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Abstract. The ability to detect out-of-distribution (OOD) samples is
vital to secure the reliability of deep neural networks in real-world appli-
cations. Considering the nature of OOD samples, detection methods
should not have hyperparameters that need to be tuned depending on
incoming OOD samples. However, most recently proposed methods do
not meet this requirement, leading to a compromised performance in
real-world applications. In this paper, we propose a simple and compu-
tationally efficient, hyperparameter-free method that uses cosine simi-
larity. Although recent studies show its effectiveness for metric learning,
it remains uncertain if cosine similarity works well also for OOD detec-
tion. There are several differences in the design of output layers from
the metric learning methods; they are essential to achieve the best per-
formance. We show through experiments that our method outperforms
the existing methods on the evaluation test recently proposed by Shafaei
et al. which takes the above issue of hyperparameter dependency into
account; it achieves at least comparable performance to the state-of-the-
art on the conventional test, where other methods but ours are allowed to
use explicit OOD samples for determining hyperparameters. Lastly, we
provide a brief discussion of why cosine similarity works so well, referring
to an explanation by Hsu et al.

1 Introduction

It is widely recognized that deep neural networks tend to show unpredictable
behaviors for out-of-distribution (OOD) samples, i.e., samples coming from a
different distribution from that of the training samples. They often give high
confidence (i.e., high softmax value) to OOD samples, not only to in-distribution
(ID) samples (i.e., test samples from the same distribution as the training sam-
ples). Therefore, it has been a major research topic to detect OOD samples in
classification performed by deep neural networks; many methods have been pro-
posed so far [1–8].
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A problem with the existing methods, especially those currently recognized
as the state-of-the-art in the community, is that they have hyperparameters spe-
cific to OOD detection. They determine these hyperparameters using a certain
amount of OOD samples as ‘validation’ data; that is, these studies assume the
availability of (at least a small amount of) OOD samples. This assumption, how-
ever, is unlikely to hold true in practice; considering the definition of OOD, it is
more natural to assume its distribution to be unknown. Even when the assump-
tion is indeed wrong, it will be fine if OOD detection performance is insensitive
to the choice of the hyperparamters, more rigorously, if the hyperparameters
tuned on the assumed OOD samples generalize well to incoming OOD samples
we encounter in practice. However, a recent study [9] indicates that this is not
the case, concluding that none of the existing methods is ready to use, especially
for the tasks with high-dimensional data space, e.g., image classification.

In this paper, we propose a novel method that uses cosine similarity for OOD
detection, in which class probabilities are modeled using softmax of scaled cosine
similarity. It is free of any hyperparameters associated with OOD detection, and
thus there is no need to access OOD samples to determine hyperparameters,
making the proposed method free from the above issue. We show through exper-
iments that it outperforms the existing methods by a large margin on the recently
proposed test [9], which takes the above issue of hyperparameter dependency into
account; it also attains at least comparable performance to the state-of-the-art
methods on the conventional test, in which the other methods but ours tune
hyperparameters using explicit OOD samples.

It should be noted that a concurrent work [10] also shows the effective-
ness of softmax of the scaled cosine similarity for OOD detection. Our method
is technically mostly the same, but the present paper shows several different
results/conclusions from their paper. The paper [10] shows a conjecture that the
scaling factor of the cosine similarity approximates the probability of an input
being in-distribution, contributing to improved detection performance. In this
paper, however, we show empirical evidence that this is not the case. It is also
noted that, although recent methods for metric learning [11–16] similarly employ
scaled cosine similarity as well, they do not guarantee its effectiveness on OOD
detection. There are several differences from them in the output layer’s design,
which contributes to detection accuracy. Concerning this, we provide a detailed
ablation study to clarify the method’s differences from common metric learning
approaches.

2 Related Works

2.1 Uncertainty of Prediction

It is known that when applied to classification tasks, deep neural networks often
exhibit overconfidence for unseen inputs. Many studies have been conducted to
find a solution to this issue. A popular approach is to evaluate uncertainty of a
prediction and use it as its reliability measure. There are many studies on this
approach, most of which are based on the framework of Bayesian neural networks
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or its approximation [17–20]. It is reported that predicted uncertainty is useful for
real-world applications [21–25]. However, it is still an open problem to accurately
evaluate uncertainty. There are also studies on calibration of confidence scores
[26–28]. Some studies propose to build a meta system overseeing the classifier
that can estimate the reliability of its prediction [29,30].

