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Abstract. The focus of this work is sign spotting—given a video of
an isolated sign, our task is to identify whether and where it has been
signed in a continuous, co-articulated sign language video. To achieve
this sign spotting task, we train a model using multiple types of avail-
able supervision by: (1) watching existing sparsely labelled footage; (2)
reading associated subtitles (readily available translations of the signed
content) which provide additional weak-supervision; (3) looking up words
(for which no co-articulated labelled examples are available) in visual sign
language dictionaries to enable novel sign spotting. These three tasks are
integrated into a unified learning framework using the principles of Noise
Contrastive Estimation and Multiple Instance Learning. We validate the
effectiveness of our approach on low-shot sign spotting benchmarks. In
addition, we contribute a machine-readable British Sign Language (BSL)
dictionary dataset of isolated signs, BslDict, to facilitate study of this
task. The dataset, models and code are available at our project page
(https://www.robots.ox.ac.uk/~vgg/research/bsldict/).

1 Introduction

The objective of this work is to develop a sign spotting model that can iden-
tify and localise instances of signs within sequences of continuous sign language.
Sign languages represent the natural means of communication for deaf commu-
nities [1] and sign spotting has a broad range of practical applications. Examples
include: indexing videos of signing content by keyword to enable content-based
search; gathering diverse dictionaries of sign exemplars from unlabelled footage
for linguistic study; automatic feedback for language students via an “auto-
correct” tool (e.g. “did you mean this sign?”); making voice activated wake word
devices accessible to deaf communities; and building sign language datasets by
automatically labelling examples of signs.

The recent marriage of large-scale, labelled datasets with deep neural net-
works has produced considerable progress in audio [2,3] and visual [4,5] keyword
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Fig. 1. We consider the task of sign spotting in co-articulated, continuous signing.
Given a query dictionary video of an isolated sign (e.g. “apple”), we aim to identify
whether and where it appears in videos of continuous signing. The wide domain gap
between dictionary examples of isolated signs and target sequences of continuous sign-
ing makes the task extremely challenging.

spotting in spoken languages. However, a direct replication of these keyword
spotting successes in sign language requires a commensurate quantity of labelled
data (note that modern audiovisual spoken keyword spotting datasets contain
millions of densely labelled examples [6,7]). Large-scale corpora of continuous,
co-articulated1 signing from TV broadcast data have recently been built [8],
but the labels accompanying this data are: (1) sparse, and (2) cover a limited
vocabulary.

It might be thought that a sign language dictionary would offer a relatively
straightforward solution to the sign spotting task, particularly to the problem of
covering only a limited vocabulary in existing large-scale corpora. But, unfortu-
nately, this is not the case due to the severe domain differences between dictio-
naries and continuous signing in the wild. The challenges are that sign language
dictionaries typically: (i) consist of isolated signs which differ in appearance from
the co-articulated sequences of continuous signs (for which we ultimately wish
to perform spotting); and (ii) differ in speed (are performed more slowly) rela-
tive to co-articulated signing. Furthermore, (iii) dictionaries only possess a few
examples of each sign (so learning must be low shot); and as one more challenge,
(iv) there can be multiple signs corresponding to a single keyword, for example
due to regional variations of the sign language [9]. We show through experiments
in Sect. 4, that directly training a sign spotter for continuous signing on dictio-
nary examples, obtained from an internet-sourced sign language dictionary, does
indeed perform poorly.

To address these challenges, we propose a unified framework in which sign
spotting embeddings are learned from the dictionary (to provide broad coverage
of the lexicon) in combination with two additional sources of supervision. In
aggregate, these multiple types of supervision include: (1) watching sign language
and learning from existing sparse annotations; (2) exploiting weak-supervision
by reading the subtitles that accompany the footage and extracting candidates
for signs that we expect to be present; (3) looking up words (for which we do
not have labelled examples) in a sign language dictionary (see Fig. 2 for an
overview). The recent development of large-scale, subtitled corpora of continuous
signing providing sparse annotations [8] allows us to study this problem setting
directly. We formulate our approach as a Multiple Instance Learning problem
1 Co-articulation refers to changes in the appearance of the current sign due to neigh-

bouring signs.
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in which positive samples may arise from any of the three sources and employ
Noise Contrastive Estimation [10] to learn a domain-invariant (valid across both
isolated and co-articulated signing) representation of signing content.

