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Abstract UASs (Unmanned Aircraft Systems) are becoming increasingly popular,
for bothmilitary and civil applications. They are widely used in various tasks, such as
search and rescue, disaster assessment, urban traffic monitoring, 3D mapping, etc.,
thatwouldbe riskyor impossible to perform for a human.DAA(Detect andAvoid) is a
newUAS technology necessary to safely avoid obstacles or other UASs and aircrafts.
In this work low-cost sensors, namely, a DAA architecture based on a LIDAR (Light
Detection andRanging), and aToF (Timeof Flight) sensor,will be installed on a small
unmanned rotorcraft to estimate its distance from an obstacle and for field mapping.
To correct the data from systematic errors (bias) and measurement noise, Kalman
filtering and a criterion of optimal estimation have been implemented. Collected
data are sent to a microcontroller (Arduino Mega 2560), which allows for low-cost
hardware implementations of multiple sensors for use in aerospace applications.

Keywords UAS · UAV · DAA · Lidar · Sensor fusion · ToF · Kalman filter

G. Ariante (B) · U. Papa · G. Del Core
Department of Science and Technology, University of Naples “Parthenope”, Napoli, Italy
e-mail: gennaro.ariante@studenti.uniparthenope.it

U. Papa
e-mail: umberto.papa@uniparthenope.it

G. Del Core
e-mail: giuseppe.delcore@uniparthenope.it

S. Ponte
Department of Engineering, University of Studies of Campania “Luigi Vanvitelli”, Aversa, CE,
Italy
e-mail: salvatore.ponte@unicampania.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
G. Di Francia and C. Di Natale (eds.), Sensors and Microsystems,
Lecture Notes in Electrical Engineering 753,
https://doi.org/10.1007/978-3-030-69551-4_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69551-4_2&domain=pdf
http://orcid.org/0000-0002-7581-8224
http://orcid.org/0000-0003-3467-8218
http://orcid.org/0000-0002-6162-9182
http://orcid.org/0000-0003-2720-4751
mailto:gennaro.ariante@studenti.uniparthenope.it
mailto:umberto.papa@uniparthenope.it
mailto:giuseppe.delcore@uniparthenope.it
mailto:salvatore.ponte@unicampania.it
https://doi.org/10.1007/978-3-030-69551-4_2


10 G. Ariante et al.

1 Introduction

Research in UAS field is getting more and more attention and importance due to
their wide application, both military and civilian [1]. UASs can perform missions
that pose high risks to human operators, such as search and rescue, reconnaissance
and strike, surveillance and monitoring in danger-prone or inaccessible sites [2].

Knowledge of the environment, mapping and localization is an important task for
the remote pilots and/or autonomous flight, particularly during the different flight
phases in unknown areas. In this paper we describe the preliminary steps towards the
development of a DAA system with low-cost sensors, in particular LIDAR-ToF. The
platform will be installed on a UAV to send information on position, detect obstacles
and for field mapping [3–6]. Both sensors have typical “low-cost” characteristics, i.e.
miniaturization, fast response time and good sensing range for obstacle detection.
They are managed through I2C serial connection by amicrocontroller ArduinoMega
2560 [7].

2 Theoretical Framework

2.1 Sensor Fusion

Multisensors data fusion is an essential task for and improved estimation of system
states and parameters [2, 8]. The data fusion module implemented in this work aims
to reduce uncertainties on the distance measurements from a fixed or movable object
that could become an obstacle during the flight. Additional distance information is
obtained thanks to LIDAR (Lidar lite v3) and ToF (VL53L0X) sensors, added to the
standard instrumentation (Fig. 1), in order to perform enhanced automatic obstacle
detection and distance-from-obstacle estimation around the flight area.

The LIDAR lite v3 measures distance by calculating the time delay between the
transmission of a Near-Infrared laser signal and its reception after reflection from
a target. This translates into distance (meters or feet) using the speed of light [9].
The VL53L0X is a new generation ToF laser-ranging module housed in the smallest
package on the market today, providing accurate distance measurements whatever
the target reflectance, unlike conventional technologies. It can measure absolute
distances up to 2 m, setting a new benchmark in ranging performance levels, opening
up various and interesting new applications [10].

