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Abstract. With the growing attention on learning-to-learn new tasks
using only a few examples, meta-learning has been widely used in numer-
ous problems such as few-shot classification, reinforcement learning, and
domain generalization. However, meta-learning models are prone to over-
fitting when there are no sufficient training tasks for the meta-learners
to generalize. Although existing approaches such as Dropout are widely
used to address the overfitting problem, these methods are typically
designed for regularizing models of a single task in supervised training.
In this paper, we introduce a simple yet effective method to alleviate the
risk of overfitting for gradient-based meta-learning. Specifically, during
the gradient-based adaptation stage, we randomly drop the gradient in
the inner-loop optimization of each parameter in deep neural networks,
such that the augmented gradients improve generalization to new tasks.
We present a general form of the proposed gradient dropout regulariza-
tion and show that this term can be sampled from either the Bernoulli
or Gaussian distribution. To validate the proposed method, we conduct
extensive experiments and analysis on numerous computer vision tasks,
demonstrating that the gradient dropout regularization mitigates the
overfitting problem and improves the performance upon various gradient-
based meta-learning frameworks.

1 Introduction

In recent years, significant progress has been made in meta-learning, which is
also known as learning to learn. One common setting is that, given only a few
training examples, meta-learning aims to learn new tasks rapidly by leveraging
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the past experience acquired from the known tasks. It is a vital machine learn-
ing problem due to the potential for reducing the amount of data and time for
adapting an existing system. Numerous recent methods successfully demonstrate
how to adopt meta-learning algorithms to solve various learning problems, such
as few-shot classification [1–3], reinforcement learning [4,5], and domain gener-
alization [6,7].

Despite the demonstrated success, meta-learning frameworks are prone to
overfitting [8] when there do not exist sufficient training tasks for the meta-
learners to generalize. For instance, the mini-ImageNet [9] few-shot classification
dataset contains only 64 training categories. Since the training tasks can be only
sampled from this small set of classes, meta-learning models may overfit and fail
to generalize to new testing tasks.

Significant efforts have been made to address the overfitting issue in the
supervised learning framework, where the model is developed to learn a single
task (e.g., recognizing the same set of categories in both training and testing
phases). The Dropout [10] method randomly drops (zeros) intermediate activa-
tions in deep neural networks during the training stage. Relaxing the limitation
of binary dropout, the Gaussian dropout [11] scheme augments activations with
noise sampled from a Gaussian distribution. Numerous methods [12–16] further
improve the Dropout method by injecting structural noise or scheduling the
dropout process to facilitate the training procedure. Nevertheless, these meth-
ods are developed to regularize the models to learn a single task, which may not
be effective for meta-learning frameworks.

In this paper, we address the overfitting issue [8] in gradient-based meta-
learning. As shown in Fig. 1(a), given a new task, the meta-learning framework
aims to adapt model parameters θ to be θ′ via the gradients computed according
to the few examples (support data X s). This gradient-based adaptation process
is also known as the inner-loop optimization. To alleviate the overfitting issue,
one straightforward approach is to apply the existing dropout method to the
model weights directly. However, there are two sets of model parameters θ and
θ′ in the inner-loop optimization. As such, during the meta-training stage, apply-
ing normal dropout would cause inconsistent randomness, i.e., dropped neurons,
between these two sets of model parameters. To tackle this issue, we propose a
dropout method on the gradients in the inner-loop optimization, denoted as
DropGrad, to regularize the training procedure. This approach naturally bridges
θ and θ′, and thereby involves only one randomness for the dropout regular-
ization. We also note that our method is model-agnostic and generalized to
various gradient-based meta-learning frameworks such as [1,17,18]. In addition,
we demonstrate that the proposed dropout term can be formulated in a general
form, where either the binary or Gaussian distribution can be utilized to sample
the noise, as demonstrated in Fig. 1(b).

To evaluate the proposed DropGrad method, we conduct experiments on
numerous computer vision tasks, including few-shot classification on the mini-
ImageNet [9], online object tracking [19], and few-shot viewpoint estimation [20],
showing that the DropGrad scheme can be applied to and improve different
tasks. In addition, we present comprehensive analysis by using various meta-
learning frameworks, adopting different dropout probabilities, and explaining
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which layers to apply gradient dropout. To further demonstrate the general-
ization ability of DropGrad, we perform a challenging cross-domain few-shot
classification task, in which the meta-training and meta-testing sets are from
two different distributions, i.e., the mini-ImageNet and CUB [21] datasets. We
show that with the proposed method, the performance is significantly improved
under the cross-domain setting. Our source code is available at https://github.
com/hytseng0509/DropGrad.

