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Preface

This volume contains a collection of original papers covering a variety of theoretical
results and applications of cellular automata that were selected for presentation at the
14th International Conference on Cellular Automata for Research and Industry – ACRI
2020, held in Łódź, Poland, December 2–4, 2020. The conference was organized by
the Faculty of Physics and Applied Informatics of the University of Łódź. Its primary
goal was to provide a forum to enable researchers from a large variety of scientific
fields based on the Cellular Automata approach to establish and strengthen interna-
tional collaborations in their research and spread information about their achievements
among the scientific community.

The ACRI conference series was first organized in Italy, namely, ACRI 1994 in
Rende, ACRI 1996 in Milan, ACRI 1998 in Trieste and followed by ACRI 2000 in
Karlsruhe (Germany), ACRI 2002 in Geneva (Switzerland), ACRI 2004 in Amsterdam
(The Netherlands), ACRI 2006 in Perpignan (France), ACRI 2008 in Yokohama
(Japan), ACRI 2010 in Ascoli Piceno (Italy), ACRI 2012 on Santorini (Greece), ACRI
2014 in Kraków (Poland), ACRI 2016 in Fez (Morocco), and ACRI 2018 in Como
(Italy).

Cellular Automata offer a very powerful approach to the study of phenomena related
to a large variety of problems. Initially presented as some form of counterpart or
supplement to partial differential equations, they now enable us to study many
real-world phenomena. Besides this practical significance, they often present behavior
that is interesting from the theoretical point of view. For these reasons, CA became
very popular for studying real applications. For many years researchers from academia
and industry have used CA in many different fields dealing with theoretical as well as
practical problems.

This 14th edition of ACRI was organized in an extraordinary situation caused by the
COVID-19 pandemic, which strongly limited the possibilities of direct interaction
between researchers knowledge between experts in several scientific areas: pure and
applied mathematics, computer science, physics, biology, and mathematical systems
theory.

This volume contains the papers accepted for presentation during the online sessions
and online poster sessions of the 14th ACRI conference. Each submission was the
subject of a detailed and careful review carried out by at least two Program Committee
members. Finally, the selected papers were organized only in the form of the main
track. Despite this homogeneity, a lot of different topics, corresponding to the typical
areas covered by previous editions of the ACRI conference, were raised during the
event.

First of all, let us express our thanks to Jarkko Kari, who kindly accepted our
invitation to give a plenary lecture at ACRI 2020. The regular papers presented during
the conference were often a wide and interesting outgrowth of papers from former
ACRI conferences covering the problems of control, asynchronous CA, or traffic, thus



corresponding strictly to previous meetings' special sessions. We decided, however, to
divide the accepted submissions into three parts according to rather to the general idea
of particular papers.

The first part, “Theory and Cryptography”, contains studies of the dynamical
properties of cellular automata and their application to cryptography as well as papers
devoted to the classic problems of Cellular Automata or to the theory of control.

Part II, “Modeling and Simulation”, collects papers related to various phenomena
modeled by Cellular Automata. They address a lot of practical issues, such as eco-
nomic, physical, or ecological problems. This part also covers the well-known prob-
lems of pedestrian simulation and the modeling of CA by nanoscale hardware.

We decided to reserve papers related to the modeling of one of the most important
problems of 2020 – the COVID-19 pandemic – to the separate, third part of these
proceedings.

We have to express our gratitude to many people who contributed, at different
stages, to the organization of the conference. The members of the Steering Committee
provided permanent support while preparing the meeting. We should say special words
of thanks to the Program Committee members, whose work was invaluable in ensuring
the quality of the accepted papers. We want to direct our warm thanks to all the authors
of the accepted papers for their commitment, independent of the time difference
encompassing twelve time zones. We would also like to emphasize the importance of
many people from the local staff, like the remaining members of the Organizing
Committee: Marcin Skulimowski, Alicja Miniak-Górecka, and Grzegorz Zgondek, and
the organizational support from the Foundation of the University of Łódź. Finally, we
acknowledge the excellent cooperation from the Lecture Notes in Computer Science
team of Springer for their help in producing this volume.

December 2020 Tomasz M. Gwizdałła
Luca Manzoni

Georgios Ch. Sirakoulis
Stefania Bandini

Krzysztof Podlaski
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A Cellular Automaton that Computes
Shortest Paths in Grid Graph

Debopriya Barman(B) and Sukanta Das(B)

Department of Information Technology, Indian Institute of Engineering Science
and Technology, Shibpur, Howrah 711103, India

debopriyabarman@gmail.com, sukanta@it.iiests.ac.in

Abstract. This work develops a two-dimensional cellular automaton
(CA) which solves single source shortest path problem for a grid graph.
Grid graphs are represented as configurations of the CA, and maximum
degree of a node is considered as four. Nodes and edges of the graph are
modeled by cells with different state sets. The cells for nodes use a rule to
update their states whereas the rest cells including the cells for edges use
another rule. That is, two rules are used by the automaton which makes
it a non-uniform CA. The worst case time complexity for the scheme is
O(n) where n is the total number of nodes in the connected graph.

Keywords: Cellular Automata (CAs) · Grid graph · Shortest paths ·
Rule

Since 1980s, the graph theoretic problems, like Shortest Path Problem, Span-
ning Tree Problem (see [1]), etc. have been solved by Cellular Automata (CAs).
Shortest Path Problem is a well known problem of graph theory, which asks
to find shortest path from one node to another. In this work, we address the
Single Source Shortest Path Problem for the grid graphs, and propose a cellular
automaton (CA) that computes shortest paths of all nodes of a grid graph from
a given source.

To solve the Shortest Path Problem for a given graph (Fig. 1(a)), we take
a configuration that encodes the given graph as initial configuration. In the
proposed CA, the nodes and edges of the given graph both are modelled by the
cells of the CA. However, the roles of cells for these two entities are not the
same. So two rules are used by the proposed CA- one for the cells modelling
nodes and the other for the rest cells. Hence, the proposed CA is a non-uniform
CA. As here we take 2D grid graphs, our lattice L = Z

2. Let our given grid
graph has n rows and m columns where n and m are the maximum number of
nodes present in a row and a column respectively. To place the grid graph on
the cells of our lattice suitably, the cells are modeled for the nodes and the edges
alternatively. We require (2n − 1) × (2m − 1) cells of L to represent the graph.

This work is supported by the SERB, Govt. of India sponsored project titled “Com-
putational Problems and Cellular Automata” (File No: EMR/2017/001571).

c© Springer Nature Switzerland AG 2021
T. M. Gwizda�l�la et al. (Eds.): ACRI 2020, LNCS 12599, pp. 3–7, 2021.
https://doi.org/10.1007/978-3-030-69480-7_1
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Fig. 1. (a) A 4 × 4 grid graph, and (b) The corresponding solution of (a)

We put the graph in the rectangle (1, 1), (2m − 1, 1), (2m − 1, 2n − 1), (1, 2n − 1)
in the first quadrant of L . The cells inside the rectangle model the nodes and
edges of the given graph, and take part in the computation. However, the cells
of the rectangle are of three types:

1. Cell (i, j) models a node of the graph if i and j are both odd. A node Vi,j is
modeled by the cell (2i − 1, 2j − 1). We call these cells as Node Cell.

2. Cell (i, j) models an edge if any one of i and j is odd and the other is even.
These cells are labelled as Edge Cell.

3. Cell (i, j) is redundant if i and j are both even and is called Blank Cell.

The other cells of L remain unaffected throughout the computation. They are
also treated as Blank Cells. Following are the steps of computation that are
performed by each cell for a node.

1. We are given a source node. Initially it is assumed that no node is connected
to the source i.e. they are undiscovered. The nodes systematically establish
their connection to the source and then we call them as discovered.

2. The source node does nothing in the whole computation. However, the adja-
cent nodes to the source node change its state to connect themselves to the
source node. These adjacent nodes store their distance from the source.

3. Consider that at least one neighbor node of an undiscovered node v connects
itself to the source by changing its state. In the next step, the node v also
updates its state to become discovered.

4. Whenever the node v connects itself to the source node through another node
u and the weight of edge (u, v) is w, it notes down direction of u (up, down,
left or right). Additionally, if the weight of u from the source is W , the node
v stores its distance from the source as W + w.

5. Suppose that more than one neighbor node of v are discovered. Then it con-
nects itself to that neighbor node which has minimum distance from the
source node.

6. If the node v has more than one option to connect itself to the source, then
to avoid confusion we make a preference list. Our first preference is to left
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neighbor, second preference is to upper neighbor, third preference is to right
neighbor, and fourth preference is to lower neighbor.

7. Whenever a node finds that it can reduce its distance from source through any
of its neighbor nodes, it does so. The node also keeps track of the neighbor
through which it has reduced its distance.

The CA runs and it reaches to a fixed point in finite time, we declare that the
computation is over. We get Fig. 1(b) as the solution of Fig. 1(a). However, for
some input graphs, the CA may not settle to a fixed point in finite time. If the
graph contains a negative weight cycle (a cycle having total weight of its edges as
negative), the CA does not reach to a fixed point in finite time. It is well known
that single source shortest path problem cannot be solved if the graph contains
a negative weight cycle.

According to our prescribed scheme, a node can see its adjacent nodes. But
the cells, adjacent to the node cells, are used to represent the edges. Hence in
each side, two consecutive cells are to be neighbors of the (node) cell. This makes
the cell dependent on 9 neighbors (including itself). If (i, j) is the cell that models
a node, then following set of cells are its neighbors: {(i − 2, j), (i − 1, j), (i, j +
2), (i, j + 1), (i, j), (i + 1, j), (i + 2, j), (i, j − 1), (i, j − 2)}.

States: It is clear from the steps of the computation stated before, a discovered
Node Cell must be associated with two properties- say, A and B. That is, the
state is an ordered pair - (A,B). To unify all the situations, we consider all
the states as ordered pairs. If a state has only a single component, the first
component of the pair is used to represent the state.

Property A: Consider at least one neighbor (say, node u) of a node v is con-
nected to the source node. In order to get the path from the source node to the
node v, v has to note that u is its previous node. So it stores the information
that in which direction (left, right, up or down) of v, u is situated. Since we are
using a 2-D CA, each node has degree at most four. For these four directions,
we use four symbols- ←,→, ↑, ↓. For the source node and an undiscovered node
it is s and d respectively. We put b as property A if a Node Cell is absent.

For the Edge Cells property A denotes the presence of the edge. If an edge
is present we put e as the property A of the cell. If a Node Cell or an Edge Cell
is absent, it is b. For Blank Cells also it is b.

Property B: This property notes down the distance of a discovered node from
the source node. Hence, this property assumes a real value. For the source node
itself, the distance is always 0. For the Blank Cells and all other Node Cells this
property is redundant. To denote that this property is not used, we put − as
second component of the state. For the Edge Cells property B is the weight of
the edge if it exists.

Hence, the states are formally presented as the set {(s, 0), (d,−), (b,−), (e, w),
(←, ρ1), (→, ρ2), (↑, ρ3), (↓, ρ4), }whereρ1, ρ2, ρ3, ρ4 are distances from the source
and w is the weight of an edge.
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At this stage, we can classify the set of all possible initial configurations
as Valid and Invalid. A configuration is called Invalid if one of the following
conditions holds-

– If no cell or more than one cell is treated as source node, since we are dealing
with Single Source Shortest Path Problem.

– If a cell, reserved for node (respectively edge), assigned a state of edges
(respectively nodes), the configuration is invalid.

– If a cell (i, j), i, j ∈ 2N is used as either a Node Cell or a Edge Cell.

An initial configuration is valid if it is not invalid. That is, for a valid configu-
ration, none of the above points is satisfied. These configurations can represent
an input graph.
Local Rule: Let us now formally write down the rule for the Node Cells. We
use algorithmic style to present the rule. We assume that the state of a cell (i, j)
is (ψi,j , ρi,j). The rule is noted in Algorithm 1. Apart from the Node Cells, the
rest cells use the Identity Rule as their local rule. These cells do not change their
states during evolution.

Algorithm 1. The rule R1

begin
if ψi,j = s or b then do nothing and return

if ψi−2,j = ψi,j+2 = ψi+2,j = ψi,j−2 = d or b then do nothing and return

if ψi−1,j = ψi,j+1 = ψi+1,j = ψi,j−1 = b then do nothing and return

Treat ‘-’ as ∞, if ‘-’ is the second component of a state
Let c is min{ρi−2,j + ρi−1,j , ρi,j+2 + ρi,j+1, ρi+2,j + ρi+1,j , ρi,j−2 + ρi,j−1}
if c = ρi,j then do nothing and return

if ρi−2,j + ρi−1,j = c then
ψi,j :=←

else if ρi,j+2 + ρi,j+1 = c then
ψi,j :=↑

else if ρi+2,j + ρi+1,j = c then
ψi,j :=→

else ψi,j :=↓
ρi,j := c

end

The designed CA has the following properties.

Proposition 1. Our prescribed CA computes the Shortest Path from a single
source of a connected grid graph with n nodes.
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Proposition 2. The worst case time complexity of the prescribed computation
is O(n) where n is the total number of nodes in the connected graph.

References

1. Roy, S., Ray, A., Das, S.: A cellular automaton that solves distributed spanning tree
problem. J. Comput. Sci. 26, 39–54 (2018)



Strengthening ACORN Authenticated
Cipher with Cellular Automata
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Abstract. The authenticated encryption (AE) scheme ACORN v3,
a CAESAR competition finalist, has been shown to be particularly
vulnerable against Differential Fault Attack (DFA), even more so than
its previous version ACORN v2. In this paper, we analyse how fault
attacks can be prevented in ACORN v3 by using cellular automata (CA).
The good pseudorandom properties of CA are exploited and renders the
ACORN v3 infeasible to perform fault attacks on. The Programmable
Cellular Automata (PCA) 90-150 is effectively deployed to make ACORN
cipher robust against DFA.

Keywords: ACORN · Differential Fault Attack · Cellular Automata ·
PCA 90-150 · Stream cipher · Authenticated encryption

1 Introduction

The rise in the use of technology in daily lives has made an increase in security
a necessity. The usual strategy of ensuring confidentiality and authenticity
separately may not be sufficient. In scenarios like the Internet of Things (IoT),
the authenticity of information passing through various sensors and servers is
very important.

The cryptographic algorithms which achieve confidentiality and authenticity
simultaneously are called authenticated encryption (AE) algorithms [1]. The
rising demand has triggered the cryptographic community to propose robust AE
designs based on stream ciphers, block ciphers or sponge functions. These are
evaluated in the CAESAR competition [2]. ACORN v3 [3], a CAESAR finalist,
is a stream cipher based AE scheme. In the current work, the inherent properties
of Cellular Automata (CA) [4] are exploited to improve the strength of ACORN.

The 1-dimensional CA structure [4] consists of a lattice of cells in a row
fashion, which can take value of 0 or 1. Each cell value evolves in every time step
depending on a function of values of itself and its neighbour cells. This is called
a two-state three-neighbourhood CA. The next state of a cell can be represented
as,

xi(t + 1) = f{xi−1(t), xi(t), xi+1(t)} (1)
c© Springer Nature Switzerland AG 2021
T. M. Gwizda�l�la et al. (Eds.): ACRI 2020, LNCS 12599, pp. 8–17, 2021.
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where, xi(t) denotes the output state of the ith cell at the tth time step
and f denotes the transition function of the particular cell realized with a
combinational logic and is known as a rule of the CA.

When the rules used in the cells are different, the CA type is called a
hybrid CA. Maximal length CA are those CA with specific rules which results
in maximum cycle length. These cycle through every possible state (except all
0’s) once before repeating the cycle of values. Wolfram’s work in [5] proved that
the patterns generated by the maximal-length CA are significantly better in
randomness properties than other widely used methods like Linear Feedback
Shift Registers (LFSRs).

The rules used in the design of CA in this paper are rules 90 and 150.

rule90 : xi(t + 1) = xi+1(t) ⊕ xi−1(t) (2)

rule150 : xi(t + 1) = xi(t) ⊕ xi+1(t) ⊕ xi−1(t) (3)

where xi(t) refers to the state bit of the ith cell at time t. These rules which
only involve the logical XORs are called linear or additive rules. CA can also be
divided into types based on the neighbors of the extreme cells (the first and last
cells). Null boundary refers to the extreme cell’s neighbors connected to logic
‘0’. The CA used in this paper will use null boundary, maximal length CA with
rules 90 and 150.

2 Preliminaries

Programmable Cellular Automata (PCA) [6] are structures based on the
elementary Cellular Automata but the rule structure is not fixed. The dynamic
rule structure works based on control signal, each signifying a particular rule set
on which the CA will perform iterations. Numerous hardware implementations
have been made. However these control signals can be programmed in software
to randomly select from a given set of rules. The PCA configuration used in
this paper is based on the 90-150 configuration which signifies that each ruleset
defines a hybrid null-boundary maximal length CA with rules 90 and 150. In
Sect. 6, security analysis based on [7] has been provided to show the aptness of
PCA 90-150 for use in ACORN.

The stream cipher ACORN v3 [3] is a finalist in the Caesar competition. One
of the most significant attacks against ACORN v3 is the DFA. It is found that
the modified version ACORN v3 is more vulnerable than ACORN v2 against
the fault attack [8]. CA can be used as a good cryptographic primitive against
fault attacks and in particular, the DFA. A brief description of the stream cipher
ACORN v3 is provided in the next section.

3 Description of ACORN v3

ACORN v3 [3] uses a 128-bit key and a 128-bit initialization vector. The state
size of ACORN v3 is 293 bits denoted by S = (s0, s1, . . . , s292). There are six
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Fig. 1. The 6 LFSRs are concatenated to represent the state.

Linear Feedback Shift Registers (LFSRs) being concatenated in ACORN-128 as
shown in Fig. 1.

Here, fi indicates the feedback bit and mi refers to the message bit that gets
concatenated to the state at the last step of the State Update function which
can be divided into 4 steps as outlined below:

1. Update the state:
Si,289 = Si,289 ⊕ Si,235 ⊕ Si,230 (4)

Si,230 = Si,230 ⊕ Si,196 ⊕ Si,193 (5)

Si,193 = Si,193 ⊕ Si,160 ⊕ Si,154 (6)

Si,154 = Si,154 ⊕ Si,111 ⊕ Si,107 (7)

Si,107 = Si,107 ⊕ Si,66 ⊕ Si,61 (8)

Si,61 = Si,61 ⊕ Si,23 ⊕ Si,0 (9)

2. Generate the keystream bit as

ksi = Si,12 ⊕ Si,154 ⊕ maj(Si,235, Si,61, Si,193)⊕ ch(Si,230, Si,111, Si,66) (10)

where
maj(x, y, z) = (x&y) ⊕ (x&z) ⊕ (y&z)
ch(x, y, z) = (x&y) ⊕ ((¬x)&z)

3. Generate the nonlinear feedback bit using control bits and feedback function.
The control bits cai and cbi are set to either 0 or 1 in different iterations
specified in [3]. The feedback function (FBK) computes the nonlinear feedback
bit as

fi = Si,0 ⊕ (¬Si,107) ⊕ maj(Si,244, Si,23, Si,160) ⊕ (cai&Si,196) ⊕ (cbi&ksi)
(11)

4. Shift the 293-bit register with the feedback bit fi as

for j := 0 to 291 do

Si+1,j = Si,j+1 (12)

Si+1,292 = fi ⊕ mi (13)
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The state update is run for 1792 iterations in the initialization step after loading
the key and IV into the state. Similarly, the update function is used in a
different number of iterations in the associated data processing, encryption and
finalization stages [3].

The modified version ACORN v3 is different from ACORN v2 in the feedback
function and the filter function. This resulted in a better balance between the
feedback function and the output filtering function and larger security margin
against guess-and-determine attack. However, these modifications resulted in
an increase in the vulnerability against the Differential Fault Attack [8] and is
described in the next section.

4 Differential Fault Attack on ACORN v3

The attack consists of two main parts: fault locating and equation solving [8].
If the fault locating step is achieved reliably, then the equation solving can be
done by retrieving a system of equations with respect to the initial state of
ACORN at which the fault was induced. At this step, fundamental methods to
retrieve equations and some improvement strategies to get more linear equations
are implemented. After obtaining the linear equations, the guess-and-determine
method is used to obtain the initial state. After that, forgery attacks can be
performed on the cipher.

The first algorithm of the fault locating step is explained briefly.
This algorithm returns two sets MQi and AQi. MQi contains positions where

1 occurs with a probability of less than 1. The AQi set contains positions where
1 always occurs. Firstly, 32 initial states are chosen randomly. In each state, a
random state bit is flipped (from 0 to 1 or from 1 to 0). Now the encryption
algorithm proceeds to output the fault-induced keystream (zi) of size l (size of
plaintext and hence the ciphertext). The same state is run without inducing any
fault resulting in the correct keystream output (z).

The corresponding bits of z and zi are logical XORed and put in a set Δz.
Based on values of Δz, the positions are input into the sets AQi and MQi. These
sets AQi and MQi are then used for further computations.

In [9], the prevention of fault attacks using the pseudorandomness and
fast-diffusion properties of CA in stream ciphers is shown. Using PCA 90-150,
we will prevent the first step of the attack, that is, the fault locating step,
by rendering the first algorithm unreliable, thereby rendering the next steps
unreliable and successfully preventing the attack. In the section below, we will
describe the design of our PCA 90-150 enhanced ACORN in preventing this
attack on ACORN.

5 Design of PCA Enhanced ACORN

The modified state update function using PCA 90-150 is shown in Fig. 2.
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Fig. 2. The modified State Update Function (stepwise as per numbering) in the CA
enhanced ACORN

Our novel approach uses two CAs to achieve randomization. This overcomes
the uniqueness of state bits used in keystream generation function by
randomizing the ksi bit, described in step 2 of Sect. 3, earlier in the paper.

The modified keystream generation function uses PCA 90-150 as shown in
Fig. 2. A predefined ruleset is used. CA random-rule (CAr), a maximal length
[1] null boundary hybrid CA which selects the rule from the ruleset for CA
state (CAs) to use in each call to the keystream bit generation function. CAs

is a 9-cell maximal length null boundary CA using PCA 90-150 configuration.
Hence, a basic simulation of programmable CA is used here.

The keystream bit generation function in ACORN v3 is

ksi = Si,12 ⊕ Si,154 ⊕ maj(Si,235, Si,61, Si,193) ⊕ ch(Si,230, Si,111, Si,66) (14)

In our modified cipher the keystream bit generation function is,
CAr();
ksi = CAs();

ACORN v3 uses a polynomial function of degree 2. CA configuration in the
current design can be represented as a polynomial [6] of degree 6, for n (number
of cells) = 6 as

x(x + 1)(x4 + x + 1) (15)
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For n = 8, we can achieve an even higher degree of 8 with polynomial

x(x + 1)(x6 + x + 1) (16)

Similarly for higher values of n, we obtain a higher degree expression.
The fault attacks which are successful on ACORN v3 are ineffective

against this modified CA based ACORN cipher. This is due to the parallel
transformation of the CA that spreads the fault very quickly into the state,
which makes the fault difficult to track. The unpredictability of the nonlinear
feedback bit, which is appended to the last bit of the state bit during every state
update, is the key reason behind this.

6 Randomness Review of PCA 90-150

In this section, we try to show why the PCA 90-150 is apt for use as a good
pseudorandom number generator in the feedback bit function to randomize both
the state number as well as the cycle length to be run. It has been shown in
countless references that fault attacks are easily prevented by randomization.

In [7], PCA 90-150 has been compared with Controllable Cellular Automata
(CCA). In PCA, there are control bits for each cell to control the rules
corresponding to each cell. In CCA, there are more control lines to control
the neighbourhood relations between cells and updating of states to further
improve the randomness of 1-dimensional CA. CCA0 refers to type of CCA
which keeps the state of the cells constant during the CA computation process.
CCA1 refers to type of CCA which complements the state of the cells during
the CA computation process. More details can be found in [7].

Below are some of the tests that have been performed on PCA 90-150 to
prove its quality of randomness [7].

6.1 DIEHARD Test on PCA 90-150

DIEHARD tests [10] are a set of statistical tests used to measure the quality
of randomness of a random number generator. DIEHARD is seemingly the best
test for general randomness measurement. Usually, a Pseudorandom Number
Generator that passes DIEHARD is considered as good.

The results from Table 1 show that PCA 90-150 is potentially an excellent
pseudo-random number generator passing 13 out of 18 tests which is significantly
better than single ruleset hybrid cellular automata.

6.2 Entropy (ENT) Test

ENT [11] is a Pseudorandom Number Sequence Test Program, which applies
specific tests to bytes of data in a given file and submits the results back.
This test program is useful for evaluating pseudorandom number generators for
encryption. ENT performs a variety of tests on the input stream and produces
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Table 1. DIEHARD test result on PCA, p = 8-bit integer [7]

Test name PCA 90-150 (p)

1. Overlapping sum Pass

2. Runs up 1 Pass

Runs Down 1 Pass

Runs up 2 Pass

Runs Down 2 Pass

3. 3D sphere Pass

4. A parking lot Fail

5. Birthday Spacing Pass

6. Count the ones 1 Pass

7. Binary Rank 6 * 8 Pass

8. Binary Rank 31 * 31 Pass

9. Binary Rank 32 * 32 Pass

10. Count the ones 2 Pass

11. Bitstream test Pass

12. Craps wins Pass

13. Minimum distance Fail

14. Overlapping Perm Fail

15. Squeeze Pass

16. OPSO test Fail

17. OQSO test Fail

18. DNA test Pass

Number of tests passed 13

Table 2. ENT values for PCA 90-150 [7]

Chi-square (pass rate) Entropy (average value) SCC (average value)

PCA 90-150 70% 6.101210 0.121479

output based on various parameters, such as Entropy, Chi-square Test, and Serial
Correlation Coefficient (SCC).

As shown in Table 2, the entropy values are very good with acceptable
chi-square pass rate compared to Controllable Cellular Automata (CCA) given
in [7].

6.3 Randomness Value Variance

The randomness value variance shown in Fig. 3 shows the randomness value
variance, which is a good indicator of the randomness of the values generated
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by the CA. Here 15-cell PCA 90-150 is used. PCA 90-150 has higher variance
values than both CCA0 and CCA1. This has 100% Chi-square pass rate, which is
a very significant advantage. In addition, CCAs are much harder to implement,
as well.

Fig. 3. Variance of randomness value [7]

7 DFA on PCA Enhanced ACORN

Differential Fault Attack is not possible on the modified ACORN. The fault
locating cannot be executed reliably, since the keystream bit found in every
state update function cannot be predicted accurately. This is because, in each
state update iteration, a random state bit is assigned as feedback bit by running
the CAs, which has a dynamic rules defined by CAr.

The minimum number of steps in encryption is 1279, excluding the 1792 steps
in the initialization phase. Assuming that on average, the 32 random states
selected for the fault locating step of the attack are near 1792/2 steps in the
initialization step, on average, the minimum number of steps required is 1279 +
(1792/2) = 2175. For each iteration, the attacker has to make on average 2175
accurate predictions about the keystream bit, which is to be XOR’ed to the state
and added to the last bit of the updated state. So in total, 32 * 2175 = 69000
accurate predictions altogether must be made in order for the first algorithm of
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the fault locating step, to give the correct output. Assuming the probability of
getting 1 or 0 as the keystream bit in each iteration is 50%, since the initial seed
in the Cellular Automata is random, the attacker will have to choose one correct
set of values from a permutation of 269600. Hence the probability of the attacker
finding this correct combination is near 0 or negligible.

As shown in [8], let n be the number of fault experiments. We can get 11.26n
equations, including 7.03n linear equations. We use the guess-and-determine
method to solve the equations. The time complexity of obtaining the initial
state equals to c ∗ 2146.5−3.52n approximately, where c is the time complexity of
solving linear equations and 26 < n < 43. Assuming the attacker reaches the
correct combination of keystream bits in half the total permutations, The total
complexity of obtaining the initial state would equal to

c ∗ 2146.5−3.52n ∗ 2(69600/2)

which is a huge improvement. This shows that the attacker cannot brute-force
the keystream bits feasibly in order to further continue with the attack algorithm
in Sect. 4.

8 Conclusion

By utilizing the pseudorandom and fast-diffusion properties of cellular automata,
we have shown that the DFA is ineffective against the PCA enhanced ACORN
cipher by randomizing the state bits in each iteration and the number of cycles
the CA runs for in each iteration. The degree of the keystream bit generation
function would be greater than or equal to 8 which is much higher than previous
degree of 2, effectively thwarting the fault attack. Also, we have shown that it is
infeasible to obtain the keystream bits by brute-force due to such a large number
of permutations.
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Abstract. ASCON is a sponge function based authenticated encryption
(AE) scheme chosen in CAESAR competition for lightweight applica-
tions. Its suitability for high performance applications make it desirable
in environments like Internet of Things (IoT) where large number of
very constrained devices communicate with high-end servers. The draw-
back is that fault analyses like Statistical Ineffective fault attack (SIFA)
and Sub-Set Fault Analysis (SSFA) are possible. In this paper, we mod-
ify ASCON 128a exploiting the pseudo-random properties of Cellular
Automata (CA) to prevent these attacks.
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1 Introduction

The changing landscape of electronic devices and technologies involved has cre-
ated new demands for security of devices and software. The conventional meth-
ods of providing privacy and authentication separately are not sufficient to
address their simultaneous need.

Authentic Encryption schemes provide both privacy and integrity of the
transmitted messages. Often, messages have associated data with them such
as the receiver’s IP address. Here, it is prudent to use Authentic Encryption
with Associated Data (AEAD) [9] schemes. There are three types of AEAD
processes which are Encrypt-and-MAC, Encrypt- then-MAC and MAC-then-
Encrypt. ASCON [3] is an AEAD scheme which follows Encrypt-then-MAC.

ASCON is vulnerable to fault attack by double fault injection, wherein two
faults are injected at two different locations. We propose to use CA to prevent
fault attacks on ASCON and provide mathematical validation for the same.

Section 2 of the paper captures the details of ASCON 128a. Section 3 provides
literature survey of fault attacks and the specific attacks under consideration,
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namely, SIFA and SSFA. Section 4 describes the features of CA, its use in mod-
ified design of ASCON and the rationale for the same.

2 ASCON

ASCON [3] is a light-weight 320-bit state sponge cipher whose initial state S is
given by concatenating the Initial Vector (IV) of 64 bits with key and nonce of
128 bits each. From hereon, unless otherwise stated, ASCON refers to ASCON
128a. ASCON has four stages as shown in Fig. 1, namely:
– Initialization: 12 rounds of the SPN transformation in which permutation p

is applied to the initial state S followed by XORing of the key K to it.
– Processing Associated Data: The associated data are processed in blocks of

length r (bitrate).
– Processing Plain-text: The plain-text is encrypted blockwise to give the

ciphertext.
– Finalization: The state S passes through 12 rounds of transformation p, and

the key K is XORed to the last 128 bits of S to get the tag T.

The SPN permutation p consists of three sub-transformations:
– pc where a round specific constant is added to x2 where S = x0‖x1‖x2‖x3‖x4,

xi are part of the block
– ps where the data is passed through 64 parallel 5-bit sliced S-boxes
– pl where each xi, 0 ≤ i ≤ 4 is mixed within itself.

Since ASCON is inverse-free, the decryption can be done in the same way. The
decrypted ciphertext is returned only if the tags match.

Fig. 1. ASCON block diagram

3 Fault Attacks

A fault attack is an attack on the physical device. It leads to errors, which causes
failure of the placed security systems when exploited. Fault attack is done in two
steps fault injection and fault exploitation [1]. Permanent and transient fault
attacks are the two types. Fault attacks which cause the device to be permanently
damaged are called permanent fault attacks. Transient fault attacks are those
which are not permanent and there is negligible damage to the device [4].
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3.1 Statistical Ineffective Fault Analysis (SIFA)

Fig. 2. SIFA attack on ASCON

SIFA [8] works by injecting double faults at the bits 3 and 4 (counting starts
from zero) of the output of a pair of selected S-boxes during the last round
of finalization. Let X be x0‖x1‖x2‖x3‖x4 where each xi represents consecutive
64 bits of input to the linear diffusion layer Li. The L3 and L4 is XORed to
key K to get tag T to form equations with key K. The key K is XORed with
tag T, which is equal to the output of linear diffusion layer, as shown in Fig. 2.
The output of linear diffusion layer is obtained by using a sparse matrix. The
inverse of this output gives the input to the linear diffusion layer or the output
of the substitution layer. The equation for bits 3 and 4 can be found for the
selected pair of S-boxes, which is already known. Hence, the following Eqs. (1)
are obtained in which the only unknown is the key [8].

sj3 =
63∑

r=0

[(T0,r ⊕ kr) � l
(3)
j,r ] mod2

sj4 =
63∑

r=0

[(T1,r ⊕ kr+64) � l
(4)
j,r ] mod2

L−1
i = [l(i)T0 , l

(i)T
1 , ..., l

(i)T
63 ]T , i = 0, 1, ..., 4

(1)

In Eqs. (1), sj3 and sj4 refers to the faulted bits 3 and 4 at the output of the
selected S-boxes,
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L−1
i refers to the inverse of ithlinear diffusion layer and l

(i)T
j is the jth row

of the inverse diffusion matrix corresponding to xi. kr,
kr+64 refers to the rth bit and r+64th bit of the key K respectively. T0,r and

T1,r are the rth bit of first and next consecutive 64 bits of the tag T.
The entire process from double fault injection to forming equations, is

repeated M times. Using the key-dividing strategy to these equations, we find
the secret key K.

3.2 Sub-Set Fault Analysis (SSFA)

SSFA [6] is done on the same path as SIFA. However, the fault is induced to the
64-bit input x2 of the Substitution layer. It was observed that when the 3rd bit
was set to zero in 10 out of 16 cases, taking the XOR of 4th and 5th bits results
in zero. This is used here to perform the fault analysis. The analysis is done in
two phases. The flowchart for phase 1 is shown in Fig. 3. Phase 2 is not relevant
to this paper.

4 CA-Based ASCON

CA [10] is a lattice of cells that can take any number of values depending on
its state, e.g., 2-state CA cells can take 0 or 1. Each cell value modifies in every
iteration depending on a function whose parameters are the current values of
the corresponding cell and its neighbor cells. In two-state three-neighbourhood
CA, the neighbors are the two adjacent cells to it. The next state of a cell can
be represented as the output of a function,

xi(t+ 1) = f {xi−1(t), xi(t), xi+1(t)} (2)

where xi(t) denotes the output state of the ith cell at the tth time step or itera-
tion. Here f denotes the transition function of the particular cell realized with a
combination logic and is known as a rule of the CA [7].

When the rules used in the cells are different, then it is a hybrid CA. Those
CA with specific rules which result in maximum cycle length, which cycles
through every possible state (except 0) once before repeating the cycle of values
is called maximal length CA. The rules 90 and 150 for CA are:

rule90 : qi(t + 1) = qi+1(t) ⊕ qi−1(t)

rule150 : qi(t + 1) = qi(t) ⊕ qi+1(t) ⊕ qii−1(t)

where qi(t) refers to the state bit of the ith cell at time t.
The rules which only involve the logical XOR are called linear or additive

rules. CA can also be divided into types based on the neighbors of the extreme
cells (the first and last cells). Null boundary CA refers to the extreme cell’s
neighbors connected to logic ‘0’. In the current work, null boundary maximal
length CA with rules 90 and 150 are used.
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Fig. 3. Flowchart for phase1 of SSFA
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4.1 Design

During the Initialization and Finalization rounds of ASCON, transformation pa

(12 rounds of permutation p) is done. Since the SIFA attack takes place during
the final round of Finalization, the pseudorandom number generator is used in
the linear diffusion layer of pa only. The pseudorandom generator used here
is a linear hybrid cellular automata [7]. The algorithm for permutation pa for
Initialization and Finalization stages of ASCON is given below. In the algorithm,
prng() function calls two CAs: CAs and CAr to implement a PCA 90-150 [5].
The CAs function uses a 6-cell, null boundary, maximal length [2] hybrid CA.
This function returns the value between 1 and 63. The CAr function is a 6-cell,
maximal length, null boundary hybrid CA which selects a rule from a predefined
ruleset for CAr to use. Together this results in a simulation of PCA 90-150.

For n (number of cells) = 6, the PCA 90-150 configuration results in an
expression of degree 6,

x(x+1)(x4+x+1)

Algorithm 1: Permuatation(byte S[])
Result: Gives the modified permutation for pa for given S
i=0;
x0,x1,x2,x3,x4 contains the progessive eight indexes of data in S;
while i<12 do

Addition of round constants:(no changes)
x2 =x2 ⊕ round − constant;

Substitution layer:(no changes);
.....;
Linear Diffusion layer:
x0 = x0 ⊕ x0 >>> prng() ⊕ x0 >>> prng();
x1 = x1 ⊕ x1 >>> prng() ⊕ x1 >>> prng();
x2 = x2 ⊕ x2 >>> prng() ⊕ x2 >>> prng();
x3 = x3 ⊕ x3 >>> prng() ⊕ x3 >>> prng();
x4 = x4 ⊕ x4 >>> prng() ⊕ x4 >>> prng();
i++;

end

4.2 PRNG

The requirements of pseudorandom number generator are

– The function should generate numbers from 1 to 63 randomly (0 excluded
because the first term of linear diffusion layer is xi)

– The random numbers generated should be unequal so as to prevent cancella-
tion.
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Considering the above requirements, a maximal length CA which generates
numbers from 1 to 63 [2] are chosen. The six options for the rule set so obtained
are shown in Table 1. In option 1, 0 represents rule 90 and 1 represents rule 150.

Table 1. Table showing different rulesets possible for prng()

Option no. Rule set

Option 1 000110

Option 2 101110

Option 3 011010

Option 4 100101

Option 5 101010

Option 6 100000

The security can be further enhanced by making the random number gener-
ated by prng() hard to predict by using an additional CA whose value determines
which ruleset option to choose each time prng is called.

Design Rationale: The equations for SIFA (1) and the flowchart for SSFA show
that L3 and L4 are of vital importance in forming the set of linear equations.
In the current design, we use a PRNG in the linear diffusion layer. The attacker
should find the correct positions across which it is rotated twice. Thus, 63 × 31
options are to be tried out of which only one is correct. To find L3 and L4, the
attacker would have to guess the correct L3 and L4 out of (63 × 31)2 choices
for each of the M cases. Out of the M cases, success probability is 1 out of
(63 × 31)2M , which is negligible. Thus, SIFA attack is rendered useless on the
modified ASCON.

Note: We get 63×31 for the two positions of Li matrix for which the value is
one. Combination is used instead of permutation because XOR is commutative,
i.e., a XOR b = b XOR a. Hence, the attacker has to guess just the number
generated and their order is not significant.

5 Conclusion

The proposed introduction of cellular automata based pseudorandom generator
in the permutation pa makes the calculation of L−1

i infeasible, which is needed
for the SIFA and phase-1 of SSFA thereby rendering SIFA and SSFA ineffective
against the modified ASCON algorithm. Also, we noticed that the proposed
change prevents any attack from the trivial path produced due to XORing the
key for tag calculation mentioned in [6]. In the modified ASCON, it is also
observed that if the attacker already has the key, nonce, and the ciphertext, she
cannot decrypt the message without the sequence used in the linear diffusion
layer. The number of iterations of permutations of pa and pb can be reduced
without reducing the security of ASCON and thereby increasing the performance
of the algorithm.
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Abstract. In this paper, we show that the theory of information offers
some tools to detect changes in the interaction topology of a dynamical
system defined on a graph. As an illustrative example, the system we
consider is a probabilistic voter model defined on a scale-free network.
We show that, using time-delayed mutual-information, the interaction
topology of an unknown graph can be reconstructed to some level. We
apply this approach on a sliding time window to detect possible changes
in the interaction topology over time.

Keywords: Dynamical systems · Complex network · Probabilistic
models · Delayed mutual information · Interaction topology
reconstruction · Online topology identification · Voter model

1 Introduction

The knowledge of the interconnection topology of a complex network is impor-
tant in order to have results on structural observability and controllability, as
discussed in [1,2].

In this paper we consider the concept of causality as a way to obtain the
interaction topology among the variables of complex dynamical systems. For
probabilistic models, the theory of information proposed by Shannon in 1948
([3]) offers tools to define causality, for example the transfer entropy introduced
by Schreiber [4], as a measure of directed (time-asymmetric) information transfer
between joint processes.

In [5] we use the time-delayed mutual- and multi-information, defined in
the Sect. 2.2, to analyze the most influential components of a complex system
with no a priori knowledge of the interconnection topology. This approach is
non-intrusive in the sense that it may be performed by a simple sampling of
the system state, even if the underlying dynamics is unknown. We proved –
on the example of the so-called voter model– that the nodes (voters) may be
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ranked according to their influence (the impact of their opinion on the average
opinion of the entire group) by monitoring the time-delayed multi-information.
This ranking closely relates to controllability/observability Grammians singular
values, as defined in classical system theory (see [6]). Furthermore, by sampling
the state of the dynamical system, we showed [7] that time-delayed mutual- and
multi-information can be used to reconstruct the interaction topology.

In this paper, the problem of a change of the interaction topology during
time is investigated. The goal is to detect structural modifications in a dynamical
system defined on a graph, by simply observing its state variables. To this end,
we compute the delayed mutual-information on sliding time-windows and study
whether this quantity can alert us of a change in the structure of the system.

The paper is organized as follows: Sect. 2 introduces the voter model which
will be used throughout the paper as an example. The metrics from information
theory that we will use are recalled. An overview of results previously obtained
to measure the relative influence of the agents is presented. Then we present how
we used our approach to reconstruct the interconnection topology of a complex
system. Our main new contributions are presented in Sect. 4 where we discuss
how the delayed mutual-information can be measured in a time sliding-window
and how this leads to the identification of dynamical topology changes.

2 Dynamical System and Mutual Information

2.1 Voter Model

As an illustration of our approach we consider a voter model as a representative
dynamical system on a graph. Various versions of voter models have been stud-
ied. For example Castellano et al. [8] have defined a q-voter model in which an
agent votes like its neighbors if the opinion is unanimous; otherwise the vote is
random. This model has been used by Nycska et al. [9]. Our model is closer to
those used by Mobilia et al. [10], Masuda [11] or Galam [12]: it is a model where
the vote of an agent depends on the average vote of its neighbors. The version
we consider here is a time synchronous agent-based model defined on a graph of
arbitrary topology, whether directed or not.

Our model can be described in the following way. Each node i of the network
represents an agent whose opinion is either si = 0 or si = 1. The dynamics
is specified by assuming that each agent i looks at every other agents in its
neighborhood, and counts the fraction ρi of those neighbors which are in state
+1. In case an agent is linked to itself, it belongs to its own neighborhood. A
function f is specified such that 0 ≤ f(ρi) ≤ 1 gives the probability for agent
i to be in state +1 at the next iteration. For instance, if f would be chosen as
f(ρ) = ρ, an agent for which all neighbors are in state +1 would turn into state
+1 with certainty. The update is performed synchronously over all n agents.

Formally, the dynamics of our voter model can be express as

si(t + 1) =
{

1 with probability f(ρi(t))
0 with probability 1 − f(ρi(t))

(1)
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where si(t) ∈ {0, 1} is the state of agent i at iteration t, and

ρi(t) =
1

|Ni|
∑
j∈Ni

sj(t) (2)

The set Ni is the set of agents j that are neighbors of agent i, as specified by
the network topology.

The global density of all n agents with opinion 1 is

ρ(t) =
1
n

n∑
i=1

si(t) (3)

In the present case, we consider a voter model in which agent can vote differently
than the majority of their neighbors. According to the total probability formula,
the probability pi that agent i votes +1 is

pi(t + 1) = (1 − ε)pVi
(t)) + ε(1 − pVi

(t))
= (1 − 2ε)pVi

(t) + ε

where ε is the probability to take a decision different from that of the neighbor-
hood and pVi

(t) is the probability that the majority of neighbors of agent i votes
1 at time t. Thus, we defined f(ρ) as

f(ρ) = (1 − ε)ρ + ε(1 − ρ) = (1 − 2ε)ρ + ε (4)

From now on, the quantity ε will be called the noise. We limit the noise in
the range 0 ≤ ε ≤ 1/2. The upper value ε = 1/2 corresponds to a blind vote, i.e
a probability 1/2 for each outcome.

To illustrate the behavior of this model, we consider a random scale-free
graph G [13] which is considered as some instance of a social network [14]. In a
scale-free network, a small number of particular nodes have many connections.
These nodes, often referred to as hubs, are the leaders of the social network.
Most other nodes have very few connections. The majority of voters are in this
situation. The scale free graph structure is based on communities built around
a leader, as discussed for instance in Wu et al. [15]. We use the algorithm of
Bollobás and Riordan [16] to generate the random scale free graphs throughout
this paper.

2.2 Delayed Mutual- and Multi-information

Let us consider a set of random variables Xi(t) associated with each agent i,
taking their values in a set A. For instance, Xi(t) = si(t) would be the opinion
of agent i at iteration t.

To measure the influence of an agents i on j, we define the τ -delayed mutual
information wi,j as

wi,j(t, τ) = I(Xi(t),Xj(t + τ)) (5)

=
∑

(x,y)∈A2

pxy log
(

pxy

pxpy

)
(6)
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with
pxy = P(Xi(t) = x,Xj(t + τ) = y)

px = P(Xi(t) = x) and py = P(Xj(t + τ) = y)

We also defined the τ -delayed multi-information wi to measure the influence
of one agent i on all the others

wi(t, τ) = I(Xi(t), Yi(t + τ)) (7)

Yi(t + τ) =
∑
k �=i

Xk(t + τ) (8)

2.3 Controllability and Information Theory

In our recent paper [5] entitled “Controllability of the Voter Model: an infor-
mation theoretic approach”, we define the influence of an agent in two different
ways. The so-called intrusive approach consists in forcing (or controlling) the
opinion of an agent and to measure the impact on the global density of opinions
1 in the system. More specifically we average ρ as given by Eq. (3) over a large
number N of independent realizations (ensemble average). This gives a quantity
〈ρ(t)〉i, where subscript i indicates which agent has been forced to 1. For large
enough t, 〈ρ〉i no longer depends on t and provides a measure of the influence of
agent i on the system.

A second way to define the influence of agent i is to use the delayed multi-
information introduced in Eq. (7). The quantity wi(t, τ) provides a non-intrusive
measure (no forcing is required) of the influence of agent i. Here the time delay
τ is taken as the diameter of the network, so that the influence of an agent can
propagate to all the vertices of the graph.

We showed in [5] that the intrusive and non-intrusive measurements are very
similar, as illustrated in Fig. 1. The gray scale representation for the nodes shows
the intensities of the multi-information wi(t, τ) or the influence 〈ρ〉i of the corre-
sponding agent i. The multi-information gives also indication about the control-
lability of the system as it clearly identifies the agents that are best to control
the system when their vote is forced.

3 Topology of the System

3.1 1-Delayed Mutual Information and Adjacency Matrix

After these first results about the controllability, we were interested in the topol-
ogy of the system. The aim was to use information theory, to reconstruct the
graph of interaction, assuming it was not known beforehand. In the following
sections we present the results we have obtained in [7].

In Fig. 2, we can see the values of the 1−delayed mutual information, wi,j(1),
between one agent i and any other agent j in the system. These values were
calculated by sampling the system when it has reached its steady state. The
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Fig. 1. Scale free graph colored as a function of the values of the influence (left) and
the τ -delayed multi-information (right), for τ = 4. In this case, the multi-information
is computed in the transient initial regime.

peaks that we observe in wi,j(1) for some values of j ∈ {1, . . . , 50} suggest that
node i is a direct neighbor of this node j, as there is a causal effect after one
time step.

In order to infer the edges of the interaction graph and build its adjacency
matrix M , we used the 1-delayed mutual-information in the following way. For
each agent i, we fixed a threshold Ti on the value of wi,j(1) to decide whether
or not i is a neighbor of j. The value of Ti was determined empirically as

Ti = μi + aiσi

where μi is the mean value of the 1-delayed mutual-information between agent i
and the other agents, and σi its standard deviation. We chose two different values
for the coefficient ai, to reflect the different nature of the agents (influential
agents have more neighbors). We propose the following values for ai:

ai =

⎧⎨
⎩

0.2 if wi(t, τ) > α +
1
2
β (then agent i is considered as very influential)

0.7 otherwise
(9)

where wi(t, τ) is agent i’s τ -delayed multi-information at time t, as defined in
Eq. (7). The value of t is chosen to be in the initial regime and τ is taken large
enough to capture the influence over the rest of the system. The values α and β
are respectively the average and the standard deviation of wi(t, τ) over i.

The elements of the adjacency matrix, M = (mij)1≤i,j≤n, are computed as

mij =

{
1 if wij(1) > Ti or wj,i(1) > Tj

0 otherwise
(10)
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When wij(1) > Ti or wji(1) > Tj then it is assumed that agents i and j are
neighbors and interact symmetrically. One could of course also defined a criterion
for non-symmetrical graphs.

Fig. 2. 1-delayed mutual information of agent 32 with every other agent.

The values of ai have been chosen in order to minimize the error rate r
between the reconstructed matrix M and the actual graph adjacency matrix A.
We have considered several scale-free graphs, by testing all values of a from 0 to
1 with a step of 0.1. The error rate is defined as r = Δ(M,A)

n2 , where Δ(M,A) is
the number of different values between M and A and n2 the number of elements
in M , n being the number of nodes.

The left panel of Fig. 3 shows the graph G1 we obtain with an error rate
r = 1.3%. To have a better result, we computed the 1-delayed mutual information
when the system is in its initial regime, as shown in the right side of Fig. 3
(graph G2). There, the error rate dropped down to r = 0.24%. This suggests
that the results are better in a transient mode than in the steady state. Such a
transient regime can be created artificially by disrupting the system temporarily
by increasing the noise, when calculating the mutual information. This method
has been tested by randomly generating 20 scale-free graphs. The average error
rate was found to be r = 0.9% with a standard deviation 0.0026.

3.2 Comparison of System Behavior Between the Original
and Reconstructed Graph

To compare the vote dynamics of the original system associated with graph
G, with the one associated with graph G1 (obtained with the 1-delayed mutual
information computed in the steady state, see Fig. 3), we look at the evolution of
the fraction of voters in state 1, starting with the same initial state and making
use of the same noise history (i.e. same seed for the random generator). In the
left side of Fig. 4, we can see that the behaviors of G and G1 are similar whereas
the evolution of the fraction of vote 1 looks in general very different for another
arbitrarily chosen graph, such as it is illustrated in the right side of Fig. 4. This
suggests that our method of reconstructing the topology in the steady state
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Fig. 3. (Left:) Graph G1 built with the 1-delayed mutual information calculated when
the system is in steady state. (Right:) Graph G2 built with the 1-delayed mutual
information computed when the system is in the initial transient regime. Red lines are
the errors we got on the edges during reconstructions: the dashed line for the extra
links and thick line for the missing links (Color figure online)

selects the most important edges from the point of view of their influence on the
dynamical evolution.

Fig. 4. Left: Plot of the time evolution of the density of opinion 1 with noise ε = 0.01
for graph G (blue curve) and for the reconstructed graph G1 (red curve). Right: the
same quantity as produced by G (blue curve) and another, non-related graph (red
curve). (Color figure online)

4 Delayed Mutual-Information to Detect Topology
Changes

In this section, we assume that the topology of the dynamical system changes
over time. Our goal is the real time detection of such changes through online
analysis of the 1-delayed mutual information wij(t, τ) between the two corre-
sponding vertices i and j.

Therefore, we compute wij(t, τ) at time t = t0 by sampling si(t−τ) and sj(t)
on a sliding window t ∈ [t0 −Δ−1, t0] with width Δt. During this time interval,
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we record the pairs (si(t − τ), sj(t)) of the states of vertices i and j with a time
delay τ = 1. This leads to the following quantities:

N00
i,j(t0) =

Δt∑

k=0

s̄i(t0 − k − 1) × s̄j(t0 − k) N01
i,j(t0) =

Δt∑

k=0

s̄i(t0 − k − 1) × sj(t0 − k)

N10
i,j(t0) =

Δt∑

k=0

si(t0 − k − 1) × s̄j(t0 − k) N11
i,j(t0) =

Δt∑

k=0

si(t0 − k − 1) × sj(t0 − k)

with s̄i(t) = 1 − si(t).
According to Eq. (6) the estimation of the mutual information on the time

interval [t0 − Δ − 1, t0] is given by

wi,j =
N00

i,j

Δt
log

( (Δt) × N00
i,j

(N00
i,j + N01

i,j)(N
00
i,j + N10

i,j)

)
+

N01
i,j

Δt
log

( (Δt) × N01
i,j

(N01
i,j + N00

i,j)(N
01
i,j + N11

i,j)

)

+
N10

i,j

Δt
log

( (Δt) × N10
i,j

(N10
i,j + N11

i,j)(N
10
i,j + N00

i,j)

)
+

N11
i,j

Δt
log

( (Δt) × N11
i,j

(N11
i,j + N10

i,j)(N
11
i,j + N01

i,j)

)

We now consider a graph of size n = 500 whose topology is modified over
time in a prescribed way. The 1-delayed mutual information was computed using
a sliding-window with Δ = 300. Figure 5 shows the time evolution of wij(t)
between two selected vertices of low degree on one side and between two selected
hubs (vertices of high degree) on the other side. Between these pairs of vertices
an edge was alternatively added and removed every 2000 time steps. In the case
of low degree vertices, we see that the value of wij informs us of this change
of topology. On the other hand, when the changes occur between the two hubs,
wij(t) does not detect them. However, in this case, it was found that the corre-
sponding edge does not have a great influence on the system dynamics, using a
similar analysis as the one reported in Sect. 3.2.

If the link is modified between a vertex i of low degree and a hub j, wij hardly
detects this change, as seen in Fig. 6 (right). This is expected as a terminal node
does not influence a hub. But this change can be detected by measuring the
opposite delayed mutual-information, wji, (see Fig. 6, left panel), reflecting the
fact that the hub does influence a neighboring vertex.

Fig. 5. Plots of the 1-delayed mutual information between two vertices of low degree
(left) and between two hubs (right). The parameters of the simulation are ε = 0.01,
n = 500, Δt = 300.
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Fig. 6. Left: plot of the 1-delayed mutual information between a hub and a low degree
vertex. Right: plot of the 1-delayed mutual information between the low degree vertex
and the hub. The parameters of the simulation are ε = 0.01, n = 500, Δt = 300.

As discussed above, the 1-delayed mutual information on a sliding window
seems to be a good metric to detect when the link between 2 nodes appears or
disappears. As a confirmation, we made simulations in which the topology of
the graph changes randomly over time: at each iteration, a topology change is
decided with probability p. In this case a pair of nodes is chosen randomly and
an edge is either added or removed between them. For example, with a scale free
graph of size n = 500 and with a probability of change p = 0.01 there was 54
changes during a simulation of 6000 steps. In this simulation all changes were
detected because there was no changes between two hubs. For each pair of nodes
i and j, the 1-delayed mutual information wi,j and wj,i, were computed on a
sliding window of size 100. When these two values exceed and remain above a
threshold, we assume that a new edge has appeared. When these values become
lower than another threshold, we assume that an edge has disappeared. With
this method, the average time to detect changes is 160 with a standard deviation
of 110.

5 Conclusions

In this paper, we have described a way to detect topology changes in a dynami-
cal system on a graph, such as the voter model. Detecting structural changes is
important as it can provide an early warning of tipping points. We expect that
our approach can be applied to many other complex systems. The 1-delayed
mutual information computed on a sliding-window was used to identify the pos-
sible changes of connectivity. We saw that this quantity allows us to detect
whether an edge is added or removed between two vertices of low degree, or
between a hub and a vertex of low degree. Between two hubs this method is not
effective, but the actual presence or absence of a link between them does not
affect much the global behavior of the system.

Delayed mutual- and multi-information can also be used to determine com-
munities in a graph, as discussed in [7]. In a forthcoming study we will investigate,
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using the approach developed here, how a change of community can be detected
in a dynamic system, thus indicating a possible loss of controllability.
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Abstract. In this paper, we define observability for cellular automa-
ton. Then we extend the Kalman observability criterion to affine cellular
automaton with a time-varying output operator. Finally, this observ-
ability characterisation is applied to the observation of affine cellular
automaton through mobile sensors.

Keywords: Cellular automaton · Observability · Mobile sensors ·
Kalman criterion

1 Introduction

Sensors and actuators constitute an important link between a system and its
environment. Their structures play an important role in Distributed Parameter
Systems (DPS) analysis and control; particularly regarding the controllability
and observability issues. These two major concepts in control theory were intro-
duced by Kalman [11] for finite dimensional linear systems and developed the
last fifty years, [13,14]. Their study through the concepts of sensors and actu-
ators has also been of great interest in the automatic control community [8,9].
While the controllability focuses on the steering capabilities of the controlled
evolution processes, observability is dealing with the ability to reconstruct the
initial system state, given sufficient knowledge of the system dynamics through
some output measurements.

This paper focuses on the observability problem and assumes that the system
under investigation is autonomous. Motivated by some real distributed environ-
mental phenomena (e.g. wildfires, weather, atmosphere or river pollution) we
use a group of mobile robots equipped with different sensors [4]. Robots share
information with each other and we simply call this group a network of mobile
sensors. This network constitute a natural extension of sensors and offers more
flexibility in collecting distributed information within its environment. A model-
based approach through trajectory optimisation (for the mobile sensors) with
partial differential equation constraints (PDE, for the environment dynamical
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model) would lead to very complicated [1] - sometimes intractable - mathemat-
ical issues, particularly in the case of complex geometries and/or non linear
dynamics.

Among other modelling approaches that have been developed to describe life
phenomena which exhibit complex behaviours, cellular automaton (CA) provide
powerful models usually viewed as a counterpart of PDEs for modelling spatio-
temporal systems. A CA is a mathematical model which is perfectly suited to
complex systems containing a large number of discrete elements with local inter-
actions, for example Ising model, fluid dynamics, traffic flow, growth of crys-
tal [2,3,16]. They were first introduced by [17], as a modelling tool to investi-
gate self-organisation and self-reproduction phenomena and become increasingly
attractive thanks to their ability to exhibit a wide variety of amazingly complex
behaviours while offering an easiness of implementation.

The research activity regarding cellular automaton has been essentially
focused, so far, on modelling and implementation problems. Recently, CA were
presented as a distributed parameter system in relation with systems theory [10].
An interesting study of controllability of CA has been carried out in [7] that
highlighted new ways to prove the controllability of complex systems. It mainly
focused on regional controllability of Boolean CA that has been proved using
Markov chains or graph theory tools [5,6]. The boundary regional controllabil-
ity has also been investigated for linear (additive) Boolean CA for which some
characterisation results using the Kalman condition were given.

Our interest in this paper is focused on observability as a dual notion of
controllability. The purpose is to apply the above mentioned tools in order to
prove the observability according to the choice of sensor structures, locations and
types (mobile or fixed). We show for the 1D case, that observability of linear
(affine) CA can be characterised using the observability matrix. A complete
study of affine CA by means of mobile sensors is carried out in the last section.
Some examples are given to illustrate the theoretic results.

2 Sensors and Observability for Cellular Automaton

Definitions for control and observation of cellular automaton has already been
given in [10]. Throughout this article we will reuse these definitions but for the
consistency of this article we will redefine some of these.

First, a cellular automaton is formulated as the quadruple A = {L,S,N , f}
where L represents the lattice of cells c; S represents the set of states; N repre-
sents the neighbourhood; and f represents the transition function. In this paper,
we need S to be a finite field, thus the number of elements, k, must be prime.