We make the following six contributions: (1) We provide a machine readable
British Sign Language (BSL) dictionary dataset of isolated signs, BslDict, to
facilitate study of the sign spotting task; (2) We propose a unified Multiple
Instance Learning framework for learning sign embeddings suitable for spotting
from three supervisory sources; (3) We validate the effectiveness of our approach
on a co-articulated sign spotting benchmark for which only a small number (low-
shot) of isolated signs are provided as labelled training examples, and (4) achieve
state-of-the-art performance on the BSL-1K sign spotting benchmark [8] (closed
vocabulary). We show qualitatively that the learned embeddings can be used
to (5) automatically mine new signing examples, and (6) discover “faux amis”
(false friends) between sign languages.

2 Related Work

Our work relates to several themes in the literature: sign language recognition
(and more specifically sign spotting), sign language datasets, multiple instance
learning and low-shot action localization. We discuss each of these themes next.

Sign Language Recognition. The study of automatic sign recognition has a
rich history in the computer vision community stretching back over 30 years,
with early methods developing carefully engineered features to model trajecto-
ries and shape [11–14]. A series of techniques then emerged which made effective
use of hand and body pose cues through robust keypoint estimation encod-
ings [15–18]. Sign language recognition also has been considered in the context of
sequence prediction, with HMMs [11,13,19,20], LSTMs [21–24], and Transform-
ers [25] proving to be effective mechanisms for this task. Recently, convolutional
neural networks have emerged as the dominant approach for appearance mod-
elling [21], and in particular, action recognition models using spatio-temporal
convolutions [26] have proven very well-suited for video-based sign recogni-
tion [8,27,28]. We adopt the I3D architecture [26] as a foundational building
block in our studies.

Sign Language Spotting. The sign language spotting problem—in which the
objective is to find performances of a sign (or sign sequence) in a longer sequence
of signing—has been studied with Dynamic Time Warping and skin colour his-
tograms [29] and with Hierarchical Sequential Patterns [30]. Different from our
work which learns representations from multiple weak supervisory cues, these
approaches consider a fully-supervised setting with a single source of supervi-
sion and use hand-crafted features to represent signs [31]. Our proposed use of a
dictionary is also closely tied to one-shot/few-shot learning, in which the learner
is assumed to have access to only a handful of annotated examples of the target
category. One-shot dictionary learning was studied by [18] – different to their
approach, we explicitly account for dialect variations in the dictionary (and val-
idate the improvements brought by doing so in Sect. 4). Textual descriptions
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from a dictionary of 250 signs were used to study zero-shot learning by [32] – we
instead consider the practical setting in which a handful of video examples are
available per-sign (and make this dictionary available). The use of dictionaries
to locate signs in subtitled video also shares commonalities with domain adap-
tation, since our method must bridge differences between the dictionary and the
target continuous signing distribution. A vast number of techniques have been
proposed to tackle distribution shift, including several adversarial feature align-
ment methods that are specialised for the few-shot setting [33,34]. In our work,
we explore the domain-specific batch normalization (DSBN) method of [35],
finding ultimately that simple batch normalization parameter re-initialization is
most effective when jointly training on two domains after pre-training on the
bigger domain. The concurrent work of [36] also seeks to align representation of
isolated and continuous signs. However, our work differs from theirs in several
key aspects: (1) rather than assuming access to a large-scale labelled dataset
of isolated signs, we consider the setting in which only a handful of dictionary
examples may be used to represent a word; (2) we develop a generalised Mul-
tiple Instance Learning framework which allows the learning of representations
from weakly aligned subtitles whilst exploiting sparse labels and dictionaries
(this integrates cues beyond the learning formulation in [36]); (3) we seek to
label and improve performance on co-articulated signing (rather than improv-
ing recognition performance on isolated signing). Also related to our work, [18]
uses a “reservoir” of weakly labelled sign footage to improve the performance of
a sign classifier learned from a small number of examples. Different to [18], we
propose a multi-instance learning formulation that explicitly accounts for signing
variations that are present in the dictionary.

