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Abstract. Filter pruning has drawn more attention since resource con-
strained platform requires more compact model for deployment. How-
ever, current pruning methods suffer either from the inferior performance
of one-shot methods, or the expensive time cost of iterative training
methods. In this paper, we propose a balanced filter pruning method
for both performance and pruning speed. Based on the filter importance
criteria, our method is able to prune a layer with approximate layer-wise
optimal pruning rate at preset loss variation. The network is pruned in
the layer-wise way without the time consuming prune-retrain iteration.
If a pre-defined pruning rate for the entire network is given, we also intro-
duce a method to find the corresponding loss variation threshold with
fast converging speed. Moreover, we propose the layer group pruning
and channel selection mechanism for channel alignment in network with
short connections. The proposed pruning method is widely applicable
to common architectures and does not involve any additional training
except the final fine-tuning. Comprehensive experiments show that our
method outperforms many state-of-the-art approaches.

1 Introduction

Despite the fact that neural network based approaches have achieved significant
performance improvement in many computer vision tasks, the deployment of
these over-parameterized model often requires high computing power and large
memory footprint, which are not available on resource constrained platform such
as mobile phone. To tackle this problem, researchers propose different methods
for network compression and inference acceleration, including lightweight archi-
tecture designing [1,2], network pruning [3–5], weight quantization [6,7], matrix
factorization [8], knowledge distillation [9], etc.
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Among these methods, network pruning has drawn much attention since it
is able to reduce the number of model parameters and operations simultane-
ously. It can be categorized as structure pruning and non-structure pruning.
Non-structure pruning sets unimportant weights to zero to achieve high sparsity
[10,11], while sparse operation requires specialized hardware [12] or software [13]
libraries to speed up the inference process, which limits the usage of the pruned
network. Structure pruning is also recognized as filter pruning or channel prun-
ing since it is implemented by removing filters in the original network. This
coarse-grained filter-level pruning can be treated as modification to the network
architecture, so it does not damage the usability of the model. In this paper,
we propose a filter pruning method to shrink network size and accelerate its
inference at the same time.

The key issue of filter pruning is selecting the unimportant filters to be pruned
at a given compression ratio. To solve this combinatorial optimization problem,
most methods evaluate the importance of filters then either prune them in a one-
shot manner, or iteratively prune-retrain the model. On the one hand, one-shot
approaches often prune filters in each layer based on some pre-defined prune rate
and particular properties of the trained model [5,14–18], which are more prone
to over-pruning or under-pruning at certain layers. On the other hand, iterative
pruning based on greedy criteria increases the time cost and computation bur-
den [17,19,20]. Also, some of these methods jointly optimize original objective
function with compression, thus the loss function becomes more complex and
difficult to converge due to the hyper-parameters introduced. Filter pruning is
by far an unsolved problem, since the optimal prune rate of each layer is hard
to obtain.

Our approach is a balanced method which is able to approximate the layer-
wise optimal pruning rate with limited time and computing resource. Given a
trained convolutional network, we observe that removing a convolution kernel in
certain layer leads to different changes of loss function and accuracy, while the
accuracy drop has a highly positive correlation with the absolute value of loss
function change, which we denote it as the loss variation. Based on the criteria of
gradient and magnitude of filters, the contribution to loss variation of different
filters can be accurately estimated. As these gradients are able to compute by
back propagation, we select batches of data to evaluate the importance of each
filter per layer by inferences within single epoch. We propose an algorithm to
obtain the maximum pruning rate in each layer, constrained by a threshold of loss
variation. We use binary search to find the combination of filters which are sorted
by importance, so the maximized number of filters can be pruned in one-shot.
After all layers are done, the pruned model is fine-tuned only once. To verify the
effectiveness of our method, we conduct a series of filter pruning experiments
using CIFAR-10 [21] and ImageNet [22] dataset. Our result outperforms the
state-of-the-art algorithms with many major network architectures, including
VGG [23], GoogLeNet [24], ResNet [25], DenseNet [26], etc.