2.2 Out-of-Distribution (OOD) Detection

Detection Methods. A more direct approach to the above issue is OOD detec-
tion. A baseline method that thresholds confidence score, i.e., the maximum
softmax output, is evaluated in [1]. This study presents a design of experiments
for evaluation of OOD detection methods, which has been employed in the sub-
sequent studies. Since then, many studies have been conducted. It should be
noted that these methods have hyperparameters for OOD detection, which need
to be determined in some way. Some studies assume a portion of OOD samples
to be given and regard them as a ‘validation’ set, by which the hyperparemters
are determined.

ODIN [2] applies perturbation with a constant magnitude ε to an input x
in the direction of increasing the confidence score (i.e., the maximum softmax)
and then uses the increased score in the same way as the baseline. An observa-
tion behind this procedure is that such perturbation tends to increase confidence
score more for ID samples than for OOD samples. Rigorously, x is perturbed
to increase a temperature-scaled softmax value. Thus, ODIN has two hyperpa-
rameters ε and the softmax temperature. In the experiments reported in [2], ε
as well as the temperature are determined by using a portion of samples from a
target OOD dataset; this is done for each pair of ID and OOD datasets.

The current state-of-the-art of OOD detection is achieved by the methods
[3,4] employing input perturbation similar to ODIN. It should be noted that
there are many studies with different motivations, such as generative models
[31,32], a prior distribution [6], robustification by training networks to predict
word embedding of class labels [5], pretraining of networks [33,34], and batch-
wise fine-tuning [7].

In [4], a method that employs an ensemble of networks and similar input per-
turbation is proposed, achieving the state-of-the-art performance. In the training
step of this method, ID classes are split into two sets, one of which is virtually
treated as ID classes and the other as OOD classes. A network is then trained
so that the entropy for the former samples is minimized while that for the latter
samples is maximized. Repeating this for different K splits of classes yields K
leave-out classifiers (i.e., networks). At test time, an input x is given to these K
networks, whose outputs are summed to calculate ID class scores and an OOD
score, where x is perturbed with magnitude ε in the direction of minimizing the
entropy. In the experiments, ε, the temperature, and additional hyperparam-
eters are determined by selecting a particular dataset (i.e., iSUN [35]) as the
OOD dataset, and OOD detection performance on different OOD datasets is
evaluated.
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In [3], another method is proposed, which models layer activation over ID
samples with class-wise Gaussian distributions. It uses the induced Mahalanobis
distances to class centroids for conducting the classification as well as OOD
detection. It employs logistic regression integrating information from multiple
layers and input perturbation similar to ODIN, which possesses several hyper-
parameters. For their determination, it is suggested to use explicit OOD sam-
ples, as in ODIN [2]. Another method is additionally suggested to avoid this
potentially unrealistic assumption, which is to create adversarial examples for
ID samples [36] and use them as OOD samples, determining the hyperparame-
ters. However, even this method is not free of hyperparameters; the creation of
adversarial examples needs at least one (i.e., perturbation magnitude). It is not
discussed how to choose it in their paper.

Evaluation Methods. Most of the recent studies employ the following eval-
uation method [1]. Specifying a pair of ID and OOD datasets (e.g.., CIFAR-10
for ID and SVHN for OOD), it measures accuracy of distinguishing the OOD
samples and ID samples. As the task is detection, appropriate metrics are used,
such as accuracy at true positive rate (TPR) = 95%, area under the ROC curve
(AUROC), and under the precision-recall curve (AUPR). As is noted in Sect. 1,
most of the existing methods assume the availability of OOD samples and use
them to determine their hyperparameters. Note that these OOD samples are
selected from the true OOD dataset specified in this evaluation method. We will
refer to this one-vs-one evaluation.

Recently, Shafaei et al. have raised a concern about the dependency of the
existing methods on the explicit knowledge of the true OOD dataset, and pro-
posed a novel evaluation method that aims at measuring the practical per-
formance of OOD detection [9]. It assumes an ID dataset and multiple OOD
datasets D = {D1, . . .} for evaluation. Then, the evaluation starts with choosing
one dataset Di ∈ D and use the samples from it to determine the hyperparam-
eters of the method under evaluation; it then evaluates its detection accuracy
when regarding each of the other datasets in D (i.e., D\Di) as the OOD dataset,
reporting the average accuracy over D\Di. Note that this test returns the accu-
racy for each dataset in D (used for the assumed OOD dataset). We will refer
to this less-biased evaluation.

