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Abstract. We perform a numerical study of thermal diffusion effects on
double-diffusive mixed convection in a lid-driven square cavity, differen-
tially heated and salted. The fluid flow is solved by a multiple relaxation
time (MRT) lattice Boltzmann method (LBM), whereas the tempera-
ture and concentration fields are computed by finite difference method
(FDM). To assess numerical accuracy, the model (MRT-LBM coupled
with FDM) are verified and validated using data from the literature.
Besides reasonable agreement, satisfactory computational efficiency is
also found. Thereafter, the model is applied for the thermal diffusion
effect on a double-diffusive mixed convection in a cavity with moving
lid. Results are obtained depending on various dimensionless parame-
ters. It is found that upon increasing the Soret number, heat transfer is
slightly enhanced whereas the thickness of the concentration boundary
layer increases, thereby decreasing the mass transfer rate.

Keywords: Lattice Boltzmann method (LBM) · Finite difference
method (FDM) · Thermodiffusion effect · Double diffusive mixed
convection

1 Introduction

In the last few years an alternative numerical method has attracted much atten-
tion as a technique in fluid engineering. This method called Lattice Boltzmann
Method (LBM) is a mesoscopic method. The fundamental idea behind LBM is
to establish a simplified kinetic model to obey the corresponding macroscopic,
i.e. Navier Stokes, equations. It has proved its capability to simulate a large
variety of fluid flows [1–4]. The LBM has become a very successful alternative
numerical method for computational fluid dynamics. Moreover, it is well suited
for high-performance implementations on massively parallel processors, includ-
ing graphics processing units [5]. The lattice Boltzmann method comes with two
main collision models. One of the simplest and most widely used proposed by
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Bhatnagar, Gross and Krook [6] called BGK model, is based on a single relax-
ation time (SRT) and proves very simple and efficient for simulating fluid flows.
Up to now, the lattice Boltzmann equation with the BGK collision operator
is still the most popular lattice Boltzmann method. Despite many advantages,
the BGK model reveals some deficiencies due to numerical instabilities [7] and
consequent difficulties to reach high Reynolds number flows. The second model
called MRT operator [8] where each relaxation rate can be tuned independently,
presents some advantages compared to the BGK model in terms of numerical
stability. Because of this, the MRT-LBM has become increasingly popular in the
recent years.

For solving thermal LBM model, several approaches have been proposed,
which can be grouped into four categories: passive-scalar approach, multispeed-
approach, double-population approach and hybrid approach. The multispeed
approach consists in using only one distribution function for treating all thermo-
hydrodynamic equations [9–11]. The passive scalar approach consists of treating
temperature as the current along an extra-spatial dimension [12]. It is efficient,
but being related to the four-dimensional lattices used in the earliest days of LBM
research, it has somehow lost popularity The multi-speed model is most natural,
but requires additional discrete speeds and is prone to numerical instabilities.
The double population approach [13,14] makes use two independent functions
for thermo-hydrodynamic equations. This model assumes that, the viscous dissi-
pation and compression work can be neglected for incompressible fluids and the
evolution of the temperature is given by the advection-diffusion Eq. [15,16]. This
approach shows significant improvements in numerical stability, but to the cost
of introducing an additional distribution function to simulate a passive scalar.
The hybrid approach [16] used in this article, consists of leaving LBM only for
the flow solution, while the energy equation is solved by a different numerical
method, typically finite-differences or finite-volumes.

For this reason, in our work the LBM-MRT model is used for velocity field,
on the one hand, and finite differences for temperature and concentration fields,
on the other hand.

Thermosolutal buoyancy-driven flow in confined cavities represents a funda-
mental problem, with many engineering applications, such as pollutant trans-
port, nuclear reactor cooling, cooling of electronic systems, to name but a few.
Double-diffusive heat and mass transfer problems can be classified as problems
involving natural convection, forced convection and combination of both, often
referred to as mixed convection [17–22].