In summary, our main contribution is the proposed filter pruning method to
approximately obtain layer-wise optimal pruning rate, which is able to prune a
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layer with maximum pruning rate at given loss variation without the time con-
suming prune-retrain iteration. For pre-defined pruning rate of entire network,
our method is able to converge to the particular pruning rate without addi-
tional fine-tuning. We introduce binary search to help the layer-wise pruning
and the global pruning rate converging, so that our method balances the per-
formance of pruned network and pruning speed. The proposed method is widely
applicable to common architectures of convolutional networks. Comprehensive
experiments show that our method is able to achieve higher compression ratio
with lower accuracy drop compared with the state-of-the-art approaches.

2 Related Work

Network pruning obtains a more compact model by removing redundant con-
nections from the original network, thereby reducing the number of parameters
and operations. Early researches on this topic are mainly addressed by remov-
ing weight-level connections for sparse pruning. Since the applicability of sparse
network is limited, recent works are more focused on structure pruning methods,
which can be further categorized as one-shot filter pruning and iterative filter
pruning.

Sparse Pruning. Inspired by neurobiology, the optimal brain damage [3] and
the optimal brain surgeon [4] removed unimportant connections according to the
analysis of Hessian matrix of the loss function. Han et al. [10] determined the
importance of weights in the network through the weight value, and reduce
the redundancy by deleting smaller weights. Srinivas [11] proposed a data-
free method to remove the redundant parameters of the fully-connected layer.
Because of the sparsity of the weight tensor, these unstructured pruned model
only accelerate the inference process on specialized platforms.

One-Shot Filter Pruning refers to all redundant filters in a network are
pruned before fine-tuning. Some methods estimated the importance of filters
based on the characteristics of the filter itself, including L1 norms [5], geomet-
ric median [17], etc. Others evaluated the filter redundancy by analyzing the
information of the feature map. Hu et al. [14] used the sparsity of the output
of each layer to choose the redundant filter. He et al. [16] used the least square
to reconstruct the error and LASSO regression to remove filters layer by layer.
Luo et al. [15] pruned filters based on the statistical information of next layer.
Yu et al. [27] proposed a method based on importance score propagation, which
back-propagates the score of the final response layer to each filter to determine
whether the filter is redundant. However, these methods usually depend on a
heuristic metric to set the pruning rate of each layer in advance. Although one-
shot pruning algorithm is capable to reduce time cost, it is prone to suffer from
inferior compression ratio and accuracy.
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Iterative Filter Pruning selectively prune one or more filters followed by
training to recover the model performance in each iteration. Liu et al. [28] per-
forms sparse training on the scale factor of BN, and removes the filter with a
smaller scale factor according to the pruning rate corresponding to each layer.
Molchanov et al. [29] proposed a criterion based on Taylor expansion to evaluate
the importance of filters, then applied with greedy pruning strategy. Reinforce-
ment learning was introduced in AMC [19] for pruning, it set rewards by con-
straining FLOPs, accuracy and specific compression ratios in continuous space.
You et al. [30] proposed the Gate Batch Normalization module, and added the
FLOPs hyper-parameters to the training objective to compress the model. Huang
et al. [20] proposed a data-driven method to learn the architecture of the net-
work, introduced a new scaling factor and corresponding sparse regularization,
and defined pruning as a joint sparse regularization optimization problem. Lin
et al. [31] added a mask to each filter and obtained the final model by gen-
erative adversarial learning. The dynamic pruning scheme [32] globally pruned
unimportant filters and adjusted the network dynamically, with a mechanism
to restore the filters that were mis-pruned. Instead of pruning negligible fil-
ters, recent work [33] proposed an optimization objective to generate multiple
identical filters then remove them to achieve pruning goals. A major drawback
for iterative pruning is the extensive computational burden. Additionally, the
pruning strategies based on training iterations often change the optimization
function, and even introduce a large number of hyper-parameters, which will
make the training more difficult to converge.