In this paper, we make the following contributions:

– We propose a simple yet effective gradient dropout approach to improve the
generalization ability of gradient-based meta-learning frameworks.

– We present a general form for gradient dropout and show that both binary
and Gaussian sampling schemes mitigate the overfitting issue.

– We demonstrate the effectiveness and generalizability of the proposed method
via extensive experiments on numerous computer vision tasks.

2 Related Work

Meta-Learning. Meta-learning aims to adapt the past knowledge learned from
previous tasks to new tasks with few training instances. Most meta-learning algo-
rithms can be categorized into three groups: 1) Memory-based approaches [2,22]
utilize recurrent networks to process few training examples of new tasks sequen-
tially; 2) Metric-based frameworks [3,9,23,24] make predictions by referring to
the features encoded from the input data and training instances in a generic
metric space; 3) Gradient-based methods [1,8,17,18,25–27] learn to optimize the
model via gradient descent with few examples, which is the focus of this work. In
the third group, the MAML [1] approach learns model initialization (i.e., initial
parameters) that is amenable to fast fine-tuning with few instances. In addi-
tion to model initialization, the MetaSGD [18] method learns a set of learning
rates for different model parameters. Furthermore, the MAML++ [17] algorithm
makes several improvements based on the MAML method to facilitate the train-
ing process with additional performance gain. However, these methods are still
prone to overfitting as the dataset for the training tasks is insufficient for the
model to adapt well. Recently, Kim et al. [8] and Rusu et al. [26] address this issue
via the Bayesian approach and latent embeddings. Nevertheless, these methods
employ additional parameters or networks which entail significant computational
overhead and may not be applicable to arbitrary frameworks. In contrast, the
proposed gradient dropout regularization does not impose any overhead and thus
can be readily integrated into the gradient-based models mentioned above.

Dropout Regularization. Built upon the Dropout [10] method, various
schemes [12–15,28] have been proposed to regularize the training process of
deep neural networks for supervised learning. The core idea is to inject noise
into intermediate activations when training deep neural networks. Several recent
studies improve the regularization on convolutional neural networks by making
the injected structural noise. For instance, the SpatialDropout [14] method drops

https://github.com/hytseng0509/DropGrad
https://github.com/hytseng0509/DropGrad
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the entire channel from an activation map, the DropPath [13,16] scheme chooses
to discard an entire layer, and the DropBlock [12] algorithm zeros multiple con-
tinuous regions in an activation map. Nevertheless, these approaches are designed
for deep neural networks that aim to learn a single task, e.g., learning to recog-
nize a fixed set of categories. In contrast, our algorithm aims to regularize the
gradient-based meta-learning frameworks that suffer from the overfitting issue
on the task -level, e.g., introducing new tasks.

Fig. 1. Illustration of the proposed method. (a) The proposed DropGrad method
imposes a noise term n to augment the gradient in the inner-loop optimization during
the meta-training stage. (b) The DropGrad method samples the noise term n from
either the Bernoulli or Gaussian distribution, in which the Gaussian distribution pro-
vides a better way to account for uncertainty.

3 Gradient Dropout Regularization

Before introducing details of our proposed dropout regularization on gradients,
we first review the gradient-based meta-learning framework.

3.1 Preliminaries for Meta-learning

In meta-learning, multiple tasks T = {T1, T2, ..., Tn} are divided into meta-
training T train, meta-validation T val, and meta-testing T test sets. Each task Ti

consists of a support set Ds = (X s,Ys) and a query set Dq = (X q,Yq), where X
and Y are a set of input data and the corresponding ground-truth. The support
set Ds represents the set of few labeled data for learning, while the query set
Dq indicates the set of data to be predicted.

