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Abstract. We present Vax-a-Net; a technique for immunizing convolu-
tional neural networks (CNNs) against adversarial patch attacks (APAs).
APAs insert visually overt, local regions (patches) into an image to
induce misclassification. We introduce a conditional Generative Adver-
sarial Network (GAN) architecture that simultaneously learns to synthe-
sise patches for use in APAs, whilst exploiting those attacks to adapt a
pre-trained target CNN to reduce its susceptibility to them. This app-
roach enables resilience against APAs to be conferred to pre-trained mod-
els, which would be impractical with conventional adversarial training
due to the slow convergence of APA methods. We demonstrate transfer-
ability of this protection to defend against existing APAs, and show its
efficacy across several contemporary CNN architectures.

1 Introduction

Convolutional neural networks (CNNs) are known to be vulnerable to adver-
sarial examples: minor changes made to an image that significantly affect the
classification outcome [10,31]. Adversarial examples may be generated by pixel-
level perturbation of the image, introducing covert yet fragile changes that induce
misclassification [4,8,10,19]. More recently, adversarial patches or ‘stickers’ have
been proposed [3,7,8], creating overt changes within local image regions that
exhibit robustness to affine transformation, and even to printing. Despite the
increasing viability of such ‘adversarial patch attacks’ (APAs) to confound CNNs
in the wild, there has been little work exploring defences against them (Fig. 1).

The core contribution of this paper is a new method to defend CNNs against
image misclassification due to APAs. Existing defences typically seek to detect
and remove patches in a pre-processing step prior to inference; e.g. exploiting the
high visual salience of such patches. Yet the manipulation or removal of salient
content often degrades model performance (Table 1). To avoid these problems we
propose adapting the method of adversarial training to the realm of APAs. We
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Fig. 1. Vax-a-Net vaccinates pre-trained CNNs against adversarial patch attacks
(APAs); small image regions crafted to induce image misclassification. A shark is cor-
rectly classified by a VGG CNN (left), but fooled by an APA [3] (middle). Vax-a-Net
applies defensive training to improve the CNN’s resilience to the APA (right). Visual-
izations show CNN attention (via Grad-CAM [25]).

leverage the idea of generative adversarial networks (GANs) [9] to simultaneously
synthesise effective adversarial patches to attack a target CNN model, whilst fine-
tuning that target model to enhance its resilience against such attacks. Existing
APA methods synthesise a patch via optimizations that take several minutes to
converge [3,8]. In order to incorporate patch synthesis into the training loop,
patch generation is run via inference pass on the Generator which takes less
than one second. Furthermore, patch generation is also class-conditional; a single
trained generator can create patches of many classes. Moreover, we demonstrate
that the protection afforded to the model transfers to also defend against existing
APA techniques [3,8].

We show for the first time that adversarial training may be leveraged to
adapt a pre-trained CNN model’s weights to afford it protection against state
of the art APAs. We demonstrate this for both untargeted attacks (seeking
misclassification) and targeted attacks (seeking misclassification to a specific
class) over several contemporary CNN architectures. We demonstrate that a
CNN may be ‘vaccinated’ against two state of the art APA techniques [3,8]
despite neither being invoked in that process. Immunising a CNN model against
APA via further training, contrasts with existing APA defences that filter images
to mitigate patches at inference time. We show our method better preserves
classification accuracy, and has a higher defence success rate than inference-time
defences [11,20].

The adoption of CNNs within safety-critical autonomous systems opens a
new facet of cyber-security, aimed on one hand to train networks resilient to
adversarial attacks, and on the other to evaluate resilience by developing new
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attacks. This paper makes explicit that connection through adversarial training
to immunise CNNs against this emerging attack vector.

2 Related Work

Szegedy et al. introduced adversarial attacks through minor perturbations of
pixels [31] to induce CNN image misclassification. Goodfellow et al. later intro-
duced the fast gradient sign method (FGSM, [10]) to induce such perturbations
quickly in a single step, exploiting linearity of this effect in input space. These
methods require access to the target model in order to backpropagate gradients
to update pixels, inducing high frequency noise that is fragile to resampling.
Later work improved robustness to affine transformation [19], whilst minimising
perceptibility of the perturbations [4]. Gittings et al. [8] improved robustness
using Deep Image Prior [34] to regularise perturbations to the manifold of nat-
ural images. Nevertheless current attacks remain susceptible to minor scaling
or rotation. Other work made use of generative architectures to produce more
effective attacks [1,2,28,35].

