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Abstract Posture control and maintaining balance are fundamental elements of
humanoid robot control and have a significant impact for the performance of robots.
The evaluation of robotic performance, at the state of the art, is mostly evaluated at
goal level, e.g. with robot competitions. While falling is a typical reason beyond the
failure of the humanoid operation, the failure itself does not provide many details
about the nature of the underlying problem that can be used to improve the control.
In order to provide a more specific analysis of posture control and balance, this
contribution presents a set of performance indicators, i.e. indexes that can be used to
compare the performance of robots with the human control systems. The inspiration
for the proposed tests and indicators comes from human experiments and particular
emphasis is placed on human-robot comparison.

1 Introduction

Posture control and balance are required to maintain equilibrium when walking or
standing and to provide buttress when performing a motor task. Losing balance is
one of the typical reasons of failure for humanoids, often damaging the hardware, as
reported for example for the DARPA challenges [1–3]. During such a challenge the
robot is evaluated in terms of goal achievement, without (directly) going into details
of the reason of the failure. An evaluation system focused on the details of posture
control is envisaged to be useful to inspire the improvement of the components of
the control system. The study of human posture control can provide inspiration for
the control of humanoids [4–7] and, on the other hand, humanoids represent a poten-
tial testbed for theories for human neurology [8]. Studies involving human-inspired
posture control systems usually include an ad hoc specified test of performance,
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while neurology works exploiting the robot as a simulation device for the compar-
ison between human and robot behavior defined on some quantitative basis (e.g.
body-sway frequency response to external disturbances). In this work we specify a
set of tests and performance indicators (PI) that are meant to make such evaluations
repeatable and comparable between different robots. This fits in the more general
effort of producing benchmarking tools for humanoid robots [6, 9–12].

2 Tests and Performance Indicators

Sinusoidal disturbance. Providing an external disturbance with a sinusoidal profile
allows for an evaluation of the performance in terms of disturbance rejection.
Different kinds of stimuli can be used, e.g. surface tilt or translation. The response
consisting of the induced body sway is used to compute gain on a specific frequency
as ratio between response and stimulus [13]. The periodic nature of the stimulus can
test the ability of the robot to exploit prediction [14]. Considering that in general the
response of the robot is not linear, several frequencies and amplitudes can be tested
obtaining several scores. In general, a smaller gain is considered a better performance,
nevertheless a more “relaxed” compensation of the disturbances may be more effi-
cient and hence the gain may be evaluated together with energy consumption or
mechanical work produced by the actuators [13].

For testing the movement of the support surface with a sinusoidal profile, the
pi is the body sway over the stimulus: gain. The smaller the gain the better the
performance.

Raised Cosine. A support surface movement, e.g. translation or tilt, with a velocity
profile of a raised cosine represents a smooth version of a step function that can
be used safely for humanoids and human subjects [15]. In this way the transient
response to external stimuli can be evaluated in terms of characteristics like rise
time, overshoot, settling time, peak time and delay-time.

Raised cosine is a “safe” version of the step function that can be used to eval-
uate aPI reflecting the transient response characteristics: rise time,overshoot,
settling time, peak time and delay-time.

Model parameters. Parametric models of human posture control can be fitted on
experimental data. This transforms a series of body sway measures and input stimuli
into a set of parameters. In particular we developed a system to fit the nonlinear DEC
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(disturbance estimation and compensation) model [4] based on convolutional neural
networks [16]. The parameters are not a PI by themselves, but they can be used to
assess some properties of the humanoid such as joint stiffness and total loop delay.
The set of parameters represents a feature set that can be used in the development of
machine learning solutions and to define a similarity between two different robots.

Parameters for posture control models are a concise and meaningful represen-
tation of robot behavior that can be used for performance evaluation.