The CA state or configuration at time t is defined by:

s : L → S
c �→ st(c)

(1)
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The global transition function F is then defined by:

F : SL → SL

st �→ F (st) = st+1

(2)

In order to be able to study observability using mobile sensors, we need to
define first the notion of mobile sensor, which will then allow us to define the
notion of observability.

Definition 1. We note q a set of Q sensors which observe a set Lq ⊂ L of cells.
Each sensor of this set is indexed by i ∈ �1;Q�. So we have a sensor qi observing
a set of cell Lqi ⊂ L hence:

Lq =
Q⋃

i=1

Lqi (3)

Remark 1. The sensor set q can contain mobile sensors, i.e. the set of cells they
observe varies over time. Thus, we note the mobile sensor set qi,t and the set of
cells it observes Lqi,t . Therefore we note qt the set of sensors and Lqt the set of
cells observed by the sensors at time t.

Remark 2. In the sensor set q, some sensors may be inactive at time t; because
they are faulty, inadequate, or simply not in use. In this case, we add a parameter
λi to the sensor qi which describes whether this sensor is active or not. We then
define the set of all observed cells as:

Lqt =
Q⋃

i=1

(λi,t � Lqi,t) (4)

Where λi,t ∈ {0, 1} such that λi,t equals 0 if the sensor qi is inactive at time
t and 1 if it is active. Using this definition, we then define the � operator, with
P(L) the power set of L:

� : {0, 1} × P(L) → P(L)

λi × Lqi �→
{∅ if λi = 0

Lqi else
(5)

Based on these definitions, we will now define an output operator of the
system, i.e. what the sensors are measuring. This definition will in turn be used
to define the observability of a cellular automaton when it is observed by a
mobile sensor network.

Definition 2. The output operator Ht generates, at each time t, an output θt ∈
Ot = l2(Lqt ,R) from the state st of the automaton A.

Ht : SL → Ot

st �→ θt
(6)



Observability of Affine Cellular Automaton 39

Where Ot = l2(Lqt ,S) is a set of output functions such that their quadratic
sum over all cells is finite [10, Sect. 2.3]:

l2(Lqt ,S) = {θ : Lqt → S|
∑

c∈Lqt

θ2(c) < ∞}

In order to illustrate the different theorems and propositions that are pre-
sented in the following sections, the same cellular automaton and the same out-
put operators will be used in the different examples.

Example 1. Let us consider the following one-dimensional cellular automaton
defined by:

– L = {0, 1, 2, 3, 4}
– S = {0, 1, 2}
– N : ci �→ {ci−1, ci, ci+1} with periodic boundaries so c−1 = c4 and c5 = c0.
– f : st(N (ci)) �→ st(ci−1) + 2st(ci) + st(ci+1) + 1

Then let us consider two output operators H and H ′. Both of these will
observe one cell at a time, but H represents a mobile sensor (i.e. Lq varying over
time) while H ′ represents a stationary sensor.

– Mobile Sensor: Lqt = {ct mod 5} and H : st �→ st(ct mod 5) + 2
– Stationary Sensor: L′

q = {c0} and H ′ : st �→ st(c0) + 2

The observability of a system has already been presented in numerous pub-
lications. The oldest definition goes back to the definition of observability for
linear systems given by Kalman [11]. More recent definitions include discrete
time systems [15]. We aim to extend the definition of observability to cellular
automaton.

Definition 3 (State Observability). A state s0 ∈ SL of a cellular automa-
ton A is observable by an output operator H if and only if it is possible to
reconstruct this initial state from the corresponding output sequence (θt)t∈I with
I = {0, 1, . . . , T − 1}.
Definition 4 (Global Observability). A cellular automaton A is observable
by an output operator H if and only if all states s ∈ SL are observable by this
output operator.

Remark 3. Proving the global observability of a system is equivalent to proving
the injectivity of the output sequence Θ [8].

Θ : SL → OT

s0 �→

⎡

⎢⎢⎣

θ0

θ1

. . .
θT−1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

H(s0)
H ◦ F (s0)

. . .
H ◦ FT−1(s0)

⎤

⎥⎥⎦
(7)
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3 Observability Criterion for Affine Cellular Automaton

In this part, we present a definition for affine CAs. Then, we present the different
observability properties of affine CAs.

Proposition 1. If the cellular automaton is finite in size (i.e. |L| = N ∈ N)
then there exists an isomorphism ξ that would allow the state s of the automaton
to be written as a vector x. ξ is defined by:

ξ : SL → SN

st �→ xt =

⎛

⎜⎜⎝

x1
t

x2
t

...
xN
t

⎞

⎟⎟⎠
(8)

where N = |L| and xi
t represents the state of the cell ci at time t.

This isomorphism makes it possible to switch from a state function st to
a state vector xt (which is the representation used in the study of linear sys-
tems) and also to reduce the lattice dimension to facilitate the study of multi-
dimensional systems.

Remark 4. This isomorphism can be applied to the global transition function F
to have another function F̃ which computes xt+1 from xt.

Definition 5 (Affine). A cellular automaton is affine if and only if its F̃ tran-
sition function is an affine map. Moreover, this affine map can be written in the
form of a linear map and a constant, which can be written as a matrix A and a
constant η = F (0). The evolution of the cellular automaton can then be written
as:

{
xt+1 = F̃ (xt) = Axt + η
x0 ∈ SN (9)

Remark 5. If an affine CA has a null η constant, this CA is said linear. Then,
its transition function F̃ can be written in the form xt+1 = A(xt). Where A is a
linear map.

In the case of elementary CA [18], linear CA are called additive CA. Also,
affine CA will be the complement of additive CA. For example, rule 90 and 150
will be considered linear rules, but their complementary rule (165 and 105) will
be considered affine rules.

Remark 6. In the same way as for the CA definition, if the observation space is
finite (i.e. |Lq| ∈ N) then there is an isomorphism χ which make it possible to
write the output θt as a vector yt, defined by:

χ : O → SQ

θt �→ yt =

⎛

⎜⎜⎝

y1
t

y2
t

...

yQ
t

⎞

⎟⎟⎠
(10)
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where Q = |Lq| and yi
t represents the ith output at time t.

Moreover, the output operator is linear (respectively affine) if and only if
the H̃ function (i.e. the H function composed with the χ isomorphism) is linear
(affine). The system can then be written as yt = Cxt + γ where C is the matrix
of the linear map and γ is the affine constant (which is 0 if the CA is linear).

The Kalman criterion [11,12] is derived from the control of linear dynamical
systems and proves the controllability (resp. observability) of a dynamical system
when the system is controlled (observed). It has been generalised to discrete-time
systems [15] and in this paper we generalise it to cellular automaton.

Theorem 1 (Kalman Criterion). Let A and H be an affine CA and affine
output operator; A, C their matrix form; and η and γ their constants.

The pair (A,H) (i.e. the automaton A with the output operator H) is observ-
able if and only if there exists T ∈ N such that:

rank

⎡

⎢⎢⎣

C
CA
..

CAT−1

⎤

⎥⎥⎦ = N

Remark 7. The Kalman criterion can also be used with mobile sensors. In this
case, the H output operator and the C matrix will both be time-dependent. The
Kalman criterion thus becomes:

rank

⎡

⎢⎢⎣

C0

C1A
. . .

CT−1A
T−1

⎤

⎥⎥⎦ = N (11)

Remark 8. We call O the observability matrix and Γ the constant matrix, it
represents the output vector using only the initial state x0:

YT =

⎡

⎢⎢⎣

y0

y1

. . .
yT−1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

C0

C1A
. . .

CT−1A
T−1

⎤

⎥⎥⎦ x0 +

⎡

⎢⎢⎣

γ0

C1η + γ1

. . .∑T−2
k=0 (Ck+1A

kη) + γT−1

⎤

⎥⎥⎦ = Ox0 + Γ

In order to prove the Kalman criterion, we will demonstrate only for affine
CAs because the linear case is a special case where the constants η and γ are
zero.

Proof. Let A an affine CA and A and η its associated matrix and constant. Let
Ht be a time dependant affine output operator associated to the matrix Ct and
the constant γt. Then, let x0 ∈ SN be the initial state and YT =

[
y0 y1 . . . yT−1

]

the output vector generated by the output operator.
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To Prove the Sufficiency
Suppose that rank O = N , it means that it exists P such that PO = IN (not
necessarily OP = IM because O can have more row than column).

YT = Ox0 + Γ (12)

P (YT − Γ ) = x0 (13)

Since the initial state of the automaton can be recovered through its outputs,
the pair (A,H) is observable.

To Prove the Necessity
Suppose that the pair (A,H) can be observed, it means that the initial state
x0 can be retrieved using the output YT , so it exists a mapping g such that
g(YT − Γ ) = x0.

We note h, the linear map of O and as YT − Γ = x0 ⇐⇒ g(YT − Γ ) = g ◦
h(x0) we have:

g ◦ h = idSN (14)

Thus:

rank O ≥ N (because g ◦ h = idSN ) and rank O ≤ min(N,M) (15)

where M is the row number of O. Finally we have:

rank O = N (16)

Corollary 1. If the Kalman criterion is verified, then it is possible to recover
the initial state by inverting the observability matrix. Indeed, based on the for-
mulation (8) we obtain:

x0 = O†(YT − Γ ) (17)

Proof. As rank O = N , it means that it exists P such that PO = I (but not
necessarily OP �= I because O is not necessarily a square matrix). We can find
P = O† by computing the pseudo-inverse of O. Using the Eq. (8) we find that:

YT = Ox0 + γ ⇐⇒ O†(YT − γ) = O†Ox0 ⇐⇒ O†(YT − Γ ) = x0 (18)

As O is full column rank, O† = (OtO)−1Ot. If O is square then O† = O−1.

4 Observation of an Affine Cellular Automaton Through
Mobile Sensors

In this section, we will carry out a complete study on an affine cellular automaton
that is observed by an affine mobile sensor. For ease of calculation, we will use a
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one-dimensional cellular automaton, but the study method applies to other kind
of CA.

Let us consider the cellular automaton and the two output operators pre-
sented in Example 1. This CA is affine, so we can write its transition function
in affine form with a square matrix A and a constant vector η, which leads to:

A =

⎡

⎢⎢⎢⎢⎣

2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2

⎤

⎥⎥⎥⎥⎦
and η =

⎡

⎢⎢⎢⎢⎣

1
1
1
1
1

⎤

⎥⎥⎥⎥⎦
(19)

The two output operators being affine, we can write them in matrix form:

– Stationary Sensor: C ′ =
[
1 0 0 0 0

]
and γ′ = 2

– Mobile Sensor:

C0 =
[
1 0 0 0 0

]
and γ0 = 2

C1 =
[
0 1 0 0 0

]
and γ1 = 2
. . .

C4 =
[
0 0 0 0 1

]
and γ4 = 2

C5 =
[
1 0 0 0 0

]
and γ5 = 2

So we can calculate the matrices O and Γ for both sensors and we get:

– Stationary: O =

⎡

⎢⎢⎢⎢⎣

C ′

C ′A
C ′A2

C ′A3

C ′A4

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
2 1 0 0 1
0 1 1 1 1
2 0 1 1 0
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
, Γ =

⎡

⎢⎢⎢⎢⎣

2
0
1
2
0

⎤

⎥⎥⎥⎥⎦
and rank O = 3

– Mobile: O =

⎡

⎢⎢⎢⎢⎣

C0

C1A
C2A

2

C3A
3

C4A
4

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
1 2 1 0 0
1 1 0 1 1
1 1 0 2 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
, Γ =

⎡

⎢⎢⎢⎢⎣

2
0
1
2
0

⎤

⎥⎥⎥⎥⎦
and rank O = 5

The CA is observable by the mobile sensor because the rank is 5 which is
not the case for the static sensor which has a rank of 3.

In the mobile sensor case we know that the system is observable, we can thus
reconstruct its initial state based on the measurements made by this sensor using
the Corollary 1. We will reconstruct the initial state from the evolution of the CA
presented on the Fig. 1, with this evolution we have YT =

[
2 2 1 1 0

]t. We can
thus start by finding O† and then calculate x0. We should find x0 =

[
0 1 0 2 0

]t.
As O is a square matrix we can compute the inverse instead of the pseudo-

inverse. To calculate O−1, we will use the inverse of the determinant of O, det(O)
and its adjugate matrix adj(O).
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0 1 0 2 0

2 0 1 2 0

2 1 2 0 2

2 1 0 2 1

1 2 1 0 1

0 1 2 0 1

t = 0

t = 1
t = 2

t = 3
t = 4

t = 5

c0 c1 c2 c3 c4

Fig. 1. Example of CA evolution for x0 =
[
0 1 0 2 0

]t
. The time is along the vertical

axis. Cells are numbered from left to right with c0 on the left and c4 on the right. Grey
cells are those observed by the mobile sensor.

O−1 = det(O)−1adj(O) = 2−1

⎡

⎢⎢⎢⎢⎣

2 0 0 0 0
1 0 1 1 2
2 2 1 1 2
0 0 1 2 2
0 0 0 0 2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
2 0 2 2 1
1 1 2 2 1
0 0 2 1 1
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
(20)

In modular arithmetic base k, the inverse is obtained by finding b so that
ab ≡ 1(mod k), yet in the field S that we have, 2−1 = 2 because 2 × 2 = 1.

We can now find x0 using YT , Γ and O−1. We get:

x0 = O−1(YT − Γ ) =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
2 0 2 2 1
1 1 2 2 1
0 0 2 1 1
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎣

2
2
1
1
0

⎤

⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎣

2
0
1
2
0

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎠
=

⎡

⎢⎢⎢⎢⎣

0
1
0
2
0

⎤

⎥⎥⎥⎥⎦
(21)

5 Conclusion and Perspectives

In this paper, we presented a method to prove the observability of affine cel-
lular automaton with linear output operators, either time-varying or not. We
started by presenting a formulation of cellular automaton observed by a mobile
sensors network. Then we extended the Kalman criterion from discrete-time lin-
ear systems to affine cellular automaton and we studied the observability of a
one-dimensional automaton with this method.

In an extended version of this paper, we will generalise our observability anal-
ysis to nonlinear cellular automaton and construct an associated state estimator.
This estimator will make it possible to have an estimate of the state of the cel-
lular automaton without having to wait for the time necessary for the inversion
of the observability matrix. Such an observer would allow the use of cellular
automaton for control, diagnosis or general supervision purposes, with many
potential applications, for instance in wildfire, pollution, or traffic monitoring or
tracking problems.
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Université de Perpignan; Università degli studi (Florence, Italie), November 2019

8. El Jai, A.: Distributed systems analysis via sensors and actuators. Sens. Actuat.
A 29(1), 1–11 (1991)

9. El Jai, A., El Yacoubi, S.: On the relations between actuator structures and final-
constraint minimum-energy problem. Sens. Actuat. A 33(3), 175–182 (1992)

10. El Yacoubi, S.: A mathematical method for control problems on cellular automata
models. Int. J. Syst. Sci. 39(5), 529–538 (2008)

11. Kalman, R.E.: On the general theory of control systems. In: Proceedings First
International Conference on Automatic Control, Moscow, USSR (1960)

12. Kalman, R.E.: Mathematical description of linear dynamical systems. J. Soc. Ind.
Appl. Math. Ser. A: Control 1(2), 152–192 (1963)

13. Lions, J.L.: Controlabilite exacte des systemes distribues: remarques sur la theorie
generale et les applications. In: Bensoussan, A., Lions, J.L. (eds.) Analysis and
Optimization of Systems. LNCIS, vol. 83, pp. 3–14. Springer, Heidelberg (1986).
https://doi.org/10.1007/BFb0007542

14. Russell, D.L.: Controllability and stabilizability theory for linear partial differential
equations: recent progress and open questions. Siam Rev. 20(4), 639–739 (1978)

15. Sarachik, P., Kreindler, E.: Controllability and observability of linear discrete-time
systems. Int. J. Control 1(5), 419–432 (1965)

16. Toffoli, T.: CAM: a high-performance cellular-automaton machine. Phys. D:
Nonlinear Phenom. 10(1–2), 195–204 (1984). https://www.sciencedirect.com/
science/article/abs/pii/0167278984902616

17. Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE
Trans. Neural Netw. 5(1), 3–14 (1966)

18. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3),
601 (1983)

https://doi.org/10.1080/17445760.2019.1608442
https://doi.org/10.1007/BFb0007542
https://www.sciencedirect.com/science/article/abs/pii/0167278984902616
https://www.sciencedirect.com/science/article/abs/pii/0167278984902616


One-Dimensional Pattern Generation
by Cellular Automata

Martin Kutrib(B) and Andreas Malcher

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

Abstract. To determine the computational capacity of cellular auto-
mata they are often investigated towards their ability to accept for-
mal languages within certain time constraints. In this paper, we take
up an opposite position and look at cellular automata towards their
ability to generate formal languages, here called patterns, within certain
time constraints. As an example we describe a construction of a cel-
lular automaton that generates prefixes of the well-known Thue-Morse
sequence within real time. Furthermore, we study the real-time genera-
tion of unary patterns in depth and obtain a characterization by time-
constructible functions and their corresponding unary formal languages.

1 Introduction

Parallel computational models are appealing and widely used in order to
describe, understand, and manage parallel processes occurring in real life. Cellu-
lar automata (CA) are a model which allows to describe massively parallel sys-
tems, since they are arrays of identical copies of deterministic finite automata.
Furthermore, the single nodes are homogeneously connected to both their imme-
diate neighbors, and they work synchronously at discrete time steps. In general,
cellular automata work on a given input which is provided in a parallel way, that
is, every cell is fed with an input symbol in a pre-initial step.

The computational power of cellular automata can be measured by their
ability to accept formal languages. In this context, the given input is accepted
if there is a time step at which the leftmost cell enters an accepting state. Usu-
ally studied models comprise the real-time one-way cellular automata [2], where
every cell is connected with its right neighbor only which restricts the flow of
information from right to left. Moreover, the available time for accepting an
input is restricted to the length of the input. Other models studied are real-time
two-way cellular automata and linear-time two-way cellular automata. A survey
on results concerning the computational capacity, closure properties and decid-
ability questions for these models and references to the literature may be found,
for example, in [6,7].

Another point of view on computations with cellular automata is taken
in [4,8], where cellular automata are used as transducers, that is, they trans-
form an input into an output obeying time constraints such as real and linear
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time. The paper [4] discusses for cellular automata several time constraints and
inclusion relationships based on these constraints. Moreover, closure properties
and relations to cellular automata considered as formal language acceptors are
established. In [8] also cellular automata with sequential input mode, called itera-
tive arrays, are considered as transducing devices and compared with the cellular
automata counterpart with parallel input mode. Additionally, the cellular trans-
ducing models are compared with classical sequential transducing devices such
as finite state transducers and pushdown transducers.

In this paper, we will take yet another view on computations with cellular
automata. Namely, we will consider cellular automata not as devices processing
an input and computing a yes or no answer as in the case of a language accepting
device or computing an output as in the case of a transducing device, but we
consider cellular automata as generating devices. This means that the cellular
automaton starts with an arbitrary number of cells being all in a quiescent
state. Subsequently, it works synchronously according to its transition function.
Finally, if the configurations reach a fixpoint, we consider such configurations
as the patterns generated by the automaton. Thus, cellular automata considered
this way compute a (partial) function mapping an initial length n to a pattern
of length n over the alphabet of the automaton. Here, we start to investigate the
basic ability of cellular automata to compute such functions within real time.

It should be remarked that the notion of pattern generation is used for cellular
automata also in other contexts, but with a different meaning. For example,
in [11] the sequence of configurations produced by a cellular automaton starting
with some input is considered as a two-dimensional pattern generated. In [5] a
cellular automaton is studied as universal pattern generator in the sense that
starting from a finite configuration all finite patterns over the state alphabet are
generated. This means that these patterns occur as infixes in the sequence of
configurations computed.

The paper is organized as follows. In Sect. 2 we provide a formal definition of
cellular automata and describe how they accept formal languages as well as they
generate patterns within time constraints, in particular, within real time and
linear time. The section is concluded with an illustrating example generating
prefixes of the Thue-Morse sequence. In Sect. 3, we study the ability of real-
time cellular automata to generate unary patterns in depth. A given function
f : N → N defines a unary pattern in a natural way, namely, the pattern consists
of all strings an, where n is in the range of f , and is undefined otherwise. A first
result is that such patterns can be generated in real time under the condition that
the function f has some constructibility properties. If the pattern is modified so
that strings bn are generated if n is not in the range of f , then another result
shows that the generation is still possible in real time, but the construction
is much more involved, since the information whether or not n belongs to the
range of f is locally computed, but has to be transported to all cells in due
time. Finally, it can be shown that the notions of time-constructibility, real-
time language acceptance, and real-time pattern generation are equivalent in
the unary case.
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2 Preliminaries

We denote the non-negative integers by N. Let Σ denote a finite set of letters.
Then we write Σ∗ for the set of all finite words (strings) consisting of letters
from Σ. The empty word is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. A subset
of Σ∗ is called a language over Σ. For the reversal of a word w we write wR and
for its length we write |w|. In general, we use ⊆ for inclusions and ⊂ for strict
inclusions. For convenience, we use S# to denote S ∪ {#}.

A two-way cellular automaton is a linear array of identical finite automata,
called cells, numbered 1, 2, . . . , n. Except for border cells each one is connected
to its both nearest neighbors. The state transition depends on the current state
of a cell itself and the current states of its two neighbors, where the outermost
cells receive a permanent boundary symbol on their free input lines. The cells
work synchronously at discrete time steps.

Formally, a deterministic two-way cellular automaton (CA, for short) is a
system M = 〈S,Σ, F, s0, #, δ〉, where S is the finite, nonempty set of cell states,
Σ ⊆ S is set of input symbols, F ⊆ S is the set of accepting states, s0 ∈ S is the
quiescent state, # /∈ S is the permanent boundary symbol, and δ : S#×S×S# → S
is the local transition function satisfying δ(s0, s0, s0) = s0.

A configuration ct of M at time t ≥ 0 is a mapping ct : {1, 2, . . . , n} → S,
for n ≥ 1, occasionally represented as a word over S. Given a configuration ct,
t ≥ 0, its successor configuration is computed according to the global transition
function Δ, that is, ct+1 = Δ(ct), as follows. For 2 ≤ i ≤ n − 1,

ct+1(i) = δ(ct(i − 1)), ct(i), ct(i + 1)),

and for the outermost cells we set

ct+1(1) = δ(#, ct(1), ct(2)) and ct+1(n) = δ(ct(n − 1), ct(n), #).

Thus, the global transition function Δ is induced by δ.
Here, a cellular automaton M can operate as decider or generator of one-

dimensional patterns (or words, or strings).
A cellular automaton accepts a word a1a2 · · · an ∈ Σ+, if at some time step

during the course of the computation starting in the initial configuration c0(i) =
ai, 1 ≤ i ≤ n, the leftmost cell enters an accepting state, that is, the leftmost
symbol of some reachable configuration is an accepting state. If the leftmost
cell never enters an accepting state, the input is rejected. The language accepted
by M is denoted by L(M) = {w ∈ Σ+ | w is accepted by M}.

A cellular automaton generates a word a1a2 · · · an, if at some time step t
during the computation on the initial configuration c0(i) = s0, 1 ≤ i ≤ n,
(i) the word appears as configuration (that is, ct(i) = ai, 1 ≤ i ≤ n) and
(ii) configuration ct is a fixpoint of the global transition function Δ (that is, the
configuration is stable from time t on). The pattern generated by M is

P (M) = {w ∈ S+ | w is generated by M}.
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Since the set of input symbols and the set of accepting states are not used when
a cellular automaton operates as generator, we may safely omit them from its
definition.

Let t : N → N be a mapping. If all w ∈ L(M) are accepted with at most t(|w|)
time steps, or if all w ∈ P (M) are generated with at most t(|w|) time steps,
then M is said to be of time complexity t. If t(n) = n then M operates in real
time. If t(n) = k · n for a rational number k ≥ 1 then M operates in linear time.

We illustrate the definitions with an example.

Example 1. The Thue-Morse sequence is an infinite sequence over the alpha-
bet {0, 1}. The well-known sequence has applications in numerous fields of math-
ematics and its properties are non-trivial. There are several ways of generating
the Thue-Morse sequence one of which is given by a Lindenmayer system with
axiom 0 and rewriting rules 0 → 01 and 1 → 10. The generation of words can
be described as follows: starting with the axiom every symbol 0 (symbol 1) is
in parallel replaced by the string 01 (10). This procedure is iteratively applied
to the resulting strings and yields the prefixes p0 = 0, p1 = 01, p2 = 0110,
p3 = 01101001, p4 = 0110100110010110, and so on. We remark that the length
of the prefix pi is 2i.

Next, we want to construct a real-time CA that will generate the pattern
PThue = {pi | i ≥ 0}. The basic idea is to work with a real-time version of the
FSSP based on the time optimal solution of Waksman [10]. The latter solution
starts with one general at the left end of the array and it takes n − 1 time steps
(n being the length of the array) to reach the right end. If we start instead
with two generals at both ends, where the left general symmetrically behaves
as the right general, we save n − 1 time steps. Since we need one additional
time step to initialize the generals at both ends, we can realize the FSSP within
2n − 2 − (n − 1) + 1 = n time steps, that is, within real time.

Let us assume for a moment that the initial length is a power of two. In the
further construction of the FSSP, the initial length is iteratively divided into
halves, whereby two middle points and thus two new generals are generated.
To generate the Thue-Morse sequence we consider the time steps at which two
such middle cells are generated. Initially, at time n/2 + 1, the left new middle
cell obtains the information 0 and the right new middle cell obtains the infor-
mation 1. The signals sent out from the new middle cells to the left and right,
respectively, are attached with this information. If these signals meet some other
signal so that another two new middle cells are generated, the left cell gets the
information 0 and the right cell gets the information 1 if the signal carried the
information 0. Otherwise, the left cell gets the information 1 and the right cell
gets the information 0. This behavior is iterated up to the last but one time step
in which all cells have become a general. In the last time step, in which all cells
are synchronized, a left signal 0 (1) in cell i at time n − 1 leads to 0 (1) in cell
i − 1 and 1 (0) in cell i at time n. Analogously, a right signal 0 (1) in cell i at
time n − 1 leads to 0 (1) in cell i and 1 (0) in cell i + 1 at time n. The states 0
and 1 are never changed so that the last configuration is a fixpoint and, hence,
the pattern pm is generated if the initial length has been 2m.
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Fig. 1. Generation of p4 = 0110100110010110. (Color figure online)

If the initial length is not a power of two, then in the procedure of iteratively
dividing into halves there occurs at least one situation in which only one new
middle point (and thus only one general) is generated. This situation can be
identified and the corresponding cell is subsequently forced to oscillate between
two states. Hence, the generated configurations are never a fixpoint which means
that no pattern is generated in these cases.

The construction on input length n = 16 is illustrated in Fig. 1. The left
signals starting from time 10 and 14 carry information 0 which leads to 01 in
cells 4 and 5 and 2 and 3, respectively. The right signal starting from time 14
carries information 1 which leads to 10 in cells 6 and 7. In time step n = 16 the
permanent states 0 and 1 are generated which are written in green. �

3 Pattern Generation, Languages Acceptance, and Time
Constructibility

In order to explore the capabilities and properties of real-time cellular pattern
generators, we start with unary words. At a first glance, to generate a unary
pattern is trivial. In fact, this is true for patterns of the form {an | n ≥ 1}. In
such cases it is sufficient that any cell enters state a in its first step and remains
in this state. However, these patterns are total which means that the pattern
contains a word for any n ≥ 1. So, let us make the task a little harder. Now we
define the pattern to be generated as a partial function on n. More precisely,
we impose a condition on n such that the pattern an is to be generated if and
only if n meets the condition. Let, for example, ϕ : N → N be some function.
Then pattern Pϕ is defined to be an if there is some m such that n = ϕ(m), and
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undefined otherwise. Clearly, such a pattern can only be generated by a cellular
automaton in real time if the function ϕ is constructible in some sense. If it is
uncomputable, trivially Pϕ cannot be generated. In order to fix the notion of
constructibility the notion of time-constructibility is widely used.
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12 = 1

22 = 4

32 = 9

42 = 16

t

Fig. 2. Time construction of
the function i2. Signal α is
depicted in blue and green,
signal β is depicted in red.
(Color figure online)

In particular, a strictly increasing function
ϕ : N → N is time-constructible if there is a semi-
infinite cellular automaton M = 〈S,Σ, F, s0, #, δ〉,
that is, n is infinite, whose leftmost cell is in some
state of F at time t ≥ 0 if and only if t = ϕ(i)
for some i ≥ 0. The initial configuration of M is
quiescent, that is, c0(i) = s0, 1 ≤ i.

The investigation of time-constructible functions
in cellular automata originates in [3], where a cellu-
lar automaton is constructed that time-constructs
the function i �→ pi where pi denotes the ith prime
number. In [1] a time-constructor for the function
i �→ 2i is given. The systematic study of this concept
was started in [9]. The family of time-constructible
functions is denoted by F (CA).

As a simple example, in Fig. 2 the time-
construction of the function i �→ i2 is given. Basi-
cally, the necessary signals can be derived from
(i + 1)2 = i2 + 2i + 1. In particular, after being
designated at time i2, the leftmost cell has to wait
for 2i time steps before it is designated again at time
i2 +2i+1. This delay is exactly the time needed by
an auxiliary signal α that moves from the leftmost
cell 1 to cell i + 1, stays there for one time step,
and moves back to the leftmost cell. To this end,
another auxiliary signal β is used that stays in cell
i until it is hit by α and moves to cell i + 1.

Let us come back to the pattern Pϕ, where ϕ is a time-constructible function.
Since the pattern is undefined for lengths n that are not in the range of ϕ, the
pattern is easily generated by a CA.

Proposition 2. Let ϕ : N → N be a time-constructible function. Then the pat-
tern Pϕ = {an | there is an m with n = ϕ(m)} is generated by some real-
time CA.

Proof. A real-time CA that generates Pϕ essentially simulates a time constructor
for ϕ. In addition, its rightmost cell initially sends a signal with maximal speed
to the left. Each cell passed through by this signal enters state a and remains in
it. The signal arrives at the leftmost cell at time n. If this cell is simultaneously
distinguished by the time construction, the number of cells n is in the range of ϕ.
In this case the leftmost cell enters state a and remains in it. This means that
the pattern an is generated in real time. If at arrival of the signal the leftmost
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cell is not distinguished by the time construction, it starts to enter alternating
some states b and c. So, the configuration will never be stable and no pattern is
generated in this case. �

The simple construction of the generator of Pϕ works fine since, in principle,
only the leftmost cell decides whether a pattern has to be generated or not.
Moreover, the other cells can safely enter the pattern states in advance without
violating the overall result. So, let us make the task again a little harder. Now
we define the pattern to be generated as a total function on n and impose
a condition on n such that the pattern an is to be generated if n meets the
condition, but the pattern bn otherwise. In this case, the leftmost cell can still
decide which pattern has to be generated, but all the other cells cannot enter
the pattern state in advance. Instead, they have to know whether the condition
is met or not. Since an FSSP synchronization of the array (starting at both
ends simultaneously) cannot be done in less than n − 1 steps, for a real-time
generation there is not enough time for the leftmost cell to inform the other cells
about whether or not the condition is met. For a time-constructible function
ϕ : N → N, we define the pattern P̂ϕ to be an if there is some m such that
n = ϕ(m), and bn otherwise. The next theorem shows that even these unary
patterns are generated in real time.

Theorem 3. Let ϕ : N → N be a time-constructible function. Then the pattern
P̂ϕ = {xn | x = a if there is an m with n = ϕ(m) and x = b otherwise} is
generated by some real-time CA.

Proof. The basic idea of a real-time CA M that generates P̂ϕ is as follows. In
order to check the condition on the length of the input, a time-constructor for ϕ
is simulated. In order to gain enough time to synchronize the cells, it is sped-up
by a factor of two. This is done by grouping two cells of the time-construction
into one cell. So, the leftmost cell now simulates cell 1 and cell 2 of the original
time-constructor. More precisely, if originally the leftmost cell is distinguished
at an even time step i, now it is distinguished at time step i/2 by the simulation
of the original cell 1. If originally the leftmost cell is distinguished at an odd
time step i, now it is distinguished at time step (i − 1)/2 by the simulation of
the original cell 2.

Note that all computations apart from the compressed simulation of the
time-constructor are done without grouping the cells.

Next, the compressed simulation of the time-constructor is expanded again
(see Fig. 3). To this end, a signal α with speed 1/3 is initially sent to the right
by the leftmost cell.

Case 1: Whenever the leftmost cell of the compressed simulation is distinguished
at time step i/2 by the simulation of the original cell 1, that is, i is even, then
it sends a signal β to the right. When this signal meets α, it follows α for one
time step and runs back to the left. It arrives at the leftmost cell at time i again.
This is inductively seen as follows.
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Fig. 3. Principles of designating time 2i (left) and 2i+1 (right) starting at time i. The
signal α with speed 1/3 is depicted in red. The three computations starting at time
steps 5, 6, and 7 are depicted in blue, green, and yellow. (Color figure online)

Case 1.a: Let j = i/2 be even. Then β meets α in cell j/2 at time j + j/2 − 1.
This is true for j = 2 in cell 1 at time 2. Now assume it is true for some even j.
Since j is even, j + j/2 − 1 is congruent 2 modulo 3. That is, signal α moves to
cell j/2 + 1 at time j + j/2 and stays there until time j + j/2 + 2. Signal β is
sent by the leftmost cell at time j + 2 and arrives in cell j/2 + 1 = (j + 2)/2 at
time j + 2 + j/2 + 1 − 1 = j + j/2 + 2 = (j + 2) + (j + 2)/2 − 1.

Next, when signal β meets α it follows α for one time step, that is, when sent
at time j it enters cell j/2 + 1 at time j + j/2, and moves back to the leftmost
cell, where it arrives at time j + j/2 + j/2 = 2j = i as claimed.

Case 1.b: Now let j = i/2 be odd. Then β meets α in cell (j + 1)/2 at time
j + (j − 1)/2. This is true for j = 1 in cell 1 at time 1. Now assume it is true
for some odd j. Since j is odd, j + (j − 1)/2 is congruent 1 modulo 3. That is,
signal α moves to cell (j +1)/2+1 at time j +(j −1)/2+2 and stays there until
time j+(j−1)/2+4. Signal β sent by the leftmost cell at time j+2 arrives in cell
(j +1)/2+1 = (j +2+1)/2 at time j +2+(j +2+1)/2−1 = (j +2)+(j +1)/2.

Next, when signal β meets α it follows α for one time step, that is, stays in
cell (j +1)/2 at time j +(j −1)/2+1, and moves back to the leftmost cell, where
it arrives at time j + (j − 1)/2 + 1 + (j + 1)/2 − 1 = 2j = i as claimed.

Case 2: Whenever the leftmost cell of the compressed simulation is distinguished
at time step (i − 1)/2 by the simulation of the original cell 2, that is, i is odd,
then it sends a signal γ to the right. When this signal meets α, it follows α for
one time step, stays in that cell for another time step, and runs back to the left.
Case 2 is basically the same as Case 1 with the exception that the signal which
bounces at α is delayed for one time step. So, it arrives at the leftmost cell one
time step later than in Case 1, that is, at time 2(i − 1)/2 + 1 = i.
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Now we continue the construction of the real-time CA that generates P̂ϕ (see
Fig. 4 for an example). In addition to the simulation of the time-constructor, the
rightmost cell initially sends a signal τ with maximal speed to the left. If the
number of cells n is not congruent 3 modulo 4, this signal meets signal α of
the time constructor in cell �n/4� + 1. At this point it can be determined if
some signal β or γ of the time constructor joins τ on its way to the leftmost
cell. Since τ arrives at the leftmost cell at time n and β or γ distinguishes the
leftmost cell, exactly in this case the pattern an has to be generated, and bn

otherwise. So, cell �n/4� + 1 can send this information to the right and to the
left to cause all cells reached to enter the correct pattern state. In this way, the
cells 1 to 2�n/4�+1 are reached in the remaining �n/4� time steps. Since n is not
congruent 3 modulo 4 we have 2�n/4� + 1 ≥ �n/2�. So, the left half of the array
generates the correct pattern. In order to achieve the same for the right half it is
sufficient, additionally to implement the whole procedure symmetrically on the
right end of the array.

Finally, the case where n is congruent 3 modulo 4 has to be considered. In this
case, the signals α and τ meet in the adjacent cells �n/4� + 1 and �n/4� + 2. So,
these cells can send the information which pattern is to be generated one time
step after the meeting, for which then �n/4� time steps are left. This means that
also in this case the cells 1 to 2�n/4� + 2 ≥ �n/2� will receive this information
in due time. �
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Fig. 4. Example of a P̂ϕ generator, where a15 ∈ P̂ϕ. The signal α with speed 1/3 is
depicted in red, signal γ that designates time 15 is depicted in blue, and signal τ is
depicted in gray. Since 15 ≡ 3 (mod 4), the signals α and τ meet in the adjacent cells 4
and 5. (Color figure online)

The family of time-constructible functions F (CA) is very rich. Several exam-
ples and the closure of the family under a bunch of operations are shown
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in [9]. This fact transfers immediately to the family of unary patterns of the
form P̂ϕ generated by cellular automata in real time. Moreover, in [9] the fol-
lowing relation between time-constructible functions and unary languages is
shown: A function ϕ : N → N is time constructible if and only if the language
Lϕ = {aϕ(m) | m ≥ 1} is accepted by a real-time cellular automaton.

Proposition 4. Let ϕ : N → N be a function and P̂ϕ be generated by some
cellular automaton in real time. Then language Lϕ = {aϕ(m) | m ≥ 1} is accepted
by a real-time cellular automaton.

Now by Theorem 3, Proposition 4, and the result from [9], we have shown that
for unary languages/patterns the three different notions of language acceptance,
time-constructibility, and pattern generation, in fact, coincide.

Theorem 5. A function ϕ : N → N is time constructible if and only if the
language Lϕ is accepted by a real-time cellular automaton if and only if the
pattern P̂ϕ can be generated by a cellular automaton in real time.
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Abstract. Semi-bent Boolean functions are interesting from a crypto-
graphic standpoint, since they possess several desirable properties such
as having a low and flat Walsh spectrum, which is useful to resist linear
cryptanalysis. In this paper, we consider the search of semi-bent functions
through a construction based on cellular automata (CA). In particular,
the construction defines a Boolean function by computing the XOR of all
output cells in the CA. Since the resulting Boolean functions have the
same algebraic degree of the CA local rule, we devise a combinatorial
algorithm to enumerate all quadratic Boolean functions. We then apply
this algorithm to exhaustively explore the space of quadratic rules of
up to 6 variables, selecting only those for which our CA-based construc-
tion always yields semi-bent functions of up to 20 variables. Finally, we
filter the obtained rules with respect to their balancedness, and remark
that the semi-bent functions generated through our construction by the
remaining rules have a constant number of linear structures.

Keywords: Cellular automata · Stream ciphers · Semi-bent
functions · Nonlinearity · Combinatorial search · Balancedness · Linear
structures

1 Introduction

Cellular Automata (CA) represent an appealing approach to the design of crypto-
graphic primitives. Indeed, starting from the 80s, CA have been extensively inves-
tigated for designing Pseudo-Random Number Generators (PRNGs) [6,14,16],
S-boxes [4,11,15] and secret sharing schemes [8,9,12], among other things.

In this work, we consider the use of CA for the construction of Boolean
functions with interesting cryptographic properties. Boolean functions are cryp-
tographic primitives that play an important role in the design of stream ciphers,
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where they may be used to combine or filter the output of linear feedback shift
registers (LFSR) to construct a keystream, and in block ciphers, where they
constitute the coordinates of S-boxes. Previous research [3,5] focused on the
investigation of CA local rules as Boolean functions, selecting those with the
best cryptographic properties to withstand particular attacks when used in a
CA-based PRNG. In this work we adopt a different viewpoint, which spawns
from the following question: given a Boolean function of m variables with good
cryptographic properties, is it possible to derive new functions from it with a
larger number of variables and analogous properties by using a CA?

More specifically, the construction that we investigate in this paper employs
an initial m-variable Boolean function as the local rule of a CA of n ≥ m cells.
Then, a new function of n variables is constructed by applying the CA global
rule and by computing the XOR of the CA cells in the output configuration.
In this way, one can generate an infinite family of Boolean functions starting
from the initial local rule by simply adding more cells to the CA. Techniques for
generating new Boolean functions from existing ones are also called secondary
(or recursive) constructions, and only few of them are known in the related lit-
erature, none of which are based on CA (see e.g. [2] for a survey). Our analysis
focuses on the particular case of semi-bent Boolean functions, which have inter-
esting cryptographic properties such as high nonlinearity. In particular, we are
interested in finding semi-bent functions which generate larger semi-bent func-
tions when plugged as local rules in our CA-based construction. As a first basic
result, we show that our construction preserves the algebraic degree of the local
rule. We thus design a combinatorial algorithm based on the Algebraic Normal
Form representation to enumerate all Boolean functions of a fixed degree. For
our experiments, we use our algorithm to enumerate all quadratic functions of
3 ≤ m ≤ 6 variables, and among them we select only those that generate semi-
bent functions of up to n = 20 variables through our CA construction. The first
remarkable finding is that for m = 4 variables our construction always fails, i.e.
no quadratic rule of 4 variables is able to generate semi-bent functions of up to
n = 20 variables. By focusing on the balanced rules of 3, 5 and 6 variables over
which the construction works, we finally remark that they all have a constant
number of non-trivial linear structures, namely 1 when the number of variables
is odd, and 3 when it is even.

The rest of this paper is organized as follows. Section 2 covers the basic defini-
tions concerning Boolean functions and their cryptographic properties. Section 3
introduces the CA model considered in this work and defines our CA-based con-
struction of Boolean functions, while Sect. 4 describes the search algorithm used
to enumerate functions of a fixed degree. Section 5 presents the results of our
exhaustive search experiments on the spaces of quadratic local rules. Finally,
Sect. 6 concludes the paper and points out some open problems concerning our
construction for future research.
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2 Background on Boolean Functions

In what follows, let F2 = {0, 1} denote the finite field of two elements and let Fn
2

be the n-dimensional vector space over F2. The support of x ∈ F
n
2 is defined as

supp(x) = {i : xi �= 0}, while the Hamming weight of x is wH(x) = |supp(x)|,
i.e. the number of 1s in x.

A Boolean function of n ∈ N variables is a mapping f : Fn
2 → F2, with its

truth table being the 2n-bit string Ωf that specifies the output value of f for each
of the vectors in F

n
2 , in lexicographic order. A function f is called balanced if its

truth table is composed of an equal number of 0s and 1s, i.e. if wH(Ωf ) = 2n−1.
Balancedness is a fundamental cryptographic property that Boolean functions
used in stream and block ciphers should satisfy to resist statistical attacks.

Besides the truth table, a second unique representation of a Boolean func-
tion f : F

n
2 → F2 commonly used in cryptography is the Algebraic Normal

Form (ANF), which is defined as the following multivariate polynomial over the
quotient ring F2[x1, · · · , xn]/(x2

1 ⊕ x1, · · · , x2
n ⊕ xn):

Pf (x) =
⊕

I∈2[n]

aI

(
∏

i∈I

xi

)
, (1)

where 2[n] is the power set of [n] = {1, · · · , n}. The algebraic degree of f is
the cardinality of the largest subset I ∈ 2[n] in its ANF such that aI �= 0. In
particular, affine functions are defined as those Boolean functions with degree
at most 1. As a cryptographic criterion, the algebraic degree should be as high
as possible. The vector of the ANF coefficients aI and the truth table of f are
related by the Möbius transform:

f(x) =
⊕

I∈2[n]:I⊆supp(x)

aI , (2)

Another representation used to characterize several cryptographic properties
of Boolean functions is the Walsh transform. Formally, the Walsh transform of
a Boolean function f : Fn

2 → F2 is defined for all a ∈ F
n
2 as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x, (3)

where a · x =
⊕n

i=1 aixi is the scalar product of the vectors a and x. A function
f is balanced if and only if the Walsh coefficient over the null vector is zero,
i.e. Wf (0) = 0. More in general, the coefficient Wf (a) measures the correlation
between f and the linear function a · x. Thus, the Walsh transform can be
used to compute the nonlinearity of a Boolean function f , which is defined as
the minimum Hamming distance of f from the set of all affine functions. In
particular, the nonlinearity of f equals

Nf = 2n−1 − 1
2

· max
a∈F

n
2

{|Wf (a)|}. (4)
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For cryptographic applications, the nonlinearity of the involved Boolean func-
tions should be as high as possible. From Eq. (4), this means that the maximum
absolute value of the Walsh transform should be as low as possible. By Parseval
relation, this can happen only when all Walsh coefficients have the same abso-
lute value 2

n
2 , yielding the covering radius bound : Nf ≤ 2n−1 − 2

n
2 −1. Functions

satisfying this bound are called bent, and they exist only when n is even. Unfor-
tunately such functions are not balanced, since Wf (0) = ±2

n
2 , and thus they

cannot be used directly in the design of stream and block ciphers. For n odd, the
quadratic bound is given by Nf ≤ 2n−1 − 2

n+1
2 −1, and it can be always achieved

by functions of algebraic degree 2.
Plateaued functions represent an interesting generalization of bent functions,

since they can also be balanced while still retaining high nonlinearity. Formally,
a Boolean function f : Fn

2 → F2 is plateaued if its Walsh transform takes only
three values, i.e. if Wf (a) ∈ {−λ, 0,+λ} for all a ∈ F

n
2 . In particular, a plateaued

function is semi-bent if λ = 2
n+1
2 for n odd and λ = 2

n+2
2 for n even. This means

that the nonlinearity of a semi-bent function equals 2n−1 − 2
n−1
2 when n is odd

and 2n−1 − 2
n
2 when n is even. Hence, semi-bent functions reach the quadratic

bound for nonlinearity when n is odd.
We conclude this section by recalling the concept of linear structures. Given

a Boolean function f : Fn
2 → F2, the derivative of f with respect to b ∈ F

n
2 is

defined as Dbf(x) = f(x) ⊕ f(x ⊕ b). Then, b is called a linear structure for f
if the derivative is a constant function, that is, if Dbf(x) = 0 for all x ∈ F

n
2

or Dbf(x) = 1 for all x ∈ F
n
2 . Remark that the null vector is a trivial linear

structure, since D0f(x) = f(x) ⊕ f(x ⊕ 0) = 0 for any Boolean function f .
Ideally, the number of linear structures in Boolean functions used for stream
and block ciphers should be as low as possible.

3 Our Construction

We start by introducing the CA model considered in this work.

Definition 1. Let f : F
m
2 → F2 be a Boolean function of m variables, and

n ≥ m. A Cellular Automaton (CA) of n cells and local rule f is a vectorial
function F : Fn

2 → F
n−m+1
2 defined for all x ∈ F

n
2 as:

F (x1, x2, · · · , xn) = (f(x1, · · · , xm), · · · , f(xn−m+1, · · · , xn)).

A CA can thus be seen as a vectorial Boolean function where each coordinate
function fi : Fm

2 → F2 corresponds to the local rule f applied to the neighborhood
(xi, · · · , xi+m−1). This rule is applied just up to the coordinate n−m+1, meaning
that the size of the input array shrinks by m − 1 cells. Definition 1 corresponds
to the No Boundary CA model studied in [7,11]. In particular, the fact that the
CA array shrinks is not an issue in our work, since we are not interested in the
long-term dynamical behavior of the CA over multiple time steps, but rather
only the one-shot application of the global rule on the input array. Since the
local rule f : Fm

2 → F2 is a Boolean function, it can be defined by a truth table
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Fig. 1. Representation of our CA-based construction for Boolean functions.

Ωf of 2m bits. In the CA literature, the truth table of a local rule is usually
represented by its Wolfram code, which amounts to the decimal value of Ωf seen
as a binary number.

We can now define our construction of Boolean functions based on the no-
boundary CA model discussed above.

Definition 2. Let F : Fn
2 → F

n−m+1
2 be a CA of length n ≥ m equipped with

the local rule f : Fm
2 → F2. Then, the Boolean function induced by f through the

CA F is the n-variable function f∗ : Fn
2 → F2 defined for all x ∈ F

n
2 as:

f∗(x) =
n−m+1⊕

i=1

f(xi, · · · , xi+m−1) = f(x1, · · · , xm) ⊕ · · · ⊕ f(xn−m+1, · · · , xn).

(5)

In other words, the construction consists in first applying the CA vectorial func-
tion F induced by the local rule f to the input vector x ∈ F

n
2 ; then, the value of

the constructed function f∗ is obtained by computing the XOR of all the output
cells of the CA. Figure 1 gives a schematic depiction of how the construction
works. Using the terminology of the Boolean functions literature [2], the con-
struction of Definition 2 may be classified as a secondary construction, since it
starts from a known function f of m variables used as a CA local rule, and gen-
erates a new function f∗ of n variables from it. In particular, our construction
gives rise to an infinite family of Boolean functions, since f∗ can be defined for
any number of variables n ≥ m by simply adding n cells to the CA.

Secondary constructions are mainly employed to generate new Boolean func-
tions from old ones with analogous cryptographic properties. For example,
Rothaus’s construction [13] starts from three bent functions of n variables, whose
sum is also bent, and produces a new bent function of n + 2 variables. We thus
need to analyze which properties are preserved by our construction. The next
lemma shows that the algebraic degree is one such property:
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Lemma 1. Let f : F
m
2 → F2 be a Boolean function of m variables. For any

n ≥ m, the function f∗ defined by the CA construction of Eq. (5) has the same
algebraic degree of f .

Proof. The result is clearly true when n = m, since in that case f ≡ f∗. We
thus only consider the case where n > m.

Let d be the algebraic degree of f . Each summand in Eq. (5) has degree d, since
it always corresponds to the local rule f applied on a different neighborhood. We
thus have to show that not all terms of degree d cancel each other out. Consider
the first summand f(x1, · · · , xm), and let Sd = {I ⊆ 2[m] : |I| = d, aI �= 0} be
the set of monomials of degree d in the ANF of f . Further, denote by Imin ∈ Sd

the minimum element of Sd with respect to the lexicographic order, that is, if
Imin = {i1, · · · , id} and J = {j1, · · · , jd} is any other set of Sd, it holds ik < jk
for some k ∈ [d] and ih = jh for all h ∈ [k − 1]. This monomial cannot be
cancelled by any other monomial in the ANF of the subsequent summands, since
by Eq. (5) their neighborhoods are shifted by at least one coordinate with respect to
that of the first summand. Indeed, if we take the l-th summand f(xl, · · · , xl+m−1)
for l ∈ {2, · · · , n − m + 1}, and we denote by I lmin its minimum monomial of
degree d in lexicographic order, we have that I lmin = (i1 + l, · · · , id + l), which
is distinct from (i1, · · · , id) = Imin. Hence, the variables in the monomial I lmin

cannot overlap completely those of Imin, which means that the two terms do not
cancel each other out. Similarly, the monomial Imin cannot be canceled by any
non-minimal monomial of degree d in the l-th summand. Hence, the monomial
corresponding to Imin appears in the ANF of (5), which proves that the algebraic
degree of f∗ is also d. 
�

4 Search Algorithm

Lemma 1 gives us a first basic insight on the nature of the functions resulting
from our construction. However, the fact that the algebraic degree of the original
function is preserved is not sufficient from the cryptographic point of view, since
as we saw in Sect. 2 there are other properties to take into account, such as
balancedness and nonlinearity. Considering that semi-bent functions offer a good
trade-off of these criteria, we turn our attention to the following question: what
are the semi-bent Boolean functions that give rise to an infinite family of semi-
bent functions when used as local rules of our CA-based construction? In other
words, we are interested in finding a subset of semi-bent Boolean functions of m
variables such that they generate semi-bent functions for any number of variables
n ≥ m when plugged in Eq. (5). In this section and in the next one, we address
this question by adopting an experimental approach. More precisely, we devise
a combinatorial search algorithm to efficiently explore the search space of local
rules, and retain only those semi-bent rules over which our construction yields
semi-bent functions up to a specified number of variables. Clearly, we cannot
prove that the rules obtained in this way indeed generate infinite families of
semi-bent functions. However, this experimental search is useful to isolate at
least a subset of candidate rules, to be investigated in future research.
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Fig. 2. Pseudocode of the Search-ANF algorithm.

A trivial algorithm to search for semi-bent functions simply consists in enu-
merating all possible truth tables of m-variables functions, which are 22m

in total.
However, this brute-force procedure is extremely inefficient: most Boolean func-
tions are not semi-bent, and searching through all of them is feasible only up to
m = 5 variables. We thus designed a combinatorial algorithm to exhaustively
enumerate only the Boolean functions having a fixed algebraic degree. In this
way, by Lemma 1 we know that these functions will all generate Boolean func-
tions of the same degree through our construction. This remark is especially
useful when considering the case of quadratic functions, i.e. functions of degree
2. As a matter of fact, quadratic functions are a subclass of plateaued func-
tions [2], which in turn include semi-bent functions, as mentioned in Sect. 2.
Hence, focusing on the intersection of quadratic and semi-bent functions is a
reasonable trade-off between obtaining an interesting enough class of functions
to investigate with respect to our construction and enumerating it in a limited
amount of time.

Our search algorithm is based on the ANF representation. Given a target
algebraic degree d, the 2m-bit vector of the ANF coefficients can be easily con-
strained to yield only Boolean functions of degree d: it suffices to set at least one
of the coefficients aI such that |I| = d to 1, while all coefficients aJ with |J | > d
must be set to 0. The other coefficients related to monomials of lower degree can
be freely chosen. Then, by using the Möbius Transform recalled in Eq. (2), one
can recover the truth table starting from its ANF coefficients, and check if the
corresponding quadratic function is semi-bent by computing its Walsh spectrum.
In this case, we can finally test if our construction generates quadratic semi-bent
functions up to a specified number of variables. The pseudocode of our search
algorithm is reported in Fig. 2.
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Table 1. Results obtained with the Search-ANF algorithm and by filtering only the
rules that produce balanced functions.

m 22
m

Sm,2 QSB Bal

3 256 56 24 8

4 65 536 1 008 0 0

5 ≈4.3 · 109 32 736 2 208 280

6 ≈1.84 · 1019 2.1 · 106 12 208 1937

5 Complexity and Search Experiments

Let us analyze the time complexity of the search algorithm described in the
previous section for the case of quadratic functions, i.e. when d = 2. The outer
loop is applied over all subsets of monomials of degree 2, except the empty set
which of course does not give a quadratic function. Since the number of quadratic
terms in the ANF of a m-variable function is

(
m
2

)
, it means that the outer loop

is executed 2(m2 )−1 times. The inner loop iterates only through all combinations
of linear terms, hence it is executed for 2(m1 ) steps. The search space Sm,2 visited
by our algorithm is thus composed of the following number of ANF vectors:

Sm,2 =
(
2(m2 ) − 1

)
· 2(m1 ) =

(
2

m(m−1)
2 − 1

)
· 2m. (6)

It follows that Sm,2 = 2O(m2), which is asymptotically better than the O(22m

)
bound given by the brute-force search approach.

We thus applied our algorithm Search-ANF on the sets of quadratic func-
tions of 3 ≤ m ≤ 6 variables, testing the CA construction up to n = 20 variables.
Table 1 reports the results of our search. In particular, for each considered m we
give the corresponding number 22m

of m-variable Boolean functions which would
be searched by a brute-force algorithm, the number Sm,2 of quadratic functions
actually explored by our algorithm and the number QSB of quadratic semi-bent
functions found over which our construction works. A first remarkable finding
that one can draw from Table 1 is that our construction does not work on any
quadratic function of 4 variables. In particular, the largest number of CA cells
for which our construction produced semi-bent functions for m = 4 variables
was n = 8. Contrarily, for all other values of m our algorithm found semi-bent
functions over which our construction worked up to the target value n = 20. For
this reason, we excluded the case m = 4 in our subsequent experiments.

To further investigate the functions produced by our construction, we con-
sidered two additional cryptographic properties: balancedness and number of
non-trivial linear structures. Among the functions found by the Search-ANF
algorithm for which our CA-based construction always produced semi-bent func-
tions of up to 20 variables, we filtered only those local rules that always produce
balanced functions, as reported in the last column of Table 1. For each of the
remaining functions, we observed that the number of linear structures of every
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function obtained with the application of our construction is constant. In par-
ticular our experiments show that, regardless of the number of variables of the
initial local rule, the number of linear structures of each constructed function is
equal to 1 when the number of cells n is odd, and 3 when n is even.

6 Conclusions and Open Problems

As we observed in Sect. 4, our experimental results do not rule out the possi-
bility that our CA-based construction fails for n > 20 over the semi-bent rules
found by our algorithm. However, we believe that at least for a subset of these
rules this construction indeed generates semi-bent functions for any n ∈ N, and
the preliminary filtering operation performed in this paper greatly reduces the
number of possible candidates, thus easing their theoretical analysis for future
research. The first interesting open question to address is understanding why
our construction always failed only for m = 4 variables, and to assess whether
this is the case also for other numbers of variables not considered in this work.
Then, the next step would be to investigate the rules filtered by our combinato-
rial search experiments, and try to formally characterize the family of quadratic
rules for which our CA-based construction always yields semi-bent functions. A
possible idea towards this direction would be to study more in depth the regu-
larity of the number of linear structures of these functions, and assess whether
this could be a necessary or sufficient condition for our construction to work.

From an applicative point of view, we remark that the 8 balanced rules
of m = 3 variables found in our experiments include the elementary rules 30
and 210, which have been extensively adopted for designing CA-based crypto-
graphic primitives [1,16]. It could thus be interesting to investigate whether our
construction could enhance these primitives, such as the CA pseudorandom gen-
erator in [16], which samples only one cell of a CA with rule 30 to produce a
pseudorandom keystream. Since rule 30 seems to produce semi-bent functions
for any n ∈ N, one idea could be to modify the pseudorandom generator by
taking the value of all cells in the CA instead of only the central one, and then
compute their XOR as the next pseudorandom bit.

More in general, a very interesting research direction would be to investigate
our construction with respect to semi-bent functions of higher algebraic degree.
Indeed, even though quadratic functions can reach high levels of nonlinearity,
their degree is too low and this can be exploited in algebraic attacks [2]. In
this regard, it would be interesting to apply our algorithm to search for cubic
semi-bent functions over which our construction works.

Finally, another avenue for further research not related to cryptography is
to investigate whether our construction can give any insight about the periods
of spatially periodic preimages in surjective CA, which have been characterized
in [10] only for the case of linear bipermutive rules. In this case, our construction
could possibly give further information on the least periods of preimages of
quadratic bipermutive CA.
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Appendix: Source Code and Experimental Data

The source code of the search algorithm and the experimental data are available
at https://github.com/rymoah/ca-boolfun-construction.
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Abstract. In this paper, we present a new Cellular Automata (CA) based authen-
ticated encryption scheme, named as EnCash. Both for encryption and authenti-
cation, it proposes a CA-based cost-effective design structure. Encryption follows
the substitution-permutation-network (SPN) where, at the substitution layer, ran-
domized mapping is introduced and cellular automata, both linear and non-linear
are used for the permutation. We perform the cryptanalysis of the substitution
table and also the Strict Avalanche Criterion test for the encryption function. The
results assure the security of EnCash.