Sign Language Datasets. A number of sign language datasets have been pro-
posed for studying Finnish [29], German [37,38], American [27,28,39,40] and
Chinese [22,41] sign recognition. For British Sign Language (BSL), [42] gath-
ered a corpus labelled with sparse, but fine-grained linguistic annotations, and
more recently [8] collected BSL-1K, a large-scale dataset of BSL signs that were
obtained using a mouthing-based keyword spotting model. In this work, we
contribute BslDict, a dictionary-style dataset that is complementary to the
datasets of [8,42] – it contains only a handful of instances of each sign, but
achieves a comprehensive coverage of the BSL lexicon with a 9K vocabulary (vs
a 1K vocabulary in [8]). As we show in the sequel, this dataset enables a number
of sign spotting applications.

Multiple Instance Learning. Motivated by the readily available sign lan-
guage footage that is accompanied by subtitles, a number of methods have been
proposed for learning the association between signs and words that occur in
the subtitle text [15,18,43,44]. In this work, we adopt the framework of Mul-
tiple Instance Learning (MIL) [45] to tackle this problem, previously explored
by [15,46]. Our work differs from these works through the incorporation of a
dictionary, and a principled mechanism for explicitly handling sign variants, to
guide the learning process. Furthermore, we generalise the MIL framework so
that it can learn to further exploit sparse labels. We also conduct experiments
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Fig. 2. The proposed Watch, Read and Lookup framework trains sign spotting
embeddings with three cues: (1) watching videos and learning from sparse annotation in
the form of localised signs (lower-left); (2) reading subtitles to find candidate signs that
may appear in the source footage (top); (3) looking up corresponding visual examples
in a sign language dictionary and aligning the representation against the embedded
source segment (lower-right).

at significantly greater scale to make use of the full potential of MIL, considering
more than two orders of magnitude more weakly supervised data than [15,46].

Low-Shot Action Localization. This theme investigates semantic video local-
ization: given one or more query videos the objective is to localize the segment in an
untrimmedvideo that corresponds semantically to the query video [47–49]. Seman-
tic matching is too general for the sign-spotting considered in this paper. However,
we build on the temporal ordering ideas explored in this theme.

3 Learning Sign Spotting Embeddings from Multiple
Supervisors

In this section, we describe the task of sign spotting and the three forms of
supervision we assume access to. Let XL denote the space of RGB video segments
containing a frontal-facing individual communicating in sign language L and
denote by X single

L its restriction to the set of segments containing a single sign.
Further, let T denote the space of subtitle sentences and VL = {1, . . . , V } denote
the vocabulary—an index set corresponding to an enumeration of written words
that are equivalent to signs that can be performed in L2.

Our objective, illustrated in Fig. 1, is to discover all occurrences of a
given keyword in a collection of continuous signing sequences. To do so, we
assume access to: (i) a subtitled collection of videos containing continuous sign-
ing, S = {(xi, si) : i ∈ {1, . . . , I}, xi ∈ XL, si ∈ T }; (ii) a sparse collec-
tion of temporal sub-segments of these videos that have been annotated with
their corresponding word, M = {(xk, vk) : k ∈ {1, . . . , K}, vk ∈ VL, xk ∈

2 Sign language dictionaries provide a word-level or phrase-level correspondence
(between sign language and spoken language) for many signs but no universally
accepted glossing scheme exists for transcribing languages such as BSL [1].
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Fig. 3. Batch sampling and positive/negative pairs: We illustrate the formation
of a batch when jointly training on continuous signing video (squares) and dictionaries
of isolated signing (circles). Left: For each continuous video, we sample the dictio-
naries corresponding to the labeled word (foreground), as well as to the rest of the
subtitles (background). Right: We construct positive/negative pairs by anchoring at
4 different portions of a batch item: continuous foreground/background and dictionary
foreground/background. Positives and negatives (defined across continuous and dic-
tionary domains) are green and red, respectively; anchors have a dashed border (see
Appendix C.2 for details). (Color figure online)

X single
L ,∃(xi, si) ∈ S s.t. xk ⊆ xi}; (iii) a curated dictionary of signing instances

D = {(xj , vj) : j ∈ {1, . . . , J}, xj ∈ X single
L , vj ∈ VL}. To address the sign spot-

ting task, we propose to learn a data representation f : XL → R
d that maps

video segments to vectors such that they are discriminative for sign spotting and
invariant to other factors of variation. Formally, for any labelled pair of video
segments (x, v), (x′, v′) with x, x′ ∈ XL and v, v′ ∈ VL, we seek a data represen-
tation, f , that satisfies the constraint δf(x)f(x′) = δvv′ , where δ represents the
Kronecker delta.