3 Our Method

3.1 Filter Importance Evaluation

Given a trained network, we randomly select a group of filters and set their
weights to zero, then we use the pruned network to forward all the samples
to calculate loss variation and accuracy drop. It is observed that the accuracy
drop is almost directly proportional to loss variation. Figure 1 has shown the
correlation between loss variation and accuracy drop for VGG16 trained on
CIFAR-10.

For computer vision application, the majority of trained models are con-
volutional neural networks. We denote the dataset D = {X ,Y} consists of N
samples, X = {x0,x1, · · · ,xN},Y = {y0, y1, · · · , yN}, where xi and yi are image
and label of i-th sample, respectively. In a trained network with L layers, the
filters can be parameterized as W = {w(1)

1 ,w(2)
1 , · · · ,w(CL)

L }, i.e. for k-th fil-
ter in l-th layer, the weights are w(k)

l ∈ R
Cl−1×p×p with l ∈ [1, 2, · · · , L] and

k ∈ [1, 2, · · · , Cl], where Cl represents the number of channels in l-th layer. We
denote the pruned network as W ′ which sets a subset of filters of W to zero, i.e.
w(k)

l = 0 represents the k-th filter of l-th layer is pruned. Since the accuracy
drop is directly related to the loss variation, the filter pruning can be defined as
the optimization problem:
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Fig. 1. Correlation between loss variation and accuracy drop. Samples are collected
from pruning results of VGG16 trained on CIFAR-10.

min
W′

|L (D;W ′) − L(D;W)|
s.t. ‖W ′‖0 � β ‖W‖0

(1)

where L(·) is the loss function and γ = 1−β is the specific pruning rate. Solving
combinatorial optimization problem (1) is impractical for modern networks, so
we evaluate the importance of filters by certain criterion, then use it as the
prior knowledge for pruning. The saliency of single filter can be evaluated by
calculating the loss variation on the dataset after pruning:

ΔL(D;W,w(k)
l = 0) =

∣
∣
∣L(D;W,w(k)

l = 0) − L(D;W)
∣
∣
∣ (2)

we have first-order approximation by Taylor expansion:

∣
∣
∣L(D;W,w(k)

l = 0) − L(D;W)
∣
∣
∣ ≈

∣
∣
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∣
∣

∂L(D;W)

∂w(k)
l

w(k)
l

∣
∣
∣
∣
∣
= G

(k)
l (3)

In this paper, G(k)
l is used as the criterion to evaluate the importance of k-th

filter in l-th layer. To prune a single filter from a network, the least value of (3)
of all the filters is selected. It is consistent with the intuition that the filter with
smaller gradient and magnitude should be pruned first.

3.2 Layer-Wise Optimal Pruning Rate Searching

The value of G(k)
l is calculated once by forwarding and backwarding all samples

from the dataset. In greedy-based methods, the filters are sorted by importance
and the unimportant filters are pruned together by their ranks. We propose a
layer-wise pruning method to improve the sub-optimal solution caused by cross-
layer greedy strategies.
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Algorithm 1. Optimal pruning rate searching in l-th layer
1: Input: original network weights W, {scorek} with k ∈ [1, 2, · · · , Cl], threshold θ,

original network loss ϕ
2: Output: new weights W ′ with l-th layer pruned
3: rank ← Cl/2
4: step ← rank
5: {indexk} ← sort({scorek}) � in ascending order, scoreindex1 is the smallest
6: pruneid ← {}
7: while True do
8: if step < 1 then
9: break

10: end if
11: Pruning: w

(i)
l ← 0 with i ∈ [index1, index2, · · · , indexrank]

12: Forward all samples to compute the loss ϕ′ with l-th layer pruned
13: step ← step/2
14: if |ϕ′ − ϕ| > θ then
15: rank ← rank − step
16: else
17: pruneid ← {indexk} with k ∈ [1, 2, · · · , rank]
18: rank ← rank + step
19: end if
20: end while
21: Pruning: w

(k)
l ← 0 for k ∈ pruneid

22: Return W ′

Suppose there are N = M × P samples in the dataset D, where M is the
batch size and P is the number of batches. In l-th layer, we have scorek to
represent the importance of k-th filter evaluated on the dataset.