2.2 Kalman Filtering and Gelb’s Method

The algorithms used for estimation and removal of systematic errors and noise are
Kalman filtering and Gelb’s method [11] for sensor data fusion. The Kalman filter
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Fig. 1 Electrical scheme of the system

(KF) is a widely used quadratic state estimator for discrete linear dynamic systems
perturbed by white noise (w), which uses measurements linearly related to the state
and corrupted by white Gaussian noise [11, 12]:

xk = Axk−1 + Buk−1 + wk−1 (1)

zk = Hxk + vk (2)

where xk is the state vector evaluated at time tk , A and B are the state and
input matrices, wk is the process noise vector, with covariance matrix Q, zk is the
kth measurement vector, H is the observation matrix, and vk is the measurement
noise, with covariance matrix R. Starting from an initial state estimate x̂0 and state
error covariance matrix P0, the KF is based on a prediction-correction strategy,
projecting forward the current state x̂−k [a-priori estimate, Eq. (1)] and predicting
the a-posteriori state estimate x̂k based on the current measurement weighted by a
gain matrix K k : (Kalman gain):

x̂k = x̂−k + K k
(
zk − H x̂−k

)
(3)

K k = P−
k H

T

HP−
k H

T + R
; Pk = (I − K kH)P−

k (4)
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The estimation errors are provided by the element of the matrix P.
Gelb’s method is a simple data fusion algorithm that processes measurements to

deduce a linear estimate x̂ of the unknown quantity (i.e. distance) which, assuming
random, independent and unbiased measurement errors, minimizes the mean square
value of the estimation error [11]:

x̂ =
(

σ 2
LDR

σ 2
ToF + σ 2

LDR

)
zToF +

(
σ 2
ToF

σ 2
ToF + σ 2

LDR

)
zLDR (5)

where the variances of the measurements of the LIDAR, zLDR, and ToF, zToF, are
σ 2
LDR and σ 2

ToF respectively. It can be shown that theminimummean square estimation

error is
(
1/σ 2

LDR + 1/σ 2
ToF

)−1
.

3 Simulations and Results

To assess the operative characteristic of the sensors, simulations are performed in the
obstacle detection range, chosen to be 30–180 cm. The obstacle is moved in 5-cm
steps during the data acquisition sessions. Measurements were acquired for of 120 s
at 4 Hz (one measurement every 250 ms, 480 samples per acquisition) (see Fig. 2).

In post-processing, mean and variance have been evaluated in each data collection
for raw and filtered data (see Fig. 3).

A comparison between mean and variance of the measurements (Table 1) shows
a bias in the LIDAR acquisitions, which was corrected by applying Kalman filtering

Fig. 2 Data collection of LIDAR (left) and ToF (right) during a static test, with the obstacle at
50 cm
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Fig. 3 Mean and variance of the Lidar and ToF measurements, calculated for raw data (left) and
filtered data (right)

Table 1 Comparison mean and variance of some raw (R) and Kalman (K) filtered distances

LIDAR ToF

Distance (cm) 30 90 150 30 90 150

– R/K R/K R/K R/K R/K R/K

Mean (cm) 37/28 99/90 159/150 30/30 90/90 179/163

VAR (cm2) 4.6/0.7 1.9/0.2 2.01/0.2 0/0 0.2/0 1.6 × 104/2 × 103

to the raw data. ToF measurements shows good accuracy at short distances (less than
120 cm) and high errors for longer distances.

As an alternative, after estimating the sensor variances σ 2
LDR and σ 2

ToF from static
measurements, Eq. (5) is applied to obtain the optimal estimated distance. Results
are shown in Fig. 4, and in Fig. 5 and Table 2 the methodology is compared to the
Kalman filtering approach.
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Fig. 4 Mean and variance of the values estimated by Gelb’s method

Fig. 5 Comparison between Gelb’s method with Kalman filter
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Table 2 Comparison
between raw data, Gelb’s data
fusion and Kalman-filtered
data

Raw data
LDR/ToF

Gelb Kalman

RMS (cm) 9.1/53.6 5.9 0.8

Max error (cm) 10.8/159.4 10.9 2.2

4 Conclusion

This paper has quickly described the preliminary steps towards the implementation
of a Detect-And-Avoid subsystem onboard an UAV, exploiting low-cost, commer-
cial off-the-shelf distance measuring sensors (LIDAR and ToF), handled by easily
programmable microcontrollers (Arduino Mega 2560). Laboratory simulations and
experimental results on a prototypemultisensor board developed by the authors show
that simple data fusion techniques (linear estimation and Kalman filtering) provide
improved observability, reducing the error region, broadening the baseline of the
observable (distance from an obstacle in the range 30–180 cm) and helping in devel-
oping effective DAA approaches for commercial UAVs. In particular, the LIDAR has
been found to be more accurate at large distances from the platform (100–180 cm
and up to 4 m), whereas the ToF sensor performed well at shorter ranges (0–120 cm).
As shown in the work, the KF-based data fusion algorithm gave better results than
Gelb’s approach, at the cost of increased complexity. Nonetheless, the Kalman-based
data fusion allows for easy real-time data processing and propagates the current state
of knowledge of the dynamic measurements, upgrading the estimation error during
the measurement process, a property extremely useful for statistical analysis and
performance monitoring. Good performance of the preliminary system confirms the
feasibility and robustness of this approach to an autonomous DAA system.
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