Adversarial Patch Attacks. Brown et al. demonstrated that adversarial
patches could be used to fool classifiers; they restricted the perturbation to a
small region of the image and explicitly optimised for robustness to affine trans-
formations [3]. Both Brown et al., and later Gittings et al. [8] backpropagate
through the target model to generate ‘stickers’ that can be placed anywhere
within the image to create a successful attack. This optimization process can
take several minutes for one single patch. Karmon et al. showed in LaVAN that
the patches can be much smaller if robustness to affine transformation is not
required [14] but require pixel-perfect positioning of the patch which is imprac-
tical for real APAs. In the complementary area of object detection (rather than
image classification, addressed in this paper) Liu et al. disabled an object detec-
tor using a small patch in one corner of the frame [16]. Eykholt et al. applied
adversarial patches to traffic signs, explicitly optimising for printability [7]. Chen
et al. performed a similar attack on an object detector with Stop signs [5]. Thys
et al. attacked a person detector using a printable patch [33].

Defences at Training Time. Whilst introducing adversarial examples,
Szegedy et al. also proposed adversarial training to defend against them [31].
Adversarial training is a form of data augmentation that introduces adversar-
ial examples during the training process in order to promote robustness. This
method was impractical when first proposed due to the slow speed of producing
adversarial examples making it infeasible to do so during training, but this was
resolved by Goodfellow et al.’s FGSM [10], and later others with more general
fast gradient methods [17,26]. Kurakin et al. applied adversarial training to the
ImageNet dataset for the first time [15]. Jang et al. make use of a recursive attack
generator for more effective adversarial training on MNIST and CIFAR-10 [13].
Papernot et al. applied the idea of distilling the knowledge of one neural network
onto another in a way that masks the gradients at test time and prevents an
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Fig. 2. Proposed architecture for using adversarial training to robustify a model f
against adversarial patch attacks. The conditional patch generator G can synthesise
adversarial patches for f attacking multiple classes. We alternately train G and f to
promote the resilience of the model against APAs [3,8].

attacker from being able to use backpropagation [21]. All the above only train
or fine-tune models to defend against adversarial image examples, rather than
defending against localised patch attacks i.e. APAs as in our work.

Defences at Inference Time. Meng and Chen observed that by approximating
the manifold of natural images it is possible to remove perturbations within
an adversarial image as a pre-process at inference time. By projecting the full
image onto this manifold [18]; they approximated the input image using an
autoencoder. Samangouei et al., and separately Jalal et al., use a GAN in place
of an autoencoder [12,24] to similarly remove adversarial perturbations.

Naseer et al. [20] have created one of the few defences against localised per-
turbations i.e. APAs. They observe that adversarial patches are regions of the
image with especially high gradient (this is likely how they draw attention over
other areas of the image). By applying local gradient smoothing (LGS) – concep-
tually the opposite of a bilateral/edge-preserving blur – patches are neutralised
but at the cost of lowering the classification accuracy on clean images, since clas-
sifiers rely upon structural edge detail as a recognition cue. Hayes [11] created
a different method to defend against localised adversarial attacks. The defence
is split into two stages: detection and removal. To detect the patch they create
a saliency map using guided backpropagation and assume that a collection of
localised salient features implies that there is a patch. To remove the patch, an
image in-painting algorithm [32] is applied to the masked region cleaned up via
some morphological filtering.

Rather than attempt to detect and erase adversarial patches, Vax-a-net takes
a generative adversarial approach to simultaneously create attack patches and
fine-tune the model to ‘vaccinate’ it against APAs.

3 Method

Consider a CNN classifier f : Rm → R
k pre-trained to map a source image x to

vector of probabilities f(x), encoding the chance of the image containing each
of a set of classes c ∈ Y. Adversarial image attacks introduce a perturbation
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Fig. 3. Representative patches sampled from our generator at training epochs 500–
2500 for two attack classes. Patches were generated to defend a VGG-19 model trained
on ImageNet.

r ∈ R
m to that source image such that arg maxi(fi(x + r)) �= arg maxi(fi(x)).

