, [3, 4]). The BEST is a workhorse for
production of recombinant proteins as research and diagnostics reagents, and is
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especially useful for the manufacture of virus-like particles and viral proteins in the
market as vaccines [1, 5]. There is a very long list of virus-like particles (VLP) from
a number of virus targets that have been produced in the BEST, as recombinant
proteins that self-assemble efficiently as VLP [6]. The first recombinant human
influenza seasonal vaccine, Flublok®, the human papillomavirus vaccine Cervarix
®, and the therapeutic cancer vaccine Provenge® were all produced using the BEST.
In the case of influenza, the fast construction of new baculovirus vectors allows the
fast and efficient strain change needed for opportune response to new influenza
types, using a “plug and play” concept [5]. Several commercially available veteri-
nary vaccines on the market are also produced using the BEST [5]. All its advantages
give the BEST technology a huge potential.

An attribute of the BEST is the particular N-glycosylation profile of the produced
proteins, which is different from that in proteins produced by mammalian cells.
Mammalian cells produce glycoproteins with complex sialylated glycans, whereas
the glycosylation of insect proteins mostly involves terminal mannose glycans. A
comparison of the glycosylation profile of a model protein, secreted human alkaline
phosphatase (SeAP) produced by CHO mammalian cells and by the commonly used
insect cell line Tn5B1-4 (commercially known as High Five®), is shown in Fig. 1
(data from [7, 8]). Over 90% of glycans in SeAP produced by CHO cells were
complex (without a terminal mannose residue), and more than 20% of glycans were
sialylated [8]. In contrast, most of the glycans in SeAP produced by insect cells had
terminal mannose residues and no sialylation was detected [7]. High mannose
glycans, which are not processed in the medial Golgi, are more abundant in insect
than in mammalian cells. Paucimannose glycans contain three or less mannose
residues attached to the chitobiose core, and are the most abundant type of N-glycans
in proteins produced by insects. The high abundance of terminal mannose glycans in
insect proteins is different from the typical profiles of mammalian proteins. The
consequences of these differences are discussed in Sect. 4. Table 1 lists some
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100Fig. 1 Comparison of the
N-glycosylation profile of
secreted human placental
alkaline phosphatase (SeAP)
produced by CHO
mammalian (blue) and
Tn5B1-4 insect (orange)
cells. Complex glycans
include galactosylated and
sialylated glycans. Data
from [78]
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glycosylation profiles reported for recombinant proteins produced by the BEST.
Even when terminal mannose glycans are most common in proteins produced by
insect cells, they can produce complex glycans at levels usually below 10%
[7]. β-(1!4)-Galactosyltransferase (GalT) activity has been found and measured
in Sf9 (barely detectable), High Five®, MBO503 (from Mamestra brassicae), and
DpN1 (from Dannaus plexipus) cells [7, 14, 15], but the presence of galactosylated
glycans produced by wild-type cells is seldom found. Wild-type Sf9 cells usually do
not produce complex glycans and do not produce glycans with α1,3 fucose (Fuc).
This is especially important, as discussed below. In contrast, α1,3 Fuc is found in
glycoproteins produced by High Five® cells, which can also produce complex
glycans under certain circumstances. Other non-conventional lepidopteran cell
lines have an enhanced ability to produce complex glycans, even when they usually
produce lower amounts of recombinant protein than Sf9 and High Five® cells. An
important attribute that should not be overlooked is site occupancy. An et al. [16]
found differences in site occupancy in recombinant influenza hemagglutinin (rHA)

Table 1 N-Glycosylation profiles of recombinant proteins expressed by the IC-BES

Cell line
Recombinant
protein

High
mannose (%)

Paucimannose
(%)

Hybrida

(%)
Complex
(%)

α1,3Fuc
(%)

DpN1b SeAP 24 44 6 26c NR

expresSF+d,e Influenza rHA 34 56 10 0 ND

High Five®e,f Influenza rHA 8 88 2 Traces 20

High Five®f,g Human
transferrin

25 54 7 0 56

High Five®f,h IgG2a 0 35 30 35.6 18

MBO503i Human
plasminogen

35 2 ND 63j NR

Sf9d,k SeAP 16 84 ND ND NR

SfSWT-7d,e,l Influenza HA 48 10 23 18 ND

Tn4hm SeAP 15 51 1 22n NR

rHA Recombinant hemagglutinin, ND Not detected, NR Not reported, SeAP Secreted human
placental alkaline phosphatase, IgG Mouse immunoglobulin
aHybrid glycans have a terminal mannose residue in one branch and a terminal glycan different to
mannose in the other
bDannaus plexipus cells, Palomares et al. [7]
cIncludes 13% of sialylated glycans
dSpodoptera frugiperda cells
eAn et al. [9]
fTrichoplusia ni cells
gAilor et al. [9]
hHsu et al. [10]
iDerived from Mamestra brassicae. Davidson and Castellino [11]
jIncludes 33% of sialylated glycans
kJoshi et al. [12]
lGlycoengineered expresSF+ cells expressing mammalian N-acetylglucosaminyl-transferase II, β4-
galactosylatransferase I, carbohydrate sulfotransferase 2 and galactose-3-O-sulfotransferase
mDerived from Tn5B1-4 cells. Joosten et al. [13]
nIncludes 19.3% of sialylated glycans
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expressed in HEK293 or in insect cells, and Wang et al. [4] found that rat purple acid
phosphatase (PAP) had two potential N-glycosylation sites occupied in the wild-type
and Sf9 produced forms, although it was less extensively glycosylated when pro-
duced in CHO cells. Other reports have found that insect cells glycosylate in the
same sites as in wild-type mammalian proteins.

The glycosylation profile in insect proteins is a result both of enzymatic activities
present and of the availability of activated sugars for glycan formation. Table 2
summarizes the regulation of N-glycan diversity in insects by several enzymes, as
reported by Walski et al. [17]. Fucose (Fuc), galactose (Gal), glucose (Glc), N-
acetylglucosamine (NAcGlc), N-acetylgalactosamine (GalNAc), glucuronic acid,
mannose (Man), xylose, and sialic acids have been found in insects [17], but it is
their availability in activated form and the activity of glycosylation enzymes that
determine the glycosylation profile of proteins. As in other organisms, insect devel-
opment is severely affected by the disruption of glycosylation (Table 2). Figure 2
depicts the N-glycosylation pathway typical of insect cells used in the BEST.
Processing in the Golgi is shown. High mannose glycans with five mannose residues
are obtained in the cis-Golgi and are further processed by N-acetylglucosaminyl
transferases and mannosidases. The branch point structure in insect N-glycosylation
is indicated in the figure [18, 19]. The 2(GlcNAc)3(Man) α3 GlcNAc glycan can be
processed by the GlcNAcTII and GalT to result in complex glycosylation. However,
more often it is a substrate of GlcNAcases, which remove terminal GlcNAc residues
and result in paucimannose forms, a reaction uncommon in mammalian cells. The
extent of N-glycosylation in the BEST is a balance between GlcNAcase, GlcNAc
transferase (GlcNAcT) I and II, and GalT activities in the Golgi, and the content of
UDP-GlcNAc and UDP-Gal, activated sugar nucleotides. Paucimannosidic glycans
are not only common in recombinant proteins produced by the BEST but are also
major components in invertebrates [20]. The origin of such truncated glycans has
been a subject of investigation of several groups. High hexosaminidase activity has
been reported in insect cell cultures [7, 15, 21, 22]. The enzyme responsible for
removal of the α3 branch GlcNAc was first discovered in Drosophila [23]. This N-
acetylglucosaminidase (GlcNAcase) is encoded by the fused lobes gene, and an
ortholog has been found in Sf9 insect cells, the most commonly used insect cell line,
and in other invertebrate species [18, 19, 24, 25]. The fused lobes protein (FDL) is
highly specific, although Dragosits et al. [26] found that, under extreme conditions,
FDL can also trim other GlcNAc and Gal residues. Tomiya et al. [27] have reported a
GlcNAcase that hydrolyzes in vitro terminal GlcNAc from the glycan core. It is
possible that this enzyme also has a role in insect glycosylation, as removal of the α6
GlcNAc would require another enzyme. Nevertheless, it should be noted that the
presence of α6 GlcNAcT in Sf9 cells is unlikely, as its activity has not been detected
[28]. However, other GlcNAcase may have a role in other insect cell lines that can
produce complex glycosylation (Table 1). Other exoglycosidase activities have also
been detected in insect cells, such as those of sialidase and β-galactosidase [21].

Sialylation in insects and in recombinant proteins produced by the BEST has been
studied by several groups. Synthesis and transfer of sialic acid had been considered
as limited to the deuterstome lineage, but since 2002 it has been demonstrated that
the protostome lineage is also capable of sialylation. A functional N-
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acetylneuraminic acid phosphate synthase, a CMP-sialic acid synthase, and a
sialyltransferase have been found in Drosophila [29–31]. Sialylation has been
observed in proteins of Drosophila melanogaster and Philaenus spumarius
[32]. An active α-2,6-sialyltransferase (SialT) was found in the Lepidopteran
Bombyx mori [33]. Sialylated glycans have been reported in proteins produced by
Sf21 (from Spodoptera frugiperda), Tn4h (from Trichoplusia ni), DpN1 and
MBO503 insect cells [7, 11, 12, 21, 34]. Watanabe et al. [22] observed sialylation
in bovine interferon expressed by High Five® cells when β-N-acetylglucosaminidase
(GlcNAcase) activity was inhibited. It is known that sialylation in insects, specifi-
cally in Drosophila, is a highly regulated process that occurs in specialized cells and
at development stages. Such tight regulation can explain the few cases when
sialylation of proteins produced by insects is reported. Supplementation of bovine
serum has frequently been reported as a requirement for sialylation by insect cells.
Hollister et al. [35] have demonstrated that insect cells can uptake from the culture
medium and use sialylated N-glycans, N-acetylneuraminic acid (Neu5Ac), and
GlcNAc to sialylate proteins when GalT and α-2,6-SialT genes are overexpressed,
explaining the serum requirement. The presence of serum has introduced uncer-
tainties regarding the possible presence of sialylated contaminants that copurify with
the protein of interest [36, 37]. Hillar and Jarvis [37] believe that that is the case in
reports of sialylation by Tn4h, Tn4s, and DpN1 cells ([7, 12, 13], among other
reports), as they could not reproduce the results reported by other investigators.
Because complete controls were included in the reports of sialylation of both cell
lines, it is possible that the differences in the experiments performed by Hillar and
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Fig. 2 N-Glycosylation pathway in insect cells. High mannose glycans contain four or more
mannose residues. They are only processed in the endoplasmic reticulum and cis Golgi. Hybrid
glycans contain one terminal mannose residue. They accumulate because of low GlcNAcT I or II
activities. The branch point structure for insect N-glycosylation is shown in a square [18]. FDL and
a GlcNAcase activities result in the formation of paucimannose glycans, which only contain three or
less mannose residues attached to the chitobiose glycan core. Square, GlcNAc. Circle, Man.
Hexagon, Gal. Triangle, fucose
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Jarvis, who used low sensitivity assays, can explain the different results obtained in
their experiments.

Another peculiarity of insects is the presence of core α-1,3 linked fucose N-
glycans and other modifications absent in mammalian proteins and that may cause
hypersensitivity in patients with allergies [38]. α-1,3 Fucosyltransferase (FucT3)
activity has been detected in B. mori, Apis mellifera, and Drosophila [39–41]. In
insect cells commonly used for protein expression, core α-1,3 fucose has been found
in proteins produced by High Five® Trichoplusia ni cells, but not in Spodoptera
frugiperda Sf9 or expresSF+ cells [16, 38, 40]. Stanton et al. [42] recently reported
the glycome of uninfected larvae from Lymatria dispar, Trichoplusia ni, and the
High Five® cell line, and found that N-glycans in proteins from all three sources are
decorated with sulfate, glucuronic acid, and phosphorylcholine, showing that insects
and insect cells are capable of extensive glycan modification. They also found
Lewis-like antenna fucosylated structures and N-acetylgalactosamine (GalNAc).
An insect β4-N-acetylgalactosaminyltransferase has been detected and characterized
[15, 43].

Insect cells are capable of O-glycosylation in the same sites as mammalian cells
[44]. In the pseudorabies virus gp50, Sf9 cells produced protein with O-linked
GalNAc and lower amounts of Galβ1-3GalNAc without sialic acid. The same
protein produced by mammalian cells had higher amounts of Galβ1-3GalNAc and
sialylation. Although the activity of UDP-GalNAc:polypeptide N-
acetylgalactosaminyltransferase was comparable in Sf9, Vero and CHO cells, the
Sf9 cells had a lower activity of UDP-Gal: N-GalNAc β1,3 galactosyltransferase.
Similar results were found by Lopez et al. [45] in Sf9, High Five®, and SOCMb-92-
C6 (from Mamestra brassicae) insect cells. Gaunitz et al. [46] expressed a mucin-
type protein in High Five® and Sf9 cells, which is different to those previously
studied forO-glycosylation. They foundO-glycans with glucuronic and galacturonic
acids, sulfate, and phosphocholine. High Five® cells produced more extensively
modified O-glycans than Sf9 cells.

2 Effect of Bioprocessing Conditions on the Glycosylation
Profile of Proteins Produced by Insect Cells

Glycosylation demands high amounts of precursors and requires energy. It is
therefore affected by nutrient availability and culture conditions [47]. In the case
of the BEST, the recombinant gene is expressed most frequently under the
polyhedrin (polh) promoter, which results in strong and very late expression. Cell
growth and synthesis of cellular proteins is reduced after baculovirus infection
[48, 49]. Van Die et al. [15] found that baculovirus infection decreases the activity
of a glycosyltransferase to undetectable levels. Accordingly, different glycosylation
profiles have been found in insect proteins in comparison with overexpressed
recombinant proteins. Moreover, the increased metabolic activity of infected cells
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[50] and the energy needed for protein production and glycosylation can also affect
the extent of modification. However, only a few papers have reported the effect of
culture conditions in protein glycosylation, most of them from the 1990s and early
2000s. Results are summarized in Table 3. Few variables that can potentially affect
insect glycosylation have been investigated, mostly because of the expected limited
relevance of culture conditions on the formation of terminal mannose glycans,
including the most abundant paucimannosidic forms. Ammonia concentrations
well above those toxic to mammalian cells had no effect on glycosylation in the
BEST [51]. Zhang et al. [53] observed a higher content of high mannose forms at
low (10%) or high (190%) dissolved oxygen tension (DOT) in comparison with 50%

Table 3 Conditions that affect the N-glycosylation profile of proteins produced by insect cells

Condition tested Effect on recombinant protein N-glycosylation Reference

Ammonia additiona Addition of 40 mM ammonium sulfate (62 mM at
the time of harvest) had no effect

[51]

Culture under simulated
microgravity (HARV
bioreactor)a

Sialylation of SeAP [52]

Dissolved oxygen (DOT)a High DOT (from 100 to 350% of air saturation) did
not change the glycosylation profile of SeAP

[51]

Dissolved oxygena,b SeAP produced at 10% or 190% of air saturation
had a higher abundance of high mannose glycans
than cultures at 50% DOT

[53]

Fetal bovine serum (FBS)
addition

Recombinant GST-SfManI was sialylated when
SfB4GalT/ST6c cell cultures were supplemented
with 10% FBS

[35]

FBS addition Increased abundance of complex glycans in SeAP [12]

Hemolymph additiona c.a. 13% of sialylated glycans, reduction in SeAP
yield

[13]

Inhibition of extracellular
exoglycosidasesa

No effect [54]

Mannosamine additiona,d Mannosamine addition (up to 20 mM) increased
the abundance of GlcNAc terminal glycans

[55, 56]

Temperaturea Low temperature (20�C) increased the amount of
terminal α(1,3)-mannose residues

[51]

Time of harvesta A late time of harvest (120 hpi) increased the
amount of mannosidase resistant glycans in SeAP

[51]

Use of a promoter earlier than
polh

Increased protein concentration and increased
sialylation

[57]

Use of p10 promoter instead
of polhb

Expression under the slightly earlier and weaker
promoter p10 resulted in rLRE secretion, complex
glycosylation and sialylation

[58]

hpi Hours postinfection, SeAP Human secreted alkaline phosphatase, rLRE Recombinant lutropin
receptor ectodomain
aTrichoplusia ni cells
bSf9 cells
cSf9 cells engineered to express mammalian β-1,4-galactosyltransferase and a α2,6-sialyltransferase
dSf21 cells
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(with respect to air saturation), showing that in extreme conditions glycosylation was
limited to processing in the endoplasmic reticulum (ER) and cis Golgi. Donaldson
et al. [51] did not observe an impact on N-glycosylation at or above 100% DOT.
Reduced productivity was observed under extreme conditions. It should be noted
that Donaldson et al. [51] only used the semiquantitative fluorescence-assisted
carbohydrate electrophoresis (FACE) method, whereas Zhang et al. [53] used
capillary electrophoresis, a quantitative method that allows structure identification.
Zhang et al. [53] controlled DOT in instrumented bioreactors, whereas Donaldson
et al. [51] used spinners and manipulated DOT using an oxygen enriched environ-
ment, without control. Donaldson et al. [51] observed a more extensive glycan
processing at low culture temperature (20�C). This contrasts with reports in mam-
malian cells, where a decrease in N-glycosylation was observed when cells were
maintained at temperatures below 32�C [59]. An increase in mannosidase-resistant
glycoforms was obtained at later culture times [51], and the addition of
exoglycosidase inhibitors did not affect protein glycosylation [54]. Interestingly,
Joshi et al. [52] observed sialylation of SeAP when Tn4h cells (T. ni) were cultured
under simulated low gravity conditions. It can be hypothesized that a lower shear
stress was present at low gravity, suggesting that shear stress can affect N-glycosyl-
ation. Aloi and Cherry [60] have observed sublethal effects of shear in insect cells,
whereas Godoy-Silva et al. [61] observed changes on glycosylation at energy
dissipation rates two orders of magnitude lower than lethal rates in CHO cell
cultures. Fetal bovine serum addition increased the amount of complex glycans in
Tn-4h cells (T. ni) [12], possibly because of its protective effect to shear stress [62],
in addition to providing substrates.

Culture medium composition determines the glycosylation profile of proteins
produced by the BEST. It has been shown that the pool of sugar nucleotides needed
for complex glycosylation (UDP-GlcNAc, UDP-Gal) is similar in High Five®, Sf9,
and mammalian cells [63], indicating that sugar nucleotides are not limiting complex
glycosylation. Nevertheless, feeding of precursors of sugar nucleotides has been
attempted to increase the extent of insect glycosylation [55, 56]. Interestingly, only
the addition of mannosamine (ManN), a precursor of CMP-Neu5Ac (N-
acetylneuraminic acid), increased the abundance of N-glycans with terminal
GlcNAc. Estrada-Mondaca et al. [56] showed that ManN inhibits the activity of
GlcNacase in vitro, explaining the observed results. It has been shown that supple-
mentation of fetal bovine serum is needed to obtain sialylation in proteins produced
by insect cells engineered to express mammalian β-1,4-galactosyltransferase and a
α2,6-sialyltransferase, as insect cells can salvage sialic acid from the culture medium
[35]. Hemolymph addition increased the abundance of sialylated glycans but
lowered SeAP yield [13]. Even when it has not been evaluated, it can be expected
that nutrient feeding in fed batch cultures alters the glycosylation profile, including
site occupancy, of proteins produced by the BEST.

The strength and timing of baculovirus promoters driving recombinant gene
expression affect the glycosylation profile of proteins. Baculoviruses are lytic
viruses, and a more intact glycosylation machinery can be expected to exist at earlier
infection times. Jarvis et al. [64] report that recombinant tissue plasminogen acti-
vator (TPA) was processed faster and more efficiently when expressed under the
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control of the immediate early ie1 promoter than when expressed under the very late
polh promoter. Although Pajot-Augy et al. [58] attribute the more extensive
processing and glycosylation of a recombinant lutropin receptor ectodomain to the
use of the weaker p10 promoter instead of polh, Sridhar et al. [57] report that it is the
time of expression that results in an increased protein quality. In contrast with these
reports, Toth et al. [65] did not find a difference in the quality of recombinant
Western equine encephalitis virus glycoprotein produced under promoters with
different timings and strengths, and suggests that effects are protein-dependent.
The effects of other factors on glycosylation, such as nutrient feeding, other
byproduct accumulation, etc., remain to be investigated. None of these papers
have reported the effect of culture conditions on site occupancy. As strategies to
increase complex glycosylation by insect cells are more widely used, it is likely that
more research on the effects of culture conditions in protein glycosylation is
performed.

3 Glycoengineering of Insect Cells

The glycosylation profile of proteins produced by the BEST impedes its use for
production of glycoproteins that require mammalian glycosylation for their function.
To overcome this problem, insect cells or the baculovirus vector have been
engineered to produce mammalian enzymes. Table 4 summarizes progress toward
obtaining mammalian glycosylation by the BEST. The first strategy used was to
include glycosyltransferases into the baculovirus vector. Jarvis and Finn [66] first
expressed a mammalian glycosyltransferase, GalT, in Sf9 cells, showing that the
enzyme was active and that a baculovirus protein was galactosylated. This result
confirmed the availability of UDP-Gal in Sf9 cells. In 2002, the Jarvis group reported
the generation of a transgenic Sf9 cell line capable of sialylation when cultured in
fetal bovine serum (FBS), called SfSWT-1, commercially available as the Mimic cell
line through Thermo Scientific [28]. SfSWT-1 contains five mammalian
glycosyltransferase genes (Table 4). The activities of GlcNAcT, GalT, and SialT
in baculovirus-infected cells were confirmed. It was later reported that the α2,3 SialT
had no activity in this cell line [67]. A decrease in paucimannose forms and the
appearance of biantennary galactosylated forms were observed. Sialylation occurred
only in one antenna. In 2003, Hollister et al. showed that sialylation could also be
obtained with supplementation of other precursors in addition to FBS, Neu5Ac, or
N-acetylmannosamine (ManNAc). It was found that Sf9 cells have a salvage path-
way that allows the use of these precursors to sialylate proteins or as precursors for
sialic acid synthesis. This shows that Sf9 cells produce negligible amounts of sialic
acids and rely on taking up sialic acid or its precursors from the culture medium
[35]. The presence of sialylated proteins upon addition of precursors for sialic acid
synthesis shows that Sf9 cells have the required enzymatic machinery for sialic acid
synthesis. Other groups that have used the Mimic cell line for recombinant protein
expression have not found sialylation in the expressed proteins [77, 78].
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Table 4 Overview of the strategies used for glycosylation engineering in the IC-BES

Gene and expression strategy Results References

Expression of bovine GalT under the ie1
promoter encoded in a baculovirus

Sf9 cells had GalT activity. Baculovirus
gp64 was galactosylated

[66]

SfSWT-1 Mimic® cells (Thermo Scien-
tific). Transgenic Sf9 cells expressing
human GlcNAcT I, GlcNAcT II, bovine
GalT, rat α2,6 SialT and mouse α2,3
SialT under the ie1 promoter

Biantennary, sialylated glycans in a
recombinant protein produced with 10%
bovine serum. Lower abundance of
paucimannosidic forms than wild type
cells. No α2,3 SialT activity. Slower cell
growth

[28, 67]

Expression of human sialic acid
9-phosphate synthase (SAS) and
UDP-GlcNAc 2-epimerase/ ManNAc
kinase genes encoded in a baculovirus

Sialic acid generation by Sf9 cells [68]

SfSWT-3 cells. SfSWT-1 cells
expressing mouse SAS and sialic acid
synthetase (CSAS) under the ie1
promoter

More extensive sialylation than SfSWT-
1 in both antennae in serum free medium
supplemented with ManNAc

[69]

Expression of human GlcNAcT II,
GalT, and α2,6 SialT encoded in a
baculovirus under the polh and p10
promoters in Sf9 and Ea4 cells

Recombinant human antitrypsin pro-
duced by Ea4 cells sialylated, as deter-
mined by lectin blotting

[70]

Transgenic Sf21 cells expressing rat
GlcNAcT III under the ie1 promoter

Cellular proteins and a recombinant
human glycoprotein with bisecting
GlcNAc

[71]

SfSWT-5. Transgenic Sf9 cells with
inducible expression of GlcNAcT II,
GalT, α2,6 SialT, α2,3 SialT, SAS and
CSAS using piggyBack vectors induc-
ible with doxycycline

No difference in cell growth or stability
with or without induction. Cells stable
for over 300 passages. No difference in
recombinant glycoprotein yield.
Sialylation detected by lectin blotting

[72]

SweetBac® (Geneva Biotech).
Baculovirus encoding the C. elegans
GlcNAcT II and bovine GalT

Complex galactosylated glycoforms not
observed upon infection with wilt type
baculovirus

[73]

SfSWT-21 cells. Transgenic Sf + cells
expressing E. coli GlcNAc-6-P 20

epimerase, mouse SAS, mouse CSAS,
human Golgi CMP-sialic acid trans-
porter, human GlcNAcT II, bovine
GalT, rat α2,6 SialT under the ie1
promoter

Protein sialylation without ManNAc
supplementation and without
UDP-GlcNAc consumption without
reduction of cell growth or yield

[18]

Short-hairpin RNA interference to sta-
bly silence expression of GlcNAcase

Reduced GlcNAcase activity [74]

SfSWT-7 cells. expresSF+a cells
cotransfected with dual piggyBac vec-
tors encoding GlcNAcT II, GalT, car-
bohydrate sulfotransferase 2 (CHST2)
and Gal-3-O-sulfotransferase
2 (Gal3ST2)

Engineered to produce biantennary, ter-
minal Gal sulfated glycans. No evidence
of sulfation observed. Eighteen percent
of complex glycans. Reduced abun-
dance of high mannose forms (Table 1)

[16]

(continued)
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Kati et al. [76] obtained complex galactosylated glycans in a recombinant mono-
clonal antibody after using bacmids to express the GlcNAcT II and GalT in B. mori
larvae. This strategy is useful for antibody production, as their mammalian N-
glycosylation only contains terminal Gal complex glycans. Viswanathan et al. [68]
infected Sf9 cells with baculovirus encoding for the human sialic acid 9-phosphate
synthase (SAS) and UDP-GlcNAc 2-epimerase/ManNAc kinase genes. Infected Sf9
cells accumulated Neu5Ac without the need for precursor supplementation. The
Jarvis group added the mouse SAS and sialic acid synthetase (CSAS) genes to the
SfSWT-1 cells [69]. The resulting transgenic cell line, SfSWT-3, performed more
extensive sialylation than SfSWT-1, resulting in bisialylated glycans. ManNAc
addition was still needed in a serum-free medium. Interestingly, SfSWT-3 cells
had growth kinetics similar to wild-type Sf9 cells, suggesting that the introduction
of the two genes involved in sialic acid synthesis resulted in the elimination of the
growth lag phase observed in sfSWT-1 cells [67]. In parallel, Chang et al. [70]
inserted in a baculovirus the human GlcNAcT II, GalT, and α2,6 SialT genes under
control of the very late polh and p10 promoters and infected Sf9 and Ea4 (Estigmena
acrea) cells. Only the recombinant glycoprotein expressed by Ea4 cells contained
sialylated glycans. As these cells were cultured in serum-free medium, it is possible
that Ea4 cells possess the ability to synthesize sialic acid. The presence of complex
glycans in the absence of a mammalian GlcNAcT I demonstrates that overexpression
of this enzyme is not needed for complex glycosylation, suggesting that it is active in
wild-type insect cells. Okada et al. [71] introduced the GlcNAcT III gene into Sf21
cells and obtained both cellular proteins and a recombinant glycoprotein modified
with bisected glycans. The use of transgenic cells has the advantages of having a
unique host and that any baculovirus can be used for production of a glycoprotein of
interest with complex glycosylation, although this approach provides limited flexi-
bility and engineered cells may be unstable or have reduced growth or a high
sensitivity to culture conditions. Interestingly, Aumiller et al. [72] used piggyBac
vectors to construct a transgenic cell line with inducible expression of six mamma-
lian glycosylation genes (SfSWT-5, Table 4). Sialylated proteins were obtained.

Table 4 (continued)

Gene and expression strategy Results References

Expression of Pseudomonas aeruginosa
guanosine-50-diphospho (GDP)4-
dehydro-6-deoxy-D-mannose reductase
(RMD) encoded in a baculovirus under
the ie1 promoter. Transgenic cell line
expressing RMD

Consumption of the GDP-L-fucose pre-
cursor. Blocked α1,3 and α 1,6
fucosylation. Transgenic cells were
unstable

[75]

Expression of RMD encoded in a
baculovirus under the gp64 promoter

Reduction of fucosylation in influenza
hemagglutinin

[38]

Expression of human GlcNAcT II and
GalT in B. mori pupae through bacmids
with the actin A3 B. mori and polh
promoters

Recombinant human IgG with terminal
GlcNAc and Gal

[76]

aProtein Sciences Corporation. USA
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Stability of induced and non-induced cells was confirmed until more than 30 gener-
ations. No change in cell growth was observed. piggyBac vectors were used to
modify the licensed expresSF+ insect cell line from Protein Sciences Corporation to
introduce the GlcNAcT II, GalT, carbohydrate sulfotransferase 2 (CHST2), and
Gal-3- O-sulfotransferase 2 (Gal3ST2) genes to obtain complex galactosylated
sulfated glycans (SfSWT-7, [16]). Cells were infected with baculovirus coding for
rHA. No evidence of sulfation was observed, even when expression of the related
genes was detected. The relative abundance of each glycan type produced by
SfSWT-7 cells is listed in Table 1. In this case, 18% of glycans were complex, but
no detectable levels of complex glycans were observed in the Sf9 cell line.

As a solution to the problem of supplementation of sialic acid precursors to
cultures, Geisler and Jarvis [18, 19] expressed the Escherichia coli GlcNAc-6-P
20epimerase with other glycosylation proteins (SfSWT-21 cells, Table 4), and used
its reverse reaction to obtain ManNAc-6P from Glc-6P, and then sialic acid,
CMP-sialic acid, and sialylated proteins without the external addition of expensive
ManNAc. All the effort on engineering insect cells has resulted in the production of
biantennary structures that are still very simple compared to the glycosylation profile
of many mammalian proteins. The advantage of having insect cells producing
triantennary or tetranatennary glycans, in comparison to mammalian cells, remains
to be evaluated.

Insect cells have been engineered to obtain complex sialylated glycans, but
paucimannose glycans are still present in the produced proteins, albeit at a lower
abundance than with wild-type insect cells. To prevent GlcNAcase cleavage,
Kim et al. [74] used short-hairpin RNA interference to reduce the expression of a
GlcNAcase. They observed a reduction in GlcNAcase activity but did not evaluate
the glycosylation profile of proteins. Another undesirable activity in T. ni insect cells
is the presence of α1,3Fuc. To prevent it, Palmberger et al. [38] and Mabashi-
Asazuma et al. [75] expressed the Pseudomonas aeruginosa guanosine-5-
0-diphospho (GDP)4-dehydro-6-deoxy-D-mannose reductase (RMD), which con-
sumes GDP-4keto-6-deoxy-D-mannose, precursor of GDP-Fuc to form GDP-D-
rhamnose, using baculovirus vectors. Mabashi-Asazuma et al. [75] constructed a
transgenic insect cell line, but it was unstable. The reason for the instability of cells
with depleted fucose is unknown. Walski et al. [17] report that fucosylation is
needed for insect immune response and wing and nervous system development.
The role of fucose in individual cells remains to be investigated. Although Mabashi-
Asazuma did not observe fucosylation in a recombinant glycoprotein,
Palmberger et al. [38] observed the absence of α1,3Fuc and a reduction in α1,6
fucosylation in rHA. The reason for this difference may lie in the two different
promoters that were used for RMD expression. Palmberger et al. [38] used the gp64
promoter, whereas Mabashi-Asazuma et al. [75] used the immediate early ie1
promoter. These promoters have different temporality, so it is possible that expres-
sion under the later gp64 promoter was not efficient enough to impede fucosylation
as expression under the ie1 promoter [79].

Expression of glycosyltransferases can be achieved under a wide variety of
conditions. The Jarvis group has mostly used the ie1 promoter, active in the
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immediate early phase of baculovirus infection and not requiring baculoviral factors
for expression [64]. Thus, it is active in uninfected cells. The ie1 promoter is weaker
than very late promoters, imposing a relatively low metabolic burden upon expres-
sion of several recombinant proteins. The metabolic burden imposed by
overexpression of glycosylation enzymes has been perceived as a disadvantage of
the transgenic cell line approach. Moreover, expression in uninfected cells when
immediate early promoters are used can affect the physiology of the cells. The effect
of expression of glycosylation enzymes in insect cells is not totally understood, and
the performance of transgenic cells under industrial culture conditions has not been
evaluated. Glycoengineering of insect cells is a very promising approach, but
evaluation of transgenic cells under industrial manufacturing conditions is still
needed.

4 Impact of Glycosylation on Proteins and Products
Produced by Insect Cells

Even when one of the reasons for selecting the BEST for expressing a recombinant
protein is its ability to perform glycosylation, few reports have systematically
determined the role of insect glycosylation in the function of a recombinant protein.
Some of these reports are listed in Table 5. In general, the lack or reduction of
biological activity of proteins produced by the BEST is directly correlated with the
absence of sialic acid. Sialic acid is negatively charged at physiological pH, and
determines the distribution and half-life of proteins in the bloodstream [77]. Insect
glycoproteins may therefore be active in vitro but lose all biological activity when
tested in vivo [77]. Therefore, the main impact of insect glycosylation in proteins is
the absence of in vivo activity caused by the lack of sialic acid.

Bantleon et al. [81] found that a recombinant IgE with high mannose and
paucimannose glycosylation produced by Sf9 cells has the same immunoreactivity
and binding to FcεRI as IgE with mammalian glycosylation. In some cases it is the
absence of a glycan rather than an insect glycosylation profile that changes the
activity of proteins [4]. It is believed that the particular glycosylation profile of
proteins produced by insect cells would act as adjuvant in the case of vaccines, but
there are no reports sustaining this. Lin et al. [78] found that non-sialylated glyco-
sylation performed by Sf9 and sfSWT-1 cells induced higher anti rHA IgG titers than
tetrasialylated rHA produced by CHO cells. However, lower rHA neutralizing IgG
titers were obtained. Nevertheless, Dunkle et al. [82] have reported that Flublok®, a
recombinant influenza vaccine (rHA) produced in the BEST, is more effective than
an influenza vaccine produced in chicken eggs. The authors hypothesized that the
higher efficacy of Flublok® results from its higher HA concentration or the presence
of egg-derived mutations in the traditional comparator vaccine, not glycosylation.
In any case, the insect N-glycosylation in rHA was not a disadvantage for the
recombinant vaccine.
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Interestingly, it was found that α1,3 fucosylation produced by High Five® cells
can result in cross reactivity of sera from patients, as the α1,3 fucose epitope is
abundant in parasites [80]. This finding is especially important, as one of the most
significant niches of the BEST is the production of proteins for diagnostics. Sf9 cells,
which do not produce α1,3 fucose [16, 38, 40], would be a better cell line for
production of proteins for diagnostics. In the same line, Palmberger et al. [38]
observed that when α1,3 fucosylation was eliminated by RMD addition, binding
from sera from allergic patients to rHA produced by High Five® cells was reduced.

Table 5 Effects of insect glycosylation on protein function

Protein and characteristics Observed effects Reference

β subunit of human chorionic gonado-
tropin (βhCG) expressed in Sf9 cells
under the baculovirus basic protein
(MP) and polh promoters

βhCG produced under the MP promoter
had higher bioactivity and sialic acid
content than that produced under polh

[57]

Rat purple acid phosphatase (PAP) pro-
duced in CHO and Sf9 cells. PAP from
rat and Sf9 cells was recognized by GNA
lectin (terminal mannose)

Lower site occupancy reduces substrate
affinity and catalytic activity

[4]

Equine eLH/CG expressed in sf9 and
SfSWT-1 cells. Higher molecular weight
of protein from SfSWT-1 cells. No
sialylation detected in eLH/CG from
both cell lines

No biological activity because of the
absence of sialylation in eLH/CG from
both cell lines

[77]

GP50 from Taenia solium expressed in
Sf9 and High Five® cells

False positive reactivity with patient sera
of GP50 produced by High Five® cells
because of the presence of α1,3 linked
fucose

[80]

rHA produced by Sf9, SfSWT-1, and
CHO cells. SfSWT-1 cells did not pro-
duce sialylated glycans. rHA from CHO
cells had up to tetrasialylated structures

Sf9 and SfSWT-1 rHA elicited higher
anti HA IgG titers but lower neutralizing
antibody titers than CHO rHA

[78]

Reduced fucosylation of recombinant
influenza hemagglutinin produced by
High Five® cells

Reduced binding of IgE from the sera of
patients with allergy because of the
absence of α1,3 fucose

[38]

Recombinant human IgE produced by
Sf9 cells with paucimannosidic and high
mannose N-glycosylation, whereas
mammalian protein has complex
N-glycosylation

No difference in immunoreactivity and
FcεRI binding between insect and
mammalian recombinant proteins

[81]
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5 Conclusions and Outlook

The BEST is a very popular system for recombinant protein expression, especially
for complex proteins. To date, the particular glycosylation in proteins produced by
insect cells has not limited its application and success because of its many advan-
tages. The BEST is the system most used for production of the recombinant vaccines
on the market for human or veterinary applications. The BEST is not ideal for
expression of proteins that require sialylation or complex N-glycosylation for their
biological function, as even when efforts on engineering insect cells for the produc-
tion of complex sialylated glycans have been successful, mannose-terminal struc-
tures are still the most abundant. It is expected that the BEST will continue to be used
extensively for research and diagnostics applications, that more manufacturers will
benefit from the advantages of this technology, and that more products of the BEST
will reach the market in future years.
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Abstract Yeasts are valuable hosts for recombinant protein production, as these
unicellular eukaryotes are easy to handle, grow rapidly to a high cell density on cost-
effective defined media, often offer a high space–time yield, and are able to perform
posttranslational modifications. However, a key difference between yeasts and
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mammalian cells involves the type of glycosylation structures, which hampers the
use of yeasts for the production of many biopharmaceuticals. Glycosylation is not
only important for the folding process of most recombinant proteins; it has a large
impact on pharmacokinetics and pharmacodynamics of the therapeutic proteins as
well. Yeasts’ hypermannosylated glycosyl structures in some cases can evoke
immune responses and lead to rapid clearance of the therapeutic protein from the
blood. This chapter highlights the efforts made so far regarding the glyco-
engineering of N- and O-type glycosylation, removing or reducing yeast-specific
glycans. In some cases, this is combined with the introduction of humanized
glycosylation pathways. After many years of patient development to overcome
remaining challenges, these efforts have now culminated in effective solutions that
should allow yeasts to reclaim the primary position in biopharmaceutical
manufacturing that they enjoyed in the early days of biotechnology.

Graphical Abstract

Keywords Fungi, N-glycosylation engineering, O-glycosylation engineering,
Pichia pastoris, Recombinant protein expression, Saccharomyces cerevisiae, Yeast
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GLS-I/II Glucosidase I/II
GM-CSF Granulocyte-macrophage colony stimulating factor
GnT-I/II/III/IV N-acetylglucosaminyltransferase I/II/III/IV
HBV Hepatitis B virus
HER2 Human epidermal growth factor receptor 2
hO-FucT-1 Human O-fucosyltransferase-1
HPV Human papillomavirus
HR Homologous recombination
LLO Lipid-linked oligosaccharide
mAbs Monoclonal antibodies
Man Mannose
Man-I/II Mannosidase I/II
Mnn (Phospho)mannosyltransferase
M-Pol I Mannan-polymerase complex
NHEJ Nonhomologous end joining
ORF Open reading frame
OST Oligosaccharyltransferase complex
P Phosphate
PMT Protein-O-mannosyltransferase
PomGnT-I Protein-O-linked mannose β-1,2-N-acetylglucosaminyltransferase-I
POT Protozoan single-subunit oligosaccharyltransferase
ppGalNAcT Polypeptide:N-acetylglucosaminyltransferase
Pro Proline
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Rft1p Flippase
rhEPO Recombinant human erythropoietin
Ser Serine
sgRNA Short guide RNA
SiaT Sialyltransferase
Thr Threonine

1 Introduction

1.1 Rationale for Using Yeast in Protein Expression

To meet the individual requirements of each biopharmaceutical, different host
systems have been optimized for efficient recombinant protein production. Prokary-
otic organisms, especially Escherichia coli, are mainly used for the production of
proteins that do not depend on eukaryotic posttranslational modifications for their
folding, function, or stability. These organisms are well studied, and a lot of well-
characterized manipulation techniques have been established. The first biopharma-
ceutical on the market, human insulin (Humulin®, Eli Lilly & Co., Indianapolis, IN),
was produced in E. coli.

Another type of host system that shares the ease of handling and high production
yield/cell density with prokaryotic organisms are yeasts. Moreover, unicellular
eukaryotes are able to perform posttranslational modifications, including proteolytic
processing of signal peptides, disulfide bond formation, subunit assembly, phos-
phorylation, acetylation, acylation, and glycosylation, that prokaryotes can perform
only to a certain extent. Besides this, yeast and fungi differ in their ability to secrete
recombinant proteins, whereas prokaryotes express recombinant proteins mainly
intracellularly. Moreover, secretion facilitates the postproduction processing as
most yeasts, compared to mammalian cells or filamentous fungi, secrete only very
few endogenous proteins, which eases purification [1]. Yeasts are grown in cheap,
defined chemical media without the need for animal-derived products.

The most important reason for the small number of biopharmaceuticals on the
market produced by yeasts is their nonoptimal glycosylation pattern. Yeasts modify
glycoproteins with high-mannose N-glycans (Pichia pastoris) to hypermannosyl
N-glycan structures (Saccharomyces cerevisiae). Moreover, P. pastoris can incor-
porate β-1,2-mannose residues, and S. cerevisiae incorporates terminal
α-1,3-mannoses, both of which could be immunogenic [2, 3]. Yeast-derived high-
mannose N-glycans interact with specific receptors (i.e., C-type lectins) on the liver
and lymph node endothelial cells, dendritic cells, and macrophages, which leads to
fast serum clearance of the recombinant proteins [4]. To date, most therapeutic
glycoproteins have been produced in mammalian cells, like Chinese hamster ovary
(CHO) cells. These produce glycoproteins modified with humanlike hybrid- and
complex-type N-glycans. Production in mammalian cells is complicated and
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expensive and requires animal-derived products with a risk of viral or prion con-
tamination. The space–time yield of mammalian cell–based production processes is
often lower than in yeasts and costs of production are higher. For immunoglobulin G
manufacture, enormous efforts have been invested by the industry over the past two
decades, which has resulted in very substantial improvements in production eco-
nomics for these highly stable molecules. However, these processes are now
approaching theoretical limits and are, moreover, not easily transferrable to the
production of other, more labile, molecules. With increasing demand for
biopharmaceuticals, new applications that require different molecular formats or
massively increased scale, and increasing cost pressures as biopharmaceuticals are
developed for increasingly common diseases, yeast as a manufacturing host is
attracting renewed attention. To enable a next-step change in biopharmaceutical
manufacturing, considerable effort has already been devoted and continues to be
devoted to engineering yeast strains in such a way that they are devoid of yeast-type
immunogenic glycans, sometimes combined with the introduction of humanlike
glycosylation or application-customized glycosylation.

1.2 Saccharomyces cerevisiae Versus Pichia pastoris

S. cerevisiae, or baker’s yeast, has a long history in the food industry, with its
applications in bread baking and brewery. With the introduction of genetic engi-
neering, another era started for this yeast as it started being used for recombinant
protein production. A huge knowledge base was built up regarding the microbiol-
ogy, genetics, molecular and cellular biology, stress response, and metabolism of
this organism. The complete genome was sequenced in 1996 by an international
cooperative venture involving scientists in Europe, North America, and Japan [5]. It
was the first completely sequenced genome of a eukaryote. S. cerevisiaemainly uses
glucose as a carbon source. As a facultative anaerobe, this yeast is able to switch to
anaerobic consumption of glucose, however implying the concomitant production of
toxic ethanol. S. cerevisiae expresses glycoproteins modified with hypermannosyl
N-glycan structures consisting of α-1,2/3/6-mannoses and phosphomannoses
(Fig. 3a), often comprising more than 100 mannose residues. Other biotechnologi-
cally important yeasts are Kluyveromyces lactis, which is able to use lactose as a sole
carbon source and is used widely in the dairy industry, and Yarrowia lipolytica, a
model organism for hydrophobic C-source catabolism due to its ability to grow on
hydrophobic substrates like alkanes and fatty acids [6].

As a methylotrophic yeast, P. pastoris (formal nomenclature: Komagataella
phaffii) is able to use methanol as a sole carbon and energy source, obviating the
need to secrete enzymes like carbon source–procuring enzymes such as cellulases, as
is the case for filamentous fungi. The presence of methanol induces expression of
proteins involved in methanol metabolism, such as alcohol oxidase 1 and 2 (AOX1
and AOX2). Recombinant protein production controlled by their promoters results in
an inducible expression system either with high expression levels (AOX1 promoter)

Engineering of Yeast Glycoprotein Expression 97



or lower expression levels (AOX2 promoter) of the protein of interest. The genome of
P. pastoris was reported in 2009 [7], and since then, promoter engineering efforts
have also resulted in fermentable carbon source limitation-derepressed promoters,
which make it possible to avoid methanol feeds where desired [8, 9]. Also,
P. pastoris is a Crabtree-negative yeast species that, unlike, for example,
S. cerevisiae, has a strong preference for respiratory growth in glucose- and
oxygen-rich environments, avoiding the production of ethanol, as is the case for
fermentative yeasts [10]. By avoiding the build-up of toxic ethanol, Crabtree-
negative species can grow to very high cell densities [11]. In comparison with
S. cerevisiae, P. pastoris modifies its glycoproteins with shorter glycans
(oligomannoses) with a lower degree of polymerization, including α-1,2/3/6-,
β-1,2-mannose residues or phosphomannoses [12, 13]. This makes P. pastoris a
somewhat more suitable host for the production of glycoproteins compared to
S. cerevisiae. Hansenula polymorpha is another methylotrophic yeast that is able
not only to use methanol but also to express a pathway for nitrate assimilation. This
yeast type is attractive for some applications in industry due to its thermotolerance
up to 50�C [14, 15].

2 N-Glycosylation in Yeast

More than 70% of the biopharmaceuticals produced are glycoproteins, emphasizing
the importance of glycosylation as a co- and posttranslational modification. Mostly
two types of glycosylation modify glycoproteins: N-glycosylation and
O-glycosylation (Sect. 4). Not only is N-glycosylation important in the folding
process of most recombinant proteins, it also has a large impact on the pharmaco-
kinetics and pharmacodynamics of the therapeutic proteins. Biopharmaceuticals
modified with oligomannose-type N-glycans are prone to rapid clearance through
Kuppfer cells (liver-resident macrophages) by binding to the mannose receptor
present on the cell surface [4, 16]. Biopharmaceuticals carrying glycans fully
modified with terminal sialic acid, however, show longer half-lives by reduced
clearance [17]. Next to hepatic clearance, proteins with a molecular mass
<30–50 kDa are rapidly cleared by the kidneys [18]. To avoid this, glycosylation
of the protein can increase its hydrodynamic volume, reducing the renal clearance, as
used in engineered EPO variants [19]. Next to the impact on clearance, glycosylation
of the protein may offer protection against proteolytic degradation, for example, as
shown for granulocyte colony stimulating factor [20–22]. Fc glycosylated IgG-type
antibodies show increased resistance to proteolytic degradation by papain compared
to nonglycosylated variants, with the highest degree of resistance obtained when
carrying GlcNAc-terminal residues [23]. Whether these differences are relevant in
terms of therapeutic use is unstudied.

N-glycosylation occurs on asparagine residues in an asparagine-X-serine/threo-
nine (Asn-X-Ser/Thr) context, where X is any amino acid except for proline (Pro).
The initial steps of N-glycosylation synthesis are common to almost all eukaryotes.
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Briefly, a Glc3Man9GlcNAc2 lipid-linked oligosaccharide (LLO) is assembled in the
endoplasmic reticulum (ER) by several glycosyltransferases encoded by asparagine-
linked glycosylation (ALG) genes (Fig. 4a). This precursor is cotranslationally
transferred to a nascent polypeptide chain by the oligosaccharyltransferase complex
(OST). Deglucosylation of the N-glycan by glucosidase I and II leads to the
formation of a monoglucosylated structure that can bind calnexin/calreticulin,
assisting in protein folding (Fig. 1) [24]. Subsequently, one α-1,2-mannose is
removed by an ER-residing α-1,2-mannosidase. Further, α-1,2-mannosidase
processing by Htm1p in the ER can expose a terminal α-1,6-mannose residue,
which is a signal for the degradation of proteins that have not reached their proper
fold [25]. Correctly folded proteins are transported to the Golgi apparatus, where
their N-glycans are further modified, but in a species-specific manner. Mammalian
cells trim the Man8GlcNAc2 N-glycan further by α-mannosidases to obtain a sub-
strate for the generation of hybrid- and complex-type N-glycans by
glycosyltransferases in the Golgi apparatus. Instead of reducing the Man8GlcNAc2
N-glycans, yeasts elongate this N-glycan further, starting with the introduction of an
α-1,6-mannose residue. Further elongation with α-1,2/3/6-mannoses and
phosphomannoses occurs to obtain hypermannosylated N-glycans, which can be
capped in a species-specific manner (e.g., with α-1,3-mannose residues in
S. cerevisiae). N-glycosylation is very heterogeneous because it is a non-template-
driven process, with multiple differentially expressed glycosyltransferases some-
times competing for the same substrates and resulting from the action of all of these
enzymes over a very short time frame during passage of the substrate glycoprotein
through the Golgi apparatus. Moreover, interactions of the glycan with the particular
protein environment to which it is attached can also influence the accessibility of its
different branches to the glycosyltransferases and, hence, rates of conversion [26].

Because of the negative impact of yeast-type N-glycosylation on
biopharmaceuticals in terms of immunogenicity and clearance, glyco-engineering
of yeast strains was introduced to remove yeast-type glycosylation and to generate
hybrid- and complex-type (human) N-glycans (Fig. 2).

2.1 Engineering N-Glycosylation in Yeast

Glyco-engineering of yeast cells includes the removal of yeast-specific glycosyla-
tion, sometimes followed by the construction of hybrid- or complex-type (human)
glycans (Fig. 2). Next to the modification of the type of N-glycan structures on the
protein, considerable effort has been devoted to reducing the macro- and
microheterogeneity present on glycoproteins. To minimize macroheterogeneity,
meaning the structural diversity due to differential occupation of N-glycosylation
sites, different strategies have been explored to optimize the efficiency of
cotranslational N-glycan transfer to glycoproteins. One strategy involves regulating
the molecular flux in the dolichol pathway. For example, overexpression of a
S. cerevisiae cis-prenyltransferase, a key enzyme in dolichol synthesis, in
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Fig. 1 Calnexine/calreticulin cycle for protein folding. The OST transfers the LLO, consisting of
Glc3Man9GlcNAc2, to a nascent polypeptide chain. Deglucosylation of the N-glycan by glucosi-
dase I (GLS-I) and glucosidase II (GLS-II) leads to the formation of a monoglucosylated structure
that can bind calnexin/calreticulin (CNX/CRT), assisting in protein folding. Reglucosylation might
occur by a UDP-glucose:glycoprotein glucosyltransferase in case of a misfolded protein to reinitiate
the folding process. N-glycan trimming by an ER-residing α-1,2-mannosidase (Man-I) to
Man8GlcNAc2 occurs and has most often been completed by the time a correctly folded protein
is transported to the Golgi for further modification of the N-glycans. Proteins that remain engaged in
folding for a longer time are further trimmed by Htm1p [i.e., equivalent to the ER degradation-
enhancing α-1,2-mannosidase-like protein (EDEM) in mammals], which generates a glycan struc-
ture that targets proteins for ER-associated degradation (ERAD)
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Trichoderma reesei resulted in increased glycosylation levels of secreted proteins
[27]. Other strategies involve overexpression of proteins involved in the OST
complex (Sect. 2.1.2) [28, 29] or engineering of the acceptor tripeptide sequon for
optimal transfer conditions, as Asn-X-Thr is two to three times more efficiently
glycosylated than Asn-X-Ser [30]. The microheterogeneity of the carbohydrate
moiety refers to different structures that can be present on a given glycosylation
site of endogenous glycoproteins.

A first step in the humanization of N-glycosylation in yeast is the removal of the
high-mannose and hypermannosyl structures. Two main strategies are followed, one
based on the elimination of yeast glycosyltransferases (Sect. 2.1.1) and the other one

Fig. 2 Overview of human N- and O-glycosylation in the Golgi apparatus. On the left side, the
synthesis of a human glycoprotein containing a complex-type biantennary N-glycan is shown. In the
cis Golgi, mannosidase-I (Man-I) leads to a Man5GlcNAc2 that can be modified in the medial Golgi
by N-acetylglucosaminyltransferase I (GnT-I), mannosidase-II (Man-II), N-
acetylglucosaminyltransferase II (GnT-II), and a fucosyltransferase (FUT). Afterward,
galactosyltransferase (GalT) and sialyltransferase (SiaT) may perform their function on
N-glycosylated proteins. Moreover, N-glycans of lysosomal proteins can be decorated with man-
nose-6-phosphate due to the action of N-acetyl-1-phosphotransferase (GNTP) in the cis Golgi and
N-acetylglucosamine-1-phosphodiester-α-N-acetylglucosaminidase (NAGPA) in the trans Golgi.
The right side of the figure shows the mucin-typeO-glycosylation. Polypeptide-GalNAc-transferase
(ppGalNAcT) initiates O-glycosylation in the Golgi, which is followed by the action of core
1 galactosyltransferase (C1GalT), core 2 N-acetylglucosaminidase I (C2GnTI), core 3 N-
acetylglucosaminidase (C3GnT), core 2 N-acetylglucosaminidase II (C2GnTII), or sialyltransferase
(ST6GalNAcT) to generate core 1–4 or the sialyl-Tn-antigen (STn antigen), respectively. Next to
this, so far unknown enzymes synthesize core 5–8 O-glycans
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on interference in the assembly of the LLO (Sect. 2.1.2). A subsequent step is the
introduction of different glycosyltransferases and glycosidases to obtain hybrid- and
complex-type N-glycans. A recent, third approach, which efficiently converts yeast
N-glycosylation into a type that is often function-neutral, is the expression of an
endo-β-N-acetylglucosaminidase, capable of removing high-mannose N-glycans and
resulting in a largely deglycosylated product (Sect. 2.1.3).

2.1.1 Approach 1: Elimination of Yeast Glycosyltransferases

In the early 1990s the main enzyme responsible for the elongation of the high-
mannose N-glycan in S. cerevisiae was revealed as an α-1,6-mannosyltransferase
(Och1p), which initiates the α-1,6-polymannose outer chain [31]. Mannan polymer-
ase complexes (M-Pol) I and II extend this further with α-1,6-mannoses. The chain is
further elaborated by the addition of α-1,2-mannoses by α-1,2-mannosyltransferases
and phosphomannoses in a process that requires both the MNN6 and MNN4 (which
encodes for Mnn4p, a positive regulator of mannosylphosphate transferase Mnn6p)
genes and terminal α-1,3-mannoses by the Mnn1p α-1,3-mannosyltransferase
(Fig. 3a). S. cerevisiae Δoch1 Δmnn1 Δmnn4 strains mainly modify their glycopro-
teins with Man8GlcNAc2 N-glycans, removing the immunogenic mannan
N-glycans, but still retaining the rapidly cleared, high-mannose N-glycan [32]. Intro-
duction of an α-1,2-mannosidase gene of Aspergillus saitoi in this triple mutant
Δoch1 Δmnn1 Δmnn4 strain resulted in the first yeast strain capable of producing
some level of the human-compatible sugar chain Man5GlcNAc2 [33]. Although the
enzyme was successfully retained in the ER using an HDEL tag, only 27% of the
N-glycans of an endogenous protein (carboxypeptidase Y) were trimmed from
Man8GlcNAc2 to Man5GlcNAc2. Because Man5GlcNAc2 is the substrate used to
build human complex-type N-glycans, a homogeneous conversion to Man5GlcNAc2
is critical.

Furthermore, these manipulations have a big impact on S. cerevisiae yeast cells,
resulting in severe growth defects and decreased protein productivity. Mutagenesis-
based genetic diversity was introduced to perform screenings to obtain Δoch1
Δmnn1 Δmnn4 yeast strains capable of more efficient production of glycoproteins
[34]. In some mutants with restored functionality, the reduction of cell wall strength
as a consequence of the deletion of the outer chain of the N-glycans was likely
compensated by an increase in the glucan layer of the cell wall, as indicated by an
elevated level of glucose in the cell wall [34]. Recent research has shown that
disruption of the mannan glycan structures (Δoch1 Δmnn9 strain) causes cell wall
integrity defects, which causes cell stress and severe growth impairments [35]. At the
same time, this strain shows upregulation of genes in the secretory pathway involved
in protein folding (KAR2 and SSA1), vesicular trafficking (BOS1, ERV25, SNC2, and
SSO1), and the ERAD pathway (DER1 and HRD3), increasing specific protein
secretion levels. An increase in recombinant-specific protein secretion was also
shown in Δmnn10 deletion strains [36, 37]. In contrast to S. cerevisiae, no effect
on the growth rate could be detected in the Δoch1 strain of Y. lipolytica [38].
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Man5GlcNAc2 N-glycans have been obtained by overexpression of ER-retained
T. reesei α-1,2-mannosidase. Additional Δmnn9 knockout did not improve the
glycosylation profile compared to single Δoch1 deletion [38].

In P. pastoris, hypermannosylation occurs less frequently and to a lesser extent
compared to S. cerevisiae. The yeast also lacks α-1,3-mannosyltransferase activity,
avoiding the presence of terminal, immunogenic α-1,3-mannoses on the N-glycans.
Disruption of the OCH1 gene in P. pastoris with a knock-in strategy results in
glycoproteins modified with Man8-12GlcNAc2 N-glycans [39, 40]. No severe growth
defects have been observed, but it has been revealed that the knock-in event results
in the inadvertent expression of an N-terminally truncated Och1p, which appears to
be sufficient to avoid the growth defects later observed with full OCH1 knockout in
this organism. Whether this is due to rest–activity of the truncated Och1p or to, for
example, a stabilizing effect of the truncated Och1p in presumed Golgi protein
complexes is unclear at this time. In any case, this serendipitous finding has formed
the basis for the production of a strain in which this knock-in event has been
genetically stabilized, resulting in the so-called SuperMan5 P. pastoris strain,
which is commercially available from Research Corporation Technologies, Tucson,
AZ, USA [41, 42]. The full knockout of OCH1 in P. pastoris results in a growth

Fig. 3 Golgi N-glycosylation: wild-type versus glyco-engineered yeast. (a) Overview of wild-type
N-glycosylation in model ascomycetous yeast S. cerevisiae. The Man8GlcNAc2 N-glycan obtained
in the ER is further elongated with yeast-specific glycosyltransferases, starting with an
α-1,6-mannose by Och1p. Mannan polymerase complexes (M-Pol) I and II extend this further
with α-1,6-mannoses. Further elongation with α-1,2/3-mannoses and phosphomannoses by
(phospho)mannosyltransferases (Mnn) results in hypermannosylated N-glycans. (b) Elimination
of yeast-specific glycosyltransferases like Och1p results in shorter high-mannose N-glycans.
Insertion of mannosidase (Man) I, N-acetylglucosaminyltransferase (GnT) I, Man-II, GnT-II,
GnT-IV, GnT-V, galactosyltransferase (GalT), or sialyltransferase (SiaT) results in glycoproteins
modified with humanlike complex-type N-glycans. This has most completely been implemented in
P. pastoris
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defect, but it has not been well documented whether this is further worsened or rather
improved by further N-glycan engineering. In any case, researchers at Merck-
GlycoFi, Kenilworth, NJ, USA (where full OCH1 knockout was used as the strain
basis) have filed a patent application that describes a compensatory mutation in the
ATT1 gene, which improves the OCH1 knockout phenotype [43, 44]. Similar results
were obtained recently by mutating the CWP1 gene in anOCH1 knockout [45]. Sub-
sequent overexpression of an HDEL-tagged α-1,2-Man-I from T. reesei was suc-
cessful in converting the N-glycans to the smaller Man5GlcNAc2 structure
[40, 46]. Another successful approach involves introducing a C. elegans Man-I
fused to ScMns1p ER-targeting signal [39]. The obtained Man5GlcNAc2 N-glycan
structure is a starting point for the further introduction of glycosyltransferases and
glycosidases yielding mammalian complex-type N-glycans (Fig. 3b).

The first step in obtaining complex-type N-glycans is the addition of a GlcNAc
residue by N-acetylglucosaminyltransferase I (GnT-I). Overexpression of human
GnT-I, targeted to the early to medial Golgi compartment using a ScKre2p signal
sequence, generates almost complete conversion of a Man5GlcNAc2 N-glycan to
GlcNAcMan5GlcNAc2 structure [40]. Using an alternative approach, Choi et al.
succeeded in generating this hybrid-type N-glycan by introducing human GnT-I
retained in the cis Golgi using a ScMnn9p targeting signal. However, coexpression
of an additional UDP-GlcNAc transporter (K. lactis) was necessary to optimize this
conversion [39]. In both studies, different yeast strains and different localization
signals for both Man-I and GnT-I were used, which could have had an impact on
GlcNAc transfer efficiency.

Further humanization of the N-glycosylation pathway implies the introduction of
biantennaryN-glycans by substituting the α-1,3-mannose and α-1,6-mannose residue of
the hybrid-type for a second GlcNAc residue. To obtain this, Hamilton et al. used a
combinatorial library of several mannosidase II (Man-II) and N-
acetylglucosaminyltransferase II (GnT-II) catalytic domains fused to more than 60 fun-
gal type IImembrane localization signals [47]. Introduction ofDrosophilamelanogaster
Man-II and Rattus norvegicus GnT-II, both coupled to a ScMnn2p medial Golgi
targeting signal, resulted in a strain capable of producing GlcNAc2Man3GlcNAc2-
modified glycoproteins with the highest homogeneity and a production yield compara-
ble to the wild-type GS115 strain. Obtaining GlcNAcMan3GlcNAc2 N-glycans seems
to be a tricky and inefficient point in the engineering process, but it is largely resolved by
modifying the generated terminalα-1,6-mannosewith aGlcNAc residue. The reason for
this remains unclear, but it was observed that this terminal α-1,6-mannose is a substrate
for endogenous glycosyltransferases, resulting in novel structures that might interfere in
cell wall biogenesis [48].

Overexpression of β-1,4-galactosyltransferase (GalT) in the Golgi compartment is
necessary for the subsequent modification of GlcNAc terminal residues with a
β-galactose residue. The presence of UDP-Gal, necessary as a donor substrate for Gal
transfer, in the Golgi of S. cerevisiaewas shown [49]. Based on this evidence, one can
assume that this is also the case for P. pastoris. However, Vervecken et al. obtained
only a conversion of 10% of GlcNAcMan5GlcNAc2 to GalGlcNAcMan5GlcNAc2
[40]. The expression of a fusion protein composed of the human GalT-I catalytic
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domain and a UDP-galactose 4-epimerase (GalE) of Schizosaccharomyces pombe,
retained in the Golgi using the ScMnn2p signal sequence, resulted in efficient gener-
ation of biantennary Gal2GlcNAc2Man3GlcNAc2 N-glycans without the need for a
UDP-Gal transporter [50]. This structure is the one found on the conserved
N-glycosylation site (Asn297) of human IgG, except for the presence of a core
α-1,6-fucose residue on native IgGs. The absence of this fucose residue is advantageous
for antibody-dependent cell-mediated cytotoxicity (ADCC)-dependent antibody func-
tionality (e.g., in cancer and viral infection treatments) (Sect. 5).

The final step of human glycosylation, on most therapeutic glycoproteins, is
terminal sialylation of the N-glycans. This is important because desialylated glyco-
proteins are recognized, internalized, and degraded by the ASGP-R on hepatocytes.
Because serum glycoproteins are desialylated over time and as such reflect a pro-
tein’s age, it follows that the ASGP-R plays a crucial role in maintaining serum
glycoprotein homeostasis. Moreover, the ASGP-R rather prefers multivalent and
multimeric ligands over single galactose residues. Biantennary N-glycans have 100-
to 1,000-fold lower affinity in comparison to triantennary N-glycans [51]. Since
yeasts lack the capability to biosynthesize the cytidine monophosphate N-
acetylneuraminic acid (CMP-Neu5Ac) precursor, the CMP-Neu5Ac Golgi trans-
porter, and the sialyltransferase to transfer Neu5Ac to terminal galactose residues,
the introduction of five enzymes in a Gal2GlcNAc2Man3GlcNAc2 engineered strain
is necessary to obtain sialylation. Hamilton et al. succeeded in constructing one
vector containing these five genes (H. sapiens UDP-N-acetylglucosamine-2-epim-
erase/N-acetylmannosamine kinase, H. sapiens N-acetylneuraminate-9-phosphate
synthase, H. sapiens CMP-Neu5Ac synthase, M. musculus CMP-Neu5Ac trans-
porter, and M. musculus α-2,6-sialyltransferase), resulting in biantennary sialylation
of recombinant human erythropoietin (rhEPO) [52]. Moreover, this engineered
rhEPO triggered receptor signaling in vitro equally well as a form of the protein
containing tri- and tetra-antennary sialylated N-glycans (Darbepoetin/Aranesp®)
produced in CHO cells [53]. In vivo activity was optimized by PEGylation of the
engineered rhEPO, avoiding fast clearance due to smaller N-glycans. Merck for a
while appeared to be gearing up to test this molecule in a clinical setting, but the
program has now apparently been abandoned for unspecified reasons (Sect. 6.4).

Part of such glyco-engineering technology has recently become commercially
available as Pichia GlycoSwitch® (Research Corporation Technologies, Tucson, AZ,
USA), allowing for the production of glycoproteins carrying
Gal2GlcNAc2Man3GlcNAc2 N-glycans [54]. The starting point is the SuperMan5
strain (Biogrammatics, Carlsbad, CA, USA), improved for genetic stability
[41, 42]. Expansion of this technology to generate triantennary N-glycans is possible
by introducing human GnT-IV in the Golgi, which transfers a β-1,4-GlcNAc to the
α-1,3-mannose of the Man3GlcNAc2 core [55]. There are two caveats with the use of
this “humanization” technology. First, the genetic stability of strains with large num-
bers of transgenes can be difficult to obtain. Recently, since the availability of the
Pichia genome sequence [7],moreflexibility has been availablewith respect to the sites
of genomic integration, and strategies such as random rather than homologous recom-
bination can be used to achieve higher levels of stability. Second, inactivating only
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OCH1 is insufficient to avoid synthesis of all fungal typeN-glycans. Indeed, low levels
ofα-1,6-branch formation can still be detected inOCH1 knock-in/knockout strains, and
N-glycans can still be modified with phosphomannosyl residues.Moreover, sometimes
the human-type intermediates are inadvertently recognized by yeast
glycosyltransferases, resulting in the formation of novel structures. This is obviously
undesirable. GlycoFi/Merck’s researchers have attempted to overcome this to some
extent through stacking ofmore andmore glycosyltransferase gene knockouts in strains
while still not completely solving the problem. This makes the entire concept of
humanization rather unwieldy, and more efficient solutions are likely needed.

2.1.2 Approach 2: Interference in Lipid-Linked Oligosaccharide
Assembly

Whereas the first approach to disrupting the hypermannosyl N-glycan chain occurs
in the Golgi by elimination of glycosyltransferases such as Och1p, the second
approach is based on interference in the assembly of the LLO precursor in the
ER. This step is highly conserved between almost all eukaryotes and comprises
the assembly of the Glc3Man9GlcNAc2 LLO as a precursor for cotranslational
transfer to the nascent protein chain. Unravelling of this LLO assembly pathway
revealed the role of several glycosyltransferases encoded by asparagine-linked
glycosylation (ALG) genes (Fig. 4a) [56].

In S. cerevisiae, the enzyme responsible for converting Man5GlcNAc2-PP-Dol to
Man6GlcNAc2-PP-Dol at the luminal side of the ER (Dol-P-Man:Man5GlcNAc2-
PP-Dol α-1,3-mannosyltransferase) is encoded by the ALG3 gene (Fig. 4b)
[57]. Δalg3 mutants in both S. cerevisiae and P. pastoris, however, do not lead to
the accumulation of Man5GlcNAc2 only but also show N-glycans larger in size
containing mannoses and structures recalcitrant to mannosidase digests
[58, 59]. This Man5GlcNAc2 N-glycan may be a substrate for Och1p, resulting in
the addition of α-1,6-mannoses and requiring the combination of this strategy with
OCH1 deletion.

After the deletion of PpALG3 in the Δoch1 P. pastoris strain, a Man-I catalytic
domain, fused to the Sec12p yeast localization signal, was inserted into the
P. pastoris genome. This led to the trimming of the N-glycan structure to
Man3GlcNAc2, which serves as a substrate for GnT-I, which was targeted to the
Golgi after fusion with the localization signal of Mnn9p [50]. This approach obviates
the use of Man-II, necessary in the human pathway to obtain the substrate for
GnT-II. Introduction of rat GnT-II and fused human GalT-I and S. pombe
UDP-galactose 4-epimerase to a single localization signal resulted in the successful
generation of complex-type Gal2GlcNAc2Man3GlcNAc2 biantennary N-glycans.
The engineered cells had a small reduction in growth rate, but protein production
yield was comparable to that of the parental wild-type yeast [50]. To further improve
on the homogeneity of the N-glycan structure, knockouts in genes involved in
phosphomannosylation (Δpno1 and Δmnn4B) and β-mannosylation (Δbmt2)
(Sect. 3) were helpful [52, 60]. Moreover, introducing the glycosyltransferases
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Fig. 4 Interference in LLO assembly in ER. (a) Assembly of the LLO involves the cooperation of
several glycosyltransferases, encoded by the ALG genes, a flippase (Rft1p) to catalyze flipping of
the LLO to the ER lumen, and an OST, which coordinates cotranslational transfer of the oligosac-
charide to the nascent protein chain. (b) One approach to remove high-mannose yeast-specific
N-glycans involves the disruption of specific ALG genes like ALG3 and ALG11, leading to a shorter
Man5GlcNAc2 or Man3GlcNAc2 LLO, respectively. These shorter LLOs are transferred to
nascent polypeptide chains and are substrates for further elaboration to hybrid- and complex-type
N-glycans. (c) Overexpression of a C-terminally truncated flippase Flc2*p and of a protozoan
single-subunit oligosaccharyltransferase (POT) are necessary to improve N-glycan transfer of these
shorter LLOs to tackle the severe hypoglycosylation from which these strains suffer. Another
approach, demonstrated in Y. lipolytica, involves overexpression of Alg6p, which enhances the
transfer of Glc residues to Man5GlcNAc2 N-glycans in a Δalg3 strain. The presence of Glc residues
facilitates the transfer of the LLO to the protein by the OST. Overexpression of GLS-II
heterodimeric protein is required to remove these glucosyl residues efficiently after transfer;
together with the overexpression of an α-1,2-mannosidase, glycoproteins modified with the
Man3GlcNAc2 core N-glycan were obtained
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needed to synthesize the GlcNAc2Man3GlcNAc2 N-glycan-producing strain
reduced the presence of structures recalcitrant to mannosidases, suggesting depletion
of substrate for these yet unknown transferases when the terminal mannoses are both
capped with GlcNAc [50]. This observation is similar to that made with respect to
the Man-II-dependent Golgi engineering route.

Another intervention in the LLO assembly in S. cerevisiae was carried out by an
additional deletion in the ALG11 gene, eliminating a functional GDP-Man:
Man3GlcNAc2-PP-dolichol α-1,2-mannosyltransferase. This enzyme is localized to
the cytosolic side of the ER and catalyzes the transfer of α-1,2-mannose to
Man3GlcNAc2-PP-Dol and Man4GlcNAc2-PP-Dol. Consequently, Δalg11 Δalg3
mutants of S. cerevisiae are capable of producing glycoforms modified with
Man3GlcNAc2 N-glycans but suffer from severe hypoglycosylation and growth
retardation (Fig. 4b) [61, 62]. This truncated LLO is a poor substrate for the
endogenous flippase Rft1p, which catalyzes flipping of the LLO across the ER
membrane into the lumen. Overexpression of a C-terminally truncated version of
the endogenous ER-localized Flc2p (Flc2*p) can functionally replace Rft1p. More-
over Flc2*p shows a more relaxed substrate specificity, resulting in improved
flipping of the truncated Man3GlcNAc2-PP-Dol [28, 61]. Besides improving the
availability of the truncated LLO in the ER lumen, optimization of the subsequent
transfer to the nascent protein chain is necessary to tackle the hypoglycosylation. In
contrast to the multisubunit OST of higher eukaryotes, protozoa express single-
subunit OSTs (POTs) that can catalyze the transfer of the oligosaccharide chain
independently of an OST complex. Overexpression of Leishmania major STT3D
(LmSTT3D) improved N-glycosylation in yeast strains, producing a truncated LLO,
suggesting a more relaxed substrate specificity compared to the original catalytic
subunit Stt3 (Fig. 4c) [28]. Overexpression of LmSTT3D also evoked a significant
improvement of N-glycan site occupancy of recombinant proteins produced in
P. pastoris [29]. Another approach to tackling hypoglycosylation, demonstrated in
Y. lipolytica, involves the overexpression of dolichol-P-Glc:Man9GlcNAc2-PP-Dol
glucosyltransferase (Alg6p), which enhances the transfer of Glc residues to the
Man5GlcNAc2 LLO in a Δalg3 mutant strain (Fig. 4c) [63]. The presence of Glc
residues facilitates transfer of the LLO to the protein by the endogenous
oligosaccharyltransferase. To then remove these glucosyl residues efficiently after
transfer to the protein, overexpression of the glucosidase II heterodimeric protein is
required [63] and was successfully accomplished, together with α-1,2-mannosidase
expression, to yield glycoproteins modified uniformly with the universal
Man3GlcNAc2 core N-glycan.

Recently, more homogeneity of the Man3GlcNAc2 N-glycans in a Δalg3 Δalg11
S. cerevisiae strain was obtained by deletion of Mnn1p [64]. Besides the improve-
ment of homogeneity, this also eliminated the presence of the potentially immuno-
genic terminal α-1,3-mannoses. Complex-type N-glycans have been obtained in this
strain by expression of Kre2p-GnT-I and Mnn2p-GnT-II fusion proteins, and their
relative abundance increased by the overexpression of the UDP-GlcNAc transporter
of K. lactis [64]. Next to this complex-type sugar, a Man4GlcNAc2 N-glycan
remains present and could not be removed by deletion of Mnn1p nor Mnn2p.
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Production of glycoproteins modified with complex-type N-glycans was also
shown in the industrially important, thermotolerant H. polymorpha. Biantennary
Gal2GlcNAc2Man3GlcNAc2 structures have been obtained in a Δalg3 Δalg11 Δoch1
strain overexpressing GnT-I, GnT-II, and GalT-I [62, 65, 66]. To provide sufficient
donor substrates, the UDP-GlcNAc transporter of K. lactis and the S. pombe GalE
are overexpressed, together with the overexpression of HpRft1p, to improve flipping
of the truncated LLO to the ER lumen [62]. So far, in vivo sialylation could not be
obtained, but successful in vitro sialylation is described using recombinant
sialyltransferases and CMP-Neu5Ac as a donor substrate [67]. Recent research
showed significant improvement of glycosylation efficiency and homogeneity in
H. polymorpha by the overexpression of Hac1p [68]. This protein is a transcription
factor mediating the unfolded protein response induced by misfolded proteins or ER
stress. Previously described increases in heterologous protein expression levels
(protein-dependent) by overexpression of Hac1p [69, 70] might be explained par-
tially by enhanced protein processing involving glycosylation activity.

As a final note in this section describing ways of humanizing N-linked glycosyl-
ation, it is important to realize that only the Golgi-based pathway in P. pastoris has
been put to the test of a high-cell-density fermentation so far. It remains to be seen
whether this or any other of the described concepts will yield strains that are
sufficiently stable and robust to deliver reliable production processes for glycopro-
teins modified with human-type glycans devoid of undesired yeast-produced struc-
tures. Substantial work remains ahead to achieve this longstanding goal of
biopharmaceutical production science.

2.1.3 Approach 3: Overexpression of Endo-β-N-Acetylglucosaminidases

A third and recent approach is based on the removal of high-mannose yeast
N-glycans by endo-β-N-acetylglucosaminidases (ENGases). These cleave the
β-1,4-glycosidic bond between the two GlcNAc residues in the core of high-
mannose and hybrid-type N-glycans, leaving behind a single GlcNAc residue. A
P. pastoris strain expressing ENGase H (EndoH) from Streptomyces plicatus has
been used to deglycosylate recombinant proteins produced in a second strain
[71]. This was implemented either in a cofermentation process or using
postfermentation methods, avoiding the potential problem that coexpression might
cause competition for cellular resources, leading to a decrease in the yield of the
protein of interest. Similar results were obtained in our lab using another ENGase,
EndoT from T. reesei [72]. This fungus natively de-N-glycosylates its secreted
glycoproteins. We recently implemented cosecretion of EndoT with target glyco-
proteins in P. pastoris (Laukens et al., manuscript in preparation) and were only
successful after significant engineering to make this compatible with robust growth
characteristics and lack of lysis of the engineered cells. Such deglycosylation-based
engineering is suitable for proteins that need N-glycans for folding but in which the
glycans are not needed for the intended functionality of the protein. Furthermore,
this approach, at least in P. pastoris, efficiently removes potentially immunogenic
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(and partially as yet unknown) endogenous glycan modifications that the yeast adds
to its N-glycan branches.

3 β-Mannose Depletion

β-mannoses were first identified in C. albicans [73] but were also seen in P. pastoris
in 2000, following structural characterization of P. pastoris mannans [13]. It was
shown that some N-glycans were resistant to α-1,2-mannosidase treatment. This
subset accounted for 2% of the total glycan pool and was identified with nuclear
magnetic resonance [74]. However, S. cerevisiae does not contain β-mannosylated
glycoproteins, at least not to the extent that this was analyzed. The β-mannosylated
structures in C. albicans were shown to raise antibodies in infected patients and
when administered in vaccine formulations [75–78]. It should be noted that this does
not necessarily mean that a low level of similar modifications on P. pastoris–
produced proteins would be problematically immunogenic: parenterally adminis-
tered proteins are highly purified and do not contain adjuvantic molecules, in
contrast to the case in the context of the entire yeast cell or in vaccines. In fact,
tolerance can be induced through nonadjuvanted protein administration. Neverthe-
less, this potential immunogenicity has inspired research and nine and four
β-mannosyltransferase genes were identified in C. albicans and P. pastoris, respec-
tively [79]. Furthermore, independent deletion mutants of the individual
β-mannosyltransferases (Bmtp) were made in C. albicans and P. pastoris. This
revealed that PpBmt1p adds β-mannoses on the outer chain of N-glycans, while
PpBmt2p primarily generates β-mannoses on the core glycans (i.e., Man5GlcNAc2)
but had no activity on the outer chain. Bmt3p had no detectable activity on either
core or outer-chain glycans, and PpBmt4p was proposed as acting as a capping
activity to β-mannose structures on both the core and the outer-chain glycans.
Therefore, PpBmt2p was the only enzyme that was determined to be responsible
for the initiation of β-mannosylation of the core glycan.

PpBMT2 knockout resulted in a reduction of α-1,2-mannosidase-resistant
glycoforms and yielded Man5GlcNAc2 N-glycans in P. pastoris. Although this
resulted in a reduction of β-mannose residues, additional knockouts were still needed
to abolish the latter modification completely. When going through double
(Ppbmt2Δbmt1Δ, Ppbmt2Δbmt3Δ and Ppbmt2Δbmt4Δ), triple
(Ppbmt2Δbmt4Δbmt3Δ and Ppbmt2Δbmt4Δbmt1Δ), and quadruple
(Ppbmt2Δbmt4Δbmt1Δbmt3Δ) mutants, a progressively higher degree in removal
of β-mannoses could be observed. Moreover, rhEPO produced in other triple mutant
strains (Ppbmt2Δbmt1Δbmt3Δ and Ppbmt2Δbmt3Δbmt1Δ) and in the quadruple
mutants showed no cross-reactivity with an anti-host-cell antigen antibody. This
suggests that the reactive epitope from the P. pastoris glycans had been
removed [80].

In recent work, we observed a different class of β-mannosyl-modified N-glycans
also in a P. pastoris strain designed to produce Man5GlcNAc2. Here, we found that
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subsequent introduction of human GnT-I could outcompete the formation of these
undesired structures, and we will report in the near future on these studies (Laukens
et al., submitted for publication).

4 O-Glycosylation in Yeast

Similar to N-glycosylation, O-glycans are important for the pharmacokinetics and
pharmacodynamics of proteins and may protect proteins against proteolytic degra-
dation as well. Unlike N-glycosylation, where a specific consensus sequence is
recognized for N-glycan attachment, prediction of the site for O-glycosylation is
less well understood. Besides the need for a Ser or Thr residue for the attachment of
an O-glycan, cis-peptide sequences might also be needed for efficient coupling of an
O-glycan. Since most proteins contain numerous Ser/Thr residues, it remains unclear
whether and which O-glycan a biopharmaceutical may contain. Moreover, the
initiating glycosyltransferases for yeast-O-mannosyl glycans are of an entirely
different enzyme family than the initiating protein-O-GalNAc transferases for
human mucin-type N-glycans (Fig. 2). It should not be expected that sites of yeast
O-glycosylation are necessarily the same as those for human-type O-glycans. Fur-
thermore, yeast-type O-glycans are structurally different from human-type O-gly-
cans, introducing concerns about the immunogenicity of O-glycosylated
biopharmaceuticals produced by yeast. To address these problems, probably the
most efficient manner is to change the sequence of the protein to avoid yeast-type
O-glycans altogether. However, as the consensus sequence is rather unpredictable,
this strategy depends on the ability to experimentally determine the sites of
O-glycosylation, a less than trivial task. New developments in glycopeptide mass
spectrometry have improved our capabilities in this area. This mutagenesis
approach, of course, may again result in immunogenicity and altered protein prop-
erties, especially if multiple sites need to be adapted, but can often be manageable
(it should be recalled that, as a rule of thumb, all protein therapeutics indeed generate
an immune response to some extent). Humanization of O-glycan structures might
serve as a partial solution (Sect. 4.2); however, this does not remove the uncertainty
regarding the amount and position of O-glycan attachment. Another approach to
address the O-glycan immunogenicity involves the reduction of the native glycosyl-
ation chains (Sect. 3), and one of the most often used biopharmaceuticals, insulin, is
indeed produced today using such a yeast O-glycosylation suppression strategy.