scorek =
P∑

i=1

zik
Cl

(4)

In (4), Cl is the number of filters in l-th layer, zik is the index of k-th filter
in ascending order after i-th batch running and sorting for G

(k)
l . As Sect. 3.1

mentioned, the decrease of model accuracy is consistent with the loss variation,
so we can use the loss variation as a hyper-parameter for the layer-wise pruning.
We treat it as a search problem, aiming to find maximum number of filters to
be pruned per layer to achieve high compression ratio within the loss variation
range. We define the original trained network loss as ϕ = L(D;W) and introduce
a parameter θ that represents the threshold of the loss variation. To accelerate
the pruning, we use binary search to avoid the re-evaluation of filter pruning one
by one. The algorithm that searches for the optimal pruning rate in one layer is
described in Algorithm 1. The ablation study for Algorithm 1 indicates that the
binary search speeds up the pruning process by 5–10×.
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Fig. 2. Group pruning method for shortcut connections in ResNet-like networks. For
one stage, the last layers of each block are pruned together in a group such that they
have the same retained filters. Gray color indicates the corresponding filter is pruned.
Since stage a has 3 blocks and the shortcut in each block is an identity connection, a
channel select layer (in red) is introduced to mask out the pruned channels of input;
while stage b has 3 blocks with first shortcut connected by convolutional downsampling,
so it can be pruned in a group. (Color figure online)

For network architectures with shortcut connections, such as ResNet, the
output channels of the last convolutional layers of each block must be the same,
as shown in Fig. 2. It is because that the shortcut connections require the output
channels of these layers are aligned. Therefore, we put the last layers of each block
in one stage together as a group for pruning. We define d as the depth of each
block in one stage, s denotes the maximum value of d. Empirically, we find that
the lower-level convolution kernels tend to have weaker representative capability
than the high-level ones, so the scoring weight of the lower-level convolution
kernels are reduced. The weighted sum for group pruning is conducted by Eq. 5:

scorek =
K∑

i=1

di
s

· scorek,di
(5)

where di represents depth of i-th block in one stage, with i ∈ [1, 2, · · · ,K] and
K is the number of blocks. During pruning, the filters with the same index in
the group will be pruned together according to scorek ranking. For some stages,
the input channels are directly short connected to blocks, hence we introduce
a non-parametric layer for channel selection, whose output channel layout is
copied from the group pruning result. After the layer-wise optimal pruning rate
searching, the layer-wise results are connected for the pruned network, then it
is fine-tuned on the training dataset to obtain the final model.
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Algorithm 2. Filter pruning with global pruning rate γ

1: Input: original network weights W, γ, initial value of threshold θinit, pruning rate
tolerance ε

2: Output: pruned network weights W ′ with global pruning rate γ′, s.t. |γ′ − γ| � ε
3: θupper ← θinit

4: θlower ← 0
5: γ′ ← 0
6: Forward/backward network W on D once, compute original loss ϕ and {scorek}l

for l ∈ [1, 2, · · · , L] and k ∈ [1, 2, · · · , Cl] � Eq. 3 and 4.
7: while |γ′ − γ| > ε do
8: W ′ ← W
9: for all l in L layers do

10: run pruning Alg. 1 with (W, {scorek}l, θupper, ϕ)
11: update W ′ with pruned l-th layer
12: end for
13: γ′ ← 1 − ‖W ′‖0 / ‖W‖0

14: step ← θupper − θlower

15: if γ′ > γ then
16: θupper ← (θupper + θlower)/2
17: else
18: θlower ← θupper
19: θupper ← θupper + 2 × step
20: end if
21: end while
22: Finetune the pruned network L (D; W ′) once.
23: Return W ′, γ′, θupper

3.3 Pruning with Global Constraints

In many cases, there are constraints for the whole network, such as global pruning
rate γ defined in (1), performance loss, etc. Here we take pre-defined pruning rate
γ as the global constraint. We find that there is a positive correlation between
the loss variation and the layer-wise pruning rate, it implies that the loss vari-
ation also positively correlated to the global pruning rate. More details of the
statistics are listed our supplementary material. We propose a similar binary
search method for the loss variation threshold θ, thereby approximate the global
pruning constraint γ. The algorithm is described in Algorithm 2.

