
Knowledge Transfer Graph for Deep
Collaborative Learning

Soma Minami1(B), Tsubasa Hirakawa2, Takayoshi Yamashita1,
and Hironobu Fujiyoshi3

1 Department of Computer Science, Chubu University, Kasugai-shi 487-0027, Japan
minami@mprg.cs.chubu.ac.jp, takayoshi@isc.chubu.ac.jp
2 Chubu Institute for Advanced Studies, Chubu University,

Kasugai-shi 487-0027, Japan
hirakawa@mprg.cs.chubu.ac.jp

3 Department of Robotics, Chubu University, Kasugai-shi 487-0027, Japan
fujiyoshi@isc.chubu.ac.jp

Abstract. Knowledge transfer among multiple networks using their
outputs or intermediate activations have evolved through manual design
from a simple teacher-student approach to a bidirectional cohort one.
The major components of such knowledge transfer framework involve
the network size, the number of networks, the transfer direction, and the
design of the loss function. However, because these factors are enormous
when combined and become intricately entangled, the methods of con-
ventional knowledge transfer have explored only limited combinations.
In this paper, we propose a novel graph representation called knowledge
transfer graph that provides a unified view of the knowledge transfer
and has the potential to represent diverse knowledge transfer patterns.
We also propose four gate functions that control the gradient and can
deliver diverse combinations of knowledge transfer. Searching the graph
structure enables us to discover more effective knowledge transfer meth-
ods than a manually designed one. Experimental results show that the
proposed method achieved performance improvements.

1 Introduction

Deep neural networks have accomplished significant progress by designing
their internal structure (e.g., a network’s module [1–4] and architecture search
[5–8]). The performance of existing networks can be further improved by knowl-
edge transfer among multiple networks, such as knowledge distillation (KD) [9]
and deep mutual learning (DML) [10], in extensive tasks without any addi-
tional dataset. These methods, which we call “collaborative learning,” transfer
knowledge between multiple networks using their outputs and/or intermediate
activations.

Collaborative learning has been manually designed in extensive studies [9–
16], including the simple teacher-student approach [9], self-distillation [12],
c© Springer Nature Switzerland AG 2021
H. Ishikawa et al. (Eds.): ACCV 2020, LNCS 12625, pp. 203–217, 2021.
https://doi.org/10.1007/978-3-030-69538-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69538-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-69538-5_13


204 S. Minami et al.

Fig. 1. Concept of the proposed method. From left to right, unidirectional and bidi-
rectional knowledge transfer proposed by previous studies, the goals of our study, and
the knowledge transfer graph representation we propose. In the graph, each node rep-
resents a network, each edge represents the direction of knowledge transfer, and Ls,t

represents the loss function used for training node t. The graph can represent diverse
collaborative learning, including conventional methods.

an intermediation by teacher assistant [13], and the bidirectional cohort app-
roach [10]. The major components of such collaborative learning are the network
size, the number of networks, the transfer direction, and the design of the loss
function. In general, increasing the number of networks tends to improve the
performance of the target network [10,13–15]. Cho et al. [17] also pointed out
that larger models do not often make better teachers. The methods of conven-
tional knowledge transfer have only explored limited combinations because the
combination of the key factors is enormous and has become intricately entangled.
Therefore, it is necessary to extensively explore diverse patterns of collaborative
learning to achieve more effective knowledge transfer.

In this research, we explore more diverse knowledge transfer patterns in the
above key factors for collaborative learning. Figure 1 shows the concept of our
research. We propose a novel graph representation called knowledge transfer
graph that can represent both conventional and new collaborative learning. A
knowledge transfer graph provides a unified view of knowledge transfer and has
the potential to represent diverse knowledge transfer patterns. In the graph, each
node represents a network, and each edge represents a direction of knowledge



Knowledge Transfer Graph for Deep Collaborative Learning 205

transfer. On each edge, we define a loss function that is used for transferring
knowledge between the two nodes linked by the edge. Combinations of these
loss functions can represent any collaborative learning with pair-wise knowledge
transfer. In this paper, we propose four types of gate functions (through gate,
cutoff gate, linear gate, correct gate) that are introduced into loss functions.
These gate functions control the loss value, thereby delivering different effects
of knowledge transfer. By arranging the loss functions at each edge, the graphs
enable the representation of diverse collaborative learning patterns. Knowledge
transfer graphs are searched for the network model on each node and the gate
function on each edge, which enables us to discover a more effective knowledge
transfer method than a manually designed one.