In general, yeasts and fungi will exclusively perform O-mannosylation. In
S. cerevisiae, transfer of a single mannose from dolichol-P-mannose to Ser or Thr
residues in the ER is catalyzed by protein-O-mannosyltransferases (PMT) [81–
85]. S. cerevisiae contains a highly redundant PMT gene family, consisting of three
subgroups, PMT1 (containing PMT1, PMT5, and PMT7), PMT2 (containing PMT2,
PMT3, and PMT6), and PMT4 (as the sole member of this group), encoding proteins
with different protein substrate specificities. After the addition of a single mannose
residue, theO-glycan will be extendedwith additional α-mannose residues in the Golgi
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by α-1,2-mannosyltransferases, which needMn2+ and use GDP-Man as donor residue.
ScKtr1p, ScKtr3p, and ScKre2p/Mnt1p are three known α-1,2-mannosyltransferases in
this process [86]. The two former ones add the secondα-1,2-mannosewhile the last one
mainly attaches the third mannose residue to form mannobiose and mannotriose.
Transfer of subsequent α-1,3-mannose residues is done by ScMnn1p, ScMnt2p, and
ScMnt3p α-1,3-mannosyltransferases [87, 88]. In P. pastoris, α-1,2-mannoses of the
O-glycan can be modified with terminal β-mannose residues or may be branched with
mannose-6-phosphate residues [89, 90] (Fig. 5). Further modifications (e.g.,
β-mannosylation or galactosylation) often resemble those seen on N-glycans of the
particular species and are indeed species-specific [91, 92].

4.1 Reducing or Removing O-Glycans in Yeast

4.1.1 Making Pmt Knockouts

A first approach to intervene in O-glycosylation in yeast is to prevent its initiation by
eliminating the PMT activities. These key enzymes initiate O-mannosylation on

Fig. 5 Wild-type O-glycosylation in S. cerevisiae and P. pastoris. In the ER, serine (S) and
threonine (T) residues can be recognized by Pmt1/2p that add α-mannose residues. In the Golgi,
Ktr1p/Ktr3p catalyzes the transfer of a second α-1,2-mannose, after which Mnt1p/Kre2p may add a
third α-1,2-mannose. Additionally, Mnn4p/Mnn6p or Pno1p adds phosphomannose residues while
competing with Mnn1p, Mnt2p, Mnt3p, or Bmt1–4 for the addition of α-1,3-mannose residues in
S. cerevisiae or β-mannoses in P. pastoris. The differences inO-glycosylation structure may depend
on the yeast strain (as shown in this figure) but also on its growth condition. Note that all enzymes
are actually transmembrane proteins, not shown here as such for practical reasons
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nascent secretory or membrane proteins in the ER lumen during or after protein
translocation [93, 94]. The first PMT was isolated from S. cerevisiae, leading to
cloning of the PMT1 gene [95, 96] and the identification of six other homologous
PMTs [97–99]. The seven different isoforms were eventually grouped into three
subfamilies, referred to as PMT1 (ScPmt1/5/7p), PMT2 (ScPmt2/3/6p), and PMT4
(ScPmt4p) [95, 98]. The PMT1 and PMT2 family members are highly redundant and
show significant differences in three conserved sequence motifs (i.e., A, B, and C)
when compared to the PMT4 subfamily [100]. Moreover, PMT1 and two members
form heterodimers with one another and recognize different acceptor proteins
compared to PMT4, which homodimerizes to be maximally active [98, 101,
102]. After these discoveries, individual knockouts of the PMT1–4 genes were
readily obtained in S. cerevisiae, but combination mutants such as pmt1pmt2pmt4
and pmt2pmt3pmt4, were lethal [98].

More recently, the PMT genes in P. pastoris were identified and characterized by
two independent studies [103, 104]. P. pastoris possesses homologs to
S. cerevisiae’s PMT1, 2, 4, 5, and 6 but none to PMT3 or PMT7. These are grouped
into subfamilies comparable to those in S. cerevisiae, forming similar dimers. A
PMT1 knockout resulted in 60% reduction of O-mannosylation on insulin produced
in P. pastoris [103]. Moreover, an additional disruption in the PMT2 gene resulted in
serious impediment of the cell viability. Knocking out PMT2 furthermore resulted in
a reduction of O-mannosylation chain length in addition to the lower occupancy of
theO-glycans. Finally, it has been shown that a combination of PMT knockouts with
PMT inhibitors (Sect. 4.1.2) works synergistically and results in a stronger reduction
in the degree of O-mannosylation (Fig. 6) [104].

Fig. 6 Removing or reducing O-glycans in yeast. In S. cerevisiae, knocking out the
phosphomannosyltransferases 1–4 (Pmt1–4p) or supplying a PMT inhibitor (e.g., Rhodanine-3-
acetic acid) in the culture medium may prevent the initial addition of α-mannose to serine (S) or
threonine (T). Moreover, this avoids further modification of the glycoproteins in the Golgi and may
give rise to a reduced O-glycan level. The same is true for the Pmt1/2 knockout P. pastoris strain. It
should be noted that using these knockout strains or Pmt inhibitors will not completely abolish
O-glycans from (heterologous) produced proteins and that yeast-specific O-glycans may still be
present
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In H. polymorpha, five paralogous PMTs are involved in O-glycosylation
(HpPmt1/2/4/5/6p). Knockout of Hppmt1 resulted in a decrease in O-glycosylation
of the chitinase protein and an increased temperature sensitivity [105, 106]. No
remarkable effects were detected in single Hppmt5Δ and Hppmt6Δ mutants, while
double mutations Hppmt1pmt5Δ and Hppmt1pmt6Δ affected cell wall integrity
owing to reduced O-glycosylation of the surface glycoproteins HpWsc1p and
HpMid2p, combined with sensitivity to cell wall stress inducers [106]. However,
the most crucial enzymes for O-glycosylation of surface proteins seem to be Pmt2p
and Pmt4p. No successful knockout for Pmt2p could be obtained so far, while
disruption of Pmt4p in a ΔPmt1 background of H. polymorpha is synthetically
lethal [106, 107].

4.1.2 PMT Inhibitors

Another approach to reducing O-glycan occupancy and length involves the use of
benzylidene thiazolidinediones such as rhodanine-3-acetic acid [108, 109]. These
agents block Pmt1p activity in C. albicans [110] and broadly inhibit the general
PMT activities in S. cerevisiae [111] and certain members of the PMT families in
P. pastoris [104]. As these compounds broadly inhibit the formation of O-linked
mannoproteins, this results in loss of cell wall integrity. Because PMT inhibitors lead
to cell swelling and eventually death, concentrations of these compounds should be
empirically determined and closely monitored during fermentations. Furthermore,
PMT inhibitors should be used only during induction of protein expression,
preventing lethality during growth to high cell densities (Fig. 6).

4.1.3 Expression of Mannosidases to Limit O-Mannose Chain Length

Using the knockout strains or inhibitor concentrations that are more or less compat-
ible with yeast cell growth and feasible protein production conditions, the previously
mentioned strategies only reduce the occupancy of O-glycans on glycoproteins and
generally do not completely eliminate them. In some cases (such as when only one
O-glycan with low site occupancy is present), such partial suppression can be
sufficient to push the modification below 1% of the protein molecules. Therefore,
it becomes a trace contaminant like many other protein variants (e.g., due to
oxidation, deamidation, mistranslation) that are almost always produced to some
extent in any recombinant protein production technology.

Nevertheless, another, possibly complementary, approach to O-glycan reduction
is enzymatic trimming of O-mannosyl groups attached to proteins during down-
stream processing. However, it should be noted that such enzymatic downstream
processing of biopharmaceuticals is often costly (Fig. 7) [112].
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α-1,2-Mannosidase

Various glyco-engineering strategies have been developed to eliminate certain yeast-
specific glycans of recombinant glycoproteins or to reengineer them to human-type

Fig. 7 Strategies of O-glycosylation chain length reduction in P. pastoris. Pichia strains may have
(β-mannosyltransferase 2) Bmt2p or (phosphomannosyltransferase) Pno1p disruptions and result in
O-glycosylated proteins, sensitive to mannosidases such as α-1,2-mannosidase, that can be
overexpressed in the Golgi. This results in single O-mannosylated glycoproteins. However, Jack
Bean or lysosomal mannosidase may hydrolyze all remaining α-mannose residues in the Golgi.
Moreover, these latter enzymes may be used for mannose in vitro hydrolysis as well. It should be
noted that using this strategy for O-glycosylation reduction may still result in the production of
proteins with yeast-specific O-glycans (i.e., Man-Pi-Man and β-Man containing structures)
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N-glycans (Sect. 2) [39, 40, 47, 52, 54, 113]. Additionally, also phospho- and
β-mannose-depleted P. pastoris strains (Sect. 3) that have been shown to result in
(single) α-1,2-mannose-remaining O-glycans could be obtained [46, 54, 114]. To
reduce the amount of remaining α-1,2-mannose residues, overexpression of a
recombinant α-1,2-mannosidase from T. reesei was introduced and eventually
cosecreted along with the recombinant protein of interest (Fig. 7) [114].

Lysosomal Mannosidases

In contrast to α-1,2-mannosidase from T. reesei and α-1,2/3-mannosidase from
X. manihotis, α-1,2/3/6-mannosidase from Jack Bean was able to hydrolyze the
Man-O-Ser/Thr linkage on top of the removal of the other mannose residues [115–
118]. This can be done on wild-type S. cerevisiae and glyco-engineered P. pastoris-
produced glycoproteins.

The efficacy of Jack Bean mannosidase can be limited due to steric inaccessibility
of the singleO-linked mannose, owing to the conformation of the protein or presence
of nondigestible modifications (in particular β-mannose). Furthermore, Jack Bean
mannosidase is currently only available as a crude plant extract, posing several
issues including sourcing, reagent quality, and contaminating protease activity.
Recently, the amino acid sequence of Jack Bean mannosidase was elucidated for
98% by peptide de novo sequencing [119], so recombinant versions of Jack Bean
mannosidase are now being produced and are in the process of being tested (Fig. 7).

Other Lysosomal Mannosidases

A screening was set up by Hopkins et al. for broad specific lysosomal hydrolases
(i.e., α-1,2/3/6-mannosidase). These enzymes normally reside in the lysosome of
eukaryotic cells where they degrade mannose-containing glycans. The lack of α-D-
mannosidase in humans results in the lysosomal storage disease α-mannosidosis
[120]. It has been shown that human lysosomal α-D-mannosidase has an activity
toward free N-linked glycans similar to that of Jack Bean α-1,2/3/6-mannosidase
[121]. The human lysosomal mannosidase could degrade remaining O-linked
α-mannose structures after genetic elimination of β- and phosphomannoses. How-
ever, as was expected for similar sterical reasons as with Jack Bean mannosidase,
human lysosomal mannosidase could not provide universal degradation of
remaining mannoses (Fig. 7).

Altogether, these approaches can bring the problem of yeast O-glycosylation to
within a manageable/acceptable range in simple cases where only one or a few
O-glycosylation sites are present, such as is the case with insulin. This yeast-
produced biopharmaceutical is produced in a Δpmt1/2 knockout strain of
S. cerevisiae [122], and in P. pastoris, work is ongoing to determine the optimal
PMT knockouts for insulin production [103]. These interventions do not eliminate
the O-glycan completely but bring it from approximately 5% to below 1% of the
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molecules, at which point this becomes a trace variant that is acceptable and clearly
causes no demonstrated issues with safety of this chronically administered drug.
This illustrates that the problem is manageable and should not be a cause for
abandoning yeast as an expression host for moderately O-glycosylated proteins,
especially if other arguments to use yeast are strong.

4.2 Humanization of O-Glycans in Yeast

4.2.1 Mucin Type

Amano et al. described the engineering of S. cerevisiae to obtain mucin-type
glycoproteins modified with core 1 glycans (Galβ1,3GalNAc1-O-Ser/Thr)
[123]. The inherent O-mannosylation pathway was inhibited by a rhodanine-3-acetic
acid derivative (Sect. 4.1.2). Subsequent introduction of Bacillus subtilis
UDP-galactose 4-epimerase enabled the synthesis of UDP-Gal and UDP-GalNAc,
both of which are transported across the Golgi membrane by overexpression of a
human UDP-Gal transporter. Next, human polypeptide:N-
acetylgalactosaminyltransferase (ppGalNAcT) and D. melanogaster core 1
β-1,3-galactosyltransferase (DmGalT) were introduced, both fused to the Golgi-
targeting N-terminal sequence of ScMnn9p for localization in the cis-Golgi
(Fig. 8). Subsequent sialylation of this terminal Gal residue could be obtained
in vitro; so far, no data on in vivo sialylation have been reported for S. cerevisiae.
Hamilton et al., however, already described in vivo sialylation of O-glycans in

Fig. 8 Mucin-type O-glycosylation engineering in S. cerevisiae. Strains producing reduced levels
of O-glycans can be further engineered to produce glycoproteins with humanized mucin-type
O-glycans. This was performed by the overexpression of Bacillus subtilis UDP-galactose 4-epim-
erase and a human UDP-Gal transporter. UDP-Gal was then used for the generation of
Galβ1,3GalNAc1-O-Ser/Thr glycoproteins by overexpressing the human polypeptide:N-
acetylgalactosaminyltransferase (ppGalNAcT) and D. melanogaster core 1 -
β-1,3-galactosyltransferase (DmGalT). It should be noted that using this strategy for
O-glycosylation humanization might still result in the production of proteins with yeast-specific
O-glycans. Note that all enzymes are actually transmembrane proteins, not shown as such for
practical reasons
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P. pastoris using the strain engineered for in vivo sialylation of N-glycans (Fig. 9)
(Sect. 4.2.2) [52, 114]. This suggests that in vivo sialylation might be feasible in
S. cerevisiae as well (Fig. 8). Thus far, the reported experience with these strains
remains very limited, and it is unclear whether they will be useful in
biomanufacturing and for which biopharmaceutical products. On a critical note,
one could justifiably argue that replacing one problematic pathway (i.e., yeast
O-mannosylation) by two competing and low site-occupancy pathways (i.e., incom-
plete suppression of O-mannosylation pathways and incomplete mucin-type O-gly-
cosylation) may worsen rather than solve the problem. In addition, the analytical
challenge for such products would be more complex, as would be the possibility of
purifying away the O-mannosylated fraction. Overall, we feel that there would have
to be a very compelling pharmacological reason for producing a pharmaceutical in
such strains rather than in mammalian cells. For example, production of differen-
tially O-glycosylated cancer vaccine antigens could be such a reason, although
mammalian cell-based alterations are available [124].

4.2.2 α-Dystroglycan-Type O-Glycans

While mucin-type O-glycans start with the addition of GalNAc to a Ser or Thr
residue, α-dystroglycan-type O-glycans contain mannose as the first residue
attached, catalyzed by protein O-mannosyltransferases related to the yeast’s endog-
enous ones. As described earlier, yeast-endogenous extensions of yeast O-glycans
can be removed by coexpression of Golgi-targeted α-1,2-mannosidase in a phospho-
and β-mannose deficient P. pastoris strain (Sect. 3). This results in partial formation
of O-glycans containing only a single mannose residue. Subsequent expression of
murine protein-O-linked-mannose β-1,2-N-acetylglucosaminyltransferase I
(PomGnT-I) results in the transfer of a GlcNAc residue to this single O-mannose.
This disaccharide can be further extended by the sequential actions of β-1,4-GalT
and α-2,6-SiaT to obtain sialylated O-linked glycans (Fig. 9) [17, 114]. So far, this
approach has been tested on TNFR2:Fc as the reporter glycoprotein and resulted in
61% of α-dystroglycan-type O-glycans, among a range of intermediates and
remaining yeast-specific O-glycans [114].

This approach has the advantage that it does not introduce further O-glycans on
the target protein. It only converts the sites that yeast PMTs modify with a glycan
that may be more compatible with parental use in humans (although that will need to
be demonstrated, as the sites of yeast-initiated O-glycans are very unlikely to be
modified with the rather rare α-dystroglycan-type O-glycan). In addition, the
required genetic modification is exceedingly complex, and the approach’s efficiency
and robustness in scalability and across products remain unexplored.
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Fig. 9 α-dystroglycan-type O-glycosylation engineering in P. pastoris. In the phospho- and
β-mannose-deficient Pichia strain, Golgi-localized protein-O-linked-mannose β-1,2-N-
acetylglucosaminyltransferase I (PomGnT-I), galactosyltransferase (GalT), and sialyltransferase
(SiaT) can be overexpressed, leading to the expression of dystroglycan-type O-glycosylated pro-
teins. It should be noted that using this strategy for O-glycosylation humanization might still result
in the production of proteins with yeast-specific O-glycans. Note that all enzymes are transmem-
brane proteins, not shown here as such for practical reasons
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4.2.3 O-Fucosylation

In a further specialized application, the O-fucosylation pathway has been success-
fully engineered in S. cerevisiae. Therefore, again in a context of drug-induced yeast
PMT inhibition, Arabidopsis thaliana GDP-mannose-4,6-dehydratase (AtMUR1),
A. thaliana GDP-4-keto-6-deoxy-mannose-3,5-epimerase (AtFXGER1), and human
O-fucosyltransferase-1 (hO-FucT-1) were heterologously expressed. This eventually
led to the O-fucosylation of the factor-VII EGF-domain, a protein that is naturally
modified with this rare modification in human cells [125, 126]. Further engineering
with a human β-1,3-N-acetylglucosaminyltransferase (Fringe) resulted in the elon-
gation of the O-fucose with β-1,3-GlcNAc (Fig. 10) [127].

5 Filamentous Fungi

Filamentous fungi are, like yeasts, microorganisms that can grow to high cell density
in fermenters. Yeasts and fungi have short development times to generate recombi-
nant protein–expressing clones (about twice as long for filamentous fungi than for
yeasts) and are inexpensive to grow when compared to mammalian cells. The
filamentous fungi of protein production interest have a resorptive metabolism, that
is, they digest macromolecular growth substrates extracellularly. In contrast to
S. cerevisiae and P. pastoris, fungi therefore often secrete an enormous amount of
proteins into their production medium, which complicates downstream processing.
Commonly investigated fungi entail Aspergillus species (e.g., A. awamori, A. niger,
and A. oryzae), Trichoderma species (e.g., T. reesei), and Myceliophthora

Fig. 10 O-fucosylation engineering in S. cerevisiae. Strains expressing proteins with reduced
levels of O-glycans can be engineered to produce GlcNAcβ-1,3Fuc-containing proteins. Therefore,
Arabidopsis thaliana GDP-mannose-4,6-dehydratase (AtMUR1) and A. thaliana GDP-4-keto-6-
deoxy-mannose-3,5-epimerase (AtFXGER1) are overexpressed combined with Golgi-localized
human O-fucosyltransferase-1 (hO-FucT-1) and β-1,3-N-acetylglucosaminyltransferase (Fringe).
It should be noted that using this strategy for O-glycosylation humanization may still result in the
production of proteins with yeast-specific O-glycans. Note that all enzymes are actually transmem-
brane proteins, not shown as such for practical reasons
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thermophila. These organisms are regarded as nontoxic and nonpathogenic and have
received the Generally Regarded as Safe status by the US Food and Drug Admin-
istration. These filamentous fungi have long been attractive for their apparent, very
effective secreted protein production machinery. However, this machinery has until
recently mainly been used for the secretion of the fungus’ own enzymes, which have
evolved to be resistant to the fungus’ secreted proteases, or to secrete proteins that
naturally or after engineering were sufficiently protease-resistant. Yet, with the
discovery of novel efficient genome engineering tools and the availability of genome
sequences, multiple protease knockouts are now feasible, which may open up
prospects of biopharmaceutical production in these organisms. Time will tell
whether processes more efficient than with yeasts can be developed with the
filamentous fungi. These strategies will make it possible to optimize strains further
in terms of glycosylation in the future and to produce proteins containing specific
types or humanized glycans, much informed by how this has been accomplished in
the past for yeasts.

The N-glycosylation profile of fungi is similar to that of yeast, in the sense that
they produce high-mannose N-glycans. However, contrary to yeast, these N-glycans
are generally smaller. Aspergilli and Trichoderma species have high-mannose-type
N-glycans that can be phosphorylated (e.g., T. reesei). Up to 11 mannose residues
per N-glycan have been identified in T. reesei, while A. niger proteins may contain
up to 24 mannose residues on one N-glycan. Unlike proteins from these species,
M. thermophila does not appear to produce highly mannosylated glycoproteins. The
most common N-glycan in M. thermophila is reportedly Man3GlcNAc2, which, to a
lesser extent, may contain additional HexNAc and Hex residues (i.e., Hex0-
4HexNAc0-6Man3GlcNAc2) [128]. However, further analysis is definitely warranted
before fully concluding on this, as the methods used were quite suboptimal.

Filamentous fungi often contain two kinds of α-1,2-mannosidases, one of which
is similar to the mammalian Golgi α-1,2-mannosidase that trims Man8GlcNAc2 to
Man5GlcNAc2 [129]. However, it appears that this enzyme is secreted in the growth
medium rather than retained in the Golgi and, thus, that the majority of
Man8GlcNAc2 to Man5GlcNAc2 processing occurs post secretion. In addition,
these mannosidases often generate only a small proportion of Man5GlcNAc2 in the
secreted protein N-glycan profile. Another mannosidase, residing in the ER, cata-
lyzes the hydrolysis of the Man9GlcNAc2 to the Man8GlcNAc2 glycan, as in
virtually all eukaryotes [130]. Moreover, fungal N-glycans can also contain glucose,
galactofuranose, and phosphomonoesters and -diesters. Less than 1% of
cellobiohydrolase I, produced in T. reesei and modified in vitro with human
GnT-I, human β-1,4-GalT, and rat α-2,6-SiaT, contained hybrid-type sugars
[131]. In A. nidulans and A. niger, overexpression of an α-1,2-mannosidase from
C. elegans, fused to the Sec12p P. pastoris leader sequence, produced a large
amount of Man5GlcNAc2 N-glycans. However, considerable amounts of Man7-
8GlcNAc2 glycans were still present as well. In the strain that additionally expresses
GnT-I, fused to the mnnJ leader sequence, fungal N-glycans were almost completely
lost and GlcNAcMan5GlcNAc2 N-glycosylated proteins were obtained. In an alter-
native approach, knockout of the ALGC and ALG3 genes led to the production of
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Man3-6GlcNAc2 glycosylated proteins after which in vitro digestion with
α-1,2-mannosidase could result in homogeneous Man3GlcNAc2 [132, 133]. From
these studies it is apparent that the strategies developed in yeasts are indeed likely to
be translatable to filamentous fungi.

6 Examples of Recombinant Proteins Expressed in Glyco-
Engineered Yeast Strains: Glycosylation Considerations

6.1 Production of Monoclonal Antibodies

Monoclonal antibodies (mAbs) constitute a large portion of biopharmaceuticals on
the market. Their production relies heavily on posttranslational modifications, for
example, disulfide bonds are necessary for correct folding and glycosylation influ-
ences the effector function and mAb stability. Complete deglycosylation of an IgG1
mAb results in reduced thermal stability for the CH2 domain and more susceptibility
for proteolytic cleavage and aggregation [134]. The type of N-glycan present on
Asn297 in the Fc region of the heavy chain has an impact on complement-dependent
cytotoxicity (CDC) and ADCC [135, 136]. Currently, licensed therapeutic recom-
binant mAbs are mainly produced in CHO, NS0, and Sp2/0 cells and are predom-
inantly modified with core fucosylated biantennary N-glycans with variable levels of
galactosylation [137]. Monoclonal Abs bearing nonfucosylated N-glycans, however,
show enhanced ADCC by increased activity of natural killer cell–mediated killing.
Moreover, sialylated mAbs may suppress inflammation and reduce ADCC, resulting
in a more anti-inflammatory effector function [138]. Modification of mAbs with
high-mannose N-glycans results in fast serum clearance in humans [4, 16].

Enormous efforts have been devoted to producing cell lines that lack fucosylation
activity in mammalian cells. The GlycArt® technology (Roche, Basel, Switzerland),
for example, involves overexpression of GnT-III to add a bisecting GlcNAc to
N-glycans, which is known to inhibit further fucosylation of the N-glycan
[139]. Another approach focuses on the knockout of the α-1,6-fucosyltransferase
to avoid the addition of a fucose residue (POTELLIGENT® technology) [140]. In
yet another approach, inhibition of GDP-fucose synthesis is carried out by knocking
out GDP-mannose 4,6-dehydratase [141]. Another promising approach to control-
ling the N-glycosylation type of mAbs involves production in glyco-engineered
yeast strains. Since yeasts do not modify their glycoproteins with fucosylated and
sialylated structures, an increased ADCC activity can be obtained. By use of the
glyco-engineering strategies described earlier, humanized biantennary mAbs can be
obtained showing optimal effector functions [60]. Zhang et al. describe the expres-
sion of an antihuman epidermal growth factor receptor 2 (HER2) mAb in a glyco-
engineered P. pastoris strain, an analog to trastuzumab (Herceptin®, Roche, Basel,
Switzerland) produced by CHO cells [142]. This P. pastoris-produced anti-HER2 is
reportedly mainly modified with complex-type N-glycans carrying terminal GlcNAc
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or Gal residues. It is completely devoid of fucose residues and shows a remainder of
Man5GlcNAc2 and hybrid-type glycoforms. A comparative study shows in vitro and
in vivo properties similar to those of as the CHO-produced trastuzumab. Moreover,
P. pastoris-produced anti-HER2 shows increased ADCC activity, probably due to
the lack of core fucose residues [142].

Next to an enhanced ADCC, P. pastoris-produced mAbs show a more homoge-
neous glycosylation profile compared to the large heterogeneity of complex-type
N-glycans in CHO cells [143]. So far, only a very small number of studies are
available, and it is therefore too early to conclude whether the thus far reported yeast
glycan engineering technologies will allow for robust scaling for multiple antibody
products while retaining the favorable glycosylation characteristics. With its ease of
handling and low production cost, P. pastoris may become very important for the
production of “bio-better” therapeutic antibodies compared to conventional produc-
tion in mammalian cells.

Finally, also a human IgG antibody against tumor necrosis factor α was expressed
by the filamentous fungus Myceliophthora thermophila at the g/L level (Sect. 5)
[144]. Glycosylation engineering of this organism has not yet been reported but
could likely follow paths similar to those previously reported for other yeasts and
fungi.

6.2 Enzyme Replacement Therapies

Lysosomal storage diseases are orphan diseases that, in some cases, can be treated
with enzyme replacement therapy (ERT). These enzymes are recombinantly pro-
duced, mainly in CHO cells, but also human fibroblast carcinoma cells and plant
cells such as carrot cells [145]. For the treatment of Pompe disease, the ERT, acid
glucosidase α (GAA), is mainly targeted to the muscle cells via the cation-
independent mannose-6-phosphate receptor (CI-MPR). To increase the mannose-
6-phosphate to substantial levels, the Mnn4p ortholog of S. cerevisiae (i.e., PNO1)
was overexpressed in P. pastoris, which resulted in glycoproteins carrying
N-glycans, of which 80% contained at least one mannose-6-phosphate. These
findings were confirmed for the ortholog in O. minuta (i.e., MNN4) [146] and
Y. lipolytica (i.e., MPO1) [147]. Moreover, owing to the discovery of a novel
Cellulosimicrobium cellulans phosphomannosylhydrolase enzyme, it became pos-
sible to uncap mannose residues that shielded the phosphates of the N-glycan and
prevented efficient binding to CI-MPR [113]. An additional mannosidase from this
bacterium enables removal of further terminal α-mannose residues. Besides GAA,
also α-galactosidase A and N-acetylgalactosamine-6-sulfate sulfatase have been
produced in P. pastoris [148, 149].
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6.3 Vaccines

Because vaccines are administered intramuscularly and intended to be immuno-
genic, the presence of potentially immunogenic yeast-glycan elements is less of a
concern than with intravenously injected pharmaceutical products, as long, of
course, as these glycans do not dominate the immune response and do not cause
safety issues. For yeast-produced vaccines, this generally is not the case, and some of
the most important vaccines are produced in yeasts, being vaccines against the
human hepatitis B virus (HBV) and the human papillomavirus (HPV). So far, the
FDA has approved two HBV vaccines produced in S. cerevisiae: Engerix-B®

(GlaxoSmithKline Biologicals, Rixensart, Belgium) and Recombivax HB® (Merck
and Co., Inc., Kenilworth, NJ, USA). Several vaccines for HBV are available in
other markets, such as AgB® (Laboratoria Pablo Cassará, Buenos Aires, Argentina),
Hepavax-Gene® (Green Cross Vaccine Corp., Seoul, Korea), Biovac-B®

(Worckhardt, Bombay, India) and Gene Vac-B® (Serum Institute of India, Poona,
India), which are produced in H. polymorpha, and Shanvac®-B (Shantha
Biotechnics Ltd., Hyderabad, India), which is produced in P. pastoris. For HPV,
the FDA has approved two S. cerevisiae-produced vaccines: Gardasil® and Gardasil
9® (Merck and Co Inc., Kenilworth, NJ, USA).

6.4 Other Therapeutic Proteins

Leukine® (sargramostim, Partner Therapeutics Inc., Boston, MA, USA) is a recom-
binant human granulocyte-macrophage colony-stimulating factor (GM-CSF) pro-
duced in S. cerevisiae, carrying its wild-type glycosylation. It was approved by the
FDA in 1991 for therapeutic use in the prevention of neutropenia after chemotherapy
in acute myelogenous leukemia, in myeloid reconstitution after bone marrow trans-
plantation, and in bone marrow transplantation failure or engraftment delay. These
are acute, often subcutaneously and intravenously given, single-dose treatments,
where the presence of yeast-type glycans can be tolerated. Regranex® (becaplermin,
OMJ Pharmaceuticals Inc., San German, Puerto Rico) is a human platelet-derived
growth factor recombinantly produced in S. cerevisiae. This gel is approved for the
topical treatment of skin ulcers (from diabetes), as it promotes recruitment of
macrophages, endothelial cells, and fibroblasts to increase healing. Kalbitor®

(DX-88 ecallantide, Dyax, Cambridge, MA, USA) is a recombinant kallikrein
inhibitor protein produced in P. pastoris. The protein was approved by the FDA in
2009 for the treatment of acute attacks of hereditary angioedema and is used in the
prevention of blood loss during surgery. Recombinant hEPO was recently produced
by glyco-engineered P. pastoris [53]. The strain is able to decorate proteins with
humanized biantennary N-glycans with terminal sialic acid residues (Sect. 2.1.2).
This recombinant hEPO was shown to have increased in vitro efficacy but requires
PEGylation to achieve a half-life similar to that of an existing hEPO, Aranesp®
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(darbepoetin, Amgen, Thousand Oaks, CA, USA), from CHO cells (which carries
multiple branched sialylated N-glycans). In addition to all of this, insulin, a single
O-glycosylated protein, can also be produced in yeast. It can be produced in a glyco-
engineered yeast S. cerevisiae strain (i.e., Δpmt1/2) (Novolin, Novo Nordisk,
Bagsvaerd, Denmark) [122] to reduce the O-glycosylation level. Furthermore,
insulin is also produced in P. pastoris (Insugen, Biocon, Bangalore, India)
[150, 151], as well as in H. polymorpha [152, 153]. Additionally, ThromboGenics
NV (Leuven, Belgium) developed Jetrea® (Ocriplasmin) in P. pastoris. This prote-
ase is used for the treatment of symptomatic vitreomacular adhesion, as it degrades
protein components of the vitreous body and the vitreoretinal interface (e.g., laminin,
collagen, and fibronectin). Another therapeutic produced in P. pastoris entails
recombinant albumin (Medway, Mitsubishi Tanabe Pharma Corporation, Osaka,
Japan) [154, 155]. Several other products are in late stage of clinical trials like
Nanobody® ALX-0061 (vobarilizumab, Ablynx, Ghent, Belgium), which is a
recombinant anti-IL6 receptor single-domain antibody fragment, and Nanobody®

ALX-0171 (Ablynx, Ghent, Belgium), which is a recombinant anti-RSV single-
domain antibody fragment, both produced in P. pastoris.

7 Future Prospects

7.1 Genome Engineering in Yeast

Classical genome engineering methods to knockout a gene rely on the replacement
of the gene by a selection marker cassette based on homologous recombination
(HR). In contrast to S. cerevisiae, HR in many fungal organisms including
P. pastoris is a very inefficient process [156]. This makes the introduction of targeted
genome modifications very challenging and laborious. Introducing targeted single-
or double-strand DNA breaks induces the cellular DNA repair machinery, increasing
the efficiency of HR. Storici et al. describe the introduction of DNA double-strand
breaks in S. cerevisiae by an inducible I-SceI nuclease targeted to a previously
integrated I-SceI homing endonuclease site, obtaining recombination frequencies of
up to 20% [157, 158]. Näätsaari et al. describe a ku70 mutant strain in which the
normal function of Ku70p, essential for nonhomologous end joining (NHEJ), is
eliminated. A defect in NHEJ mainly yields transformants in which DNA strand
breaks are repaired through HR [156].

A booming technology that is highly promising for targeted genome engineering
is the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/
CRISPR-associated protein 9) system. The Cas9 protein (from Streptococcus
pyogenes) is an endonuclease that needs to be targeted to the nucleus of the cell
and is guided by a short guide RNA (gRNA) toward a complementary, specific site
in the DNA to introduce a DNA double-strand break. This DNA double-strand break
is repaired by the NHEJ repair mechanism of the cell, which often generates short
insertions or deletions in the open reading frame (ORF) of the gene. By
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cotransforming a linear DNA molecule with homology to the flanking sequences of
the cut site, integrations into the genome can be obtained by homology-directed
repair, making it possible to completely replace an ORF by another sequence or to
insert sequences into the genome. The latter strategy might be optimized by using a
Cas9 nickase variant that introduces DNA single-strand breaks, reducing NHEJ
repair. Successful genome engineering in yeast using CRISPR technology was
first obtained in S. cerevisiae and S. pombe [159, 160]. Weninger et al. describe
targeting of the OCH1 gene in P. pastoris using CRISPR/Cas9 to be less efficient
than targeting of other genes involved in the methanol pathway (AOX1, TMR1, and
MMP1) [161]. The efficiency, however, is still approximately 50 times higher than
previously obtained with conventional knockout cassettes, showing the high value of
the method.

This technology may become very important for facilitating knockouts in yeast
strains, deleting unwanted glycosyltransferases and inserting glycosyltransferases or
glycosidases of interest to modify the N- and O-glycosylation pathways.

8 Conclusion

Over the past decade, much promising progress has been made in the glyco-
engineering of various yeast strains, resulting in either a reduction or elimination
of undesirable yeast-specific glycan structures. In addition, the introduction of
humanlike N- and O-glycosylation pathways in these yeasts was successfully
obtained, leading to the expression of glycoproteins modified with complex-type
N-glycans or humanlike O-glycans. So far, it remains impossible to engineer a strain
completely devoid of yeast-specific N- and O-glycans, and further work is required.
One should, however, not forget the significant impact that these glycosylation
alterations cause on strain viability. Finding a balance between different genetic
modifications will be of key importance to maintain the high space–time yields that
make fungal hosts attractive in the first place. Furthermore, much work is ahead of us
in investigating the scaling of production processes with glyco-engineered strains.
Such work has started in several labs. With the increasing demands on cost effec-
tiveness of recombinant therapeutic protein production, we feel that the time and
technology are now probably more right than ever to have a major impact in
biomanufacturing in the decade ahead.
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Abstract Most secreted proteins in eukaryotes are glycosylated, and after a number
of common biosynthesis steps the glycan structures mature in a species-dependent
manner. Therefore, human therapeutic proteins produced in plants often carry plant-
like rather than human-like glycans, which can affect protein stability, biological
function, and immunogenicity. The glyco-engineering of plant-based expression
systems began as a strategy to eliminate plant-like glycans and produce human
proteins with authentic or at least compatible glycan structures. The precise replica-
tion of human glycans is challenging, owing to the absence of a pathway in plants for
the synthesis of sialylated proteins and the necessary precursors, but this can now be
achieved by the coordinated expression of multiple human enzymes. Although the
research community has focused on the removal of plant glycans and their replace-
ment with human counterparts, the presence of plant glycans on proteins can also
provide benefits, such as boosting the immunogenicity of some vaccines, facilitating
the interaction between therapeutic proteins and their receptors, and increasing the
efficacy of antibody effector functions.

Na: Neu5Ac (sialic acid)

A: Gal

Gn: GlcNAc

M: Man

F: Fuc (α3 linkage)

F: Fuc (α6 linkage)

X: XylMammals Plants

Graphical Abstract Typical structures of native mammalian and plant glycans with symbols
indicating sugar residues identified by their short form and single-letter codes. Both glycans contain
fucose, albeit with different linkages
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Keywords Glycan, Glycoprotein, Glycotransferase, N-linked, O-linked,
Pharmaceutical protein, Recombinant protein, Transgenic plant, Transient
expression

1 Introduction

Most secreted proteins in eukaryotes are modified by glycosylation, a term that refers
to the co-translational or post-translational covalent addition of oligosaccharide
chains (glycans) to the polypeptide backbone [1]. The two main categories of
glycosylation involve N-linked glycans added to the amide side chain of an aspar-
agine residue in the consensus sequence NxS/T (where x is any amino acid except
for proline) and O-linked glycans added to the hydroxyl groups of serine, threonine,
hydroxylysine, and/or hydroxyproline residues [2, 3]. Common features of both
glycosylation pathways include the sequential nature of glycan synthesis and matu-
ration in the endoplasmic reticulum (ER)/Golgi apparatus, and the fact that all
eukaryotes share common core glycans that are matured in a species-dependent
and sometimes also a tissue-dependent manner, so that the resulting mature glycan
structures differ when the same polypeptide is expressed in different hosts.

The host-specific differences in glycan structures are particularly important when
human therapeutic proteins are expressed in heterologous cells, because the pres-
ence/absence and precise composition of the glycans can affect both the structure
and function of the protein [4]. In structural terms, glycans increase the size of the
protein, may alter its charge, and may have more specific effects such as influencing
the way in which the polypeptide backbone folds. These factors can, in turn, affect
the stability of the protein (e.g., by protecting it from proteases) and its ability to
interact with other molecules, both of which contribute to its biological activity and
its pharmacokinetic/pharmacodynamic properties. Finally, non-human glycans on
human therapeutic proteins can trigger an immune response [4]. Like other hetero-
logous expression platforms, plants do not naturally produce human-like glycans, so
it is important to determine the extent to which plant glycans influence the structure
and activity of human therapeutic proteins, and to develop strategies to alter or
remove them if necessary. However, the presence of non-human glycans can be an
advantage [5]. Indeed, some human therapeutic proteins with atypical glycans are
found to be more efficacious than their counterparts produced in mammalian cells
[6, 7].

2 Endogenous Glycosylation Pathways in Plants

2.1 N-Linked Glycosylation in Plants

All N-glycans in most eukaryotes are derived from the initial structure
Glc3Man9GlcNAc2, which is modified as the glycoprotein moves through the secre-
tory pathway by the removal and addition of sugars, giving rise to a diverse array of
oligosaccharides. Even so, almost all N-glycans share the common core structure
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Man3GlcNAc2, formally defined as an N,N0-diacetyl chitobiose unit with a β-mannose
residue attached to the chitobiose and two α-mannose residues linked to hydroxyl
groups at positions 3 and 6 on the β-mannose residue [2]. When the protein moves
through the different compartments of the Golgi body, the sugar residues added to the
glycans are species-dependent. Core β(1,2)xylose and core α(1,3)fucose residues are
added in plants, whereas core α(1,6)fucose and terminal sialic acid residues are added
in animals. Some plant glycoproteins are also augmented with the so-called Lewisa

epitope, which contains β(1,3) galactose and α(1,4)fucose, whereas mammalian
glycoproteins often contain β(1,4)galactose combined with N-acetylneuraminic acid
(GlcNAc) or N-glycolylneuraminic acid. The specific biological relevance of these
different glycan structures in plants is largely unknown, although they may regulate
protein turnover and interactions as they do in mammals [8].

The processing of N-glycans in plants leads to the formation of five major types of
structure (Tables 1 and 2). These are the high-mannose type (also known as the
oligo-mannose type), the short- and long-chain complex types, the hybrid type, and

Table 1 The glycan structures attached to a model protein (phytase) in different plant species and
tissues

Reproduced from Arcalis et al. [9] with permission from Springer-Nature

PSV ¼ protein storage vacuole, □ ¼ GlcNAc (Gn), ○ ¼ mannose (M), ¼ fucose (F), ¼ xylose
(X), ● ¼ galactose
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the paucimannosidic type [19]. N-glycan biosynthesis in plants begins in the ER
when the precursor oligosaccharide Glc3Man9GlcNAc2 is transferred from a
dolichol lipid carrier to the target asparagine residue as the nascent protein is
translocated into the ER lumen. The three terminal glucose residues are trimmed
from this precursor oligosaccharide in the ER by glycoside hydrolases (glucosidases
I and II) and a single mannose residue is removed by ERmannosidase to generate the
core structure Man8GlcNAc2. These steps are common to all eukaryotes and in
subsequent processing steps result in the generation of high-mannose glycans, with
five to nine mannose residues attached to the N,N0-diacetyl chitobiose unit
[20, 21]. Beyond the cis-Golgi, the nascent glycoprotein encounters
N-acetylglucosaminyltransferase I (GlcNAc transferase I), which is also highly
conserved in plants and animals. But following the addition of GlcNAc to the
α(1,3) arm, species-dependent modifications begin to occur (Fig. 1). Short-chain
complex type N-glycans are formed when high-mannose type N-glycans are mod-
ified in the Golgi body, and are characterized by the presence of an α(1,3)-fucose
residue attached to the proximal GlcNAc and/or a β(1,2)-xylose residue linked to the
β-mannose residue of the core. These α(1,3)-fucose and β(1,2)-xylose residues are
predominantly found on plant glycoproteins, but the former are also found in insects
and the latter in some molluscs [23]. Between one and four α(1,2)mannose residues
are removed by α-mannosidase I, converting Man8-9GlcNAc2 to Man5GlcNAc2 and
then GlcNAc is added to the α(1,3)mannose branch of Man5GlcNAc2 by GlcNAc
transferase I [24, 25]. Two further mannose residues are then trimmed by
α-mannosidase II, and GlcNAc transferase II transfers the second GlcNAc to the
α(1,6)mannose branch. These steps were characterized by the analysis of glycosyl-
ation mutants in Arabidopsis thaliana [26–28]. Long-chain complex type plant

Table 2 The glycan structures attached to a model protein (monoclonal antibody 2G12) in
different plant species and tissues

Reproduced from Arcalis et al. [9] with permission from Springer-Nature

PSV¼ protein storage vacuole.□¼GlcNAc,○¼mannose, ¼ fucose, ¼ xylose,●¼ galactose,
ER endoplasmic reticulum, n.d. not done, OMT ¼ oligo-mannose type
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Fig. 1 The synthesis of N-linked glycans. (A) Schematic overview of complex N-linked glycan
processing in plants. Golgi-α-mannosidase I (MNS1/2), N-acetylglucosaminyltransferase I (GnTI),
Golgi-α-mannosidase II (GMII), N-acetylglucosaminyltransferase II (GnTII), β(1,2)
xylosyltransferase (XylT), core α(1,3)fucosyltransferase (FUT11/12), β(1,3)galactosyltransferase
(GALT1), α(1,4)fucosyltransferase (FUT13). (B) Simplified schematic overview of N-linked gly-
can processing in mammalian cells. Golgi α-mannosidase I (GMI), core α(1,6)fucosyltransferase
(FUT8), N-acetylglucosaminyltransferase IV (GnTIV) and V (GnTV), β(1,4)galactosyltransferase
(B4GalT1), α(2,6)sialyltransferase (ST). (C) Optimized N-linked glycan engineering approach: the
generation of xylt, fut11, fut12, and galt1 knockouts results in the formation of the GnGn structure,
which serves as an acceptor for GnTIV, GnTV, B4GalT1, and ST, resulting in fully processed
complex N-linked glycans. Sialylation in plants requires the co-expression of the Golgi cytidine-
50-monophospho (CMP)-sialic acid transporter (CST) and proteins for CMP-sialic acid biosynthe-
sis. Reproduced from Schoberer and Strasser [22] with permission from Elsevier
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N-glycans, which contain bi-antennary groups and additional side chains of α(1,4)-
fucose and β(1,3)-galactose linked to the GlcNAc units, possess terminal antennae
containing the Galβ(1–3(Fucα(1–4))GlcNAc Lewisa structure. Long-chain complex
N-glycans bearing the Lewisa antigen are generated by the addition of galactose and
fucose to terminal GlcNAc residues by β(1,3)galactosyltransferase and α(1,4)
fucosyltransferase, respectively. Hybrid type N-glycans are formed when only the
α(1,3)-mannose branch of the intermediate Man5GlcNAc2 is processed, resulting in
an oligosaccharide with α(1,3)fucose and/or β(1,2)xylose linked to the
GlcNAcMan5GlcNAc2 core [29]. However, in plants expressing a recombinant
galactosyltransferase, the same modification can occur if the enzyme gains access
to the GlcNAcMan5GlcNAc2 structure too early and the terminal galactose prevents
further processing by mannosidase II and GlcNAc transferase II [30]. The core
structure may then be augmented by α(1,3)fucosylation and β(1,2)xylosylation as
long as at least one terminal GlcNAc is present [31]. The α(1,3)fucosylation and
β(1,2)xylosylation reactions occur independently, as shown by the analysis of
N-glycans in plants where one or the other enzyme is mutated [32]. Paucimannosidic
type N-glycans are modified oligosaccharides containing only α(1,3)fucose linked to
the proximal GlcNAc and/or a β(1,2)xylose attached to the β-mannose residue of the
intact Man3GlcNAc2 core or the truncated core structure Man2GlcNAc2. These are
the typical N-linked glycan structures formed when glycoproteins are targeted to the
plant vacuole [33] and then processed by the vacuolar β-N-acetylhexosaminidase
HEXO1, or when they are secreted and trimmed by the plasma membrane
β-N-acetylhexosaminidases HEXO2 and HEXO3 [34, 35].

N-glycan structures in A. thaliana have been investigated in detail through the
analysis of individual endogenous proteins produced in wild-type plants and various
glycosylation mutants, as well as the proteomic analysis of whole plants and specific
tissues. In one of the most comprehensive studies thus far, total protein extracts from
whole plants were digested with trypsin and the glycopeptides were enriched by
converting the carbohydrates into aldehydes, which were then covalently coupled to
hydrazide-derivatized beads. The peptides were subsequently released by treatment
with peptide N-glycosidase (PNGase), analyzed by two-dimensional nano-liquid
chromatography-mass spectrometry (nanoLC-MS), and the glycan acceptor sites
were identified by the deamidation footprint left by PNGase [36]. This study helped
to characterize the A. thaliana N-glycoproteome and provided information about
glycosylation site occupancy on numerous secreted proteins carrying typical plant
glycans, comprising a mixture of the five principal glycan structures described above.

2.2 O-Linked Glycosylation in Plants

O-linked glycosylation involves the addition of oligosaccharides to the hydroxyl
oxygen on serine, threonine, hydroxylysine, and/or hydroxyproline side chains
[4, 37]. The presence of O-linked glycans influences a range of structural and
functional properties important for therapeutic proteins, including folding, solubility,
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stability, biological function, and immunogenicity. There are significant differences
in O-glycosylation between plants and animals, including the preferred acceptor site
and the structure and composition of the mature glycans (Fig. 2). In animals, most
O-linked glycoproteins are mucin-type glycoproteins in which GalNAc is added to
serine and threonine residues in the Golgi body and then elaborated predominantly
with GlcNAc, fucose, and galactose to create a heterogeneous population of com-
plex O-glycans [38–40]. Mucin-type glycoproteins do not appear to be widely
synthesized by plants, although they have been detected in rice seeds [41, 42].
O-linked glycosylation is common in plants and is used to regulate growth, wound
healing, and plant-microbe interactions [43, 44]. However, the most abundant
O-linked glycans are found on the hydroxyproline residues of hydroxyproline-rich
glycoproteins, and this modification is unique to plants [45]. Although O-glycan
synthesis in plants sometimes begins in the ER, it usually begins in the Golgi body
with the addition of galactose or arabinose, followed by further elaboration
[46, 47]. Contiguous sequences of hydroxyproline result in the addition of short
unbranched arabino-oligosaccharides, as seen in the case of extensins [48]. Clustered

Fig. 2 The synthesis of O-linked glycans. (A) Schematic overview of plant-type O-linked glyco-
sylation. Proline residues next to O-linked glycosylation sites are converted to hydroxyproline
(Hyp) by prolyl-4-hydroxylases (P4H). Hyp residues are further elongated (e.g., by
arabinosyltransferases – AraTs). (B) Mucin-type O-linked glycan biosynthesis pathway in mam-
mals. Polypeptide GalNAc-transferases (GalNAc-Ts), β(1,3)galactosyltransferases 1 (C1GalT1),
Cosmc (chaperone), sialyltransferases (ST6GalNAcIII/IV, ST3GalI). (C) Mucin-type O-linked
glycan engineering in plants. Strategies involve the knockout of P4H to prevent Hyp formation,
and the expression of mammalian GalNAc-T, Drosophila melanogaster C1GalT1, and ST. ER
Endoplasmic reticulum. Reproduced from Schoberer and Strasser [22] with permission from
Elsevier
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non-contiguous hydroxyproline sequences may also be glycosylated, generally by
the addition of branched arabinogalactan polysaccharides [48, 49].

3 N-Linked Glycosylation of Recombinant Proteins
in Plants Without Glyco-Engineering

3.1 Species-Dependent and Tissue-Dependent Effects

Many glycoproteins in animals are naturally produced as a mixture of glycoforms.
The distribution of glycoforms in terms of site occupancy and glycan structure often
varies between cell types, tissues, and individuals, and changes over time [50]. In the
context of heterologous expression systems there are also differences in glycan
structure in different taxonomic groups; for example, insect cells form shorter and
less complex N-glycan structures than mammalian cells, typically oligomannose or
paucimannose forms with core fucose structures but no terminal sialic acid residues,
and the core structures include both human-like α(1,6)-linked fucose and α(1,3)-
linked fucose [51]. Even cell lines from different mammals show minor variations in
glycan structures, e.g., Chinese hamster ovary cells lack bisecting GlcNAc residues
and add α(2,3)-linked sialic acid rather than the human-like α(2,6) linkage, and
murine SP2/0 cells introduce a Galα(1,3)Gal structure that is not found in human
cells [52, 53]. Therefore, it is not surprising that different taxonomic groups of plants
also produce diverse glycans [45, 54]. Even so, although some green algae have thus
far been shown to produce only high-mannose type glycans, other groups of plants,
including liverworts, hornworts, mosses, ferns, gymnosperms, and angiosperms,
appear to be able to form the five groups of N-glycans discussed earlier, including
the Lewisa epitope, although the abundance of this trisaccharide varies in different
tissues and at different developmental stages [4]. The Lewisa epitope is abundant in
the seeds of dicotyledonous plants but is not found in the seeds of monocotyledon-
ous plants, although it is produced in the vegetative organs of both [55, 56].

Although the overall glycosylation capacity of plants appears highly conserved at
the species level, there are considerable differences at the level of individual tissues.
The comprehensive analysis of tissue-specific effects on recombinant proteins is
rarely undertaken, but antibodies are exceptional because many different antibodies
have been expressed in diverse plant systems [57, 58] and some specific antibodies,
such as the HIV-neutralizing monoclonal IgG 2G12, have been systematically tested
in different host species and tissues [9]. Furthermore, several groups have also
deliberately used model glycoproteins such as the enzyme phytase to investigate
how different plants, and different tissues in the same plant, influence the glycan
structures [9]. Overall the glycan structures on recombinant phytase (Table 1) and
2G12 (Table 2) are the same mix of high-mannose and complex type N-glycans,
albeit with some variation in the quantities of different glycoforms. Although the
single GlcNAc structure probably reflects the high endoglycanase activity in certain
specialized tissues [18], tissue-specific differences in glycan profiles mostly
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represent differences in the underlying pattern of subcellular protein trafficking, in
turn reflecting the spatial separation of the enzymes responsible for different glyco-
sylation steps. Protein targeting is therefore one way in which the glycan structures
of recombinant proteins produced in plants can be controlled, as discussed below.

4 The Impact of Protein Targeting on N-Linked
Glycosylation

4.1 Secreted Proteins and the Role of the ER and Golgi
Apparatus

Whereas mammalian glycoproteins are usually synthesized as a mixture of diverse
glycoforms, some plant systems tend to generate more homogeneous glycan profiles
in which there is one dominant form and a mixture of less abundant minor species. The
precise glycan profile appears to depend on the route through the secretory pathway
(including the final destination) and the intrinsic properties of the protein. The latter is
important because it may explain the apparently irreconcilable differences in glycan
structures between different proteins that are targeted in the same manner.

Secreted proteins in plants are co-translationally imported into the ER, and unless
directed otherwise they are eventually secreted by default to the apoplast, which is
the space between the plasma membrane and the cell wall (other potential destina-
tions include retention in the ER, deposition in storage organelles, or transport to the
vacuole, as discussed in more detail below). Some proteins secreted to the apoplast
are trapped under the cell wall owing to their size or physicochemical properties,
whereas others can diffuse through the cell wall and can reach the environment. In
the context of recombinant proteins, fully secreted proteins can be collected from the
medium surrounding the plant (the culture medium for plant cell suspension cultures
and aquatic plants, or the hydroponic medium or plant exudates such as nectar,
mucilage, and leaf guttation fluid for terrestrial plants), whereas proteins trapped in
the apoplast require assistance, such as enzymatic digestion of the cell wall or
mechanical grinding of the plant tissues. The latter is also required for intracellular
proteins. Notably, the apoplast surrounding each cell is not isolated but forms a
supracellular compartment which allows the limited diffusion of proteins.

The different intrinsic properties of recombinant proteins can help to explain
differences in their ultimate destination and their glycan profiles. For example, many
proteins secreted to the apoplast (including most antibodies) move through the
ER and Golgi body and are exposed to the full panel of glycosylation enzymes,
resulting in a glycan profile dominated by complex type N-glycans [59, 60]. Recom-
binant proteins produced in plant cell suspension cultures and secreted to the
culture medium have an even more homogeneous glycan profile, with
GlcNAc2Man3XylFucGlcNAc2 as the major form (~86% of all glycans) and only
a small proportion of GlcNAcMan3XylFucGlcNAc2, because the secreted and
intracellular proteins become separated [61]. In contrast, the secretion of recombi-
nant follicle-stimulating hormone produced a glycan profile dominated by
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paucimannosidic structures (suggesting the activity of vacuolar or plasma membrane
hexosaminidases) carrying core α1,3-fucose and/or β1,2-xylose residues that indi-
cate transfer through the Golgi body [62]. The Golgi body is an important determi-
nant of the species-dependent variations in glycan structures because it is the site for
both complex N-linked glycan synthesis and mucin-type O-linked glycan synthesis,
and the expression of human glycosyltransferases in plants has shown that the
resulting glycan structures are highly dependent on the sub-Golgi targeting of such
enzymes, as discussed in more detail below.

4.2 Proteins Retained in the ER

Secreted proteins can be retrieved from the Golgi to the ER by appending a short
C-terminal peptide tag such as HDEL or KDEL, which prevents such proteins from
traversing Golgi compartments containing the enzymes responsible for the synthesis
of complex glycans [6, 63]. The resulting glycan profiles are therefore dominated by
high-mannose glycans (Man7–9) devoid of any plant-like complex glycan structures,
but devoid of any human-like complex glycan structures too. The use of ER-retrieval
tags for therapeutic proteins is a double-edged sword. The advantages are that the
glycan profile is more homogeneous, and although few human proteins occur
naturally with high-mannose glycans, the structures themselves are at least human-
compatible (in that the same structures are naturally synthesized in human cells).
Several comparative studies have also revealed that certain proteins, including most
antibodies, accumulate to higher levels when they are retained in the ER rather than
secreted to the apoplast, a finding that may reflect the combination of a favorable
environment for folding/assembly and the absence of proteases [18, 64, 65]. On the
other hand, both the C-terminal tag and the glycans themselves have the potential to
form foreign epitopes in the context of heterologous proteins, and glycoproteins
containing high-mannose glycans are removed from the bloodstream more rapidly
than those with sialylated mammalian-type complex glycans because macrophages
carry mannose receptors [66, 67].

In cereal seeds, ER-targeting has also been achieved using mRNA targeting
signals (mainly those located within the 50 and 30 untranslated regions of the
γ-zein mRNA) rather than a protein retrieval tag, to avoid changing the therapeutic
protein structure [68]. The resulting mannosidic N-linked glycan profile provided a
favorable starting point for further enzymatic processing to create the terminal
residues required for efficient receptor-mediated uptake into human lysosomes [68].

4.3 Formation of ER-Derived Compartments

Proteins carrying C-terminal ER-retention tags will accumulate in the ER without
affecting the ultrastructure of the plant cell if they are expressed at low to moderate
levels. However, once the amount of protein reaches a certain threshold, the plant
cell may respond by generating novel ER-derived compartments that appear to
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function as protective mechanisms by preventing the distortion of ER traffic [69–
71]. ER-derived compartments are formed naturally in the seeds of monocotyledon-
ous plants for the deposition of native storage proteins, which appear to induce the
formation of such compartments owing to their abundance and propensity for
aggregation [72, 73]. For some storage proteins, the sequences responsible for the
induction of controlled polymerization are well defined, and one of the most widely
known assembly sequences is located near the N-terminus of the 27-kDa maize
storage protein γ-zein. This includes seven cysteine residues that promote inter-chain
interactions and a highly repetitive amphipathic proline-rich sequence [74–76]. Pro-
teins carrying this sequence form aggregates in the ER, which causes organelles
known as protein bodies to bud off. If γ-zein is expressed in vegetative tissues it can
induce the formation of ectopic protein bodies, indicating that protein body forma-
tion is an intrinsic capability of the secretory pathway, which is induced by the nature
of the protein and is not dependent on the tissue [77, 78]. The aggregation-promoting
sequence has been commercialized as a Zera® tag (Zip Solutions, Barcelona, Spain)
and has been shown to induce the formation of storage compartments in the
vegetative tissues of plants and also in fungi, insects, and mammalian cells
[79]. The ability of certain KDEL-tagged proteins to induce ER-derived compart-
ments suggests that the trigger is the accumulation of protein aggregates, which is
facilitated by the γ-zein/Zera tag and may happen spontaneously for certain proteins
carrying the KDEL tag, owing to the unique properties of the protein. The situation
in seeds is complicated by the availability of multiple storage organelles whose
prevalence varies in a species-dependent manner and for which several partially
overlapping trafficking pathways may be available [70]. For example, the incorpo-
ration of ER-derived storage organelles into protein storage vacuoles is frequently
observed in cereal seeds and has implications for the deposition of recombinant
proteins [69]. The incomplete retention of KDEL-tagged recombinant proteins is
also frequently observed in seeds, where it leads to unpredictable accumulation sites
and glycan structures [12, 14, 80, 81]. Proteins expressed in cereal seed storage
organelles often carry single GlcNAc residues, whereas proteins with single GlcNAc
residues tend to be minor glycoforms in other tissues [13, 16, 18, 82].

4.4 Proteins Targeted to the Vacuole

Most plant cells contain lytic vacuoles whose function is to digest and recycle
damaged or overabundant cellular macromolecules. Storage tissues may also contain
storage vacuoles, which exist for the same purpose as the protein bodies described
above, i.e., to stockpile proteins and other macromolecules and isolate them from the
rest of the cell [83]. The protein bodies and protein storage vacuoles in seeds do not
contain the same proteins, but it is not entirely clear how proteins are sorted into each
compartment. Recombinant proteins containing KDEL tags are expected to accu-
mulate in the ER, which promotes their incorporation into protein bodies, but when
expressed in seeds devoid of separate ER-derived protein bodies such proteins have
sometimes accumulated in the protein storage vacuoles instead [12, 13]. Other
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proteins expressed in seeds have also accumulated in the vacuole when their
anticipated destination was the apoplast, indicating a prevailing tendency towards
accumulation in protein storage vacuoles in some seed tissues [84–86]. Alternatively,
specific vacuolar targeting sequences have been identified which can overrule any
intrinsic properties [87–89]. Recombinant proteins targeted to vacuolar compart-
ments are anticipated to carry paucimannosidic N-glycans like those found on native
vacuolar proteins, but some nevertheless have been shown to carry high-mannose
glycans, suggesting the route to the vacuole in some cases circumvents the Golgi
body [70]. The first plant-derived therapeutic protein approved for parenteral use in
humans (taliglucerase alfa, marketed as Elelyso (Prolalix BioTherapeutics, Karmiel,
Israel), a recombinant form of human glucocerebrosidase indicated for Gaucher’s
disease) is produced in carrot cell suspension cultures and targeted to the vacuole.
This ensures that the protein presents terminal mannose residues that are recognized
by circulating macrophages, this recognition being necessary for the enzyme’s
therapeutic activity [90]. In contrast, the same enzyme produced in mammalian
cells (imiglucerase, marketed as Cerezyme (Sanofi Genzyme, Cambridge, Massa-
chusetts. USA)) carries terminal sialic acid residues. The sialic acid, galactose, and
GlcNAc residues must therefore be cleaved off in vitro, adding to production costs.
Elelyso is therefore one example in which the production of human therapeutic
proteins with non-native glycans is an improvement rather than an impediment [7].

4.5 Proteins Targeted to Other Compartments

Other plant cell compartments are largely devoid of N-glycans because the necessary
glycosyltransferases are not present in the destination compartment or in any of the
compartments en route. Proteins targeted to plastids or mitochondria are not
N-glycosylated, and indeed the absence of glycans is one of the drawbacks of plastid
transformation as a strategy for the production of recombinant pharmaceutical pro-
teins, unless of course an aglycosylated protein is required [91]. Nuclear and cyto-
plasmic proteins do not contain N-glycans, but may be modified by nucleocytoplasmic
O-GlcNAcylation, e.g., as shown for tobacco histones [92].

5 O-Linked Glycosylation of Recombinant Proteins
in Plants Without Glyco-Engineering

O-linked glycosylation is necessary for the activity of many human proteins, includ-
ing glycophorin A [93] and interleukin-5 [94]. Although O-linked glycosylation is
carried out by plants, the modification typically involves hydroxyproline residues,
whereas mammals produce predominantly mucin-type glycans added to serine and
threonine residues. The very different structure and site occupancy/selectivity of
plant O-linked glycosylation is therefore a major issue, one which has received
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comparatively little attention compared with that paid to N-linked glycans, although
one of the advantages of the lack of mucin-type O-linked glycans in plants is that the
relatively heterogeneous nature of O-linked glycosylation in mammals can be
replaced with homogeneous O-linked glycans if plants are modified with specific
enzymes from the pathway [22]. Few studies have specifically addressed the
O-linked glycosylation of recombinant proteins produced in plants, but the addition
of O-linked glycans to hydroxyproline residues has been reported on the proline-rich
hinge region of a human IgA antibody expressed in maize seeds [95]. Interestingly,
the same region is also O-glycosylated when the native protein is produced in
humans, although the glycans in the native host are added to serine residues [96].

6 Glyco-Engineering in Plants

6.1 Glyco-Engineering Strategies

The targeting of recombinant proteins to particular subcellular compartments can
influence the glycan structures that are formed, but only within the repertoire of the
natural capabilities of the plant cell at the resolution afforded by its compartmental-
ization. Therefore, it is not possible to precisely control the structure of complex
glycans to the resolution of single enzyme functionalities, because several enzymes
may be present in the same compartment. Similarly, it is not possible to change the
glycan structures beyond those produced in the host cell. Two major engineering
strategies have therefore been developed to create tailored glycans in plants, the first
involving the specific removal or inhibition of particular enzymes and the second
involving the introduction of additional enzymes to allow the synthesis of non-native
glycans in planta. The implementation mechanism varies according to the most
practicable and efficient process in each host species. Until recently, targeted muta-
genesis in many plant species was laborious, and the removal of glycosyltransferase
genes by gene targeting (gene knockout) was only possible in species amenable to
homologous recombination (e.g., moss) or in those with readily available libraries of
mutants, e.g., A. thaliana or Lotus japonica [97]. More recently, the advent of
genome editing, using tools such as zinc finger nucleases, transcription activator-
like effector nucleases (TALENs), and the clustered regularly interspaced short
palindromic repeats (CRISPR/Cas9) system has made it much more straightforward
to generate targeted mutations in plants. Until such methods became available, the
easiest way to achieve the functional knockdown of glycosyltransferase genes was to
use RNA interference (RNAi) or similar methods of post-transcriptional gene sup-
pression. For the second strategy, the two main approaches are the generation of
transgenic lines endowed with the ability to express non-native glycosyltransferases,
or the use of transient expression to confer, temporarily, upon the host plant the ability
to synthesize these enzymes along with the recombinant protein that is modified. In
both cases, the appropriate intracellular localization of the enzyme is necessary to
achieve the desired glycan profile [98].
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6.2 Elimination of Plant N-Linked Glycans

The presence of core β(1,2)xylose, core α(1,3)fucose, and Lewisa residues on
recombinant proteins produced in plants is considered undesirable because they
are potentially immunogenic. Antibodies against these residues have been detected
in sera from humans and other mammals [99] and can elicit IgG production when
injected into humans [55]. Furthermore both β(1,2)xylose and α(1,3)fucose are
IgE-binding determinants of plant allergens [100]. As discussed in the Introduction,
the presence of non-human glycan epitopes is a well-known phenomenon even in the
gold standard production platforms for human therapeutic proteins (rodent cell
lines). Immune responses to such glycans are widely recognized [101] and have
been reported even with approved drugs such as cetuximab [102]. Immune
responses and allergic responses have not been reported for the parenteral adminis-
tration of Elelyso, which retains its β(1,2)xylose and α(1,3)fucose residues [5, 103–
106]. The topical application of plant-derived antibodies in human patients with IgE
against plant N-linked glycans has not led to adverse effects [107–110].

Despite the absence of adverse effects, the elimination of plant glycans is still
considered beneficial to pre-empt regulatory concerns. The most straightforward
way to achieve the synthesis of plant glycoproteins without core β(1,2)xylose and
α(1,3)fucose residues is to mutate the genes encoding the corresponding enzymes;
namely, β(1,2)xylosyltransferase and α(1,3)fucosyltransferase. This was first
achieved in A. thaliana without any noticeable effect on the phenotype [14, 15,
32, 81], and subsequently in the aquatic production hosts Lemna minor, a duckweed
[111], and Physcomitrella patens, a moss [112]. In other plants that do not benefit
from genome-wide mutant libraries or efficient homologous recombination path-
ways, including alfalfa [113], rice [114], and Nicotiana benthamiana [60], function-
ally equivalent production hosts were produced by RNAi. As anticipated, the
glycoproteins produced in these hosts either completely lacked or contained only
residual amounts of plant glycans, and in many cases featured biantennary structures
with terminal GlcNAc residues, but without α(1,3)fucose and β(1,2)xylose as the
dominant glycoforms. In N. benthamiana, two β(1,2)xylosyltransferases and two
α(1,3)fucosyltransferases were knocked out using TALENs, without affecting
growth or fertility. Endogenous proteins expressed in these ΔXF plants carried
N-linked glycans that lacked β(1,2)xylose and had a significant reduction in core
α(1,3)fucose levels (40% compared with wild-type plants). Similar N-linked glycans
were carried by a recombinant rituximab antibody transiently expressed in the
mutant plants. The remaining α(1,3)fucosyltransferase activity in the mutant line
probably reflected the presence of redundant copies of the gene in the
N. benthamiana genome [115]. As an alternative strategy, the endogenous
N. benthamiana GlcNAc transferase I was downregulated by RNAi. Human
glucocerebrosidase produced in this background contained 70–80% high-mannose
N-glycans lacking β(1,2)xylose and α(1,3)fucose epitopes [116].

Antibodies produced in ΔXF hosts retain their antigen-binding activity and
complement-dependent cytotoxicity, but show much more potent antibody-
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dependent cellular cytotoxicity than the same antibody produced using unmodified
plants, again showing that plants can produce ‘glyco-optimized’ products, some-
times referred to as ‘biobetters’ to contrast with ‘biosimilars’ [82, 111, 117,
118]. The ability of plants to produce the Lewisa epitope has also been eliminated
by mutating the genes encoding α(1,4)fucosyltransferase and β(1,3)galactosyl-
transferase, allowing the production of a recombinant human erythropoietin lacking
this structure [119]. Furthermore, the proportion of complex N-linked glycans with
terminal GlcNAc residues on a plant-derived human α1-antitrypsin was increased by
using RNAi to suppress HEXO3 expression [120]. Overall, the full integration of the
different steps needed to generate a plant with no plant-type fucose/xylose and no
degradation of terminal GlcNAc has yet to be achieved [121]. An alternative and
apparently effective strategy when large glycans are not required for the function of a
protein is to knock out N-acetylglucosaminyltransferase I (GnTI) and overexpress an
endoglycosidase [122].

6.3 Introduction of Human N-Linked Glycans

6.3.1 Core α(1,6)Fucose

The core α(1,6)fucose residue found in human glycoproteins influences the interac-
tion between IgG and Fc receptors [123]. Antibodies devoid of α(1,6)fucose show
increased antibody-dependent cellular cytotoxicity [124] and plants that lack the
ability to produce core β(1,2)xylose and α(1,3)fucose residues are therefore particu-
larly suitable as production hosts for cancer-targeting antibodies. Such plants are also
suitable for the expression of heterologous enzymes that generate N-glycans carrying
core α(1,6)fucose. For example, the expression of human α(1,6)fucosyltransferase in
N. benthamiana ΔXF plants allowed the production of Ebola virus-specific anti-
bodies with human-like core fucosylation [59]. The HIV-neutralizing antibody 2G12
was produced in a panel of glyco-engineered plants and displayed a spectrum of
glycoforms. The ability to test different glycoforms individually revealed that the core
fucose residue had no impact on antigen binding but influenced effector functions
(particularly Fc binding), which, in turn, appeared to affect the antibody’s neutrali-
zation potency [117], as was also recently shown for the same antibody produced in
unmodified rice endosperm [82].

6.3.2 Multi-Antennary Complex Glycans and Bisecting GlcNAc
Residues

Human glycoproteins often contain multi-antennary N-linked glycans and bisecting
GlcNAc residues, and their abundance often correlates with increasing in vivo
activity [125, 126]. However, the enzymes responsible for these modifications are
not found in plants, which therefore can add only bi-antennary N-linked glycans to

152 R. Fischer et al.



human recombinant proteins, unless they are engineered for optimized glycoprotein
production [127]. Bisected N-linked glycans have been produced in plants by
expressing mammalian β(1,4)GlcNAc transferase III, but it was necessary to target
the enzyme to the trans-Golgi compartment to ensure that fully processed structures
were synthesized [59, 128–130]. Tri-antennary glycans have been produced by
expressing either β(1,4)GlcNAc transferase IV or β(1,6)GlcNAc transferase V, and
by expressing both enzymes simultaneously it has been possible to produce tetra-
antennary complexes [131]. The production of fully processed complex multi-
antennary glycans required the enzymes to be targeted to the medial-Golgi compart-
ment [59, 132].

6.3.3 Glycans Containing β(1,4)Galactose

The β(1,4)galactosylation of human proteins is a common modification that may
play a role in the modulation of IgG activity [123] and is necessary as a precursor
step for the addition of terminal sialic acid residues (see below). Plants are not
equipped with the β(1,4)galactosyltransferase responsible for this modification and
therefore cannot synthesize either β(1,4)galactosylated proteins or sialylated pro-
teins. The production of β(1,4)galactosylated proteins in plants expressing human
β(1,4)galactosyltransferase was initially only partly successful because the enzyme
acted on the GlcNAcMan5GlcNAc2 glycans in the medial-Golgi compartment and
the resulting β(1,4)galactosylated intermediates were not substrates for β(1,2)
GlcNAc transferase II [30, 133–136]. However, as discussed above for multi-
antennary glycans, targeting the enzyme to the trans-Golgi compartment allowed
the formation of completely processed glycans, including an antibody with a dom-
inant complex bigalactosylated glycoform [137].

6.3.4 Terminal Sialylation and the LewisX Epitope

As stated above, the β(1,4)galactosylation of human proteins is a necessary step
before terminal sialylation, which is an important functional requirement for many
human therapeutic proteins, mostly owing to the presence of asialoglycoprotein
receptors on liver cells. It is widely believed that plants do not synthesize sialylated
oligosaccharides and lack the necessary donor and acceptor substrates
[138, 139]. Nevertheless, cytidine-50-monophospho (CMP)-sialic acid transporters
and sialyltransferases have been detected in some plants [140, 141]. Protein
sialylation in plants is challenging even when β(1,4)galactosylated structures are
available, because plants lack the metabolic capacity to produce and transport the
precursor CMP-N-acetylneuraminic acid as well as the sialyltransferase needed to
transfer sialic acid from the precursor onto a terminal galactose residue. As discussed
above, protein targeting was found to be essential to achieve coordinated enzyme
activity [142–144]. The full sialylation of recombinant proteins required the expres-
sion and specific targeting of six mammalian proteins to carry out sialic acid
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synthesis, activation, translocation, and terminal transfer: murine uridine diphosphate
(UDP)-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, human
N-acetylneuraminic acid phosphate synthase, human CMP-N-acetylneuraminic acid
synthase, murine CMP-sialic acid transporter, human β(1,4)galactosyltransferase, and
the rat α(2,6)sialyltransferase [145]. When these six components were co-expressed
with an antibody, more than 80% of the assembled antibody molecules were
sialylated [145]. More recently, a combination of stably transformed plants and
transient expression modules has been used to control the linkages between sialic
acids and proteins, as well as the degree of polymerization, resulting in the directed
formation of α(2,6) and α(2,3) linkages, and the synthesis of polysialic acid structures
containing more than 40 units [146].

The β(1,4)galactosylation of human proteins is also a necessary step for the
synthesis of another terminal structure known as the LewisX epitope, which induces
strong immune responses when added to a foreign antigen used as a vaccine and
could therefore be useful for the generation of recombinant subunit vaccines
[147]. These structures have been generated in tobacco by co-expressing the recom-
binant proteins with β(1,4)galactosyltransferase and α(1,3)fucosyltransferase
IXa [148].

6.4 Engineering of O-Linked Glycans

Whereas N-glycans in animals and plants have similar core structures but different
additional residues, the predominant O-glycans in animals and plants are completely
distinct structures and it is much more challenging to generate modified plants that
can synthesize human O-linked glycans. Instead, research has also focused on the
exploitation of plant O-linked glycans to improve the performance of recombinant
human proteins. For example, O-linked glycosylation may protect proteins from
degradation in vivo in much the same way as polyethylene glycol (PEG)ylation, thus
increasing the half-life of proteins without the need for in vitro chemical modifica-
tion after purification [48, 149]. This has been investigated by expressing proteins
with a glycotag comprising tandem repeats of a serine-hydroxyproline dipeptide
[150]; the yields of several proteins, including green fluorescent protein, human
interferon α2b, and human growth hormone, increased by more than 1000-fold when
endowed with the tag [49, 151]. Hydroxylation was restricted to the tag, and each
hydroxyproline residue in the tag was glycosylated with a variable number of
arabinogalactans, but PEGylation also generates a heterogeneous population of
molecules so this is not seen as a disadvantage. The longer glycotags increased the
in vivo half-life of interferon α2b from 0.75 to 9.8 h and that of growth hormone
from 0.41 to 2.5 h without significant loss of biological activity [48, 151]. However,
studies including repeat administrations in realistic therapeutic settings remain to be
carried out to confirm the utility of such approaches. The impact of internal plant-
type O-linked glycans on protein stability has not been reported [95].
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Other researchers have attempted to produce mammalian mucin-type O-glycans
in plants by expressing the human enzyme N-acetylgalactosaminyltransferase II
(GalNAc transferase II), which catalyzes the first step in the pathway [152]. How-
ever, transgenic N. benthamiana plants expressing this enzyme and infected with a
MagnICON vector expressing a model substrate (the Escherichia coli heat-labile
toxin B subunit fused to the human mucin 1 glycoprotein) produced only a minute
amount of the correctly modified protein, indicating that the lack of glycosylation
was due to the limited precursor supply. Accordingly, the proportion of mucin-type
glycans was improved by increasing the availability of UDP-GalNAc and ensuring
its efficient transfer to the Golgi body, which was achieved by co-expressing
UDP-GlcNAc 4-epimerase and a UDP-GlcNAc/UDP-GalNAc transporter along
with GalNAc transferase II [152].

Other efforts have been directed toward the elimination of potentially immuno-
genic carbohydrate epitopes containing arabinosides or arabinogalactans and toward
the understanding of interactions between engineered N-linked and O-linked glyco-
sylation pathways to avoid competition for common metabolites [153]. Tailored
mucin-like structures have been produced [154], but owing to the absence of a sialic
acid biosynthesis pathway in plants, it has been much more difficult to reproduce this
frequent terminal modification of human mucin-type O-linked glycans. A fusion
protein comprising erythropoietin joined to an antibody fragment (EPO-Fc) was
successfully decorated with sialylated O-linked glycans in N. benthamiana by
simultaneously expressing eight genes: the EPO-Fc protein, several components of
the sialic acid biosynthesis pathway described above [145], two mammalian
sialyltransferases, human GalNAc transferase II, and Drosophila melanogaster
C1GALT1 [132].

A number of pharmaceutical proteins, including IgA-class antibodies, contain
both N-linked and O-linked glycans and have been produced by the co-expression of
enzymes required for the initiation and elongation of human O-linked glycans in a
ΔXF background, resulting in proteins carrying disialylated mucin-type core 1
O-glycans [155]. This was further expanded to obtain galactose-deficient and
α(2,6)sialylated O-glycans, mimicking the main glycans present on IgA1 molecules
from patients with IgA nephropathy [156].

6.5 Exploiting Plant Glycosylation for Selective Product
Purification

The purification of recombinant proteins from bulk plant extracts can be a challeng-
ing task [157] especially if no product-specific ligands are available for affinity
chromatography, such as Protein A in the case of monoclonal antibodies
[158]. Accordingly, clarification and purification can account for up to 80% of the
total process costs in plant molecular farming [61, 159, 160]. However, it is possible
to exploit the glycosylation of recombinant proteins to facilitate purification. In the
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past, immobilized glycans have been used to isolate lectins from the green juice of
plants [161, 162]. The common feature of different classes of lectins is that they
selectively bind to certain glycan structures [163]. For example, mistletoe viscumin
preferentially binds Neu5Acα(2–6)Galββ(1–4)GlcNAc and this carbohydrate can
therefore be used for lectin purification [164]. More importantly, the setup can be
reversed; that is, immobilized lectins can be used to selectively enrich and purify
glycoproteins carrying specific carbohydrate structures. This strategy has been
successfully used for more than 20 years to purify glycoprotein-derived carbo-
hydrates and glycoproteins [165–167]. In future, this approach could also be adapted
for large-scale preparative chromatography, but the lectins used for such procedures
should be simple, non-toxic, and structurally rigid to improve process performance
(e.g., the number of production cycles possible using the same batch of resin) and
ensure the process complies with the safety requirements of good manufacturing
practice [168]. For example, viscumin consists of a toxic A-chain and a
glycoprotein-binding B-chain [169]. The latter contains a rigid fold that is rich in
disulfide bonds and β-sheets [170]. A non-toxic viscumin mutant may therefore be
useful for the purification of glycoproteins terminating with Neu5Acα(2–6)Galβ
(1–4)GlcNAc from bulk plant extracts. Genetic engineering may make it possible
to alter the carbohydrate selectivity of this protein, as shown for Protein L in the case
of antibodies [171]. Alternatively, proteins with modified glycan profiles could be
purified by boronate affinity chromatography [172]. The selectivity of this resin
reflects the differential binding of boronate covalently attached to a base resin to cis-
diol groups found, e.g., in monosaccharides and oligosaccharides. The benefits of
this method over lectin-based purification include a more stable ligand (which does
not require recombinant protein expression) and a lower risk of immunogenic
process-related impurities. However, boronate affinity chromatography is less selec-
tive than lectin-based resins and additional purification steps may be required to
remove interfering small compounds with cis-diol groups, particularly free sugars.
Also, this method will not help to separate the target therapeutic from endogenous
plant glycoproteins, which typically are much more abundant.

