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Abstract. Contextual information is essential for computer vision
tasks, especially semantic segmentation. Previous works generally focus
on how to collect contextual information by enlarging the size of recep-
tive field, such as PSPNet, DenseASPP. In contrast to previous works,
this paper proposes a new network – CycleNet, which considers assigning
a more accurate representative for every pixel. It consists of two mod-
ules, Cycle Atrous Spatial Pyramid Pooling (CycleASPP) and Alignment
with Deformable Convolution (ADC). The former realizes dense connec-
tions between a series of atrous convolution layers with different dilation
rates. Not only the forward connections can aggregate more contextual
information, but also the backward connections can pay more attention
to important information by transferring high-level features to low-level
layers. Besides, ADC generates accurate information during the decod-
ing process. It draws support from deformable convolution to select and
recombine features from different blocks, thus improving the misalign-
ment issues caused by simple interpolation. A set of experiments have
been conducted on Cityscapes and ADE20K to demonstrate the effec-
tiveness of CycleNet. In particular, our model achieved 46.14% mIoU on
ADE20K validation set.

1 Introduction

Semantic segmentation is a great challenge in dense image classification where
the resolution of output labels is the same as that of the input images. Each
pixel in the image needs a semantic label. This task has been widely used in
video surveillance, automotive driving, medical image processing and other fields.
Traditional segmentation methods aim to extract handicraft features of image
regions which is not only complicated, but also lead to inaccurate results.

With the development of deep learning, especially Convolution Neural Net-
works (CNN), a landmark framework – Fully Convolutional Networks (FCN)
has emerged in the field of semantic segmentation. Based on it, most of the
subsequent works train model end to end to obtain representative image fea-
tures automatically. FCNs use pooling layers to expand receptive fields and fur-
ther achieve high-level information. However, these methods ignore the negative
impact of down-sampling on the resolution, which is crucial for semantic seg-
mentation.
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In order to obtain larger receptive fields and richer contextual information,
recent works mainly rely on atrous convolution [1] or attention mechanism.
Deeplab [2] and DenseASPP [3] concatenated features from a cascade of atrous
convolution layers with different dilation rates. PSPNet [4] proposed pyramid
pooling module to aggregate information from multi-scale features after pooling
layers. However, a neglected issue in these works is whether a large receptive
field is equally important for every pixel in the image. For example, a pixel
in a semantic object requires a larger receptive field to see the entire object,
but when a pixel approaches the boundary, a larger receptive field may bring
more information about other categories, leading to incorrect segmentation. At
the same time, the attention-based methods are designed to capture long-range
context without being limited by the fixed size of convolution kernel. But it’s
time-consuming because more useful information mainly locates around the pix-
els, meaning that numbers of computation is unnecessary. In addition, in the
process of obtaining high-level information, the size of models’ output like [3,5]
is 1/8 of the input size, and then interpolated to the same size of input. Simple
methods of restoring resolution can lead to misalignment issue.

In this paper, an elaborate CycleNet is proposed to provide precise features
for each pixel, on the premise of adequate receptive fields. CycleNet is mainly
composed of two sub-modules CycleASPP and ADC. CycleNet is a DenseASPP-
like method. They all consist of a backbone to encode features followed by a series
of atrous convolution layers. The difference is that there are both forward and
backward connections between any atrous convolution layers in CycleASPP, but
DenseASPP only has forward connections. To be specific, the first time of an
atrous convolution begins with the concatenation of all the previous layers’ out-
put, just like DenseASPP, to successively produce multi-scale features. Inspired
by CliqueNet [6], the feedback mechanism is able to enhance the representation of
models. Thus, CycleASPP applies backward connections to refine features. After
the first time, outputs of update layers then are concatenated to be inputs of the
previous layers, as illustrated in Fig. 1. By backward connections, the high-level
information is fed back to previous layers. Benefits from this, CycleASPP not
only refines the filters, but also produces more accurate features. Moreover, an
ADC module is proposed to prevent the loss of accurate information caused by
down-sampling. Deformable convolution layers are used to learn the positional
correspondence between different resolution features.

Our main contributions are summarized as follows:

1. We introduce CycleASPP, which continuously refines the representativeness
of asrous convolution layers through feedback mechanism.