Diffusion of heat due to a mass concentration gradients (Dufour effect) and
diffusion of matter induced by temperature gradients (Soret effect) are the sub-
ject of intensive research, due to the broad range of application in technology
and engineering. These include mixture between gases, oil-reservoirs, isotope
separation and many others [23–29].

For all the above cited works, the authors have used several configurations to
study both the double-diffusive natural and mixed convection problems. More-
over, they applied different numerical methods to solve the basic thermo-fluid
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equations. Comparatively less attention has been given to the problem of a
double-diffusive mixed convection with Soret effect in a driven cavity. From
this point of view and to the best of the authors knowledge, no attention has
been paid to explore the thermal diffusion effect (Soret effect) on a double-
diffusive mixed convection in a cavity with moving lid, using the lattice Boltz-
mann method (LBM).

In this paper we present a numerical model for double-diffusive mixed con-
vection with Soret effect in a lid-driven cavity. This model uses the Lattice
Boltzmann method with multiple relaxation time for collision operator to sim-
ulate mass and momentum conservation and finite differences to compute the
temperature and concentration fields. We also attempt to provide benchmark
quality results on CPU time which can be compared with the existing data.

2 Mathematical Model

2.1 Definition of the Problem

Fig. 1. Geometry of the enclosure and coor-
dinate system.

The physical model under consider-
ation is presented in Fig. (1). The
two-dimensional lid-driven cavity has
height H and width L (Aspect ratio
Ar = H

L ), the vertical side walls are
thermally insulated and the top wall
moves at a constant velocity U0 = 0.1.
The bottom and top walls are main-
tained at two different but uniform
temperatures and concentrations such
that the top wall has the temperature
Tc and concentration Cc, while the bottom wall has the temperature Th and
concentration Ch, respectively, where Th > Tc and Ch > Cc.

The thermophysical properties of the fluid are assumed to be constant except
for the density variation in the buoyancy term according to the Boussinesq
approximation:

ρ = ρ0 (1 − βT (T − Tm) − βS (C − Cm))

where ρ0 is the fluid density at the reference temperature Tm =
(

Th+Tc

2

)
and

concentration Cm =
(

Ch+Cc

2

)
, βT and βS are the thermal and mass expansion

coefficients, respectively.
To solve the problem of double-diffusive mixed convection with Soret effect in

a lid-driven cavity we assume: a Newtonian incompressible fluid, the Boussinesq
approximation for buoyancy, viscous heating and compression work are neglected
and no source term inside the cavity.

Based on these assumptions, the dimensional governing equations of mass and
momentum are solved by the MRT lattice Boltzmann Method (MRT-LBM) while
energy and species equations are solved by Finite Difference Method (FDM).
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The non dimensional terms used in this work like thermal Grashof num-
ber, the solutal Grashof number, the buoyancy ratio, the Richardson number,
the Reynolds number, the Prandtl number, the Schmidt number and the Soret
number are defined, respectively, by:

GRT = gβT

(
(Th − Tc) H3

ν2

)
; GRS = gβS

(
(Ch − Cc) H3

ν2

)

N =
βS (Ch − Cc)
βT (Th − Tc)

=
GRS

GRT

Ri =
GRT

Re2
; Re =

U0.H

ν
; Pr =

ν

α
; Sc =

ν

D

Sr =
D.KT (Th − Tc)
Tmν (Ch − Cc)

The average Nusselt and Sherwood numbers, defined by temperature and
concentration gradients at walls, are calculated via:

Nuav = − 1
Th − Tc

∫ H

0

(
∂T

∂y

)

wall

dx

Shav = − 1
Ch − Cc

∫ H

0

(
∂C

∂y

)

wall

dx

The dimensionless variables governing this problem are U the x-component
velocity and V the y-component velocity.