7 Conclusions

Many recombinant proteins with a glycan structure similar to that of native human
protein, or at least compatible with humans, can now be produced in plant cells.
However, the intensive research that has made glyco-engineering possible in plants
has also yielded some unexpected benefits of plant glycans. The immunogenicity of
some of these structures can increase the visibility of plant-derived vaccines to the
mammalian immune system. Plant glycans can also target antigen-presenting cells,
particularly via lectins or mannose-fucose receptors on the surfaces of dendritic cells.
Therapeutic proteins with plant-derived glycans are likely to be undesirable where
cost-effective alternative expression platforms are available, but in certain cases such
glycans achieve a functionality that can provide the basis for ‘biobetter’ therapeutic
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products, which not only benefit from the greater economy, scalability, and safety of
plant-based production platforms, but also have intrinsic therapeutic benefits con-
ferred specifically by the plant glycan structures. Where plant glycans are undesir-
able, several strategies are available, based on protein targeting or genetic
engineering, to remove such glycans or to replace them with human-compatible
structures.
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Abstract Bacteria have garnered increased interest in recent years as a platform for
the biosynthesis of a variety of glycomolecules such as soluble oligosaccharides,
surface-exposed carbohydrates, and glycoproteins. The ability to engineer com-
monly used laboratory species such as Escherichia coli to efficiently synthesize
non-native sugar structures by recombinant expression of enzymes from various
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carbohydrate biosynthesis pathways has allowed for the facile generation of impor-
tant products such as conjugate vaccines, glycosylated outer membrane vesicles, and
a variety of other research reagents for studying and understanding the role of
glycans in living systems. This chapter highlights some of the key discoveries and
technologies for equipping bacteria with the requisite biosynthetic machinery to
generate such products. As the bacterial glyco-toolbox continues to grow, these
technologies are expected to expand the range of glycomolecules produced
recombinantly in bacterial systems, thereby opening up this platform to an even
larger number of applications.
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ABC-transporter ATP-binding cassette transporter
CPS Capsular polysaccharide
diNAcBac Bacillosamine
ECA Enterobacterial common antigen
EPA Exotoxin A from Pseudomonas aeruginosa
EPO Erythropoietin
Gal Galactose
GalNAc N-Acetylgalactosamine
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Glc Glucose
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LPS Lipopolysaccharide
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1 Bacteria as a Platform for Polysaccharide
and Glycoconjugate Production

In recent years there has been growing interest in developing bacterial species as
hosts for glycoengineering applications involving the biosynthesis of structurally
diverse polysaccharides, which can be produced as free glycans or as conjugates to
lipids or proteins. The most obvious advantage of this approach is the much simpler
and cheaper culturing conditions required for maintenance of bacterial cells when
compared to a eukaryotic cell culture. However, bacteria are highly proficient pro-
ducers of carbohydrates, with more than 140 unique monosaccharide base types
identified in bacterial species, in contrast to the 14 base types produced by mamma-
lian species [1]. Many of these bacterial monosaccharides are then assembled into an
even more diverse array of polysaccharides, often as part of surface structures such
as capsular polysaccharide (CPS) and the O-antigen component of lipopolysaccha-
ride (LPS), which are often important virulence factors in pathogenic species. In
Escherichia coli alone, 187 unique O-antigen structures and 80 CPS structures have
been identified to date [2–4]. Other bacterial polysaccharides have important struc-
tural functions (e.g., peptidoglycan), or play a role in adaptation to environmental
conditions by mechanisms such as osmoregulation (e.g., enterobacterial common
antigen, ECA) [5].

The pathways responsible for production of mono- and polysaccharides are
frequently well defined in bacteria, especially in commonly used host species such
as E. coli [6]. Furthermore, with the exception of the ubiquitous structural polysac-
charide peptidoglycan, bacterial polysaccharides are typically not essential for
viability, meaning biosynthesis pathways are amenable to genetic manipulation
and deletion. For example, metabolic engineering studies have identified routes to
enhance the availability of relevant nucleotide-activated sugars, leading to improved
polysaccharide yields [7]. As a result of these and other related efforts, bacteria have
been shown to represent a tractable, well-defined platform for engineering the
biosynthesis of polysaccharides.

Although the ability of bacteria to produce polysaccharides and glycolipids is
established, it was long believed that bacteria were incapable of modifying proteins
with carbohydrate moieties, a process known as glycosylation. However, this para-
digm was overturned in the 1970s with the identification of glycosylated surface
layer (S-layer) proteins in Halobacterium salinarum, Clostridium
thermosaccharolyticum, and Clostridium thermohydrosulfuricum [8, 9]. Although
examples of bacterial protein glycosylation remain relatively uncommon, in the past
15 years a diverse array of systems has been discovered and characterized, including
examples of sequential and en bloc transfer of both N-linked and O-linked glycans
[10–13].

From an engineering perspective, perhaps the most significant advance came in
2002 with the functional transfer of a complete protein N-glycosylation system from
the gastrointestinal pathogen Campylobacter jejuni into a laboratory strain of E. coli,
which is naturally incapable of protein glycosylation [14]. The versatility of this
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system was further enhanced by a series of experiments demonstrating the modu-
larity of the bacterial glycosylation machinery, which was found to tolerate a number
of different glycan structures and protein substrates [15–17]. Importantly, the new-
found ability to generate glycoproteins in a genetically tractable host organism such
as E. coli provided a unique opportunity both to understand and to exploit the
glycosylation process in ways that were not previously possible with eukaryotic
systems. This is because, even though the pathways involved in the production of
protein-linked polysaccharides in eukaryotic cells are well understood, the essential
nature of many of these mechanisms limits the potential for manipulation.

2 Polysaccharide Production in Bacteria

Enzymatic synthesis of polysaccharides uses nucleotide-activated sugars as glycosyl
donors to supply the necessary energy for the reaction. In bacteria, these nucleotide
sugars are typically only present in the cytoplasm where they are synthesized.
Consequently, all initial polysaccharide biosynthesis in bacteria also takes place
within the cytoplasm. The majority of polysaccharides are synthesized by one of
three pathways: the Wzy-dependent pathway, the ATP-binding cassette (ABC)
transporter-dependent pathway, and the synthase-dependent pathway (Fig. 1),
although shorter oligosaccharides may be formed by the direct action of
glycosyltransferases on a substrate such as lipid A in the case of the LPS core or
lipooligosaccharides (LOSs) [18].

The Wzy-dependent pathway involves the sequential action of
glycosyltransferases on a lipid anchor, undecaprenyl diphosphate (Und-PP), on the
inner leaflet of the cytoplasmic membrane, followed by translocation of a completed
subunit across the membrane by the flippase Wzx. The subunits then undergo
polymerization by the polymerase Wzy. The number of repeat units is modulated
somewhat by Wzz, the chain-length regulator, although the resulting polymers are
not strictly uniform in length. Completed polysaccharides are then removed from
Und-PP and transferred to a target location, which differs depending on the species
in question and the type of polysaccharide produced [19]. Common examples of
polysaccharides produced by this mechanism include the majority of O-antigen
polysaccharides and a significant proportion of capsules, as well as specific exam-
ples such as ECA, a surface polysaccharide common to most Enterobacteriacae, but
limited to this family [5].

In contrast, the ABC transporter-dependent pathway involves the assembly of the
entire polysaccharide on a lipid anchor at the inner face of the cytoplasmic mem-
brane, before the chain is capped to indicate completion, and the entire structure is
transported across the membrane by the ABC-transporter complex [20]. As with
Wzy-dependent systems, however, the polysaccharide is then removed from the
lipid anchor and transferred to a permanent point of attachment. Polysaccharides
assembled by this method typically form O-antigen polysaccharides or capsules.
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Synthase-dependent polysaccharide assembly is unique in that it can occur in the
presence or absence of a lipid anchor. A transmembrane glycosyltransferase simul-
taneously catalyzes formation of the polymer and translocation across the membrane
[21]. Polysaccharides produced by this mechanism may be attached to the exterior of
the cell, but more frequently they are released into the extracellular environment to
form non-covalently associated exopolysaccharides such as hyaluronic acid (HA),
alginate, or cellulose.

P
P

P
P

P
P P

P

P
P

NDP

NMP/NDP

NDP

NMP NDP

NMP/NDP

NDP

NMP/NDP

Cytoplasmic
membrane

Cytoplasm

Wzx Wzy

ATP

ADP + P

GTase

GTases

ABC
transporter

Synthase

Wzy-dependent ABC transporter Synthase-dependent

C
-d

i-G
M

P 
re

ce
pt

or

Periplasm/ 
extracellular space

W
zz

Fig. 1 Biosynthesis of bacterial polysaccharides. The majority of bacterial polysaccharides are
assembled by one of three mechanisms, the Wzy-dependent, the ABC transporter-dependent, or the
synthase-dependent pathway. The key protein components for each mechanism are indicated, and
are located in the inner membrane of Gram-negative organisms or the membrane of Gram-positive
organisms. Polysaccharides are synthesized from nucleotide diphosphate (NDP) sugars. For the
Wzy-dependent pathway, multiple glycosyltransferases (GTases) in the cytoplasm synthesize
oligosaccharides on Und-PP. Oligosaccharides typically contain diverse monosaccharides and
may be branched; consequently this assembly mechanism is responsible for the production of
most high-complexity sugars. The completed oligosaccharide repeat unit is transported across the
relevant membrane by the translocase or flippase enzymeWzx. Multiple repeat units are then linked
together by the polymerase enzyme Wzy to form a repeating heteropolymer. The final length of the
polymer may be controlled by the chain length regulator Wzz. In the ABC transporter-dependent
pathway, a homopolymer or simple heteropolymer is assembled on Und-PP on the cytoplasmic face
of the membrane, often by just a single GTase. The completed polysaccharide is capped with a
moiety such as a phosphate group, and transported through the membrane by the ATP-binding
cassette (ABC) transporter. For synthase-dependent biosynthesis, the polysaccharide is simulta-
neously polymerized and transported across the membrane. In the absence of a membrane anchor, a
receptor protein for a signaling molecule such as bis-(30-50)-cyclic dimeric guanosine
monophosphate (c-di-GMP) may play a role in initiation of polysaccharide assembly. In Gram-
negative organisms, polysaccharides are frequently transported across the outer membrane by an
additional export system to enable surface display
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3 Bioengineering of Secreted Oligosaccharides in Bacteria

Small, soluble oligosaccharides play many important roles in biological systems,
and as such have a multitude of potential uses in research, medicine, and industry.
However, because of the extremely high heterogeneity of such structures, together
with low yield and complex purification when isolating from natural sources,
engineered production has been the focus of much research. Chemical synthesis is
complex and costly, and the resulting oligosaccharides are subject to the same issues
regarding heterogeneity, limiting their usefulness without significant downstream
purification. Chemo- and in vitro-enzymatic methods have also been widely
explored, and have shown great improvements with respect to yield and structural
homogeneity, but isolation of the required enzymes is a demanding process, and the
necessary nucleotide-activated sugars are extremely expensive to supply for such
large-scale synthesis. Consequently, production beyond the milligram scale, espe-
cially for larger tri- and tetrasaccharides, remains unfeasible by this method.

The development of a metabolically-engineered E. coli strain that could produce
human milk oligosaccharides in a fermentation process represented a significant
advance within the field [22]. The engineered strain utilizes glycerol as an affordable
carbon source, relying on native metabolic pathways within the bacterium to pro-
duce a continuous supply of the required nucleotide sugars. The approach also relies
on the presence of a soluble acceptor sugar in the cytoplasm as an assembly platform.
In this case, lactose, which can be imported from the growth medium, was used.
However, methods for the in situ synthesis of acceptor sugars have also been
developed [23]. Such engineered strains have been shown to produce quantities of
up to 34 g/L of secreted oligosaccharide, and the scalable nature of production means
the manufacture of kilogram quantities of sugar are entirely feasible [24]. This
approach has since been used for the production of more than 25 different oligosac-
charides ranging from disaccharides to pentasaccharides, including structures known
to have immunomodulatory effects or to be associated with cancer in humans [7]. It
should be pointed out that transporters for milk oligosaccharides larger than about
four or five residues are unknown. As a result, these molecules accumulate in the
bacterial cytoplasm, resulting in feedback inhibition and, more importantly, requir-
ing purification from bacterial lysates. Overcoming this bottleneck is necessary for
the development of a food- or pharmaceutical-grade production process. It is also
worth mentioning that in 2015 the U.S. FDA granted approval for 2-fucosyllactose,
one of the most abundant human milk oligosaccharides, produced by bacterial
fermentation, to be used as an ingredient in infant and toddler formula (see https://
www.accessdata.fda.gov/scripts/fdcc/?set¼GRASNotices&id¼571). This was
followed by European approval in 2017.
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4 Bioengineering of Exopolysaccharides in Bacteria

Many exopolysaccharides produced by bacteria have significant commercial value
[25], the most widely studied of which are listed in Table 1. Some of these polymers
occur naturally in bacteria, and others have been engineered via heterologous gene
expression, particularly in cases where the original source or isolation method was
undesirable. One example is HA, an extremely hydrophilic polymer of alternating
β-D-glucuronic acid and β-D-N-acetyl-glucosamine residues that is a desirable mate-
rial in medicine and cosmetics because of its high water retention capacity and lack
of toxicity. Initially, this polysaccharide was purified from rooster combs, although
the majority of production is now achieved via microbial fermentation [26]. Native
bacterial production of HA was first achieved from Streptococcus zooepidemicus
[27] but, because of co-production of the streptolysin exotoxin, recombinant pro-
duction remained a priority. Indeed, recombinant HA was eventually achieved using
the host organism Bacillus subtilis [28] and subsequently E. coli [29]. Such
approaches achieve yields of ~10 g/L, which is thought to be near the production
limit because of the effect of the exopolysaccharide on the viscosity of the growth
medium [29]. Key advances have come instead in the area of polymer length
regulation, allowing for better control of physiochemical properties, and achieved
largely through metabolic engineering and tighter control of the availability of the
precursor nucleotide sugars [30].

In other cases, such as the commercially valuable xanthan, metabolic engineering
has enabled yields of up to 50 g/L, also thought likely to be the highest level feasible
for bioreactor processing [31]. Further increases require additional engineering
strategies to alter the molecular structure of the polysaccharide and reduce the
resulting viscosity via modifications such as limiting polymer length or altering
the degree of acylation or pyruvylation of a compound [25]. Bacterial production
also offers unprecedented levels of purity when compared to extraction methods
from other sources – for example, cellulose free from the common plant contami-
nants lignin and hemicellulose [32]. Furthermore, with the growing understanding of
the pathways behind bacterial synthesis of such exopolysaccharides and recent
advances in bioinformatics and systems biology, it may soon be possible to engineer
bacteria to produce entirely novel polysaccharides with useful chemical properties.
Indeed, a metabolic engineering approach was recently used to synthesize a variant
form of cellulose containing a proportion of N-acetylglucosamine (GlcNAc) mono-
mers in addition to the usual glucose. This modification resulted in the production of
a biopolymer that is far more readily biodegradable than the standard form [33].
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5 Bioengineering of Intracellular and Cell-Associated
Polysaccharides in Bacteria

The most widely manipulated cellular polysaccharide biosynthesis system is prob-
ably the LPS pathway (Fig. 2), in part because of the significance of this polysac-
charide in pathogenesis, but also because of the conserved mechanistic nature of the
pathway combined with the highly variable glycan structures produced.

Table 1 Extensively studied bacterial exopolysaccharides: composition, sources and uses

EPS Components Organism Main applicationsa

Cellulose Glucose Gluconacetobacter xylinus Foods (indigestible fiber)
Wound healing
Engineered blood vessels
Audio speaker
diaphragms

Xanthan Glucose
Mannose
Glucuronic
acid
Acetate
Pyruvate

Xanthomonas campestris Foods
Petroleum industry
Pharmaceuticals
Cosmetics and personal
care products
Agriculture

Alginate Guluronic
acid
Mannuronic
acid
Acetate

Pseudomonas aeruginosa, Azoto-
bacter vinelandii

Surgical dressings
Wound management
Controlled drug release

Gellan Glucose
Rhamnose
Glucuronic
acid
Acetate
Glycerate

Sphingomonas paucimobilis Foods
Pet food
Pharmaceuticals
Agar substitute

Dextran Glucose Leuconostoc mesenteroides Foods
Blood volume expander
Chromatographic media

Curdlan Glucose Agrobacterium tumefaciens,
Alcaligenes faecalis

Foods
Pharmaceuticals
Heavy metal removal
Concrete additive

Hyaluronic
acid

Glucuronic
acid
GlcNAc

S. zooepidemicus, B. subtilis Medicine
Solid culture media

Succinoglycan Glucose
Galactose
Acetate
Pyruvate
Succinate

Sinorhizobium meliloti Food
Oil recovery

Levan Fructose B. subtilis, Zymomonas mobilis Food (prebiotic)
Medicines
Cosmetics

aSummarized from [25]
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The tendency for genes responsible for production of a bacterial polysaccharide
to be organized as a single, continuous operon, especially in the case of O-antigens
and CPS, has greatly facilitated the transfer of polysaccharide coding loci from their
native species into a heterologous host, typically E. coli. Early methods generally
centered on the generation of a cosmid library from fragmented genomic DNA,
followed by screening of individual cosmids at the genomic or phenotypic level to
locate clones conferring production of the polysaccharide of interest. This approach
has been used to produce a variety of O-antigens from Gram-negative organisms
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membrane with the polysaccharide displayed on the surface of the cell
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including Pseudomonas aeruginosa, Salmonella typhimurium, and Yersinia
enterocolitica in an E. coli strain background [34]. A similar approach has also
been used for the production of CPS from the Gram-positive organism Streptococ-
cus pneumoniae in the Gram-positive host Lactococcus lactis [35]. Cloning of
sequenced, annotated polysaccharide biosynthetic loci has enabled production in
E. coli of polysaccharides from diverse Gram-negative species such as Bukholderia
pseudomallei [36] and Francisella tularensis [37]. A further advance was the recent
demonstration that various CPS structures from the Gram-positive bacterium
S. pneumoniae could be produced in a Gram-negative host, namely E. coli, using
the en bloc transfer of the entire CPS coding locus [38, 39]. The recombinant CPS
structures are produced essentially as an O-antigen in E. coli, and some features of
processing appear to be borrowed from the host, including the action of the
O-antigen ligase WaaL in attaching the polymerized polysaccharide to the outer
core on lipid A, and subsequent transport to the outer surface of the cell. These
findings demonstrated an unexpected cross-compatibility between systems from two
disparate sources, and highlighted the mechanistic similarity of CPS biosynthesis in
Gram-positive bacteria and O-antigen biosynthesis in Gram-negative bacteria.

The wide availability of whole-genome sequences and a thorough understanding
of the mechanisms behind bacterial polysaccharide biosynthesis have recently led to
a more informed approach to the production of heterologous polysaccharides. A
recent study produced two different Staphylococcus aureus CPS structures by
expressing combinations of P. aeruginosa and S. aureus glycosyltransferases in
E. coli, with sugar precursors provided by a combination of P. aeruginosa enzymes
along with native enzymes in the E. coli host. The resulting glycans were confirmed
by MALDI-TOF/TOF tandem mass spectrometry analysis as having the same
structure as the native CPS, and were recognized by capsular serotype-specific
typing antiserum [40]. Hence, bacterial glycosyltransferase enzymes may be
regarded as modular entities defined only by function, opening up a new approach
to polysaccharide bioengineering in host species such as E. coli. This insight also
facilitates the engineering of bacterial glycans in cases where information regarding
the biosynthesis of a target polysaccharide (and/or its intermediates) is incomplete or
incompatible with further processing as a result of assembly on a lipid other than
Und-PP. For example, the Vi polysaccharide of Salmonella enterica serovar Typhi is
currently licensed as a purified polysaccharide vaccine for typhoid fever, but repre-
sents an interesting candidate for further development as a glycoconjugate. Unfor-
tunately, recombinant production of this polysaccharide is challenging because the
lipid on which it is assembled in the native host is not currently known. To
circumvent this issue, Wetter et al. modified the E. coli O121 O-antigen, a structure
well-known to build on Und-PP, to resemble the Vi polysaccharide. Following
transfer of the resulting Vi-like polysaccharide to a carrier protein, a glycoconjugate
was produced that elicited antibodies immunoreactive with E. coli O121 LPS [41].

Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules 177



6 Bioengineering of Eukaryotic Polysaccharides on the LPS
Core in Bacteria

The ability to expand the bacterial polysaccharide production system to engineer
structures beyond prokaryotic polysaccharides is crucial if this approach is to
become broadly applicable and useful. Several human-like glycans have been
assembled on a truncated LPS outer core structure. Typical mutations involve the
disruption of the second glycosyltransferase enzyme of the outer core, resulting in an
intact lipid A molecule, coupled to a complete inner core structure, but with only a
single glucose residue from the outer core added to the second heptose residue of the
inner core (see Fig. 2). This exposed glucose then becomes the attachment site for
recombinant glycans, and the Lpt export system translocates the resulting LOS
structure to the surface of the cell, ensuring the recombinant glycan is exposed [42].

The human glycosphingolipid globotriaosylceramide (Gb3) is the receptor for
Shiga-toxin (Stx), a potent AB5 toxin produced by pathogenic species such as
Shigella dysenteriae and E. coli O157. This receptor is composed of a trisaccharide,
Gal(α1–4)Gal(β1–4)Glc, and is present on many eukaryotic cell types, but is found
at highest concentrations in renal tissue and in microvascular endothelial cells
[43]. An analogous structure to the Gb3 receptor is produced by Neisseria spp. as
a component of LOS and is representative of a common strategy used by mucosal
pathogens whereby surface display of host glycan epitopes aids immune evasion
[44]. Expression of the glycosyltransferases LtxC from Neisseria meningitidis, and
LtxE from Neisseria gonorrhoeae in E. coli resulted in the production of a novel
LPS-associated Gb3 polysaccharide structure. When administered to mice, the
engineered E. coli were found to protect against challenge with a Shiga-toxin
producing E. coli (STEC) strain, suggesting an effective molecular mimic of the
toxin binding site had been recreated that sequestered the secreted toxin [43]. An
analogous approach has been used to engineer E. coli cells that express molecular
mimics for other receptors implicated in bacterial toxin binding –

globotetraosylceramide (Gb4) and the gangliosides GM1 and GM2 [45, 46]. These
engineered bacterial strains have also proven efficacious in animal models for the
treatment of toxin-associated bacterial infections such as cholera and STEC.

A similar approach was used to produce the ganglioside GM3 epitope, NeuNAcα
(2,3)Galβ(1,4), as an attachment to the exposed glucose residue of truncated lipid A
[47]. This feat was accomplished by expressing the Neisseria enzymes SiaB, a
CMP-sialic acid synthetase, together with the galactosyltransferase LgtE and the
sialic acid transferase Lst, which together generated a GM3-like structure that was
displayed on the surface of the cell. This strain may be useful for investigating the
effects of sialic acid-containing bacterial LOS structures and their role in develop-
ment of post-infection autoimmune diseases such as Guillain-Barre syndrome. Other
human-like glycans with a role in bacterial attachment have also been expressed in
E. coli, including fucosylated oligosaccharides: the blood group H, Lewis X (LeX)
and Lewis Y (LeY) antigens [48], and poly-N-acetyllactosamine [49]. Fucose is a
common component of human glycans, and is thought to play a role in the binding of
various pathogenic bacteria including P. aeruginosa and C. jejuni, and it is
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envisioned that these strains may prove useful for studying specific bacterial inter-
actions with human receptors, as well as revealing the design of competitive
inhibitors for novel probiotic-based therapies.

A further example of a eukaryotic glycan that may also be produced as a bacterial
mimic is polysialic acid (PolySia), a linear homopolymer of α-2,8-linked sialic acid
residues. In humans this glycan is most notably found as an elaboration of the
N-linked glycan on neural cell adhesion molecule (NCAM), but is also expressed
by E. coliK1 and N. meningitidis group B as the K1 capsule and CPS A, respectively
[50]. Because of its occurrence on these pathogens as well as its enhanced expression
on some malignant tumors [51, 52], PolySia represents an intriguing target for
vaccine or therapeutic antibody development. By expressing a combination of
glycosyltransferases from N. gonorrhoeae, C. jejuni, and E. coli, Valentine and
co-workers were able to produce PolySia directly on the LPS core of an E. coli strain
not normally capable of synthesizing this structure. Interestingly, where the afore-
mentioned GM3 production study supplied NeuAc via the growth medium and relied
on a single synthetase enzyme to convert the sugar into the nucleotide activated form
CMP-NeuAc [47], the authors reconstituted the entire biosynthesis pathway capable
of converting the readily available housekeeping sugar UDP-GlcNAc into
CMP-NeuAc [53], highlighting the flexibility and versatility of bacteria as hosts
for glycoengineering.

7 Bioengineering of Eukaryotic Polysaccharides
on the Lipid Anchor Und-PP in Bacteria

Because direct conjugation to the LPS core is not always possible or desirable,
alternative sites for polysaccharide assembly have also been explored, such as the
common lipid anchor Und-PP. In E. coli K-12, the ECA and O-antigen biosynthesis
pathways involve installation of a GlcNAc residue on Und-PP by an initiating
glycosyltransferase called WecA. By introducing glycosyltransferases from the
Haemophilus influenzae LOS biosynthesis pathway that were capable of modifying
this Und-PP-linked GlcNAc in the recombinant system, a tetrasaccharide resembling
the LeX antigen (minus the fucose residue) was assembled on Und-PP [54]. The use
of this lipid as a carrier enabled subsequent conjugation of the glycan to a protein
using an oligosaccharyltransferase-mediated mechanism that is described in greater
detail below. To complete the LeX structure, the purified glycoconjugate was
subjected to in vitro enzymatic elaboration to add the fucose residue [54]. The use
of engineered bacteria to produce LeX containing glycoproteins is significant
because these proteins are known to function as immunomodulatory molecules
[55–57], and have been shown to ameliorate symptoms associated with autoimmune
disorders in animal models [58].

Another human-like glycan produced in a similar manner is the Thomsen–
Friedenreich antigen (T antigen), a Galβ1-3GalNAc disaccharide. Valentine et al.
[53] used UndPP-linked GlcNAc as a primer for producing the T antigen disaccha-
ride. This was accomplished by addition of two heterologous glycosyltransferases
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and a nucleotide sugar epimerase to ensure availability of the required substrate
UDP-GalNAc. Because T antigen is overexpressed on a number of malignancies,
including breast, colon, prostate, and stomach cancers [59], recombinant biosynthe-
sis could yield highly immunogenic glycoconjugates that elicit antibodies against
this important glycan epitope.

A final example of engineering human-like glycans in a bacterial host involved
the bottom-up creation of a eukaryotic N-glycan biosynthesis pathway. Specifically,
the conserved core of all human N-glycans, the oligosaccharide Man3GlcNAc2, was
successfully produced on Und-PP by co-expression of four eukaryotic
glycosyltransferases, including the yeast uridine diphosphate-GlcNAc transferases
Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2 [60]. By including a
bacterial oligosaccharyltransferase PglB from C. jejuni, glycans were successfully
transferred to eukaryotic target proteins as discussed below. The Man3GlcNAc2
structure has been shown to be the minimal structure required for efficacy of a
glycoprotein therapeutic [61], and is the predominant glycoform conjugated to
proteins expressed in a baculovirus host system. Furthermore, as the conserved
core of human N-glycans, this structure has enormous potential as a precursor for
further modification, either in vivo or in vitro.

8 Glycoprotein Expression in Bacterial Hosts: Current
Applications and Future Opportunities

The above findings demonstrate the remarkable versatility of bacterial systems for
the biosynthesis of a vast array of carbohydrate structures. However, to exploit the
full potential of carbohydrates, it is often necessary to conjugate these structures to
additional biomolecules such as proteins. Two different mechanisms are responsible
for making the majority of proteins that become covalently modified with sugar
molecules (i.e., glycoproteins). These mechanisms are defined based on the amino
acid residue onto which the glycan is installed. In N-linked glycosylation, the glycan
is attached to the nitrogen atom of an asparagine residue, whereas in O-linked
glycosylation the sugar moiety is attached to the oxygen atom of either a serine or
a threonine side chain. Although both types of glycosylation were long believed to
occur exclusively in eukaryotes, multiple bacterial machineries for the generation of
both types of modifications have been discovered over the last 15 years. These
bacterial glycosylation systems, or hybrids thereof, have opened the door to using
bacteria for the production of two important classes of glycoproteins –

(1) glycoconjugate vaccines, whereby immunogenic carbohydrates from pathogens
including bacteria and viruses are linked to proteins and (2) therapeutic proteins that
are glycosylated in their natural form and require modification for full function, for
example, monoclonal antibodies.

Glycoconjugates are amongst the most successful vaccines generated to date,
eliciting a robust T-cell-dependent immune response and conferring protection
across all age groups [62]. For three important bacterial pathogens in particular,
H. influenza type B (Hib), S. pneumoniae, and N. meningitidis, glycoconjugates have
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proven to be highly effective in countries where they have been introduced
[63, 64]. The standard production method for these conjugates involves the separate
generation and purification of the protein and the carbohydrate moiety, chemical
activation thereof, and conjugation as well as subsequent purification of the resulting
glycoprotein [65]. Even though it is an established and accepted method, there are
several drawbacks to this approach. First, it requires culturing large volumes of a
pathogenic species of interest for the generation of the native carbohydrate, followed
by harvesting and purification of the carbohydrate. Depending on the biosafety level
of the species of interest, as well as the ease of culturing, this step can present a major
hurdle regarding the expansion of the technique to novel pathogenic species. Sec-
ond, the activation and chemical conjugation steps required to couple the glycan to
the carrier protein can be technically challenging and inefficient, resulting in low
yields, as well as a heterogeneous population of glycoproteins with different num-
bers of target glycans attached at different locations throughout the protein. There-
fore, alternative methods for generating glycoconjugates that overcome some of
these limitations are desired.

In addition to glycoconjugate vaccines, many proteins of therapeutic interest are
also glycoproteins. In fact, 70% of therapeutic proteins approved by regulatory
agencies or currently in clinical and preclinical trials are decorated with glycans in
their native form [66]. Historically, this has limited the use of E. coli to proteins and
peptides not natively glycosylated, such as insulin and homologues thereof, or to
those that are natively glycosylated but are functional without the addition of the
glycan moiety, such as human growth hormone (hGH) and interferon α [67]. It
should be pointed out that these proteins often require additional post-translational
modifications such as the addition of polyethylene glycol (PEG) to increase serum
half-life [68]. Although some notable breakthroughs have been made [60], the
routine use of E. coli as a production platform for therapeutic glycoproteins and
glycopeptides requires further engineering of glycosylation pathways in this host.

9 N-Linked Glycoprotein Expression in Bacteria

The discovery of an N-glycosylation machinery in the human intestinal bacterial
pathogen C. jejuni [12] and the subsequent functional transfer of the complete
machinery into the more tractable species E. coli [14] demonstrated for the first
time that bacteria could be an alternative source of recombinant N-glycoproteins.
Subsequent studies showed that a single enzyme, an oligosaccharyltransferase
named CjPglB (PglB from C. jejuni), was responsible for transferring the glycan
to the acceptor protein. Interestingly, this enzyme was shown to share sequence
homology with the STT3 catalytic subunit of the eukaryotic
oligosaccharyltransferase enzyme complex [14]. A functional study of the genes
within the glycosylation locus demonstrated that the substrate glycan was assembled
on the lipid carrier Und-PP [69], in a fashion similar to the O-antigen biosynthesis
pathway present in many Gram-negative species of bacteria [70]. It was further
demonstrated that the CjPglB enzyme possesses remarkably relaxed glycan substrate
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specificity. That is, in addition to its native substrate oligosaccharide – a
heptasaccharide glycan with the structure diNAcBacGalNAc5Glc [71] – the enzyme
was also able to recognize much larger polysaccharides such as structurally different
bacterial O-antigens and transfer these to proteins [15]. Around the same time, a five
amino acid glycosylation sequon for CjPglB was discovered [16], which could be
engineered either into flexible secondary structures within a protein [16] or at either
the N- or the C-terminus [72]. Altogether, these studies provided the requisite
ingredients for making customized recombinant bacterial glycoproteins, where
potentially any protein of interest could be modified with any glycan moiety at a
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glycosylation by the oligosaccharyltransferase. Sequons can be engineered into an exposed, flexible
loop or at either the N- or the C-terminus of the protein. The glycoprotein can then be purified from
the bacterial cells using standard methods

182 L. E. Yates et al.



desired position by co-expression of CjPglB, the glycan of interest assembled on
Und-PP, and the desired acceptor protein modified to contain one or more glycosyl-
ation sequon(s) (Fig. 3).

10 Customized N-Glycoproteins Produced Recombinantly
in E. coli

To date, the predominant class of glycoproteins produced using the above compo-
nents consists of conjugates in which bacterial surface glycan structures are site-
specifically linked to immunogenic carrier proteins. In the majority of published
cases, the glycans are O-antigen polysaccharides built on Und-PP (see above for
in-depth discussion of the different methods used for the recombinant production of
these structures) and installed on the carrier protein by CjPglB. Table 2 summarizes
the glycoconjugate vaccine candidates generated and tested to date. Although
multiple studies have demonstrated the generation of specific, and potentially pro-
tective antibody responses against E. coli-derived glycoconjugate vaccine candi-
dates, it is particularly noteworthy that two have been successfully tested in Phase I
trials. The first is a conjugate vaccine candidate against S. dysenteriae type 1 com-
posed of the O-antigen glycan coupled to the exotoxin A of P. aeruginosa (EPA).
Testing of this vaccine candidate in healthy adults at two different doses with or
without co-adminstration of adjuvant revealed it to be well-tolerated and capable of
eliciting statistically significant antigen-specific humoral immune responses [74]. A
second conjugate vaccine candidate comprised of the Shigella flexneri 2a O-antigen
conjugated to EPA was also tested in healthy adults, with similar results regarding
tolerance and immunogenicity [77]. Hence, recombinant production of
glycogonjugates in E. coli appears to be a promising alternative to the traditional
methods used for biomanufacturing conjugate vaccines.

Glycoconjugate proteins produced recombinantly in E. coli have found uses in
other applications as well. For instance, bacterial glycoconjugates have been suc-
cessfully used as diagnostic tools for human and bovine brucellosis [81, 82] as well
as for the Shiga-toxin-producing E. coli serotypes O157, O145, and O121
[83]. Additionally, Shang and co-workers generated a glycoconjugate comprised
of the maltose binding protein (MBP) and the E. coliO86:B7O-antigen, which bears
structural similarity to the blood group B antigen epitope. This glycoconjugate
functioned as a ‘molecular sponge’ to lower the levels of blood group B antibodies
in plasma without negatively affecting the clotting function of the plasma [84].

Although there is a great deal of promise for glycoconjugates where the sugar
moiety is derived from an immunogenic bacterial glycan, these types of glycans are
not useful in applications where the goal is to install native, eukaryotic glycans onto
therapeutic proteins. Several attempts have been made to leverage the bacterial
protein glycosylation machinery for the generation of glycoproteins carrying mam-
malian glycans. Perhaps the most notable example is Valderrama-Rincon et al. [60]

Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules 183



T
ab

le
2

L
is
to

f
ba
ct
er
ia
l
gl
yc
oc
on

ju
ga
te
va
cc
in
e
ca
nd

id
at
es

pr
od

uc
ed

us
in
g
a
ba
ct
er
ia
l
gl
yc
oe
ng

in
ee
ri
ng

ap
pr
oa
ch

T
ar
ge
t
sp
ec
ie
s

C
ar
ri
er

pr
ot
ei
n

C
ar
bo

hy
dr
at
e

A
ni
m
al

m
od

el
S
af
et
y
in

hu
m
an
s

Im
m
un

og
en
ic
ity

in
hu

m
an
s

R
ef
er
en
ce
s

S.
dy
se
nt
er
ia
e
ty
pe

1
C
.j
ej
un

i
m
od

el
gl
yc
op

ro
te
in

A
cr
A
,E

xo
-

to
xi
n
A
fr
om

P
.a

er
ug

in
os
a
(E
P
A
)

O
-a
nt
ig
en

X
X

[7
3–
75

]

S.
fl
ex
ne
ri
2a

E
P
A

O
-a
nt
ig
en

X
X

[7
6,

77
]

F
.t
ul
ar
en
si
s

E
P
A

O
-a
nt
ig
en

M
ic
e

[3
7]

B
.p

se
ud

om
al
le
i

A
cr
A

O
-a
nt
ig
en

M
ic
e

[3
6]

B
ru
ce
lla

ab
or
tu
s

A
cr
A

O
-a
nt
ig
en

of
Y
.e
nt
er
oc
ol
iti
ca

O
9a

M
ic
e

[7
8]

E
.c
ol
i
se
ro
ty
pe
s
O
1,

O
2,

O
6
an
d
O
25

E
P
A

O
-a
nt
ig
en
s
of

th
e
fo
ur

st
ra
in
s

M
ic
e,
R
ab
-

bi
ts
,R

at
s

[7
9]

E
.c
ol
i
O
15

7:
H
7

M
al
to
se

bi
nd

in
g
pr
ot
ei
n
(M

B
P
)

O
-a
nt
ig
en

b
M
ic
e

[8
0]

S.
ty
ph

i
E
P
A

V
i
ca
ps
ul
e
(O

-a
nt
ig
en

of
E
.c
ol
i
O
12

1)
c

M
ic
e

[4
1]

S.
au

re
us

se
ro
ty
pe
s

5
an
d
8

E
P
A
an
d
S.

au
re
us

α
to
xi
n

C
ap
su
la
r

po
ly
sa
cc
ha
ri
de

M
ic
e

[4
0]

a G
ly
co
co
nj
ug

at
e
ge
ne
ra
te
d
by

re
co
m
bi
na
nt

ex
pr
es
si
on

of
th
e
gl
yc
os
yl
at
io
n
m
ac
hi
ne
ry

in
Y
.
en
te
ro
co
lit
ic
a
se
ro
ty
pe

O
9,

ta
ki
ng

ad
va
nt
ag
e
of

th
e
st
ru
ct
ur
al

id
en
tit
y
of

th
e
O
-a
nt
ig
en

of
th
is
sp
ec
ie
s
w
ith

th
e
ta
rg
et
sp
ec
ie
s

b
G
ly
co
co
nj
ug

at
e
ge
ne
ra
te
d
by

re
co
m
bi
na
nt

ex
pr
es
si
on

of
th
e
gl
yc
os
yl
at
io
n
m
ac
hi
ne
ry

di
re
ct
ly

in
th
e
ta
rg
et
E
.c
ol
i
se
ro
ty
pe

c G
ly
co
co
nj
ug

at
e
ge
ne
ra
te
d
by

re
co
m
bi
na
nt

ex
pr
es
si
on

of
a
re
la
te
d
O
-a
nt
ig
en

st
ru
ct
ur
e
m
od

ifi
ed

to
re
se
m
bl
e
th
e
ta
rg
et
gl
yc
an

184 L. E. Yates et al.



who demonstrated the complete recombinant assembly and transfer to protein of the
eukaryotic N-linked core glycan GlcNAc2Man3 (see above for description of the
approach used for biosynthesis of the glycan). Transfer of the GlcNAc2Man3 glycan
to asparagine residues in several different target proteins including the Fc domain of
human immunoglobulin G (IgG) was achieved with CjPglB which, as mentioned
above, has fairly relaxed specificity toward the glycan substrate. One can imagine an
extension of this glycan, either in vivo or potentially in vitro, to generate additional
structures found in mammalian N-glycans. It should be pointed out that, despite
successful eukaryotic protein glycosylation, the yield of glycosylated proteins in this
seminal report was reported to be ~50 μg/L, which amounted to only a small fraction
(<1%) of each expressed protein under the conditions tested [60]. It was proposed
that increasing these levels would likely require, among other things, strategies for
relieving enzymatic and metabolic bottlenecks and/or optimizing the glycosylation
enzymes. Indeed, a flow cytometric approach was recently used to optimize pathway
enzyme expression in a manner that resulted in enhanced production of lipid-linked
Man3GlcNAc2 [85]. In turn, the yield of glycosylated acceptor proteins produced by
these optimized strains appeared to be very efficient, with nearly 100% of the
acceptor protein undergoing conversion to the glycosylated form. Moreover, yields
of ~14 mg/L were achieved in the best cases, representing an improvement of two
orders of magnitude compared to our earlier report, and rivaling the yield (25 mg/L)
reported for E. coli-based production of carrier proteins glycosylated with bacterial
polysaccharides [73].

In an alternative approach, post-processing of a purified pre-form of the
glycoconjugate outside of the bacterial cell can be performed to generate the final
product. For instance, the same GlcNAc2Man3 glycan structure was installed on a
protein by a combination of recombinant in vivo glycosylation of the protein with
the Campylobacter lari heptasaccharide glycan, GalNAc5GlcNAc, followed by
in vitro enzymatic trimming of the glycan down to a single GlcNAc residue, and
finally transglycosylation of the trimmed glycan with a preassembled Man3GlcNAc
sugar to obtain the final structure [86]. However, for large-scale production, the cost
burden of cGMP-compliant precursors for the transglycosylation reaction likely
limits the applicability of this approach.

A similar combined method of in vitro and in vivo glycosylation and modification
was used to install the blood group antigen Lex on a protein [54]. The recombinantly
expressed tetrasaccharide GalNAc2Gal2 was produced on Und-PP in E. coli and this
glycan was subsequently transferred in vivo to an acceptor protein using CjPglB.
Following purification, in vitro fucosylation was performed to yield the final Lex

glycan on the protein. Although these combined in vivo and in vitro methods of
glycoprotein biosynthesis are potentially less applicable to large scale production of
glycoproteins, they nevertheless expand the range of glycan modifications on pro-
teins, which may be beneficial for the generation of glycoproteins carrying sugars
that are potentially too challenging for the expression and transfer in vivo alone.

Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules 185



11 Expanding Glycosylation Through Identification
of Alternative Oligosaccharyltransferases

Although CjPglB remains one of the best-characterized bacterial
oligosaccharyltransferases, there are two main limitations that restrict its use for
the coupling of designer glycans to acceptor proteins. First, compared to the canon-
ical eukaryotic glycosylation sequon, N-X-S/T (where X can be any amino acid
except proline), used by eukaryotic oligosaccharyltransferases, CjPglB requires an
extended sequon (D/E-X1-N-X2-S/T) for the attachment of glycans to proteins
[16]. One consequence of this requirement is that, at a minimum, these five amino
acids need to be engineered into the protein of interest either by addition of the
residues as a terminal or internal tag or by changing of a native stretch of amino acids
to render it a substrate for glycosylation. If these modifications are added to either of
the termini, it can be speculated that this does not have a major impact on the overall
structure and function of the protein. However, it may be desirable to engineer the
site of glycan attachment into the protein, in which case these modifications may
interfere with protein folding and/or function. Another consequence is that native
N-glycoproteins of mammalian origin need to have their shorter sequons extended to
include a D or E in the �2 position to be glycosylated by CjPglB. It should be noted
that the need to extend sequons in this manner may change the properties and
immunogenicity of the modified protein.

To address this limitation, several groups have used bioinformatics to identify
orthologues of CjPglB, which were then functionally characterized in glyco-
competent E. coli cells [87–91]. From these studies, oligosaccharyltransferases
were identified from two species of Desulfovibrio that did not require the negatively
charged amino acid at position �2 and were therefore able to glycosylate the shorter
eukaryotic N-X-S/T sequon [87, 90]. Of these, only the PglB orthologue of
Desulfovibrio gigas was able to modify the native QYNST sequon in the Fc domain
of human IgG [90], suggesting that additional factors govern acceptor-site specificity
and must be satisfied to allow for the installation of glycans onto shorter eukaryotic
sequons. Additionally, the orthologue from Desulfovibrio desulfuricans showed
markedly lower efficiency in transferring the E. coli O7 O-antigen polysaccharide
[87], suggesting that this enzyme may not be as flexible as CjPglB regarding the
glycan structure. As no other polysaccharides were tested as substrates for the
D. desulfuricans PglB, it is unclear whether the low efficiency of transfer of the
O7 O-antigen is specific to this substrate or an inherent property of the enzyme. The
ability of the orthologues fromDesulfovibrio vulgaris andD. gigas to transfer mono-
and polysaccharides was not tested, so it remains unclear whether these enzymes
may be useful in the generation of custom glycoconjugates.

In parallel with the functional characterization of CjPglB orthologues, a directed
evolution approach has been applied to CjPglB with the goal of relaxing the
acceptor-sequon specificity. Using the crystal structure of the closely related PglB
enzyme of C. lari [92] as a guide, combined with a high-throughput genetic screen
using a secreted acceptor protein, a library of CjPglB mutants was screened for the
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ability of the enzyme to glycosylate non-canonical acceptor protein sites [93]. This
screen identified three CjPglB variants that no longer required the negatively
charged residue at the �2 position. The three mutants glycosylated a eukaryotic
protein at its native N-X-S/T sequon, suggesting that these enzymes may be useful
for authentically glycosylating eukaryotic proteins and peptides. Although the
glycan specificity was not specifically tested, the fact that the mutants were derived
from CjPglB suggests that the relaxed glycan specificity of the parent enzyme
remains.

A second limitation of CjPglB is the requirement of the native enzyme for an
acetamido group at the monosaccharide that constitutes the reducing end of the
oligo- or polysaccharide [17]. Many glycans of interest do not terminate in a glycan
that conforms to this requirement, such as most capsular glycans of S. pneumoniae
serotypes that terminate in either galactose or glucose residues [94]. Although a
natural variant among the orthologues of CjPglB enzymes from other species may
lack this requirement, evidence for this has yet to be reported. In fact, two studies
analyzing the protein N-glycan diversity within the Campylobacter genus and in one
species of Helicobacter identified exclusively sugars containing an acetamido group
at the reducing end [95, 96], suggesting that this is a shared feature among many of
the bacterial species that possess protein N-glycosylation machineries. The same
appears to be true for the sugar attached to an identified glycoprotein in D. gigas,
which was N-glycosylated with a disaccharide of GlcNAc and N-acetylallosamine
[97]. To address this issue, one study used structure-guided mutagenesis to engineer
a CjPglB variant that was able to transfer two O-antigens from S. typhimurium that
both contain non-acetylated sugars (galactose residues) at the reducing end
[98]. This work demonstrates that the glycan specificity of CjPglB can be engineered
to a certain extent, and suggests that in the future it should be possible to transfer
virtually any glycan to any protein using modified versions of CjPglB.

12 Alternative Routes for Bacterial Protein N-Linked
Glycosylation

A novel family of bacterial enzymes has recently emerged that may be of potential
use in bacterial glycoengineering. In contrast to the enzymes described in the
previous section, these enzymes: (1) are active in the bacterial cytoplasm, not the
periplasm; (2) use nucleotide-activated glycans instead of lipid-linked glycans as a
substrate; and (3) recognize the shorter, bacterial N-X-S/T glycosylation sequon
[99]. The first member of the family was discovered in H. influenzae and was shown
to be involved in the glycosylation of the high molecular weight adhesin protein
HMW1 [11]. The glycans attached to the adhesin protein were identified predomi-
nantly as hexose sugars, and glycosylation of the adhesin protein was demonstrated
to be important for correct secretion of the adhesin as well as adhesion of the bacteria
to airway epithelial cells [100]. Further members of the family have been identified
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in several other species of bacteria [99], and in vitro experiments confirmed activity
of the orthologues from Y. enterocolitica and Actinobacillus pleuropneumoniae
[101]. The preferred substrate for the A. pleuropneumoniae enzyme (termed
ApNGT) was demonstrated to be UDP-Glc [101], and a downstream gene was
shown to encode a glycosyltranferase enzyme that was able to extend the Glc moiety
installed by ApNGT with further Glc residues. Additionally, when expressed in
E. coli, ApNGT was shown to glycosylate recombinantly co-expressed auto-trans-
porter proteins from the same species (the enzyme’s native substrate), as well as
co-expressed human erythropoietin (EPO) and several native E. coli proteins
[102]. A polypeptide modified with a glucose moiety by ApNGT was also success-
fully elaborated through in vitro transglycosylation mediated by endoglycosidase
enzymes [103]. This suggests that ApNGT and other enzymes from this family may
be useful tools for installation of a priming glucose residue on proteins of interest,
followed by either in vitro or in vivo elaboration of the glycan. It can also be
imagined that directed evolution of the enzyme from this family may allow for the
modulation of the carbohydrate specificity in a similar way to CjPglB.

13 Customized O-Glycoproteins Produced Recombinantly
in E. coli

In addition to the bacterial N-glycosylation mechanisms discussed above, pathways
that lead to the modification of serine or threonine residues (O-linked glycosylation)
have also been identified in several bacterial species. These mechanisms are more
commonly found in bacteria than their N-glycosylation counterparts [104], and are
currently being pursued for recombinant protein glycosylation. The following sec-
tion highlights similarities and differences between the N- and O-linked pathways.

Over the last decade, O-glycosylation machineries that share mechanistic simi-
larities with the N-glycosylation pathways described above have been identified and
characterized in several bacterial species [104]. It was initially observed that the type
IV pilus subunit protein PilA in P. aeruginosa strain 1244 was modified with a
glycan in a manner dependent on the product of the gene adjacent to pilA named
PilO/TfpO [10]. A similar machinery was identified in N. meningitidis, whereby
deletion of a gene termed pglL led to the loss of a carbohydrate moiety from the pilus
subunit protein PilE [105]. Interestingly, both the P. aeruginosa PilO/TfpO and the
N. meningitidis PglL proteins showed homology toO-antigen ligase proteins that are
involved in transfer of the O-antigen subunit from the lipid carrier Und-PP onto the
lipid A moiety during LPS biogenesis [106]. This suggested that these enzymes may
use Und-PP-linked glycans as substrate. Analysis of the glycan structure present on
P. aeruginosa PilA showed the presence of a single O-antigen repeat unit, further
strengthening the hypothesis that Und-PP-linked glycans may be the substrate for
this enzyme family [107]. When PilO/TfpO and PilA from P. aeruginosa (or PglL
and PilE from N. meningitidis) were recombinantly co-expressed in E. coli along
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with a Und-PP-linked oligo- or polysaccharide, transfer of the glycan to the pilin
protein was observed [108]. These results not only demonstrated recombinant
activity of this new family of bacterial O-oligosaccharyltransferase enzymes, but
also confirmed the substrate identity as Und-PP-linked glycans. Further analysis of
the glycan specificity of PglL demonstrated a remarkable promiscuity with regards
to the glycan. Diverse glycan structures were shown to be transferred to PilE by PglL
in vivo including structures containing a Gal residue at the reducing end such as the
S. typhimurium LT2 O-antigen and the disaccharide-pentapeptide peptidoglycan
building block, none of which are substrates for the C. jejuni
oligosaccharyltransferase CjPglB [109]. Additionally, in vitro glycosylation exper-
iments revealed that the enzyme displayed flexibility toward the lipid carrier
[109, 110]. Altogether, these characteristics suggest that this enzyme is a very
promising tool for the generation of designer glycoproteins with O-linked sugars.

To date, however, the biotechnological use of this enzyme family has been
hampered by one major bottleneck. Unlike in the case of CjPglB, there is a lack of
a consensus sequon for glycosylation that would allow for the ‘tagging’ of any
protein as a substrate for O-glycosylation. Analysis of the O-glycome of several
organisms that possess PglL-like O-glycosylation systems identified multiple
glycosylated proteins, and although these helped to determine that the amino acid
residues around the glycan attachment site were rich in serine, proline, and alanine,
they did not reveal the presence of any consensus sequence [111–114]. Toward a
more universal glycosylation strategy, Qutyan and coworkers showed that a
C-terminal fusion of E. coli alkaline phosphatase with the final 15 amino acids
from the C-terminus of PilA was glycosylated by PilO/TfpO when expressed in
P. aeruginosa; however, the observed glycosylation was not very efficient
[115]. Additionally, although it has been shown that PilO/TfpO has relatively
relaxed specificity and was able to transfer multiple different serotype O-glycans
of P. aeruginosa [116], the enzyme was only able to transfer a single O-antigen
subunit both in the native organism and recombinantly in E. coli [108, 116]. Hence,
alternative PilO/TfpO O-oligosaccharyltransferases need to be identified or
engineered for transferring longer polysaccharides, which are often desirable for
glycoengineering purposes. This issue appears to have been solved recently by Pan
and co-workers [117] who reported the development and optimization of an O-
linked ‘glycosylation tag’ consisting of an eight amino acid motif flanked by two
approximately ten amino acid sequences containing mainly hydrophilic residues.
This tag was successfully fused to both the N- and C-termini of three potential
vaccine carrier proteins – the cholera toxin B subunit, exotoxin A from
P. aeruginosa, and the detoxified variant of diphtheria toxin CRM197 – and
glycosylated with two different sugars including the S. typhimurium LT2
O-antigen, which, as discussed above, is not a substrate for CjPglB. Recombinant
O-glycoproteins produced with this method were tested in a series of animal
experiments and elicited a glycan-specific antibody response [117]. The ability to
tag proteins for PglL-dependent O-glycosylation opens up this enzyme family for
biotechnological applications, in particular in cases where the glycan of interest may
not be an optimal substrate for N-glycosylation by CjPglB.
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14 Alternative Routes for Bacterial Protein O-Linked
Glycosylation

Many bacterial species possess O-glycosylated flagellar proteins, with the glycosyl-
ation patterns ranging from a single glycan at a single site to multiple glycans
attached to different sites on the protein [118]. These glycans are installed in a
processive manner, with individual glycosyltransferases adding the glycans sequen-
tially to the protein. This mechanism is similar to the installation of O-linked glycans
in eukaryotic mucin-like glycosylation [119]. It could therefore be hypothesized that
enzymes from these machineries could potentially be used/engineered to install
mucin-like glycans on human proteins. The successful recombinant installation of
the first monosaccharide of the core of human mucin-like glycan, a GalNAc residue,
has been demonstrated in the cytoplasm of E. coli using a recombinantly expressed
human GalNAc transferase enzyme [120]. However, no further elaboration of this
priming glycan with other sugars has been demonstrated.

15 Alternative Therapeutic Bacterial Conjugates

Although some unconjugated polysaccharides are currently licensed as vaccines,
they often elicit a T-cell independent immune response stimulated by the extensive
cross-linking of receptors on the surface of B cells. As such, they are poorly
immunogenic in children less than 2 years of age and elderly patients, greatly
limiting their usefulness [121]. Although protein conjugation is the most widely
studied approach to counter this problem, the field of bacterial glycobiology is
opening up alternative approaches to boost the immunogenicity of carbohydrate
epitopes.

One such approach is based on bacterial outer membrane vesicles (OMVs), which
are small (20–200 nm) liposomes released from the outer membrane of nearly all
Gram-negative bacterial species. These vesicles are non-replicating versions of their
bacterial ‘parent’, and contain many of the same components as the bacterial outer
membrane, including membrane proteins, CPS, and LOS and LPS, as well as some
of the luminal components of the bacterial periplasm [122]. OMVs have garnered
interest as vaccine candidates because vesicles from several bacterial pathogens have
been shown to possess potent immunogenic capacities [123–125]. Intriguingly,
OMVs also appear to possess intrinsic adjuvant properties, potentially removing
the need to include adjuvants in the formulation [126, 127]. OMVs derived directly
from pathogenic N. meningitidis have been successfully incorporated into a com-
mercial vaccine formulation, the recently licensed Bexsero [128, 129]. Native
OMVs have been further engineered to carry additional immunogenic proteins,
which are recombinantly displayed on the surface of the OMV through genetic
fusion to outer membrane proteins or in the OMV lumen through periplasmic
expression [126, 130]. Importantly, robust immune responses against these
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recombinant immunogens have been demonstrated [126, 130]. Three recent reports
highlight a novel bacterial glycoengineering approach to OMV-based vaccines
whereby immunogenic glycans are recombinantly displayed on the exterior of
OMVs. The approach takes advantage of the following: (1) the fact that standard
laboratory strains of E. coli have lost the ability to produce a native O-antigen glycan
because of the insertion of an IS element in the second glycosyltransferase gene
wbbL [131] whereas the rest of the mechanism including the flippase and ligase
genes remain intact; (2) the ability to express recombinantly non-native polysaccha-
rides in E. coli; (3) the fact that the O-antigen ligase WaaL has relative relaxed
glycan specificity and efficiently transfers engineered glycans from Und-PP to the
lipid A-core in cells that lack the native O-antigen [132]; and importantly (4) the
recombinantO-antigen is efficiently transported to the cell surface and packaged into
released OMVs. Using this approach, E. coli-derived glycosylated OMVs
(glycOMVs) have been decorated with the O-antigens of eight Gram-negative
bacterial species, including F. tularensis [133], PolySia [53], the CPS of
S. pneumoniae serotype 14, and the N-linked heptasaccharide of C. jejuni [39]. Fol-
lowing immunization, the glycOMVs carrying the F. tularensis O-antigen were
shown to elicit significant serum titers of class-switched, glycan-specific IgG anti-
bodies in mice, and prolonged survival upon challenge with the highly virulent
F. tularensis subsp. tularensis (type A) strain Shu S4 [133]. Likewise, glycOMVs
decorated with PolySia also elicited glycan-specific IgG antibodies in mouse immu-
nization studies, and the serum antibodies had potent bactericidal activity, killing
N. meningitidis serogroup B bacteria that possess a PolySia capsular glycan
[53]. GlycOMVs carrying the S. pneumoniae serotype 14 CPS also elicited
glycan-specific antibodies in mice, and the serum antibodies were shown to possess
potent bactericidal properties when tested in an opsonophagocytic assay. In fact, the
bacterial killing of the serum from mice vaccinated with the glycOMVs carrying the
capsular glycan was as efficient as the serum from mice that had been vaccinated
with the commercial glycoconjugate vaccine Prevnar13® [39]. Finally, glycOMVs
displaying the C. jejuni N-linked glycan were shown to significantly lower levels of
C. jejuni colonization in chickens [39]. The expansion of the technology to cover
further species or serotypes is thought to be relatively straightforward, simply
requiring the recombinant expression of a pathogen-specific glycan structure on
the surface of E. coli cells.

A related approach to glycOMV vaccines is the development of whole-cell
vaccines displaying recombinant glycan epitopes. This strategy also leverages the
fact that recombinant polysaccharides assembled on Und-PP are often efficiently
transferred to lipid A and displayed as recombinant chimeric LPS on the surface of
Gram-negative bacteria. This approach has been evaluated using several different
species of Gram-negative bacteria as hosts (S. enterica serovar Typhi, S. enterica
serovar Typhimurium, and E. coli) carrying biosynthesis gene clusters for immuno-
genic carbohydrates of S. dysenteriae serotype O1 [134], shiga-toxin producing
E. coli serotype O111 [135], and C. jejuni [136]. In contrast to glycOMV vaccine
candidates, these whole-cell vaccine candidates replicate. Although it is desirable to
control their ability to replicate, a balance needs to be found between controlling the
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replication of the bacteria and ensuring they persist long enough in the vaccinated
organisms to generate a desired immune response. Genetic inactivation of the aroA
gene encoding a 5-enolpyruvylshikimate-3-phosphate synthetase, involved in the
shikimate pathway that directly connects glycolysis to the synthesis of aromatic
amino acids [137], is a commonly used strategy to attenuate live bacterial vaccine
candidates. This is particularly useful in species of Salmonella as these mutants are
able to grow in rich media in vitro but become self-limiting in vivo, where aromatic
amino acids are not freely available [138]. However, recent data suggest that deletion
of aroA, at least in S. enterica serovar Typhimurium, can lead to additional effects in
cellular physiology that may have an influence on the behavior of the recombinant
bacteria within the host [139]. Nonetheless, attenuated, glycan epitope-expressing
bacteria offer an additional opportunity for glycoengineering of vaccine candidates,
in particular in areas where minimal cost of production may be a priority, such as in
poultry and other livestock vaccines.

16 Concluding Remarks and Outlook

In summary, bacterial expression systems have been successfully used for the
production of a variety of carbohydrate structures ranging from small secreted
oligosaccharides to repeating polymers of high molecular weight, and spanning
structures found in all kingdoms of life. Furthermore, the characterization of both
N- and O-linked protein glycosylation systems in a variety of bacterial species has
greatly enhanced the potential of bacterial systems for the generation of therapeuti-
cally relevant glycoconjugates. These bacterial conjugation systems have been
employed to generate well-defined therapeutic compounds, including the first con-
jugate vaccines produced entirely in bacteria as well as novel immunogenic entities
such as glycosylated outer membrane vesicles. Two of these bacterially-derived
glycoconjugates have recently undergone successful Phase I clinical trials, and new
candidates are also emerging.

Owing to their versatility and ease of manipulation, bacteria are ideal hosts for the
production of a diverse array of structurally defined polysaccharides and
glycoconjugates that are of interest as medical and industrial products. Furthermore,
the low costs associated with the culturing of bacterial strains, especially E. coli,
opens up this technology to a far wider range of laboratories than existing chemical/
chemoenzymatic synthesis methods or mammalian cell culture approaches. The
findings from a recent report commissioned by the National Academy of Sciences
states that "glycans play roles in almost every biological process and are involved in
every major disease" and further asserts that "the development of transformative
methods for the facile synthesis of carbohydrates and glycoconjugates should be a
high priority" [140]. Bacterial glycoengineering represents an emerging field with
the potential to play a major role in meeting these goals.
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Abstract Carbohydrates are functional and structural biomolecules with structures
ranging from monosaccharides to polysaccharides. They are naturally found as pure
glycans or attached to lipids and proteins forming glycoconjugates. The biosynthesis
of carbohydrates is not genetically controlled. The regulation takes place by the
expression of enzymes that transfer and hydrolyze the glycan units, leading to
glycocojugates having complex mixtures of glycan structures. Chemical synthesis
emerged as the best strategy to obtain defined glycan and glycoconjugates and
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overcome the challenging purification processes. Here, we review the recent
advances in the synthesis of oligosaccharides using manual and automated methods.
The chapter covers the methods for the preparation of building blocks and control of
stereoselectivity and regioselectivity during glycosylations. Finally, it also presents
the strategies to obtain natural and non-natural glycoconjugates with lipids and
proteins.
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Ac Acetyl
Ac2O Acetic anhydride
AcCl Acetylchloride
AcOH Acetic acid
AgOTf Silver triflate
AllylBr Allyl bromide
Asn Asparagine
BF3.Et2O Boron trifluoride diethyl etherate
Bn Benzyl
BnBr Benzylbromide
Boc tert-Butoxycarbonyl
Bu Butyl
Bz Benzoyl
CCl3CN Trichloroacetonitrile
Cer Ceramide
Cl-Ac Chloro-acetyl
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CSA Camphor sulfonic acid
DAG Diacylglycerol
DBU 1,8-diazabicycloundec-7-ene
DCC N,N'-Dicyclohexylcarbodiimide
DCM Dichloromethane
DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIPEA N,N-Diisopropylethyl amine
DMAP 4-Dimethylaminopyridine
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DMT Dimethoxytrityl
Et2O Diethyl ether
Et3N Triethylamine
EtNP Phosphoethanolamine
Et Ethyl
Fmoc 9-Fluorenylmethoxycarbonyl
GAG Glycosaminoglycan
Gal Galactose
Glc Glucose
GlcNAc N-acetylglucosamine
GPI-APs Glycosylphosphatidylinositols anchored proteins
GPIs Glycosylphosphatidylinositols
HF-Pyridine Hydrogen fluoride in pyridine complex
IAD Intramolecular aglycon delivery
Ino Inositol
Lev Levulinoyl
LG Leaving group
Man Mannose
MeCN/ACN Acetonitrile
Me Methyl
MeOH Methanol
MP 4-Methylphenyl
NaOAc Sodium Acetate
NaOMe Sodium Methoxide
Nap 2-Naphthylmethyl
NIS N-iodosuccinimide
NMR Nuclear magnetic resonance
PBS Phosphate buffer saline
PCR Polymerase chain reaction
Pd/C Palladium on activated charcoal
Ph3P Triphenylphosphine
PhCH(OMe)2 Benzaldehyde dimethyl acetal
PhMe Toluene
PhS Thiophenyl
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Pico Picoloyl
PMB 4-Methoxybenzyl
PivCl Pivaloyl chloride
TBAF Tetrabutylammonium fluoride
TBDPS tert-Butyldiphenylsilyl
TBS tert-Butyldimethylsilyl
TBSOTf tert-Butyldimethylsilyltrifluoromethanesulfonate
TCA Trichloroacetamide
Tf2O Trifluoromethansulfonic acid anhydride, triflic anhydride
TFA Trifluoroacetic acid
Thr Threonine
TIPS Triisopropylsilyl
TMS Trimethylsilyl
TMSOTf Trimethylsilyltrifluoromethanesulfonate
Tol Tolyl
Troc Trichloromethyl-oxy-carbonyl
Trt Triphenylmethyl, trityl
Zn Zinc

Carbohydrates are natural molecules having an important role in the biological
processes of cells, as an energy source and structural materials. Carbohydrates are
also covalently attached to proteins, peptides, and lipids forming glycoconjugates
having different functions and properties [1]. The structure and composition of
carbohydrates on glycoconjugates are not genetically controlled and be ranging
from monosaccharides to polysaccharides. Glycoconjugates generally contain a
heterogeneous mixture of glycans that result from differential expression and activ-
ity of the enzymes participating in their biosynthesis and degradation. This hetero-
geneity hinders the evaluation of defined carbohydrate structures in biological
processes.

There are no amplification procedures for carbohydrates comparable to the
expression of proteins in cell lines or to amplification of DNA using PCR techniques.
However, these molecules have been accessible in homogeneous form, high com-
plexity, and good quantity using chemical [2], chemo-enzymatic [3, 4], or enzymatic
synthesis [5]. Carbohydrates obtained using these methods include oligo- and
polysaccharide fragments, regioisomers, natural products, and glycomimetics.
These molecules have found application in deciphering the biological role of
carbohydrates, in material science and biomedicine [6], development of high-affinity
ligands [7], mapping of immunogenic carbohydrate epitopes in polysaccharides [8],
and to introduce labeling in living organisms [9]. Further, synthetic glycans are
important building blocks for preparing glycoconjugates and the synthesis of
glycopolymers and glycosylated nanoparticles.

In contrast to proteins and nucleic acids that are linear oligomers of amino acids
and nucleotides connected via an amide or phosphodiester bond without stereo-
chemical requirements; oligosaccharides and polysaccharides form both linear and
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branch structures with linkages having a defined stereochemistry (Fig. 1). Despite
the progress during the last decades and a plethora of reported methods for the
assembly of glycans and their linkage to other biomolecules, there are no standard-
ized protocols for the synthesis of glycans and the production of natural and
non-natural glycoconjugates.

In this chapter, we review the recent advances in the synthesis of glycans focusing
on chemical methods in both, in solution and on a solid phase, and illustrate the main
methods to obtain glycoconjugates. We discuss the challenges and the efforts
towards the development of simple and efficient methods for automated glycan
assembly and the application of synthetic glycans to obtain glycoconjugates with
proteins and lipids.

1 Chemical Synthesis of Oligosaccharides

The control of regioselectivity and stereoselectivity during glycosylation reactions
are two fundamental challenges in the chemical synthesis of oligosaccharides. A
large set of protecting groups, leaving groups, reaction conditions, and glycosylation
promoters have been established to overcome these difficulties and get access to

a b c

Fig. 1 Linkages and combinational complexity found in the three major biopolymers. (a) Nucleic
acids, (b) Proteins, (c) Oligosaccharides and Polysaccharides
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glycans having any desired structure and modification. The control of
regioselectivity is performed mainly by using protecting groups to mask the
undesired hydroxy groups in the glycosyl acceptor and donor. But, regioselectivity
during glycosylations is also accessible based on the reactivity of the hydroxy groups
in the acceptor. In contrast, the formation of the correct stereochemistry in the new
glycosidic bond is controlled by using protecting groups that participate in the steric
and electronic stabilization of intermediates or by modifying the reaction conditions
such as the temperature, solvents, and presence of additives.

The efficiency of the synthesis of an oligosaccharide depends on the target
structure, the methodology selected for the assembly, and the diversity of mono-
saccharides present in the structure. Independently of the strategy, the assembly of
oligosaccharides containing high monosaccharide and linkage variability is a time
demanding and costly process that requires the synthesis of multiple building blocks.
Thus, the design and development of new strategies to prepare building blocks on a
large scale became a key process that is continuing evolving during the last years.
New advances include the optimized introduction of protecting groups that affect the
reactivity, the reaction conditions, and the stereochemical outcome of
glycosylations.

2 Synthesis of Building Blocks

The design of a building block starts with the selection of protecting and leaving
groups. Depending on the role played in the synthesis, these groups can be either
temporary or permanent groups [10]. Permanent protecting groups mask function-
alities that do not require any modification during the assembly. Temporary
protecting groups block the positions to modify in the following step or a late step
of the synthesis. To install protecting groups in a regioselective manner, chemists
rely on the reactivity of the different functionalities and alcohols being in equatorial
and axial positions. Using current methods is possible to distinguish between hemi-
acetals, primary and secondary alcohols, amines, carboxylic acids (Fig. 2). Recent
strategies rely on the difference in the reactivity of active intermediates to exchange
these protecting groups in a regioselective manner using one-pot or multistep
processes.

Phosphorylation, acylation, sulfation, and alkylation are typical modifications of
carbohydrates. The synthesis of oligosaccharides having these groups and branched
structures linked to the glycan core requires multiple temporary protecting groups
being orthogonal to each other. Some temporary protecting groups are frequent
during the synthesis of building blocks, but they are rarely present in prolonged
synthesis and advanced oligosaccharide intermediates. The most common orthogo-
nal protecting groups for hydroxyl groups include benzyl ether derivatives, silyl
ethers, esters, orthoesters, and acetals. (Fig. 3 and Table 1).

Some protecting groups have been introduced in carbohydrate synthesis during
the last years to expand the classical set of protecting groups [11]. These groups
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include participating groups such as picoloyl (Pico) esters, 2-O-alkoxysilyl
protecting groups for intramolecular aglycon delivery (IAD) [12], and groups having
chiral auxiliaries to increase the stereoselectivity of glycosylations [13, 14].

The removal of permanent protecting groups is generally the final step of the
synthesis. Therefore, the selection of this group depends on the composition of the
target molecule and the functionalities required in the final product. Acetyl and
benzoyl esters and benzyl ethers are still the most frequently used permanent
protecting groups. However, the need to introduce functionalities into glycans that
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D-Galactosamine D-Mannuronic acid

Primary alcohol

Hemicetal
Secondary alcohols

Axial group

Amino group

OHO
HO

OH
OH

OH

O

Acid

cis- hydroxyl groups

D-Glucose

Fig. 2 Functional groups on monosaccharides. Different functionalities on monosaccharides used
for the selective installation of protecting group

Fig. 3 (a) Example of building blocks (BBs) used for the synthesis of glycans. (b) Synthesis of
mannose building blocks for the assembly of GPIs [15]
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are not compatible with hydrogenolysis and basic conditions for the removal of these
groups has stimulated the use of other groups in glycan synthesis. Prominent
examples of protecting groups introduced for permanent protection include the
para-methoxybenzyl (PMB) [16], 2-naphthylmethyl ether [17], and acetals [18].

Depending on the position in the oligosaccharide and the synthetic strategy, the
anomeric center of the monosaccharide building blocks has a linker, a protecting
group, or a leaving group. Monosaccharides at the reducing end generally contain a
linker or orthogonal protecting group. Commonly used linkers are short alkyl chains
containing a hydroxyl group on one extreme and an alkyne or a protected amino or a
thiol function on the other. Internal monosaccharide building blocks usually have
anomeric orthogonal protecting groups. Some commonly used groups at the
anomeric center include azide, fluoride, acetyl, or pentenyl ether. These groups are
converted into active groups or active glycosyl donors such as glycosyl fluoride,
tricloroacetimidate, or a phosphate (Fig. 4). These orthogonal groups are installed
mostly for attachment of oligosaccharide building blocks in convergent strategies.
However, they are also groups useful for the synthesis of active glycans for reactions
with amino acids and lipids required for the preparation of glycoconjugates.

More recently, Hong and colleagues introduced the one-pot multistep synthesis of
protected monosaccharide units for the rapid synthesis of protected building blocks.
This method involves the initial conversion of the anomeric hemiacetal into a
thioglycoside or methyl glycoside and the following silylation of the remaining
hydroxyl groups. The silylated hydroxyl groups have differentiated reactivity or are
easily removed under the acid conditions used to install other protecting groups,
including benzylidene acetals and regioselective etherification and esterification
(Fig. 5) [19].

Table 1 Commonly used orthogonal protecting groups

Type Protecting group Removal Conditionsa,b

Ether Allyl Pd-catalyzed reactions

PMB (p-methoxybenzyl)
Nap (2-(naphthyl)methyl)

DDQ or acids (TFA)

Trityl (triphenyl-methyl) Acid (TFA)

Ester Lev (levulinoyl) Base (NH2-NH2)

Ac (acetyl)
Bz (benzoyl)

Base (CH3ONa)

Carbonates Fmoc (9-fluorenylmethyloxycarbonyl) Base (pyridine)

Silyl ethers TIPS (tri-isopropylsilyl)
TBS (tert-butyl-dimethylsilyl)
TBDPS (tert-butyl-diphenyl-silyl)

Fluoride/ acids (TBAF/TFA)
Lewis acids (Sc(OTf)3)

Acetals Isopropylidene Acids (CH3CO2H)

Benzylidenec Acids (TfOH)
aIn parenthesis, common reagent for the removal
bThere is a multiple methods for the installation and removal of these groups reported in the
literature [10]
cThis acetal can be open selectively leaving one hydroxyl group protected
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2.1 Glycosylation Reactions and Stereoselectivity

A big challenge in the synthesis of oligosaccharides is still the control of
stereoselectivity during the glycosylation and the formation of products having
only a 1,2-trans- or 1,2-cis-linkage. As already mentioned, the production of a single
stereoisomer depends on different factors. The reaction temperature, solvent, glyco-
sylation promotor, reactivity of the leaving group, and the protecting group in both
the glycosyl acceptor and particularly the presence or absence of participation in the
donor are the most important. Often these parameters need to be established and
optimized to favor the formation of one specific product.

In glycosylation reactions, the promotor activates the leaving group at the
anomeric position of the glycosyl donor in the first step of the process. These
promoters are generally silver salts (AgCO3, AgClO4, and Ag2O), salts or esters of
trifluoromethanesulfonic acid (AgOTf, Cu(OTf)2) [20], Lewis acids (NIS/TfOH,
Tf2O, BF3-Et2O, SnCl4), TfOH and its derivatives (TMSOTf, TBSOTf and
MeOTf), or the recently introduced use of other metal salts such as AgCl, AuCl3,
and CuCl2 [21]. Upon activation, the leaving group departs, and the oxocarbenium
ion is formed (Fig. 6). This ion can be stabilized by adjacent protecting groups and
react with the hydroxyl group of the acceptor approaching from either the top or the
bottom face to form a 1,2-cis- or 1,2-trans-configured glycosylation product.
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The reaction temperature can affect the stereoselectivity of glycosylations and
lead to products under thermodynamic or kinetic control. Without the participation
of protecting groups, high temperature favors the formation of the more stable
anomer by thermodynamic control. In contrast, low temperature and short reaction
time lead to the kinetically controlled product, which is mainly the less steric
hindrance anomer (Fig. 6).

The selection of the protecting group can affect selectivity during glycosylations.
Therefore, it should well consider the use of groups that can undergo interaction with
the oxocarbenium anion and neighboring group participation. The carbonyl group of
ester, amide, or carbonate function at the C-2 position of the glycosyl donor interacts
with the oxocarbenium ion forming an active cyclic intermediate. The formed cyclic
acyloxonium ion hinders the attack of the nucleophile from the side that
the protecting group is localized (Fig. 6b). As a consequence, the attack from the
nucleophile (glycosyl acceptor) can take place only from one face forming the
1,2-trans-product [22].

The formation of 1,2-cis-linkages is more challenging and requires additional
considerations during the glycosylation reaction, i.e. β-mannopyranosides and
α-glucopyranosides [23]. Some strategies to increase the selectivity to 1,2-cis prod-
ucts are the intramolecular aglycon delivery (IAD) [12] and the use of fluorides [24]
and bromides as leaving groups to favor the progress of the glycosylation via an SN2-
type mechanism. Other strategies include the use of remote group participation from
the protecting group at C-3, C-4, or C-6 position of the glycosyl donor [25]. These
strategies have been developed over the past years and are efficiently applied to
ensure the synthesis of complex saccharides having 1,2-cis linkages (Fig. 6c) [25].

Changes in other reaction conditions such as solvent and presence of additives
can favor the formation of an α- or a β-product. Ethers can interact with the
oxocarbenium anion and hinder the attach of the nucleophile from the equatorial
face favoring the production of the thermodynamically stable α-linkage. This effect
is called inversion of the anomeric effect [26]. By contrary, acetonitrile induces the
formation of an α-nitrilium-nitrile-conjugate with strongly activated donors that
favors the formation of equatorial β-product [27]. Theoretical studies using
quantum-mechanical calculation and molecular dynamic simulations suggest other
mechanisms involving oxocarbenium-counterion and the conformation of interme-
diates [28]. However, further studies are still required to confirm these models and to
establish a clear relationship between solvent and stereoselectivity.

3 Assembly of Oligosaccharides

Depending on the structure, the synthesis of an oligosaccharide is possible using a
linear or a convergent strategy. Linear strategies are convenient for oligosaccharides
having repeating units such as fragments of polysaccharides [29]. They are also ideal
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for automated protocols on solid phase [30–32] or using tags [33]. Convergent
strategies are applied mostly in the solution phase and to obtain branched structures
or glycans having a complex monosaccharide composition. There are multiple
examples of oligosaccharides obtained by both strategies. They include N-glycans
from proteins [34], glycosylphosphatidylinositols [15], and repeating units of bac-
terial polysaccharides (Fig. 7) [35].
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4 Solution-Phase Synthesis of Glycans

Linear or convergent methods to assemble oligosaccharides involve sequential
deprotection and glycosylation steps. Successive elongation cycles with monosac-
charides deliver the oligosaccharide by a linear strategy. Each elongation cycle
includes glycosylation and removal of the temporary protecting group until comple-
tion of the desired structure. In a convergent method, large and complex fragments
are synthesized from monosaccharides and then assembled to an oligosaccharide
(Fig. 6b). The two strategies have advantages and disadvantages, and their applica-
bility depends on the target structure and availability of monosaccharides. The major
drawback of a solution-phase synthesis, especially in linear strategies, is the need for
purification after each reaction step and the concomitant loss of material. In the
synthesis of large oligosaccharides, the high number and difficulty of the purification
processes imply the loss of precious advanced intermediates. Therefore, synthesis
using solid-phase methods and diverse one-pot multistep assembly of oligosaccha-
rides emerged to reduce the number of purification steps and the handling of
intermediates [36].

4.1 Modification of Glycans

Similar to other biomolecules, relevant glycans can contain site-specific modifica-
tions that increase the complexity of the oligosaccharides and contribute to the
biological activity of these molecules. These modifications include the presence of
functionalities such as amides, amines, acids, ketones or the derivatization of the
hydroxyl groups such as methylation, esterification (acetylation, acylation),
sulfation, and phosphorylations [38]. These modifications are naturally introduced
by specialized enzymes that recognize specific functional groups and specific sites
on oligosaccharides and polysaccharides. These modifications are also called as
post-glycosylational modifications (PGMs) and are present on all types of glycans
(Fig. 8) [39].

Most of the PGMs are labile to the glycosylation conditions and the removal of
some protecting groups. Therefore, these modifications are generally added at the
late-stage of the synthesis or require of appropriated positioning of orthogonal
protecting groups. A particular challenge in obtaining modified oligosaccharides
has been the synthesis of glycosaminoglycans (GAGs). They are complex
glycopolymers containing sulfation at different positions as a major PGMs. The
synthesis of GAGs has been investigated by different strategies and methodologies.
In addition to the general difficulties related to the assembly of the carbohydrate core
and a defined sulfation pattern, the synthesis of GAGs requires the insertion of
carboxylates and amines [40]. The carboxylates are introduced by using protected
uronic acid building blocks or they can be generated after completion of the glycan
assembly by oxidation of selectively deprotected primary hydroxyl groups. In
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contrast, the amino group is mostly introduced as part of the building blocks and is
kept protected during the glycan assembly. Upon assembly of the oligosaccharide,
the orthogonal protecting groups are removed and if required, the free positions are
sulfated (Fig. 8) [40].

4.2 Removal of the Protecting Groups, Final Deprotection

The removal of all protecting groups is generally the final step in the synthesis of
oligosaccharides, it is also called global deprotection. This process takes place after
complete assembly of the oligosaccharide and installation of the desired glycan
modifications and is followed by purification of the desired products. The global
deprotection is generally a multistep process involving treatment with oxidants,
acids, bases, catalyzed reactions or a combination of them. Typical deprotection
conditions are hydrogenolysis or Birch reduction to remove benzyl ethers [41],
saponification with sodium salts to remove benzoyl and acetyl esters, or treatment
with an acid such as trifluoracetic acid and diluted HCl to hydrolyze substituted
benzyl ethers, acetals, and other acid labile groups [16, 17]. Recently, oxidative
conditions have also been established to remove ether groups such as benzyl and
2-naphthylmethyl ether from glycans without affecting reduction-labile functional
groups [42, 43].

4.3 Solid-Phase Synthesis of Oligosaccharides

Despite multiple advances in the synthesis of oligosaccharides using convergent
strategies in the solution phase, the assembly of large glycans is still a time-
consuming process that requires multiple deprotection and glycosylation steps and
low yields. Therefore, solid-phase synthesis (SPS) of glycans emerged as an alter-
native to facilitate the manipulations and the assembly of large oligosaccharides.
Similar to the synthesis of peptides and nucleic acids, the SPS of glycans is
operationally easy and rapid to perform. The main advantages are the uncomplicated
separation of the growing oligosaccharide from the reagents and solubilized side
products after each reaction has been completed, and the easy and reproducible
control of the conditions. This methodology has also been efficiently employed for
the automation of the oligosaccharide synthesis process [30, 31].

4.4 Automated Assembly of Oligosaccharides

Automated glycan assembly (AGA) follows the process described in Fig. 9. The
process starts with the glycosylation of the solid support functionalized with a linker
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using a fully protected monosaccharide. Following, unreacted groups on the support
are blocked by capping and the temporary protecting group is removed from the first
monosaccharide. This reaction releases a hydroxyl group that acts as an acceptor in
the next step. Glycosylation with the next monosaccharide and capping of the
unreacted groups starts the elongation process. Removal of the orthogonal protecting
group, glycosylation, and capping are repeated until the desired structure is com-
pleted. Finally, the glycan is released from the solid support and all protecting groups
are removed to obtain the desired product.

The conditions for the glycosylation and deprotection reactions carried out in
solid phase are generally similar to the conditions used in the solution phase.
However, some additional requirements are necessary to enhance the yields of
each process near to completion since non-purification steps are possible within a
synthesis. Glycosylation reactions in AGA are executed using a large excess of
reagents (3–10M equivalents) and are performed using optimized protecting groups,
leaving groups and solvents [31, 32, 44, 45].