2. ADC module is proposed to compensate for the misalignment issue caused
by down-sampling.

3. The visualization between different parts of CycleASPP shows the backward
connections can refine filters.

4. We verify CycleNet on two semantic segmentation benchmark datasets,
Cityscapes [7] and ADE20K [8]. The experiments show that our model
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achieves the state-of-the-art results including 82.0% mIoU on Cityscapes test
set and 46.14% mIoU on ADE20K validation set.

2 Related Work

2.1 Context Model in Semantic Segmentation

Recent studies have shown that semantic segmentation benefits from rich con-
textual information. Although the emergence of FCN has made some progress
in semantic segmentation, it can not produce enough contextual information by
a single receptive field. PSPNet [4] designed a spatial pyramid pooling model
to collect contextual information from different pooling layers. ASPP [2] uti-
lized atrous convolutions to enlarge receptive fields thus further fusing different
contextual information. Inspired by DenseNet [9], DenseASPP [3] added dense
connections between a cascade of atrous convolution layers to capture multi-
scale context. Some other works focused on attention-based methods. Contex-
tual information in DANet [10] is collected by calculating the similarity between
each pixel in image. To improve efficiency, CCNet [5] adopted criss-cross atten-
tion module which only computing pixels on the criss-cross path.

2.2 Recurrent Neural Network

Recurrent neural networks, such as LSTM [11] and GRU [12], which benefited
from feature-usage and iterative learning, are mainly used for sequential tasks,
especially natural language processing (NLP). In image classification tasks, to
simulate feedback loops in human brain, I. Caswell [13] proposed loopy neu-
ral networks that allow the information flow from deeper layers to lower layers,
CliqueNet [6] incorporated forwards and backwards connections between every
layers in a block to maximize the information flow and realize spatial attention.
RNN-like model also improved the ability of long-dependencies between pixels
in semantic segmentation. Like, ReSeg [14] proposed a recurrent layer contain-
ing four RNN, which first horizontally computed the image patches, and then
vertically computed the output of the hidden states, so as to efficiently collect
contextual information.

2.3 Multi-level Features Fusion

Encoder-decoder structures are presented to balance the high-level semantic fea-
tures with high resolution. Common methods are to add or concatenate low-level
features with high-level features after interpolated. GFF [15] is inspired by the
gate mechanism of LSTM to assign different weights to different features accord-
ing to their validity, because multi-level features are not equally important to
the results. Considering the misalignment of different layers, enlightened by the
optical flow, Alignseg [16] proposed a learnable interpolation method to pre-
cisely align high and low level features. Different from other works, [17] firstly
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down-sampling the low-level features to the same size as the high-level features,
and then aggregated all the features at the low resolution. Finally, a data-based
DUpsampling method is designed to reproduce the original size.

3 Method

3.1 Cycle Atrous Spatial Pyramid Pooling (CycleASPP)

DenseASPP. The purpose of atrous convolution layers is to balance the prob-
lem of large receptive fields and high resolution in semantic segmentation. It can
be represented as follows:

Y [k] =
I∑

i=1

X[k + r · i] · w[i] (1)

where Y [k] is the output features, X[k] is the input features, w[i] is a parameter
of convolution filter, and r is the dilation rate, and I denotes the filter size. We
adopt fr(X) to represent atrous convolution to simplify symbolization.

Since the features generated by the simple atrous convolutional layer are dif-
ficult to cover a scale range, DenseASPP adopted atrous convolution layers with
different rates, which not only realizes lager receptive fields, but also produces
dense scale-range features. However, a lager receptive field is unable to benefit all
the pixels in image, especially those near the boundaries. A larger receptive field
means more information from adjacent objects, which sometimes confuse the
model. Inspired by CliqueNet [6], we added the backward connections between
every atrous convolution layer to ensure that each pixel is able to focus on its
own accurate features, on the premise that it receives a sufficient receptive field.

CycleASPP. CycleASPP is a DenseASPP-like module that contains a series of
sequential atrous convolution layers with increasing atrous rates. In particular,
there are bidirectional connections in CycleASPP, whereas DenseASPP only has
forward connections.

As depicted in Fig. 1, CycleASPP consists of two parts. In the Part I, input
features are concatenated with output of previous layers, and then all the features
are utilized to update the next layer. In part I, each atrous layer can be defined
as:

Y 0
j = frj (concate[Y

0
j−1, Y

0
j−2, · · · , Y 0

0 ]) (2)

where Y 0 is the output of atrous convolution in part I, rj represents the
j−th atrous convolution layers in CycleASPP, and concate[· · · ] is concatenation
operation.