Given a novel task and a parametric model fθ, the objective of a gradient-
based approach during the meta-training stage is to minimize the prediction
loss Lq on the query set Dq according to the signals provided from the support
set Ds, and thus the model fθ can be adapted. Figure 1(a) shows an overview
of the MAML [1] method, which offers a general formulation of gradient-based
frameworks. For each iteration of the meta-training phase, we first randomly
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sample a task T = {Ds,Dq} from the meta-training set T train. We then adapt
the initial parameters θ to be task-specific parameters θ′ via gradient descent:

θ′ = θ − α � g, (1)

where α is the learning rate for gradient-based adaptation and � is the operation
of element-wise product, i.e., Hadamard product. The term g in (1) is the set of
gradients computed according to the objectives of model fθ on the support set
Ds = (X s,Ys):

g = �θL
s(fθ(X s),Ys). (2)

We call the step of (1) as the inner-loop optimization and typically, we can
do multiple gradient steps for (1), e.g., smaller than 10 in general. After the
gradient-based adaptation, the initial parameters θ are optimized according to
the loss functions of the adapted model fθ′ on the query set Dq = (X q,Yq):

θ = θ − η �θ Lq(fθ′(X q),Yq), (3)

where η is the learning rate for meta-training. During the meta-testing stage,
the model fθ is adapted according to the support set Ds and the prediction on
query data X q is made without accessing the ground-truth Yq in the query set.
We note that several methods are built upon the above formulation introduced
in the MAML method. For example, the learning rate α for gradient-adaptation
is viewed as the optimization objective [17,18], and the initial parameters θ are
not generic but conditional on the support set Ds [26].

3.2 Gradient Dropout

The main idea is to impose uncertainty to the core objective during the meta-
training step, i.e., the gradient g in the inner-loop optimization, such that θ′

receives gradients with noise to improve the generalization of gradient-based
models. As described in Sect. 3.1, adapting the model θ to θ′ involves the gra-
dient update in the inner-loop optimization formulated in (2). Based on this
observation, we propose to randomly drop the gradient in (2), i.e., g, during
the inner-loop optimization, as illustrated in Fig. 1. Specifically, we augment the
gradient g as follows:

g′ = g � n, (4)

where n is a noise regularization term sampled from a pre-defined distribution.
With the formulation of (4), in the following we introduce two noise regulariza-
tion strategies via sampling from different distributions, i.e., the Bernoulli and
Gaussian distributions.

Binary DropGrad. We randomly zero the gradient with the probability p, in
which the process can be formulated as:

g′ = g � nb, nb ∼ Bernoulli(1 − p)
1 − p

, (5)
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where the denominator 1−p is the normalization factor. Note that, different from
the Dropout [10] method which randomly drops the intermediate activations in a
supervised learning network under a single task setting, we perform the dropout
on the gradient level.

Gaussian DropGrad. One limitation of the Binary DropGrad scheme is that
the noise term nb is only applied in a binary form, which is either 0 or 1 − p. To
address this disadvantage and provide a better regularization with uncertainty,
we extend the Bernoulli distribution to the Gaussian formulation. Since the
expectation and variance of the noise term nb in the Binary DropGrad method
are respectively E(nb) = 1 and σ2(nb) = p

1−p , we can augment the gradient g
with noise sampled from the Gaussian distribution:

g′ = g � ng, ng ∼ Gaussian(1,
p

1 − p
). (6)

Algorithm 1: Applying DropGrad on MAML [1]
1 Require: a set of training tasks T train, adaptation learning rate α,

meta-learning rate η
2 randomly initialize θ
3 while training do
4 randomly sample a task T = {Ds(X s, Ys), Dq(X q, Yq)} from T train

5 g = �θL
s(fθ(X s), Ys)

6 compute g′ according to (5) or (6) // Apply DropGrad
7 θ′ = θ − α × g′

8 θ = θ − η �θ Lq(fθ′(X q), Yq)

9 end

As a result, two noise terms nb and ng are statistically comparable with the
same dropout probability p. In Fig. 1(b), we illustrate the difference between
the Binary DropGrad and Gaussian DropGrad approaches. We also show the
process of applying the proposed regularization using the MAML [1] method in
Algorithm 1, while similar procedures can be applied to other gradient-based
meta-learning frameworks, such as MetaSGD [18] and MAML++ [17].

4 Experimental Results

In this section, we evaluate the effectiveness of the proposed DropGrad method
by conducting extensive experiments on three learning problems: few-shot classi-
fication, online object tracking, and few-shot viewpoint estimation. In addition,
for the few-shot classification experiments, we analyze the effect of using binary
and Gaussian noise, which layers to apply DropGrad, and performance in the
cross-domain setting.
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4.1 Few-Shot Classification

Few-shot classification aims to recognize a set of new categories, e.g., five cate-
gories (5-way classification), with few, e.g., one (1-shot) or five (5-shot), example
images from each category. In this setting, the support set Ds contains the few
images X s of the new categories and the corresponding categorical annotation
Ys. We conduct experiments on the mini-ImageNet [9] dataset, which is widely
used for evaluating few-shot classification approaches. As a subset of the Ima-
geNet [29], the mini-ImageNet dataset contains 100 categories and 600 images
for each category. We use the 5-way evaluation protocol in [30] and split the
dataset into 64 training, 16 validating, and 20 testing categories.