3.1 Integrating Cues Through Multiple Instance Learning

To learn f , we must address several challenges. First, as noted in Sect. 1, there
may be a considerable distribution shift between the dictionary videos of isolated
signs in D and the co-articulated signing videos in S. Second, sign languages
often contain multiple sign variants for a single written word (resulting from
regional dialects and synonyms). Third, since the subtitles in S are only weakly
aligned with the sign sequence, we must learn to associate signs and words from
a noisy signal that lacks temporal localisation. Fourth, the localised annotations
provided by M are sparse, and therefore we must make good use of the remaining
segments of subtitled videos in S if we are to learn an effective representation.

Given full supervision, we could simply adopt a pairwise metric learning app-
roach to align segments from the videos in S with dictionary videos from D by
requiring that f maps a pair of isolated and co-articulated signing segments
to the same point in the embedding space if they correspond to the same sign
(positive pairs) and apart if they do not (negative pairs). As noted above, in
practice we do not have access to positive pairs because: (1) for any annotated
segment (xk, vk) ∈ M, we have a set of potential sign variations represented
in the dictionary (annotated with the common label vk), rather than a single
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unique sign; (2) since S provides only weak supervision, even when a word is
mentioned in the subtitles we do not know where it appears in the continuous
signing sequence (if it appears at all). These ambiguities motivate a Multiple
Instance Learning [45] (MIL) objective. Rather than forming positive and neg-
ative pairs, we instead form positive bags of pairs, Pbags, in which we expect at
least one pairing between a segment from a video in S and a dictionary video
from D to contain the same sign, and negative bags of pairs, N bags, in which
we expect no (video segment, dictionary video) pair to contain the same sign.
To incorporate the available sources of supervision into this formulation, we
consider two categories of positive and negative bag formations, described next
(due to space constraints, a formal mathematical description of the positive and
negative bags described below is deferred to Appendix C.2).

Watch and Lookup: Using Sparse Annotations and Dictionaries. Here,
we describe a baseline where we assume no subtitles are available. To learn f
from M and D, we define each positive bag as the set of possible pairs between
a labelled (foreground) temporal segment of a continuous video from M and the
examples of the corresponding sign in the dictionary (green regions in Fig. A.2).
The key assumption here is that each labelled sign segment from M matches at
least one sign variation in the dictionary. Negative bags are constructed by (i)
anchoring on a continuous foreground segment and selecting dictionary examples
corresponding to different words from other batch items; (ii) anchoring on a
dictionary foreground set and selecting continuous foreground segments from
other batch items (red regions in Fig. A.2). To maximize the number of negatives
within one minibatch, we sample a different word per batch item.

Watch, Read and Lookup: Using Sparse Annotations, Subtitles and
Dictionaries. Using just the labelled sign segments from M to construct bags
has a significant limitation: f is not encouraged to represent signs beyond the
initial vocabulary represented in M. We therefore look at the subtitles (which
contain words beyond M) to construct additional bags. We determine more pos-
itive bags between the set of unlabelled (background) segments in the continuous
footage and the set of dictionaries corresponding to the background words in
the subtitle (green regions in Fig. 3, right-bottom). Negatives (red regions in
Fig. 3) are formed as the complements to these sets by (i) pairing continuous
background segments with dictionary samples that can be excluded as matches
(through subtitles) and (ii) pairing background dictionary entries with the fore-
ground continuous segment. In both cases, we also define negatives from other
batch items by selecting pairs where the word(s) have no overlap, e.g., in Fig. 3,
the dictionary examples for the background word ‘speak’ from the second batch
item are negatives for the background continuous segments from the first batch
item, corresponding to the unlabelled words ‘name’ and ‘what’ in the subtitle.

