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Abstract. Since collecting and annotating data for spatio-temporal
action detection is very expensive, there is a need to learn approaches
with less supervision. Weakly supervised approaches do not require any
bounding box annotations and can be trained only from labels that indi-
cate whether an action occurs in a video clip. Current approaches, how-
ever, cannot handle the case when there are multiple persons in a video
that perform multiple actions at the same time. In this work, we address
this very challenging task for the first time. We propose a baseline based
on multi-instance and multi-label learning. Furthermore, we propose a
novel approach that uses sets of actions as representation instead of
modeling individual action classes. Since computing the probabilities for
the full power set becomes intractable as the number of action classes
increases, we assign an action set to each detected person under the
constraint that the assignment is consistent with the annotation of the
video clip. We evaluate the proposed approach on the challenging AVA
dataset where the proposed approach outperforms the MIML baseline
and is competitive to fully supervised approaches.

1 Introduction

In recent years, we have seen a major progress for spatially and temporally
detecting actions in videos [1–10]. For this task, the bounding box of each per-
son and their corresponding action labels need to be estimated for each frame as
shown in Fig. 1. Such approaches, however, require the same type of dense anno-
tations for training. Thus, collecting and annotating datasets for spatio-temporal
action detection becomes very expensive.

To alleviate this problem, weakly supervised approaches have been pro-
posed [11–13] where the bounding boxes are not given, but only the action that
occurs in a video clip. Despite the promising results of the weakly supervised
approaches for spatio-temporal action detection, current approaches are limited
to video clips that predominantly contain a single actor performing a single
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Fig. 1. The image shows a scene where two persons are talking. In this case there are
two person that perform multiple actions at the same time. Person A indicated by
the blue bounding box performs the actions Stand, Listen to, and Watch. Person B
indicated by the orange bounding box performs the actions Stand, Talk to, and Watch.
While in the supervised setting this information is also given for training, we study
for the first time a weakly supervised setting where the video clip is only annotated
by the actions Stand, Listen to, Talk to, and Watch without any bounding boxes or
associations to the present persons. (Color figure online)

action as in the datasets UCF 101 [14] and JHMDB [15]. However, most real
world videos are more complex and contain multiple actors performing multiple
actions simultaneously. In this paper, we move a step forward and introduce
the task of weakly supervised multi-label spatio-temporal action detection with
multiple actors in a video. The goal is to infer a list of multiple actions for each
actor in a given video clip as in the fully supervised case [5–10]. However, in
the weakly supervised setting only actions occurring in each training video are
known. Any spatio-temporal information about the persons performing these
actions is not provided. This is illustrated in Fig. 1 that shows two people stand-
ing and chatting. The video clip is only annotated by the four occurring actions
Stand, Listen to, Talk to, and Watch. Additional information like bounding boxes
or the number of present persons is not provided. In contrast to previous exper-
imental settings for weakly supervised learning, the proposed task is much more
challenging since a video clip can contain multiple persons, each person can per-
form multiple actions at the same time, and multiple persons can perform the
same action. For instance, both persons in Fig. 1 perform the actions Stand and
Watch at the same time.

In order to address multi-label spatio-temporal action detection in the pro-
posed weakly supervised setup, we first introduce a baseline that uses multi-
instance and multi-label (MIML) learning [16–18]. Second, we introduce a novel
approach that is better suited for the multi-label setting. Instead of modeling
the class probabilities for each action class, we build the power set of all possible
action combinations and model the probability for each subset of actions. Using
a set representation has the advantage that we model directly the combination
of multiple occurring actions instead of the probabilities of single actions. Since
computing the probabilities for the full power set becomes intractable as the
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number of action classes increases, we assign an action set to each detected per-
son under the constraint that the assignment is consistent with the annotation of
the video clip. This is done by linear programming, which maximizes the overall
gain across all plausible actors and action subset combinations. We evaluate the
proposed approach on the challenging AVA 2.2 dataset [19], which is currently
the only dataset that can be used for evaluating this task. In our experiments,
we show that the proposed approach outperforms the MIML baseline by a large
margin and that the proposed approach achieves 83% of the mAP compared to
a model trained with full supervision.