Keywords: Authenticated encryption · Cellular automata ·
Substitution–permutation network

1 Introduction

Over the network, maybe an insecure channel, two parties always want to commu-
nicate securely for the confidential messages. So they need confidentiality or privacy
and authenticity, together with integrity. Traditionally, privacy and authenticity have
been formalized in separate notions and studied separately. However, they can be used
together and produce the two fundamental goals with guaranteed security; but, the
implementation of both these algorithms individually means additional implementation
effort for each algorithm, as well as becomes costly for both software and hardware.
This situation brings researchers to the classical trade-off scenario where both these
goals furnish simultaneously in a single communication between the sender and the
receiver and dream up Authenticated Encryption (AE). Now a days, AE is widely used
in Marine Navigation, Vehicle tracking, Mapping and Geodetic data capture, etc. I.e.,
whenever need to provide restricted service, i.e., an encrypted service provided only
to the authorised users, authenticated encryption is needed. In our current work, the
main aim is to design a new AE scheme by exploiting the cellular automata, which can
provide a similar level of security concerning most of the other existing AE schemes.

Since the introduction of the AE scheme by Bellare and Rogaway [3] in 2000, a
lot of research has been done to date. Although recently, the CAESAR-competition
(Competition for Authenticated Encryption: Security, Applicability, and Robustness)
has completed and has been presented many fruitful products [18,19] which reflect a
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significant role in the world of authenticated encryption, until now among all the AE
schemes, AES-GCM [10] is considered to be the most efficient NIST standard high
throughput AE mode [4,12]. Parallelly, there is a great demand for a low-cost highspeed
scheme for the generation of Message Authentication Code (MAC). Therefore, there
exists another wave of research based on Cellular Automata (CA) due to its simple, ele-
gant, and faster design approach [13]. Until now, there are so many research works have
been done for CA-based AE schemes [1,11]. Here, in our proposed scheme EnCash,
the center of concentration is to design a fully CA-based design approach instead of any
complex architecture. To the best of our knowledge, it is the first time where encryp-
tion function has been constructed by only exploiting the randomness property of the
CA [9].

In this paper, we propose a CA-based authenticated encryption scheme, called
EnCash. For the encryption portion, it follows the substitution-permutation network,
implemented by using only the linear and non-linear cellular automata and a random
mapping. Conventional encryption scheme uses a fixed substitution box, whereas, our
scheme is flexible in choosing the random mapping of substitution table. The authen-
tication tag has also been generated by the CA-based construction. We perform the
cryptanalysis of the substitution table and also the strict avalanche criterion test for the
encryption function.

Our Contributions:

– A new authenticated encryption scheme EnCash, based on Cellular Automata, is
proposed, which follows the construction of substitution-permutation-network.

– In encryption, the substitution layer uses a randomized mapping function.
– For the authentication tag generation, it uses a simple and elegant construction made

by CA, and this design has successfully passed the NIST test.
– EnCash provides good security against the Strict Avalanche Criterion (SAC) Test.
– Finally, the Linear and Differential Cryptanalysis of the substitution table have done.

The rest of the paper is organized as follows. In Sect. 2, the overall design of
EnCash is introduced and described in detail. Section 3 claims that EnCash provides
high-security bounds concerning the Strict Avalanche Criterion Test and can resist the
Linear and Differential attacks. Finally, we conclude our work in Sect. 4.

2 EnCash

The underlying primitive of our proposed work is Cellular Automata (CA). Before
going to the design of EnCash, the fundamentals of CA are provided. CA are a discrete
lattice of cells arranged in a specific geometry and build with memory element (i.e.,
flip-flop) with combinational logic function [13]. The cells are updated concurrently at
each clock pulse by using the rule or transition function, where the decimal equivalent
of the truth table of the function is defined as a rule. To update the value of a cell, they
take the present values of the cell itself and its neighborhood cells and perform some
logical operations. For one-dimensional three-neighborhood cellular automata, the next
state of the ith cell is:

St+1
i = f (Sti−1,S

t
i ,S

t
i+1) (1)
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where Sti is the state of the ith cell at time t. In the construction of EnCash, maximum
length hybrid cellular automata are used with rule 90 (St+1

i = Sti−1 ⊕ Sti+1) and rule
150 (St+1

i = Sti−1 ⊕ Sti ⊕ Sti+1). In maximum length CA, all the states except one (all
0’s state) lie in one cycle. Whereas, for hybrid CA, the cells evolve with rules, both
linear and non-linear generating Linear Hybrid CA (LHCA) and Non-Linear Hybrid
CA (NHCA), respectively. For linear CA, only linear functions such as XOR are used,
and Non-linear CA contains linear rules along with some non-linear functions such as
AND/OR. The linear CA can be turned into non-linear one by injecting the non-linear
function at one/more cells [7].

The architecture of the proposed scheme is described from here. Our scheme uses
two different keys for encryption and authentication purposes. The hash key is gener-
ated from the encryption key/private key by using NHCA. For ciphertext generation
and also for the authentication, a CA-based elegant and straightforward construction
has introduced. Consider the following notations, those are used throughout this paper.

len(X ): Denotes the length of the vector X
P : Plaintext, which can be represented block-wise as p1||p2|| . . . ||pn−1||p∗

n :
pi ∈ {0,1}128 and |pi| = 128, for i= 1,2,3, . . . ,n−1 and 0 < |p∗

n| ≤ 128
AAD: Additional Authenticated Data, which can be represented block-wise as

A1||A2|| . . . ||Am−1||A∗
m and |Ai| = 128, for i = 1,2,3, . . . ,m− 1, and 0 <

|A∗
m| ≤ 128

C : Ciphertext, which can be represented block-wise as c1||c2|| . . . ||cn−1||c∗
n :

ci ∈ {0,1}128 and len(ci) = len(pi) for i = 1,2,3, . . . ,n− 1 and also for
len(c∗

n) = len(p∗
n)

T : Authentication Tag, and len(T ) = 128
Ke: 128-bit encryption key
Kh: 128-bit hash key

LHCA(X ): State of the maximum length 128-bit linear CA after evolving ‘63’ number
of clock pulses with the initial value X .

NHCA(X ): State of the maximum length 128-bit non-linear CA after evolving ‘63’
number of clock pulses with the initial value X .

X ⊕ Y : The addition of two bit strings X and Y
X ‖ Y : The concatenation of two bit strings X and Y

FE : The sub-function for the encryption operation
FA: The sub-function for the authentication operation

⊕
AAD

⊕
p1 c1

⊕
p2 c2

⊕ ⊕ TKh

Ke

Initialization Phase
AAD

Manupulation
Plaintext

Manupulation

len(P)

Final Auth Tag
Generation

Kh

⊕
AAD

⊕ ⊕

FE

FA

FE

FA

FE

FA FA FA

Fig. 1. Design architecture of the encryption function of EnCash.
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2.1 Design of EnCash

Before describing the detail design of the proposed AE scheme, the outline of the block
diagram of the encryption function is illustrated in Fig. 1. For simplicity, only one block
of Additional Authenticated Data (AAD) and two blocks of plaintext message (p1 and
p2) are shown here. The private key Ke produces the hash key Kh by using the sub-
function of authentication operation FA. To generate the final authentication tag T , the
length of the plaintext plays an important role in this design. The ciphertext blocks c1

and c2 are produced from the message blocks p1 and p2 respectively through the sub-
function for the encryption operation FE . The mode of operation of our proposed design
is described as follows.

Initialization Phase: In this phase of work, the private key is fed into the subfunctions
FE and FA. In AE, the use of the same key for both authentication and encryption
is error-prone. Specifically, the same block cipher key for both encrypt the data and
to generate the hash key leads to produce wider classes of weak-keys [15]. To avoid
this issue, EnCash uses two different keys, one is for encryption, and another is for
authentication. The authentication key Kh is computed as follows:

Ke
R←− {0,1}128

Kh = FA(KE)

where FA is the sub-function to generate the authentication tag (the detail description
of FA is described later).

Additional Authentication Data Manupulation: During encryption and decryption
processes, the bit strings P , C and AAD are divided into 128-bit blocks. Pretend the
pair 〈n,s〉| ∀n,s ∈ Z

+ : len(P ) = (n− 1)× 128+ s and 0 < s ≤ 128. The sequence of
these plaintext blocks are p1, p2, . . . , pn−1, p∗

n. The corresponding sequence of cipher-
text blocks are c1,c2, . . . ,cn−1,c∗

n, where len(pi) = len(ci)| ∀i ∈ Zn+1. Similarly, The
AAD is denoted as A1||A2|| . . . ||Am−1||A∗

m, and pretend the pair 〈m, t〉| ∀m, t ∈ Z
+ :

len(AAD) = (m− 1)× 128+ t and 0 < t ≤ 128. Now the AAD is manupulated by
using the following procedures:

FEi = FE(FEi−1 ⊕Ai−1), for i= 1,2,3, ...,m−1
FEi = FE(FEi−1 ⊕A∗

m||10127−t), for i= m, t = len(A∗
m)

where FE denotes the sub-function of encryption, that will be described later.

Plaintext Manupulation: The ciphertext generation phase is described as follows:

ci ← pi ⊕FEi for i= 1,2,3, . . . ,n−1
c∗
n ← p∗

n ⊕MSBs(FEn), MSBs is most significant s bit

Here, FEi and FEn is the ith and nth sub-function of encryption respectively.
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Authentication Tag Generation: In the authentication phase, the tag is generated by
the following method:

Ke
R←− {0,1}128, where Ke is the shared private key

Kh = FA(KE), where Kh denotes the derived hash key
FAi ← FA(FAi−1 ⊕ ci), for i= 2,3, . . . ,n−1
FAi ← FA(FAi−1 ⊕ c∗

n||10127−s), for i= n,s= len(p∗
n)

T ←Kh ⊕FA(FAn ⊕ len(P ))

Here FA denotes the sub-function of the Authentication phase. It will be described in
the next section.

2.2 The Encryption and Authentication Function

The main components of the EnCash are encryption and authentication. Both are
designed based on a simple cellular automata-based structure. Those are described here.

Encryption Function: The encryption function follows the iterative structure of the
substitution-permutation-network. It avoids the AES Encryption scheme for the encryp-
tion purpose to make the function cost-efficient. The ith iteration of the Encryption func-
tion FE is depicted in Fig. 2. The previous output is fed into the NHCA for getting 63
number of pulses and then goes through a padding scheme. Here, ‘10’ is padded with
the output of the NHCA to make the length of the output as 130-bit. Thenceforth, this
will become the input of the substitution layer. This input of the substitution layer is
depicted in Fig. 3. Here, 26 parallel applications of the 5-bit substitution/mapping M(x)
are performed on the 130-bit state. Here, we have introduced a randomized mapping
concept instead of a fixed mapping, which is described in the next subsection. As illus-
trated in Fig. 3, the mapping is applied to each bit-slice of the five registers x0, x1, x2, x3,
x4. Here, x0 is the MSB (Most Significant Bit), and x4 is the LSB (Least Significant Bit)
of the mapping. Hereafter, the output of the mapping (the last two bits are truncated
from the output to make it 128-bit) is fed into the LHCA for the diffusion. After 63
number of pulses, the output has been totally diffused.

PaddingNHCA

63

Output
Substitution

Layer LHCA
Next Stage128 128 130 128 128Previous

63

Input

Fig. 2. Design architecture of Encryption Function.

Authentication Function: Very recently, a double-block-length hash function, named
NCASH [2] has been proposed that has produced a 2n length tag from an n-bit key. But,
in the case of the authenticated encryption, it is not cost-effective with respect to the
software, as well as hardware also. This limitation is removed in the proposed scheme.
The single iteration of the authentication function is depicted in Fig. 4. To generate the
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x0

x1

x2

x3

x4

1st 2nd 26thInput bit store pattern

27th

53rd

79th

104th

129th 130th

Fig. 3. The substitution layer of EnCash applies a 5-bit mapping to the state.

authentication tag, in each iteration the states are traversed through a linear and non-
linear CA-chain. This construction has successfully passed the NIST Statistical Test
Suite for Random and Pseudorandom Number Generators (NIST SP 800-22) [14]. For
this test, we have generated one crore of hashtags by using EnCash and apply the test
to that data-set. This test signifies the construction of this CA-chain provides a high
diffusion and excellent random output.

63

Output LHCA
Next Stage128 128 128Previous

63

InputNHCA

Fig. 4. Design architecture of a single iteration of FA.

2.3 The Randomized Mapping

In this newly proposed Authenticated Encryption scheme, EnCash, we have introduced
a new concept of the randomized mapping function. To the best of our knowledge, until
now, most of the construction uses a fixed substitution stored in memory. But, in our
case, our scheme is flexible in choosing the random mapping of substitution table. The
evolution of non-linear cellular automata is used to produce these sets of mappings. The
creation procedure of these mappings is stated here.

Initialisation Vector Selection: As discussed earlier, here, a 5-bit substitution/mapping
M(x) is used for the substitution layer. Therefore, a 5-bit NHCA has been used to gen-
erate the values of the mapping. Mathematically:

IVMap
R←− {0,1}5

IVMap ← IVMap ⊕00001

The initialization vector (IVMap) of the NHCA is a publicly known nonce value and
should be decided by the sender and receiver before the communication. After that,
‘00001’ is XORed with IVMap to get the new IVMap.

CA-Based Mapping: The states of the mapping are created by evolving the NHCA
with the IVMap. Here the rule vector of the CA is used such that it provides the max-
imum length cycle. The example of a mapping is given in Table 1. Here IVMap =
‘10110’, and the updated IVMap = ‘10111’, after XORing ‘00001’. The rule vector
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Table 1. The 5-bit mapping of EnCash.

x 0 1 2 3 4 5 6 7

M(x) 17 19 08 1C 0A 1F 01 02

x 8 9 A B C D E F

M(x) 07 0B 1D 06 09 1E 0D 10

x 10 11 12 13 14 15 16 17

M(x) 18 04 0E 11 14 16 15 00

x 18 19 1A 1B 1C 1D 1E 1F

M(x) 1A 03 05 0C 12 1B 0F 13

Table 2. Another mapping of EnCash.

x 0 1 2 3 4 5 6 7

M(x) 19 08 1C 0A 1F 01 02 07

x 8 9 A B C D E F

M(x) 0B 1D 06 09 1E 0D 10 18

x 10 11 12 13 14 15 16 17

M(x) 04 0E 11 14 16 15 1A 03

x 18 19 1A 1B 1C 1D 1E 1F

M(x) 05 00 0C 12 1B 0F 13 17

is <150,150,150,150,90>, and the values are written in hexadecimal format. Thence-
forth, another example of the mapping is depicted in Table 2. Here, the updated IVMap

= ‘11001’. In this way, several mappings can be designed. Moreover, for a fixed CA
rule vector, 31 number of mappings can be generated. The most exciting fact is that,
if we consider the different CA rule vector for this CA, and if there are ‘r’ number of
rule vectors that can generate the maximum length CA, then the number of possible
mappings become r× 31.

3 Security Analysis

The choice of operations and parameters in the design of EnCash have a strong theo-
retical background. As cellular automata is a good random number generator [9], the
maximum-length linear hybrid CA is used here. They make the correlation between
the two subsequent states as complex and intricate as possible. Parallelly, for NHCA,
it is difficult to find the previous state from the current state. So, we use this NHCA
to prevent for finding inverse from any particular state. Therefore, both the NHCA and
LHCA are used in encryption and authentication functions. The security analysis of
the proposed CA-based authenticated encryption scheme, EnCash, is performed based
on the standard model of concrete security. The linear and differential cryptanalysis is
considered here. Moreover, the Strict Avalanche Criterion test has also been performed
for this AE scheme.

3.1 Strict Avalanche Criterion Test

The Strict Avalanche Criterion (SAC) was formerly presented by Forré [6], as a rati-
ocination of the avalanche effect by Webster et al. [17]. In the field of cryptography,
these concepts somehow already exist [5], but not defined in concrete terms. The intu-
itive idea behind this concept is aimed at analyzing the diffusion characteristics of the
underlying cipher, i.e., minimal changes in the input cause a tremendous difference in
the output, thus an avalanche of changes. Mathematically it can be defined as:

∀a,b|H(a,b) = 1 : Mean(H(Av(a),Av(b))) = n/2 (2)
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In Eq. 2, the Hamming distance, H for two random input vectors (a, b) is 1. Hamming
distance for two vectors is defined as the number of positions where the vectors differ.
Therefore, here one of them is a random input vector, and another is generated by ran-
domly flipping one of its bits. So, if Av is the avalanche effect, the Mean of the hamming
distance between the outputs of those two vectors should be, on average, n/2, where n
is the length of the vectors. It denotes, a minimum input change (only one single bit is
considered in Eq. 2) produces a maximum output change (half of the bits) on average.
In fact, strict avalanche criterion or SAC is even more demanding property than the
avalanche criterion. Mathematically it is described as:

∀a,b|H(a,b) = 1 : Mean(H(Av(a),Av(b))) ≈ B(1/2,n) (3)

In Eq. 3, it is an interesting fact that this implies the avalanche effect, as the average of
a binomial distribution with parameters 1/2 and n is n/2.

To perform the SAC test for EnCash, we have considered a randomly chosen 128-
bit plaintext block (A61B51BD3621EF42E0CC74001B4BF3AA)16, and three types of
private keys; dense, sparse and random key. For each of the key types, we consider hun-
dred number of different keys. Initially we have generated the ciphertext with respect to
the plaintext p and the corresponding encryption key KE , i.e., c ← p⊕FE . Therefore,
generate K ′

E : ∀KE ,K ′
E |H(KE ,K ′

E) = 1 and calculate c
′

with respect to the correspond-
ing K ′

E . Thenceforth, compute the Mean(H(Av(c),Av(c
′
))),∀K ′

E . Finally compute the
Coefficient of Variance, that is a standardized measure of dispersion of a probability dis-
tribution or frequency distribution. It measures the amount of deviation of data points
about the mean, and it is computed as follows:

Coe f f icient o f Variance=
Standard Deviation

Mean
%

A summary of the results of the SAC test obtained for EnCash is given in Table 3.
In each case of the measures, the average values for the hundred keys of each key types
are mentioned here. The results show the encryption function posses good confusion.

Table 3. Experimental result of SAC test for EnCash.

Measure Random Dense Sparse

Expected mean 64 64 64

Observed mean 64.3203 64.2109 63.1016

Std. deviation 5.5353 5.5066 5.2289

Variance 30.6395 30.3226 27.3412

Coeff. of variance 8.6058 8.5758 8.2865

3.2 Linear Cryptanalysis

Linear cryptanalysis posits a linear relationship between the elements of plaintext, the
ciphertext, and the key. It, therefore, tries to find a linear approximation to the action



EnCash: an Authenticated Encryption scheme 75

of a cipher [8,16]. Consider Table 1, which is defined by a permutation πM : {0,1}5 →
{0,1}5. The possible binary values of the input-end (x) and output-end (M(x)) are
denoted by the ten random variables X1,X2, ...,X5 and Y1,Y2, ...,Y5 respectively. Con-
sider the following equation:

Ψ =

(
5⊕

i=1

aiXi

)
⊕

(
5⊕

i=1

biYi

)
(4)

where the each binary vectors (a1,a2,a3,a4,a5) and (b1,b2,b3,b4,b5) are the hexadec-
imal digit, or the input sum and the out put sum respectively, and ai,bi ∈ {0,1},∀i =
1,2, ...,5. Now, for a random variable having hexadecimal input sum a and output sum
b, let ϒL(a,b) denote the number of binary ten-tuples (x1,x2,x3,x4,x5,y1,y2,y3,y4,y5)
such that (y1,y2,y3,y4,y5) = π(x1,x2,x3,x4,x5) and

ψL =

(
5⊕

i=1

aixi

)
⊕

(
5⊕

i=1

biyi

)
= 0 (5)

We are interested in linear relations for the mapping, i.e., relations of the Eq. 4. Now
assume, there are 25 = 32 different equally likely values for x1x2x3x4x5. Hence, the
probability that such a linear relation holds can be determined by counting the number
of input-output pairs satisfy the Eq. 5, divided by 32. Moreover, for independent X
and Y , a linear relation holds the probability 1/2. We describe the probability bias for
all possible relations in the linear profile at Table 4. It’s uppermost row and leftmost
column describe the possible input sums and output sums respectively. The each cell
of the table contains the number of matches between the sum of input bits and the
sum of output bits minus half the number of possible input values (i.e., for a 5-bit
mapping, 1

2 × 25 = 16). Thus, we compute ϒL(a,b) = ψL − 16. The linear distribution
table of the mapping shown in Table 1 is given in Table 4, which consists of all the
values of ϒL. Therefore, the probability bias for any relation can be found by searching
the corresponding number in the linear profile and divide that by 32.

3.3 Differential Cryptanalysis

Differential cryptanalysis aims to map bitwise differences in inputs to differences in
the outputs in order to reverse the action of the encryption algorithm [8,16]. Again,
consider Table 1, which is defined by a permutation πM : {0,1}5 → {0,1}5 with possible
binary values of the input-end (x) and output-end (M(x)). Consider an ordered pair of
bitstrings of length 5, say (x,x

′
). Therefore, the input XOR and the output XOR of

the mapping is x⊕ x
′

and πM(x)⊕ πM(x
′
) respectively. Now, we will define the set

Δ(x′
) : x

′ ∈ {0,1}5 to consist of all the ordered pairs (x,x
′
) having input XOR equal to

x
′
. Mathematically it is written as:

Δ(x
′
) = {(x,x⊕ x

′
) : x,x

′ ∈ {0,1}5} (6)

Moreover, it is obvious that Δ(x′
) contains 25 pairs that satisfy the condition explained

in Eq. 6. Thus, for each pair in Δ(x′
), we can compute output XOR of the mapping
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Table 4. The linear profile of the EnCash mapping of Table 1.

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 2 −4 2 0 6 0 −6 0 2 −4 −2 4 −2 4 2 −2 0 2 0 2 0 2 −4 −2 −4 2 −4 −2 0 −2 −4

2 0 −2 2 0 0 6 −2 4 4 −2 2 4 4 −2 −2 0 4 6 −2 0 0 2 −2 0 0 −2 −2 4 −4 2 −2 −4

3 0 0 −2 2 4 0 2 2 −4 4 −2 2 −4 0 −2 −2 −2 2 −4 −4 2 2 0 −4 2 −2 −4 −4 −6 2 4 0

4 0 2 −2 4 −2 −4 −4 −2 2 −4 −4 2 0 −2 2 −4 0 2 −6 0 −2 −4 0 2 2 4 0 −2 0 6 −2 0

5 0 −4 2 −2 −2 2 −4 0 −2 −2 −4 4 0 8 2 2 −2 2 4 0 0 4 2 −2 4 4 −2 −2 2 2 0 0

6 0 −4 −4 −4 2 −6 2 −2 2 2 −2 2 4 0 −4 −4 0 0 0 4 −2 2 2 −6 2 −2 2 2 0 0 −4 0

7 0 −2 0 −2 −2 4 −2 4 6 4 −2 −4 0 −2 0 −2 2 −4 −2 0 0 2 4 −2 0 2 4 −2 2 4 6 0

8 0 −4 −2 2 2 2 −8 0 −6 2 0 0 0 −4 −2 2 0 −4 2 −2 −2 −2 0 0 2 2 4 4 −4 0 −2 2

9 0 2 −2 −4 −2 0 0 −2 −2 0 4 2 4 −2 −2 4 −6 4 −4 2 0 2 6 4 0 2 2 0 −2 0 4 2

A 0 −2 0 −2 −6 −4 −2 0 2 0 −2 4 0 −6 0 2 0 2 4 −2 2 0 −6 0 2 −4 2 −4 0 −2 4 2

B 0 −4 0 0 2 −2 2 2 −2 −2 2 −2 0 0 4 0 −2 6 2 −2 4 −4 0 −4 −4 0 4 4 2 6 2 2

C 0 2 4 2 4 −2 0 6 0 −2 0 2 0 −2 0 2 −4 −2 0 6 4 −2 0 −2 4 2 4 −2 0 −2 0 −6

D 0 0 4 −4 0 −4 0 4 0 0 0 0 0 −4 4 0 −2 −2 2 −6 −2 2 6 2 −2 −2 −2 −2 −2 2 −6 −2

E 0 0 2 6 0 0 −2 2 4 4 −2 2 0 0 −2 2 0 4 2 2 0 −4 6 −2 −4 0 −2 −2 0 −4 −2 6

F 0 −2 2 0 0 2 2 4 −4 −2 −2 0 4 2 −2 −4 −2 0 0 2 −6 0 −4 2 −6 0 4 −6 −2 0 0 2

10 0 2 −2 −4 −2 0 −4 2 2 0 0 2 0 6 −2 0 −2 −4 −4 −2 8 −2 −2 0 −4 −2 2 0 −2 0 −4 2

11 0 4 2 −2 2 2 0 0 2 6 −4 0 0 0 6 −2 −4 4 −2 −2 −2 2 −4 0 2 2 4 4 0 −4 −2 2

12 0 0 0 −4 2 2 −2 2 −2 −2 2 −2 0 0 0 4 2 2 −6 −2 −4 −4 0 −4 4 −4 0 −4 6 −2 −2 2

13 0 2 4 −2 2 0 −2 −4 −2 4 6 4 4 −2 4 −2 4 −2 0 2 2 0 −2 −4 −2 4 −2 −4 0 2 0 2

14 0 −4 0 4 0 0 0 0 −4 4 0 0 4 0 0 −4 2 2 −2 −2 6 2 2 6 2 −2 2 −2 6 −2 −2 −2

15 0 −2 4 −2 −4 2 4 −2 0 −2 0 −6 2 −2 −4 −2 0 2 0 −2 4 −2 0 −2 4 6 0 −2 −4 −2 −4 2

16 0 6 −2 −4 0 2 2 4 −4 2 −6 0 4 −2 −2 0 2 0 4 2 2 −4 0 2 2 0 −4 2 2 4 0 2

17 0 0 2 −2 0 0 −6 −2 0 4 2 −6 −4 0 −2 −2 −4 4 2 6 0 0 −2 2 0 −4 −2 −2 0 4 −2 −2

18 0 −2 4 −2 4 −2 0 −2 0 −2 −4 −2 0 2 4 2 6 0 −2 4 2 0 2 4 2 −4 2 0 −6 0 2 4

19 0 4 4 0 −4 0 −4 0 −4 −4 0 0 0 0 0 −8 0 0 0 0 0 0 4 −4 0 −4 0 4 0 −4 4 0

1A 0 0 −2 2 0 4 2 2 0 −4 2 2 −4 −4 2 −2 −2 −2 0 4 2 6 0 0 2 −2 0 0 2 2 −4 8

1B 0 −2 −2 −4 −4 2 2 0 −4 2 −2 4 −8 −2 2 0 4 2 −2 4 0 −2 2 0 −4 2 2 0 0 −2 −2 −4

1C 0 −4 −2 2 −6 −2 0 4 −2 2 0 −4 4 0 6 2 −2 −2 −4 4 0 0 −2 −2 0 0 −6 2 −2 −2 0 0

1D 0 2 6 4 −6 0 4 −2 −2 4 0 2 0 2 −2 4 0 −2 −2 0 −2 0 0 −2 2 −4 4 2 0 6 −2 0

1E 0 −6 4 −2 2 4 2 −4 2 0 −2 4 0 −2 0 −2 −6 −4 −2 0 0 −6 0 2 0 −2 −4 2 2 0 2 0

1F 0 0 −4 0 −2 2 2 2 2 2 6 2 0 4 4 −4 0 0 4 0 −2 −6 2 2 6 −2 2 −2 −4 0 0 0

πM . Clearly, there are 25 output XORs, which are distributed among 25 possible values.
Whereas, if the output distribution seems non-uniform, it will become the basis for a
successful differential attack. This distribution can be mathematically written as:

ϒD(x
′
,y

′
) = |{(x,x′

) ∈ Δ(x
′
) : πM(x)⊕πM(x

′
) = y

′ }| (7)

All the values of ϒD(x
′
,y

′
) for the mapping shown in Table 1 are stated in Table 5. It’s

uppermost row and leftmost column describe the possible input difference and out-
put difference respectively. The each cell of the table contains the number of matches
between the input difference and output difference, i.e., the count of inputs for which
the corresponding differential characteristic holds. From Table 5, it is visible that it has
a uniform output distribution, which can resist differential attacks.



EnCash: an Authenticated Encryption scheme 77

Table 5. The differential profile of the EnCash mapping of Table 1.

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 2 2 4 2 0 0 0 0 0 2 0 0 0 4 2 0 4 0 2 2 0 0 2 0 2 0 2

2 0 0 2 0 2 0 0 0 0 0 0 2 0 4 2 0 2 0 0 0 2 2 2 4 0 0 2 0 0 0 2 4

3 0 0 2 0 0 4 0 0 0 0 2 0 2 4 0 2 4 2 2 2 0 0 0 0 2 2 2 0 0 0 0 0

4 0 2 2 2 0 0 2 0 0 2 2 0 2 2 2 2 0 2 2 0 0 2 0 2 0 0 0 2 0 0 0 2

5 0 2 2 0 2 0 0 0 2 0 2 0 0 2 4 0 2 2 0 2 0 0 2 2 2 2 2 0 0 0 0 0

6 0 2 0 2 2 2 0 0 2 0 2 2 0 2 0 0 0 0 0 0 0 2 2 0 2 0 0 4 2 4 0 0

7 0 0 0 6 0 0 2 0 0 0 0 0 2 2 0 4 0 2 2 0 2 2 0 0 2 0 0 0 0 4 2 0

8 0 2 0 0 0 0 2 0 2 4 0 4 2 0 0 0 2 0 0 0 0 2 2 2 2 2 2 0 2 0 0 0

9 0 0 0 0 2 4 0 2 2 0 0 0 2 2 2 4 2 2 0 0 0 0 0 0 0 0 0 2 0 0 6 0

A 0 0 4 0 0 2 0 2 0 2 2 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 4 4 2 4 2

B 0 0 0 0 2 2 0 0 0 4 0 2 0 0 2 0 2 2 0 2 0 0 2 0 2 0 4 2 2 0 0 2

C 0 2 0 0 2 2 4 2 2 0 2 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 0 0 2 0 0 2

D 0 2 0 4 0 0 2 0 0 0 0 0 0 2 0 2 2 2 2 2 2 0 0 2 2 0 0 0 2 2 0 2

E 0 0 0 0 0 0 0 2 2 0 2 4 2 0 0 0 2 2 4 2 0 0 0 0 2 0 0 0 0 6 2 0

F 0 0 0 2 0 2 2 0 2 0 2 2 0 4 0 0 0 0 0 0 2 4 0 0 2 2 4 0 2 0 0 0

10 0 0 2 2 0 2 0 0 4 0 2 0 2 0 0 2 0 0 2 0 2 0 2 4 2 0 0 2 0 0 2 0

11 0 0 0 0 2 0 2 2 0 4 0 0 0 0 0 2 4 4 0 2 0 0 0 0 2 2 2 0 0 2 0 2

12 0 2 2 2 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 2 2 2 2 0 0 0 2 0 4 0 0 6

13 0 0 0 0 2 0 2 2 2 0 4 2 2 4 2 2 0 2 0 0 0 0 0 0 0 0 2 0 0 4 0 0

14 0 2 2 0 0 0 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 4 0 4 2 4 0 2 0 0 4 0

15 0 2 2 0 2 0 2 2 0 0 2 0 0 0 4 0 4 0 4 2 0 2 2 0 0 0 0 0 2 0 0 0

16 0 0 2 2 2 0 2 2 2 2 2 0 2 0 2 0 0 0 0 4 0 0 0 2 0 2 0 0 0 2 2 0

17 0 0 2 0 2 4 2 0 0 0 2 2 2 0 2 2 0 2 0 0 4 0 0 0 0 0 0 4 0 2 0 0

18 0 4 2 4 2 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 0 4 2 0 2 0 0 0 2 2 2

19 0 0 2 0 2 2 2 0 0 2 2 0 0 0 0 0 0 2 0 2 2 0 6 0 4 2 0 0 0 0 0 2

1A 0 0 0 0 0 0 2 2 2 4 0 2 2 0 0 2 0 0 2 4 4 2 0 0 0 2 0 0 0 0 0 2

1B 0 4 0 0 2 0 0 2 0 0 0 2 2 2 0 2 0 0 2 4 2 0 0 0 0 0 4 4 0 0 0 0

1C 0 2 2 0 2 0 0 2 2 0 0 2 2 0 2 0 2 2 0 0 2 0 0 2 2 2 0 0 2 0 2 0

1D 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0 2 0 2 2 0 2 0 4 2 0 4 2 2 2 0 0 2

1E 0 2 0 2 0 2 0 0 0 2 2 2 0 0 0 0 2 0 2 0 0 2 0 0 0 2 2 2 4 0 4 0

1F 0 2 2 4 2 0 0 0 2 2 0 2 2 2 2 2 0 0 2 0 0 0 0 0 0 2 2 0 2 0 0 0

4 Conclusion

This paper presents a new cellular automata-based authenticated encryption scheme,
named as EnCash. To generate the ciphertext, it proposes an encryption function, which
follows the strategy of substitution-permutation-network (SPN) and designed by linear
and non-linear CA. Moreover, a randomized mapping has been introduced at the sub-
stitution layer. Our encryption function achieves good security with respect to the SAC
test. A CA-based construction also produces the authentication tag, which has success-
fully passed the NIST Statistical Test Suite for Random and Pseudorandom Number
Generators (NIST SP 800-22) [14]. Moreover, the linear and differential cryptanalysis
of this scheme have also been done. Finally, EnCash can boost researchers to concen-
trate on the cellular automata-based design approaches for enhancing simple, faster, and
cost-effective design aspects.
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Abstract. In this paper we explore the possibility of using high-order
cellular automata to perform edge detection. Experiments are conducted
to show how to find optimal values for the model. Using these optimal
values, the model is compared to common methods for edge detection.
The obtained results are encouraging since they are very close to the
best performing commonly used methods.

Keywords: Cellular automata · Edge detection · Image processing

1 Introduction

Cellular automata (CA) are a well-known formal model used in a host of appli-
cations both at a scientific and at an industrial level. This is essentially due to
the main characteristics of the model: uniformity, locality and massive paral-
lelism which allow to conceive simple and effective applications. In particular,
locality and uniformity are well-adapted in some fundamental domains of image
processing, namely, edge detection and boundary detection [10]. Edge detection
by cellular automata received a great attention over the last half century pro-
ducing hundreds of papers and methods applied in highly specialized fields such
as brain tumor detection [5] or cell detection and identification in images [6].
For more details and for an historical perspective of edge detection by cellular
automata we refer the reader to the excellent survey of Rosin and Sun [11].

A cellular automaton is an arrangement of finite state automata placed on a
regular grid. All automata are identical and can take a state s chosen from a finite
set S called the set of states. A local rule h : SN → S updated the state of the
current automaton on the basis of the data it has access to. In our experiments,
these data are those located on the grid at the position of the automaton and
in its direct vicinity N . All automata are updated synchronously. This simple
definition contrasts with the huge variety of the dynamical behaviors. High-order
CA (HOCA) are a variant of CA in which each automaton can memorize a certain
(finite) number of its past states. This additional feature allows many further
applications, for example, in secret sharing schemes [9] or in data encryption [2].
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For more details about the formal definition of HOCA and their dynamical
behavior we refer to [3,4].

In this paper, we explore the possibility of performing edge detection. The
advantage of using HOCA over the previous models based on CA is that exploit-
ing memory should bring to better performing algorithms (from the image pro-
cessing point of view). Our method is somewhat similar to the one (based on
CA) proposed by Popovici and Popovici [8]. We look for a difference in intensity
on the image between neighboring pixels and we suitably modify the intensity if
the difference is large enough or we leave everything unchanged. Moreover, we
use the memory of the HOCA to have informations about the previously visited
sites and hence we can try to make wiser decisions. From this preliminary explo-
ration, we obtained a simple model which has performances close to the most
common methods used in edge detection.

The paper is structured as follows. The next section precisely defines our
model and its parameters. Section 3 contains a series of experiments in which
we try to optimize two of the parameters of the model, namely, the number of
iterations #I and the number of agents #A. After fixing those parameters, in
Sect. 4, we compare the results of our model with classical methods. In the last
section we draw some conclusions and provide perspectives for future work.

2 Edge Detection by 2D HOCA

In this section we are going to illustrate our HOCA algorithm. First of all, remark
that in order to gain in efficiency, we implemented an agent based approach of
2D HOCA. The idea is that the state set S can be seen as splitted into two parts:
a background (B) which holds the image informations (color intensity) and a
foreground (F ) which contains the agents information. Indeed, B (resp., F ) is
further divided into three planes Br, Bg, Bb (resp., F r, F g, F b) one per color
plane of the input image. At each iteration t, the automaton produces a new
image. Denote B(t)x,y the content of the background at iteration t. Similarly,
Bi(t) for i ∈ {r, g, b} denotes the image content at iteration t according to the
color plane i. For any pair of integers a, b with a < b, let [a, b[ be the set of
integer between a and b − 1 (a and b − 1 included).

The information contained in the foreground F c
x,y(t) is a stack of (at most 8)

quadruples of the type (dy, dx, life, val) where (dy, dx) ∈ {−1, 0,+1}2 \{(0, 0)},
life ∈ [0, λ] and val ∈ [0, 1]. The quadruple indicates the presence of an agent
if life > 0. This value roughly (see the precise definition below) quantifies the
number of iterations that the agent will go through before disappearing. The
values dy and dx represent the direction in which the agent is moving and val is
a value which stores the value of the intensity of the pixel seen at the previous
iteration so that the agent can compare it with the intensity of the current pixel.

Initialization. Assume that Ic
x,y is the pixel of the input image at coordinates

(x, y) in the color plane c ∈ {r, g, b} and that I has w × h pixels per plane. We
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consider that the input image has been rescaled so that Ic
x,y is an IEEE-754 float

in [0,1]. Then, ∀c ∈ {r, g, b} ∀x ∈ [0, w[∀y ∈ [0, h[:

Bc
x,y(0) = Ic

x,y

F c
x,y(0) =

{
(dy, dx, life, val) if Xp = 1
(0, 0, 0, 0) if Xp = 0

where Xp is a Bernoulli random variable with parameter p = #A
3wh (of course

we assume #A < 3wh), the direction (dx, dy) is chosen uniformly at random in
{−1, 0,+1}2 \ {(0, 0)}. The parameter life = λ · Bc

x,y(0) is hence proportional
to the intensity of the pixel on which the agent spawn. Of course, at time 0 we
set val = 0 since the agent has not seen any other pixel yet. We fixed λ at 64.
This is chosen so that the agent does not live too long when going through a
rapidly changing zone and, conversely, allow a long range exploration when no
variations of intensity is encountered.

Iteration. At each time step t > 0, agents update their state according to their
own state and the one of the background point at their position. More formally,
assume that F c

x−dx,y−dy(t) = (dx, dy, life, val) for some direction (dx, dy) ∈
{−1, 0,+1}2 \ {(0, 0)}, then

Bc
x,y(t + 1) =

{
max(Bc

x,y(t),min(2 · edge, 1)), if edge > θ and life > 0
Bc

x,y(t) otherwise

and

F c
x,y(t+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(dy, dx, life/2, b) edge > θ and life > 0
(dy, dx, life-1, b) if edge ≤ θ and life > 0
(0, 0, 0, 0) if life ≤ 0 or (x + dx, y + dy) /∈ [0, w] × [0, h]

or Bc
x,y(t) = 1

where edge = val − Bc
x,y(t), b = Bc

x,y(t + 1) and θ = 0.05. On the other hand, if
there is no direction (dx, dy) such that F c

x−dx,y−dy(t) = (dx, dy, life, val), then
Bc

x,y(t + 1) = Bc
x,y(t) and F c

x,y(t + 1) = F c
x,y(t).

In other words, first the edge value e is computed. If we consider the image
as a height field, the edge value may be interpreted as how high the agent has
climbed from its previous position. If the edge value exceeds 0.05 (i.e. 5% of the
maximum difference of height between the two points), the agent just climbed an
edge and it updates the corresponding point Bc

x,y(t) in the background image.
The new value Bc

x,y(t+1) is twice the edge value, so the brightness of the drawn
edge will be proportional to the edge height.

On top of the general behavior described, an agent will die (and will be
stopped and reinitialized) when at least one of the following condition occurs:
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– life < 0,
– (x + dx, y + dy) falls outside of the image,
– Bc

x,y(t) has reached 1, the maximum value.

In order to keep the number of agents constant along iterations, when an agent
dies, a new one is created (see initialization step).

Finally, remark that it is clear from the above definitions that upon iterations,
at each position (x, y) there might be up to 8 agents (one coming from each
direction). In this case, the only maximum value of Bc

x,y(t) is kept and all agents
are “superposed”.

3 Experiments

As pointed out by Rosin and Sun [11], determining the number of iterations
necessary to converge towards an acceptable solution is an issue in edge detection
by CA since many authors provide no clear indications. In the HOCA case, we
have also one more parameter to work with, namely, the number of agents and
their spatial distribution. It is clear that both parameters: number of iterations
#I and number of agents #A are a function of the image quality and size. In
order to have an idea of the values taken by these parameters we first consider
the following experimental setting. Consider the image in Fig. 1. It has a size of
840 × 460 for a total of 386400 pixels.

Fig. 1. Edward Hopper - Night hawks, 1942.

If we fix #I to 10K, then in the worst case, if we let the #A = 10K and
the agents are initially uniformly distributed over the pixels, #A = 10K means
that each agent has approximatively an empty Moore neighborhood around him
which would make HOCA solution very similar to a classical approach by con-
volution operators. The optimal value of #A will be the one for which MSE and
PSNR stabilize.

Recall that MSE (Mean Square Error) and PSNR (Peak Signal to Noise
Ratio) are two quantities commonly used to evaluate the distance between the
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original image O and the image G generated by an image processing algorithm.
MSE is given by

MSE =

∑w
i=1

∑h
j=1(Oi,j − Gi,j)2

w · h

where w and h are the width and the height of the image, respectively. The
PSNR is defined as

PSNR = 10 log10

M2

MSE
where M is the maximum possible pixel value in the images, M = 255 in our
case. Both values are stabilized for #A ≈ 3800 (see Fig. 2).

Fig. 2. Running edge detection for 10000 iterations and varying the number of agents.

Fig. 3. Running edge detection with a fixed number of agents (3800) and varying the
number of iterations.

The second batch of experiments consisted in fixing #A at 3800 and search
for the value of #I which stabilizes both MSE and PSNR. We found #I ≈ 2700
(see Fig. 3). Remark that if one looks at our HOCA as a dynamical system, then
one can consider that the system stabilizes when the variation of MSE and PSNR
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Fig. 4. Running edge detection for a fixed number of iterations (10K) and increasing
the number of agents. MSE and PSNR are computed w.r.t the previously generated
image.

between two generated images become small enough. As in the previous cases,
we started the new series of experiments by fixing the number of iterations to
10K and varying the number of agents between 100 and 5K with increments of
100. This provided a sequence of images X1, . . . , Xn. In Fig. 4, we plotted both
MSE and PSNR for successive images Xi,Xi+1. As we can see, MSE decreases
rapidly and it is almost zero when #A becomes bigger than 2K and at the same
value the PSNR starts increasing almost linearly. In Fig. 5, we remark similar
results when #A is fixed at 3800 and #I varies between 100 and 5K.

Fig. 5. Running edge detection with 3800 agents and varying the number of iterations
but accounting values w.r.t the previous generated image.

4 Comparing with the Classics

In this section we briefly review some classical edge detection algorithm widely
used in practical applications. More informations can be found in classical image
processing books, for instance, see [7].
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4.1 Simple Thresholding

A thresholding algorithm aims at classifying the pixels of an image into edges
and non-edges according to their intensity. An initial threshold is chosen θ0

(0.2 in our experiments), then all pixels are divided into two sets A<=θ0 and
A>θ0 . Let μ≤ (resp. μ>) be the average intensity value of A≤θ0 (resp. A>θ0),
then θ1 = μ≤+μ>

2 and another iteration of the previous step is performed until
|θi+1 − θi| < ε (ε = 10−2). Assume θī is the threshold found when exiting the
loop, then all values in A>θī

(resp., A≤θī
) are set to maximal (resp., minimal)

intensity.

4.2 Kernel Methods

Consider an image Ix,y as 2D arrays of color intensity (only gray color maps
are considered here), where (x, y) are the spatial coordinates of the pixels of the
image. Points belonging to an edge are characterized by rapid changes in intensity
in their close neighborhood. These rapid changes can be analytically detected
using the first derivative (gradient) ∇ = (∇x,∇y) of Ix,y where |∇| =

√
∇2

x + ∇2
y

is the magnitude and θ = arctan
(∇y

∇x

)
of ∇ is its direction. Recall that θ = 0

for a vertical edge with lighter intensity on its right side. X and Y are the
usual orthogonal coordinates axis. In most of the following algorithms, ∇ is
approximated by a pair of kernels which are convoluted over the original image,
generating a new image Bx,y. We considered the Roberts cross, Prewitt and
Sobel kernels (see Fig. 6).

∇x =
+1 0
0 −1 ∇y =

0 +1
−1 0

(a) Roberts kernels.

∇x =
−1 0 +1
−1 0 +1
−1 0 +1

∇y =
+1 +1 +1
0 0 0

−1 −1 −1

(b) Prewitt kernels.

∇x =
−1 0 +1
−2 0 +2
−1 0 +1

∇y =
+1 +2 +1
0 0 0

−1 −2 −1

(c) Sobel kernels.

L =
0 1 0
1 −4 1
0 1 0

(d) The LoG kernel.

Fig. 6. Kernels used in edge detection methods.

Another possibility is to consider the second derivative. Indeed, we have seen
that a rapid change in intensity determines a steep increase (resp., decrease)
followed by a steep decrease (resp., increase) of the first derivative. Finally, this
last fact implies a zero crossing of the second derivative. Approximating the
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Laplacian by finite differences (as previously done for the gradient) brings to the
Laplacian of the Gaussian method. The kernel used in this case is reported in
Fig. 6(d).

(a) Simple thresholding. (b) Roberts kernel.

(c) Sobel kernel. (d) Prewitt kernel.

(e) Laplacian of Gaussian (LoG) kernel. (f) HOCA solution.

Fig. 7. A visual comparison between the HOCA solution and the classical approaches.

In Table 1, we report the values of MSE and PSNR between the image of
Hopper’s painting and the image obtained by applying one the considered meth-
ods. The table shows that our method performs worse than the others. Anyway,
remark that the difference between the best performing (LoG) and the worst
one is about 1.76%. Similar considerations can be made for the PSNR.

In order to confirm the results of the first two batches of experiments, we
used the BSDS500 (Berkeley Segmentation Data Set, [1]) data set which consists
of 500 images and compared the results of our model with the values of #A and
#I found in the previous experiments against the best performing competitor
considered here, namely LoG algorithm. The results are reported in Table 2. As
we can see the difference for MSE is less than 1% and for the PSNR the difference
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Table 1. Quantitative comparison between HOCA and classic methods.

Method MSE PSNR

Simple thresholding 118.79269409937888 27.382906290602115

Roberts 117.56277950310559 27.42810515445974

Prewitt 117.37082556935817 27.435202015100963

Sobel 117.62519151138716 27.425800173357132

LoG 117.13097826086957 27.444085904026085

HOCA 119.19873188405798 27.36808725754679

Table 2. Quantitative comparison between HOCA and LoG method over the BSDS500
data set.

Method MSE PSNR

LoG 99.5655254013899 27.828705300879

HOCA 100.474360485575 27.852131472538

is practically negligible since it is less than 0.01%. These facts convinced us that
we are in the good path towards a competitive solution (Fig. 7).

5 Conclusions and Perspectives

In this paper we proposed an edge detection method based on HOCA. The
experiments confirmed that the method provides results comparable with the
most common competitors. Our algorithm is based on four main parameters:
#A (number of agents), #I (number of iterations), θ (edge threshold) and λ
(agents life coefficient).

The computational complexity of the method is O(#A ·#I) (for fixed λ and
θ). Hence, the method becomes more interesting a standard kernel method when
#A · #I < 3wh (recall that w and h are width and the height of the image).
Hence, it is important to find optimal values of #A and #I.

We showed a methodology to find those optimal values according to a given
image but a more general formula (or at least tight bounds) depending only on
the image size would be desirable. More experiments are needed also to find the
optimal value of the edge threshold parameter since it can affect performances
both from an image quality point of view and not only the computational per-
formances of the method.

Another interesting research direction would consider the agents life param-
eter. Remark that if λ is quite small then agents keep dieing and respawning over
the image with a global effect of becoming similar to the asynchronous applica-
tion of a kernel method. If λ is too high (comparable with the size of the image)
the risk is to visit too few regions of the image. Here also a formula linking λ to
the other parameters of the model is of major interest.
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However, these are not the only parts we need to explore in order to evaluate
the interest or effectiveness of this approach. We would like to assess the subjec-
tive quality of the result HOCA by comparing it with perception based models
and against ground truth images. And of course, there is room to improve the
local rule of the HOCA method for edge detection, edge thinning and extension,
antialiasing and other image quality enhancements.
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Abstract. Cellular Automata (CA) have recently evolved as a good
cryptographic primitive. CA have been used as pseudorandom num-
ber generators in stream ciphers, block ciphers and hash functions. The
eSTREAM cipher Trivium, though secure in its complete rounds, was
cryptanalyzed in its reduced rounds. Trivium has a simple internal struc-
ture and a very long key setup phase that consists of 1152 rounds. This
paper emphasizes the advantage of using CA of higher radii in Trivium.
Here, we have proposed a 5-neighbourhood CA to be used in Trivium
which helps the cipher to attain better cryptographic properties at a
faster rate. The diffusion and randomness of the cipher also increases
with the use of higher radii, but at the cost of increased computational
complexity. The new cipher is named Pentavium.

Keywords: Stream cipher · Cellular automata · 5-neighbourhood
CA · Cryptography · Trivium

1 Introduction

In cryptography, encryption techniques are categorized as symmetric-key encryp-
tion and asymmetric-key encryption. Symmetric-key encryption has a common
shared key between the sender and the receiver and this shared key is used to
perform encryption and decryption. In asymmetric key encryption, the sender
and receiver make use of public and private keys. In symmetric encryption, the
encryption can be done either on blocks of plaintext or one bit at a time. A
block cipher encrypts a fixed size of n-bit block of data at a time. A stream
cipher encrypts one bit or byte of data at a time and hence they use a long
stream of pseudo-random bits as the key. A secure stream cipher should gen-
erate the keystream bits in an unpredictable manner and the reuse of the key
should never happen. This implies that the keystream generator should also be
a good pseudorandom generator. Stream ciphers are in general faster than block
ciphers.

The eSTREAM project [16], part of ECRYPT [5], aimed to promote the
design of efficient and compact stream ciphers that can be widely adopted. The
c© Springer Nature Switzerland AG 2021
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finalists of the project were classified into two profiles, profile-1 and profile-2. The
ciphers in profile-1 were intended to give excellent throughput when implemented
in software whereas the ciphers in profile-2 were intended to be efficient in terms
of hardware resources. One such widely studied cipher is Trivium [7], which
belongs to profile-2. Trivium has a simple design and is secure in its full round
(1152 clocks).

Cellular Automata (CA) have evolved as a good pseudorandom generator.
So CA is used in many applications like pattern recognition, VLSI design, error
correcting code and cryptography. The properties of CA vary with the CA
rules. The non-linear Rule 30 exhibits very good statistical properties like non-
linearity and higher algebraic degree [17]. Several studies have been made on
CA rules of higher radii. From further experimentation, it was found that 5-
neighbourhood rules, i.e., rules having radius - 2 showed better performance
than 3-neighbourhood rules in lesser clock cycles. Among the 5-neighbourhood
rules, the rules 1721342310 and 2523490710 have been considered to be good
pseudorandom sequence generators [11].

In this paper, we exploit the strength of higher radii CA in designing robust
stream ciphers. We propose Pentavium, a 5-neighbourhood CA based stream
cipher inspired by the designs of Trivium and its 3-neighbourhood CA based
alternative, CAvium [12]. The rest of the paper is organized as follows. Section 2
discusses some basic concepts about CA and also about the stream ciphers - Triv-
ium and CAvium. Section 3 provides the proposed design of the stream cipher
followed by design rationale in Sect. 4. The security analysis based on the test
results is done in Sects. 5 and 6 followed by conclusion.

2 Preliminaries

2.1 Trivium

Trivium [7] is a hardware oriented stream cipher developed as part of the
eSTREAM cipher project. The cipher generates upto 264 keystream bits from an
80 - bit key and an 80 - bit Initialization Vector (IV). Here the cipher makes use
of three linear shift registers which together constitutes 288 - bit internal state
registers. The cipher executes the initialization phase for 1152 rounds. Once the
initialization phase is over, the keystream generation begins. Both initialization
and key generation phases execute the same algorithm.

2.2 Cellular Automata

A Cellular Automaton is a collection of cells and each cell is capable of storing
a value and a next state computation function (CA rule). Rules determine the
behaviour of CA. The state of each cell of a CA together at any instant t defines
the current state of the CA. In 3-neighbourhood CA, the value of the cell after
one clock cycle depends on one left neighbour, itself and one right neighbour.
The next state of the ith cell of a 3-neighbourhood CA at any instant t is given
by
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In 5-neighbourhood CA, the change in cell value depends on two left neigh-
bours, itself and two right neighbours. The next state of the ith cell of a five
neighbourhood CA at any instant t is given by
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where f is the next state function or rule, St+1
i denotes the next state of the

ith cell, St
i−2 is the current state of second left-neighbour, St

i−1 is the current
state of first left-neighbour, St

i is the current state of the cell to be updated,
St
i+1 is the current state of first right-neighbour and St

i+2 is the current state of
second right-neighbour. In general, the number of cells n that participate in a
CA cell update is given by n = 2r+1, where r is the radius of the neighbourhood
[8]. From the above CA transition rules, we can see that as the neighbourhood
radii increases, the number of cells that participate in a CA cell update also
increases.

2.3 CAvium

CAvium is a modification of Trivium stream cipher by introducing 3 - neigh-
bourhood CA into it [12]. CAvium uses a hybrid null boundary CA to replace
the shift registers of Trivium. Like Trivium, CAvium contains 288-bit internal
state registers. The cells in the CA update itself based on the 3 - neighbourhood
rule set <30, 60, 90, 120, 150, 180, 210, 240> in that order one after the other.
CAvium executes the initialization phase for 144 rounds without generating any
output. At the end of this phase, the keystream generation phase starts produc-
ing the bits of the keystream. Both these phases execute the same algorithm.

3 Proposed Methodology

In this section, we discuss the methodology used to design the new stream cipher
Pentavium.

Pentavium is a Trivium-like stream cipher which makes use of higher radii
CA. Pentavium makes use of 5-neighbourhood rules in its design. The inten-
tion of our design is to affirm the fact that as the neighbourhood radii of a cell
increases, the strength of the cipher also increases and that too in less num-
ber of cycles. Pentavium uses three hybrid null boundary CAs which make use
of a set of 5-neighbourhood CA rules that showed good cryptographic proper-
ties. The rule set used in our cipher is <1452976485, 1721342310, 2523490710,
1520018790, 1721342310, 1452976485, 1520018790, 2523490710>. The rule set
contains 5-neighbourhood linear and nonlinear rules which showed good crypto-
graphic properties. The rules 1721342310, 2523490710 are linear rules and the
rules 1452976485, 1520018790 are nonlinear rules.
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The internal structure of this new cipher exactly resembles Trivium since
we wish to retain the simplicity of its design while reducing the time taken
for initialization phase by reducing the number of clock cycles. Through our
proposed cipher, we show that the use of higher radii CA (5-neighbourhood)
helps to reduce the number of iterations to 32 without any compromise in its
security properties.

Pentavium cipher contains 288-bit internal state registers (s1, s2, ..., s288)
which are implemented as three hybrid CAs of lengths 93, 84 and 111 respec-
tively. The first two registers are used to store the key {k1, k2, ..., k80} and Ini-
tialization Vector {iv1, iv2, ..., iv80} respectively. The third register is filled with
zeros except for the last 3 cells which are filled with ones.

(s1, s2, ..., s93) ← (k1, k2, ..., k80, 0, ..., 0)
(s94, s95, ..., s177) ← (iv1, iv2, ..., iv80, 0, ..., 0)

(s178, s179, ..., s288) ← (0, 0, ..., 0, 1, 1, 1)

After loading the bits, the initialization phase begins where the CA will be
evolved through 32 cycles by suppressing the output bit. In each cycle the rule set
<1452976485, 1721342310, 2523490710, 1520018790, 1721342310, 1452976485,
1520018790, 2523490710> is applied consecutively through all the 288 cells. i.e.,
rule 1 is applied on 1st cell, rule 2 on 2nd cell and so on, again rule 1 on 9th cell,
rule 2 on 10th cell. This order is followed for all the 288 cells. After 32 cycles,
the keystream generation begins. Both these phases execute the same algorithm
which is discussed in Algorithm 1. The function CA5(s) in the algorithm refers
to the Boolean value obtained after applying the 5-neighbourhood CA rule on
a cell s during a single cycle and + indicates xor operation. The registers t1, t2
and t3 are the temporary registers and zi is the ith output of the keystream bit.

4 Design Rationale

4.1 Selection of Linear and Nonlinear 5-Neighbourhood Rules

The selection of rules in the rule set is an important factor that affects the cryp-
tographic properties of the generated keystream bits. Rule 30 was extensively
studied by Stephen Wolfram and was considered as a good pseudorandom num-
ber generator. But it was later cryptanalyzed by Meier and Staffelbach [15]. So,
a combination of linear and nonlinear CA rules was used to enhance the prop-
erties of CA than using them separately. CAvium had selected a combination
of cryptographically secure linear and nonlinear 3-neighbourhood rules which
enhanced the cryptographic properties of the cipher.
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Algorithm 1: Pentavium Keystream Generation Algorithm
for i ← 1 to N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288
zi ← t1 + t2 + t3
t1 ← t1 + s91.s92 + s171
t2 ← t2 + s175.s176 + s264
t3 ← t3 + s286.s287 + s69
(s1, s2, ..., s93) ← (t3, CA5(s1), ..., CA5(s92))
(s94, s95, ..., s177) ← (t1, CA5(s94), ..., CA5(s176))
(s178, s179, ..., s288) ← (t2, CA5(s178), ..., CA5(s287))

Later, Leporati and Mariot [13] did an extensive research on bipermutive CA
rules of a given radius and some of the 5-neighbourhood nonlinear rules of radius
2 were investigated for their cryptographic suitability. They had taken Rule 30
as the base rule for all the benchmarking during the study. They analyzed the
5-neighbourhood rules using NIST [1] and ENT [2] and concluded that the rules
1452976485, 1520018790 and 2778290790 exhibited good properties among other
5-neighbourhood nonlinear rules.

The rule vector for 5-neighbourhood Linear Hybrid CA was selected based
on [14]. It was found that the combination of rules 2523490710 and 1721342310
gives the largest number of rule vectors for 5-bit maximum length 5-neighbour-
hood CA [14]. The linear rules ensure maximum period, while the nonlinear
rules prevent linear cryptanalysis and hence for better cryptographic properties
we have selected both of them. Therefore the rule set <1452976485, 1721342310,
2523490710, 1520018790, 1721342310, 1452976485, 1520018790, 2523490710> is
chosen for the implementation of this cipher.

The hybrid design ensures that balancedness and maximum length property
of the linear rules and higher algebraic degree and nonlinearity properties of the
nonlinear rules are achieved.