The following dimensionless quantities are given by:

U∗ =
U

U0
V ∗ =

V

U0
θ =

T − Tc

Th − Tc
t∗ =

tU0

H
Θ =

C − Cc

Ch − Cc

2.2 MRT-LBM Hybrid Model for Fluid Flow

Within this approach, fluid is described by a particle distribution function which
evolves in discrete space and time (a DdQq lattice; d dimensions and q velocities)
following two steps: propagation and collision. Hence, the lattice Boltzmann
equation is expressed as:

fi (−→x + −→ei , t + 1) − fi (−→x , t) = Ωi (1)

where fi is the probability of finding a particle at lattice node −→x , at the time
t, moving with velocity −→ei (i = 0, ....q − 1) and Ωi is the collision operator. Note
that the time step is made unit by convention.

The Lattice Boltzmann equation with multiple relaxation time (MRT) can
be expressed as:

fi (−→x + −→ei Δt, t + Δt) = fi (−→x , t) − M−1Sij

[
mj − meq

ij (−→x , t)
]

(2)
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M is a transform matrix projecting the discrete distribution function f into
moment space |m〉 = M. |f〉, meq

j is the equilibrium moment.
The physical meaning of the moments is as follows:

|m〉 =
(
ρ e jx jy ε qx qy pxx pxy

)� (3)

where ρ is the density, e is the energy, jx and jy the x and y components
of momentum (mass flux) and ε is defined as the kinetic energy, qx and qy are
the x and y components of the energy flux. In addition, pxx and pxy correspond
to the diagonal and off-diagonal components of the viscous stress tensor, and �
denotes the transpose operator.

The macroscopic fluid variables, density ρ and velocity −→u are obtained from
the moments of the distribution functions as follows:

ρ =
q−1∑

i=0

fi and ρ−→u =
q−1∑

i=0

fi
−→ei (4)

For the (D2Q9) lattices(Fig(2)), the nine discrete velocities −→ei are defined as:
⎧
⎨

⎩

−→ei =
−→
0 i = 0−→ei =

(
cos

[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
c i = 1, 2, 3, 4−→ei =

(
cos

[
(2i − 9) π

4

]
, sin

[
(2i − 9) π

4

])
c
√

2 i = 5, 6, 7, 8
(5)

Fig. 2. Lattice structure for the D2Q9 model.

Where ΔX and Δt are the
lattice width and time step,
respectively. It is chosen that
ΔX = Δt, thus c = ΔX

Δt = 1
is the lattice speed.

With a (D2Q9) lattices,
the transformation matrix M
and the moment vector m are
defined as:

m =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ
e
ε
jx

jy

qx

qy

pxx

pxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎦

⎡

⎢
⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0

f1

f2

f3

f4

f5

f6

f7

f8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M.f (6)
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Where the equilibrium value of moments can be defined from the following
equations: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρeq = ρ
eeq = −2ρ + 3

(
u2 + v2

)

εeq = ρ − 3
(
u2 + v2

)

jeq
x = ρu

jeq
y = ρv

and

⎧
⎪⎪⎨

⎪⎪⎩

qeq
x = −u

qeq
y = −v

peq
xx = u2 − v2

peq
xy = uv

(7)

The equilibrium density distribution function, which depends on the local
fluid velocity and density is given by:

feq
i = wiρ

[

1 +
3−→ei .

−→u
c2

+
9 (−→ei .

−→u )2

2c4
− 3−→u .−→u

2c2

]

i = 0 → 8 (8)

Where wi is the weighting factor defined as:
⎧
⎨

⎩

wi = 4
9 i = 0

wi = 1
9 i = 1, 2, 3, 4

wi = 1
36 i = 5, 6, 7, 8

(9)

The diagonal relaxation matrix can be written as:

S = diag [S0, S1, S2, S3, S4, S5, S6, S7, S8] (10)

In the present work, we assume S0 = S3 = S5 = 0 for both the mass and
momentum conservation before and after collision. We also consider S7 = S8 = 1

τ
due to fact that the viscosity formulation is the same as SRT model. In the
present simulation S1 = 1.64, S2 = 1.2 and S4 = S6 = 8 × (2−S7)

(8−S7)
.