2.3 Cosine Similarity

The proposed method employs softmax of scaled cosine similarity instead of ordi-
nary softmax of logits. A similar approach has already been employed in recent
studies of metric learning, such as L2-constrained softmax [11], SphereFace [12],
NormFace [13], CosFace [14], ArcFace [15], AdaCos [16], etc. Although it may
seem straightforward to apply these methods to OOD detection, to the authors’
knowledge, there is no study that has tried this before.

These metric learning methods are identical in that they use cosine similarity.
They differ in i) if and how the weight w or the feature f of the last layer



Hyperparameter-Free OOD Detection Using Cosine Similarity 57

are normalized; ii) if and how margins are used with the cosine similarity to
encourage maximization of inter-class variance and minimization of intra-class
variance; and iii) how the scale parameter (i.e., s in (3)) is treated, i.e., as either
a hyperparameter, a learnable parameter [13], or other [16]. According to this
categorization, our method is the most similar to NormFace [13] and AdaCos
[16], in which both w and f are normalized and no margin is utilized. However,
our method still differs from these metric learning methods in that it predicts s
along with class probabilities at inference time. Ours also differs in that it uses
a single fully-connected layer to compute the cosine similarity, whereas these
metric learning methods use two fully-connected layers.

3 Proposed Method

3.1 Softmax of Scaled Cosine Similarity

The standard formulation of multi-class classification is to make the network
predict class probabilities for an input, and use cross-entropy loss to evaluate
the correctness of the prediction. The predicted class probabilities are obtained
by applying softmax to the linear transform Wf +b of the activation or feature
f of the last layer, and then the loss is calculated assuming 1-of-K coding of the
true class c as

L = − log
ew

�
c f+bc

∑C
i=1 ew

�
i f+bi

, (1)

where W = [w1, . . . ,wC ]� and b = [b1, . . . , bC ]�.
Metric learning attempts to learn feature space suitable for the purpose of

open-set classification, e.g., face verification. Unlike earlier methods employing
triplet loss [37,38] and contrastive loss [39,40], recent methods [13–15] modify
the loss (1) and minimize the cross entropy loss as with the standard multi-class
classification. The main idea is to use the cosine of the angle between the weight
wi and the feature f as a class score. Specifically, cos θi ≡ w�

i f/(‖wi‖‖f‖) is
used instead of the logit w�

i f + bi in (1); then a new loss is given as

L = − log
ecos θc

∑C
i=1 ecos θi

. (2)

The behavior of softmax, i.e., how soft its maximum operation will be,
depends on the distribution of its inputs, which can be controlled by a scal-
ing parameter of the inputs, called temperature T . This parameter is used for
several purposes [26,41]. In metric learning methods, it is employed to widen
the range [−1, 1] of cos θi’s inputted to softmax; specifically, all the input cosine
cos θi’s are scaled by a parameter s(= 1/T ), revising the above loss as

L = − log
es cos θc

∑C
i=1 es cos θi

. (3)
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3.2 Predicting the Scaling Parameter

In most of the metric learning methods employing similar loss functions, the
scaling parameter s in (3) is treated as either a hyperparameter chosen in a
validation step or a parameter automatically determined in the training step
[13,16] There is yet another method for determining s, which is to predict it from
f together with class probabilities. This makes the method hyperparameter-free.
Moreover, we empirically found that this performs the best. Among several ways
of computing s from f , the following works the best:

s = exp {BN(w�
s f + bs)}, (4)

where BN is batch normalization [42], and ws and bs are the weight and bias of
the added branch to predict s.

3.3 Design of the Output Layer

In the aforementioned studies of metric learning, ResNets are employed as a
base network and are modified to implement the softmax of cosine similarity.
Modern CNNs like ResNets are usually designed to have a single fully-connected
(FC) layer between the final pooling layer (i.e., global average pooling) and the
network output. As ReLU activation function is applied to the inputs of the
pooling layer, if we use the last FC layer for computing cosine similarity (i.e.,
treating its input as f and its weights as wi’s), then the elements of f take
only non-negative values. Thus, the metric learning methods add an extra single
FC layer on top of the FC layer and use the output of the first FC layer as f ,
making f (after normalization) distribute on the whole hypersphere. In short,
the metric learning methods employ two FC layers at the final section of the
network.

