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Abstract We fabricate monolayer MoS2 field effect transistors and study their elec-
trical characteristics from 10−6 Torr to atmospheric air pressure. We show that the
threshold voltage increases for growing pressure. Hence, we propose the transistors
as air pressure sensors, showing that they are suitable as low-power vacuum gauges.
The devices operate on the pressure-dependent O2, N2 and H2Omolecule adsorption
that affects the n-doping of the MoS2 channel.
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1 Introduction

Following the great success of graphene [1–4], several families of atomically thin
materials have emerged in the past decades and have been dominating the mate-
rial research scenario [5, 6]. In particular, two-dimensional (2D) transition metal
dichalcogenides (TMDs) have attracted a lot of attention due to several promising
properties for electronic, optoelectronic, energy, catalysis and sensing applications
[7–9]. TMDs consist of a “sandwich” layered structure with a transition-metal sheet
located in between two chalcogen sheets and possess unique properties such as energy
bandgap tunable by the number of layers (from 0 to about 2.2 eV), good mobility
up to few hundreds cm2V−1 s−1, photoluminescence, broadband light adsorption,
surface without out-of-plane dangling bonds that allows the fabrication of hetero-
structures, high strengthwithYoung’smodulus up to 300GPa, exceptional flexibility,
and thermal stability in air [10–12]. They can be produced by mechanical or liquid
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exfoliation, chemical vapor deposition (CVD), molecular beam epitaxy, pulsed laser
deposition, etc. [13].

Molybdenum disulfide (MoS2) is formed by covalently bonded S–Mo–S
sequences held together by weak van der Waals forces, resulting in easy-to-exfoliate
2D layers [14, 15]. MoS2 is a semiconductor with 1.2 eV indirect bandgap in the
bulk form that widens up to 1.8–1.9 eV and becomes direct in the monolayer. It
is a promising material for field-effect transistors (FETs) with high performance
and on/off ratio [16–18], sensitive broadband photodetectors [19, 20], catalysis [21],
chemical and biological [22–25] or strain and pressure sensors [23, 26].

Microscopic pressure sensors that can rapidly detect small pressure variations
are of high demand in robotic technologies, human–machine interfaces, electronic
skin, sound wave detection, and health monitoring devices. Pressure sensors are
very important in many other fields, such as automobiles, aircrafts, well drilling, and
medical applications.

The exceptional mechanical properties of MoS2 nanosheets [27] have inspired
their application as ultrathin diaphragms capable of large deflection deformations at
low pressure to achieve high sensitivity in pressure sensors. For instance, a thin and
sensitive diaphragm is attached onto one end face of a cleaved optical fiber to form
an extrinsic Fabry–Perot interferometric structure that detects the applied pressure
through the measurement of the deflection deformation of the diaphragm. Fabry–
Perot ultrasensitive pressure sensors with nearly synchronous pressure–deflection
responses have been fabricated using few-layer MoS2 films. Compared to conven-
tional diaphragm materials (e.g., silica, silver films), they have allowed to achieve
three orders of magnitude higher sensitivity (89.3 nm Pa−1) [28].

Highly sensitive pressure sensors have been fabricated by integrating a conduc-
tive microstructured air-gap gate with MoS2 transistors. The air-gap gate is used
as the pressure-sensitive gate for 2D MoS2 transistors to reach pressure sensitivity
amplification to ~103–107 kPa−1 at an optimized pressure regime of ~1.5 kPa [29].

Due to the atomic thickness, the electrical properties of two-dimensionalmaterials
are highly affected by ambient gases and their pressure variations. The adsorbed gas
modifies the electron stateswithin 2Dmaterials changing their electrical conductivity.
Owing to the low adsorption energy the process can be reversible.