Our contributions are as follows.

– We propose a knowledge transfer graph that represents conventional and new
collaborative learning.

– We propose four types of gates function (through gate, cutoff gate, linear gate,
correct gate) to control backpropagation while training the networks. The
knowledge transfer graph optimizes the gates by means of a hyperparameter
search, which can achieve diverse collaborative learning.

– We found that our optimized graphs outperformed conventional methods.

2 Related Work

2.1 Unidirectional Knowledge Transfer

In unidirectional knowledge transfer, the outputs of a pre-trained network are
used as pseudo labels in addition to supervised labels for learning a target net-
work effectively. Hinton et al. [9] proposed knowledge distillation, which trains
a student network by using teacher network’s outputs. They succeeded in effec-
tively transferring the teacher’s internal representation to the student by intro-
ducing a temperature parameter into the softmax function. Furlanello et al. [12]
demonstrated that KD can also train effectively in cases where the teacher
network’s architecture is the same as that of the student network. Mirzadeh
et al. [13] proposed a method that adds a middle network, called a teacher
assistant, between a teacher and student. When there is a large performance
gap between the teacher and the student, students can be effectively trained by
separating them with a middle network. Various approaches that transfer from
intermediate layers have been also proposed [11,18–20], e.g. hint [11], flow of
activations between layers [18], and attention map [19]. [21–23] transfer mutual
relations of data samples in a mini-batch. Distillation has been applied to object
detection [24], domain adaptation [25], text-to-speech [26], etc.

2.2 Bidirectional Knowledge Transfer

In the bidirectional method, which was first proposed by Zhang et al. [10], there
is no pre-trained teacher; randomly initialized students teach each other by trans-
ferring their knowledge. Even when using networks with identical structures, the



206 S. Minami et al.

Fig. 2. Knowledge transfer graph (for 3-node case). Each node represents a model,
and a loss function Ls,t is defined for each edge. ŷ is a label. Ls,t calculates the KL
divergence from the outputs of two nodes and then passes it through a gate function.
The calculated loss gradient information is only propagated in the direction of the
arrow. We can also represent unidirectional knowledge transfer by cutting off edges
with a cutoff gate.

accuracy is improved. Zhang et al. pointed out that DML is connected to entropy
regularization [27,28]. In this method, all loss functions used in each network are
identical. There could be more potential variants in collaborative learning if a
combination of different loss functions was used. Further improvements in accu-
racy can be achieved by using the ensemble outputs of collaboratively trained
networks as teachers [14,15], and by sharing the intermediate layers of these net-
works [14,15,29]. DML has been applied to large scale distributed training [30]
and re-identification [31]. Dual student [16] is a method of bidirectional knowl-
edge transfer in semi-supervised learning.

3 Proposed Method

We explore graph structures representing diverse knowledge transfer by com-
bining loss functions with four types of gate. We describe how to represent
knowledge transfer graphs in Sect. 3.1, loss function of our proposed method in



Knowledge Transfer Graph for Deep Collaborative Learning 207

Sect. 3.2, four types of gate function in Sect. 3.3, optimization method of each
model in Sect. 3.4, and graph optimization method in Sect. 3.5.

3.1 Knowledge Transfer Graph Representation

Figure 2 shows the knowledge transfer graph representation with three nodes.
In the proposed method, the direction of knowledge transfer between networks
is represented by a directed graph, and a different loss function is defined for
each edge. By defining different loss functions, it is possible to express various
knowledge transfer methods.

We define a directed graph where node mi represents the ith model used
for training. Each edge represents the directions in which gradient information
is transferred. In this paper, we refer to a node that transfers its knowledge to
another as a source node, and a node to which the source node transfers its
knowledge as a destination node. The losses calculated from the outputs of the
two models are back-propagated towards the destination node. Losses are not
back-propagated to the source node.

3.2 Loss Function

The mini-batch comprising the image of the nth sample xn and the label ŷn is
represented as B = {xn, ŷn}Nn=1, and the batch size of mini-batch B is represented
as |B|. The label ŷn represents class id. The number of models used for learning
is M , and the source and destination nodes are ms and mt, respectively.

When obtaining the difference in output probabilities between nodes, we use
the Kullback-Leibler (KL) divergence KL(ps(xn)||pt(xn)). Here, ps and pt are
the outputs of the source and destination nodes, respectively, and consist of
probability distributions normalized by the softmax function.