After that, feedback features from Part I is used to refine the atrous convo-
lution layers. In the part II, all the features from the Part I are concatenated as
input except for the output of current layer. What is more noteworthy is that the
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atrous convolution layers are updated sequentially, so some of aggregate features
are from Part I and others are from Part II, which can be formulated as:

Y k
j,j �=1 = frj (concate[Y

k−1
J , Y k−1

J−1 , · · · , Y k−1
j+1 , Y k

j−1, · · · , Y k
1 ]) (3)

where k denotes feedback times in Part II. k = 0 represents only forward con-
nections.

In CycleASPP, the latest outputs from each atrous convolution layer are used
together to generate the final feature maps. This recurrent structure has two
main benefits: the first is to refine the convolution filters to attain more accurate
representative features, and the second is to maximize information flow.

Fig. 1. Overview of CycleNet. Given an input image, we use a CNN model to generate
high-level features. Then, CycleASPP including a series of atrous convolution layers
with different rates is used to learn rich and accurate contextual features. The outputs
of CycleASPP are concatenated with low-level features. To align multi-scale features,
we proposed Alignment with Deformable Convolution (ADC) module.

3.2 Alignment with Deformable Convolution (ADC)

Restoration of image resolution caused by pooling layers is an inevitable proce-
dure of semantic segmentation. At the decoding stage, the low-resolution feature
maps firstly are interpolated to the same size of high-resolution ones, and then a
simple concatenating way results in spatial misalignment. Considering that the
deformable convolution layers are able to automatically learn the position offset
which enhance the different features fusion. We exploit modulated deformable
module [18] and it is obtained by:

Y [l0] =
N∑

n=1

wn · X[l0 + ln + �ln] · �mn (4)

N is sampling positions, wn and ln respectively denote the weight and the pre-
defined offsets for l0. Supposing a 3 × 3 deformable convolution, N is 9 and
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ln ∈ [(−1,−1), (−1, 0), · · · , (1, 1)]. Besides, the offset �ln and the modulation
scalar �mn are based on data.

In this module, we firstly perform bilinear interpolation on the features Xhigh

generated by CycleASPP to the same size with low-level features Xlow. Then,
these features are combined, followed by several convolutions to generate the
learnable offset �ln and modulation scalar �mn which are required by the mod-
ulated deformable module. Finally, our aligned context features Ycontext could
be defined as follow:

Ycontext = f(concate[Xlow, X̃high]) (5)

where X̃high denotes the aligned features by deformable convolution, and f is
conventional convolution layers (Fig. 2).

Fig. 2. An elaborate show of Alignment with Deformable Convolution (ADC) mod-
ule. It takes two parts features respectively from Backbone and CycleASPP, and then
exploit deformable convolution to align these features.

4 Experimental Evaluation

A large number of experiments are conducted to evaluate the effectiveness of
CycleNet on two benchmark datasets Cityscapes [7] and ADE20K [8]. Results
are evaluated with mean of class-wise Intersection over Union (mIoU) and pixel
accuracy.

4.1 Implementation Details and Datasets

Network Structure. Our method adopts ResNet101 [19] pre-trained on Ima-
geNet [20]. The last two pooling layers and the fully-connected layers of model
are removed. At the same time, the convolution layers in the last two blocks are
replaced by atrous convolution layers with atrous rates of 2 and 4, respectively.
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Training Settings. We train our model with stochastic gradient descent train-
ing method. The initial learning rate is initialized as 1e−2 for Cityscapes and
2e−2 for ADE20K. The momentum and weight decay are set as 0.9 and 1e−4,
respectively. According to the prior work [5,10], we utilize a poly learning rate
policy where the initial learning rate is multiplied by 0.9. Synchronized Batch
Normalization [21] is employed to synchronize the mean and standard variation.
For Cityscapes (only use 2975 finely annotated images), we train the model with
8 mini-batch size and 180 epochs. The input is randomly cropped to 796796 from
the original image. For ADE20K, we train the model with 16 mini-batch size,
120 epochs and the input is cropped to 512512. During training, data augmenta-
tion including random horizontal flipping, random cropping, and random scaling
in the range of [0.75, 2] are used to avoid overfitting. As for loss, we adopt the
auxiliary supervision, as [22,23].