Compared to iterative training based pruning methods, our approach only
needs fine-tuning the entire network for once. Although pruning with global
constraint requires binary search of the loss variation threshold, it only involves
multiple times of forwarding, which runs much faster than multiple times of re-
training. As the following experiments indicate, our method is able to achieve
the balance between performance and pruning speed.
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4 Experiments

We evaluate our algorithm on two commonly used datasets (CIFAR-10 and Ima-
geNet) with popular networks implemented by PyTorch [34]. The pruning results
and performance are compared with several state-of-the-art algorithms in recent
years.

4.1 Experiments Settings

Experiments Setup for CIFAR-10. CIFAR-10 is a 10-class image classifi-
cation dataset containing 50,000 training images and 10,000 test images. In our
experiments, we apply VGG16 BN with a plain structure [23], GoogLeNet with
Inception module [24], ResNet-56/110 with residual module [25] and DenseNet-
40 with dense connections [26] to verify the effectiveness of our algorithm. For the
ResNet-56/110 network on CIFAR-10, the first shortcut of each stage (exclud-
ing the first stage) is a downsample and data-filling layer. In order to ensure the
channels are aligned, the channel selection layer is added as shown in Fig. 2. In
the fine-tuning phase, we use a NVIDIA Tesla V100 GPU to train the pruned
model. We solve the optimization problem by SGD with a Nesterov momentum
of 0.9 and weight decay of 1e–4. The network is trained for 400 epochs. The
initial learning rate is 0.01, it is decayed by a factor of 10 every 100 epochs. The
batch size is 128.

Experiments Setup for ImageNet. ImageNet [22] is a large image dataset
with 1000 classes, containing 1,281,167 training images and 50,000 validation
images. In the experiments, we use ResNet-50 to demonstrate our pruning perfor-
mance on two NVIDIA Tesla V100 GPUs. In the fine-tuning phase, the optimizer
parameters are set to be the same as the parameters in CIFAR-10 experiments.
The pruned network is fine-tuned for 120 epochs with batch size 256. The initial
learning rate is 0.001 and divided by 10 every 30 epochs.

4.2 Results on CIFAR-10

VGG16 BN. The performance of different compression algorithms are shown
in Table 1. PR denotes the pruning rate and FLOPs denotes floating point oper-
ations. Ours-0.12 indicates that the threshold of loss variation is 0.12. Compared
with L1, SSS, GAL-0.1, and HRank-A, Ours-0.12 has clear advantages for both
FLOPs and parameters. Ours-0.12 reduces FLOPs by 70.29% and deletes 87.72%
of the parameters, while its Top-1 accuracy keeps almost the same as the base-
line. For Ours-0.2, although the reductions of FLOPs and parameters are almost
the same as those of HRank-B, the Top-1 accuracy is 2.36% higher than that of
HRank-B.
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Table 1. The pruning results on CIFAR-10. L1*, SSS* and ApoZ* are the results in
GAL.

Model Method Top-1 (%) FLOPs (PR) Parameters (PR)

VGG16 BN Baseline 93.96 313.73M (0.00%) 14.98M (0.00%)

L1* [5] 93.40 206.00M (34.34%) 5.40M (63.95%)

SSS* [20] 93.02 183.13M (41.63%) 3.93M (73.76%)

GAL-0.1 [31] 93.42 171.89M (45.21%) 2.67M (82.17%)

HRank-A [35] 93.43 145.61M (53.59%) 2.51M (83.24%)

Ours-0.12 93.95 93.22M (70.29%) 1.84M (87.72%)

HRank-B [35] 91.23 73.70M (76.51%) 1.78M (88.12%)