If the one-hot vector representation of the label ŷn is pŷn
, the loss between

pŷn
and the output pt(xn) of destination node t is calculated using the cross-

entropy function H(pŷn
,pt(xn)). H(pŷn

,pt(xn)) can be decomposed into the
sum of KL divergence and entropy as follows:

H(pŷn
,pt(xn)) = KL(pŷn

||pt(xn)) + H(pŷn
,pŷn

)
= KL(pŷn

||pt(xn)).
(1)

Here, since pŷn
is a one-hot vector, its entropy H(pŷn

,pŷn
) is zero. Therefore,

the loss between the label and the output can also be represented by the KL
divergence in the same way as the loss between the node outputs. In the following,
pŷn

is denoted by p0(xn).
Ls,t represents the loss function used when knowledge is propagated from the

source node ms to the destination node mt, which is defined by

Ls,t =
|B|∑

n

Gs,t(KL(ps(xn)||pt(xn))), (2)

where Gs,t(·) is a gate function.



208 S. Minami et al.

Fig. 3. Illustration of four types of gates.

Finally, the loss function of the destination node mt is expressed as the sum
of losses for all nodes as follows:

Lt =
M∑

s=0,s �=t

Ls,t. (3)

3.3 Gates

If all information is transferred to the destination node from the source node
throughout the entire training phase, the learning of the destination node is liable
to be disrupted. We introduce a gate that controls the gradient to a destination
node by weighting losses for each training sample. We define four types of gate:
through gate, cutoff gate, linear gate, and correct gate, and are illustrated in
Fig. 3. A through gate simply passes through the losses of each training sample
without any changes.

GThrough
s,t (a) = a (4)

A cutoff gate is a gate that performs no loss calculation. It can be used to cut
off any edge in a knowledge transfer graph. This function is required in methods
such as KD, where knowledge transfer is only performed in one direction.

GCutoff
s,t (a) = 0 (5)

A linear gate changes its loss weighting linearly with time during training. It
has a small weighting at the initial epoch, and its weighting becomes larger as
training progresses.

GLinear
s,t (a) =

k

kend
a (6)

Here, k is the number of the current iteration, and kend is the total number of
iteration at the end of the training.

A correct gate is a gate that only passes the losses of samples whose source
node is correct. If the top-1 class number of a source node ms is ys, a correct
gate can be expressed as

GCorrect
s,t (a) =

{
a ys = ŷ

0 ys �= ŷ.
(7)



Knowledge Transfer Graph for Deep Collaborative Learning 209

Algorithm 1. Network parameter update
Input: Number of nodes M , number of epochs E
Initialize: Initialize all network weights, or read in the weights of a pre-trained net-

work
for = 1 to E do

Input the same image xn to each network.
Obtain the output p1(xn),p2(xn), · · · ,pM (xn).
Obtain the loss Ln according to Eq. (3).
Obtain the update quantity of mn from the gradient Ln.
Update the weights of all networks.

end for

When the source node is not a pre-trained model, the propagation of false infor-
mation can be suppressed at the initial epoch. While a linear gate weights the
overall loss, a correct gate selects the samples from which the loss is calculated.

3.4 Proposed Algorithm

Algorithm 1 shows how to update the network parameters of each node during
training. First, all the model weights are randomly initialized unless all the gates
Gi,t corresponding to nodes mi are cutoff gates, in which case mi is initialized
with the weights of the pre-trained model. The pre-trained model is trained
only with the labels, using the same dataset as the one used for the following
hyperparameter search (the details are described in Sect. 3.5). Here, mi is frozen
during training and its weights are not updated. This node performs a role being
equivalent to that of the teacher network used in KD.

The losses are obtained by inputting the same samples to all nodes. Gradients
are obtained from the resulting losses, and all nodes are updated simultaneously.
The gradient of loss Lt obtained from Eq. (3) is back-propagated only to node
mt, and has no effect on the other nodes. In DML, after updating the weights
of the first node, the training samples are input again to the updated nodes
to obtain an output. The losses between every node are then recalculated from
this outputs, and gradient descent is performed for the second node. These steps
are repeated until every node has been updated. The drawback of DML is that
this updating method causes a significant increase in computational cost as the
number of nodes increases. In our proposed method, since the weights of every
node are updated during a single forward calculation, it is possible to reduce the
computational cost during training.

