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Abstract. In this paper, we propose a novel approach to convert given
speech audio to a photo-realistic speaking video of a specific person,
where the output video has synchronized, realistic, and expressive rich
body dynamics. We achieve this by first generating 3D skeleton move-
ments from the audio sequence using a recurrent neural network (RNN),
and then synthesizing the output video via a conditional generative
adversarial network (GAN). To make the skeleton movement realistic
and expressive, we embed the knowledge of an articulated 3D human
skeleton and a learned dictionary of personal speech iconic gestures into
the generation process in both learning and testing pipelines. The former
prevents the generation of unreasonable body distortion, while the later
helps our model quickly learn meaningful body movement through a few
recorded videos. To produce photo-realistic and high-resolution video
with motion details, we propose to insert part attention mechanisms in
the conditional GAN, where each detailed part, e.g. head and hand, is
automatically zoomed in to have their own discriminators. To validate
our approach, we collect a dataset with 20 high-quality videos from 1
male and 1 female model reading various documents under different top-
ics. Compared with previous SoTA pipelines handling similar tasks, our
approach achieves better results by a user study.

Keywords: Face · Gesture · Body pose · Image and video synthesis ·
Vision and language · GAN

1 Introduction

Speech2Video is a task of synthesizing a video of human full body movements,
including head, mouth, arms etc., from a speech audio input. The produced video
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should be visually natural and consistent with the given speech. Traditional
way of Speech2Video involves performance capture with dedicated devices and
professional operators, and most of the speech and rendering tasks are performed
by a team of animators, which is often costly for custom usage. Recently, with the
successful application of deep neural networks, data-driven approaches have been
proposed for low cost speech video synthesis. For instances, SythesisObama [1]
or MouthEditting [2] focus on synthesizing a talking mouth by driving mouth
motion with speech using an RNN. Taylor [3] propose to drive a high fidelity
graphics model using audio, where not only animates mouth but also other parts
on the face are animated to obtain richer speech expressions.

However, mouth movement synthesis is mostly deterministic, given a pronun-
ciation, the movement or shape of the mouth is similar across different persons
and context. In our task of Speech2Video, a full body gesture movement under
the same situation is more generative and has more variations, the gestures are
highly dependent on current context and individual person who is doing the
speech. Personalized speaking gestures appear at certain moment when deliver-
ing important messages. Therefore, useful information is only sparsely present
in a video, yielding difficulties for a simple end-to-end learning algorithm [1,3]
to capture this diversity from the limited recorded videos.

To the best of our knowledge, LumiereNet [4] is the most related work per-
forming a similar task with ours, which builds an end-to-end network for full
upper body synthesis. However, in their experiments, the body motion is less
expressive where the major dynamics are still at the talking head. In practice,
following a similar method, we build a pipeline for body synthesis, and train it
with our collected online speech videos, where three major issue exists. First, as
discussed, the generated body movements only have repetitive patterns, while
the ground truth video contains emphasis gestures at certain moments. Second,
the generated body appearance at detailed parts such as hand and elbow could
be unnaturally distorted, which is geometrically infeasible. Last, the generated
body and hand appearance are blurry with motions. Therefore, in this work, we
propose a novel trainable Speech2Video pipeline, which handles all these issues
simultaneously. For handling diversity issues, we build a pose dictionary with
text for each person from their presentation videos. To guarantee the generated
pose are physical plausible, we enforce the 3D skeleton as the intermediate rep-
resentations, the generated joints should follow the regularity of human body.
Finally, to ensure high quality synthesized appearance, we propose an part-
aware discriminator to provide additional attention of generated detailed parts
like arms and hands.

Finally, in order to better evaluate our system, we create a dataset with
recorded speech videos of several target while they are reading some carefully
selected articles, using camera with high resolution and frame rate (FPS). In
our experiments, we show our approach generates perceptually better human
dynamics than other existing pipelines with more gesture variations.



310 M. Liao et al.

The main contributions of this paper are summarized as follows:

– We proposed a novel 2-stage pipeline of generating an audio-driven virtual
speaker with full-body motions including the face, hand, mouth and body.
Our 3D driven approach overcomes issues of direct audio-to-video approach
where human appearance details are missing. And it also makes it possible
to insert key poses in the human motion sequence. It is shown in the result
section why we have to decompose this task into a 2-stage generation, instead
of direct audio-to-video generation.