However, we found that for the purpose of OOD detection, having two fully-
connected layers does not perform better than simply using the output of the
final pooling layer as f . Details will be given in our experimental results. Note
that in the case of a single FC layer, as f takes only non-negative values, f resides
in the first quadrant of the space, which is very narrow subspace comparative to
the entire space.

To train the modified network, we use a standard method. In our experiments,
we employ SGD with weight decay as the optimizer, as in the previous studies
of OOD detection [2–5]. In several studies of metric learning [14,15,43], weight
decay is also employed on all the layers of networks. However, it may have
different effects on the last layer of the network employing cosine similarity,
where weights are normalized and thus its length does not affect the loss. In our
experiments, we found that it works better when we do not apply weight decay
to the last layer.

3.4 Detecting OOD Samples

Detecting OOD samples is performed in the following way. Given an input x, our
network computes cos θi (i = 1, . . . , C). Let imax be the index of the maximum
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of these cosine values. We use cos θimax
for distinguishing ID and OOD samples.

To be specific, setting a threshold, we declare x is an OOD sample if cos θimax

is lower than it. Otherwise, we classify x into the class imax with the predicted
probability es cos θimax /

∑
es cos θi .

4 Experimental Results

4.1 Experimental Settings

We conducted experiments to evaluate the proposed method and compare it
with existing methods.

Evaluation Methods. We employ the one-vs-one and less-biased evaluation
methods explained in Sect. 2.2. The major difference between the two is in the
assumption of prior knowledge about OOD datasets, which affects the determi-
nation of the hyperparameters of the OOD detection methods under evaluation.
Note therefore that the difference does not matter for our method, as it does not
need any hyperparameter; it only affects the other compared methods.

One-vs-one Evaluation. This evaluation assumes one ID and one OOD datasets.
A network is trained on the ID dataset and each method attempts to distinguish
ID and OOD samples using the network. Each method may use a fixed number of
samples from the specified OOD datasets for its hyperparameter determination.
We followed the experimental configurations commonly employed in the previous
studies [2–4].

Less-biased Evaluation. This evaluation uses one ID and many OOD datasets.
Each method may access one of the OOD datasets to determine its hyperparame-
ters but its evaluation is conducted on the task of distinguishing the ID samples
and samples from each of the other OOD datasets. We followed the study of
Shafaei et al. [9] with slight modifications. First, we use AUROC instead of
detection accuracy for evaluation metrics (additionally, accuracy at TPR= 95%
and AUPR-IN in the supplementary material), as we believe that they are better
metrics for detection tasks, and they are employed in the one-vs-one evaluation.
Second, we add more OOD datasets to those used in their study to further
increase the effectiveness and practicality of the evaluation.

Tasks and Datasets. We use CIFAR-10/100 for the target classification tasks
in all the experiments. Using them as ID datasets, we use the following OOD
datasets in one-vs-one evaluation: TinyImageNet (cropped and resized) [44],
LSUN (cropped and resized) [45], iSUN [35],1 SVHN [46] and Food-101 [47]
For the less-biased evaluation, we additionally use STL-10 [48], MNIST [49],
NotMNIST, and Fashion MNIST [50]. As for STL-10 and Food-101, we resize
their images to 32 × 32 pixels.
1 Datasets are available at https://github.com/facebookresearch/odin.

https://github.com/facebookresearch/odin
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Remark. We found that the cropped images of TinyImageNet and LSUN that are
provided by the GitHub repository of [2], which are employed in many recent
studies, have a black frame of two-pixel width around them; see the supple-
mentary material for details. Although we are not sure if this is intentional,
considering that the frame will make OOD detection easier, we use two versions
with/without the black frame in our experiments; the frame-free version is indi-
cated by ‘∗’ in what follows. In the main paper, we show mainly results on the
frame-free versions. Those on the original versions are shown in the supplemen-
tary material, although it does not affect our conclusion.