In summary, the contribution of this paper is three-fold:

– We introduce the novel task of weakly supervised multi-label spatio-temporal
action detection with multiple actors.

– We introduce a first baseline for this task based on multi-instance and multi-
label learning.

– We propose a novel approach based on an action set representation.

2 Related Work

Spatio-Temporal Action Detection. A popular approach for fully super-
vised spatio-temporal action detection comprises the joint detection and linking
of bounding boxes [1,3,4,20]. These linked bounding boxes form tubelets which
are subsequently classified. Recently, many methods [9,10,21,22] use standard
person detectors for actor localization and focus on learning implicitly or explic-
itly spatio-temporal interactions. All these approaches, however, require that
each frame is annotated with person locations and corresponding action labels.
Since such dense annotations are expensive to obtain on a large scale, recent
approaches [8,19,23] deal with temporally sparse annotations. Here, the action
labels and locations are annotated only for a subset of frames. Even though
there is a reduction in annotation, these methods still require person specific
bounding boxes and their actions. Very few methods such as [11,13] explore the
possibility of weakly supervised learning. Most of these methods such as [24,25]
use multiple instance learning to recognize distinct action characteristics. These
works, however, consider the case where a single person performs not more than
one action.

Actor-Action Associations. Actor-action associations have been key to iden-
tify actions both in a fully supervised and weakly supervised settings. [26] per-
forms soft actor-action association using tags as pre-training on a very large
dataset for fully supervised action recognition. With respect to weak super-
vision, a few approaches use movie subtitles [27,28] or transcripts [29,30] to
temporally align actions to frames. In terms of actor-action associations for mul-
tiple persons, [31,32] associate a single action to various persons. To the best
of our knowledge, our work is the first to perform multi-person and multi-label
associations.
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Multi-instance and Multi-label Learning. In the past, many MIML algo-
rithms [33,34] have been proposed. For example, [17] propose the MIMLBoost
and MIMLSVM algorithms based on boosting or SVMs. [35] optimize a regular-
ized rank-loss objective. MIML has been also used for different computer vision
applications such as scene classification [16], multi-object recognition [18], and
image tagging [36]. Recently, MIML based approaches have been used for action
recognition [32,37].

3 Multi-label Action Detection and Recognition

Given a video clip with multiple actors where each actor can perform multiple
actions at the same time as shown in Fig. 1, the goal is to localize these actors and
predict for each actor the corresponding actions. In contrast to fully supervised
learning, where bounding boxes with multiple action labels are given for training,
we address for the first time a weakly supervised setting where only a list of
actions is provided for each video clip during training. This is a very challenging
task as we do not know how many actors are present and each actor can perform
multiple actions at the same time. This is in contrast to weakly supervised spatio-
temporal action localization where it is assumed that only one person is in the
video and that the person does not perform more than one action at a given
point in time.

In order to address this problem, we first discuss a baseline, which uses multi-
instance and multi-label (MIML) learning [16–18], in Sect. 4. In Sect. 5, we will
then propose a novel method which uses a set representation instead of a rep-
resentation of individual actions. This means that we build from the annotation
of a video clip the power set of all possible action combinations. For example,
the power set Ω for the three action labels Listen, Talk, and Watch is given by
{∅, {Listen}, {Talk}, {Watch}, {Listen,Talk}, {Listen,Watch}, {Talk,Watch},
{Listen,Talk,Watch}}. We then assign one set ωi ∈ Ω \∅ to each actor ai under
the constraint that each action c occurs at least once, i.e., c ∈ ⋃

i ωi. Using a
set representation has the advantage that we model directly the combination of
multiple occurring actions instead of the probabilities of single actions.

4 Multi-instance and Multi-label (MIML) Learning

One way to address the weakly supervised learning problem is to use multiple-
instance learning. Since we have a multi-label problem, i.e., an actor can per-
form multiple actions at the same time, we use the concept of multi-instance
and multi-label (MIML) learning [16–18]. We first use a person detector [38] to
spatially localize the actors in a frame t and use a 3D-CNN such as I3D [39] or
Slowfast [10] for predicting the action probabilities similar to fully supervised
methods [8,9]. However, we use the MIML loss to train the networks.