To assess the similarity of two embedded video segments, we employ a simi-
larity function ψ : Rd × R

d → R whose value increases as its arguments become
more similar (in this work, we use cosine similarity). For notational convenience
below, we write ψij as shorthand for ψ(f(xi), f(xj)). To learn f , we consider a
generalization of the InfoNCE loss [50,51] (a non-parametric softmax loss for-
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mulation of Noise Contrastive Estimation [10]) recently proposed by [52]:

LMIL-NCE = −Ei

[
log

∑
(j,k)∈P(i) exp(ψjk/τ)∑

(j,k)∈P(i) exp(ψjk/τ) +
∑

(l,m)∈N (i) exp(ψlm/τ)

]
, (1)

where P(i) ∈ Pbags, N (i) ∈ N bags, τ , often referred to as the temperature, is
set as a hyperparameter (we explore the effect of its value in Sect. 4).

3.2 Implementation Details

In this section, we provide details for the learning framework covering the embed-
ding architecture, sampling protocol and optimization procedure.

Embedding Architecture. The architecture comprises an I3D spatio-temporal
trunk network [26] to which we attach an MLP consisting of three linear layers
separated by leaky ReLU activations (with negative slope 0.2) and a skip con-
nection. The trunk network takes as input 16 frames from a 224×224 resolution
video clip and produces 1024-dimensional embeddings which are then projected
to 256-dimensional sign spotting embeddings by the MLP. More details about
the embedding architecture can be found in Appendix C.1.

Joint Pretraining. The I3D trunk parameters are initialised by pretraining for
sign classification jointly over the sparse annotations M of a continuous signing
dataset (BSL-1K [8]) and examples from a sign dictionary dataset (BslDict)
which fall within their common vocabulary. Since we find that dictionary videos
of isolated signs tend to be performed more slowly, we uniformly sample 16
frames from each dictionary video with a random shift and random frame rate
n times, where n is proportional to the length of the video, and pass these clips
through the I3D trunk then average the resulting vectors before they are pro-
cessed by the MLP to produce the final dictionary embeddings. We find that this
form of random sampling performs better than sampling 16 consecutive frames
from the isolated signing videos (see Appendix C.1 for more details). During
pretraining, minibatches of size 4 are used; and colour, scale and horizontal flip
augmentations are applied to the input video, following the procedure described
in [8]. The trunk parameters are then frozen and the MLP outputs are used as
embeddings. Both datasets are described in detail in Sect. 4.1.

Minibatch Sampling. To train the MLP given the pretrained I3D features,
we sample data by first iterating over the set of labelled segments comprising
the sparse annotations, M, that accompany the dataset of continuous, subti-
tled sampling to form minibatches. For each continuous video, we sample 16
consecutive frames around the annotated timestamp (more precisely a random
offset within 20 frames before, 5 frames after, following the timing study in [8]).
We randomly sample 10 additional 16-frame clips from this video outside of
the labelled window, i.e., continuous background segments. For each subtitled
sequence, we sample the dictionary entries for all subtitle words that appear in
VL (see Fig. 3 for a sample batch formation).
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Table 1. Datasets: We provide (i) the number of individual sign videos, (ii) the
vocabulary size of the annotated signs, and (iii) the number of signers for BSL-1K and
BslDict. BSL-1K is large in the number of annotated signs whereas BslDict is large
in the vocabulary size. Note that we use a different partition of BSL-1K with longer
sequences around the annotations as described in Sect. 4.1.

Dataset #Videos Vocab #Signers

BSL-1K[8] 273K 1,064 40
BslDict 14,210 9,283 >28

Our minibatch comprises 128 sequences of continuous signing and their corre-
sponding dictionary entries (we investigate the impact of batch size in Sect. 4.3).
The embeddings are then trained by minimising the loss defined in Eq. (1) in
conjunction with positive bags, Pbags, and negative bags, N bags, which are con-
structed on-the-fly for each minibatch (see Fig. 3).

Optimization. We use a SGD optimizer with an initial learning rate of 10−2 to
train the embedding architecture. The learning rate is decayed twice by a factor
of 10 (at epoch 40 and 45). We train all models, including baselines and ablation
studies, for 50 epochs at which point we find that learning has always converged.

Test Time. To perform spotting, we obtain the embeddings learned with the
MLP. For the dictionary, we have a single embedding averaged over the video.
Continuous video embeddings are obtained with sliding window (stride 1) on the
entire sequence. We calculate the cosine similarity score between the continuous
signing sequence embeddings and the embedding for a given dictionary video.
We determine the location with the maximum similarity as the location of the
queried sign. We maintain embedding sets of all variants of dictionary videos for
a given word and choose the best match as the one with the highest similarity.