Human likeness. A dataset of results from human experiments is provided as a
reference for the benchmarking. The set includes healthy subjects and subjects
with specific health conditions affecting sensorimotor control such as spasticity or
vestibular loss. The experiments consisted in providing the subject with a stimulus
consisting of a tilt or a translation of the support surface in the sagittal plane, while
body sway was recorded as output. The profile used for the stimulus is a pseudo-
random ternary signal, PRTS [17]. The comparison between different behaviors is
defined in terms of the norm of the difference between frequency response func-
tions on a set of relevant frequencies (specifically f peak= [0.0165, 0.0496, 0.0992,
0.1322, 0.1818, 0.2314 0.2975, 0.3636, 0.4463, 0.5785, 0.7273, 0.9256, 1.1736,
1.4545, 1.7686, 2.1983] Hz). Such frequencies are defined by the structure of the
PRTS power-spectrum P( f ) that has a “comb” profile with peaks on those frequen-
cies separated by ranges of frequencies with virtually no signal. Furthermore, the
peaks of the PRTS power-spectrum have larger values at lower frequencies [18]. This
implies a better signal-to-noise ratio for the first components. A weighting propor-
tional to P

(
f peak

)
is applied in the comparison. The distance between two FRFs

is defined and the norm of the difference weighted by the precision matrix, i.e. the
inverse of the covariance matrix

∑
, computed on the dataset of normal subjects, this

together with the foretold weighting leads to the definition of the norm:

D =
√
dT S�−1Sd (1)

where S = diag
(
P

(
f peak

))
is the diagonal matrix representing the reweighting due

to the power-spectrum, and d is the difference between the two FRFs.
This approach does not require model identification because it is performed on

the basis of the data. The comparison can be performed between the tested robot and
the average of the groups (healthy or with special deficient conditions) or between
two single samples in order to quantify how much two robots differ from each other.

Human likeness can be estimated on the basis of a comparison with a dataset
from human experiments. Different groups of subjects can provide a reference
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to ‘diagnose’ a specific behavior. The measure in (1) defines a norm that can
be used also to compare two specific trials.

3 Conclusion

In this contribution we presented a set of PIs for posture control and an overview
of our humanoid performance benchmarking principles. The human experimental
dataset, the software implementing the proposed analysis and the hardware required
to perform the proposed tests will be available through the EUROBENCH initiative
(https://eurobench2020.eu/). Specifically, themoving platform has been designed for
humanoids, but, provided that safety for users is properly ensured, the here described
PIs can be applied to the study of wearable robots.

Acknowledgements This work is supported by the project EUROBENCH (European Robotic
Framework for Bipedal Locomotion Benchmarking, www.eurobench2020.eu ) funded by H2020
Topic ICT 27–2017 under grant agreement number 779963.

References

1. E.Guizzo, E.Ackerman, The hard lessons ofDARPA’s robotics challenge [News]. IEEESpectr.
(2015). https://doi.org/10.1109/mspec.2015.7164385

2. C.G. Atkeson et al., No falls, no resets: reliable humanoid behavior in the DARPA robotics
challenge. in IEEE-RAS International Conference on Humanoid Robots (2015). https://doi.
org/10.1109/HUMANOIDS.2015.7363436

3. C.G. Atkeson et al., What happened at the DARPA robotics challenge finals. in Springer Tracts
in Advanced Robotics (2018)

4. V. Lippi, T. Mergner, Human-derived disturbance estimation and compensation (DEC) method
lends itself to a modular sensorimotor control in a humanoid robot. Front. Neurorobot. 11,
(2017). https://doi.org/10.3389/fnbot.2017.00049

5. A.V. Alexandrov, V. Lippi, T. Mergner, A.A. Frolov, G. Hettich, D. Husek, Human-inspired
Eigen movement concept provides coupling-free sensorimotor control in humanoid robot.
Front. Neurorobot. 11, (2017). https://doi.org/10.3389/fnbot.2017.00022

