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Abstract. We present Mask-guided Generative Adversarial Network
(MagGAN) for high-resolution face attribute editing, in which semantic
facial masks from a pre-trained face parser are used to guide the fine-
grained image editing process. With the introduction of a mask-guided
reconstruction loss, MagGAN learns to only edit the facial parts that are
relevant to the desired attribute changes, while preserving the attribute-
irrelevant regions (e.g., hat, scarf for modification ‘To Bald’). Further, a
novel mask-guided conditioning strategy is introduced to incorporate the
influence region of each attribute change into the generator. In addition,
a multi-level patch-wise discriminator structure is proposed to scale our
model for high-resolution (1024×1024) face editing. Experiments on the
CelebA benchmark show that the proposed method significantly outper-
forms prior state-of-the-art approaches in terms of both image quality
and editing performance.

1 Introduction

The demand of face editing is booming in the era of selfies. Both the research
community, e.g., [4,6,9,15–17,20,24,28,31,35,36,39,43], and the industry, e.g.,
Adobe and Meitu, have extensively explored to improve the automation of face
editing by leveraging user’s specification of various facial attributes, e.g., hair
color and eye size, as the conditional input. Generative Adversarial Networks
(GANs) [7] have made tremendous progress for this task. Prominent examples in
this direction include AttGAN [9], StarGAN [6], and STGAN [24], all of which
use an encoder-decoder architecture, and take both source image and target
attributes (or, attributes to be changed) as input to generate a new image with
the characteristic of target attributes.
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Fig. 1. Visual results of MagGAN on resolution 1024 × 1024. The specific sub-regions
are cropped for better visualization

Although promising results have been achieved, state-of-the-art methods still
suffer from inaccurately localized editing, where regions irrelevant to the desired
attribute change are often edited. For instance, STGAN [24] can make undesired
editing by painting the scarf to white for “Pale Skin” (left) and the hat to golden
for “Blond Hair” (right) (see Fig. 2). Solution to this problem requires notions
of relevant regions that are editable w.r.t. the facial attribute edit types, while
keeping the non-editable regions intact. To illustrate this concept of region-
localized attribute editing, we refer to the facial regions that are editable when a
specific attribute changes as attribute-relevant regions (such as the hair region for
“To Blonde”). Regions that should not be edited (such as the hat and other non-
hair regions for attribute “To Bald”) are referred to as attribute-irrelevant. Ideal
attribute editing generator will only edit attribute-relevant regions while keeping
attribute-irrelevant regions intact, to minimize artifacts. The second issue of
most existing methods is that they only work with images of low resolutions
(128×128). How to edit facial attributes of high-resolution (1024×1024) images
is less explored.

In order to address these challenges, we present the Mask-guided Gen-
erative Adversarial Network (MagGAN) for high-resolution face attribute
editing. The proposed approach is built upon STGAN [24], which uses a dif-
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ference attribute vector as conditional input, and a selective transfer unit for
attribute editing. Based on this, a soft segmentation mask of common face parts
from a pre-trained face parser is used to achieve fine-grained face editing. On one
hand, the facial mask provides useful geometric constraints, which helps generate
realistic face images. On the other hand, the mask also identifies each facial com-
ponent (e.g., eyes, mouth, and hair), which is necessary for accurately localized
editing. With the introduction of a mask-guided reconstruction loss, MagGAN
can effectively focus on regions that are most related to the edited attributes,
and keep the attribute-irrelevant regions intact, thus generating photo-realistic
outputs.

Another reason why existing methods cannot preserve the regions that should
not be edited is about how the attribute change information is injected into
the generator. Although most attribute changes lead to localized editing, the
attribute change condition itself does not explicitly contain any spatial informa-
tion. In order to better learn the alignment between attribute change and regions
to edit, MagGAN further uses a novel mask-guided conditioning strategy that
can adaptively learn where to edit.