Cityscapes. The Cityscapes dataset is designed for understanding of urban
street scenes. It contains 5000 images with finely annotations and 20000 images
with coarse annotations. The annotations include 30 categories such as road, tree
and person. Only 19 categories are commonly used for training and evaluation.
The 5000 finely annotated images are split into 2975 images for training, 500
images for validation and 1525 images for testing.

ADE20K. ADE20K is a complex scene parsing dataset including 150 categories
involved objects and stuff. It contains 25000 images which consist of 20000 train-
ing images, 2000 validation images and 3000 testing images.

4.2 Experiments on Cityscapes

Ablation Study. To evaluate the effectiveness of proposed model, we imple-
ment ablation experiments on Cityscapes validation set. We choose atrous
ResNet101 mentioned above as the baseline network which down-samples the
input size to 1/8 of its original size. The baseline model reaches 76.25% mIoU.
All components are based on baseline model and continuously improve the per-
formance.

Effectiveness of CycleASPP. All evaluation of CycleASPP are equal with-
out ADC module. There are two important components in CycleASPP, one
is atrous convolution layers and the other is recurrent connections. First, we
compare several methods of atrous convolution layers with different numbers
at different dilation rates, as shown in Table 1. It is obvious that adding more
atrous convolution layers and increasing dilation rates can both improve the
performance, because the model achieves larger receptive fields and gains more
contextual information. As DenseASPP [3] demonstrates when the receptive field
goes larger than the feature map, the results begin to decrease. Thus, there is
no need to add more convolutions. For subsequent evaluation of the recurrent
connections, which is proposed to refine filters. In order to be fair, we compare
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Table 1. The contrast experiments between ASPP, DenseASPP and CycleASPP with
various atrous dilation rates.

Method Backbone mIoU(%) GFLOPs

ASPP (6, 12, 18) ResNet101 78.18 –

DensASPP (3, 6, 12, 18, 24) ResNet101 78.45 539.1

DenseASPP (3, 6, 12, 18, 24, 30) ResNet101 78.57 555.5

CycleASPP (6, 12, 18, 24) ResNet101 78.54 530.8

CycleASPP (3, 6, 12, 18, 24) ResNet101 78.93 551.5

CycleASPP (3, 6, 12, 18, 24, 30) ResNet101 78.95 574.0

the results from DenseASPP and CycleASPP with same dilation rates. The per-
formance in Table 1 shows that segmentation results with same receptive fields
from CycleASPP outperform these from DenseASPP. CycleASPP (6, 12, 18, 24)
achieves the almost same result as DenseASPP (3, 6, 12, 18, 24, 30) while at
low GFLOPs. In other words, CycleASPP improves the accuracy of our method
without much loss of speed. To ensure the follow-up experiments’ performance,
we utilize atrous convolution layers with dilation rates (3, 6, 12, 18, 24, 30) and
only once feedback connection for the further experiments. As is illustrated in
Table 2, the CycleASPP module brings 2.70% mIoU improvements compared
with baseline, proving the effectiveness of the introduced module.

Effectiveness of ADC. The use of ADC module to retrieve location informa-
tion from high-level features missing from the pooling layers has been detailed
in Sect. 3.2. We select the low-level features from block1 of atrous ResNet101,
which are 1/4 the size of the input image. Compared to the previous models
in Table 2, the performance gains 1.60% mIoU improvement when adding this
part.

Effectiveness of extra trick. In order to boost the results, we also incorporate
a trick used in many works, like [22,23]. Multi-scale inference (MS): this trick is
only used in inference. The final segmentation results are obtained by averaging
the output probability maps at different scales which vary between [0.75, 1, 1.25,
1.5, 1.75]. From Table 2, we can see that MS brings 0.69% mIoU improvements.

Table 2. Ablation experiments on Cityscapes validation dataset. We evaluated the
improvements of each proposed model.

ResNet101 CycleASPP ADC MS mIoU(%)

� – – – 76.25

� � – – 78.95

� � � – 80.55

� � � � 81.26
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Compare with State of the Arts. We compare our CycleNet with previous
state-of-arts works such as DenseASPP [3], CCNet [5], DANet [10] and so on
Cityscapes test set in Table 3. For fair comparison, we only train the model with
fine annotated dataset and evaluate the results by the evaluation server. The
CycleNet consists of CycleASPP which set the dilation rates as (3, 6, 12, 18, 24,
30), only once feedback connection and ADC module. Then, we boost the per-
formance by MS. Finally, our approach achieves 82.0% mIoU which outperforms
DANet 0.5% mIoU.