4.2 Choice of the Number of Cycles

Pentavium makes use of only 32 cycles during the initialization phase, reducing
the number of cycles without loss of cryptographic properties. This reduction is
appreciable when compared to 1152 rounds of Trivium and 144 cycles of CAvium,
but with the same or even more strength than both the ciphers. This asserts the
fact that as the neighbourhood radii increases, the cryptographic properties of
the cipher increases in less number of cycles as compared to smaller radii CA.
The choice of taking 32 cycles for initialization phase was made by observing
the growth of cryptographic properties of Pentavium compared to Trivium. An
analysis of the generated keystream bit shows that the cryptographic properties
required for the cipher are achieved by Pentavium in 22 iterations. We give a
brief explanation for the observation.
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In the first iteration, the output register value is given by

z1 = t1 ⊕ t2 ⊕ t3 = s[66] ⊕ s[93] ⊕ s[162] ⊕ s[177] ⊕ s[243] ⊕ s[288].

The left most bit in the equation is the register value at 66th position. In order to
decide the number of cycles, we need to find the minimum number of iterations
such that the output bit depends on all the cell values which marks the comple-
tion of the initialization process. Hence, we need to iterate until we include s[1]
in the Boolean expression, which ensures that the output bit is dependent on all
the input bits.

In the second iteration,

z2 = CA5(s[65]) ⊕ CA5(s[92]) ⊕ CA5(s[161]) ⊕ CA5(s[176])
⊕CA5(s[242]) ⊕ CA5(s[287])

the left most value being CA5(s[65]) will depend on s[63] to s[67]. Hence the
left most value is s[63] for the second iteration. Similarly, in the 3rd iteration, the
leftmost value will be CA5(s[63]) which is s[60]. This dependency continues for
each iteration and by the end of 22 iterations, s[1] will be covered. In the same
manner, the neighbours on the right side of s[66] will also be included in the
output bit. However, to make sure that the output generated is secure against
existing attacks on reduced round versions of Trivium, the number of rounds in
the initialization phase is set to the nearest power of 2, i.e., 32.

5 Software Implementation and Results

Pentavium, CAvium and Trivium were coded in C and compiled using GCC
7.5.0. The code was run on on an IBM Lenovo Thinkpad E431 laptop with Intel
Core-i5 3320m CPU@2.60 GHz. The time taken for computing 1 million and 100
million keystream bits using the three ciphers have been computed and used for
analysing their relative performance.
A bitstream obtained using a random secret key

0x00002EC0657D0DCD2F655C99
and Initialization Vector (IV)

0x00004F557DD6AF2D0C417B20
was used for testing. After generating 100 million streams, we anlayzed the
randomness of the keystream using NIST statistical test suite [1] and DIEHARD
battery of tests of randomness. Here, we check whether the cipher passes all tests
to qualify as a random generator.

Wolfram’s Mathematica 12 [3] was used to obtain the Boolean expression
of the output bits during the first and second iterations. Sage Ver.8.6 [4] was
used to find the properties of these Boolean expressions. The number of Boolean
variables involved during the first three iterations were respectively 6, 26 and 47
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Table 1. Pentavium NIST Test results

Sl. No. Test name P-value Status

1 Frequency 0.554420 Pass

2 Block frequency 0.946308 Pass

3 Cumulative sums 0.137282 Pass

4 Runs 0.851383 Pass

5 Longest Run 0.554420 Pass

6 Rank 0.032923 Pass

7 FFT 0.699313 Pass

8 Non overlapping template 0.202268 Pass

9 Overlapping template 0.595549 Pass

10 Universal 0.275709 Pass

11 Approximate entropy 0.723129 Pass

12 Random excursions 0.875539 Pass

13 Random excursions variant 0.517442 Pass

14 Serial 0.897763 Pass

15 Linear complexity 0.637119 Pass

which shows the exponential growth in the number of input variables. The NIST
and DIEHARD test results obtained are shown in Tables 1 and 2 respectively.
The results show that the proposed cipher passes all the tests in both NIST and
DIEHARD with successful P-values.

Table 3 shows the values for nonlinearity, algebraic degree and resiliency
which are crucial in deciding the strength of any stream cipher. The table also
shows the values for Trivium and CAvium. It can be seen that the proposed
cipher achieves a higher algebraic degree, nonlinearity and resiliency at a faster
rate than both CAvium and Trivium. While Trivium takes about 70 rounds to
gain algebraic degree of 2, nonlinearity 16 and resiliency order 3, CAvium which
uses 3 neighbourhood CA rules reaches algebraic degree 2 in 3 rounds with non-
linearity 384 and resiliency order 5. Pentavium achieves better values in just 2
rounds.

An analysis of Pentavium shows that at the second iteration itself the cipher
gains algebraic degree 2 with very high nonlinearity 31457280 and resiliency
order 17. These features of CA rules were studied by Formenti et al. in [10].
They had proposed the idea of extending good updating CA rules and thereby
increasing the number of Boolean variables. The fast growth rate of algebraic
degree, resiliency and nonlinearity of Pentavium shows its resistance to algebraic
attacks and correlation attacks.

The use of higher radii CA had its effects on the running time of the cipher.
The software efficiency of the cipher was compared with that of CAvium and
Trivium. The use of CA has incurred some additional time when compared to
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Table 2. Pentavium DIEHARD test results

Sl. No. Test name P-value Status

1 Birthday Spacings 0.969021 Pass

2 Overlapping 5-Permutations 0.456966 Pass

3 Binary Ranks 0.347940 Pass

4 Bitstream 0.40552 Pass

5 Count the 1’s (successive) 0.735036 Pass

6 Count the 1’s (specific) 0.218799 Pass

7 Craps 0.565967 Pass

8 Runs 0.511294 Pass

9 Overlapping Sums 0.796271 Pass

10 Squeeze 0.216076 Pass

11 3D Spheres 0.371883 Pass

12 Minimum Distance 0.963800 Pass

13 Parking Lot 0.199364 Pass

14 DNA 0.9463 Pass

15 OQSO 0.7758 Pass

16 OPSO 0.5544 Pass

Table 3. Comparison of cryptographic properties

Iteration Balancedness Nonlinearity Algebraic degree Resiliency

Trivium

1 Balanced 0 1 1

70 Balanced 16 2 3

71 Balanced 32 2 3

83 Balanced 384 3 4

98 Balanced 1792 3 5

CAvium

1 Balanced 0 1 1

2 Balanced 0 1 3

3 Balanced 384 2 5

4 Balanced 1792 3 6

Pentavium

1 Balanced 0 1 1

2 Balanced 31457280 2 17
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the feedback shift registers used in Trivium. Pentavium takes 1.34 times the
run time of CAvium and 4.44 that of Trivium when implemented in C. With
more optimizations in the code, we hope to reduce the running time even more.
The statistical properties of Pentavium have shown significant improvements
even during the initial iterations of the cipher which definitely makes the cipher
highly resistant to the known attacks against stream ciphers.

Table 4 shows the comparison of parameters of Pentavium with that of Triv-
ium and CAvium.

Table 4. Comparison of Pentavium with Trivium and CAvium

Cipher Keysize IV size State size Initialization cycles Time Taken in seconds

Initialization time KeyGeneration time

106 bits 108 bits

Trivium 80 80 288 1152 0.00132 0.738 72.29

CAvium 80 80 288 144 0.00034 2.387 235.734

Pentavium 80 80 288 32 0.00010 3.245 316.369

6 Security Analysis and Resistance to Known Attacks

The cipher exhibits good cryptographic properties like balancedness, nonlinear-
ity and algebraic degree which are necessary for a good cipher. Since Pentavium
makes use of 5-neighbourhood CA, each variable changes the value based on
its five neighbours. So during each iteration, the number of variables involved
increases at a very fast rate. As the number of variables increase, the strength of
the cipher also increases at the cost of high computation. The additional advan-
tage with our cipher is that we can get the required properties at a very high
level with limited number of cycles. We have substantially reduced the number
of iterations from 1152 of Trivium and 144 of CAvium to 32 in our cipher. From
Table 3, we can see the fast growth rate of algebraic degree, nonlinearity and
resiliency also. This clearly indicates the resistance of the cipher to algebraic
attacks, linear cryptanalysis and correlation attacks.

6.1 Resistance Against Known Attacks

We discuss some of the attacks against stream ciphers and how Pentavium resists
them based on its cryptographic properties.

(i) Linear cryptanalysis: This attack occurs as a result of the linear rela-
tion between the input and output bits. From Table 3, we can see the growth
in nonlinearity during the second iteration. This clearly establishes the resis-
tance of Pentavium against linear cryptanlaysis at the end of initialization
phase.



Pentavium - CA Based Stream Cipher 99

(ii) Differential Cryptanalysis: The idea of differential cryptanalysis is
that a known small difference in the key or plaintext or the internal state
of the cipher is likely to introduce predictable changes in the keystream or
internal state [6]. In Pentavium, the keystream generation starts only after 32
cycles of CA operations during which the key and IV bits are diffused between
themselves. Moreover, each bit is dependent on itself and its 4 neighbours, 2
from left and 2 from right. So, even a small change in the input will bring out
unpredictable keystream bits. The NIST and DIEHARD results also proves
the randomness of the keystream generated which affirms the resistance of
Pentavium to differential cryptanalysis.
(iii) Algebraic attacks: This attack exploits the low algebraic degree of the
cipher. Pentavium will be resistant to algebraic attacks since the algebraic
degree increases at a faster rate when compared to Trivium and CAvium.
(iv) Cube Attacks: Cube attacks are a class of attacks that come under
algebraic cryptanalysis [9]. In cube attack, the attacker tries to obtain linear
equations in the unknown key bits by combining the equations for an output
bit of the cipher for a set of IVs. This attack exploits ciphers that can be
represented using low degree multivariate polynomial. The high algebraic
degree of Pentavium as well as its fast growth rate definitely prevents cube
attacks on the proposed cipher.
(v) Correlation attacks: The property that measures the resistance of a
cipher to correlation attacks is resiliency. Pentavium has good resiliency char-
acteristics even at small iterations. Hence, the cipher will be resistant to cor-
relation attacks.

7 Conclusion

This paper proposes a new stream cipher based on 5-neighbourhood hybrid
CA. The initialization phase of Pentavium has considerably lesser number of
cycles when compared to Trivium and CAvium, without any compromise in the
strength of the cipher. The use of higher radii CA rules have played a vital role in
the strength of the cipher owing to the exponential growth of its cryptographic
properties even in lesser number of iterations. The generated keystream has
higher algebraic degree, nonlinearity and resiliency which makes it resistant to
attacks against stream ciphers. This cipher also proclaims the advantage of using
5-neighbourhood CA as a cryptographic primitive in the design of secure stream
ciphers.
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Abstract. This paper deals with energy management in a microgrid
through peer-to-peer (P2P) energy exchange method. The P2P process
is executed on the basis of cellular automaton (CA) approach and imple-
mented by smart contracts blockchain over a time horizon, enabling con-
sensus to be recorded between consumers in a secure and fully automated
transaction. The CA proposed model identifies the end-user state in a
set of five possible states and supports the convergence of supply and
demand decisions, thus ensuring the decentralization of energy distribu-
tion.

Keywords: Cellular automata · Smart contract · Blockchain ·
Microgrid · Prosumer · Energy sharing

1 Introduction

Over the last few years the energy systems in most developed countries have been
undergoing a process of “vertical integration”. These changes are the result of
the increase of renewable energies in the energy mix, their share in the electricity
sector is expected to increase from 25% in 2017 to 85% in 2050 [8]. Renewable
technologies are now a cost-effective solution for small-scale power generation in
households. However, due to the intermittent nature of Renewable Generation
(RG), there could be a significant gap between electricity supply and demand.
The concept of peer-to-peer (P2P) energy sharing offers possible solutions for
these issues. The purpose of P2P sharing is to connect the households (node) to
each other, each node operating autonomously while being able to intelligently
share power with the entire micro-grid. The node functions both as an energy
producer and consumer, more commonly known as a prosumer. This allows con-
sumers who have an energy deficit to buy renewable energy at a cheaper price
from a neighbor with excess energy. The emerging blockchain technology can
fulfill exactly this requirement by developing self-consumption and to meet the
expectations of consumers looking for more transparency and understanding
regarding the origin and price of electricity. The register of this technology traces
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the complete history of transactions and is accessible to all users in a decentral-
ized manner. As for smarts contracts (automated contracts via the blockchain),
they cover another major expectation of prosumers: the sale of energy adapted
to local production and consumption. The smart contract allows asset transfers
based on pre-established rules between several users without going through a
trusted third party. A significant amount of decentralized applications based on
blockchain technology related to energy sharing has been done [4,5,17].

In this work, we studied the blockchain technology related to energy sharing
from the perspective of the consensus algorithm. Consensus protocol is con-
figured to determine the amount and price of energy shared between peers. In
Ref. [9], a localized Practical Byzantine Fault-Tolerant based-Consortium is pro-
posed as the consensus mechanism for P2P trading. Besides, by combining the
PoS (Proof of Stakes) consensus with the TOPSIS (Technique for Order Prefer-
ence by Similarity to an Ideal Solution) comprehensive evaluation method, a new
credibility-based equity proof consensus was designid [18]. In Ref. [16], Manuel
Utz propose a smart contract ecosystem based on the Proof-of-Authority (PoA)
consensus mechanism. An interesting analysis is carried in [3] on factors relevant
to the implementation of block chain use cases and consensus mechanisms in
the energy sector. In contrast with the existing literature, a new consensus algo-
rithm for P2P energy sharing is proposed. The P2P process is executed on the
basis of cellular automaton (CA) approach and implemented by smart contracts
blockchain over a time horizon, enabling consensus to be recorded between con-
sumers in a secure and fully automated transaction. We consider CA transition
rules as the consensus algorithms of the smart contract shared in the blockchain
which automatically executes predefined conditions to apply the logic of the
transactions and to check their relevance [10]. The main advantages of CA mod-
eling over existing energy sharing methods are the rapid convergence of supply
and demand decisions as well as the spatial aspect in terms of an adaptive lattice.
It should also be noted that this is the first time that a cellular automaton is
proposed for energy sharing in micro-grids. Our CA model allows us to identify
the user’s state from a set of five possible states and ensures convergence of sup-
ply and demand decisions. The excess energy is automatically shared with users
without intermediaries (distribution system operators or market operators). In
fact, the combination of the two approaches (CA and blockchains) ensures that
the system is entirely decentralized.

The rest of the document is organized as follows. In Sect. 2 we describe the
CA model for P2P sharing . In Sect. 3, we present how we can implement the pro-
posed CA on smart contract blockchain. The case study and simulation results
are then presented in Sect. 4.

2 CA Model Formulation

Our CA model is based on our previous one reported in [2] that we will recall
in this paper. We consider an electrical grid consisting of connected members
exchanging energy with one another. Members can be consumers or prosumers
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and can represent residential users (homes, apartments or villas). They are
equipped with a RG (e.g., solar panels or wind turbines) with batteries.

Fig. 1. CA lattice

The cells are energy consumers and prosumers arranged in a two-dimensional
lattice as illustrated in Fig. 1. All cells are interconnected to their nearest neigh-
bours via the power lines, either by conventional lines or universal interfaces.

L = {Cij ; i, j ∈ N; i = 1, 2.., n and j = 1, 2..,m} (1)

with n and m are the number of nodes cells along vertical and horizontal axis
respectively.

The energy balance between supply and demand is based on the determina-
tion of the state of the cell.

The state of a cell Cij is determined by a combination of three parameters,
namely the amount of energy produced P t

rg, consumed P t
c and stored Qt. In

addition, the model allows us to identify the state of the participants according
to five defined states:

S = {1, 2, 3, 4, 5} (2)

with

State 1 : Demand satisfied+,

State 2 : Demand satisfied−,

State 3 : Surplus power,

State 4 : Power deficit,

State 5 : Grid connexion.

– Demand satisfied+: The energy produced by RG is sufficient and the excess
energy is used to charge the batteries.
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– Demand satisfied−: The energy produced by RG is not sufficient to meet
the requested load. The priority is to use the energy stored in the batteries.

– Surplus power: Same as case 1, but the excess energy generated by the
renewable generation is greater than the need for the load and batteries.
Therefore, in this case, the surplus power is transmitted to the neighbors.

– Power Deficit: The energy produced by RG is not sufficient to meet the
requested load and the battery bank is also exhausted. In this case the charge
and the batteries are powered by the surplus power of other houses.

– Grid connexion: Same as case 4 but the surplus power of other houses is
not sufficient to meet the requested load. Power is drawn from the grid in
this case.

The state of each cell depends on a set of attributes as summarized in Table 1.
The configuration of the proposed CA state is defined by Eq. 3.

S (cij , t) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1© if Nlt (i, j) > 0 and Soct (i, j) ≤ αSoctmax (i, j)

2© if Nlt (i, j) < 0 and αSoctmax (i, j) < Soct (i, j) ≤ Soctmax (i, j)

3© if Nlt (i, j) > 0 and αSoctmax (i, j) < Soct (i, j) ≤ Soctmax (i, j)

4© if Nlt (i, j) < 0 and Soct (i, j) ≤ αSoctmax (i, j)

5© if Nlt (i, j) < 0 and Soct (i, j) ≤ βSoctmax (i, j)

(3)

where
Nlt (i, j) is the net load of the (i,j) cell at the time t, defined as the difference

between the RG power P t
rg (i, j) and the power consumption P t

c (i, j) (Eq. 5).
Soct (i, j) is the state of charge of the (i,j) battery at time t, Soct

max (i, j)
and Soct

min (i, j) are respectively the maximum and minimum allowable state of
charge.

α and β are two specified coefficients, which guarantee battery storage bal-
ancing and safety.

Table 1. Dynamic parameters of a Cij

At time t Between t and t + 1

P t
rg (i, j): Renewable generation power P

[t]
la

(i, j): Surplus power

P t
c (i, j): Power consumption by electrical load P

[t]
sr (i, j): Deficit power

Qt (i, j): Batteries energy storage P
[t]
c (i, j): Charging battery power

P
[t]
d

(i, j): Discharging battery power

P
[t]
im (i, j): Power imported from the neighborhood

P
[t]
tr (i, j): Power exported to the neighborhood
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According to the Eq. 3 the main loop of the model consist of the identified
transition function F , between instants t and t + 1 :

– State of charge (Soc) expressed by Eq. 4;
– Net load power (Nl) expressed by Eq. 5.

Soct (i, j) =
Qt (i, j)

Cn (i, j)
× 100 (4)

Nlt (i, j) = P t
rg (i, j) − P t

c (i, j) (5)

Where Qt (i, j) is the stored energy by the battery at the time of interest t
and Cn (i, j) is the battery nominal capacity.

We consider the cost function defined by [12]. For each residential household
n, the electricity cost for time interval [t, t + Δt) during the planning horizon
starting at time t0 is defined by Eq. 6, where Clow < Chigh reflects the lower cost
of Solar generation. The electricity cost is an increasing function of load [11].

Ct
e,r (i, j) :

⎧
⎪⎪⎨

⎪⎪⎩

γt0
n (i, j)

[
Clow (Lt)2

]
if Lt ≤ ltgen

γt0
n (i, j)

[
Clow

(
ltgen

)2 + Chigh

(
Lt − ltgen

)2
]

otherwise
(6)

Where ltgen is the total energy obtained from solar PV generation, Lt is total
electricity requirement for all consumers and γt0

n is the the share of electricity
consumption for user n starting at time t0, given by Eq. 7

γt0
n (i, j) =

∑N−1
i=0 lt0+iΔt

gen
∑N−1

i=0 Lt0+iΔt
(7)

3 CA Modeling for Smart Contract

The smart contract are a set of executable functions resides at a specific address
on the Ethereum blockchain [10], first proposed in 1996 by Szabo [15]. The
smart contract also called blockchain contracts is written as code in programming
language Solidity or Serpent [1] and compiled on the Ethereum Virtual Machine
(EVM) [6]. The implementation of the CA on the smart contract is possible
by considering the configuration of our CA model expressed by Eq. 3 as the
collection of the smart contract code and data.

In the P2P energy sharing of our model, participants are free to participate or
not in the consensus algorithm. Each participant has its own numerical identity
called Decentralized Identifier (DID) which can be integrated on the blockchain
as a identity service [14]. The use of a DID with a user interface is necessary to
set up a decentralized identity network based on Ethereum and to prove access
to the microgrid and the P2P system.
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Data

Smart meter
- Battery Specifications, Pho-
tovoltaic panels characteristics,
Microgrid data
- Wither data, Household’s con-
sumption power
- PV generation power

Ethereum smart contract

CA Quadruplet A (L,N ,S,F)
Ethereum Virtual Machine (EVM)
- Lattice and Cell
- Transition functions
- State, Neighborhood

Contraints
- Initial condition
- Boundary condition

-Value of the transfer.
-Sender and receiver address.
-Price of the transfer

Block
- Transactions 1
- Transactions 2

...
- Transactions N

Monitoring

Decentralized application
(DApp)

-Web application Front-end
-Back-end application

Contract Accounts

Blockchain

Fig. 2. Principle of the proposed Blockchain-based CA approach

The blockchain network is public, any user wishing to benefit from an energy
exchange and who has the evidence and conditions of a valid prosumer can join it
and obtain an identity. The execution of the AC algorithm (smart contract code
in our case) provides information on the power to be imported and exported in
the neighborhoods for each participant, called Pim and Ptr respectively. We also
consider these amounts of Ether energy transfer from one account to another as
the blockchain transactions between participants executed in Ethereum.

At each stage of the simulation, the participant receives a message consist-
ing of the sender and receiver address, the value and the price of the transfer.
The smart contract code is executed again at step t + Δt. If a participant no
longer needs to participate in the P2P energy system, he is free to deactivate
his account, in this case the network of our CA model is reformulated and the
smart contract code is automatically modified. The Fig. 2 gives an overview of
the system described above.

4 Simulation

4.1 Case Study

In order to test our P2P energy exchange model in a micro-grid, an application
case based on Dubai in the Mohammed bin Rashid Al Maktoum solar park is
studied. 15 solar energy houses are considered. The houses are the 15 teams that
participated in the Solar Decathlon Middle East (SDME) competition, held in
Dubai from 14 to 29 November 2018.
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Fig. 3. Arrangement of the 15 houses in the SDME Microgrid

Solar decathlon is the world’s largest green building competition, created by
the US Department of Energy, that challenges college teams to design, build and
assemble solar-powered homes [13]. Two reasons explain the choice of the SDME
as the application case:

– The 15 teams are arranged in a 2D lattice in the form of a micro-grid con-
nected to the grid which is similar to the configuration of our AC model
(Fig. 3)

– the electrical data collected during the two weeks of the competition are
available free on the SDME website [7]. The data comprises: PV output power,
energy consumption, grid consumption and injection of excess power into the
grid as shown in Fig. 4.

4.2 Evaluation of Energy Sharing Results

We consider the data of a contest period “18-9-2018” for 24 h (Fig. 4). According
to these data we run our CA model as shown in Fig. 5. The following color
connotation are consedired to represent the state set of houses given by Eq. 2:

State 1 State 2 State 3 State 4, State 5.
At Iteration 0 (12:00 am) it is seen from Fig. 4a and Fig. 4c that the power

produced by the PV panels and the power sent to the grid are both null. The
load is powered by batteries, except for houses that are not equipped with them
(2, 5 and 10), in which case the charge is drawn from the grid as illustrated
in Fig. 4d. This situation is confirmed by the simulation as is shown in Fig. 5a,
in which all cells are in state 2 , except for the three houses with no storage
banks (state 5 ). The cells maintain the same states for the next iterations
until iteration 6 (3:00 am), when two houses change their state. House number
5 reports a lack of energy (state 4 ) and house number 10 changes to state
1 , meaning that team HW’s batteries are down to less than 40% and that
team VT’s house has started producing its own energy. The experimental data
confirms this state change; team VT generated a cumulative power equal to 5
kWh in that period (Fig. 4a). Due to the early sunrise in Dubai (06:05 am),
houses with east-facing solar panels such as VT, VQ and USI started producing
electricity at 06:00 am. These three houses are shown in blue in the simulation
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(a) Electricity generated (EG) (b) Electricity consumed (EC)

(c) Energy sent to the grid (ES) (d) Energy drawn from the grid (ED)

Fig. 4. Electrical data collected by the 15 houses on a typical day during the contest
period (September 18, 2018) (Color figure online)

(Fig. 5e). The other teams covered their power deficit either through the grid
(BXN, CT, HW and UOW) or using batteries (all the remaining teams). For
the next four hours (from 4:00 am to 8:00 am), the loading profile is generally
stable. The supply and demand for battery-equipped teams is well balanced.
The total power consumed during the night is 85 kWh and the total storage
capacity of the battery banks is 102 kWh. The loads of the houses is therefore
satisfied. Additionally, for the three houses without batteries (BX, UOW, VT),
electricity is drawn from the grid. P2P sharing of electricity up to iteration 18
does not yet work, no energy exchange takes place between neighbors due to
general lack of excess energy in the microgrid. At iteration 22 (11:00 am), the
solar radiation on site is greater than 700 w/m2, the cumulative power produced
(EG) varies between 4.5 kWh (AUD team) and 15 kWh (VT team). The power
produced by PV systems is greater than the consumption, so all houses have a
surplus of energy. 8 teams have used this surplus to recharge their batteries and
the rest have fed it into the grid. 60 min later, due to significant variations in
the load, house number 4 (UOS) declares its energy needs as shown in Fig. 5m.
Here we see the CA in action, also according to smart contract conditions a
neighbors with excess energy (NCT) automatically meet these needs and begin
to exchange the requested energy to balance the energy flows. The block is
created after validation of the trasaction. These simulation results are validated
by the actual data presented in Fig. 4a, Fig. 4c and Fig. 4d, in which there is a
significant increase in the amount of electricity produced by photovoltaic panels
and the electrical energy sent to the grid, but the electrical energy drawn from
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(a) i0, 12 am (b) i2, 1 am (c) i4, 2 am (d) i6, 3 am (e) i8, 4 am (f) i10, 5 am

(g) i12, 6 am (h) i14, 7 am (i) i16, 8 am (j) i18, 9 am (k) i20, 10am (l) i22, 11 am

(m) i24, 12 pm (n) i26, 1 pm (o) i28, 2 pm (p) i30, 3 pm (q) i32, 4 pm (r) i34, 5 pm

(s) i36, 6 pm (t) i38, 7 pm (u) i40, 8 pm (v) i42, 9 pm (w) i44, 10 pm (x) i46, 11 pm

Fig. 5. Evolution of the state of cells in the 15 houses on a typical day during the
contest period (September 18, 2018) (Color figure online)

the grid plateaus. The principle of cellular automaton also appears clearly in the
next iterations, in which energy exchange between teams is possible due to the
excess energy available in the microgrid.

5 Conclusion

In this paper, a new model for P2P energy sharing in microgrid is proposed. The
model is based on a cellular automaton approach with a blockchain contracts.
The necessary consensus algorithm between users is obtained by executing the
CA transition function. Simulations illustrating our approach are presented by
an application case. In summary, the model presented in this paper demon-
strates the potential of implementing the CA with Smart Contract to solve
energy management applications. The comparison between simulation results
and experimental data has shown a convergence of supply and demand decisions
towards a state of energy equilibrium.



112 I. Abdennour et al.

Acknowledgments. This work has been supported by MESRSFC and CNRST under
the project PPR2-OGI-Env, reference PPR2/2016/79.

References

1. Ethereum Revision 8dda9521. Solidity, v0.6.3. https://solidity.readthedocs.io/en/
v0.6.3/. 2016–2020

2. Abdennour, I., Ouardouz, M., Bernoussi, A.S.: Peer-to-peer energy sharing using
cellular automata approach. In: Ezziyyani, M. (ed.) AI2SD 2019. LNEE, vol. 624,
pp. 221–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36475-
5 21

3. Albrecht, S.. Reichert, S., Schmid, J., Strüker, J., Neumann, D., Fridgen, G.:
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Abstract. The extinction of ecosystems and the mechanisms that sup-
port or limit species coexistence have long been studied by scientists. It
has been shown that competition and cyclic dominance among species
promote species coexistence, such as in the classic Rock-Paper-Scissors
(RPS) game. However, individuals’ mobility and the underlying topology
that defines the neighbourhood relations between individuals also play
an important role in maintaining biodiversity. Typically, square grids
are used for simulating such interactions. However, these constrain the
individuals’ spatial degrees of freedom. In this work, we investigate the
effect of the underlying topology on the RPS dynamics. For that pur-
pose, we considered networks with varying node degree distributions and
generated according to different theoretical models. We analyzed the
time to the first extinction and the patchiness of the in silico ecosys-
tem over time. In general, we observed a distinct large effect of the net-
work topology on the RPS dynamics. Moreover, leaving regular networks
aside, the probability of extinction is very high for some network models
due to their inherent long-range connections. On the other hand, spatial
arrangements characterized by nearest neighbors interactions have fewer
long-range correlations, which is essential for biodiversity.

Keywords: Non-hierarchical competition · Biodiversity maintenance ·
Network topology

1 Introduction

One of the most intriguing questions for ecologists relates to whether biodiversity
can be maintained in an ecosystem. The mechanisms that support or limit species
coexistence have long been investigated [11,12]. Extinction is related to the loss
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of biodiversity, while it has been shown that competition is one of the mechanisms
that supports biodiversity, particularly when it is intransitive [10], as the case of
cyclic competition. Previous works show that cyclic dominance among species is
one of the factors that promotes their coexistence and contributes to maintaining
biodiversity. Different mathematical models incorporate such cyclic dominance,
among which the rock-paper-scissors (RPS) game is a classic example. The RPS
has a strong background in evolutionary game theory and is widely used as a
model to describe species diversity [8,14,16]. In this model, three species interact
in a non-hierarchical way, so that each species has one predator, and, at the same
time, it preys on another species. Examples of such behavior in nature include
bacterial species [9], coral reefs [3], vertebrates [2], some human decision-making
processes [20], amongst others.

Although very important for maintaining biodiversity, coexistence is not only
supported by cyclic competition. Other mechanisms should also be taken into
account [8,16]. Community evenness and the individuals’ mobility also play
important roles when modeling evolutionary systems. The first is related to the
species distribution, which is often assumed to be uniform [5]. Mobility, on the
other hand, is crucial in different ecosystems and can be driven by demographic
processes that are resource-dependent. For instance, the coexistence of species
can be mediated by their dispersal, but there might exist a critical threshold
mobility above which biodiversity is lost [14,15]. The most common topologies
used to simulate the interactions among species are square grids, which strongly
limit the individuals’ spatial degrees of freedom. To a much lesser extent, graphs
have been considered [11,18,19]. Given that studies show that system dynam-
ics can be affected by the underlying topology [4,13], we investigate how the
structural properties of networks influence the RPS dynamics. For this purpose,
we generated networks using different theoretical models, e.g., random, small-
world, scale-free, and others. We will first introduce the RPS model proposed by
Reichenbach et al. [14], after which we will present some related work concern-
ing RPS on small-world networks. Finally, we will describe our experiments and
present our results.

2 Spatially Explicit Rock-Paper-Scissors Game

The RPS game mimics cyclic competition in which species A (rock) outcompetes
species B (scissors), species B outcompetes species C (paper), and, species C,
in turn, outcompetes species A. A regular grid is mostly used to simulate the
RPS game in space, where it is assumed that local interactions are taking place
only between the nearest neighbors. However, other irregular topologies can,
as well, be used for modeling the RPS game. Figure 1(a) illustrates a network
with N sites that can be either unoccupied or occupied by an individual from
one of three species. Figure 1(b) illustrates the possible interactions between
individuals according to the grid RPS game. Reproduction occurs at a rate μ
when an empty site is occupied by an individual from a neighboring species,
while selection happens at rate α occurs according to the cyclic competition
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Fig. 1. The RPS game. (a) Irregular topology illustrating a possible configuration with
three species and empty sites. (b) RPS transition rules: Selection, reproduction and
exchange occur at rates α, μ and ε, respectively.

scheme. Finally, neighbouring individuals can exchange positions at rate ε. In
this way, local interactions of reproduction and selection take place along with
the migration of individuals. The above interactions can be described by rate
equations that account for the population densities of each species through time.
As such, RPS is a frequency-dependent model [11]. Alternatively, in the contin-
uum limit, the interactions can also be described by partial differential equations
(PDEs) [5,6]. Reichenbach et al. [14,15] describe the same rate equations as com-
plex PDEs, which can give rise to spiral waves. The authors show that the spiral
wavelengths can be associated with critical mobility values, above which the
species co-existence is not possible. For low mobility values, species diversity is
maintained for a longer time due to the fact that reproduction and selection will
occur relatively more frequently. However, when mobility is high, biodiversity is
lost due to the spatial homogenisation.

2.1 Individual-Based Modeling

Individual-based models allow the study of a system by explicitly tracking the
interactions among individuals instead of doing this at population level. Here,
we present a computational method that uses a stochastic individual-based app-
roach for simulating the RPS dynamics. This method was proposed in [14] and
was already employed using regular grids [5,6].

Given a regular grid of size L × L = N , reproduction, selection and mobil-
ity occur at rates μ, α and ε. These processes are implemented according to a
modified version of the Gillespie algorithm [7], which is frequently used for mod-
eling biological and chemical systems. Initially, individuals of the three species
and empty sites are randomly assigned following a uniform distribution. Then,
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Algorithm 1. Gillespie algorithm for simulating RPS dynamics.
1: procedure Gillespie(L, tend)
2: set : μ, α, ε
3: N = L × L
4: t = 0
5: r = μ + α + ε
6:
7: while t �= tend do
8: select site si � randomly draw a site of the grid
9: select a neighboring site sj � randomly draw a neighbor site of si

10: select interaction:
11: reproduction, with probability μ/r
12: selection, with probability α/r
13: exchange, with probability ε/r
14:
15: if interaction is possible then
16: update si and sj accordingly

17:
18: t = t + 1

subsequent steps are carried out according to Algorithm 1. In this algorithm, t
is the time step and r is a normalization factor for drawing the probability of
each interaction. At each time step, a site si of the grid (focal site) and one of
its neighbors sj are drawn at random. Next, an interaction is chosen by drawing
a random number from the interval [0, r], given the following probabilities: μ/r
(reproduction), α/r (selection) and ε/r (migration). If the selected interaction
can occur among individuals in si and sj , then their states are updated in accor-
dance with the RPS rules. This procedure is repeated for t time steps. Due to
the asynchronous update scheme, updates are clustered into generations, which
define the Monte Carlo (MC) steps. One MC step corresponds to the number
of time steps for which, on average, each individual will be selected once for an
interaction event. Here, we chose the grid size (N = L × L) as an MC step.
Reichenbach et al. found that the area explored by one individual per time unit
is M ∼ 2εN−1, which is also referred to as the mobility rate.

2.2 From Regular Grids to Irregular Tessellations

RPS dynamics can be affected by the structure on which the underlying processes
are taking place [11]. Spatial constraints are relevant to real-world problems, such
as biological systems restricted to two-dimensional substrates (e.g. biofilms),
since spatial structures favor the interaction with nearest neighbors and can
be used for modeling different coexistence strategies. However, using graphs for
modeling interactions is more realistic for many real-world systems [11]. Several
works address how small-world topologies can be used for evolving competi-
tion dynamics. Between the uniformity of the regular grids and the randomness
of stochastic networks [21], small-world networks have been used to simulate
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many real-world phenomena. Szabó et al. investigated RPS dynamics on topolo-
gies ranging from regular grids to random graphs [18,19]. They discuss how the
species distribution is affected by the system dynamics using a modified grid for
which connections are rewired but the degree of each site is kept constant, using
a procedure very similar to the transition of a regular to a random network. The
resulting spatio-temporal RPS patterns remain stable when only a few rewiring
steps occur, but species coexistence might be lost. Other works discuss how coex-
istence is maintained as a function of structural changes, individuals’ mobility
or the dispersal rate [1,11,17,22]. Motivated by these works, we investigated the
influence of the network topology on the coexistence of species governed by the
RPS rules.

3 RPS on Networks

When resorting to networks, RPS defines cyclic competition among species A,
B and C that now occupy the nodes of a network. We performed extensive
simulations and analyses to assess how the structural characteristics of the net-
work affect species coexistence, and hence biodiversity, of in silico communities
governed by cyclic relations.

3.1 Experimental Design

We evaluated synthetic networks that were generated according to five theo-
retical network models: random, small-world, scale-free and regular networks.
Similarly to regular grids, the regular networks also have a uniform degree dis-
tribution, but the node arrangement is different. Besides structural differences,
we also consider networks from the same family with a different mean degree 〈k〉
and number of nodes N . The networks considered in our study have 〈k〉 equal
to 4, 6, 8 or 10 and N equal to 400, 900, 1600 or 10000. The species interac-
tions were implemented according to Algorithm 1. The number of Monte Carlo
generations for each simulation is proportional to N . For all simulations we set
μ = α = 1, while mobility M was varied between 10−12 and 10−2. The mobility
is calculated as a function of the exchange rate ε and N , in the same way as for
regular grids (M ∼ 2εN−1). We carried out 50 simulations for each combination
of network model, 〈k〉 and, N , with different initial configurations, which were
defined according to a uniform distribution involving the three species and the
empty sites.

3.2 Results

Probability of Extinction. The probability of extinction reflects the chance
that two species go extinct after a certain time t and is proportional to the grid
size t(N) ∝ N . The number of simulations in which the species went extinct
after a certain time t versus the total number of simulations is the probability of
extinction. In order to calculate this probability, we considered 50 simulations
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Fig. 2. Probability of extinction as a function of mobility for scale-free networks with
N = 400 and N = 1600. Each curve corresponds to a different average degree, 〈k〉.

for each combination of network model, 〈k〉 and N . Figures 2(a) and (b) show
the probability of extinction as a function of mobility M for scale-free networks
with N = 400 and N = 900 for different values of 〈k〉. Irrespective of the
average degree or the network size, we observe that the probability of extinction
is always high, which is in contrast to the regular grid case. This is largely due
to the existence of a few nodes with long range connections in networks with
scale-free degree distributions. A few exceptions occur for networks with low 〈k〉,
which is related to the fact that there are fewer connections in such networks.
This implies a longer time to extinction. Figures 2(c) and (d) show the same
plots for regular networks with the same connectivity and size as the analyzed
scale-free networks. In this case, the probability of extinction is much smaller
for all values of N . Due to the absence of long-range connections, the clustering
coefficient [21] of the network is higher and there are many local interactions,
which is similar as when considering grids. Additionally, as 〈k〉 increases, the
probability of extinction also increases, due to a larger number of connections
that can favor species selection. This is observed for all values of N . RPS on
random, small-world and geographical networks leads to a similar behavior as
on scale-free networks, even when considering very low mobility values. The
probability of extinction is very high in almost all situations.
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Fig. 3. Average time to the first extinction as a function of mobility for scale-free,
random, regular and small-world networks, with N = 1600 and different 〈k〉 values.

Time to the First Extinction. We also analyzed the average time to the first
species extinction. The obtained results are shown in Fig. 3 for different network
models with N = 1600. For computing the average time to the first extinction,
only the simulations in which at least one species went extinct are taken into
account. We can observe in Fig. 3 that the species go extinct faster than one MC
step (N updates), irrespective of N or 〈k〉 for scale-free, random and small-world
networks. In addition, the lower the average node degree, the longer the time to
the first extinction irrespective of the number of nodes and mobility. However,
as N increases, the average time to the first extinction also increases. For higher
mobility values, there is a steep increase of the time to the first extinction, espe-
cially for larger N . This can be explained by the fact that as mobility increases,
exchange events will happen more frequently as compared to competition and
selection events. In the case of small-world networks, the rewiring process from
which they are constructed creates enough long-range connections that speed up
extinction, though they have many short-range connections (high clustering coef-
ficient). Regarding regular networks (Fig. 3(c)), the effect of the average degree
on the time to the first extinction is smaller as compared to the other network
families. Networks with 〈k〉 = 4 also require more time to the first extinction,
since their connectivity is lower. Since regular networks had the lowest probabil-
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Fig. 4. Average cluster size per MC step for scale-free networks with different N
and 〈k〉. Each curve corresponds to a fixed mobility value.

ities of extinction (Figs. 2(c) and (d)), the time to the first extinction for these
networks was averaged over a smaller number of simulations, thereby increasing
the standard deviation.

Patchiness. We also analyzed the patchiness of the evolved patterns. This
measures how closely individuals from the same species are clustered. For this
purpose, we calculated the average cluster size per time step. A cluster is a series
of connected nodes occupied by individuals of the same species. At the beginning
of the simulation, the species are uniformly distributed, so there are many small
clusters. The average cluster size will increase during simulation and how fast this
happens depends on the network family, 〈k〉 and N . Figure 4 shows the average
cluster size as a function of the MC steps for scale-free networks with N = 400
and N = 1600, and 〈k〉 = 4 and 〈k〉 = 8. Each curve in Fig. 4 corresponds
to a fixed mobility value. The higher the value of 〈k〉, the more similar the
curves are across the range of mobility values. Note that the system is already
a monoculture when the average cluster size is equal to N . In addition, when
extinction occurs faster, the maximum cluster size is also reached faster. We also
observe that the time to monoculture is proportional to the system size, N , and,
for a very high mobility, it takes a longer time to extinction (Fig. 3), so more time
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is required for the system to reach the maximum cluster size. In conclusion, for
the scale-free networks, the lower the number of nodes and the lower the values
of 〈k〉, the lower the extinction at the highest mobility values (Fig. 4). Moreover,
increasing 〈k〉 and/or increasing N will result in a faster increase of the cluster
size. The same experiments were carried out for scale-free networks with different
sizes (N = 900 and N = 10000) and different network families. For N = 10000
the effect of high mobility is even more pronounced. The same conclusions also
hold for random and small-world networks. For regular networks, the average
cluster size increases smoothly. In this case, the probability of extinction is very
low and although the average cluster size increases over time, in most of the
simulations, it does not reach the maximum size. Consequently, the clusters
grow in size which means that individuals belonging to the same species tend
to group together more. This situation corresponds to an increase of the spiral
wavelengths for the grid case, as discussed in Sect. 2.1.

4 Conclusion

In general, for the different network families analyzed in this work, we observed
a considerable influence of the topology on the RPS dynamics. Likewise, except
for regular networks, the probability of extinction is very high for the different
network families and network configurations, due to their long-range connec-
tions. In most experiments the time to the first extinction is shorter than one
MC step. As in the grid-based RPS, we observed a similar spatial clustering of
species before extinction. As the system evolves, the species are arranged in larger
clusters. Additionally, based on these extensive simulations and corroborating
preliminary studies, we conclude that not only the mobility of the species has an
important impact on the evolved dynamics, but also their connectedness. Spatial
arrangements restricted to nearest neighbors interactions have fewer long-range
correlations, and therefore favor biodiversity. Meanwhile, random or scale-free
networks did not promote species diversity, with a short time to first extinction.
For small-world networks, biodiversity depends on the rewiring probability used
to generate such networks. Still, rewiring just a few links is enough to introduce
long-range connections and therefore threaten biodiversity. Regular networks are
closer to the grid case. The probability of extinction for regular networks is lower
than on a grid, even for higher mobility. In general, for random, scale-free and
small-world networks, the lower the degree (〈k〉), the longer the time to first
extinction, irrespective of the number of nodes and mobility. In addition, the
higher the number of nodes, the longer the time to the first extinction at high
mobility.
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Abstract. In this work, we consider the control problem for a phe-
nomenon modeled by Cellular Automata (CA) through actuators and
attributes. To achieve this, we introduce what we called attributes and
the adaptation of the definition of actuators to the CA in connection with
attributes. The proposed control is then given through the attributes and
not directly on the state of the system, as was the case in previous works
like for the additive (elementary) CA. To illustrate our approach, we
consider the fire forest control problem in the 3D cellular automata.

Keywords: Actuators · Attributes · Controllability · 3D Cellular
automata · Fire forest

1 Introduction

Environmental problems have attracted the attention of the scientific commu-
nity in recent decades. Among these problems are those of forest fires. Various
studies and models have been carried out, mainly by ecologists or biologists to
understand the nature of these phenomena and to highlight the factors involved.

To better understand these dynamic systems and their evolution, above all
to better control them, some concepts have been introduced in the framework of
systems theory. Among these concepts, those of controllability and observability
have been widely studied [1,2]. To link these abstract concepts to the application,
the notions of sensors, actuators and strategic actuators have been introduced
[3,4].

In recent decades, systems theory has contributed to the development of Cel-
lular Automata (CA) as a particular discrete system [5–7]. Since then, their com-
putational efficiency, simplicity of implementation and relevance to the realities
of complex macroscopic systems have made them attractive modeling tools. CA
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are becoming increasingly popular and represent a good alternative to PDE for
modeling, analysis, and control of complex and heterogeneous systems, including
natural behavioral systems described in terms of the local interactions of their
components [8]. The work of El Yacoubi and El Jai [9,10] in early 2000 considers
the basis for the controllability of CA. They deal with the cases of particular
CA such as additive CA or boolean one in 1D and 2D [11,12].

In this work we propose an approach to control CA-modelled dynamic sys-
tems using actuators and attributes. Specifically, we defined an attribute as a
spatial characteristic that influences the dynamic behavior of the system. While
actuators are the intermediaries between a system and its environment, they
serve to excite the system, which leads us to study the notion of controllability
via its structures. We propose a control function that aims to minimize the nor-
malized Hamming distance between the end state and the desired state of the
CA by using actuators to excite the attributes of space. Moreover, we consider
as an application case the control of local forest fires, modeled by a 3D AC,
and we simulate two different control strategies: one in which the actuators sup-
port is chosen arbitrarily, while in the second, it is defined only in the burning
cells and their neighborhood. The results are then compared to an uncontrolled
simulation of the same system, where no actuator is applied and the forest fire
evolves without constraint. For the simulations, we use a 3D LIDAR scanner for
spatial data. This document is organized as follows. We start with a recall of the
CA description in the 3D case and we define the attributes. We present, then
the adaptation of the control and actuator definition via attributes. Simulations
results are given later to illustrate our approach using a developed simulator.

2 3D Cellular Automata (3D-CA): Generalities

A cellular automaton is defined by the quadruple

A = (L,N ,S, f). (1)

Where

– L is the lattice. In the three-dimensional case L = {ci,j,k; i, j, k ∈ Z}.
– N (c) is the neighborhood. The DnQm model is used to classify the different

choices of lattice and neighborhood. Where n is the dimension of lattice and
m is the number of neighborhood cells (Fig. 1).

– S is the states set : S = {s1, s2, . . . , sn}; n ∈ N.
– f is the local transition rule. f calculates the state of a c cell based on the

state of its neighborhood.

In the following section we define the attribute structure and its relationship
with the local transition rules.
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3 The Attributes

The quality of a model depends closely on how accurately this later describes
the observed phenomena. Hence the interest of CA, not only in describing the
system’s evolution through a local view but also in their capacity to consider
space heterogeneity, in relation to the properties or attributes that character-
ize the space. Here an attribute represents a static or dynamic property that
characterizes a cell according to the considered phenomenon.

(a) D3Q7 (b) D3Q27 (c) D3Q9 (d) D3Q21

Fig. 1. Neighborhoods examples in cubic and hexagonal 3D geometry cells

Definition 1 (Attribute)

– For a given phenomenon the set attributes is the set of all space characteris-
tics, σi, that influence the system’s evolution.

A = {σ1, · · · , σm} (2)

– The Attribute function is a map that associates to each cell of the lattice at
an instant tτ , a value in a bounded set Fσ that constitutes the value of the
property.

σ : L × I → Fσ

(c, tτ ) �→ σtτ (c) . (3)

with I = {t0, · · · , tN}.
– The attribute set values associated to L at time tτ is defined by:

Atτ
(L) =

⋃

c∈L
Atτ

(c). (4)

Internal transformations are defined as the change in values between
attributes and state.

Definition 2 (Internal transformations)
Configuration and attributes have a mutual influence on the cell. Φ is the map
that represents the interaction between the configuration and attributes in c at
the time tτ defined by:

Φ : S × Atτ
(L) → S × Atτ

(L)
(stτ

,Atτ
) �→ Φ(stτ

,Atτ
) . (5)
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During the evolution, the values of the attributes, in a given cell, can change
depending on the state of the cell and the neighboring cells states and attributes.
For example, in the case of forest fire modeling, the air humidity in the cell
depends on the air humidity and the state of the neighborhood.

Definition 3
The local transition function determines the state and attribute values at instant
tτ+1 of the cell from the state and values of the neighborhood attributes at instant
tτ .

f (stτ
◦ N ,Atτ

◦ N ) (c) = (stτ+1 ,Atτ+1)(c). (6)

This leads to the following representation of the global dynamics:
{

(stτ+1 ,Atτ+1) = F (stτ
,Atτ

)
(st0 ,At0)

(7)

4 Controllability via Actuators

Controllability of a given systems consists in being able to bring the system from
each initial state to any desired state at the end of a given time horizon. For
a CA A and a given configuration defined on a non-empty region ω of L (L is
finite), we define a normalized Hamming distance dω on the configuration space
Sω by:

dω(s1, s2) =
card{c ∈ ω : s1(c) �= s2(c)}

card(ω)
. (8)

For a CA A, the control u is a function defined by:

u : L × I → U
(c, tτ ) → utτ

(c) . (9)

where U is the set of values taken by the control u.

Definition 4
During an interval of time I = {t0, · · · , tN}, for any initial configuration st0 and
for any desired configuration sd. Let’s be a control u and a tolerance ε > 0:
It is said that A is controllable if dL(stN

, sd) = 0.
It is said that A is weakly controllable if dL(stN

, sd) < ε.
It is said that A is ω-controllable if dω(stN

, sd) = 0.
It is said that A is weakly ω-controllable if dω(stN

, sd) < ε.

4.1 Controllability and Actuators

The introduction of the actuators forms an important link between a system
and its environment. They have an active role and are used to control the sys-
tem. Their structure depends on the geometry, the location of the support, and
the spatial distribution of the action. The notion of controllability can be then
studied through actuators [13]. Indeed, in our environmental phenomenon case,
we suit the actuators definition to the CA systems considering the attributes of
each cell. For example, in the case of forest fires, the fire spread can be controlled
by removing fuel or increase the vegetation humidity.



Actuators for 3D CA Control of Fire 127

Definition 5 (Actuator)
We call zone actuator for a CA A with a set of attributes A, the couple (D, g)
where:

– D =
p⋃

i=1

ci is the actuator support such that ci ∈ L
– g defines the spatial distribution and intensity of the action on the cell

attributes c in D

g : Atτ
(D) → A(D)

Atτ
(c) → g (Atτ

(c)) = (g1(σtτ
1 (c)), · · · , gm(σtτ

m (c)))

with gi being the intensity applied to the attribute σtτ
i .

Remark 1

– A uni-cell actuator is the actuator applied on a single cell, it is defined by a
couple (c, gc)

– A boundary zone actuator (D, g) is the actuator applied on a boundary of L
(∂L), such that D ⊂ ∂L.

– For multiple actuators, we denote (Di, gi)1�i�q the sequence of q actuators
exciting the system.

Definition 6
Let A be a CA with a set of attributes A and (D, g) a zone actuator. We consider
that the control as the function u which represents the actions that excite the cell
attributes c in D.

u : D × I → A(D)
(c, tτ ) → utτ

(c) = (σutτ
1 (c), · · · , σ

utτ
m (c)) . (10)

with σ
utτ
i is the function-attribute σi excited by the action u at instant tτ .

The action on the attributes of the cell at a given instant has implications
on the configuration and attributes of its neighborhood at the next instant.

Notation 1

– A controlled CA can be defined locally by :

Au =
(
(L,N ,S, f), (D, g, u)

)
. (11)

– A controlled CA can be globally defined by the following state equation :
{

stτ+1 = F (stτ
,Au

tτ
) with Au

tτ
= {1

D
gi(σ

utτ
i ) + 1L\D

σtτ
i }1�i�m

s0 ∈ S (12)

with 1
D

(c) =
{

1 if c ∈ D
0 else

.

Figure 2 summarizes our approach of controllability through actuators and
attributes. It illustrates how the application of an actuator to the support D
influences the AC configuration in the following moments.
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Fig. 2. Illustration of CA controllability based on attributes

5 Case Study: Forest Fire Control

We propose at the local scale a 3D model of forest fires distributed over a given
area. The area can contain a heterogeneous set of spatial characteristics. We
are mainly interested in studying the influence of these characteristics on fire
evolution. The input data comes from the segmentation of 3D LIDAR scanner
of an area in the Faculty of Science and Technology of Tangier, Morocco. The
cell space contains three classes of cells representing vegetation, air, and subsoil.
Below is a description of our model.

5.1 Lattice and Neighborhood

The lattice consists of 3D hexagonal cells ci,j,k with centered coordinates i, j, k
representing a portion of the soil, vegetation or air (Fig. 3). For the neighborhood
we consider the model D3Q21 shown in Fig. 1d.

Fig. 3. Illustration of the cell lattice of the study area with a 3D hexagonal cell type

5.2 State Set

At a time tτ , the cell state is given by the absence or existence of fire in the cell.
The state set considered is:

State0 ≡ unflamable cell
State1 ≡ cell without fire
State2 ≡ cell on fire
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5.3 Attributes

Each cell is associated with a set of attributes that can be static or dynamic.
Atτ

= {δ, βtτ
,Htτ

,Hin
tτ

, Θ, λtτ
, Γtτ

, �tτ
, φtτ

, Ptτ
, btτ

}. In Table 1 are shown the
attributes details:

Table 1. Attribute-Function considered in this model

Cell classification δ : L �→ {0, 1, 2} {air, fuel, soil}
Packing Ratio of the plant species βtτ : L �→ [0, 1]

Air humidity Htτ : L �→ [0, 1]

Vegetation humidity Hin
tτ

: L �→ [0, 1]

The topographic slope Θ : L �→ [− π
2

, π
2

]n
Θ(c) = (θ[1](c), · · · , θ[n](c))

Thermal conductivity λtτ : L �→ [0, 1]

Inflammation rate Γtτ : L �→ [0, 1]

Ignition catalyst �tτ : L �→ {0, 1} {without catalyst, with catalyst}
Porosity φtτ : L �→ [0, 1] φtτ (c) = 1 − βtτ (c)

Slope factor Ptτ : L �→ Rn P
[i]
tτ

(c) = 5.275βtτ (c)
−3 tan2(θi(c))

Radiative conductivity btτ : L �→ R+ σnεr,tτ ϕ

5.4 Local Transition Rules

We consider three processes for the local transition rules: the first defines the
neighborhood effect on a cell, while the second represents the cell feedback and
the third is the cell effect on its neighborhood. The evolution of A is identified
as the mutual action between three processes:

f ≡ reception ⊕ feedback ⊕ exportation (13)

where the symbol ⊕ refers to mutual action.

Fire Reception:

F
[i]
tτ+1

(c) =
(
P

[i]
tτ

(c)ν[κi]
tτ

(ci) + λtτ
(ci) + btτ

(ci)
)
1{stτ (ci)=2} (14)

with ci in N (c) at direction i, κi the opposite direction of i, ν
[κi]
tτ

(ci) the wind
speed at direction κi.

Inflammation Rate: Γtτ+1 = Γtτ
(1 − φtτ

1{∑n
i=1 F

[i]
tτ

(c)>0})



130 M. Byari et al.

Conditions for State Evolution:

stτ
(c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if δ(c) = 0

1 if

[
n∑

i=1

F
[i]
tτ

(c) = 0
]

or

[
n∑

i=1

F
[i]
tτ

(c) > 0 and Rtτ
(c) > 0.5

]

or [�tτ
= 1 and Rtτ

(c) > 0.1]

2 else if

[
n∑

i=1

F
[i]
tτ

(c) > 0
]

and [Γtτ
(c) > 0 ]

(15)
where Rtτ

(c) represents the fire resistance of a cell c at instant tτ , defined
by:

Rtτ
(c) = βtτ

min((Htτ
(c) + Hint

tτ
(c)), 1). (16)

5.5 Simulation of the Autonomous System

In the initial configuration, we consider the burning cells in red (Fig. 4a). For
the cells representing air (δ(c) = 0) the humidity is 60%. For the cells repre-
senting vegetation (δ(c) = 1), the humidity depends on the color and type of
vegetation. Boundary conditions are fixed. At every instant t, the air cells at the
boundaries of the space receive wind. The time step is t = 5 min. Figure 2 shows
an uncontrolled simulation.

(a) iteration 1 (b) iteration 40

(c) iteration 125 (d) iteration 260

Fig. 4. Uncontrolled fire spread simulation. (Color figure online)

5.6 Simulation of the Controlled System

Control is one of the best strategies to fight forest fires as Canadair to discharge
water and fire retardants. In our case, they are represented by the control u. D
is the set of cells subject to u and g the intensity of humidity in each cell c in D.
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For the dynamics of water discharges, we add rules defining the water prop-
agation taking into account the effects of wind and space obstacles. The aim is
to increase the air humidity values and the vegetation humidity values.

To apply the control, we look to modify the value of the fire resistance Rtτ
(c)

of the cell c in relation 16 to avoid the ignition conditions quoted in relation 15.
Indeed, the increase of air humidity H and vegetation humidity Hint makes
Rtτ

(c) greater. We simulated, in the same time conditions, two choices of zone
actuators to control the fire spread. In the first actuator we choose the support
D1 as a set of cells arbitrarily distributed in the lattice with a density 50%.
With an intensity g1 represents the increase of humidity by 75%. For the second
actuator the support D2 is chosen as a set of cells in fire or in the neighborhood
of fire. With an intensity g2 represents the increase of humidity by 95% (Fig. 6).

Actuator

(a) Zone actuator applied (b) Zone actuator effect on fire

Fig. 5. Application example of the zone actuator represented by the water discharge.
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Fig. 6. Example of application of different zone actuator choices represented by the
water discharge.

Figure 6 shows the impact of actuator choice on the controllability of the
system. It clear is that the choice of the support and the intensity of the action
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impacts considerably the number of burned cells. Each graph illustrates the
impact of actuator choice on the evolution of the burning or burned cells.

We can see from (Fig. 6) that the strategy where the control is chosen arbi-
trarily is more effective than the strategy where it is defined according to the
location of the fire. This result is due to the number of cells to which we add
humidity (50% of the lattice). In fact, the first control strategy makes it difficult
to transfer the flames from a cell to another. Meanwhile, in the second strategy
of control that is applied to the fireplace, the number of burnt cells decreases
very strongly and immediately. However, it is later increased because the cells
that are not extinguished spread the fire to the others that remain vulnerable.

6 Conclusion

In this paper, we have considered the controllability of dynamic systems modeled
by a 3D CA via the structure of actuators and attributes. We focused on CA
models where space is heterogeneous. The developed control acts by modifying
the structure of the space to reach the desired state of the system. To illustrate
our approach we applied these control to simulate forest fire spreadability using
3D CA. A software framework was developed to simulate the forest fire dynamics
between cells. The physical data of the study area were collected from a 3D
LIDAR scanner. In perspective, this model will be coupled with other CA models
of near-ground wind flows at different modeling scales. We plan also to apply
the optimization procedure proposed in [14] to calibrate the availability of fire
process information and the optimization of a large number of attributes. We
will also study and apply systems theory concepts such that spreadability and
vulnerability based on attributes to optimally manage forest areas.