To further scale our model for high-resolution (1024 × 1024) face editing
(see Fig. 1 for visual results), we propose to use a series of multi-level patch-wise
discriminators. The coarsest-level discriminator sees the full downsampled image,
and is responsible for judging the global consistency of generated images, while a
finer-level discriminator only sees patches of the generated high-resolution image,
and tries to classify whether these patches are real or not. Empirically, this leads
to more stable model training for high-resolution face editing.

Fig. 2. MagGAN (1st row) can effectively apply accurate attribute editing while keep-
ing attribute-irrelevant regions (e.g., hat, scarf) intact. In comparison, the state-of-
the-art STGAN [24] (2nd row) produces undesired modifications on these regions, e.g.,
whitening the scarf while manipulating “Pale Skin”

The main contributions of this paper are summarized as follows. (i) We
propose MagGAN that can effectively leverage semantic facial mask information
for fine-grained face attribute editing, via the introduction of a mask-guided
reconstruction loss. (ii) A novel mask-guided conditioning strategy is further
introduced to encourage the influenced region of each target attribute to be
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localized into the generator. (iii) A multi-level patch-wise discriminator structure
scales up our model to deal with high-resolution face editing. (iv) State-of-the-art
results are achieved on the CelebA benchmark, outperforming previous methods
in terms of both visual quality and editing performance.

2 Related Work

The development of face editing techniques evolves along the automation of
editing tools. In the early stage, researchers focused on developing attribute-
dedicated methods for face editing [3,21,25,32,33,42], i.e., each model is dedi-
cated to modifying a single attribute. However, such dedicated methods suffer
from low automation level, i.e., not being able to manipulate multiple attributes
in one step. To this end, many works [6,9,15–17,20,24,28,31,35,36,39,43]
started using attribute specifications, i.e., semantically meaningful attribute vec-
tors, as conditional input. Multiple attributes can be manipulated via changing
the input attribute specifications. This work belongs to this category. Another
line of works [5,29,34,37,45] improve the automation level of the face editing
model by providing an exemplar image as the conditional input. Below, we briefly
review recent attribute-specification based methods, and refer the readers to [44]
for more details of methods that are not reviewed herein.

Fig. 3. Model architecture for the proposed Mask-guided GAN (MagGAN)

Many facial attributes are local properties (such as hair color, baldness, etc.),
and facial attribute editing should only change relevant regions and preserve
regions not to be edited. StarGAN [6] and CycleGAN [28] introduced the cycle-
consistency loss to conditional GAN so as to preserve attribute-irrelevant details
and to stabilize training. AttGAN [9] and STGAN [24] found that the reconstruc-
tion loss of images not to be edited is at least as good as the cycle-consistency
loss for preserving attribute-irrelevant regions. STGAN [24] proposed the selec-
tive transfer units to adaptively select and modify encoder features for enhanced
attribute editing, achieving state-of-the-art performance on editing success rate.
However, in this paper, we show that neither the cycle-consistency loss nor the
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reconstruction loss is sufficient to well preserve regions not to be edited (see
Fig. 2), and propose to utilize masks to solve this problem.

Semantic mask/segmentation provides geometry parsing information for
image generation, see, e.g., [12,22,30]. Semantic mask datasets and models
are available for domains with important real applications, such as face edit-
ing [18,19] and fashion [23]. Recently, both [8] and [19] utilize mask information
for facial image manipulation, where a target/manipulated mask is required in
the manipulation process. In this paper, we focus on the setting of editing with
attribute specifications, without requiring a target/manipulated mask. We only
make use of a pre-trained face parser, instead of requiring users to provide the
mask manually.

3 MagGAN

As illustrated in Fig. 3, face editing is performed in MagGAN via an encoder-
decoder architecture [6,9]. The design of Selective Transfer Units (STUs) in
STGAN [24] is adopted to selectively transform encoder features according to
the desired attribute change. Inspired by StyleGAN [14,30], the adaptive layer
normalization [2,11] is used to inject conditions through the de-normalization
process, instead of directly concatenating the conditions with the feature map.
Our full encoder-decoder generator is denoted as:

x̂ = G(x,attdiff), attdiff = attt − atts, (1)

where x(or x̂) ∈ R
3×H×W denote the input (or edited) image; atts(or attt) ∈

R
C are the source (or target) attributes. The generator takes the attribute dif-

ference attdiff ∈ R
C as input, following [24].