Specifically, it has been demonstrated that MoS2 conductivity can be enhanced
or suppressed by gases such as O2, CH4, NO2, NO, NH3, H2S, etc. [22, 30, 31].
Therefore, few- and single-layer MoS2 nanosheets have been investigated for gas
and pressure sensing in devices with fast response speed, low power consumption,
low minimum pressure detection limits and excellent stability. For instance, few-
layer MoS2 back-gate field effect transistors, fabricated on SiO2/Si substrate with
Au electrodes, have been demonstrated as resistor-based O2 sensors with sensing
performance controllable by the back-gate voltage. Remarkably, these devices have
been applied to determineO2 partial pressure with a detectability as low as 6.7×10−7

millibars at a constant vacuum pressure and proposed as a vacuum gauge [32].
In this paper, we fabricate MoS2 back-gate field effect transistors using MoS2

nanosheets grown by chemical vapor deposition (CVD) on SiO2/Si substrate and
measure their electrical characteristics at different air pressures. We show that the
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threshold voltage of the transistors increases with the increasing pressure.We ascribe
such a feature to pressure-dependent adsorption of electronegative oxygen, nitrogen
and water molecules, which decrease the n-doping of the MoS2 channel and hence
increase the threshold voltage of the transistors.Wepropose to exploit the dependence
of the transistor current on the air pressure to realize vacuum gauges with wide
dynamic range and low power consumption.

2 Experimental

The MoS2 monolayer flakes were grown by CVD on a heavily doped Si substrate
covered by 285 nm SiO2, spin coated with 1% sodium cholate solution. The molyb-
denum needed for the growth was provided by a saturated ammonium heptamolyb-
date (AHM) solution, which was annealed at 300 °C under ambient conditions to
turn AHM into MoO3. The substrate and the AHM solution were placed in a three-
zone tube furnace, along with 50 mg of S powder, positioned upstream in a separate
heating zone. The zones containing the S and the AHM were heated to 150 °C and
750 °C, respectively. After 15min of growth, the processwas stopped, and the sample
cooled down rapidly.

MoS2 nanoflakes with different shapes and thicknesses, depending on both the
local stoichiometry and temperature, were formed [33]. An example is shown in
Fig. 1a.

We used optical microscope inspection, with contrast calibrated to approximately
estimate the number of layers, to identify MoS2 nanoflakes suitable for the tran-
sistor fabrication. A standard e-beam lithography and lift-off process was applied to
evaporate Ti (10 nm) and Au (40 nm) bilayers on the flake for the formation of the
source and drain electrodes. The back-gate electrode was formed by scratching the
Si substrate surface and dropping silver paste.

The SEM top view of a typical device, fabricated using a star-like nanoflake, is
shown in Fig. 1a. Figure 1b shows the Raman spectrum of the flake under 532 nm
laser excitation. The wavenumber difference,�k ≈ 20.8 cm−1, between the E1

2g (in-
plane optical vibration of S atoms in the basal plane) and A1g (out-of-plane optical
vibration of S atoms along the c axis) indicates a monolayer [34, 35].

Figure 1c displays the schematic cross-section of the device and the circuits used
for the electrical characterization of the transistor in common source configuration.
The electrical measurements were carried out inside a cryogenic probe station with
fine pressure control (Janis ST 500), connected to a Keithley 4200 SCS (source
measurement units, Tektronix Inc.), at room temperature.
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Fig. 1 a SEM image showing the star-like MoS2 nanoflake used as the channel of the back-gate
transistor with Ti/Au contacts. The channel width and length are 28.0 µm and 4.4 µm, respectively.
b Raman spectrum of the MoS2 nanoflake with E1

2g − A1g wavenumber separation corresponding
to a monolayer. cMoS2 FET schematic with biasing circuits used for the electrical characterization

3 Results and Discussion

Figure 2a, b show the Ids −Vds output characteristics and the Ids −Vgs transfer char-
acteristics of theMoS2 transistor measured in high vacuum and at room temperature.
As often observed in MoS2 and other 2D-material based devices, the output charac-
teristic exhibits an asymmetric behavior for positive and negative drain biases. As
we have demonstrated elsewhere, such a feature is caused by the different contact
area as well as by a difference in the Schottky barrier height at the two contacts
resulting from local MoS2 processing or intrinsic defects [36, 37]. The transfer char-
acteristic shows a normally-on, n-type transistor. The intrinsic n-type conduction is
typical of MoS2 and is mainly due to S vacancies [38]. Compared to similar devices
reported in the literature, the transistor shows good metrics in terms of on/off ratio
108 at ±60 V, on-current ∼ 0.3 µA

µm , subthreshold swing of 3.5 V
decade and mobility

µ = L
WCoxVds

dIds
dVgs

≈ 1.2 cm2 V−1 s−1(L and W are the channel length and width,
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Fig. 2 aOutput and b transfer (on linear and logarithmic scale) characteristics of the device between
C1 and C2 contacts measured at room temperature and 10−6 Torr pressure. The dashed red line is
a linear fit used to evaluate the channel field effect mobility

Vds is the source-drain bias and Cox = 12.1 nF cm−2 is the SiO2 capacitance per
unit area) [39–41].

