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Chapter 4
Application of Systems Biology Approaches 
for Host-Fungal Interaction in Animals

Ravindra Kumar and Rajrani Ruhel

4.1  �Introduction

Fungi are the major pathogens of plant, insects, and ectothermic vertebrates, but 
there are only a few of them that can cause diseases in mammals (Casadevall et al. 
2019). Interaction between pathogens and their host can induce changes both in the 
host and in the pathogen, which might result in either the clearing of the pathogen 
from host or the establishing the pathogen within the host. These host-pathogen 
interactions can be analyzed with the help of systems biology approaches which 
generates novel hypothesis or decipher the effects of particular molecules or genes 
across the biological network (Peters et al. 2019).

Systems biology aims to understand the complex and dynamic biological infor-
mation in the larger picture and requires the integration of different type of omics 
data such as proteomics, genomics, transcriptomics, and metabolomics (Pinu et al. 
2019). This approach unravels the intricate network of interactions between host 
and fungal pathogen and helps to elucidate the complex pathogenesis processes of 
fungal interactions. Sayers et al. (2019) developed a web-based integrative resource 
for the analysis of virulence factor of different pathogens including fungus that 
causes infectious disease in human and animals. Virulence factors are small mole-
cules that allow the microbial pathogens to survive and leads to diseased state 
in host.

To understand the infection mechanism, the whole host-fungal interaction sys-
tem is more useful instead of investigating pathogen or host separately and is crucial 
to develop more effective solution. The combined investigation of host-fungal 
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interaction might provide the understanding about the infectious disease in a way 
giving insight into the following questions.

	1.	 How to identify direct interaction between fungus and host proteins during the 
infection and/or invasion process?

	2.	 What signaling pathways and processes of the pathogen/host are implicated?
	3.	 How to detect the crosstalk among the pathogen-host biochemical network?
	4.	 What are the specific and unspecific responses of the host to pathogen invasion?
	5.	 What specific protein or pathways could be targeted to control fungal infection 

and invasion in animals?

4.2  �Systems Biology of Infection

Systems biology is an interdisciplinary research field which focuses on the study of 
nonlinear interactions among biological entities through combination of 
mathematical and computational approaches to study host-fungal interaction in 
biological system. This host-fungal interaction may be between proteins, nucleotides, 
metabolites, and small ligands. The traditional research typically focuses on single 
gene or fewer genes. The systems biology approach is insightful to understand 
physiology and infectious disease at cellular and molecular, network level. Systems 
biology approaches are categorized into bottom-up and top-down, where the 
bottom-up focus on network reconstruction through mathematical models while 
top-down approaches involves metabolic network reconstruction using “omics” 
data generated through high-throughput genomic techniques using appropriate 
statistical and bioinformatics methodologies (Shahzad and Loor 2012).

4.3  �Data in Systems Biology and Analysis

Understanding the complex host fungal interaction requires high-throughput data as 
well as the annotations information available from public repositories (Table 4.1).

4.3.1  �Omics-Based Data

Fungal omics such as genomics, transcriptomics, proteomics, and metabolomics 
help to understand basic fungal biology and its associated functional implications. 
Due to recent advancement in sequencing techniques as well as a small size of the 
fungal genome, the analysis of the fungal genome and proteome data becomes 
much easier. The information obtained from omics data analysis may enhance our 
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understanding about pathophysiology of infectious process and their underlying 
mechanisms of complex fungal biological process such as host-fungal interactions.

The free open source software “Bioconductor (Version 3.11)” provides 1904 
software package, 961 annotation, and 392 experimental datasets for bioinformatics 
analysis and comprehension of high-throughput genomic data.

4.3.1.1  �Genomics

The new sequencing technology generates huge genomics datasets at a low cost and 
in a short time. This enables to explore more genomic information of fungal 
pathogen and would help to improve the diagnostic methods. SNP identification is 
one of the important methods for characterization of variants of different pathogens 

Table 4.1  Web-based bioinformatics resources for fungal systems biology

Resources Description Website

AsperCyc Aspergillus metabolic pathways www.aspercyc.org
Aspergillus genome 
DB (AspGD)

AspGD is an organized collection of genetic 
and molecular biological information about 
the filamentous fungi of the genus 
Aspergillus

www.aspgd.org

Comparative fungal 
genomics platform 
(CFGP)