3.1 Avoid Editing Attribute-Irrelevant Regions

Although notable results have been achieved, existing work still suffers from
inaccurately localized editing, where irrelevant regions unrelated to the desired
attribute change are often made. For example, in Fig. 2, STGAN [24] changes
the scarf to white for “Pale Skin” (left), and changes the hat to golden for “Blond
Hair” (right).

We leverage facial regions for effective facial attribute editing and modeling as
a solution. We utilize a pre-trained face parser to provide soft facial region masks.
Specifically, a modified BiseNet [38] trained on the CelebAMask-HQ dataset [19]1
is used to generates 19-class region masks, including various facial components
and accessories. For each attribute ai, we define its influence regions represented
by two probability masks M+

i ,M−
i ∈ [0, 1]H×W . If attribute ai is strengthened

during editing, the region characterized by M+
i is likely to be changed; if ai is

weakened, the region characterized by M−
i is likely to be changed. For example,

for “Pale Skin”, both M+
i and M−

i characterize the “skin” region; for “Bald”,
M+

i characterizes the “hair” region while M−
i characterizes the region consist-

ing of “background, skin, ears” and “ear rings”. In this setup, we propose the
1 https://github.com/zllrunning/face-parsing.PyTorch.

https://github.com/zllrunning/face-parsing.PyTorch
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following Mask-aware Reconstruction Error (MRE) to measure the preserving
quality of the editing process (in preserving irrelevant regions that shall not be
edited):

MRE =
1

HWC

C∑

i=1

∥∥(1 − M
sgn(attdiff,i)

i )(G(x, attdiff,iei) − x)
∥∥

1
, (2)

where attdiff,i is the i’th entry of attdiff, and ei is the vector with i’th entry 1
and all others 0, M

sgn(attdiff,i)
i ∈ {M+

i , M−
i }. In the face editing experiments,

since all attributes are binary and atts ∈ {0, 1}C , we take the attribute change
vector attdiff := 1−2atts. In this case, the image preservation error is computed
when only one attribute is flipped each time, and MRE is the total error.

In Sect. 4, we will report MRE for various previous methods and our mod-
els in Table 3. Existing approaches of both the cycle-consistency loss used in
StarGAN [6] and the reconstruction loss in [9,24] are insufficient to preserve the
regions that shall not be edited.

Fig. 4. MagGAN loss function design (Sect. 3.2). For better illustration, the preserving
region is denoted by the non-grey region of human face

3.2 Loss Functions for Model Training

We aim to optimize MagGAN regarding the following four aspects: (i) preser-
vation accuracy for regions that should be preserved; (ii) reconstruction error
of the original image; (iii) attribute editing success; and (iv) synthesized image
quality. Therefore, we design four respective types of loss functions for MagGAN
training, as illustrated in Fig. 4.

Mask-Guided Reconstruction Loss. Continue from the design of MRE (2),
we propose the following mask-guided reconstruction loss:

Lmre
G = ‖M(attdiff,x) · (x − G(x,attdiff))‖1 , (3)

where M(attdiff,x) ∈ [0, 1]H×W is a probability mask of the regions to be pre-
served.
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The preserved mask M(attdiff,x) is computed from both the attribute dif-
ference attdiff and the probability facial mask M of image x. We first feed image
x into a face parser, and obtain a probability map M ∈ [0, 1]19×H×W of the 19
facial parts, where

∑19
i=1 Mi,h,w = 1h,w. Since the semantic relationship between

facial attributes and facial parts can be reasonably assumed to be constant, we
explicitly define two binary relation matrices AR+ and AR−, the attribute-part
matrices with dimension C × 19, to characterize the relation between them. The
i-th row of matrix AR+ or AR− indicates which facial parts should be mod-
ified when the i-th attribute is strengthened, i.e., attdiff,i > 0, or weakened,
i.e., attdiff,i < 0. Note that, if facial part has no explicit relationship with one
attribute, the corresponding matrix entry of AR+,AR− could be set to 0.