4 Experiments

In this section, we first present the datasets used in this work (including the
contributed BslDict dataset) in Sect. 4.1, followed by the evaluation protocol
in Sect. 4.2. We illustrate the benefits of the Watch, Read and Lookup learn-
ing framework for sign spotting against several baselines with a comprehensive
ablation study that validates our design choices (Sect. 4.3). Finally, we investi-
gate three applications of our method in Sect. 4.4, showing that it can be used
to (i) not only spot signs, but also identify the specific sign variant that was
used, (ii) label sign instances in continuous signing footage given the associated
subtitles, and (iii) discover “faux amis” between different sign languages.

4.1 Datasets

Although our method is conceptually applicable to a number of sign languages,
in this work we focus primarily on BSL, the sign language of British deaf commu-
nities. We use BSL-1K [8], a large-scale, subtitled and sparsely annotated dataset
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of more than 1000 h of continuous signing which offers an ideal setting in which
to evaluate the effectiveness of the Watch, Read and Lookup sign spotting frame-
work. To provide dictionary data for the lookup component of our approach, we
also contribute BslDict, a diverse visual dictionary of signs. These two datasets
are summarised in Table 1 and described in more detail below.

BSL-1K. [8] comprises a vocabulary of 1,064 signs which are sparsely annotated
over 1,000 h of video of continuous sign language. The videos are accompanied by
subtitles. The dataset consists of 273K localised sign annotations, automatically
generated from sign-language-interpreted BBC television broadcasts, by leverag-
ing weakly aligned subtitles and applying keyword spotting to signer mouthings.
Please refer to [8] for more details on the automatic annotation pipeline. In this
work, we process this data to extract long videos with subtitles. In particular,
we pad +/−2 s around the subtitle timestamps and we add the corresponding
video to our training set if there is a sparse annotation word falling within this
time window, assuming that the signing is reasonably well-aligned with its sub-
titles in these cases. We further consider only the videos whose subtitle duration
is longer than 2 s. For testing, we use the automatic test set (corresponding to
mouthing locations with confidences above 0.9). Thus we obtain 78K training
and 3K test videos, each of which has a subtitle of 8 words on average and 1
sparse mouthing annotation.

BslDict. BSL dictionary videos are collected from a BSL sign aggregation
platform signbsl.com [53], giving us a total of 14,210 video clips for a vocabulary
of 9,283 signs. Each sign is typically performed several times by different signers,
often in different ways. The dictionary consists of at least 28 different signers:
the videos are downloaded from 28 known website sources and each source has
at least 1 signer. The dictionary videos are of isolated signs (as opposed to
co-articulated in BSL-1K): this means (i) the start and end of the video clips
usually consist of a still signer pausing, and (ii) the sign is performed at a
much slower rate for clarity. We first trim the sign dictionary videos, using body
keypoints estimated with OpenPose [54] which indicate the start and end of
wrist motion, to discard frames where the signer is still. With this process, the
average number of frames per video drops from 78 to 56 (still significantly larger
than co-articulated signs). To the best of our knowledge, BslDict is the first
curated, BSL sign dictionary dataset for computer vision research, which will be
made available. For the experiments in which BslDict is filtered to the 1,064
vocabulary of BSL-1K (see below), we have a total of 2,992 videos. Within this
subset, each sign has between 1 and 10 examples (average of 3).

4.2 Evaluation Protocols

Protocols. We define two settings: (i) training with the entire 1064 vocabulary
of annotations in BSL-1K; and (ii) training on a subset with 800 signs. The
latter is needed to assess the performance on novel signs, for which we do not
have access to co-articulated labels at training. We thus use the remaining 264

http://www.signbsl.com
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Table 2. The effect of the loss formulation: Embeddings learned with the classi-
fication loss are suboptimal since they are not trained for matching the two domains.
Contrastive-based loss formulations (NCE) significantly improve, particularly when we
adopt the multiple-instance variant introduced as our Watch-Read-Lookup framework
of multiple supervisory signals.