3.5 Graph Optimization

We refer to an optimized node by hyperparameter search as a target node m1,
and nodes that supports training of the target node as auxiliary nodes. A target
node to be optimized is specified, and the knowledge transfer graph is optimized
to maximize the accuracy of this node. The hyperparameters to be optimized



210 S. Minami et al.

are the model type of the auxiliary nodes and the gate type on each edge. The
size of the search space for this optimization is M (n−1) · GN2

, where N is the
number of nodes, M is the number of model types, and G is the number of gate
types. For example, if N = 3, M = 3, and G = 4, there are over one million
patterns.

We used the Asynchronous Successive Halving Algorithm (ASHA) [32] as the
hyperparameter optimization method. First, using D GPU servers, we randomly
create a knowledge transfer graph with D servers and perform distributed asyn-
chronous learning. In each knowledge transfer graph, the accuracy of the target
node is evaluated using validation set at epochs 1, 2, 4, · · · , 2k. If this accuracy
is in the lower 50% of all the accuracy values evaluated in the past, the graph
is abandoned and training is performed again after generating a new graph.
This process is repeated until the total number of trials reaches T . ASHA can
achieve improvements in terms of both temporal efficiency and accuracy by per-
forming a random search with active early termination in a parallel distributed
environment. We performed optimization with D = 30 and T = 1500.

4 Experiments

We performed experiments to determine the efficacy of knowledge transfer graphs
searched by ASHA. We describe the graphs visualization in Sect. 4.2, compari-
son to conventional methods in Sect. 4.3, investigation of the performance of a
target node when the graph lacks diversity in Sect. 4.4 and evaluation of graph
transferability between different datasets in Sect. 4.5.

4.1 Experimental Setting

Datasets. We used the CIFAR-10, CIFAR-100 [33], and Tiny-ImageNet [34],
which are typically used for general object recognition. CIFAR-10 and CIFAR-
100 consist of 50,000 images for training and 10,000 images for testing. Both
datasets consist of images with dimensions of 32 × 32 pixels and include labels for
10 and 100 classes, respectively. Data augmentation was performed by processing
the training images with 4-pixel padding (reflection), random cropping, and
random flipping. Data augmentation was not applied to the test images. For
optimizing graphs, we randomly split the training samples into 10,000 samples
as the validation set and 40,000 samples as the training set. The Tiny-ImageNet
consists of 100,000 training images and 10,000 test images sampled from the
ImageNet [35]. This dataset consists of images with dimensions of 64 × 64 pixels
and labels for 200 classes. The data augmentation settings were the same as
those for the CIFAR datasets. For optimizing graphs, we randomly split the
training samples into 10,000 samples as the validation set and 90,000 samples as
the training set.

Models. We used three networks: ResNet32, ResNet110 [36], and Wide ResNet
28-2 [37]. Table 1 shows the accuracy achieved when each model was trained



Knowledge Transfer Graph for Deep Collaborative Learning 211

with supervised labels only. However, when training with Tiny-ImageNet, since
the images are larger in size, the stride of the initial convolution layer was set
to 1.

Implementation Details. For the optimization algorithm, we used SGD and
Nesterov momentum in all experiments. The initial learning rate was 0.1, the
momentum was 0.9, and the batch size was 64. When training on CIFAR, the
learning rate was reduced to one tenth every 60 epochs, for a total of 200
epochs. When training on the Tiny-ImageNet, the learning rate was reduced
to one tenth at the 40th, 60th, and 70th epochs, for a total of 80 epochs.
The reported accuracy values with test set are averaged over five trials with
a fixed graph structure implemented after obtaining the optimized graph. The
standard deviation over each set of five trials is also shown. Our experiments
were implemented using the Pytorch framework [38] for deep learning and the
Optuna framework [39] for hyperparameter searching. The computations were
performed using 90 Quadro P5000 servers. Our implementation is available at
https://github.com/somaminami/DCL.

4.2 Visualization of Graphs

Figure 4 shows the visualization of the knowledge transfer graphs with two to
seven nodes optimized on CIFAR-100. For all numbers of nodes, the target node
had much better accuracy than that in individual learning (see Table 1). The
accuracy of nodes other than the target node was also improved. We found that
ResNet32 and ResNet110 were selected as the nodes of top-1 graphs as well as the
highest performance Wide ResNet 28-2, and the performance of the target node
tended to improve when the number of nodes was increased. Our quantitative
evaluation is discussed in Sect. 4.4.