– A dictionary of personal key poses is built that adds more dimensions to
the generated human poses. Besides, we presented an approach to insert key
poses into the existing sequence.

– 3D skeleton constraints are embedded to generate body dynamics, which guar-
antees the pose is physically plausible.

– We proposed a modified GAN to emphasize on face and hands to recover
more details in the final output video.

2 Related Work

Human Body Pose Estimation and Fitting [5] proposed 3d shape and pose
estimation specific for hands. [6,7] predicts 3d human motion from video or a
single image, but they are limited to fit human model with limb only, not hands
or face. While openpose [8] has been so successful at fitting the detailed human
model to 2D image with all our demanded parts including face and fingers, their
output is 2D landmarks in the image space. Based on openpose, SMPL-X [9] fits
a 3D skeleton to those output 2D landmarks through an optimization. It also
parameterizes human motion as joint angles, making it much easier to constrain
joints under reasonable human articulation.

Audio to Motion [10] drives high fidelity 3D facial model using audio via
end-to-end learning, where both poses and emotions are learned. [11] focuses
on synthesizing hand motion from music input, rather than speech. Its goal
is to animate graphics models of hands and arms with piano or violin music.
[12] generates skeleton-based action using Convolutional Sequence Generation
Network (CSGN). [13] instead, predict human motion using recurrent neural
networks. [14] uses auto-conditioned recurrent networks for extended complex
human motion synthesis. They can model more complex motions, including
dances or martial arts.

Video Generation from Skeleton pix2pix [15,16] is a milestone in the devel-
opment of GAN. It outputs an detailed real-life image from an input seman-
tic label image. In our pipeline, the semantic label maps are image frames of
the human skeleton. Nevertheless, direct applying pix2pix to an input video
without temporal constraints will result in incoherent output videos. There-
fore, vid2vid [17] is proposed to enforce temporal coherence between neighbor-
ing frames. [18] proposes to render realistic video from skeleton models without
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Fig. 1. Pipeline of our system.

building a 3D model, where the second stage of video generation is emphasized.
However, it doesn’t take care of facial expression and mouth movement, and it
doesn’t address the problem of how to generate realistic movement of the skele-
ton body model. [19] proposes a similar pipeline, which generates skeleton pose
first and then generate the final video. However, rather than audio, its input
is random noise and its skeleton model is very simple only having body limbs.
That means its final output video lacks details on the face and fingers.

Character Synthesis [1,2,20] focus on synthesizing a talking head by driv-
ing 2D mouth motion with speech. When the mouth sequence is generated via
texture mapping, it is pasted onto an existing video after lighting and texture
fusion. [21] instead, drives a 3D face model by audio, and render the final video
using a technique called neural renderer [22]. [4] attempts to produce videos of
an upper-body of a virtual lecturer, but the only moving part is still the mouth.
Face2Face [23] transfers expressions from a person to a target subject using a
monocular RGB camera. Given a video of a dancing person, [24] transfers the
dancing motion to another person, even though the second person does not know
how to dance. The second person is only required to record a video of a few poses.
While achieving good results, there are still visible distortion and blurriness on
the arms, not to mention details of hands. Liquid Warping GAN [25] is a recent
work to synthesize human videos of novel poses, viewpoints, and even clothes.
They have achieved decent results given that their input is simply a single image.
Their work is mainly focused on image/video generation, while our main con-
tribution is simulating human motions. [19] proposed a similar pipeline as ours,
which generate skeleton pose first and then generate the final video. However,
rather than audio, its input is random noise and its skeleton model is very sim-
ple only having body limbs. That means its final output video lacks details on
the face and fingers. In contrast, our skeleton model consists of limbs, face, and
fingers. [26] learns individual styles of speech gesture via 2 stages as we propose,
but its rendering part produces quite a few artifacts in the final generated videos.
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3 Methods

As shown in Fig. 1, the input to our system is audio or text, depending on what
is used to train the long short-term memory (LSTM) network. We here assume
that audio and text are interchangeable, given both text-to-speech (TTS) and
speech-to-text (STT) technologies are mature and commercially available. Even
though we still get some wrongly recognized words/characters from the state
of the art STT engine, our system can tolerate these errors quite successfully,
because the main purpose of this LSTM network is to map texts/audios to body
shapes. Wrong STT outputs are usually words with similar pronunciations to
those of the true ones, meaning they are very likely to have similar spelling too.
Therefore, they will eventually map to more or less alike body shapes.