We say such attacks are untargeted; seeking only to induce misclassification. If
our aim is to introduce a perturbation r such that arg maxi(fi(x + r)) = c we
say the attack is targeted to a specific class (i).

Most adversarial images x + r are covert attacks; typically a barely percept-
able r, distributed across the whole image, is sought. By contrast, adversarial
patch attacks (APAs) have been introduced as overt attacks, in which an adver-
sarial patch (‘sticker’) is synthesised and composited into a region of an image in
order to induce misclassification. We define a region of interest (ROI) via binary
mask M ∈ [0, 1]. In this case we seek perturbation r, which can be large, to
create a composite image

x̂ = M � r + (1 − M) � x (1)

where � is element-wise multiplication. A single adversarial patch capable of
attacking multiple images can be created by sampling x in mini-batches from
a set of training images (versus learning r over a single image, as is typical for
whole image case), as we now explain.

3.1 Conditional Patch Generation

Our aim is to defend a pre-trained CNN classifier model against adversarial patch
attacks exclusively through modifications in the training process. Although this
has been achieved with good success for adversarial image examples, the pro-
cess of adversarial training used in that case does not apply straightforwardly to
the case of adversarial patches. Existing methods of adversarial training require
patches to be synthesised at each step of the training process, which is impracti-
cal as existing APA methods can take several minutes to synthesise patches. To
mitigate this, we adapt the idea of a conditional Deep Convolutional Generative
Adversarial Network (DC-GAN) [23], to synthesise effective adversarial patches
while simultaneously training the model to defend against those patches.
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Figure 2 illustrates the Vax-a-Net architecture; a conditional patch generator
G is used to synthesise patches which are then applied via a differentiable affine
transformation and compositing operation to a training image. The training
image is then classified via the target CNN f which we wish to defend; this
model plays the role of discriminator in the GAN.

Our conditional patch generator G takes an input of a noise vector z, accom-
panied by a one-hot vector encoding the class c that the attack is targeting, and
produces an adversarial patch of size 64×64. It consists of five up-convolutional
layers with filter size 4×4. The number of output channels for the hidden layers
are 1024, 512, 256, 128 respectively. The first layer has a stride of 1 and no
padding, the remainder have a stride of 2 and 1 pixel of zero-padding. We use
batch normalisation after each layer, and leaky-ReLu activation. Our proposed
loss function for the generator is

LG = Ec,z,x,t,lJ(f(A(G(z, c), x, l, t)), c), (2)

where A is the patch application operator, which we will define and explain
further in Sect. 3.2, and J is the cross-entropy loss between the output of f and
the target class.

Fig. 4. Patches sampled from our conditional generator G to attack an undefended
VGG-19 model. (Color figure online)

In our work we explore G capable of producing effective patches for 1–50
different ImageNet classes (Sect. 4.4). Figure 4 shows the patches that a condi-
tional generator for 10 classes can produce after 500 epochs of training without
training the discriminator, i.e. these are patches effective at attacking the unde-
fended network. Figure 3 shows how patch content evolves as training proceeds
beyond the initial training, taking into account the discriminator. The patches
resemble abstract versions of the object they are attacking, but with striking
colour to attract attention away from other objects.
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3.2 Patch Application and Target Model

The output of our generator G(z, c) is an image of size 64 × 64, which we must
turn into a patch and apply to the image. First we apply a circular mask to
create a round patch (after [3,8]). Next we apply the patch p to the image x
at location l and with an affine transformation t. We denote the output of this
operation as A(p, x, l, t). We use an expectation over transformation to ensure
the patch works in any location and with any affine transformation applied. In
our training, we enable random rotation of up to π/4, scaling to between 1% and
25% of the image, and translation to any location on the image.

The training process consists of two stages. Initially the discriminator (classi-
fier) is frozen, and we train our generator to produce effective adversarial patches.
We then alternate between training the generator and discriminator for each
batch, in the usual manner for training a GAN.