Acknowledgments. This work has been supported by MESRSFC and CNRST under
the project PPR2-OGI-Env, reference PPR2/2016/79.
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Abstract. We consider a multi-agent system composed of the second-
order nonuniform Cellular Automata (CA)–based agents, where a spatial
Prisoner’s Dilemma (PD) game describes the interaction between agents.
Each agent has some strategy that can change in time and acts in such a
way to maximize its income. We intend to study conditions of emergence
of collective behavior in such systems measured by the average total
payoff of a team of agents in the game or by an equivalent measure – the
total number of cooperating players. While the emergence of collective
behavior depends on many parameters, we introduce to the game an
income sharing mechanism, giving a possibility to share incomes locally
by agents wishing to do it. We present results showing that under some
conditions, the introduced mechanism can significantly increase the level
of collective behavior.

Keywords: Collective behavior · Income sharing · Multi-agent
systems · Spatial Prisoner’s Dilemma game · Second–order cellular
automata

1 Introduction

Cellular Automata (CA) (see, e.g., [16]) and Learning Automata (LA) [15] are
two prominent classes of abstract machines which have features of collective
behavior. Closer analysis of this notion in the context of these machines reveals
that it is understood differently. According to the classification [2,9] of types of
collective behavior in the context of multi-agent systems, CA can be described
as spatially-organizing systems, where agents have a little interaction with an
environment but they coordinate themselves to achieve a desired spatial forma-
tion, while LA is characterized by collective exploration, where agents interact
a little between themselves but interact with an environment to achieve some
goal.

In other words, one of the main differences is that LA is able to learn and
adapt in an environment while CA is typically oriented on the other types of
c© Springer Nature Switzerland AG 2021
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activities. Only recently, the question of potential adaptability of CA by changing
CA rules while running the system has appeared in the context of the so-called
“the second-order CA” [5].

Their idea assumes that a rule for a given cell can be selected and copied
from a neighborhood and then executed determining this way the next cell state.
(Note that this notion appeared first [14] in the context of reversible CA with
another definition, saying that the next state of a cell depends on the current
and the previous states).

In this paper, we will consider a multi-agent nonuniform the second-order
CA-based system where interaction between players is described in terms of non-
cooperative game theory [7] with use of the Spatial Prisoner’s Dilemma (SPD)
game. We will expect a global collective behavior measured by a total number
of cooperating players, i.e., an ability to maximize the average total payoff of all
agents of the system.

The phenomenon of emerging cooperation in systems described by the SPD
game has been a subject of current studies [3,4,8,11] which show that it depends
on many factors such as payoff parameters, the type of learning agent, the way
of interaction between agents. In this paper, we introduce a new mechanism of
interaction between players, based on a possibility of a local income sharing by
agents participating in the game, and we show a significant influence of this
mechanism on emerging global cooperation. To our knowledge, it is the first
attempt to apply this mechanism in CA-based SPD games. It is worth noting
that the SPD game belongs to a class of game-theoretic models that include the
Public Goods Game [1] and the Ultimatum Game [13].

The structure of the paper is the following. In the next section SPD game is
presented. Section 3 contains a description of the CA-based multi-agent system
acting in the SPD game environment. Section 4 presents a basic mechanism
of the game, including income sharing. Section 5 presents some results of the
experimental study, and the last section concludes the paper.

2 Iterated Spatial Prisoner’s Dilemma Game

We consider a 2D spatial array of size n×m. We assume that a cell (i, j) will be
considered as an agent–player participating in the SPD game [5,6]. We assume
that a neighborhood of a given player is defined in some way. Players from
this neighborhood will be considered as his opponents in the game. At a given
discrete moment of time, each cell can be in one of two states: C or D. The
state of a given cell will be considered as an action C (cooperate) or D (defect)
of the corresponding player against an opponent player from his neighborhood.
The payoff function of the game is given in Table 1.

Each player playing a game with an opponent in a single round (iteration)
receives a payoff equal to R, T , S or P , where T > R > P > S. We assume that
R = 1, S = 0, T = b and P = a (b > 1 > a > 0). In experiments we will use
b = 1.2 and values of a will vary depending on the purpose of an experiment.

If a player takes action C and the opponent also takes action C, then the
player receives payoff R = 1. If a player takes action D and the opponent player
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Table 1. Payoff function of a row player participating in SPD game.

Player’s Action Opponent’s Action

Cooperate (C) Defect (D)

Cooperate (C) R = 1 S = 0

Defect (D) T = b P = a

keeps the action C, the defecting player receives payoff T = b. If a player takes
action C while the opponent takes action D, the cooperating player receives
payoff S = 0. When both players use the action D, then both of them receive
payoff P = a.

It is worth to notice that choosing by all players the action D corresponds to
the Nash equilibrium point [7] and it is considered as a solution of the one–shot
game. Indeed, if all players select the action D, each of them receives a payoff
equal to a, and there is no reason for any of them to change the action to C
while the others keep their actions unchanged, what would result in decreasing
his payoff to value 0.

The average total payoff (ATP) of all players in the Nash equilibrium point
is also equal to a. Looking from the point of view of players’ global collective
behavior, this ATP of all players is low. We would instead expect to choose by all
players the action C, which provides the highest value of ATP of all players equal
to 1. For this instance of the game, it is the maximal value of a possible average
total payoff of all players, and it will be achieved when all players decide to select
the action C. We are interested in studying conditions when such behavior of
players in iterated games is possible.

3 CA–Based Players

Cells (i, j) of the 2D array are considered as CA–based players. It is assumed
that at a given discrete moment of time t, each cell is either in state D or C. The
value of the state is used by CA–based player as an action with an opponent
player. For each cell, a local neighborhood is defined. We apply a cyclic boundary
condition in order to avoid irregular behavior at the borders. We will assume the
Moore neighborhood with eight immediate neighbors. It means that each player
has eight opponents in the game.

In discrete moments, CA–based players will select new actions according to
local rules (also called strategies or transition functions) assigned to them, which
will change the states of the corresponding cells. We will be using some number
of rules among which one of them will be initially randomly assigned to each CA
cell, so we deal with nonuniform CA.

To each cell one of the following rules: all–C (always cooperate), all–D
(always defect), k–D (cooperate until the number of defecting neighbors does
not exceed the value of k, defect otherwise), and pC (cooperate with probability
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pC) can be assigned. If we use only the first three strategies, we will call it the
basic set. We will refer to an extended set of strategies if we use all four of them.

4 Competition and Income Sharing Mechanisms

To study the possibility of the emergence of the global collective behavior of CA-
based players, we will introduce some local mechanisms of interaction between
players.

The first mechanism is a competition that is based on the idea proposed in
[6]. Each player associated with a given cell plays in a single round a game with
each of his neighbors, and this way collects some total score. If the competition
mechanism is turned on, after a q number of rounds (iterations), each agent
compares its total payoff with the total payoffs of its neighbors. If a more suc-
cessful player exists in the neighborhood, it replaces their own rule by the most
successful one. This mechanism converts a classical CA into the second–order
CA, which can adapt in time.

The second mechanism, called income sharing mechanism (ISM), which we
propose, provides a possibility of sharing payoffs by players. Some hard local
sharing was successfully used [10] in the context of LA games. Here we will be
using a soft version of sharing, where a player decides to use it or not. It is
assumed that each player has a tag indicating whether he wishes (on) or not
(off ) to share his payoff with players from the neighborhood who also wish to
share. The sharing works in such a way that if two players both wish to share,
they receive half of the payoff from the sum. Before starting the iterated game,
each player turns on its tag with a predefined probability pshar. Due to the
competition mechanism, rules with tags containing information about willing
to share incomes can be potentially spread or dismissed during the system’s
evolution.

5 Experimental Results

A 2D array of the size 50 × 50 was used, with an initial state C or D (player
actions) of each cell set with a probability of 0.5. In experiments with the basic
set of strategies, each of them was assigned initially to CA cells with probability
0.333, and when the extended set of strategies was used, each of them was
assigned with probability 0.25. To an agent with the rule k–D, a value k randomly
selected from the range (0 .. 7) was assigned. Updating rules assigned to agents
by the competition mechanism was conducted after each iteration (q = 1). The
results presented below were averaged on the base of 10 runs. Each run lasted
from 50 to 200 iterations, depending on the experiment. The experiments have
been conducted with a recently developed simulator presented in [12].
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Fig. 1. The behavior of players with the basic set of strategies: the fraction of coop-
erating agents/average payoff of players in games without ISM (upper), the fraction
of cooperating agents in games with ISM (middle), and the final fraction of agents
wishing to share income in games with ISM (lower). (Color figure online)

5.1 Experiments with the Basic Set of Strategies

Figure 1 shows the results of the first set of experiments with the basic set of
strategies. Figure 1 (upper) presents results for games without ISM. One can see
that for the range of 0 ≤ a ≤ 0.25 the number of cooperating agents (in red) is
close to 82%. It drops to 22% for a = 0.3 and continues decreasing to 0 with the
increase of a. Corresponding ATP (in blue) behaves similarly for 0 ≤ a ≤ 0.3 but
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for greater values of a it starts to increase. At first glance, this behavior seems
to be unexpected. We can see that a high level of agent cooperation observed for
small values of a results in a high ATP level. However, a high level of defection
observed for increasing values of a also provides relatively good ATP. Closer
analysis shows that players’ behavior depends on a relation between the value of
b and the value of a, which defines ATP in a Nash equilibrium point. When the
difference between b and a is relatively high (for a ≤ 0.25), cooperation brings a
much higher payoff for a single player than defecting. However, when the value
of a increases and becomes closer to the value of b (for a > 0.3), defecting
becomes more attractive for a single player. When they all defect being in the
Nash equilibrium point, their payoff becomes equal to a. When a is relatively
large, this equilibrium becomes some trap from which it is difficult to jump out.
While the level of cooperation and ATP are closely related issues, we will focus
in this study on this first issue.

Figure 1 (middle) shows averaged results for games with ISM. It shows how
the level of cooperation depends on an initial fraction of agents wishing to share
(AWS) their incomes with neighbors. This fraction changes from 0 (sharing is off,
reference plot in red) to 0.8 and is set by the value of parameter pshar. One can see
that for small values of a ≤ 0.25, ISM can improve the level of cooperation only
slightly, a few percent. However, the situation significantly changes for values of
a ≥ 0.3. We can see that the increase in the level of cooperation under a given
value of a depends proportionally on the value of pshar. For a = 0.3 the level
of cooperation is equal to 0.22 when sharing is off. However, when it is on, the
cooperation level increases to 0.26 for pshar = 0.2 (in violet) and reaches 0.81
(increase on 59%) for pshar = 0.8 (in blue). We can observe also the significant
improving of the cooperation level under ISM for a wide spectrum of larger
values of a.

Figure 1 (lower) gives some insight into the process of changing final fractions
of AWS as a function of an initial fraction of AWS and a. One can see that for the
range 0 ≤ a ≤ 0.35, the final fraction of AWS slightly decreases for a given initial
fraction of AWS. Let us see, e.g., the plot (in green) corresponding to pshar = 0.4,
i.e., when around 40% of players start to share income at the beginning of the
game. For a = 0.1, the game ends with the average final fraction of AWS equal
to 0.37, and for values of a equal to 0.2 and 0.3, the corresponding values of final
fractions of AWS are equal to 0.17 and 0.24, respectively. However, for a = 0.4
the final fraction of AWS jumps to 0.58 to fall down again when a = 0.43. We
can see that for a > 0.3, some dynamic process starts and is related to taking
local decisions by players to choose either cooperation or defecting and staying
at the Nash equilibrium point. We can notice some specific values of a where the
number of agents sharing income strongly increases (see, a = 0.4, 0.45, 0.55) or
strongly decreases (see, a = 0.43, 0.5) to a narrow area of values, independently
on an initial value of pshar. These are specific phase transition points that visually
look like some “convex lense”.

Figures 2 and 3 inspect behavior of players in one of these specific points
corresponding to a = 0.43 showing spatial diagrams for a single run of the game
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Fig. 2. Spatial diagrams for the game with basic set of strategies and ISM (a = 0.43):
distribution of agents wishing to share income (in red) (left), and distribution of agents
with strategies all−C (in red), all−D (in blue) and k −D (in green) (right). (Color
figure online)

Fig. 3. Spatial diagrams for the game with basic set of strategies and ISM (a = 0.43):
distribution of agents with variants of k −D strategy (spectrum of yellow) (left), and
distribution of CA cell states C (in red), D (in blue) (right). (Color figure online)

in the iteration 147. Figure 2 (left) shows spatial distribution of AWS and Fig. 2
(right) spatial distribution of agents’ strategies. Figure 3 (left) presents spatial
distribution of k–D strategies only, and Fig. 3 (right) the spatial distribution
of the cells’ states. This spatial distribution of cells’ states is formed already in
the iteration 10 and remains unchanged during the next iterations. The spatial
distribution shown in Figs. 2 (left) partially stabilizes at the iteration 24, and
the remaining two spatial distributions partially stabilize at the iteration 36. It
means that in some regions of these distributions, some dynamic activities start,
which can be described in terms of Artificial Life. Starting from the iteration 24
the group of AWS (see, (Fig. 2 (left)) located at upper-right corner behaves as a
gun (in the circle) sending after each four iteration-steps rectangular “blocks of
AW” to “the block of AW” located at the bottom-right corner of the diagram.
Starting from the iteration, 36 five groups of agents’ applying all–D strategy (in
blue) and located on the right side of the diagram behave as guns (in circles)
sending after every 4 iterations rectangular or quadratic blocks of all-D strate-
gies. We can notice a similar behavior in the diagram with a spatial distribution
of k–D strategies.
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5.2 Experiments with the Extended Set of Strategies

Figure 4 shows the results of experiments with the extended set of strategies
when the strategy pC was added to the basic set of available strategies. Figure 4
(upper) shows how a number of cooperating players depend on parameters a and
the probability pC of cooperation of a player acting as a stochastic automaton
in games without ISM. The figure shows several plots presenting fractions of
cooperating players for different values of pC . The plot with pC = 0 (in blue)
serves as a reference for the results. We can see two regions related to values of
a for the behavior of players: the first one for a ≤ 0.3 and the second one for
a > 0.3. The behavior of players under a given value of pC depends on the region
of a, except for the value of pC = 0.5 (in orange).

When pC ≥ 0.5, all players quickly accept the strategy pC as the most
profitable at the whole range of a, and the strategy eliminates all remaining
strategies. The frequency of cooperating agents becomes equal to the value of pC .
Values of pC lower than 0.5 results for a ≤ 0.3 in establishing some equilibrium
between all strategies and corresponding values of fractions of cooperating agents
are greater than 0.5. We can observe the maximum number of cooperating agents
for pC = 0.1 (in red) with the fraction of cooperation in the range (0.83,...,0.88)
and this value is slightly greater than in the case when pC = 0 (see, reference
plot in blue) with the fraction of cooperation in the range (0.82,...,0.84). It is
also worth to notice that the border of the phenomenon of cooperation is shifted
from a = 0.25 (in games without pC) to a = 0.3 in games with pC.

In games for a > 0.3 we can observe the process of elimination by the strategy
pC remaining strategies used by the population of agents. This process depends
on the value of a. For games with pC = 0.4 this process takes place starting from
a = 0.35 (in black), for pC = 0.3 from a = 0.4 (in green) and with pC = 0.1 from
a = 0.7. Only the strategy pC with pC = 0.1 is not aggressive in the relation to
other strategies for the whole range of a and is an efficient component of building
high level of cooperation, therefore it will be used in the next experiments.

Figure 4 (middle) shows results of experiments when both the strategy pC
with pC = 0.1 and ISM are used. We can see two reference plots: a plot showing
the level of cooperation of the game without ISM and with the strategy pC with
pC = 0 (in blue) and the level of cooperation without ISM but with the strategy
pC with pC = 0.1 (in red). The experiments were conducted for the range 0.1 ≤
pshar ≤ 0.8. We can see that for a ≤ 0.3 the fraction of cooperation achieves
the highest values seen until now from the range (0.85,...,0.92). These values do
not significantly depend on pshar and also are close to the reference values up to
a = 0.25. The increasing of the fraction of cooperation of agents starts from
a = 0.3 and at this point reaches near 72%. For larger value of a the increase
is lower and proportional to pshar. For subsequent values of a = 0.35, 0.4, 0.45
and pshar = 0.8 the increase of cooperation is measured by 59%, 46% and 24%,
respectively.

Figure 4 (lower) shows how the final fraction of AWS depends on the value
of a. We can notice some similarities with results presented for the basic set
of strategies (see, Fig. 1 (lower)) for values a ≤ 0.4. At a = 0.4, the final
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Fig. 4. Games with the extended set of strategies: the fraction of cooperating agents
in games without ISM (upper), the fraction of cooperating agents in games with ISM
(middle), and the final fraction of agents wishing to share income in games with ISM
(lower). (Color figure online)

fraction of AWS is reduced to the fraction from the narrow range (0.21,...,0.27)
independently on the value of the initial fraction of AWS. There is only one such
“lens”, after which the final fractions of AWS approach 0 when a is increasing.

Figure 5 (upper) presents some details of the game conducted during 200
iterations with parameters corresponding to the “lens” with the initial value
of AWS equal to 0.4. One can see changes during the game of frequencies of
strategies all–C (in red), all–D (in blue), k–D (in green), pC (in orange) and
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Fig. 5. Games with the extended set of strategies and ISM (b = 1.2, a = 0.4): frequency
of strategies during the iterated game (upper), fractions of players wishing to share
income during the iterated game (lower). (Color figure online)

the fraction of AWS (in violet). We can see that two strategies all–C and pC
are dominating in the game. At the beginning of the game, the strategy pC
increases its frequency. The strategy all–C is strongly suppressed, but after some
iterations, it starts to increase its frequency slowly to overcome the frequency
of pC finally. Finally, we can see some equilibrium between both strategies with
some slight domination of all–C. The value close to a = 0.4 is a border value
where both strategies achieve near the equal frequency. For values of a below
this border, the dominating strategy becomes all–C, and for values of a higher
this border, the dominating strategy becomes pC. Figure 5 (lower) shows the
behavior of the fraction of AWS for the initial value of AWS equal to 0.4 for
values of a below and above its border value.

Figures 6 and 7 show diagrams of spatial distributions of AWS, all strategies,
strategies k–D and CA states for a typical experiment presented in Fig. 5 (upper).
In particular one can see (Fig. 6 (right)) how looks a spatial equilibrium between
strategies all–C (in red) and pC (in orange).
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Fig. 6. Spatial diagrams for the game with extended set of strategies and ISM (a =
0.40): distribution of agents wishing to share income (in red) (left), and distribution of
agents with strategies all − C (in red), all−D (in blue), k −D (in green) and pC (in
orange) (right). (Color figure online)

Fig. 7. Spatial diagrams for the game with extended set of strategies and ISM (a =
0.40): distribution of agents with variants of k−D strategy (spectrum of orange) (left),
and distribution of CA cell states C (in red), D (in blue) (right). (Color figure online)

6 Conclusions

In this paper, we have studied the conditions of emerging cooperation in a CA-
based multi-agent system with agents interacting according to principles of a
spatial PD game. Agents competed in the game for their incomes what was
leading to reaching by them a Nash equilibrium. We have shown that despite the
selfish behavior of players, the proposed mechanism of income sharing provided a
high degree of global cooperation resulted in maximizing the average total payoff
of players without their clear intention to do that. We believe that this result can
be useful for solving distributed optimization problems in emerging computer-
communication technologies by organizing large teams’ collective behavior.

Our future work will be oriented on extending the set of currently used
game strategies of behavior, including other mechanisms of social interactions
between agents already verified in the context of game-theoretical models (see,
e.g., [1,13]), such as signaling, hierarchy, and bribery.
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Abstract. This work proposed the application of an evolutionary tech-
nique to optimise the parameters of a coordination model for swarms
of robots. A genetic algorithm with standard characteristics was applied
in order to find suitable parameters for the IACA-DI model (Inverted
Ant Cellular Automata with Discrete pheromone diffusion and Inertial
motion), which, in turn, was proposed in previous works. The IACA-DI is
a model to coordinate swarms of robots based on the combination of two
bio-inspired techniques: cellular automata and inverted ant system. The
main purpose of the model is to carry out surveillance, exploration and
foraging tasks. Experiments were performed in different configurations
of environments and with different movement strategies to validate this
application. Results have shown significant improvements in the model
performance compared with previous empirical calibrations, granting a
better understanding of the IACA-DI parameters, and allowing signifi-
cant improvements to be investigated in future works.

Keywords: Cellular automata · Genetic algorithms · Optimisation ·
Swarm robotics · Evolutionary computation · Repulsive pheromone

1 Introduction

The rise of swarm robotics has led to a large body of researches in associated
fields, e.g., aggregation, self-assembly, path-planning, collective exploration, task
allocation and others [2]. Bio-inspired computing has been an important area for
the proposition of coordination models for swarms of robots, like ant-inspired
models [1] and models based on Cellular Automata (CA) [6,16]. Other impor-
tant models reproduce physical phenomena, such as potential fields [9] and fluid
dynamics [21]. A relevant task in swarm robotics is surveillance [14]. It con-
sists of monitoring the presence of other entities, their behaviours, activities, or
other environmental changing information, with the aim of protecting people or
objects [5]. This task involves environmental exploration where an area must
be covered by the robots and a continuous updating of the involved relevant
c© Springer Nature Switzerland AG 2021
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local information. Cooperation and communication strategies are used among
the swarm to assure a cyclical coverage of the environment in a reasonable period
of time, without requiring spatial knowledge owned a-priori by the robots, and
granting a degree of robustness to changes in the environmental structure.

Swarm robotics approaches require a proper calibration of specific working
parameters to achieve the above desirable properties, and optimisation tech-
niques have often been considered to perform this task. In particular, an inves-
tigation of the state-of-the-art applications of Genetic Algorithms (GA) in the
field of aggregation in swarm robotics was made by [15]. In the same line, [10]
proposed a GA-based method to track centroids in swarms of drones to minimise
the travelled distance and the distance from the drones to the centroid. Seek-
ing to optimise the evolution speed of a GA for collision avoidance in robots,
[13] evaluated the individuals in a parallel and distributed manner. Both exper-
iments have presented promising results, showing that GAs can naturally deal
with parallelism and are very suitable for swarm robotics. Further investigations
with GA in robotics are linked to locomotion [12] and coordination, e.g., nav-
igation under formation control [11]. Decentralised controllers for swarm-based
locomotion tasks in two- and three-dimensional environments were analysed by
[3]. Since robots must overcome obstacles and attach to other robots, GA was
used to assist the model development. More recently, a path-planning and for-
mation control method was proposed by [8]. The model mimics the main features
of a GA. Also in the path-planning task, [19] have investigated an application
of GA for the coordination of underwater swarms of robots.

The goal of this work is to investigate and evaluate an application of an
evolutionary technique to optimise the parameters of an environment mediated
coordination model for swarm robotics. Previous work has proposed a coordina-
tion model for swarms of robots to perform the surveillance task (IACA-DI [16]).
The coordination model is environment mediated, where the acceptation of the
term environment is the one introduced in [20]: the environment is defined as
a first-class abstraction in multi-agent system models, that provides exploitable
mechanisms, such as a pheromone infrastructure (employed by our model), sup-
porting agent interaction and coordination. In prior works, however, its parame-
ters were calibrated through empirical experiments, supporting a visual analysis
of the results of different runs. Any change in the model requires a new calibra-
tion to be performed, as the swarm’s performance is directly linked to the values
of these parameters [7,16–18]. This makes the approach costly and inadequate to
real-world applications, requiring both mass testing and, especially, human eval-
uation for every application in real environments (including dynamic changes in
the environment). Taking this into account, this work explores the application
of an evolutionary strategy to optimise the parameters of the IACA-DI model.
These parameters will be analysed and applied to a GA, seeking to improve its
configuration and, consequently, its performance.

The organisation of this paper is as follows: Sect. 2 presents the IACA-DI
model [16] and Sect. 3 the structure of the GA applied in the optimisation of
the IACA-DI’s parameters. Experimental results are discussed in Sect. 4. Finally,
Sect. 5 presents the main conclusions and future works.
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2 Coordination Model for Swarm Robotics (IACA-DI)

The IACA-DI is a model to coordinate swarms of robots that employs two bio-
inspired approaches: CA and Inverted Ant System (IAS) [4]. It was proposed to
perform tasks like exploration, foraging and, mainly, surveillance.

Environments are discretised into two-dimensional CA lattices. The first one
(Fig. 1b) describes physical objects through 3 states: free, robot and obstacle {F,
R, O}. The second one (Fig. 1c) describes the pheromone concentration, charac-
teristic of models based on IAS. In this case, cells have continuous states that
range between 0.0 and 1.0, where, the pheromone concentration is lower when
values tend to zero and the concentration is higher otherwise. The pheromone
grid evolves over time through the interactions of the robots. This temporal
evolution, which occurs discretely, characterises the CA application.

Individual behaviour of the robots is defined using the Finite State Machine
(FSM) illustrated in Fig. 1a. The FSM models the decision-making process of
each robot, and how/when they will share information with other robots of the
swarm. Combining these two features, which have local scope, it is possible to
generate a complex global behaviour capable of performing the proposed task.

The FSM is composed of five states: four are cyclically executed (for T time
steps), representing the interactions with the pheromone/environment to per-
form the decision-making process related to the individual actions (Detection-1,
Decision-2, Diffusion-3, and Movement-4 ), and a final state (End-5 ). Each time
a robot goes through all four states of the FSM’s main cycle, a discrete CA time
step is computed. The five states can be briefly detailed as follows:

– Pheromone Detection (State 1): each robot reads the pheromone concentra-
tion within its neighbourhood (Moore’s neighbourhood [16]);

– Next position decision (State 2): choice of which cell will be the destination
of the next movement. Previous works have evaluated five different move-
ment strategies: 1.Random, 2.Deterministic, 3.Simple Probabilistic, 4.Elitist
Probabilistic and 5.Inertial Probabilistic [16–18];

– Pheromone Diffusion (State 3): deposition of pheromone in the environment
within the robots’ neighbourhood (Eq. 1 [16]). Constants α, δ and η repre-
sent, respectively, the maximum amount of pheromone deposited, the rate of
pheromone deposition and the influence of the rate of evaporation;

Δk
ij = (ψmax − ψt

ij) ·
[
α · (δ · e)η· r

π

]
(1)

– Movement (State 4): represents the robot’s transition from an origin cell xij

to a target cell x(i+a)(j+b) in its neighbourhood, such that {a, b ∈ Z};
– Final state (State 5): activated when the robot completes the proposed task

or reaches a limit of T time steps.

As a result of the local behaviour of individual robots, the global behaviour of
the swarm emerges, making the collectivity capable of performing the complex
task proposed. Global behaviour is related to the self-coordination of robots



Parameter Adjustment of a Coordination Model for Swarm Robotics 149

(a) Robot control mechanism represented by a FSM. [Adapted from [17]]

(b) Physical grid. (c) Pheromone grid.

Fig. 1. Figure (a) describes the individual behaviour of each robot through a FSM with
5 states. Figures (b) and (c) show examples of virtual grids/maps on which the FSM
operates (grids with six rooms and size (20× 30) cells).

when they spread throughout the environment, with trajectories almost free of
conflicts (since the pheromone is repulsive), pursuing and covering areas that
have not been visited for a long time or that have not been visited at all.

In the surveillance task, the environment must be monitored cyclically, i.e.,
the robots must revisit areas that have already been visited in the past, to update
dated information about their state. To allow a cyclical exploration process, an
evaporation constant is added to the pheromone dynamics. Thus, decreasing
pheromone concentration in a given area, proportionally increases the probability
of that area being revisited. In the IACA-DI model, the pheromone present in
the environment evaporates in a predefined rate at each time step of the CA.
Evaporation rate is represented by the constant β (Eq. 2 [16]).

ψt+1
ij =

[
ψt

ij − (βββ · ψt
ij)

]
+

N∑
k=1

Δk (2)

Therefore, it is possible to define that the pheromone concentration in a cell
xij at time step (t + 1), will be the pheromone concentration at time step t
subtracting the amount of pheromone evaporated and adding the deposit con-
tributions of all robots to that cell. It is noteworthy that a robot will contribute
to the pheromone concentration of a cell iff that cell is within its neighbourhood
[16]. When it comes to the surveillance, β constant is defined with values greater
than zero {β ∈ R | 0.0 < β ≤ 1.0}. This is due to the fact that the pheromone
needs to evaporate in order to allow cyclical visits. On the other hand, if it is an
exploration task, for example, β would be set to zero.
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3 Genetic Algorithm Structure

In previous works [7,16–18], the parameters of the IACA-DI model were defined
through an empirical analysis of the robots’ behaviour. In this work, it is intended
to perform an optimisation process to identify values for these parameters, grant-
ing a better performance during the execution of the surveillance task. Consider-
ing the number of parameters of the IACA-DI model, which in most cases have
real values, the number of possible combinations to determine the ideal values
grows exponentially. Thus, applying a GA to find solutions in large search spaces
should fit perfectly: we will describe here how the GA was defined and we will
show achieved results in the next section.

Figure 2 illustrates the flowchart of the GA applied in this work and the
genetic-code of the individuals. The GA applied is classical, with no additional
changes in its structure. Thus, four main operations are defined in the GA
structure: Evaluation, Selection, Crossover and Mutation. Evaluation of each
individual is done through the application of its genetic-code as parameters of
the IACA-DI model. Then, the IACA-DI model is executed in a defined num-
ber of time-steps and a performance score of the swarm is attributed to the
individual who has the evaluated genetic-code. In addition, the GA uses an eli-
tist percentage to always keep the best individual in the next generation. The
genetic-code of the individuals is related to some of the main variables of the
IACA-DI model: evaporation rate (Eq. 2), simple probabilistic, elitist and inertial
percentages (used in the stochastic movement strategies (FSM State 2 - Fig. 1a)),
and the constants alpha, delta and eta (Eq. 1). It is worthy to mention that the
number of robots and the movement strategies sets were pre-established, taking
into account the best results in our previous works [16,18].

Fig. 2. GA flowchart. Evaluation of the individuals (fitness value) is performed through
application of the IACA-DI model [16].
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4 Experiments and Analysis

In this section, experiments related to the application of the proposed GA to the
IACA-DI model will be presented and analysed. Considering that the parameters
of the IACA-DI model were empirically defined in previous works [7,16–18],
through evolutionary computation, we intend to find parameters that optimise
the results obtained by the model in the execution of the surveillance task.

Evaluation of each GA-individual is made through the application of the
IACA-DI model. Each individual’s genetic-code represents the parameters of
the IACA-DI model. Thus, the higher the score that an individual (i.e., a robot
configured accordingly) achieves performing the surveillance task, the better is its
GA evaluation. Evaluation is made by computing task-points: in surveillance of
indoor environments, a task point is achieved when all rooms have been visited
by at least one robot, and then the count of visited rooms is restarted. On
one hand, the effectiveness of this task is associated with having rooms to be
cyclically visited, i.e., to reach task points. On the other hand, the efficiency
consists in decreasing the time between two consecutive task-points, i.e., higher
frequency implies that information about rooms’ state is generally not outdated.
While efficiency requires effectiveness, the latter does not imply the former.

Experiments were performed in three different environments of size (20×30)
cells (E1 - Fig. 3a, E2 - Fig. 3b and E3 - Fig. 3c). According to previous works [7],
in environments of such dimensions, a reasonable size for the swarm should be 3
robots (this would be the best trade-off between effectiveness, efficiency and cost,
i.e., additional robots would not improve performance without yielding a high
cost). Regarding the GA, each evaluation represents the mean of 30 executions
(each one with 10.000 time steps) of the IACA-DI model. In addition, it was
used 100 individuals in the population, stochastic tournament in selection, 80%
of crossover, 2% of mutation and elitism to maintain the best individual.

Figure 4 illustrates the outcomes of the evolution of the GA: Fig. 4a illustrates
overall results, and Figs. 4b, 4c and 4d the detailed evolution of the GA in the
environment E1. In the detailed evolution charts, the x-axis represents the time
evolution (generations) and the y-axis represents the performance (task-points)
achieved by the IACA-DI model. Thus, the higher is a point in the chart, the
greater is its performance. These charts have five different curves: (i) blue repre-

(a) Environment E1. (b) Environment E2. (c) Environment E3.

Fig. 3. Environments with (20 × 30) cells applied in the experiments: E1 - 7 rooms
(Fig. (a)), E2 - 6 rooms (Fig. (b)); and E3 - 10 rooms (Fig. (c)).



152 C. R. Tinoco et al.

(a) Final outcomes of all experiments. (b) {2-2-2} GA evolution in envir. E1.

(c) {5-5-5} GA evolution in envir. E1. (d) {5-5-2} GA evolution in envir. E1.

Fig. 4. Performance of the GA evolution. Figure (a) illustrates overall results, and
Figs. (b), (c) and (d) the detailed evolution in the envir. E1. (Color figure online)

sents the best performance achieved in previous works, i.e., where the IACA-DI
model was calibrated just with empirical experiments; (ii) red the worst individ-
ual; (iii) yellow the best individual; (iv) purple the mean of the evaluation of a
whole population; and, (v) green curve represents the Standard Deviation (SD).
In Fig. 4a, the set {2, 2, 2} represents three robots with deterministic strategy,
the set {5, 5, 5} three robots with inertial strategy and the set {5, 5, 2} a het-
erogeneous swarm: 2/3 composed by inertial strategy and 1/3 by deterministic
strategy (configurations based in previous works [17,18]).

In most of the experiments, it was created better individuals in the first
generations compared to previous parameters: the manual calibration of the
IACA-DI model was, therefore, far from being optimal. Since the GA uses an
elitist technique to build future generations, the best individual of the next
generation will never be worse than the current one, so the associated curve
does not change negatively. Performance improvements of the best individual
can be observed after several generations. For general comparison, considering
the set of strategies {5-5-5} in Fig. 4a, the performance of the best individual
has increased from 63 to 83 task points in E1 (+32.12%), from 48 to 68 in
E2 (+43.54%), and from 48 to 56 in E3 (+14.33%). On the other hand, the
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(a) Pheromone {2-2-2}. (b) Pheromone {5-5-5}. (c) Pheromone {5-5-2}

(d) Cellsteps {2-2-2}. (e) Cellsteps {5-5-5}. (f) Cellsteps {5-5-2}.

Fig. 5. Pheromone heatmaps and cellstep maps for environment E3, through the appli-
cation of the genetic-code of the best individuals of the GA. (Color figure online)

other individuals can change their performance negatively: performance drops
are associated with global search through mutations in the genetic-code. Let us
consider Fig. 4c around generation twenty: despite elitism, every individual of
the population has a probability to reproduce and, after generation twenty, a
worse individual has appeared, causing a small fluctuation in the mean and in
the S.D. of the whole population. Figure 4a shows, in all experiments, that it
was possible to find a configuration for the parameters of the IACA-DI model
that would allow to significantly increase its performance. The topology of the
environment and the structure of connections among rooms, clearly have an
influence on the performance achieved, in addition to the raw size.

Finally, the best individuals were evaluated using pheromone heatmaps and
cellsteps maps. Pheromone heatmaps graphically show the pheromone concen-
tration in the environment in a specific time step and the cellsteps maps represent
the mean of times that the robots passed through each cell of the environment.
In both experiments, warm colours represent high values and cold colours low
values. Using the pheromone heatmaps, it is possible to analyse whether the
pheromone concentration is well distributed and the cellsteps maps show whether
the swarm is spreading throughout the environment in a uniform way. Figure 5
illustrates the experiments with heatmaps (Figs. 5a, 5b and 5c) and cellsteps
(Figs. 5d, 5e and 5f). Considering an empirical analysis, it can be seen that the
pheromone concentration is sufficient for the robots to perform their decision-
making processes, i.e., the pheromone is well spread and it is not stagnant with
either high or low concentration. However, considering the greedy characteristic
of the deterministic strategy {2-2-2}, the evaporation rate β has had to be higher
to increase the performance of the swarm. In turn, cellsteps maps have shown
the same behaviour that was already observed in previous works [17].
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5 Conclusion and Future Work

This work has investigated the application of genetic algorithms in the parameter
optimisation of the IACA-DI model. Its goal is to coordinate swarms of robots
in the execution of the surveillance, foraging or exploration tasks: previously, its
parameters have been manually defined through empirical experiments. In this
work, an evolutionary strategy, with a more specific methodology, was applied
to automatically set these parameters closer to optimal values.

According to the results, it was possible to conclude that: (i) the parameters
of the IACA-DI model were improved, making it possible to achieve a better
performance (ranging from +14.33% to +43.54% in the analysed environments)
compared to that with an empirical analysis; (ii) as expected, the GA has found
that the deterministic choice strategy achieved the best performance consider-
ing task-points; (iii) experiments with pheromone heatmaps and cellsteps have
shown similar behaviour to those found in previous works; (iv) the GA evolution
is concentrated in the first 30–40 generations, with no particular improvements
in the subsequent ones; and, (v) in this case, the application of an elitist selection
was a good choice, since the search-space tend to be exponential.

Regarding future works, we intend to go deeper in the experiments with the
GA and the IACA-DI model. More specifically, (i) to have a better understanding
of the correlation between the parameters of the IACA-DI model; (ii) to perform
experiments with swarms made up of more robots, and with larger environments
with different topologies; (iii) to investigate an evaluation metric, where it takes
into account task-points and homogeneity on the environment coverage, inhibit-
ing the deterministic strategy bias; and, finally, (iv) to investigate a method to
automatically define all parameters values of the IACA-DI model, considering,
mainly, the sizes of environments and swarms.

Acknowledgments. Authors are grateful to FAPEMIG, CNPq and CAPES support
and scholarships.
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Abstract. The objective is to find Cellular Automata (CA) which are
able to cover the 2D space by a minimum number of so-called “Sensor
Tiles”. A sensor tile consists of a central sensor pixel and 12 surround-
ing sensing pixels. Two probabilistic CA rules were designed that can
perform this task. The first rule evolves very fast stable sub–optimal
coverings, starting from a random configuration. The second rule finds
several optimal or near-optimal coverings but needs much more time for
their evolution.

Keywords: Covering problem · Wireless Sensor Network · Tilings ·
Matching templates · Probabilistic cellular automata · Asynchronous
updating

1 Introduction

Our goal is to find a covering of the 2D space by so-called sensor tiles using
CA. Our problem is one of the diverse covering problems [1] and it is related
to the NP-complete vertex cover problem introduced by Hakimi [2] in 1965. A
vertex cover is a set of nodes in a graph such that every edge of the graph has at
least one end point in the set. A minimum cover is a vertex cover which has the
smallest number of nodes for a given graph. Hakimi proposed a solution method
based on Boolean functions, later integer linear programming [3], branch-and-
bound, genetic algorithm, and local search [4] were used, among others. Other
related problems are the Location Set Covering Problem [5] and the Central
Facilities Location Problem [6]. These problems aim to find the locations for P
facilities that can be reached within a weighted distance from demand points,
minimizing the number of P, or minimizing the average distance, or maximizing
the coverage. For covering problems there are a lot of applications, in economy,
urban planning, engineering, etc.

Specifically, we have in mind Wireless Sensor Networks (WSN) as an appli-
cation where a number of sensors are placed in an area, and the question is which
of them should be currently active and able to monitor a part of an environment.
The whole area should be covered (monitored) and the number of active sensors
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Fig. 1. (a) Sensors cover a certain area, (b) The circular range of a sensor is approxi-
mated by a discrete shape (in red). (Color figure online)

should be minimized in order to minimize the total energy consumption and
prolong this way a lifetime of WSN. With low battery consumption the lifetime
of WSN can be maximized by switching between optimal configurations of active
sensors. This problem was already treated in many variants, e.g. [7,8].

We assume that sensors are regularly located in an area to be covered, avail-
able at any discrete location of a superimposed grid. The questions is how to
turn them skillfully ON (active) or OFF (passive) to yield a sensor network with
a minimum number of sensors, which we will call min point pattern. As shown
in Fig. 1a, each active sensor (here also called point) senses a certain area in a
circular range when battery is ON. Several sensors shall cover the whole space. A
sensor with its range will be approximated by a discrete area (tile) (Fig. 1b).

The WSN covering problem is computationally expensive and near-optimal
solutions can be found for instance with evolutionary algorithms [9]. We want
to solve this problem by CA in a decentralized way. The problem of maximizing
the lifetime of WSNs was already addressed in the CA context [10], but it turned
out to be challenging using means such as Iterated Spatial Prisoner’s Dilemma,
the Second-Order CA or Learning Automata.

Here the idea is to treat the covering problem as a pattern formation problem,
where Parallel Substitution Algorithms [11] served also as a source of inspiration.
For the problem of forming a Domino Pattern we yielded already a good result by
using a probabilistic CA rule [12]. There the number of dominoes was maximized
by using overlapping tiles. We want to follow the same general approach, but now
the problem is more difficult because the number of tiles has to be minimized.

In Sect. 2, the sensor tiling problem is described and optimal solutions are
presented. In Sect. 3, two probabilistic CA rules are designed. In Sect. 4, the
performance of the rules is evaluated, and conclusions are given in Sect. 5.

2 Optimal Covering with Sensor Tiles

2.1 The Problem and Its CA Modeling

Given an array of N = (n × n) cells, also called field. We assume that each cell
contains a sensor which is either active or passive. The objective is to find a
CA rule that can form a Sensor Coverage Pattern with a minimum number of
active sensors that cover the whole area. An active sensor can cover (sense) a
certain number of cells in its neighborhood. We can relate an active sensor with
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Fig. 2. (a) Sensor Tile. (b) Four tiles with max. overlap vmax = 4. (c) Four tiles with
max. overlap vmax = 3.

its sensed cells to a sensor tile as shown in Fig. 2(a). A sensor tile is a discrete
approximation of a real area sensed by an active sensor as depicted in Fig. 1(b).
Note that sensor tiles are not automata cells, they are only used as a mean to
find a cell rule and to define the covering of the space. We call the elements of
a tile pixels in order to not confuse them with the cells of the space. A sensor
tile consists of one center pixel (the kernel with the pixel value 1, in blue) and
12 surrounding pixels (the hull with value 0, in yellow).

Hull pixels of different tiles are allowed to overlap, but not with sensor points.
This restriction is meaningful because we aim that the number of all active
sensors is minimal and therefore the density of active sensor should be low.

We call the number of overlapping pixels at a certain site (x, y) “overlap” or
“cover level” v(x, y). Patterns with overlapping tiles are shown in Fig. 2(b, c).
The cover level is depicted here by numbers and colors. In later shown figures
only numbers or colors will be used.

The cell state is modeled as q = s for the First Rule (see Sect. 3.1) and
as q = (s, h) for the Second Rule (Sect. 3.2). The state s ∈ {0, 1} models an
inactive/active sensor, and all sensor states build the pattern (a sensor configu-
ration). h ∈ {0, 1, 2, 3, 4, 100} stores the number of template hits, explained later
in Sect. 3.2). We assume cyclic border conditions in order to simplify the prob-
lem. (Constant zero-boundaries with width 1 or 2 could also be used in order to
keep sensor points within the borders).

2.2 Optimal Solutions

We call a coverage valid, if the sensor tiles cover the whole space without gaps
(uncovered cells). There are valid coverages/patterns with a different number of
active sensors, between a minimal and a maximal number (as you can see later
in Fig. 3). We call a valid coverage with a minimal number of active sensors min
sensor pattern (for short min pattern), and a coverage with a maximal number
max sensor pattern (for short max pattern). In this paper we are interested in
min sensor patterns, but max sensor patterns will also be considered. Note that
there exist many equivalent sensor patterns taking into account the symmetries:
translation, rotation, and reflection. When we speak of a pattern, we mean any
representative in the class of equivalent patterns.

Using the CA rules described later, valid sensor patterns covering the whole
space were found. They are listed in Table 1 for different field sizes. This table
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Table 1. Valid sensor patterns (solutions) found for different field sizes. The table
presents the number of sensor tiles, the maximum overlap in the set of solutions, and
the density of sensors (point density). Notation for the max overlap values: M(a) means
|vmax = M | = a; M(a, b, c) means |vmax = M | = a, b, c; M(a..b) means a ≤ |vmax =
M | ≤ b, and M(+) means |vmax = M | ≥ 1. On the right, three solutions with 7 tiles
with different vmax are shown. Active sensors are shown in black, inactive in white.

presents the number L of sensor tiles, the maximum overlap vmax in the set
of solutions, and the density R(N) = L/N of sensors (point density). E.g. for
N = (7 × 7), there are 5-tile patterns with (a) |vmax = 2| ≥ 1 (several sites
have overlap 2), (b) |vmax = 3| = 1 (only one site has overlap 3), (c) |vmax =
4| = 4 (four sites have overlap 4). The minimal point density for this example is
Rmin(49) = 5/49 = 0.102, and the maximal density is Rmax(49) = 8/49 = 0.163.
Recall that we search for min point patterns with a minimal point density.

Some min and max sensor patterns are shown in Fig. 3. The following min
and max pattern were found (Table 1):

• (3 × 3) There is only one solution.
• (4 × 4) There are two solutions, each with two points. The maximal overlap

level is 3 (appears twice) for the upper one (|vmax = 3| = 2 ⇔ vmax = 3(2)),
and 4 for the lower one (vmax = 4(2)). There is no special min pattern.
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Fig. 3. Minimal sensor patterns (upper half), maximal sensor patterns (lower half).
A black square represents a sensor point, and the numbers give the overlap level. Field
sizes range from (3 × 3) to (10 × 10).

• (5 × 5) A min pattern with 3 and a max pattern with 5 points exist, but no
pattern with 4 points. Note that there exists one cell with cover level of 3 in
the min pattern, and there is no min pattern with vmax = 2 as we can find
for n = 6 .. 10.

• n = 6, 7, 8, 9, 10, 11: There exist min/max patterns with 4/6, 5/8, 7/10, 8/13,
9/20, 12/22 points.

3 The Designed CA Rules

First, as a matter of principle, we have to decide (i) whether to use a synchronous
or an asynchronous updating scheme, and (ii) whether to use a deterministic or
a probabilistic rule. This makes four options: (1) synchronous updating & deter-
ministic rule, (2) synchronous updating & probabilistic rule, (3) asynchronous
updating & deterministic rule, and (4) asynchronous updating & probabilistic
rule.

We have to keep in mind that we search for a CA rule that converges always or
with a high probability to optimal or near-optimal patterns. From our previous
work we have learned that it is very difficult or even impossible to design such
a rule with the option (1), because we may have to avoid or dissolve conflicts,
deadlocks, live-locks, and emerging oscillating, moving or clustering structures,
as we know, e.g. from the Game of Life, in order to drive the pattern continuously
to an optimum (not to get stuck in sub-optimal solution areas).

The remaining options (2–4) are related because the computation of a new
configuration is stochastic. It seems that they can be transformed into each other
to a certain extent.

Here we want to use option (4) because we have gained good results in
solving another problem [12] in this way. Moreover, we don’t need a clock for
synchronization and buffering for the configuration, which is closer to the mod-
eling of natural processes. In contrast to that former solved problem, we address
here a more difficult problem where the number of tiles is minimized and not
maximized.
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3.1 The First Rule

Fig. 4. (a) The 13 templates Ai of the sensor tile. The value refval(Ai) of the reference
pixel (marked in red) is used for cell updating in the case that all remaining template
pixels (the neighborhood template) match with the corresponding cells of the current
configuration. (b) The neighborhood templates A∗

i . The dotted box marks the (5×5)–
window used for matching. The remaining neighborhood templates result from rotation
of the shown ones. (c) A∗

10 represented as an array reduced from (9 × 9) to (5 × 5).
(Color figure online)

The idea is to modify the current configuration in a systematic way such that
valid patterns appear and at last a min pattern. To do this, the CA configuration
is searched for tile parts (specific local patterns) and if an almost correct tile
part is found, it is corrected, otherwise some random noise is injected.

The tile parts are called templates Ai. They are systematically derived from
the sensor tile (Fig. 4(a)). For each of the 13 tile pixels (so-called derivation
pixels, marked in red) a template is defined by shifting the tile in a way that the
derivation pixel appears in the center. Note that many of these templates are
similar under various symmetries. A3, A4, A5 are rotations of A2; A7, A8, A9 are
rotations of A6, and A11, A12, A13 are rotations of A10.

We represent a template Ai is an array of size (k × k) of pixels, where
k = 2m − 1 and (m × m) is the size of the tile, enlarged to a square box
embedding it. Our tile is of size (5 × 5) including empty pixels, and the tem-
plates are larger because of shifting, maximal of size (9 × 9). The pixels within
a template are identified by relative coordinates (Δx,Δy). The center pixel at
(Δx,Δy) = (0, 0)) is called “reference pixel”. Each template pixel carries a value
val(Ai,Δx,Δy) ∈ {0, 1,#}. The value of the reference pixel is called “reference
value”, refval(Ai) = val(Ai, 0, 0) ∈ {0, 1}, which is equal to the value of the
derivation pixel. The symbol # represents “Don’t Care”, meaning that a pixel
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with such a value is not used for matching (or does not exist (empty pixel), in
another interpretation). Pixels with a value 0 or 1 are valid pixels, their values
are equal to the values derived from the original tile. Some templates can be
embedded into arrays smaller than (k × k) when they have Don’t Cares at their
borders.

We need also to define the term “neighborhood template” that is later used
in the matching procedure. The neighborhood template A∗

i is the template Ai

in which the reference value is set to #, in order to exclude the reference pixel
from the matching process. The cell processing scheme is:

• At time-step t a new configuration is formed by updating N cells in a random
order. For each time-step a new random permutation is used. The new con-
figuration is complete after N cell updates (Each cell is updated once during
this period) and it defines the next configuration at time–step t + 1.

• The rule is applied asynchronously. The new cell state s′ = f(s,B∗) is com-
puted and immediately updated without buffering. B∗ denotes the states of
the neighbors within a local window, where the center cell s(x, y) is excluded
(for matching).

The following rule is applied:

s′(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

refval(Ai) if ∃A∗
i that matches with CA–Neighbors(x, y) (a)

otherwise
random ∈ {0, 1} with probability π0 (b1)
s(x, y) with probability 1 − π0 (b2)

.

The neighborhood templates A∗
i are tested against the corresponding cell

neighbors B∗(x, y) in the current (5 × 5)–window at position (x, y). Thereby
the marked reference position (Δx,Δy) = (0, 0) of a neighborhood template is
aligned with the center of the window. Note that we use for testing a window
of size (5 × 5) which is smaller than the full size (9 × 9) of the neighborhood
templates. Therefore, some valid pixels outside the (5×5)–window are not tested
(e.g. the bottom 4 yellow pixels of A∗

13 in Fig. 4(b)). The implementation with
these incomplete neighborhood templates worked very well, but further investi-
gations are necessary for proving to which extent they can be incomplete.

If all values of a neighborhood template A∗
i match then we register a hit that

is stored only temporarily. There can be several hits equal to the cover level. If
we have at least one hit, the sensor state of the current cell s(x, y) is set to the
reference value refval(Ai), and then we create or validate a correct tile part in
the pattern configuration. Otherwise, with probability π0, the sensor state is set
randomly to either 0 or 1, or remains unchanged with probability 1 − π0. There
can be no conflicts, because the reference value is the same (uniquely derived
from the tile) if there are several hits. (Examples: If A∗

0 matches, there is one
hit only and the reference value is 1. If A∗

10, A
∗
11, A

∗
12, A

∗
13 match, we get 4 hits

with reference values 0). As no conflicts can arise, the sequence of testing the
templates does not matter, and one could skip further tests after a first hit.
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Fig. 5. A (10×10) simulation sequence yielding a stable pattern with 15 points, using
the First Rule. Colors: blue (active sensor), white (not covered by a tile), yellow (cover
level 1), light green (cover level 2), green (cover level 3). (Color figure online)

It is important to note that this rule obeys the criterion of stability, which
means that a valid pattern without gaps (uncovered cells) is stable because we
have matching hits at every site. Otherwise, some random noise is injected in
order to drive the evolution to the aimed pattern.

10,000 runs were performed on (10×10)–fields with random initial configura-
tions and a time-limit of 200 iterations, with π0 = 1.0. The CA system converges
quickly to a stable sub–optimal sensor pattern after 16.83 time–steps on average.
(The evolution is slower for π0 < 1.) These patterns contain 12–20 points and
all cover the space as required. The number of evolved patterns with a certain
number of points are:

points 9 10 11 12 13 14 15 16 17 18 20
number 0 0 0 14 369 2398 4647 2281 220 62 9

Most often the patterns contained 15 points. We see in Fig. 5 how fast a stable
pattern with 15 points can evolve. The probability to find a near-minimal point
pattern with 12 points was quite low (occurrence of 0.14% for this experiment
with 10,000 runs). During this run no patterns with 9 (minimum), 10 or 11 points
appeared, but a few max patterns. We can conclude that min sensor patterns
are very rare in the whole set of all valid patterns covering the space. So now we
want to improve our rule in order to evolve min patterns with a high probability.

3.2 The Second, Improved Rule

The purpose of this enhancement is to improve the rule in such a way that the
number of points reaches a minimum. Whereas the first rule works with the state
q = s only, now the state is extended by the number of hits h, thus the full state
q = (s, h) is used. Now all neighborhood templates are tested and all hits are
stored for every site (x, y). The number of hits h(x, y) is:

• 0, if no neighborhood template matches or there is a gap,
• 1, if it results from one neighborhood template match where the reference

value is zero (yellow colored),
• 2–4, if it results from the overlap at the same site (x, y) of 2–4 neighborhood

template matches with reference values zero, that means that 2–4 tiles (yellow
hull pixels) are overlapping,
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• 100, if it results from the neighborhood template A∗
1 match where the refer-

ence value is 1 (blue). Recall that blue pixels are not allowed to overlap. The
number 100 was chosen in order to differentiate such hits from the other.

The hit number h(x, y) holds the actual value after matching with all the neigh-
borhood templates. Because of the random sequential updating scheme, the h-
values in the (x, y)–neighborhood may not be up-to-date and can carry old values
from the former configuration at time-step t − 1. Nevertheless, the h-values cor-
respond mainly to the cover levels v, especially when the pattern becomes more
stable. This inaccuracy introduces some additional small noise which can even
speed-up the evolution. And when the pattern becomes stable, the hit number
is equal to the cover level, ∀(x, y) : h(x, y) = v(x, y).

The idea is to minimize the overlap between tiles by destroying cell states
with high overlap level (h > 1) through noise, allowing reordering with a lower
number of points. In order to find a rule we need to study the min point patterns
with respect to their overlap values and local situations. From Table 1 and Fig. 3
we can see that min patterns contain some cells with a max overlap vmax = 2, 3.
(There is a special case with n = 13 or multiples of 13 where there exists a
pattern with vmax = 1 that we will not be taken into consideration here.)

First the new state s′ is computed according to the First Rule, and addition-
ally the number of all hits h(x, y) is computed and stored. Then the new state
is modified to s′′:

s′′(x, y) =

⎧
⎨

⎩

random ∈ {0, 1} with probability π4 if h(x, y) = 4
random ∈ {0, 1} with probability π3 if C1 or C2 or C3

s′(x, y) otherwise,

where
C1 = (hits3x3(x, y) > 14),
C2 = (hits3x3(x, y) > 13) and (Active3x3(x, y) > 0),
C3 = (hits3x3(x, y) = 12) and (Active3x3(x, y) = 0) and (h(x, y) = 3)

The conditions C1..3 add additional noise in order to drive the evolution to
the optimum when the local hit density is above a certain level. It was quite
difficult to find these conditions through many trial and error simulations taken
into account the local patterns in (3 × 3)–windows of valid optimal and near-
optimal solutions. It would be interesting to find better conditions through fur-
ther research. The ultimate goal is to find a rule that drives always to a stable
optimal solution not excluding any solution from the set of all possible solutions.

The function hits3x3(x, y) computes the sum of the hits of inactive cells in a
local (3 × 3)–window with its center at (x, y), where active sensor cells and the
center are discarded. The function Active3x3(x, y) computes the sum of active
cells in a (3 × 3)–window.

Now, for this improved rule, it is not clear whether the stability criterion is
still fulfilled because of the additional noise. In fact, it turned out that reached
min pattern are often stable, although some non-min pattern can be stable, too.
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Fig. 6. Simulation of an evolution yielding a (10 × 10) min pattern with 9 points.
Some valid point patterns at time-steps t = 19, 37, 113, 120, 140, 142, 1000 are shown.
The final pattern is stable for t ≥ 142.

Extensive simulations showed that noise injection under these additional con-
ditions drive non-min patterns to min patterns. Unfortunately, at the moment,
we cannot show that the evolution always ends up with a stable min pattern,
because (a) we cannot prove that all reached valid non-min patterns are tran-
sients (meaning that then further noise will still be injected), and (b) that all
reached min patterns are stable (meaning that then noise injection is always
stopped).

A deeper analysis is a subject to further research. It remains an open question,
whether a local CA rule can be found that always drives the evolution to a min
point pattern, and preferably to any of all possible min pattern, not excluding
solutions with a certain max. cover level or certain local sensor arrangements.

During a simulation, the number of complete tiles/points L is increasing,
decreasing and fluctuating, and at the end the evolution is often driving towards
a valid stable pattern, which often is a min pattern. Many experiments showed
that optimal min patterns can successfully be found with the Second Rule if
(a) the maximal number of time-steps TLimit is chosen large enough and/or (b)
several runs with random initial states are performed.

4 Simulation and Performance Evaluation

4.1 Performance for Field Size (10 × 10)

The improved rule was tested 10,000 times on 10 × 10 fields with random initial
states (s ∈ 0, 1), for TLimit = 1, 000 time–steps, with π4 = 0.1, π3 = 0.9, and
π0 = 0.1 (yielding best results). For each run, several parameters were recorded,
such as the time-stamp for reaching the greatest or smallest number of points
in valid patterns. The number of patterns with the smallest reached number of
points were:

points 9 10 11 12 13 14..20
number 56 362 3121 6178 283 0.
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We can see that now optimal min patterns were reached in 56 out of 10,000
runs under this time limit. The other evolved patterns are close to the minimum.
Patterns with 12 points appeared most often. No patterns with more than 13
points evolved. Compared to the first rule, the second rule finds a pattern much
closer to the optimum or even reaches it. From the stored data we can also
see that rare min patterns need a relatively long time to evolve (taverage =
524, tmin/max = 75/997), whereas patterns with more points appear faster (e.g.
for 12-point patterns: taverage = 311, tmin/max = 21/1000)). Figure 6 shows the
evolution of a stable min pattern with 9 sensors. During the evolution, other valid
transient patterns with a different number of complete tiles L appear (encircled
in Fig. 6). The percentage of finding an optimal min pattern can be increased
by increasing the time limit. As we can see in Table 2 the percentage increases
from 0.56% to 29% for TLimit = 100, 000.

4.2 Performance for Other Field Sizes

The Improved Rule was also tested on other field sizes and a different number
of runs and time limits (Table 2). For sizes up to (8×8) all runs yielded optimal
min patterns. For fields larger than (8 × 8), min patterns were found among
others. The rate of finding a min pattern depends on the number of runs and
the time limit TLimit. As example we consider a (10 × 10) field with the same
number 107 of total generation computations, which yields 100 × 107 = 109 cell
rule computations. We 29 min patterns using 102 runs with TLimit = 105, 56 min
patterns using 104 runs with TLimit = 103. This example shows that it can be
better to perform more shorter runs than less longer ones, a result which is also
known from optimization techniques with genetic algorithm.

Table 2. Simulation for different time limits and number of runs. Percentage of found
optimal min patterns, and time steps needed (taverage, tmin, tmax).