The output of the LSTM is a sequence of human poses, parametrized by
SMPL-X [9]. SMPL-X is a joint 3D model of the human body, face, and hands
together. This dynamic joint 3D model is visualized as a sequence of 2D colorized
skeleton images. These 2D images are further input into a vid2vid generative
network [17] to generate final realistic people images.

We found that while successfully synchronize speech and movement, LSTM
learns only repetitive human motions most of the time, which results in boring
looking videos. In order to make the human motion more expressive and various,
we insert certain poses into the output motions of LSTM when some key words
are spoken, for example, huge, tiny, high, low, and so on. We manually build a
dictionary that maps those key words to their corresponding poses. Please refer
to the following sections for details on how we build this dictionary.

Training the LSTM and vid2vid networks requires only some videos of tar-
get animation subject reading a script. As shown in Fig. 2, given a video of a
talking person, we first fit a human body model to each frame. Together with
the extracted audio on the left-hand side, it is fed into the LSTM to train map-
ping from audio to human poses. On the right-hand side, 2D skeleton images
of the human body model and their corresponding true person images are used
to train vid2vid generative network. Finally, we manually select some key poses
and build a dictionary that maps key words to key poses.

3.1 Speech2Video Dataset

Ideally, our system is capable of synthesizing anyone as long as we can download
some of their speech videos from websites such as Youtube. In reality, however,
most of those Youtube videos are shot under auto exposure mode, meaning the
exposure time could be as long as 33 ms for 30 fps videos. It is impossible to
capture clear hand images under such long exposure time when the hands are
moving. In fact, most of these frames have motion blur to some extent, which
causes big problems when we fit the hand finger model to the images. In addition,
our system requires our speaker to be present in a constant viewpoint, but a lot
of speech videos keep changing their viewpoint. Though fitting to blurry image
itself is a good research topic, we only focus on the video synthesis part and use
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Fig. 2. Overview of our training process.

Fig. 3. Left: our data capture room. Right: 4 frames from captured video.

the existing state-of-the-art approach to fit human model. Therefore, we decided
to capture our own data.

We invited two models to capture our training data, one English speaking
female and one Chinese speaking male. We capture a total of 3 h of videos for each
model when they were reading a variety of scripts, including politics, economy,
sports and so on. We set up our own recording studio with a DSLR camera,
which captures 1280 × 720 videos at 60 frames per second. We fix the exposure
time at 5 ms so that no motion blur will be present in the frames. In order to
reduce data size, we sample every 5 frames from the video and only work on this
subset data.

Figure 3 shows our data capture room. Our model stands in front of a camera
and screen, and we capture a few videos while he/she reads scripts on the screen.
In the end, we ask our model to pose for certain key words, such as huge, tiny,
up, down, me, you, and so on.

3.2 Body Model Fitting

Fitting a human body model to images is equivalent to detecting human key-
points. OpenPose [8] has done an excellent work on this. It is a real-time approach
to detect the 2D pose of multiple people in an image, including body, foot, hand,
and facial keypoints.

We first attempted to take those 2D keypoints as a representation of our
human body model, and trained the LSTM network that generates 2D positions
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Fig. 4. Failure case with 2d model: elongated fingers.

of these keypoints from audio inputs. The results were not quite satisfactory due
to the distortion of output arm and hand (shown in Fig. 4). This because in
this simply 2D keypoint human model, there is no relationship between 2 con-
nected keypoints. They can virtually move to anywhere independently without
constraints from other keypoint, leading to elongated or shorter arms and fin-
gers. Furthermore, at the stage of inserting key poses into existing body motion,
it involves interpolating between 2 poses. Direct interpolation on 2D keypoints
usually results in invalid intermediate poses that violate human articulated struc-
ture.