The loss function for G was defined in Eq. 2. Our loss function for f is

Lf = Ec,z,x,w,t,l(J(f(A(G(z, c), x, l, t)), y) + J(f(x), y) + λJ(f(w), c)), (3)

where w are images of class c. Recall that J(f(x), y) is the cross-entropy loss
between the output of CNN f applied to classify the image x and the ground
truth class y. In practice to approximate the expectation we sample x in mini-
batches from a set of training images, and for each image we randomly pick c �= y
from our set of attack classes (Sect. 4), l, t from fixed distributions L, T , and
z from a standard normal distribution. The first term of the loss ensures that
the model correctly classifies images with patches, the second ensures that the
model continues to correctly classify images without patches, and the third is
to ensure that it continues to correctly classify images of class c. We empirically
selected the weight λ of the third term to have a value of 2.

3.3 Training Methodology

The architecture of our generator is close to standard for a GAN, and in place of
the discriminator we have a CNN classifier which we intend to robustify. Instead
of using the discriminator as a tool to enable the generator to learn how to sample
from some underlying distribution from which the training data are drawn (e.g.
the distribution of natural images), we are using a similar architecture to perform
a different task. The main difference stems from our final goal; to end up with
a discriminator that is not fooled by any patches (hence a generator with a
low success rate), which is the opposite of a regular GAN. Another difference
is that our discriminator is a classifier for many (here, 1000 ImageNet classes)
not a binary classifier for real/fake, again meaning that the generator will never
be able to achieve its goal since the goalposts constantly move i.e. there is no
underlying static distribution that it will approximate.

We pre-train the generator for 500 epochs before alternating the training of
both for each batch. For the generator we use an Adam optimiser with learning
rate 0.001 and for the discriminator, Adam with learning rate of 2 × 10−7.
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Fig. 5. Training losses and success rates for our VaN defence. (a) shows the losses for
G and f . Recall that for the first 500 epochs f is not trained, hence why its line is
missing. (b) shows the training success rates of patches from G applied to the current
f (blue), as well as the original f (green). It also shows the success of f at classifying
images from Y, with (orange) and without (red) patches, and also A (purple) see Sect. 4
(Color figure online)

Figure 5 shows both the losses and the success rates on the training data for
both G and f . We observe that during the 500 epoch pre-training phase for G
its loss LG becomes close to zero and its attack success rate climbs to ∼80%,
showing that we can produce effective adversarial patches with our conditional
generator. Once the discriminator is updated, it quickly learns not to be fooled
by the patches, so the success rates for f increase while those for G decrease.
The success rate of patches produced by G when applied to the original model
is quite erratic, but declines over time. This confirms that f is diverging from
its original state, and that the set of patches effective at fooling it diverges from
those that originally fooled the undefended model.

Table 1. Control: Accuracy of models over the set of test images without attacks
Î, reported for all ImageNet classes (Y) and the subset of these classes used to form
patches for APA (A). Reported as top-1 accuracy for the undefended model, and the
model defended by our method (D-VaN) or baselines.

Method All classes Y Attack classes A [8]

VGG Inception IRN-v2 VGG Inception IRN-v2

Undefended 0.692 0.770 0.788 0.616 0.704 0.772

D-VaN/Ours 0.725 0.772 0.803 0.908 0.868 0.884

D-WM 0.492 – 0.523 0.396 – 0.476

D-LGS 0.476 0.688 0.708 0.492 0.660 0.692



Vax-a-Net: Training-Time Defence Against Adversarial Patch Attacks 243

Table 2. Success rate of defences against adversarial patch attacks covering 10% or
25% of the image. We report figures for our Vax-a-Net defence (D-VaN) as well as
baseline defences and undefended models. The defence success rate is the proportion
of images classified correctly despite the application of APA (higher is better).