Fig. 2. Comparison between the proposed Binary and Gaussian DropGrad
methods. We compare the 1-shot (left) and 5-shot (right) performance of MAML [1]
trained with two different forms of DropGrad under various dropout rates on mini-
ImageNet. The proposed DropGrad method is particularly effective with the dropout
rate in [0.1, 0.2]. Moreover, the Gaussian DropGrad method consistently obtains better
results compared to the Binary DropGrad scheme. Therefore, we apply the Gaussian
DropGrad method with the dropout rate of 0.1 or 0.2 in all of our experiments.

Implementation Details. We apply the proposed DropGrad regulariza-
tion method to train the following gradient-based meta-learning frameworks:
MAML [1], MetaSGD [18], and MAML++ [17]. We use the implementation from
Chen et al. [31] for MAML and use our own implementation for MetaSGD.1 We
use the ResNet-18 [32] model as the backbone network for both MAML and
MetaSGD. As for MAML++, we use the original source code.2 Similar to recent
studies [26], we also pre-train the feature extractor of ResNet-18 by minimiz-
ing the classification loss on the 64 training categories from the mini-ImageNet
dataset for the MetaSGD method, which is denoted by MetaSGD*.

For all the experiments, we use the default hyper-parameter settings provided
by the original implementation. Moreover, we select the model according to the
validation performance for evaluation (i.e., early stopping strategy).

Comparison between Binary and Gaussian DropGrad. We first evalu-
ate how the proposed Binary and Gaussian DropGrad methods perform on the
1 https://github.com/wyharveychen/CloserLookFewShot.
2 https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch.

https://github.com/wyharveychen/CloserLookFewShot
https://github.com/AntreasAntoniou/HowToTrainYourMAMLPytorch
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MAML framework with different values of the dropout probability p. Figure 2
shows that both methods are effective especially when the dropout rate is in the
range of [0.1, 0.2], while setting the dropout rate to 0 is to turn the proposed
DropGrad method off. Since the problem of learning from only one instance
(1-shot) is more complicated, the overfitting effect is less severe compared to
the 5-shot setting. As a result, applying the DropGrad method with a dropout
rate larger than 0.3 degrades the performance. Moreover, the Gaussian Drop-
Grad method consistently outperforms the binary case on both 1-shot and 5-shot
tasks, due to a better regularization term ng with uncertainty. We then apply the
Gaussian DropGrad method with the dropout rate of 0.1 or 0.2 in the following
experiments.

Table 1. Few-shot classification results on mini-ImageNet. The Gaussian Drop-
Grad method improves the performance of gradient-based models on 1-shot and 5-shot
classification tasks.

Model 1-shot 5-shot

MAML [1] 49.61 ± 0.92% 65.72 ± 0.77%

MAML w/ Gaussian DropGrad 52.35 ± 0.86% 69.42 ± 0.73%

MetaSGD [18] 51.51 ± 0.87% 69.67 ± 0.75%

MetaSGD w/ Gaussian DropGrad 53.38 ± 0.93% 71.14 ± 0.72%

MetaSGD* 60.44 ± 0.87% 72.55 ± 0.54%

MetaSGD* w/ Gaussian DropGrad 61.69 ± 0.84% 73.33 ± 0.57%

MAML++ [17] 50.21 ± 0.50% 68.66 ± 0.46%

MAML++ w/ Gaussian DropGrad 51.13 ± 0.50% 69.80 ± 0.46%

Table 2. Performance of applying DropGrad to different layers. We conduct
experiments on the 5-shot classification task using MAML on mini-ImageNet. It is more
helpful in improving the performance by dropping the gradients closer to the output
layers (e.g., FC and Block4 + FC).