Under these observations, we adopt SMPL-X, a true articulated 3D human
model. SMPL-X models human body dynamics using a kinematic skeleton
model. It has 54 joints including neck, fingers, arms, legs, and feet. It is parame-
terized by a function M(θ, β, ψ), where θ ∈ R3(K+1) is the pose parameter and K
is the number of body joints plus an additional global body orientation. β ∈ R|β|

is the shape parameter which controls the length of each skeleton bone. Finally,
the face expression parameter is denoted by ψ ∈ R|ψ|. There are a total of 119
parameters in SMPL-X model, 75 of which come from the global orientation as
well as 24 joints excluding hands, each denoted by a 3 DoF axis-angle rotation.
The joints on hands are encoded separately by 24 parameters in a lower dimen-
sional PCA space, following approach described in MANO [27]. The shape and
face expression both have 10 parameters respectively.

To fit SMPL-X human model to images, in general, we need to find opti-
mal parameters that minimize E(θ, β, ψ), the weighted distance between 2D
projection of those 3D joints and 2D detections of the corresponding joints by
OpenPose library [8]. The weights are determined by detection confidence scores,
so that noisy detection will have less influence on the gradient direction. In our
specific scenario, we modified the fitting code to fix body shape parameters β
and global orientation during the optimization. Because we are dealing with the
same person within a video and the person is standing still during the entire
video. We only compute the human body parameter β and human global ori-
entation for the first frame and use them for the remaining frames. So the final
objective function for us becomes E(θ, ψ), where we only look for optimal pose
and facial expression parameters. That reduces the total number of parameters
to 106.
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Fig. 5. Key words to key poses dictionary. Note a key pose could be a still single frame
pose or a multi-frame motion.

3.3 Dictionary Building and Key Pose Insertion

As shown in Fig. 5, we manually select key poses from the recorded videos and
build a word-to-pose lookup dictionary. Again, the pose is represented as 106
SMPL-X parameters. Note that a key pose could be a still single frame pose or
a multi-frame motion. We can insert both into an existing human skeleton video
by the same approach.

In order to insert a key pose, we first need to know when it’s corresponding
key word is spoken. For a text-to-speech (TTS) generated audio, the TTS output
will include the timestamp of each word in the generated audio. For an audio from
a real person, we need to first pass it to a speech-to-text (STT) engine, which
generates text script of the speech as well as the timestamp of each individual
word. We go over all the words within the speech script and look them up in
our word-to-pose dictionary. Once they are found in the dictionary, we decide if
we want to insert them into the skeleton video by a certain probability. Since
some words like “I”, “we”, “me” could be spoken a few times in a speech. A
real person won’t pose every time they speak those words. The probability could
vary between different words and should be set when we build the dictionary.

When we insert a pose into a video, we do a smooth interpolation in the
106 parameter space. Illustrated in Fig. 6, a key pose is inserted into a video
with a ramp length N frames before and after its insertion time point. The ramp
length depends on video frame rate and ramp duration. In all our experiments,
the ramp duration is set to be 0.6 s. The key pose is directly copied to its time
point within the video and overwrite the original frame. In order to maintain
a smooth transition to this pose, we also replace frames from ramp start point
all the way to the key pose frame on both sides. The new frames are linear
interpolated between ramp start frame and key pose frame, weighted by their
distance to those 2 frames.

If our key pose is a single frame still pose, it’s inserted exactly as described
above, except for one thing. People usually make a pose and keep it for a certain
time period. So, instead of showing the key pose in one frame, we also need to
keep the key pose for a while. In all our experiments, we keep the pose for 0.3 s
by duplicating the key pose frame in place multiple times. If our key pose is
a motion (a sequence of frames), then it will be copied to the target video to
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Fig. 6. Inserting a key pose smoothly into an existing video sequence. A key pose is
inserted into a video with a ramp length N frames before and after its insertion time
point. The ramp length is only 3 here for illustration, but the real ramp length is way
longer than this. Those number alongside vertical arrows are interpolation weights of
the key pose. The weighted sum of ramp start/end pose and key pose replaces original
frames in between.

overwrite a sequence of the same length. The smoothness ramping is done the
same way.