Train (1064) Train (800)
Embedding arch Supervision Seen (264) Unseen (264)

mAP R@5 mAP R@5

I3DBslDict Classification 2.68 3.57 1.21 1.29
I3DBSL-1K [8] Classification 13.09 17.25 6.74 8.94
I3DBSL-1K,BslDict Classification 19.81 25.57 4.81 6.89
I3DBSL-1K,BslDict+MLP Classification 36.75 40.15 10.28 14.19
I3DBSL-1K,BslDict+MLP InfoNCE 42.52 53.54 10.88 14.23
I3DBSL-1K,BslDict+MLP Watch-Lookup 43.65 53.03 11.05 14.62
I3DBSL-1K,BslDict+MLP Watch-Read-Lookup 48.11 58.71 13.69 17.79

words for testing. This test set is therefore common to both training settings, it
is either ‘seen’ or ‘unseen’ at training. However, we do not limit the vocabulary
of the dictionary as a practical assumption, for which we show benefits.

Metrics. The performance is evaluated based on ranking metrics. For every sign
si in the test vocabulary, we first select the BSL-1K test set clips which have a
mouthing annotation of si and then record the percentage of dictionary clips of
si that appear in the first 5 retrieved results, this is the ‘Recall at 5’ (R@5). This
is motivated by the fact that different English words can correspond to the same
sign, and vice versa. We also report mean average precision (mAP). For each
video pair, the match is considered correct if (i) the dictionary clip corresponds
to si and the BSL-1K video clip has a mouthing annotation of si, and (ii) if
the predicted location of the sign in the BSL-1K video clip, i.e. the time frame
where the maximum similarity occurs, lies within certain frames around the
ground truth mouthing timing. In particular, we determine the correct interval
to be defined between 20 frames before and 5 frames after the labeled time (based
on the study in [8]). Finally, because BSL-1K test is class-unbalanced, we report
performances averaged over the test classes.

4.3 Ablation Study

In this section, we evaluate different components of our approach. We first com-
pare our contrastive learning approach with classification baselines. Then, we
investigate the effect of our multiple-instance loss formulation. We provide abla-
tions for the hyperparameters, such as the batch size and the temperature, and
report performance on a sign spotting benchmark.
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Table 3. Extending the dictionary vocabulary: We show the benefits of sampling
dictionary videos outside of the sparse annotations, using subtitles. Extending the
lookup to the dictionary from the subtitles to the full vocabulary of BslDict brings
significant improvements for novel signs (the training uses sparse annotations for the
800 words, and the remaining 264 for test).

Supervision Dictionary Vocab mAP R@5

Watch-Read-Lookup 800 training vocab 13.69 17.79
Watch-Read-Lookup 9k full vocab 15.39 20.87

(a) (b)

Fig. 4. The effect of (a) the batch size that determines the number of negatives
across sign classes and (b) the temperature hyper-parameter for the MIL-NCE loss
in Watch-Lookup against mAP and R@5 (trained on the full 1064 vocab.)

I3D Baselines. We start by evaluating baseline I3D models trained with clas-
sification on the task of spotting, using the embeddings before the classification
layer. We have three variants in Table 2: (i) I3DBSL-1K provided by [8] which
is trained only on the BSL-1K dataset, and we also train (ii) I3DBslDict and
(iii) I3DBSL-1K,BslDict. Training only on BslDict (I3DBslDict) performs signif-
icantly worse due to the few examples available per class and the domain gap that
must be bridged to spot co-articulated signs, suggesting that dictionary samples
alone do not suffice to solve the task. We observe improvements with fine-tuning
I3DBSL-1K jointly on the two datasets (I3DBSL-1K,BslDict), which becomes our
base feature extractor for the remaining experiments to train a shallow MLP.

Loss Formulation. We first train the MLP parameters on top of the frozen I3D
trunk with classification to establish a baseline in a comparable setup. Note that,
this shallow architecture can be trained with larger batches than I3D. Next, we
investigate variants of our loss to learn a joint sign embedding between BSL-1K
and BslDict video domains: (i) standard single-instance InfoNCE [50,51] loss
which pairs each BSL-1K video clip with one positive BslDict clip of the same
sign, (ii) Watch-Lookup which considers multiple positive dictionary candidates,
but does not consider subtitles (therefore limited to the annotated video clips).
Table 2 summarizes the results. Our Watch-Read-Lookup formulation which
effectively combines multiple sources of supervision in a multiple-instance frame-
work outperforms the other baselines in both seen and unseen protocols.
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Fig. 5. Sign variant identification: We plot the similarity scores between BSL-1K
test clips and BslDict variants of the sign “animal” (left) and “before” (right) over
time. The labeled mouthing times are shown by red vertical lines and the sign proposal
regions are shaded. A high similarity occurs for the first two rows, where the BslDict
examples match the variant used in BSL-1K. (Color figure online)