Origin FC Block4 + FC Full Block1 + Conv Conv

65.72 ± 0.77% 68.93 ± 0.55% 69.02 ± 0.57% 69.42 ± 0.73% 64.96 ± 0.80% 65.53 ± 0.75%

Comparison with Existing Dropout Methods. To show that the proposed
DropGrad method is effective for gradient-based meta-learning frameworks, we
compare it with two existing dropout schemes applied on the network activations
in both fθ and f ′

θ. We choose the Dropout [10] and SpatialDropout [14] methods,
since the former is a commonly-used approach while the latter is shown to be
effective for applying to 2D convolutional maps. The performance of MAML on
5-shot classification on the mini-ImageNet dataset is: DropGrad 69.42 ± 0.73%,
SpatialDropout 68.09 ± 0.56%, and Vanilla Dropout 67.44 ± 0.57%. This demon-
strates the benefit of using the proposed DropGrad method, which effectively
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tackles the issue of inconsistent randomness between two different models fθ and
f ′

θ in the inner-loop optimization of gradient-based meta-learning frameworks.

Overall Performance on the Mini-ImageNet Dataset. Table 1 shows the
results of applying the proposed Gaussian DropGrad method to different frame-
works. The results validate that the proposed regularization scheme consistently
improves the performance of various gradient-based meta-learning approaches.
In addition, we present the curve of validation loss over training episodes from
MAML and MetaSGD on the 5-shot classification task in Fig. 3. We observe that
the overfitting problem is more severe in training the MetaSGD method since
it consists of more parameters to be optimized. The DropGrad regularization
method mitigates the overfitting issue and facilitates the training procedure.

Fig. 3. Validation loss over training epochs. We show the validation curves of the
MAML (left) and MetaSGD (right) frameworks trained on the 5-shot mini-ImageNet
dataset. The curves and shaded regions represent the mean and standard deviation
of validation loss over 50 epochs. The curves validate that the proposed DropGrad
method alleviates the overfitting problem.

Table 3. 5-shot classification results of MAML under various hyper-
parameter settings. We study the learning rate α and number of iterations ninner in
the inner-loop optimization of MAML using mini-ImageNet dataset.

α, ninner 0.01, 5 (original) 0.1, 5 0.001, 5 0.01, 3 0.01, 7

MAML [1] 65.72 ± 0.77% 65.98 ± 0.79% 58.55 ± 0.80% 64.84 ± 0.80% 68.11 ± 0.74%

MAML w/ DropGrad 69.42 ± 0.73% 67.78 ± 0.73% 64.05 ± 0.79% 65.42 ± 0.80% 69.65 ± 0.70%

Layers to Apply DropGrad. We study which layers in the network to apply
the DropGrad regularization in this experiment. The backbone ResNet-18 model
contains a convolutional layer (Conv) followed by 4 residual blocks (Block1,
Block2, Block3, Block4) and a fully-connected layer (FC) as the classifier. We
perform the Gaussian DropGrad method on different parts of the ResNet-18
model for MAML on the 5-shot classification task. The results are presented in
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Table 2. We find that it is more critical to drop the gradients closer to the output
layers (e.g., FC and Block4 + FC). Applying the DropGrad method to the input
side (e.g., Block1 + Conv and Conv), however, may even negatively affect the
training and degrade the performance. This can be explained by the fact that
features closer to the output side are more abstract and thus tend to overfit. As
using the DropGrad regularization term only increases a negligible overhead, we
use the Full model, where our method is applied to all layers in the experiments
unless otherwise mentioned.

Hyper-Parameter Analysis. In all experiments shown in Sect. 4, we use
the default hyper-parameter values from the original implementation of the
adopted methods. In this experiment, we explore the hyper-parameter choices
for MAML [1]. Specifically, we conduct an ablation study on the learning rate
α and the number of inner-loop optimizations ninner in MAML. As shown in
Table 3, the proposed DropGrad method improves the performance consistently
under different sets of hyper-parameters.

Table 4. Cross-Domain performance for few-shot classification. We use the
mini-ImageNet and CUB datasets for the meta-training and meta-testing steps, respec-
tively. The improvement of applying the proposed DropGrad method is more significant
in the cross-domain cases than the intra-domain ones.