3.4 Train LSTM

When we train the LSTM which maps audio sequence to pose sequence, we have
to give different weights to different parts of the human body in the loss, because
they have different scales. The relative weights we set to body, hands, mouth,
and face are 1, 4, 100, 100 respectively. We also enforce a smoothness constraint
on the output pose sequence by adding a difference loss between 2 consecutive
poses, in order to make sure the output motion is smooth and natural.

Audio to Pose. We extract the audio features using standard MFCC coeffi-
cients [28]. The input audio may have various volume level, we first normalize its
volume by RMS-based normalization [29]. Then for every 25 ms-length audio clip,
we apply discrete Fourier Transform to get its representation in the frequency
domain. The audio clip is sampled at 10ms interval. 40 triangular Mel-scale fil-
ters are applied to the output of Fourier Transform, followed by a logarithm
operator. Next, we reduce the output dimension to 13 by applying a Discrete
Cosine Transform. The final feature is a 28D vector, where the first 14D consists
of the 13D output of the Discrete Cosine Transform plus the log mean value of
volume, and the second 14D is temporal first-order derivatives of the first 14D,
a.k.a, the difference to the previous feature vector.
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Text to Pose. Voice could be quite different from people to people, even when
they are speaking the same words. That could lead to poor performance of the
LSTM learning. Alternatively, we can use text, instead of audio to train the
LSTM. That requires us to convert to text if the input is audio. Thanks to the
development of natural language processing (NLP), there are quite a few prior
works [30] that do excellent jobs on this.

For English, we directly use words as the input sequence to LSTM, since
word spelling itself incorporates pronunciation information. We pad remaining
pausing parts with 0’s to form an entire input sequence. On the other hand,
for those non-latin languages, for example Chinese, its words/characters don’t
carry pronunciation information. In this case, we still want to have the same
mouth shape and body pose when 2 characters of the same pronunciation are
spoken. Therefore, we have to convert characters to representation with phoneme
information. For Chinese, we convert each individual character into pinyin, which
is composed of 26 English letters. It guarantees 2 characters have the same
spelling if they have the same pronunciations.

LSTM Architecture. We opt for a simple 2 layer unidirectional LSTM [31].
Input is vector of audio/text encoding, and output is vector of SMPL-X parame-
ters. Note that a time delay is applied to the output by shifting output parameter
forward in timeline as explored in [32]. This gives the network the options to
predict human poses by looking in the future of speaking. This is especially true
when a speaker tends to pose before he/she starting speaking. The dimension of
the cell state is set to 300, and the time delay of output is set to 200 ms. The net-
work is solved by minimizing a L2-loss on the SMPL-X parameters using Adam
optimizer [33] implemented under TensorFlow. The network is trained with a
batch size of 100 and learning rate of 0.001. The input vector is normalized by
its mean and variance, but the output is kept unchanged in order to keep the
relative scale of different SMPL-X parameters.

3.5 Train Video Generative Network

We adopt the generative network proposed by vid2vid [17] to convert our skeleton
images into real person images. In our applications, the rendering results of
human bodies are not equally important. The most important parts are face and
hands. To make vid2vid network put more effort on generating details of face
and both hands, we modified the network and our input images to achieve this.
Specifically, we draw a color circle on both hands on the input skeleton image
and also draw face part with white color, which is different from other parts
of body (Fig. 7). Within the network, an image is output from the generative
network given an input image. Before we pass it to discriminator network, we
locate regions of face and both hands by their special colors in the input image.
Then we crop those 3 sub images from the generated image, and pass them to
the discriminator network along with the entire output image. The loss weights
for those sub images are carefully tuned to make sure the discriminator is more
picky on the reality of generated face and hands images.
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Running Times and Hardware. The most time consuming and memory
consuming stage of our system is training the vid2vid network. It takes about a
week to finish 20 epochs of training on a cluster of 8 NVIDIA Tesla M40 24G
GPUs. The testing stage is much faster. It takes only about 0.5 s to generate one
frame on a single GPU.

Fig. 7. Sample images pair used to train vid2vid. Both hands are labeled by a special
color circle. The color circles are identified within the GAN, in order to crop the sub-
images around both hands. Those sub-images are passed to discriminator separately
from the whole image to ensure we put more weights on the hand detail generation.

Table 1. Average scores of 248 participants on 4 questions. Q1: Completeness of body.
Q2: The face is clear. Q3: The body movement is correlated with audio. Q4: Overall
quality.