It should be noted that in the LBM the kinematic viscosity ν is related to
the relaxation time by the following relation:

ν = (τ − 0.5) c2
sΔt (11)

Where cs = c√
3

is the speed of sound. For the (D2Q9) lattices the viscosity
is positive which requires the choice of τ > 0.5.

2.3 Finite Difference Method (FDM) for Temperature
and Concentration Fields

Equation (4) is discretized by the Finite Difference Method (FDM) using the
Taylor series expansion of the second order. To improve the stability of the
hybrid model used in this article, Lallemand and Luo [16] suggest using a dis-
cretization in accordance with discretization speeds. They proposed the following
discretization for the derivatives with (Δx = Δt = 1):

For more clarity, in the following the variable (Φ) designates the temperature
(T ) or the concentration (C). Therefore, the equations for both scalars (T and
C) can be written as:

∂Φ

∂x
=

(
Φi+1,j − Φi−1,j − 1

4
[Φi+1,j+1 − Φi−1,j+1 + Φi+1,j−1 − Φi−1,j−1]

)
(12)
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∂Φ

∂y
=

(
Φi,j+1 − Φi,j−1 − 1

4
[Φi+1,j+1 − Φi−1,j+1 + Φi+1,j−1 − Φi−1,j−1]

)
(13)

And for Laplacian:

∇2Φ = ([Φi+1,j + Φi,j+1 + Φi−1,j ]

−1
2

[Φi+1,j+1 + Φi−1,j+1 + Φi−1,j−1 + Φi+1,j−1] − 6Φi,j

)
(14)

For the time derivative, we use an explicit difference scheme. Then for the
solution is conditionally stable:

∂Φ

∂t
=

(
Φn+1

i,j − Φn
i,j

)
(15)

Substituting the Eqs. (12–15) to Eq. (4) or (5):

Φn+1
i,j = Φn

i,j (1 − 6α) + Φn
i+1,j (−u + 2α) + Φn

i−1,j (u + 2α)
+Φn

i,j+1 (−v + 2α) + Φn
i,j−1 (v + 2α)

+Φn
i+1,j+1

(
1
4u + 1

4v − 1
2α

)

+Φn
i−1,j+1

(− 1
4u + 1

4v − 1
2α

)

+Φn
i+1,j−1

(
1
4u − 1

4v − 1
2α

)

+Φn
i−1,j−1

(− 1
4u − 1

4v − 1
2α

)

(16)

The coefficient that accompanies (Φi,j) in the above equation plays an impor-
tant role for explicit schemes. These schemes are conditionally stable and then
lead to constraints on the time step and space step choices. One of the required
stability conditions for the current scheme is taken when the thermal diffusivity
and viscosity are related to Prandtl number and limited by:

(1 − 6α) ≥ 0 ⇒ α =
ν

Pr
≤ 1

6

On the other hand, the stability conditions of the scheme relative to the mass
diffusivity and viscosity are related to Lewis number and limited by:

(1 − 6D) ≥ 0 ⇒ D =
ν

Le
≤ 1

6

2.4 Boundary Conditions

In the present work, we consider two types of boundary conditions. We apply
the Dirichlet boundary conditions (fixed temperature and concentration) at hor-
izontal walls while the vertical walls are adiabatic, defined by:

U = V = 0, θ = Θ = 1 at Y = 0, 0 ≤ X ≤ 1
U = 0.1, V = 0, θ = Θ = 0 at Y = 1, 0 ≤ X ≤ 1
U = V = 0, ∂θ

∂X = ∂Θ
∂X = 0 at X = 0, 0 ≤ Y ≤ 1

U = V = 0, ∂θ
∂X = ∂Θ

∂X = 0 at X = 1, 0 ≤ Y ≤ 1
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The no slip boundary condition is imposed at all walls. This type of boundary
condition in the LBM is achieved half-way between the boundary nodes [17]. As
a result, an extrapolation is needed on boundary nodes to enforce the correct
thermal boundary conditions.