CFGP was designed for comparative 
genomics projects with diverse fungal 
genomes

http://cfgp.riceblast.snu.
ac.kr

Candida genome DB 
(CGD)

A resource for genomic sequence data and 
gene and protein information for Candida 
albicans and related species

www.candidagenome.
org

Ensembl Fungi It is browser for fungal genomes http://fungi.ensembl.org
FindFungi Sequence classification pipeline to identify 

fungal sequences in public metagenome 
datasets

http://bioinformatics.
czc.hokudai.ac.jp/
findfungi/

FunCatDB Gene-annotations
Fungal databases U.S. National Fungus Collections, ARS, 

USDA
https://nt.ars-grin.gov/
fungaldatabases/

FungiDB It is an integrated genomic and functional 
genomic database for the fungi

www.fungidb.org

FungiFun FungiFun is a user-friendly web tool for 
functional enrichment analysis of fungal 
genes and proteins

https://sbi.hki-jena.de/
fungifun/fungifun.php

Omnifung Data warehouse for omics data www.omnifung.
hki-jena.de

PhiBase Database of virulence genes www.phibase.org
Proteopathogen Protein database for studying Candida 

albicans-host interaction
http://proteopathogen.
dacya.ucm.es

UNITE Web-based database and sequence 
management environment for the molecular 
identification of fungi

https://unite.ut.ee/
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as well as to study the susceptibility of humans for different infections or pathogens. 
Saccharomyces cerevisiae is the first fungus whose complete genome sequence was 
available in 1996 (Goffeau et al. 1996); since then a number of human pathogen 
fungal genome have been published. The genome of C. albicans was published in 
2004 (Jones et al. 2004), and the genome of C. neoformans and A. fumigatus were 
published in 2005 (Loftus et al. 2005; Nierman et al. 2005). There are also many 
freely sources available for different pathogenic fungal species (Table 4.1) such as 
Aspergillus Genome Database (AspGD) (Cerqueira et  al. 2014) and Central 
Aspergillus Data Repository (CADRE) (Mabey et  al. 2004) for Aspergillus and 
Candida Genome Database (CGD) (Skrzypek et al. 2017) and CandidaDB (d’Enfert 
et al. 2005) for Candida species. This freely available information allows researchers 
to identify and to investigate more about the host fungal interactions.

4.3.1.2  �Transcriptomics

Pathogenic fungus during the course of infection process needs to effectively adapt 
to the host environment. These adaptation mechanisms are controlled by various 
transcriptional changes and it provides critical information regarding fungal 
pathogenesis (Amorim-Vaz and Sanglard 2015). The comparative analysis of the 
host and the fungal pathogen might help to design new antifungal drugs and to 
explore the clustered genes involved in the process of pathogenicity (Meijueiro 
et al. 2014).

Microarray, RNA-Seq, and nanoString are powerful tools to study the interaction 
between fungal pathogen and their host during the infection. Cryptococcus 
neoformans and Aspergillus fumigatus are the two important fungal species that 
cause high mortality in immune-compromised patients (Brown et  al. 2012), and 
their transcriptomics study has already been performed (Chen et al. 2014; McDonagh 
et  al. 2008). Bruno et  al. in 2010 (Bruno et  al. 2010) used RNA sequencing to 
generate a high-resolution transcriptome map of human pathogen Candida albicans 
under different environmental conditions and identified 602 new transcriptionally 
active regions (TARs).

Deep sequencing also has been used to identify novel functional small RNAs, 
which has a great implication in the regulation of global gene expression in human 
pathogenic fungus (Nicolas and Ruiz-Vazquez 2013). Arthanari et al. (2014) used 
RNA sequencing data from ABI SOLiD platform to identify 939 novel long 
noncoding RNA (IncRNA) and 477 new natural antisense transcripts (NAT) from 
ascomycete fungus Neurospora crassa under different light and temperature 
conditions. Gene Expression Omnibus (GEO) (Barrett et  al. 2013; Edgar et  al. 
2002) and ArrayExpress (Rustici et  al. 2013) are the freely publicly available 
databases of fungal transcriptomics data.