Networks and Their Training. For networks, we employ the two CNNs
commonly used in the previous studies, i.e., Wide ResNet [51] and DenseNet
[52] as the base networks. Following [2], we use WRN-28-10 and DenseNet-100-
12 having 100 layers with growth rate 12. The former is trained with batch size
= 128 for 200 epochs with weight decay = 0.0005, and the latter is trained with
batch size = 64 for 300 epochs with weight decay = 0.0001. Dropout is not used
in the both networks. We employ a learning rate schedule, where the learning
rate starts with 0.1 and decreases by 1/10 at 50% and 75% of the training steps.

The proposed method modifies the final layer and the loss of the base net-
works. Table 1 shows comparisons between the base networks and their modified
version. The numbers are an average over five runs and their standard deviations
are shown in parenthesis. It is seen that the modification tends to lower classifi-
cation accuracy by a small amount. If this difference does matter, one may use
the proposed network only for OOD detection and the standard network for ID
classification.

Table 1. Performance of the base networks and their modified versions for the proposed
method for the task of classification of ID (in-distribution) samples.

Network In-Dist Testing Accuracy

Standard Cosine

Dense-100-12 CIFAR-10 95.11(0.10) 94.92(0.04)

CIFAR-100 76.97(0.24) 75.65(0.12)

WRN-28-10 CIFAR-10 95.99(0.09) 95.72(0.05)

CIFAR-100 81.04(0.37) 78.53(0.28)

Compared Methods. The methods we compare are as follows: the baseline
method [1], ODIN [2], Mahalanobis detector [3]2, and leave-out ensemble [4]. The
last two methods are reported to achieve the highest performance in the case of
a single network and multiple networks, respectively. We conduct experiments
separately with the first three and the last one due to the difference in settings.
We report those with the leave-out ensemble in the supplementary material.
2 We used the publicly available code: https://github.com/pokaxpoka/deep Maha

lanobis detector.

https://github.com/pokaxpoka/deep_Mahalanobis_detector
https://github.com/pokaxpoka/deep_Mahalanobis_detector
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All these methods (but the baseline) have hyperparameters for OOD detec-
tion. For ODIN and the Mahalanobis detector, we follow the authors’ methods
[2,3] to determine them using a portion of the true OOD dataset. For the leave-
out ensemble (comparisons in the supplementary material), we use the values of
detection accuracy from its paper [4], in which the authors use a specific OOD
dataset (iSUN) for hyperparameter determination.

4.2 Comparison by Less-Biased Evaluation

We first show the performance of the four methods, i.e., the baseline, ODIN, the
Mahalanobis detector, and ours, measured by the less-biased evaluation method.
Figure 1 shows the results3. The details of the experimental settings are as fol-
lows. We use either CIFAR-10 or CIFAR-100 for the ID dataset. For the actual
OOD dataset, we choose one of the eleven datasets described above and evaluate
the OOD detection performance on each of the eleven ID-OOD pairs. For each
ID-OOD pair, we use one of the rest (i.e., ten datasets) as a hypothesized OOD
dataset, using which the hyperparameters are chosen for ODIN and Mahalanobis
detector. We iterate this for the ten datasets. For each method/setting, we eval-
uate five models trained from different initial values. Finally, we calculate, for
each method on each ID-OOD pair, the mean and standard deviation of AUROC
(a bar and its error bar in Fig. 1) over the five models and the ten hypothesized
datasets (for ODIN and Mahalanobis).

Fig. 1. OOD detection performance (AUROC) measured by the less-biased evaluation
[9] for the baseline method [1], ODIN, [2] and the Mahalanobis detector [3], and the
proposed one (denoted as ‘Cosine’). Other metrics, i.e., accuracy at TPR= 95% and
AUPR-IN, are reported in the supplementary material.

3 A complete table including other metrics, i.e., accuracy at TPR= 95% and AUPR-
IN, is shown in the supplementary material.
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Fig. 2. Dependency of detection performance (AUROC) on the assumed OOD datasets
(whose names are given in the horizontal axis) used for determining hyperparameters.
Mahalanobis detector (solid lines) [3] and our method (broken lines). CIFAR-100 is used
as ID and either LSUN(r) (in red color) or MNIST (in green color) is used as true OOD.
DenseNet-100-12 is used for the network. Our method does not have hyperparameters
and thus is independent of the assumed OOD dataset. (Color figure online)

It is seen from Fig. 1 that the proposed method consistently achieves better
performance than others. It is noted that the Mahalanobis detector, which shows
the state-of-the-art performance in the conventional (i.e., one-vs-one) evaluation,
shows unstable behaviors; the mean of AUROC tends to vary significantly and
the standard deviation is very large depending on the dataset used for hyperpa-
rameter determination. The same observation applies to ODIN.