The following expressions were used to impose the temperature (the same
procedure for the concentration):

Ti,0 =
8
3
Twall − 2Ti,1 +

1
3
Ti,2 (17)

For adiabatic boundary conditions at the walls:

T0,j =
21
23

T1,j +
3
23

T2,j +
1
23

T3,j (18)

3 Model Validation

In order to check the validity of the proposed model, Table 1, reports a com-
parison of our numerical results with those of Ben Cheikh et al. [30] in terms
of CPU time and number of steps for different grid sizes and for Rayleigh num-
ber Ra = 105. These authors used a finite volume multigrid method and com-
pared two different schemes namely, the accelerated finite volume full multi-
grid method (AFMG) and the red and black successive overrelaxation scheme
(RBSOR) inorder to study convective flow in a square differentially heated cav-
ity, the top and bottom walls are thermally insulated whereas the west and east
walls are maintained isothermally at constant and temperatures Th (hot) and Tc

(cold), respectively. It is to be noted that the CPU time performances obtained
on a dual-1.73 GHz processor. From this table it is seen that the present model
is more efficient in CPU than the two schemes used for comparison and shows
also an interesting gain concerning in time step-size. Of course these data should
be taken as a semi-quantitative indication, a more detailed comparison requiring
the consideration of many parameters, including code optimization and related
issues which are beyond the scope of this paper.

Concerning the double-diffusive mixed convection without Soret effect, a grid-
dependence study was carried out by setting Pr = 1, Le = 2, Re = 500 and
GRT = GRS = 100 (N = 1). Five uniform node resolutions, 312, 512, 612, 712

and 812 were examined.
In Fig. (3a–3b) we compare our results for the steady state velocity and tem-

perature profiles along the mid-section of the cavity in the Y -direction, with the
results of Al-Amiri et al. [21] obtained using stream function vorticity formula-
tion. As shown from these figures, reasonable results are obtained using node a
812 grid resolution.

Thus, the present model is verified and validated with different numeri-
cal methods in the literature. The different comparisons indicate the effective-
ness and accuracy of the proposed model. Next, the model is applied to the
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Table 1. Comparison of CPU times and number of steps with Ref. [30] for different
grid sizes, for Ra = 105.

Grid size Method Steps CPU[s] CPU[s]/Steps

Present 67500 19 0.00028

32 ∗ 32 AFMG [30] 5000 26 0.0052

RBSOR [30] 33 0.0066

Present 113800 139 0.00122

64 ∗ 64 AFMG [30] 10000 209 0.021

RBSOR [30] 450 0.045

Present 128400 640 0.00498

128 ∗ 128 AFMG [30] 20000 2300 0.115

RBSOR [30] 18057 0.903

Present 460400 09455 0.02053

256 ∗ 256 AFMG [30] 40000 15595 0.390

RBSOR [30] 632000 15.80

thermosolutal mixed convection with Soret effect in a cavity with moving top
wall. We also endeavour to provide benchmark results to be compared with the
existing data.
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Fig. 3. Grid independence test for GRS = GRT = 102 (N = 1), Le = 2 and Re = 500,
(a) U -Velocity and (b) Temperature.

4 Results of Thermosolutal Mixed Convection with Soret
Effect

In this section we study the numerical procedure of MRT-LBM coupled with
FDM for thermosolutal mixed convection with Soret effect in a lid-driven square
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cavity. The fluid velocity is determined by D2Q9 MRT-LBM model while the
temperature and concentration fields are computed by FDM. The effects of var-
ious parameters such as the Soret number Sr, the buoyancy number N on the
flow structure and the heat and mass transfer as well as the average Nusselt and
Sherwood numbers are calculated. The Schmidt number Sc = 5, the Prandtl
number Pr = 0.71, the Reynolds number Re = 316 and the Richardson number
is fixed at Ri = 0.1.
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Fig. 4. Computed streamlines, isotherms and isoconcentrations: (a, d and c) for Sr = 1,
(d, e and f) for Sr = 0.5, (g, h and k) for Sr = 0.