Automated synthesis of oligosaccharides is commonly carried out on insoluble
supports, such as polystyrene resins or in resins containing PEG chains. These resins
offer a high chemical stability against the reagents and the conditions used during the
glycan assembly. They also have good swelling properties in organic solvents to
facilitate the interaction of the reagents with the growing oligosaccharide. In addition
to insoluble polymers, oligosaccharides have also be synthesized using other sup-
ports such as gold nanoparticles [46], or on a high surface area porous gold [47].

In addition to the support, the development of suitable linkers for attaching the
growing oligosaccharides to the solid support has been an important factor for

Fig. 9 Synthesis of oligosaccharides using automated glycan assembly
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establishing the AGA. These linkers are chemically inert to the manipulation during
the synthesis and to the conditions used during glycosylation and deprotection steps.
Furthermore, the linkers should release the oligosaccharide by a chemoselective
reaction after completion of the assembly. The connection between the linker and the
oligosaccharide is generally easy to break without affecting the connections whiting
the oligosaccharide. Typical linkers are bifunctional units connecting at one side the
oligosaccharide’s reducing end via an ether linkage and to the solid support via an
ester, amide or a carbamate linkage at the other side. These linkers can contain
additional active functionalities that are used to release the synthesized glycans from
the support (i.e. presence of double bonds or photoactive groups). New traceless
photolabile linkers deliver oligosaccharides with a free hemiacetal at the reducing
end, opening the possibility to attach synthetic AGA products to any other func-
tionality without spacers [48].

In the pioneering reports on automated glycan assembly, Seeberger and
coworkers utilized linkers having a double bond to remove the glycan from the
solid support using metathesis [49]. By using this linker, the glycan is released as a
4-pentenyl glycoside, a group that can be easily activated for hydrolysis and to
introduce other functionalities at the reducing end of oligosaccharides. Other linkers
release the glycans attached to a spacer having an amino or carboxylate group that is
used for linking other modifications to glycans, for the attachment of glycans to
surfaces or for chemoselective reactions with cross-linkers to obtain glycoconjugates
(Fig. 10). Photolabile cleavable linkers, base labile linkers, and linkers that can be
activated to release active glycans were established for glycosylation to amino acids
[50, 51].

There are no differences in the requirements of building blocks for AGA and the
solution phase. However, the lack of purification after each step demands that in an
automated process all the reactions are completed with very high yields and with
excellent stereoselectivity. To this aim, glycosylation involving neighboring group
participation and the use of phosphate and thioglycoside show the best results.
Building blocks containing benzyl ethers and the combination of carbonate and
esters as temporary, orthogonal protecting groups are the most common combination
in this strategy (Fig. 11).

Capping reactions avoid the formation of structures that have similar physico-
chemical properties to the product by preventing the elongation of deletion structures

OO

O
O

O

S

S
S

O Support
O

RO
n

Support

O2N

N
Cbz

O

O

OO
RO

n

Photo labile

Metathesis

Support
OO

RO
n

Base labile

O

O

ON
Bn

4

O

Support

RO
n

Base labile

Au

Fig. 10 Different linkers used for solid-phase glycan synthesis

Advances in the Chemical Synthesis of Carbohydrates and Glycoconjugates 217



due to incomplete reactions. After each glycosylation reaction, the unreacted
hydroxyl groups are blocked with a protecting group that remains attached through-
out the process. Two advantages are obtained from this step, uncomplete structures
remain at the capped size and the reagents will be used only for the extension of the
desired molecule reducing the consumption of the active reagents in the formation of
undesired products. Due to its easy introduction and stability during the removal of
the orthogonal groups (Lev and Fmoc), acetylation under acidic conditions is the
favorite method in AGA for this process (Fig. 9) [52].

5 Synthesis of Glycoconjugates

Carbohydrates forming part of natural glycoconjugates such as glycoproteins, gly-
copeptides, and glycolipids are important for the activity of these molecules. There-
fore, the development of methods to attach oligosaccharides to proteins and lipids is
necessary to elucidate the role of carbohydrates in the biological activity of
glycoconjugates. This has been a long process, however, there are some methods
nowadays for the synthesis of natural glycoconjugates such as glycolipids and
glycoproteins [53].

Natural glycoproteins exist generally a mixture of molecules having the same
peptide sequence displaying diverse oligosaccharide structures at the glycosylation
positions. These so-called glycoforms can have different physical and biochemical
properties [54, 55]. Carbohydrates are covalently linked to the protein mainly via
nitrogen or oxygen atoms at the side chain of asparagine, serine or threonine residues
forming N- and O-linked glycoproteins. S-linked, P-linked, or C-linked glycopro-
teins also exist but are less abundant [56].

A plethora of strategies has been investigated and established during the last years
to obtain naturally glycosylated proteins using molecular biology, chemical synthe-
sis or the combination of both methods [57]. However, there is still a lack of suitable
and generalized methods to obtain these molecules. Some protocols to synthesize
natural O- and N-glycoproteins are fully synthetic strategies that combine carbohy-
drate and peptide synthesis or semi-synthetic strategies that required of synthetic
peptides and glycopeptides and expressed proteins that are connected by
chemoselective ligation reactions. These strategies have been limited to the synthesis

O
SEt

FmocO
BnO
BnO

BzO
O

SEt

BnO

BnO

OBn

FmocO

O
SEt

BnO
BnO

BnO OBz OH3C

AcO
OAc

SPh
OBn

O
SEt

FmocO
BnO
BnO

TCAHN

O
SEt

BnO

FmocO

OBn

TCAHN

O
SEt

BnO
FmocO

BnO OBz O
OP(O(OtBu)2)

FmocO
BnO

MeOOC

BzO

Fig. 11 Example of building blocks used for automated glycan assembly [31]

218 A. Malik et al.



of small glycoproteins, generally below 20 kDa [58–61]. Therefore, there is still a
need for new methods to obtain glycoproteins of high molecular weight and multiple
glycosylation sites.

Chemical glycosylation methods and chemoselective reactions are not restricted
to the synthesis of natural glycoproteins, they can also be used for generating
neoglycoproteins, which are glycoproteins containing unnatural linkages between
protein and oligosaccharides. Neoglycoproteins are often selected as the best alter-
native to investigate the function of carbohydrates because their synthesis is easier to
perform using a chemoselective reaction between an activated glycan and the lateral
chains of natural and no-natural amino acids present on the protein.

5.1 Synthesis of Neoglycoconjugates

Big efforts and developments have been performed during the last decades to
establish strategies for the incorporation of glycans into proteins. Depending on
the functional groups in glycans and amino acids involved in the process, diverse
types of linkages can be formed between the carbohydrate and the protein in
neoglycoproteins (Fig. 12).

Carbohydrate-protein linkages have been mostly synthesized by using the inher-
ent reactivity of the amino group of lysine and the thiol of the cysteine side chains to
achieve chemoselective reactions (Fig. 13) [61, 62]. The resulting linkages are
usually very different from the linkage in natural glycoproteins and include a spacer,
but they are generally stable to biological conditions allowing the biological evalu-
ation of neoglycoconjugates. This strategy has been the favorite strategy applied to
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use glycoproteins as novel protein-based therapeutics, carbohydrate antigen deriva-
tives and immunogens [63].

Specific carbohydrate structures are present on the surface of pathogens. During
infections, these structures activate the host immune system inducing the expression of
cytokines and the production of anti-glycan antibodies. Small oligosaccharides are
poor immunogens. However, a conjugation to carrier proteins can enhance the immune
response against glycans. Some active groups present on glycans like alkenes, thiols, or
activated esters introduced as part of a linker at the reducing end, can be used for
linking glycans to proteins. The conjugation usually involves a chemoselective reac-
tion of activated glycan and amines, carboxylates, or thiols present on the protein, or
with function introduced by site-specificmodification of the protein [64]. Alternatively,
the so-called cross-linkers, di-functionalized spacers having two active moieties, are
reacted from one side with carboxylates, amine, and thiols from the protein and with an
amine or thiol on the carbohydrate from the other side (Fig. 13b) [43].

Glycoconjugates are also accessible by attaching glycan structures to clustering
scaffolds such as dendrimers, cyclodextrins, gold nanoparticles, and carbon
nanotubes, among others (Fig. 13) [65–67]. Similar to the preparation of protein
glycoconjugates, the glycans are modified with an active functionality that
undergoes a chemoselective reaction with a reactive function on the scaffold-like
dendrimers or with the surface of a metal. An example of the conjugation to metals is
the attachment of sugar-thiols to gold nanoparticles forming gold
glyconanoconjugates. All these conjugates have gained special attention in studies
to investigate carbohydrate–protein interactions, increasing the binding affinity of
carbohydrates to proteins through a multivalent presentation of the carbohydrate
[65]. Glycoconjugates are also used for the elaboration of microarrays and their
application as a high-throughput platform to evaluate the binding of one or multiple
glycoconjugates with different samples in one single experiment [68].
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Immunogens based on protein neoglycoconjugate behave similarly to natural
glycoconjugates and require the presence of multiple copies of the carbohydrate to
favor the interaction with the immune system. Neoglycoconjugates have found appli-
cation in the development of carbohydrate-based vaccines using immunogenic active
carrier proteins such as tetanus toxoid or its nontoxic variant CRM197. These proteins
increase and facilitate the presentation of glycans and the production of a specific
immune response to the glycan (Fig. 14). Using these strategies diverse carbohydrate-
based vaccines have been designed and are under development [69, 70].

The formation of a complex mixture of products with a variable number of
glycans at different positions on the sequence is the main limitation of
neoglycoconjugates obtained by reaction with the side chain of amino acids. This
heterogeneous modification of activated proteins results from the distinctive acces-
sibility of the active groups on the protein surface for the reaction with the synthetic
glycans. The lack of homogeneity hinders the determination of thermodynamic and
kinetic parameters of binding events between glycoconjugates and proteins by SPR,
ITC or any other method [71]. A requirement that certainly has to be fulfilled to
conduct the aforementioned experiments is access to pure and defined
glycoconjugates and their corresponding derivatives.

The production of a multivalent system based on the assembly of protein mono-
mers carrying a polyvalent glycan motif was recently introduced as a strategy to
produce glycoconjugates. In this strategy, an alkyne is introduced as a site-specific
modification of an expressed protein. The capsid protein of the bacteriophage Qβ
was used as a carrier protein. This protein assembles into a 180-copy virus-like
multimer. The alkynes of the protein nanoparticle can react with a glycodendrimer
azide using a cycloaddition reaction, forming a homogeneous protein-
glycodendrimer. This well-defined polyvalent glycoprotein assemblies forming a
virus-like glycodendrinanoparticle are assemblies presenting on their surface up to
1,620 copies of a glycan (Fig. 15) [72].

5.2 Synthesis of Natural Glycoconjugates

The synthesis of glycoconjugates having natural bonds and site-specific modifica-
tions is demanding and has required the development of multiple strategies that
are specific for the formation of the linkage between glycan and protein for
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delivering O- and N-glycoproteins and to the lipids by forming glycolipids Whereas
in O-glycoproteins glycans are attached to serine or threonine residues, in
N-glycoproteins the glycans are attached to asparagine residues in the consensus
sequence Asn-Xxx-Ser/Thr, Xxx being any amino acid different than proline.

N-glycoproteins are accessible via expression systems in cell lines such as
Chinese Hamster Ovary cells (CHO), Human Embryonic Kidney (HEK) cells or
other human cell lines. However, due to the difficult control of the cell glycosylation
machinery, which is out of genetic control, the expressed proteins are generally
isolated as a mixture of glycoforms. Therefore, investigations aimed to investigate
the role of single glycan structure on proteins, require additional strategies [53]. Pro-
teins synthesis and semi-synthesis have emerged as suitable strategies to obtain well-
defined glycoproteins [53]. In these strategies, synthetic peptides or expressed
protein fragments are ligated with synthetic glycopeptides having a defined glycan
structure [73, 74].

Chemical Synthesis of glycoproteins has been accomplished using sequential
ligation of active peptide and glycopeptide fragments [53]. Among the different
ligation reactions, native chemical ligation with peptide thioesters has been the
preferred strategy [75]. The peptides are obtained directly as thioester or as peptide
thioester precursors that are activated in situ. The thioesters undergo a two-step
chemoselective reaction with peptides having an N-terminal cysteine residue ending
with the formation of a native peptide bond between the C-terminal amino acid of one
peptide and the cysteine of the other. The synthesis of the glycoprotein using more
than two peptides, which is generally the case, requires protection on cysteine at the N-
terminus of the internal peptides or glycopeptides and it is only released after the first
ligation is completed (Fig. 16a). Recently, a strategy involving the use of thioester
precursors that are activated after a completed ligation has been established [76].

In addition to glycoprotein semi-synthesis, the use of enzymes for glycan
remodeling and for transferring glycans to a protein having a monosaccharide
precursor, trans-glycosylation, are becoming useful methods (Fig. 16b) [77]. The

H2N

COO-

Assembly

Virus-Like Glycodendrinanoparticles

Qβ–Hpg16180

O

O

O

O

O

O

3 N3

180

O

O

O

OH

Qβ–Hpg16180

180

O

O

O

O

O

O

3

N
N
N

Qβ–Hpg16

Fig. 15 Synthesis of a virus-like glycodendrinanoparticle. This glycoconjugate contains up to
1,620 glycans exposed on the surface [72].

222 A. Malik et al.



glycoproteins are generally expressed on cell lines and are treated with an
endoglycosidase to leave only a glucosamine unit attached to the protein. This
glucosamine is used as an acceptor for the transfer of an oxazoline activated
synthetic glycan [78]. Noteworthy here is the use of glycan endoglycosidase that
has been mutated to act as a glycosyltransferase [79].

6 Glycolipids and Amphiphilic Glycoconjugates

Carbohydrates are also conjugated to lipids forming amphiphilic glycolipids that are
localized at the interface between the cell membrane and the extracellular matrix of
cells. The hydrophobic part of glycolipids attaches these molecules to the membrane
bilayer and participates in the formation of supramolecular assemblies such as lipid
rafts or membrane microdomains [80]. Glycolipids also contribute to the structural
and morphological changes of the membrane and participate in cell processes
through interactions of the glycan part with other molecules present on the extracel-
lular environment, the membrane of the same cell, or from other cells [81].

There are different types of glycolipids and high variation in both, the glycan and
lipid structure. In bacteria and plants, glycans are mainly attached to diacylglycerol
having lipid chains of different lengths and degrees of saturation; however, they
attach also to sterols, alcohols, and aminoalcohols, although in minor extend. In
animals and humans, the main part of glycolipids contains ceramide as a lipid moiety
forming sphingolipids [82].

Glycolipids can be synthesized as single chains or as glycodendrimers having a
lipid tail for its interaction with a hydrophobic environment [83, 84]. Most of the
strategies developed to synthesize natural and non-natural glycolipids include a key
step for the attachment of the glycan and the lipid [85]. This step can be a

Fig. 16 Strategies for the semi-synthesis of homogeneous glycoproteins. CHO: mixtures of
structures
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glycosylation of the hydroxyl group of glycerolipids and ceramides or the formation
of a phosphodiester with a phosphoglycan [81].

To investigate the effect of the structure and composition of glycolipids in their
behavior and activity, these molecules are generally inserted into complex systems
containing an amphiphilic environment such as liposomes [83], vesicles [86], or
monolayers as model membranes [85]. In all these systems, the hydrophobic part of
the glycolipid inserts into the membrane and interacts with the alkyl chains forming a
stabilized system that displays the glycan on the hydrophilic surface to the aqueous
phase (Fig. 17).

Contrary to pure carbohydrates, glycolipids are strong activators of the immune
system in mammals. They bind with lectins and other carbohydrate-binding recep-
tors and interact with receptors that bind to the hydrophobic part, such as Toll-like
receptors TLR, inducing a strong cell-mediated response. These interactions of
glycolipids convert them in good adjuvants and modulators of the immune system
and are the motivation for their application in the development of vaccines,
i.e. Globo H is a glycolipid used as vaccine candidates against cancer (Fig. 17f)
[87]. To illustrate the potency of glycolipid adjuvants, a fully synthetic strategy for
the development of vaccines has been introduced. This strategy involves a synthetic
conjugate having a glycolipid adjuvant connected to the desired glycan antigen
(Fig. 17e) [88].
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7 Conclusions and Outlook

Carbohydrates are essential biomolecules participating directly or as glycocojugates
in a plethora of cell functions and processes. Research to determine the biological
activity and potential applications of carbohydrates using high-throughput methods
have as main limitation the access to libraries of these molecules in good purity and
amounts. Oligosaccharide synthesis and the development of automated platforms are
emerging as tools to provide complex structures and overcome the challenging
isolation of carbohydrates from natural sources. Synthetic and semi-synthetic strat-
egies provide carbohydrates and glycoconjugates in pure form and are an essential
technology for the application of carbohydrates in material and biomedical research.
However, the synthesis of oligosaccharides still requires new protecting groups and
high stereoselective glycosylations methods.

Glycoconjugates are available by chemical synthesis in different forms and levels
of complexity. However, the methods used to get these conjugates still have
limitations to provide natural glycoproteins. The synthesis of homogeneous glyco-
proteins involving a combination of chemical and enzymatic methods is becoming
the standard method to access small to medium size glycoproteins and for supporting
investigations to understand the interplay between glycan structure and glycoprotein
function. These strategies do not provide long and multi-glycosylated glycoproteins.
Thus, the development of methods for introducing complex carbohydrates into large
proteins such as trans-glycosylation with enzymes and methods involving multiple
ligations are gaining interest and are under development for application in large-
scale processes with high efficiency.
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Abstract Glycoconjugates have great potential to improve human health in a
multitude of different ways and fields. Prominent examples are human milk oligo-
saccharides and glycosaminoglycans. The typical choice for the production of
homogeneous glycoconjugates is enzymatic synthesis. Through the availability of
expression and purification protocols, recombinant Leloir glycosyltransferases are
widely applied as catalysts for the synthesis of a wide range of glycoconjugates.
Extensive utilization of these enzymes also depends on the availability of activated
sugars as building blocks. Multi-enzyme cascades have proven a versatile technique
to synthesize and in situ regenerate nucleotide sugar.

In this chapter, the functions and mechanisms of Leloir glycosyltransferases are
revisited, and the advantage of prokaryotic sources and production systems is
discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide
sugar are reviewed. In the second part, recent and prominent examples of the
application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosami-
noglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the
re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly
is revisited.

Graphical Abstract

Keywords Biocatalysis, Glycoconjugates, Glycoengineering, Glycoproteins,
Glycosaminoglycans, Glycosyltransferases, Microreactors, Milk Oligosaccharides,
Nucleotide sugars

Abbreviations

ADP Adenosine diphosphate
Asp Asparagine
CHO Chinese hamster ovary
CMP Cytidine monophosphate
CS Chondroitin sulfate
CTP Cytidine triphosphate
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DS Dermatan sulfate
DSP Downstream processing
dTDP Deoxythymidine diphosphate
FucT Fucosyltransferase
GalT Galactosyltransferase
GDP Guanosine diphosphate
Glc Glucose
GlcA Glucuronic acid
GlcNAc N-acetylglucosamine
GRAS Generally recognized as safe
GT Glycosyltransferase
HMO Human milk oligosaccharide
HMW High-molecular-weight
HNK Human natural killer cell
Hp Heparin sulfate
HS Heparan sulfate
IdoA Iduronic acid
IgG Immunoglobulin G
LacNAc N-Acetyl-D-lactosamine
LMW Low-molecular-weight
LNT II Lacto-N-triose
Man Mannose
MBP Maltose-binding protein
MP-CE Multiplexed capillary electrophoresis
NDP Nucleoside diphosphate
Neu5Ac N-Acetylneuraminic acid
NMPK Nucleoside monophosphate kinase
NMP Nucleoside monophosphate
OPME One-pot multi-enzyme
OST Oligosaccharyltransferase
PEP Phosphoenolpyruvate
PG Proteoglycans
PGCS Proteoglycan carrying chondroitin sulfate
PGDS Proteoglycan carrying dermatan sulfate
PGHS Proteoglycan carrying heparan sulfate
PK Pyruvate kinase
PPK Polyphosphate kinase
PolyP Polyphosphate
Ser Serine
SiaT Sialyltransferase
STY Space-time yield
SuSy Sucrose synthase
TTN Total turnover numbers
UDP Uridine diphosphate
UTP Uridine triphosphate
Xyl Xylose
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1 Introduction

This chapter covers the most recent advances in enzymatic synthesis of glycans and
glycoconjugates. The term “glycoconjugates” refers to glycoproteins, glycolipids,
carbohydrate-based polymers, and glycosides of natural products. We will focus on
novel biocatalytic in vitro cascades. Advances in carbohydrate-active enzyme engi-
neering based on their reaction mechanisms and protein structure have significantly
contributed to expanding their substrate acceptance. We will highlight the scope of
Leloir glycosyltransferase and provide some examples where the strength of Leloir
glycosyltransferases in glycan and glycoconjugate synthesis is demonstrated.

This chapter should serve as a guide in enzymatic carbohydrate synthesis utilizing
Leloir glycosyltransferases. Databanks such as CAZy and BRENDA are very
helpful for planning a retrosynthetic biocatalytic route for the synthesis of glycans
and finding the right biocatalysts. Elucidation of reaction mechanisms as well as
protein engineering and directed evolution of carbohydrate-active enzymes opens
the cross-talk between chemistry and biocatalysis and expands the spectrum of
reachable glycan products. Glycosyltransferases are indispensable biocatalysts for
large-scale glycan and glycopolymer (including biopolymers such as glycosamino-
glycans) synthesis. Enzymatic synthesis is often the method of choice to obtain
homogeneous glycosylation patterns on glycoconjugates, e.g., glycoproteins, glyco-
lipids, or glycosides of natural products. In this context, numerous examples testify
the strength of biocatalysts in glycoconjugate synthesis. We like to refer our readers
to excellent reviews and book chapters summarizing the topics that are not fully
covered by this chapter (Table 1).

Table 1 List of reviews covering the indicated topics of enzymes in glycan synthesis

Data mining for carbohydrate-active enzymes:
CAZy (www.cazy.org/) and CAZypedia (www.cazypedia.org)
Computational biology methods: [1]

Reaction mechanisms and protein structures:
Reaction mechanisms: [2–4]
Protein structures: [5–7]

Protein engineering/directed evolution:
Screening for novel enzymes: [8, 9]
Glycosyltransferases: [10, 11]
Non-Leloir glycosyltransferases: [12, 13]
Glycosidases/glycosynthases: [11, 14, 15]

Glycan, oligosaccharide, and glyco(bio)polymer synthesis:
HMOS: [16–18]
Food additives and oligosaccharides: [13, 19–21]
Glycosaminoglycans: [22, 23]

Glycoconjugate synthesis:
Glycoproteins: [24–27]
Glycolipids: [28, 29]
Vaccines: [30]
Glycosides of natural products: [31–33]
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What are the challenges? The main challenge is enabling non-experts to synthe-
size carbohydrate/glycan structures. In terms of enzymatic synthesis, platform tech-
nologies and a platform of chemicals and enzymes should be available. This could be
synthetic kits or microreactors as small unit operation modules. Even automation of
enzymatic synthesis is realistic. Multiple use of stable immobilized biocatalysts, not
yet fully exploited in enzymatic glycan and glycoconjugate synthesis, opens the door
to obtain larger product amounts. Most importantly, the integration of chemical and
enzymatic carbohydrate synthesis into multistep synthesis should offer valuable and
novel synthetic pathways. We will present and discuss examples that address
challenges for applications of Leloir glycosyltransferases.

Figure 1 depicts the most important characteristics of their use in carbohydrate
synthesis. Leloir glycosyltransferases utilize nucleotide sugars as donor substrates
and are classified by their reaction mechanisms of retaining or inverting the anomeric
configuration of the transferred sugar in the newly formed glycosidic bond. Being
dependent on nucleotide sugars, we will first discuss the pros and cons of this
enzyme class before we highlight recent advances for their use in cascade reactions.
Similarly, classified as retaining and inverting enzymes are exo-glycosidases and
endoglycosidases. Substrates for their kinetically driven transglycosylation activity
are disaccharides and aryl glycosides, respectively. Their corresponding engineered
non-hydrolytic active pendants are glycosynthases. Non-Leloir glycosyltransferases
include most often sugar phosphorylases as well as glycosyltransferases, which use
monosaccharide-1-phosphates or “energy-rich” disaccharides (e.g., sucrose), respec-
tively, for their synthetic transfer activity.

Fig. 1 Characteristics of
the enzymes used in
carbohydrate synthesis
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2 Glycan Synthesis with Leloir Glycosyltransferase

2.1 The Choice of Leloir Glycosyltransferases

Availability and production – “many microbial GTs do the job”
The enzymatic synthesis of glycans follows a retrosynthetic strategy for the

connection of the individual sugar moieties by regio- and stereoselective bonds.
Leloir glycosyltransferases (Leloir GTs) from biosynthetic pathways of natural
glycan structures are often the first choice. In terms of synthesis strategy, these
Leloir GTs are combined in different ways. Figure 2 depicts the general reaction
equation for a Leloir GT (GT1) transferring sugar B onto the acceptor sugar
A. Practically, Leloir GTs assemble four potential glycan structures. For linear
oligosaccharides with a sugar sequence D-C-B (1), cascades of GT reactions offer
theoretically a synthetic one-pot approach since each GT depends on the action of
the preceding, which delivers the acceptor substrate for the next glycosylation step.
Sugar units are incorporated in linear glycan sequence C-B-C-B (2) by sequential
reactions, e.g., sugar unit D is introduced at each B unit introducing multiple
branching points in a linear glycan structure. Glycan structures with more than one
branch at one sugar unit (3) are synthesized by a sequential reaction mode where the
branching point (GT2 or GT2’) is critical for the order of GTs in the reaction
sequence. Finally, repeating glycan units [C-B]n (4) are assembled by the alternate
order of the appropriate GT.

Structural and mechanistic features of GTs have been reviewed in detail else-
where [6, 34, 35]. Two different mechanistic courses are discussed for retaining

Fig. 2 Glycan assembly with Leloir GTs. Each GT catalyzes the stereospecific and regioselective
formation of glycosidic bonds between its specific donor substrate (nucleotide sugar) and sugar
acceptor substrate. The exemplary GT reaction is depicted for the transfer of sugar B onto the
acceptor sugar. Glycan building blocks are assembled by a combination of Leloir GTs: linear (1),
linear with multiple branching points (2), branched (3), and linear with repeating sugar units (4)
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GTs: the front-face (SNi) and double-displacement (SN1) catalyzed reaction (Fig. 3a,
b). The latter one has been solved for enzymes belonging to GT family 6, e.g., α3-
galactosyltransferase from Bos taurus [36]. The exact retaining mechanisms of the
front-face catalyzed SNi-like mechanisms remain elusive because of the open ques-
tion of whether the leaving phosphate is capable of acting as a base. On the other
hand, the inverting GTs reverse the anomeric configuration determined by the
nucleotide sugar by a single bimolecular nucleophilic attack (Fig. 3c), described as
SN2 mechanism. During this direct displacement, a negatively charged amino acid,
predominantly aspartic acid (Asp) or glutamic acid (Glu), stabilizes the
oxocarbenium ion-like intermediate [2, 3].

The respective GT-protein fold family (GT-A and GT-B and GT-C fold) is also
helpful for setting biochemical parameters in enzymatic reactions. Leloir GTs

Fig. 3 Mechanistic features of retaining (a, b) and inverting (c) Leloir glycosyltransferases [2, 3]
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belonging to the GT-A fold family are dependent on divalent metal ions (Mn2+, Mg2
+) essential for the binding of the nucleotide sugar donor substrate at a typical DXD
(H) motif. GT-B fold GTs are more or less independent from metal ions, and
nucleotide sugar binding is mediated by basic amino acids. Reaction mechanisms
are similar as described in Fig. 3. Some retaining and inverting GTs catalyze the
hydrolysis of their donor substrates (α3GalT, FucTs, SiaTs), also in the presence of
an acceptor substrate.

In conclusion, the type of sugar and its glycosidic linkage to the acceptor
substrate determine the choice of GT. Biosynthetic pathways of glycans and
databanks (CAZy, BRENDA) assist to find the right or at least putative biocatalyst.
Although CAZy classifies more than 100,000 putative GTs, more than 95% remain
to be characterized. Table 2 summarizes microbial Leloir glycosyltransferases used
for the synthesis of mammalian-like glycan structures. The list includes retaining and
inverting GTs concerning the anomeric configuration of the donor sugar before and
after the transfer reaction. Recent reviews cover expression systems for human
Leloir glycosyltransferases [37] as well as plant and microbial Leloir GTs for the
synthesis of glycosylated natural secondary products [38, 39].

Leloir GTs from prokaryotic hosts lack any disulfide bridges and posttranslational
modifications. Production is, therefore, most often achieved as His6-tagged proteins
by Escherichia coli (E. coli), known as the simplest of all recombinant production
systems (Table 2). Reaction parameter engineering (amount of inductor, compatible
solutes, decreased temperature during induction, fermentation medium) ensures
satisfying protein yields in the soluble fraction. E. coli was further tested as a
production system for more advanced viral and/or eukaryotic Leloir GTs by
co-expressing chaperones [40] or fusing the GT of interest with solubility tags like
maltose-binding protein (MBP) [41], glutathione S-transferase (GST) [42], small
lectins [43], or hydrophilic peptide sequences [44, 45]. Recent advances in strain
engineering offer E. coli strains with altered properties (tRNAs, disulfide bond
isomerases, expression in periplasm) for efficient production of mammalian GTs
[46, 47] that were previously declared as “difficult-to-express.” However, one major
disadvantage of the E. coli expression system is the fact that cell lysis is required to
purify the protein from the cytoplasmic or periplasmic crude extract.

A more elegant but rather less explored field is the use of Bacillus subtilis
(B. subtilis) and the methylotrophic yeast Pichia pastoris [48–50], which are
recorded as GRAS (generally recognized as safe) organism owing to the lack of
endotoxins. Therefore, they are suitable alternatives to E. coli when aiming at an
application of GT in the biomedical context. The major advantage is the secretion of
the target proteins into the medium leading to less laborious downstream processing
and high titers/yields. In this context, insect cell cultures [51] and Chinese hamster
ovary (CHO) cells [52] or COS cells [53] are common alternatives for producing
GTs that need posttranslational modifications. However, the laborious and cost-
intensive processes may restrict large-scale protein production.

A promising upcoming field for the production of GTs is cell-free protein
synthesis [54]. Cell extracts from microbes, animal cell lines, and plants are utilized
for the production of soluble and transmembrane proteins [55]. However, being in
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the infancy for Leloir-GT production, only a few examples are documented up to
date (Table 2).

This background is crucial when aiming at an application of recombinant Leloir
GTs for glycan assembly. Depending on the desired glycan sequence and its
glycosidic linkages, one has to overthink carefully what GTs are most suitable for
the job. Picking the right biocatalysts is often dependent on the chemical nature of
the acceptor molecule. The identification of functional GTs is therefore laborious.
However, the enzymatic toolbox is continuously increasing by the combination of a
rapid expression system with high-throughput microarray screening technologies
and sophisticated analytics. For example, combining GTs’ reactions on microarrays
of self-assembled monolayers of sugar substrates with mass spectrometry analysis
(SAMDI technology) resulted in the annotation of 4 novel GTs out of more than
14,000 combinations of putative GTs, donors, acceptors, and buffers [101]. SAMDI
technology was used for the characterization of GTs produced by E. coli-based cell-
free protein synthesis [54, 102]. Over 3,000 peptide substrates were screened in more
than 13,000 reactions [102], and a modular platform was established for rapid
prototyping of protein glycosylation pathways [54]. In a different approach,
Tritium-labeled donor substrates were used to image the resulting glycan products
on a microarray of immobilized acceptor substrates [103]. A more glycan structure
related source of putative GTs is the E. coli O-antigen database (ECODAB)
[104, 105], which has been established to connect respective genes encoding for
certain GTs to known O-antigen structures.

In summary, with new technologies in hand, more versatile Leloir-GT tools for
glycoconjugate synthesis are expected. However, translation into bioeconomic pro-
cesses for glycoconjugate production is still challenging.

2.2 Nucleotide Sugars

Observing the basic components of glycan chains reveals an order of a variety of
monosaccharides raising the question for the biocatalytic machinery by which
organisms can produce those specified structures. The answer to this question is
the coordinated supply of nucleotide-activated monosaccharides, known as the
nucleotide sugars. The conjugation of a nucleotide as a high energetic compound
to a monosaccharide leads to the donor substrate of Leloir glycosyltransferases,
which provides the specificity and energy for the specific and effective glycosylation
reaction [106].

2.2.1 Biosynthesis of Nucleotide Sugars

Nine nucleotide sugars are common for the biosynthesis of glycoproteins,
glycosphingolipids, and glycosaminoglycans [107, 108], namely, uridine 50-
diphospho-α-D-glucose (UDP-Glc), uridine 50-diphospho-α-D-galactose
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(UDP-Gal), uridine 50-diphospho-α-D-glucuronic acid (UDP-GlcA), uridine 50-
diphospho-α-D-xylose (UDP-Xyl), uridine 50-diphospho-N-acetyl-α-D-glucos-
amine (UDP-GlcNAc), uridine 50-diphospho-N-acetyl-α-D-galactosamine
(UDP-GalNAc), guanidine 50-diphospho-α-D-mannose (GDP-Man), guanidine
50-diphospho-β-L-fucose (GDP-Fuc), and cytidine 50-monophospho-N-
acetyl-β-D-neuraminic acid (CMP-Neu5Ac) (Fig. 4).

The biosynthesis of nucleotide sugars is complex, and the understanding of the
pathways is essential for their production. In de novo pathways, sugar-1-phosphates
originate from metabolic sugar pathways, and primary nucleotide sugars generate
from the reaction of nucleoside triphosphates (NTPs) with sugar-1-phosphates, e.g.,
nucleoside diphosphate (NDP)-hexoses and NDP–N-acetylhexosamines (HexNAc).
Further modifications of NDP-sugars, by, e.g., epimerization, deoxygenation, reduc-
tion, oxidation, and decarboxylation, yield secondary nucleotide sugars (UDP-Gal,
UDP-GlcA, UDP-Xyl, GDP-Fuc). For example, the de novo pathway of GDP-Fuc
starts by dehydration of GDP-Man yielding GDP-6-deoxy-4-keto-D-mannose
(Fig. 5). Further 3,5-epimerization gives the intermediate GDP-6-deoxy-4-keto-L-
galactose, which is reduced at the 4-keto position to the final product. CMP-Neu5Ac
is the exception since it is synthesized from UDP-GlcNAc or directly from Neu5Ac.
In salvage pathways, sugar-1-phosphates of Gal, GlcNAc, GalNAc, GlcA, and Fuc
are formed by phosphorylation of the anomeric C atom [108] and then converted
with the corresponding NTP. Overviews of biosynthetic pathways of nucleotide
sugars in bacteria, plants, and mammals are given in further reviews [111–113].

Fig. 4 Nucleotide sugars for the synthesis of glycoproteins, glycosphingolipids, and
glycosaminoglycans
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2.2.2 Synthesis of Nucleotide Sugars

Enzymatic synthesis of glycoconjugates is mostly propagated as a more reliable and
less wasteful approach; however, usage of nucleotide sugars is still uncommon in the
broader field of industrial glycan production. This is owed to the general consider-
ation that nucleotide sugars are costly in production and not available in larger
amounts. Large-scale production of nucleotide sugars is scarce, and approaches have
been realized by in vivo biotransformation and in vitro biocatalysis.

Fermentation processes yielded nucleotide sugars up to the kg scale. Biosynthetic
pathways were tailored in single E. coli strains and Corynebacterium ammoniagenes
for high product titers and space-time yields (STY) of UDP-Gal (44 g L�1, STY
2.1 g L�1 h�1) [114], UDP-GlcNAc (7.4 g L�1, STY 0.93 g L�1 h�1) [115], and
GDP-Fuc (18.4 g L�1, STY 0.84 g L�1 h�1) [116]. CMP-Neu5Ac was produced in a
single E. coli strain with a product titer of 53 g L�1 and STY of 2.4 g L�1 h�1

[117]. A whole-cell biotransformation process for UDP-Glc synthesis with E. coli
yielded 0.7 kg isolated product per L bioreactor volume with a STY of
10 g L�1 h�1 [118].
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Fig. 5 Overview of mammalian, microbial, and plant biosynthetic pathways for the nine most
important nucleotide sugars. Detailed pathways are outlined in Essentials of Glycobiology [109]
(https://www.ncbi.nlm.nih.gov/books/NBK453043/figure/ch5.f1/?report¼objectonly). Symbol
nomenclature follows the Consortium for Functional Glycomics [110] (https://www.ncbi.nlm.nih.
gov/glycans/snfg.html)
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The elucidation of salvage pathways enabled the development of enzyme mod-
ules for the in vitro biocatalytic production of nucleotide sugars. Enzyme cascades
with sugar-1-phosphate kinases and pyrophosphorylases were created to generate
sugar-1-phosphates and nucleotide sugars (Fig. 6) [108, 119]. The modular enzyme
systems can be generally recognized as very robust and reliable to produce specific
nucleotide sugar products.

UDP-Xyl [120] and CMP-Neu5Ac [121] are synthesized by enzyme cascades
from their de novo biosynthetic pathways as depicted in Fig. 7. A one-pot multi-
enzyme (OPME) system was propagated by Chen and Wang [119] for in situ
generation of nucleotide sugars and concomitant synthesis of glycans [84, 122,
123]. Substrate promiscuity of the involved enzymes also enables the
chemoenzymatic synthesis of modified nucleotide sugars [119].

The synthesis of nucleotide sugars is closely connected to sugar phosphates as
precursors. An alternative comes from plant metabolism using the high-energy
substrate sucrose as an economically attractive substrate. Sucrose synthase (SuSy)
is a glycosyltransferase and catalyzes the synthesis of nucleotide-activated Glc

Fig. 6 Enzyme modules for the synthesis of nucleotide sugars by salvage pathway enzymes.
Enzyme cascades for NDP-sugar synthesis consist of sugar-1-phosphate kinases (E1), NDP-sugar
pyrophosphorylases (E2), and pyrophosphatase (E3). (a) UDP-α-D-glucose (UDP-Glc), UDP-α-D-
galactose (UDP-Gal), UDP-α-D-glucuronic acid (UDP-GlcA); (b) UDP-α-D-N-acetyl-glucosamine
(UDP-GlcNAc), UDP-α-D-N-acetyl-galactosamine (UDP-GalNAc); (c) GDP-α-D-mannose
(GDP-Man); (d) GDP-β-L-fucose (GDP-Fuc)
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(NDP-Glc) from sucrose and NDPs (Fig. 8). The concept of utilizing plant SuSys for
nucleotide sugar synthesis was introduced by the Elling group [118, 124–127]. In
vitro synthesis of NDP-Glc is preferred at lower pH values between 5 and 7. The
broad substrate spectrum of SuSy for UDP, dTDP, CDP, and ADP was exploited in
enzyme cascades for the synthesis of UDP-Gal [128], UDP-GlcA [129], CDP-Glc
[130], ADP-Glc [131], dTDP-Glc [132], and dTDP-deoxysugars [133]. Recently,
the SuSy concept was extended by enzymes from non-photosynthetic bacteria [134]
for the synthesis of UDP-Glc [135] and ADP-Glc [136].

Fig. 8 Synthesis of NDP-Glc from sucrose in enzyme cascades of sucrose synthases and nucleo-
side monophosphate kinases (NMPK) or polyphosphate kinase (PPK). N: uridine, deoxythymidine,
cytidine, adenine [131, 136]

Fig. 7 Synthesis of UDP-Xyl and CMP-Neu5Ac by de novo biosynthetic enzyme cascades
[120, 121]
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2.2.3 Production of Nucleotide Sugars

Standard operation protocols were recently developed for the production and down-
stream processing of nucleotide sugars. In the Golgi Glycan Factory (GGF) project,
the Elling group introduced high-throughput screening of one-pot enzymatic reac-
tions by multiplexed capillary electrophoresis (MP-CE) to optimize system param-
eters for high space-time yields (STY; g L�1 h�1) and total turnover numbers (TTN;
g enzyme g�1 product�1) of enzyme cascades [137]. MP-CE reaction screening was
instrumental for the thorough characterization of novel enzyme cascades [138–140]
and the synthesis of 13C- and 15N-labeled UDP-Gal and UDP-GlcNAc [61]. With
optimized parameters and high stability of enzyme cascades, multi-g scale synthesis
was run in repetitive batch mode (RBM), as depicted in Fig. 9 [141]. This principle
utilizes enzyme cascades multiple times, by splitting enzymes and products to
prevent the accumulation of side products, which destabilize the synthesis reaction.
The high product yield facilitates further use of the nucleotide sugar solutions in
one-pot glycosylation steps with Leloir glycosyltransferases [60, 61].

Repetitive batch mode was also applied for the g-scale synthesis of ADP-Glc with
potato SuSy [131]. In combination with an appropriate nucleoside monophosphate
(NMP) kinase, the enzyme cascades start from NMP [130] (Fig. 9). This enzyme
cascade was recently utilized for the efficient g-scale synthesis of ADP-Glc using a
bacterial SuSy [135, 136]. Table 3 summarizes the production of nucleotide sugars
obtained on the multi-g scale.

Fig. 9 General principle of repetitive-batch-mode synthesis for the multi-gram scale production of
UDP-GlcNAc, UDP-GalNAc, and UDP-Gal [141]
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Immobilization of enzyme cascades will further advance the economic synthesis of
nucleotide sugars and the automation of glycan synthesis with Leloir
glycosyltransferases. Examples have been demonstrated by the Wang group and
used for in situ regeneration of nucleotide sugars [142]. The Elling and Franzreb
group developed an automated compartmented flow microreactor system (CFMS)
where single nucleotide sugars are synthesized by compartmented immobilized
enzyme modules [143, 144] (see Chap. 3.3.). Enzymes are recovered by magnetic
separation, and nucleotide sugars are delivered to the next compartment for glycan
synthesis by Leloir glycosyltransferases. The non-sulfated human natural killer cell
HNK-1 glycan epitope, a trisaccharide, was obtained with 96% yield in 210 min
starting from N-acetyl-glucosamine [143]. Multi-point immobilization was demon-
strated for bacterial SuSys [145, 146]. The immobilized enzymes could be reused with
high substrate conversion in 3–5 cycles for the synthesis of UDP-Glc [145, 146].

Table 3 Biocatalytic production of nucleotide sugars

Nucleotide
sugar Enzyme modulea Process results References

UDP-Glc AcSuSy
NeSuSy (immobilized) 3 cycles
AcSuSy (immobilized) 5 cycles

STY:
25 g L�1 h�1

TTN: 1440
STY:
20 g L�1 h�1

TTN: 500
STY:
25 g L�1 h�1

TTN: 833

[149]
[145, 146]

UDP-Gal RBM/A: EcGalK/HvUSP/PPiase 40 cycles STY:
10.7 g L�1 h�1

TTN: 494

[141]

UDP-GlcA A: AtGlcAK, AtUSP, PmPpA, HsUGDH STY:
9.3 g L�1 h�1

TTN: 1950

[139]
[120]

UDP-GlcNAc RBM/B: BlNahK/HsAGX1/PPiase
40 cycles

STY:
9.9 g L�1 h�1

TTN: 522

[141]

UDP-GalNAc RBM/B: BlNahK/HsAGX1/PPiase
20 cycles

STY:
19.4 g L�1 h�1

TTN: 103

[141]

UDP-Xyl HsUGDH/HsUXS TTN: 650 [120]

CMP-
Neu5Ac

CSTR: CMP-Neu5Ac synthetase (E. coli
K-235/CS1)

STY:
10.6 g L�1 h�1

[150]

See Figs. 7, 8, and 9 for enzyme modules. RBM, Repetitive batch mode; CSTR, continuous stirred
tank reactor, enzyme-membrane reactor; STY, space-time yield (g product L�1 h�1); TTN, mass-
based turnover number (g product per g enzyme)
aAcSuSy, SuSy from Acidithiobacillus caldus; NeSuSy, SuSy from Nitrosomonas europaea;
EcGalK, galactokinase from Escherichia coli; HvUSP, UDP-sugar pyrophosphorylase from
Hordeum vulgare; HsAGX1, UDP-GlcNAc/GalNAc pyrophosphorylase from Homo sapiens;
PPiase, pyrophosphatase; AtGlcAK, glucuronic acid kinase from Arabidopsis thaliana; AtUSP,
UDP-sugar pyrophosphorylase from Arabidopsis thaliana; PmPpA, pyrophosphatase from
Pasteurella multocida; HsUXS, UDP-Xyl synthase from Homo sapiens
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Downstream processing (DSP) protocols for nucleotide sugars include two chro-
matographic steps (anion-exchange chromatography, AEC, and size-exclusion chro-
matography, SEC) [147], or AEC combined with desalting by EtOH precipitation of
nucleotide sugars [131, 148]. An efficient chromatography-free DSP protocol was
recently developed including treatment with alkaline phosphatase and EtOH precip-
itation of nucleotide sugars, which reduce significantly the solvent volume [135].

2.2.4 In Situ Regeneration of Nucleotides and Nucleotide Sugars

Although the g-scale production of some nucleotide sugars has been demonstrated,
their broader application in glycobiotechnology still faces the problem of high costs
(e.g., GDP-Fuc) and availability of rare nucleotide sugars (e.g., NDP-deoxysugars).
High costs for nucleotide sugars are directly related to the use of nucleotides as
substrates. ATP plays an important role in the nucleotide sugar synthesis steps and is
considered as a cost factor. Some nucleotides such as UTP or CTP are less available
and therefore more expensive for a nucleotide sugar-based glycosylation reaction.
Nucleotides are also by-products and often inhibit nucleotide sugar enzymes and
Leloir-glycosyltransferase reactions. In conclusion, glycobiotechnology is facing the
challenge to find efficient ways for the economic generation of nucleoside triphos-
phates (NTPs) from abundant mono- or diphosphate nucleosides (NMP or NDPs).
Nucleotide sugar regeneration focuses on the recycling of NMP/NDP generated by
the Leloir-glycosylation reaction. Thus, the NDP-sugars are generated in situ
avoiding their complex product isolation. Different enzyme cascades have been
developed (Fig. 10).

Nucleotide sugar regeneration has been pioneered by C.H. Wong [151–153]
developing and advancing system A (Fig. 10) by utilization salvage pathway
enzymes for nucleotide sugar synthesis. Regeneration of NTPs relies on pyruvate
kinase using phosphoenolpyruvate (PEP) as a high-energy substrate. Phosphorylated
sugars in de novo and salvage pathways are built by sugar kinases using ATP as a
cofactor. Conversion of sugar-1-P or a free sugar (e.g., Neu5Ac) with nucleoside
triphosphates (NTPs) yields NDP-/NMP-sugars. System A is very robust and effec-
tive. However, since PEP is a costly substrate and regeneration of one nucleotide
sugar from free sugar needs two PEP molecules, it appears not as an economic
process (Fig. 10, system A). Nevertheless, it has been applied for the g-scale
synthesis of the glycosphingolipid glycans Globo H and SSEA4 [154].

Recent studies focused on the use of polyphosphate (polyP) for nucleotide
regeneration by polyphosphate kinases (PPKs) as an economically attractive alter-
native to the PEP/PK system (Fig. 10, system B) [155–158]. PolyP consists of long
phosphate chains, which are used to regenerate single ATP molecules multiple
times. The polyP/PPK system showed to be very efficient regarding turnover
numbers and space-time yields. The Reichl/Rapp group demonstrated the first
example for nucleotide sugar regeneration employing the polyP/PPK system
(Fig. 11) [77].
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PolyP consists of long phosphate chains, which are used by PPKs to regenerate
ATP multiple times. The systems were shown to be very efficient regarding turnover
numbers and space-time yields. Although very potent, polyP is not well character-
ized as a commercially available molecule, since the chain length of polyphosphate
is often not well defined and lays between two to several thousand phosphate
subunits [159]. This can lead to deviations of the regeneration efficiency and is
therefore often given in high concentrations to the synthesis reaction. Furthermore,

Fig. 10 In situ nucleotide and nucleotide sugar regeneration systems. (a) Regeneration by the
PEP/PK module: phosphorylation of nucleoside mono- and diphosphates (NMP/NDP) with phos-
phoenolpyruvate (PEP) by pyruvate kinase (PK) releasing pyruvate. (b) Regeneration by
polyphosphate (polyP). Polyphosphate kinases use polyP for the phosphorylation of NMP/NDP.
In A and B, the regenerated nucleoside triphosphate (NTP) is used for nucleotide sugar synthesis
and recycled in glycosyltransferase reactions. (c) Nucleotide sugar regeneration by sucrose synthase
(SuSy) using sucrose and NDP to form NDP-Glc and releasing fructose. NDP-Glc can be used or
processed to secondary nucleotide sugars in Leloir-glycosyltransferase reactions
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polyP cannot be entirely degraded causing the problem of high phosphate impurities
for the product [159].

A strategy for nucleotide sugar regeneration from sucrose was introduced by the
Elling group (Fig. 10, system C) [124]. NDP-Glc is regenerated by the conversion of
NDP with sucrose synthase (SuSy). Sucrose is a cheap high-energy source to fuel
regeneration cycles of nucleotide sugars. In comparison to the other described
systems, it is phosphate-free. However, NDP-sugar regeneration depends on the
substrate specificity of plant and bacterial SuSys and covers UDP-, dTDP-, CDP-,
and ADP-activated glucose [127, 134, 160]. Further conversion of UDP-Glc by
UDP-Glc 40-epimerase or UDP-Glc dehydrogenase yields UDP-Gal and UDP-GlcA,
respectively, for the synthesis of glycan epitopes [128, 129, 161] and hyaluronic acid
[138]. Furthermore, dTDP-deoxysugars, e.g., dTDP-L-rhamnose, are regenerated
from dTDP-Glc in combination with pathway enzymes [111]. More recently, the
SuSy system has been applied in natural product glycosylation for the regeneration
of UDP-Glc [160, 162–165], UDP-Gal [166], and UDP-L-Rha [167].

3 Practical Application of Enzymatic Glycosylation
Reactions

3.1 Glycosaminoglycans: Hyaluronic Acid, Heparan Sulfate,
Heparin, Chondroitin Sulfate, Dermatan Sulfate

3.1.1 Structure and Synthesis of GAGs

Glycosaminoglycans (GAGs) are complex, long-chain polysaccharides of disaccha-
ride building blocks consisting of a hexosamine (N-acetylglucosamine (GlcNAc), N-
acetylgalactosamine (GalNAc)) and a uronic acid (glucuronic acid (GlcA), iduronic

Fig. 11 In situ regeneration of GTP and GDP-Man by polyP/PPK2. ManC Mannose-1-phosphate
guanylyltransferase, R GlcNAcα1-lipid linker
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acid (IdoA)) moiety (Fig. 12). Depending on the hexosamine saccharide unit, GAGs
have different backbones and are therefore divided into glucosamino- and
galactosaminoglycan. The best-studied GAGs are the glucosaminoglycans heparin/
heparan sulfate (Hp/HS) and hyaluronan and the galactosaminoglycans chondroitin/
dermatan sulfate (CS/DS) [168–171]. The precursor for Hp/HS is heparosan
(HP) (β4GlcA-α1-4GlcNAc1-)n, and the precursor for CS/DS is chondroitin
(CH) (β4GlcA-β1-3GalNAc1-)n. Hyaluronan (β4GlcA-β3GlcNAc1-)n is not further
processed and is the only known unsulfated GAG and not bound to a protein
backbone [172]. GAGs normally have a size that ranges between 1.5 and
2 � 104 Da. An exception is hyaluronan with a size of up to 107 Da [173].

While the synthesis of the polymeric hyaluronan happens at the inner face of the
plasma membrane, the syntheses of Hp/HS and CS/DS as parts of proteoglycans take
place in the endoplasmic reticulum and Golgi apparatus [174, 175]. The enzymes are
either membrane-bound or transmembrane proteins [176, 177].

The enzymatic synthesis of GAGs starts with the polymerization of the activated
monosaccharides UDP-GlcNAc and UDP-GlcA or UDP-GalNAc and UDP-GlcA,
respectively, by glycosyltransferases [178]. Glycosyltransferases for hyaluronan,
heparosan, and chondroitin synthesis are often bifunctional enzymes extending the
GAG chain with both saccharides [172, 176, 177, 179]. In biosynthetic GAG
pathways, enzymatic sulfation and epimerization occur after polymer formation. In
the case of Hp, HS, and DS, a C5-epimerase is transforming GlcA into IdoA [23]. O-
Sulfation of the 2-hydroxyl groups of IdoA and GlcA, as well as the 3-hydroxyl and
6-hydroxyl groups and N-sulfation of the 2-amino group of the glucosamine residue,
is accomplished by deacetylases/sulfotransferases [23]. Sulfotransferases depend on

Fig. 12 Enzymatic synthesis of heparosan (HP) and chondroitin (CH) and subsequent
epimerization and sulfation. Precursors are the activated monosaccharides UDP-GlcNAc,
UDP-GalNAc, and UDP-GlcA. (a) GAG glycosyltransferases; (b) 5-epimerase and
sulfotransferases. Disaccharide repeating units are for HP [4GlcNAcα1-4GlcAβ1-]n and CH
[3GalNAcβ1-4GlcAβ1-]n. 5-Epimerase converts GlcA to IdoA; sulfotransferases are dependent
on the substrate PAPS (30-phosphoadenosine-50-phosphosulfate)
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a nucleotide-activated sulfate PAPS (30-phosphoadenosine-50-phosphosulfate) as a
donor substrate. The pattern of sulfation varies between the GAGs. For example, Hp
is nearly fully N-sulfated, while HS shows mixed patterns of N-sulfated and N-
acetylated regions [180]. It is also reported that desulfation regulates these patterns
[181]. Due to the various carboxyl and/or sulfate groups, GAGs are polyanions,
which influence the interaction with other ions and biomolecules [182]. For exam-
ple, HA binds huge amounts of water, which results in a viscoelastic gel [168]. In
proteoglycans (PGs), Hp, HS, CS, and DS are covalently linked to a protein core via
serine (Ser) and a linker composed of galactose (Gal) and xylose (Xyl) (GlcAβ1–3-
Galβ1–3Galβ1–4Xylβ1–O-Ser) [170, 183, 184]. More than half of the molecular
weight is the GAG chain of these PGs and is pivotal for physiological activity, e.g.,
binding of growth factors [185]. The production of PGs can be strongly regulated by
the first attachment of Xyl to Ser [170]. With a different expression of genes
encoding core proteins, various lengths and types of GAGs, variable sulfation, and
attachment of different GAG chains to various Ser residues, there is an enormous
diversity of PGs [173].

3.1.2 Biology of GAGs

Because of the diversity, GAGs and PGs play an enormous role in different
biological processes [186, 187]. GAGs occur in the extracellular matrix (ECM)
and pericellular coating and therefore maintain the structural integrity of cells and
tissues [188]. Due to the negatively charged sulfate and carboxyl groups, GAGs can
bind electrostatically to a variety of proteins. There are several evidences that the
sulfation pattern of GAG chains (sulfation code) encodes biological information
leading to a physiological or pathological state [189]. Thus, the GAG sulfation code
is important for coagulation, inflammation, cell adhesion, metastasis, cell growth,
tissue differentiation, and pathogen/viral defense [188, 190–196].

Hyaluronan functions in two mechanisms: first as a passive structure and second
as a signaling molecule [168]. The passive structure performs because of its visco-
elastic behavior as a lubricant in joint fluids and as a moisturizer in skins and eye
fluid [197–200]. Hyaluronan binds also to receptors like CD44, which activates a
lymphatic response. Interestingly the size of hyaluronan plays an important role. The
longer the hyaluronan chain, the more proteins can bind to that hyaluronan chain,
building a complex signaling structure [168]. Small and long hyaluronan chains can
have even contrary effects. For example, low-molecular-weight hyaluronan can have
pro-inflammatory effects, while high-molecular-weight chains can have anti-
inflammatory effects [201].

Similar to hyaluronan, CS is found in joint fluid, where it is responsible for anti-
inflammation and enhanced syntheses of PGs and hyaluronan [169, 202]. Recently
there are more studies, which indicate that proteoglycans carrying chondroitin
sulfate (PGCS) are involved in the neuronal outgrowth [203, 204]. There are hints
that the expression of PGCS can regulate the amount of transient receptor potential
cation channels in the astrocytes. A dysfunction could be the trigger of multiple
sclerosis [205].
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DS chains regulate and localize transglutaminases in the ECM and are therefore
associated with wound healing, fibrosis, and vascular remodeling [206]. A defective
biosynthesis of proteoglycans carrying dermatan sulfate (PGDS) is also responsible
for human skin and skeleton disorder. The disorder comes probably with a change of
matrix proteins like collagen and cell signaling proteins [207].

Hp’s major role lays in the control of blood coagulation. Via a specific
pentasaccharide sequence, Hp binds to antithrombin, which triggers inhibition of
the coagulation cascade by inactivation of the serine proteases Factor X and throm-
bin [208, 209]. It is also reported that DS interacts with a Hp cofactor, which inhibits
thrombin [210]. HS is also involved in coagulation but with less effectiveness
[208]. However, proteoglycans carrying heparan sulfate (PGHS) can bind to many
ligands, for example, the growth factor Wnt, which is involved in cell proliferation
and the early stage of embryo development [211, 212].

3.1.3 Biomedical Application of GAGs

Because of their variable biological functionality, GAGs are used in many medical
applications and already sold as drugs [187]. Through the ability to bind several
proteins, GAGs are used as a drug delivery system. One example is Solaraze®, a
crème with 2.5% HA, which is bound to diclofenac. The crème is used in the
treatment of actinic keratosis [213].

Hyaluronan as an active ingredient is used to treat wounds and skin irritation
(Connettivina®) [214, 215], and already in 1980 Healon® containing hyaluronan was
sold for ophthalmic surgery [216]. Hyaluronan is also used in the cosmetic field as
moisture in crèmes and serums and as a soft tissue regeneration agent [168]. The
most often medical application of hyaluronan is to treat arthritis and reduce pain by
injection into joints. Examples are Supartz FX® and Synvisc® [217, 218]. Because of
its anti-inflammatory feature, drugs based on CS, for example, Condrosulf® or
Theraflex®, were developed to treat osteoarthritis [219, 220].

Hp is since 1930 a long known agent for anti-thrombosis, but normal Hp had
many side effects – because of its length, the chance that heparin can interact with
other receptors was increased. Therefore low-molecular-weight LMW Hp was
developed. Clexane®, which consists of LMW Hp, is a medication for thrombosis
and sold for decades [221]. DS and CS are also handled as an alternative for heparin
with fewer side effects [222]. A mixture from LMW Hp, DS, and CS (danaparoid,
Orgaran®) already has been developed and successfully applied as an anti-
thrombosis agent [223].

There is no specific drug including HS on the market, but it is a promising target
for antiviral resistance. Viruses often use HS as an attachment receptor. The idea is
either to block human HS with HS antagonists or to use HS mimics to block the
protein receptors of the virus. Through this interaction, the virus cannot attach to a
cell [224]. An HS mimic was a successful treatment of the dengue virus [225].
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Another example of an HS mimic is ReGeneraTing Agents (RGTA®), which help
in tissue recovery. The mimic is fulfilling the role of degraded HS and therefore
stabilizes and reconstructs damaged ECM [226].

GAGs are also involved in tissue engineering. Biomaterials are combined with
differentiating cells and bioactive factors to produce functional tissues and organs.
For example, hydrogels are giving an aqueous environment, which eases the nutrient
and signaling transfer to the cells [227, 228]. A hydrogel composed of hyaluronan
showed a better transition of transforming growth factor beta-3 to mesenchymal
stem cells [229]. By comparison of hydrogels either consisting of hyaluronan/Hp or
only hyaluronan, the hyaluronan/Hp hydrogels showed a delayed release of an
osteoinductive factor, which could improve bone formation [230]. Cai et al. showed
that Hp is an important part of vascular scaffolds, which inhibits thrombogenesis and
therefore could improve the treatment of patients with cardiovascular disease
[231]. Also, CS, often in combination with chitosan, is used in hydrogels and was
successfully applied to grow multipotent bone marrow-derived stromal cells [232].

3.1.4 Industrial Production of GAGs

Due to the huge number of applications of GAGs in biomedicine, biomaterial
research, and cosmetics, the demand for GAGs is increasing. For hyaluronan it is
expected to rise to 16.6 billion dollars by 2027 which is a growth rate of about 8.1%
[233]. Hp market is expected to grow to 14.6 billion dollars by 2027 with a rise to
4.3% [234]. LMW heparin is derived from chemical depolymerization of extracted
tissue and dominates the US market with 55% together with high-molecular-weight
(HMW) heparin (40%) [23]. In 2018 the market for CS is evaluated to 1.1 billion
dollars and is estimated to grow with 3.2% between 2019 and 2025 [235]. Till today,
processes for the production of Hp, hyaluronan, and CS currently rely on the
extraction from animal tissues (Hp, porcine intestines; CS, bovine or porcine trachea
and shark fins; hyaluronan, rooster combs) [236, 237]. The extraction comes with
inherent product variability and impurities as well as poor control of source material
[236]. Therefore, naturally occurring GAGs are extremely heterogeneous regarding
dispersity and sulfuration. This limits the further development of these compounds.
Contaminations with animal proteins, sugars, and viruses can cause tremendous
effects. For example, oversulfated CS in lots of pharmaceutical porcine Hp caused
several deaths in the United States and hundreds of adverse reactions worldwide in
2007 and 2008 [238, 239]. The contaminant CS showed a disaccharide repeat unit
with an unusual sulfation pattern (GlcA2S3S(β1-)3GalNAc4S6S) with anti-
coagulant activity and could not be traced by the required drug safety tests at this
time. However, several patients suffered from a rapid and severe anaphylactic
response with deadly outcome. As a consequence, new regulations have been
implemented by the regulatory authorities to ensure the integrity and quality for
naturally sourced biologic drugs. Out of these reasons, new methods were developed
like fermentation or chemical/enzymatic synthesis [189, 240]. Classical organic de
novo synthesis of GAGs is a multistep process with low product yields due to the
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complex modification patterns including sulfation and epimerization [189]. This
affects the prize. For example, the chemically synthesized ultra-LMW heparin
product fondaparinux (Arixtra®) is a sulfated pentasaccharide with a narrowed
medical indication being 1,000-fold more expensive than HMW heparin [236].

Streptococcus strains, as natural hyaluronan producer, are used for fermentation
reaching product titers of 6–7 g/L [241]. Due to toxin formation by Streptococcus,
GRAS (generally recognized as safe) organisms like Bacillus or Lactococcus were
metabolically engineered using recombinant hyaluronan synthases [168, 237]. The
fermentation of sulfated GAGs is more difficult to accomplish a certain sulfate
pattern for a desired biological function. Therefore, the unsulfated precursors, HP
and CH, are produced and purified for subsequent chemoenzymatic sulfation
[240, 242]. Processes including recombinant GAG synthases (glycosyltransferases)
and enzymes for the synthesis of nucleotide sugar and sulfate donor substrates are
highly attractive to obtain homogeneous GAG polymers from well-defined biobased
resources [23]. Metabolic engineered microbial hosts (E. coli and B. subtilis) have
been constructed to implement pathways for the precursor nucleotide sugars
UDP-GlcNAc/UDP-GalNAc and UDP-GlcA and the respective GAG synthases.
Product yields for HP and CH of up to 5 g/L with a molecular weight distribution
between 30 and 110 kDa were obtained [243–246]. Unfortunately, a low dispersity
of HA and the right sulfate pattern of HP and CS are still challenges and deeply
depending on the culture conditions and used enzymes [237, 247].

A new approach is enzymatic in vitro syntheses of GAGs. Soluble
glucosyltransferases have been characterized and applied as isolated/immobilized
enzymes to produce HA, HP, and CH (Table 4) [22, 23, 76, 173, 176, 248–251].

Moreover, one-pot syntheses were established to provide the activated
UDP-saccharides, which are further processed to hyaluronan or HP, respectively
[138, 139, 254, 258]. The approaches to produce HA showed a better dispersity and
control of the size compared to the common production processes [138, 139]. There
are even examples, where the sulfated Hp/HS are directly produced with an enzy-
matic one-pot synthesis [259]. However, the next step for the enzymatic syntheses of
GAGs needs the establishment of a scale-up to further compete with fermentation or
extraction from animal tissue.

Table 4 Glycosyltransferases used for the enzymatic in vitro synthesis of hyaluronan, heparosan,
and chondroitin

GAG Enzyme/source Function References

Hyaluronan PmHAS/P. multocida β4GlcNAc-T/β3GlcA-T [138, 177, 179, 252–
254]

Heparosan (HP) KfiA and KfiC/E. coli
K5
PmHS2/P. multocida
PmHS1/P. multocida

α4GlcNAc-T and
β4GlcA-T
α4GlcNAc-T/β4GlcA-T
α4GlcNAc-T/β4GlcA-T

[69]
[70, 76, 139, 255]

Chondroitin
(CH)

KfoC/E. coli K4 β4GalNAc-T/β3GlcA-T [74, 256, 257]
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3.2 Enzymatic Synthesis of Human Milk Oligosaccharides

Human milk oligosaccharides (HMOs) are a major solid constituent of human milk
in addition to protein, lactose, and fat [260]. Overall more than 100 different
oligosaccharide structures from human milk have been elucidated. Various studies
over the last years showed health benefits associated with the consumption of HMOs
such as reduced infant morbidity and enhanced brain development [261]. For this
reason and the fact that they do not naturally occur in other mammals, interest in the
synthesis of HMOs has almost exponentially increased over the last two decades.
Eventually, the successful commercial synthesis of two abundant and simple struc-
tures, 20-fucosyllactose and lacto-N-neotetraose, has led to their addition to infant
formulas as novel food ingredients [262]. More HMO mixes are currently under
development by various companies. All of these HMOs are exclusively produced by
the fermentation of genetically E. coli strains [262]. However, a wide range of
HMOs can also be produced by enzymatic synthesis [263, 264]. Through the
establishment of the recombinant synthesis of a wide range of glycosyltransferases
in bacterial production systems, pathways for the synthesis of a multitude of HMOs
can be synthesized in multi-enzyme cascade reactions [264]. Typically, HMOs
prepared by enzymatic synthesis are used for initial testing of oligosaccharide
function, e.g., in animal models [263]. However, due to the high cost of substrates
such as nucleotide sugars, enzymatic synthesis is at present not able to compete with
fermentation even though much higher space-time yields can be achieved
[265]. Moreover, little effort has been made to date to transfer lab-scale enzymatic
synthesis into viable, robust, and scalable processes. An exception in this respect is
the work by Nidetzky and co-workers who established a packed bed reactor
containing an engineered glycosynthases for the synthesis of lacto-N-triose (LNT
II) [266]. By optimizing the residence time, a stable, quantitative, and continuous
LNT II synthesis was achieved. In addition, engineering glycosynthases for the
exploitation of readily available HMOs as building block donors, e.g., as fucose
and sialic acid donors, viable industrial synthesis of specific HMOs might become
feasible [267].

3.3 Microreactors for Automated Enzymatic Glycan
Synthesis

To elucidate the function of specific glycans, pure standards need to be accessible
and affordable to the glycoscience community [268–272]. The synthesis of glycan
standards in milligram to gram quantities has been identified as a milestone for
carbohydrate research by the US National Research Council in 2012 [270]. Due to a
wide range of possible structures of glycans of all categories, i.e., N-glycans, human
milk oligosaccharides, poly-N-acetyllactosamine derivatives, and gangliosides, only
the establishment of efficient automated synthesis can warrant achieving this

Enzymatic Synthesis of Glycans and Glycoconjugates 257



objective [269]. The development of automated glycan synthesis can be divided
primarily into chemical and enzymatic synthesis while also studies in combining
both have been undertaken [272, 273]. The first efforts to tackle automated synthesis
were based on chemical glycosylation, and automated systems have been commer-
cialized [274]. The drawbacks of this approach compared to enzymatic synthesis are
low yields of complex glycans [143, 272, 275–277]. The key development for the
automation of enzymatic synthesis of complex glycan structures was the emerging
accessibility of a wide range of recombinant bacterial and mammalian
glycosyltransferases and the establishment of operationally simple glycan purifica-
tion processes [269, 272, 278]. Through the most advanced development to date
concerning the number of synthesized glycans by Boons and co-workers, a wide
range of glycans can be synthesized in milligram quantities in up to 15 subsequent
reaction cycles. The technique relies on the solid-phase extraction for intermediate
product purification using a sulfonate tag, which circumvents lyophilization or other
tedious purification steps of intermediates and, thus, enables automation. To drive
the glycosyltransferase reaction to completion, product inhibition by nucleotides is
prevented by using phosphatases [269].

In a proof-of-concept study, a peptide synthesizer has been adopted for the
automated synthesis of gangliosides and poly-LacNAc derivatives. For intermediate
glycan purification in between glycosylation reactions, a poly(N-isopropyl-acrylam-
ide) polymer which can be precipitated and filtered at elevated temperatures is used
[275]. Contrary to these approaches where the solid-phase synthesis has been
applied, Elling and co-workers have established the fundamentals for a microreactor
using immobilized enzymes [143]. To screen for suitable solid supports as well as
reaction conditions is a labor-intensive task – especially when complex structures are
synthesized and a multitude of enzymes are required. However, once cascades of
immobilized enzymes are established and integrated into a reactor such as a
compartmented flow microreactor, the system has major advantages. Intermediate
glycan purification is not required. Coupling glycan synthesis to nucleotide sugar
synthesis reduces costs for substrates, especially when synthesizing larger amounts.
Most notably, immobilized enzymes can be removed for product separation and
reused for multiple reactions reducing enzyme production and downstream
processing. Immobilized enzyme cascades can also be used to develop reactors
that can synthesize gram amounts of glycans. However, one of the drawbacks of
using immobilized cascades is that subsequent product purification is still required.
An overview of the three discussed setups for automated synthesis is given in
Table 5.

3.4 Glycoconjugate Vaccines

Glycoconjugate vaccines directed against infectious diseases are typically composed
of a bacterial polysaccharide linked to a protein. There are numerous examples of
licensed vaccines or vaccines in clinical trials [279]. The polysaccharides component
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is conventionally obtained through microbial cultivation, harvesting, and purifica-
tion [280–283]. This is associated with multiple drawbacks such as the occurrence of
pathogenic contaminants and slow development processes [284]. Various other
production methods have been developed of which especially full glycoprotein
synthesis by E. coli equipped with an in vivo glycosylation machinery has been
used to produce several vaccine candidates that are currently in different phases of
clinical trials [279]. Enzymatic polysaccharides synthesis, especially for automated
synthesis, is mostly seen as a fast-track approach to synthesize a wide range of
polysaccharides for screening for effective vaccines [279]. However, recently a route
toward an effective enzymatic production process has been shown for
N. meningitidis serogroup X (MenX) polysaccharide fragments [284]. For elonga-
tion of MenX polysaccharide, an engineered MenX capsular polymerase was
immobilized through metal affinity chromatography. By pumping a reaction mixture
composed of the sugar donor UDP-GlcNAc and acceptor trisaccharide through the
column under optimized conditions, the polysaccharides with defined average length
are obtained. The process is pathogen-free and has advantages over chemical poly-
saccharides synthesis, i.e., the stereoselective synthesis resulting in high yields in
addition to the reduction of steps needed for the synthesis. However, high-cost sugar
donor UDP-GlcNAc is excessively needed as a building block, and for these types of
enzymatic processes to become viable at large scales, either sugar nucleotides need
to become available to reduced prices in large amounts or the synthesis needs to be in
situ coupled to sugar nucleotide synthesis cascades as described in
Chap. 2.2.4 [285].

Table 5 Most notable automated enzymatic glycan synthesis developed and published so far

System Method Structures synthesized

Scale and
proposed
scalability

“Automated platform for
the enzyme-mediated
assembly of complex oli-
gosaccharides” [269]

Exploiting a sulfonate tag
for solid-phase extraction,
automation using a robotic
workstation

Poly-LacNAc deriva-
tives, human milk oli-
gosaccharides, gangli-
osides, and N-glycans

Milligram
quantities;
up to 100 mg
possible

“Machine-driven enzy-
matic oligosaccharide
synthesis” [275]

Poly(N-isopropyl-acryl-
amide) polymer for inter-
mediate purification,
automation using a pep-
tide synthesizer

Ganglioside, poly-
LacNAc derivatives

Milligram
quantities
(8–20 mg)

“Automated enzymatic
glycan synthesis in a
compartmented flow
microreactor system”

[143]

Compartments with
immobilized enzymes,
sugar nucleotide synthesis
modules, automation in a
flow microreactor

HNK-1 glycan epitope 40 mg; the
concept is
scalable to>
gram
amounts
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3.5 In Vitro Glycoengineering of Pharma Glycoproteins

Due to their integral commercial relevance in the (bio)pharmaceutical industry, the
enzymatic in vitro glycoengineering of recombinant monoclonal antibodies is espe-
cially well-studied [286–290]. mAbs are most notably used as anti-cancer drugs and
anti-inflammatory medication. Immunoglobulin G (IgG) antibodies are glycosylated
at the Asn residue number 297 in the crystallizable region (Fc) of both heavy chains.
Excellent reviews on the importance of Fc glycosylation and its impact on IgG
conformation, stability, and binding to Fc receptors have been published [286, 288,
290, 291]. Current mAb glycoengineering strategies are mostly based on Chinese
hamster ovary (CHO) cell-line engineering, e.g., mogamulizumab [288, 292,
293]. However, current manufacturing processes of mAbs still offer insufficient
control over Fc-glycosylation and batch-to-batch variation thereof [294]. By using
in vitro glycan remodeling as an intermediate process step between upstream and
downstream processing or as part of the downstream processing, full control over the
glycosylation can be exerted [295]. The associated advantages are increasing the IgG
efficacy and safety by generating tailored homogenous glycoforms and eliminating
batch-to-batch variations in glycosylation [294]. Moreover, the in vitro
glycoengineering will increase process flexibility concerning the choice of expres-
sion host and facilitate the process development by evading both, cell-line engineer-
ing and the adjustment of fermentation conditions to achieve high fractions of the
desired glycoform [294].

Recent enzymatic in vitro glycoengineering strategies of glycoproteins can be
divided into three different approaches (Table 6 and Fig. 13):

(a) Re-glycosylation using Leloir glycosyltransferases and sugar nucleotides to
stepwise shorten and extend glycans on glycoproteins. Optionally, glycosidases
are used for prior glycan trimming.

(b) Transglycosylation using glycosynthases for the en block transfer of glycans to
GlcNAc or glucose residues on proteins.

(c) Full N-glycosylation of aglycosylated proteins, i.e., in vitro modeling of the
ER-glycosylation machinery by using oligosaccharyltransferases (OSTs) and
lipid-linked oligosaccharides as substrates [302]. With this approach
aglycosylated proteins, e.g., recombinant proteins, expressed in bacterial pro-
duction systems can be glycosylated. However, elaborated chemical and enzy-
matic synthesis of eukaryotic-type lipid-linked oligosaccharide is a major
challenge to overcome before wider application in higher scales is possible.
The transglycosylation approach involves splitting off the N-glycan using an

endoglycosidase and the transglycosylation step with an (engineered) glycosynthase
and glycan oxazoline as substrate [297]. The great advantage of this approach is the
effective removal of the core fucose from core GlcNAc residues of IgG using
fucosidase that is mostly inactive toward complex glycans of commercial monoclo-
nal antibodies [303, 304]. Moreover, using substrate-site-selective fucosidases and
glycosynthases also offers a route toward site-selective glycoengineering. However,
only a few glycans can be readily purified from natural resources, and further large-
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Fig. 13 The three most commonly used strategies for manipulating the glycosylation of proteins:
in vitro glycomodification, transglycosylation, and in vitro glycosylation

Table 6 The three main approaches for the enzymatic in vitro glycoengineering of proteins

Approach Method Advantage Challenges

In vitro
re-glycosylation
[296]

Building of homoge-
neous glycoforms using
Leloir
glycosyltransferases,
optionally prior trim-
ming of glycans by
glycosidases

Wide range of
enzymes and sub-
strates are commer-
cially available

Large-scale expression
of glycosyltransferases
and sugar nucleotides;
enzymatic
defucosylation

In vitro
transglycosylation
[297–299]

Cleavage of the core
GlcNAc residues and
subsequent en bloc
transfer of glycan
oxazolines by
glycosynthases

Enzymatic cleavage of
core fucose by
fucosidases possible;
potential for site-
specific
glycoengineering

Large-scale synthesis
of glycan oxazolines

In vitro glycosyla-
tion [300, 301]

In vitro modeling of the
ER glycosylation
machinery: using OSTs
to transfer glycans from
lipid-linked oligosac-
charides to proteins

Glycosylation of
aglycosylated pro-
teins, i.e., glycosyla-
tion of “empty”
consensus sequences

Effective (chemo)-
enzymatic synthesis of
eukaryotic-type lipid-
linked
oligosaccharides

The major challenges for large-scale application are listed

Enzymatic Synthesis of Glycans and Glycoconjugates 261



scale application of the transglycosylation of mAbs will hinge on the effective
synthesis of glycans oxazolines [305, 306]. Excellent reviews on engineered
glycosynthases and their applications can be found elsewhere and are not reviewed
here [297].

The most advanced in vitro glycoengineering approach is the re-glycosylation of
glycans on proteins using Leloir glycosyltransferases [296, 307]. For the generation
of homogeneous glycoforms, this approach involves the optional trimming of
glycans by glycosidases down to (mammalian-type) core structures such as
(GlcNAc)2Man3GlcNAc2 and stepwise building homogenous glycoforms using
Leloir glycosyltransferases and sugar nucleotides. In the most comprehensive stud-
ies on IgG1, aglycosylated, fully galactosylated, and mono- and di-sialylated vari-
ants were produced using commercially available galactosidase,
galactosyltransferase, and two variants of sialyltransferases, together with the
sugar nucleotides UDP-Gal and CMP-Neu5Ac [296]. In vitro re-glycosylation can
remodel the glycan of not only isolated IgG but also of IgG in cell-culture superna-
tant as well as semi-purified IgG [295]. Moreover, in vitro glycomodification can be
facilitated as a one-pot process, and, thus, it could be integrated into existing
processing steps without additional downstream processing [295]. Alternatively,
antibodies can also be in vitro modified as part of the downstream processing,
when the antibody is immobilized on a protein A or G column [307]. Fully
galactosylated glycoforms were produced in one-stage and sialylated glycoform in
a two-stage conversion process when antibodies were immobilized using commer-
cially available enzymes and substrates [307]. While remarkable progress has been
made over the last decade on enzymatically producing homogeneous glycoforms on
proteins, it remains to be seen whether these techniques will be applied to commer-
cial biopharmaceuticals in the future.
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Abstract The human genome has become a subject of public interest, whilst the

proteome remains the province of specialists. Less appreciated is the human

glycoprotein (GP) repertoire (proteoglycome!); however, some 50% of open read-

ing frame genes encode for proteins (P) that may accept the addition of N-linked
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and/or O-linked sugar chains (oligosaccharides). It is established that the attach-

ment of defined oligosaccharide structures impacts mechanisms of action (MoAs),

pharmacokinetics, pharmacodynamics, etc., and is a critical quality attribute (CQA)

for recombinant GP therapeutics. The oligosaccharide structure attached at a given

site may exhibit structural heterogeneity, and individual structures (glycoforms)

may modulate MoAs. The biopharmaceutical industry is challenged, therefore, to

produce recombinant GP therapeutics that have structural fidelity to the natural

(endogenous) molecule, in non-human cells. Multiple production platforms have

been developed that, in addition to the natural glycoform, may produce unnatural

glycoforms, including sugar residues that can be immunogenic in human subjects.

Following a general introduction to the field, this review discusses glycosylation of

recombinant monoclonal antibodies (mAbs), the contribution of glycoforms to

MoAs and the development of customised mAb therapeutic glycoforms to optimise

MoAs for individual disease indications.
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1 Introduction

The moment when life begins can be defined in various ways, depending on physio-

logical evidence and/or spiritual conviction; however, conception (i.e., fusion of a sperm

with an oocyte) is a prerequisite. The initial event leading to fusion is recognition of

glycoproteins (GPs; proteins with attached chains of sugars, oligosaccharides) present

on the surface of the oocyte by receptors expressed on the head (acrosome) of the sperm.

The oocyte of metazoans is surrounded by a translucent matrix, the zona pellucida (ZP),
composed of four glycoproteins designated ZP1, ZP2, ZP3, and ZP4. Interactions

between receptors on the acrosome and the ZP GPs activate the release of enzymes

that break down the matrix, allowing passage of the sperm nucleus into the oocyte

[1]. An oligosaccharide (“oligo” meaning “few” and “saccharide” meaning a “chain of

sugars”) present on a GP can be linked to a nitrogen atom of an asparagine residue

(N-linked oligosaccharide) or an oxygen atom of serine, threonine, or tyrosine (O-linked
oligosaccharide). Carbohydrates/oligosaccharides are essential macromolecules for the

growth and survival of living organisms, togetherwith lipids, proteins, and nucleic acids.

Protein receptors that selectively bind individual sugar molecules, expressed

within oligosaccharides, are collectively termed lectins (from Latin legere, meaning

“to select”). One family of lectins is characterized by the presence of a Ca+ ion (C-type

lectins) in the carbohydrate recognition domain (CRD); a broader family of lectins

express C-type lectin-like domains (CTLDs) that are not dependent on the presence of

a Ca+ ion for binding sugars. Lectin–oligosaccharide interactions contribute to cell–

cell interactions, cell trafficking, glycoprotein turnover, etc. Endogenous lectins are

essential components of the innate immune system and specifically bind exogenous

glycans expressed on the surface of infective microorganisms (bacteria, yeasts, etc.)