4.3 Comparison with Conventional Methods

Table 2 compares the performance of the proposed and conventional methods
on CIFAR-100. “Ours” shows the results of the proposed method for optimized
graphs with two, three, or four nodes. “KD [9]” uses a pre-trained Wide ResNet
28-2 network as a teacher, and sets the temperature parameter to T = 2.
In “DML [10]” using over three nodes, all student networks have the same

Table 1. Accuracy of vanilla models. Mean and standard deviation of single network
accuracies on test set.

Model CIFAR-10 CIFAR-100 TinyImageNet

ResNet32 92.99 ± 0.28 70.71 ± 0.39 52.89 ± 0.18

ResNet110 94.01 ± 0.28 72.59 ± 0.54 55.49 ± 0.55

Wide ResNet 28-2 94.40 ± 0.07 74.60 ± 0.38 58.60 ± 0.25

https://github.com/somaminami/DCL


212 S. Minami et al.

Fig. 4. Knowledge transfer graph optimized on CIFAR-100. Red node is the target
node, and “Label” represents supervised labels. At each edge, the selected gate is
shown, exclusive of cutoff gate. Numbers in parentheses show the accuracy achieved in
one out of five trials. (Color figure online)

architecture. Since the proposed method chooses which model to use as a hyper
parameter, it is possible to select the optimal combination of models. In “Song et
al. [14]” and “ONE [15]”, the intermediate layers of multiple networks are shared
during training. Then, only layers that are close to the output layer are branched,
and the ensemble output of the branched output layers is used as a teacher.



Knowledge Transfer Graph for Deep Collaborative Learning 213

Table 2. Comparison with conventional methods on CIFAR-100. “*” denotes a pre-
trained model. T is a temperature parameter. “**” denotes a value cited from the
paper.

Method Accuracy (Node 1) Node 1 Node 2 Node 3 Node 4

Vanilla 70.71 ± 0.39 ResNet32 – – –

DML [10] 72.00 ± 0.44 ResNet32 ResNet32 – –

KD (T = 2) [9] 71.88 ± 0.78 ResNet32 WRN28-2* – –

DML [10] 72.71 ± 0.18 ResNet32 WRN28-2 – –

Ours 72.88 ± 0.41 ResNet32 WRN28-2 – –

DML [10] 72.09 ± 0.43 ResNet32 ResNet32 ResNet32 –

DML [10] 72.89 ± 0.21 ResNet32 WRN28-2 ResNet32 –

Ours 73.46 ± 0.28 ResNet32 WRN28-2 ResNet32 –

DML [10] 72.76 ± 0.35 ResNet32 ResNet32 ResNet32 ResNet32

Song [14] 73.68** ± 0.26 (4×ResNet32 with shared intermediate layers)

ONE [15] 73.42** ± N/A (4×ResNet32 with shared intermediate layers)

DML [10] 72.87 ± 0.49 ResNet32 WRN28-2 ResNet32 ResNet110

Ours 74.06 ± 0.34 ResNet32 WRN28-2 ResNet32 ResNet110

Compared with the results of DML having the same nodes with the proposed
method, the proposed method outperforms the accuracy. The result of Song
et al. [14] is close to the proposed method in the case of four nodes. Because
their method shares the intermediate layers as described above, their method
could acquire parameters to extract more representative features. The proposed
method achieved the best result, although it does not share the intermediate
layers updates parameters using only the gradients computed from the loss of
auxiliary nodes and teacher label. Therefore, transferring knowledge from an
intermediate layer could improve the performance of the target node, which is
one of our future works.

4.4 Comparison with Graphs Lacking Diversity

Figure 5 shows the accuracy of target nodes in graphs searched on CIFAR-10,
CIFAR-100, and Tiny-ImageNet. The comparison is a non-diverse graph, where
each edge has only a through gate and each node is the same model as that of
the graph, which is similar to the conventional unidirectional method [10].

The proposed method achieved higher accuracy than the comparative method
in every condition, thus demonstrating the importance of using gates to control
the gradient. Moreover, the optimized graphs tended to improve the accuracy
when the number of nodes was increased in CIFAR-100. The fixed gates method
has the same loss function on all the edges, making it difficult to generate diver-
sity even when the number of nodes is increased.