We denote by At = {at
1, a

t
2, . . . , a

t
nt

} the detected bounding boxes and by
f(at

i) the class probabilities that are predicted by the 3D-CNN. Let Y be the
vector which contains the annotations of the video clip, i.e., Y (c) = 1 if the
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Fig. 2. Overview of the proposed approach. Given a training video clip with action
labels {A1, A2, A3, A4}, we first detect persons in the video. We then train a 3D CNN
with a graph RNN that models the spatio-temporal relations between the detected
persons using the MIML loss to obtain initial estimates of the action logits. During
actor-action association, subsets of the action labels are assigned to each detected
person. The training of the network is continued using the MIML loss and the actor-
action associations.

action class c occurs in the video clip and Y (c) = 0 otherwise. In other words,
the bag At is labeled by Y (c) = 1 if at least one actor performs the action c and
by Y (c) = 0 if none of the actors performs the action. The MIML loss is then
given by

LMIML = L
(
Y,max

i
(f(at

i))
)

(1)

where L is the binary cross entropy. This means that the class probability should
be close to one for at least one bounding box if the action is present and it should
be close to zero for all bounding boxes if the action class is not present.

5 Actor-Action Association

While multi-instance and multi-label learning discussed in Sect. 4 already pro-
vides a good baseline for the new task of weakly supervised multi-label action
detection, we propose in this section a novel method that outperforms the base-
line by a large margin. As discussed in Sect. 3, the main idea is to change the
representation from individual action labels to sets of actions. This means that
we have one probability for a subset of actions ω ∈ Ω instead of C probabilities
where C is the number of action labels. We discuss how the probability of a
set actions is estimated in Sect. 5.1. Due to the weakly supervised setting not
all combinations of subsets are possible for each video clip. We therefore assign
an action set ω ∈ Ω to each actor a under the constraint that the assignment
is consistent with the annotation of the video clip, i.e., each annotated action
c needs to occur at least once and actions that are not annotated should not
occur. The assignment is discussed in Sect. 5.2.
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Figure 2 illustrates the complete approach. As described in Sect. 4, we use
a 3D CNN such as I3D [39] or Slowfast [10]. Since the actors in a frame often
interact with each other, we use a graph to model the relations between the
actors. The graph connects all actors and we use a graph RNN to infer the
action probabilities for each actor based on the spatial and temporal context.
In our approach, we use the hierarchical Graph RNN (HGRNN) [7] where the
features per node are obtained by ROI pooling over the 3D CNN feature maps.
The HGRNN and 3D CNN are learned using the MIML loss (1). From the action
class probabilities, we infer the action set probabilities as described in Sect. 5.1
and we infer the action set for each actor as described in Sect. 5.2. Finally, we
train the HGRNN and the 3D CNN based on the assignments. This will be
discussed in Sect. 5.3.

5.1 Power Set of Actions

In principle, we could modify our network to predict the probability for each
subset of all action classes instead of the probabilities for all action classes.
However, this is infeasible since the power set of all actions is very large. If C is
the number of actions in a dataset, the power set for all actions consists of 2C

subsets. Already with 50 action classes, we would need to predict the probabili-
ties for over one quadrillion subsets. Instead, we use an idea that was proposed
for HEX graphs [40] where the probabilities of a hierarchy are computed from
the probabilities of the leave nodes. While we do not use a hierarchy, we can
compute the probability of a subset of actions from the predictions of a network
for individual actions.

Let sc ∈ (−∞,∞) denote the logit that is predicted by the network for the
action class c. The probability of a subset of actions ω can then be computed by

pω =
exp

(∑
c∈ω sc

)

∑
ω′ exp

(∑
c∈ω′ sc

) . (2)

The normalization term, however, is still infeasible to compute since we still need
to sum over all possible subsets (ω′) for the dataset.