[2]. It follows that absence of a machinery effecting glycosylation is not compatible

with life and that defects in the process of glycosylation may result in pathology. For

humans, more than 80 congenital disorders of glycosylation (CDG) have been iden-

tified and shown to be associatedwith symptoms that can vary in severity frommild to

disabling or life-threatening (http://rarediseases.org/rare-diseases/congenital-disor

ders-of-glycosylation/) [3]. About 500 genes (0.5–1% of the transcribed human

genome) have been shown to contribute to glycosylation processes; therefore, it is

likely that further genetic defects leading to pathology remain to be discovered (http://

rarediseases.org/rare-diseases/congenital-disorders-of-glycosylation/) [3].

Of the proteins encoded within the human genome, about 50% include the

sequence asparagine–X–serine/threonine (N-X-S/T), where X is any amino acid

other than proline. The sequence is termed the glycosylation sequon and is a

potential site for the addition of an N-linked oligosaccharide. Occupancy of a
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potential site varies according to the local secondary structure formed as the

polypeptide is extruded from the ribosome channel. The addition of O-linked
sugars/oligosaccharides to the hydroxyl groups of serine, threonine, and tyrosine

residues takes place as the polypeptide traverses the Golgi apparatus; potential sites

for the addition of O-linked sugars cannot be predicted from amino acid sequence.

Humans utilize nine basic monosaccharides and their derivatives in stereospecific

linkages to generate libraries of oligosaccharides. Stereospecificity allows the

generation of an estimated repertoire of around 1012 unique hexasaccharides

[4]. It is common for the oligosaccharide attached at a given site to exhibit a degree

of structural heterogeneity that varies with cell type, gender, or species in which it is

expressed [5]. Thus, the capacity to attach sugars and oligosaccharides to proteins,

lipids, etc. extends the diversity of the proteome, generating the proteoglycome and,

hence, the complexity and individuality of an organism. The machinery that

generates this complexity can be subverted by pathogens. Thus, a virus can exploit

the glycosylation machinery of its “host” to disguise itself through the expression of

host oligosaccharides. For example, the HIV-1 envelope is covered by a glycan

shield of about 90 N-linked oligosaccharides, comprising half of its mass, which is a

key component of HIV evasion from humoral immunity [6, 7]. Some DNA viruses

encode glycosyltransferases that exploit the Golgi apparatus to synthesize and

attach unique (non-self) oligosaccharides [8, 9].

2 Impact of Glycosylation on Structure and Function

Development of each recombinant GP therapeutic presents a unique challenge

because, unlike transcription and translation, glycosylation is a nontemplated process

and endogenous GPs may express a heterogeneous glycoform profile that can vary

over time andwith health or disease. The consensus protein and glycoform structure of

an endogenous protein defines critical quality attributes (CQAs) that should be mir-

rored by a potential recombinant GP therapeutic. A further challenge arises from the

necessity to express a potential protein or GP therapeutic within a production platform

employing nonhuman cell lines. Such platforms can result in the production of

nonhuman glycoforms that can be immunogenic and lead to the generation of antidrug

antibodies (ADA). The first recombinant protein therapeutics approved by the US

Food andDrug Administration (FDA) were insulin (1982) and interferon 2α (Roferon;
1986), each produced inEscherichia coli. Endogenous insulin is a small, 51 amino acid

residue (aar), protein that is not glycosylated; however, endogenous interferon 2α
(166 aar) bears one O-linked oligosaccharide. The absence of the O-linked oligosac-

charide from this recombinant protein does not appear to compromise its activity,

although itmaybemore susceptible to enzymatic degradation in vivo [9, 10]. Similarly,

recombinant forms of granulocyte-colony stimulating factor (G-CSF; 174–177 aar)

that naturally bears a single O-linked oligosaccharide have been approved both as
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glycosylated (Lenograstim) and aglycosylated (Filgrastrim) products; the former is

produced in CHO cells and the latter in E. coli [11, 12]. The related cytokine

granulocyte-macrophage colony stimulating factor (GM-CSF) presents a different

challenge because, although comprising only ~127 aar, it expresses two potential

N-linked glycosylation sites and one O-linked sugar [13]. The FDA-approved recom-

binant therapeutics Sargramostim (produced in Pichia pastoris yeast cells) and

Regramostim (produced in CHO cells) are each composed of a complex mixture of

glycoforms. This glycan heterogeneity reflects a lack of specificity in post-translational

glycosylation, which has been reported to affect the in vivo properties of the thera-

peutics [14]. Molgramostim, an aglycosylated form produced in E. coli, is approved in
Europe, but has been associated with increased adverse side-effects, perhaps caused by

its enhanced susceptibility to truncation [14, 15]. A graphic illustration of the impact of

glycosylation on function is provided by glycodelin-A, glycodelin-S, glycodelin-F,

and glycodelin-C [16, 17]. Glycodelin-S is present in seminal plasma and is essential

for sperm capacitation; glycodelins A, F, and C are present in the female reproductive

tract and are protective of sperm while attaching to the ovum. Each glycodelin has an

identical aar sequence but bears a different glycoform at three potential N-linked
glycosylation sites [13, 14]. Glycodelins are pleomorphic and exhibit hormonal activ-

ity in addition to influencing reproduction [18, 19].

The importance of glycoform fidelity between natural and recombinant GPs was

demonstrated during the development of recombinant erythropoietin (EPO). This

protein comprises 165 aar and bears one O-linked and three N-linked oligosaccha-

rides, which account for ~40% of its mass [20, 21]. The principal function of EPO is

to promote red cell production, meaning that it is an erythropoiesis stimulating

agent (ESA) [22]. The EPO produced in CHO cells was initially shown to exhibit

enhanced functional activity relative to the natural product, in vitro. However, trials

in vivo demonstrated a lack of functional activity because of rapid degradation and

a short half-life. Fractionation of bulk product allowed the isolation of a minor

component (epoetin) that proved to be efficacious in vivo and received regulatory

approval in 1989.

Glycoform identity between endogenous and recombinant GPs cannot always be

achieved; however, in the absence of an approved therapeutic, a product demon-

strated to have clinical efficacy may be approved, even without strict comparability.

Thus, recombinant antithrombin (ATryn) produced in transgenic goats was

approved although the glycoform profile differs from that of the natural product

[23, 24]. At the time of its approval, this was the only effective therapeutic

available. A different regulatory decision is exemplified for recombinant forms of

aglucosidase alpha in the treatment of Pompe disease, a lysozyme storage disease.

A recombinant form (Myozyme), produced in a small scale bioreactor (160 L), was

approved in 2006 and its clinical success led to a demand that exceeded production

capacity. Production was scaled-up to 2,000 L; however, the FDA declined

approval for the product to be marketed as Myozyme because of a difference in

glycoform profile. A new BLA (Biologics License Application) was submitted and

approved, but the product had to be marketed under a different brand name

(Lumizyme) [25–27]. The mechanism of action (MoA) requires that these drugs
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express terminal mannose residues to enable entry into macrophages via the

mannose receptor. The primary drug substance does not express terminal mannose

residues; therefore, it is exposed to glucosidases (neuraminidase, β galactosidase,

and β hexosaminidase) in vitro to generate product bearing exposed mannose

residues [28].

Each endogenous protein or GP may be assigned a dominant physiological role;

however, its structure also determines its pharmacokinetic and pharmacodynamic

profile (e.g., absorption, distribution, metabolism, catabolism, elimination/excre-

tion). The liver has a major role in catabolism and the turnover of both proteins and

GPs. Liver resident asialoglycoprotein receptor (ASR) and the mannose receptor

(MR) lectins bind, ingest, and catabolize GPs expressing terminal galactose or

mannose sugar residues, respectively [29–31]. Terminal sialic acid residues are

naturally subject to loss in vivo, resulting in the exposure of a terminal galactose

residue recognized by the ASR. The physiological function and half-life of EPO is

dependent on its glycoform and the affinity of binding to the EPO receptor (EOPR)

on red blood cells. The short half-life of the original EPO product was primarily a

result of the absence of terminal sialic acid residues and, hence, accelerated

clearance. The introduction of two additional glycosylation sequons into the EPO

gene results in expression of a product (Darbepoeitin) that bears additional highly

sialylated oligosaccharides. Reduced affinity for EPOR and increased sialic acid

content result in enhanced biologic activity [22]. Thus, lectin receptors can be

exploited to target appropriately glycosylated drugs for cellular uptake [32]. Simi-

larly, recombinant coagulation factor VIII (FVIII), gonadotrophin, and tissue plas-

minogen activator (tPA) exhibit differing catabolic rates depending on the product

glycoform profile [33–35]. In the case of tPA, the 570 aar protein has three N-linked
glycosylation sites at residues N-117, N-184, and N-448; type I and type II tPA are

characterized by differences in oligosaccharides expressed at N-117 that influence

enzymatic and catabolic activities [35]. Control and/or manipulation of the

glycoform profile of recombinant GPs can be achieved by protein and/or glycosyl-

ation engineering, selection of the producer cell line, or fine tuning of the culture

conditions [36]. Interestingly, the catabolic half-lives of the two proteins found at

the highest concentrations in serum, albumin and IgG, are independent of

glycoform, albumin being a nonglycosylated protein. They are protected from

enzymatic degradation in intracellular vacuoles by binding to the neonatal Fc

receptor (FcRn) [37, 38].

With the exception of IgG, the structure and function(s) of recombinant GPs can

be compared with those determined for the purified endogenous GPs; however,

each monoclonal antibody (mAb) therapeutic has to be independently assessed

because each has a unique sequence and specificity for a unique target. The MoA of

a mAb depends on the activation of effector activities, which vary with isotype and

glycoform. This difficulty is compensated by the opportunity to select and custom-

ize each mAb to deliver maximum therapeutic efficacy for a given disease indica-

tion. Accordingly, mAb therapeutics are the main focus of the remainder of this

review.
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3 Humoral Immune Response and Recombinant Antibody

Therapeutics

The defining property of a protective humoral immune response is its specificity for a

given target. This is achieved by the generation and production of antibodies of unique

sequence that express a unique antigen binding site (paratope) complementary to a

unique structure expressed on the antigen (antigenic determinant, epitope). The human

antibody response comprises one or a mixture of nine immunoglobulin (Ig) isotypes,

namely the IgM, IgD, and IgE classes together with the four subclasses of IgG (IgG1,

IgG2, IgG3 and IgG4) and two of IgA (gA1 and IgA2). Each isotype exhibits unique

structural and functional properties. In addition, the genes encoding the IgG and IgA

isotypes are polymorphic and inherited as a haplotype [39–42]. The separation of

populations over the course of human evolution has resulted in a characteristic

distribution of haplotypes among racial groups [42]. The biologic effectormechanisms

activated within a protective, polyclonal antibody response differ according to the

isotype, or mixture of isotypes, of antibody forming immune complexes (IC). The

unique properties of each isotype can be exploited in the development and clinical

application of a recombinant mAb therapeutic. Because antibodies are, minimally,

divalent and an antigen can expressmultiple identical epitopes, the structure and size of

the IC formedvaries according to the antigen/antibody ratio.Although the formation of

an IC can immobilize and neutralize an offending “foreign body” (antigen), protection

requires that it be removed and destroyed. This is achieved when the IC interacts with

soluble and/or cell-borne effector ligands to initiate downstream biologic activities.

The IgG antibody class predominates in human blood, equilibrates with the extravas-

cular space, and activates a wide range of effector activities that can result in the

killing, removal, and/or destruction of specifically targeted pathogens. To date, all

approved recombinant antibody therapeutics have been based on the IgG format.

4 Polypeptide Structure of Human IgG

The characteristic H2L2 (two heavy and two light) four-chain homodimeric struc-

ture of IgG antibodies was established in the 1950s and the contributions of Rodney

Porter (UK) and Gerald Edelman (USA) recognized with the Nobel Prize in 1972.

The Edelman laboratory was the first to publish the complete covalent structure of a

monoclonal human IgG1 subclass protein (Eu, IgG1K), isolated from the serum of a

patient with multiple myeloma [43]. This protein defines the sequence and enu-

meration of amino acid residues in both the heavy and light chains for all IgG

molecules; for example, asparagine 297 (N-297) is the attachment site for oligo-

saccharides. The actual residue number of this asparagine varies for each mAb,

depending on the length of the heavy chain variable region. At the protein sequence

level, the light (~25 kDa) and heavy (~50 kDa) chains are composed of two and four

sequence homology regions, respectively, of ~110 amino acid residues (Fig. 1a).
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Fig. 1 (a) Alpha carbon backbone structure of an IgG1 molecule. Digestion within the hinge

region, by papain, releases the Fab (fragment antigen binding) and Fc (fragment crystallizable)

fragments. (b) Alpha carbon backbone structure of an IgG1 molecule illustrating ligands binding

to overlapping sites at the CH2–CH3 interface. Structures generated by Peter Artymiuk (University

of Sheffield, UK) using PyMOL (http://www.pymol.sourceforge.net)
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At the gene level, each homology region is encoded within an exon separated by

intervening introns. Each homology region folds to form a β-barrel structure

composed of two antiparallel β-pleated sheets connected through β-bends and

bridged by an intrachain disulfide bond. Hydrophobic side chains are orientated

toward the interior, whereas hydrophilic side chains are exposed to solvent [39–44].
This stable protein “scaffold” is referred to as the immunoglobulin fold or domain:

It is widely used within the proteome and allows virtually unlimited sequence

variation (particularly within the β-bends) and the generation of unique interac-

tion/receptor sites [39–44].
The N-terminal variable regions of the light (LV) and heavy (HV) chains differ in

length between antibodies, and the unique sequence determines epitope specificity.

Maximum sequence diversity is localized within three hypervariable or

complementarity-determining regions (CDRs), formed at β-bends, of both the

heavy and light chains. The six CDRs are brought into spatial proximity by the

immunoglobulin fold to form a unique epitope-binding paratope [39–41]. Humans

express two light chain isotypes, kappa (κ) and lambda (λ), and four gamma (γ) IgG
heavy chain isotypes or subclasses (γ1, γ2, γ3, γ4), encoded by genes on chromo-

somes 2, 22, and 14. Each light chain is characterized by one constant homology

domain, Cκ or Cλ, and each heavy chain by three constant homology regions, CH1,

CH2, and CH3. The Cκ and Cλ domains each bind with the heavy chain CH1 domain

through multiple noncovalent interactions and a single interchain disulfide bridge.

Plasma cells express only one heavy chain and one light chain gene to secrete

antibodies that are either H2κ2 or H2λ2 homodimers, comprising [VH/VL-CK/CH1-

h-CH2-CH3]2 or [VH/VL-Cλ/CH1-h-CH2-CH3]2 (where h indicates a hinge region)

homology regions. Formation of the H2L2 homodimer is dependent on formation of

a single disulfide bridge between the heavy and light chains, multiple interheavy

chain disulfide bridges within the hinge region, multiple noncovalent interactions

between the CH3 domains, and lateral noncovalent interactions at the CH2–CH3

interface.

5 IgG Subclasses

The four human IgG subclasses are enumerated according to their relative concen-

trations in normal human serum; thus, IgG1, IgG2, IgG3, and IgG4 account for ~60,

25, 10, and 5% of total serum IgG, respectively. Each IgG subclass exhibits a unique

profile of biologic effector activities in vitro [39–42]. Therefore, when developing a

mAb therapeutic, the choice of IgG subclass is guided by the anticipated MoA

in vivo, although the presumption that one can extrapolate from activities demon-

strated in vitro to function realized in vivo may be naive. The broad generalization

can be made that protein antigens provoke predominantly IgG1 and IgG3 responses,

carbohydrate antigens an IgG2 response, and IgG4 responses predominate as a

consequence of chronic antigen stimulation [39–42]. Attachment of oligosaccharide

at N-297 of the IgG-Fc is essential for full expression of effector functions, and the

290 R. Jefferis



glycoform profile is a CQA for each therapeutic IgG mAb. The production

process that delivers mAbs having a consistent glycoform profile is achieved by

the development and practice of quality-by-design (QbD) parameters that are the

intellectual property of the innovator company. It is established that ~30% of serum

polyclonal IgGs bear N-linked oligosaccharides within their V-regions, the glyco-

sylation sequon primarily resulting from somatic hypermutation and selection.

The presence of oligosaccharides attached to V-regions can impact paratope spec-

ificity and affinity; it can also contribute to the solubility and stability of drug

substance and drug product.

6 Antigens

Pathogens and self-macromolecules are complex in structure and can present

hundreds, if not thousands, of overlapping, nonidentical epitopes to the immune

system. The protective human antibody response produces a similarly diverse

library of paratopes. Hence, the structure and “architecture” of ICs formed are

diverse and influence the MoA. Parameters that contribute to the size/architecture

of the ICs formed include: (1) antibody isotype, (2) epitope specificity, (3) Fc

glycoform profile, (4) antibody/antigen ratio, (5) valency of the antibody, (6) affin-

ity/avidity of the antibody population, (7) valency or epitope density of the antigen,

(8) access and density of effector ligands, (9) cumulative valency when multiple

ligands are engaged, and (10) proportions of each antibody isotype present within a

polyclonal response [39–45]. This is exemplified by IgG1 subclass anti-CD20

antibody therapeutics having differing epitope specificities that exhibit differing

MoAs [46]. Thus, paratope and isotype selection can be used to generate mAbs

expressing MoAs deemed appropriate for treatment of given disease manifestations

[46–48].

7 IgG-Fc Glycosylation Is Essential for Effector Function

Activation

The first therapeutic mAb approved by the FDA was Rituximab (Rituxan) in 1998.

Rituximab is a chimeric mAb with specificity for the CD20 molecule expressed on

normal B cells, but may be overexpressed on the B cells of patients with

non-Hodgkin’s lymphoma. On administration of Rituximab, the B cells become

highly sensitized (opsonized) with the mAb and are targets for IgG-Fc receptor

(FcγR)-expressing effector cells and/or the classical complement pathway is acti-

vated, with consequent lysis. This “blockbuster” drug has served as a model for

glycosylation and protein engineering studies to elucidate structure–function rela-

tionships. The understanding achieved is being exploited for the generation of
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biosimilar and/or “biobetter” analogs. Biobetters can cause either attenuation or

reduction in MoAs, depending on the disease indication. A further avenue to

improved efficacy of a mAb drug is to extend its half-life by genetic engineering

of the IgG-Fc sequence to manipulate the binding affinity for FcRn between pH

values of 7.2 and 6.5.

Humans express three classes and six isotypes of FcγR that are coexpressed

and/or differentially expressed on multiple leukocyte cell types [39–41, 49–53]. The

FcγR types and subtypes are structurally homologous and their engagement by ICs

results in activation of one or more MoAs, including antibody-dependent cellular

cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP),

release of inflammatory mediators, induction of cellular apoptosis, and regulation

of immune function [49–53]. Early studies demonstrating the binding of mono-

meric IgG or IgG-Fc to the cell surface of leukocytes (monocytes) led to the

identification of a receptor referred to as the high-affinity Fc gamma receptor

(FcγRI) [39–41]. Subsequent studies identified two low-affinity classes (FcγRII
and FcγRIII) and five subtypes (FcγRIIa, FcγRIIb, FcγRIIc FcγRIIIa, and

FcγRIIIb); the FcγR gene locus is at chromosome 1q23.3. Polymorphisms of FcγR
exist within and between populations [49–52]. Engagement of the FcγR results in

positive cellular activation, mediated through the immune-tyrosine activating motif

(ITAM). The FcγRIIb receptor is an exception as it delivers an inhibitory activity

mediated through the immune-tyrosine inhibitory motif (ITIM) [49–54]. All FcγR,
except FcγRIIIb, are transmembrane GPs and the glycoform profile of the

ectodomain modulates their activity. There is also evidence that the glycoform

profile of each expressed FcγR differs between cell types; FcγRIIIb is a

glycosphingolipid membrane-bound molecule.

Although IgG-Fc glycosylation, at N-297, is essential for full effector activity

[39–41, 52–56], residual activity can be detected for ICs composed of multiple

aglycosylated IgG mAb complexes [45, 56]; thus, cumulative avidity can compen-

sate for low affinity. Comparison of IgG binding (or not binding) to FcγRI in human

and other animal species suggested that the IgG1/IgG3 sequence -234L-L-G-G237-

proximal to the hinge region is associated with FcγRI binding [39, 49–52]. Human

IgG2 that does not bind FcγRI has the sequence -V234-A-G-, with a deletion at

237, whereas IgG4 binds with lower affinity because of a leucine/phenylalanine

(L/F) replacement giving the sequence -234F-L-G-G237- [39–41, 52–56]. Subse-

quently, extensive protein engineering has been applied in attempts to generate

panels of IgG1 proteins exhibiting increased, decreased, and/or selective binding to

each of the FcγR types [48–55].

Immune complexes of glycosylated, but not aglycosylated, IgG1 and IgG3

subclass antibodies bind and activate the C1q component of the classical comple-

ment system [39–41, 55–57]. Binding triggers a cascade of enzyme cleavage

events, with the addition of some complement component breakdown products to

the IC. Leucocytes express receptors having specificity for these breakdown prod-

ucts, and their engagement enhances opsonization and phagocytosis or lysis, fol-

lowing the formation of a “membrane attack complex” (MAC). The hydrophobic

MAC mediates CDC by insertion into target cellular membranes to form pores that
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allow ingress and egress of water and small molecules, with consequent loss of

integrity and osmotic control. The epitope specificity of a mAb determines the

morphology (architecture) of the IC formed and the ability to activate CDC

[56, 57].

An important property of mAb drugs, in contrast with small molecule drugs, is

their long half-lives in vivo: about 21 days for IgG1, IgG2, and IgG4 and 7 days for

IgG3 [37–41, 58–61]. This offers protection over an extended time period, limiting

the frequency of attendance at the clinic and reducing the cost of treatment.

Catabolism of IgG is mediated through FcRn, which is expressed on the membrane

of many cell types. The natural process of pinocytosis results in the uptake of

extracellular fluid and the formation of a vacuole lined with membrane-bound

FcRn. Subsequent acidification to pH 6.5 promotes the binding of IgG and albumin

(present in the ingested fluid) to FcRn and protection from cleavage by enzymes

released into the vacuole; unbound IgG and albumin are degraded [58, 59]. When

the membrane of the vacuole is re-cycled to the external cellular surface, the

IgG/FcRn complex is exposed to extravascular fluid, at pH 7.2, and the IgG is

released. Protein engineering has been applied to increase the affinity of a mAb for

FcRn at pH 6.5, but not change its release at pH 7.2, to provide preferential

protection of mAb relative to the normal IgG present and extension of the half-

life [58, 61]. This further enhances therapeutic efficacy and reduces cost, particu-

larly for self-treatment with mAbs formulated at high concentrations. As the name

implies, FcRn functions in the transport of IgG from mother to fetus. Transport is

initiated in the third trimester; at term, IgG levels in cord blood and the blood of the

newborn exceed that of maternal blood [62].

Despite the diversity of the immune response, humans remain subject to infec-

tion and consequent disease. This reflects the long coevolution history of human-

kind within a hostile environment that is constantly changing, sometimes

precipitately and at other times over millennia. Chance mutations result in the

emergence of structurally altered pathogens that may escape or frustrate immune

protection [39–41, 44, 48, 63]. Familiar examples are the production of staphylo-

coccal protein A (SpA) by Staphylococcus aureus, and streptococcal protein G

(SpG) by streptococcal strains C and G. A simplistic explanation for their MoA is

that these bacterial proteins bind nonspecifically to the IgG-Fc of serum polyclonal

IgG to masquerade as self. In practice, pathogen–host interactions are more com-

plex; for example, SpA is also a polyclonal B cell activator. The biopharmaceutical

industry exploits these bacterial proteins for industrial-scale purification of mAb

drug substances. Some viruses have been shown to carry genes that encode proteins

that, when expressed on the surface of infected cells, bind the Fc region of serum

IgG (i.e., function as pseudo-FcγR). It is posited that the binding of serum IgG

to virus-encoded pseudo-FcγRs blocks binding to effector cell FcγR and/or the

C1 component of complement. In concert, these interactions frustrate immune

clearance. Interestingly, to date, all non-self ligands have been shown to bind

IgG-Fc at the CH2–CH3 interface at sites overlapping but not identical to FcRn

(Fig. 1b) [39–41, 63].
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A continuing problem associated with mAb therapy is the potential for immu-

nogenicity and the development of ADA, which can be neutralizing and/or give rise

to adverse reactions on re-exposure to the therapeutic [64–66]. These responses are

mostly limited to epitopes expressed by the unique variable region sequences

(idiotypes), but attempts to modulate the MoA by protein engineering may create

new non-self structures (epitopes) and enhance immunogenicity. It could also

compromise relationships between coevolved human pathogens and protective

innate and adaptive immune responses. Ideally, a holistic approach should be

adopted and any IgG sequence mutant should be evaluated for interactions with

all currently identified endogenous and exogenous ligands. Selection between the

natural glycoforms of IgG-Fc can impact the MoA but not immunogenicity.

8 Glycosylation of IgG-Fc, Derived from Polyclonal

Human Serum IgG

Although neutralization of a toxin can provide immediate protection, resolution of an

infection requires that the invading organism is removed and destroyed. This is achieved

through IC activation of a cascade of downstream biologic mechanisms that constitute

the MoA [39–41, 55–58]. N-Linked glycosylation of the IgG-Fc is essential for optimal

effector ligand binding and activation.Analysis of oligosaccharides released fromnormal

polyclonal human IgG and monoclonal human IgG proteins produced by neoplastic

plasma cells (multiple myeloma) reveals a heterogeneous population of diantennary

structures. However, each paraprotein analyzed exhibits a unique glycoform profile

that appears to be a “signature” of the neoplastic clone; in addition, the profile for each

patient can vary between samples analyzed at diagnosis, remission, and relapse [67–

69]. Approved mAb drugs are produced in mammalian [CHO (hamster), NS0/Sp2/

0 (murine)] cell lines that produce mAb with a restricted IgG-Fc glycoform profile;

however, they may also add nonhuman glycoforms. Because glycosylation is essential

for expression of the full range of effector functions, efficacy can also vary between

different glycoforms. Structural studies have shown that IgG-Fc oligosaccharide

(s) impact the tertiary/quaternary conformation of a mAb and that an attached fucose

residue inhibits interactions between the IgG-Fc and the ectodomainof FcγRIIIa [39–41].
The oligosaccharide released from normal human serum IgG-Fc is essentially

composed of a core heptasaccharide with variable addition of fucose, galactose,

bisecting N-acetylglucosamine, and sialic acid residues (Fig. 2) [39–41, 67–70].

Carbohydrate chemists, glycobiologists, and mass spectrometry specialists have

developed different systems of nomenclature to represent oligosaccharide struc-

tures [39–41, 71, 72]. Antibody “practitioners” use a shorthand nomenclature to

represent the oligosaccharides released from normal serum polyclonal IgG. In

Fig. 2, the core heptasaccharide highlighted in blue is designated G0 (zero galac-

tose); the core bearing one or two galactose residues is designated G1 or G2,

respectively. The core + fucose is designated G0F and the core + fucose + galactose
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is G1F, G2F, etc. When a bisecting N-acetylglucosamine is present, “B” is added

(e.g., G0B, G0BF, G1BF, etc.). Sialylation of the galactose residues is designated

by G1FS, G2FBS, etc. The approximate composition of neutral oligosaccharides

released from normal polyclonal human IgG-Fc is G0 3%, G1 3%, G2 6%, G0F

23%, G1F 30%, G2F 24%, G0BF 3%, G1BF 4%, and G2BF 7% [73–75]. It is
important to define the glycoform of the intact IgG molecule (e.g., [G0/G1F],

[G1F/G2BF]) because individual IgG molecules can be composed of symmetrical

or asymmetrical heavy chain glycoform pairs [76–78]. This has important conse-

quences for the engagement and activation of FcγRIIIa-mediated ADCC, which

requires that only one heavy chain bears an oligosaccharide devoid of fucose; thus,

the [G0/G0F] glycoform could be as potent in ADCC as the [G0/G0] glycoform.

Minor oligosaccharide structures present in polyclonal IgG-Fc may be function-

ally significant because each could be the predominant glycoform of an individual

antibody secreted from a single plasma cell. Although analysis of monoclonal mye-

loma IgG has shown that the IgG-Fc glycoform profile of each paraprotein (patient) is

essentially unique, subtle differences in oligosaccharide processing between sub-

classes and allotypeswere also observed, such as a preference for addition of galactose

to the α(1–6) arm of IgG1-Fc and the α(1–3) arm of IgG2-Fc. The arm preference for

IgG3 proteins correlated with allotype [67–69]. These data suggest that critical

conformations of the IgG-Fc are necessary to accommodate the steric requirements

for glycosyltranferase-mediated sugar additions. Such conformationsmay be sensitive

to niche environments because the GP transits the Golgi apparatus.

The glycoform profile of polyclonal serum-derived IgG can vary significantly

in health and disease, particularly in autoimmune and inflammatory diseases [39–41,

78–82]. Methods have been developed that allow the glycoform profile of antigen-

specific polyclonal IgG autoantibodies to be determined. Significant differences

in the glycoform profiles of IgG autoantibodies and the bulk IgG have been reported
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[79–82]. The [G0F/G0F] oligosaccharide glycoform predominates for mAb produced

in mammalian cells but can vary according to producer cell type, the production

platform, and the precise culture conditions employed. Under conditions of stress

(e.g., nutrient depletion, acid pH), deviant glycosylation may be observed, as shown

by the presence of high mannose forms and/or incomplete site occupancy [83–88].

9 IgG-Fc Glycoform Profiles of Recombinant IgG

Antibody Therapeutics

The glycoform profile is a CQA for each approved mAb therapeutic. The glycoform

profile may be selected to optimize effector functions, depending on the required or

presumed MoA. The first criterion, therefore, is either 100 or 0% oligosaccharide

occupancy. Although CHO, NS0, and Sp2/0 cell lines deliver essentially 100%

occupancy, they produce mAbs bearing predominantly G0F heavy chain

glycoforms with relatively low levels of galactosylated and nonfucosylated

glycoforms, relative to normal polyclonal IgG-Fc. Control of culture conditions

during a production run allows minor changes in glycoform profile and mainte-

nance of product fidelity [83–88]. Producer cell lines may also add sugars that are

not expressed on human glycoproteins and can be immunogenic in human recipi-

ents. Thus, although CHO cell lines add N-acetylneuraminic acid residues, they do

so in α(2,3) linkage rather than the α(2,6) linkage present in human IgG-Fc. A

particular concern is the addition of galactose in α(1,3) linkage to galactose linked

β(1,4) to the N-acetylglucosamine residues by NS0 and Sp2/0 cells [89–91].
Humans and higher primates do not have a functional gene encoding the transferase

that adds galactose in α(1,3) linkage. However, as a result of environmental

exposure to the gal-α(1,3)-gal epitope (e.g., in red meat), humans can develop

IgG antibodies specific to this antigen. The gal-α(1,3)-gal epitope is widely

expressed on hamster cells in vivo but rarely encountered on CHO-expressed

mAbs, although some CHO cell lines have been shown to revert to expression of

the gal-α(1,3)-gal epitope [88]. Similarly, CH0, NS0, and Sp2/0 cells may add N-
glycolylneuraminic acid in α(2,3) linkage that may be immunogenic in humans

[89–91]. A significant population of normal human IgG-Fc bears a bisecting N-
acetylglucosamine residue that is absent from IgG-Fc produced in CHO, NS0, or

Sp2/0 cells. Studies of homogeneous IgG-Fc glycoforms, generated in vitro, have

shown qualitative and quantitative differences in effector function activities

between the IgG subclasses and for differing glycoforms within each subclass

[39–41]. To date, it has not been possible to manipulate culture medium conditions

to generate mAbs expressing a predetermined homogeneous glycoform profile.
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10 Impact of IgG-Fc Glycoform on Downstream Effector

Functions

Homogeneous IgG-Fc glycoforms have been generated in vivo using glycosidases

and/or glycotransferases and their functional properties probed [39, 87, 92, 93]. An

alternative approach has been to engineer cell lines by “knocking-in” or “knocking-

out” glycosyl-transferase genes or blocking selected stages of maturation during

passage though the Golgi apparatus [67, 94–98]. The demonstration of radical

functional differences between glycoforms suggests that the immune system

responds to pathogens by production of an antibody response composed of antibody

isotype(s) and glycoform(s) optimal for immune protection. Most structure/func-

tion studies have employed intact IgG1 antibodies or the IgG1-Fc fragment; similar

results may be anticipated for IgG3 antibodies but caution should be exercised in

extending these observations to IgG2 and IgG4 antibodies. Differences in IgG-Fc-

mediated functions have also been reported between intact IgG1 and its Fc frag-

ment, suggesting that the presence of the Fab modulates structure and function [99–

103]. There is an emerging consensus for effector ligand engagement and activation

of IgG mAbs, but quantitative discrepancies have been reported due to differences

in the assay systems employed, such as binding to recombinant FcγR immobilized

on a matrix or in free solution, and binding FcγR expressed on effector cells

harvested from fresh blood or immortal cell lines rendered transgenic for FcγR
expression [48–55]. Current analytical protocols allow accurate and reproducible

determination of the glycoform profile of each IgG subclass contributing to specific

autoantibody responses (e.g., citrullinated peptides, platelets, the PR3 antigen, and

antivirus antibodies) [79–82]. Nevertheless, it remains to be determined whether

these differences relate to disease activity and/or resolution. In the following

section, the impact of individual IgG-Fc glycoforms on function are summarized

prior to attempting a structural rationale.

10.1 Influence of Fucose and Bisecting
N-Acetylglucosamine on IgG-Fc Activity

The influence of recombinant protein glycoforms on biologic activity has been

explored through their production in mutant CHO cells lacking the ability to add

one or more sugar residues [104]. The cell line Lec 13 lacks the ability to add fucose

to the primary N-acetylglucosamine residue; antibodies of the IgG1 subclass

produced in this cell line exhibit enhanced ability to kill cancer cells by natural

killer (NK) cell-mediated ADCC [94]. This finding was confirmed and extended to

all IgG subclasses when antibodies were produced in a α(1,6)-fucosyltransferase
knockout CHO cell line or alternative platforms generating substantially

nonfucosylated IgG [98, 105–107]; the α(1,6)-fucosyltransferase knockout CHO
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cell line is available commercially and provides access to the “Potelligent” pro-

duction platform [108]. A nonfucosylated anti-CCR4 antibody (Mogamulizumab)

expressed in this cell line has been approved in Japan for the treatment of patients

with relapsed or refractory CCR4-positive adult T-cell leukemia-lymphoma (ATL)

[108, 109] and is in phase III trials in Europe and the USA. A similar improvement

in ADCC was reported for IgG1 antibody produced in a knock-in CHO cell line

transfected with human β-1,4-N-acetylglucosaminyltransferase III (GnTIII) gene,

resulting in the addition of bisecting N-acetylglucosamine residues [110, 111]. The

early addition of bisecting N-acetylglucosamine during passage through the Golgi

apparatus was shown to inhibit the addition of fucose by endogenous α(1,6)-
fucosyltransferase [111]. It was posited, therefore, that the absence of fucose is

the main factor determining increased NK cell-mediated ADCC for these

glycoforms. The latter platform has been employed by Glycart-Roche for produc-

tion of the biobetter anti-CD20 antibody Obinutuzumab, which was approved for

previously untreated chronic lymphocytic leukemia (CLL) in 2013; approval was

extended to follicular lymphoma in 2016 [112, 113]. Multiple technologies are

being developed in attempts to generate mAbs expressing a single glycoform,

selected to activate downstream biologic activities appropriate to specific disease

indications [114]. These IgG glycoforms may be minor components of the oligo-

saccharides present in normal polyclonal human IgG-Fc; however, because they

are normal (self) structures they do not present immunogenicity issues [39–41, 67,

73–75]. By contrast, some glycoforms produced by nonhuman (mammalian) cell

lines may be immunogenic [89, 90].

The above discussion was centered on ADCC mediated by peripheral blood

mononuclear leucocytes; however, the impact of fucosylation is different for

polymorphonuclear cells [115–118]. A study employing batches of an IgG mAb

with high and low fucose contents reported that a higher fucose content resulted in

more active neutrophil-mediated ADCC, whereas a lower content resulted in higher

neutrophil-mediated phagocytosis and apoptosis [115]. Results for ADCC studies

employing cell lines expressing cellular receptors in vitro can vary because the

glycoform of the receptor is also a critical parameter and can differ between effector

cell lines [52, 110]. The presence or absence of fucose has not been reported to

impact CDC, but an IgG1/IgG3 hybrid molecule exhibited enhanced CDC for both

fucosylated and nonfucosylated IgG-Fc glycoforms [119].

The enhanced ADCC mediated by nonfucosylated antibodies has led academic

and commercial laboratories to explore alternative routes for the generation of

nonfucosylated glycoproteins. Engineering CHO cells to generate homogeneous

Man5/Man6 glycoforms results in lack of addition of fucose [120–124]. Similarly,

inhibitors targeting enzymes within the Golgi apparatus enable production of

nonfucosylated molecules; for example, kifunensine has been employed by several

groups for the generation of nonfucosylated high mannose (Man6–Man9)

glycoforms [121, 122]. Other platforms include GlymaxX, which engineers mam-

malian cells to express a bacterial enzyme that inhibits the pathway leading to the

addition of fucose [114], and the addition to the culture medium of sugar analogs

that inhibit incorporation of the natural sugar [123, 124].
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The influence of fucose on FcγRIIIa-mediated ADCC is also dependent on the

glycoform of the receptor. The FcγRIIIa receptor expresses five N-linked glycosyl-
ation sites, and the glycoform attached at N-162 is expressed at the interface of the

FcγRIIIa/IgG-Fc interaction site. Enhanced FcγRIIIa/IgG-Fc binding affinity and

ADCC has been demonstrated for afucosylated IgG; aglycosylated FcγRIIIa has the
same binding affinity for fucosylated and afucosylated IgG-Fc [110, 125]. The

presence of a further N-linked oligosaccharide at N-45 has a negative impact on

FcγRIIIa binding [126].

10.2 Influence of Galactosylation on IgG-Fc Activity

The extent of IgG-Fc galactosylation is a major source of glycoform heterogeneity,

in both health and disease. Accepting the levels of galactosylation observed for

young adults as the norm, a decline is observed with ageing [62, 127–129]. Levels

of IgG-Fc galactosylation increase over the course of normal pregnancy but return

to the adult norm following parturition [62, 130]. Hypogalactosylation of IgG-Fc is
reported for a number of inflammatory states associated with autoimmune disease

[79–82, 131–133]. The extent of IgG-Fc galactosylation observed between mono-

clonal myeloma IgG proteins is highly variable, indicating that the level of IgG-Fc

galactosylation is a clonal property [73, 74, 134]. The antibody products of CHO,

Sp2/0, and NS0 cell lines used in commercial production of recombinant antibody

are generally highly fucosylated, but hypogalactosylated relative to polyclonal

human IgG [135–137]; it is necessary therefore, to consider the possible impact

of differential IgG-Fc galactosylation on functional activity.

The variations in galactosylation observed in health and disease suggest that it is

either of functional significance or an epiphenomenon. The increase in galactosylation in

pregnancy is particularly intriguing because it coincides with FcRn-mediated

transcytosis of maternal IgG to the fetus in the third trimester. It follows, therefore, that

IgG present in neonatal blood is similarly highly galactosylated [58, 138, 139]. Studies of

the binding affinity of the human IgG for FcRnhave not revealed differences between the

various natural glycoforms; however, oligosaccharide present at the single glycosylation

site in FcRn does influence IgG-Fc binding affinity [58]. The possible impact of the level

of galactosylation of recombinant mAbs on in vivo activity has been extrapolated from

in vitro cell-based assays and animal experiments. Removal of terminal galactose

residues from Campath-1H reduced classical complement activation but had no effect

on FcγR-mediated functions [140]. Similarly, the ability of Rituximab to kill tumor cells

via the classical complement route was maximal for the [G2F]2 glycoform, in compar-

ison with the [G0F]2 glycoform [141]. The product that gained licensing approval

contained of ~25% galactosylated oligosaccharides; therefore, this proportion must be

maintained over the life span of the drug. The level of galactosylation of an approved

drug substance is identified as a CQA and its maintenance can serve as a measure of

control over the production process. In the absence of galactose, the terminal sugar

residue is N-acetylglucosamine, which may be accessible to bind the mannose receptors
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expressed on many cell types, including antigen-presenting dendritic cells. ICs formed

with agalactosylated IgG can bind the mannan-binding lectin (MBL) to activate the

lectin complement pathway [39–41].

10.3 Sialylation of IgG-Fc Oligosaccharides

Although reports of the impact of fucosylation and galactosylation on the MoAs are

relatively consistent, as determined by in vitro assays, reports of the impact of

sialylation vary considerably. Less than 10% of oligosaccharides released from

polyclonal IgG-Fc bear terminal α(2–6) N-acetylneuraminic acid residues [39, 64,

67–70, 74, 75]. Given the observed asymmetry of heavy chain glycoforms, a maxi-

mum of 5% of molecules can bear sialylated oligosaccharides on both heavy chains

and 10%onone heavy chain only. The paucity of sialylationmay reflect the absence of

galactosylation and/or restricted access of the α(2–6) N-acetylneuraminic transferase

enzyme to terminal galactose residues, rather than an inherent deficit in the sialylation

machinery. This conclusion is supported by the finding that when oligosaccharides are

present in both IgG-Fc and IgG-Fab the latter bears highly galactosylated and

sialylated structures, demonstrating that the glycosylation machinery is fully func-

tional [69, 73, 74, 76, 142–144]. In contrast to most serum proteins, the presence or

absence of terminal galactose and/or sialic acid residues does not influence IgG half-

life because it is not catabolized via the asialo-glycoprotein receptor (ASGPR) in the

liver but in multiple cell types expressing FcRn. The impact of IgG-Fc structure on

glycoform profile was demonstrated for a panel of IgG1 antibodies in which amino

acid residues known to interact with oligosaccharide residues were sequentially

replaced by alanine. In each case, hypergalactosylated and highly sialylated

glycoforms resulted, suggesting some relaxation of structure that allowed access to

glycosyl transferases [142–144].

The early demonstration of increased levels of serum (G0F)2 IgG-Fc glycoforms

associated with inflammatory autoimmune disease led to this glycoform being

regarded as a possible mediator of inflammation; by contrast, galactosylated and

sialylated glycoforms are considered relatively anti-inflammatory. Similarly, the

dramatic impact of the absence or presence of fucosylated oligosaccharides on

IgG-Fc MoA (e.g., ADCC) could be equated with inflammatory versus anti-

inflammatory antibody glycoforms. Therefore, association of the term “anti-inflam-

matory” to sialylated IgG-Fc glycoforms alone may overemphasize its significance.

Activation of complement by ICs is also an inflammatory cascade, for which (G2F)

2 glycoforms of Rituximab and Campath-1H are increased relative to (G0F)2

glycoforms [140, 141]. The focus on sialylation emerged with attempts to elucidate

the mechanism(s) by which intravenous IgG (IVIG) mediates an anti-inflammatory

activity in some autoimmune diseases [81, 133, 145, 146]. Multiple MoAs have

been proposed and one “school” consistently reports that the α 2–6 N-
acetylneuraminic acid IgG-Fc glycoform is essential for the anti-inflammatory

activity and is mediated by engagement of the DC-SIGN lectin receptor, a
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“knock-on” effect being upregulation of inhibitory FγRIIb receptor expression,

resulting in attenuation of autoantibody-mediated inflammation [81, 144–152].
Initially, attempts to further investigate the functional activity of sialylated

antibodies were hampered by the low levels of sialylation present in serum IgG

and mAbs produced in CHO cells. In consequence, protein and glycosylation

engineering have been employed to generate IgG antibodies expressing elevated

levels of sialylated IgG-Fc [69, 144, 153]. Some studies have consistently reported

an anti-inflammatory role for IgG-Fc sialylated antibodies [81, 144–152]; in other

studies, anti-inflammatory activity has either not been observed or claimed for

sialylated IgG-(Fab0)2 fragments [150, 154–161]. These discrepancies have been

addressed in numerous review articles but currently are unresolved [150, 153, 161].

11 Recombinant Glycoproteins Bearing High Mannose

Oligosaccharides

Although the presence of high mannose (Man5–Man9) glycoforms has not been

reported for normal human serum IgG-Fc, they are usually present at low levels in

mAbs. There has been a concern that this glycoform can compromise the efficacy of

a mAb therapeutics and/or result in more rapid clearance. This question has been

investigated for mAb produced in CHO-Lec3.2.8.1 or human embryonic kidney

(HEK)293S cells that lack GnT1 activity, restricting maturation at the Man5

glycoform [31, 85, 104, 162–165]. The Man5 oligosaccharide is normally an

intermediate in GP processing and is rarely present on mature human GP products.

When present on recombinant glycoproteins, Man5 may be regarded as an artefact

of the cell line and/or the production platform employed. However, for some

recombinant glycoprotein therapeutics the presence of terminal mannose residues

may be beneficial or essential. The GnT1-deficient cell lines have been exploited to

produce homogeneous Man5 glycoforms that can target cells bearing mannose

receptors. In addition, being structurally homogeneous, the proteins are more

amenable to crystallization and subsequent x-ray crystallographic studies. Although

multiple parameters impact Golgi-mediated glycoprotein processing, some control

of Man5 levels by manipulation of cell culture conditions has been reported

[162, 163]. Inhibition of enzymes within the Golgi apparatus provides another

avenue for the production of high mannose glycoforms. Thus, kifunensine inhibits

the mannosidase I enzyme, resulting in production of Man6–Man9 glycoforms

[162, 165]. It has recently been demonstrated that incomplete processing in vivo,

with consequent generation of truncated mannose oligosaccharides, can result from

restricted access for mannose transferases Thus, although the surface of recombi-

nant HIV GP120 glycoprotein is almost entirely covered by N-linked high mannose

oligosaccharide structures, native GP120, expressed on HIV virus isolates, bears a

number of truncated oligomannose structures. It appears that the density of the early

oligomannose structures limits enzyme processing [166].
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Glycoproteins bearing exposed mannose residues can be internalized by cells

expressing mannose receptor(s) and/or activate multiple biologic pathways in vivo

(e.g., the lectin pathway of complement activation) [167–169]. Exposed terminal

mannose residues are required for some GPs to facilitate cellular internalization via

the mannose receptor. An interesting example is the approved biologic Cerezyme as

enzyme replacement therapy for patients with Gaucher’s disease. This lysosome

storage disease results from deficient production of the enzyme β-glucocerebrosidase
within macrophage lysosomes [167]. The product produced by CHO cells can express

terminal N-acetylglucosamine, galactose, or sialic acid sugar residues that are not

bound by the mannose receptor. Consequently, the CHO cell product is exposed to

sialidase, galactosidase, and N-acetlyglucosaminidase to remove these sugar residues

and expose the terminal trimannose core. The recently developed CHO-gmt4 cell line

harbors a dysfunctional N-acetylglucosaminyltransferase 1 (GnT-1) gene; therefore

recombinant glucocerebrosidase produced by these cells does not require further

processing. Macrophage uptake did not differ significantly between Man2–Man9

glycoforms, but the highmannose products were shown to bind toMBL, with possible

unwanted lectin pathway activation of the complement cascade [168]. A comprehen-

sive review by Jaumouillé and Grinstein of receptors mediating phagocytosis, protec-

tion, and the initiation of immune responses is recommended [169].

12 IgG-Fc Glycoform–Ligand Interactions: An Attempt

to Rationalize

As previously commented, the structure of the IgG molecule allows each Fab

moiety to bind to spatially distinct epitopes while the IgG-Fc remains available

for interaction with one or more effector ligand. The necessary mobility for the Fab

and Fc regions is provided by the intervening hinge region, which differs signifi-

cantly in length and flexibility between the IgG subclasses. Each IgG subclass

protein expresses a unique ligand binding profile and, consequently, potentially

differing MoA profiles. It is not possible to offer a comprehensive review of the

structure–function relationships for each of the IgG isotypes because most studies

have probed these relationships for IgG1 subclass proteins only. Multiple orthog-

onal techniques have been applied for structural characterization of IgG proteins

and relating structural parameters to in vitro biologic activities. Such studies have

been conducted under widely differing conditions of temperature, but rarely at body

temperature. Similarly, binding and biologic activities have employed various

individually unique assay protocols at “room temperature!” or 37�C; not infre-
quently, they generate conflicting data and conclusions. That being said, a consen-

sus is emerging, although extrapolation to MoAs in vivo remains challenging.

The IgG-Fc X-ray crystal structure reported by Deisenhofer in 1981 was

generated by papain cleavage of polyclonal IgG at the Lys222–Thr223 peptide

bond, within the hinge region, and extending to a C-terminus residue at
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446 [44, 170]. Data was collected at ~ 100 K (�173�C). At this temperature,

vibrational mobility of the molecules is limited and weak intermolecular interac-

tions establish a relatively stable three-dimensional structure. Interpretable electron

density could be resolved for residues 238–443 but not for residues 223–237 (which

comprise the core hinge sequence and the hinge proximal region of the CH2

domain) or C-terminal residues 444–446. Unexpectedly, a defined structure for

the diantennary oligosaccharide was obtained, showing it to be “sequestered”

within the internal “horseshoe” structure of the IgG-Fc. Thus, the conformation

of the protein and oligosaccharide moieties were shown to be interdependent, with

multiple noncovalent interactions between constituent sugar residues with amino

acid side chains and main chain atoms of the CH2 domain, in addition to the

covalent protein–oligosaccharide bond at N-297. These interactions substitute for

the domain pairing observed for the VH/VL, CH1/CL, and CH3/CH3 regions. These

structural characteristics have been confirmed and extended for crystal structures

obtained for human IgG-Fc alone or in complex with SpA [170, 171], SpG [172],

rheumatoid factor (RF) [173], and recombinant soluble ectodomains of human

FcγRIIa [174], FcγRIIIb [175], and FcγRIIIa [176, 177]. There are several common

structural features reported for IgG-Fc, as follows:

1. The CH3 domains are well defined because of noncovalent pairing, involving

~2,000 Å2 of accessible surface area in the (CH3)2 module.

2. The area of noncovalent contact between the CH2 and CH3 domains is ~800 Å.
This suggests that the CH2–CH3 contact contributes to the relative stability

observed for the C-terminal proximal region of CH2 domains, as opposed to

the “softness” of the CH2 domain proximal to the hinge region.

3. The hydrophobic surface of each CH2 domain is “overlaid” by the carbohydrate.

Hydrophobic and polar interactions between the oligosaccharide and the CH2

domain surface occupy ~500 Å2 and substitute for domain pairing [170, 171].
4. One CH2 domain is less ordered than the other as a result of crystal contact with a

neighboring CH2 domain.

5. The more disordered structure for the hinge proximal region of the CH2 domain

is reflected in higher temperature factors (i.e., unfolding at relatively low

temperatures).

6. The intrinsic stability of the immunoglobulin fold is reflected in higher structural

resolution of β-sheets regions compared with β-bends.

The disorder reported for the hinge proximal regions of the CH2 domains reflects

mobility, which can be significantly enhanced at body temperature and result in the

generation of dynamic equilibrium of high-order structural conformers. Each ligand

(e.g., one of the three homologous Fcγ receptors or the C1q component of comple-

ment) may bind a unique IgG-Fc conformer [53, 178]. Presumably, this is a

reciprocal property, such that each effector ligand can exist as an equilibrium of

conformers (e.g., the FcγR family of receptors each binds a unique IgG-Fc con-

former). This idea is supported by the demonstration that residues of the lower

hinge region that cannot be resolved for the IgG-Fc crystals are ordered in the IgG1-
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Fc/FcγR complexes and directly involved in receptor binding [174–178]. Some

amino acid residue side chains and/or main chain atoms may contribute to the

binding of different ligands [39–41, 170–177], as shown by the presence of a

“proline sandwich” as a common structural feature for each IgG-Fc–FcγR interac-

tion [174–177]. The binding sites for soluble recombinant FcγRIIa, FcγRIIIa, and
FcγRIIIb are asymmetric, with each heavy chain engaging distinct regions of the

receptor. Consequently, monomeric IgG is univalent for Fcγ receptors and the C1

component of complement. By contrast, IgG-Fc is functionally divalent for ligands

binding at the CH2–CH3 interface (e.g., FcRn, RF, SpA, and SpG). Because of the

symmetry of the IgG-Fc, these two interaction sites are opposed at ~180� and each

is accessible to bind macromolecular ligands to form multimeric complexes.

It is important to consider IgG-Fc glycoform symmetry/asymmetry when

attempting to optimize the IgG-Fc glycoform for a selected MoA. Fucosylation of

(G0)2 glycoforms during passage from the medial to the trans-Golgi region of the

endoplasmic reticulum can result in generation of asymmetric (G0F/G0) and

symmetric (G0/G0) or (G0F/G0F) IgG-Fc glycoforms. As previously stated, a

(G0F/G0) IgG in which only one heavy chain is devoid of fucose may express

the same level of FcγRIIIa-mediated ADCC as a (G0F)2 molecule [76, 175–

178]. Increased FcγRIIIa-mediated ADCC, independent of glycoform, has also

been achieved for protein engineered IgG-Fc. Because each heavy chain of the

IgG molecule binds a distinct region of the FcγRIIIa receptor, the optimal IgG-Fc

structure requires generation of a molecule in which the two heavy chains have

different sequences. This objective has been realized employing the “knobs-into-

holes” approach to generate an IgG molecule with asymmetric heavy chain amino

acid sequences [179].

Submission for regulatory approval of a mAb therapeutic requires comprehen-

sive structural characterization employing multiple orthogonal techniques. A pleth-

ora of techniques are available and a consensus view of the most relevant

techniques and protocols is sought. This challenge has been addressed by a study

emanating from the US National Institute for Standards and Techniques (NIST). An

IgG1 protein molecule was structurally characterized by major biopharmaceutical

companies, employing all currently available state of the art techniques. This

allowed insight into the selection of appropriate techniques and the availability of

a proposed reference material that can be employed to standardize performance

across laboratories. The fruits of this exercise have been published in a three-

volume series [180–182].

13 IgG-Fab Glycosylation

It has been established that about 30% of polyclonal human IgG molecules bear

N-linked oligosaccharides within the variable regions of the kappa (Vκ), lambda

(Vλ), or heavy (VH) chains, and sometimes both [39–41, 76, 81, 134, 141–144]. In

the immunoglobulin sequence database, about 20% of expressed IgG variable
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regions have N-linked glycosylation consensus sequences. Interestingly, these

consensus sequences are mostly not germline encoded but result from somatic

hypermutation, which is suggestive of positive selection for improved antigen

binding. Analysis of oligosaccharides released from polyclonal human serum-

derived IgG-Fab fragments revealed the presence of diantennary oligosaccharides

with high levels of G2F and substantial levels of G2FS oligosaccharides, in contrast

to the diantennary oligosaccharides released from IgG-Fc [39–41, 81, 134, 142–

144]. This pattern was maintained for IgG-Fab prepared from IgG isolated from the

sera of patients with Wegner’s granulomatosis or microscopic polyangiitis, which

expressed hypogalactosylated Fc glycans [143]. Thus, the in vivo environment of

IgG-producing plasma cells influences the efficacy of glycoprocessing of IgG-Fc

but not IgG-Fab during passage through the Golgi apparatus. The functional

significance for IgG-Fab glycosylation of polyclonal IgG has not been fully deter-

mined, but data emerging for mAbs suggest that Vκ, Vλ, or VH glycosylation can

have a neutral, positive, or negative influence on antigen binding [183, 184]. The

differences observed for polyclonal IgG-Fc and IgG-Fab glycoforms has been

maintained for mAbs produced in CHO cells and monoclonal human myeloma

IgG proteins [81, 142–144].

The oligosaccharide present in GPs and IgG-Fc, in particular, has been shown to

contribute positively to solubility and stability and it is possible that IgG-Fab

glycosylation confers similar benefits [170–177]. Thus, IgG-Fab glycosylation

may contribute to mAb formulation at concentrations of >100 mg/mL [145–150,

185, 186], levels required to allow the development of self-administration pro-

tocols. These concentrations result in longer dosing intervals, reducing the neces-

sity for attendance at the clinic and, consequently, reducing the cost of treatment.

The demand for control of glycoform fidelity at both Fab and Fc sites is a further

challenge for the biopharmaceutical industry.

The licensed mAb Erbitux (cetuximab), expressed in Sp2/0 cells, bears an N-
linked oligosaccharide at N-88 of the VH region; interestingly there is an unoccu-

pied glycosylation sequon within the light chain at N-41 [187, 188]. Analysis of the

oligosaccharides released from the IgG-Fc and IgG-Fab fragments of Erbitux

revealed highly significant differences in composition. Although the IgG-Fc oligo-

saccharides were typical (i.e., composed predominantly of diantennary G0F oligo-

saccharides), the IgG-Fab oligosaccharides were extremely heterogeneous and

included complex diantennary, triantennary, and hybrid oligosaccharides.

Nonhuman oligosaccharides such as galactose in α(1,3) linkage to galactose and

N-glycylneuraminic acid residues were also present.

Severe adverse reactions to cetuximab therapy have been reported. In a study of

76 patients treated with Erbitux, 25 experienced hypersensitivity reactions due to

the presence of IgE antibodies targeting gal-α(1,3)-gal. Interestingly, environmen-

tal factors appeared to influence the development of IgE anti-gal-α(1,3)-gal
responses and IgE antibodies were detected in pretreatment samples from 17 of

the patients [189–192]. The incidence of hypersensitivity varied significantly

between treatment centers and could be linked to differences in predominant

infectious agents present in local environments. Subsequently, it has been
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demonstrated that most individuals that consume meat (beef, lamb, pork, etc.) have

IgG anti-gal-α(1,3)-gal antibodies and a minority have IgE anti-gal-α(1,3)-gal
antibodies. It is becoming routine, therefore, to monitor patients for the presence

of IgE anti-gal-α(1,3)-gal antibodies prior to exposure to Erbitux [193, 194].

A detailed analysis of the glycoforms of a humanized IgG anti-amyloid-β mAb,

also expressed in Sp2/0 cells, reveals the expected IgG-Fc glycoform profile

of predominantly G0F oligosaccharides, but an additional oligosaccharide at

N-56 of the VH. Eleven oligosaccharides were released from the IgG-Fab, including

diantennary and triantennary oligosaccharides bearing gal-α(1,3)-gal, N-
glycylneuraminic acid, and N-acetyl galactosamine residues [195]. The consistent

observation of higher levels of galactosylation and sialylation for IgG-Fab N-linked
oligosaccharides, in comparison to IgG-Fc, is thought to reflect its attachment at the

surface of the molecule, thus providing accessibility to glycosyltransferases. In

view of these experiences, the perceived virtues of the NS0 and Sp2/0 cells might

best be pursued by knocking out or otherwise inactivating the gal-α(1,3) and

N-glycylneuraminic acid transferases.

The challenge of controlling the glycoform profile of mAbs in both IgG-Fc and

IgG-Fab has generally led companies to remove VH or VL glycosylation sequons

(e.g., by substitution of asparagine residues by alanine). In contrast, recent reports

suggest that mAbs expressed in CHO cells can generate VH and/or VL glycoforms

similar to those present in normal polyclonal IgG [185, 196, 197]. Because oligo-

saccharides are hydrophilic, the addition of glycans within VH and/or VL regions

could impact the physicochemical properties of an antibody molecule and affect its

pharmacokinetics [196, 197], solubility [185], aggregation, etc. A VH glycosylated

human IgG mAb was shown to have the same pharmacokinetics as the VH

deglycosylated molecule in a mouse model [196]; however, introduction of a

glycosylation site within bispecific single-chain diabodies resulted in a significant

increase in serum half-lives [185]. Studies of the solubility of an anti-IL-13 mAb

are revealing. The clone selected for development included a glycosylation sequon

(53NSS55) within the heavy chain CDR2 [185]. Initially, this site was engineered

out by replacing N-53 by an aspartic acid residue; however, the product exhibited

very limited solubility (~13 mg/mL) and high levels of aggregation. Reverting to

development of the original N-53 molecule, with limited engineering of the VL,

generated a VH glycosylated mAb with a solubility >110 mg/mL [185].

14 Concluding Remarks

It is important to emphasize that the structural studies discussed here mostly

employed natural or glycosylation engineered IgG-Fc fragments, alone or in com-

plex with a recombinant form of a natural ligand such as SpA. There is a paucity of

data for full-length IgG molecules or full-length IgG antibodies in complex with

their target ligand. By contrast, many X-ray crystal structures of Fab fragments in

complex with their target antigens have been solved. The challenge remains to
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solve the structure of full-length IgG mAb/antigen complexes binding to a

membrane-bound effector ligand. Currently, we only have an indication that

IgG-Fc–ligand interactions are favored when the CH2 domains assume a relatively

open structure. However, the impact of single and multiple amino acid replace-

ments on structure and effector ligand binding/activation suggests that more sophis-

ticated approaches are required, particularly for understanding how a single amino

acid residue replacement within the CH3 domain impacts FcγR binding at the lower

hinge region. An increasing number of studies have reported Fab–Fc interactions

within intact IgG mAbs that modulate functional activity [99–103]. Therefore, the

conformation of the IgG molecule is a CQA that may undergo subtle dynamic

changes in vivo and within experimental protocols. This could account for the

tendency of monomeric mAb molecules to form aggregates in the absence of

antigen, a property that could result in enhanced immunogenicity and the produc-

tion of ADA. It is essential, therefore, that multiple orthogonal physicochemical

techniques should be employed to characterize a potential mAb therapeutic as drug

substance or drug product, and following exposure to accelerated storage condi-

tions. Industry and academia will be best served by having access to a reference

material that has been comprehensively characterized using state of the art tech-

niques [160]. A consensus view may emerge enumerating the techniques consid-

ered essential and that could become mandatory within QbD protocols. It is

interesting to note that different ligands bind to the IgG-Fc through the same

amino acid residues within the hinge proximal region for FcγR and C1q and at

the CH2–CH3 interface for FcRn, SpA, SpG, RFs, and IgG-Fc-like receptors

encoded within the genomes of some viruses. The presence of sialic acid might

further influence Fc–ligand interactions. The topography of FcγR and C1q ligand

binding sites could be a functional necessity for circulating IgG to be monovalent

for these ligands, to prevent continuous cellular activation. However, the signifi-

cance of ligand binding divalency at the CH2–CH3 interface is not immediately

evident. The influence of the IgG-Fc glycoform on functional activity can be

exploited to generate homogeneous glycoforms selected for a predetermined func-

tional profile considered optimal for a given disease indication. It is important to

note that this can be achieved for each glycoform present within normal polyclonal

IgG-Fc; therefore, they do not have the potential to be immunogenic. Many

innovative studies have explored engineering of the protein moiety for selective

enhancement of biologic activities; however, these are mutant forms of IgG (i.e.,

non-self) that might enhance immunogenicity. This is probably not an issue when

treating patients for cancer because they may be receiving chemotherapy, with

consequent immune suppression. However, it is a concern in treatment of chronic

diseases that require long-term and/or interrupted exposure to mAbs. The reduc-

tionist approach of studying interactions of individual mAb molecules with a

defined target antigen or effector ligand has provided a rationale for the develop-

ment of mAb therapeutics; however, we must be aware of its limitations when

attempting to predict outcomes in vivo, when different MoAs may be activated

simultaneously or trigger unexpected outcomes or unintended consequences.
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Gornik O, Krištić J, Keser T, Vitart V, Scheijen B, Uh HW, Molokhia M, Patrick AL,
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127. Pucić M, Knezević A, Vidic J, Adamczyk B, Novokmet M, Polasek O, Gornik O, Supraha-
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Abstract Glycans play crucial roles in various biological processes such as cell
proliferation, cell-cell interactions, and immune responses. Since viruses co-opt
cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell
glycosylation machinery. Consequently, several viruses exploit the cellular glyco-
sylation pathway to their advantage. It was shown that viral glycosylation is strongly
dependent on the host system selected for virus propagation and/or protein expres-
sion. Therefore, the use of different expression systems results in various glycoforms
of viral glycoproteins that may differ in functional properties. These differences
clearly illustrate that the choice of the expression system can be important, as the
resulting glycosylation may influence immunological properties. In this review, we
will first detail protein N- and O-glycosylation pathways and the resulting glycosyl-
ation patterns; we will then discuss different aspects of viral glycosylation in
pathogenesis and in vaccine development; and finally, we will elaborate on how to
harness viral glycosylation in order to optimize the design of viral vaccines. To this
end, we will highlight specific examples to demonstrate how glycoengineering
approaches and exploitation of different expression systems could pave the way
towards better self-adjuvanted glycan-based viral vaccines.
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Abbreviations

APC Antigen-presenting cell
Asn or N Asparagine
CHO Chinese hamster ovary
CLR C-type lectin receptor
DC-SIGN Dendritic cell-specific intercellular adhesion molecule-3-grabbing

non-integrin
EBOV Ebola virus
ER Endosplasmic reticulum
FcR Fc receptor
FDL Fused lobes
Fuc L-Fucose
Gal D-Galactose
GalNAc N-Acetyl-D-galactosamine
Glc D-Glucose
GlcNAc N-Acetyl-D-glucosamine
GP Glycoprotein
HA Hemagglutinin
HBV Hepatitis B virus
HCV Hepatitis C virus
HIV-1 Human immunodeficiency virus type 1
HSV-1 Herpes simplex virus type 1
HSV-2 Herpes simplex virus type 2
JEV Japanese encephalitis virus
LacNAc N-Acetyllactosamine (β-D-galactopyranosyl-(1!4)-2-acetamido-2-

deoxy-β-D-glucopyranose)
Man D-Mannose
MDCK Madin-Darby canine kidney
MDL-1 Myeloid DAP12-associating lectin 1
MMR Macrophage mannose receptor
MPL 3-O-Desacyl-40-monophosphoryl lipid
NA Neuraminidase
nAb Neutralizing antibody
Neu5Ac N-Acetylneuraminic acid
Neu5Gc N-Glycolylneuraminic acid
NIPV Nipah virus
PRR Pattern recognition receptor
RVFV Rift Valley fever phlebovirus
Ser or S Serine
sGP Secreted glycoprotein
Sia Sialic acid
SIV Simian immunodeficiency virus
SNFG Symbol Nomenclature for Glycans
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Thr or T Threonine
TLR Toll-like receptor
VLP Virus-like particle
WNV West Nile virus
Xyl D-Xylose

1 Introduction

“Glycan” is a general term encompassing most carbohydrate polymers encountered
in biology, whether alone (polysaccharide) or as part of a glycoconjugate, namely,
an oligo-/polysaccharide linked to a lipid (glycolipid) or to an amino acid (glyco-
peptide/glycoprotein). Glycans are known to play essential roles in various biolog-
ical processes, such as cell proliferation and differentiation, organism development,
cell communication, cellular migration, and immunity [1, 2]. However, and in clear
contrast to nucleic acids and peptides, glycan structures are more complex as they
may be branched (instead of strictly being linear) and their monomeric units may be
linked to one another by two different anomeric forms and multiple branching points
[3]. While this great complexity has hampered the study of glycobiology in the past,
considerable technological and methodological advancements in recent decades
have provided a tremendous throve of novel knowledge and opened new avenues
for research into glycan-based diagnostics, prophylactic, and therapeutic
applications.

Viruses are considered to be obligatory intracellular pathogens: for a successful
infection, they need to inject their genetic material into the host cell, highjack its
machinery to replicate themselves, assemble new virions, and then release those to
infect more cells and/or organisms [4, 5]. As such, viral glycoproteins are produced
through the secretory pathway (like eukaryotic glycoproteins) and will become
glycosylated in the same fashion as host glycoproteins. Therefore, viruses are
dependent on the glycosylation machinery present in the infected cell. Furthermore,
any alteration made to the cell’s glycan synthesis will also be reflected onto the viral
particles, just as different cell types and species possess different and/or unique
glycosylation patterns. While certain aspects of viral glycosylation are well appre-
ciated, such as the role of host glycans in cell recognition and entry, the function of
glycan shielding in escaping immunity, and the contribution of differential glyco-
sylation patterns to infectivity, still little is known about the impact of differential
glycosylation on viral immunogenicity and its implications in vaccine design [4–7].

The effects of glycoforms (defined as differently glycosylated versions of a given
glycoprotein [8]) are well-known for biotherapeutics production, where tremendous
biotechnological and glycoengineering advancements are being developed to ensure
increased tolerability, safety, and efficacy by creating human-like glycans [9–
12]. Consistently, by exploiting non-human or non-mammalian-like glycans, self-
adjuvanted glycoprotein-based vaccines may be obtained. Exploiting the impact of
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glycans on the immunogenicity of vaccines may offer the potential of lowering the
dose itself or the number of doses required to achieve protective immunity and/or
eliminate the need to use other adjuvants. Thus, exploiting immunogenic glycans in
glycoprotein-based vaccines would result in better safety profiles and potentially
lower production costs. On the other hand, the clinical use of non-human glycans
requires careful consideration against potential side effects caused by immunolog-
ically active glycans.

In this review, we are going to focus on viral protein glycosylation and more
specifically on how it could be harnessed in order to better the design of viral
vaccines. We will also highlight specific examples to demonstrate how
glycoengineering approaches and exploitation of different expression systems
could pave the way towards self-adjuvanted glycan-based viral vaccines.

2 Protein N- and O-Glycosylation

Generally, glycoproteins are known to show considerable heterogeneity in their
glycosylation. For a given glycoprotein, macroheterogeneity refers to the different
positions that are found to be glycosylated or not (occupancy of glycosylation sites),
while microheterogeneity refers to the various glycan structures to be found at a
given site [4].

This variability in glycans is the combined result of many factors that can be
characterized as being cell-dependent (according to species, genome, cell type,
metabolic and physiological state of the cell affecting localization and activity of
glycosylation enzymes and transporters, transport rate of the protein through the
lumen of the endoplasmic reticulum [ER] and Golgi) or conformation-dependent
(sequon localization and conformational issues affecting glycan availability to
subsequent enzymatic modification) [2, 8]. Also, protein glycosylation is considered
to be non-template driven, unlike the biosynthesis of nucleic acids and peptides/
proteins. As will be explained below in more details, the localization of
glycosyltransferases within the different sub-compartments of the Golgi can deter-
mine which enzymes encounter acceptors. Significantly, most glycosyltransferases
and glycosidases require the prior actions of other enzymes before they can act, and
also some are competing for the same acceptor.

Of all the types of protein glycosylation that exist [13], in this review focus will be
given to N-glycans and O-glycans as they are the most studied in viral research
[4]. Both types of glycosylation mainly occur in the secretory pathway (ER and
Golgi), although other glycosylation reactions (such as O-GlcNAc) can also occur in
the cytoplasm, nucleus, and mitochondria [14, 15].
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2.1 Biosynthesis of N-Glycans in Mammals

N-Glycans are formed by the attachment through a N-glycosidic bond to a protein at
asparagine (Asn, N) residues. The recognized amino acid sequence is Asn-X-Ser/Thr
in which “X” is any amino acid except proline. In eukaryotes, the first phase of the
process is highly conserved and consists of the assembly of the precursor oligosac-
charide Glc3Man9GlcNAc2 at the ER membrane on the lipid carrier dolichol-
phosphate. During the passage of newly synthesized polypeptides through the
translocon into the ER, the oligosaccharyltransferase (OST) catalyzes the transfer
of the 14-sugar glycan in a β-linkage onto the amine group of a receptive Asn (Fig. 1)
[4, 8, 13, 14, 16].

Early processing of N-glycans begins in the ER with the sequential removal of
the Glc residues by α-glucosidases I and II (MOGS and GANAB) to yield
Man9GlcNAc2-N (Fig. 1). Before exiting the ER, ER α-mannosidase
I (MAN1B1) trims the terminal α1,2-Man residue on the central arm to yield
Man8GlcNAc2-N. Further trimming occurs in the cis-Golgi with the actions of
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α-mannosidases IA and IB (MAN1A1, MAN1A2) on the three remaining α1,2-
Man residues to generate Man5GlcNAc2-N, a key intermediate in the pathway to
hybrid and complex N-glycans. While the majority of N-glycans are completely
processed during these early steps, the incapacity of the mannosidases or of
MGAT1 (see below) to act upon their substrates will prevent further processing
and results in glycoproteins bearing oligomannose N-glycans (also known as
high-mannose; Man5-9GlcNAc2-N). One should note that most mature glycopro-
teins possess some oligomannose N-glycans [4, 8, 13, 14, 16].

Late processing of N-glycans is initiated in the medial-Golgi by the addition of a
GlcNAc residue to the C-2 of the α1,3-Man in Man5GlcNAc2-N by the N-acetyl-
glucosaminyltransferase I (MGAT1) (Fig. 1). This step is essential for the synthesis
of hybrid and complex N-glycans. In turn, the majority of GlcNAcMan5GlcNAc2-N
are to be further trimmed down by α-mannosidase II enzymes MAN2A1 and
MAN2A2 to yield GlcNAcMan3GlcNAc2-N. Hybrid N-glycans result when
α-mannosidase II fails to act on GlcNAcMan5GlcNAc2-N; the terminal GlcNAc
residue will be further processed like complex N-glycans (Fig. 2a). Once both Man
residues are removed, N-acetylglucosaminyltransferase II (MGAT2) can act by
adding GlcNAc to the C-2 of the α1,6-Man (Fig. 1). As such,
GlcNAc2Man3GlcNAc2-N, the precursor for all biantennary complex N-glycans,
is synthesized and where each one of the terminal GlcNAc residues constitute the
beginning of an antenna or branch. Further processing of N-glycans will occur in the
trans-Golgi and its network. N-Acetylglucosaminyltransferases IV (MGAT4A,
MGAT4B) and V (MGAT5, MGAT5B) can also initiate additional branches by
transferring β-GlcNAc residues at C-4 of the core α1,3-Man and at C-6 of the core
α1,6-Man, respectively, yielding tri- and tetra-antennary complex N-glycans
(Fig. 2c) [4, 8, 13, 14, 16]. A fifth branch, initiated by N-acetyl-
glucosaminyltransferases VI (MGAT6) at C-4 of the core α1,6-Man, is usually
found in birds and fish, but can also be found in cancerous cells [8, 17–19].

Complex and hybrid N-glycan cores can also be modified by N-acetyl-
glucosaminyltransferase III (MGAT3) to yield a bisecting GlcNAc on the core
β1,4-Man residue (Fig. 2b) to form bisected N-glycans [8]. While the bisecting
GlcNAc does not prevent further branching, it cannot be elongated itself, and it
induces conformational changes that may suppress the elongation and termination of
other branches of the N-glycan, thereby altering the tertiary structure and the
function of the glycoprotein [20]. Additionally, the most important core modification
in vertebrate N-glycans is core fucosylation, where the fucosyltransferase FUT8
catalyzes the addition of core α1,6-Fuc to the Asn-linked GlcNAc (Fig. 1). Core Fuc
has been shown to play important roles in organism development and in the
functional activities of immunoglobulins [21].

Finally, the majority of initiating β-GlcNAc in complex and hybrid N-glycans
will be elongated by the addition of Gal to form the Gal-β1,4-GlcNAc (N-acetyll-
actosamine; LacNAc) building block (Fig. 3). Sequential additions of GlcNAc
(in β1,3-) and Gal (in β1,4-) will yield tandem repeats termed poly-LacNAc. Branch
elongation is terminated by capping reactions that involve the addition, usually with
an α conformation, of sialic acids, Fuc, Gal, GlcNAc, and sulfate [4, 8, 13, 14, 16].
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2.2 Biosynthesis of N-Glycans in Insects

As insects can be important vectors for viral infections (like arthropod-transmitted
arboviruses) and also with the popular use of baculovirus-insect cell expression
systems for producing N-glycosylated recombinant proteins, it is crucial to
address the differences between the mammalian and insect pathways and the
resulting N-glycans. In insects, the N-glycosylation pathway proceeds just like
in mammalian cells from the transfer of the precursor oligosaccharide through the
early and late processing steps until reaching GlcNAcMan3GlcNAc2-N, the inter-
mediary for hybrid N-glycans (Fig. 1). The core of this intermediary can usually
become α1,6-fucosylated, and only for some species can a second core Fuc be
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transferred in α1,3- (core α1,3-Fuc), thanks to the two fucosyltransferases FucT6
and FucTA (Fig. 4). It should be noted that core α1,3-Fuc is also present in plant
N-glycans [22]. From there, and independently of core fucosylation status, the
terminal GlcNAc residue is removed by Fused lobes (FDL), a N-acetyl-
glucosaminidase, to yield Man3GlcNAc2-N paucimannose N-glycans (Fig. 4).
It is accepted that the activity of FDL is responsible for yielding only
oligomannose and paucimannose N-glycans, which account for >90% of total
N-glycans in insect and insect-produced glycoproteins. It also explains the inabil-
ity of classical baculovirus-insect cell expression systems to produce complex and
sialylated N-glycans [23, 24].

2.3 Biosynthesis of O-Glycans

O-Glycans are formed by the attachment through an O-glycosidic bond to a protein
at serine (Ser, S) and threonine (Thr, T) residues. Unlike N-glycans, no conserved
protein sequence motifs have been identified for O-glycosylation, making it difficult
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to predict this modification without experimental evidence [4]. Yet, prediction
algorithms exist and are constantly improving in order to predict O-glycosylation
sites in both mucin-like and non-mucin-like domains [5]. Moreover, many types of
O-glycosylation exist and are classified based on the initiating monosaccharide,
including, but not limited to, GalNAc, GlcNAc, Man, Fuc, and Xyl [13, 25–
27]. In the context of this review, the terms O-glycosylation and O-glycans will
refer to O-GalNAc glycosylation (also known as mucin-type), which is the most
common form of protein O-glycosylation.

O-Glycosylation is initiated in the Golgi apparatus by the transfer of GalNAc in
an α-linkage to the hydroxyl group of a receptive Ser or Thr protein residue and is
catalyzed by a polypeptide N-acetylgalactosaminetransferase (GALNT) (Fig. 5).
GALNTs constitute a family of conserved isoforms (up to 20 in humans) that are
sequentially and functionally conserved throughout the animal kingdom. They are
differentially expressed, and each possesses its own substrate specificity (in terms of
amino acid sequons), which explains the high diversity in density and site occupancy
of O-glycans [4, 14, 27–29].
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Following initiation, the other glycosyltransferases involved may act sequen-
tially to build the O-glycan, which may consist of a single GalNAc residue up to
20 sugars, with a linear or biantennary branched structure. The addition of one or
two neutral sugar residues to the O-GalNAc will lead to the formation of the eight
cores of O-glycans. Since they are the most abundant, we will focus in this review
on cores 1–4. For more information regarding cores 5–8, please refer to some
excellent chapters and reviews [5, 14, 28, 30]. Core 1 is ubiquitously found and
formed by core 1 β1,3-galactosyltransferase I (C1GALT1) which adds a Gal to the
O-GalNAc (Fig. 5). Core 2 O-glycans, which are more cell-type specific and
whose expression is tightly regulated, are formed by the core 2 β1,6-N-acetyl-
glucosaminyltransferase (GCNT1). The expression of cores 3 and 4 O-glycans is
mainly restricted to mucus epithelia from the gastrointestinal and respiratory
tracts and to salivary glands. Core 3 β1,3-N-acetylglucosaminyltransferase
(B3GNT6) acts on the O-GalNAc, resulting in GlcNAc-β1,3-GalNAc-α-S/T, the
core 3 O-glycan. Subsequent action by core 2/4 β1,6-N-acetylgluco-
saminyltransferase (GCNT3) results in the core 4 O-glycan formation [4, 14,
27–29].
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Once synthesized, these cores can be elongated to form complex O-glycans. One
should note that most of these reactions (elongation, branching and capping) also
occur in N-glycans. The elongation is catalyzed by families of β1,3-N-acetyl-
glucosaminyltransferases, β1,3-galactosyltransferases, and β1,4-galactosyltrans-
ferases. Notably, the β1,3-Gal residue of cores 1 and 2 can be elongated by the
β1,3-N-acetylglucosaminyltransferase B3GNT3, which allows for building further
LacNAc unit(s). Unsubstituted β-GlcNAc residues on cores 2–4 can become
galactosylated by the action of β1,4-galactosyltransferases (B4GALT1-B4GALT6)
and may further lead to poly-LacNAc synthesis (Fig. 3) [4, 14, 27–29]. The Gal
residues in those linear poly-LacNAc can also be modified by β1,6-N-acetyl-
glucosaminyltransferases (like GCNT2), and these new GlcNAc residues may also
be transformed into LacNAc/poly-LacNAc units by the same processes [31]. Also,
the β1,3-GlcNAc residue of cores 3 and 4 can become β1,3-galactosylated by the
galactosyltransferase B3GALT5. However, note that β1,3-Gal residue can only be
capped afterwards as it cannot be used as a substrate for poly-LacNAc
synthesis [29].

Possible capping reactions for complex O-glycans may involve sialylation,
sulfation and fucosylation, which will stop branch elongation. Different families
of those enzymes possess varying specificities: while some prefer O-glycan sub-
strates, many have overlapping activities with other glycans. For example, some
α2,6-sialyltransferases (ST6GALNACI to ST6GALNAC4) are involved in the
formation of the sialyl-Tn epitope (Neu5Ac-α2,6-GalNAc-α-S/T) and of sialylated
core 1 O-glycans. Some α2,3-sialyltransferases are strictly specific to O-glycans,
including ST3GAL1 which is mainly responsible for the sialylation of the β1,3-
Gal residue of cores 1 and 2 O-glycans [29]. Additionally, the blood group H
determinant of O-glycans is formed by the α1,2-fucosyltransferases FUT1 and
FUT2, which can be converted to blood group A or group B by further enzymatic
modification [21].

3 Viral Glycosylation

Viruses require and therefore hijack the host cell machinery for replication. Usually
after a virus enters a living cell, its genome gets transcribed and translated, and the
proteins are formed by the host cell protein biosynthesis machinery. At the end,
newly formed virus particles, also known as virions, are assembled then released to
infect other cells. Viral glycoproteins are formed during passage through the host
cell secretory pathway. As described previously, N-glycosylation of viral proteins
begins with the addition of the oligomannose precursor at the ER-membrane. Then,
those N-glycans are trimmed, branched, elongated, and capped as they progress to
the Golgi and move through its sub-compartments. Additionally, O-glycosylation
occurs, while the protein is moving through the Golgi sub-compartments. In this
section, we will discuss the different roles of glycans in virus entry, protein
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formation, and viral release as well as glycan-mediated viral immune evasion to gain
a better insight into viral glycosylation.