Ours-0.2 93.59 73.81M (76.47%) 1.45M (90.32%)

GoogLeNet Baseline 95.05 1.52B (0.00%) 6.15M (0.00%)

L1* [5] 94.54 1.02B (32.89%) 3.51M (42.93%)

Random 94.54 0.96B (36.84%) 3.58M (41.79%)

GAL-0.05 [31] 94.56 0.94B (38.16%) 3.12M (49.27%)

ApoZ* [14] 92.11 0.76B (50.00%) 2.85M (53.66%)

HRank-A [35] 94.53 0.69B (54.60%) 2.74M (55.45%)

Ours-0.0045 95.19 0.57B (62.50%) 1.76M (71.38%)

HRank-B [35] 94.07 0.45B (70.39%) 1.86M (69.76%)

Ours-0.01 94.77 0.40B (73.68%) 1.14M (81.46%)

DenseNet-40 Baseline 94.81 282.92M (0.00%) 1.04M (0.00%)

Liu et al.-40% [28] 94.81 190.00M (32.84%) 0.66M (36.54%)

GAL-0.01 [31] 94.61 182.92M (35.34%) 0.67M (35.58%)

HRank-A [35] 94.24 167.41M (40.82%) 0.66M (36.54%)

Zhao et al. [36] 93.16 156.00M (44.86%) 0.42M (59.62%)

Ours-0.02 94.61 154.34M (45.45%) 0.59M (43.27%)

HRank-B [35] 93.68 110.15M (61.07%) 0.48M (53.85%)

Ours-0.04 93.49 95.69M (66.18%) 0.37M (64.42%)

ResNet-56 Baseline 93.26 125.49M (0.00%) 0.85M (0.00%)

L1* [5] 93.06 90.90M (27.56%) 0.73M (14.12%)

NISP [27] 93.01 81.00M (35.45%) 0.49M (42.35%)

HRank-A [35] 93.17 62.72M (50.02%) 0.49M (42.35%)

He et al. [16] 90.80 62.00M (50.59%) -

Ours-0.019 93.64 59.84M (52.31%) 0.52M (38.82%)

GAL-0.8 [31] 91.58 49.99M (60.16%) 0.29M (65.88%)

HRank-B [35] 90.72 32.52M (74.08%) 0.27M (68.24%)

Ours-0.055 91.54 25.72M (79.50%) 0.25M (70.59%)

ResNet-110 Baseline 93.50 252.89M (0.00%) 1.72M (0.00%)

L1* [5] 93.30 155.00M (38.71%) 1.16M (32.56%)

GAL-0.5 [31] 92.55 130.20M (48.52%) 0.95M (44.77%)

HRank [35] 93.36 105.70M (58.20%) 0.70M (59.30%)

Ours-0.007 93.73 98.04M (61.23%) 0.89M (48.26%)

ResNet56/110. The results for ResNet56/110 are shown in Table 1. Firstly, we
look into the result of ResNet56. Compared with L1, Ours-0.019 obtains more
FLOPs and parameters reductions with higher Top-1 accuracy, and even its
accuracy is 0.38% higher than the baseline. Although Ours-0.019 has a slightly
lower pruning rate than NISP and HRank-A, it achieves larger reductions in
FLOPs (52.31% vs. 35.45% by NISP and 52.31% vs. 50.02% by HRank-A) and
better Top-1 accuracy (93.64% vs. 93.01% by NISP and 93.47% vs. 93.17% by
HRank-A). Therefore, it can be verified that our method is able to greatly reduce
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the amount of calculation and memory footprint while achieves better model
performance. From the result, Ours-0.055 can obtain a network with higher
compression ratio, its FLOPs is reduced by 79.50%, parameters are pruned by
70.59%, at the cost of Top-1 accuracy drop by only 1.72%. Compared with GAL-
0.8, Ours-0.055 achieves much higher pruning rate of FLOPs and parameters
though their accuracies are almost the same. Meanwhile, it outperforms HRank-
B in all three aspects.