Some reported virulence factors have been found to be related to transcriptional 
reprogramming associated with phase transition from avirulent mycelia to 
pathogenic yeast. For instance, in case of Paracoccidioides spp., which causes 
paracoccidioidomycosis, the transition between these forms has been an important 
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virulence factor (Tavares et al. 2015). Candida albicans, responsible for candidiasis, 
under comprised immunity and other opportunistic conditions results in superficial 
mucosal colonization and establishment of the systemic infection (Cheng et  al. 
2013; Wartenberg et al. 2014). According to RNA-seq studies in mice, during the 
vaginal infections caused by C. albicans, overexpression of aspartyl-proteinases 4, 
5, and 6 (SAP4–6) has been reported which are hypha-associated secreted enzymes 
and function as inflammasome activators (Bruno et al. 2015). The virulence factor 
for Cryptococcus is a transcription factor Rim101 that is involved in the cell wall 
composition regulation (O’Meara et  al. 2013). Cell wall forms a barrier at host-
pathogen interface and is part of immune system. The structural integrity of the cell 
wall is maintained by the cell wall integrity signaling pathway that involves various 
crucial kinases. Dual RNA-seq is a high-throughput sequencing for simultaneous 
transcriptomic analysis of pathogen and host to explore the regulatory networks 
during the fungal infection (Das et  al. 2015; Rienksma et  al. 2015; Westermann 
et al. 2012).

4.3.1.3  �Proteomics

Proteomics is another tool for the examination of expression patterns in the biologi-
cal system. Proteins are the functional determinants and might have various roles 
such as to build the cellular structure; to mediate signal transduction, involved in the 
gene regulation; to influence different cellular processes; or to function as enzyme. 
Proteomic studies were initially performed using 2D-PAGE followed by mass spec-
trometry. Mass spectrometry is still the gold standard for proteomic analysis in the 
field of systems biology.

The release of the genome sequences of Candida albicans (Braun et al. 2005; 
Jones et al. 2004) and Aspergillus fumigatus (Nierman et al. 2005) has been of great 
benefit for a more detailed insight into the evolution and pathogenesis of these 
medically important fungus since for these pathogenic fungus, 2D gel proteome 
reference maps are available (Kniemeyer et al. 2011). Vodisch et al. (2009) identified 
334 different mycelial proteins via 2D gel electrophoresis of Aspergillus fumigatus.

4.3.2  �Image-Based Data

Image-based systems biology approaches are important tools for the investigation 
and elucidation of pathobiology of fungal infection. It can be divided into four basic 
steps: (i) extraction of image data through experimental techniques, (ii) preprocessing 
of the data, (iii) quantitative characterization of biological processes, and (iv) and 
image-based model development (Fig. 4.1).

Multiphoton microscopy (MPM) and fluorescence microscopy is one of the most 
valuable tools for live-cell imaging in infection research (Ettinger and Wittmann 
2014; Sun et al. 2017). For the analysis of host-pathogen interaction, a large number 
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of images are required that can be obtained by different experimental approaches 
such as fluorescence microscopy and positron emission tomography-computed 
tomography (PET/CT). Ibrahim-Granet et al. (2003) described the detail analysis of 
interaction between A. fumigatus and phagocytes using fluorescence microscopy 
and manual image analysis.

Manual image data analysis with regard to host-pathogen interaction is time con-
suming, and also error-prone; on the other hand, an automated image data analysis 
can analyze a large amount of data in a shorter period of time and is not labor exten-
sive. Mech et al. (2011) developed an automated image analysis for the host-patho-
gen interaction between Aspergillus fumigatus conidia with immune cells. They 
used confocal laser scanning microscopy images from macrophages with different 
A. fumigatus strains. In this study, phagocytosed cells were differentially stained 
with fluorescent dyes and visualized with confocal laser scanning microscope, lead-
ing to discrimination between macrophages, internalized conidia, and non-internal-
ized conidia. Currently there are a number of image analysis tools available for 
fungal analysis (Brunk et al. 2018; Cairns et al. 2019; Mader et al. 2015; Wurster 
et al. 2019). All image analysis methods comprise mainly three main parts: (i) pre-
processing, (ii) segmentation, and (iii) classification.

Image-based systems biology is a relatively new scientific approach that com-
prises imaging, quantitative characterization, and modeling. In host-fungal interac-
tions, image-derived models have been used to investigate the phagocytosis of 
fungal spores and the growth of fungal hyphae (Mech et al. 2011). It enhances our 
understanding of many aspects of cell migration and interaction behavior of the 

Fig. 4.1  Diagrammatic representation of image-based systems biology approaches
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immune cells. Image-based systems biology focuses on the spatial factors and on 
cellular morphology (Horn et al. 2012).