We define the computing effort per cell to evolve 0.1R min patterns during
R runs within times t ≤ T10%(N) as E(T10%, N) = (T10%(N))/N , where the
maximal needed time T10%(N) was extracted from simulation data. If E(N) =
const then the needed time would be in O(N) to reach 10% min patterns within
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R runs. In our experiments this effort increases super-linear with N for N =
64, 81, 100, 121 as shown in Table 2. Therefore, it is costly to compute optimal
solutions for large N . But as the CA model is inherently parallel regarding N , we
can reduce the computation time significantly on a parallel computer. For large
N the algorithm is still applicable, though we will terminate it due to restricted
computing resources when having found a near-optimal solution.

5 Conclusion

First we have studied what is the minimum and maximum of sensor points for
valid patterns for different sizes. Then we designed two CA rules that can find
non-optimal and optimal min sensor patterns. The first rule evolves very fast
to stable valid patterns, with a peak number of points lying between minimum
and maximum. The design principle behind is methodical and based on a set of
templates derived from all pixels of the sensor tile. The second rule was designed
especially to find min patterns, and it can do so, although the time to evolve an
optimal min pattern can exceed the available processing capabilities. In further
work the possible sensor locations could be restricted, the charge of batteries
could be taken into account, or this approach could be related to the vertex
cover problem in order to compare time complexity.
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Abstract. We propose a novel architecture for the implementation of
Cellular Automata (CA). The novel architecture is based on graphene
nanoribbons with magnetic contacts, which are used as building blocks.
In this CA implementation, information processing is obtained through
top-gates, back-gates and the angles and magnitudes of the polarizations
of the magnetic contacts. We use tight-binding Hamiltonians and non-
equilibrium Green’s functions to model and simulate the operation of the
building blocks of the proposed CA implementation. Interconnections are
local and CA cell states can be represented using top-gate and back-gate
potentials, and the angles and magnitudes of the contact polarizations.
We also describe the CA evolution rules. Our results showed that this
CA implementation is capable of both digital and analog information
processing. Furthermore, it can be effectively used for neuromorphic and
in-memory computing.

Keywords: CA implementation · Graphene nanoribbons ·
Nanoelectronics · Magnetic contacts

1 Introduction

Graphene is a relative novel 2D material with excellent electronic properties,
including high electron mobility and sustainability of high currents [1]. Graphene
is a very promising material for carbon-based nanoelectronic devices and circuits
and this led to the fabrication and study of graphene transistors [2], graphene
quantum point contacts [3], graphene p-n junctions [4] and graphene logic
gates [5].

In all these devices and circuits, graphene nanoribbons with non-magnetic
metallic contacts have been used and information has been represented using top-
gate and back-gate potentials. However, experiments revealed two more parame-
ters that determine the operation of graphene devices, the magnetic polarization
angles and magnitudes of the ferromagnetic contacts, used as source and drain
electrodes [6]. Therefore, information can be represented using four independent
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parameters, namely top-gate potentials, back-gate potentials, and polarization
angles and magnitudes, which control electron flow via their spin. The structure
and nature of these graphene devices is suitable for local interconnections and
local information processing which makes them promising elements for construct-
ing cellular automata (CA) architectures with novel computation properties.

Here, we propose a novel implementation of CAs using graphene nanoribbon
devices with magnetic contacts. We use tight-binding Hamiltonians and non-
equilibrium Green’s functions (NEGF), described analytically in [7] and [8], to
model and simulate the operation of the building blocks of the proposed CA
architecture, which are graphene devices with magnetic contacts connected in
series in L-shaped forms [9]. The states of the CA cells are represented by the
conductance of each cell, which can vary either discretely or continuously. The
rule of the CA evolution is a function of the top-gate potentials, the back-gate
potentials and the values of polarization angles and magnitudes of the contacts.
Our results showed that this novel CA implementation has new and useful prop-
erties which can be exploited to construct CA architectures that are capable
of digital and analog information processing, neuromorphic computing and in-
memory computing.

2 Structure of the of Graphene Nanoribbon Device
with Magnetic Contacts

The proposed graphene device, that will be used as a building block of the CA
architecture, is shown in Fig. 1.

Fig. 1. Graphene device with magnetic contacts.

The graphene nanoribbon is placed on an insulating surface, usually sili-
con dioxide, and at the back of the insulator the back-gate electrode is devel-
oped. Since an insulator lies between the back-gate electrode and the graphene
nanoribbon, no electron injection is possible, but the back-gate voltage, Vbg,
affects the energy of the electrons transported through graphene. On top of the
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graphene nanoribbon the top-gate is placed and is separated from graphene with
an insulating layer. The top-gate voltage,Vtg, cannot inject electrons, but affects
transported electron energies locally. Buried in the insulating layer three metal-
lic non-crossing conductors carry currents Ix, Iy1 and Iy2 that magnetize the
magnetic contacts. The magnitudes and directions of these currents determine
the direction and magnitude of the magnetic polarizations P1 and P2. In Fig. 1,
P1 and P2 form angles φ1 and φ2 with the “y-axis”. By varying the currents
during the device operation, the magnitudes and angles of P1 and P2 vary in a
controllable manner.

3 Operation and Properties of the of Graphene
Nanoribbon Device with Magnetic Contacts

The operation of the graphene device is simulated using quantum mechanical
methods, namely tight-binding Hamiltonians combined with the NEGF method,
which are described analytically in [7] and [8], for the case of non-magnetic
contacts. To include the effect of the magnetic contacts, the metallic contact
self-energies Σm

1 and Σm
2 should also account for the projection of electron spins

on the magnetic polarization vectors. To obtain this the self-energies become:

Σm
1 = Σ1 ⊗ s1 (1)

Σm
2 = Σ2 ⊗ s2 (2)

The spin projections s1 and s2 are given by:

s1 = τ exp (ika) (I + P1,xσx + P1,yσy + P1,zσz) (3)

s2 = τ exp (ika) (I + P2,xσx + P2,yσy + P2,zσz) (4)

I is the identity matrix and P1,x is the x component of the P1 vector and so
on for the other components. The electron wave vector is ka and τ is the value
of the overlap integral. The matrices σx, σy and σz are the Pauli spin matrices.

Figure 2 shows the conductance of the graphene device in its digital opera-
tion, which is obtained by setting the top gate potential equal to zero and the
currents equal to zero, so that the contacts are not magnetized. Only electrons
a few kT above and below the Fermi energy level are transported through the
nanoribbon. The Fermi level is shown with the blue dotted line. The conductance,
G, as a function of energy is quantized. In Fig. 2(a) the back-gate potential is also
zero and the electrons that are transported face a conductance (h/2q2)G = 1.
The back-gate potential shifts the conductance up or down, depending on its
value, and the transported electrons face different discrete conductance values.
For example, in Fig. 2(b) the back-gate potential is set 0.25 V and the trans-
ported electrons now face a conductance (h/2q2)G = 3. The quantization of
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Fig. 2. Graphene device conductance in digital operation. The contacts are not mag-
netized. (a) Vtg = 0.0 V and Vbg = 0.0 V (b) Vtg = 0.0 V and Vbg = 0.25 V. The Fermi
energy is denoted with a dotted blue line. (Color figure online)

Fig. 3. Graphene device conductance in analog operation. The contacts are not mag-
netized. (a) Vtg = 0.15 V and Vbg = 0.25 V (b) Vtg = 0.15 V and Vbg = 0.35 V. The Fermi
energy is denoted with a dotted blue line (Color figure online)

the conductance, combined with back-gate potential values, is used to obtain
discrete values of the conductance that can be mapped to the CA cell states.

Non-zero values of the top-gate potential set the device in analog operation by
smoothing the discrete conductance to an almost linear curve, as shown in Fig. 3
in which Vtg = 0.15V . In analog operation the currents are also set to zero so that
the contacts are not magnetized. In Fig. 3(a) the back gate potential is Vbg =
0.25V and electrons are transported through the nanoribbon with conductance
(h/2q2)G = 2.82. By varying the back-gate potentials the conductance curve is
shifted up or down and the transported electron face a conductance that takes on
continuous values. For example by setting Vbg = 0.35V , as shown in Fig. 3(b),
the conductance curve is shifted upwards and the transported electrons face
conductance(h/2q2)G = 4.67.
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Fig. 4. Density plot of the graphene device conductance that shows the dependence of
the conductance on the values of the contact magnetic polarization angles φ1 and φ2

(in rads)

Fig. 5. Density plot of the graphene device conductance that shows the dependence of
the conductance on the magnitudes of the magnetic polarizations of the contacts, M1

and M2 (normalized values)

Magnetization of the device contacts adds two more controlling parameters,
namely the angles of the polarization vectors φ1 and φ2. These angles can be set
to any value by adjusting the ratios of the magnetizing currents Ix/Iy. Figure 4
shows the dependence of the device conductance on the values of these two angles
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in a form of a density plot, where the value of the conductance is represented by
a color and the correspondence of colors to conductance values is shown in the
color bar on the right of the figure.

Two more controlling parameters of the device are the magnitudes of the
magnetic polarizations of the contacts, M1 and M2. The values of M1 and M2

are determined by the magnitude of the magnetizing currents Ix and Iy. Figure 5
shows the dependence of the device conductance on the values of M1 and M2 in
a form of a density plot, where the value of the conductance is represented by
a color and the correspondence of colors to conductance values is shown in the
color bar on the right of the figure.

In the next section we will describe the CA architecture that uses the device
of Fig. 1 as a building block and we will describe the state and rule of the CA.

4 Implementation and Architecture of the Cellular
Automata

Figure 6 shows the proposed CA architecture in which devices of Fig. 1 are
used as building blocks. In this CA implementation a small grid of 12 devices is
shown, but the CA can be scaled up by extending the architecture.

The CA cell is considered to be one graphene device connected locally to the
neighbouring cells by sharing common metallic contacts, which can be magne-
tized or non-magnetized. We propose the state of the (i, j) CA cell, C(i, j) to
be the conductance of the graphene nanoribbon of this CA cell, which depends
on and is a function of the potentials and the magnitudes and directions of the
magnetic polarizations of the contacts:

C (i, j) = F (Vtg (i, j) , Vbg (i, j) , M1 (i, j) , M2 (i, j) , ϕ1 (i, j) , ϕ2 (i, j)) (5)

The user can define any function F () as a CA state, depending on the problem
she/he is dealing with. If one or more CA state parameters are not to be used,
their values in the function of Eq. 5 should be set to zero.

Regarding the CA rule, which varies the conductance of the CA cells, a large
spectrum of functions can be used, depending on the specificity of the problem
at hand. Neighbouring CA cells share common metallic contacts, which can be
magnetized. This provides the possibility of choosing and applying a variety local
evolution rules. Top and back gate potentials can be applied independently in
each CA cell. Furthermore, CA cells in the same architecture raw have common
buried metallic conductors that carry the magnetizing current Ix and CA cells
in the same architecture column have common buried metallic conductors that
carry the magnetizing currents Iy1 and Iy2. This fact provides the possibility of
including in the CA neighbourhood, cells that are located in the same raw or
column. The CA evolution rule that determines the state of a cell at the next
time step (t + 1) depends on the states at the previous time step (t) of the CA
cells located in its neighbourhood, in the same column and in the same row, and
is described as follows:
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Fig. 6. CA architecture where devices of Fig. 1 are used as building blocks. Back-gates
not shown.

C (i, j, t + 1) = C (i, j, t) +
∑

k,l

Fneigh (C (k, l, t))

+
∑

k, l:Column

Fcolumn (C (k, l, t)) +
∑

k:Row, l

Frow (C (k, l, t)) (6)

In Eq. 6 the functions Fneigh, Fcolumn and Frow represent the dependence
of the evolution rule on the neighbouring cells, on the cells in the same column
and on the cells in the same row.

The CA architecture of Fig. 6 can be used for both digital and analog comput-
ing. Furthermore, by considering the magnetic contacts as memory elements, the
CA architecture can also be used for neuromorphic and in-memory computing,
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in which the top-gate and back-gate potentials are the computing inputs and/or
variables.

5 Conclusions

We proposed an easy to fabricate graphene nanoribbon device with magnetic
contacts and simulated its operation using exact quantum mechanical methods,
namely tight-binding Hamiltonians and non-equilibrium Green’s functions. We
showed that this device is capable of both digital and analog computing. We
proposed a new implementation of CAs in which an architecture is constructed
using the graphene devices as building blocks. We described the CA cell state
and the evolution rules that can be applied to this architecture. We argued that
by considering the magnetic contacts as memory elements, the CA architecture
can also be used for neuromorphic and in-memory computing.
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Abstract. This study copes with the problem of finding the optimal route that a
pedestrian could follow in order to move into an urban environment taking into
consideration various criteria and possible points of interest, either objective nor
subjective. For this purpose, an appropriate computational model has been
designed, based on Cellular Automata (CA) that responds taking into consid-
eration the walkability of the urban area under study. The latter feature
encompasses a variety of qualitative parameters in regard to the pedestrian
mobility. Thus, this model aims at enforcing more sustainable transport
approaches, such as walking. In order to evaluate the functionality of the pro-
posed model, an initial application is carried out in the city of Xanthi, North-
East Greece, in order to verify the plausibility and completeness of the proposed
routes in different scenarios.

Keywords: Crowd modelling � Cellular Automata � Walkability � Dijkstra
algorithm � Simulation

1 Introduction

The problem of finding the optimal route based on the specific needs, options and
demands of a pedestrian is especially important in modern times. Nowadays, more
people are choosing to move with their car even for short distances, which results in
traffic congestion and increased air pollution. It also means eliminating economic cost
of refueling and reduction of atmospheric emissions. Furthermore, walking is con-
sidered as a very effective type of physical exercise that improves health condition.
Pedestrians, also interact with each other, thus increasing their social skills and
improving their positive mood, reducing the number of traffic accidents as well.

Furthermore, the vast majority of research on transport planning focuses on
motorized transport. The corresponding suggestions aim at alleviating traffic conges-
tion usually by re-organising existing road infrastructure at the expense of the local
environmental conditions. For instance, road broadening or new constructions could
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possibly lead to urban sprawl, increased number of vehicles on the roads, thus more
traffic noise and air pollution [1]. Thus, contemporary transport planning copes with
more sustainable and environmentally friendly methods, such as walking [2]. A main
drawback is that data collection is still inadequate and evaluation methods of walking
as a transport mode are not very efficient [3]. To this direction, new concepts need to be
defined rigorously, in order to help research to proceed effectively. The concept of
walkability encompasses important quantitative and qualitative characteristics of
walking in cities in order to facilitate transport planning. Though, there are still dis-
crepancies in its definition [3, 4]. In all, the issue of moving in an urban environment
can be considered as multi-parametric. Thus, developing a method that could propose
the route (or indicate any suitable routes) that the pedestrian can follow in order to
reach her/his destination by combining qualitatively different options of her/his own
could be proven very useful. This method focuses on helping and prompting a person
to move around the city, highlighting the city’s points of interest, helping the person to
evaluate alternative routes properly, combining multiple destinations appropriately and
combining different routes, efficiently assigning any constraints. The proposed model
aims at motivating people to choose walking as their main alternative of moving
around. This work can also be regarded as a contribution to the urban informatics sector
taking into consideration that it charecterises the environment by means of social media
data in relevance to [5, 6].

This study deals with the problem of pedestrian movement within an urban envi-
ronment in order to serve the need of visiting different places in that environment. An
appropriate movement model is developed based on a parallel computational model,
which enables the incorporation and elaboration of weights and parameters that could
produce the proposed movements based on the options and demands of the user. This
work extends the usability of the model proposed by Blecic et al. [7] by deploying the
merits of Cellular Automata (CA) as an effective modeling platform that overcomes the
difficulties that arise when trying to simulate a multi-parameterised system [8, 9].
Furthermore, the proposed tool offers a user-friendly customization environment for
choosing a walking route in order to reach a destination, while visiting intermediate
points of interest. In addition, the model is applied to the city of Xanthi, region of
Thrace, North-East of Greece and it is verified by searching realistic routes within the
historical center of the city.

In Sect. 2, the main designing and developing principles of the proposed model are
described. In the next section, the response of the model is validated for various
scenarios within a particular urban area in the city of Xanthi, Greece. The corre-
sponding results are discussed as well. Finally, conclusions are drawn and future
perspectives are mentioned in regard to the operational ability of the proposed model.

2 Model Description

The aim of this study is the development of a tool that could assess the visit-ability of
an urban area by taking into consideration various destination options and other per-
sonal demands and preferences of a pedestrian. The model responds by proposing the
most appropriate route, not necessarily the shortest one [10]. In the context of this
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study, we describe the degree to which a particular road is more preferable than another
one, by using the term walkability, in accordance to [7]. Each road is evaluated
according to this property and scored within a predetermined scale. A high value of
walkability means that the road combines several features that make it more pedestrian-
friendly, such as wide sidewalks, easy access, lack of traffic, small slope, places of
interest etc.

As aforementioned, the simulation process of the proposed model is based on CA.
For this reason, a grid is defined consisting of the cells that correspond to all parts of
the city where the pedestrian could be found. The possible discrete situations in which a
cell may be located are either zero (0) symbolizing non-existence of a road or one
(1) symbolizing the existence of a road respectively. The Moore neighbourhood is
applied to the model that consists of all the cells around the cell of reference. The radius
of the neighbourhood is equal to one. Such an assumption introduces an error in the
distance calculation for the diagonal cells. Yet, we approach more efficiently the
Euclidean distance, which more realistically describes the space perception compared
to the Manhattan distance that is the base of the von Neumann neighbourhood. In the
proposed model, we assume that each cell knows only the state of the cells in its
neighbourhood. Therefore, each cell may recognize whether there is a road around, but
not the total length of the road or the exact route towards the desired destination. The
process of finding the optimal path is performed gradually, through the evolution of the
next generations of CA, until the point of interest or the final destination is reached.

Subsequently, the rule of the CA should be defined that will activate the cells of the
neighbourhood and change the state of the considered cell. Dijkstra algorithm forms the
backbone of the rule. The main goal of the Dijkstra algorithm is to find the minimum
path between two distant nodes of a graph [11]. The CA rule searches the minimum
distance between two cells in the grid alike. The inside process of both the Dijkstra
algorithm and the CA rule is pretty much the same. The former starts from a node and
finds the one that is closer to it, which is called discovered from then after. The process
continues for all undiscovered nodes. The latter searches among all cells of its
neighbourhood for a new cell that is closer to the target. Thus, we could claim that the
CA rule adopts prominent structural features of the Dijkstra algorithm to define the next
state of each cell in the CA grid. The rule continues to be applied to the CA until the
destination cell is detected or all the cells in the grid are discovered.

Thus, the distance of each cell from the considered one is calculated by the fol-
lowing equation:

Distance ¼
Xp

k¼1
1 ð1Þ

In Eq. (1), the Distance variable represents the distance between two cells.
Parameter p defines the distance numbered in neighbourhoods between two cells. For
example, for two cells in the same neighbourhood parameter p equals one, for those in
the next neighbourhood parameter p equals two, etc. The distance is considered
between each cell and the reference one. One (1) represents the length of the edges, that
is, the distance between adjacent cells. The behavior of the pedestrian depends on many
other factors apart from the minimum distance. This is realised by enriching Eq. (1)
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with weighting coefficients in order to allow important factors to be taken into account
in the process of exploring the optimal route Thus, Eq. (1) is modified in (2):

Distance ¼
Xp

k¼1
1 � nk ð2Þ

Parameter nk represents a cost factor, which is involved in the calculation of the
distance and expresses whether this path gathers features that make it preferable to
pedestrians. The range of accepted values varies from 0 to 1. Particularly, a path
consisting of a sequence of CA cells that combine several desirable features has a low
cost factor with values close to 0. This will make it more likely to be selected as a road
against other neighbouring roads that have higher cost values. In order the value of
parameter nk to be calculated, all the factors that are considered to affect the attrac-
tiveness of the road must be defined. In the context of this study, twelve different
factors are taken into consideration. The first one is cycling accessibility along the
considered road. In addition, the length of the road in combination with the maximum
speed and bi-directionality are particularly important road features. Whenever a road is
characterized by a small number of moving cars and low speed limits, the risk of
pedestrian accidents is significantly reduced. Moreover, large sidewalks where parking
is forbidden are quite attractive for pedestrians. Roads that are well lit and provide
shelter from the sun and/or rain create a sense of security. Sightseeing and places to rest
are also promoted. On the other hand, sloping and uphill roads are less likely to be
selected. All these attributes are combined into one size that determines the attrac-
tiveness of the road. It is called profit factor S and is derived, for each CA cell, from the
following equation:

Sk ¼
Xna

j¼1
cja

r
k;j

� �1
r

� �
ð3Þ

Parameter na denotes the total number of the attributes of the path that are taken
into account. Parameter a(k, j) indicates the value of the j-th attribute at the k-th path.
Parameter c represents the weight of the j attribute. The sum of the weights of all
attributes equals one (

P
cj = 1). Finally, factor r represents the flexibility among the

attributes. Thus, cost factor n can be rewritten as follows:

nk ¼ 1� Sk ¼ 1�
Xna

j¼1
cja

r
k;j

� �1=r
� �

ð4Þ

The values of parameter a for each attribute j of each path k are defined by the
designer of the model. Inevitably, there is a strong subjective factor in these choices.
For this reason, it would be useful an interaction to be introduced between the user of
the model and the model itself that could affect the values of parameter a. This
interaction could be formed as an option that would be provided to the user to post-
evaluate the route suggestion made by the proposed model, according to his experi-
ence. The user’s evaluation is defined between the values zero (0) and one (1), with the
former corresponding to no satisfaction at all and the latter to complete satisfaction.
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Therefore there is formed a factor that reduces the gain factor depending on the user’s
response and increases the cost factor, according to the following equation:

evaluation Sk ¼ Sk � an; k 2 path ð5Þ

Parameter Evaluation_Sk symbolizes the updated gain factor that takes into con-
sideration the assessment of the pedestrian, whereas Sk represents the current value of
the gain factor, an the response of the pedestrian, and k the corresponding path.
Combining Eq. (4) and Eq. (5), then Eq. (6) is derived that describes the updated value
of the cost factor for the k-th path, according to the response of the pedestrian:

evaluationnk ¼ 1� evaluationSk ; k 2 path ð6Þ

Obviously, evaluation_Sk can only get a value less than or equal to the value of the
gain factor Sk (Eq. (5)). In such a frame, the updated gain factor evaluation Sk of the
road k cannot be assigned a greater value. In such a case, a route that proved to be more
attractive to the pedestrian than it was originally assessed by the designer cannot be
assigned a greater value of evaluation. In order to meet this need, the following
behavior will be followed. Provided that the pedestrian’s degree of evaluation reaches
the maximum value of 1, then the pedestrian will be given the option to proceed to a
second evaluation, an2. She/he will be asked to respond to what extent the proposed
route exceeded her/his expectations. This behavior is defined by Eqs. (7) and (8).

evaluation nk ¼ nk � 1� an2ð Þ; k 2 path ð7Þ

evaluation Sk ¼ 1� evaluation Sk; k 2 path ð8Þ

Parameter evaluation_n_k denotes the cost factor according to the assessment of the
pedestrian, k represents the path that the pedestrian crossed, n_k denotes the cost factor
for the current time, and an2 the second response of the pedestrian. Accordingly,
evaluation_Sk symbolizes the gain factor based on the response of the pedestrian. In the
case of a second positive evaluation, Eqs. (7) and (8) outperform Eqs. (6) and (7).

Nevertheless, either positive or negative, the judgments of the pedestrians may be
biased due to personal interest. In order the model to be protected from such behaviors,
public opinion cannot be unreasonably adopted. A common practice is to use the
arithmetic average of all submitted responses. Thus, they are Eqs. (9) and (10) that
define the final value of the cost factor as soon as the evaluation of a pedestrian has
been completed.

new nk ¼ sumValk � nk þ evaluation nk
sumValk þ 1

; k 2 path ð9Þ

new nk ¼ nk; k 62 path ð10Þ

Provided that path k is included in the route that the pedestrian has already eval-
uated, then Eq. (9) is applied and parameter new_nk symbolizes the updated value of
coefficient nk. Otherwise, the value of cost factor nk remains the same (Eq. (10)).
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Furthermore, parameter sumVal is defined as the sum of all submitted evaluations,
whereas evaluation_nK represents the cost factor according to the pedestrian, as cal-
culated in Eqs. (6) or (7) respectively. Accordingly, the updated value of gain factor
new_Sk related to the updated value of the cost factor new_nk is provided by Eq. (11).

new Sk ¼ 1� new nk ð11Þ

So far the basic mathematical principles of the model have been thoroughly
described. Accordingly, the proposed system is designed that accepts personalised
options and demands as input data and responds by outlining the route that the
pedestrian could follow in order to reach her/his destination. With the aim of planning
and then validating the model realistically, the city of Xanthi, region of Thrace, north-
east Greece, was designated as a pedestrian area. The proper operation of the model
needs an effective frame of inputting and processing data and outputting information
correspondingly based on the road network of the city of Xanthi. This goal is suc-
ceeded by introducing a map image of a large part of the city of Xanthi in jpg format
(Fig. 1(a)). In this image, roads are depicted in black on a continuous line. Thus, the
underlying programmatic framework of the model is a two-dimensional array con-
sisting of cells. The accepted state of each cell is either one (1) or zero (0) with the
former representing the presence of a path in that cell and the latter the absence.
Therefore the need arises to convert the information provided by the map into a two-
dimensional (2-d) array consisting of units and zeros. One of the advantages of the
Matlab programming language is that it provides several useful functions for image
editing. Therefore, using the proper functions (imread and im2bw) the proposed system
reads and converts the image into binary format and then inverts the colours so that the
roads are denoted by 1 (black) and the rest of the area by 0 (white), thus producing the
sub-serving 2-d array, named Roads (Fig. 1(b)).

Fig. 1. (a) Map of a large part of the city of Xanthi that is provided as input to the proposed
computational model (b) The corresponding binary image of the city of Xanthi city.
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Furthermore, the system enables the pedestrian to enter data that meet her/his
destinations of interest. The first option corresponds to the starting point and the other
three to the points of interest she/he intends to visit. The model checks to confirm that
the points given as inputs do not exceed the boundaries of the map. Otherwise, the user
is required to return a valid point. Then the CA rule starts evolving based on the sub-
serving framework that has been created, i.e. array Roads. The operation mode of the
CA rule has been described above, but it should be noted that the CA rule acts as an
approximating function that tries to find that point of an existing road that is closer to
the point of interest and it is represented as a specific cell of the CA grid. Thus, array
Roads that contains the road map is related to the CA.

Moreover, each road should be evaluated according to the set of attributes that the
model supports (Table 1 in [7]). Algorithmically, this process takes place by intro-
ducing a weighting factor for each of these attributes. In order to evaluate the degree of
satisfaction of each feature for each road (parameter ak,j, Eq. (3)–(4)), each attribute is
assigned to a separate array that is dimensionally equal to array Roads, i.e. equal to the
underlying CA grid. Each cell is representing an intersection of roads and the model
identifies the specific roads that surround each intersection. The CA rule starts from a
cell that belongs to an intersection and tries to detect one neighbouring and unexplored
cell that represents a part of a road, i.e. a path. Then another part of the road is
identified and the process is completed when we reach another intersection-cell. The
sequence of all explored cells, i.e. paths, from one intersection-cell to another corre-
sponds to a detected road. This procedure is repeated for all other intersection-cells
until all paths are found. The final stage is the introduction of the features for all roads.
As soon as all paths that belong to the same road are joined together, then the degree
that the road satisfies for each separate attribute is defined, according to Table 1 [7].
Based on these values and following Eqs. (3)–(5), the cost array nk is calculated for
each road and therefore for all the cells that form it.

3 Simulation Results

The initial scenario that is presented in this study, aims at confirming the proper
operation of the model taking into consideration that there is no interaction between the
model and the user as well as that the user fills in all requested data appropriately.
According to the scenario, the pedestrian is standing at point (85, 33) of the Cartesian
system of coordinates that is depicted in Fig. 1(b), whereas the points of interest are
(45, 100), (120, 163) and (105, 205). In addition, it is assumed that the pedestrian
requests the weighting factors method to be applied to the estimation of the optimal
route, whereas the individualized evaluation method is skipped.

The tool that has been developed, initially presents the map of the city on the screen
in order to facilitate the user to choose the points of interest. A few seconds later, the
screen that displays the map switches off and the user is asked to define the point that
she/he appears, responding to a question about her/his location as well. Finally, the user
is asked whether she/her would like to evaluate the route before the process of optimal
route estimation commences. As soon as the optimal route is computed, a message is
displayed on the screen informing the user about the colour of the path on the map and
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the order of the destinations that she/he could follow in order to reach all desired
destinations. After two seconds, the map of Xanthi appears with the colored path to
cross (Fig. 2). This delay occurs so that the user is provided with the appropriate time
to read the message and to be able to follow the path shown on the map. Five seconds
later, the popup window that displays the map of Xanthi closes.

Another scenario aims at presenting the response of the model provided that the
interaction between the model and the user is activated for the first time. In particular,
the user assesses poorly the route proposed by the model. As a consequence, the model
differentiates remarkably its response as soon as it is requested to provide a new
proposal for the same destinations. As soon as the user submits her/his desired desti-
nations the application asks her/him whether she/he would like to take into account
other users’ ratings. The answer is affirmative and the system informs the user that there
are no ratings so far. The model continues with processing all input data and responds a
few seconds later, by displaying a message on the screen that informs the user about the
route that the model proposes. In particular, the user is proposed to move from the
starting point (green) (10, 300) towards the cyan point (90, 350) and then the red point
(90, 498) until she/he reaches the final yellow point (325, 385), following the red-
coloured path (Fig. 3(a)). This response of the model is substantially based on the
fundamental criterion of the minimum distance.

Provided that the user has chosen to use the evaluation method, the model requests
assessment of the proposed route. The rating ranges between 0 and 1. The user is 30%
satisfied, thus she/he enters a value equal to 0.3 that corresponds to a relatively poor
rating. Then the user requests the model to update its response for the same destinations
and to take into consideration all submitted ratings. The model responds by proposing a
noticeably diverse route, although the order of approaching the destinations remains the

Fig. 2. The representation of the proposed route, according to the order that has been computed
by the model.
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same (Fig. 3(b)). Finally, the user is prompted to provide another evaluation. The main
conclusion that can be drawn from the second scenario is that the output of the model is
heavily influenced when there is only one submitted rating. In fact, a single evaluation
greatly affects the weights of the system and thus the proposed route. Consequently, the
poor evaluation at the end of the first response noticeably altered the cost factors nk,
thus affected the response of the system.

The third scenario investigates the behavior of the system in case that it receives a
poor evaluation report after a large number of positive ones. After the very first
evaluation that led the model to change its response from the one depicted in Fig. 3(a)
to that illustrated in Fig. 3(b), the user repeatedly requests the model to propose a route
for the same destination points, having activated the evaluation option as well. For each
of the successive ten times that she/he is prompted to evaluate the output, the user

Fig. 3. (a) The response of the proposed route without any evaluation submission. (b) The
response of the model for the same destinations when the evaluation option has been activated
and only one (poor) rating has been submitted. (c) The response of the model as soon as a poor
evaluation has been submitted after ten successive positive evaluations, in regard to the initial
output of the model (depicted in Fig. (a)). (Color figure online)
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submits the best available option, i.e. 1. Accordingly, the model responds identically,
by proposing each time the same route, i.e. the one that is depicted in Fig. 3(b). This
reaction, by itself is another proof of validity for the operation of the model; as long as
the assessment is to the maximum, the model does not at least change its response. As
soon as the user submits a poor evaluation value, i.e. 0.3, the model differentiates its
response slightly. Figure 3(c) illustrates the corresponding route. It is obvious that this
path differs from the initial one (Fig. 3(b)) but not at that extent, as in the previous
scenario (change of response from Fig. 3(a) to Fig. 3(b)).

According to this scenario, the more stored ratings, the lower the impact of each
individual rating on the final proposed route. Indeed, the overall cost factor is calcu-
lated on the basis of the arithmetic average of all cost factors that are formulated
according to the corresponding evaluation Eq. (9). The more the assessments for each
street section, the less the overall cost factor is affected by a single assessment.

4 Conclusions

There are many factors that influence pedestrian behavior in an urban environment. To
develop a model that could approach such behaviours taking into account all the
aforementioned factors is a difficult task by itself. From a mathematical point of view, it
could be regarded as a multi-parameterized system that could be described by a set of
partial differential equations that could hardly be solved. Thus, it is CA that could be
regarded as an alternative method to approach an acceptable solution. In addition,
experiments revealed three major categories that are considered to have an influence on
pedestrian behavior; actual distance, attractive features of a road, and characteristics of
a road in relation to its neighbours. In addition, the larger the number of submitted
evaluations, the more reliable the model becomes.

Finally, there are various perspectives for further developing the proposed model.
A useful idea could be to increase the features that are taken into account for the
simulation of pedestrian behavior. In addition, the development of similar models for
other cities could extend the options of visitors. Finally, transferring the operation of
the model to an android platform would exceed its usability.
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Abstract. A discretization of time in computer simulation of pedestrian
movement is considered. Time step is very influencing on computational
performance. But not only quick calculations is a criterion. The other one
is a confidence to a simulation result. From both aspects, the discrete-
continuous model SigmaEva is considered in the paper. It is shown that
low and high time steps are not reasonable.

Keywords: Pedestrian simulation · Discrete-continuous model ·
Fundamental diagram · Flow rate · Time discretization

1 Introduction

Nowadays a using of computer simulations of pedestrian flows are already nor-
mal for applied tasks. Computer simulation helps to answer design questions to
organize comfort conditions for people in mass events (musical, folklore, sport
and other), safety question to provide evacuation under dangerous emergency
(for example, fire) conditions [1–4]. One can find some modelling approaches:
the social force model based on differential equations [5–7] (continuous app-
roach) and cellular automation (CA) models were developed [8–11] (discrete
approach). Discrete and continuous approaches are combined in models [12–15].
A discrete-continuous approach combines advantages of both approaches: people
move in a continuous space, but there are only fixed number of directions where
a person can move.

Applications are often not research activities, they demand quick solutions.
So a tendency of model development is high performance algorithms (quick cal-
culations). A confidence to a simulation result is on the other hand.

Numerical presentation of each model deals with a time discretization and,
so called, time step Δt, which is a period of time after which new coordinates
of particles are updated. For originally time-continuous models Δt determines
number of calculations which are necessary to simulate the process from the
beginning to the end and consequently Δt determines speed of simulations. For
c© Springer Nature Switzerland AG 2021
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discrete CA models shifts of each particle each time step are equal and do not
depend on Δt, it depends on spatial discretization, all particle have got the same
speed. For example, in [9,11,16,17] Δt = 0.3 s. In time and spatial continuous
models each particle has got individual free movement speeds. Each time step a
length of shift of each particle is determined by Δt and local density. Δt may
vary from 0.001 [s] [18] to 2 [s] [19]. In [14] Δt depends on model parameters:
particle’s radius, a desired speed, an escape velocity.

In this article we investigate an influence of Δt on simulation results in the
discrete-continuous model SigmaEva [15,20]. To compare results under different
Δt we use a conjunction with fundamental diagram.

In the next section fundamental diagrams are discussed. Then we present the
discrete-continuous model SigmaEva. In the fourth section results are presented.
And we finish with a conclusion.

2 Fundamental Diagram

In terms of specific flow Js = ρ v(ρ) [1/(ms)], fundamental diagrams look as
follows. As the density ρ [1/(m2)] increases, the specific flow grows, attains its
maximum, then decreases, Fig. 1. Speed v(ρ) [m/s] goes down with increasing ρ.

sJ

0 max

max
sJ

)( max
sJ

Fig. 1. Schematic behaviour of a specific flow.

Manifestation of fundamental diagram is implemented in the steady-state
regime, when the time-spatial density is assumed to be constant and there are
no conditions for transformations of the flow. People are assumed to be uniformly
distributed over the entire area (e.g., in an extended corridor without narrowing)
and move in one direction.

Various fundamental diagrams exist (for example, Fig. 2), and they are deter-
mined by many factors, including demographics [21], which have the same basic
feature. In Fig. 2 the free movement speed is assumed v0 = 1.66 [m/s].

In the paper there will considered fundamental diagrams by Kh [22] and
WM [23] which are presented in the analytical form through velocity-density
dependencies:
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Fig. 2. Specific flows: WM [23], SFPE [24], Kh [22], v0 = 1.66 [m/s].

vKh(ρ) =

{
v0(1 − ln ρ/ρ0

ln ρmax/ρ0 ), ρ > ρ0;
v0, ρ ≤ ρ0,

(1)

vWM (ρ) =

⎧⎪⎨
⎪⎩

v0, ρ = 0;
v0 (1 − e−1.913 ( 1

ρ − 1
ρmax

)), ρ < ρmax;
0, ρ ≥ ρmax.

(2)

The original forms of the velocity-density dependencies from [22] and [23]
were transformed to input ρmax in an explicit way and to make ρmax a parameter
[25]. There is critical value of the density ρ0, under which a person can maintain
desired speed (free movement speed) [22], for example, ρ0 = 0.51 [1/m2] for
horizontal ways.

In Fig. 2 it was assumed that ρmax = 15 [1/m2] (curve Kh) and ρmax =
6.25 [1/m2] (curve KhS 6.25) in (1), ρmax = 5.4 [1/m2] in (2).

3 Description of the Model

3.1 Space and Initial Conditions

A continuous modeling space Ω ∈ R2 is considered. A boarder ∂Ω (including
open part ∂Ω′ which is exit) is known.

A shape of each particle is a disk with diameter di, initial positions of particles
are given insight Ω by coordinates of disks’ centers xi(0) = (x1

i (0), x2
i (0)), i =

1, N , N – number of particles (it is assumed that these are coordinates of body’s
mass center projection). Each particle is assigned with the free movement speed
v0

i [m/s], the square of projection f0i [m2].
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Each time step t each particle i may move in one of the predetermined direc-
tions −→ei (t) ∈ {−→eα(t), α = 1, q}, q – the number of directions (a model parameter).
Particles that cross target line (∂Ω′) leave the modeling space.

It is assumed that a speed of each person is controlled in accordance with a
local density and does not exceed the maximal value (the free movement speed).

3.2 Preliminary Calculations

To model directed movement a “map” that stores the information on the shortest
distance to the nearest exit is used. The unit of this distance is meters, [m]. Such
map is saved in static floor field S. This field increases radially from the exit; and
it is zero in the exit(s) line(s). It does not change with time and is independent
of the presence of the particles. To calculate the field S the Dijkstra’s algorithm
with 16-nodes pattern may be used, for instance. The idea to use the field S is
imported from the floor field (FF) CA model [26].

3.3 Movement Equation

A person movement equation is derived from the finite-difference expression
v(t)−→e (t) ≈ −→x (t)−−→x (t−Δt)

Δt that is given by a velocity definition. This expression
allows us to present new position of the particle as a function of a previous
position and local particle’s velocity. Thus for each time t coordinates of each
particle i are given by the following formula:

−→x i(t) = −→x i(t − Δt) + vi(t)−→e i(t)Δt, i = 1, N, (3)

where −→x i(t − Δt) is the coordinate in previous moment; vi(t), [m/s] is the
particle’s current speed; −→e i(t) is the unit direction vector, Δt, [s] is the time
step.

Unknown values in (3) for each time step for each particle are shift vi(t)Δt
and direction −→e i(t). In contrast with force-based models [5,6], the task of finding
the velocity vector is divided in two parts. At first, the new direction is deter-
mined; then, value of possible shift is estimated in accordance to local density
in the direction chosen. By this trick we omit the step of describing forces that
act on persons in direct way, a numerical solution of N differential equations.

A probability approach is used to find a direction for the next step. A pro-
cedure to calculate probabilities to move in each direction is adopted from a
previously presented stochastic cellular automata floor field model [10,27].

There are at least two ways to calculate shift vi(t)Δt. They are considered
below. A relaxation parameter Δt is a matter of investigation in the paper. Not
only duration of simulation but dynamics of the model is dependant on Δt.
Below we present a conjunction of the model and some fundamental diagrams
in connection with different Δt.
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3.4 Choosing the Movement Direction and Conflict Resolution

All predetermined directions for each particle for each time step are assigned with
some probabilities to move, and direction is chosen according to the probability
distribution obtained1.

Probabilities in the model are not static and vary dynamically. The personal
probabilities to move in each direction each time step depends on: a) the main
driven force (given by a destination point), b) an interaction with other pedes-
trians, c) an interaction with an infrastructure (non movable obstacles). The
highest probability2 is given to a direction that has most preferable conditions
for movement considering other particles and obstacles and a strategy of the
peoples’ movement (the shortest path and/or the shortest time).

We omit here exact formulas to calculate probability for particle i to move
from this position to directions {−−→

e1
i (t), ...,

−−→
eq
i (t)}, decision rules to choose direction−→

eα̂
i (t). They are presented in [15,20]. Particles take new positions at the same

time, i.e., as in CA models parallel update is used. In a case of conflicts in target
positions on step t some procedure of conflict resolution is applied [15,20].

3.5 Shift Calculation

As it was shown above current person’s speed is density dependent. We assume
that only conditions in front of the person influence on speed. It is motivated
by the front line effect (that is well pronounced while flow moves in open
boundary conditions) in a dense people mass, when front line people move with
free movement velocity, while middle part is waiting for a free space available
for movement. It results in the diffusion of the flow. Ignoring this effect leads
to a simulation being slower than the real process. Thus, only density Fi(α̂) in

direction chosen −→ei (t) =
−→
eα̂
i (t) is required to determine speed.

According to (1) to calculate new coordinates of the particle i we have to
estimate shift vi(t)Δt. There are at least two ways to do it.

One of them is to estimate a local density along movement direction, to
substitute density to some speed-density dependence (for example, (1) or (2))
and then to calculate vi(t)Δt using some Δt, Fig. 3(left). If there are colli-
sions with current positions of other particles the length of the shift is cor-
rected, Fig. 3(right). Numerical procedures to estimate a local density is pre-
sented in [20].

The other one is pure geometrical way when the particle is moved along move-
ment direction on distance v0

i Δt or less taking into account current positions of
other particle as it is shown in Fig. 3.

1 In this discrete-continuous model we took inspiration from our previously presented
stochastic CA FF model [10,27].

2 Mainly with value > 0.9.



Time Discretization in Discrete-Continuous Model 193

Fig. 3. Left: a position of the particle at moment t (red dashed line) under free condi-
tions. Right: a position of the particle at moment t (blue dashed line) if there are other
particles at moment (t − Δt) along the track of the considered particle (right). (Color
figure online)

4 Simulation Results

4.1 Case Study

We consider the simulation experiment under periodic boundary conditions. A
straight corridor 50 m × 2 m in size with the control line in the right-hand side
is the modeling area. People uniformly fill the entire area. It is known [28] that
geometry influence on model dynamics, and straight corridor is chosen to exclude
this influence. Periodic boundary conditions are necessary to compare simulation
results with reference data which were obtained in similar conditions.

To reproduce the steady regime initial number of people N should be
maintained [25]. It means that when a person reaches the control line (leaves
the modeling area from the right-hand side), another person with the same
parameters appears from the left (the inflow should tend to the outflow value).

Each person was assigned with a free movement speed of v0 = 1.66 [m/s].
There were considered two cases when all persons were assigned with squares of
projection, specifically f0 = 0.1 [m2] and f0 = 0.125 [m2].

We considered a set of numbers of people Ni, i = 1,m involved in the
simulation. The corresponding densities are estimated as ρi = Ni/100, i = 1,m,
[1/m2]. As far as the shape of person’s projection is a solid disc, the maximum
number that can be placed in an area of 100 [m2] is 700 with f0 = 0.1 [m2] and
625 with f0 = 0.125 [m2], and the maximum density are ρmax = 7 [1/m2] and
ρmax = 6.25 [1/m2] correspondingly.

There were considered a set of time steps Δt = {0.0625, 0.125, 0.25, 0.5}.

4.2 ΔT Versus Square of Projection

Time T required for M = 1000 people to cross the control line at the end of the
corridor at given Ni is a quantity to be measured. In the stochastic model, the
time should be averaged over a set of K runs under the same initial conditions.
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To estimate the flow rate, the formula Ji = M/Ti, [1/s] for each density

ρ = Ni/100 is used, where Ti =
K∑

j=1

Tij/K is the average time over K runs

required for M people to cross the control line. The corresponding specific flow
is Jsi

= M/Ti/2 [1/(ms)]. This way of estimating the flow is similar to the
method used in natural experiments to obtain real data.

A set of K = 100 runs for combination of parameters (f0 and Δt) and
Ni, i = 1,m was performed and the average times were calculated: T (ρi) =
500∑
j=1

Tj(ρi)/500, i = 1,m, where Tj(ρi) is the time required for M = 1000 people

to cross the control line in one run at given ρi.

Fig. 4. Specific flow for simulated data for different Δt (geometrical way to calculate
shift): f0 = 0.1 [m2] (left); f0 = 0.125 [m2] (right). WM—[23], Kh—[22] with ρmax =
7 [1/m2] (left) and ρmax = 6.25 [1/m2] (right). Straight line is given by v0 · ρ.

In Fig. 4 one can see simulated fundamental diagrams for different Δt for
f0 = 0.1 [m2] (left) and for f0 = 0.125 [m2] (right). And reference data
normalized to maximum density in the simulation experiment are presented.
In Table 1 there are Jmax

s and ρ(Jmax
s ) for all combinations of parameters con-

sidered. Geometrical way to calculate shift was used.

Table 1. Jmax
s , [1/m2], ρ(Jmax

s ), [1/m2], for given Δt, f0. Shift v0 · Δt, [m], for
1.66 [m/s].

Δt, [s] f0, [m2] Jmax
s ρ(Jmax

s )
0.0625 0.1 3.28 4.3
0.125 0.1 2.93 4
0.25 0.1 2.32 2.8
0.5 0.1 1.55 1.6

f0, [m2] Jmax
s ρ(Jmax

s ) v0 · Δt

0.125 4.76 3.8 ≈ 0.1
0.125 3.62 3 ≈ 0.2
0.125 2.3 2 0.415
0.125 1.43 1.5 0.83

Straight line in Fig. 4 is given by production v0 ·ρ. A conjunction of other lines
with this line shows that free movement speed is maintained in the experiment.
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One can see that up to ≈ 1 [1/m2] there is no influence of Δt, square of projection
on model dynamics. Higher densities regulate current speed.

Figure 4 shows that low Δt give unrealistic dynamics of the model (in com-
parison with reference data). A reason of such dynamics is the following. Particles
maintain speed v0 making very small shift v0 · Δt, Table 1. Minimization of Δt
tends to make movement of particles a continuous process. But real movement
of people is more or less discrete from coordinates (position on the plane) point
of view, because position of a person in the plane is changing discretely: new
position of a person differs from previous position of length of the step. So for
low densities a person tends to make step as long as possible but psychological
effect (a keeping a comfort distance from others) is taking into account as well.
Low Δt in the model considered do not allow to reproduce this phenomena.

Fig. 5. Left: model WM—specific flow for simulated data for Δt = 0.25, f0 = 0.1 [m2],
with (2) as an input data, WM—[23] with ρmax = 7.85 [1/m2], Kh—[22] with ρmax =
7.85 [1/m2], 0.25—curve from Fig. 4. Right: model WM—specific flow for simulated
data for Δt = 0.25, f0 = 0.125 [m2], with (2) as an input data, WM—[23] ρmax =
6.25 [1/m2], Kh—[22] with ρmax = 6.25 [1/m2], 0.25—curve from Fig. 4.

The most pronounced conjunction with reference data are given by Δt = 0.25
and Δt = 0.5 for both squares of projection. From computational performance
point of view they are more preferable as well.

Density in Fig. 4 is given in unit [1/m2]. A difference between left and right
graphs in Fig. 4 has a reason in different squares of projection and as a result
different total square taken by particles in computational area.

High Δt = 0.5 [s] gives lower flow in comparison with both reference data.
Δt = 0.25 [s] gives divergence from reference data for middle densities. As

we see a reason is a following. As far as geometrical way to calculate shift is
used only geometrical possibility to make step is taking into account, no psycho-
logical effect is realized in this case. Consequently a reasonable way to regulate
speed in the model is to estimate a local density along movement direction,
to substitute density to some speed-density dependence (for example, (1) or
(2)) and then to calculate vi(t)Δt. As an example of this approach reference
data and a simulated fundamental diagram is presented in Fig. 5. One can see
considerably better convergence of the curves for middle densities. But
divergence is not reduced totally. As we see the reason is in estimate of density:
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a method used to estimate density gives lower density in average, the higher
speed is obtained in this case, as a result more higher specific flow is obtained
comparing with reference data. Figure 5 shows that density estimate applied is
particles’ square projection dependant as well.

5 Conclusion

In the paper the influence of computational parameter Δt which is responsi-
ble for computational performance of the simulation of pedestrian flow was
considered. It is shown for the model presented that low Δt are not reasonable
to consider. High Δt equals half a second gives specific flow lower then reference
data. The best convergence with reference data was obtained for Δt = 0.25 [s].
The divergence given by geometrical way could be considered as a proof that
fundamental diagrams includes psychological effect which is pronounced in a
lower speed comparing with physically possible.
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Abstract. DESERTICAS is a cellular automata software specially
designed for modelling and simulating the evolution of land degrada-
tion over time and space. It is based on coupling a continuous cellular
automaton with the MEDALUS method that has been applied to assess
the desertification phenomena on Mediterranean areas. Additionally, the
built model will incorporate land use practices, exploitability and owner-
ship factors. From an arbitrary initial configuration, DESERTICAS can
predict the space-time evolution of land degradation towards the most
advanced stage. The fully parameterized software will be applied to real
data that are being processed for model validation.

Keywords: Cellular automata · MEDALUS · Desertification
sensitivity index · Desertification software · Land degradation

1 Introduction

Contrary to widespread opinion, desertification is not the transformation of
the land into desert neither the displacement of sand dunes [20]. According
to United Nations Convention to Combat Desertification (UNCCD), deserti-
fication is defined as the degradation of soils, landscapes and terrestrial bio-
productive systems in arid, semi-arid and sub-humid areas, resulting from sev-
eral factors including climate change and human activities [20]. Desertification
is an advanced, even a final step of land degradation process [8] and it con-
tributes to create desert-like conditions [20]. The areas subject to desertification
are dry areas and characterized by: low, infrequent, irregular and unpredictable
c© Springer Nature Switzerland AG 2021
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rainfall; large variations between day and night temperatures; soils with little
organic matter and little water; a fauna and a flora adapted to climatic variations
(drought, salty water and lack of water) [20].

Given the seriousness of the consequences of this phenomenon, the United
Nations has defined strategies for the prevention and control of land degra-
dation. In this context, several common and shared methodologies have been
developed in order to assess, model and understand the desertification phenom-
ena. MEDALUS (acronym for Mediterranean Desertification and Land Use) is
one of the most popular project that was supported by Europe for this issue [4].

Based on MEDALUS approach, POWERSIM simulator [13] provides a tem-
poral evolution of the desertification phenomenon but does not take into account
microscopic and spatial changes of the soil degradation. Another software, LADA
(Land Degradation Assessment in Drylands), that was developed by Food and
Agriculture Organization of the United Nations (FAO), aimed at assessing and
mapping land degradation at different spatial scales [14]. It is based on the
assumption that the main causes of land degradation are due to human activi-
ties on the land. However, the assessment is made at a given time and does not
integrate the dynamic aspect in the model.

In addition and using the GIS platform, the software SIEL was built in order
to quantify and model spatially agricultural practices along with available nat-
ural resources [12]. However, the interactions between the different areas called
activity centers is not integrated into the modeling process.

The main contribution of the present paper is to combine cellular automata
approach to MEDALUS model in the built software DESERTICAS (DESERTIfi-
cation Cellular Automata Simulator) that aims to simulate the land degradation
as a spatio-temporal phenomenon. Cellular automata (CA for short) are an ide-
alization of real systems in which space, time and the physical quantities which
determine the states are discrete. Since their inception by Stanislaw Ulam and
John von Neumann in the late 1940s [9], they have been successfully used to
model physical, environmental or engineering processes: population dynamics,
solidification of crystals, image processing, etc. [2,19]. The main reason behind
the use of CA models is their ability to describe a large variety of complex spatio-
temporal phenomena based on a simple formalism. They have been successfully
applied to simulate the propagation of several phenomena: fire, epidemics, pollu-
tion, etc. [7,17]. They will be coupled in this work with a MEDALUS assessment
in order to describe the spatial expansion/contraction of the desert area. In addi-
tion to the used processes in MEDALUS method that are inherent to the land
degradation, our designed model integrates other factors such as land use type,
exploitability and ownership. The proposed model is fully parameterized and
each parameter can be chosen by the user within a given range provided by
MEDALUS model.

This paper is organized as follows: in the next section, a small introduction of
the used notions in the built software is given. The developed model is described
in Sect. 3 and the implementation steps including DESERTICAS presentation
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are given in Sect. 4. Section 5 is dedicated to the performed simulations and
discussion. At the end, a conclusion is given with some perspectives.

2 Preliminaries

Our model is based on a continuous CA whose components will be defined
according to the MEDALUS assessment extended by anthropogenic factors iden-
tified during field campaigns and through in-depth knowledge of the functioning
of arid zones in the Sahel [11]. Let us start by briefly presenting the basic tools
of the built software.

2.1 Cellular Automata

A CA is a discrete dynamical system that is formally defined by a tuple
(L;S;N ; f) [2,18]. The cellular space L is a d-dimensional lattice whose elements
called cells are arranged depending on their shape and the space dimension d.
Each cell state belonging to a discrete set S updates its value as a function of
the current state of its neighborhood Nc according to a set of rules or transition
function f . The most used neighbourhood types in a 2-dimensional CA are von
Neumann and Moore for square cells or uniform one for hexagonal lattices. If
the states of cell c at time t and t+1 are respectively denoted by sc and s+

c , the
transition function is defined by Eq. (1):

f : Sn+1 → S
sNc

�→ ds+
c

(1)

where n is the number of neighbours except the cell.
A CA configuration or global state is defined by a function that attributes a

state value in S to each cell in L at a given time. The global dynamics of the
CA is defined by the function F that maps the configuration at time t to a new
configuration at time t + 1. If SL is the set of all the CA configurations defined
on the lattice L, s and s+ two consecutive configurations, F is defined by:

F : SL → SL

s �→ F(s) = s+ (2)

2.2 Introduction to MEDALUS

MEDALUS model has been developed by the commission of the European Union.
It aims to assess land degradation by quantifying its factors grouped into four
main types: soil, vegetation, climate and management factors [4].

Each factor is defined by its quality index (value between 1 and 2) [5].

ds = (l × v × w × m)
1
4 (3)

The degree of land degradation, given by the desertification sensitivity index
(ds), is defined as the geometric mean of soil (l), vegetation (v), climate (w) and
management (m) quality indexes [4] (cf. Eq. (3)). The ds values are in the range
[1; 2] and its associated quality states are defined in Table 1.
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Table 1. SDI states.

Class of weight Desertification state

I5 = [1.78; 2] Very-degraded

I4 = [1.53; 1.78[ Degraded

I3 = [1.38; 1.53[ High

I2 = [1.22; 1.38[ Moderate

I1 = [1; 1.22[ Low

Table 2. Quality indexes of climate and manage-
ment factors.

Class Description Index of climate Index of

management

1 High quality Iw
1 = [1; 1.15[ Im

1 = [1; 1.25[

2 Moderate quality Iw
2 = [1.15; 1.81[ Im

2 = [1.25; 1.50[

3 Low quality Iw
3 = [1.81; 2] Im

3 = [1.50; 2]

3 Proposed Model

In this section, we describe the model for desertification phenomenon that is
characterised by a space time evolution where the spread of desert area depends
on the combination of degradation factors to be evaluated [4,10]. The model
introduced in this work can be considered as the continuation and improvement
of the model shown in a previous work of the authors [1]. Here, the coupling of
CA and MEDALUS models is enhanced with additional factors in order to refine
the dynamics of land states. The first novelty is to add the land type factor in
the model. Six main types of land area, defined by their use, are considered: crop
lands, forests, pasture areas comprising the cattle passages, residential areas and
border areas such as roads and water streams. In our work, the land use type is
denoted by p and will be represented by integers in the range [1, 6]. The second
additional factor is exploitability denoted by e and takes 1 or 0 corresponding to
exploited or unexploited land respectively. Land exploitation in DESERTICAS
is subject to its ownership will or its agreement. If two areas have the same
owner, they will be characterised by the same number. As shown in the results,
the interaction between these new factors make desertification modelling more
realistic.

The study area is represented by a 2-dimensional lattice L divided into
square cells. In the grid, each cell c is defined by its coordinates (i, j).

The state of each cell c at time t is given by a tuple ξ(c) ∈ S where ξ(c) =
(lc, vc, wc,mc, pc, ec, oc) corresponding respectively to the indexes of the soil,
vegetation, climate, management, land use type, exploitability and ownership.
We denote by ξ+(c) = (l+c , v+

c , w+
c ,m+

c , pc, e
+
c , oc) the value of this variable for

cell c at time t + 1. Therefore S = [1, 2]4 × [1, 6] × {0, 1} × {1, 2, . . . , k}, where k
is the ownership identifier in the study area.

The neighborhood of a cell c is composed of the cell itself and its
surrounding cells that are supposed to affect its evolution. In this paper,
we consider the Moore neighbourhood of radius r defined as Nc = {ci′j′ ∈
L,max(|i − i′|, |j − j′|) ≤ r}. As all cells in the neighbourhood have the same
influence on the central cell c regardless of their position, they will be denoted by
ci, 1 ≤ i ≤ n and |Nc| = n+1 is the neighbourhood size. We extend the notation
ξ to the neighborhood of the cell c by ξ(Nc) = (ξ(c), ξ(c1), ξ(c2), . . . , ξ(cn)).

It is observed that the most important factors that have significant local
influence in the evolution of land degradation are soil (l), vegetation (v),
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climate (w) and management (m). This will be characterised for a neighbor-
hood Nc by four values computed as the geometric mean of these factors for all
the neighbouring cells ci, i = 1, · · · , n and gives for each q ∈ {l, v, w,m},

qNc
= (qc1 × qc2 × . . . × qcn)

1
n (4)

Additionally, the overall evolution of each cell state will depend on the deser-
tification sensitivity index ds (see Eq. 3) that is a real number given in the
interval [1; 2] as described in [1]. This will be updated according to the evolution
of each factor l, v, w and m.

The transition rules used in DESERTICAS allow to update the state evo-
lution of a cell c according to its state and the state of its neighborhood. The
combination of all those components gives the degradation index of cell c [4].
However, extreme levels of the degradation factors, such as climate and man-
agement, generate stress conditions in land and accelerated its degradation. The
stress conditions of a cell c are applied when Properties 1 and 2 occur [1,16]. At
least, the activity of the owner on a degraded cell is usually transferred in a cell
having good condition. This happens when Property 3 is checked.

Property 1. The state of a cell c reaches the upper part of the range of Degraded
state and its climate and management indexes are High i.e. c ∈ D1:

D1 = {c ∈ L | center(I4) ≤ sc < upper(I4) and wc or mc are High} (5)

where center(Ii) and upper(Ii) are respectively the center and upper bound of
the interval Ii (see Table 1).

Property 2. The state of cell c reaches the upper part of the range of High state
and its climate wc and management mc indexes reach the upper part of High
range values i.e c ∈ D2:

D2 = {c ∈ L | center(I3) ≤ sc < upper(I3) and center(Iw
3 ) ≤ wc or

center(Im
3 ) ≤ mc} (6)

where Iw
3 and Im

3 are described in Table 2.