To obtain M , we first gather all parts AR∗ ∈ [0, 1]19 that are possibly
influenced by attribute change attdiff, as,

AR∗ = min
{

1,
(

att(+)
diff

)T
AR+ +

(

att(−)
diff

)T
AR−

}

, (4)

where att(+)
diff = (attdiff > 0) and att(−)

diff = (attdiff < 0). Finally,

Mh,w(attdiff,x) = 1 −
C

∑

i=1

Mi,h,w ∗ AR∗
i . (5)

The influence regions M+
i and M−

i in (2) can also be computed this way,
with attdiff = ei and attdiff = −ei.

Reconstruction Loss. Image reconstruction can be considered as a sub-task
of image editing, because the generator should reconstruct the image when no
edit is applied, attdiff = 0. Therefore, the reconstruction loss is defined as

Lrec
G = ‖G(x,0) − x‖1, (6)

where the �1 norm is adopted to preserve the sharpness of the reconstructed
image.

GAN Loss for Enhancing Image Quality. The synthesized image quality is
enhanced by the generative adversarial networks, where we use an unconditional
image discriminator Dadv to differentiate real images from edited images. In
particular, a Wasserstein GAN (WGAN) [1] is utilized:

LDadv =Ex̂[Dadv(x̂)] − Ex[Dadv(x)] + λExint [(‖∇xintDadv(xint)‖2 − 1)2],
(7)

where x̂ is the generated image and xint is sampled along lines between the latent
space of pairs of real and generated image.

The generator G, instead, tries to fool the discriminator by synthesizing more
realistic images:

Lgan
G = −Ex,attdiff [Dadv(G(x,attdiff))]. (8)
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Attribute Classification Loss. To ensure that the edited image indeed has the
target attribute attt, an attribute classifier Datt is trained on the ground-truth
image attribute pairs (x,atts) with the standard cross-entropy loss:

LDatt = Ex[KL(Datt(x),atts)] . (9)

The generator is trying to generate images that maximize its probability to be
classified with the target attribute attt:

Lcls
G = −Ex,attdiff [KL(Datt(G(x,attdiff)),attt)] . (10)

In summary, the loss to train the MagGAN generator G is

LG = Lgan
G + λ1Lrec

G + λ2Lcls
G + λ3L

mre
G . (11)

In experiments, we always take λ1 = 100 and λ2 = 10. We vary λ3 to examine
the effect of our proposed mask-guided reconstruction loss.

3.3 Mask-Guided Conditioning in the Generator

Another reason why the previous methods cannot preserve the regions that shall
not be edited is about how the attribute change information is injected into the
generator. Although most attribute changes should lead to localized editing,
the attribute change condition attdiff ∈ R

C does not explicitly contain any
spatial information. In STGAN [24] (and other previous works for face attribute
editing), this condition is replicated to have the same spatial size of some hidden
feature tensor, and then concatenated to it in the generator. For example, in
the SPADE block in Fig. 3 (Right), attdiff is replicated spatially to be Attdiff ∈
R

C×H×W (the purple block)2, and then concatenated to the decoder feature
(the green block). It is hoped that the generator will learn by itself the localized
property of attribute editing from this concatenated tensor. However, in practice,
this is insufficient, even with the mask-guided reconstruction loss (3).

We propose to inject this inductive bias that the influence region of each
attribute change is localized into the generator directly, by making use of masks.
We view the i-th channel of Attdiff, denoted as Att(i)diff ∈ R

H×W , as the condition
to edit attribute ai. In previous work, Att(i)diff = attdiff,i1 that is uniform across
the spatial dimension. Specifically, we propose:

Att(i)diff = attdiff,iM
sgn(attdiff,i)
i , (12)

where M+
i and M−

i are the influence regions of attribute ai defined in (2). We
illustrate this mask-guided conditioning process in Fig. 3 (bottom-left). Finally,
we simply replace the original replicated tensor with the mask-guided attribute
condition tensor, and obtain a generator with mask-guided conditioning. Note

2 We use att ∈ R
C to denote attributes without spatial dimension and Att ∈

R
C×H×W for attributes with spatial dimensions.
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that this mask-guided conditioning technique is generally applicable to both
generators with and without SPADE.