3.1 Viral Glycans in the Replication of Enveloped Viruses

Enveloped viruses surround themselves with the former host cell membrane in
which its viral surface proteins are embedded. Many of these proteins are N- and
O-glycosylated, such as the heavily glycosylated gp120, a much studied glycopro-
tein from the human immunodeficiency virus-1 (HIV-1) envelope [32]. It is well-
known that protein glycosylation influences virus-cell interactions, virus replication,
and recognition of viral epitopes by the host immune system [4–6, 33]. Thus, interest
in viral glycosylation has increased in the last decades, and its implications have only
yet started to be considered in vaccine design.

3.1.1 Virus Binding and Cell Entry

Many studies have shown the impact of glycosylation on the entry of enveloped
viruses into host cells. For many different virus families like the Retroviridae (HIV-1
and simian immunodeficiency virus [SIV]), Phenuiviridae (Rift Valley fever
phlebovirus [RVFV] and Uukuniemi phlebovirus), Flaviviridae (hepatitis-C virus
[HCV] andWest Nile virus [WNV]), and Filoviridae (Ebola virus [EBOV]), binding
and/or cell entry via host cell-expressed lectin receptors has been demonstrated [34–
38]. One example is human dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN), a C-type lectin receptor (CLR) mainly expressed
by dendritic cells that recognizes oligomannose and fucose-containing glycans [38–
40]. Many examples support the important role of this CLR in the recognition,
binding, and internalization of enveloped viruses. For instance, DC-SIGN is required
for the entry of phleboviruses into host cells [37], binds to the viral envelope
glycoproteins of HIV-1 and SIV [34, 41], and enhances the infectivity of EBOV
[42, 43]. In the case of HIV-1, recognition of the oligomannose N-glycans on the
gp120 by DC-SIGN is necessary for T-cell migration [44, 45]. Another CLR
involved in HIV-1 recognition is the macrophage mannose receptor (MMR) which
can also bind gp120 via its oligomannose N-glycans [46, 47]. MMR was also shown
to recognize Dengue virus surface glycoprotein in a N-glycan-dependent
manner [48].

Not only are N-linked glycans involved in virus-cell interactions, but so are
viral O-glycans, as they are known to interact with cell surface proteins as well.
For instance, removal of O-glycan structures in herpes simplex virus type
1 (HSV-1) attachment factor gC resulted in lower cell binding [49] and removal
of the O-glycosylation sites of the paramyxoviruses Nipah virus (NIPV) and
Hendra virus led to altered virus entry and cell-to-cell spread [50].
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3.1.2 Virus Assembly and Release

In addition to binding and entry, virus assembly and release from the cell may also be
regulated by glycosylation. Luo et al. [51] showed that specific N-glycosylation sites
in the herpes simplex virus type 2 (HSV-2) glycoprotein B are important for cell-cell
fusion and HSV-2 entry, while another N-glycosylation site (N133) affected viral
protein formation and virus release, as removing this site markedly inhibited viral
protein transport through ER and Golgi. In hepatitis B virus (HBV), elimination of
N-linked glycosylation sites in the small envelope protein also inhibited virus
secretion. Interestingly, the addition of a new glycosylation site into the same protein
restored viral release [52]. Another example is the EBOV GP, which is essential for
virus-cell entry and infection. This glycoprotein is encoded as a precursor protein
and later matured to a fully N- and O-glycosylated surface protein [53]. It was
demonstrated that this maturation is regulated by two N-glycosylation sites in the
transmembrane subunit of the protein. Removal of both sites resulted in misfolded
proteins and yielded noninfectious virus particles [54]. The abovementioned exam-
ples highlight that glycosylation is essential in the viral life cycle. The presence of N-
and O-glycosylation sites may either enhance or inhibit interactions of the virus with
its host cell.

3.2 Viral Glycans in Immune Evasion

Another crucial factor in virus replication is host innate and adaptive immune
responses against viral infection. One of the many ways viruses have found to
circumvent immunity is by exploiting viral glycans for antigen shielding and
mimicry.

3.2.1 Glycan Shielding

Important antigen epitopes at the viral surface can be masked with glycans to
prevent them from detection by components of the host immune system, such as
neutralizing antibodies (nAbs) and complement. Figure 6 illustrates how heavily
some viral surface proteins can be glycosylated. This immune evasion strategy is
employed by many virus families [5, 6], like Epstein-Barr virus [55], Lassa virus
[56], HCV [57], and EBOV [58]. Here, we want to highlight just a few
prominent examples. Probably the best-characterized glycan shield of all is the
one from the HIV-1 envelope protein, for which numerous studies have inves-
tigated the functional role of the glycans in neutralizing antibody responses
against HIV-1 [59]. It is a trimer of non-covalently associated gp120-gp41
heterodimers [60] and covered with many N-glycans as well as O-glycans
[61]. The heterodimer contains more than 90 potential N-glycosylation sites,
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and N-glycans make up approximately half of the trimer mass [62]. These
glycans are suggested to cover large surface areas at the envelope protein by
physical shielding [63]. Glycan sites of the HIV-1 envelope protein are added
and deleted frequently, resulting in constantly renewed epitopes for nAbs [64–
67]. This dynamic is one of the reasons why HIV-1 can easily evade the nAb
response. Wagh et al. [68] showed that the resistance to autologous nAbs was
increased in vivo when potential N-glycosylation sites were added to fill holes in
the HIV-1 glycan shield. In vitro, removal of potential N-glycosylation sites led
to increased virus neutralization [69–72]. It is suggested that there is generally an
advantage for viral fitness if the virus harbors less potential N-glycosylation
sites; however, protection of key viral epitopes from the nAb response needs
to be maintained by glycan shielding [59, 73]. Similar results were observed for
other viruses like NIPV [74], HBV [75], and EBOV [76]. It was shown that, on
one hand, over-glycosylation of surface structures masked antigenic epitopes
from recognition by the host immune system but, on the other hand, that this
resulted in higher costs in viral fitness due to decreased binding affinity and virus
production. Not only N- but also O-linked glycans can shield important epitopes
from recognition by B-cells; thus, removal of glycosylation sites may elicit
altered host immune responses [57, 77–80]. Besides B-cell recognition, also
cytotoxic T-cell activity may be affected by the alteration of viral
glycosylation [81].

Fig. 6 Glycan Shielding of Viral Class I Fusion Proteins. Left to right: Glycan shield models of
Lassa virus glycoprotein complex (PDB ID: 5VK2) [223, 224], Ebola glycoprotein (PDB ID: 5JQ3)
[225], A/H3N2/361/Victoria/2011 H3N2 Influenza virus hemagglutinin (PDB ID: 4O5N)
[226, 227], BG505 SOSIP.664 HIV-1 Env (PDB ID: 4ZMJ) [228, 229], human coronavirus-
NL63 (HCoV-NL63) S protein (PDB ID: 5SZS) [230], Nipah F protein (PDB ID: 5EVM)
[231]. Glycans and proteins are shown in blue and gray, respectively. The fusion protein subunit
is shown in dark gray. The positions of mucin-like domains of Ebola glycoprotein are shown in
yellow. Most predominant sugar compositions were modelled onto each N-linked glycan site, using
pre-existing GlcNAc residues, if possible, with Man5GlcNAc2 modelled on if compositional
information was lacking. This figure, by Watanabe et al. [5], is licensed under the CC BY 4.0
license (http://creativecommons.org/licenses/BY/4.0/) and can be accessed at https://doi.org/10.
1016/j.bbagen.2019.05.012
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3.2.2 Secreted Glycoproteins

Beside glycan shielding and mimicry, viruses can evade the host immune system by
secreting or shedding viral glycoproteins. Firstly, these glycoproteins can misdirect
the humoral immune response by favoring non-neutralizing epitopes [82, 83]. Sec-
ondly, secreted glycoproteins neutralize nAbs (by adsorption) before they could bind
the targeted virus particles [84]. In the HIV-1 envelope protein, monomeric gp120
subunits that may form due to incorrect processing or shedding assists the virus in
escaping from the host immune system by exposing epitopes that are not present on
the functional spike [85]. Thus, non-neutralizing antibodies are produced against this
monomer during HIV-1 infection [82, 83]. EBOV expresses three different glyco-
proteins from the same genetic region caused by frame shift: the full-length mem-
brane-bound fusion GP; a small soluble GP, whose function is yet unknown; and a
dimeric secreted glycoprotein (sGP) [84, 86]. The sGP is secreted by EBOV-infected
cells and acts as an antibody decoy [84]. Mohan et al. [84] proposed a model where
sGP adsorbs anti-GP antibodies by sharing the same epitopes with GP. In a murine
model, sGP thus eliminated protection in animals that had previously been immu-
nized with GP. By investigating the specificity of antibodies isolated from human
survivors of Ebola disease and experimentally infected macaques, researchers
showed that most of them were directed against sGP, compared to the lower
expressed surface protein GP, and that those antibodies directed against sGP are
non-neutralizing [87, 88]. As such, the abundantly expressed EBOV sGP is a potent
secreted antigen that effectively neutralizes nAbs by adsorbing them before they can
bind to GP on the viral surface [5, 89]. This example demonstrates that viral
glycoproteins are able to misdirect the humoral immune response, thus highlighting
viral glycoprotein secretion as a potent viral mechanism to evade immunity. Figure 7
resumes the different aspects of viral glycosylation in the viral life cycle, from their
replication to evading the host immune response, that were discussed here.

4 Viral Vaccine Design

The development of vaccines is one of the greatest triumphs in medicine. World-
wide, vaccination against pathogens has prevented an estimated two to three millions
of deaths annually [90]. Particularly for viral diseases, one of the biggest achieve-
ments in human medicine is the worldwide eradication of smallpox in 1980 [91]. Fur-
thermore, the reduced incidence of major diseases such as measles and poliomyelitis
represents a huge success of human vaccine programs [92, 93]. In veterinary
medicine, the viral disease rinderpest, also known as cattle plague, was declared
eradicated in May 2011 [94]. With high mortality rates up to 100% in buffalo and
cattle herds, this disease alone was responsible for heavy economic losses over
centuries [95].
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A good vaccine must initiate an innate immune response in the vaccinated
human/animal that will lead to a protective antigen-specific adaptive immune
response and also induce an immunological memory. Once generated, those memory
cells can rapidly reactivate upon encountering their antigen and help to eliminate the
infection in its early stages. Traditional vaccination methods that are employed to
immunize and protect against viral diseases include live-attenuated, inactivated, and
subunits vaccines.

4.1 Live-Attenuated Vaccines

Live-attenuated viral vaccines contain weakened forms of the natural virus, thus
reducing their infectious potential [96]. Importantly, their immunogenicity is similar
to the wild-type virus so that attenuated strains induce a strong and mostly long-
lasting immune response. Prominent examples for attenuated viral vaccines include
measles, rubella, varicella, influenza, and mumps [93, 96–98]. The most common
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Fig. 7 The different roles of viral glycosylation in enveloped virus biology. Glycans at the viral
surface are involved in viral infection and immune evasion and also affect the host immune
response. They serve to bind to surface lectin receptors (1) which in turn results in virus entry
into the host cell (2). During protein processing in the ER and Golgi, glycosylation sites on viral
proteins become glycosylated (3). Those glycans become important for correct protein trafficking
and, finally, virus release (4). By secreting or shedding antigens, along with antigen mimicry and
shielding (bottom left), the virus particle is able to counter/evade the host immune response.
Furthermore, viral glycans can be targeted by neutralizing antibodies as well as serve as ligands
for receptors of the innate immune system (top left). Abbreviations: myeloid DAP12-associating
lectin 1 (MDL-1) and dendritic cell-specific intercellular adhesion molecule-3-grabbing
non-integrin (DC-SIGN)
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method to generate an attenuated virus strain is by passaging the natural strain
several times in cell culture to accumulate weakening mutations. Additionally,
chemicals or other mutagenic means can be used to accelerate this process. For
immunization purposes, an attenuated virus strain needs to still be recognized by the
host immune system and unable to cause disease [98]. An example for a successful
live-attenuated virus is the yellow fever vaccine strain [96]. By undergoing more
than 200 serial passages of the yellow fever virus in monkeys as well as mouse and
chicken tissue culture, an attenuated virus strain was obtained in the 1930s from
which all licensed vaccines derive to this day [99]. The RVFV MP12 strain is a
vaccine candidate that was produced by passaging in the presence of 5-fluorouracil,
a chemical mutagen [100]. Compared to the wild-type RVFV ZH548 strain, this
procedure resulted in 23 mutations across the whole genome including nine stable
amino acid substitutions [101, 102]. Those substitutions ensure that MP12 is at a
very low risk of reverting to virulence by a single reversion mutation [102]. While
this vaccine is employed to protect against virulent RVFV in sheep, cattle, and
macaques [103–105], the live-attenuated vaccine strain MP12 is still not licensed for
human use [106, 107]. This example highlights the efficacy of live-attenuated viral
vaccines but also that their production can be labor-intensive and time-consuming,
thus rendering their development costly [96]. The main advantage of live-attenuated
vaccines is their ability to generate long-lasting immunity as they carry the same or
similar epitopes on their surface as the wild-type virus [96]. A potential drawback of
live-attenuated vaccines is that immunocompromised individuals are at a potential
risk of developing diseases caused by revertants [93, 98].

4.2 Inactivated Vaccines

Another traditional vaccine strategy is immunization with inactivated/killed whole
virus particles. The first successful inactivated viral vaccine was generated against
the influenza in 1936 [108]. Later, inactivated vaccines were developed against polio
[109], hepatitis A [110], tick-borne encephalitis virus [111], and Japanese enceph-
alitis virus (JEV) [112]. By treating viruses with heat, chemicals (such as formalde-
hyde, detergents, etc.), or radiation (such as ultraviolet light or γ-irradiation), they
will become inactivated. Thus, compared to live-attenuated vaccine strains,
inactivated vaccines are safer since they pose no risk of generating revertants or of
causing disease. However, immunization with inactivated virus particles usually
does not provide such a long-lasting protection as live-attenuated vaccines do, thus
often requiring boost immunizations to attain the desired protection efficacy
[93]. Examples for inactivated whole virus vaccines include poliovirus, rabies, and
hepatitis A [92, 93]. One benefit is that, like live-attenuated vaccines, inactivated
vaccines induce a broad immune response due to the presence of multiple antigens.
However, key epitopes may be denatured by the inactivation procedure [113–
115]. Immunization of rats with a live-attenuated or a formaldehyde-inactivated
respiratory syncytial virus (RSV) vaccine resulted in antibody responses with
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different specificities [116]. Sera from rats immunized with the live-attenuated
vaccine strain reacted with three different antigenic epitopes, whereas only one
epitope was recognized by the formaldehyde-inactivated RSV vaccinated animals
[116]. Thus, in this case, formaldehyde treatment enabled antibody responses to only
one immunogenic epitope and/or downregulated the response to other epitopes
[116]. Additionally, Ibsen [115] showed that formaldehyde inactivation of JEV
altered the epitope binding pattern for murine monoclonal antibodies. In this partic-
ular case, hydrogen peroxide (H2O2) seemed to be preferable to other inactivation
methods since JEV retained its antigenicity after treatment [115]. It becomes appar-
ent that not all inactivation methods preserve natural epitopes and potential conse-
quences must be considered during vaccine design.

4.3 Subunit Vaccines

Viral subunit vaccines, like proteins or virus-like particles (VLP), may serve as
alternatives to attenuated or inactivated virus particles. Protein subunits can be
produced recombinantly using genetic approaches [117, 118] or purified from
whole virus preparations [119]. The optimal expression system and purification
methods have to be considered in terms of preservation of antigenic epitopes and
glycosylation patterns as the purification procedure often eliminates important
immunogenic structures [120]. One must take into account that a virus passaged in
cell culture does not necessarily display the same glycosylation pattern as a virus
replicated in the infected host. Even cells in the same organism can exhibit different
glycosylation patterns due to a differential expression of glycoenzymes, such as
different cell types or cells from different tissues/organs. Hendra virus
glycoprotein G, for example, when expressed in HeLa and HEK293 cells (both of
human origin), yields two different glycoforms [121]. One must also consider that
cancerous and immortalized cell lines may express different glycosylation patterns
when compared with their normal/healthy counterpart in vivo [122]. As such,
glycosylation may differ when viruses are propagated or viral glycoproteins are
produced in different host species or cell lines. Many viral diseases are zoonotic and
therefore circulate between animal and human hosts. Insects also represent important
disease vectors, and, as described above, their N- as well as O-glycosylation
machinery markedly differs from mammals [123–126].

Purified viral proteins are often used for vaccination since they are well-tolerated,
also by immune-compromised patients [93]. However, subunit vaccines are often
less immunogenic compared to live-attenuated vaccines [93]. Virus-like particles are
genome-free particles that form spontaneously by the assembly of viral proteins
following recombinant production [127, 128]. Compared to using purified proteins,
one of the main advantages for employing VLPs for vaccination is their ability to
present viral epitopes in a natural and multivalent fashion, mimicking the surface of a
native virus, which in turn yields stronger and longer-lasting immune responses
[127, 128]. The first VLP-vaccine was licensed in 1981 for hepatitis B [129]. This
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was followed later by vaccines against human papillomavirus with several other
candidate vaccines currently in clinical trials [128].

To circumvent the lower immunogenicity of subunit vaccines, in many cases,
adjuvants as well as boost immunizations are required [130]. Adjuvants are sub-
stances that enhance the antigen immunogenicity, but are not antigenic themselves,
and thereby help to induce a desired immune response and immunological memory
[130]. Aluminum salts (also commonly referred as “alum”) are a well-known family
that has been employed in human vaccines for over 90 years [131]. They are able to
induce strong antibody responses, but are limited in provoking cellular immune
responses [130]. In some cases, adjuvants are formulated by combining different
immunostimulating compounds to effectively shape the immune response
[93]. AS04, for example, is a combination of alum and 3-O-desacyl-40-
monophosphoryl lipid (MPL, a Toll-like receptor (TLR) 4 agonist) designed to
enhance adaptive immune responses [132], whereas AS03, used in influenza and
HBV vaccines, is formulated with α-tocopherol, a metabolizable oil, to produce an
oil-in-water emulsion [93, 133, 134].

Nowadays, the knowledge of how adjuvants and vaccine formulations can be
tailored to optimize vaccination efficacy is increasing, yet most of that research is
still empirical in nature [130]. Potential undesired side effects caused by the selected
adjuvants always need to be carefully considered [135], along with the vaccine
production system and processes, to ensure optimal antigenicity and
immunogenicity.

4.4 Influenza Virus: A Representative Example
of the Importance of Glycosylation

Influenza viruses are zoonotic pathogens and belong to the family
Orthomyxoviridae. The single-stranded, negative-sense RNA genome consists of
eight segments, each encoding for 1–3 structural and non-structural proteins. The
surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), comprised of
18 (H1–18) and 11 (N1–11) subtypes [136–138], are necessary for virus-cell
interaction and virus replication. HA, the major surface glycoprotein, binds
sialylated host cell glycans to facilitate fusion, and it is an important neutralization
target for the humoral immune response [139–141], whereas NA is involved in sialic
acid cleavage to enable virus particles the release from the host cell membrane [142].

Like all other viruses, influenza viruses utilize the host cell machinery for
biosynthesis and are under pressure to evade the host immune response. Due to
antigenic shift, many potential combinations of NA and HA subtypes are possible,
and almost all have been reported in birds [138, 143]. Over the past 100 years, new
influenza virus strains are emerging constantly, some of which were able to cause
pandemics, as in 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 2009 (H1N1), for
example, with millions of deaths each [144–146]. Additionally, the seasonal flu
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period causes around 3 to 5 million human cases of severe illness worldwide
resulting in around 290,000–650,000 respiratory deaths, annually [147]. Today,
licensed influenza vaccines are typically live-attenuated viruses or subunits com-
posed by surface antigens [145]. Most commonly, the vaccine strains are propagated
in embryonated chicken eggs [145]. Annual influenza vaccines are generally pre-
pared as tri- and quadrivalent formulations designed to protect against different
subtypes of influenza A and influenza B viruses [145]. Which antigen combination
to recommend is estimated annually upon surveillance of worldwide seasonal
circulating viruses, as well as on clinical and laboratory observations
[145, 148]. On the one hand, influenza vaccination saves human lives every year,
but the vaccine effectivity from 2009 to 2019 varied just around 40 to 60%
[145]. The need for a better and, of course, universal vaccine is highly desirable.
However, due to antigenic shift, a multitude of influenza subtypes are circulating and
rapidly evolving. Furthermore, as this evolution yields frequently mutations that
affect vaccine epitopes, we have no choice but to redevelop vaccines to include new
strains every year.

One of today’s challenges in vaccine production is the selection of the best-suited
cell system for virus propagation. It is known that influenza viruses are able to adapt
to the cell type in which they are cultivated [149], as illustrated by the discovery of
mutations near the receptor-binding site of HA in egg-cultivated strains
[150, 151]. De Vries et al. showed that changes in glycan formation of recombinant
HA due to different expression systems have a direct impact on its immunogenicity
[152]. Furthermore, the reference antigens used for the 2014–2015 influenza vaccine
showed diverse glycan profiles when produced in different cell lines, which in turn
may influence the resulting immune response [153]. The egg-cultivated H3N2
vaccine strain, for example, exhibited a substitution in H3 followed by a conforma-
tion change that resulted in a very low antibody response against the naturally
circulating virus [154]. Another example for the importance of the choice of cell
line for vaccine production is that the HA antigen expressed in a new porcine
suspension cell line displayed clear differences in glycosylation compared to other
common mammalian cell lines [155]. Evolutionary, each 5–7 years glycans are
added to H1 and H3 until they reach a limit and then are swapped, but two times
more slowly [156]. Those mutations can have a huge role in antibody evasion and
therefore vaccine effectiveness. In order to develop a universal vaccine [144], one
has to account for all these changes in glycosylation as well as all the subtype-
specific differences.

5 Novel Glycan-Exploiting Vaccine Strategies

In recent years, some authors have discussed glycan-based viral vaccine approaches,
but mainly focused on generating anti-glycan immunity [4, 5, 7, 12, 157,
158]. While the generation of anti-glycan antibodies would help counter virus glycan
shielding and broaden protective immunity, major drawbacks are that glycans are
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poorly immunogenic and that, in the context of viral infections, those glycans are
also part of the “self,” meaning that the host may exhibit tolerance towards those
antigens.

It is well-known that viral glycoproteins expressed in human cell lines are
characterized by complex, oligomannose, and hybrid-type N-glycans. In contrast,
glycoproteins derived from insect cell lines carry oligomannose N-glycans as well as
truncated paucimannose N-glycans. While mammalian cell lines (such as Chinese
hamster ovary (CHO) cells) are generally able to produce glycoproteins with com-
plex human-like N-glycans, they also exhibit the immunogenic α-Gal epitope as well
as the non-human sialic acid N-glycolylneuraminic acid [2]. These differences
clearly illustrate that the choice of the appropriate glycoprotein expression system
can be important, as the resulting N-glycosylation may influence recognition by
antigen-presenting cells and immunological properties [2]. To date, however, this
effect has remained largely unexplored. In one study, two glycovariants of the
influenza A virus were propagated in either Vero or Madin-Darby canine kidney
(MDCK) cells [159]. Analysis of N-glycosylation profiles of the hemagglutinin
showed that the MDCK-glycovariant was mainly composed by complex N-glycans,
while the Vero-glycovariant was mainly composed of oligomannose N-glycans.
In vitro and in vivo immunological assays showed that the Vero-glycovariant may
favor cellular immune responses, while the MDCK-glycovariant led to higher
antibody production. Another study has explored the role of different glycoforms
of influenza hemagglutinins on dendritic cell activation in vitro [160]. Other studies
comparing differentially glycosylated subunit vaccines for HCV show contradictory
results regarding the advantage conferred by insect over mammalian glycans
[157, 161]. Taken together, those results illustrate that glycosylation of viral glyco-
proteins plays a major role in immunogenicity and that further research is warranted
to understand this phenomenon and to exploit it in order to design better vaccines.

Nowadays, such studies can be easily conducted with the great diversity of
glycoprotein-expression systems and genetic engineering tools available to explore
the differential role of glycosylation on viral glycoprotein immunogenicity [9, 162–
167]. By identifying non-human and/or non-mammalian glycans and by
glycoengineering expression systems (by knocking-out, knocking-in, or
overexpressing target enzymes and/or by adjusting cell culture conditions, nutrients,
and supplements), self-adjuvanted glycoprotein-based vaccines may be obtained.
Moreover, glycoengineering can also contribute to improve the efficacy of those
vaccines by reducing the heterogeneity in displayed glycans [168]. In the following
subsections, we will briefly highlight a non-exhaustive list of non-human glycans
that can be exploited to design glycan-based self-adjuvanted vaccines and to
enhance vaccine responses and immunity.
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5.1 Sialylated Glycans with N-Glycolylneuraminic Acid

Most complex glycans encountered are found to be sialylated. The sialic acid
family comprises about 43 derivatives of the acidic 9-carbon monosaccharide
neuraminic acid [169]. The amino group is usually found to be acetylated in nature,
leading to N-acetylneuraminic acid (Neu5Ac), the most widespread form of sialic
acid. If a hydroxyl group is substituted onto the methyl group of the N-acetyl
moiety, N-glycolylneuraminic (Neu5Gc) acid is obtained. Furthermore, the
hydroxyl groups of sialic acids can be further modified by acetylation, methyla-
tion, sulfonation, and phosphorylation. All those structural variations are known to
influence the biological properties of sialic acids, most notably their
immunogenicity [170].

Neu5Gc is frequently referred to as “non-human sialic acid,” the reason being that
while this sugar is widely expressed across mammalian species, an inactivating
mutation got fixed in the human lineage more than two million years ago which
caused the inability of humans to biosynthesize this sugar from Neu5Ac
[171, 172]. Therefore, all human adults possess varying levels of anti-Neu5Gc
antibodies that were shown to promote chronic inflammation [171]. Those anti-
bodies constitute a well-known problem for biotherapeutics and have prompted the
development of many strategies to ensure the bioproduction of Neu5Gc-free glyco-
proteins [10, 173].

In the context of vaccination, viral glycoproteins sialylated with Neu5Gc could
however exploit those anti-Neu5Gc antibodies: through an effective internalization
of those immune complexes by antigen-presenting cells (APCs) and through
increased transport to lymph nodes and processing by APCs, one could obtain an
effective activation of vaccine antigen-specific lymphocytes and a strong cellular
and humoral immune response [174, 175]. It has also been shown that cross talk
between Fc receptors (FcRs) and other pattern recognition receptors (PRRs), such as
TLRs, leads to improved and fine-tuned adaptive immune responses [176]. As such,
vaccine antigen delivery strategies involving opsonization by host natural antibodies
represent a promising avenue, which warrants considerable interest.

5.2 The α-Gal Epitope

The α-Gal epitope (Gal-α1,3-Gal-β1,4-GlcNAc-R) is ubiquitously expressed on the
glycoproteins and glycolipids of non-primate mammals, marsupials, and NewWorld
monkeys, while remaining absent in apes, Old World monkeys and humans
[177, 178]. As such, it is not surprising that anti-Gal antibodies constitute the most
abundant natural antibody in humans with approximately 1% of all serum IgGs
[179]. Previous studies have already demonstrated the potential of the α-Gal epitope
in enhancing vaccine responses against influenza viruses and HIV [179–183]. Impor-
tantly, the mechanism described above for the antibody-mediated enhancement of
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vaccinal responses was initially described in the context of anti-Gal antibodies
[174, 175]. Despite their great potential for vaccination, careful evaluation of
vaccine safety is warranted since anti-Gal antibodies have notably been linked
with allergic reactions in humans [184–186].

5.3 Targeting CLRs: Mannose-Rich and Other Fungal
Glycans

One promising avenue for antigen-delivery technologies and vaccination purposes is
the directed targeting of APCs through CLRs [2, 187–190]. While the CLR super-
family is diversified in terms of ligand specificity, cellular distribution, signalling
pathways, and effector functions [191, 192], some receptors have emerged as
promising targets for antigen delivery and immune modulation [193, 194]. For
example, DC-SIGN, Dectin-1, Dectin-2, Mincle, and MMR are well-known sensors
of fungal pathogens and can mediate antigen uptake and initiate adaptative immune
responses. Among their known ligands, they bind to fungal glycans such as
β-glucans, α-mannans, oligomannose, and hypermannosylated N-glycans
[191, 192, 195, 196]. This explains in part why yeast-produced glycoproteins are
considered highly immunogenic and has sparked increased interest in the use of
yeast-based systems as vaccine antigens and adjuvants [197, 198]. Therefore, strat-
egies aiming at exploiting mannose-rich glycans or other fungal glycans, such as
using yeast expression systems or glycoengineering cell lines to strictly produce
oligomannose N-glycans (e.g., as a result of the deletion of MGAT1 [199, 200]) may
hold great potential for glycan-based vaccine design.

5.4 Insect-Produced Glycans

Examples of insect cell-based subunit viral vaccines that are approved or under
investigation include FluBlok® (targeting the HA of influenza viruses) and vaccines
based on the E2 protein of HCV [157, 161, 201]. As it was previously explained,
insect N-glycans are quite different from their mammalian counterparts as they are
in majority paucimannosidic with or without core α1,6-Fuc and/or core α1,3-Fuc.
The popularity of the baculovirus-insect cell system has prompted considerable
efforts to glycoengineer those insect cells to produce human-like glycans in order
to obtain safer and more efficient biotherapeutics [23]. One drawback from those
insect N-glycans is that core α1,3-fucosylation is considered to be an immunogenic
epitope and to be involved in allergy development [202, 203]. These safety concerns
will be addressed below for plant-produced glycans.

Additionally, improvement in analytical methods led to the observation that insect
cells and other invertebrates can carry previously unrecognized N- and O-glycans
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displaying unusual (non-mammalian) capping modifications [24, 204–
207]. Glycoengineering approaches aimed at producing homogeneously some of
those novel glycans would allow to conduct immunological studies to evaluate their
use as potential self-adjuvanted vaccines.

5.5 Plant-Produced Glycans

In recent years, plant expression systems have been established to produce
biopharmaceuticals such as enzymes, growth factors, peptides, or antibodies, but
also recombinant subunit vaccines and peptides as antigens [208]. While there are
still no plant-based vaccines approved for humans, many candidates are undergoing
clinical trials, notably against influenza viruses, HBV, and rabies viruses
[208, 209]. A vaccine to protect against Newcastle disease (caused by the Newcastle
disease virus in poultry) has been approved for veterinary use [208]. Another
promising plant-based vaccine strategy is the production of hemagglutinin-based
VLP vaccines against influenza viruses [210–213].

One key feature of plant glycans is that only two major glycoforms account for
more than 90% of their N-glycans: the GnGnXF and MMXF structures [22]. The
GnGnXF structures consist of complex biantennary N-glycans where the core
(GlcNAc2Man3GlcNAc2) is both α1,3-fucosylated (on the Asn-linked β-GlcNAc)
and β1,2-xylosylated (on the β1,4-Man) and naturally lacks mammalian β1,4-Gal
and sialic acid residues [214]. The MMXF structures consist of paucimannose
structures that also display core α1,3-Fuc and β1,2-Xyl. While early studies demon-
strated that those glycans were immunogenic in humans and sparked a debate over
the safety of plant glyco-epitopes, recent large-scale clinical trials conducted in
humans have shown those concerns to be mostly unwarranted [22, 203, 215–217].

In summary, plant-based and insect-based glycans are markedly different from
their mammalian/human counterparts. To help decide whether those differences
might be worth exploiting for glycan-based self-adjuvanted vaccination approaches,
more in-depth immunological and mechanistic studies are warranted.

6 Perspectives

Without doubt, viral glycosylation represents a promising target to interfere with
viral infectivity and to modulate the host immune response that has largely been
underexplored yet. On the one hand, viruses utilize glycans to escape immune
surveillance, whereas on the other hand vaccinologists may exploit viral glycosyl-
ation to design “next-generation vaccines”. Cutting-edge methods such as the glycan
array technology or glyco-nanotechnology offer new tools to elucidate the role of
viral glycans in host cell attachment and entry or to selectively interfere with virus-
cell interactions [218, 219], respectively. The design of tailor-made self-adjuvanted
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vaccines, in which the glycan part serves as an intrinsic adjuvant, holds great
potential for antigen cell-specific vaccine delivery and/or the stimulation of desired
immune responses. The choice of appropriate virus production systems and expres-
sion systems for viral glycoproteins as well as the targeted glycoengineering of cell
lines constitute promising strategies to access immunogenic glycosylation patterns.
Additionally, glycoengineering would allow further studies into the role of specific
glycan structures into virus biology. In the present review, we have provided an
overview of viral glycosylation and have highlighted examples of how glycan-
exploiting strategies can be harnessed for vaccine design. These strategies may
also prove useful for current global challenges, such as the development of a
protective vaccine against the SARS-CoV-2 that newly emerged in late 2019
[220, 221]. Future studies and joint efforts of virologists, biochemists, (glyco)
biologists, and immunologists, among others, are critical to pave the way towards
glyco-optimized next-generation vaccines.

Acknowledgments G. Goyette-Desjardins is a recipient of a postdoctoral research fellowship
from the “Fonds de recherche du Québec - Nature et technologies” (FRQNT, Canada). K. Schön
is funded by the “Deutsche Forschungsgemeinschaft” (DFG, Germany; #398066876/GRK 2485/1).

Conflict of Interest Statement The authors declare that they have no conflict of interest.

References

1. Varki A, Gagneux P (2015) Chapter 7 – Biological functions of glycans. In: Varki A,
Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, pp 77–88

2. Johannssen T, Lepenies B (2017) Glycan-based cell targeting to modulate immune responses.
Trends Biotechnol 35(4):334–346

3. Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96
(2):683–720

4. Bagdonaite I, Wandall HH (2018) Global aspects of viral glycosylation. Glycobiology 28
(7):443–467

5. Watanabe Y, Bowden TA, Wilson IA et al (2019) Exploitation of glycosylation in enveloped
virus pathobiology. Biochim Biophys Acta 1863(10):1480–1497

6. Bagdonaite I, Vakhrushev SY, Joshi HJ et al (2018) Viral glycoproteomes: technologies for
characterization and outlook for vaccine design. FEBS Lett 592(23):3898–3920

7. Crispin M, Doores KJ (2015) Targeting host-derived glycans on enveloped viruses for
antibody-based vaccine design. Curr Opin Virol 11:63–69

8. Stanley P, Taniguchi N, Aebi M (2015) Chapter 9 – N-glycans. In: Varki A, Cummings RD,
Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, pp 99–111

9. Dicker M, Strasser R (2015) Using glyco-engineering to produce therapeutic proteins. Expert
Opin Biol Ther 15(10):1501–1516

10. Gupta SK, Shukla P (2018) Glycosylation control technologies for recombinant therapeutic
proteins. Appl Microbiol Biotechnol 102(24):10457–10468

11. Wang Q, Chung CY, Chough S et al (2018) Antibody glycoengineering strategies in mam-
malian cells. Biotechnol Bioeng 115(6):1378–1393

344 K. Schön et al.



12. Buettner MJ, Shah SR, Saeui CT et al (2018) Improving immunotherapy through glycodesign.
Front Immunol 9:2485

13. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease
implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

14. Corfield A (2017) Eukaryotic protein glycosylation: a primer for histochemists and cell
biologists. Histochem Cell Biol 147(2):119–147

15. Zachara N, Akimoto Y, Hart GW (2015) Chapter 19 – the O-GlcNAc modification. In:
Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, pp 239–251

16. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev
Biochem 54(1):631–664

17. Brockhausen I, Hull E, Hindsgaul O et al (1989) Control of glycoprotein synthesis. Detection
and characterization of a novel branching enzyme from hen oviduct, UDP-N-
acetylglucosamine:GlcNAc beta 1-6 (GlcNAc beta 1-2)Man alpha-R (GlcNAc to Man) beta-
4-N-acetylglucosaminyltransferase VI. J Biol Chem 264(19):11211–11221

18. Taguchi T, Ogawa T, Inoue S et al (2000) Purification and characterization of UDP-GlcNAc:
GlcNAcbeta 1-6(GlcNAcbeta 1-2)Manalpha 1-R [GlcNAc to Man]-beta 1, 4-N-
acetylglucosaminyltransferase VI from hen oviduct. J Biol Chem 275(42):32598–32602

19. Watanabe T, Ihara H, Miyoshi E et al (2006) A specific detection of GlcNAcbeta1-
6Manalpha1 branches in N-linked glycoproteins based on the specificity of N-
acetylglucosaminyltransferase VI. Glycobiology 16(5):431–439

20. Nakano M, Mishra SK, Tokoro Y et al (2019) Bisecting GlcNAc is a general suppressor of
terminal modification of N-glycan. Mol Cell Proteomics 18(10):2044–2057

21. Schneider M, Al-Shareffi E, Haltiwanger RS (2017) Biological functions of fucose in mam-
mals. Glycobiology 27(7):601–618

22. Montero-Morales L, Steinkellner H (2018) Advanced plant-based glycan engineering. Front
Bioeng Biotechnol 6(81):81

23. Shi X, Jarvis DL (2007) Protein N-glycosylation in the baculovirus-insect cell system. Curr
Drug Targets 8(10):1116–1125

24. Tiemeyer M, Nakato H, Esko JD (2015) Chapter 26 – Arthropoda. In: Varki A, Cummings
RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, pp 335–349

25. Haltiwanger RS, Wells L, Freeze HH et al (2015) Chapter 13 – Other classes of eukaryotic
glycans. In: Varki A, Cummings RD et al (eds) Essentials of glycobiology, 3rd edn. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, pp 151–160

26. Varki A, Kornfeld S (2015) Chapter 1 – Historical background and overview. In: Varki A,
Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, pp 1–18

27. Jensen PH, Kolarich D, Packer NH (2010) Mucin-type O-glycosylation - putting the pieces
together. FEBS J 277(1):81–94

28. Marth JD (1999) Chapter 8 – O-glycans. In: Varki A, Cummings R, Esko J, Freeze H, Hart G,
Marth J (eds) Essentials of glycobiology, 1st edn. Cold Spring Harbor Laboratory Press, Cold
Spring Harbor

29. Brockhausen I, Stanley P (2015) Chapter 10 – O-GalNAc glycans. In: Varki A, Cummings
RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, pp 113–123

30. Corfield AP, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends
Biochem Sci 40(7):351–359

31. Stanley P, Cummings RD (2015) Chapter 14 – Structures common to different glycans. In:
Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, pp 161–178

32. Fenouillet E, Gluckman JC, Bahraoui E (1990) Role of N-linked glycans of envelope glyco-
proteins in infectivity of human immunodeficiency virus type 1. J Virol 64(6):2841–2848

Impact of Protein Glycosylation on the Design of Viral Vaccines 345



33. Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interac-
tions. Trends Microbiol 15(5):211–218

34. Lin G, Simmons G, Pohlmann S et al (2003) Differential N-linked glycosylation of human
immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with
DC-SIGN and DC-SIGNR. J Virol 77(2):1337–1346

35. Lozach P-Y, Amara A, Bartosch B et al (2004) C-type lectins L-SIGN and DC-SIGN capture
and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 279
(31):32035–32045

36. Leger P, Tetard M, Youness B et al (2016) Differential use of the C-type lectins L-SIGN and
DC-SIGN for phlebovirus endocytosis. Traffic 17(6):639–656

37. Lozach PY, Kuhbacher A, Meier R et al (2011) DC-SIGN as a receptor for phleboviruses. Cell
Host Microbe 10(1):75–88

38. Monteiro J, Lepenies B (2017) Myeloid C-type lectin receptors in viral recognition and
antiviral immunity. Viruses 9(3):59

39. van Liempt E, Bank CM, Mehta P et al (2006) Specificity of DC-SIGN for mannose- and
fucose-containing glycans. FEBS Lett 580(26):6123–6131

40. Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recogni-
tion by the C-type lectins DC-SIGN and DC-SIGNR. J Biol Chem 276(31):28939–28945

41. Curtis BM, Scharnowske S, Watson AJ (1992) Sequence and expression of a membrane-
associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency
virus envelope glycoprotein gp120. Proc Natl Acad Sci U S A 89(17):8356–8360

42. Alvarez CP, Lasala F, Carrillo J et al (2002) C-type lectins DC-SIGN and L-SIGN mediate
cellular entry by Ebola virus in cis and in trans. J Virol 76(13):6841–6844

43. Simmons G, Reeves JD, Grogan CC et al (2003) DC-SIGN and DC-SIGNR bind Ebola
glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305
(1):115–123

44. Geijtenbeek TBH, Torensma R, Van Vliet SJ et al (2000) Identification of DC-SIGN, a novel
dendritic cell–specific ICAM-3 receptor that supports primary immune responses. Cell 100
(5):575–585

45. Hong PW, Flummerfelt KB, de Parseval A et al (2002) Human immunodeficiency virus
envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent
but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of
gp120-DC-SIGN binding. J Virol 76(24):12855–12865

46. Nguyen DG, Hildreth JEK (2003) Involvement of macrophage mannose receptor in the
binding and transmission of HIV by macrophages. Eur J Immunol 33(2):483–493

47. Lai J, Bernhard OK, Turville SG et al (2009) Oligomerization of the macrophage mannose
receptor enhances gp120-mediated binding of HIV-1. J Biol Chem 284(17):11027–11038

48. Miller JL, Dewet BJM, Martinez-Pomares L et al (2008) The mannose receptor mediates
dengue virus infection of macrophages. PLoS Pathog 4(2):e17

49. Altgärde N, Eriksson C, Peerboom N et al (2015) Mucin-like region of herpes simplex virus
type 1 attachment protein glycoprotein C (gC) modulates the virus-glycosaminoglycan inter-
action. J Biol Chem 290(35):21473–21485

50. Stone JA, Nicola AV, Baum LG et al (2016) Multiple novel functions of henipavirus O-
glycans: the first O-glycan functions identified in the paramyxovirus family. PLoS Pathog 12
(2):e1005445

51. Luo S, Hu K, He S et al (2015) Contribution of N-linked glycans on HSV-2 gB to cell–cell
fusion and viral entry. Virology 483:72–82

52. Ito K, Qin Y, Guarnieri M et al (2010) Impairment of hepatitis B virus virion secretion by
single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosyl-
ation site. J Virol 84(24):12850–12861

53. Volchkov VE, Feldmann H, Volchkova VA et al (1998) Processing of the Ebola virus
glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 95(10):5762–5767

346 K. Schön et al.



54. Wang B, Wang Y, Frabutt DA et al (2017) Mechanistic understanding of N-glycosylation in
Ebola virus glycoprotein maturation and function. J Biol Chem 292(14):5860–5870

55. Szakonyi G, Klein MG, Hannan JP et al (2006) Structure of the Epstein-Barr virus major
envelope glycoprotein. Nat Struct Mol Biol 13(11):996–1001

56. Sommerstein R, Flatz L, Remy MM et al (2015) Arenavirus glycan shield promotes neutral-
izing antibody evasion and protracted infection. PLoS Pathog 11(11):e1005276

57. Falkowska E, Kajumo F, Garcia E et al (2007) Hepatitis C virus envelope glycoprotein E2
glycans modulate entry, CD81 binding, and neutralization. J Virol 81(15):8072–8079

58. Beniac DR, Booth TF (2017) Structure of the Ebola virus glycoprotein spike within the virion
envelope at 11Å resolution. Sci Rep 7:46374

59. Seabright GE, Doores KJ, Burton DR et al (2019) Protein and glycan mimicry in HIV vaccine
design. J Mol Biol 431(12):2223–2247

60. Hallenberger S, Bosch V, Angliker H et al (1992) Inhibition of furin-mediated cleavage
activation of HIV-1 glycoprotein gp160. Nature 360(6402):358–361

61. Silver ZA, Antonopoulos A, Haslam SM et al (2020) Discovery of O-linked carbohydrate on
HIV-1 envelope and its role in shielding against one category of broadly neutralizing anti-
bodies. Cell Rep 30(6):1862–1869.e1864

62. Lasky LA, Groopman JE, Fennie CW et al (1986) Neutralization of the AIDS retrovirus by
antibodies to a recombinant envelope glycoprotein. Science 233(4760):209–212

63. Lee JH, Ozorowski G, Ward AB (2016) Cryo-EM structure of a native, fully glycosylated,
cleaved HIV-1 envelope trimer. Science 351(6277):1043–1048

64. Stewart-Jones GB, Soto C, Lemmin T et al (2016) Trimeric HIV-1-Env structures define
glycan shields from clades A, B, and G. Cell 165(4):813–826

65. Wei X, Decker JM, Wang S et al (2003) Antibody neutralization and escape by HIV-1. Nature
422(6929):307–312

66. Moore PL, Gray ES, Wibmer CK et al (2012) Evolution of an HIV glycan-dependent broadly
neutralizing antibody epitope through immune escape. Nat Med 18(11):1688–1692

67. Dacheux L, Moreau A, Ataman-Onal Y et al (2004) Evolutionary dynamics of the glycan
shield of the human immunodeficiency virus envelope during natural infection and implica-
tions for exposure of the 2G12 epitope. J Virol 78(22):12625–12637

68. Wagh K, Kreider EF, Li Y et al (2018) Completeness of HIV-1 envelope glycan shield at
transmission determines neutralization breadth. Cell Rep 25(4):893–908.e897

69. McCaffrey RA, Saunders C, Hensel M et al (2004) N-linked glycosylation of the V3 loop and
the immunologically silent face of gp120 protects human immunodeficiency virus type
1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J Virol 78(7):3279–3295

70. Koch M, Pancera M, Kwong PD et al (2003) Structure-based, targeted deglycosylation of
HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology 313
(2):387–400

71. Li Y, Cleveland B, Klots I et al (2008) Removal of a single N-linked glycan in human
immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing
antibody responses. J Virol 82(2):638–651

72. Back NK, Smit L, De Jong JJ et al (1994) An N-glycan within the human immunodeficiency
virus type 1 gp120 V3 loop affects virus neutralization. Virology 199(2):431–438

73. Lynch RM, Wong P, Tran L et al (2015) HIV-1 fitness cost associated with escape from the
VRC01 class of CD4 binding site neutralizing antibodies. J Virol 89(8):4201–4213

74. Aguilar HC, Matreyek KA, Filone CM et al (2006) N-Glycans on Nipah virus fusion protein
protect against neutralization but reduce membrane fusion and viral entry. J Virol 80
(10):4878–4889

75. Julithe R, Abou-Jaoude G, Sureau C (2014) Modification of the hepatitis B virus envelope
protein glycosylation pattern interferes with secretion of viral particles, infectivity, and
susceptibility to neutralizing antibodies. J Virol 88(16):9049–9059

76. Lennemann NJ, Rhein BA, Ndungo E et al (2014) Comprehensive functional analysis of N-
linked glycans on Ebola virus GP1. mBio 5(1):e00862–e00813

Impact of Protein Glycosylation on the Design of Viral Vaccines 347



77. Sodora DL, Cohen GH, Eisenberg RJ (1989) Influence of asparagine-linked oligosaccharides
on antigenicity, processing, and cell surface expression of herpes simplex virus type 1 glyco-
protein D. J Virol 63(12):5184–5193

78. Hobman TC, Qiu ZY, Chaye H et al (1991) Analysis of rubella virus E1 glycosylation mutants
expressed in COS cells. Virology 181(2):768–772

79. Fournillier A, Wychowski C, Boucreux D et al (2001) Induction of hepatitis C virus E1
envelope protein-specific immune response can be enhanced by mutation of N-glycosylation
sites. J Virol 75(24):12088–12097

80. Helle F, Vieyres G, Elkrief L et al (2010) Role of N-linked glycans in the functions of hepatitis
C virus envelope proteins incorporated into infectious virions. J Virol 84(22):11905–11915

81. Liu M, Chen H, Luo F et al (2007) Deletion of N-glycosylation sites of hepatitis C virus
envelope protein E1 enhances specific cellular and humoral immune responses. Vaccine 25
(36):6572–6580

82. Sattentau QJ, Moore JP (1995) Human immunodeficiency virus type 1 neutralization is
determined by epitope exposure on the gp120 oligomer. J Exp Med 182(1):185–196

83. Sanders RW, Derking R, Cupo A et al (2013) A next-generation cleaved, soluble HIV-1 Env
trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not
non-neutralizing antibodies. PLoS Pathog 9(9):e1003618

84. Mohan GS, Li W, Ye L et al (2012) Antigenic subversion: a novel mechanism of host immune
evasion by Ebola virus. PLoS Pathog 8(12):e1003065

85. Moore PL, Crooks ET, Porter L et al (2006) Nature of nonfunctional envelope proteins on the
surface of human immunodeficiency virus type 1. J Virol 80(5):2515–2528

86. Trefry JC, Wollen SE, Nasar F et al (2015) Ebola virus infections in nonhuman primates are
temporally influenced by glycoprotein poly-U editing site populations in the exposure mate-
rial. Viruses 7(12):6739–6754

87. Maruyama T, Parren PW, Sanchez A et al (1999) Recombinant human monoclonal antibodies
to Ebola virus. J Infect Dis 179(s1):S235–S239

88. Druar C, Saini SS, Cossitt MA et al (2005) Analysis of the expressed heavy chain variable-
region genes of Macaca fascicularis and isolation of monoclonal antibodies specific for the
Ebola virus’ soluble glycoprotein. Immunogenetics 57(10):730–738

89. Cook JD, Lee JE (2013) The secret life of viral entry glycoproteins: moonlighting in immune
evasion. PLoS Pathog 9(5):e1003258

90. WHO (2019) Ten threats to global health in 2019. https://www.who.int/news-room/feature-
stories/ten-threats-to-global-health-in-2019. Accessed 20 Apr 2020

91. Tognotti E (2010) The eradication of smallpox, a success story for modern medicine and
public health: what lessons for the future? J Infect Dev Ctries 4(5):264–266

92. Delany I, Rappuoli R, De Gregorio E (2014) Vaccines for the 21st century. EMBOMol Med 6
(6):708–720

93. Vetter V, Denizer G, Friedland LR et al (2018) Understanding modern-day vaccines: what you
need to know. Ann Med 50(2):110–120

94. Morens DM, Holmes EC, Davis AS et al (2011) Global rinderpest eradication: lessons learned
and why humans should celebrate too. J Infect Dis 204(4):502–505

95. Hamilton K, Baron MD, Matsuo K et al (2017) Rinderpest eradication: challenges for
remaining disease free and implications for future eradication efforts. Rev Sci Tech 36
(2):579–588

96. Minor PD (2015) Live attenuated vaccines: historical successes and current challenges.
Virology 479-480:379–392

97. Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 111(34):12283–12287
98. Hajj Hussein I, Chams N, Chams S et al (2015) Vaccines through centuries: major corner-

stones of global health. Front Public Health 3:269
99. Barrett ADT (2017) Yellow fever live attenuated vaccine: a very successful live attenuated

vaccine but still we have problems controlling the disease. Vaccine 35(44):5951–5955

348 K. Schön et al.

https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019
https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019


100. Caplen H, Peters CJ, Bishop DH (1985) Mutagen-directed attenuation of Rift Valley fever
virus as a method for vaccine development. J Gen Virol 66(10):2271–2277

101. Lokugamage N, Freiberg AN, Morrill JC et al (2012) Genetic subpopulations of Rift Valley
fever virus strains ZH548 and MP-12 and recombinant MP-12 strains. J Virol 86
(24):13566–13575

102. Ikegami T, Hill TE, Smith JK et al (2015) Rift Valley fever virus MP-12 vaccine is fully
attenuated by a combination of partial attenuations in the S, M, and L segments. J Virol 89
(14):7262–7276

103. Morrill JC, Jennings GB, Caplen H et al (1987) Pathogenicity and immunogenicity of a
mutagen-attenuated Rift Valley fever virus immunogen in pregnant ewes. Am J Vet Res 48
(7):1042–1047

104. Morrill JC, Peters CJ (2003) Pathogenicity and neurovirulence of a mutagen-attenuated Rift
Valley fever vaccine in rhesus monkeys. Vaccine 21(21–22):2994–3002

105. Morrill JC, Mebus CA, Peters CJ (1997) Safety and efficacy of a mutagen-attenuated Rift
Valley fever virus vaccine in cattle. Am J Vet Res 58(10):1104–1109

106. Lang Y, Li Y, Jasperson D et al (2019) Identification and evaluation of antivirals for Rift
Valley fever virus. Vet Microbiol 230:110–116

107. Ikegami T (2019) Candidate vaccines for human Rift Valley fever. Expert Opin Biol Ther 19
(12):1333–1342

108. Thomas Jr F, Magill T (1936) Vaccination of human subjects with virus of human influenza.
Proc Soc Exp Biol Med 33(4):604–606

109. Salk JE, Krech U, Youngner JS et al (1954) Formaldehyde treatment and safety testing of
experimental poliomyelitis vaccines. Am J Public Health Nations Health 44(5):563–570

110. Provost PJ, Hughes JV, Miller WJ et al (1986) An inactivated hepatitis A viral vaccine of cell
culture origin. J Med Virol 19(1):23–31

111. Kunz C (1962) Aktiv und passive Immunoprophylaxe der Fruhsommer-Meningoencephalitis
(FSME). Arzneimittelforschung 28:1806

112. Yamashita T, Ishikawa N, Hojo F et al (1970) Japanese encephalitis purified vaccine. II. Purity
of the mouse brain vaccine purified by ultracentrifugation. Biken J 13(1):25–38

113. Fan YC, Chiu HC, Chen LK et al (2015) Formalin inactivation of Japanese encephalitis virus
vaccine alters the antigenicity and immunogenicity of a neutralization epitope in envelope
protein domain III. PLoS Negl Trop Dis 9(10):e0004167

114. di Tommaso A, de Magistris MT, Bugnoli M et al (1994) Formaldehyde treatment of proteins
can constrain presentation to T cells by limiting antigen processing. Infect Immun 62
(5):1830–1834

115. Ibsen PH (1996) The effect of formaldehyde, hydrogen peroxide and genetic detoxification of
pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine 14
(5):359–368

116. Widjaja I, Wicht O, Luytjes W et al (2016) Characterization of epitope-specific anti-respiratory
syncytial virus (anti-RSV) antibody responses after natural infection and after vaccination with
formalin-inactivated RSV. J Virol 90(13):5965–5977

117. Clark TG, Cassidy-Hanley D (2005) Recombinant subunit vaccines: potentials and con-
straints. Dev Biol (Basel) 121:153–163

118. Michel ML, Tiollais P (2010) Hepatitis B vaccines: protective efficacy and therapeutic
potential. Pathol Biol (Paris) 58(4):288–295

119. Soema PC, Kompier R, Amorij J-P et al (2015) Current and next generation influenza
vaccines: formulation and production strategies. Eur J Pharm Biopharm 94:251–263

120. Rappuoli R, Pizza M, Del Giudice G et al (2014) Vaccines, new opportunities for a new
society. Proc Natl Acad Sci U S A 111(34):12288–12293

121. Colgrave ML, Snelling HJ, Shiell BJ et al (2012) Site occupancy and glycan compositional
analysis of two soluble recombinant forms of the attachment glycoprotein of Hendra virus.
Glycobiology 22(4):572–584

Impact of Protein Glycosylation on the Design of Viral Vaccines 349



122. Orntoft TF, Vestergaard EM (1999) Clinical aspects of altered glycosylation of glycoproteins
in cancer. Electrophoresis 20(2):362–371

123. Rendić D, Wilson IB, Paschinger K (2008) The glycosylation capacity of insect cells. Croat
Chem Acta 81(1):7–21

124. Vandenborre G, Smagghe G, Ghesquiere B et al (2011) Diversity in protein glycosylation
among insect species. PLoS One 6(2):e16682

125. Walski T, De Schutter K, Van Damme EJM et al (2017) Diversity and functions of protein
glycosylation in insects. Insect Biochem Mol Biol 83:21–34

126. Joshi HJ, Narimatsu Y, Schjoldager KT et al (2018) SnapShot: O-glycosylation pathways
across kingdoms. Cell 172(3):632–632.e632

127. Hill BD, Zak A, Khera E et al (2018) Engineering virus-like particles for antigen and drug
delivery. Curr Protein Pept Sci 19(1):112–127

128. Roldão A, Mellado MCM, Castilho LR et al (2010) Virus-like particles in vaccine develop-
ment. Expert Rev Vaccines 9(10):1149–1176

129. Krugman S (1982) The newly licensed hepatitis B vaccine. Characteristics and indications for
use. JAMA 247(14):2012–2015

130. Pasquale A, Preiss S, Silva F et al (2015) Vaccine adjuvants: from 1920 to 2015 and beyond.
Vaccine 3(2):320–343

131. Kool M, Fierens K, Lambrecht BN (2012) Alum adjuvant: some of the tricks of the oldest
adjuvant. J Med Microbiol 61(7):927–934

132. Didierlaurent AM, Morel S, Lockman L et al (2009) AS04, an aluminum salt- and TLR4
agonist-based adjuvant system, induces a transient localized innate immune response leading
to enhanced adaptive immunity. J Immunol 183(10):6186–6197

133. Morel S, Didierlaurent A, Bourguignon P et al (2011) Adjuvant system AS03 containing
α-tocopherol modulates innate immune response and leads to improved adaptive immunity.
Vaccine 29(13):2461–2473

134. Cohet C, van der Most R, Bauchau V et al (2019) Safety of AS03-adjuvanted influenza
vaccines: a review of the evidence. Vaccine 37(23):3006–3021

135. Batista-Duharte A, Martínez DT, Carlos IZ (2018) Efficacy and safety of immunological
adjuvants. Where is the cut-off? Biomed Pharmacother 105:616–624

136. Air GM (1981) Sequence relationships among the hemagglutinin genes of 12 subtypes of
influenza A virus. Proc Natl Acad Sci U S A 78(12):7639–7643

137. Wu Y, Wu Y, Tefsen B et al (2014) Bat-derived influenza-like viruses H17N10 and H18N11.
Trends Microbiol 22(4):183–191

138. Sautto GA, Kirchenbaum GA, Ross TM (2018) Towards a universal influenza vaccine:
different approaches for one goal. Virol J 15(1):17

139. Air GM (2014) Influenza virus–glycan interactions. Curr Opin Virol 7:128–133
140. Epstein SL, Misplon JA, Lawson CM et al (1993) Beta 2-microglobulin-deficient mice can be

protected against influenza A infection by vaccination with vaccinia-influenza recombinants
expressing hemagglutinin and neuraminidase. J Immunol 150(12):5484–5493

141. Angeletti D, Gibbs JS, Angel M et al (2017) Defining B cell immunodominance to viruses. Nat
Immunol 18(4):456–463

142. Doyle TM, Jaentschke B, Van Domselaar G et al (2013) The universal epitope of influenza A
viral neuraminidase fundamentally contributes to enzyme activity and viral replication. J Biol
Chem 288(25):18283–18289

143. Webster RG, Govorkova EA (2014) Continuing challenges in influenza. Ann N Y Acad Sci
1323(1):115–139

144. Erbelding EJ, Post DJ, Stemmy EJ et al (2018) A universal influenza vaccine: the strategic plan
for the National Institute of allergy and infectious diseases. J Infect Dis 218(3):347–354

145. Wei CJ, Crank MC, Shiver J et al (2020) Next-generation influenza vaccines: opportunities
and challenges. Nat Rev Drug Discov 19(4):239–252

146. Wendel I, Matrosovich M, Klenk HD (2015) SnapShot: evolution of human influenza A
viruses. Cell Host Microbe 17(3):416–416.e411

350 K. Schön et al.



147. WHO (2020) Influenza (seasonal) fact sheet. https://www.who.int/news-room/fact-sheets/
detail/influenza-(seasonal). Accessed 18 Apr 2020

148. Chang D, Zaia J (2019) Why glycosylation matters in building a better flu vaccine. Mol Cell
Proteomics 18(12):2348–2358

149. Schwarzer J, Rapp E, Hennig R et al (2009) Glycan analysis in cell culture-based influenza
vaccine production: influence of host cell line and virus strain on the glycosylation pattern of
viral hemagglutinin. Vaccine 27(32):4325–4336

150. Schild GC, Oxford JS, de Jong JC et al (1983) Evidence for host-cell selection of influenza
virus antigenic variants. Nature 303(5919):706–709

151. Robertson JS, Bootman JS, Newman R et al (1987) Structural changes in the haemagglutinin
which accompany egg adaptation of an influenza A (H1N1) virus. Virology 160(1):31–37

152. de Vries RP, Smit CH, de Bruin E et al (2012) Glycan-dependent immunogenicity of
recombinant soluble trimeric hemagglutinin. J Virol 86(21):11735–11744

153. An Y, Parsons LM, Jankowska E et al (2019) N-glycosylation of seasonal influenza vaccine
hemagglutinins: implication for potency testing and immune processing. J Virol 93(2):
e01693–e01618

154. Wu NC, Zost SJ, Thompson AJ et al (2017) A structural explanation for the low effectiveness
of the seasonal influenza H3N2 vaccine. PLoS Pathog 13(10):e1006682

155. Granicher G, Coronel J, Pralow A et al (2019) Efficient influenza A virus production in high
cell density using the novel porcine suspension cell line PBG.PK2.1. Vaccine 37
(47):7019–7028

156. Altman MO, Angel M, Kosik I et al (2019) Human influenza A virus hemagglutinin glycan
evolution follows a temporal pattern to a glycan limit. mBio 10(2):e00204–e00219

157. Li D, von Schaewen M, Wang X et al (2016) Altered glycosylation patterns increase
immunogenicity of a subunit hepatitis C virus vaccine, inducing neutralizing antibodies
which confer protection in mice. J Virol 90(23):10486–10498

158. Go EP, Ding H, Zhang S et al (2017) Glycosylation benchmark profile for HIV-1 envelope
glycoprotein production based on eleven Env trimers. J Virol 91(9):e02428–e02416

159. Hutter J, Rodig JV, Hoper D et al (2013) Toward animal cell culture-based influenza vaccine
design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. J Immunol
190(1):220–230

160. Liu WC, Lin YL, Spearman M et al (2016) Influenza virus hemagglutinin glycoproteins with
different N-glycan patterns activate dendritic cells in vitro. J Virol 90(13):6085–6096

161. Urbanowicz RA, Wang R, Schiel JE et al (2019) Antigenicity and immunogenicity of
differentially glycosylated hepatitis C virus E2 envelope proteins expressed in mammalian
and insect cells. J Virol 93(7):e01403–e01418

162. Ronda C, Pedersen LE, Hansen HG et al (2014) Accelerating genome editing in CHO cells
using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111
(8):1604–1616

163. Toth AM, Kuo C-W, Khoo K-H et al (2014) A new insect cell glycoengineering approach
provides baculovirus-inducible glycogene expression and increases human-type glycosylation
efficiency. J Biotechnol 182-183:19–29

164. Heffner KM, Wang Q, Hizal DB et al (2018) Glycoengineering of mammalian expression
systems on a cellular level. In: Advances in biochemical engineering/biotechnology. Springer,
Berlin. https://doi.org/10.1007/1010_2017_1057

165. Mabashi-Asazuma H, Jarvis DL (2017) CRISPR-Cas9 vectors for genome editing and host
engineering in the baculovirus-insect cell system. Proc Natl Acad Sci U S A 114
(34):9068–9073

166. Narimatsu Y, Joshi HJ, Nason R et al (2019) An atlas of human glycosylation pathways
enables display of the human glycome by gene engineered cells. Mol Cell 75(2):394–407.e395

167. Yang Z, Wang S, Halim A et al (2015) Engineered CHO cells for production of diverse,
homogeneous glycoproteins. Nat Biotechnol 33:842

168. Lepenies B, Seeberger PH (2014) Simply better glycoproteins. Nat Biotechnol 32(5):443–445

Impact of Protein Glycosylation on the Design of Viral Vaccines 351

https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://doi.org/10.1007/1010_2017_1057


169. Traving C, Schauer R (1998) Structure, function and metabolism of sialic acids. Cell Mol Life
Sci 54(12):1330–1349

170. Varki A, Gagneux P (2012) Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci
1253(1):16–36

171. Dhar C, Sasmal A, Varki A (2019) From “serum sickness” to “xenosialitis”: past, present, and
future significance of the non-human sialic acid Neu5Gc. Front Immunol 10:807

172. Altman MO, Gagneux P (2019) Absence of Neu5Gc and presence of anti-Neu5Gc antibodies
in humans-an evolutionary perspective. Front Immunol 10:789

173. Ghaderi D, Taylor RE, Padler-Karavani V et al (2010) Implications of the presence of N-
glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 28
(8):863–867

174. Benatuil L, Kaye J, Rich RF et al (2005) The influence of natural antibody specificity on
antigen immunogenicity. Eur J Immunol 35(9):2638–2647

175. Abdel-Motal UM, Wigglesworth K, Galili U (2009) Mechanism for increased immunogenic-
ity of vaccines that form in vivo immune complexes with the natural anti-gal antibody. Vaccine
27(23):3072–3082

176. Bakema JE, Tuk CW, van Vliet SJ et al (2015) Antibody-opsonized bacteria evoke an
inflammatory dendritic cell phenotype and polyfunctional Th cells by cross-talk between
TLRs and FcRs. J Immunol 194(4):1856–1866

177. Huai G, Qi P, Yang H et al (2016) Characteristics of α-gal epitope, anti-gal antibody, α1,3
galactosyltransferase and its clinical exploitation (review). Int J Mol Med 37(1):11–20

178. Macher BA, Galili U (2008) The Galα1,3Galβ1,4GlcNAc-R (α-gal) epitope: a carbohydrate of
unique evolution and clinical relevance. Biochim Biophys Acta 1780(2):75–88

179. Abdel-Motal UM, Guay HM, Wigglesworth K et al (2007) Immunogenicity of influenza virus
vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells. J Virol 81
(17):9131–9141

180. Abdel-Motal U, Wang S, Lu S et al (2006) Increased immunogenicity of human immunode-
ficiency virus gp120 engineered to express Galalpha1-3Galbeta1-4GlcNAc-R epitopes. J Virol
80(14):6943–6951

181. Abdel-Motal UM, Wang S, Awad A et al (2010) Increased immunogenicity of HIV-1 p24 and
gp120 following immunization with gp120/p24 fusion protein vaccine expressing alpha-gal
epitopes. Vaccine 28(7):1758–1765

182. Henion TR, Gerhard W, Anaraki F et al (1997) Synthesis of alpha-gal epitopes on influenza
virus vaccines, by recombinant alpha-1,3-galactosyltransferase, enables the formation of
immune complexes with the natural anti-gal antibody. Vaccine 15(11):1174–1182

183. Galili U, Repik PM, Anaraki F et al (1996) Enhancement of antigen presentation of influenza
virus hemagglutinin by the natural human anti-gal antibody. Vaccine 14(4):321–328

184. Steinke JW, Platts-Mills TA, Commins SP (2015) The alpha-gal story: lessons learned from
connecting the dots. J Allergy Clin Immunol 135(3):589–596

185. Chinuki Y, Morita E (2019) Alpha-gal-containing biologics and anaphylaxis. Allergol Int 68
(3):296–300

186. Román-Carrasco P, Lieder B, Somoza V et al (2019) Only α-gal bound to lipids, but not to
proteins, is transported across enterocytes as an IgE-reactive molecule that can induce effector
cell activation. Allergy 74(10):1956–1968

187. Lepenies B, Lee J, Sonkaria S (2013) Targeting C-type lectin receptors with multivalent
carbohydrate ligands. Adv Drug Del Rev 65(9):1271–1281

188. Brzezicka K, Vogel U, Serna S et al (2016) Influence of core beta-1,2-xylosylation on
glycoprotein recognition by murine C-type lectin receptors and its impact on dendritic cell
targeting. ACS Chem Biol 11(8):2347–2356

189. Johannssen T, Lepenies B (2015) Identification and characterization of carbohydrate-based
adjuvants. Methods Mol Biol 1331:173–187

352 K. Schön et al.



190. Maglinao M, Eriksson M, Schlegel MK et al (2014) A platform to screen for C-type lectin
receptor-binding carbohydrates and their potential for cell-specific targeting and immune
modulation. J Control Release 175:36–42

191. Mayer S, Raulf M-K, Lepenies B (2017) C-type lectins: their network and roles in pathogen
recognition and immunity. Histochem Cell Biol 147(2):223–237

192. Goyal S, Castrillon-Betancur JC, Klaile E et al (2018) The interaction of human pathogenic
fungi with C-type lectin receptors. Front Immunol 9:1261

193. van Kooyk Y, Unger WWJ, Fehres CM et al (2013) Glycan-based DC-SIGN targeting
vaccines to enhance antigen cross-presentation. Mol Immunol 55(2):143–145

194. Hu J, Wei P, Seeberger PH et al (2018) Mannose-functionalized nanoscaffolds for targeted
delivery in biomedical applications. Chem Asian J 13(22):3448–3459

195. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures
found in various yeast species. Biochim Biophys Acta 1426(2):227–237

196. Kottom TJ, Hebrink DM, Monteiro JT et al (2019) Myeloid C-type lectin receptors that
recognize fungal mannans interact with Pneumocystis organisms and major surface glycopro-
tein. J Med Microbiol 68(11):1649–1654

197. Angrand G, Quillévéré A, Loaëc N et al (2019) Sneaking out for happy hour: yeast-based
approaches to explore and modulate immune response and immune evasion. Genes 10(9):667

198. Vetvicka V, Vannucci L, Sima P (2020) Beta-glucan as a new tool in vaccine development.
Scand J Immunol 91(2):e12833

199. Stanley P, Chen W (2003) Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations
that encode truncated N-acetylglucosaminyltransferase I. Glycobiology 13(1):43–50

200. Byrne G, O’Rourke SM, Alexander DL et al (2018) CRISPR/Cas9 gene editing for the
creation of an MGAT1-deficient CHO cell line to control HIV-1 vaccine glycosylation.
PLoS Biol 16(8):e2005817

201. Cox MMJ, Hollister JR (2009) FluBlok, a next generation influenza vaccine manufactured in
insect cells. Biologicals 37(3):182–189

202. Wilson IBH (2002) Glycosylation of proteins in plants and invertebrates. Curr Opin Struct
Biol 12(5):569–577

203. Altmann F (2007) The role of protein glycosylation in allergy. Int Arch Allergy Immunol 142
(2):99–115

204. Gaunitz S, Jin C, Nilsson A et al (2013) Mucin-type proteins produced in the Trichoplusia ni
and Spodoptera frugiperda insect cell lines carry novel O-glycans with phosphocholine and
sulfate substitutions. Glycobiology 23(7):778–796

205. Kurz S, Aoki K, Jin C et al (2015) Targeted release and fractionation reveal glucuronylated
and sulphated N- and O-glycans in larvae of dipteran insects. J Proteome 126:172–188

206. Wilson IBH, Cummings RD, Aebi M (2015) Chapter 25 – Nematoda. In: Varki A, Cummings
RD, Esko JD et al (eds) Essentials of glycobiology, 3rd edn. Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, pp 321–333

207. Martini F, Eckmair B, Stefanic S et al (2019) Highly modified and immunoactive N-glycans of
the canine heartworm. Nat Commun 10(1):75

208. Shim BS, Hong KJ, Maharjan PM et al (2019) Plant factory: new resource for the productivity
and diversity of human and veterinary vaccines. Clin Exp Vaccine Res 8(2):136–139

209. Takeyama N, Kiyono H, Yuki Y (2015) Plant-based vaccines for animals and humans: recent
advances in technology and clinical trials. Ther Adv Vaccine 3(5–6):139–154

210. D’Aoust M-A, Couture MMJ, Charland N et al (2010) The production of hemagglutinin-based
virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant
Biotechnol J 8(5):607–619

211. Landry N, Ward BJ, Trépanier S et al (2010) Preclinical and clinical development of plant-
made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12):e15559

212. Landry N, Pillet S, Favre D et al (2014) Influenza virus-like particle vaccines made in
Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to
influenza HA antigens. Clin Immunol 154(2):164–177

Impact of Protein Glycosylation on the Design of Viral Vaccines 353



213. Le Mauff F, Mercier G, Chan P et al (2015) Biochemical composition of haemagglutinin-
based influenza virus-like particle vaccine produced by transient expression in tobacco plants.
Plant Biotechnol J 13(5):717–725

214. Margolin E, Chapman R, Williamson A-L et al (2018) Production of complex viral glycopro-
teins in plants as vaccine immunogens. Plant Biotechnol J 16(9):1531–1545

215. Ward BJ, Landry N, Trépanier S et al (2014) Human antibody response to N-glycans present
on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32(46):6098–6106

216. Shaaltiel Y, Tekoah Y (2016) Plant specific N-glycans do not have proven adverse effects in
humans. Nat Biotechnol 34(7):706–708

217. Rup B, Alon S, Amit-Cohen B-C et al (2017) Immunogenicity of glycans on biotherapeutic
drugs produced in plant expression systems—the taliglucerase alfa story. PLoS One 12(10):
e0186211

218. Smith DF, Cummings RD, Song X (2019) History and future of shotgun glycomics. Biochem
Soc Trans 47(1):1–11

219. Tamburrini A, Colombo C, Bernardi A (2019) Design and synthesis of glycomimetics: recent
advances. Med Res Rev 40(2):495–531

220. Guan WJ, Ni ZY, Hu Y et al (2020) Clinical characteristics of coronavirus disease 2019 in
China. N Engl J Med. https://doi.org/10.1056/NEJMoa2002032

221. Wu F, Zhao S, Yu B et al (2020) A new coronavirus associated with human respiratory disease
in China. Nature 579(7798):265–269

222. Varki A, Cummings RD, Aebi M et al (2015) Symbol nomenclature for graphical represen-
tations of glycans. Glycobiology 25(12):1323–1324

223. Hastie KM, Zandonatti MA, Kleinfelter LM et al (2017) Structural basis for antibody-
mediated neutralization of Lassa virus. Science 356(6341):923–928

224. Watanabe Y, Raghwani J, Allen JD et al (2018) Structure of the Lassa virus glycan shield
provides a model for immunological resistance. Proc Natl Acad Sci U S A 115(28):7320–7325

225. Zhao Y, Ren J, Harlos K et al (2016) Toremifene interacts with and destabilizes the Ebola virus
glycoprotein. Nature 535(7610):169–172

226. Lee PS, Ohshima N, Stanfield RL et al (2014) Receptor mimicry by antibody F045-092
facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 5(1):3614

227. An Y, McCullers JA, Alymova I et al (2015) Glycosylation analysis of engineered H3N2
influenza A virus hemagglutinins with sequentially added historically relevant glycosylation
sites. J Proteome Res 14(9):3957–3969

228. Struwe WB, Chertova E, Allen JD et al (2018) Site-specific glycosylation of virion-derived
HIV-1 Env is mimicked by a soluble trimeric immunogen. Cell Rep 24(8):1958–1966.e1955

229. Kwon YD, Pancera M, Acharya P et al (2015) Crystal structure, conformational fixation and
entry-related interactions of mature ligand-free HIV-1 Env. Nat Struct Mol Biol 22
(7):522–531

230. Walls AC, Tortorici MA, Frenz B et al (2016) Glycan shield and epitope masking of a
coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol 23
(10):899–905

231. Xu K, Chan YP, Bradel-Tretheway B et al (2015) Crystal structure of the pre-fusion Nipah
virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly. PLoS Pathog 11(12):
e1005322

354 K. Schön et al.

https://doi.org/10.1056/NEJMoa2002032


Adv Biochem Eng Biotechnol (2021) 175: 355–378
DOI: 10.1007/10_2018_71
© Springer International Publishing AG, part of Springer Nature 2018
Published online: 25 August 2018

Interplay of Carbohydrate and Carrier
in Antibacterial Glycoconjugate Vaccines

Tyler D. Moeller, Kevin B. Weyant, and Matthew P. DeLisa

Contents

1 Combating Bacterial Disease with Advances in Glycobiotechnology . . . . . . . . . . . . . . . . . . . . 357
2 Unconjugated Polysaccharide Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
3 Conjugate Polysaccharide Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
4 Glycan Structural Composition as a Vaccine Design Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 362
5 Polysaccharide Length as a Vaccine Design Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
6 Conjugation as a Vaccine Design Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7 Carrier Molecule as a Vaccine Design Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
8 Glycan Density as a Vaccine Design Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
9 Minimal Epitope Synthetic Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

10 Lipid-Linked Carbohydrate Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
11 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Abstract Bacterial infections are a serious health concern and are responsible for
millions of illnesses and deaths each year in communities around the world. Vacci-
nation is an important public health measure for reducing and eliminating this
burden, and regions with comprehensive vaccination programs have achieved sig-
nificant reductions in infection and mortality. This is often accomplished by immu-
nization with bacteria-derived carbohydrates, typically in conjunction with other
biomolecules, which induce immunological memory and durable protection against
bacterial human pathogens. For many species, however, vaccines are currently
unavailable or have suboptimal efficacy characterized by short-lived memory and
incomplete protection, especially among at-risk populations. To address this chal-
lenge, new tools and techniques have emerged for engineering carbohydrates and
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conjugating them to carrier molecules in a tractable and scalable manner. Collec-
tively, these approaches are yielding carbohydrate-based vaccine designs with
increased immunogenicity and protective efficacy, thereby opening up new oppor-
tunities for this important class of antigens. In this chapter we detail the current
understanding of how carbohydrates interact with the immune system to provide
immunity; how glycoengineering, especially in the context of glycoconjugate vac-
cines, can be used to modify and enhance immune responses; and current trends and
strategies being pursued for the rational design of next-generation glycosylated
antibacterial vaccines.
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Abbreviations

APC Antigen-presenting cell
BCR B cell receptor
CPS Capsular polysaccharide
DT Diphtheria toxoid
GBS Group B Streptococcus
glycOMV Glycosylated outer membrane vesicle
Hib Haemophilus influenzae type b
IgG Immunoglobulin G
IgM Immunoglobulin M
iNKT Invariant natural killer T cell
LOS Lipooligosaccharide
LPS Lipopolysaccharide
MAMP Microbe-associated molecular pattern
MenB Neisseria meningitidis serogroup B
MHC Major histocompatibility complex
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MW Molecular weight
NKT Natural killer T cell
O-PS O-antigen polysaccharide
OST Oligosaccharyltransferase
PolySia Polysialic acid
PRP Polyribosylribitol phosphate
PRR Pattern recognition receptor
RU Repeating unit
TD T cell-dependent
TI T cell-independent
TT Tetanus toxoid
ZPS Zwitterionic polysaccharide
αGalCer α-Galactosylceramide

1 Combating Bacterial Disease with Advances
in Glycobiotechnology

Bacteria are the causative agents of numerous diseases, including bubonic plague,
cholera, meningitis, tuberculosis, and many others, which have imposed an enor-
mous burden on human health throughout history and continue to affect various
regions of the world today. Pneumonia remains a leading cause of childhood death
worldwide, with over half of the fatalities resulting from infection by Streptococcus
pneumoniae or Haemophilus influenzae type b (Hib) [1]. However, reduction and
eventual elimination of many bacterial infectious diseases is an achievable possibil-
ity thanks to significant progress in many countries toward the implementation of
effective public health and sanitation measures, access to effective medical treat-
ments such as antibiotics, and prophylactic intervention through widespread adop-
tion of vaccines. The deployment of vaccines, which are used to elicit a protective
immune response, has played a critical role in preventing or ameliorating bacterial
infection with impressive results. The 2017 recommended immunization schedule
published by the United States Centers for Disease Control and Prevention includes
vaccines for Hib, S. pneumoniae, and Neisseria meningitidis, with some of the most
effective formulations protecting susceptible populations of both young and old
[2]. These vaccines have led to dramatic reductions in infectious disease, and nearly
all of them have contributed to this feat by eliciting protective antibodies against
carbohydrates on the bacterial cell surface [3].

Various glycan structures coat the surfaces of both gram-negative and gram-
positive bacteria (Fig. 1). In gram-negative bacteria, glycolipids such as lipopoly-
saccharide (LPS) or lipooligosaccharide (LOS) are ubiquitous, and capsular poly-
saccharide (CPS) composes the capsule that envelopes many species. Likewise,
gram-positive bacteria are surrounded by a thick layer of peptidoglycan with teichoic
acid embedded, and the cell may also be enveloped in CPS. A unique class of gram-
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positive bacteria called mycobacteria contains additional glycans such as
lipoarabinomannan and arabinogalactan [4, 5]. Moreover, bacteria can also contain
surface-exposed glycoproteins [6, 7]. To elicit a protective immune response against
such glycan-coated bacteria, it is common practice to isolate or synthesize these
glycans and then use them to formulate subunit vaccines. CPS- and LPS-derived
glycans are most commonly targeted in vaccines because of their high cell surface
density and the fact that these structures are often unique to a particular species or
strain.

Several factors influence the development and efficacy of carbohydrate-based
bacterial vaccines, with significant variation even among those currently on the
market. In addition to the antigenic target, the presence or absence of particular
immunopotentiators such as proteins, and how they associate with the carbohydrate
antigen, can dictate which populations are protected and the strength of immuno-
logical memory. Practical considerations, such as the ease of manufacture, safety,
and ease of transport, also need to be considered. In this chapter we describe the
current understanding of the complex interplay between glycans and the immune
system and some of the key design factors that are critical for creating an effective
vaccine. We also highlight recent technologies that facilitate rational vaccine design.
On the basis of a deeper understanding of these and other related issues, we
anticipate improvements to existing formulations and the release of approved vac-
cines against deadly pathogens such as Francisella tularensis, group B Streptococ-
cus (GBS), Shigella sp., and Staphylococcus aureus, for which no licensed vaccines
currently exist [8–11].