This clearly demonstrates the issue with these methods, that is, their perfor-
mance is dependent on the choice of the hyperparameters. On the other hand,
the proposed method performs consistently for all the cases. This is also con-
firmed from Fig. 2, which shows a different plot of the same experimental result;
it shows AUROC for a single OOD dataset instead of the mean over multiple
OOD datasets shown in Fig. 1. It is seen that the performance of the Mahalanobis
detector varies a lot depending on the assumed OOD dataset. Additionally, it
can be seen that the dataset yielding the highest performance differs for differ-
ent true OOD datasets; iSUN, TIN(r), or Gaussian etc. is the best for detecting
LSUN(r) as OOD, whereas F-MNIST or NotMNIST is the best for detecting
MNIST as OOD.

4.3 Comparison by One-vs-one Evaluation

We then show the comparison of the same four methods in the one-vs-one eval-
uation, which is employed in the majority of the previous studies. We ran each
method five times from the training step, where the network weights are initial-
ized randomly, and report the mean and standard deviation here. Table 2 shows
the results. It is observed that the proposed method achieves better or at least
competitive performance to the others. When using DenseNet-100-12, the pro-
posed method consistently achieves higher performance than the Mahalanobis
detector on almost all the datasets.
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Table 2. OOD detection performance of the four methods measured by conventional
one-vs-one evaluation.

ID OOD AUROC ID OOD AUROC

Base [1] ODIN [2] Maha [3] Cosine Base [1] ODIN [2] Maha [3] Cosine

Dense-100-12 CIFAR-10 TIN (c) 94.90(0.43) 98.79(0.32) 94.48(1.19) 98.89(0.24) WRN-28-10 CIFAR-10 TIN (c) 93.86(0.90) 95.88(1.01) 95.99(1.04) 98.35(0.32)

TIN (c)* 93.26(0.85) 96.67(0.97) 97.36(0.39) 98.74(0.23) TIN (c)* 91.79(1.57) 92.17(2.19) 98.50(0.11) 98.17(0.33)

TIN (r) 92.67(1.23) 97.20(1.17) 98.91(0.23) 98.82(0.29) TIN (r) 89.21(2.65) 90.60(3.21) 99.15(0.18) 97.65(0.66)

LSUN (c) 95.57(0.20) 98.48(0.14) 89.06(3.21) 99.09(0.12) LSUN (c) 95.41(0.26) 97.20(0.15) 92.65(1.33) 99.19(0.07)

LSUN (c)* 93.72(0.39) 96.41(0.52) 93.63(0.69) 98.83(0.18) LSUN (c)* 93.67(0.50) 95.08(0.42) 96.90(0.35) 98.98(0.07)

LSUN (r) 94.28(0.52) 98.43(0.49) 99.00(0.23) 99.19(0.22) LSUN (r) 92.45(1.48) 94.48(1.70) 99.37(0.13) 98.59(0.34)

iSUN 93.62(0.83) 97.92(0.71) 98.95(0.21) 99.20(0.19) iSUN 91.22(2.05) 93.25(2.43) 99.29(0.10) 98.48(0.36)

SVNH 90.28(2.47) 95.11(0.48) 98.89(0.37) 99.11(0.36) SVNH 94.43(1.30) 93.34(3.60) 99.28(0.09) 99.52(0.24)

Food-101 89.87(0.44) 92.06(0.71) 80.38(3.83) 93.98(0.54) Food-101 89.71(0.90) 89.18(2.37) 90.43(1.54) 93.95(0.41)

CIFAR-100 TIN (c) 83.70(4.00) 94.48(3.21) 92.97(1.63) 97.90(0.29) CIFAR-100 TIN (c) 84.47(1.24) 91.72(1.10) 92.58(2.60) 96.76(0.34)

TIN (c)* 79.32(4.14) 88.54(4.27) 93.18(0.39) 97.31(0.45) TIN (c)* 80.90(0.90) 87.08(1.29) 96.45(0.30) 95.91(0.42)

TIN (r) 77.07(6.35) 88.14(6.92) 96.81(0.27) 97.82(0.53) TIN (r) 76.67(2.03) 86.28(2.43) 97.82(0.13) 95.84(0.67)