The blending trick is another simple approach to preserve the attribute-
irrelevant regions. More specifically, with the probability mask of attribute-
irrelevant regions M(attdiff,x) defined in (3), we simply add a linear layer at
the end of the generator:

x̂ = M(attdiff,x) ∗ x + (1 − M(attdiff,x)) ∗ G(x,attdiff). (13)

This blending trick improves our MagGAN performance in terms of MRE, but
visually it introduces sharp transitions at the boundary of regions to be pre-
served. Therefore, we do not include this trick in our final MagGAN. More
discussions are in Supplementary.

3.4 Multi-level Patch-Wise Discriminators for High-Resolution
Face Editing

Fig. 5. Illustration of multi-level patch-wise discriminators

We describe our approach to scale up image editing in high resolutions. First
of all, we empirically found that a single “shallow” discriminator cannot learn
some global concepts, such as Male/Female, leading to low editing success. On
the other hand, a single “deep” discriminator makes the adversarial training very
unstable, leading to low image quality.

Inspired by PatchGAN [12] and several multi-level generation works [13,40,
41], we propose to use a series of multi-level patch-wise “shallow” discriminators,
as illustrated in Fig. 5, for high-resolution face editing. The architecture of the
discriminators are exactly the same without sharing weights. The coarsest-level
discriminator (D1) see the full downsampled image, and is responsible for global
consistency in the image generation. The attribute classifier C1 associated with
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it is effective in attribute classification, as in the low-resolution image editing
case. The finer-level discriminators (D2, etc.) see patches of the generated high-
resolution image instead of the full one, and determine whether these patches are
real or not. To maintain an unified architecture for discriminators across different
levels, we still associate the finer-level discriminator with a classifier (C2), which
takes the average pooled feature as input for classification. The total loss for all
PatchGAN discriminators are defined as:

LD =
1
P

P
∑

i=1

(LDi
att

+ LDi
adv

)

, (14)

where Di
att, Di

adv denote the attribute classifier and image discriminator of the
ith PatchGAN discriminator, P is the number of total discriminators. In prac-
tice, we found these finer-level discriminators improve the editing performance.

Note that our generator only generates high-resolution images, which can
be directly downsampled to lower resolutions and fed to coarse-level discrim-
inators. On the contrary, generators in previous works [13,40,41] generate a
high-resolution image in a multi-stage manner for the sake of training stability.
They generate low-resolution images as intermediate outputs, which are fed to
coarse-level discriminators. Our approach is simple in comparison, and we did
not observe any training stability issue.

4 Experiments

Dataset and pre-processing. We use CelebA dataset [26] for evaluation.
CelebA contains over 200K facial images with 40 binary attribute labels for
each image. To apply CelebA to high-resolution face editing, we process the
original web images by cropping, aligning and resizing into 1024 × 1024. When
loading images for editing, they are re-scaled to match the target resolution. The
images are divided into the training set, validation set and test set. Following
the repository of STGAN3, we take 637 images from the validation set to assess
the training process. We use the rest of the validation set and the training set
to train our model. The test set (nearly 20K) is used for evaluation. We con-
sider 13 distinctive attributes including: Bald, Bangs, Black Hair, Blond Hair,
Brown Hair, Bushy Eyebrows, Eyeglasses, Male, Mouth Slightly Open, Mustache,
No Beard, Pale Skin and Young. Since most images in CelebA have lower reso-
lution than 1024× 1024, our “high-resolution” MagGAN models are not exactly
trained with true high-resolution images. However, our results show the ability
of MagGAN scale up to 1024 × 1024 resolution.