Since our goal is the assignment of a subset of actions ω to each actor, we do
not need to compute the full probability (2). Instead of using the power set of
all actions, we build the power set only for the actions that are provided as weak
labels for each training video clip. This means that the power set will differ for
each video clip. For the example shown in Fig. 1, we build the power set Ω for the
actions Stand, Listen, Talk, and Watch. In this example, |Ω| = 16. We exclude
∅ since in the used dataset each actor is annotated with at least one action.
Furthermore, we multiply pω with the confidence d of the person detector. The
scoring function pω,i that we use for the assignment of a subset ω ∈ Ω \ ∅ to a
detected actor ai is therefore given by

pω,i =
exp

(∑
c∈ω sc,i

)
di

∑
ω′∈Ω\∅

exp
(∑

c∈ω′ sc,i

) (3)
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Fig. 3. For the annotated actions L = {1, 2, 3} and the actors A = {a1, a2, a3, a4}, the
figures demonstrate various actor-action assignments. While the assignment a) satisfies
all constraints, b) violates (5) since two subsets are assigned to actor a1 and c) violates
(6) since the action 1 is not part of any assigned subset.

where sc,i is the predicted logit for action c and person ai. Taking the detection
confidence di of person ai into account is necessary to reduce the impact of false
positives that usually have a low detection confidence.

5.2 Actor-Action Association

While the scoring function (3) indicates how likely a given subset of actions
ω ∈ Ω \∅ fits to an actor ai, it does not take all information that is available for
each video clip into account. For instance, we know that each annotated action is
performed by at least one actor. In order to exploit this additional knowledge, we
find the optimal assignment of action subsets to actors based on the constraints
that each actor performs at least one action and that each action c occurs at
least once, i.e., c ∈ ⋃

i ωi. Since we build the power set only from the actions
that occur in a video clip, which we denote by L, the power set Ω(L) varies for
each training video clip.

The association of subsets ω ∈ Ω(L) \ ∅ to actors A = {a1, a2, . . . , an} can
be formulated as a binary linear program where the binary variables xω,i are
one if the subset ω is assigned to actor ai and it is zero otherwise. The optimal
assignment is defined by the assignment with the highest score (4). While the
first constraint (5) enforces that exactly one subset ω is assigned to each actor
ai, the second constraint (6) enforces that c ∈ ⋃

ω:xω,i=1 ω for all c ∈ L, where
{ω : xω,i = 1} is the set of all subsets that have been assigned. Note that
(6) rephrases this constraint such that it can be used for optimization where
the indicator function 1ω(c) is one if c ∈ ω and it is zero otherwise. The left
hand side of the inequality therefore counts the number of assigned subsets that
contain the action class c. Since this number must be larger than zero, it ensures
that each action c ∈ L is assigned to at least one actor. The complete binary
linear program is thus given by:

argmax
xω,i

n∑

i=1

∑

ω∈Ω(L)\∅

pω,ixω,i (4)
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subject to
∑

ω∈Ω(L)\∅

xω,i = 1 ∀i = 1, ..., n (5)

n∑

i=1

∑

ω∈Ω(L)\∅

1ω(c)xω,i ≥ 1 ∀c ∈ L (6)

xω,i ∈ {0, 1} ∀ω ∈ Ω(L) \ ∅; ∀i = 1, ..., n.

Figure 3 illustrates the constraints.

5.3 Training

We train first the network using the MIML loss (1) to obtain initial estimates of
the logits sc,i. We then assign subsets of actions to the detected persons using
the scoring function (3). Finally, we train our network using the loss

L = LMIML + α

nt∑

i=1

L
(
Ŷωt

i
, f(at

i)
)

(7)

where ωt
i denotes the action subset that has been assigned to actor at

i in frame t

and Ŷωt
i

is a vector with Ŷωt
i
(c) = 1 if c ∈ ωt

i and Ŷωt
i
(c) = 0 otherwise. L is the

binary cross entropy. Since LMIML is computed once per frame but L(Ŷωt
i
, f(at

i))
is computed for each detected person, we use α = 0.3 to compensate for this
difference.

6 Experiments

6.1 Dataset and Implementation Details

We use the AVA 2.2 dataset [19] for evaluation. The dataset contains 235 videos
for training, 64 videos for validation, and 131 videos for testing. The dataset
contains 60 action classes. The persons perform often multiple actions at the
same time and the videos contain multiple persons. For each annotated person
a bounding box is provided. An example is given in Fig. 1. Only one frame per
second is annotated. The accuracy is measured by mean average precision (mAP)
over all actions with an IoU threshold for bounding boxes of 0.5 as described
in [19]. In the weakly supervised setting, we use only the present actions for
training, but not the bounding boxes.