In our experiments, due to the limitation of computational resources, we ran
only 1,000 trials for searching the knowledge transfer graphs. This may not be



214 S. Minami et al.

sufficient because the search space exponentially increases with the number of
nodes. Moreover, if we searched on a larger number of trials, it might be possible
to acquire a better knowledge transfer graph than we discovered. We will explore
this possibility in future work.

92.4

92.6

92.8

93

93.2

93.4

93.6

93.8

94

94.2

94.4

2 3 4 5 6 7

A
cc

ur
ac

y 
[%

]

No. of nodes

Fixed Optimized

(a) CIFAR-10

71

71.5

72

72.5

73

73.5

74

74.5

75

2 3 4 5 6 7

A
cc

ur
ac

y 
[%

]

No. of nodes

Fixed Optimized

(b) CIFAR-100

48

49

50

51

52

53

54

55

56

57

2 3 4 5 6 7

A
cc

ur
ac

y 
[%

]

No. of nodes

Fixed Optimized

(c) Tiny-ImageNet

Fig. 5. Results of optimization on various datasets. ResNet32 was used as the target
node. “Fixed” indicates all gates are through gates. “Optimized” indicates they have
been optimized.

Table 3. Accuracy of reused graphs optimized on another dataset. Graphs are trained
on CIFAR-100, where graphs are searched on CIFAR-10 or CIFAR-100. Target node
is ResNet32. Bold/Italic indicate best and second best results.

No. of nodes Fixed to

through gate

Searched on

different

dataset

(CIFAR-10)

Searched on

same dataset

(CIFAR-100)

2 72.62 ± 0.33 72.50 ± 0.33 72.88 ± 0.41

3 72.77 ± 0.26 73.63 ± 0.18 73.46 ± 0.28

4 72.86 ± 0.44 73.76 ± 0.25 74.06 ± 0.34

5 73.40 ± 0.15 74.62 ± 0.24 74.18 ± 0.21

4.5 Graph Transferability

We investigated the generalization ability of graphs on different datasets. Table 3
shows accuracies of the networks trained on CIFAR-100, where the graphs are
searched on CIFAR-10 or CIFAR-100. CIFAR-10, which is a 10-class dataset
consisting of images of vehicles and animals, has a different distribution from
CIFAR-100, which is a 100-class dataset featuring plants, insects, furniture, etc.

The graphs searched on CIFAR-10 achieved the comparable performance as
those searched on CIFAR-100. The results indicate that the knowledge transfer
graph can be reused to different dataset. As such, the reused graphs can greatly
reduce the computational cost, since the searching process can be omitted.



Knowledge Transfer Graph for Deep Collaborative Learning 215

5 Conclusion and Future Work

In this paper, we propose a new learning method for more flexible and diverse
combinations of knowledge transfer using a novel graph representation called
knowledge transfer graph. The graph provides a unified view of the knowledge
transfer and has the potential to represent diverse knowledge transfer patterns.
We also propose four gate functions that can deliver diverse combinations of
knowledge transfer. Searching the graph structure, we discovered remarkable
graphs that achieved significant performance improvements. We searched graphs
over 1,000 trials, but the actual search space is much larger. A more exhaustive
search will be the focus of future work.

Since our proposed method defines nodes as individual networks, it only
transfers knowledge from the output layers of these networks. Future work will
include knowledge transfer from an intermediate layer. It should also be possible
to perform knowledge transfer using the ensemble inference of multiple networks.
Other interesting possibilities include the introduction of an encoder/decoder
model, and the use of multitasking.

Acknowledgement. This paper is based on results obtained from a project,
JPNP18002, commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO).

References

1. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708 (2017)

2. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (2017)

3. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (2017)

4. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (2018)

5. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
International Conference on Learning Representations (2017)

6. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5 2

7. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: International Conference on Machine Learning,
pp. 4095–4104 (2018)

8. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In:
International Conference on Learning Representations (2019)

9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

10. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: IEEE
Conference on Computer Vision and Pattern Recognition (2018)

https://doi.org/10.1007/978-3-030-01246-5_2


216 S. Minami et al.

11. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets:
hints for thin deep nets. In: International Conference on Learning Representations
(2015)

12. Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again
neural networks. In: International Conference on Machine Learning, Volume 80 of
Proceedings of Machine Learning Research, Stockholmsmässan, Stockholm Swe-
den, pp. 1607–1616. PMLR (2018)