MagGAN exploits the information of facial masks, which are obtained using
a pre-trained face parser with 19 classes (as mentioned in Sect. 3.1). Instead
of taking a multi-label hard mask, we take the probability of each class as soft
masks with smooth boundaries, which leads to improved generation quality.
All the facial masks are stored in resolution 256 × 256. The two attribute-part

3 STGAN: https://github.com/csmliu/STGAN.

https://github.com/csmliu/STGAN
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relation matrices AR+,AR− ∈ [0, 1]13×19 described in Sect. 3.2 characterize
the relation between each edit attribute and corresponding facial component
changes. Detailed definitions are in Supplementary.

Quantitative Evaluation. The performance of attribute editing are measured
in three aspects, i.e., (i) mask-aware reconstruction error (MRE), (ii) attribute
editing accuracy and (iii) image quality.

Table 1 shows that MagGAN decreases the MRE significantly, indicating
better preserving of regions that should be intact. This improvement is also
obvious in the editing results in Fig. 8. Table 1 also reports the PSNR/SSIM
score of the reconstructed image by keeping target attribute vector the same as
the source one. MagGAN also improves PSNR/SSIM significantly.

Fig. 6. Facial attribute editing accuracy of IcGAN [31], FaderNet [16], StarGAN [6],
AttGAN [9], STGAN [24], STGAN(256) and our model MagGAN(256) (from left to
right in rainbow colors in order). The last two models naming with “(256)” are the
ones with image resolution 256 that are resized into 128 for evaluation

Fig. 7. Facial attribute editing accuracy of STGAN and MagGAN on hat samples and
non hat samples of resolution 256 × 256

We also report the attribute editing accuracy by employing the pre-trained
attribute classification model from [24]. We follow the evaluation protocol used
in [9,24]. For each test image, reverse one of its 13 attributes at a time (1 → 0
or 0 → 1), and generate an image after each reversion; so there are 13 edited
images for each input image. The widely used evaluation metric is attribute edit-
ing accuracy, which measures the successful manipulation rate for the reversed
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Table 1. Comparison of quantitative results with SOTA

Methods MRE ↓ FID ↓ Avg Acc PSNR SSIM

AttGAN(128) 0.0713 10.23 64.9% 24.07 0.841

STGAN(128) 0.0627 7.75 85.8% 31.67 0.948

STGAN(256) 0.0530 1.21 90.4% 37.61 0.959

MagGAN(256) 0.0163 1.10 90.0% 40.25 0.984

MagGAN(512) 0.0141 1.20 89.1% 41.42 0.987

MagGAN(1024) 0.0130 1.31 91.0% 42.94 0.994

attribute each time, but ignores the attribute preservation error. Fig. 6 reports
the facial attribute manipulation accuracy of previous works IcGAN [31], Fader-
Net [16], AttGAN [9], StarGAN [6], STGAN [24] and our proposed MagGAN. To
build the strongest baseline, we also train our own STGAN model at resolution
256 × 256, optimizing all possible parameters; see details of the hyperparameter
tuning in Supplementary.

High Editing Accuracy v.s. Attribute-irrelevant Region Preserving.
As shown in Table 1, MagGAN at resolution 256 outperforms all the previous
reported numbers except STGAN(256) on average accuracy. In Fig. 6, com-
pared with STGAN(256), MagGAN(256) is better in “Mustache”, “No beard”,
“Gender”, “Age” and worse in “Bald”, “Bangs”, “Black Hair”, “Blonde Hair”,
“Brown Hair”. We conjecture that STGAN(256) achieves this high accuracy by
editing hat or scarf when they appear in the image; like coloring the hat to
golden to get an editing success of “Blonde Hair”. To verify this assumption, we
separate the testing set into two groups – samples with hat, samples without hat
by measuring the area ratio of hat in the face masks (we select threshold 0.1 to
decide if the sample contains a hat). The attribute editing accuracy is evaluated
on the two subsets respectively. Results in Fig. 7 show that the editing accuracy
of MagGAN decreases a lot on hat subset on several hat-related attributes, e.g.,
“Bald”, “Black Hair”, but on par with STGAN on non hat subsets. In this sense,
MagGAN editing success is even higher than our strongest baseline STGAN(256)
since it can preserve the attribute irrelevant regions, making editing more real.