Architecture Defence A-ADS [3] A-DIP [8]

10% 25% 10% 25%

VGG Undefended 0.041 0.006 0.016 0.001

D-VaN(D) 0.410 0.147 0.422 0.154

D-Van(U) 0.642 0.495 0.643 0.483

D-WM 0.232 0.136 0.212 0.101

D-LGS 0.120 0.020 0.115 0.008

Inception Undefended 0.068 0.014 0.082 0.028

D-VaN(D) 0.513 0.235 0.537 0.303

D-VaN(U) 0.684 0.541 0.689 0.542

D-LGS 0.237 0.069 0.201 0.066

IRN-v2 Undefended 0.093 0.023 0.087 0.035

D-VaN(D) 0.607 0.350 0.546 0.299

D-VaN(U) 0.750 0.642 0.746 0.628

D-WM 0.455 0.365 0.438 0.347

D-LGS 0.252 0.072 0.218 0.060

4 Experiments and Discussion

We evaluate our proposed Vax-a-Net (VaN) method for defending against adver-
sarial patch attacks (APAs) on image classification models trained using three
popular network architectures; VGG-19 [27], Inception-v3 [30], and Inception-
ResNet-v2 (IRN-v2) [29].

Baselines. We compare the efficacy of our Vax-a-Net defence (D-VaN) against
2 baseline APA defences: the local gradient smoothing (D-LGS) method of
Naseer et al. [20] and the watermark removal method (D-WM) of Hayes [11]. We
test the effectiveness of our defence and the baseline defences against 2 baseline
patch attacks; the adversarial stickers (A-ADS) method of Brown et al. [3], and
the deep image prior based (A-DIP) method of Gittings et al. [8]. For all attacks
we used public open source implementations, but for defences due to absence of
author code we use our own implementations in the open-source PyTorch library
[22]. Due to the architecture of the pre-trained network available in PyTorch and
the nature of the defence we were unable to implement D-WM on the Inception-
v3 model, and results for this model were not originally reported.

Datasets. We evaluate over the ImageNet [6] dataset containing 1k object
classes Y, using the published training (1.2M images) and test (50k images;
50 per class) partitions. For each of the architectures tested we use a model
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Table 3. Success rate of attacks against our models defended by Vax-a-Net, as well as
models defended with the baselines, and undefended models. The attack success rate is
the proportion of images classified as the adversarial target class when APA is applied
(lower is better).

Architecture Defence A-ADS [3] A-DIP [8]

10% 25 % 10% 25%

VGG Undefended 0.910 0.990 0.962 0.999

D-VaN(D) 0.053 0.385 0.075 0.353

D-VaN(U) 0.012 0.031 0.010 0.035

D-WM 0.516 0.544 0.553 0.661

D-LGS 0.553 0.903 0.577 0.952

Inception Undefended 0.880 0.979 0.871 0.953

D-VaN(D) 0.047 0.332 0.027 0.214

D-VaN(U) 0.016 0.046 0.008 0.017

D-LGS 0.557 0.765 0.645 0.833

IRN-v2 Undefended 0.884 0.949 0.881 0.923

D-VaN(D) 0.004 0.180 0.018 0.238

D-VaN(U) 0.005 0.016 0.005 0.020

D-WM 0.304 0.284 0.314 0.267

D-LGS 0.587 0.825 0.679 0.875

pre-trained on ImageNet, distributed with PyTorch. We refer to these as unde-
fended models. Our proposed defence (D-VaN) involves further training of
undefended models using the same training set. The test set comprises 50k
images upon which attacks are mounted, each by inserting one adversarial patch.
Let this unaltered test set be Î. The patch is crafted to encourage an image con-
taining object of ground truth class y ∈ Y to be misclassified a single target
class c ∈ A; we use the subset of 10 attack classes A ⊂ Y proposed by Gittings
et al. [8]. We evenly distribute these attack classes across the test set; let this
set of attack images be I.

Metrics. We measure the attack success rate as the proportion of I, contain-
ing patches crafted to indicate misclassification as c ∈ A result in those image
being misclassified as a; i.e. the success rate of a targeted attack. We measure
the defence success rate as the proportion of I that are correctly classified
as their true class y (despite the APA). Thus the inverse of the defence success
rate, is the untargeted attack success rate i.e. where any misclassification occurs
due to the APA. All success rates are expressed as the percentage of the 50k
attack image set I constructed with the APA analysed in that experiment. All
experiments were run for 1000 iterations training and 5 restarts.
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Fig. 6. Success rates of defended VGG-19 networks against APAs for patches covering
up to 25% of the image.