Extending the Vocabulary. The results presented so far were using the same
vocabulary for both continuous and dictionary datasets. In reality, one can
assume access to the entire vocabulary in the dictionary, but obtaining anno-
tations for the continuous videos is prohibitive. Table 3 investigates removing
the vocabulary limit on the dictionary side, but keeping the continuous annota-
tions vocabulary at 800 signs. We show that using the full 9k vocabulary from
BslDict significantly improves the results on the unseen setting.

Batch Size. Next, we investigate the effect of increasing the number of negative
pairs by increasing the batch size when training with Watch-Lookup on 1064
categories. We observe in Fig. 4(a) an improvement in performance with greater
numbers of negatives before saturating. Our final Watch-Read-Lookup model
has high memory requirements, for which we use 128 batch size. Note that the
effective size of the batch with our sampling is larger due to sampling extra video
clips corresponding to subtitles.

Temperature. Finally, we analyze the impact of the temperature hyperparam-
eter τ on the performance of Watch-Lookup. We observe a major decrease in
performance when τ approaches 1. We choose τ = 0.07 used in [51,55] for all
other experiments. Additional ablations are provided in Appendix B.

BSL-1K Sign Spotting Benchmark. Although our learning framework pri-
marily targets good performance on unseen continuous signs, it can also be
naively applied to the (closed-vocabulary) sign spotting benchmark proposed
by [8]. We evaluate the performance of our Watch-Read-Lookup model and
achieve a score of 0.170mAP, outperforming the previous state-of-the-art per-
formance of 0.160 mAP [8].
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Fig. 6. Densification: We plot the similarity scores between BSL-1K test clips and
BslDict examples over time, by querying only the words in the subtitle. The predicted
locations of the signs correspond to the peak similarity scores.

4.4 Applications

In this section, we investigate three applications of our sign spotting method.

Sign Variant Identification. We show the ability of our model to spot specif-
ically which variant of the sign was used. In Fig. 5, we observe high similarity
scores when the variant of the sign matches in both BSL-1K and BslDict
videos. Identifying such sign variations allows a better understanding of regional
differences and can potentially help standardisation efforts of BSL.

Dense Annotations. We demonstrate the potential of our model to obtain
dense annotations on continuous sign language video data. Sign spotting through
the use of sign dictionaries is not limited to mouthings as in [8] and therefore is
of great importance to scale up datasets for learning more robust sign language
models. In Fig. 6, we show qualitative examples of localising multiple signs in
a given sentence in BSL-1K, where we only query the words that occur in the
subtitles, reducing the search space. In fact, if we assume the word to be known,
we obtain 83.08% sign localisation accuracy on BSL-1K with our best model.
This is defined as the number of times the maximum similarity occurs within
−20/+5 frames of the end label time provided by [8].

“Faux Amis”. There are works investigating lexical similarities between sign
languages manually [56,57]. We show qualitatively the potential of our model
to discover similarities, as well as “faux-amis” between different sign languages,
in particular between British (BSL) and American (ASL) Sign Languages. We
retrieve nearest neighbors according to visual embedding similarities between
BslDict which has a 9K vocabulary and WLASL [28], an ASL isolated sign
language dataset, with a 2K vocabulary. We provide some examples in Fig. 7.
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Fig. 7. “Faux amis” in BSL/ASL: Same/similar manual features for different
English words (left), as well as for the same English words (right), are identified between
BslDict and WLASL isolated sign language datasets.

5 Conclusions

We have presented an approach to spot signs in continuous sign language videos
using visual sign dictionary videos, and have shown the benefits of leveraging
multiple supervisory signals available in a realistic setting: (i) sparse annota-
tions in continuous signing, (ii) accompanied with subtitles, and (iii) a few dic-
tionary samples per word from a large vocabulary. We employ multiple-instance
contrastive learning to incorporate these signals into a unified framework. Our
analysis suggests the potential of sign spotting in several applications, which we
think will help in scaling up the automatic annotation of sign language datasets.
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