LSUN (c) 82.92(0.59) 94.72(0.59) 91.65(2.96) 96.73(0.31) LSUN (c) 81.91(1.31) 91.75(0.44) 80.48(1.14) 96.09(0.62)

LSUN (c)* 78.46(0.91) 87.89(1.13) 85.44(1.85) 95.52(0.32) LSUN (c)* 79.17(1.25) 88.06(0.46) 91.13(0.52) 94.92(0.65)

LSUN (r) 78.44(5.41) 90.38(4.76) 97.00(0.15) 97.59(0.75) LSUN (r) 78.00(1.95) 87.90(1.83) 97.80(0.15) 95.18(0.86)

iSUN 76.89(6.28) 88.27(6.49) 97.04(0.10) 97.45(0.73) iSUN 77.29(2.15) 87.07(2.00) 97.66(0.14) 95.39(0.55)

SVNH 77.36(2.83) 91.60(0.73) 96.48(0.68) 96.90(0.79) SVNH 79.82(2.49) 93.46(1.05) 97.96(0.49) 97.52(0.41)

Food-101 84.38(0.48) 90.82(0.60) 67.14(1.39) 90.79(0.49) Food-101 89.25(0.40) 90.76(0.35) 91.15(0.66) 92.53(0.38)

4.4 Ablation Study

Although the proposed method employs softmax of cosine similarity equivalent
to metric learning methods, there are differences in detailed designs, even com-
pared with the most similar NormFace [13]. To be specific, they are the scale
prediction (referred to as Scale in Table 3), the use of a single FC layer instead
of two FC layers (Single FC), and non-application of weight decay to the last FC
layer (w/o WD). To see their impacts on performance, we conducted an abla-
tion study, in which WRN-28-10 is used for the base network and TinyImageNet
(resized) is chosen for an OOD dataset.

Table 3 shows the results. Row 1 shows the results of the baseline method
[1], which are obtained in our experiments. Row 2 shows the results obtained
by incorporating the scale prediction in the standard networks; to be specific,
s predicted from f according to (4) is multipled with logits as s · (wif + bi)
(i = 1, . . . , C), which are then normalized by softmax to yield the cross-entropy
loss. As is shown in Row 2, this simple modification to the baseline boosts the
performance, which is surprising.

Row 3 and below show results when cosine similarity is used for OOD detec-
tion. Rows 3 to 6 show the results obtained when a fixed value (i.e., 16, 32, 64,
128) is chosen for s. It is observed from this that the application of scaling affects
a lot detection performance, and it tends to be sensitive to their choice. This
means that, if s is treated as a fixed parameter, it will become a hyperparameter
that needs to be tuned for each dataset. Row 7 shows the result when the scale
is predicted from f as in Row 1 but with cosine similarity. It is seen that this
provides results comparable to the best case of manually chosen scales.

Row 8 shows the results obtained by further stopping application of weight
decay to the last layer, which is the proposed method. It is seen that this achieves
the best performance for both CIFAR-10 and CIFAR-100. Rows 9 and 10 show
the results obtained by the network having two FC layers in its final part, as in
the recent metric learning methods. Following the studies of metric learning, we
use 512 units in the intermediate layer. In this architecture, it is better to employ
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Table 3. Ablation tests for evaluating the contribution of different components (i.e.,
‘Cosine’, ‘Single FC’, ‘Scale’, and ‘w/o WD’; see details from the main text) of the
proposed method. AUROCs for detection of OOD samples (TinyImageNet (resized))
are shown.

Cosine Single FC Scale w/o WD C-10 C-100

(1) Baseline [1] 89.22 76.59

(2) ✗ ✓ Pred ✗ 95.74 88.70

(3) ✓ ✓ 16 ✗ 94.09 82.76

(4) ✓ ✓ 32 ✗ 96.53 89.02

(5) ✓ ✓ 64 ✗ 87.06 95.66

(6) ✓ ✓ 128 ✗ 62.02 94.82

(7) ✓ ✓ Pred ✗ 95.16 91.30

(8) ✓ ✓ Pred ✓ 97.66 95.84

(9) ✓ ✗ Pred ✗ 94.71 87.55

(10) ✓ ✗ Pred ✓ 89.90 86.96

weight decay in the last layer as with the metric learning methods (i.e., Rows 9 vs
10). In conclusion, these results confirm that the use of cosine similarity as well
as all the three components are indispensable to achieve the best performance.