To measure the image quality, we report FID (Fréchet Inception Distance)
score [10]. The FID score measures the distance between the Inception-v34 acti-
vation distributions of original images and the edited images. Table 1 shows
that the FID score improves significantly from resolution 128 to 256, but then
get stalled and insensitive to image quality for 256 and higher resolutions. This is
because the input size for Inception-v3 model is 299, and thus resolution increase
from 128 to 256 is significant. However, all high resolution generations are first
downsampled to evaluate the FID score. After all, MagGAN at all resolutions
achieves the comparable result with the best FID score. Finally, due to smaller

4 We pretrained an Inception-V3 model that achieves 92.69% average attribute clas-
sification accuracy on all 40 attributes of CelebA dataset.
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batches in training for high resolutions, FID scores of MagGAN(512) and Mag-
GAN(1024) are slightly lower than those of MagGAN(256).

Qualitative Evaluation. Apart from the quantitative evaluation, we visualize
some facial attribute editing results at resolution 256×256 in Fig. 8, and compare
our proposed model with the state-of-the-art method, i.e., STGAN [24] (as it is
the strongest baseline) and other variations.

Table 2. Results of user study for ranking methods on two subsets considering hat
wearing

Winner method w/ hat w/o hat Overall

MagGAN 59.2% 52.1% 55.7%

STGAN 37.7% 45.3% 41.5%

Tie 3.1 % 2.6% 2.8 %

User Study. We conduct user study on Amazon Turk to compare the generation
quality of STGAN and MagGAN. To verify that MagGAN performs better on
editing attribute relevant regions, we randomly choose 100 input samples from
test set, 50 samples with hat or scarf and 50 samples without (since STGAN
usually fails on person wearing hat). For each sample, 5 attribute editing tasks
are performed by STGAN and MagGAN (500 comparison pairs in total). All 5
tasks are randomly chosen from 13 attributes, for subjects with hat, we increase
the chance to select hair related attributes. The users are instructed to choose
the best result which changes the attribute more successfully considering image
quality and identity preservation. To avoid human bias, each sample pair is eval-
uated by 3 volunteers. The results are shown in Table 2, MagGAN outperforms
STGAN on both hat samples and without hat samples.

Fig. 8. Visual results of MagGAN variants on resolution 256 × 256. Each column rep-
resents edited images through one attribute reversing editing
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5 Ablation Study

We conduct three groups of ablation comparisons in image resolution of 256×256,
to verify the effectiveness of the proposed modules individually: (i) mask guided
reconstruction loss, (ii) spatially modified attribute feature, and (iii) usage of
SPADE normalization.

We consider seven variants, i.e., (i) STGAN: STGAN at resolution 256×256,
(ii) STGAN+cycle: STGAN with cycle-consistency loss instead of its original
reconstruction loss, (iii) STGAN w/ Lmre: STGAN plus mask guided recon-
struction loss, (iv) MagGAN w/o Lmre: MagGAN trained without mask guided
reconstruction loss, (v) MagGAN w/o SP: MagGAN without using SPADE, (vi)
MagGAN: our proposed model with the usage of mask-guided reconstruction loss
and make-guided attribute conditioning. (vii) MagGAN+Seg: Instead of using
a pre-trained face parser, build a face segmentation branch (adopting FCN[27]
architecture) into generator as sub-task, making the whole model fully trainable.