Model 1-Shot 5-Shot

MAML [1] 31.52 ± 0.52% 45.56 ± 0.51%

MAML w/ Dropout [10] 31.84 ± 0.49% 46.48 ± 0.50%

MAML w/ DropGrad 33.20 ± 0.67% 51.05 ± 0.56%

MetaSGD [18] 34.52 ± 0.63% 49.22 ± 0.58%

MetaSGD w/ Dropout [10] 35.01 ± 0.54% 52.35 ± 0.58%

MetaSGD w/ DropGrad 36.77 ± 0.72% 55.13 ± 0.72%

MetaSGD* 43.98 ± 0.77% 57.95 ± 0.81%

MetaSGD* w/ DropGrad 45.33 ± 0.81% 59.94 ± 0.82%

MAML++ [17] 40.73 ± 0.49% 60.57 ± 0.49%

MAML++ w/ Dropout [10] 41.75 ± 0.49% 61.48 ± 0.49%

MAML++ w/ DropGrad 44.27 ± 0.50% 63.79 ± 0.48%

4.2 Cross-domain Few-Shot Classification

To further evaluate how the proposed DropGrad method improves the gener-
alization ability of gradient-based meta-learning models, we conduct a cross-
domain experiment, in which the meta-testing set is from an unseen domain. We
use the cross-domain scenario introduced by Chen et al. [31], where the meta-
training step is performed on the mini-ImageNet [9] dataset while the meta-
testing evaluation is conducted on the CUB [33] dataset. Note that, different



228 H.-Y. Tseng et al.

from Chen et al. [31] who select the model according to the validation perfor-
mance on the CUB dataset, we pick the model via the validation performance
on the mini-ImageNet dataset for evaluation. The reason is that we target at

Fig. 4. Class activation maps (CAMs) for cross-domain 5-shot classification.
The mini-ImageNet and CUB datasets are used for the meta-training and meta-testing
steps, respectively. Models trained with the proposed DropGrad (the third row for each
example) focus more on the objects than the original models (the second row for each
example).
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analyzing the generalization ability to the unseen domain, and thus we do not
utilize any information provided from the CUB dataset.

Table 4 shows the results using the Gaussian DropGrad method. Since the
domain shift in the cross-domain scenario is larger than that in the intra-domain
case (i.e., both training and testing tasks are sampled from the mini-ImageNet
dataset), the performance gains of applying the proposed DropGrad method
reported in Table 4 are more significant than those in Table 1. The results demon-
strate that the DropGrad scheme is able to effectively regularize the gradients
and transfer them for learning new tasks in an unseen domain.

Table 5. Precision and success rate on the OTB2015 dataset. The DropGrad
method can be applied to visual tracking and improve the tracking performance.

Model Precision Success rate

MetaCREST [19] 0.7994 0.6029

MetaCREST w/ DropGrad 0.8172 0.6145

MetaSDNet [19] 0.8673 0.6434

MetaSDNet w/ DropGrad 0.8746 0.6520

To further understand the improvement by the proposed method under the
cross-domain setting, we visualize the class activation maps (CAMs) [34] of the
images in the unseen domain (CUB). More specifically, during the testing time,
we adapt the learner model fθ with the support set Ds. We then compute the
class activation maps of the data in the query set Dq from the last convolu-
tional layer of the updated learner model f ′

θ. Figure 4 demonstrates the results
of the MAML, MetaSGD, and MetaSGD* approaches. The models trained with
the proposed regularization method show the activation on more discriminative
regions. This suggests that the proposed regularization improves the generaliza-
tion ability of gradient-based schemes, and thus enables these methods to adapt
to the novel tasks sampled from the unseen domain.

Comparison with the Existing Dropout Approach. We also compare the
proposed DropGrad approach with existing Dropout [10] method under the
cross-domain setting. We apply the existing Dropout scheme on the network
activations in both fθ and f ′

θ. As suggested by Ghiasi et al. [12], we use the
dropout rate of 0.3 for the Dropout method. As the results shown in Table 4, the
proposed DropGrad method performs favorably against the Dropout approach.
The larger performance gain from the DropGrad approach validates effectiveness
of imposing uncertainty on the inner-loop gradient for the gradient-based meta-
learning framework. On the other hand, since applying the conventional Dropout
causes the inconsistent randomnesses between two different sets of parameters
fθ and f ′

θ, which is less effective compared to the proposed scheme.
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4.3 Online Object Tracking

Visual object tracking targets at localizing one particular object in a video
sequence given the bounding box annotation in the first frame. To adapt the
model to the subsequent frames, one approach is to apply online adaptation
during tracking. The Meta-Tracker [19] method uses meta-learning to improve
two state-of-the-art online trackers, including the correlation-based CREST [35]
and the detection-based MDNet [36], which are denoted as MetaCREST and
MetaSDNet. Based on the error signals from future frames, the Meta-Tracker
updates the model during offline meta-training, and obtains a robust initial net-
work that generalizes well over future frames. We apply the proposed DropGrad
method to train the MetaCREST and MetaSDNet models with evaluation on
the OTB2015 [37] dataset.