To detect persons, we use Faster RCNN [41] with ResNext-101 [38] as back-
bone. The detector was pre-trained on ImageNet and fine-tuned on the COCO
dataset. In our experiments, we report results for two 3D CNNs, namely I3D
[39] and Slowfast [10]. I3D is pre-trained on Kinetics-400. For Slowfast, we use
the ResNet-101 + NL (8 × 8) version that is pre-trained on Kinetics 600. The
temporal scope was set to 64 frames with a stride of 2. For HGRNN we use a
temporal window of 11 frames. For training, we use the SGD optimizer until
the validation error saturated. The learning rate with linear warmup was set to
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0.04 and 0.025 for I3D and Slowfast, respectively. The batch size was set to 16.
We used cropping as data augmentation where we crop images of size 224 × 224
pixels from the frames that have 256 × 256 image resolution.1

6.2 Experimental Results

Comparison of MIML with Proposed Method. Table 1 shows the compar-
ison of the proposed approach with the multi-instance and multi-label (MIML)
baseline on the validation set. When I3D is used as 3D CNN, the proposed app-
roach improves the MIML baseline by +3.2%. When Slowfast is used, the accu-
racy of all methods is higher but the improvement of the proposed approach over
the MIML approach remains nearly the same with +3.3%. We also report the
result when HGRNN is trained only with the MIML loss. In this case, the actor-
action association is not used and we denote this setting by MIML+HGRNN.

Table 1. Comparison of MIML with proposed method. The proposed approach out-
performs MIML in case of I3D and Slowfast.

Method 3D CNN Val-mAP

MIML I3D 14.1

MIML + HGRNN I3D 15.2

Proposed Approach I3D 17.3

MIML Slowfast 21.8

MIML + HGRNN Slowfast 23.1

Proposed Approach Slowfast 25.1
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Fig. 4. Comparison of MIML with proposed method. The plot shows the per class
mAP for the 10 most frequently occurring classes in the training set. The actions are
sorted by the number of occurrences in an decreasing order from left to right. A plot
with all 60 action classes is part of the supplementary material.

1 Code: https://github.com/sovan-biswas/MultiLabelActorActionAssignment.

https://github.com/sovan-biswas/MultiLabelActorActionAssignment
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Table 2. Results of various actor-action assignment approaches using HGRNN over
different 3D CNNs. The Frequent-5 column and the Least-10 column show the average
mAP over the 5 most frequently and 10 least occurring classes in the training set.

Actor-action association Backbone Val-mAP Frequent-5 Least-10

MIML+HGRNN I3D 15.2 51.5 2.0

Proposed Approach w/o LP I3D 16.4 52.8 2.1

Proposed Approach I3D 17.3 53.7 3.4

MIML+HGRNN Slowfast 23.1 65.7 7.3

Proposed Approach w/o LP Slowfast 22.9 65.9 6.8

Proposed Approach Slowfast 25.1 67.5 7.6

Table 3. Performance with ground-truth bounding boxes for evaluation. The results
show the improvement in mAP on the validation set when ground-truth bounding boxes
(GT bb) instead of detected bounding boxes (Detected bb) are used for evaluation.
Furthermore, the results are reported when the model is trained with full supervision.

Method 3D CNN Detected bb GT bb

MIML I3D 14.1 21.2

Proposed Approach I3D 17.3 24.3

Full Supervision I3D 20.7 25.4

MIML Slowfast 21.8 30.6

Proposed Approach Slowfast 25.1 32.3

Full Supervision Slowfast 30.1 35.7

While HGRNN improves the results since it models the spatio-temporal relations
between persons better than a 3D CNN alone, the proposed actor-action assign-
ment improves the mAP compared to MIML+HGRNN by +2.1% and +2.0%
for I3D and Slowfast, respectively. Figure 4 shows the improvement of the pro-
posed approach over the MIML baseline for the 10 action classes that occur most
frequently in the training set. A few qualitative results are show in Fig. 5.