Q1 Q2 Q3 Q4

LearningGesture [26] 3.414 3.659 3.914 3.308

LumiereNet [4] 3.585 3.521 3.085 3.265

Neural-voice-puppetry [21] 3.202 3.840 3.180 3.542

EverybodyDance [24] 3.944 3.662 3.680 3.681

Our method 3.894 4.011 3.383 3.762

4 Results

4.1 Evaluation and Analysis

Note it is not straightforward to compare with other methods, because 1) there is
no benchmark dataset to evaluate speech to full body videos, 2) people’s speech
motion is quite subjective and personalized which makes it difficult to define
ground truth. As Table 1 showing, we choose to compare our results with 4 SoTA
approaches using user study. We get the best overall quality score compared to
other 4 SOTA methods.

Inception Score Comparison. Also we evaluate our image generation result
using inception scores. The score measures two things simultaneously: The image
quality and image diversity.
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Table 2. Inception scores for generated videos (IS) and ground truth videos (GT IS)
of different methods. The relative incpetion score (Rel. IS) is the ratio of the first to
the second.

SynthesizeObama [1] EverybodyDance [24] Ours

IS 1.039 1.690 1.286

GT IS 1.127 1.818 1.351

Rel. IS 0.921 0.929 0.952

As shown in Table 2, we compare to SynthesizeObama and EverybodyDance
by computing inception scores on all the frames of videos generated by each
method. IS is the score for generated videos and GT IS is the score for ground
truth videos. For SynthesizeObama [1] the ground truth is the source video of the
input audio. For EverybodyDance [24] the ground truth is the source video to
transfer motion from. And in our case, the ground truth is the training video. It is
expected that dancing videos (EverybodyDance) have higher scores than speech
videos (ours), and speech videos (ours) have higher scores than talking head
(SynthesizeObama), since dancing has the most motion varieties. Therefore, we
use the relative inception scores (inception score of generated videos to ground
truth videos) to measure similarity to the ground truth. Our method outperforms
the other two methods by this standard, meaning our visual quality is closer to
ground truth.

Table 3. Numerical evaluation on
mouth motion reconstruction of our
system. Number here is average pixel
distance.

Orig Man1 Man2 Man3 Text

0.5 h 1.769 1.838 1.911 1.992 2.043

1 h 1.730 1.868 1.983 2.012 2.024

2 h 1.733 1.809 1.930 2.047 1.993

Table 4. Average scores of 112 partic-
ipants on 5 questions. Q1: Complete-
ness of body. Q2: The face is clear. Q3:
The human motion looks natural. Q4:
The body movement is correlated with
audio. Q5: Overall quality.

Q1 Q2 Q3 Q4 Q5

Synth 4.12 4.21 2.86 3.07 3.42

TTS 4.07 3.81 2.67 2.88 3.28

Real 4.28 4.38 4.45 4.35 4.38

Numerical Evaluation. Since people don’t pose exactly the same, even if the
same person speaks the same sentence twice. So, it is difficult to tell if our
generated body motion is good or not, due to lacking of ground truth. The only
part that takes the same shape when speaking the same words is mouth. Thus, we
use only mouth to evaluate our motion reconstruction accuracy. Specifically, we
record a separate video of our models when they speak totally different sentences
than in the training dataset. We extract the audio and input into our pipeline.
The output 3D joints of mouth are projected onto the image space and compared
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to those 2D mouth keypoints detected by OpenPose. The errors are measured
by average pixel distance.

As Reported in Table 3, we have done several evaluations on the mouth
motion reconstruction and found some interesting facts. We first tried to train
our LSTM network using different dataset size to see how it affects the recon-
struction accuracy. We used dataset of varying length including 0.5 h, 1 h and
2 h. We use the voice of the same lady (Orig.) as in training data to do the
evaluation. In addition, we also lower the pitch of the original voice to simulate
a man’s voice, in order to see how voice variation affect the results. We simulate
voices of a young man (Man1), a middle age man (Man2) and an old man (Man3)
by successively lower pitch values of the original audio. Finally, we train and test
our LSTM network using text and compare the results to those of audio.