Table 3. Results on Cityscapes test dataset.

Method Backbone mIoU(%)

RefineNet [24] ResNet101 73.6

PSPNet [4] ResNet101 78.4

BiSeNet [25] ResNet101 78.9

DSSPN [26] ResNet101 77.8

PSANet [22] ResNet101 80.1

DenseASPP [3] DenseNet161 80.6

CCNet [5] ResNet101 81.4

DANet [10] ResNet101 81.5

CycleNet (ours) ResNet101 82.0

4.3 Experiments on ADE20K

Compare with State of the Arts. Here, we further experiment with our
method on ADE20K. As shown in Table 4, we compare our work with PSPNet
[4], EncNet [21], DSSPN [26], PSANet [22], CCNet [5] and SPNet [23] on the
ADE20K validation set. We also adopt atrous ResNet101 as our backbone, and
the dilation rates of CycleASPP are set as (3, 6, 12, 18, 24) because of the
small input size. Both 46.14% mIoU and 82.20% pixel accuracy are achieves
state-of-art results.

5 Visualization

The CycleNet mainly benefits from two modules mentioned above, CycleASPP
and ADC. To further analyze the reason, we visualize features’similarity maps
and class activation maps to realize a clear understanding.
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Table 4. Results on ADE20K validation dataset.

Method Backbone mIoU(%) Pixel Acc.(%)

PSPNet [4] ResNet101 43.29 81.39

EncNet [21] ResNet101 44.65 81.69

DSSPN [26] ResNet101 43.68 81.13

PSANet [22] ResNet101 43.77 81.51

CCNet [5] ResNet101 45.22 –

SPNet [23] ResNet101 45.60 82.09

DenseASPP [3] ResNet101 43.03 80.73

CycleNet (ours) ResNet101 46.14 82.20

5.1 Results of Two Datasets

We visualize some results under different settings of the proposed approach in
Fig. 3. The red square show the more difficult to distinguish regions. Obviously
to find, CycleASPP can correct the misclassified pixels in DensASPP. Such as
‘truck’ or ‘car’ in the second example and ‘building’ or ‘wall’ in third example.
Then, as in first example, CycleASPP can make sure that the pixels on the

(a)Image

(b)GT

(c)Backbone
+DenseASPP

(d)Backbone
+CycleASPP

(e)Backbone
+CycleASPP
+ADC

Fig. 3. Visualization of segmentation results among different approaches on Cityscapes
validation sets. The first to the fifth rows respectively are original image, ground
truth results, results from Backbone+DenseASPP, results from Backbone+CycleASPP,
results from Backbone+CycleASPP+ADC.
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edge are not disturbed by the rich information from the large receptive fields.
From the third example, compared the segmentation results of ‘pole’ from dif-
ferent methods, obviously, Backbone+CycleASPP equipped with ADC is able
to exactly segment tiny objects.

5.2 Features in Different Parts

In CycleASPP, each layer benefits from backwards high-level information. In
order to show the refinement more clearly, we calculated the similarity maps,
as shown in Fig. 4(b) and (c). With the help of backward connections, features
of the same objects are more similar and features of different objects are more
discriminative. Grad-CAM [27] are used to visualize the activation maps of two

(a)Image

(b)PartI SIM

(c)PartII SIM

(d)PartI CAM

(e)PartII CAM

Fig. 4. Visualization of features. (a) is the original image. (b) and (c) are similarity
maps with red pixel in original images. Hotter color denotes more similar in feature
level. (d) and (e) are class activation maps. Hotter color means larger in the degree of
activation.
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parts. As shown in Fig. 4(d) and (e), we only use one pixel exactly as red symbol
in Fig. 4(a) to produce a class activation map. It is obvious that our module can
see targets.

6 Conclusion

In this work, we present CycleNet to deal with the semantic segmentation
task in complex scene. CycleNet contains two significant parts, CycleASPP and
ADC. CycleASPP adds recurrent connections to dense forward connections like
DenseASPP that help model gain more accurate information. Since deformable
convolution can collect the information from unfixed positions, ADC develops
the decoding procedure that is different from the simple interpolation. As a
result, the possibility maps can better aligned with input image. Experiments
on Cityscapes and ADE20K demonstrate the effectiveness of the proposed app-
roach.
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