Impact of Actor-Action Association. In Table 1, we have observed that the
actor-action association improves the accuracy. In Table 2, we analyze the impact
of the actor-action association more in detail. We use HGRNN using both I3D
and Slowfast as 3D CNN backbone. In case of MIML+HGRNN, the actor-action
association is not used. We also report the result if we perform the association
directly by the confidences without solving a binary linear program. We denote
this setting by Proposed Approach w/o LP. In this case, we associate an action
to an actor if the class probability is greater than 0.5. For I3D, the association
without LP improves the results mainly for the most frequent classes with almost
no improvement on least frequent classes. For Slowfast, the performance even
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Table 4. Comparison to fully supervised approaches. We also report the result of our
approach if it is trained with full supervision. Note that we do not use multi-scale and
horizontal flipping augmentation as in Slowfast++.

Weakly Supervised Approaches

Methods Val-mAP Test-mAP

MIML 21.8 –

Proposed Approach 25.1 23.5

Fully Supervised Approaches

Methods Val-mAP Test-mAP

ARCN [5] 17.4 –

RAF [6] 20.4 –

HGRNN [7] 20.9 –

ATN [8] 25.0 24.9

LFB [9] 27.7 27.2

Slowfast [10] 29.0 –

Slowfast++ [10] 30.7 34.3

Proposed Approach 30.1 –

decreases in comparison to MIML+HGRNN without LP. Instead, solving the
linear program results in better associations for both I3D and Slowfast.

Impact of the Object Detector. We use the Faster RCNN with ResNext [38]
person detector which achieves 90.10% mAP for person detection on the AVA
training set and 90.45% on the AVA validation set. Irrespective of the high detec-
tion performance, we analyze how much the accuracy improves if the detected
bounding boxes are replaced with the ground-truth bounding boxes during eval-
uation. Note that the ground-truth bounding boxes are not used for training, but
only for evaluation. The results are shown in Table 3. We observe that the per-
formance improves by +7.0% and +7.2% mAP on the validation set for I3D and
Slowfast, respectively. We also report the results if the approach is trained using
full supervision. In this case, the network is trained on the ground-truth bound-
ing boxes and the ground-truth action labels per bounding box. Compared to
the fully supervised approach, our weakly supervised approach achieves around
83% of the mAP for both 3D CNNs (17.3% vs. 20.7% for I3D and 25.1% vs.
30.1% for Slowfast) if detected bounding boxes are used for evaluation. The gap
gets even smaller when ground-truth bounding boxes are used for evaluation. In
this case, the relative performance is 95.7% for I3D and 90.5% for Slowfast. This
demonstrates that the proposed approach learns the actions very well despite of
the weak supervision.

Comparison to Fully Supervised Methods. Since this is the first approach
that addresses weakly supervised learning for multi-label and multi-person action
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Ground-Truth MIML Proposed

Fig. 5. Qualitative results. The left column shows the ground-truth annotations. The
middle column shows the results of the MIML baseline. The right column shows the
results of the proposed method. The colors distinguish only different persons, but they
are otherwise irrelevant. The predicted action classes with confidence scores are on top
of the estimated bounding boxes. The proposed approach recognizes more action classes
per bounding box correctly compared to MIML. Both methods also detect genuine
actions that are not annotated in the dataset as seen from the missing persons in the
second and fourth row. The bias of the proposed method towards the background is
visible in last row, where the “swim” action is associated to both persons. Best viewed
using the zoom function of the PDF viewer.
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detection, we cannot compare to other weakly supervised approaches. However,
we compare our approach with the state-of-the-art for fully supervised action
detection in Table 4. Our approach is competitive to fully supervised approaches
[5–8]. When we train our approach with full supervision, we improve over Slow-
Fast [10] by +1.1% mAP on the validation set. While the Slowfast++ network
performs slightly better, it uses additional data augmentation and a different
network configuration. We expect that these changes would improve our app-
roach as well.

7 Conclusion

In this paper, we introduced the challenging task of weakly supervised multi-
label spatio-temporal action detection with multiple actors. We first introduced
a baseline based on multi-instance and multi-label learning. We furthermore
presented a novel approach where the multi-label problem is represented by the
power set of the action classes. In this context, we assign an element of the power
set to each detected person using linear programming. We evaluated our app-
roach on the challenging AVA dataset where the proposed method outperforms
the MIML approach. Despite of the weak supervision, the proposed approach is
competitive to fully supervised approaches.
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