Property 3 [6,12]. Lands, initially unexploited, can be used by its owner by trans-
ferring the activity from a Degraded land to a better quality land with the same
characteristics and the same ownership. This transfer operation can only be
done by the owner of this two lands or with his agreement and does not take
into account the chosen neighborhood radius. The transfer operation is possible
between two cells c and c

′
, if (c; c

′
) ∈ D3:

D3 = {(c, c
′
) ∈ L × L | pc ∈ [1; 2; 3], sc < min(I4) , ec = 0 , ec′ = 1 , sc′ ∈ I5 ,(7)

pc = pc′ and oc = oc′}

where I4 and I5 are described in Table 1.
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To define the transition function, we first define the parameters α and a
generic function gα as follow. Let α = (α1;α2; . . . ;α9) be a tuple of factor powers

such that αi ∈ [0; 1] and
9∑

i=1

αi = 1. Let gα be the α−weighted geometric mean

defined by Eq. (8).

gα : Sn+1 → [1; 2]
gα(ξ(Nc)) = lα1

c × lα2
Nc

× vα3
c × vα4

Nc
× wα5

c × wα6
Nc

× mα7
c × mα8

Nc
× dsα9

c
(8)

We now define the generic function h used in the transition function to take
into account Properties 1, 2 and 3. Indeed, if the cell c reaches a very degraded
state, it remains in its state dsc. Indeed, desertification has irreversible character
because if a disturbance changes the land from the vegetated state to the critical
threshold of the degraded state, the removal of this disturbance will not return to
the initial state [4,15]. Moreover, in the stress conditions, a cell changes its state
to one of superior states. Beside the particular conditions described previously,
the state of a cell c is given by the combination of desertification factors [4]. For
x ∈ {l, v, w,m}, we define

hx : [0, 1]9 × Sn+1 → [1; 2]

hx(α, ξ(Nc)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xc if dsc ∈ I5 (Irreversibility)

max(min(I5); gα(ξ(Nc))) if c ∈ D1 or D2 (Property 1 and 2)

(xc × xc
′ )

1
2 if x = m and ∃! c

′ ∈ L, (c; c
′
) ∈ D3(Property 3)

gα(ξ(Nc)) otherwise(Normal condition)

(9)

For a cell c, the transition function f computes in parallel each component
of a cell c from its state and the states of its neighborhood. We have:

f : Sn+1 → S
ξ+
c = (fl(ξ(Nc)), fv(ξ(Nc)), fw(ξ(Nc)), fm(ξ(Nc)), pc, fe(ξ(Nc)), oc)

where

fl(ξ(Nc)) = hl((αl1;αl2; 0; 0; 0; 0; 0; 0;αl9), ξ(Nc)),
fv(ξ(Nc)) = hv((αv1; 0; 0;αv4; 0; 0; 0; 0;αv9), ξ(Nc)),
fw(ξ(Nc)) = hw((αw1; 0;αw3; 0;αw5;αw6; 0; 0; 0), ξ(Nc)),
fm(ξ(Nc)) = hm((0; 0; 0; 0; 0; 0;αm7;αm8; 0), ξ(Nc)),

fe(ξ(Nc)) =

⎧
⎪⎨

⎪⎩

1 if ∃! c
′ ∈ L, (c; c

′
) ∈ D3

0 if ∃! c
′ ∈ L, (c

′
; c) ∈ D3

ec if not

(10)

Thus, depending on the evolution of cell states, three kinds of processes can
be described: degradation, regeneration and stability. A cell c is in the process of
degradation if its states verify dsc < ds+

c . A cell c is in the process of regeneration
if its states verify dsc > ds+

c . A cell c is in the process of stability or conservation
if its states verify dsc = ds+

c .
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4 Implementation

Written in Python, DESERTICAS is the software designed to model the phe-
nomenon of land degradation based on our proposal. The interface is presented
in Fig. 1. It is divided into four parts.

Fig. 1. DESERTICAS Graphical User Interface.

Data Importation. The first part is devoted to initialisation of the cell states
of the studied area. The user can import data from a CSV file by using
the button ”CSV fill” or generate simulated data. The data relating to qual-
ity index of the four desertification factors, the land type, the exploitabil-
ity and the ownership factors are generated or imported at the end of this
step. Let lc(0), vc(0), wc(0), mc(0),pc(0), ec(0) and oc(0) be respectively qual-
ity index of soil, vegetation, climate, the management, the land use type,
the exploitability and ownership factors of a cell c at initial time t = 0.
These initial chosen data in DESERTICAS implicitly initialize the state ξ(c)
to ξ0(c) = (lc(0), vc(0), wc(0),mc(0), pc(0), ec(0), oc(0)).

Neighborhood. The used neighborhood is Moore’s order r with r ∈ {0; 1; 2; 3}.
Depending on the influence of the interactions between the desertification factors,
the neighborhood can be fixed to 0 if it is not considered in the evolution. The
neighborhood choice implicitly initializes the variables ξ(Nc) to ξ0(Nc). The
desertification index dsc(0) is also set.

Tuple of Factor Coefficients αq. The evolution of each factor index takes into
account the coefficient tuple α as defined in the transition function f in Eq. 10.
The coefficients αi, i ∈ {1; 2; ...; 9} are considered as integer and thereafter nor-
malized by their sum. To make the interface readable, the tuples are divided
into: αl = (αl1;αl2;αl9), αv = (αv3;αv4;αv9), αw = (αw1;αw3;αw5;αw6) and
αm = (αm7;αm8). The default coefficients proposed by DESERTICAS are such
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that all the factors have the same impact in the desertification process. That is
to say: αl = (1; 1; 1), αv = (1; 1; 1), αw = (1; 1; 1; 1) and αm = (1; 1). However,
thanks to a slide, users can choose their own coefficients to give more weight to
some factors.

Result Display. The results are displayed through two canvas. The first one dis-
plays the evolution of the CA lattice and the second one presents the different
curves of cell evolution according to their states at each time step. After import-
ing data and choosing the parameters, the initial configuration of the grid will
be displayed in the first canvas. The control buttons activate the evolution of
the cells states on grid at each time step. It also allows to display simultaneously
the grid configuration and the evolution curves of the cell states.

5 Results and Discussion

The three simulations presented in Fig. 2, extracted from DESERTICAS soft-
ware, are obtained on the same initial configuration area. The size of the area
is W × H = 40 × 40. This area is composed of four parts delimited by a street
(in black) and a river (in blue). On the bottom left, we have a residential area
(in white). On the three other parts, the state of each cell are random and
they are represented by the following colors: orange for verydegraded, yellow
for degraded, green for high, khaki for moderate and dark green for low. As we
are studying more specifically arid zones, we assume that the climate has a high
level. Another assumption is that on the right side of the river, there is a high
human pressure characterised by a high management factor and on the up left
side, there is a good management of the land.

A general observation is that the elementary processes of degradation (right
side), regeneration (up left side) and conservation (bottom left side) occur simul-
taneously during the evolution. This comes from the fact that land factor states
such as soil and vegetation are degraded or improved by the intensity of climate
and human management factor and the management factor differs from left to
right side.

We are first interested in the impact of the neighborhood. On Fig. 2(a) and
(b), standard values for the coefficients α are used. The difference here is the
choice of r to 1 and 2 respectively. We observe that the degradation process on
the right side is emphasized when the neighborhood influencing the behavior
of the cell is bigger. This can be explained by the fact that there is a general
degradation aspect in the neighborhood: we observe few aggregated cells with
low or moderate states, most of them are high or degraded.

In Fig. 2(a) and (c), we have the same neighborhood with r = 1 but the
coefficients α differ. Those figures highlight the huge impact of the choice of
the coefficients on the speed of the evolution of cell states. Choosing the right
parameters gives a more realistic model for convergence. Setting all the coef-
ficients to the same value for soil factors (αl = (1; 1; 1)) gives a bigger weight
(equal to 2) to the external influences, i.e. neighborhood and global state than
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Parameters t = 0 t = 10 t = 20 State evolution

(a)

αl = (1; 1; 1),
αv = (1; 1; 1),
αw = (1; 1; 1; 1),
αm = (1; 1),
r = 1

(b)

αl = (1; 1; 1),
αv = (1; 1; 1),
αw = (1; 1; 1; 1),
αm = (1; 1),
r = 2

(c)

αl = (3; 1; 2),
αv = (3; 1; 2),
αw = (5; 1; 2; 2),
αm = (2; 1),
r = 1

Fig. 2. Evolution of the same area with different parameters. (Color figure online)

the local state of the cell (see Eq. 8). Then the land factor will tend to an homo-
geneous value and the local aspect is neglected. The reasoning is the same for
vegetation, climate and management. Refining factors can solve this problem of
fast convergence by taking more into account the local characteristics. Hence,
we tried different factors, and it appears that the one chosen in Fig. 2(c) are
closer to reality according to geograph experts. The last column shows the evo-
lution of the numbers of cells according to the interpretation of their states:
verydegraded (DE), degraded (D), high (H), moderate (M) and low (W). The
same tendency are observed in term of growth and decline. Early peaks that
flatten out are explained by human practices that harmonize on the sub-areas.
There is an increasing number of degraded cells explained by the arid climate
and by half of the area with high human pressure. This phenomenon is similar to
what can be observed in SIR model in epidemiology [3]. The difference is in the
slope which are less steep in Fig. 2(c) what reinforces our interpretation about a
slower convergence.

6 Conclusion

DESERTICAS is based on coupling CA approach, MEDALUS model and addi-
tional factors. Its purpose is to predict land evolution from the initial config-
uration according to a built-transition function. This function is based on the
fundamental properties of land degradation process like factors combination,
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irreversible character, its impacts, etc. Also, this model is done according to a
chosen neighborhood radius and coefficients assigned to the different factors. The
coefficients represent the factors weights in weighted-geometric mean and allow
to take into account the importance of these factors in the evolution process.
The chosen parameters i.e. coefficients and the neighborhood allow to control
cell degradation speed. Indeed, high coefficients associated to land factors allow
to slow down the degradation process while identical coefficients to degradation
factors accelerate the process until total extinction of cells (desertified). Also, a
larger neighborhood allows to consider many cells of the CA grid in the given
cell evolution and participates actively in the degradation speed growth. These
different choices are made according to the user’s knowledge of the desertifi-
cation microscopic processes and the study area characteristics. That poses the
adequacy and optimization problems rely on these parameters. As a perspective,
the neighborhood radius and the weighted-geometric mean coefficients can be
determined by an optimization method or artificial neural networks. Using, the
second method of optimisation is conditioned by obtaining data from the earlier
periods.

DESERTICAS is a decision support tool which can be used to control and
protect the land against degradation. Unlike other existing desertification mon-
itoring software, it allows to predict land degradation state in time and in space
from an initial configuration.This is a notable advance in the strategies for fight-
ing desertification through an annual monitoring.

In its current form, DESERTICAS is limited to the annual modeling of the
land states under the effect of degradation factors. It does not include control
actions aimed at curbing the harmful effects of its factors on the land quality
state. As second perspective, actions can be integrated to follow the cells evolu-
tion and alert in high degradation level case. This actions will be guided by the
control parameters of the model.
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Université Internationale de Rabat (UIR), Rocade Rabat-Salé,
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Abstract. We perform a numerical study of thermal diffusion effects on
double-diffusive mixed convection in a lid-driven square cavity, differen-
tially heated and salted. The fluid flow is solved by a multiple relaxation
time (MRT) lattice Boltzmann method (LBM), whereas the tempera-
ture and concentration fields are computed by finite difference method
(FDM). To assess numerical accuracy, the model (MRT-LBM coupled
with FDM) are verified and validated using data from the literature.
Besides reasonable agreement, satisfactory computational efficiency is
also found. Thereafter, the model is applied for the thermal diffusion
effect on a double-diffusive mixed convection in a cavity with moving
lid. Results are obtained depending on various dimensionless parame-
ters. It is found that upon increasing the Soret number, heat transfer is
slightly enhanced whereas the thickness of the concentration boundary
layer increases, thereby decreasing the mass transfer rate.

Keywords: Lattice Boltzmann method (LBM) · Finite difference
method (FDM) · Thermodiffusion effect · Double diffusive mixed
convection

1 Introduction

In the last few years an alternative numerical method has attracted much atten-
tion as a technique in fluid engineering. This method called Lattice Boltzmann
Method (LBM) is a mesoscopic method. The fundamental idea behind LBM is
to establish a simplified kinetic model to obey the corresponding macroscopic,
i.e. Navier Stokes, equations. It has proved its capability to simulate a large
variety of fluid flows [1–4]. The LBM has become a very successful alternative
numerical method for computational fluid dynamics. Moreover, it is well suited
for high-performance implementations on massively parallel processors, includ-
ing graphics processing units [5]. The lattice Boltzmann method comes with two
main collision models. One of the simplest and most widely used proposed by
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Bhatnagar, Gross and Krook [6] called BGK model, is based on a single relax-
ation time (SRT) and proves very simple and efficient for simulating fluid flows.
Up to now, the lattice Boltzmann equation with the BGK collision operator
is still the most popular lattice Boltzmann method. Despite many advantages,
the BGK model reveals some deficiencies due to numerical instabilities [7] and
consequent difficulties to reach high Reynolds number flows. The second model
called MRT operator [8] where each relaxation rate can be tuned independently,
presents some advantages compared to the BGK model in terms of numerical
stability. Because of this, the MRT-LBM has become increasingly popular in the
recent years.

For solving thermal LBM model, several approaches have been proposed,
which can be grouped into four categories: passive-scalar approach, multispeed-
approach, double-population approach and hybrid approach. The multispeed
approach consists in using only one distribution function for treating all thermo-
hydrodynamic equations [9–11]. The passive scalar approach consists of treating
temperature as the current along an extra-spatial dimension [12]. It is efficient,
but being related to the four-dimensional lattices used in the earliest days of LBM
research, it has somehow lost popularity The multi-speed model is most natural,
but requires additional discrete speeds and is prone to numerical instabilities.
The double population approach [13,14] makes use two independent functions
for thermo-hydrodynamic equations. This model assumes that, the viscous dissi-
pation and compression work can be neglected for incompressible fluids and the
evolution of the temperature is given by the advection-diffusion Eq. [15,16]. This
approach shows significant improvements in numerical stability, but to the cost
of introducing an additional distribution function to simulate a passive scalar.
The hybrid approach [16] used in this article, consists of leaving LBM only for
the flow solution, while the energy equation is solved by a different numerical
method, typically finite-differences or finite-volumes.

For this reason, in our work the LBM-MRT model is used for velocity field,
on the one hand, and finite differences for temperature and concentration fields,
on the other hand.

Thermosolutal buoyancy-driven flow in confined cavities represents a funda-
mental problem, with many engineering applications, such as pollutant trans-
port, nuclear reactor cooling, cooling of electronic systems, to name but a few.
Double-diffusive heat and mass transfer problems can be classified as problems
involving natural convection, forced convection and combination of both, often
referred to as mixed convection [17–22].

Diffusion of heat due to a mass concentration gradients (Dufour effect) and
diffusion of matter induced by temperature gradients (Soret effect) are the sub-
ject of intensive research, due to the broad range of application in technology
and engineering. These include mixture between gases, oil-reservoirs, isotope
separation and many others [23–29].

For all the above cited works, the authors have used several configurations to
study both the double-diffusive natural and mixed convection problems. More-
over, they applied different numerical methods to solve the basic thermo-fluid
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equations. Comparatively less attention has been given to the problem of a
double-diffusive mixed convection with Soret effect in a driven cavity. From
this point of view and to the best of the authors knowledge, no attention has
been paid to explore the thermal diffusion effect (Soret effect) on a double-
diffusive mixed convection in a cavity with moving lid, using the lattice Boltz-
mann method (LBM).

In this paper we present a numerical model for double-diffusive mixed con-
vection with Soret effect in a lid-driven cavity. This model uses the Lattice
Boltzmann method with multiple relaxation time for collision operator to sim-
ulate mass and momentum conservation and finite differences to compute the
temperature and concentration fields. We also attempt to provide benchmark
quality results on CPU time which can be compared with the existing data.

2 Mathematical Model

2.1 Definition of the Problem

Fig. 1. Geometry of the enclosure and coor-
dinate system.

The physical model under consider-
ation is presented in Fig. (1). The
two-dimensional lid-driven cavity has
height H and width L (Aspect ratio
Ar = H

L ), the vertical side walls are
thermally insulated and the top wall
moves at a constant velocity U0 = 0.1.
The bottom and top walls are main-
tained at two different but uniform
temperatures and concentrations such
that the top wall has the temperature
Tc and concentration Cc, while the bottom wall has the temperature Th and
concentration Ch, respectively, where Th > Tc and Ch > Cc.

The thermophysical properties of the fluid are assumed to be constant except
for the density variation in the buoyancy term according to the Boussinesq
approximation:

ρ = ρ0 (1 − βT (T − Tm) − βS (C − Cm))

where ρ0 is the fluid density at the reference temperature Tm =
(

Th+Tc

2

)
and

concentration Cm =
(

Ch+Cc

2

)
, βT and βS are the thermal and mass expansion

coefficients, respectively.
To solve the problem of double-diffusive mixed convection with Soret effect in

a lid-driven cavity we assume: a Newtonian incompressible fluid, the Boussinesq
approximation for buoyancy, viscous heating and compression work are neglected
and no source term inside the cavity.

Based on these assumptions, the dimensional governing equations of mass and
momentum are solved by the MRT lattice Boltzmann Method (MRT-LBM) while
energy and species equations are solved by Finite Difference Method (FDM).
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The non dimensional terms used in this work like thermal Grashof num-
ber, the solutal Grashof number, the buoyancy ratio, the Richardson number,
the Reynolds number, the Prandtl number, the Schmidt number and the Soret
number are defined, respectively, by:

GRT = gβT

(
(Th − Tc) H3

ν2

)
; GRS = gβS

(
(Ch − Cc) H3

ν2

)

N =
βS (Ch − Cc)
βT (Th − Tc)

=
GRS

GRT

Ri =
GRT

Re2
; Re =

U0.H

ν
; Pr =

ν

α
; Sc =

ν

D

Sr =
D.KT (Th − Tc)
Tmν (Ch − Cc)

The average Nusselt and Sherwood numbers, defined by temperature and
concentration gradients at walls, are calculated via:

Nuav = − 1
Th − Tc

∫ H

0

(
∂T

∂y

)

wall

dx

Shav = − 1
Ch − Cc

∫ H

0

(
∂C

∂y

)

wall

dx

The dimensionless variables governing this problem are U the x-component
velocity and V the y-component velocity.

The following dimensionless quantities are given by:

U∗ =
U

U0
V ∗ =

V

U0
θ =

T − Tc

Th − Tc
t∗ =

tU0

H
Θ =

C − Cc

Ch − Cc

2.2 MRT-LBM Hybrid Model for Fluid Flow

Within this approach, fluid is described by a particle distribution function which
evolves in discrete space and time (a DdQq lattice; d dimensions and q velocities)
following two steps: propagation and collision. Hence, the lattice Boltzmann
equation is expressed as:

fi (−→x + −→ei , t + 1) − fi (−→x , t) = Ωi (1)

where fi is the probability of finding a particle at lattice node −→x , at the time
t, moving with velocity −→ei (i = 0, ....q − 1) and Ωi is the collision operator. Note
that the time step is made unit by convention.

The Lattice Boltzmann equation with multiple relaxation time (MRT) can
be expressed as:

fi (−→x + −→ei Δt, t + Δt) = fi (−→x , t) − M−1Sij

[
mj − meq

ij (−→x , t)
]

(2)
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M is a transform matrix projecting the discrete distribution function f into
moment space |m〉 = M. |f〉, meq

j is the equilibrium moment.
The physical meaning of the moments is as follows:

|m〉 =
(
ρ e jx jy ε qx qy pxx pxy

)� (3)

where ρ is the density, e is the energy, jx and jy the x and y components
of momentum (mass flux) and ε is defined as the kinetic energy, qx and qy are
the x and y components of the energy flux. In addition, pxx and pxy correspond
to the diagonal and off-diagonal components of the viscous stress tensor, and �
denotes the transpose operator.

The macroscopic fluid variables, density ρ and velocity −→u are obtained from
the moments of the distribution functions as follows:

ρ =
q−1∑

i=0

fi and ρ−→u =
q−1∑

i=0

fi
−→ei (4)

For the (D2Q9) lattices(Fig(2)), the nine discrete velocities −→ei are defined as:
⎧
⎨

⎩

−→ei =
−→
0 i = 0−→ei =

(
cos

[
(i − 1) π

2

]
, sin

[
(i − 1) π

2

])
c i = 1, 2, 3, 4−→ei =

(
cos

[
(2i − 9) π

4

]
, sin

[
(2i − 9) π

4

])
c
√

2 i = 5, 6, 7, 8
(5)

Fig. 2. Lattice structure for the D2Q9 model.

Where ΔX and Δt are the
lattice width and time step,
respectively. It is chosen that
ΔX = Δt, thus c = ΔX

Δt = 1
is the lattice speed.

With a (D2Q9) lattices,
the transformation matrix M
and the moment vector m are
defined as:

m =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ
e
ε
jx

jy

qx

qy

pxx

pxy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0

f1

f2

f3

f4

f5

f6

f7

f8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= M.f (6)



214 S. Bettaibi and O. Jellouli

Where the equilibrium value of moments can be defined from the following
equations: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρeq = ρ
eeq = −2ρ + 3

(
u2 + v2

)

εeq = ρ − 3
(
u2 + v2

)

jeq
x = ρu

jeq
y = ρv

and

⎧
⎪⎪⎨

⎪⎪⎩

qeq
x = −u

qeq
y = −v

peq
xx = u2 − v2

peq
xy = uv

(7)

The equilibrium density distribution function, which depends on the local
fluid velocity and density is given by:

feq
i = wiρ

[

1 +
3−→ei .

−→u
c2

+
9 (−→ei .

−→u )2

2c4
− 3−→u .−→u

2c2

]

i = 0 → 8 (8)

Where wi is the weighting factor defined as:
⎧
⎨

⎩

wi = 4
9 i = 0

wi = 1
9 i = 1, 2, 3, 4

wi = 1
36 i = 5, 6, 7, 8

(9)

The diagonal relaxation matrix can be written as:

S = diag [S0, S1, S2, S3, S4, S5, S6, S7, S8] (10)

In the present work, we assume S0 = S3 = S5 = 0 for both the mass and
momentum conservation before and after collision. We also consider S7 = S8 = 1

τ
due to fact that the viscosity formulation is the same as SRT model. In the
present simulation S1 = 1.64, S2 = 1.2 and S4 = S6 = 8 × (2−S7)

(8−S7)
.

It should be noted that in the LBM the kinematic viscosity ν is related to
the relaxation time by the following relation:

ν = (τ − 0.5) c2
sΔt (11)

Where cs = c√
3

is the speed of sound. For the (D2Q9) lattices the viscosity
is positive which requires the choice of τ > 0.5.

2.3 Finite Difference Method (FDM) for Temperature
and Concentration Fields

Equation (4) is discretized by the Finite Difference Method (FDM) using the
Taylor series expansion of the second order. To improve the stability of the
hybrid model used in this article, Lallemand and Luo [16] suggest using a dis-
cretization in accordance with discretization speeds. They proposed the following
discretization for the derivatives with (Δx = Δt = 1):

For more clarity, in the following the variable (Φ) designates the temperature
(T ) or the concentration (C). Therefore, the equations for both scalars (T and
C) can be written as:

∂Φ

∂x
=

(
Φi+1,j − Φi−1,j − 1

4
[Φi+1,j+1 − Φi−1,j+1 + Φi+1,j−1 − Φi−1,j−1]

)
(12)
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∂Φ

∂y
=

(
Φi,j+1 − Φi,j−1 − 1

4
[Φi+1,j+1 − Φi−1,j+1 + Φi+1,j−1 − Φi−1,j−1]

)
(13)

And for Laplacian:

∇2Φ = ([Φi+1,j + Φi,j+1 + Φi−1,j ]

−1
2

[Φi+1,j+1 + Φi−1,j+1 + Φi−1,j−1 + Φi+1,j−1] − 6Φi,j

)
(14)

For the time derivative, we use an explicit difference scheme. Then for the
solution is conditionally stable:

∂Φ

∂t
=

(
Φn+1

i,j − Φn
i,j

)
(15)

Substituting the Eqs. (12–15) to Eq. (4) or (5):

Φn+1
i,j = Φn

i,j (1 − 6α) + Φn
i+1,j (−u + 2α) + Φn

i−1,j (u + 2α)
+Φn

i,j+1 (−v + 2α) + Φn
i,j−1 (v + 2α)

+Φn
i+1,j+1

(
1
4u + 1

4v − 1
2α

)

+Φn
i−1,j+1

(− 1
4u + 1

4v − 1
2α

)

+Φn
i+1,j−1

(
1
4u − 1

4v − 1
2α

)

+Φn
i−1,j−1

(− 1
4u − 1

4v − 1
2α

)

(16)

The coefficient that accompanies (Φi,j) in the above equation plays an impor-
tant role for explicit schemes. These schemes are conditionally stable and then
lead to constraints on the time step and space step choices. One of the required
stability conditions for the current scheme is taken when the thermal diffusivity
and viscosity are related to Prandtl number and limited by:

(1 − 6α) ≥ 0 ⇒ α =
ν

Pr
≤ 1

6

On the other hand, the stability conditions of the scheme relative to the mass
diffusivity and viscosity are related to Lewis number and limited by:

(1 − 6D) ≥ 0 ⇒ D =
ν

Le
≤ 1

6

2.4 Boundary Conditions

In the present work, we consider two types of boundary conditions. We apply
the Dirichlet boundary conditions (fixed temperature and concentration) at hor-
izontal walls while the vertical walls are adiabatic, defined by:

U = V = 0, θ = Θ = 1 at Y = 0, 0 ≤ X ≤ 1
U = 0.1, V = 0, θ = Θ = 0 at Y = 1, 0 ≤ X ≤ 1
U = V = 0, ∂θ

∂X = ∂Θ
∂X = 0 at X = 0, 0 ≤ Y ≤ 1

U = V = 0, ∂θ
∂X = ∂Θ

∂X = 0 at X = 1, 0 ≤ Y ≤ 1
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The no slip boundary condition is imposed at all walls. This type of boundary
condition in the LBM is achieved half-way between the boundary nodes [17]. As
a result, an extrapolation is needed on boundary nodes to enforce the correct
thermal boundary conditions.

The following expressions were used to impose the temperature (the same
procedure for the concentration):

Ti,0 =
8
3
Twall − 2Ti,1 +

1
3
Ti,2 (17)

For adiabatic boundary conditions at the walls:

T0,j =
21
23

T1,j +
3
23

T2,j +
1
23

T3,j (18)

3 Model Validation

In order to check the validity of the proposed model, Table 1, reports a com-
parison of our numerical results with those of Ben Cheikh et al. [30] in terms
of CPU time and number of steps for different grid sizes and for Rayleigh num-
ber Ra = 105. These authors used a finite volume multigrid method and com-
pared two different schemes namely, the accelerated finite volume full multi-
grid method (AFMG) and the red and black successive overrelaxation scheme
(RBSOR) inorder to study convective flow in a square differentially heated cav-
ity, the top and bottom walls are thermally insulated whereas the west and east
walls are maintained isothermally at constant and temperatures Th (hot) and Tc

(cold), respectively. It is to be noted that the CPU time performances obtained
on a dual-1.73 GHz processor. From this table it is seen that the present model
is more efficient in CPU than the two schemes used for comparison and shows
also an interesting gain concerning in time step-size. Of course these data should
be taken as a semi-quantitative indication, a more detailed comparison requiring
the consideration of many parameters, including code optimization and related
issues which are beyond the scope of this paper.

Concerning the double-diffusive mixed convection without Soret effect, a grid-
dependence study was carried out by setting Pr = 1, Le = 2, Re = 500 and
GRT = GRS = 100 (N = 1). Five uniform node resolutions, 312, 512, 612, 712

and 812 were examined.
In Fig. (3a–3b) we compare our results for the steady state velocity and tem-

perature profiles along the mid-section of the cavity in the Y -direction, with the
results of Al-Amiri et al. [21] obtained using stream function vorticity formula-
tion. As shown from these figures, reasonable results are obtained using node a
812 grid resolution.

Thus, the present model is verified and validated with different numeri-
cal methods in the literature. The different comparisons indicate the effective-
ness and accuracy of the proposed model. Next, the model is applied to the
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Table 1. Comparison of CPU times and number of steps with Ref. [30] for different
grid sizes, for Ra = 105.

Grid size Method Steps CPU[s] CPU[s]/Steps

Present 67500 19 0.00028

32 ∗ 32 AFMG [30] 5000 26 0.0052

RBSOR [30] 33 0.0066

Present 113800 139 0.00122

64 ∗ 64 AFMG [30] 10000 209 0.021

RBSOR [30] 450 0.045

Present 128400 640 0.00498

128 ∗ 128 AFMG [30] 20000 2300 0.115

RBSOR [30] 18057 0.903

Present 460400 09455 0.02053

256 ∗ 256 AFMG [30] 40000 15595 0.390

RBSOR [30] 632000 15.80

thermosolutal mixed convection with Soret effect in a cavity with moving top
wall. We also endeavour to provide benchmark results to be compared with the
existing data.
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Fig. 3. Grid independence test for GRS = GRT = 102 (N = 1), Le = 2 and Re = 500,
(a) U -Velocity and (b) Temperature.

4 Results of Thermosolutal Mixed Convection with Soret
Effect

In this section we study the numerical procedure of MRT-LBM coupled with
FDM for thermosolutal mixed convection with Soret effect in a lid-driven square
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cavity. The fluid velocity is determined by D2Q9 MRT-LBM model while the
temperature and concentration fields are computed by FDM. The effects of var-
ious parameters such as the Soret number Sr, the buoyancy number N on the
flow structure and the heat and mass transfer as well as the average Nusselt and
Sherwood numbers are calculated. The Schmidt number Sc = 5, the Prandtl
number Pr = 0.71, the Reynolds number Re = 316 and the Richardson number
is fixed at Ri = 0.1.
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(k) Isoconcentrations

Fig. 4. Computed streamlines, isotherms and isoconcentrations: (a, d and c) for Sr = 1,
(d, e and f) for Sr = 0.5, (g, h and k) for Sr = 0.

Effect of Soret Number Sr . In this subsection, numerical results are obtained
for the thermal and solutal Grashof numbers fixed at GRT = GRS = 105 (N =
1), while the Soret number is changed in the range Sr = 0, 0.5 and 1. The
results are reported in terms of streamlines, isotherms and isoconcentrations,
respectively.

For Sr = 0, the problem reduces to a pure thermosolutal mixed convection.
Fig(4a-4c) show the streamlines, isotherms and isoconcentrations predicted by
the present hybrid lattice-Boltzmann finite difference simulation. As shown from
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Fig. (4a), a primary circulation clockwise vortex occupies the whole volume of
the cavity, with a secondary counterclockwise vortex that is formed near the
bottom corners, due to the dominant effect of mechanically driven top lid to the
entire cavity. The distribution of isotherms and isoconcentrations depicted in
Fig. (4b–4c) show that there are steep temperature and concentration gradients
in the vertical direction, near the bottom wall. By increasing the Soret number
to Sr = 0.5 (Fig. (4d–4f)) and Sr = 1 (Fig. (4g–4k)), the flow patterns are
characterized by a primary recirculating clockwise vortex, that occupies the bulk
of the square cavity with a secondary counterclockwise vortex near the bottom
corner, are the results of negative pressure gradient generated by the primary
circulating fluid. In addition, steep temperature gradients are clustered in the
vertical direction of the interior region and near the bottom wall. It is to be noted
that, in this case, by increasing the Soret number, no significant effect is observed
in terms of both streamlines and isotherms. Due to the significant dependence
of the Sherwood number on the Soret number, we note a dramatic variation in
the mass contours with thinner mass boundary layer forming along the wall (see
Fig. (4f, 4k)). This is due to the increase in diffusivity upon increasing the values
of the Soret number.

Table 2. Effect of Soret number Sr on the average Nusselt and Sherwood numbers for
GRT = GRS = 105, Re = 316, Sc = 5 and Ri = 0.1.

Sr Nuav Shav CPU [s] Steps

0 3.743 7.049 881.5 384500

0.5 3.809 5.773 815.4 353800

1 3.886 4.450 645 286200

This is also demonstrated from date in Table 2, in which we calculated the
average Nusselt and Sherwood numbers for three values of the Soret number. One
can note that, by increasing the Soret number from Sr = 0 to Sr = 1, the heat
transfer represented by the Nusselt number is slightly increased. On the other
hand, if the Soret parameter is increased, the thickness of the concentration
boundary layer increases, thereby decreasing the mass transfer rate represented
by the average Sherwood number.

Conclusion

In this paper we employ the lattice Boltzmann method with multiple relaxation
time (MRT-LBM), coupled with the finite difference method (FDM) to simu-
late thermo-hydrodynamics. The fluid flow is computed by D2Q9 MRT model
while the temperature and concentration fields are solved by FDM. The 2-D
square differentially heated cavity and double-diffusive mixed convection with-
out Soret effect was considered as validation test. Satisfactory agreement has
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been obtained, compared with different numerical methods in the current lit-
erature. The results show that the present model can yield benchmark quality
results. The employed model has then applied to a thermosolutal mixed convec-
tion with Soret effect in a cavity with moving top wall. Results show that the
heat transfer represented by the average Nusselt number is slightly enhanced
upon increasing the Soret number. Whereas, the mass transfer represented by
the average Sherwood number is decreased by further augmenting the Soret
number.

As a perspective of this work, this new model will be extended to three-
dimensional problems. It could be also tested with a parallel implementation
using graphics processing unit (GPU) and especially in the combined mode
problems which are computationally very expensive. Work along this direction
is underway.
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Abstract. The new approach for logical operations implementations in cellular
automata is proposed. For the implementation of logical gates the propagation of
the gliders of cellular automata in bounded domain is considered. Special laws
for collisions of gliders with domain walls and internal obstacles in domain are
displayed. Logical gate XOR construction, examples of computations and some
discussion are described. Comparison with usual approach is given.
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1 Introduction

Cellular automata recently have many fields for theoretical investigations and appli-
cations [1–4]. One of the most interesting topics is related to the theoretical problems of
computation and automata theory [2, 5]. The part of the problem is computation by
collisions [6]. Implementation of logical gates in such case is one of the key tools.
There are investigations on implementation logical gates on gliders [6, 7]. But such
implementations have some drawback.

Consider a standard case of the implementation of logical operations with two
inputs and one output. This requires two generators of the sequence of gliders. These
sequences correspond to inputs of a logical operation. At the collision of the glider
sequences, a new glider sequence is formed. The new glider sequence is interpreted as
the values 0 or 1 in the logical operation [2, 5, 7].

It was theoretically shown that with the such constructions it is possible to
implement the algorithms allowed by the Turing machine [2, 5, 7]. However, in the
practical implementation of this approach, certain difficulties arise. First, initially the
entire structure is built on the basis of an infinite space of cells. Second, the location of
the glider sequence generators must be carefully selected. Another disadvantage is that
when emulating long algorithms, all cell values are usually calculated.

So it is useful to search the other ways of logical gates emulations. In given paper
we propose the new way for design of implementation of logical gates on the base of
cellular automata. Our previous investigations [8] followed us to the idea of using the
cellular automata in restricted domains for implementation the logical gates.

© Springer Nature Switzerland AG 2021
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In our the problem arose of choosing rules for cellular automata near borders and
internal obstacles. Among all the variety, the rules were chosen to the analogy of the
reflection of a light beam from a reflecting surface.

In the second section we remember the elementary knowledge on gliders. The third
section devoted the description of some ideas on using gliders in restricted domain.
Construction of logical gate XOR, example of computations and some discussion are
proposed in Sect. 4.

2 Basics in the Game of Life

Many are working on the game of life [1–9]. Some of them are studying variants: the
addition of a probability [10], the modification of the rule of local evolution [11],
applying the local transition rule asynchronously [12], non-homogeneous cellular
automata rule [13]. We will also be interested in a variant of the game of life, as we will
see later.

2.1 Special Pattern: Gliders

The reader will get more information on the patterns and on the game of life in general
in [1–5, 7] and in [9]. In the papers [7, 9] we are interested on the one very important
patterns in cellular automata - namely glider. It is important that in classics the
geometry of cells set usually is infinite plane.

For our goals the most interesting is the interaction of two gliders. We call it a
collision. After a collision, two gliders can disappear entirely or reveal certain con-
figurations such as still life or oscillators or even give birth to a new glider. Like in [8],
we add a third frozen state that will represent the irregularities (obstacles) of our
initially two-dimensional cell space.

3 Motivation and Approach

In this part we will give some examples of the rules which we have chosen.

3.1 Rules Obtained

We found a local rule involving only the evolution of 24 configurations allowing a
glider moving down and right to bounce from above on a horizontal wall. We obtain a
rule of evolution of 96 of 12 610 possible configurations.

The purpose of this part is to present the logical gates that have been implemented
from game of life through considering restricted domain.
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3.2 XOR Gate

The XOR gate is a logical gate with two inputs labeled as A et B. The output value is 1
if and there one and only one input value equal to 1. The associated Boolean operation
is ⊕: A ⊕ B. Here we consider XOR operation.

3.3 Implementation of Logic Gates in a Restricted Domain

Generally the logic gates set up here geometrically have two ducts at the top (repre-
senting the two inputs). A glider in the conduit means that the entry is at 1 otherwise it
is at 0 (see example showed on the Fig. 1). And a conduit down represents the exit. The
external boundaries of the domain for cellular automata are rectangular. The bright
lines correspond to internal walls. The width of the walls is equal to one cell. Inputs A
and B at top of the picture are open for introducing single glider. Logical gates have
been realized as computer programs in MATLAB. Below we give the results of
computer simulation.

3.4 XOR Gate Implementation

The XOR gate has two inputs A and B (duct top left and top right on Fig. 1). At the
initial moment and when A = 0 and B = 0 the inputs are empty. The evolution of XOR
logic gate is given on Fig. 1 (when A = 1 et B = 0).

3.5 Comparison of Classical and New Implementation of Gate

Proposed in this paper approach for logical operations implementation is more intu-
itive, more visual and simpler. The classical case requires the computations in domain
with at least more than 100 � 100 cells. In our approach less than 25 � 25 cells are
necessary for XOR implementation.

Fig. 1. XOR logic gate when A = 1 et B = 0: (a) t = 0, (b) t = 15, (c) t = 30, (d) t = 100
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4 Conclusion

The proposed results provide a significant improvement in what has been done so far.
Indeed, the consideration of a variant of the game of life in the restricted space domains
allowed us to introduce new local rules near obstacles and walls. It is then possible to
implement logic gates much more intuitive and much easier to use than the logic gates
that have been created so far.

The main advantages of proposed approach are the next. First is the economy of
computational resources. The second advantage is standard construction for elementary
realizations of logical gates. This allows in principle realize each of the algorithms by
using such standard elements. This study therefore provides an innovative result as it
also opens up new and interesting perspectives.

References

1. Illiachinski, A.: Cellular Automata. A Discrete Universe. World Scientific Publishing,
Singapore (2001)

2. Wolfram, S.: New Kind of Science. Wolfram Media Inc., Champaign (2002)
3. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge

University Press, Cambridge (1998)
4. Adamatszky, A. (ed.): Collision-Based Computing. Springer, London (2002). https://doi.org/

10.1007/978-1-4471-0129-1
5. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)
6. Adamatzky, A., Durand-Lose, J.: Collision-based computing. In: Rozenberg, G., Bäck, T.,

Kok, J.N. (eds.) Handbook of Natural Computing, pp. 1949–1978. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-540-92910-9_58

7. Rennard, J.P.: Implementation of logical functions in the game of life. In: Adamatzky, A.
(ed.) Collision-Based Computing, pp. 491–512. Springer, London (2002). https://doi.org/10.
1007/978-1-4471-0129-1_17

8. Faccetti, L., Makarenko, A.: ‘Game of Life’ with modifications: non-regular space, different
rules and many hierarchical levels. Int. J. Inf. Content Process. 4(1), 21–50 (2017)

9. Delahaye, J.P.: L’sutomata des chifferes. Pour la Science 394, 80–85 (2010)
10. Goldengorin, B., Makarenko, A., Smelyanec, N.: Some applications and prospects of

cellular automata in traffic problems. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.)
ACRI 2006. LNCS, vol. 4173, pp. 532–537. Springer, Heidelberg (2006). https://doi.org/10.
1007/11861201_61

11. Sipper, M.: Co-evolving non-uniform cellular automata to perform computation. Physica D
92, 193–208 (1990)

12. Fates, N.: A Guided Tour of Asynchronous Cellular Automata, pp. 1–33. arXiv:1406.
0792v2 (2014)

13. Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes,
dynamics and decidability. Inf. Comput. 215, 32–34 (2012)

Logical Gates on Gliders in Restricted Space Domain 225

https://doi.org/10.1007/978-1-4471-0129-1
https://doi.org/10.1007/978-1-4471-0129-1
https://doi.org/10.1007/978-3-540-92910-9_58
https://doi.org/10.1007/978-1-4471-0129-1_17
https://doi.org/10.1007/978-1-4471-0129-1_17
https://doi.org/10.1007/11861201_61
https://doi.org/10.1007/11861201_61
http://arxiv.org/abs/1406.0792v2
http://arxiv.org/abs/1406.0792v2


Modeling Carbon Dioxide Dispersion Indoors

A Cell-DEVS Experiment

Hoda Khalil(&) and Gabriel Wainer

Carleton University, Ottawa, ON K1S 5B6, Canada
hodakhalil@cmail.carleton.ca, gwainer@sce.carleton.ca

Abstract. Carbon dioxide concentration in closed spaces is an indication of air
quality and a means of measuring the number of occupants for controlling
energy consumption. However, the dispersion of the gas and the accuracy of the
concentration measurements as logged by carbon dioxide sensors are highly
sensitive to the configuration of the closed space. Conducting case by case
studies for each closed space is neither practical nor cost-effective. We hereby
propose a formal model using cellular discrete-event system specifications for
studying carbon dioxide dispersion indoors and for analyzing the effect of dif-
ferent configurations on the sensors measurements of the concentration. We
present a case study of the model and compare the simulation results to ground
truth data collected from two physical systems of two computer laboratories.
The results demonstrate that the proposed model can be used to study carbon
dioxide dispersion and the change of sensors’ readings in closed spaces based on
the configurations of the space.

Keywords: Modeling � Simulation � Cell-DEVS � Sustainability

1 Introduction

One reason for the substantial research effort in measuring CO2 levels indoors is to
maintain an acceptable level of air quality which in turn impacts the wellbeing of the
space occupants [1]. Another reason is detecting the number of occupants to auto-
matically control the environment (e.g. adjust heating and air conditioning) and con-
sequently reduce energy consumption without compromising the occupants’ comfort
[2]. Although CO2 sensors have advantages over many other kinds of ambient sensors
(e.g. they are affordable and nonintrusive), CO2 sensors are overly sensitive to con-
figuration. The accuracy of CO2 sensors differs case by case depending on several
factors such as heating, ventilation, and air conditioning (HVAC) settings. Although
researchers have conducted experiments on CO2 sensors’ accuracy for indoor occu-
pants’ detection [3], more research is required to measure the effect of the different
configurations of closed spaces on the measurements recorded by CO2 sensors.
Observing the effects of such parameters on the indoor CO2 level and the readings of
CO2 sensors is the motivation for this research. Real-life experiments for measuring the
effect of room configuration are impractical, time-consuming, and sometimes impos-
sible. This motivates us to use modeling and simulation (M&S) to perform the required
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experiments for the objective of developing a robust general model that can be adapted
to any closed space. This model can be reused, while adjusting the different required
parameters (e.g. dimensions and windows locations), to measure their effect on the
logged CO2 concentration.

We use cellular discrete-event system specifications (Cell-DEVS) to model CO2

behavior in closed spaces. Cell-DEVS is a “modification” of cellular automata
(CA) modeling that has several advantages over other modeling techniques (Sect. 2.2).
This makes it suitable for modeling complex systems. In previous work [4], we pre-
sented a simple 2-D toy model to demo the effect of placing the sensor in two different
positions on the recorded CO2 concentration. In this paper, we develop an advanced 3-
D model with possible variable parameters (e.g. windows, furniture layout, and dif-
ferent arrival and departure times of occupants) and multiple occupants. We implement
a case study model of a computer laboratory that physically exists at Carleton
University and we use it to calibrate the model. We base the calibration on the ground
truth data collected from the physical laboratory. Then, we validate the model by
comparing the simulation results to a set of ground truth data collected from the sensors
installed in another laboratory on a different floor in the same building.

We first explain essential background information to position the presented work
(Sect. 2) and present examples from the literature of modeling CO2 behavior indoors
(Sect. 3). Then, we introduce the experimental setup. Previously, we used the CD++
simulator, while in this work we use an improved simulator (Cadmium) (Sect. 4). Then
we present two versions of the model that are replicas of real-life laboratories: one for
calibration and the other for validation (Sect. 5). We compare the simulation results to
the ground truth data and discuss them (Sect. 6). Finally, we present the conclusion and
propose future possible improvements (Sect. 7).

2 Background

In this section, we provide background information that is necessary for understanding
the research problem and the experimentation process. In Sect. 2.1, we explore sensor-
based occupant detection, while in Sect. 2.2 we offer basic information about the M&S
methodology we use, and we emphasize its advantages.

2.1 Sensor-Based Occupants Detection

Automatically sensing occupants and adjusting the building systems based on the
number of occupants have become paramount for saving energy. The use of sensors to
detect occupants in closed spaces has been addressed in many theoretical and exper-
imental work. Researchers have proposed ways of detecting the presence of occupants
including cameras, computer applications, and sensor fusion. They have used different
kinds of sensors for occupancy detection such as passive infrared (PIR) sensors,
electromagnetic sensors (EM), image sensors, and CO2 sensors. Each type of sensor
has its advantages and disadvantages. We focus on CO2 sensors for their proven
advantages and since there is potential for improving their performance [3–5]. CO2

sensors are sensitive to factors such as the level of HVAC, dimensions (width, length,
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and height), locations of the ventilation port, the presence of open windows and doors,
and the location where the sensor is installed. Testing each physical closed room to
know how its configuration parameters affect the readings of an installed sensor is an
impractical time-consuming approach. Hence, we propose M&S as a solution.

2.2 Methodology

With M&S, we can achieve the goal of understanding the dynamics of CO2 dispersion
less expensively and more practically. We model CO2 dispersion using Cell-DEVS
which solves some of the shortcomings of CA by combining it with discrete-event
system specifications (DEVS) [6]. Cell-DEVS defines a grid of cells where each cell is
specified as a DEVS model. The next state of each cell is defined based on the current
state of that cell and the states of the neighboring cells. Cell-DEVS has been used
extensively to model social and environmental complex systems [7–9]. One advantage
of Cell-DEVS, and its supporting tools, is the improved execution time. This is
attributed to the fact that Cell-DEVS provides asynchronous execution to model the
asynchronous nature of complex systems [6]. Also, Cell-DEVS formalism offers ways
to define complex timing conditions. Besides, there is an extensive set of tools avail-
able for translating the formalism into an executable model. This facilitates validating
the conceptual model against the physical system and allows for verifying the
simulation.

A Cell-DEVS model can be formalized as follows: GCC = (Xlist, Ylist, I, X, Y, η,
N, {t1, . . ., tn}, C, B, Z), where Xlist is the list of external input couplings (i.e. input
values to the cell that couples it with its defined neighbors), Ylist is the list of external
output couplings, I is the set of states, X is the external input events set, Y is the
external output events set, η is the neighborhood size, N is the neighborhood set, {t1, . .
., tn} is the number of cells in each dimension, C is the cell space, B defines the border
cells, and Z is a translation function that defines internal and external coupling.

3 Literature Review

In this section, we review some research efforts for modeling CO2 dispersion in closed
spaces while considering occupants. In their work, researchers have raised the issue of
the importance of considering the location of CO2 sensors and other configuration
parameters in the modeled space, but no clear solution has been provided. Instead, a
case by case solution for modeling is suggested.

Batog and Badura [10] present a model of a bedroom that contains big solid
surfaces (e.g. bed and wardrobe) and one occupant. The authors perform two simu-
lations: one with the possibility of CO2 escaping through gaps around the windows and
doors, and the other without such gaps. The occupant is assumed to spend eight hours
sleeping in the room. The result of the simulations proves that the strategic placement
of CO2 sensors is important for accurate measurement. In particular, the authors do not
recommend placing CO2 sensors in corners nor near windows or doors. They also
recommend that the height at which the sensor is installed should be above the level of
the bed for the specific environment they model [10].
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Pantazaras et al. [11] propose a method for tailoring models for specific spaces. The
model takes into consideration the CO2 concentration, ventilation, and multiple
occupants. This is used to predict CO2 concentration levels in the room. The model is
only effective for short term predictions of CO2 concentration levels [11].

A study that is not focused onCO2modeling but rather on the dispersion of hazardous
gasses in closed spaces is presented by Makmul [12]. The study uses CA to model the
influence of the spread of gas on the behavior of pedestrians. Makmul’s objective is to aid
designers in building safe public spaces that are practical during evacuations. The authors
offer an experiment on a specific model of a closed space with two exits. The used model
is a 2-D model that does not consider indoor space height [12].

To the contrary to previous research that deals with the problem in a case by case
manner and considers a small subset of the configuration parameters, we offer a generic
model of CO2 dispersion using well-established formalism that is supported by tools. It
is worth noting that the objective of this research is not to estimate the number of
occupants in the room based on CO2 levels, but rather to provide a mechanism for
studying the effect of the space settings on the measurement and the dispersion
behavior of CO2. The presented solution reaches this objective while considering
different configurations in the space where the CO2 sensor is to be installed; a problem
that was raised by researchers in the field of occupants’ detection [3, 5, 11].

4 Experimental Setup

In previous work [8], we used CD++ (a toolkit that implements DEVS and Cell-DEVS
theoretical concepts) to implement and simulate the model [13]. For the model pre-
sented in this paper, we use a newer Cell-DEVS simulator. Cell-DEVS Cadmium is a
cross-platform header-only C++ library that can be used to implement and simulate
Cell-DEVS models. A model simulated using Cadmium is defined in a header (.hpp)
file and coded in C++. The simulator allows defining a general category of models
using the programming language (C++) while reading specific configuration details for
each model from a JavaScript Object Notation (JSON) file that is parsed by the sim-
ulator. On the one hand, we have implemented one general model in C++ for CO2

dispersion and the breathing of occupants. On the other hand, the JSON file describes
different initial configurations per cell. Each cell represents a specific segment of the
physical space. The JSON file also specifies the dimensions of the room, the shape of
the cells’ neighborhood, and other configuration parameters. For visualizing the sim-
ulation results, we use Advanced Real-time Simulation Laboratory (ARSLab)
DEVSWeb Viewer [14].

The general model we are presenting considers the dimensions of the closed space,
ambient CO2 concentration, size and location of CO2 sinks (i.e. windows, doors, and
ventilation ports), possible locations where occupants may exist, the breathing rate of
occupants based on their activity level, concentration increase due to breathing occu-
pants, and dimensions of the room. The model assumes ambient outdoor CO2 con-
centration of 400 particles per minute (ppm) based on the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) standards [15]. However,
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this value can be adjusted as a parameter specified for each JSON scenario. Human
breathing is calculated based on the fact that humans breathe every five seconds, and
the produced CO2 in every breath (exhaling and inhaling) is a parameter that depends
on the activity level [16]. The general model has seven types of cells: (1) walls and
obstacles that do not allow CO2 diffusion, (2) air cells whose CO2 concentration is
dependent on the concentration values in their neighborhoods, (3) CO2 sources with a
periodic increase in the CO2 level added at an interval to mimic breathing in addition to
the CO2 diffused from the neighborhood, (4) open doors that diffuse CO2 to the rest of
the building with a fixed indoor background CO2 level, (5) open windows that are also
CO2 sinks with a fixed outdoor background CO2, (6) vents that diffuse gas through
HVAC system with a reduced constant CO2 level, and (7) workstation cells that act as
normal air cells when not occupied and as CO2 sources when occupied. The CO2

diffusion is calculated by averaging the concentration level in the Moore neighborhood
of each cell. This means that to get the concentration of each cell, the concentrations in
either 27 or 9 cells are averaged in the cases of 3-D and 2-D models, respectively.

5 Case Study

In this section, we present a case study for two computer laboratories at Carleton
University. We use the first physical system to calibrate the parameters of the model
and the second to validate the calibrated model.

5.1 Calibration Model

The general model has flexible parameters, some of which are not available in the set of
ground truth data that we have. For example, although the exact number of attendees in
the lab is available, the arrival time of each person at the computer workstation they
have used is not available. Also, the exact CO2 concentration in the vents is not
available. Thus, we had the space to change this data to calibrate the model to get
simulation results that are as close as possible to the ground truth data. The parameters
that we adjusted are the arrival and departure times of the occupants, the workstations
that the occupants chose to use, ambient CO2 concentration, and CO2 concentration in
the air pumped to the room through the ventilation ports. The exact steps to run the
model, the code, and the parameter settings are available through the ARSLab
repository [17].

The first computer laboratory we are modeling in this paper represents a (9.5 �
14.24 � 3.25) m3 closed space, with 48 workstations where students can sit to work on
their computer assignments. The floor plan of the laboratory and the furniture layout
are shown in Fig. 1. The ground truth data is based on the number of attendees for a
110-min tutorial that has taken place in the Winter term of the year 2019. Thirty nine
students have attended the tutorial in addition to the teaching assistant (TA) who has
been present throughout the tutorial. Students arrive and leave at different times along
the period of the lab tutorial. The logged data (Fig. 3) for this period is based on one
CO2 sensor installed close to the door at 1.5 m height and logs the concentration level
every 30 min. As the occupants arrive at the room, the readings of CO2 concentration
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start to increase reaching the peak after the middle of the lab tutorial period when all
students are present. The CO2 starts to decrease again until all students leave the room
(Fig. 3).

The physical 9.5 � 14.24 � 3.25 m3 system is mapped to a 23 � 35 � 8 cell3

model. Table 1 shows how the physical system maps to the 3D model. Each cross-
section of the room of 40 cm height maps to a 23 � 35 cell grid.

The 3-D Cell-DEVS model is formally specified as follows: CO2 = <Xlist, Ylist,
Zlist, I, X, Y, Z, η, N, {t1, t2, t3}, C, B, Z>, where Xlist = Ylist = Zlist = {Ø}; I = type:
{0, 1, 2, 3, 4, 5, 6} and conc: {float}; X = Y = Z = Ø; η = 27; N = {(0, 0, 0), (−1, 0,
0), (1, 0, 0), (0, 1, 0), (0, −1, 0), (−1, 1, 0), (1, 1, 0), (−1, −1, 0), (1, −1, 0), (0, 0, 1),
(−1, 0, 1), (1, 0, 1), (0, 1, 1), (0, −1, 1), (−1, 1, 1), (1, 1, 1), (−1, −1, 1), (1, −1, 1), (0, 0,
−1), (−1, 0, −1), (1, 0, −1), (0, 1, −1), (0, −1, −1), (−1, 1, −1), (1, 1, −1), (−1, −1, −1),
(1, −1, −1)}; t1 = 23; t2 = 35; t3 = 8; C = {Cijk | i 2 [0, 23[˄ j 2 [0, 35[˄ k 2 [0, 8[};
and B = {Ø} (unwrapped cell space).

For this case study, we specify a 40 � 40 � 40 cm3 cell size. Therefore, the
physical system is translated to an approximated (23 � 35 � 8) cell model. To replicate
the physical system, the CO2 production for each occupant is calculated as follows
based on two facts: (1) an average-sized person doing normal low-activity office work
produces 0.31 L/minute/person of CO2 [11] and (2) breathing occurs every 5 s on
average. Therefore, an average person produces 0.02583 L of CO2 per breath. Hence,
every occupant breath increases the concentration of CO2 in each occupied cell by:

black obstacles
white air
yellow windows
green door
blue ventilation ports

Fig. 1. Floor plan and furniture layout of the physical system of the calibration model (Color
figure online)

Table 1. Mapping the physical system to the 3D model

Cross-section
(cm) (physical system)

0–40 40–80 80–120 120–160 120–200 200–240 240–280 280–320

Grid number (model) 0 1 2 3 4 5 6 7
Significance for
simulation

Floor Air Air Breathing CO2

sensors
Air Air Ceiling-

vents
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0:02583
cell volume

¼ 0:02583� 1000
40� 40� 40

� 0:000403 ð1Þ

It is worth noting that Eq. (1) gets calculated automatically based on the model
parameters (i.e. cell volume and produced CO2 per breath specified in the input JSON
settings file). We are including here how this calculation is done for the parameters we
specify for the presented case study.

The simulation runs of 7,200 timesteps which is equivalent to two hours; each time
step is one second. The session lasted for 110 min and we added five minutes before
and after the session to get a better picture of the CO2 level changes due to the arrival
and departure of occupants. Figure 2(a) shows the simulation results at the beginning
of the simulation where only one occupant is present (the TA), and during other
timestamps as occupants start to arrive (Fig. 2(b) and Fig. 2(c)). CO2 concentration is
to the left of each figure (a, b, and c) and the occupants’ locations are at the right.
Occupants are represented as red squares and empty workstations are in grey. The two
grids shown in the figure are layer 4 (left), which is the cross-section of the room
representing the height at which the CO2 sensor is installed (120–160 cm), and layer 3
(right) representing the height at which the seated occupants are breathing (80–
120 cm). The legend below Fig. 2 maps the CO2 concentration to the color used to
visualize the simulation. Comparing the simulation results to the floor map of Fig. 1
shows how the area below the vents has less CO2 concentration than other areas as the
vents try to offset the CO2 increase that occurs where the occupants are concentrated.

Figure 4 is a plot of the simulation results. The figure shows that the simulation
results after calibrating the model are similar to the ground truth data (Fig. 3).

Fig. 2. Simulation results during different timestamps (hh:mm:ss) (Color figure online)
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Note that while the simulation results are logged every second, the ground truth
data is logged every 15–30 min. This justifies a possible minor difference between the
ground truth data and the simulation results. The plots of the simulation results are
generated using Microsoft Excel© for ease of comparison. However, plots of the
simulation results can be regenerated using the ARSLab charting tool [18].

5.2 Validation Model

In this section, we validate the rules used in the presented CO2 model, using another
room in the same building but on a different floor and with a different configuration.
This physical system used for validation is another laboratory setting during a different
time of the day, with only eleven occupants, a larger space, and no windows. The
dimensions of this room are 15.8 � 9 � 3.25 m3. Figure 5 shows the floor plan of the
room and the furniture layout. In the physical system, there is another lab session
following this one and hence more students enter the room at the end of the laboratory,
and we have tried to mimic this in the model. The CO2 sensor is installed close to the
door and logs the concentration level every 15 min. Figure 6 is a chart of the ground
truth data of the CO2 concentration during the studied period.

The formal model specification is the same as the one explained in Sect. 5.1 except
for the following: t1 = 23; t2 = 40; and C = {Cijk | i 2 [0, 23[˄ j 2 [0, 40[˄ k 2 [0, 8[}.
We have used the same ambient CO2 concentration and ventilation concentration that
have resulted from calibrating the model. We have executed the model for a simulation
period equivalent to 7200 s (two hours) and Fig. 7 shows data collected from the

Fig. 3. Ground truth data plot Fig. 4. Simulation results plot

black obstacles
white air
blue ventilation ports
green doors

Fig. 5. Floor plan and furniture layout of the validation model
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simulation results. Comparing that simulation results (Fig. 7) to the data logged by the
real sensors in the physical system (Fig. 6) demonstrates the resemblance between the
model’s data and the system’s data. Simulation videos of the validation model and the
original CO2 model are available online through the ARSLab YouTube channel [19].