6. V. Lippi, D. Torricelli, G. Hettich, T.Mergner, Benchmarking human-likeness of robot postural
control—suggestions from human experiments. in Workshop in Benchmarking Human-Like
Locomotion Humanoids 2013 Conference, (2013)

7. C. Ott et al., Good posture, good balance: comparison of bioinspired and model-based
approaches for posture control of humanoid robots. IEEE Robot. Autom. Mag. 23(1), 22–33
(2016). https://doi.org/10.1109/MRA.2015.2507098

8. V. Lippi, T. Mergner, Humanoid neurorobotics-posture, balance and movement control. in
School and Symposium on Advanced Neurorehabilitation (SSNR2016), (2016)

9. D. Torricelli et al., Benchmarking human likeness of bipedal robot locomotion: state of the art
and future trends. in Metrics of Sensory Motor Coordination and Integration in Robots and
Animals (Springer, 2020), pp. 147–166

https://eurobench2020.eu/
http://www.eurobench2020.eu
https://doi.org/10.1109/mspec.2015.7164385
https://doi.org/10.1109/HUMANOIDS.2015.7363436
https://doi.org/10.3389/fnbot.2017.00049
https://doi.org/10.3389/fnbot.2017.00022
https://doi.org/10.1109/MRA.2015.2507098


Performance Indicators of Humanoid Posture Control and Balance … 601

10. R. Conti, F. Giovacchini, L. Saccares, N. Vitiello, J.L. Pons, D. Torricelli, What do people
expect from benchmarking of bipedal robots? Preliminary results of the EUROBENCH survey.
in Biosystems and Biorobotics (2019)

11. D. Torricelli, J.L. Pons, EUROBENCH: preparing robots for the real world. in Biosystems and
Biorobotics (2019)

12. T. Mergner, V. Lippi, Posture control—human-inspired approaches for humanoid robot bench-
marking: conceptualizing tests, protocols and analyses. Front. Neurorobot. 12, (2018). https://
doi.org/10.3389/fnbot.2018.00021

13. V. Lippi, T. Mergner, T. Seel, C. Maurer, COMTEST project: a complete modular test stand
for human and humanoid posture control and balance. in IEEE-RAS International Conference
on Humanoid Robots (2019). https://doi.org/10.1109/Humanoids43949.2019.9035081

14. V. Lippi, Prediction in the context of a human-inspired posture control model. Rob. Auton.
Syst. (2018). https://doi.org/10.1016/j.robot.2018.05.012

15. V. Lippi, G. Hettich, T. Mergner, Modeling postural control of support surface translations. in
IEEE Humanoids, Workshop on Cognition, Perception and Postural Control for Humanoids
(Madrid, Spain, 2014)

16. V. Lippi, T. Mergner, C. Maurer, Deep learning for posture control nonlinear model system
and noise identification. in Proceedings of the 17th International Conference on Informatics in
Control, Automation and Robotics—vol. 1: ICINCO, ISBN 978-989-758-442-8, pages 607–
614. (2020) https://doi.org/10.5220/0009148106070614

17. R.J. Peterka, Sensorimotor integration in human postural control. J. Neurophysiol. (2002).
https://doi.org/10.1152/jn.2002.88.3.1097

18. D. Joseph Jilk, S.A. Safavynia, L.H. Ting, Contribution of vision to postural behaviors during
continuous support-surface translations. Exp. Brain Res. 232(1), 169–180 (2013). https://doi.
org/10.1007/s00221-013-3729-4

https://doi.org/10.3389/fnbot.2018.00021
https://doi.org/10.1109/Humanoids43949.2019.9035081
https://doi.org/10.1016/j.robot.2018.05.012
https://doi.org/10.5220/0009148106070614
https://doi.org/10.1152/jn.2002.88.3.1097
https://doi.org/10.1007/s00221-013-3729-4

	 Performance Indicators of Humanoid Posture Control and Balance Inspired by Human Experiments
	1 Introduction
	2 Tests and Performance Indicators
	3 Conclusion
	References