LTA

WTA

CPS

peptidoglycan

glycoprotein

lipoarabinomannan

arabinogalactan

Gram-positiveGram-negative

glycoprotein
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Fig. 1 Glycan expression on the bacterial cell surface. Carbohydrate motifs on the surface of
bacteria accessible to cells of the immune system are useful targets for raising a protective immune
response. Some, including CPS and glycoproteins, are ubiquitous and present on many bacterial
species. Other glycan structures are found primarily in (a) gram-negative bacteria, such as LOS and
LPS, or (b) gram-positive bacteria, such as wall teichoic acid (WTA) and lipoteichoic acid (LTA).
Some glycans, including lipoarabinomannan and arabinogalactan, are unique to mycobacteria, a
subclass of gram-positive bacteria. Peptidoglycan is present on the surface of gram-positive but not
gram-negative bacteria, where it is instead found in the periplasmic space between inner and outer
lipid membranes
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2 Unconjugated Polysaccharide Vaccines

Carbohydrate involvement in immune responses was established in the 1920s after
the discovery that S. pneumoniae infection yielded immune responses to CPS that
were serotype-specific [12]. Purified CPS injection of patients infected with the
corresponding pneumococcal serotype elicited an immune reaction [13], and pro-
tection against several distinct serotypes could be achieved with a single immuni-
zation of different CPS [14]. Accordingly, a 14-valent CPS-based vaccine against
S. pneumoniae was approved in 1977 [15], and the effectiveness of this vaccine
prompted its widespread adoption among the general population [16]. A 23-valent
pneumococcal polysaccharide vaccine is available today for adults, and it provides
coverage of 90% of the disease-causing S. pneumoniae serotypes in the United
States, reducing infection by 65% [17].

The advent of CPS vaccines marked the establishment of carbohydrates as
compelling, viable targets of a directed immune response. CPS vaccines are now
well-established with more than four decades of clinical usage. In addition, multi-
valent vaccine formulation is relatively straightforward from a technical perspective,
and the polysaccharide composition can be increased or changed should the most
pathologically relevant serotypes vary across geographical region or over time. The
main disadvantage of an unconjugated polysaccharide is the lack of protective and
memory responses, particularly in populations most susceptible to bacterial infec-
tion, including the elderly, immune-compromised, and children less than 2 years of
age [18].

Many bacterial carbohydrates, including CPS, LPS, peptidoglycan, and other
glycans found on the bacterial surface, are potent stimulators of the fast-responding
innate immune system. They contain microbe-associated molecular patterns
(MAMPs) recognized by pattern recognition receptors (PRRs) including toll-like
receptors, nod-like receptors, and C-type lectin receptors found on the surface of
macrophages, dendritic cells, and other innate immune cells. Activation of PRRs by
MAMP binding results in cytokine production that promotes inflammation and
recruits effector cells. However, although effective activators of the innate immune
system, most polysaccharides are T cell-independent (TI) antigens that develop
adaptive immune responses characterized by a lack of glycan-specific high-affinity
antibodies as well as limited memory responses. The long, repetitive sugar motifs
present in these polysaccharides crosslink B cell receptors (BCR) on the surface of
glycan-specific B cells to elicit the production of predominately low-affinity and
short-lived immunoglobulin M (IgM). In contrast, T cell-dependent (TD) antigens
elicit antibody class-switching and affinity-maturation processes that result in more
high-affinity and long-lasting immunoglobulin G (IgG) antibodies (Fig. 2).

Although polysaccharides are generally classified as TI antigens, there are notable
cases where T cell activation and subsequent high-affinity class-switched antibody
production and memory cell development can occur. Zwitterionic polysaccharides
(ZPS), which contain both positively and negatively charged residues, can be
processed by antigen-presenting cells (APCs) onto a cell-surface major
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histocompatibility complex (MHC) and recognized by cognate T cells, leading to
cell activation similar to that of a classical protein antigen. Interestingly, teichoic
acid, a carbohydrate-containing cell wall component of gram-positive bacteria, was
originally an uncharacterized impurity known as C polysaccharide that elicited high
antibody titers in early CPS studies by Heidelberger and colleagues. Teichoic acid
has however been shown to have a zwitterionic state and activate T cells in an
MHC-dependent manner [19]. Polysaccharides from some serotypes of S. aureus,
S. pneumoniae, and Bacteriodes fragilis exhibit ZPS properties [20, 21], and
B. fragilis ZPS PSA1 has been modified to serve as a carrier molecule for small,
non-immunogenic carbohydrates associated with cancer [22].
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Fig. 2 Humoral immune response to carbohydrates. Antigen recognition and processing by
carbohydrate-specific B cells is important in determining the nature of the corresponding immune
response. Unconjugated polysaccharides can bind to multiple B cell receptors to elicit a TI response
characterized by production of IgM with some class-switched IgGs (IgG2b and IgG3 in mice) as
well as limited memory responses. Glycans conjugated to other biomolecules or that meet specific
structural requirements may be processed intracellularly and bind to surface proteins on B cells for
display and recognition by cognate T cells. Zwitterionic polysaccharides, peptides, and glycopep-
tides can be loaded onto MHC II for recognition by epitope-specific T cell receptors on T helper
cells. Lipids or glycolipids, including analogues of α-galactosylceramide, are loaded onto CD1d
and recognized by semi-invariant TCRs on invariant natural killer T cells. Co-stimulation between
surface-displayed molecules including CD40 and CD40L on B cells and T cells, respectively,
facilitates the release of cytokines that activate the B cell. TD responses are characterized by high-
affinity, class-switched antibodies and memory cell production
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3 Conjugate Polysaccharide Vaccines

Bacterial glycans, traditionally a heterogeneous mixture of polysaccharides from a
targeted bacterial serotype, can be harvested and purified before undergoing chem-
ical activation and conjugation to a carrier protein such as tetanus toxoid (TT) from
Clostridium tetani, diphtheria toxoid (DT) from Corynebacterium diphtheriae, and
CRM197, a DT mutant with a single amino acid change that ameliorates toxicity
[23]. These glycoconjugates have been demonstrated to elicit more desirable
immune responses, including long-lasting immunological memory and protective
IgG antibodies that are often absent in polysaccharide-only vaccines. For much of
their history, glycoconjugate vaccines were presumed to elicit a TD immune
response through availability of T cell epitopes derived from the protein carrier.
These short peptides, derived from intracellular processing of the carrier and binding
to MHC molecules on the APC surface, allow for the activation of corresponding T
cells. B cells specific for the glycan antigen associate with these activated T cells and
form an immune synapse before undergoing downstream processes such as antibody
class-switching that underpins high-affinity antibody production. However, it was
recently demonstrated that conjugate-derived glycopeptide epitopes can also be
presented to T cells. At least in some cases, these epitopes can elicit more potent
immune responses than peptide epitopes alone [24].

Glycoconjugate design requires careful manipulation of several key design
parameters (highlighted in Fig. 3). Each of these characteristics is capable of
modulating the immune response and can be analyzed through an iterative process
whereby a design specification is rationally made followed by in vitro and in vivo
studies to analyze antigen binding, antibody titers, and protection. In the following
sections, polysaccharide length, structural composition, and density, as well as
conjugation method and carrier molecule, are examined for their impact on vaccine
function. This is followed by a discussion of several strategies that improve upon

Carrier
• Biomolecule
• Immunopotentiation
• Off-target immune response

Structural composition
• Binding site conformation
• Chemical and physical properties

Length
• Oligo- or polysaccharides
• Size distribution

Conjugation
• Carrier attachment site
• Carbohydrate attachment site
• Linker length and structure

Antigen density
• Antigen-to-carrier ratio
• Homogeneity

Fig. 3 Design parameters in glycoconjugate development. Several key characteristics of a
glycoconjugate vaccine can affect its immunogenicity and efficacy. Manipulation of one variable
can limit or otherwise affect another aspect of the glycoconjugate design. These parameters must be
carefully identified, optimized, and validated for a new vaccine candidate
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traditional glycoconjugate design, including new synthesis and screening methods
for the rational design of a ‘minimal’ glycan antigen and the use of novel lipid-based
carrier molecules.

4 Glycan Structural Composition as a Vaccine Design
Parameter

The structure and exposed residues of a glycan immunogen, determined by the
monosaccharide subunits that comprise it, play a significant role in shaping the
subsequent immune response. Chemical modification of sugar residues has been
found to enhance the immune response against carbohydrates of varying size,
structure and source, including tumor-associated carbohydrates and viral shield
glycans, which normally exhibit little or insufficient immunogenicity [25–
27]. Changing the underlying glycan composition can be used to alter existing B
cell receptor-binding epitopes. Although large structures such as polysaccharides
may have numerous epitopes or features that can bind the variable region of
immunoglobulin chains, one or several sites are often most relevant for immuniza-
tion and drive the elicitation of antibodies with desirable characteristics such as high
affinity, specificity, and protection against the target pathogen. Modulation of
immune response can therefore be realized from modification of existing epitopes
or addition of new sites. Even manipulation of a single chemical moiety is sufficient
to alter the response in many cases. For example, the absence of pyruvate ketal and
phosphate groups was shown to reduce or abolish protection by conjugated
S. pneumoniae serogroup 4 and Clostridium difficile polysaccharides, respectively,
[28–30]. Similarly, polysaccharides that were not O-acetylated significantly reduced
titers to N. meningitidis serogroup A and prevented cross-protection between
S. pneumoniae serotypes 15B and 15C [31, 32].

The N. meningitidis serogroup B (MenB), responsible for a significant percent of
meningococcal disease in the US and other developed countries, is a well-
documented example of a bacterial pathogen with poorly immunogenic CPS that
has precluded its incorporation into vaccines developed against other major
N. meningitidis serogroups, A, C, Y, and W-135. MenB CPS contains repeating
α2,8-linked sialic acid chains known as polysialic acid (PolySia) like those found in
the human nervous system and are important for early development. Substitution of
N-propionyl for N-acetyl groups in MenB PolySia, and conjugation of the resulting
polysaccharide to a protein carrier, yielded a vaccine that elicited anti-MenB CPS
antibodies [33]. Surprisingly, subsequent experiments exploring this response
showed that serum bactericidal activity was provided by some antibodies that were
not cross-reactive with human PolySia [34, 35]. Later work revealed that this is the
result of antibodies generated against de-N-acetylated or otherwise modified sialic
acid that avoid auto-reactivity towards host PolySia [36, 37].
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Although glycan composition can be manipulated to modify adaptive immune
recognition, other properties relevant in vaccine production and development can
also be improved. The Vi antigen of Salmonella enterica serovar Typhi Vi is an
α-(1,4)-N-acetylgalactosaminuronate polymer with high levels of carbon 3 -
O-acetylation. Plant-derived pectin is abundant and composed of polygalacturonic
acid that can undergo O-acetylation at carbons 2 and 3. This modified pectin
(OAcPec) is similar to Vi antigen with the exception of O-acetylation in lieu of
N-acetylation at carbon 2. However, both elicited similar levels of antibodies when
immunized as a TT conjugate. OAcPec is more soluble than Vi antigen, which aids
in production, and an OAcPec-based Typhi vaccine represents a safer and cheaper
alternative to using natively sourced polysaccharide [38, 39].

Other opportunities may exist for modification of glycans. Behavior such as
flexibility and conformation of glycoconjugates in solution is dependent on the
attached carbohydrates [40–42]. Additionally, CPS O-acetylation is preferentially
bound by lectins that initiate complement pathways [43], raising the possibility that
carefully considered changes to carbohydrates could be a strategy for harnessing
glyco-antigen interactions with the innate immune system and glyco-antigen
processing in the body.

5 Polysaccharide Length as a Vaccine Design Parameter

The carbohydrate component of many glycoconjugates is derived from surface-
exposed polysaccharides on bacterial pathogens. Extraction typically results in a
polysaccharide mixture of varying lengths because of the heterogeneity of naturally
occurring CPS and the O-antigen polysaccharide (O-PS) component of LPS anti-
gens. Chain length of the polysaccharide following conjugation to a carrier molecule
is dependent on the exact extraction method and subsequent preparation and activa-
tion steps, and is usually reported as an average molecular weight (MW) or degree of
polymerization of repeating units (RU) of oligosaccharide. The immunological
consequences of this size distribution, and whether an optimal length exists for
optimal vaccine efficacy, are important considerations that have been actively
investigated for several decades. Polysaccharide length was first established as an
important glycoconjugate design variable in studies where small chains of dextran
conjugated to TT were found to provoke higher carbohydrate-specific class-switched
antibody titers compared to larger dextran-TT conjugates [44]. In more recent
studies, higher MW O-PS (70–95 RU) from S. enterica serovar Typhimurium
conjugated to CRM197 was found to be significantly less immunogenic than lower
MW (25–35 RU) conjugates [45].
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The inverse relationship between polysaccharide length and protection is not a
universal phenomenon, with many glycoconjugate vaccines showing different
behavior. For example, Vibrio cholerae O-PS length was not found to affect the
immune response [46] whereas 150,000 MW S. pneumonia-type 14 polysaccharide
conjugated to TT was found to induce higher antibody titers than TT conjugates
bearing a range of smaller (1,337–70,000 MW) polysaccharides [47, 48]. Mixed
results have also been reported for conjugation of the well-studied Hib polysaccha-
ride polyribosylribitol phosphate (PRP) unit. Studies in both mice [49] and humans
[50] failed to identify significant correlation between PRP length and antibody titers
in most cases. Interestingly, Anderson and coworkers noticed that polysaccharide
length affected the anamnestic response for adults and 1-year-old infant vaccine
recipients differently. The greatest antibody titers for infants were obtained with
CRM197 protein conjugated to 7 RU, compared to 20 RU for adults. This is
reminiscent of polysaccharide vaccines that protect adults but are poor inducers of
immunity in children, suggesting that increasing the size of polysaccharide conju-
gated to a carrier molecule might, in some cases, promote a more TI-like response
possibly as a result of increased crosslinking of BCR on the surface of antigen-
specific B cells or interference in antigen processing.

A minimal polysaccharide length is required for proper epitope recognition and
binding by polysaccharide-specific BCR. This suggests that optimal polysaccharide
size may be constrained by a Goldilocks principle in which chains that are too large
or too short provide suboptimal immune responses. Indeed, it was shown that TT
conjugates bearing intermediate sized oligosaccharides (14 RU) performed better in
generating antigen-specific protective antibodies compared to shorter (7 RU) or
longer (27 RU) oligosaccharides against GBS III [51].

In practice, determination of what is ‘just right’ for optimal polysaccharide length
is highly dependent on the polysaccharide serotype and likely requires empirical
testing and validation for each new vaccine candidate. Efforts to improve protection
through exhaustive examination of various polysaccharide lengths are hindered by
the different experimental conditions, molecular structures, and control of other
design parameters that make generalization based on results in the published liter-
ature difficult. Comprehensive screens of glycoconjugate variants where experimen-
tal conditions are kept identical and only one parameter, for example polysaccharide
length, is manipulated at a time can be used to make recommendations more
conclusively regarding the effect of chain size. This is exemplified in a recent
study that tested the antibody response of a vaccine containing Vi antigen from
the CPS of S. enterica serovar Typhi across several key design parameters, including
full-length PS (165,000 MW) versus a smaller fragment (43,000 MW). Different
response kinetics were observed between these sizes and only lower sized polysac-
charide fragments conjugated to CRM197 and DT showed significantly increased
secondary antibody responses [52].
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6 Conjugation as a Vaccine Design Parameter

A key concept of glycoconjugate vaccines is the attachment of sugar to protein.
Different reaction mechanisms can accomplish this task, and the chemistry used
plays an important role in determining what parameters, such as antigen density, can
be achieved. In general, conjugation is performed by reacting derivatized or acti-
vated glycans with functional groups on the carrier molecule, often utilizing a linker
moiety to facilitate attachment. The most common means of conjugation is by
reductive amination, whereby aldehyde groups from oxidized glycans or linkers
are reacted to bind covalently the amine side group of lysine residues on the protein
[53, 54]. This attachment process is often considered random, although conjugation
by reductive amination of CRM197 with different linkers [55] or carbohydrates [56]
has been found to favor certain lysine residues. Crotti and coworkers observed that
preferential conjugation to specific lysine residues could be achieved by limiting the
amount of linker present in the conjugation reaction. With several decades of notable
successes, reductive amination is the current standard conjugation method.

The emergence of novel site-selective chemistries has fueled interest in develop-
ing glycoconjugates that are more homogenous and consistent between preparations,
simultaneously decreasing the likelihood of interfering with relevant epitopes on the
carrier [57]. Copper-mediated and copper-free azide-alkyne cycloaddition reactions
have been used to add glycans selectively onto tyrosine residues of the carrier
protein. Immunization with identical doses by protein content of glycoconjugates
synthesized by tyrosine ligation or random conjugation elicited similar anti-
carbohydrate IgG titers and potency as measured by opsonophagocytic killing
assay [58]. Thiol-reacting maleimide moieties have also been used as conjugation
linkers to help induce IgG antibodies [59]. Significant advances in the identification
and production of the enzymes involved in natural glycan conjugation in bacteria
have provided new avenues for glycoconjugate vaccine production [60, 61]. For
example, the oligosaccharyltransferase (OST) enzyme PglB from Campylobacter
jejuni has been used to attach bacterial polysaccharides to carrier proteins through
both in vitro chemoenzymatic synthesis [62] and in vivo conjugation [63]. OSTs
offer a tractable platform that directly attaches sugars to a defined amino acid motif
in a highly specific and controllable manner without the need for linkers. The carrier
can be designed with the desired attachment site(s) and configured through
established protein engineering techniques. Both N-linked [64] and O-linked [65]
glycosylation mechanisms have been used to attach bacterial polysaccharides to
asparagine or serine/threonine residues, respectively. Moreover, the discovery and
engineering of OSTs to expand enzymatic conjugation capabilities is ongoing
[66, 67]. Other enzymes have also been utilized for selective conjugation strategies,
even working in concert with click chemistries. For example, microbial
transglutaminase (MTG) obtained from Streptoverticillium mobaraense has been
leveraged to attach functional linkers enzymatically to lysine residues that can
subsequently be used in azide-alkyne cycloaddition chemistry for adding polysac-
charide antigens [68].
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To date, most conjugation strategies focus on direct covalent attachment of
glycans to carrier proteins, a process that has historically been considered a key
requirement for successful TD immune response. However, the need for covalent
conjugation has been challenged by recent studies, including work by Malley and
coworkers that utilized a recombinantly produced biotin-binding protein, rhizavidin,
to capture biotinylated polysaccharide antigens, resulting in an affinity-based
approach for linking glycans to carrier molecules. The S. pneumoniae-derived
protein and CPS immunogens that were non-covalently assembled in this manner
elicited a robust protective response comparable to traditional whole cell vaccines
[69]. Along similar lines, it was recently demonstrated that polysaccharides embed-
ded in a protein matrix made class-switched anti-carbohydrate antibodies upon
immunization. The memory-inducing response of this antigen elicited antibody titers
similar to the commercially available glycoconjugate but was abolished when the
same polysaccharide was co-administered but not entrapped with the protein matrix
[70]. This suggests that the close proximity, but not necessarily covalent linkage, of
glycans to T cell epitopes such as those found in proteins is the crucial requirement
for efficacious delivery of the glyco-antigen to the immune system. Hence, although
covalent conjugation may be a convenient means for ensuring this association
following delivery in the host, novel glycoconjugate designs that do not rely on
linkers or conjugation steps are emerging as viable alternatives.

7 Carrier Molecule as a Vaccine Design Parameter

Commonly used carrier molecules in commercially available bacterial vaccines that
promote a TD immune response are TT, diphtheria toxoid DT, and CRM197

[23]. Because of the prominent role they play in current vaccine formulations and
schedules around the world, the immunological properties of these proteins have
been extensively investigated [71, 72]. Continued use of these proteins is promoted
by their history as safe, effective carriers and how, in some cases, a ‘carrier priming’
benefit can boost vaccine efficacy. Infants are routinely immunized with detoxified
TT/DT as part of the diphtheria and tetanus vaccine and are likely to be exposed to
these antigens before or during glycoconjugate administration. Immunization of
mice with DT/TT/CRM197 prior to CRM197-conjugated N. meningitidis serogroup
A and C polysaccharides has been found to improve anti-polysaccharide IgG titers
significantly. Additional experiments showed heightened T helper cell responses and
carbohydrate-specific plasmablast numbers [73]. The activation of carrier-specific T
helper cells from priming could result in more effective activation of glycan-specific
B cells with carrier-derived fragments presented on their surface.

However, in other situations, prior or simultaneous exposure to a protein can
result in vaccine interference that actually decreases glycoconjugate efficacy. Sev-
eral mechanisms have been proposed for this, including the steric hindrance of
glycan-specific B cell binding by carrier-specific antibodies, competition for
carrier-specific T helper cells by the expanded carrier-specific B cells population,
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and/or alteration of the immune environment by regulatory T cells, cytokines, and
other factors [74, 75]. In practice, the immunogenicity impact of glycoconjugate
carrier proteins can be difficult to predict and rationalize, particularly when multiple
vaccines are being administered in a similar time window. Following separate
immunization with DT/TT/CRM197-containing vaccines, English infants exhibited
a decrease in anti-MenC antibody titers in a two-dose administration of MenC-
CRM197 and then MenC-TT, but not when this order was reversed [76]. Several
factors could be responsible for this result, including interference between carrier
proteins and differences in carrier preparation. TT and DT undergo a detoxification
process that results in protein crosslinking and a heterogeneous mixture of connected
toxoid with potentially altered conformation and binding epitopes [77].

Efforts are underway to expand beyond these toxoid carriers for use as immuno-
genic glycan attachment scaffolds. In addition to mitigating unwanted vaccine
interference, new protein carriers can themselves be antigens that, in tandem with
the conjugated glycan component, provide or enhance protection. A survey of the
pathogen-derived protein carriers currently being developed for glycoconjugate
vaccines against several bacterial species has recently been described [78]. Compu-
tational prediction tools can be used with sequenced genomes of pathogens to
identify protein candidates for generating immunity [79]. A GBS pilus protein
previously selected by this reverse immunology approach and shown to confer
protection was conjugated to GBS polysaccharide II. Antibodies were successfully
raised against both the polysaccharide and protein components and conferred pro-
tection in mice [58]. The flagellin protein of Burkholderia pseudomallei was conju-
gated to its O-PS and induced glycan-specific IgGs and increased survival [80], with
a similar result obtained for B. pseudomallei glycoconjugates containing different
proteins identified from genome analysis [81]. Despite the fact that each new carrier
protein needs to undergo testing for safety and efficacy, and requires optimization for
conjugation, glycan density, and other parameters, their development as scaffolds for
next-generation glycoconjugates appears promising.

8 Glycan Density as a Vaccine Design Parameter

The amount of carbohydrate antigen attached to each carrier molecule, referred to
here as glycan density, is another important consideration that can affect
glycoconjugate performance. In cases with well-defined, single attachment site
carbohydrates conjugated to protein, glycan density can simply be described as a
mass/mass ratio of carbohydrate to protein. However, for many formulations,
including glycoconjugates with lattice-type structures or multiple attachment site
carbohydrates, mass/mass ratio alone is not an adequate characterization. Glycan
density is also heavily impacted by other design parameters such as conjugation
method or protein carrier, both of which can exhibit batch-to-batch variation in
glycan attachment. Care should be taken when comparing glycan density across
studies to account for these differences.
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Indeed, the literature suggests that the effect of glycan density is case-specific and
dependent on the production, immunization, and analytical methods used for each
glycoconjugate, leading to a range of conclusions. Nonetheless, some studies have
determined that it is an important factor for improving immunogenicity as measured
by post-immunization serum titers [82, 83]. In one such case, immunization with an
intermediate density of ~9–10 saccharides per protein elicited the highest titers of
LPS-specific antibodies relative to conjugates with 4 or 19–23 saccharides per
protein [83]. In contrast, other studies concluded that varying the amount of glycan
did not play a significant role in enhancing immune responses [44]. For example,
when a bivalent linker was used to double the amount of polysaccharide attached to a
protein carrier, no change in antibody titers was observed [84]. Although no general
trend has emerged to define the relationship between glycan density and vaccine
efficacy, the potentially significant effect that glycan density has been shown to play
in some work necessitates the determination of an optimal density on a case-by-case
basis.

9 Minimal Epitope Synthetic Vaccines

Improving glycoconjugate vaccine efficacy has traditionally relied on varying one or
several of the aforementioned parameters through established techniques in protein
engineering, conjugation chemistry, and glycan extraction. Glycan extraction in
particular has been a major development impediment because of the heterogeneous
mixture of glycans and contaminants it can produce, making characterization diffi-
cult and limiting scientists’ ability to link important molecular-level design param-
eters with immunological performance. Moreover, practical constraints concerning
the ability to culture pathogenic bacteria and isolate glycans at sufficient yield have
prevented the wide application of glycoconjugates. Synthesizing glycans in a
bottom-up approach via chemical or chemo-enzymatic means offers opportunities
for cheaper and safer production as well as increased vaccine homogeneity and more
precise control over the immune response. Essential to these efforts is the identifi-
cation of the minimal carbohydrate structures and motifs required for binding and
eliciting protection-conferring antibodies, small enough for synthesis yet providing
immunity comparable to full-length polysaccharides.

Identifying minimal epitopes relies on a laborious screening process against
pre-existing antibodies from animals that were immunized with full-length poly-
saccharides. Competitive binding assays of post-immunization serum against whole
polysaccharides and polysaccharide-derived fragments are used to determine the
fragments most critical for antibody recognition. In this way, it was found that the
branched rhamnopyranoside moiety of the tetrasaccharide RU of S. pneumoniae
serotype 23F was necessary for recognition and opsonization by reactive polyclonal
sera [85] as well as antibody fragments derived from immunized adults [86]. How-
ever, until relatively recently, challenges in glycan synthesis generally limited the
scope of these studies to identify the one or two most important residues for binding.
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Improvements in synthetic glycan production and higher-throughput glycan array
technologies allow for more accurate epitope identification. Two serotypes of
S. pneumoniae (7F and 23F) were investigated by Seeberger and coworkers by
screening multiple CPS-derived oligosaccharides. The RU of S. pneumoniae sero-
type 7F CPS is a heptasaccharide containing two branched side chains, and a glycan
microarray-based screen showed that both chains were required for binding by anti-
7F CPS antibodies, confirming the importance of retaining these structures in new
synthetic 7F glycoconjugate vaccines [87]. However, binding to CPS-specific anti-
bodies does not necessarily indicate that the epitope elicits protective antibodies;
rather, it must be empirically validated through vaccination. For example,
depyruvated tetrasaccharide and trisaccharide derivatives of the S. pneumoniae
serotype 4 CPS tetrasaccharide RU were found to elicit glycan-specific IgG anti-
bodies, but notably these did not bind full-length CPS [30].

Oligosaccharide synthesis and minimal epitope discovery techniques have been
applied to other bacterial pathogens including N. meningitidis serotype W135 [88]
and C. difficile [89]. The RU of C. difficile PS-I is a glucose- and rhamnose-
containing pentasaccharide. A screen of RU-derived oligosaccharides with patient
sera demonstrated binding toward rhamnose-(1!3)-glucose, presumably in its
capacity as the minimal antigen, and immunization with CRM197 conjugated to
this disaccharide elicited IgG antibodies that recognized PS-I. Attachment of five
disaccharides to a synthetic scaffold induced a glycan-specific IgG response com-
parable to the disaccharide glycoconjugate [82].

Minimal epitope identification is greatly aided by detailed structural analysis and
modeling of glycan-antibody binding. Solved crystal structures have helped deter-
mine epitope binding of V. cholerae O1 [90] and Shigella flexneri serotype 2a
[91]. Initial studies of GBS type III polysaccharide-specific antibodies suggested
that a 4 RU polysaccharide fragment was necessary to form a helical structure
thought to be essential for antibody binding [92–94]. However, more recent work
suggests that other binding motifs are possible. A competitive binding assay of GBS
III polysaccharide structures using both synthesized oligosaccharides and fragments
isolated from full-length polysaccharide showed 2 RU to be sufficient for antibody
binding. NMR analysis of this 2 RU oligosaccharide confirmed that a terminal sialic
acid side chain residue had a significant role in antibody binding in concert with
three other side chain and backbone residues. Moreover, X-ray crystallography of a
polysaccharide-specific antibody fragment bound to the 2 RU oligosaccharide
revealed a binding motif consisting of the side chain and backbone of one RU and
one backbone sugar of the second RU. With validation from NMR and X-ray
crystallography, a novel minimal epitope has been proposed that is both simpler
and smaller than previously proposed minimal epitopes [95]. Other studies of GBS
III polysaccharide determined that a different epitope was recognized by monoclonal
IgM [96]. It is possible, and perhaps likely, that multiple antibody-binding epitopes
exist for a single glycan. Identifying and synthesizing epitope(s) that contribute most
to immunological protection and eliminate less important sites may allow for biasing
of the immune response by rational glycan design in new glycoconjugate vaccines.
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10 Lipid-Linked Carbohydrate Vaccines

The human immune system regularly encounters carbohydrates displayed on the
bacterial cell surface. Although the exact topography encountered by APCs can vary
greatly between species, it typically contains a high density of glycan-containing
structures that are attached to the membrane via an embedded lipid anchor (e.g., LPS
in gram-negative bacteria). Accordingly, some lipid-linked glycans are able to
activate the immune system through recognition by CD1, a family of proteins on
APCs that are homologous to MHC class I (Fig. 2). CD1 possesses a hydrophobic
antigen-binding pocket that can hold related lipid structures and an opening that
allows for glycan head groups of varying size. Uptake and processing of the antigen
is analogous to that for proteins being loaded into MHC. However, canonical T
helper cells do not recognize CD1. Instead, CD1-bound glycolipids are recognized
by invariant T cell receptor chains present on other T cell populations, including
natural killer T cells (NKTs) and γδ T cells. Upon recognition of a glycolipid
epitope, these cells release cytokines that can enhance conventional T cell help to
B cells as well as activate other components of the immune system [97].

Recently, two research groups independently identified a mechanism of direct B
cell help that involves a subset of invariant NKTs (iNKTs) and CD1d, a CD1 protein
that binds to analogues of the marine sponge-derived glycolipid
α-galactosylceramide (αGalCer). These studies demonstrated that the immune syn-
apse between iNKTs and B cells induces a strong primary IgG response along with
some affinity maturation. However, few memory B cells and no long-lived plasma
cells were produced, two cell populations critical for vaccine efficacy [98, 99]. None-
theless, researchers have exploited this unique mechanism of B cell help to enhance
immune responses against carbohydrate antigens without the presence of a protein
carrier. For example, glycoconjugates with S. pneumoniae serotype 4 CPS attached
to αGalCer as well as liposomes containing S. pneumonia serotype 14 CPS RU along
with an αGalCer analogue both elicited carbohydrate-specific TD IgGs
[100, 101]. Interestingly, both formulations also elicited a long-lasting memory
response, in contrast to earlier studies on B cell help from iNKTs, and challenge
after immunization with the S. pneumonia serotype 4 conjugate resulted in signifi-
cantly greater protection than unconjugated CPS in mice. By incorporating many of
the design parameters established for protein glycoconjugates including polysaccha-
ride length and linker chemistry to enhance immune responses further, future
αGalCer-based carbohydrate vaccines may provide protection equal to or in some
cases greater than their protein conjugated counterparts.

Several pathogen-derived glycolipids have also been shown to bind CD1 mole-
cules, including lipoarabinomannan and diacylsulfoglycolipid in mycobacteria and
α-glucosyldiacylglycerol in S. pneumonia [102]. However, although many of these
glycolipids have been shown to enhance immune responses through cytokine
release, the elicitation of direct CD1-dependent B cell help similar to analogues of
αGalCer has not been firmly established. In addition, other common bacterial lipids
such as lipid A, a vital component of LOS and LPS in gram-negative bacteria, are not
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believed to bind CD1. Indeed, conjugation of the TI cancer antigen GM2 to
monophosphoryl lipid A, a detoxified lipid A molecule commonly used as an
adjuvant, only induced elevated levels of TI antibodies [103, 104].

Interestingly, administration of whole-bacteria vaccines can elicit strong TD
responses against LPS in at least some species, including F. tularensis [105]. Like-
wise, immunization of mice with pathogen-derived outer membrane vesicles
(OMVs), which are 20–250 nm proteoliposomes derived from the bacterial peri-
plasm and outer membrane, resulted in TDO-PS-specific responses [106]. Activation
of O-PS-specific B cells in these vaccines is presumably provided by other associ-
ated lipids or proteins on the membrane, a phenomenon recently exploited in
laboratory engineered glycosylated OMV vaccines (glycOMVs) [107–
109]. GlycOMVs are produced by genetic engineering of tractable host organisms
including non-pathogenic strains of Escherichia coli to display heterologous O-PS
antigens on their exteriors. These cell surface-expressed O-PS molecules become
constituents of released OMVs that are constitutively shed from the outer membrane
of the host bacteria. In one notable example, E. coli K12-derived glycOMVs
displaying structural mimics of O-PS from highly virulent F. tularensis Schu S4
provoked strong O-PS-specific IgG responses and conferred protection against any
challenge with multiple strains of pathogenic F. tularensis [107]. Although much
work remains to be done with respect to clinical translation of these vaccine
candidates, glycOMVs are emerging as attractive alternatives to conventional
glycoconjugates [110, 111].

11 Concluding Remarks

Utilization of carbohydrates as targets for immune recognition has led to the
development of increasingly elegant and effective vaccines for protection against
and reduction of bacterial disease. Protein-based glycoconjugate vaccines have
played a prominent role in these efforts thanks to the strong TD response and
modifiable platform they provide. The current need to optimize glycoconjugates
for each glycan/pathogen target using general guidelines but few definitive design
principles creates a number of challenges but also provides an opening for the
development and application of new approaches and technologies. Further refine-
ment of protein-based glycoconjugate vaccines that elicit precisely tailored anti-
carbohydrate immune responses should be made possible by a deeper understanding
of glycoimmunology mechanisms and more rapid production and characterization of
vaccine candidates. At the same time, new rationally designed synthetic and lipid-
based approaches potentially offer an exciting future of safer, cheaper, more diverse,
and more effective carbohydrate-based bacterial vaccines.
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Abstract Glycosylation affects the properties of biologics; thus regulatory bodies
classified it as critical quality attribute and force biopharma industry to capture and
control it throughout all phases, from R&D till end of product lifetime. The shift
from originators to biosimilars further increases importance and extent of
glycoanalysis, which thus increases the need for technology platforms enabling
reliable high-throughput and in-depth glycan analysis. In this chapter, we will first
summarize on established glycoanalytical methods based on liquid chromatography
focusing on hydrophilic interaction chromatography, capillary electrophoresis
focusing on multiplexed capillary gel electrophoresis, and mass spectrometry focus-
ing on matrix-assisted laser desorption; we will then highlight two emerging tech-
nologies based on porous graphitized carbon liquid chromatography and on
ion-mobility mass spectrometry as both are highly promising tools to deliver an
additional level of information for in-depth glycan analysis; additionally we elabo-
rate on the advantages and challenges of different glycoanalytical technologies and
their complementarity; finally, we briefly review applications thereof to biopharma-
ceutical products. This chapter provides an overview of current state-of-the-art
analytical approaches for glycan characterization of biopharmaceuticals that can be
employed to capture glycoprotein heterogeneity in a biopharmaceutical context.
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Abbreviations

2-AA 2-anthranilic acid
2-AB 2-aminobenzamide
APTS 8-aminopyrene-1,3,6-trisulfonic acid
AQC 6-aminoquinoyl-N-hydroxysuccinimidyl carbamate
BPC Base peak chromatogram
CCS Collisional cross sections
CDG Congenital disorders of glycosylation
CE Capillary electrophoresis
CGE Capillary gel electrophoresis
CQA Critical quality attribute
CZE Capillary zone electrophoresis
DHB 2,5-dihydroxybenzoic acid
EIC Extracted ion chromatogram
EOF Electroosmotic flow
EPO Erythropoietin
ESI Electrospray ionization
ETD Electron-transfer dissociation
FDA Food and Drug Administration
FLR Fluorescence detection
Fuc Fucose
Gal Galactose
GalNAc N-acetylgalactosamine
GlcNAc N-acetylglucosamine
HILIC Hydrophilic interaction chromatography
HPAEC High-performance anion-exchange chromatography
HT High throughput
IgG Immunoglobulin
IM Ion mobility
LC Liquid chromatography
mAbs Monoclonal antibodies
MALDI Matrix-assisted laser desorption/ionization mass spectrometry
Man Mannose
MS Mass spectrometry
MS/MS Tandem mass spectrometry
N Asparagine
NeuAc N-acetylneuraminic acid
NIST National Institute of Standards and Technology
NMR Nuclear magnetic resonance
NP Normal phase
P Proline
PA 2-amino-pyridine
PAD Pulsed amperometric detection
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PCMF Post-column make-up flow
PGC Porous graphitized carbon
PNGase F Peptide-N-glycosidase F
Procainamide 4-amino-N-(2-diethylaminoethyl) benzamide
PTM Post-translational modification
QC Quality control
RP Reversed phase
S Serine
Sia Sialic acid
sIgA Secretory immunoglobulin A
SNFG Symbol nomenclature for glycans
T Threonine
UHPLC Ultrahigh-performance liquid chromatography
WAX Weak anion-exchange
xCGE-LIF Multiplexed capillary-gel electrophoresis with laser-induced

fluorescence detection

1 Introduction

Glycosylation is one of the most important critical quality attributes (CQAs) for
optimal efficacy and safety of a biopharmaceutical [1]. Regulatory bodies such as the
Food and Drug Administration (FDA) explicitly require that the glycoprofile of a
biotherapeutic remains stable and consistent from the trial phase until the final
product and beyond, and deviations of the approved glycoprofile can result in
revoking the license [2–4]. In consequence, the ability to determine, monitor, and
control the glycosylation of biotherapeutic products such as monoclonal antibodies
(mAbs) or other hormones, fusion proteins, growth factors, cytokines, and thera-
peutic enzymes is critical for product safety and proper function [2–4]. Interestingly,
glycosylation is currently not classified as a CQA in the production of vaccines such
as the influenza vaccine [5], although both major antigens, the hemagglutinin
(HA) as well as the neuraminidase (NA), are both well known to be heavily
glycosylated [6]. For influenza vaccine production based on recombinant major anti-
gens (e.g., Flublok, recombinant hemagglutinin), however, glycosylation needs to be
monitored as it is the case for any other recombinant glycoprotein product. The main
focus of this book is on glycoproteins in the biopharmaceutical industry; nevertheless it
is important to note that glycoanalyses are also highly relevant in other biotechnology
fields such as functional foods (e.g., milk oligosaccharides) or pharmaceutical poly-
saccharides (e.g., glycosaminoglycans like hyaluron and heparin) [7–10].

The shift of approved products from originators to biosimilars also pushes the
analytical monitoring of a product to be the most cost-intensive factor (Fig. 1)
[11, 12]. This is highly relevant in the context of glycosylation, as a similar
glycoprofile needs to be demonstrated for a product to be classified as a biosimilar,
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and deviations thereof can jeopardize the biosimilar status. Therefore, reliable and
suitable analytical workflows to determine and monitor glycosylation have been
gaining tremendous interest.

Protein glycosylation is a co-/post-translational modification (PTM) involved in
several biological key functions [13]. The “right” type and form of glycosylation is
crucial for the functionality of proteins and cells, and in consequence changes have
frequently been associated with major diseases such as cancer [14], inflammatory as
well as infectious diseases [15]. Next to these “dynamic” changes, a large number of
rare genetic and metabolic disorders, so-called congenital disorders of glycosylation
(CDG), are disrupting proper glycosylation pathways due to mutation defects in one
or more genes responsible to translate crucial enzymes of the glycosylation
pathways [16].

Two main forms of glycosylation are frequently observed in therapeutic glyco-
protein products: N- and O-type glycosylation, indicating the amino acid side chain
atom; these glycans are attached to their proteins. N-glycans are linked to the side
chain amino group of asparagine (N) if occurring within a specific consensus
sequence N-X-S/T/C; X 6¼ P [serine (S), threonine (T), proline (P)]. N-glycans are
also characterized by a common core structure GlcNAc2Man3 [N-acetylglucosamine
(GlcNAc), mannose (Man)], which builds the basis for four major types of N-glycan
classes: oligomannose, paucimannose, hybrid-type, and complex-type N-glycans
[17]. Next to these N-glycans, O-glycans are forming the second, major type of
glycan PTM found on therapeutic glycoproteins. There, an N-acetylgalactosamine
(GalNAc) is attached to the hydroxyl group of S or T residues before that is being
extended with the monosaccharides galactose (Gal), GlcNAc, GalNAc, fucose
(Fuc), and sialic acid (Sia) into more or less complex variations of mucin-type O-
glycans. Generally, no single consensus sequence is known for the attachment of O-
glycans compared to N-glycans, but site-specific O-glycosylation is highly cell-type
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ANALYTICS

from ORIGINATOR… …to BIOSIMILAR

Fig. 1 Originator vs. biosimilar. The development of a biosimilar reverses the common distribution
of the necessary entities to bring a biopharmaceutical product through the regulatory agencies and
on the market
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and protein-specific. These factors impede in silico prediction of O-glycosylation
sites and make detailed analyses imperative for product safety [17, 18].

Traditional analytical methods include releasing the glycans from the protein
backbone before they can be analyzed by a variety of different methods. While for N-
glycans mild and effective enzymatic options such as Peptide-N-Glycosidase F
(PNGase F) are available to release N-glycans from the protein backbone, to date
chemical approaches such as reductive β-elimination or hydrazinolysis remain the
only reliable quantitative options to release O-glycans from proteins [19]. The
market is currently dominated by N-glycosylated, recombinant glycoproteins such
as mAbs [12]. Therefore, this chapter will mainly focus on the relevant aspects of N-
glycan analysis, including its challenges and opportunities.

N- and O-glycans are not only defined by the composition of different
monosaccharides. Each glycosidic bond can occur in different forms regarding
linkage-type, branching, and confirmation [18]. Realizing this enormous diversity
of different glycan structures states the question for suitable instrumentational
techniques and bioanalytical methods to gain solid structural, qualitative, as well
as quantitative analytical data. This chapter wants to break down the current state-of-
the-art analytical methods and technologies in use for the glycan characterization of
biopharmaceutical products and extend this to highlight the most recent develop-
ments of novel approaches [20–24].

2 Established Technologies for the Analysis of Glycans
in the Biopharmaceutical Industry

The following section describes established technologies for the analysis of glycans,
like liquid chromatography (LC), matrix-assisted laser desorption/ionization mass
spectrometry (MALDI-MS), and capillary electrophoresis (CE) in the biopharma-
ceutical industry, providing general as well as advanced method information
together with commercialized glycan analysis kits.

2.1 Liquid Chromatography-Based Glycan Analysis

Different LC-based separation modes have been employed over the past decades to
capture and analyze glycans: reversed phase (RP) [25], normal phase (NP) [26], and
high-performance anion-exchange chromatography (HPAEC) [27, 28] have become
standard approaches to separate and analyze released glycans [29]. Hydrophilic
interaction chromatography (HILIC), in particular with fluorescence detection
(HILIC-FLR), however, is possibly the most widespread used “gold standard”
method within the biopharmaceutical industry to monitor and document
glycoprofiles of recombinant glycoproteins [21].
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Since the pioneering contribution of Dwek, Rudd, Hase, and others [30–33],
HILIC-based LC systems have been most widely used in pharmaceutical
glycoconjugate analysis [21, 34–37]. HILIC refers to the basic separation principle,
where compounds are largely separated based on the strength of their hydrophilic
interactions with a stationary phase within a hydrophobic environment (mobile
phase) [37, 38]. Separation is usually achieved by developing a gradient that
increases hydrophilic conditions in the mobile phase to disrupt the hydrophilic
interactions between the molecules and the stationary phase [29]. Depending on
the stationary phase and the individual gradient, certain isobaric glycans (¼ same
mass, but different structure) can be separated using HILIC. HILIC-based LC
systems are in principle also suitable for coupling with MS for compound detection
[21, 36, 39, 40]. A wide variety of different stationary phase chemistries are
available for HILIC separation and can contain one or more amine, amide, diol, or
sulfobetaine zwitterionic functionalities [38, 41], offering a wide range of
opportunities that can be tailored for different applications. In consequence, most
HILIC-based separation strategies reflect a combination of electrostatic interaction,
adsorption, and liquid portioning effects that are considered the predominant factors
influencing HILIC separation [42–44]. With the GlycanPac AXH-1, Thermo Fisher
recently released specific mixed-mode columns for glycan analyses that combine
weak anion-exchange (WAX) and HILIC retention mechanisms within a single
stationary phase [45]. Another type of mixed-mode column is the GlycanPac
AXR-1, which combines RP with WAX properties in a single stationary phase
[46]. Both columns are available with a particle size of 1.9 μm for UHPLC and
3 μm for HPLC applications and have shown great promise to increase the analytical
depth of LC-based glycan analyses. Readers interested in more details on the
molecular basis of HILIC separation are referred to some excellent reviews on that
topic [38, 43, 44].

HILIC generally provides highly reproducible data with respect to peak width,
symmetry, resolution, and retention time stability [21, 47]. These factors were
welcomed by the biopharmaceutical industry and clearly contributed to the current
widespread distribution of this technique. The example of a typical HILIC-UHPLC-
FLR [ultrahigh-performance liquid chromatography (UHPLC)] analysis of
2-AB-labeled N-glycans derived from human serum exemplifies the separation
capacity of this approach (Fig. 2). The overall time consumption regarding sample
preparation, measurement time, and data interpretation makes such HILIC-LC-based
approaches also feasible for high-throughput (HT) applications [21]. With the
exception of HPAEC in combination with pulsed amperometric detection (PAD)
or if detection is achieved by mass spectrometry (MS) [29], all LC-based approaches
share the requirement that glycans need to be chemically labeled with a fluorescent
dye for sensitive detection due to the lack of reasonable chromogenic molecules in
native N- or O-glycans [55]. Hence, efficient glycan labeling with chromogenic dyes
forms an essential part of most LC-based glycan analysis protocols, and thus the
most important aspects of glycan labeling, their advantages, drawbacks, and chal-
lenges are discussed in more detail.
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2.1.1 Glycan Labeling

Since the beginning of LC-based glycan analysis, extensive research has been
performed how to modify glycans for more sensitive and selective detection. This
has delivered a variety of different labels that are now available to suite the
downstream separation and detection technology of choice. Over the years,
2-aminobenzamide (2-AB) [56, 57], 2-anthranilic acid (2-AA) [58, 59], 2-amino-
pyridine (PA) [60], and procainamide (4-amino-N-(2-diethylaminoethyl)
benzamide) [61, 62] have evolved to be the most widely used labels, but new ones
are still being introduced, in particular with respect to dual detection by FLR and MS
[63], as most labels are not well suited for highly sensitive detection by MS due to
weak ionization efficiency.

While a plethora of different labeling protocols are found in research labs, most
are unsuitable for use in an industrial environment with strict quality control
(QC) compliance requirements. A number of different companies have addressed
that challenge and have developed commercially available, validated glycan labeling
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kits, which clearly facilitated introduction of these into the biopharmaceutical
industry (Table 1).

The labels listed in Table 1 are probably the most widespread used labels in the
biopharmaceutical industry, but by far not the only ones available. For a more
comprehensive list of possible fluorophores for glycan labeling, the inclined reader
is referred to the following references [55, 74, 75].

2.1.2 Automation of Sample Preparation and Data Analysis

A number of systems are on the market that enable automatization of sample
preparation and, partially, also analysis. Agilent is offering an automated liquid
handling system called AssayMAP Bravo [76] that can be used for automated
sample preparation including enzymatic glycan release, derivatization with 2-AB,
and purification. Purified samples are subsequently directed to a HILIC system for
analysis. Ludger developed another automated analytical workflow using the Ham-
ilton STARlet liquid handling robot. Their automated workflow combines glycan
release, 2-AB labeling, post-labeling clean-up for HILIC-FLR-based N-glycan anal-
ysis [77]. Stockmann et al. demonstrated an automated workflow performed on the
Hamilton Star liquid handling robot combining release, 2-AB labeling, and solid-
phase extraction (SPE), for HILIC-FLR-based separation and quantification of IgG
N-glycans [78].

Pushing HILIC applications at least to medium throughput (>50 analyses/day)
requires assistance for the analysis of the increasing amount of data which is
produced. GlycoBase (originally developed from the NIBRT, now in cooperation
with Waters) is a relational database which contains HPLC and UPLC elution
positions of a huge set of different 2-AB-labeled N-glycans together with the
predicted positions of potential exoglycosidase digestion products. AutoGU acts as
a tool to use such database to semi-automatically assign HPLC peaks for glycan

Table 1 Commercialized glycan labeling kits for LC-FLR/(MS) analysis. AQC – 6-aminoquinoyl-
N-hydroxysuccinimidyl carbamate

Company Trade name Fluorophore MS compatibility Reference

Ludger Ltd LudgerTag 2-AB No [64]

2-AA Yes, negative mode

Procainamide Yes [64, 65]

Sigma Aldrich GlycoProfile 2-AB No [66]

2-AA Yes, negative mode [67]

Waters GlycoWorks 2-AB No [68]

RapiFluor-MS Yes [69]

ProZyme GlycoPrep 2-AB No [70]

InstantAB No [71]

InstantPC Yes [72]

Synchem – AQC Yes [22, 57, 73]
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identification [79]. Water is providing a comprehensive workflow: comprising
RapiFluor-MS Kit for sample preparation, LC-FLR and/or LC-MS for separation
and detection, as well as GlycoBase 3+ database and software applications for data
analysis [80].

2.2 Matrix-Assisted Laser Desorption/Ionization Mass
Spectrometry-Based Glycan Analysis

Next to HILIC, MALDI-MS is possibly the second most commonly used analytical
technique for the analysis of different types of glycans in biopharma industry. For a
long time, MS-based approaches have been considered limited, in particular with
respect to quantitation. Improvements in terms of stability automation and through-
put that were achieved over the past years in MALDI-MS make this technique to an
increasingly interesting tool for the screening of glycans [81]. In consequence, this
technique has gained traction in the biopharmaceutical industry for the screening of
glycans and specific glycoforms, from initial screening up to final product validation.

The principle of a MALDI-MS experiment is fairly simple: one μL or less of
analyte is spotted onto a target plate and allowed to dry. This dry spot is then covered
with an appropriate matrix [e.g., 2,5-dihydroxybenzoic acid (DHB)] and allowed to
dry. Alternatively, sample and matrix can also be pre-mixed prior loading onto the
target plate. These dry, matrix/sample spots are then subjected to a pulsed-laser
irradiation that vaporizes the sample-matrix mixture. The matrix fulfills the job of
gently transferring energy to the analyte and in consequence generates ions for
analysis by MS [37]. For more details on the principles of MALDI-MS analyses
and tips and tricks for specific type of molecules, we recommend the excellent
reviews and work by Harvey et al., which are possibly the most comprehensive
pieces of work with respect to MALDI-MS analysis of glycans [81–85]. Neverthe-
less, one of the biggest challenges in MALDI-MS-based analyses is the appropriate
quantitative representation of all compounds present in a sample. Molecules with
different chemical properties (e.g., charged, neutral, hydrophilic/hydrophobic) can
result in different ionization efficiencies, and effectively, the detected signal might
not be an appropriate representation of a molecules’ actual concentration within a
sample [86]. To overcome these issues, a number of different strategies have been
developed.

2.2.1 Derivatization Strategies to Improve Detection and Deliver
Accurate Relative Quantitation

A number of different derivatization approaches can be employed to improve the
ionization properties of glycans and remove negative ionization effects introduced
by Sia. While certain reducing end tags such as 2-AA or PA can also improve
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ionization efficiency [41, 81], they are seldom used for this purpose but more so in
the context of making glycans fluorescent for detection after LC separation (see
above). The two most widely applied glycan derivatization approaches for MS
detection purposes are permethylation [87] and linkage-specific Sia
esterification [88].

During the permethylation reaction, all free hydroxyl groups of a glycan are being
methylated, which effectively also neutralizes any negative charges present on Sia
and thus results in similar ionization efficiencies for all glycans present in a given
sample. Nevertheless, like any chemical derivatization procedure, possible disad-
vantages manifest themselves in incomplete derivatization and the use of highly
toxic chemicals and water-free conditions that need to be maintained during
permethylation [89]. As a consequence of methylating hydroxyl groups, the overall
hydrophobicity increases, which allows an fractionation via C18 reversed-phase LC
[90, 91] and under certain elevated temperature conditions, also by porous graphi-
tized carbon (PGC)-LC [92]. In addition, permethylation also improves the gener-
ation of prevalent cross-ring fragments in tandem mass spectrometry (MS/MS)
experiments facilitating structure assignment [93]. In principle, permethylation can
also be implemented in an automated workflow and thus can also be employed in HT
applications [20].

Sia-specific esterification originally invented by Harvey’s group [94] and later
improved by Wuhrer’s group [95, 96] represents an alternative approach to over-
come the ionization issues of Sia containing glycans. In addition, Wuhrer’s
improved approach provides an easy opportunity to differentiate the Sia linkage
(2–3 or 2–6) from the detected mass alone as α2–3-linked N-acetylneuraminic acid
(NeuAc) residues undergo a lactonization in the presence of carboxylic acid activa-
tors in ethanol, while α2–6-linked NeuAc will experience an ethyl esterification
[95, 96]. In any case, the negative impact of the Sia on the ionization is neutralized
and as an additional benefit information on the Sia linkage is obtained within a single
MS experiment, as demonstrated in the example of human serum N-glycans (Fig. 3).
This protocol has also been adapted for HT performance and even extended to the
analysis of intact glycopeptides using a dimethyl amidation instead of the use of
alcohols [97, 98]. Within such an automated sample preparation, both protocols
(permethylation and Sia esterification) require similar sample preparation times
between 5 h for 96 samples (permethylation) and 5.5 h for 384 samples (esterifica-
tion) [20, 97].

Several commercial kits are available on the market, ensuring reliable quality and
efficacy of the chemicals for qualified usage in the biopharmaceutical industry. For
MALDI-MS analysis, the permethylation kit from Ludger (LudgerTag
Permethylation of Glycans) is already combined with the automation workflow
[20, 99], for an easy implementation within a biopharmaceutical industry setting to
achieve a comprehensive, HT-ready, reproducible, and “easy-to-use” analytical
strategy employing MALDI-MS for glycan analyses. The improved patented
linkage-specific Sia esterification approach of Wuhrer was exclusively licensed
and commercialized by glyXera [100].
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While a detailed discussion of automated data analyses goes beyond the frame-
work of this chapter, an elegant and freely available tool that can automate MALDI-
MS data analysis shall quickly be mentioned: MassyTools enables HT data
processing via automated annotation and quantification of MALDI-MS data and is
capable of calibrating spectra, extracting data, and performing QC calculations based
on a user-defined list of molecule masses. Compared to the commercial software
FlexAnalysis from Bruker, MassyTools has been demonstrated to yield better
calibration with a comparable relative standard deviation in terms of relative quan-
titation [101], closing one crucial bottleneck in any HT data analysis.

2.3 Capillary Electrophoresis-Based Glycan Analysis

CE is the umbrella term for the different capillary electrokinetic separation technol-
ogies such as capillary zone electrophoresis (CZE) or capillary gel electrophoresis
(CGE). Electrophoresis was born more than 200 years ago [102], even long before
the concept of chromatography was described. However, it took about 150 more
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years before the use of capillaries was introduced [103] and an additional decade to
establish CE as it is most widely known today and to perform separations that
seemed unattainable at that time [104, 105]. Despite its superior performance
regarding separation power, sensitivity, and its potential for real high throughput
by multiplexing the separation capillaries, the use of CE for glycan analysis lagged
behind other commonly used analytical techniques, as stability, reliability, and
repeatability issues could technically not be solved. The first attempts to use CE
for glycan analysis started in the 1990s were rather humble and not broadly
embraced by the glycoscientific community, but – with the availability of robust
and reliable genetic analyzers based on multiplexed CGE with laser-induced fluo-
rescence detection (xCGE-LIF) – by the genetics community, where they were
crucial in the early stages, as they built the vital backbone of HT genome sequencing.

After their use in genomics, these xCGE-LIF-based genetic analyzers found their
application in glycomics, which turned out to be an even larger complex challenge.
The gel buffer increases the viscosity of the electrophoresis medium and conse-
quently suppresses the electroosmotic flow (EOF) inside the capillaries, decreases
the electrophoretic mobility of charged analytes, and thereby improves their separa-
tion [106–108]. As glycans lack any endogenous fluorescence necessary for
LIF-detection [109] and in majority also charges, 8-aminopyrene-1,3,6-trisulfonic-
acid (APTS) fluorescent dye [110–112] is almost universally employed in CE-based
glycan analysis today, as it meets these requirements. APTS-labeled glycans will,
therefore, be separated based on charge and molecular size/shape with high resolu-
tion [113–115]. Recent work has shown that xCGE-LIF can separate even challeng-
ing positional and linkage isomers in a single analysis run. For example, the method
is capable of distinguishing the position and linkage of Fuc (α1–6 core Fuc from
α1–3/1–4 Fuc on antenna GlcNAc or α1–2 Fuc on Gal) [116–120], Sia type
(N-acetylneuraminic acid from N-glycolylneuraminic acid) [121], Sia linkage
(α2–3 from α2–6) [116, 117, 120, 122, 123], Gal linkage (β1–3 from β1–4)
[117, 119, 120], and even position isomers of glycan structures (e.g., Gal on α1–3
from Gal on α1–6 arm of the core structure) [116, 119, 124–127]. This feature
becomes especially advantageous when thinking about the importance of determin-
ing immunogenic α-Gal and N-glycolylneuraminic acid on glycoprotein therapeutics
[128–130]. Additionally, the fact that only α2–6, and not α2–3 Sia, affects the anti-
inflammatory activity of an IgG antibody [131] makes it crucial to have a method
capable of their differentiation. Example of high-resolution separation of N-glycans
released from a complex sample utilizing xCGE-LIF technology is given in Fig. 4.

Besides this extraordinary separation power, this method is attractive due to the
impressive sensitivity (low attomole range) [109, 132] of LIF detection. In addition,
xCGE-LIF-based DNA sequencers employ a multicapillary format incorporating up
to 96 capillaries so that hundreds to thousands of samples can be measured by CE per
day [133], which is an amazing “real” high-throughput capability. Another attractive
option provided by those instruments allows recording of different fluorescent dyes
at different wavelengths at the same time (within one run). This special feature has
been exploited for internal normalization of migration times, giving long-time stable
migration times [134–136]. Beside migration time normalization and instant
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structural assignment search in a built-in database (more than 300 N-glycan entries),
glyXtool software (glyXera [100]) allows automated background subtraction, raw
data smoothing, peak picking, integration, relative quantification, and sample com-
parison [116, 137]. Meanwhile, also ready-to-use methods and kits are on the market
[64, 138–141], enabling fast and robust comparison of glycoprofiles, which makes
the technology more and more attractive for the industry.

As for other separation-based glycoanalytical techniques, like HILIC-FLR, one
bottleneck of this powerful analytical technique is that it does not provide any direct
structural information. Thus, like for LC-based glycan analyses, for explorative
glycoanalytical investigations, additional techniques, such as exoglycosidase digests
[117, 120, 121, 133, 135, 142] or MS [143–147], need to be used together with CE.

Clearly, CE has matured to the point that can stay side by side to other more
traditionally used techniques for glycan analysis. Because of its unbeatable speed,
resolution, sensitivity, and simplicity, the method is gaining more and more atten-
tion. Its unprecedented separation power, together with HT capability by
multiplexing, and femto- to nanoliter injection make CE to more than a proper
competitor to other techniques for glycan analysis. Commercially available analysis
kits and software solutions including glycan databases make method appealable to
the biopharmaceutical industry. Thus, today, almost 40 years since the potential of
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CE was recognized, advantages of the method for analysis of glycans are becoming
increasingly obvious and appreciated. The recent and upcoming developments in
miniaturization and analysis toolboxes show that there is exciting future in glycan
analysis for this recently revived technology.

3 Emerging Technologies for the Analysis of Glycans
in the Biopharmaceutical Industry

Next to HILIC-FLR, the “gold-standard” approach for glycan analysis in biopharma,
and the more newly established high-throughput methods like MALDI-MS and
xCGE-LIF introduced above, we want to spot on two exciting technology develop-
ments that offer unique opportunities for structure characterization of N- and O-
glycans.

3.1 Porous Graphitized Carbon Liquid Chromatography
Online Coupled to MS for N- and O-Glycomics

PGC is a stationary phase chemistry with unique properties for glycan separation and
analysis. The specific interactions involved in PGC-LC are only vaguely understood
but are believed to be a combination of hydrophobic, ionic, polar, and molecular
features that together influence analyte retention [148–155]. PGC has shown a
unique ability to resolve native, non-labeled, glycans in a LC setting (Fig. 5).
Since PGC separation works best when non-labeled, reduced glycans are analyzed,
MS has been the preferred detection approach due to its sensitivity and versatility.
Here, glycan reduction provides the additional advantage as it introduces a specific
mass tag on the reducing end that facilitates fragment peak assignment in tandemMS
spectra [29].

The PGC-LC-MS approach has successfully been employed by several labora-
tories around the world to investigate either protein-specific or tissue/body fluid-
specific, global glycosylation patterns [151, 157, 158] but also for biopharma mAb
products [159]. In a recent National Institute of Standards and Technology (NIST)-
organized multi-laboratory effort to evaluate comparability of mAb glycan analyses
across biopharma and research labs, PGC-LC-MS performed equally well if not a bit
better compared to most standard methods employed [160]. Since no glycan labeling
is required, it is equally suitable to separate any glycan type.

Thus, PGC-LC-MS has been applied to analyze N- and O-glycans but also to
characterize the glycan portion of glycolipids and glycosaminoglycan fragments, as
also reviewed recently by Stavenhagen et al. in the context of clinical
glycomics [150].
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The PGC-LC-MS glycomics approach delivers three independent sets of infor-
mation within a single analysis that are used to qualitatively and semi-quantitatively
describe glycan structures: glycan composition and type (by MS), glycan structure
(by retention time and MS/MS), and relative quantity of glycans (by signal

Fig. 5 N-glycans released from human secretory immunoglobulin A (sIgA) and analyzed by PGC
nanoLC-ESI MS/MS [figure taken from [156] with permission from publisher]. Top panel: The
base peak chromatogram (BPC) provides a global overview of the present structures. An extracted
ion chromatogram (EIC), here presented for m/z 1038.8, shows three distinct isobaric N-glycan
alditols with individual LC elution properties. Due to this chromatographic separation, individual
fingerprint MS/MS spectra can be acquired that subsequently allow differentiation and structural
characterization (e.g., Fuc linkage) of these isobaric oligosaccharide alditols
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intensity). Hence, PGC-LC-MS has clear advantages if just very limited amounts of
material are available as this is often the case when working with clinical histopa-
thology sections [161, 162]. But it also can easily be combined to study protein-
specific glycosylation after 1D or 2D electrophoretic separation, providing unique
opportunities to obtain protein-specific glycosylation information without the
requirement of complex protein purification steps [163]. This capacity allows
establishing in-depth glycoprofiles from less than 500 ng of glycoprotein
[161, 162]. PGC-LC-MS has successfully been employed to study the components
of secretory IgA from human breast milk [164], human plasma proteins such as
butyrylcholinesterase [165] or corticosteroid-binding globulin [166, 167], human as
well as recombinant immunoglobulins [159], human cancer-associated glycopro-
teins such as E-cadherin [168], bacterial flagellins [169], or influenza virus antigens
(Fig. 6), to name a few.

Recently, the analytical performance of the conventional PGC-LC-MS setup was
systematically evaluated and compared to an improved setup with a tailored post-
column make-up flow (PCMF). The PCMF-based setup showed an increased
electrospray stability, glycomics sensitivity (30–100�), coverage and quantitative
accuracy not least for the difficult-to-detect early-eluting and low-abundance glycans
detached from N- and O-glycoproteins [170, 171].

Although mostly used for the analysis of non-labeled, non-derivatized glycans,
recently the separation of permethylated glycans by PGC has also been reported
[93, 172]. The packing of PGC into nanoscale chromatography chips for nanoLC-
MS based analysis of permethylated glycans [173] has shown a considerable sensi-
tivity promise in the rapid analysis of glycans, albeit sacrificing isomer separation
due to the significantly increased hydrophobicity of the permethylated glycan
molecules.

3.2 Ion-Mobility Mass Spectrometry-Based Glycan Analysis

Over the past decade, MS has become the most powerful tool for in-depth carbohy-
drate sequencing. New instrument developments in fragmentation approaches and
gas-phase ion handling such as electron-transfer dissociation (ETD) or ion mobility
(IM), respectively, have become available in commercial instruments, further push-
ing the limits in glycoanalytics (also reviewed recently by Everest-Dass and
co-workers [174, 175]).

Ion-mobility mass spectrometry (IM-MS) is one of the most recent additions
introduced in commercial MS-instruments that has the potential to revolutionize
glycan structure characterization by MS. In IM-MS, charged ions are separated
based on their charge and gas-phase structure/size before the ions are detected by
traditional MS analyzers. This provides an additional, entirely orthogonal layer of
separation that is able to differentiate isobaric ions that just differ in their structure
but not composition [176–179]. These structural differences are expressed in
so-called collisional cross sections (CCS), which are independent of instrument
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parameters under controlled conditions and correlate to the shape of an ion [180]. To
receive appropriate IM-MS data, the choice of the drift gas and a suitable calibration
is essential to record CCS data that can be used for glycan structure characterization.
Nitrogen has so far delivered the best results for the analysis of complex carbohy-
drates, while dextran ladders have shown promising results to calibrate IM-MS
instruments for accurate CCS determination [181].
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Since the initial work of Gabryelski and Froese in 2003 on disaccharide structures
[182], a number of publications have demonstrated how IM-MS can be used to
dissect structure details otherwise impossible to differentiate by MS-analyses on
complex type [183] or oligomannose type N-glycans [184]. IM-MS has also been
used to differentiate Sia linkage directly on glycopeptides, opening novel opportu-
nities to simultaneously collect site-specific N-glycan or O-glycan structure infor-
mation beyond composition alone [178] (see also chapter ‘Glycoproteomics
Technologies in Glycobiotechnology’). For more details the interested reader is
referred to the excellent reviews from Hofmann and Pagel [180] and Gray
et al. [185].

In a first step toward a semi-automated integration of CCS values for glycan
structure determination, the online tool GlycoMob was recently published, which
stores the CCS values of different glycan structures from IM-MS experiments
[186]. This reduces the time for data interpretation and facilitates de novo sequenc-
ing of the corresponding glycans for structural evaluation. This is currently still a
time-consuming approach using parameters such as precursor mass, CCS values,
and diagnostic cross-ring fragment ions obtained after CID fragmentation of posi-
tively or negatively charged precursor ions for glycan structure evaluation [187].

While these promising technologies are still requiring a considerable level of user
expertise and input compared to established technologies such as HILIC, MALDI, as
well as CE, IM-MS and PGC-LC-MS are highly promising tools to deliver an
additional level of information for in-depth glycan analysis. Factors such as high-
throughput have been less of a focus for these methods, but ongoing work to develop
decent databases and standardization procedures has shown promising progress that
will increase their future capabilities also for biopharmaceutical industry applica-
tions [186, 188]. The choice of method depends on the analytical question that needs
to be solved, and the most sophisticated technology is not always the most suitable
one to answer a specific question. The fact that scientists can now choose from a
selection of different methodologies with different strengths and limitations means
that the optimal analytical solution can be employed for a specific problem.

4 Applications in the Biopharmaceutical Industry

4.1 Glycomics of Monoclonal Antibodies

MAbs are still the major biopharmaceutical product class with the most approvals
during the last years [12]. As of May 2017, 74 antibody-based molecules had been
approved by authorities together with 70 molecules in Phase III and 575 in Phase I/II
clinical trials [189]. Glycosylation is of essential interest in antibody production
regarding safety, efficacy, immunogenicity, toxicity, and affinity [190, 191]. Espe-
cially in terms of safety, one prominent example is the cetuximab-induced anaphy-
laxis, caused by alpha-1,3-Gal binding IgE in some individuals [128]. In contrast to
other mammals, humans do not have alpha-1,3-galactosyltransferase. Therefore,
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alpha-1,3-Gal on mAbs and in general recombinant proteins can cause devastating
immunological reactions in humans [128]. Glycoengeneering of mAbs is an increas-
ing field in the scientific community and the industry [1, 192–194]. Most recombi-
nant antibody molecules harbor a single N-glycosylation site at the Fc-domain.
However, it has been established that about 30% of polyclonal human IgG molecules
bear N-linked oligosaccharides within the variable regions of the kappa (Vκ),
lambda (Vλ), or heavy (VH) chains, and sometimes both [190, 195]. Dealing with
such complexity requires site-specific, as well as structural glycan and glycopeptide,
analysis to cover macro- and microheterogeneity of the antibody glycoprofile. This
brings new emerging LC-MS-based analytical methods for comprehensive site-
specific and structural analysis more into the focus of interest. As stated by the
authorities, antibody glycosylation is a CQA and needs to be monitored [3, 4]. To
fulfill the requirements given by the regulatory authority guidelines, the analytical
standard includes HILIC-UHPLC-FLR separation/detection of AB- or AA-labeled
N-glycans coupled with exoglycosidase digestion experiments for structural identi-
fication. An exemplary workflow is nicely given for the production of mAbs in CHO
cells by Carillo et al. (2017) [196]. MALDI-MS, CE-LIF, and PGC-MS-based
application for the analysis of N-glycans derived from mAb’s are also available
and well discussed in the method comparison study from Reusch et al. [197, 198], as
well in the recent NIST-organized study [160]. However, HILIC-UHPLC still is the
standard measurement method in the industry in terms of mAbs glycosylation
analysis.

4.2 Glycomics of Pharmaceutically Relevant Glycoproteins
Beyond Monoclonal Antibodies

Beside mAbs as the leading biopharmaceutical recombinant glycoproteins, other
glycoprotein products like hormones, fusion proteins, growth factors, cytokines, and
therapeutic enzymes give new challenges to the glycan analysis. These recombinant
proteins tend to be more complex in terms of protein structure, containing multiple
N-glycosylation sites and other oligosaccharide motives like O-linked glycans
[12]. To fulfill the requirements to monitor all potential PTMs influencing the
efficacy of a therapeutic recombinant protein, site-specific glycoprotein and glyco-
peptide analysis is crucial beside glycan analysis. Detailed strategies for site-specific
glycan analysis are given in this book, as well. So far, glycan analysis of recombi-
nant proteins is performed similarly to mAbs. Exemplarily, Ludger is offering a
comprehensive workflow for the analysis of the glycosylation of biopharmaceutical
follicle-stimulating hormone (FSH) as CQAs, using a procainamide labeling system
with separation/detection via HILIC-UHPLC-FLR online coupled to ESI-MS/MS
for structural glycan analysis and reversed-phase (RP)-LC-ESI-MS for glycopeptide
mapping [199]. Another application is the analysis of released N-glycans of recom-
binant human erythropoietin (EPO) that was achieved using HILIC-UHPLC-FLR of
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RFMS-labeled N-glycans on a GlycanPac AXH-1 column [200]. Another group
used MALDI-MS to detect N-glycans released from EPO via linkage-specific Sia
esterification [201]. CE-MS, CE-LIF, and PGC-LC-MS are also suitable for the N-
glycan analysis of more complex recombinant proteins [157, 202], but PGC-LC-MS
is the only suitable approach for the structural analysis of O-glycans released by
reductive β-elimination as non-reductive approaches suffer from significant peeling
artifacts [203].

4.3 Glycomics of Vaccine Antigens

Vaccines represent a further big sector of biopharmaceutical products. In contrast to
recombinantly produced therapeutic proteins, vaccines are natural products. Vac-
cines are traditionally produced in embryonated chicken eggs. Ongoing efforts in
establishing mammalian cell-based cultivation systems led already to approved
vaccine products as well [204, 205]. Viruses can harbor glycoproteins as antigens.
In case of influenza virus antigen glycosylation (hemagglutinin (HA) and neuramin-
idase (NA)), especially differences of HA glycosylation in terms of macro- and
microheterogeneity are demonstrated to have a great impact on vaccine efficacy
regarding immunogenicity and virulence [1, 206–209]. As an example, contrary to
mAbs glycosylation, in vitro alpha-1,3-galactosylation of influenza virus antigens
propagated in embryonated chicken eggs was demonstrated to harbor an increased
vaccine efficiency for the treatment of alpha-1,3-galactosyltranferase negative mice
[210]. Interestingly, glycan analysis of viral antigens is quite underrepresented. This
could be due to the fact that the glycosylation of viral antigens from original viruses
is not stated as a CQA by the regulatory agencies so far [5]. However, it can be
expected to see changes regarding CQAs of biopharmaceutical vaccine products in
terms of antigen glycosylation in the future. Especially CE was used in the past for
the in-depth analysis of vaccine antigen N-glycosylation [136, 211]. Hennig et al.
describe the N-glycan analysis of influenza virus antigens using xCGE-LIF very
detailed [24]. Briefly, after SDS-PAGE separation of viral antigens HA and NA, an
in-gel N-glycan release is performed using PNGase F digestion. Afterward, the
glycans are labeled with APTS and enriched using HILIC solid-phase extraction
(SPE). Structural separation and detection of labeled N-glycans are achieved using
xCGE-LIF. The structural assignment of specific peaks is performed using sequen-
tial exoglycosidase digestion strategies and database-assisted comparison of specific
migration times due to double internal normalization. For more details on released
N-glycan and glycopeptide analyses from viral glycoproteins, we recommend the
comprehensive reviews by Harvey et al. (2018) [212] and others [213–215].

Recombinant viral glycoproteins are an area of growing interest. Ensuring the
correct glycosylation of recombinantly generated vaccines is equally mandatory in
the biopharmaceutical industry (e.g., Flublok). We expect that the number of novel
methods and publications specifically dealing with the aspects of recombinant
vaccine glycosylation profiling will increase due to the growing requirements.
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5 Conclusion

The methods discussed have been demonstrated to allow medium to HT glycomics
and deliver good to high sensitivity, performance, and reproducibility. However,
they provide different levels of composition/structure assignment certainty. The
huge variety of different analytical techniques result in different types of data
which require technology-specific, individual approaches for data analysis and
mining. In consequence, this data-output heterogeneity still forms a major bottleneck
compared to other -omics techniques. This is partially due to the intrinsic nature of
glycans that are seldom linear constructed molecules and do occur in various
linkages despite having the same “sequence” but also due to the fact that hardly a
single technology provides all necessary information for unambiguous structure
determination within a single analysis. In combination these factors clearly put
challenges for any automated, software-assisted data analysis tools. Nevertheless,
many of these challenges can be overcome when focusing on specific aspects or
specific sample types. In the biopharmaceutical context, IgG represents the most
widely analyzed glycoprotein, and its glycosylation is comparably simple in most
expression systems used.

Several reviews compare these different state-of-the-art analytical techniques for
the analysis of released glycans to more or less extent [160, 216, 217] and consis-
tently report that the methods delivered reliable qualitative and comparable quanti-
tative data. Thus, in summary, a wide selection of analytical approaches is available
for glycan characterization of biopharmaceuticals. The latest NIST study showed
that glycoanalytical approaches based on fluorescently labeled N-glycans with non-
laser induced fluorescence detection are still the preferred choice for biopharmaceu-
tical applications, maybe also due the fact that these have been already well-
established for years. However, the NIST study also showed that these approaches
usually deliver a lower identification rate compared to the methods applied in
research laboratories that are more likely to apply methods based on highly sensitive
LIF-detection or on MS-based detection of non-fluorescently-labeled glycans or
glycopeptides [160].

The choice which analytical methodology is chosen to determine the glycoprofile
of a biopharmaceutical depends on a variety of factors such as the type of protein, the
expected complexity, and the preference for HT or in-depth structure elucidation, to
name a few. With continuous development of novel methods and technologies, new
advances in glycoanalytical technologies can be expected to overcome current
limitations. The ongoing enhancement and improvement of the glycoanalytical
toolbox will help the biopharmaceutical industry to face regulations from the
authorities regarding glycosylation of recombinant proteins, beyond the relatively
simple one of mAbs. Furthermore, it is expected that glycosylation of vaccines will
become a CQA as well. With respect to more complex molecules and other cultiva-
tion systems (prokaryotes, plant cells, etc.), the importance and necessity of in-depth
glycan analysis, facing comprehensive structural, site-specific, as well as quantita-
tive information, will increase as this next generation of biologics pushes toward
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regulatory approval. The community is challenged to provide tools to fulfill the
increasing requirements in the future, including production relevant parameters like
high throughput, high performance, and high resolution. Next to the more reliably
established N-glycan analysis, there will be an increased requirement to capture O-
glycans on biopharmaceutical products.
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Abstract Glycosylation is a key factor determining the pharmacological properties
of biotherapeutics, including their stability, solubility, bioavailability, pharma-
cokinetics, and immunogenicity. As such, comprehensive information about glyco-
sylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies
also require extensive documentation of the comprehensive analyses of glycosylation-
related critical quality attributes (CQAs) during the development, manufacturing, and
release of biosimilars. Mass spectrometry has catalysed tremendous advancements in
the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a
perspective overview on the MS-based technologies relevant for biotherapeutic prod-
uct characterisation with an emphasis on the recent developments that allow determi-
nation of glycosylation features such as site of glycosylation, sialic acid linkage,
glycan structure, and content.

Graphical Abstract

Keywords Analytics, Biopharmaceuticals, Glycoproteomics, Mass spectrometry

Abbreviations

ADCC Antibody-dependent cell-mediated cytotoxicity
AI-ETD Activated ion electron transfer dissociation
CE-MS Capillary electrophoresis–mass spectrometry
CID Collision-induced dissociation
CQA Critical quality attribute
ECD Electron-capture dissociation
EIC Extracted-ion chromatogram
EIE Extracted ion electropherogram
EMA European Medicines Agency
EPO Erythropoietin
ESI Electrospray ionisation
ETD Electron-transfer dissociation
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FcγR Fc-γ receptor
FDA Food and Drug Administration
FSH Follicle-stimulating hormone
FSHR Follicle-stimulating hormone receptor
FT-ICR MS Fourier transform–ion cyclotron resonance mass spectrometry
HCD Higher-energy collision-induced dissociation
IgGs Immunoglobulin G
IM-MS Ion-mobility mass spectrometry
LC Liquid chromatography
m/z Mass-to-charge ratio
MALDI Matrix-assisted laser desorption/ionisation
MAM Multi-attribute monitoring
MS Mass spectrometry
PNGase F Peptide:N-glycosidase F
PSA Prostate-specific antigen
PTM Post-translational modification
QbD Quality by design
RP Reversed phase
TOF Time of flight

1 Introduction

In contrast to defined small generic molecules and reproducible structures, protein
pharmaceuticals are large heterogeneous molecules prone to numerous enzymatic
and chemical post-translational modifications (PTMs) during production, formula-
tion, and storage [1, 2]. As such, an inherent amount of heterogeneity is always
present in biotherapeutica that could affect their immunogenicity, structure, func-
tion, and pharmaceutical properties and requires an arsenal of orthogonal analytical
techniques for reliable and accurate product characterisation during development
and quality control. Modern high-resolution and sensitive mass spectrometry (MS)-
based multi-attribute methods offer unprecedented opportunities to evaluate a com-
bination of quality attributes to assess batch-to-batch stability, similarity, and safety
of these products from early development onwards through to lot release [3, 4].

The FDA guidelines state that evaluation of the comparability of biosimilar
products is a stepwise approach; thus, the comparability of the quality profiles of
biosimilar and originator products should be considered the first priority. Normally,
biosimilar evaluation will include (but not limited to) the following analyses in
comparison to the originator reference [5]:

1. Primary structure, amino acid sequence
2. Higher-order structures, including secondary, tertiary, and quaternary structure

(if appropriate)
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3. Intended post-translational modifications such as glycosylation as described for
the originator

4. Unintended post-translational modifications occurring during production and
downstream processing, such as protein deamidation and oxidation

1.1 Glycosylation of Biosimilars and Regulatory
Requirements

Although glycosylation is mentioned only as one subset among various other
criteria, it is probably one of the most challenging primary structure attributes for
which biosimilarity of glycoprotein therapeutics needs to be demonstrated. In
compliance with the US Food and Drug Administration (FDA), European Medicines
Agency (EMA), and the International Conference on Harmonization guidelines,
evaluation of glycosylation is a critical quality attribute (CQA) and constitutes a
quality by design (QbD) parameter [6]. QbD is a scientific, risk-based, proactive, and
systematic approach to drug development, which promotes understanding of the
product and manufacturing process in such a way that quality is built-in (from
product development and through manufacturing process), rather than just tested
after development.

Owing to the fact that most biopharmaceuticals, which include monoclonal
antibodies (mAbs) and other recombinant protein products such as fusion proteins,
growth factors, cytokines, therapeutic enzymes, and hormones, are glycoproteins, it
is imperative to elucidate their glycosylation pattern and confirm consistency across
batches. The FDA and EMA mandate in-depth characterisation of glycosylation
features of biopharmaceuticals and require information on carbohydrate composi-
tion, structure, and site of attachment including site occupancy as all these factors are
relevant for product efficacy, safety, stability, and functionality [7–13].

The pharmaceutical or functional relevance of glycosylation is strongly protein-
dependent. In the case of erythropoietin (EPO), the serum half-life depends on the
presence of sialic acid on the N-glycans [14]; the site-specific glycosylation at
asparagine (Asn) 52 of the α-subunit of follicle-stimulating hormone (FSH) plays
a pivotal role in FSH receptor (FSHR) activation/signalling [15]; antibody-
dependent cell-mediated cytotoxicity (ADCC) of immunoglobulins (IgGs) after
binding of Fc-γ receptors (FcγR) is influenced by N-glycosylation in the IgG CH2
domain. Also, presence of glycan residues, such as α1–3 galactose, β1–2 xylose,
α1–3 fucose, and N-glycolylneuraminic acid have negative impact on the safety
and/or immunogenicity of biotherapeutics (Table 1). Therefore, next to confirming
the “right” glycosylation profile of a biosimilar product, glycosylation analyses are
also relevant to identify such immunogenic glycan species already from the early
stages of originator and biosimilar drug development through to final lot release to
ensure product safety. They also can result in the development of glycosylation-
improved biosimilars, so-called biobetters [16, 17]. The methods of choice for
glycoprotein characterisation rely heavily on modern mass spectrometers in
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combination with different ionisation methods and fragmentation techniques as they
often enable a multi-attribute monitoring (MAM) simultaneous monitoring of sev-
eral CQAs within a single analytical approach.