4.4  �Modeling

The computational modeling of networks of the genes, transcripts, proteins, and 
metabolites is of great importance in biomedical research to understand the 
molecular mechanism of the host-fungal interactions and helps to understand the 
complex regulatory mechanism. The aim of the modeling is to support the 
standardized design of experiments, to generate the hypothesis, and to validate the 
hypothesis. The modeling also allows the prediction of novel regulatory biological 
strategies (Horn et al. 2012). May and Anderson (1979) described the host-pathogen 
interaction through the evolutionary model. Due to the challenges of modeling of a 
complex system, only a few models of fungal-human interactome network have 
been studied (Horn et al. 2012). Rodrigues et al. (2018) developed transkingdom 
network (TransNet) analysis pipeline that allows to make biological inferences. 
They constructed a network using correlation between differentially expressed 
elements and integration of high-throughput data from different taxonomic 
kingdoms.

4.4.1  �Network Modeling

Biological network modeling enables to study how the system can respond to the 
ever-changing external environment. Predictive power of such model enables the 
diagnosis by the prediction of biomarkers and drug targets. Cellular behavior of 
organism can be represented by gene regulatory network, protein-protein network, 
signaling network, and metabolic network. In the network modeling, the nodes 
represent molecular entities such as genes, proteins, and metabolites, and the edges 
represent the relationship between the nodes and can be modeled in different ways 
like directed or undirected edges (Horn et al. 2012). Aho et al. (2010) made an effort 
to reconstruct a model, which integrated the genomics, transcriptomics, proteomics, 
and metabolic data. Some of the biological networks of fungus that have been 
extensively studied in recent years have been discussed below.

4.4.1.1  �Gene Regulatory Network

Gene regulatory network (GRN) is the network of genes that either interact physi-
cally or have genetic interaction to regulate a pathway or to carry out a specific role 
(Karlebach and Shamir 2008). Gene regulatory network helps to predict the gene 
that might function as central and key player in the network. It also describes the 
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relationship between the regulatory components and can help to predict their target 
gene (Guo et al. 2016). Among the fungal species, GRN studies has been exten-
sively focused on Saccharomyces cerevisiae (Darabos et al. 2011; Guelzim et al. 
2002; Hu et al. 2007; Kim et al. 2006; Lee et al. 2002; Pe’er et al. 2002; Segal et al. 
2003), Candida albicans (Homann et  al. 2009; Ramachandra et  al. 2014), and 
Fusarium graminearum (Guo et al. 2016). Many computational methods such as 
Gaussian graphical model (Kishino and Waddell 2000; Schafer and Strimmer 2005), 
probabilistic Boolean network (Glass and Kauffman 1973; Kauffman 1969; 
Shmulevich et  al. 2002), linear model, and regression and Bayesian network 
(Friedman et al. 2000; Pe’er et al. 2002; Segal et al. 2003) are available for GRN 
reconstruction. Pe’er et  al. (2002) used Bayesian network to reconstruct yeast 
GRN. Tierney et al. (2012) generated the first interspecies computational model of 
host-pathogen interactions and used it to decipher the mechanism of microbial 
pathogenesis. They used RNA-Seq expression data from Candida albicans and 
bone marrow-derived dendritic cells from M. musculus.

4.4.1.2  �Protein-Protein Interaction (PPI) Network

In the post-genomic era, genes and its corresponding proteins are very useful for the 
identification of intra- and interspecies protein interaction networks (Durmus et al. 
2015). These protein-protein interaction (PPI) networks have been used to identify 
the host immune-associated genes and the pathogenic effector proteins associated 
with host infection. Wang et al. (2013) integrated multiple omics data and based on 
the inference of ortholog-based PPI and dynamic modeling of regulatory responses 
have constructed an interspecies PPI network for Candida albicans and zebrafish. 
Development of experimental techniques to produce large-scale molecular 
interaction data and further an increase in the amount of experimentally validated 
host-fungal PPI data provides opportunity to perform a number of computational 
studies to investigate infection mechanism for different pathogen types (Durmus 
et al. 2015).