5 Effectiveness of the Scaling Factor

5.1 Explanation by Hsu et al.

Our method and that of Hsu et al. [10] share the key component, the scaled cosine
similarity, s cos θi, in which the angle θi with the i-th class centroid as well as
the scale s are both predicted from the input x. In [10], not s but its inverse (i.e.,
1/s), denoted by g(x), is predicted in a different way. The authors argue that
g(x) approximates p(din|x), the probability of the input x being in-distribution.
They then argue that this contributes to better OOD detection performance.
However, this explanation contradicts with empirical observation, and therefore
it must be wrong. Figure 3 (the upper row) shows the histograms of g(x), which
is computed according to the method of [10], for ID and OOD samples. Here,
we use CIFAR-100 for the ID dataset and several others for OOD datasets; test
samples are used for both. As is clearly seen, g(x) is statistically not larger for ID
samples than OOD samples, although its value should be consistently larger for
ID than OOD samples if their argument is true. The lower row of Fig. 3 shows
the histograms of the cosine similarity that is used for detecting OOD samples,
showing its ability to distinguish ID and OOD samples. In short, g(x) cannot be
seen as an approximation of p(din|x) and it alone cannot detect OOD samples
with good accuracy. The authors show that using dropout regularization induces
different behavior of g(x) between ID and OOD samples, but it is not employed
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Fig. 3. Upper: Histograms of g(x) of [10] for samples from ID (CIFAR-100) and dif-
ferent OOD datasets, respectively. Lower: Histograms of the cosine similarity for the
same ID and OOD samples. The network is WRN-28-10 and dropout is not employed.

in the main experiments evaluating OOD detection performance. Although it
is not clear why the use of dropout makes g(x) behave (slightly) differently, it
should be concluded that the aforementioned claim on g(x) is not the reason for
the good performance of OOD detection.

5.2 Why Is Predicting s Essential?

Then, why is it essential to make the network predict the scale s. We remind
the readers that we use cos θi without s to detect OOD samples, which is the
case as well with [10]. Thus, it is obviously associated not with prediction but
with learning; that is, it contributes to better learning of feature space for OOD
detection. An observation from our experiments is that s tends to be small at the
initial training stage and becomes larger as the training goes, as shown in Fig. 4.
This is reasonable since small s induces high entropy (i.e., softmax scores being
more uniform and flattened) and large s induces low entropy; at the initial stage,
there are a lot of misclassifications due to random weight initialization, leading
to large cross-entropy loss, which will be compensated by making s small. More
importantly, once the network has learned to correctly classify ID samples, or
specifically, once it has learned to be able to consistently output max-logits for
the correct classes, then s will start to become large; the minimization of the loss
will be achieved not by reorganizing the feature space but by making s larger.
We conjecture that this mechanism serves as a regularization to avoid overfitting
the learned feature space to ID samples, while such overfitting occurs in the
training of the standard networks. We believe that this leads to the difference
in the OOD detection performance between the proposed cosine networks and
standard networks.
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Fig. 4. Evolution of the scale s in first training epoch. The x-axis shows the training
step.

6 Summary and Conclusions

In this paper, we have presented a novel method for OOD detection, and experi-
mentally confirmed its superiority to existing approaches. We started our discus-
sion with the observation that existing methods have hyperparameters specific
to OOD detection, and their performance can be sensitive to their determina-
tion. The proposed method does not have such hyperparameters. It is based
on the softmax of scaled cosine similarity and can be used with any networks
by replacing their output layer. Training is performed by the standard method,
i.e., minimizing a cross-entropy loss on the target classification task. Although
a similar approach has already been employed in metric learning methods, the
proposed method has several technical differences, which are essential to achieve
high OOD detection performance, as was demonstrated in our ablation test.
We have shown experimental comparisons between the proposed method and
the existing methods using two different evaluation methods, i.e., the less-biased
evaluation recently proposed in [9] and the conventional one-vs-one evaluation.
In the former evaluation, which takes the above issue with hyperparameter deter-
mination into account, the proposed method shows clear superiority to others.
Our method also shows at least comparable performance to them in the conven-
tional evaluation. These results support the practicality of the proposed method
in real-world applications. Lastly, we have briefly discussed why cosine similarity
is effective for OOD detection.
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