1.2 Analytical Strategies for In-Depth Glycan
Characterisation of Biosimilars

Protein glycosylation is dynamic and influenced by the cell line type, cell cultivation
conditions, as well as downstream purification and product formulation conditions.
Unlike DNA, RNA, or proteins, glycan biosynthesis does not follow any template,

Table 1 Overview on analytical techniques used for glycan characterisation of therapeutic proteins

Level of
analysis Method

Obtained
information

Site-
specific
information Advantages Disadvantages

Intact and
subunit pro-
tein level

RPLC-
MS

Glycan
heterogeneity

Yes Fast and robust
technique for
routine analysis
at subunit level

Limited resolv-
ing power for
glycoforms and
introduction of
artefacts by MS
analysis

CE/cIEF Sialylation
heterogeneity

Yes High resolution
due to the
electro-driven
separation

Strong protein
adsorption to
capillary wall

Glycopeptides LC-ESI-
MS

Glycoform
determination

Yes Information on
site specific gly-
cosylation, pri-
mary sequence
information and
other PTMs

Limited interac-
tion with small
polar glycopep-
tides (RP-LC)
and introduction
of artefacts by
MS analysis
(e.g. fucose
migration)

MALDI-
MS

Glycoform
determination

Yes Highly auto-
mated procedure
with limited
hands-on time
and linkage spe-
cific information
on terminal sialic
acid

Limited infor-
mation on site-
specific glycan
composition
information is
available

CE-MS Glycoform
determination

Yes Complementary
to RPLC to
achieve com-
plete sequence
coverage

Introduction of
experimental
artefacts by MS
analysis

Glycoproteomics Technologies in Glycobiotechnology 417



but is accomplished by the concerted action of over 250 different enzymes such as
glycosyltransferases and glycosidases that attach and assemble activated monosac-
charides into N- and O-glycan oligosaccharides. From a biopharma perspective, the
situation is further complicated as the very same protein construct can exhibit a very
different glycosylation profile when expressed in different cell types or under
different process conditions. In consequence, protein glycosylation cannot be
predicted based on the gene sequence or from protein chemistry alone but needs to
be determined analytically. These glycosylation analyses of therapeutic proteins can
be performed either at intact glycoprotein, at glycopeptide, or at released glycan
level. All these approaches have their merits and shortcomings. It depends on the
type of glycoprotein, the depth of characterisation required, and the complexity of
protein-specific glycosylation if one single approach is sufficient or several orthog-
onal characterisation techniques need to be employed. In a previous chapter, we have
already discussed the opportunities and challenges associated with released N- and
O-glycan analyses (Chap. 13). In this chapter we focus on recent advances in the
characterisation of biosimilar glycosylation on intact glycopeptide level to meet the
requirements of regulatory guidelines. This is in particular relevant for any glyco-
proteins exhibiting more than a single site of glycosylation.

The analysis of intact glycopeptides and glycoproteins has experienced an
unprecedented boost with the development of the soft ionisation techniques such
as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation
(MALDI). Although it is possible to directly infuse the analyte solution to an MS,
biotherapeutic analyses often require separation strategies that facilitate the removal
of buffer components (e.g. salts) or fractionate different species in a mixture to
increase the overall dynamic range, which especially supports detection of
low-abundance analytes. Analytical approaches based on hyphenated separation
techniques such as liquid chromatography (LC) or capillary electrophoresis
(CE) can easily be coupled with online mass spectrometric detection. These have
been proven to be indispensable tools to monitor not only glycosylation but also an
extensive array of product quality attributes such as oxidation or glycation starting
from early drug development through to final lot release.

In combination with different ionisation methods and fragmentation techniques,
LC-MS-based multi-attribute methods allow in-depth characterisation of peptide
sequence, identification of the glycosylation sites, and glycan composition/structures
within a single analysis. Over the past decades, reversed phase (RP) -LC-ESI-MS
has been the most widely used technique for glycoprotein and glycopeptide charac-
terisation [18–20]. In our overview, we roughly divide glycopeptide characterisation
into three categories based on the MS techniques used: (1) bottom-up peptide-
mapping strategies that analyse a biosimilar after an extensive proteolytic digestion;
(2) middle-down strategies that characterise large fragments produced by disulphide
reduction, chemical cleavage and/or limited digestion with enzymes such as Lys-C,
and IdeS protease (FabRICATOR); (3) top-down strategies analyse the entire, intact
protein by MS, often performed under native conditions [21] (Fig. 1 and Table 1).

Bottom-up (glyco-)proteomics relies on enzymatic proteolytic digestion before
online liquid chromatography-coupled tandem mass spectrometry analysis. The
(glyco-)peptides obtained after protease digestion are the primary unit of
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measurement in bottom-up (glyco-)proteomics, but their relatively small size (typ-
ically �8–25 residues long) leads to problems such as sample complexity, difficul-
ties in assigning their amino acid sequences to specific gene products rather than
protein groups, and loss of single and combinatorial PTM information. Often,
glycopeptides are less abundant than their peptide counterpart due to their
microheterogeneity thus requiring highly selective enrichment techniques prior
LC-MS analysis [23]. This enrichment approach separates the glycopeptides from
the non-glycosylated peptides and increases their ionisation and detection properties
[24]. Montacir and co-workers employed a multi-protease bottom-up workflow
using Lys-C, trypsin, and Asp-N to demonstrate a very high N- and O-glycosylation
similarity between etanercept originator and biosimilar [25]. Etanercept is a soluble
fusion protein of the tumour necrosis factor receptor extracellular domain, linked to
an Fc part of IgG1. Using their approach, they were able to map the two N-
glycosylation sites present in the tumour necrosis factor receptor region carrying
highly sialylated glycans, while the Fc-part of etanercept bears Fc-specific glyco-
sylation features such as Man5, G0, G0F, and G1F. Recently, Pralow et al. redefined
the cleavage specificity of flavastacin. They demonstrated for the first time the

Fig. 1 A schematic diagram comparing top-down (left) and middle-down (middle) MS workflows
with bottom-up MS protocols (right) for mAb sequencing. For bottom-up MS approaches, (glyco-)
proteins are digested into small (glyco-)peptides for LC separation and MS analysis, where (glyco-)
peptides are selected and sequenced. Some labile PTMs may be lost during bottom-up workflows.
In top-down MS, all proteoforms are directly sequenced in the gas-phase using advanced MS/MS
strategies. For middle-down workflows, MS/MS analysis is performed on large fragments or mAb
subunits after limited proteolysis in order to maximise both sequence coverage and PTM retention.
(LC light chain, Fd heavy chain fragment generated from reduction of the antigen binding fragment,
Fc/2 heavy chain fragment obtained after reducing the Fc fragment) [22]
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unique cleavage specificity that flavastacin exhibits towards the C-terminus of N-
glycosylated asparagine residues. They developed a “N-glyco-specific” proteolytic
strategy specific for N-glycosylated asparagine at the C-terminus by sequential
digestion with trypsin and flavastacin to increase the confidence of MS-based site-
specific analyses [26].

In contrast to bottom-up MS, top-down MS analyses intact (glyco-)proteins
without proteolytic digestion. If necessary, (glyco-)protein sequence information is
obtained by fragmentation of the protein ions in the gas phase using electron capture
dissociation (ECD) in Fourier transform ion cyclotron resonance (FT-ICR) mass
spectrometers or ETD in hybrid FT-ICR MS, Orbitrap FTMS, or time-of-flight
(qTOF) MS instruments [27]. A distinct advantage of top-down over (glyco-)pep-
tide-based approaches is the access to the entire (glyco-)protein sequence including
amino acid sequence variants (i.e. mutants, alternatively spliced isoforms, amino acid
polymorphisms) and PTMs [28]. However, top-down ESI-MS analysis of glycopro-
teins is challenging due to the less efficient desolvation resulting from the glycan
heterogeneity and adduct formation. Also, the degree of glycosylation limits detec-
tion, as glycans cover large surface areas of the amino acid backbone of glycoproteins
thereby reducing efficient ionisation. The resulting decreased charge state reduces the
range ofm/z analysed by ESI-MS instruments. These technical difficulties are to some
extent overcome by the application of nano-electrospray as shown by Wilm and
Mann in the analysis of ovalbumin glycoforms [29]. The coupling of nano-ESI with
high-resolution mass analysers such as time of flight (TOF) analysers has also
produced well-resolved glycoforms of bovine α1-acid glycoprotein [30] and cellu-
lases purified from Trichoderma reesei [31]. Similarly, Nagy et al. showed the high
resolution α1-acid glycoprotein glycoforms by ESI-FT-ICR MS [32]. Heck and
co-workers demonstrated the glycosylation analysis of native human erythropoietin
using high-resolution native MS. The work elegantly demonstrated the characterisa-
tion of site-specific glycans with minimal sample preparation and analysis time
required to quantify glycan composition without ionisation bias [33].

Last but not least the middle-down approach is an emerging high-throughput
strategy to define PTM co-existence frequency. It is a variant of the top-down
approach yet involves analysis of truncated (glyco-)peptides (instead of “intact
(glyco-)proteins”) obtained by limited proteolysis or chemical degradation steps
(which is characteristic of bottom-up approach). The main benefit of the middle-
down analysis is the reduction in sample preparation time/steps, in comparison with
the bottom-up approach, while still providing sufficient resolving power for glycan
characterisation [34]. Use of specific enzymes such as papain or IgG-degrading
enzyme of Streptococcus pyogenes (IdeS) [35] can facilitate the characterisation of
large fragments of therapeutic mAbs. Middle-down analysis of Fab and F(ab0)2
fragments of mAb offer advantages over intact analysis by reducing nonspecific
antigen binding to Fc region. On the other hand, the Fc region can be used for
in-depth glycosylation analysis [36, 37]. Möginger et al. [38] established an inte-
grated middle-down LC-MALDI-TOF-MS assay utilising cyanogen bromide for the
in-depth characterisation of glycoconjugate vaccines. Production of glycoconjugate
vaccines involves the chemical conjugation of glycans to an immunogenic carrier
protein such as Cross-Reactive-Material-197 (CRM197). While the glycan is
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structurally defined, the attachment sites on the protein are not. Their approach of
chemical cleavage of glycoconjugates followed by a middle-down LC-MALDI-ISD
detection strategy provided several advantages towards any protease-based assays
for comprehensive and in-depth semi-quantitative evaluation of region-specific
conjugation efficiency providing virtually complete sequence coverage [38].

Capillary electrophoresis-mass spectrometry (CE-MS) provides the highest suc-
cess for resolving the glycoforms of highly glycosylated proteins. Several studies
have shown the application of CE-MS to almost completely resolving the various
glycoforms of biologically relevant glycoproteins such as human plasma antithrom-
bin [39] and recombinant erythropoietin [40, 41]. The high resolving power of CE in
analysing glycoforms has immense potential for high throughput screening of
recombinant glycoproteins although little is known about the structural features of
the attached glycans by this type of analysis. However, the integration of CE-MS with
other orthogonal methodologies can mitigate this issue. Takur et al. [42] demonstrated
the characterisation of 60 glycoforms of recombinant human chorionic gonadotrophin
using CE coupled to a high-resolution FT-ICR MS; subsequent analysis of the tryptic
glycopeptides enabled site-specific glycan variant identification.

Native MS in combination with IM-MS can provide information on the shape/
size of biosimilars [43]. Native IM-MS is an emerging method to characterise intact
antibodies and can be used for routine batch-to-batch characterisation of therapeu-
tics, mAbs glycosylation analysis, and higher order structures [44, 45]. Also, they
can be used to gain structural insights on conformational changes induced upon
antigen binding to the individual mAB [46–48] (Fig. 2).

2 Recent Developments in Intact Glycopeptide
Characterisation

2.1 Advancements in Glycopeptide Fragmentation

A variety of different glycopeptide fragmentation techniques are available to obtain
structural data on glycopeptides (Fig. 3). Collision-induced dissociation (CID)
preferentially yields glycan product ion fragments by cleaving the glycosidic
bonds between carbohydrate units (B- and Y-ions). This information can be used
to confirm the glycan composition present on a specific glycopeptide but rarely
provides sufficient cleavage of the peptide backbone to deliver peptide b- and y-type
product ions (cleavage of peptide bond) that would allow unambiguous peptide
identification [49, 50]. This can be achieved using higher-energy CID (HCD) that
mainly results in b/y-type peptide product ions next to glycan oxonium ions and
fewer Y-type ions. This approach is widely applied to obtain peptide sequence data
[51], even from complex samples. Under optimal collision energy settings, HCD
fragmentation of glycopeptides results in distinct Y1 ions (peptide + GlcNAc in the
case of N-glycans), which allows determination of the putative peptide mass of the
N-glycopeptide.
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The standard high-energy conditions, however, impede acquisition of compre-
hensive glycan backbone data. Hinneburg et al. developed a workflow that allowed
simultaneous acquisition of MS spectra at lower and higher collision energies
(collision energy stepping CID) [52]. Fragment ions covering both the glycan and
the peptide moieties of glycopeptides can be generated by this approach within a
single experiment [53–57]. The use of synthetic N-glycopeptides allowed them to
optimise analysis conditions that subsequently also improved the software-assisted

Fig. 3 Overview of the most widely applied glycopeptide fragmentation methods and their
preferred sites of action. The displayed peptide sequence matches that of a tryptic N-glycopeptide
from alpha-1-acid glycoprotein, whereas the O-glycan has been added for illustrative purposes.
Locations of fragmentation are exemplary, and dissociation of glycosidic linkages and peptide
bonds can also occur elsewhere on the molecule. The actual observed fragments will depend highly
on both the glycan and the peptide in question and the particular energy deposited in the precursor
ions. Figure reproduced with permission from [71]
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data analysis [52], which to date remains one of the biggest challenges in
glycoproteomics. A similar work based on HCD fragmentation regimes, HCD.low
and HCD.step, was developed by Hoffmann et al. to enable unambiguous identifi-
cation of the peptide backbone as well as the detailed analysis of the glycan moiety
[58]. Based on the unique oxonium ion patterns observed in the product ion MS
spectra, they were able to discriminate not only hybrid- and oligo-mannose-type N-
glycans but also glycan epitope features such as antenna vs bisecting GlcNAc,
antenna and core fucosylation. Nevertheless, caution needs to be taken when making
these assignments on glycopeptide level as in particular deoxy-sugars such as fucose
are prone to gas phase migration when fragmenting protonated ions that can give
rise to misleading fragments not representative of the actual glycopeptide
[59, 60]. Recently, Sanda et al. described a similar analytical workflow utilising
optimised collision energy for quantitative structure and site-specific glycopeptide
analysis. Like Hinneburg et al. reported previously [52], they, too, found that
glycopeptide spectra acquired at low collision energy settings allowed resolving
glycan structure motifs of N-glycopeptides, while high collision energy fragmenta-
tion was crucial for peptide sequence determination [61].

Alternatively, ion-based fragmentation techniques such as electron transfer dis-
sociation (ETD) and electron capture dissociation (ECD) are non-vibrational
approaches to dissociate precursor ions. The glycan portion stays intact during
these fragmentation conditions, which almost exclusively fragment peptide bonds
at the N-Cα bond to deliver c and z-ions do provide amino acid sequence information
complementary to CID fragmentation [62, 63]. Nevertheless, while these work very
well on unmodified peptides or peptides with small modifications, we recently
demonstrated that for glycopeptides the number and quality of assignable peptide
backbone fragments in ETD fragmentation significantly depends on glycan size and
the position of the modification within a peptide sequence [64]. Highly charged
glycopeptides (z > 3) with precursor masses of m/z < 900 delivered significantly
better-quality product ion spectra ETD spectra [64]. In recent times, the use of a
hybrid fragmentation technique that combines ETD and HCD, termed EThcD [65],
has found wide applicability for glycopeptide characterisation. EThcD generates a
dual product ion series that facilitates extensive peptide backbone fragmentation as
well as glycan fragmentation. Recently Čaval and co-workers demonstrated that
extending the mass scan range from 2000 m/z (standard range) to 4,000 m/z
significantly increased the confidence in EThcD-based N-glycopeptide identification
[66]. Notably, a different hybrid fragmentation approach called activated ion elec-
tron transfer dissociation (AI-ETD), combines infrared photoactivation with ETD
and has shown better performance for proteoform fragmentation (top-down) than
HCD and standard ETD [67, 68]. Riley and co-workers demonstrated that superior
peptide backbone information is obtained in AI-ETD providing 100% sequence
coverage for the N-glycopeptide TN*SSFIQGFVDHVKEDCDR when carrying an
oligomannose type N-glycan [69]. Recently, Riley and co-workers systematically
explored the advantages and disadvantages of conventional HCD, stepped HCD,
ETD, and EThcD for intact glycopeptide analyses and determined their suitability
for both N- and O-glycoproteomics. HCD and stepped HCD generated similar
numbers of identifications for N-glycopeptides, although stepped HCD generally
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provided higher-quality spectra. ETD-based methods, especially EThcD, were found
to be indispensable for site-specific analyses of O-glycopeptides [70].

2.2 Sialic Acid Linkage Differentiation on Glycopeptides

2.2.1 Ion-Mobility MS Enables Differentiation of Isobaric Compounds

Ion-mobility is a technique where ions are separated in the gas phased based on their
charge and gas-phase configuration [72]. As such, it can be perfectly incorporated
into mass spectrometers providing novel analytical opportunities that are in partic-
ular attractive for the analysis of glycoconjugates. Hinneburg et al. employed
synthetic N-glycopeptides designed based on the human protein C glycopeptide
284EVFVHPNYSK293 (UniProt entry P04070) that just differed in the linkage of the
sialic acid residue (either an α2–6 or α2–3) but were otherwise entirely isobaric.
While these compounds did not show any significant IM separation when analysed
as intact glycopeptides, this could easily be achieved on the level of oxonium ions
that were subjected to IM-MS after an initial CID-fragmentation of the glycopeptide
precursor. The m/z 657 B3 type oxonium ion fragment (NeuAc-Gal-GlcNAc trisac-
charide) showed baseline separated different drift times depending on the NeuAc
linkage. The α2–6 fragment exhibiting considerably shorter drift times compared to
the α2–3 equivalent (Fig. 4) [73], which allowed an easy differentiation of sialic acid
linkage directly on the glycopeptide without any additional sample preparation. In
addition, the collision cross sections measured in nitrogen drift gas (TWCCSN2)
differed significantly for these two trisaccharides: 236 Å2 for the α2–6 linked
NeuAc and 246 Å2 for the α2–3 linked NeuAc containing fragments [74]. These
values were highly diagnostic for the regiochemistry of the underlying NeuAc linkage
and could thus be used to gain site-specific information on important glycan structural
features directly from individual glycopeptides in a single experiment. When cou-
pling the system with an LC, this approach enables now site-specific sialic acid
linkage determination of glycopeptides in an -omics context as these collision cross
sections of oxonium ions are independent of the glycopeptide precursor [75, 76].

Recently Barroso and co-workers evaluated the capacity of traveling wave
IM-MS to separate isomeric glycoconjugates on three different levels [77]: as an
intact glycoprotein, after digestion into glycopeptides and just the released glycans.
They put particular focus on the ability to differentiate different types of sialic acid
linkage (i.e. α2–3 and α2–6). In agreement with previous studies, isomer separation
was achieved for glycans (without fragmentation) and for glycopeptides (after
fragmentation as described by Hinneburg et al. and Guttmann et al.)
[75, 76]. Under native MS conditions, no baseline isomer separation of intact
glycoproteins was observed. However, the drift time of various glyco-isoforms
increased with an increase in the carbohydrate fraction, i.e. complexity and
branching of the glycoforms [77]. These advancements in glycopeptide analyses
by IM-MS are particularly important for the biotherapeutics/biosimilars produced in
CHO cells whose glycosylation machinery is similar to that of humans, except that
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they lack a functional ST6, limiting their sialylation capability to the addition of
α2–3 linked sialic acid residues [78–80].

2.2.2 Sialic Acid Linkage Determination by Multi-stage MS

While tandem MS provides the structural depth sufficient for peptide-sequence
determination, linkage specific information on glycan structure features such as
sialic acid linkages are more difficult to extract reliably from glycopeptide product
ion spectra. Promising progress in this direction has been reported recently by Pett
et al. who demonstrated that the oxonium-ion ratios between the signals at m/z
204, 274, 292, and 366 at defined can be indicative for the sialic acid linkage
when glycopeptides are fragmented [81]. Glycopeptides carrying NeuAc residues
in α2–3 linkage exhibited m/z 274 and 292 signals with a stronger intensity com-
pared to the m/z 204 and 366 oxonium ions, whereas the NeuAc related oxonium
ions were much lower when linked α2–6. While this approach might not be ideally
suited to quantify α2–3/6 linkage ratios on a specific site as the ion-mobility
approach, it offers an easy opportunity to get a picture of the prevalent NeuAc-
linkages present on a specific glycopeptide without any additional derivatisation or
specific instrumentation.

Fig. 4 Differentiation of N-acetylneuraminic acid (NeuAc) linkage isomers using CID fragmenta-
tion and subsequent IM-MS analysis. Two isomeric glycopeptides, which either carry α2-6 (GP3)
or α2-3 (GP4) linked NeuAc were analysed. (a) Both peptides exhibited identical MS/MS spectra,
as shown for the triply protonated precursor ion (red). (b) When analysed as mixture the intact
glycopeptide ions could not be separated by IM-MS (m/z 991, red). B3-trisaccharide fragments (m/z
657, blue) directly cleaved from the glycopeptide by CID, however, showed characteristic drift
times that were dependent on the regiochemistry of the NeuAc linkage. This feature allowed
unambiguous identification α2-3 and α2-6 sialic acid linkage directly from the glycopeptide, thus
enabling site-specific sialic acid linkage information. Reproduced from Hinneburg et al. [75] with
permission of the publisher
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Recently, Zhu and co-workers developed a different strategy known as GLAMS
using glycosyltransferase for unambiguous identification of sialoglycopeptide iso-
mers [82]. Upon enzymatic labelling of glycopeptides using the CgtA enzyme, in
HCD C-trap dissociation fragmentation α2–3 sialoglycopeptides generated unique
reporter ions with specific m/z values that allow differentiation of α2–3 from α2–6
sialoglycopeptide isomers.

2.2.3 MALDI-MS

Unlike ESI, sialylated glycans usually undergo decomposition in MALDI due to the
presence of a labile carboxylic proton to give rise to focused (in-source fragmenta-
tion) and unfocused (post-source fragmentation) ion peaks when measured in
reflector-TOF detectors [83]. Thus, several strategies have been developed to stabi-
lise and neutralise sialic acid residues and make them more suitable for MALDI-
TOF-MS analyses. This can be achieved by permethylation [84], methyl esterifica-
tion, matrix [85], or derivatisation with acetohydrazide [86]. In 2009, Harvey and
co-workers demonstrated a method for stabilising sialic acids and discriminating
α2–3 and α2–6 isomers. Here the glycans were treated with 4-(4,6-dimethoxy-1,3,5-
triazin-2-yl)-4-methylmorpholinium chloride in methanol converting α2–6 linked
sialic acids to methyl esters (+14Da) and the α2–3 linked sialic acids formed
lactones (�18 Da) [87]. In 2014, Reiding et al. developed a simplified procedure
for the derivatisation and discrimination of sialic acids using 1-ethyl-3-
(3-(dimethylamino)propyl)carbodiimide and 1-hydroxybenzotriazole as activators
in ethanolic solution. In contrast to the previous approach described by Harvey,
this reaction converts α2–6 linked sialic acid to dimethylamide (+28 Da) and α2–3
linked sialic acid to a cyclic lactone with the adjacent galactose (�18 Da). This
particular approach has successfully been applied to differentiate α2–3 and α2–6
linked sialic acids at both glycan [88] and glycopeptide level [89]. This approach,
however, is limited to stabilise and differentiate sialic acids and their linkages while
other structure isomers will not be resolved.

2.2.4 Capillary Electrophoresis: Electrospray Ionisation–Mass
Spectrometry (CE-ESI-MS)

Gahoul and co-workers developed a CE-MS/MS method based on the sheathless
CE-ESI-MS (CESI) platform allowing a fast and precise characterisation of a
monoclonal antibody digest [90, 91]. This allowed them to achieve 100% sequence
coverage for both heavy and light chain in a single analytical experiment including
the glycopeptides from 100 fmol of protein digest. In 2017, the Wuhrer group
developed a high-resolution separation platform based on capillary electrophoresis–
mass spectrometry (CE–MS) for selective differentiation of α2–3 and α2–6-
sialylated glycopeptides without any sample pre-treatment [92] (Fig. 5). Unlike
other conventional MS techniques, CE enables the baseline separation of sialylated
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Fig. 5 Extracted ion electropherograms (EIEs) of IgGmAb1 and IVIgG1 glycopeptides obtained
with CE–ESI-MS after targeted alignment. (a) EIEs of IgGmAb1 glycopeptides derived from CHO
cells, (b) EIEs of IVIgG1 retrieved from human plasma, and (c) EIEs of a co-injection of IgGmAb1
and IVIgG1. The “PEP” label illustrates the tryptic peptide sequence EEQYNSTYR to which the
glycan is attached. Figure taken from Kammeijer et al. [92]with permission from publisher
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glycopeptides due to a difference in their electrophoretic mobilities. The method
they developed was used for the analysis of tryptic prostate-specific antigen glyco-
peptides, enabling the identification of 75 PSA glycopeptides, a significantly higher
amount compared to the 37 PNGase F released N-glycan signals detected by
MALDI-TOF-MS.

3 Conclusion

The complexity and heterogeneity of glycans present considerable challenges to the
biopharmaceutical industry to manufacture biotherapeutics with a reproducible and
consistent glycosylation profile. This is highly relevant as increasing evidence
confirms a fundamental role for glycosylation of therapeutics that impacts biological
activity, physicochemical properties, effector functions, and in vivo bioactivity.
With the rapidly increasing use of glycoprotein therapeutics in clinical use, employ-
ment of appropriate glycoanalytical tools from early development stage throughout
final regulatory approval, and product validation is crucial for the efficient develop-
ment of both safe and functionally active originator products and biosimilars.
Reliable glycoanalytical tools also provide an important basis that leads towards a
better understanding of the structure and function of glycosylation in vitro and
in vivo, which facilitates the development of the next generation of biotherapeutics
with optimized glycoforms and improved therapeutic capabilities.

References

1. Grassi L, Cabrele C (2019) Susceptibility of protein therapeutics to spontaneous chemical
modifications by oxidation, cyclization, and elimination reactions. Amino Acids
51:1409–1431. https://doi.org/10.1007/s00726-019-02787-2

2. Zhong X, Wright JF (2013) Biological insights into therapeutic protein modifications through-
out trafficking and their biopharmaceutical applications. Int J Cell Biol 2013:273086. https://
doi.org/10.1155/2013/273086

3. Srebalus Barnes CA, Lim A (2007) Applications of mass spectrometry for the structural
characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev 26:370–388.
https://doi.org/10.1002/mas.20129

4. Rogers RS et al (2017) A view on the importance of “multi-attribute method” for measuring
purity of biopharmaceuticals and improving overall control strategy. AAPS J 20:7. https://doi.
org/10.1208/s12248-017-0168-3

5. Bui LA et al (2015) Key considerations in the preclinical development of biosimilars. Drug
Discov Today 20(Suppl 1):3–15. https://doi.org/10.1016/j.drudis.2015.03.011

6. Mishra V, Thakur S, Patil A, Shukla A (2018) Quality by design (QbD) approaches in current
pharmaceutical set-up. Expert Opin Drug Deliv 15:737–758. https://doi.org/10.1080/17425247.
2018.1504768

7. Radaev S, Sun P (2002) Recognition of immunoglobulins by Fcgamma receptors. Mol
Immunol 38:1073–1083

Glycoproteomics Technologies in Glycobiotechnology 429

https://doi.org/10.1007/s00726-019-02787-2
https://doi.org/10.1155/2013/273086
https://doi.org/10.1155/2013/273086
https://doi.org/10.1002/mas.20129
https://doi.org/10.1208/s12248-017-0168-3
https://doi.org/10.1208/s12248-017-0168-3
https://doi.org/10.1016/j.drudis.2015.03.011
https://doi.org/10.1080/17425247.2018.1504768
https://doi.org/10.1080/17425247.2018.1504768


8. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differen-
tially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728.
https://doi.org/10.1074/mcp.M900540-MCP200

9. Zou G et al (2011) Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous
glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of
Fc to FcgammaIIIa receptor. J Am Chem Soc 133:18975–18991. https://doi.org/10.1021/
ja208390n

10. Mimura Y et al (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding.
J Biol Chem 276:45539–45547. https://doi.org/10.1074/jbc.M107478200

11. Satoh M, Iida S, Shitara K (2006) Non-fucosylated therapeutic antibodies as next-generation
therapeutic antibodies. Expert Opin Biol Ther 6:1161–1173. https://doi.org/10.1517/14712598.
6.11.1161

12. Nechansky A, Koller I, Kircheis R (2010) Response to: ‘impact of glycosylation on effector
functions of therapeutic IgG’ (Pharmaceuticals 2010, 3, 146-157). Pharmaceuticals
3:1887–1891. https://doi.org/10.3390/ph3061887

13. Wright A, Morrison SL (1997) Effect of glycosylation on antibody function: implications for
genetic engineering. Trends Biotechnol 15:26–32. https://doi.org/10.1016/S0167-7799(96)
10062-7

14. Misaizu T et al (1995) Role of antennary structure of N-linked sugar chains in renal handling of
recombinant human erythropoietin. Blood 86:4097–4104

15. Mastrangeli R et al (2017) In-vivo biological activity and glycosylation analysis of a biosimilar
recombinant human follicle-stimulating hormone product (Bemfola) compared with its refer-
ence medicinal product (GONAL-f). PLoS One 12:e0184139. https://doi.org/10.1371/journal.
pone.0184139

16. Beck A (2011) Biosimilar, biobetter and next generation therapeutic antibodies. MAbs
3:107–110. https://doi.org/10.4161/mabs.3.2.14785

17. Zhang P et al (2016) Challenges of glycosylation analysis and control: an integrated approach to
producing optimal and consistent therapeutic drugs. Drug Discov Today 21:740–765. https://
doi.org/10.1016/j.drudis.2016.01.006

18. Kolarich D, Weber A, Turecek PL, Schwarz HP, Altmann F (2006) Comprehensive glyco-
proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics
6:3369–3380. https://doi.org/10.1002/pmic.200500751

19. Herndl A et al (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and
IgE-reactivity. Electrophoresis 28:437–448. https://doi.org/10.1002/elps.200600342

20. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin
glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871.
https://doi.org/10.1002/pmic.200700968

21. Reiding KR, Bondt A, Franc V, Heck AJR (2018) The benefits of hybrid fragmentation
methods for glycoproteomics. TrAC Trends Anal Chem 108:260–268. https://doi.org/10.
1016/j.trac.2018.09.007

22. Tian Y, Ruotolo BT (2018) The growing role of structural mass spectrometry in the discovery
and development of therapeutic antibodies. Analyst 143:2459–2468. https://doi.org/10.1039/
c8an00295a

23. Alagesan K, Khilji SK, Kolarich D (2017) It is all about the solvent: on the importance of the
mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 409:529–538.
https://doi.org/10.1007/s00216-016-0051-6

24. Stavenhagen K et al (2013) Quantitative mapping of glycoprotein micro-heterogeneity and
macro-heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic
peptides and glycopeptides. J Mass Spectrom 48:627–639. https://doi.org/10.1002/jms.3210

25. Montacir O et al (2018) Physicochemical characterization, glycosylation pattern and
biosimilarity assessment of the fusion protein etanercept. Protein J 37:164–179. https://doi.
org/10.1007/s10930-018-9757-y

430 K. Alagesan et al.

https://doi.org/10.1074/mcp.M900540-MCP200
https://doi.org/10.1021/ja208390n
https://doi.org/10.1021/ja208390n
https://doi.org/10.1074/jbc.M107478200
https://doi.org/10.1517/14712598.6.11.1161
https://doi.org/10.1517/14712598.6.11.1161
https://doi.org/10.3390/ph3061887
https://doi.org/10.1016/S0167-7799(96)10062-7
https://doi.org/10.1016/S0167-7799(96)10062-7
https://doi.org/10.1371/journal.pone.0184139
https://doi.org/10.1371/journal.pone.0184139
https://doi.org/10.4161/mabs.3.2.14785
https://doi.org/10.1016/j.drudis.2016.01.006
https://doi.org/10.1016/j.drudis.2016.01.006
https://doi.org/10.1002/pmic.200500751
https://doi.org/10.1002/elps.200600342
https://doi.org/10.1002/pmic.200700968
https://doi.org/10.1016/j.trac.2018.09.007
https://doi.org/10.1016/j.trac.2018.09.007
https://doi.org/10.1039/c8an00295a
https://doi.org/10.1039/c8an00295a
https://doi.org/10.1007/s00216-016-0051-6
https://doi.org/10.1002/jms.3210
https://doi.org/10.1007/s10930-018-9757-y
https://doi.org/10.1007/s10930-018-9757-y


26. Pralow A, Hoffmann M, Nguyen-Khuong T, Rapp E, Reichl U (2017) Improvement of the
glycoproteomic toolbox with the discovery of a unique C-terminal cleavage specificity of
flavastacin for N-glycosylated asparagine. Sci Rep 7:11419. https://doi.org/10.1038/s41598-
017-11668-1

27. Zhang H, Ge Y (2011) Comprehensive analysis of protein modifications by top-down mass
spectrometry. Circ Cardiovasc Genet 4:711. https://doi.org/10.1161/CIRCGENETICS.110.
957829

28. Timp W, Timp G (2020) Beyond mass spectrometry, the next step in proteomics. Sci Adv 6:
eaax8978. https://doi.org/10.1126/sciadv.aax8978

29. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem
68:1–8. https://doi.org/10.1021/ac9509519

30. Karas M, Bahr U, Dulcks T (2000) Nano-electrospray ionization mass spectrometry: addressing
analytical problems beyond routine. Fresenius J Anal Chem 366:669–676

31. Hui JP, White TC, Thibault P (2002) Identification of glycan structure and glycosylation sites in
cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology
12:837–849

32. Nagy K et al (2004) Electrospray ionization fourier transform ion cyclotron resonance mass
spectrometry of human alpha-1-acid glycoprotein. Anal Chem 76:4998–5005. https://doi.org/
10.1021/ac040019a

33. Yang Y et al (2016) Hybrid mass spectrometry approaches in glycoprotein analysis and their
usage in scoring biosimilarity. Nat Commun 7:13397. https://doi.org/10.1038/ncomms13397

34. Duivelshof BL et al (2019) Glycosylation of biosimilars: recent advances in analytical charac-
terization and clinical implications. Anal Chim Acta 1089:1–18. https://doi.org/10.1016/j.aca.
2019.08.044

35. Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO (2014) Middle-down analysis of
monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass
spectrometry. Anal Chem 86:3005–3012. https://doi.org/10.1021/ac4036857

36. Tran BQ et al (2016) Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by
top-down MS with multiple fragmentation techniques. J Proteome 134:93–101. https://doi.org/
10.1016/j.jprot.2015.10.021

37. He L et al (2017) Analysis of monoclonal antibodies in human serum as a model for clinical
monoclonal gammopathy by use of 21 tesla FT-ICR top-down and middle-down MS/MS. J Am
Soc Mass Spectrom 28:827–838. https://doi.org/10.1007/s13361-017-1602-6

38. Moginger U et al (2016) Cross reactive material 197 glycoconjugate vaccines contain privileged
conjugation sites. Sci Rep 6:20488. https://doi.org/10.1038/srep20488

39. Demelbauer UM et al (2004) Characterization of glyco isoforms in plasma-derived human
antithrombin by on-line capillary zone electrophoresis-electrospray ionization-quadrupole ion
trap-mass spectrometry of the intact glycoproteins. Electrophoresis 25:2026–2032. https://doi.
org/10.1002/elps.200305936

40. Balaguer E et al (2006) Glycoform characterization of erythropoietin combining glycan and
intact protein analysis by capillary electrophoresis – electrospray – time-of-flight mass spec-
trometry. Electrophoresis 27:2638–2650. https://doi.org/10.1002/elps.200600075

41. Neususs C, Demelbauer U, Pelzing M (2005) Glycoform characterization of intact erythropoi-
etin by capillary electrophoresis-electrospray-time of flight-mass spectrometry. Electrophoresis
26:1442–1450. https://doi.org/10.1002/elps.200410269

42. Thakur D et al (2009) Profiling the glycoforms of the intact alpha subunit of recombinant human
chorionic gonadotropin by high-resolution capillary electrophoresis-mass spectrometry. Anal
Chem 81:8900–8907. https://doi.org/10.1021/ac901506p

43. Bagal D, Valliere-Douglass JF, Balland A, Schnier PD (2010) Resolving disulfide structural
isoforms of IgG2 monoclonal antibodies by ion mobility mass spectrometry. Anal Chem
82:6751–6755. https://doi.org/10.1021/ac1013139

44. Olivova P, Chen W, Chakraborty AB, Gebler JC (2008) Determination of N-glycosylation sites
and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-

Glycoproteomics Technologies in Glycobiotechnology 431

https://doi.org/10.1038/s41598-017-11668-1
https://doi.org/10.1038/s41598-017-11668-1
https://doi.org/10.1161/CIRCGENETICS.110.957829
https://doi.org/10.1161/CIRCGENETICS.110.957829
https://doi.org/10.1126/sciadv.aax8978
https://doi.org/10.1021/ac9509519
https://doi.org/10.1021/ac040019a
https://doi.org/10.1021/ac040019a
https://doi.org/10.1038/ncomms13397
https://doi.org/10.1016/j.aca.2019.08.044
https://doi.org/10.1016/j.aca.2019.08.044
https://doi.org/10.1021/ac4036857
https://doi.org/10.1016/j.jprot.2015.10.021
https://doi.org/10.1016/j.jprot.2015.10.021
https://doi.org/10.1007/s13361-017-1602-6
https://doi.org/10.1038/srep20488
https://doi.org/10.1002/elps.200305936
https://doi.org/10.1002/elps.200305936
https://doi.org/10.1002/elps.200600075
https://doi.org/10.1002/elps.200410269
https://doi.org/10.1021/ac901506p
https://doi.org/10.1021/ac1013139


of-flight mass spectrometry. Rapid CommunMass Spectrom 22:29–40. https://doi.org/10.1002/
rcm.3330

45. Upton R et al (2019) Hybrid mass spectrometry methods reveal lot-to-lot differences and
delineate the effects of glycosylation on the tertiary structure of Herceptin (R). Chem Sci
10:2811–2820. https://doi.org/10.1039/c8sc05029e

46. Beck A et al (2013) Analytical characterization of biosimilar antibodies and fc-fusion proteins.
TrAC Trend Anal Chem 48:81–95. https://doi.org/10.1016/j.trac.2013.02.014

47. Zhang H, Cui WD, Gross ML (2014) Mass spectrometry for the biophysical characterization of
therapeutic monoclonal antibodies. FEBS Lett 588:308–317. https://doi.org/10.1016/j.febslet.
2013.11.027

48. Huang YN, Salinas ND, Chen E, Tolia NH, Gross ML (2017) Native mass spectrometry, ion
mobility, and collision-induced unfolding categorize malaria antigen/antibody binding. J Am
Soc Mass Spectrom 28:2515–2518. https://doi.org/10.1007/s13361-017-1782-0

49. Huddleston MJ, Bean MF, Carr SA (1993) Collisional fragmentation of glycopeptides by
electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopep-
tides in protein digests. Anal Chem 65:877–884

50. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in
Fab-Ms Ms spectra of glycoconjugates. Glycoconj J 5:397–409. https://doi.org/10.1007/
Bf01049915

51. Parker BL et al (2011) Quantitative N-linked glycoproteomics of myocardial ischemia and
reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteo-
mics 10:M110 006833. https://doi.org/10.1074/mcp.M110.006833

52. Hinneburg H et al (2016) The art of destruction: optimizing collision energies in quadrupole-
time of flight (Q-TOF) instruments for glycopeptide-based glycoproteomics. J Am Soc Mass
Spectrom 27:507–519. https://doi.org/10.1007/s13361-015-1308-6

53. Dodds ED (2012) Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom Rev
31:666–682. https://doi.org/10.1002/mas.21344

54. Kolli V, Dodds ED (2014) Energy-resolved collision-induced dissociation pathways of model
N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in
a single experiment. Analyst 139:2144–2153. https://doi.org/10.1039/c3an02342g

55. Jebanathirajah J, Steen H, Roepstorff P (2003) Using optimized collision energies and high
resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor
ion scanning. J Am Soc Mass Spectrom 14:777–784. https://doi.org/10.1016/S1044-0305(03)
00263-0

56. Vékey K et al (2013) Fragmentation characteristics of glycopeptides. Int J Mass Spectrom
345-347:71–79. https://doi.org/10.1016/j.ijms.2012.08.031

57. Yang H, Yang C, Sun T (2018) Characterization of glycopeptides using a stepped higher-energy
C-trap dissociation approach on a hybrid quadrupole orbitrap. Rapid Commun Mass Spectrom
32:1353–1362. https://doi.org/10.1002/rcm.8191

58. Hoffmann M et al (2018) The fine art of destruction: a guide to in-depth glycoproteomic
analyses-exploiting the diagnostic potential of fragment ions. Proteomics 18:e1800282.
https://doi.org/10.1002/pmic.201800282

59. Rath CB et al (2018) Flagellin glycoproteomics of the periodontitis associated pathogen
selenomonas sputigena reveals previously not described O-glycans and rhamnose fragment
rearrangement occurring on the glycopeptides. Mol Cell Proteomics 17:721–736. https://doi.
org/10.1074/mcp.RA117.000394

60. Wuhrer M, Deelder AM, van der Burgt YE (2011) Mass spectrometric glycan rearrangements.
Mass Spectrom Rev 30:664–680. https://doi.org/10.1002/mas.20337

61. Sanda M, Benicky J, Goldman R (2020) Low collision energy fragmentation in structure-
specific glycoproteomics analysis. Anal Chem 92:8262–8267. https://doi.org/10.1021/acs.
analchem.0c00519

432 K. Alagesan et al.

https://doi.org/10.1002/rcm.3330
https://doi.org/10.1002/rcm.3330
https://doi.org/10.1039/c8sc05029e
https://doi.org/10.1016/j.trac.2013.02.014
https://doi.org/10.1016/j.febslet.2013.11.027
https://doi.org/10.1016/j.febslet.2013.11.027
https://doi.org/10.1007/s13361-017-1782-0
https://doi.org/10.1007/Bf01049915
https://doi.org/10.1007/Bf01049915
https://doi.org/10.1074/mcp.M110.006833
https://doi.org/10.1007/s13361-015-1308-6
https://doi.org/10.1002/mas.21344
https://doi.org/10.1039/c3an02342g
https://doi.org/10.1016/S1044-0305(03)00263-0
https://doi.org/10.1016/S1044-0305(03)00263-0
https://doi.org/10.1016/j.ijms.2012.08.031
https://doi.org/10.1002/rcm.8191
https://doi.org/10.1002/pmic.201800282
https://doi.org/10.1074/mcp.RA117.000394
https://doi.org/10.1074/mcp.RA117.000394
https://doi.org/10.1002/mas.20337
https://doi.org/10.1021/acs.analchem.0c00519
https://doi.org/10.1021/acs.analchem.0c00519


62. Wuhrer M, Catalina MI, Deelder AM, Hokke CH (2007) Glycoproteomics based on tandem
mass spectrometry of glycopeptides. J Chromatogr B Analyt Technol Biomed Life Sci
849:115–128. https://doi.org/10.1016/j.jchromb.2006.09.041

63. Alley Jr WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the
structural characterization of glycoproteins. Chem Rev 113:2668–2732. https://doi.org/10.
1021/cr3003714

64. Alagesan K, Hinneburg H, Seeberger PH, Silva DV, Kolarich D (2019) Glycan size and
attachment site location affect electron transfer dissociation (ETD) fragmentation and auto-
mated glycopeptide identification. Glycoconj J 36:487–493. https://doi.org/10.1007/s10719-
019-09888-w

65. Frese CK et al (2012) Toward full peptide sequence coverage by dual fragmentation combining
electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal
Chem 84:9668–9673. https://doi.org/10.1021/ac3025366

66. Caval T, Zhu J, Heck AJR (2019) Simply extending the mass range in electron transfer higher
energy collisional dissociation increases confidence in N-glycopeptide identification. Anal
Chem 91:10401–10406. https://doi.org/10.1021/acs.analchem.9b02125

67. Riley NM, Coon JJ (2018) The role of electron transfer dissociation in modern proteomics. Anal
Chem 90:40–64. https://doi.org/10.1021/acs.analchem.7b04810

68. Riley NM, Westphall MS, Coon JJ (2015) Activated ion electron transfer dissociation for
improved fragmentation of intact proteins. Anal Chem 87:7109–7116. https://doi.org/10.
1021/acs.analchem.5b00881

69. Riley NM, Hebert AS, Westphall MS, Coon JJ (2019) Capturing site-specific heterogeneity
with large-scale N-glycoproteome analysis. Nat Commun 10:1311. https://doi.org/10.1038/
s41467-019-09222-w

70. Riley NM, Malaker SA, Driessen MD, Bertozzi CR (2020) Optimal dissociation methods differ
for N- and O-glycopeptides. J Proteome Res 19:3286–3301. https://doi.org/10.1021/acs.
jproteome.0c00218

71. Reiding KR, Bondt A, Franc V, Heck AJR (2018) The benefits of hybrid fragmentation
methods for glycoproteomics. TrAC Trend Anal Chem 108:260–268. https://doi.org/10.1016/
j.trac.2018.09.007

72. Mucha E et al (2019) In-depth structural analysis of glycans in the gas phase. Chem Sci
10:1272–1284. https://doi.org/10.1039/c8sc05426f

73. Nilsson J (2016) Liquid chromatography-tandem mass spectrometry-based fragmentation anal-
ysis of glycopeptides. Glycoconj J 33:261–272. https://doi.org/10.1007/s10719-016-9649-3

74. Hofmann J et al (2014) Estimating collision cross sections of negatively charged N-glycans
using traveling wave ion mobility-mass spectrometry. Anal Chem 86:10789–10795. https://doi.
org/10.1021/ac5028353

75. Hinneburg H et al (2016) Distinguishing N-acetylneuraminic acid linkage isomers on glyco-
peptides by ion mobility-mass spectrometry. Chem Commun 52:4381–4384. https://doi.org/10.
1039/c6cc01114d

76. Guttman M, Lee KK (2016) Site-specific mapping of sialic acid linkage isomers by ion mobility
spectrometry. Anal Chem 88:5212–5217. https://doi.org/10.1021/acs.analchem.6b00265

77. Barroso A et al (2018) Evaluation of ion mobility for the separation of glycoconjugate isomers
due to different types of sialic acid linkage, at the intact glycoprotein, glycopeptide and glycan
level. J Proteome 173:22–31. https://doi.org/10.1016/j.jprot.2017.11.020

78. Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked
oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha
2,6-sialyltransferase. J Biol Chem 264:13848–13855

79. Jeong YT et al (2008) Enhanced sialylation of recombinant erythropoietin in CHO cells by
human glycosyltransferase expression. J Microbiol Biotechnol 18:1945–1952

80. Raymond C et al (2015) Production of alpha2,6-sialylated IgG1 in CHO cells. MAbs
7:571–583. https://doi.org/10.1080/19420862.2015.1029215

Glycoproteomics Technologies in Glycobiotechnology 433

https://doi.org/10.1016/j.jchromb.2006.09.041
https://doi.org/10.1021/cr3003714
https://doi.org/10.1021/cr3003714
https://doi.org/10.1007/s10719-019-09888-w
https://doi.org/10.1007/s10719-019-09888-w
https://doi.org/10.1021/ac3025366
https://doi.org/10.1021/acs.analchem.9b02125
https://doi.org/10.1021/acs.analchem.7b04810
https://doi.org/10.1021/acs.analchem.5b00881
https://doi.org/10.1021/acs.analchem.5b00881
https://doi.org/10.1038/s41467-019-09222-w
https://doi.org/10.1038/s41467-019-09222-w
https://doi.org/10.1021/acs.jproteome.0c00218
https://doi.org/10.1021/acs.jproteome.0c00218
https://doi.org/10.1016/j.trac.2018.09.007
https://doi.org/10.1016/j.trac.2018.09.007
https://doi.org/10.1039/c8sc05426f
https://doi.org/10.1007/s10719-016-9649-3
https://doi.org/10.1021/ac5028353
https://doi.org/10.1021/ac5028353
https://doi.org/10.1039/c6cc01114d
https://doi.org/10.1039/c6cc01114d
https://doi.org/10.1021/acs.analchem.6b00265
https://doi.org/10.1016/j.jprot.2017.11.020
https://doi.org/10.1080/19420862.2015.1029215


81. Pett C et al (2018) Effective assignment of alpha2,3/alpha2,6-sialic acid isomers by LC-MS/
MS-based glycoproteomics. Angew Chem 57:9320–9324. https://doi.org/10.1002/anie.
201803540

82. Zhu H et al (2020) Identifying sialylation linkages at the glycopeptide level by
glycosyltransferase labeling assisted mass spectrometry (GLAMS). Anal Chem
92:6297–6303. https://doi.org/10.1021/acs.analchem.9b05068

83. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohy-
drates. Mass Spectrom Rev 18:349–450. https://doi.org/10.1002/(SICI)1098-2787(1999)
18:6<349::AID-MAS1>3.0.CO;2-H

84. Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates.
Carbohydr Res 131:209–217. https://doi.org/10.1016/0008-6215(84)85242-8

85. Selman MH et al (2012) MALDI-TOF-MS analysis of sialylated glycans and glycopeptides
using 4-chloro-alpha-cyanocinnamic acid matrix. Proteomics 12:1337–1348. https://doi.org/10.
1002/pmic.201100498

86. Toyoda M, Ito H, Matsuno YK, Narimatsu H, Kameyama A (2008) Quantitative derivatization
of sialic acids for the detection of sialoglycans by MALDI MS. Anal Chem 80:5211–5218.
https://doi.org/10.1021/ac800457a

87. Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in
matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation
of alpha(2-->3)- and alpha(2-->6)-isomers. Rapid Commun Mass Spectrom 23:303–312.
https://doi.org/10.1002/rcm.3867

88. Reiding KR, Blank D, Kuijper DM, Deelder AM, Wuhrer M (2014) High-throughput profiling
of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esteri-
fication. Anal Chem 86:5784–5793. https://doi.org/10.1021/ac500335t

89. de Haan N et al (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS
profiling of IgG glycopeptides. Anal Chem 87:8284–8291. https://doi.org/10.1021/acs.
analchem.5b02426

90. Gahoual R et al (2013) Rapid and multi-level characterization of trastuzumab using sheathless
capillary electrophoresis-tandem mass spectrometry. MAbs 5:479–490. https://doi.org/10.
4161/mabs.23995

91. Moini M (2007) Simplifying CE-MS operation. 2. Interfacing low-flow separation techniques
to mass spectrometry using a porous tip. Anal Chem 79:4241–4246. https://doi.org/10.1021/
ac0704560

92. Kammeijer GSM et al (2017) Sialic acid linkage differentiation of glycopeptides using capillary
electrophoresis – electrospray ionization – mass spectrometry. Sci Rep 7:3733. https://doi.org/
10.1038/s41598-017-03838-y

434 K. Alagesan et al.

https://doi.org/10.1002/anie.201803540
https://doi.org/10.1002/anie.201803540
https://doi.org/10.1021/acs.analchem.9b05068
https://doi.org/10.1002/(SICI)1098-2787(1999)18:63.0.CO;2-H
https://doi.org/10.1002/(SICI)1098-2787(1999)18:63.0.CO;2-H
https://doi.org/10.1002/(SICI)1098-2787(1999)18:63.0.CO;2-H
https://doi.org/10.1002/(SICI)1098-2787(1999)18:63.0.CO;2-H
https://doi.org/10.1016/0008-6215(84)85242-8
https://doi.org/10.1002/pmic.201100498
https://doi.org/10.1002/pmic.201100498
https://doi.org/10.1021/ac800457a
https://doi.org/10.1002/rcm.3867
https://doi.org/10.1021/ac500335t
https://doi.org/10.1021/acs.analchem.5b02426
https://doi.org/10.1021/acs.analchem.5b02426
https://doi.org/10.4161/mabs.23995
https://doi.org/10.4161/mabs.23995
https://doi.org/10.1021/ac0704560
https://doi.org/10.1021/ac0704560
https://doi.org/10.1038/s41598-017-03838-y
https://doi.org/10.1038/s41598-017-03838-y


Adv Biochem Eng Biotechnol (2021) 175: 435–456
DOI: 10.1007/10_2019_112
© Springer Nature Switzerland AG 2019
Published online: 7 January 2020

Glycan Array Technology

Juana Elizabeth ReyesMartinez, Baptiste Thomas, and Sabine Lahja Flitsch

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2 Methods for Glycan Immobilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

2.1 Free Reducing Sugars as Starting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
2.2 Functionalised Glycans for Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

3 Synthesis of Complex Glycans for Glycoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
4 Glycoarray Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

4.1 Glycan-Virus Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
4.2 Glycan-Bacteria Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
4.3 Glycans as Enzyme Substrates on Glycan Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
4.4 Anti-glycan Antibodies as Disease Biomarkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Abstract Glycan (or carbohydrate) arrays have become an essential tool in
glycomics, providing fast and high-throughput data on protein-carbohydrate inter-
actions with small amounts of carbohydrate ligands. The general concepts of glycan
arrays have been adopted from other microarray technologies such as those used for
nucleic acid and proteins. However, carbohydrates have presented their own chal-
lenges, in particular in terms of access to glycan probes, linker attachment chemis-
tries and analysis, which will be reviewed in this chapter. As more and more glycan
probes have become available through chemical and enzymatic synthesis and robust
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linker chemistries have been developed, the applications of glycan arrays have
dramatically increased over the past 10 years, which will be illustrated with recent
examples.

Graphical Abstract

Keywords Antibodies, Carbohydrate-binding proteins, Glycan arrays,
Glycoenzymes, Lectins, Linkers

Abbreviations

2-AA 2-amino-benzoic acid
2-AB 2-amino-benzamide
AEAB 2-amino-N-(2-aminoethyl)-benzamide
CAZys Carbohydrate-active enzymes
CFG Consortium for functional glycomics
CSEE Core synthesis/enzymatic extension
DAP 2,6-diamino-pyridine
DDI DNA-direct immobilisation
Fmoc-Cl 9-fluorenylmethyl chloroformate
GBPs Glycan-binding proteins
GPI Glycosylphosphatidylinositol
GTs Glycosyltransferases
HIV Human immunodeficiency virus
hlntL-1 Human intelectin-1

436 J. E. R. Martinez et al.



JCV Human JC polyomavirus
KDO 3-deoxy-D-manno-oct-2-ulosonic acid
KO D-glycero-D-talo-oct-2-ulosonic acid
LPS Lipopolysaccharide
LSTc Lactoseries tetrasaccharide c
MS Mass spectrometry
NBS N-Bromosuccinimide
NGL Neoglycolipid
PMP 1-phenyl-3-methyl-5-pyrazolone
PNGase-F Peptide-N-glycosidase F
PNPA p-nitrophenyl anthranilate
SLL Staphylococcal superantigen-like
SV40 Simian virus 40
TLC Thin-layer chromatography
VCC Vibrio cholerae cytolysin

1 Introduction

Understanding the interactions between carbohydrates and proteins is very challeng-
ing as both binding partners are highly complex and binding can be very weak, often
relying on polyvalent interactions to reach binding that is biologically relevant.
Because carbohydrate sequences are not directly encoded in the genome, and glycan
biosynthesis is controlled by complex networks of proteins, there are fewer genetic
tools in glycomics compared to genomics and proteomics. All these issues have
driven the establishment of glycan arrays as a prime tool to understand the interac-
tions of carbohydrates with other biomolecules, in particular carbohydrate-binding
proteins. The basic principle of glycan arrays is similar to microarrays developed for
nucleic acids and proteins, in that the glycan analyte is immobilised on a solid
surface using biocompatible linkers either through covalent or non-covalent conju-
gation (Fig. 1). The surface is then interrogated by the potential binding partner, in
most cases a carbohydrate-binding protein, lectin, antibody or enzyme [1–5].

Synthesis and functionalisation of glycans remain a challenge. Many glycans lack
functional groups (such as amines, carboxylic acids) that would allow highly
orthogonal and selective attachment to solid phase. In many cases (such as animal
cell surface glycans), attachment at the reducing end would be predicted to present
the glycan in a more accessible way to its partner, given that these carbohydrates are
anchored to lipids and proteins via the reducing end. The reducing sugar in glycan
chains does of course carry unique functionality, and the sluggish reactivity of free
glycosides has been overcome by a range of reactive labelling techniques providing
access to glycan probes either from synthetic or from natural sources. Synthetic
glycans often carry a stable and reactive functional group which can be installed
during chemical or enzymatic synthesis. Both synthetic glycan arrays [1] and natural
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glycan arrays [6] have been developed, with synthetic array generally limited to
smaller numbers of different glycans (up to ca 1,000) [4] because of the challenges of
carbohydrate synthesis.

2 Methods for Glycan Immobilisation

A range of different coupling strategies have been used for glycan immobilisation on
array surfaces, and some of the frequently used examples are shown in Fig. 2.

2.1 Free Reducing Sugars as Starting Materials

Direct coupling of free sugars to hydrazide-functionalised glass slides has been
reported, but is a sluggish reaction that can give mixtures of products [7]. One of
the earliest glycan array platforms reported is the neoglycolipid technology devel-
oped by the Feizi group (Fig. 3) [4, 8]. This method uses a two-step protocol, in
which free glycans are first reacted with amino-lipid through reductive amination,
followed by chromatographic purification of product before printing onto nitrocel-
lulose slides. This platform has been used successfully for interrogation of many
glycan-binding proteins from microbial and animal sources. The neoglycolipid
technology can be applied to both synthetic and natural glycans, since free glycans
are used as starting materials.

Because Nature offers such an important source of natural glycans, there has been
a great interest in developing glycan conjugation chemistries. Particularly useful has
been the labelling of glycans with fluorescent dye tags that can be used both for

Fig. 1 General component of glycan arrays: Glycan structures are attached to a solid phase through
a linker either covalently or non-covalently. The glycan array is probed for binding of biomolecules,
mostly carbohydrate-binding proteins or enzymes
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Fig. 3 Neoglycolipid array technology (adapted with kind permission from Ref. [8])

Fig. 2 Examples of linker chemistry used in glycan arrays for covalent and non-covalent conju-
gation of glycans to array surfaces. R are those molecules on the array surface, and X in glycan is the
chemistry used for their attachment to functionalised surface
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labelling and facilitate separation to obtain purified natural glycans. Figure 4 lists a
number of recent methods that have been used to introduce both fluorescent label
and more reactive functionality.
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Probably the most used strategy to functionalise natural glycans is through
reductive amination using the aldehydes at the reducing end of the glycan chain.
This strategy was initially explored by using fluorescent probes such as
2-aminobenzamide (2-AB) and 2-aminobenzoic acid (2-AA) [9] and fully explored
to immobilise the product on epoxy-activated glass slides via the secondary amine
group linking the glycan moiety to the fluorescent tag [10]. Functionalisation with
2,6-diaminopyridine (DAP) to generate fluorescent labelled glycans [11] and oxime
formation [12] is also used for glycoarray preparation on NHS- and epoxy-activated
glass slides [6, 13, 14]. N-Bromosuccinimide (NBS) treatment after the labelling
reaction allows to easily eliminate the fluorescent tag and regenerate isolated gly-
cans, which is particularly important if the label interferes with the bioactivity of the
glycan [15].

Reductive amination strategies have been further exploited by using 2-amino-N-
(2-aminoethyl)-benzamide (AEAB) generating fluorescently labelled glycans which
have been used for glycoarray printing [16–18] showing good efficiency in solid-
phase glycan immobilisation. A bifunctional linker with aryl amine group and a p-
nitrophenyl ester group (p-phenyl anthranilate, PNPA) was also used in glycoarray
preparation with the advantage of increased fluorescent properties upon glycan
functionalisation [19]. Fmoc chemistry using 9-fluorenylmethyl chloroformate
(Fmoc-Cl) as a cleavable fluorescent tag was used in 2009 by Song and
co-workers [17] to label glycans obtained from chicken ovalbumin, bovine fetuin
and horseradish peroxidase. The products were used on NHS-activated glass slides
to generate a useful glycoarray platform. Fmoc-derivatised O-glycans obtained from
mucins and carcinoma cells were later shown to have 3.5 times higher sensitivity
than those glycans labelled with 2-AA in a glycoarray platform [20, 21]. For label-
ling purposes, glycans have to be released from the natural sources. A number of
enzymes such as pronase, trypsin, peptide-N-glycosidase F (PNGase-F) and
endoglycosidases have been used as the most common strategies for glycan release
[22]. The proteases digest the protein backbone and the endoglycosidases release N-
linked glycans cleanly before derivatisation [20, 23–25]. The availability of
endoglycosidases for N-glycans has driven the field forward dramatically. However,
whereas N-glycan analysis is rapidly becoming a standard tool in glycomics, the
availability of endoglycosidases for O-glycans and polysaccharides is still limited.

Alternatively chemical strategies for releasing O-glycans from natural sources
have been investigated, and hydrazinolysis is a common technique for glycan release
and can be useful to generate materials for glycan array. Hydrazinolysis has shown to
have high efficiency of hydrolysis towards N-glycans, and under certain conditions
by addition of ethylene diamine tetraacetic acid, this technique has shown good
efficiency for O-glycan hydrolysis minimising degradation known as “peeling”
[26–28]. β-Elimination strategies under basic and mild conditions using
dimethylamine or non-reductive O-de-glycosylation with ammonia addition have
been explored for glycan analysis. In both methods 1-phenyl-3-methyl-5-pyrazolone
(PMP) was used for labelling and analysis of released glycans from glycoproteins
[29, 30]. The procedure to extract glycans from glycosphingolipids is a
multistep process involving organic extraction and subsequent treatment with
glycoceramidases [31]. Very recently, an oxidative strategy using NaClO to release
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free reducing N- and O-glycans from glycoproteins and glycosphingolipids was
shown to be good alternative for glycan analysis and a promising methodology to
generate a library for glycan array preparation [32].

2.2 Functionalised Glycans for Conjugation

There are a number of advantages in using synthetic over natural glycans for arrays,
the first being purity. Given that natural glycans are isolated from complex mixtures,
there is always concern about co-purification of a highly bioactive minor contami-
nant. In terms of functionalisation for linking to solid support, synthetic strategies are
highly flexible and allow for a wide range of active groups as illustrated in Fig. 2.
These functionalities are generally introduced by chemical synthesis [33]. Although
there is a wide range of options, there has been a focus on using aminoethyl and
aminopropyl glycosides, which can be attached to activated carboxyl esters, such as
NHS or pentafluorophenyl [3, 34, 35]. A number of amino alkyl glycosides are now
commercially available.

3 Synthesis of Complex Glycans for Glycoarrays

The field of chemical carbohydrate synthesis is still very challenging, and a review of
oligosaccharides synthesis is beyond the scope of this article. Given the success of
automated synthesis in nucleic acid and peptide chemistry, there have been a number
of projects aimed at automated synthesis either on solid support [36, 37] or on soluble
tags [38, 39]. Given that carbohydrate synthesis still requires large numbers of steps
and usually yield mg quantities of final target material, glycan arrays are particularly
attractive in terms of economy of scale, such that thousands of bioassays can be
conducted on mgs of material. Chemical synthesis can also generate bioisosteres that
have increased stability. A good example is the chemical synthesis of neuraminidase-
resistant sialosides for the detection of influenza viruses [40] and applications for
glycan-based detection and drug susceptibility of influenza virus [41].

To overcome the challenges in oligosaccharide synthesis, enzymes are increas-
ingly employed as highly selective catalysts for the fast synthesis of natural
glycans. These carbohydrate-active enzymes (CAZys) can be used in vitro on
their own or in chemoenzymatic strategies which combine chemical and enzymatic
methods [42–44]. The advantage of using enzymes is that they can be used in
one-pot multiple enzyme strategies, which have achieved excellent yields and
selectivity avoiding purification of intermediates [45–48]. Figure 5 is an example
of chemoenzymatic routes to O-mannosyl glycopeptide synthesis, which can be
performed in solution, but also directly on the glycan arrays [49].

Natural glycans can be used as substrates for enzymaticmodification either before or
after being coupled to a solid support in array format. This strategy has been extensively
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used to increase the complexity of glycan structures. One of the largest and diverse
glycan arrays from the Consortium for Functional Glycomics (CFG) has been gener-
ated using enzymatic strategies [50]. Enzymatic synthesis of glycans has been widely
exploited in glycoarray technology, used to address function-structure of glycans
especially terminal sialylated structures [51–54]. Acceptor substrates on array plat-
forms range from glycans, glycopeptides, glycolipids to nucleic acids which have been
used as substrates for galactosyltransferases [55] fucosyltransferases [56] and
sialyltransferases [52, 57]. Chemoenzymatic strategies have been shown in several
studies to generate large-scale production of glycan associated tumour-associated N-
acetyllactosamine antigens attached on an array platform [58]. The N-glycan core
pentasaccharide has been selectively extended by glycosyltransferases (GTs) providing
unique glycan moieties of asymmetrically branched N-glycans printed on an array
platform for lectins and influenza virus-hemagglutinin binding studies [59]. More
recently, a Core Synthesis/Enzymatic Extension (CSEE) strategy was developed; this
strategy is based on 8N-glycan core structures for enzymatic synthesis of 73N-glycans
applied to the glycan array technology showing the diversity and applications of GTs to
increase the glycan diversity on array platforms [60].

The great potential to generate and increase array diversity has been shown by the
generation of a phosphorylated glycan array in which mannose-6-phosphate was

Fig. 5 Chemoenzymatic synthesis of glycopeptides on glycan arrays [49]
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attached to the array surface, to study the specificity of mannose-6-phosphate cation-
dependent and cation-independent receptors [61]. New routes for enzymatic synthe-
sis of glycans for array technology will grow exponentially thanks to the increasing
number of glycoenzymes (catalogued in the Carbohydrate-Active Enzyme database
[62]) which can be used for such proposes.

4 Glycoarray Applications

Glycoarrays are now widely used for carbohydrate-protein interactions, and a
comprehensive coverage of all examples would be beyond the scope of this chapter.
In the following, we have selected a number of representative examples that illustrate
the breadth of applications.

4.1 Glycan-Virus Interactions

An increased number of glycans, in particular from animal and human sources, are
now available for glycan array printing. Array technology has become a powerful
tool to understand pathogenicity mechanisms throughout infection process. The
specificity of viral capsule proteins towards individual carbohydrate structures has
been studied using carbohydrate array technologies [63]. Both viral hemagglutinin
and neuraminidase specificities have been extensively interrogated using multiple
array technologies [54, 64], and several studies have reported viral specificity from
swine or human influenza virus [65–67]. Glycan arrays are also useful to determine
drug susceptibility of some influenza virus from clinical isolates [41]. Interestingly,
Walther and colleagues found no correlation on binding specificities with infection
symptoms and severity of the disease on clinical isolated influenza strains, thus
highlighting the need to expand the glycan diversity on array technology specifically
to N- and O-glycans identified in human lung tissues [68].

Binding specificities from other viruses have also been studied. Glycan arrays
based on neoglycolipids have been used to identify the specificity for GM1 in simian
virus 40 (SV40) [69]. Human JC polyomavirus (JCV) specificity towards the
pentasaccharide NeuNAc-α2,6-Gal-β1,4-GlcNAc-β1,3-Gal-β1,4-Glc a sialylated
derivate from lactoseries tetrasaccharide c (LSTc) was determined using glycan
array technology and viral infectivity studies, confirmed by crystallography and
mutational studies, to reveal a close interaction with the terminal sialic acid of the
LSTc motif and their importance for the infective process [70]. Those studies are the
result of technical advances in glycan printing technology, allowing the screening
for drugs with potential binding inhibitor activity. A study by the Seeberger group
identified key interactions with the glycan fraction of the glycoprotein gp120 from
HIV virus identifying scytovirin as potential binding inhibitor [71]. The binding
specificity of rotavirus, one of the main pathogenic agents causing diarrhoea and
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gastroenteritis in infants, was studied using glycoarray technology. This virus
processes a VP8 protein, which showed binding specificity to A-type histo-blood
group antigen as confirmed by X-ray crystallography [72, 73].

4.2 Glycan-Bacteria Interactions

Many bacterial pathogens use carbohydrate-protein interactions to facilitate infective
processes, and carbohydrate microarrays have been used to determine specific
interactions identifying glycan-binding proteins on the membrane of some microor-
ganisms. This technology has been used for identifying glycan recognition patterns
of some pathogenic bacteria [74], with the capacity for high-throughput screening
for potential new antibiotics. Bacteria express virulence factors that recognise
glycans, and the binding specificity of glycan-binding proteins (GBPs) could easily
be identified by glycoarray technology: α-Gal-β1,4-Gal glycan terminator showed
preferential binding over α-Gal-β1,3-Gal or α-Gal-β1,6-Gal to the lectin A (LacA or
PA-IL) from Pseudomonas aeruginosa. Binding specificity of lectin B (PA-IIL)
from the same organism was fully characterised by using fucosylated DNA
(glycoclusters) which then were immobilised into a solid phase by using the well-
known DNA-direct immobilisation (DDI) technique arising the DNA-based
glycoarray technology, both lectins are involved in host cell adhesion and biofilm
formation [75, 76]. On the other hand, the lectin A (BC2L-A) from Burkholderia
cenocepacia identified by glycan array technology preferential binding towards
oligomannose-type oligosaccharides usually present in human glycoproteins
[77]. Further studies, in which 377 glycans were printed on a glycan microarray
chip, showed a dual recognition to both terminal mannose and fucose oligosaccha-
rides of BC2L-A lectin, suggesting that the lectin forms a dual link between bacteria
and epithelial cells facilitating the infective process [78, 79].

Sialylated terminal glycans are usually target molecules for bacterial binding as
part of the mechanism used by many pathogens to infect host cells; several studies
using glycan arrays have contributed to understand molecular mechanisms of the
infection process and have led to the identification of SLL-4, SLL-5 and SLL-11,
staphylococcal super antigen-like (SLL) proteins containing highly conserved
carbohydrate-binding site also present in SLL-2, SLL-3 and SLL-6. By glycan
array technology, sialylated glycans (sialyl Lewis X, sialyl lactosamine) were
identified as SLL targets, and subsequent detailed crystallographic studies showed
small differences in active site conformation that could explain small affinity
preferences [80].

N-glycans with the heptasaccharide GlcNAc4Man3 core are present on mamma-
lian cells, and by using glycan arrays, these structures have been identified as targets
for Vibrio cholerae cytolysin (VCC), a pore-forming toxin secreted by this organ-
ism. The studies suggest that the carbohydrate-binding domains on VCC toxin
facilitate high affinity targeting mammalian cell membranes contributing to cell
lysis at picomolar concentrations [81]. A bacterial lectin with fucose specificity
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was identified from Streptomyces rapamycinicus. The SL2-1 lectin belonging to a
new family of fucose-binding proteins shows high specificity towards core α1,6-
fucosylated N-glycans but not to core α1,3-fucosylated N-glycans or other
fucosylated oligosaccharides. This lectin has no similarity to other known bacterial
fucose-binding proteins, but is showing certain similarity to eukaryotic fucose-
binding lectins [82].

Complementary to these interactions, mammalian cell surfaces contain
carbohydrate-recognition proteins with the ability to recognise glycans on the
surface of many pathogens. Galectins and C-type lectins are the most studied
systems in humans. The protector effect of galectins (lectins defined by their binding
to β-Gal oligosaccharides) has been addressed by studies on several glycoarrays
generated from microbial polysaccharides. Disruption of the membrane integrity and
viability loss has been observed on E. coli expressing human blood group antigen
(ABO-H epitopes), an effect promoted by galectin-4 and galectin-8 expressed in the
intestinal tract and by galectin-9 [83–85]. In addition to galectins, interesting defence
mechanisms addressing structural understanding of glycan recognition of langerin, a
glycan-binding protein expressed by Langerhans cells, revealed their binding spec-
ificity to high-mannose N-linked oligosaccharides, blood group B antigen and
6-sulfated galactosides all identified in fungi, mycobacteria and virus [86].

So far, the human intelectin-1 (hlntL-1) does not seem to bind to any known human
glycan epitope. However, this protein interacts with multiple glycan epitopes found
exclusively in bacteria, such as recognition of β-Galf, D-phosphoglycerol-modified
glycans, heptoses, D-glycero-D-talo-oct-2-ulosonic acid (KO) and 3-deoxy-D-manno-
oct-2-ulosonic acid (KDO), thus promoting protective effects [87].

4.3 Glycans as Enzyme Substrates on Glycan Arrays

The density of carbohydrates on microarrays can have important consequences for
lectin binding. Lectins often present multivalent binding sites, and the importance of
using a flexible platform in order to perform high- and low-density binding interac-
tion for identification of multivalent binding sites has also been addressed by
several studies [48, 88, 89]. Three-dimensional carbohydrate conjugates have been
synthesised, mimicking structures present on cell surfaces based on highly
branched monodisperse macromolecules known as dendrimers [90–92],
glycopolymers [93–95], glycoproteins [96–98], glycolipids and glycolipid-
containing liposomes [99–101], DNA glycoclusters [102] and carbohydrate-coated
nanoparticles attached to array platform [103].

Glycan array platforms have allowed the analysis of carbohydrate-processing
enzymes. One of the major challenges here is to find a reliable readout method to
determine enzymes’ activity-specificity in a qualitative and quantitative way. This
challenging step was initially overcome by using biotinylated glycosyl donors [104]
enabling direct detection of incorporated glycan residues on the acceptor molecule
attached to the array surface. Indirect detection methods using fluorescently labelled
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lectins [105] or biotinylated-labelled lectins subsequently detected by fluorescently
labelled streptavidin or antibodies have been widely used on several array platforms
[3, 14, 82, 106]. However, quantification of enzymatic activity with this method is
still challenging. Higher sensitivity was reached by tritium autoradiography allowing
more accurate readings which can be used for quantitative on-chip enzymatic assays
[107]. More recently, a novel array for exopolysaccharide hydrolysing enzymes,
polysaccharide lyases, carbohydrate esterases and lytic polysaccharide mono-
oxygenases activity has been reported [108], based on labelled antibodies and lectins
for semi-quantitative enzymatic assays, which was used to determine enzymatic
activity from biomass samples mainly from fungal organisms. Labelling glycan
moieties on the array platform has also been explored with chemoselective labelling
glycan residues on the array platform after galactose oxidase or periodate oxidation.
Aniline-catalysed oxime ligation has been used for neuraminidase specificity detec-
tion; however this method has not been fully exploited and at the moment has very
limited glycan substrates [54].

Label-free detection strategies using mass spectrometry analysis to determine trans-
ferase and hydrolase activities have been reported for bovine β1,4-galactosyltransferase I
activity, 7 ppGalNAcT activity [109, 110], sialyltransferases activity [52, 104, 111],
glycosyl hydrolase activity from environmental samples [112] and hydrolase/transferase
activity by galactose-processing enzymes [113].

Mass spectrometry can be complementedwithfluorescently labelled lectins to provide
quantitative readout, demonstrating the ability to screen glycosyltransferase activity in a
high-throughput manner [78, 114]. These techniques have led to the discovery of new
fucosyltransferases and galactosyl- and N-acetylgalactosaminetransferases [115] and
have opened the possibilities to test drug inhibitors for potential pharmaceutical applica-
tions.Given the very large number of potential CAZy enzymes in genomic databases [62]
and the lack of generic high-throughput screens for enzyme activities, glycan arrays are a
promising tool to study these glycoenzymes.

4.4 Anti-glycan Antibodies as Disease Biomarkers

Usually, antibodies are generated as a defence mechanism against pathogens, and it
has been suggested that the population of these antibodies change according to the
onset of disease, age, exposure to antigens or vaccination. Antibodies circulating in
human sera are accessible and very popular for biomarker discovery. Microarray
technology has been used to explore anti-glycan antibodies as biomarkers for
immune response, infections, autoimmune diseases and cancer [116], and a number
of antibodies against glycans and glycopeptides have also been found in human
normal sera [117]. Glycans expressed by pathogens have been used as antigens to
develop glycan array technology as diagnostic tool. Lipopolysaccharides (LPS) are
components of the outer membrane in Gram-negative bacteria. LPS and glycan
antigens have been used in array platforms in order to identify antibodies indicative
for infection caused by Burkholderia pseudomallei, Francisella tularensis and
Bacillus anthracis [118]. O-Antigen-specific antibodies have been found in human
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sera from salmonellosis patients demonstrating that glycoarray technology as a
potential high-throughput technology as diagnostic tool and to follow infection
outbreaks [119].

Parasitic infections have been also studied by anti-glycan antibody detection
using glycoarrays as diagnostic tools. Using a synthetic GPI array, specific anti-
bodies in malaria-infected patients were detected, with the pentasaccharide
Man-α1,2-Man-α1,4-GlcNH2-α1,6-myo-inositol-1-PO4 being identified as a mini-
mal epitope for antibody binding [120]. The antigen GalNAc-β1,4-(Fuc-α1,3)-
GlcNAc was identified as antigen for antibody production, thus leading to a good
target for serodiagnostic tools in patients infected with Trichinella spiralis [121]. By
using a glycopeptide array, Tn antigen (GalNAc-α-1-Ser/Thr-R)-specific antibodies
against Cryptosporidium parvum causal agent of gastrointestinal infections and
diarrhoea were detected efficiently [122]. Anti-glycan antibody response was iden-
tified in the sera of patients with S. mansoni infection. When 33 non-mammalian
xylosylated and core-fucosylated N-glycans were used, clear and immunologically
relevant differences between children and adult groups infected with this parasite
were observed [123].

A large number of studies have focussed on influenza virus infections, many of
which are based in enzymatic assays described earlier in this chapter. Antibody
responses against viral infections have been studied on glycoarray platforms to a
lesser extent than influenza virus infections, but nevertheless highlighting this
technology of great potential for studies of viral infections. Differential antigen
binding was identified in antibodies from patients infected with herpes virus 2 and
herpes virus 1 or noninfected individuals [124]. A protective response against human
immunodeficiency virus (HIV) infection was shown to be driven by antibodies
production [71]. By using glycoarray platforms, neutralising effects of those anti-
bodies were observed. The binding specificities to complex N-glycans and
oligomannose fraction (Man8GlcNAc2 and Man9GlcNAc2) of the envelope protein
gp120 have been confirmed as new targets for vaccine development [125–127].

The change in glycosylation of cancer cells has been known for a very long time,
and glycan arrays have helped to identify tumour-associated carbohydrate antigens
which found exclusively on cancer cells but also altered glycosylation levels due to
aberrant glycosylation processes [128]. Using glycoarray platforms, anti-Globo H
antibodies have been found in elevated levels in breast cancer patients [129], and
antibodies against aberrant O-glycopeptides derived from MUC1 glycoprotein have
also been detected in sera from breast, ovarian and prostate cancer patients
[130]. Extending glycoarrays based on MUC1 to include MUC4 glycopeptides
was useful to increase sensitivity and specificity for colorectal cancer detection
[131]. Additionally, cancer-associated glycoforms of MUC1 antibodies were
detected in a high concentration in early stage and beginning of breast cancer but
not in healthy controls. Additionally, anti-CoreMUC1 (GlcNAcβ1,3-GalNAc-
MUC1) and STnMUC1 (NeuAcα2,6-GalNAc-MUC1) antibodies were associated
with reduced incidence and delay in metastases, revealing their importance as cancer
biomarkers and highlighting the importance of antibodies in cancer progression.
Despite the promising advances in cancer biomarker detection by glycoarray
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technology, there is still much to be done. For example, studies using larger number
of samples were not able to discriminate between healthy volunteers and patients
with ovarian, pancreatic and lung cancer when MUC1 glycoform was used
[132]. However, non-mucinous glycans which also have been used in array format
including P(1) (Galα-1,4-Galβ-1,4-GalNAcβ) were shown to be useful to determine
anti-glycan antibodies in cancer patients with higher sensitivity-specificity compared
to the CA125 tumour marker [133]. Different markers such as GM3, tumour-
associated Tn antigen Gal-β1,3-GalNAc-α-Ser/Thr and N-glycan cryptic antigen
have been used on array platform as cancer biomarkers but also as possible targets
for vaccine development [116, 134, 135]. Glycan antigens are present not only in
cancer cells, bacterial and viral cell walls; they are also in the environment and can
act as allergens. Exposure to these external agents can deregulate the immune system
causing allergic reactions or autoimmunity [136]. Studies on antibody production in
Crohn’s disease, multiple sclerosis [137] and systemic sclerosis [138] have demon-
strated the potential use of glycoarrays in diagnostics of a wide range of disorders.

5 Conclusions

Glycoarray technology has emerged as a key tool in glycosciences, particularly to
uncover the extensive networks of carbohydrate-protein interactions in many bio-
logical systems, from humans and animals to plants and microorganisms. Arrays can
be used for carbohydrate-binding protein and lectin identification, enzyme activity
screening and determination of antibody specificity. Several array platforms have
been reported and are in broad agreement with each other. Commercial glycoarray
platforms are emerging, but there is scope for expansion into more diverse glycan
libraries to be displayed on arrays. Many studies have shown that glycan arrays can
be used as fast and sensitive discovery tools in fundamental biological studies, but
can also identify new biomarkers for disease such as cancer or infection, and have
promise as diagnostic tools for the initial detection of disease and as companion
diagnostics during treatment.
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