The result of transfer characteristic measurements at different pressures, P, from
high vacuum to atmospheric pressure and back to 10−6 Torr, is displayed in Fig. 3a.
The increasing air pressure causes a right-shift of the transfer curve and therefore an
increase of transistor threshold voltage, Vth. The threshold voltage is here defined
as the x-axis intercept of the straight lines fitting the Ids − Vds curves in the current
range 1–100 nA. The effect is reversible, in fact the device returns to the pristine state
when the high vacuum is restored, as shown by the dash-dot grey line in Fig. 3a. We
note that the effect of air pressure on the channel conductance, which could result
in the dramatic transformation of n-type to p-type conduction when passing from
high vacuum to atmospheric pressure, has been reported also for other 2D TMDs

Fig. 3 a Transfer characteristics (solid lines) on linear scale for increasing pressure from high
vacuum to atmospheric. The dashed lines are linear fits used to evaluate the transistor threshold
voltage. The dash-dot gray line is obtained after that the high vacuum is restored. b Threshold
voltage as a function of the pressure (color figure online)
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materials such as WSe2 or PdSe2 [11, 42]. The effect is usually reversible although
it has been found that an aging can occur in specific TMDs, such as PdSe2, after a
long (>20 days) air exposure at atmospheric pressure [43].

The monotonic Vth − P behaviour, shown in Fig. 3b, suggests that the transistor
can be used as pressure sensor, with maximum sensitivity up to dV

d(log10 P)
≈ 13 V

decade

at lower pressures, where the Vth − P curve is steeper. Besides the higher sensitivity,
the duty cycle of the device increases when operated in vacuum because of the
suppressed air aging effect. Therefore, the sensor is best suited as a vacuum gauge.
Moreover, low current of 1 nA or less is needed to monitor the Vth variation, which
implies that the sensor can be operated in low power-consumption regime.

To investigate the working principle of the device, we measured the transfer char-
acteristics over a gate voltage loop (backward and forward sweep) in air and vacuum.
Figure 4a shows the appearance of a hysteresis that diminishes for decreasing pres-
sure. Hysteresis is a well-known phenomenon in transistors with 2D material chan-
nels and has been attributed to charge trapping in intrinsic defects of the 2D mate-
rial, in the gate dielectric and in adsorbate molecules [38, 40, 44–46]. The reducing
hysteresis with pressure confirms that adsorbates play an important role in the device
under study.

Owing to their high electronegativity, molecular O2, N2 and H2O, adsorbed
on MoS2 surface (Fig. 4b), can withdraw electrons from the channel causing the
observed increase of the threshold voltage, i.e. of the gate voltage needed to enable
conduction in the transistor channel. Absorption occurs particularly at S vacancy
sites and the absorption/desorption rate obviously depends on the air pressure the
MoS2 nanosheet is exposed to, thus enabling its monitoring.

Fig. 4 a Transfer characteristics showing a hysteresis between the forward and reverse Vgs sweeps.
The hysteresis width decreases for lowering pressure from atmospheric to 10−6 Torr. b Schematic
showing the adsorption of molecular O2 and H2O which, being electronegative, cause the decrease
of the electron density in the transistor channel and an increase of the threshold voltage
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4 Conclusion

We have fabricated and electrically characterized monolayer MoS2 field effect
transistors. We have found that the threshold voltage of the transistors increases
monotonously with the air pressure, as effect of reduced n-doping caused by adsorp-
tion of electronegative O2, N2 and water. Therefore, we have proposed the transistors
as air pressure sensors, highlighting their suitability as a vacuum gauge with long
duty cycle and low power consumption.
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