Next, we analyze the result of ResNet110. Ours-0.007 leads to an improve-
ment in Top-1 accuracy over the baseline model (93.73% vs. 93.50%) with 61.23%
FLOPs and 48.26% parameters reductions. Its performance is significantly bet-
ter than L1 and GAL-0.5. Compared with HRank, Ours-0.007 achieves higher
reduection rate of FLOPs (61.23% by Ours-0.007 vs. 58.20% by HRank) and
better accuracy (93.73% by Ours-0.007 vs. 93.36% by HRank), although the
parameter pruning rate is lower.

DenseNet-40. Table 1 summarizes the result of DenseNet-40. Although Liu
et al. [28] retains the same accuracy as the baseline, the compression ratio is
relatively low, reducing FLOPs by only 32.84%. For Ours-0.02, 45.45% of FLOPs
and 43.27% of the parameters are reduced, and the decrease of accuracy is only
0.20%. Ours-0.02 achieves a better performance compared with HRank-A and
Zhao et al. [36]. Compared with GAL-0.01, Ours-0.02 has a big gain on both
FLOPs and parameters pruning rate with the same Top-1 accuracy. For Ours-
0.04, the Top-1 accuracy is 0.19% lower than that of HRank-B, but our method
obtains more reductions of FLOPs and parameters.

GoogleNet. The results of GoogleNet are shown in Table 1. Ours-0.0045
obtains 95.19% Top-1 accuracy, which is even 0.14% higher than the baseline,
and 64.47% of FLOPs and 73.17% of parameters are removed. It outperforms
L1, Random, GAL-0.05, APoZ and HRank-A. Furthermore, we set the thresh-
old to 0.01 to increase the pruning rate of the network. Ours-0.01 achieves a
better performance than HRank-B (94.77% acc vs. 94.07% by HRank-B, 73.68%
reduction of FLOPs vs. 70.39% by HRank-B, 81.46% reduction of parameters
vs. 69.76% by HRank-B).

4.3 Results on ImageNet

Experiments are also conducted on the ImageNet dataset using ResNet50, and
the results are shown in Table 2. As indicated by the results, our method has
achieved a significant gain on both performance and compression ratios com-
pared with several state-of-the-art methods. Specifically, we set the thresholds to
0.05, 0.09, 0.2 and 0.35 respectively to obtain different pruning rates. Ours-0.05
outperforms GAL-0.5, SSS-26 and HRank-A. It removes 43.03% FLOPs from
baseline, while still yields 75.79% Top-1 accuracy and 92.82% Top-5 accuracy,
improves the result of SSS-32 [20] and He et al. [16] by a large margin. In addi-
tion, Ours-0.09 achieves 75.04% Top-1 accuracy and 92.29% Top-5 accuracy with
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53.30% and 40.16% reductions of FLOPs and parameters, respectively. Moreover,
compared to GDP-0.6, GAL-0.5-joint, GAL-1, GDP-0.5 and HRank-B, Ours-0.2
has apparent advantages in all aspects, including Top-1/Top-5 accuracy as well
as FLOPs and parameters reductions. For Ours-0.35, 75.80% FLOPs and 68.55%
parameters are removed, its 70.58% Top-1 accuracy and 90.00% Top-5 accuracy
are significantly better than those of GAL-1-joint and ThiNet-50. Compared
with HRank-C, Ours-0.35 achieves higher Top-1 and Top-5 accuracy with the
similar FLOPs and parameters reductions. Therefore, the ImageNet experiments
indicate that our method also works well on large and complex datasets.

Table 2. Pruning results of Resnet-50 on ImageNet.