4.1 D-VaN vs Baseline Defences

We first evaluate the performance of our defence (D-VaN) at reducing the effec-
tiveness of adversarial patches synthesised by existing APA attack methods A-
ADS [3] and A-DIP [8]. Both of these methods are white-box attacks, that run
backpropagation through the model in order to generate patches to attack it.

We mount such attacks against our defence, the two baseline defences, and
an undefended model as a control. In the case of the baseline methods we use
patches that are trained on the undefended network, and then apply them to
the defended network, since the defence layers are not usually differentiable. In
the case of our model we attack it using patches generated on both the defended
and undefended networks; D-VaN(D)/D-VaN(U). This measures transferability
of the learned protection against attack from our generator G to the A-ADS
and A-DIP attacks. We report both D-VaN(D) and D-VaN(U) because they can
each highlight different flaws in a network’s defences, and both make sense as
real-world attack vectors.

Fig. 7. Success rates of defended Inception-v3 networks against APAs for patches cov-
ering up to 25% of the image. We do not include a line for D-WM since the implemen-
tation of the defence was incompatible with Inception-v3.

We consider patches of a variety of sizes up to 25% of the total image area.
Patches are placed randomly, anywhere in the image, and with a random rotation
of up to π/8 for all experiments.
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Fig. 8. Success rates of defended InceptionResNet-v2 networks against APAs for
patches covering up to 25% of the image.

In Table 1 we report the accuracy of our model and all the baseline models
on images with no adversarial attack, for Y and A. The two baseline defences
substantially reduce the accuracy of the model on the unattacked images, which
is very significant for most applications since adversarial examples are relatively
rare, i.e. clean images represent the overwhelming majority of samples that will
be encountered in the real world. Our defended network maintains the accuracy
of the undefended classifier on this set for all 3 classifiers we tested. We also note
that no defence method significantly reduces model sensitivity for A given clean
images, which could cheat the trial by failing to ever identify images as these
adversarial test classes.

4.2 Network Architecture and Patch Size

Table 2 reports the improved resilience of models under our defence, showing
significantly higher defence success rates for VGG, Inception and IRN-v2 archi-
tectures at 41.0%, 51.3%, and 60.7% and 14.7%, 23.5%, and 35.0% respectively
for smaller and larger patches in the case of D-VaN(D). For smaller patches these
rates are at least 30% higher than the closest baseline defence method, and for
larger patches they are comparable. If we consider instead D-VaN(U), then for
smaller patches the accuracy is reduced by only at most 25% from the original,
and for larger patches it is still greater than 60% of its original value.

Table 3 shows the reduced vulnerability of our defended models, for all 3
architectures. Again the reduction is most evident for smaller patches, where our
defended classifier is fooled less than 10% as often as our closest competitor. The
performance at for larger patch sizes is closer, but we still outperform baselines.
In the case of D-VaN(U), our attack success rate is reduced to less than 5% for
all networks, even for the largest patches.

Figures 6, 7 and 8 show the dependence of attack and defence success rates
on size, for our defence method as well as the baseline methods. Our method is
an effective defence for all three architectures we are testing, and at all scales
of patch. The performance of our method degrades as the size of the patch
increases, which is expected since the patch covers up to 25% of the image,
possibly occluding some salient object detail.
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Fig. 9. Grad-CAM [25] visualisations for our VaN defended VGG network vs the unde-
fended model. The original image (a) is classified (correctly) as a great white shark by
both the undefended and defended (D-VaN) models, whereas the patch image is mis-
classified as a shark by the undefended model, but classified correctly by the defended
(D-VaN) model. (Color figure online)

4.3 Attention Under Attack

Figure 9 uses Grad-CAM [25] to localise CNN attention for a particular class,
for both our D-VaN defended model and the undefended model. Here the model
is being attacked via A-ADS with target class of ‘wallaby’ whereas the true
class of the image is ‘great white shark’. Note that all plots are normalised;
blue/purple relatively high attention, green/blue relative low. For images flooded
with green/blue, there was low response for that class (c, e, g, j).