We have 3 observations from Table 3. First, audio has better accuracy than
text. Second, longer training dataset doesn’t necessarily increase the accuracy
for audio but it indeed helps for text. Third, accuracy gets worse when voice
is getting more deviated from the original one. The third one is easy to under-
stand, so we expect worse performance if the test voice sounds different from
the training voice. For the first and second observations, the explanation is that
audio space is smaller than text space, because some words/characters share
the same pronunciation, for example, pair vs pear, see vs sea. Therefore, audio
training data cover larger parts in its own space than text training data of the
same length. In our experiments here, it looks like 0.5-h length audio is enough
to cover the entire pronunciation space. Adding more training data doesn’t help
increase accuracy. On the other hand, 2-h length text is still not enough to cover
the entire spelling space, so the error keeps decreasing as we increase the length
of training data.

User Study. To evaluate the final output videos, We conducted a human sub-
jective test on Amazon Mechanical Turk (AMT) with 112 participants. We show
a total of five videos to the participants. Four of them are our synthesized videos,
two of which are generated by real person audios and the other two are gener-
ated by TTS audios. The remaining one is a short clip of a real person. Those
five videos are ordered randomly and we didn’t tell our participants that there
is a real video. The participants are required to rate the quality of those videos
on a Likert scale from 1 (strongly disagree) to 5 (strongly agree). Those include
1) Completeness of human body (no missing body parts or hand fingers); 2)
The face in the video is clear; 3) The human motion (arm, hand, body gesture)
in the video looks natural and smooth; 4) The body movement and gesture is
correlated with audio; 5) Overall visual quality of the video and it looks real.

As shown in Table 4, our synthesized videos (Synth.) get 3.42 and real video
gets 4.38 (out of 5). In particular, our proposed method has the same perfor-
mance on body completeness, face clarity compared to real video. Another dis-
covery is that TTS generated videos are worse than real-audio generated videos
in all aspects. The reason is twofold. First, TTS audios are generally more distant
to real audios in MFCC feature space, leading to worse reconstructed motions
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Fig. 8. One frame generated by TTS
audio when people pause speaking.
Mouth shape is distorted.

Fig. 9. One frame generated by a skele-
ton model without hands. It is clear
that the hand model is necessary to
render hand details in the final image.

and gestures (conclusion from Table 3). Secondly, TTS audio itself sounds fake,
which decreases the overall video quality.

4.2 Ablation Study

TTS Noise. When we train our LSTM, the audios are extracted from recorded
videos, meaning they contain background noise when people are not speaking.
However, TTS generated audios have an absolutely clear background when peo-
ple pause speaking. That difference causes some problems in the output skeleton
motions. As can be seen in Fig. 8, mouth shape is distorted because our network
has never seen this absolutely clear signal in the training. To fix this issue, we
add some white noise to the TTS generated audios before feeding to LSTM.

Hand Model. As mentioned before, it’s necessary to have hands in our skeleton
model in order to render hand details in the final output of vid2vid. As in Fig. 9,
we have downloaded a video from Youtube and use it as our training data. Due
to its motion blur, we can’t fit a correct hand model to the video frames. Thus
we trained our vid2vid network without hand skeleton, all the way up to 40
epochs. However, it is still impossible to render clear hand images in the final
output. This is also evidence of why the end-to-end approach simply doesn’t
work. A very detailed spatial guidance is necessary for the GAN network to
produce high fidelity rendering. An audio input simply can’t provide this spatial
guidance. Thus, we eventually give up employing the end-to-end method.

Key Pose Insertion. To justify the effectiveness of our key pose insertion
approach, we conducted another user study. In this study, we simply present
pairs of synthesized videos with and without inserted key poses. The participants
just need to choose which one is more expressive. For all participants, videos
with key poses get 80.6% of the votes compared to 19.4% for videos without
key poses. This demonstrates the necessity of inserting key poses to enrich the
expressiveness of speech.
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5 Conclusion

We proposed a novel framework to generate realistic speech videos using the
3D driven approach, while avoiding building 3D mesh models. We built a table
of personal key gestures inside the framework to handle the problem of data
sparsity and diversity. More importantly, we utilized 3D skeleton constraints to
generate body dynamics, which guarantees the pose to be physically plausible.
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