13. Mirzadeh, S.I., Farajtabar, M., Li, A., Ghasemzadeh, H.: Improved knowledge
distillation via teacher assistant: bridging the gap between student and teacher.
arXiv preprint arXiv:1902.03393 (2019)

14. Song, G., Chai, W.: Collaborative learning for deep neural networks. In: Advances
in Neural Information Processing Systems, pp. 1837–1846 (2018)

15. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble.
In: Advances in Neural Information Processing Systems, pp. 7527–7537 (2018)

16. Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: breaking the limits of
the teacher in semi-supervised learning. In: Proceedings of the IEEE International
Conference on Computer Vision (2019)

17. Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: International
Conference on Computer Vision (2019)

18. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast opti-
mization, network minimization and transfer learning. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

19. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the
performance of convolutional neural networks via attention transfer. In: Interna-
tional Conference on Learning Representations (2017)

20. Heo, B., Kim, J., Yun, S., Park, H., Kwak, N., Choi, J.Y.: A comprehensive overhaul
of feature distillation. In: International Conference on Computer Vision (2019)

21. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: IEEE
Conference on Computer Vision and Pattern Recognition (2019)

22. Yu, L., Yazici, V.O., Liu, X., Weijer, J.v.d., Cheng, Y., Ramisa, A.: Learning met-
rics from teachers: compact networks for image embedding. In: IEEE Conference
on Computer Vision and Pattern Recognition (2019)

23. Liu, Y., et al.: Knowledge distillation via instance relationship graph. In: IEEE
Conference on Computer Vision and Pattern Recognition (2019)

24. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object
detection models with knowledge distillation. In: Advances in Neural Information
Processing Systems, pp. 742–751 (2017)

25. Chen, Y., Li, W., Van Gool, L.: ROAD: reality oriented adaptation for seman-
tic segmentation of urban scenes. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7892–7901 (2018)

26. Oord, A.v.d., et al.: Parallel WaveNet: fast high-fidelity speech synthesis. arXiv
preprint arXiv:1711.10433 (2017)

27. Chaudhari, P., et al.: Entropy-SGD: biasing gradient descent into wide valleys. In:
International Conference on Learning Representations (2017)

28. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, �L., Hinton, G.: Regularizing neural
networks by penalizing confident output distributions. In: International Conference
on Learning Representations (2017)

29. Sun, D., Yao, A., Zhou, A., Zhao, H.: Deeply-supervised knowledge synergy. In:
IEEE Conference on Computer Vision and Pattern Recognition (2019)

http://arxiv.org/abs/1902.03393
http://arxiv.org/abs/1711.10433


Knowledge Transfer Graph for Deep Collaborative Learning 217

30. Anil, R., Pereyra, G., Passos, A., Ormandi, R., Dahl, G.E., Hinton, G.E.: Large
scale distributed neural network training through online distillation. arXiv preprint
arXiv:1804.03235 (2018)

31. Zhang, X., et al.: AlignedReID: surpassing human-level performance in person re-
identification. arXiv preprint arXiv:1711.08184 (2017)

32. Li, L., et al.: Massively parallel hyperparameter tuning. arXiv preprint
arXiv:1810.05934 (2018)

33. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, Citeseer (2009)

34. Tiny imagenet visual recognition challenge (2015). https://tiny-imagenet.
herokuapp.com/

35. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115, 211–252 (2015)

36. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

37. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: British Machine Vision
Conference, pp. 87.1–87.12. BMVA Press (2016)

38. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8026–8037
(2019)

39. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019)

http://arxiv.org/abs/1804.03235
http://arxiv.org/abs/1711.08184
http://arxiv.org/abs/1810.05934
https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/

	Knowledge Transfer Graph for Deep Collaborative Learning
	1 Introduction
	2 Related Work
	2.1 Unidirectional Knowledge Transfer
	2.2 Bidirectional Knowledge Transfer

	3 Proposed Method
	3.1 Knowledge Transfer Graph Representation
	3.2 Loss Function
	3.3 Gates
	3.4 Proposed Algorithm
	3.5 Graph Optimization

	4 Experiments
	4.1 Experimental Setting
	4.2 Visualization of Graphs 
	4.3 Comparison with Conventional Methods 
	4.4 Comparison with Graphs Lacking Diversity
	4.5 Graph Transferability 

	5 Conclusion and Future Work
	References