On the original image (a) with no patch, our model (d) and the undefended
model (b) perform similarly. Both decide on the most likely class as shark, and
both identify the region containing the shark as being of high importance. For
this unattacked image, the response for the counterfactual class ‘wallaby’ is
naturally low and both (c, e) pick a somewhat arbitrary area in the image that
was of low importance to the correct decision (shark).

When the adversarial patch A-ADS targeting the counterfactual class is intro-
duced (lower row), the undefended model identifies that patch region as very high
salience for the wallaby class (h) and decides on wallaby, whereas our D-VaN
defended model does not change its decision from shark, and does not attend
to the patch (i). Forcing Grad-CAM to explain shark for the undefended model
(which was not the decision outcome, so produces low attention) the original
model picks out the area of the shark unoccluded by the patch (g) as does our
defended model (i). In our case the model can correctly identify the shark, but
in the original case it cannot since its attention was attracted by the wallaby
patch. For completeness we show the defended model does not localise wallaby
even when forced to explain wallaby in the attacked image (j).
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Fig. 10. Success rate of defended networks as we vary the number of classes of APA
that our conditional generator produces.

4.4 Class Generalization

In Fig. 10 we examine the effect of changing the number of classes which our
conditional generator produces. We train each of the three network architectures
to defend against between 1 and 50 classes of adversarial patch, and we evaluate
their performance against both A-ADS and A-DIP attacks with patches taking
up 10% or 25% of the image. We find that the defence success rate is consistent as
the number of classes changes for each network and for each patch size, showing
that our method does not break down as the number of classes is increased.
For the attack success rate we note that for the most part it increases slightly
as the number of classes increases. The exception is large A-ADS patches on
Inception-v3 and InceptionResNet-v2 architectures, for which our model loses
performance when targeting a very small number of classes. This suggests value
in the attack class diversity availabile during training due to our conditional
patch generator G.

4.5 Timing Information

Table 4 compares the time taken for inference using our method and baselines.
An inference pass on the defended model takes the same time as on the unde-
fended model; the architecture is unchanged. However our defence does take 2–3
h of training to ‘vaccinate’ the model. This process only needs to be run once, as
does training the model a priori. The baseline APA defences run as a pre-process
at inference time, and so take longer (and also degrade accuracy; Table 1). All
runs used an NVIDIA GeForce GTX 1080 Ti GPU.

4.6 Physical Experiment

To test the effectiveness of our defence against attacks in the physical world,
where the appearance of the patch could differ from its digital form, we generated
a patch to attack a VGG network targeting ImageNet class 964 “potpie” using A-
ADS. We placed this patch on or around objects of 47 different ImageNet classes
found in the physical world, for a total of 126 photographs of a patch. The photos
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Table 4. Inference time (seconds) for an undefended VGG model trained on ImageNet,
and that model with our defence or baseline defences applied.

Method VGG Inception IRN-v2

Undefended 0.10 0.08 0.16

D-VaN/Ours 0.10 0.08 0.16

D-WM 1.35 - 1.08

D-LGS 0.32 0.40 0.45

were taken on a Google Pixel 2 smartphone. The undefended classifier returned
adversarial vs. correct class 84 vs 9 times (attack success rate 90.3%), whereas
the Vax-A-Net defended classifier returned similarly 5 vs 71 (attack success rate
6.6%).

5 Conclusion

We proposed Vax-a-Net; a method to ‘immunise’ (defend) CNN classifiers against
adversarial patch attacks without degrading the performance of the model on
clean data and without slowing down the inference time. In the process of achiev-
ing this we produced a conditional generator for adversarial patches, and then
we used an adversarial training methodology to update the generator during
training rather than having to synthesise patches from scratch at each iter-
ation. We showed experimentally that our method performs better than the
baseline defences in both a targeted and untargeted sense, and across three dif-
ferent popular network architectures. Furthermore we showed that our network
is resilient to patches produced by two different attacks, and to patches that
are produced either on our defended network or on the original undefended net-
work, which demonstrates that our defence taught the network real robustness
to these patches, and not simply to hide its gradient or to ignore a group of
specific patches. Future work could look into extending these methodologies to
defend networks for different tasks, such as patch attacks on object detectors.
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