Effect of Soret Number Sr . In this subsection, numerical results are obtained
for the thermal and solutal Grashof numbers fixed at GRT = GRS = 105 (N =
1), while the Soret number is changed in the range Sr = 0, 0.5 and 1. The
results are reported in terms of streamlines, isotherms and isoconcentrations,
respectively.

For Sr = 0, the problem reduces to a pure thermosolutal mixed convection.
Fig(4a-4c) show the streamlines, isotherms and isoconcentrations predicted by
the present hybrid lattice-Boltzmann finite difference simulation. As shown from
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Fig. (4a), a primary circulation clockwise vortex occupies the whole volume of
the cavity, with a secondary counterclockwise vortex that is formed near the
bottom corners, due to the dominant effect of mechanically driven top lid to the
entire cavity. The distribution of isotherms and isoconcentrations depicted in
Fig. (4b–4c) show that there are steep temperature and concentration gradients
in the vertical direction, near the bottom wall. By increasing the Soret number
to Sr = 0.5 (Fig. (4d–4f)) and Sr = 1 (Fig. (4g–4k)), the flow patterns are
characterized by a primary recirculating clockwise vortex, that occupies the bulk
of the square cavity with a secondary counterclockwise vortex near the bottom
corner, are the results of negative pressure gradient generated by the primary
circulating fluid. In addition, steep temperature gradients are clustered in the
vertical direction of the interior region and near the bottom wall. It is to be noted
that, in this case, by increasing the Soret number, no significant effect is observed
in terms of both streamlines and isotherms. Due to the significant dependence
of the Sherwood number on the Soret number, we note a dramatic variation in
the mass contours with thinner mass boundary layer forming along the wall (see
Fig. (4f, 4k)). This is due to the increase in diffusivity upon increasing the values
of the Soret number.

Table 2. Effect of Soret number Sr on the average Nusselt and Sherwood numbers for
GRT = GRS = 105, Re = 316, Sc = 5 and Ri = 0.1.

Sr Nuav Shav CPU [s] Steps

0 3.743 7.049 881.5 384500

0.5 3.809 5.773 815.4 353800

1 3.886 4.450 645 286200

This is also demonstrated from date in Table 2, in which we calculated the
average Nusselt and Sherwood numbers for three values of the Soret number. One
can note that, by increasing the Soret number from Sr = 0 to Sr = 1, the heat
transfer represented by the Nusselt number is slightly increased. On the other
hand, if the Soret parameter is increased, the thickness of the concentration
boundary layer increases, thereby decreasing the mass transfer rate represented
by the average Sherwood number.

Conclusion

In this paper we employ the lattice Boltzmann method with multiple relaxation
time (MRT-LBM), coupled with the finite difference method (FDM) to simu-
late thermo-hydrodynamics. The fluid flow is computed by D2Q9 MRT model
while the temperature and concentration fields are solved by FDM. The 2-D
square differentially heated cavity and double-diffusive mixed convection with-
out Soret effect was considered as validation test. Satisfactory agreement has
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been obtained, compared with different numerical methods in the current lit-
erature. The results show that the present model can yield benchmark quality
results. The employed model has then applied to a thermosolutal mixed convec-
tion with Soret effect in a cavity with moving top wall. Results show that the
heat transfer represented by the average Nusselt number is slightly enhanced
upon increasing the Soret number. Whereas, the mass transfer represented by
the average Sherwood number is decreased by further augmenting the Soret
number.

As a perspective of this work, this new model will be extended to three-
dimensional problems. It could be also tested with a parallel implementation
using graphics processing unit (GPU) and especially in the combined mode
problems which are computationally very expensive. Work along this direction
is underway.
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