4.4.1.3  �Signaling Network

Signaling network is a cell-to-cell communication network that allows the cell to 
respond to external signals through the change in transcription. When the cell 
receives the external signal through its membrane, it activates the cascade of events 
and ultimately affects the transcriptional. These signals or stimulus can be of 
different type such as chemical, physical, radiation, pathogen, etc. An excellent 
example of a highly conserved signaling network within all eukaryotes is the 
Regulation of Ace2 and Morphogenesis (RAM) network (Kurischko et  al. 2005; 
Nelson et al. 2003; Saputo et al. 2012). This network is most extensively studied in 
Saccharomyces cerevisiae and Candida albicans and is less characterized for 
pathogenic fungus.
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4.4.1.4  �Metabolic Network

During infection, the pathogen interacts with the host cell and it causes alterations 
in the level of metabolites by affecting the host metabolic pathways (Cakir et al. 
2020). Metabolic network model describes the metabolic state of the cell, and it 
allows for an in-depth insight into the molecular mechanisms and systems level 
predictions of metabolism in a variety of organisms. Recently, Wang et al. (2018) 
used a systems biology approach to predict and characterize human gut microbial 
metabolite in colorectal cancer.

The first genome-scale metabolic model for Saccharomyces cerevisiae was pre-
sented in 2003 (Forster et al. 2003), and it was the first and the most studied genome-
scale network reconstruction for the eukaryotic organism. Since eukaryotic 
organisms are very complex in nature, researchers are continuing applying their 
efforts to improve and upgrade information into the metabolic network. Till date a 
number of genome-scale reconstruction of metabolic networks have been released 
(Dobson et al. 2010; Duarte et al. 2004; Heavner et al. 2012; Herrgard et al. 2008; 
Mo et al. 2009; Nookaew et al. 2008; Osterlund et al. 2013; Zomorrodi and Maranas 
2010). Saccharomyces cerevisiae metabolic network has also been used as the basis 
for construction of metabolic models for other yeast, such as Saccharomyces pombe 
(Sohn et  al. 2012), Yarrowia lipolytica (Loira et  al. 2012), Pichia pastoris, and 
Pichia stipites (Caspeta et al. 2012). There are many researchers who are working 
on the tool development for reconstruction of genome-scale metabolic network 
(O’Brien et al. 2015; Pusa et al. 2020; Tefagh and Boyd 2020). Recently, Tefagh and 
Boyd in 2020 (Tefagh and Boyd 2020) proposed SWIFTCC and SWIFTCORE as 
effective methods for flux consistency checking and for the context specific 
reconstruction of genome-scale metabolic networks, while Pusa et  al. (2020) 
developed a mathematical tool “MOOMIN” which uses genome-scale metabolic 
reconstruction to infer metabolic changes from differential expression data.

4.5  �Conclusion and Future Implications

Unlike bacterial and viral infections, the fungal infections are uncommon and have 
been mainly associated with the immunocompromised patients due to conditions 
such as transplantation, tuberculosis, and HIV due to which they lead to a high 
mortality rate (Kumar and Ruhel 2019; Romani 2011). Understanding the intrinsic 
complexity of the invasive infection and exploring the transcriptional reprogramming 
in the host cells upon fungal infection might help to design more efficient and 
broad-range therapeutic strategies and drug targets. This would also expand the 
knowledge about the biomarkers for progression of the infection. Noncoding RNAs 
(ncRNAs) are emerging as important players in various stages of infection process 
such as colonization of cells and signaling and in other pathologically related 
functions. It would be interesting to explore the involvement of more players such 
as the noncoding RNAs along with the epigenetic factors during the host-fungal 
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interaction and its implications on the infection process. The study of ncRNAs by 
small RNA (sRNA) sequencing during the fungal infection in the host cells 
combined with transcriptomics data could be another approach.

The recent advanced high-throughput techniques such as RNA-seq, sRNA-seq, 
and dual-seq analysis have been of a great importance to understand the crosstalk 
between various pathways triggered by the fungus pathogen in the infected host 
cells. Expansion in the data repositories related to host-fungal interaction along with 
systems biology modeling could be helpful for personalized medicine which is an 
emerging research (Dix et  al. 2016). Combining various approaches will be an 
important route for infection-related research over the next decade (Yeung et  al. 
2019). Integration of the experimental data, computational and mathematical model, 
and information from the database provide a better model (Fig. 4.2) which can be 
used to validate a working hypothesis as well as to test new computational models. 
In future, the modeling of host-fungal interaction networks will be important to 

Fig. 4.2  An illustration of the various system approaches that can be applied to test the hypothesis 
to study host-fungal interactions
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complement the experimental work to enhance the understanding of the system, to 
reduce animal experiments, and to generate and test hypothesis faster.
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