Method Top-1 (%) Top-5 (%) FLOPs (PR) Parameters (PR)

Baseline 76.15 92.87 4.09B (0.00%) 25.50M (0.00%)

SSS-32 [20] 74.18 91.91 2.82B (31.05%) 18.60M (27.06%)

He et al. [16] 72.30 90.80 2.73B (33.25%) –

Ours-0.05 75.79 92.82 2.33B (43.03%) 17.93M (29.69%)

GAL-0.5 [31] 71.95 90.94 2.33B (43.03%) 21.20M (16.86%))

SSS-26 [20] 71.82 90.79 2.33B (43.03%) 15.60M (38.82%)

HRank-A [35] 74.98 92.33 2.30B (43.76%) 16.15M (36.67%)

Ours-0.09 75.04 92.29 1.91B (53.30%) 15.26M (40.16%)

GDP-0.6 [32] 71.19 90.71 1.88B (54.03%) –

GAL-0.5-joint [31] 71.80 90.82 1.84B (55.01%) 19.31M (24.27%)

GAL-1 [31] 69.88 89.75 1.58B (61.37%) 14.67M (42.47%)

GDP-0.5 [32] 69.58 90.14 1.57B (61.61%) –

HRank-B [35] 71.98 91.01 1.55B (62.10%) 13.77M (46.01%)

Ours-0.2 73.06 91.30 1.31B (67.97%) 10.84M (57.49%)

GAL-1-joint [31] 69.31 89.12 1.11B (72.86%) 10.21M (59.96%)

ThiNet-50 [15] 68.42 88.30 1.10B (73.11%) 8.66M (66.04%)

HRank-C [35] 69.10 89.58 0.98B (76.04%) 8.27M (67.59%)

Ours-0.35 70.58 90.00 0.99B (75.80%) 8.02M (68.55%)

4.4 Results on Object Detection Task

The proposed method is also applicable to other major computer vision tasks
such as object detection. We take the SSD [37] (PyTorch version) as an exam-
ple, its backbone network is similar to VGG16 and we prune it with VOC0712
dataset. Table 3 shows that our method is effective for object detection task, for
example, it removes 30.92% FLOPs and 34,80% Parameters from baseline with
improvement of 0.1% mAP. In fact, it is widely applicable to any network with
common CNN structures.
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Table 3. Pruning results of SSD on VOC0712.

Method mAP (%) FLOPs (PR) Parameters (PR)

Baseline 77.68 31.40B (0.00%) 26.29M (0.00%)

Ours-0.05 77.78 21.69B (30.92%) 17.14M (34.80%)

Ours-0.1 77.14 18.27B (41.82%) 14.17M (46.10%)

Ours-0.3 76.45 12.22B (61.08%) 9.29M (64.66%)

Ours-0.5 75.83 9.69B (30.92%) 6.87M (16.67%)
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Fig. 3. Statistics of pruned (orange) and retained (blue) filters of ResNet50 on Ima-
geNet with Ours-0.2 method. Shortcuts with convolutional layers are not included.
(Color figure online)

4.5 Filter Pruning Analysis

As shown in Fig. 3, we reveal the pruning details about Ours-0.2 result on
ImageNet dataset. We count the number of pruned/retained filters in all the
layers except the shortcut connections with convolutional filters of ResNet50.
For simplicity, the filter numbers of layers in the same block have been added
together, the full result of each layer can be found in our supplementary material.

In ResNet50, there are 16 residual-blocks and one convolutional layer.
Figure 3 shows that the pruned filters mainly distribute in the high-level blocks.
The filters of the high-level blocks contain more semantic information in detail,
some of which are redundant. Empirically, removing these filters has less impact
on the performance of the network. Meanwhile, the pruning rate of each block
is different as illustrated in Fig. 3, which also proves that our method attempts
to search for the optimal pruning rate in each layer.
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5 Conclusions

In this paper, we propose a method to search the optimal pruning rate in a
layer-wise manner and only needs fine-tuning for once. Based on the filter impor-
tance criterion derived from loss variation and first-order approximation, con-
volutional networks can be pruned efficiently. The group pruning and channel
selection mechanism are also introduced to adapt with shortcut connections in
networks. For practical usage, binary search the threshold accelerates pruning
at a given global pruning rate for the entire network without extra fine-tuning.
Experiments demonstrate that our method outperforms previous state-of-the-
art pruning methods on different datasets and networks. The code is available
at https://github.com/Nuctech-AI/LBS pruning.
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