Mask-guided Reconstruction Loss. We compare three reconstruction loss:
(i) STGAN with only the reconstruction loss computed by reconstructed images,
(ii) cycle-consistency loss which is applied in StarGAN [6], (iii) two parts of
reconstruction loss (computed on reconstructed images and synthesized images
respectively) proposed in Sect. 3.2. Row 1–3 of Table 3 report the quantitative
results of STGAN applying each type of reconstruction loss respectively. We
observe that adding mask guided reconstruction loss to generator training can
effectively reduce Mask-aware Reconstruction Error (MRE). In Fig. 8, the syn-
thesized image of STGAN w/ Lmre on attribute “Bald” and “Blonde Hair” also
proves this assumption. But since the spatial information of mask is not directly
injected into generator, STGAN w/ Lmre still cannot preserve the attribute-
irrelevant regions well.

Table 3. Comparison of variants of MagGAN on 256 × 256

Methods MRE ↓ FID ↓ Avg Acc PSNR SSIM

(i) STGAN 0.0530 1.21 90.4% 37.61 0.959

(ii) STGAN+cycle 0.0530 1.31 87.3% 36.14 0.970

(iii) STGAN w/ Lmre 0.0289 1.33 95.6% 38.48 0.984

(iv) MagGAN w/o Lmre 0.0397 1.22 89.6% 39.35 0.980

(v) MagGAN w/o SP 0.0161 1.23 89.9% 40.40 0.982

(vi) MagGAN 0.0163 1.10 90.0% 40.25 0.984

(vii) MagGAN+Seg 0.0612 2.39 90.3% 40.10 0.983

Mask-guided Attribute Conditioning. Utilizing mask-guided attribute con-
ditioning instead of the spatially uniformed attribute conditioning provides gen-
erator with more spatial information of the interest regions. From Table 3, (i) v.s.
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(iv), (iii) v.s. (vi) illustrate that the MRE score decreases obviously when mask-
guided attribute conditioning is applied in generator. It implies that generator
effectively takes the regions of interest and edits on these local regions. Taking
advantage of both mask-guided reconstruction loss and attribute conditioning
strategy, MagGAN achieves the best MRE and FID. And the visual results in
Fig. 8 also show that MagGAN makes accurate editing on hair related attributes
(’Bold’, ’Blonde Hair’, etc .), by preserving the region of hat while only remove
or paint the hair. MagGAN w/o SP and MagGAN perform nearly the same as
(v) v.s. (vi), which demonstrates the denormalization method does not affect
much on performance. Finally, the quantitative results and visual results of (vii)
MagGAN+Seg are bad, which indicates the incorporating mask segmentation
branch as part of the generator is not a good choice. Since the mask-guided
reconstruction loss and attribute conditioning requires accurate masks, training
segmentation branch with generator from scratch makes the model hard to train
and undermines the editing accuracy.

Fig. 9. Comparison of training with vanilla single discriminator and multi-level Patch-
GAN discriminators on resolution 1024 × 1024: (a) attribute editing accuracy and (b)
visual results

Multi-level PatchGAN Discriminator for High Resolution Editing. We
apply PatchGAN discriminator to supervise training of high resolution image
generation. We are able to scale the generated image resolution up to 1024×1024.
In Fig. 9, we compare the 1024 version of training with a single discriminator
and with our proposed multi-level PatchGAN discriminators. Under this setting,
PatchGAN has 3 discriminators working on resolution 256 × 256, 512 × 512
and 1024, respectively. In Fig. 9 (a), when applying single vanilla discriminator,
the generator converges slower than using PatchGAN discriminator and early
stops at low editing accuracy. In Fig. 9 (b), editing effects on “Eyeglasses”,
“Gender” from PatchGAN are more obvious than original discriminator. We
assume PatchGAN discriminators provide more supervise signal on global and
local regions, thus helping generator learns more discriminative features for each
attribute. See more visual results in supplementary.
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6 Conclusion
In this paper, we propose MagGAN for high-resolution face image editing. The
key novelty of our work lies in the use of facial masks for achieving more accurate
local editing. Specifically, the mask information is used to construct a mask-
guided reconstruction loss and mask-guided conditioning in the generator. Mag-
GAN is further scaled up for high-resolution face editing with the help of Patch-
GAN discriminators. To our knowledge, it is the first time face attribute editing
is able to be applied on resolution 1024 × 1024.
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