Fig. 5. Qualitative results of object online tracking on the OTB2015 dataset.
Red boxes are the ground-truth, yellow boxes represent the original results, and green
boxes stand for the results where the DropGrad method is applied. Models trained
with the proposed DropGrad scheme are able to track objects more accurately. (Color
figure online)

Implementation Details. We train the models using the original source code.3

For meta-training, we use a subset of a large-scale video detection dataset [38],
and the 58 sequences from the VOT2013 [39], VOT2014 [40] and VOT2015 [41]
datasets, excluding the sequences in the OTB2015 database, based on the same
settings in the Meta-Tracker [19]. We apply the Gaussian DropGrad method

3 https://github.com/silverbottlep/meta trackers.

https://github.com/silverbottlep/meta_trackers
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with the dropout rate of 0.2. We use the default hyper-parameter settings and
evaluate the performance with the models at the last training iteration.

Object Tracking Results. The results of online object tracking on the
OTB2015 dataset are presented in Table 5. The one-pass evaluation (OPE) pro-
tocol without restarts at failures is used in the experiments. We measure the
precision and success rate based on the center location error and the bounding-
box overlap ratio, respectively. The precision is calculated with a threshold 20,
and the success rate is the averaged value with the threshold ranging from
0 to 1 with a step of 0.05. We show that applying the proposed DropGrad
method consistently improves the performance in precision and success rate
on both MetaCREST and MetaSDNet trackers. We present sample results of
object online tracking in Fig. 5. We apply the proposed DropGrad method on
the MetaCREST and MetaSDNet methods and evaluate these models on the
OTB2015 dataset. Compared with the original MetaCREST and MetaSDNet,
models trained with the DropGrad method track objects more accurately.

Table 6. Viewpoint estimation results. The DropGrad method can be applied to
few-shot viewpoint estimation frameworks to mitigate the overfitting problem.

Model Acc30 (↑) MedErr (↓)

MetaView [20] 45.00 ± 0.45% 33.60 ± 0.94◦

MetaView w/ DropGrad 46.16 ± 0.55% 33.10 ± 0.82◦

4.4 Few-Shot Viewpoint Estimation

Viewpoint estimation aims to estimate the viewpoint (i.e., 3D rotation), denoted
as R ∈ SO(3), between the camera and the object of a specific category in the
image. Given a few examples (i.e., 10 images in this work) of a novel category
with viewpoint annotations, few-shot viewpoint estimation attempts to predict
the viewpoint of arbitrary objects of the same category. In this problem, the sup-
port set Ds contains few images xs of a new class and the corresponding view-
point annotations ys. We conduct experiments on the ObjectNet3D [42] dataset,
a viewpoint estimation benchmark dataset which contains 100 categories. Using
the same evaluation protocol in [20], we extract 76 and 17 categories for training
and testing, respectively.

Implementation Details. We apply the regularization on the MetaView [20]
method, which is a meta-Siamese viewpoint estimator that applies gradient-
based adaptation for novel categories. We obtain the source code from the
authors, and keep all the default setting for training. We apply the Gaussian
DropGrad scheme with the dropout rate of 0.1. Since there is no validation set
available, we pick the model trained in the last epoch for evaluation.

Viewpoint Estimation Results. We show the viewpoint estimation results
in Table 6. The evaluation metrics include Acc30 and MedErr, which represent
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the percentage of viewpoints with rotation error under 30◦ and the median rota-
tion error, respectively. The overall performance is improved by applying the
proposed DropGrad method to the MetaView model during training.

5 Conclusions

In this work, we propose a simple yet effective gradient dropout approach for
regularizing the training of gradient-based meta-learning frameworks. The core
idea is to impose uncertainty by augmenting the gradient in the adaptation
step during meta-training. We propose two forms of noise regularization terms,
including the Bernoulli and Gaussian distributions, and demonstrate that the
proposed DropGrad improves the model performance in three learning tasks. In
addition, extensive analysis and studies are provided to further understand the
benefit of our method. One study on cross-domain few-shot classification is also
conducted to show that the DropGrad method is able to mitigate the overfitting
issue under a larger domain gap.
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