6 Discussion

The model proposed is evinced successful at replicating the physical indoor space.
However, as in any other experimental study, there are some threats to validity that are
worthy of discussion. A minor validity threat is the existence of some approximations
when converting the physical system into a model. Nevertheless, this does not affect the
usability of the model as the model user is aware of it and can handle the slight
approximations if needed. A second validity threat is that the current model assumes
that the air in the room is at a steady-state and the CO2 is diffused evenly in all
directions. This is not usually the case due to the different types of HVAC and
occupants breathing in different directions. Incorporating airflow in the room is a future
feature that we are planning to add to the model. However, the model at the current
state has successfully mimicked the physical system.

7 Conclusion

Motivated by the need for studying the effects of room configuration on recorded CO2

concentration and the way CO2 diffuses in closed areas, we present a generic model for
indoor CO2 diffusion. We have developed a generic Cell-DEVS model that accepts
different room configurations as input parameters. We have calibrated the model using
the settings of a real physical system of a computer laboratory at Carleton University.
Then, we validated the model using another closed space in the same building during a
different time and with different configurations. The simulation results resemble the
physical systems as presented by the plot of CO2 concentration in both the simulation
and the physical system. The results suggest that the model is suitable for studying the
spread of CO2 indoors. The model can help to study the effect of placing sensors in
different locations, the effect of changing the ventilation, increasing the number of

Fig. 6. Validation model ground truth data Fig. 7. Validation model simulation results
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occupants, changing the furniture layout, and many other configuration parameters.
Future improvements to the model will target the flow field of the air in the room and
conducting statistical analysis of the results of different case studies.

Acknowledgments. The authors would like to thank Thomas Roller for developing the sup-
porting tools that convert floorplans to 3-D scenarios and chart the simulation results [18].

References

1. Al horr, Y., Arif, M., Katafygiotoua, M., Mazroei, A., Kaushik, A., Elsarrag, E.: Impact of
indoor environmental quality on occupant well-being and comfort: a review of the literature.
Int. J. Sustain. Built Environ. 5(1), 1–11 (2016). https://doi.org/10.1016/j.ijsbe.2016.03.006

2. Jiang, A., Masooda, M.K., Soh, Y.C., Li, H.: Indoor occupancy estimation from carbon
dioxide concentration. Energy Build. 131, 132–141 (2016). https://doi.org/10.1016/j.
enbuild.2016.09.002

3. Labeodan, T., Zeiler, W., Boxem, G., Zhao, Y.: Occupancy measurement in commercial
office buildings for demand-driven control applications—a survey and detection system
evaluation. Energy Build. 93, 303–314 (2015). https://doi.org/10.1016/j.enbuild.2015.02.
028

4. Khalil, H., Wainer, G., Dunnigan, Z.: Cell-DEVS models for CO2 sensors locations in closed
spaces. In: Bae K.-H., et al. (eds.) 2020 Winter Simulation Conference (WSC), Virtual
(2020, in press)

5. Arief-Ang, I.B., Hamilton, M., Salim, F.D.: RUP: large room utilization prediction with
carbon dioxide sensor. Pervasive Mob. Comput. 46, 49–72 (2018). https://doi.org/10.1016/j.
pmcj.2018.03.001

6. Wainer, G.: Discrete-event Modeling and Simulation: A Practitioner’s Approach, 1st edn.
CRC Press, Boca Raton (2009)

7. Wainer, G., Giambiasi, N.: Cell-DEVS/GDEVS for complex continuous systems. Simula-
tion 81(2), 137–151 (2005). https://doi.org/10.1177/0037549705052233

8. Khalil, H., Wainer, G.: Cell-DEVS for social phenomena modeling. IEEE Trans. Comput.
Soc. Syst. 7(3), 725–740 (2020). https://doi.org/10.1109/TCSS.2020.2982885

9. López, A., Wainer, G.: Improved cell-DEVS model definition in CD++. In: Sloot, P.M.A.,
Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 803–812. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30479-1_83

10. Batog, P., Badura, M.: Dynamic of changes in carbon dioxide concentration in bedrooms.
Proc. Eng. 57, 175–182 (2013). https://doi.org/10.1016/j.proeng.2013.04.025

11. Pantazaras, A., Lee, S.E., Santamouris, M., Yang, J.: Predicting the CO2 levels in buildings
using deterministic and identified models. Energy Build. 127, 774–785 (2016). https://doi.
org/10.1016/j.enbuild.2016.06.029

12. Makmul, J.: Microscopic and macroscopic for pedestrian crowds. Dissertation, Mannheim
University (2016)

13. Wainer, G.: CD++: a toolkit to develop DEVS models. Softw.: Pract. Exp. 32(13), 1261–
1306 (2002). https://doi.org/10.1002/spe.482

14. St-Aubin, B., Wainer, G.: ARSLab DEVS web viewer. https://staubibr.github.io/arslab-prd/
app-simple/index.html. Accessed 17 Sept 2020

15. ASHRAE Standard 62.1 Ventilation for Acceptable Indoor Air Quality (2013). http://www.
myiaire.com/product-docs/ultraDRY/ASHRAE62.1.pdf. Accessed 15 Aug 2020

Modeling Carbon Dioxide Dispersion Indoors 235

https://doi.org/10.1016/j.ijsbe.2016.03.006
https://doi.org/10.1016/j.enbuild.2016.09.002
https://doi.org/10.1016/j.enbuild.2016.09.002
https://doi.org/10.1016/j.enbuild.2015.02.028
https://doi.org/10.1016/j.enbuild.2015.02.028
https://doi.org/10.1016/j.pmcj.2018.03.001
https://doi.org/10.1016/j.pmcj.2018.03.001
https://doi.org/10.1177/0037549705052233
https://doi.org/10.1109/TCSS.2020.2982885
https://doi.org/10.1007/978-3-540-30479-1_83
https://doi.org/10.1016/j.proeng.2013.04.025
https://doi.org/10.1016/j.enbuild.2016.06.029
https://doi.org/10.1016/j.enbuild.2016.06.029
https://doi.org/10.1002/spe.482
https://staubibr.github.io/arslab-prd/app-simple/index.html
https://staubibr.github.io/arslab-prd/app-simple/index.html
http://www.myiaire.com/product-docs/ultraDRY/ASHRAE62.1.pdf
http://www.myiaire.com/product-docs/ultraDRY/ASHRAE62.1.pdf


16. Zuraimi, M.S., Pantazaras, A., Chaturvedi, K.A., Yang, J.J., Tham, K.W., Lee, S.E.:
Predicting occupancy counts using physical and statistical CO2-based modeling method-
ologies. Build. Environ. 123, 517–528 (2017). https://doi.org/10.1016/j.buildenv.2017.07.
027

17. CO2 Spread Indoors. https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_
spread_indoor/blob/master/User%20Manual.txt. Accessed 18 Sept 2020

18. ARSLab CO2 Charting. https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_
spread_indoor/tree/master/scripts/Cell-DEVS_co2-charting. Accessed 20 Sept 2020

19. ARSLab YouTube. https://www.youtube.com/watch?v=vD7fB2A5hNY. Accessed 20 Sept
2020

236 H. Khalil and G. Wainer

https://doi.org/10.1016/j.buildenv.2017.07.027
https://doi.org/10.1016/j.buildenv.2017.07.027
https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/blob/master/User%20Manual.txt
https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/blob/master/User%20Manual.txt
https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/tree/master/scripts/Cell-DEVS_co2-charting
https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2_spread_indoor/tree/master/scripts/Cell-DEVS_co2-charting
https://www.youtube.com/watch?v=vD7fB2A5hNY


Disease Spreading Dynamics



Cell-DEVS Models for the Spread
of COVID-19

Román Cárdenas1,2(&) , Kevin Henares3 ,
Cristina Ruiz-Martín2 , and Gabriel Wainer2

1 Universidad Politécnica de Madrid, Avenida Ramiro de Maeztu 7,
28040 Madrid, Spain

r.cardenas@upm.es
2 Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada

{cristinaruizmartin,gwainer}@sce.carleton.ca
3 Complutense University of Madrid, Avenida de Séneca 2,

28040 Madrid, Spain
khenares@ucm.es

Abstract. Improved Susceptible-Infected-Recovered (SIR) models have been
used to study the COVID-19 pandemic. Although they can predict epidemiology
curves, spatial models cannot be easily built, and cannot model individual
interactions. In this research, we show a definition of SIR-based models using
the Cell-DEVS formalism (a combination of Cellular Automata and DEVS),
showing how to deal with these issues. We validate the equivalence of a simple
Cell-DEVS SIR model, and we present a SIIRS model, whose parameters are
configured to imitate the spread of SARS-CoV-2 in South Korea. Such models
may assist in the decision-making process for defining health policies, such as
social distancing, to prevent an uncontrolled expansion of the virus.

Keywords: Cell-DEVS � Cellular models � Coronavirus � COVID-19 �
Pandemics

1 Introduction

Current studies of COVID-19 [1, 2] include theory and methods of infectious disease
dynamics. These methods are based on mathematical models that show how the disease
spreads. The original Susceptible-Infected-Recovered (SIR) model [3] has been sub-
sequently adapted to study the spread of diseases with a variety of new equations.
Some recent extensions represent exposed individuals [4], latency of the disease, and
the effect of quarantines [5], as well as the effects of isolation and contact tracing [6].

Several of the advanced models are based on formal mathematical methods, such as
network dynamics, ordinary differential equations, finite equation theory, and others.
Although these theoretical studies on infectious diseases are useful, they are difficult to
apply in practice. Specifically, they have shortcomings for defining contact processes,
the behavior of the individuals and the spatial dimension in the model. Cellular
automata (CA) allows to develop models that overcome the above-mentioned
shortcomings.
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Although CA has been successfully applied to develop disease spread models, its
discrete-time nature considers time as isomorphic to the natural numbers set N (i.e.,
time advances at constant steps). Therefore, all cell states that are supposed to happen
between timesteps must be either neglected or delayed matching the simulation
timestep. CA are not trivial to integrate with other models defined in other formalisms,
as well as defining advanced timing conditions for each cell. The Cell-DEVS for-
malism [7] solves these issues by combining CA and the Discrete EVent System
Specifications (DEVS) [8] to describe n-dimensional cell spaces as discrete-event
models.

Here we illustrate the application of Cell-DEVS to build spatial models of spread of
COVID-19. In Sect. 2, we present related work and introduce Cell-DEVS. Section 3
describes two models for pandemics and illustrates how to build them in Cell-DEVS.
Section 4 shows the results of simulations performed under these models.

2 Background

Mathematical models of infectious diseases have been studied since the XVIII century,
when Bernoulli proposed a model to analyze the effect of vaccination on the spread of
smallpox [9]. In 1927, Kermack and McKendrick published what is considered to be
the first modern mathematical model for pandemics [3]. This model classified the
population into three different groups: susceptible (S), who can get infected with the
disease (I), and then can recover (R). The success of the SIR model led to several
improved. For instance, the Susceptible-Exposed-Infected-Recovered (SEIR) models
[4] added a new class of infected individuals that cannot transmit the disease: the
Exposed (E), which eventually become infected. SIRD models [10] include dying
(D) individuals, and SIS models [11] include infected individuals that after overcoming
the disease can be susceptible to it again. There are numerous combinations of these
methods (e.g., SEIIR, SIRS, SEIRS, SIRDS, or SEIRDS), in which the number of
individuals moving from one class to another is described using differential equations.

For the COVID-19 outbreak, numerous mathematical models used SIR-based
models of prediction. For example, Danon et al. [1] used a SEIIR model for SARS-
CoV-2 in England and Wales, tuning the coefficients of the corresponding differential
equations according to estimates from the outbreak in China. Caccavo [2] showed a
modified SIRD model that adequately describes the outbreaks of China and Italy by
defining time-variant coefficients of the differential equations of the mathematical
model.

2.1 SIR-Based Models Using Cellular Automata

The mathematical theory and methods of infectious disease dynamics do not include
variable susceptibility of the population or the representation of spatial aspects of the
spread of the disease. Using CA [12] for SIR-based models can address these issues
effectively. For instance, [13] proposed a simple CA model that consider the effect of
vaccination. In this model, the cells’ population is inhomogeneous, and individuals can
travel between neighbors on each time step. Alternatively, [14] presented a
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geographical CA corresponding to a SIRS model with multiple infection phases. Each
phase implies a different probability of spreading the virus, and each infection state
presents a variable chance of getting recovered. The cell space has irregular shapes with
a varying dimension corresponding to a geographical location, length of the boundaries
with the adjacent regions, and road links between two sections.

The SEIR CA model in [15] has probabilistic state transitions. Each cell represents
an individual, and mobility is defined as a reciprocal change in neighboring cells. As
each cell describes a single individual, the model was limited to small scenarios, and
cannot be extrapolated to large cities with high population density, where the disease
could affect the most. Finally, the SEIRDS model in [16] explores how the spread of
infectious diseases is affected by population density, gender, and age structure. Infected
individuals are not divided into subgroups based on the stage of the disease, and
therefore the behavior of the pandemic is more predictable than in the models cited
above.

2.2 The Cell-DEVS Formalism

The discrete-time nature of CA considers time as isomorphic to the natural numbers set
N, and any event between time steps must be either neglected or delayed to match the
simulation time base. Furthermore, the synchronism of CA could lead to unnecessary
processing. CA are also complex to integrate with other models defined using different
systems specifications, and the definition of timing conditions for the cells is difficult.

Cell-DEVS [7] combines CA with Discrete EVent System Specifications (DEVS)
[8] to describe n-dimensional cell spaces as discrete-event models. In Cell-DEVS, each
cell represents a DEVS atomic model, and the cell space is defined as a DEVS coupled
model that interconnects neighboring cells, as seen in Fig. 1 for a 2D Cell-DEVS.

As shown in Fig. 1(a), when a cell receives an input, a local computing function s
is activated to compute the next state of the cell. If this is different from the current
state, the change is transmitted to neighboring cells after a time delay d specified by a
delay function D. Figure 1(b) shows that outputs from a cell (in the center) are received
by the nearby cells using a von Neumann neighborhood. Cells are only active when
they receive an external event or when they have a scheduled internal event. Otherwise,
cells remain passive. As a result, this discrete-event approach only computes active
cells, using a continuous time base (and time advances with events triggered by cells).
Cell-DEVS models are equivalent to CA with explicit timing information. Cell-DEVS
inherits modularity and hierarchical modeling from DEVS formalism, allowing cells to

Fig. 1. Cell-DEVS model: (a) schematic of an atomic cell; (b) 2-dimensional Cell-DEVS
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interact with other models, tools, data sets, and visualization mechanisms, making it
easier and efficient to build complex cellular models.

CD++ [17, 18] is a simulator that allows defining models based on the Cell-DEVS
and DEVS formal specifications. We define the local transition functions as follows:

rule: {PORT_ASSIGN} {NEW_STATE} DELAY {PRECONDITION}

When the PRECONDITION is satisfied, the state of the cell changes to the des-
ignated NEW_STATE. The PORT_ASSIGN values are transmitted to other components
using different ports after waiting the required DELAY. If the PRECONDITION is false,
the next rule in the list is evaluated until a rule is satisfied or there are no more rules
available.

CD++ visualization engines ease in-depth analyses of the simulation traces for the
models under study. The Cell-DEVS Web-viewer [19] allows us to easily visualize
simulation results, display cells information and activity with ease.

3 Cell-DEVS Definition of SIR Models

In this section we present SIR Cell-DEVS models implemented in CD++.

3.1 Susceptible-Infected-Recovered (SIR) Model

The SIR model in this section is based on the model in [13] to simulate the spreading of
epidemics in a 2D space. At time t, cell (i, j) has a number of individuals Ni;j, and it
stores the ratio of individuals on each SIR group as follows: susceptible Sti;j, infected
Iti;j, and recovered Rt

i;j. The model does not consider birth, immigration, or death: the
population of each cell remains constant. At every timestep, a portion of cells’ sus-
ceptible individuals becomes infected according to the following rule:

iti;j ¼ min St�1
i;j ; St�1

i;j �
X

a;bð Þ2V c a;bð Þ
i;j �m a;bð Þ

i;j � k � Niþ a;jþb

Ni;j
� It�1

iþa;jþ b

� �
ð1Þ

The proportion of new infections (iti;j) depends on the ratio of infected individuals on
the neighbors iþ a; jþ bð Þ8a; b 2 V, as well as the density ratio between neighbors

and the origin cell. It also depends on a connectivity factor c a;bð Þ
i;j (the number of means

of transportation between two cells), a mobility factor m a;bð Þ
i;j (the probability of an

individual in a cell iþ a; jþ bð Þ to move to cell (i, j)), and an infection rate k. Addi-
tionally, a portion of the infected individuals rti;j, recovers according to the recovery rate
c:

rti;j ¼ c � It�1
i;j ð2Þ
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The complete behavior of the model is described as follows:

Sti;j ¼ St�1
i;j � iti;j; I

t
i;j ¼ It�1

i;j þ iti;j � rti;j;R
t
i;j ¼ Rt�1

i;j þ rti;j ð3Þ

To ensure that the amount of possible states is finite, the susceptible, infected, and
recovered ratios are discretized as follows:

DSti;j ¼
100 � Sti;j
h i

100
;DIti;j ¼

100 � Iti;j
h i

100
;DRt

i;j ¼ 1� DSti;j � DIti;j ð4Þ

Code 1 shows the Cell-DEVS implementation of the model in CD++. We first define
the size of the cell space, the type of delay (transport) and a von Neumann
neighborhood. We also define state variables and the ports for each cell.

Code 1. Implementation of the Cell-DEVS SIR model in CD++
type: cell width: 50 height: 50 delay: transport
neighbors: (-1,0) (0,-1) (0,0) (0,1) (1,0)
statevariables: population virulence connection movement i_sus i_infec i_rec
neighborports: initial infec rec pop sus

[sir-rules]
...
rule: {~pop := $population; ~infec:= $i_infec; ~sus:= $i_sus; ~rec:= $i_rec;}
{$i_sus:= round(((0,0)~sus - #(i_effect))*100)/100; $i_infec:= round(((1-#(recov-
ery))*(0,0)~infec+(0,0)~sus-$i_sus)*100)/100; $i_rec:= 1 - $i_sus - $i_infec;} 

1 { (0,0)~initial != -1 }

The keyword statevariables defines all the variables in the cell: popula-
tion (Ni,j), virulence ðkÞ, connection (c), movement (m), i_sus (DI),
i_infec (DI) and i_rec (DR). The cell’s ports used to transmit information to the
neighboring cells are defined using the keyword neighborports followed by their
names: initial, infec, rec, pop, sus. The transition rule uses the values of the
state variables and the inputs received from neighbors. The rule presented represents a
part of Eqs. (4) and (5). If the cell is not in the initial state ((0,0)*initial!=-1),
we update the proportion of susceptible, infected, and recovered individuals. For
example, the proportion of recovered individuals ($i_rec) is calculated as in Eq. (4).
After the delay (1 time unit), the population of the cell and the proportions of S, I, and
R are transmitted using the cell ports. Code 2 shows a macro used in the model.

Code 2. Implementation of the macros for the SIR model in Cell-DEVS.
#BeginMacro(i_effect)
min((0,0)~sus, (0,0)~sus*$virulence*((0,0)~infec+$connection*$movement/(0,0)~pop*

( (1,0)~pop * (1,0)~infec + (-1,0)~pop * (-1,0)~infec +
(0,1)~pop * (0,1)~infec + (0,-1)~pop * (0,-1)~infec)))

This macro is used to calculate the proportion of new infected individuals according
to Eq. (1) using the Von Newman neighborhood.
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3.2 Susceptible-Infected-Recovered-Susceptible Model

The model in this section, based on the model in [14], defines a Cell-DEVS repre-
sentation of a SIRS model. As in the previous case, each cell (i, j) has a fixed,
heterogeneous population Ni;j divided into three groups: S, I, R. Once infected, indi-
viduals remain ill from 1 to TI days, after which they are immune for TR days, after
which they become susceptible again. The infected group can be divided into subsets
depending on the percentage of individuals that have been infected during p consec-
utive days. Recovered individuals are classified based on how many days they have
been immune:

Iti;j ¼ Iti;j pð Þ p 2 1; . . .;TIf gj
n o

; Rt
i;j ¼ Rt

i;j rð Þ r 2 1; . . .;TRf gj
n o

; ð5Þ

The ratio of individuals that become infected at time t (iti;j) is described in Eq. (6). The
proportion of new infections depends on the ratio of infected individuals in the
neighboring cells and the population density ratio between neighboring cells and the

origin. This model also considers a connectivity factor c a;bð Þ
i;j , a mobility factor m a;bð Þ

i;j ,
and an infection rate k pð Þ. In this model, the infection rate varies with the stage of the
illness (low in the first days of the infection, and high in the last days.

iti;j ¼ min St�1
i;j ; St�1

i;j �
X

a; bð Þ 2 V
p 2 1; . . .;TIf g

c a;bð Þ
i;j �m a;bð Þ

i;j � k pð Þ � Niþ a;jþ b

Ni;j
� It�1

iþ a;jþ b pð Þ

0
B@

1
CA
ð6Þ

We also need to consider that the set of individuals in the last day of immunity,
Rt�1
i;j rð Þ, become susceptible again. Hence:

Sti;j ¼ St�1
i;j � iti;j þRt�1

i;j rð Þ ð7Þ

In each infected state Iti;j pð Þ, the recovery rate function ðc pð ÞÞ represents the probability
for infected individuals to overpass the disease after being infected during p consec-
utive days. As the maximum allowed days of the disease is TI, we set c TIð Þ ¼ 1. Thus,
the proportion of people infected for p consecutive days is equal to the proportion of
people that have been ill during p� 1 days in a row and did not recover:

Iti;j pð Þ ¼ iti;j; if p ¼ 1
1� c p� 1ð Þð Þ � It�1

i;j p� 1ð Þ; if 1\p�TI

(
ð8Þ

The first recovered state (Rt
i;j 1ð Þ) is the sum of the last infected state and the

recovered individuals of the other infected states. The following recovered states
simply takes the value of the previous recovered states.
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Rt
i;j rð Þ ¼

P
p2 1;...;TIf g c pð Þ � It�1

i;j pð Þ; if r ¼ 1
Rt�1
i;j r � 1ð Þ; if 1\r�TR

(
ð9Þ

The SIRS model was defined using CD++ as a Cell-DEVS model similar to the SIR
model explained in Sect. 3.1. This new version includes different state variables and
ports, and new local transition rules to calculate the new state of the cells. In Code 3,
we include a part of the rules used to represents Eqs. (7–9).

Code 3. Implementation of the rules for the SIR model in Cell-DEVS.
rule: {~pop:=$population; ~sus_0:=$i_sus_0; ~inf_1:=$i_inf_1; ~inf_2:= $i_inf_2;

... ~rec_24:= $i_rec_24; ~rec_25:=$i_rec_25; ~rec_26:= $i_rec_26; ...}
{ $i_rec_28:= $i_rec_27; $i_rec_27:= $i_rec_26; 

$i_rec_23:= $i_inf_22 + #(local_recovered);
$i_inf_22:= round((1 - $recovered_rate) * $i_inf_21*100)/100;

...
$i_inf_2:= round((1 - $recovered_rate) * $i_inf_1*100)/100;
$i_inf_1:= #(internal_infected) + #(external_infected);
$i_sus_0:= 1-$i_inf_1-...-$i_inf_22-$i_rec_23 -...- $i_rec_28;}

1 { (0,0)~initial != -1}

If the cell is not in the initial state, we calculate the proportion of individuals on
each state of the disease. In this case, there are susceptible individuals ($i_sus_0),
infected individuals on different phases of the disease (e.g., $inf_1 represents the
proportion of individuals in the first day of infection) and recovered individuals with
different immunity time left (e.g., $i_rec_28 represents the proportion of individuals
in the last day of the immunity). The proportion of infected individuals in the second
day of the disease ($inf_2) is calculated as the proportion of infected individuals the
on the first day of disease minus the ratio of individuals who recovered (1-
$recovered_rate) *$i_inf_1 as in Eq. (8). Then, the value is discretized to
two significant digits. The rules to calculate the rest of the state variables are defined
similarly. After a delay, (i.e., 1 time unit), the population of the cell and the proportion
of R, I and S individuals are transmitted using the ports of the cell.

4 Case Studies

In this section, we present results of simulations using the two Cell-DEVS models
described above. All models showed in this section represent a 50 � 50 space with a
range 1 von Neumann neighborhood. The time units used correspond to one day.

4.1 SIR Model Simulation Results

The basic SIR allows exploring critical factors such as the infection and recovery rates.
In this section we show that the results in [13] can be reproduced using our Cell-DEVS
version of the model, using the same parameters than in the original model. The
population of every cell Ni;j, is 100 individuals. Initially, only the cell in the middle
contains infected individuals. The proportion of infected individuals of this cell, I025;25 is

0.3. The remaining people in the cell are susceptible to infection (S025;25 ¼ 0:7 and

Cell-DEVS Models for the Spread of COVID-19 245



R0
25;25 ¼ 0). The infection rate k is 0.6, the recovery rate c is 0.4, and the connectivity

factor c a;bð Þ
i;j is 1. The mobility factor is 1 for the cell itself, and 0.5 for the rest of the

neighbors.
Figure 2 shows the percentage of infected individuals per cell. Cells in light grey

correspond to areas with no infected individuals, while dark grey and black cells
correspond to areas with a significant ratio of the population infected.

At day 5, shown in Fig. 2(a), only a few cells of the center of the cell space reported
infection cases. As time advances, nearby cells get infected, whereas previous cells
with cases start to get immunity, increasing the percentage of recovered individuals.
The peak number of cases occurs the 42nd day, displayed in Fig. 2(c).

Figure 3 shows the evolution of the percentage of population that is susceptible
(red dashed line), infected (blue line), and recovered (green dash-dot line). At time 0,
almost all the individuals are susceptible (except a 0.012% of the population that is ill
from the beginning, all in cell (25, 25)). As time advances, more people become
infected, significantly reducing the percentage of susceptible individuals, and
increasing the number of infected ones. The increment of infected individuals is less
pronounced, as every day a 40% of sick people recover. At the end, 100% of the
population has recovered. These results are the same than those presented in [13].

4.2 SIRS Model Simulation Results

The SIRS model provides a finer grain parametrization, allowing the representation of
more complex epidemics. It establishes a fixed number of days for the infected and
recovered phases, and it allows to define different infection and recovery rates for each

Fig. 2. Infected rate reported by simulations at day (a) 5, (b) 11, (c) 42, and (d) 60.

Fig. 3. Evolution of the susceptible, infected, and recovered individuals. (Color figure online)
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infected state. This makes possible to reflect government measures and changes in the
population behavior. We show an example of these kind of dynamic scenarios. We use
this model to mimic an approximate behavior of the spread of the SARS-CoV-2 in
South Korea using real data for defining infection and recovery rates [20].

We configure a 50 � 50 grid, with a population of Ni, j = 100 individuals per cell.
We set the connectivity factor in 1 and the mobility factor to 0.6 for the neighboring
cells. Again, we use the cell in the middle to trigger the epidemic (I25,25 = 0.3,
S25,25 = 0.7, R25,25 = 0). We set the infection phase length TI to 22 days. The indi-
viduals experience the first symptoms in the 4th day and isolate themselves in the 8th

day. Until this event, we establish a fixed infection rate k of 0.15. The rest of the period
they are considered isolated, and their k is reduced to 0.01. The recovery rate c is set to
0.07 for all the infected states. For this disease, we consider an immunity period of six
days since there is not validated data for COVID-19. Figure 4 show the evolution of
this spread.

Here, light grey cells correspond to areas with no infected individuals. For the rest
of them, the darker the background color is, the more non-susceptible (i.e., infected and
recovered) individuals are present in the cell. As time goes by, the recovered indi-
viduals finish their immunity and becomes susceptible again.

Figure 5 shows how these non-susceptible ratios evolve. The infected population
grows at a constant rate until day 93. After this moment, all the individuals have been
exposed to the disease, so the infected ratio starts to decrease. As the proportion of
infections decreases, the susceptible population increases again, reaching the maximum
level of susceptible population at the end of the simulation. The recovered proportion
remains low due to the short recovery period length of the scenario under study.

Fig. 4. Infected rate reported by simulations at day (a) 10, (b) 50, (c) 90, and (d) 140.

Fig. 5. Evolution of the susceptible, infected, and recovered individuals.
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5 Conclusions

We presented a Cell-DEVS definition to simulate and study the spread of disease,
focusing on the COVID-19 pandemic. We adapted the model in [13] to validate our
approach, which was easily adapted to follow the specifications presented in [14], and
we configured the simulation parameters using data from the spread of SARS-CoV-2 in
South Korea [20].

In Cell-DEVS models, cells are only active when one or more cells in the neigh-
borhood set notify a state change or any other external event is scheduled. Otherwise,
cells stay passive, without requiring any extra computation. Compared with CA, where
all cells are active in every simulation step, our approach saves computation time.

Another advantage of Cell-DEVS is its event-triggered time base. Time advances in
a continuous timeline when events happen. Thus, the time advance is not fixed into a
simulation step. This feature allows defining models where different cells’ states have
different time spams. We proved that we could define Cell-DEVS models equivalent to
any CA with more accurate timing information with no additional effort.

As future work, we will define a SIRDS model that considers the death rate of the
pandemic. Furthermore, model parameters such as connectivity or mobility factors will
depend also on the different infection phases. With this model, we will be able to define
a more precise model that considers more scenarios with complex government policies,
such as limiting people mobility depending on the presence of symptoms, or the
enforcement of using masks.

The implementations of the models are available at https://github.com/
SimulationEverywhere-Models/COVID-Cell-DEVS-ACRI2020, and a number of
simulation scenarios, including the ones presented here, can be found at https://bit.ly/
3aiDM4j.
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Abstract. The numerical studies of disease spreading processes are
almost one-century old. The mainstream of these analyses is based on
the ordinary differential equations which enable to estimate, especially,
the epidemic curves for some assumed values of parameters describing
the aggregate probabilities of passing through different phases if illness.
In our paper, we present some results which can be obtained for the
more individualized model, based on the analysis of direct interactions
between the members of the community. We use the concepts of the
SEIR model but we apply the different mechanisms to study the process
of transfer of illness based on the representation of the community as
the scale-free network. We can obtain the typical epidemic curves, study
their spread, and also analyze the epidemic process in the internal groups
of the community.

1 Introduction

The recent events related to the broad spread of the SARS-Cov-2 virus and
caused by it COVID-19 illness caused the increase of interest in the techniques
of numerical modeling of such processes. Due to the etiology of this illness,
researchers started to study it with the same methods as usually used for other
viral illnesses. The previous experience was concentrated mainly on influenza
outbreaks and the techniques used for the study are related mainly to several
techniques, just to mention a few: differential equation approach [1,2], Cellular
Automata-based approach [3,4], the structured approaches [5,6].

Our model belongs to the third, which seems least numerous groups. In the
paper, we propose to structure the community according to the scale-free net-
work, which enables us to include a lot of modifications. Here we concentrate on
only selected problems. They are the shape of epidemic curves for different meth-
ods of social graph creation, the effect of the “patient zero” location selection,
the size effect, and the influence of illness on groups of different sizes.

2 Model

The crucial ideas related to the modeling of disease spreading phenomena are
now about a hundred years old. In the paper written by Kermack, McKendrick,
c© Springer Nature Switzerland AG 2021
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and Walker [1], authors introduced the division of a population into different
groups when considering the relation to the epidemic process. These groups
were then not assigned names which are typical for contemporary studies, but
the necessity to distinguish particular groups was clear. Currently, these groups
are usually represented by acronym SEIR (with possible modifications), and,
following this acronym, we use the abbreviation SEIR for the family of models
enabling the study of the epidemic process.

We can show several typical approaches leading to the reproduction of the
epidemic process. The most popular is the analysis of the comprehensive behavior
of entire groups within the frame of a set of Ordinary Differential Equations
(ODE). The typical set is constructed as, for example:

dS

dt
= μ(N − S) − β

I

N
S

dE

dt
= β

I

N
S − (μ + δ)E

dI

dt
= δE − (μ + γ)I (1)

dR

dt
= γI − μR

The detailed form of the upper equations as well as the detailed meaning of
particular constants depends on the assumption of the model, but generally, we
can say that all ODE-based approaches produce the results which are somehow
averaged over the possible realizations of a real epidemic. It is very hard to
take into account the stochastic effects which are often crucial for the spread
of illness when considering the direct form of Eq. 1. Sometimes, the attempts
to introduce the seasonal [2] or stochastic [7] external force are here observed.
Most of Cellular Automata-based models are based on the attempt to determine
the number of people in individual states located in individual cells [3,4]. Thus,
we usually obtain the aggregate results in the cell grid covering the entire study
area. The probabilistic effect comes here from the different values of possible
communication rates for different pairs of cells.

In our paper, we are going to present the analysis of the model, based on the
direct interaction of agents. The basic assumption is that the transfer of illness
is performed as an effect of the direct interaction between two agents: the one
who can infect and the one who can be infected. This assumption leads to the
necessity to define, as the parameters of the model, the three factors:

– a set of states in which individuals may occur
– a graph of connections between individuals which describes the possibility of

transfer of illness
– parameters describing the possibility of infection in a single act

As a set of states, we use the typical SEIR model. It means that every person
can be in one of the four states:

– S (Susceptible) - individuals who have not been sick so far, they can get sick
as a result of contact with a sick person;
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– E (Exposed) - individuals who are already infected but they cannot transmit
the disease to other people;

– I (Infectious) - individuals in the phase of the disease when they can transmit
the disease;

– R (Recovered) - individuals who passed the disease.

The values typical for the particular illness are the values corresponding to the
time of duration of phases E and I. Certainly, these times are not unambiguous,
in reality, we should discuss some intervals and distributions. Here, we assume
however that they are described by well-defined numbers. For the simplicity of
calculations, we neglected several effects that can occur during the real epidemic.
We neglect the mortality and birth rates. Since we consider relatively short times,
these factors do not impact significantly the final result and we do not need to
consider them. We do not take into account the possibility of reinfection. All
individuals who pass the infection are moved to state R. We assume that they
are permanently immune, so they stay in the state R.

The choice of the form of the graph describing the existing relations can
be implemented in many ways. The simplest, when considering the Cellular
Automata-related approach would be the assignment of individuals to the posi-
tions in the n-dimensional grid. The topology of such networks and the pos-
sible neighborhoods (Moore or von Neumann) define the potential number of
interactions. We would follow the graph-related approach when the possible
existence of link (interaction) between nodes (individuals) is defined by some
graph-creation procedure. The graph should then reproduce the structure of
the community. Such methodology started from the famous Erdos and Renyi
paper [8] and through the Watts-Strogatz small-world concept [9] reached the
preferential Barabasi-Albert network [10].

In our paper, we follow the Barabasi-Albert approach. The basic property
of this model is that unlike most models when initially the nodes are created
and then the connections between them are established according to some algo-
rithm, in the BA technique we add parallelly nodes and edges. Technically, in
the beginning, a small graph, containing just several nodes is created. The con-
nections between them can be set in different ways, the simplest one is to build
a complete graph with three nodes. The preferential character of the method is
reflected in the procedure of further adding of vertices. The probability that the
new node will be added as a neighbor to the i-th one is given by probability:

P (k) =
ki∑
kj

(2)

where ki is the degree of i-th node and
∑

kj is a doubled number of existing
connections. Among the properties of this procedure, we can show some espe-
cially interesting for reflecting the human communities. We can easily introduce
natural processes like mortality or births by just removing or adding new nodes.
The network, created with this scheme is also scale-free. The connections dis-
tribution in the community has a power-law character which is typical for a lot
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of processes taking place in the real world. We can also include some processes
enabling to take into account the specific processes like area or group affiliation.

The final point is to define the procedure describing the disease transfer.
Usually, this process is described by some aggregate coefficient, like in formula
1. Let us divide the presentation of this element of the model into two parts.
Firstly, we show its capabilities, then we enlist the simplified choice for this paper.
The crucial observation is that the disease transfer is the process depending on
the parameters characterizing the disease as well as the individuals taking part
in this process. When considering the disease-related parameter we should take
into account especially the duration of the infectious phase as well as possible
differences of the infectivity in different phases of the same period. We can also
consider the health of particular individuals. The current COVID-19 pandemic
shows that some people are more susceptible than other ones. There exists e.g.
the presumption that vaccination against tuberculosis can give some disease
resistance and cause either individual or even herd immunity. The presented
concepts show that we have a lot of possibilities of modeling the infection process
and, in general, it can be described by sophisticated statistical distributions.

In the paper, we simplify the approach described above. This is mainly since
we want to avoid the study of too many effects which can impact the final result.
That is why we limit our description of disease transfer to just two parameters.
They are pM and pI . Their interpretation is as follows. pM is the probability that
two individuals, who are connected in our graph, can meet during a one-time
step. This value alone is the form of averaging over all contacts of particular
individuals. pI is the probability of infection in a single act. We can also con-
sider the meetings between individuals as described by some distribution of time
lengths and have to connect it with the infectivity of a particular illness. By
averaging over all cases we can obtain a single number and we assume that pI
reflects this number.

The model has been introduced in [11] where the detailed discussion of some
validation procedures and results for differences between two kinds of viruses are
presented.

3 Results

The data used in the modeling shown in the paper are some mix of real and
artificial ones. We consider two types of diseases and adjust values of periods,
spent by individuals in particular phases, to the real values reported for these
diseases. The first on is influenza, for which tE = 2 days and tI = 4 days is
typically used (see eg. [4]). tE and tI means the duration of Exposed and Infec-
tious phases respectively. As the second case, we choose COVID-19. This second
disease is now certainly strongly studied and disputed. The values reported can
differ one from another and we are, indeed, still in the stage of rather collecting
data than to have a well-grounded database. Therefore, we decided to use the
maximum value suggested by several papers (see eg. [12]). Finally, for COVID-
19 we adopted the values tE = 0 days and tI = 14 days. It means also that
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Fig. 1. The distribution of inhabitants in different parts of city. In the upper plot the
ideal, symmentric gaussian distribution with the contours of considered areas marked.
The lower plots show the relative number of individuals in different groups when divided
into 4 or 16 groups.

our model for COVID-19 corresponds to the SIR model (Susceptible-Infected-
Recovered), where the Exposed phase is absent. In all calculations, we assume
also the lack of any intervention in the epidemic process.

The simulation is performed for two sizes of graphs (10000, 100000). This
makes possible to continue our study concerning the size effect of disease spread-
ing models [13]. We add also the effect of grouping. To do this, we construct the
city with the “ideal” concentric distribution of inhabitants in its particular sec-
tors. We assume that the probability density of finding the individual in the dis-
tance r from the geometric city center is given by the gaussian-like distribution
p(r) ∝ exp(−r2). This distribution is presented in the Fig. 1 with the division
into 16 symmetrically distributed areas. Individuals belonging to the same area
form the group. We consider two divisions: into four groups and 16 groups. These
divisions lead certainly to four approximately equally numerous groups for the
first division and distinctly different groups for the second one. In detail, we have
4 highly numerous groups in the center (≈20% each), 8 medium numerous at
edges (≈2.7%), and 4 very small at corners (≈0.8%). For every simulation run,
we sample separately the distribution of individuals. The lower plots show slight
differences in the height of bars corresponding to different areas/groups.
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Fig. 2. The epidemic curves, shown as the number of Recovered for different diseases
(upper and lower plot) and graph creation methods (the color of lines - same on both
plots) for the number of individuals equal 100000 and for division into 4 equinumerous
groups. The middle, solid lines correspond to the average percentage, the ribbon of
bars shows the standard deviations. The dashed line corresponds to the case with the
highest number of sick.
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Fig. 3. The epidemic curves for different diseases, different community sizes and dif-
ferent divisions into groups.
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Table 1. The final percentage of Recovered for different types of calculations, described
in the headers of particular parts of the table. The numbers in parentheses are the
percentages of sick in particular groups: in the largest, medium and smallest ones
respectively.

Graph
model

4 groups 16 groups, start in
the smallest one

16 groups, start in
the medium one

16 groups, start in
the greatest one

Influenza, graph size 10000

BA 0.047 0.032 (0.038, 0.017,
0.039)

0.023 (0.027, 0.011,
0.039)

0.03 (0.036, 0.016,
0.029)

m2 0.117 0.041 (0.05, 0.018,
0.051)

0.035 (0.043, 0.017,
0.038)

0.077 (0.094, 0.035,
0.059)

m3 0.17 0.097 (0.12, 0.037,
0.072)

0.077 (0.095, 0.033,
0.047)

0.162 (0.199, 0.066,
0.12)

m3d2 0.073 0.012 (0.015, 0.004,
0.02)

0.025 (0.032, 0.007,
0.013)

0.037 (0.046, 0.012,
0.018)

Influenza, graph size 100000

BA 0.07 0.042 (0.051, 0.022,
0.041)

0.043 (0.051, 0.022,
0.039)

0.056 (0.067, 0.029,
0.055)

m2 0.155 0.05 (0.061, 0.023,
0.046)

0.106 (0.129, 0.049,
0.089)

0.135 (0.164, 0.062,
0.112)

m3 0.235 0.131 (0.161, 0.054,
0.097)

0.166 (0.205, 0.069,
0.128)

0.204 (0.251, 0.084,
0.152)

m3d2 0.109 0.022 (0.028, 0.007,
0.015)

0.024 (0.03, 0.008,
0.016)

0.072 (0.091, 0.025,
0.044)

COVID-19, graph size 10000

BA 0.676 0.671 (0.805, 0.346,
0.651)

0.666 (0.801, 0.336,
0.631)

0.673 (0.81, 0.342,
0.595)

m2 0.749 0.731 (0.885, 0.351,
0.653)

0.735 (0.89, 0.351,
0.644)

0.736 (0.891, 0.355,
0.6)

m3 0.803 0.777 (0.945, 0.36,
0.59)

0.704 (0.856, 0.326,
0.56)

0.779 (0.946, 0.365,
0.665)

m3d2 0.718 0.534 (0.657, 0.22,
0.378)

0.667 (0.824, 0.27,
0.453)

0.675 (0.831, 0.281,
0.509)

COVID-19, graph size 100000

BA 0.795 0.788 (0.947, 0.401,
0.717)

0.791 (0.951, 0.4,
0.727)

0.794 (0.954, 0.404,
0.737)

m2 0.84 0.828 (0.999, 0.41,
0.742)

0.832 (0.999, 0.412,
0.745)

0.832 (0.999, 0.411,
0.715)

m3 0.873 0.86 (0.999, 0.415,
0.754)

0.861 (0.999, 0.417,
0.759)

0.861 (0.999, 0.416,
0.747)

m3d2 0.838 0.794 (0.967, 0.364,
0.65)

0.811 (0.987, 0.374,
0.672)

0.819 (0.995, 0.38,
0.683)
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When creating the interaction network, we use the typical Barabasi-Albert
scheme, starting from three connected individuals. We introduce, however, the
change related to the fact that it is more likely to create the connection between
individuals (nodes) belonging to the same group than between those from differ-
ent groups. We decided to enable the modification of probability given by Eq. 2
by performing some additional operations. Finally, we use four mechanisms of
determining the probabilities (in the below formulas index same means nodes
from the same groups, diff - from different ones):

– BA - the pure BA model
– m2 - Psame(k) = min(1, 2 ∗ ki∑

kj
), Pdiff - without change

– m3 - Psame(k) = min(1, 3 ∗ ki∑
kj

), Pdiff - without change

– m3d2 - Psame(k) = min(1, 3 ∗ ki∑
kj

), Pdifferent groups(k) = 0.5 ∗ ki∑
kj

The values of multipliers are taken completely arbitrary and they certainly
lead to the change of slope of the power-law distribution of the number of neigh-
bors. They do not change however the character of distributions. This arbitrary
selection enables to study the effect of social links inside groups.

Finally, we have to assume the values of pM and pI . Since there exists no
real data which makes it possible to estimate them, we assumed pM = 0.1 and
pI = 0.25. We think that these values are indeed overestimated but they allow
to study the effect. The very important factor supporting the use of them in
the model is that it is very easy to modify them. It can be made when we find
them too large or we want to introduce some particular effects like for instance
well-known from recent times social isolation. Every result shown in upcoming
figures and tables is the average over 10 runs.

In Fig. 2 we show the exemplary epidemic curves for both diseases and for 4
models of graph creation. We show also the spread of results around the average
value. For influenza-type infection, the deviation can reach the value of 0.03−0.05
what corresponds to the relative value up to about 70%. We can see also that for
100 time-steps, assuming that one time-step corresponds to one day, it is more
than three months, the flu epidemic is still active. This is especially well visible
when looking at the red curves corresponding to the m2 type of calculation.
An interesting observation is that models BA and m3d2 lead to almost the
same results. It means that this case should be in more detail studied by means
of typical graph-related analysis concentrated on such properties like radius or
diameter. For the COVID-based data, we can see the significantly smaller spread,
the stabilization of the situation in the time of the simulation. There is also the
expected effect of a significantly larger number of sick.

In Fig. 3 we show the influence of simulations’ parameters on the epidemic
curves for different divisions into groups. We use here m3d2 scheme. We can
expect that such results can show us the influence of the social structure of the
community on the epidemic process. We can observe also the presence of size
effect, which is reflected in the significantly higher rate of sick for the larger
community. It is interesting that this effect takes place in the scale-free network
but we can observe the stabilization of obtained characteristics after passing
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some size of community [11]. We think also that this is the effect of the increase
of the absolute number of links between nodes for such communities. We can
show the same factor as responsible for the increase of the rate of sick individuals
when “patient zero” is located in highly numerous groups either in the 4 group
calculations or in the 16-group calculation in the one o the central groups. The
relative differences are visibly smaller for COVID-19 related calculations but for
this, more infective, the virus we can notice that the start in the lowly occupied
group does not really depend on the size of this group. While the number of
nodes in the smallest and medium groups differs by an order of magnitude, the
results for them are similar.

The summary of results is presented in Table 1. Some form of test of our
procedure is the similarity of values in the rows for the BA model of graph
creation. The greater differences mean here the necessity to increase the number
of simulation runs used in averaging. We can see that we have to do it, especially
for influenza-type calculations. The most interesting result, in our opinion, is here
the observation that for COVID-19 parameters, almost all individuals in large
groups get sick.

4 Conclusions

We propose a model that enables the common consideration of different factors
influencing the epidemic development in the given area. We think that thanks
to the combination of analysis of social and medical processes at the level of
individual interactions, we can create a realistic model that can reproduce the
disease spreading. The features we would like to especially emphasize are as
follows. The probabilistic character leads to the bundle of curves for particular
input parameters, so we can show the particular behavior depending on the states
in various intermediate phases. The reproduction of real social relationships gives
the possibility of easy inclusion of different social processes, especially different
forms of non-medical intervention. The individual character of disease transfer
can be modeled in a lot of more or less complicated ways. We can also easily
include, the typical for epidemics, seasonal processes.
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Abstract. A model to simulate the spreading of a disease on a network
is proposed. The SIR model, a social distancing factor and network cir-
culation restrictions are considered. We perform some experiments that
give us an idea of how a disease spreads on different network topologies
and social distancing factors.
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1 Introduction

Nowadays we are witnessing a pandemic. Control policies to lead this spreading
are necessary. Some models which are used to simulate the dynamic of a disease,
classify people in groups and they depend on the following scenario: 1. a person
is subject to contract a disease even if he (she) was already cured; 2. a person is
subject to contract a disease, however, if he (she) contracted it in the past and he
(she) is now cured then he (she) cannot contract the disease again; 3. a healthy
person can be immune or can be vaccinated, thus avoiding to contract a disease.
This work focus on the second scenario, the SIR model. In this case, people can
be susceptible, infected or recovered. Cellular automata models can also be used
to study the spatial effects of an epidemic. White et al. [4] introduced a cellular
automata model to simulate the epidemic spreading. Beauchemin et al. [2] used
cellular automata to study the influenza A spreading. Here, we start our work
applying the SIR model on a network.

The SIR model supposes, for each time t, a set of susceptible people St,
infected people It and recovered people Rt. The people set maintains constant
N t = St ∪ It ∪ Rt. In this work, we concentrate the infections occurring in the
contact of a susceptible person and an infected person. There is a virulence rate
v ∈ [0, 1] that represents the potential infection of a contact. A recovered rate of
infected people from the time t to t + 1, ε ∈ [0, 1], is also considered. Next it is
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given a simple model to estimate the number of susceptible and infected people
for each time t, |It| = |It−1| − ε|It−1| + v|Xt−1|, |St| = |St−1| − v|Xt−1|, |Rt| =
|Rt−1|+ ε|It−1|, where Xt−1 is the set of people p ∈ St−1 that have encountered
with some infected person. We use generalized automata networks [3] to simulate
the spreading of a disease. These type of automata extend cellular automata
mainly changing their topologies (network topology dependency). In this work,
the network is used to represent the proximity among people. We consider a
network G. The set of vertices adjacent to vertex i is denoted by χ(i). A real
value in interval [0, 1] is associated to each vertex i, and it represents the social
distancing factor of vertex i. Additionally, a group of people is associated to
each vertex (people from the same neighborhood, same city, etc). They can be
susceptible, infected or recovered. A certain proportion from these people answer
to social distancing. Two vertices are adjacents if the two people groups have
some proximity. In this way, the generalized automata network can be used to
simulate, for each time, the dynamic of susceptible, infected and recovered sets
in each vertex. The group of people in a vertex i and on time t is denoted by
the set N t

i = St
i ∪ It

i ∪ Rt
i. The number of elements in the sets St

i , It
i and Rt can

vary over time, however, there is no deletion in N t
i .

A real value associated to each vertex is denoted by αt
i, and it represents the

social distancing factor of people in vertex i and time t. The social distancing
factor partitions the sets of people in two sets: those people that answer to
social distancing and those that do not answer (and could go out its vertex).
Our experiments suppose that a person which does not answer social distancing,
can stay in his (her) own vertex or can go through adjacent vertices.

We denote by Ṡt
i ⊆ St

i (S̈t
i ⊆ St

i ) the set of susceptible people in N t
i that

answer (do not answer) to social distancing. We define sets İt
i (Ït

i ) and Ṙt
i (R̈t

i)
in a similar way. We will assume that the social distancing factor of each vertex
i on time t, αt

i, is applied for susceptible people (and for the other groups) as
the following |Ṡt

i | = �αt
i|St

i |� and |S̈t
i | = |St

i | − |Ṡt
i |. So, for each time t, the set

of people from N t
i that answer to social distancing Ṅ t

i = Ṡt
i ∪ İt

i ∪ Ṙt
i; and the

set of people from N t
i that do not answer to social distancing N̈ t

i = S̈t
i ∪ Ït

i ∪ R̈t
i.

Next, we detail how the local rule treats the contact between people.

2 The Local Rule and the Contact Between People

We consider that few people that answer to social distancing can be infected. For
the people that do not answer to social distancing, all the population can become
infected. Therefore, for each vertex i, we can have people circling in i coming
from the set N t

i and from the set
⋃

j∈χ(i) N̈ t
j . We use a factor to represent the

proportion of people which are circling in vertex i coming from vertex j ∈ χ(i)
for each time t, here denoted by βt

j→i. The experiments performed by this work
consider βt

i→j = 1
χ(i)+1 for all vertex i, vertex j ∈ χ(i) and time t. So, the

proportion of people that go out each vertex is equally distributed among the
vertex itself and its adjacents. Last section, we denote by Xt the set of susceptible
people that encountered an infected person on time t. Now, we consider the
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distancing factor in it. Denoted by Ẋt
i (Ẍt

i ) the set of people from p ∈ Ṡt
i

(p ∈ S̈t
i ) that encountered an infected person in vertex i (in adjacent vertices

of i). The set of people p ∈ St
i that encountered infected people is denoted

by Xt
i = Ẋt

i ∪ Ẍt
i . Thereby, the model is updated to |It

i | = |It−1
i | − ε|It−1

i | +
v(|Ẋt−1

i | + |Ẍt−1
i |), |St

i | = |St−1
i | − v(|Ẋt−1

i | + |Ẍt−1
i |), |Rt

i| = |Rt−1
i | + ε|It−1

i |.
Next, we analyze the expected value of E[|Ẋt−1

i |] and E[|Ẍt−1
i |]. The probability

to occur an event Y is denoted by P{Y }. The encounters of a person who answers
to social distancing are restricted to the vertex that he (she) belongs. Let Ẏ t

pi

(Ÿ t
pi→i, Ÿ t

pi→j) be an indicator random variable which is equal to 1 if a susceptible
person p ∈ Ṡt

i (p ∈ S̈t
i ) meets an infected person (in vertex i, in vertex j ∈ χ(i));

and it is equal to 0 otherwise. We can show that E[|Ẋt
i |] = Ṡt

iP{Ẏ t
pi} (E[|Ẍt

i |] =
S̈t

iP{Ÿ t
pi→i}+

∑
j∈χ(i) TjP{Ÿ t

pi→j}), where Ṡt
i (S̈t

i ) is the set of susceptible people
from Ṡt

i (S̈t
i ) circling in vertex i (and Tj is the number of susceptible people

from i circling in j ∈ χ(i)). The probabilities are all equal to the number of
infected people circling in a vertex divided by the total people circling in such
vertex. Now, let us rewrite the model in function of the expected values. It is
important to note that we can work with lower and upper bounds for them. These
bounds can always be integer numbers (as long as they are initially integers).
Given |It−1

i |, |St−1
i |, |Rt−1

i |, and given constants ε and v, the model is update to
(the symbol =: means by definition): E[|It

i |] = |It−1
i | − ε|It−1

i | + v(E[|Ẋt−1
i |] +

E[|Ẍt−1
i |]) ≥ |It−1

i | − �ε|It−1
i |	 + �v(E[|Ẋt−1

i |] + E[|Ẍt−1
i |])� =: |It

i |; E[|St
i |] =

|St−1
i | − v(E[|Ẋt−1

i |] +E[|Ẍt−1
i |)] ≤ |St−1

i | − �v(E[|Ẋt−1
i |] +E[|Ẍt−1

i |)]� =: |St
i |;

and E[|Rt
i|] = |Rt−1

i | + ε|It−1
i | ≤ |Rt−1

i | + �ε|It−1
i |	 =: |Rt

i|. The previous model
uses floor and ceiling functions. Observe that, if |It−1

i |, |St−1
i | and |Rt−1

i | are
integer number then |It

i |, |St
i | and |Rt

i| will also be. The expected value of infected
(susceptible, recovered) people of vertex i and on time t is at least (at most, at
most) |It

i | (|St
i |, |Rt−1

i |). Next, we describe some experimental results.

3 SIR Model Simulations: Results and Analysis

In this section we describe the experiments performed on different network
topologies. For us, network topology is the way how the network connections
are organized and how they define a structure (if any). Our motivation for these
experimental analysis is that the topologies analyzed and real world topologies
can have similarity. For a case of extreme necessity, some topology could be
applied in practice and in a emergency way, changing temporarily the usual
network connections. The topologies analyzed were the following: cyclical (the
degree of each vertex is equal to 2), complete (each vertex has an edge for each
other), and grid. Next, we show some characteristic graphics for the SIR model
(t × n, where t represents a day from 0 up to 200 and n represents the number
of susceptible, infected or recovered people). The simulation considers networks
with 100 vertices and each vertex i has N t

i = 3000 people. Initially, each graph
has 400 infected in a unique vertex that can be any one for cyclical and com-
plete cases (by symmetry) and for the grid case, the bottom left vertex was
chosen. All other people are initially susceptible and there is no recovered peo-
ple. To obtain the SIR graphics for complete topology, we have had to increase
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the number of infected people (see next). The daily recovered and virulence rates
are respectively ε = 29

200 and v = 91
200 . Such rates have been recently used and

they are related to the COVID-19 disease (see, for example, in [1]). The first
simulations did not consider social distancing (αt

i = 0 for all i and all t). We can
see the results in left graphics in Fig. 1. The other graphics do consider social
distancing which was or constant in αt

i = 2
5 for all i and all t (top middle and

bottom right graphics) or periodical (the remaining graphics). We can compare
the results for grid looking at to the top graphics. We clearly note the gain that
social distancing can provide. For complete topology, we can compare the left
and middle bottom graphics. The bottom left graphic did not consider social
distancing and the number of infected people is 500. The bottom middle graphic
consider periodical social distancing an it has 1000 initially infected. Observe
the low number of infected people, almost constant over time and with a long
plateau for the cyclical topology. We conclude this paper informing that a longer
and more complete version of this work is being prepared to further publication.
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Fig. 1. On the top: The grid topology no social distancing, 40% social distancing, and
periodical social distancing. On the bottom: The complete topology no social distancing
and periodical social distancing; and cyclical topology 40% social distancing.
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Abstract. The propagation of infectious diseases through social inter-
actions can be mitigated when health measures aim to reduce or remove
the results of these interactions. This is the scenario of ongoing COVID-
19 pandemic adopted quarantine policies, from social distancing to lock-
down, and of immunization programs. When a sufficient number of inter-
actions is suppressed, the spread of an infectious disease is ended achiev-
ing herd immunity, defined as the indirect protection given by immune
individuals to susceptible individuals. Here we describe the preliminaries
of a stochastic cellular automaton based framework designed to emulate
the spread of SARS-CoV-2 in a population of static individuals interact-
ing only via Moore neighbourhood of radius one, with a view to analyze
the impact of initially immune individuals on the dynamics of COVID-19.
This impact was measured comparing a progression of initial immunity
ratio from 0 to 90% of the population with the number of susceptible
individuals not contaminated, the peak value of active cases, the total
number of deaths and the emulated pandemic duration in days. A herd
immunity threshold of 60% was obtained from this procedure, which is in
tune with the estimates of the currently available medical literature. Nev-
ertheless, more accurate results demand more research efforts including
better analysing the model probabilities of propagation and duration.

Keywords: Stochastic cellular automata · COVID-19 · SARS-CoV-2 ·
Infectious disease dynamics · Herd immunity

1 Introduction

Coronavirus Disease 19 (COVID-19) is a contagious disease that can be trans-
mitted through social contact, with symptoms like fever, body aches and short-
ness of breath, caused by the Severe Acute Respiratory Syndrome-Corona-Virus
(SARS-CoV-2) [3]. During the ongoing COVID-19 pandemic, individuals have
c© Springer Nature Switzerland AG 2021
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been presenting four types of dynamics regarding the effects and duration of
the disease, as described in the recent literature, such as [4,6,7,13]. In these
descriptions, the individuals can be classified as: No Symptoms, representing
the ones who do not experience the disease effects but still can contaminate oth-
ers through social contact; Mild/Moderate Symptoms, who present the dis-
ease effects partially, quickly becoming immune, while still contaminating others
though social contact; Severe Symptoms, who end up needing hospitalisation
and have a moderate death risk; and Critical Symptoms, those who need to
stay in an Intensive Care Unit (ICU) with ventilation, with higher death risk.

Because in order to reduce the transmission of the SARS-CoV-2 public health
measures involved different levels of quarantine, from social distancing to lock-
down, several industries were affected, as well stock-markets, which responded
strongly to the pandemic [3]. An important question is when these restrictions
can be lifted without causing a second wave of infection, which implies the under-
standing of when and if herd immunity can be achieved [2]. Herd immunity is
defined as an indirect individual protection from infection conferred by a suf-
ficiently large proportion of immune individuals in a society, reducing the con-
tamination ratio, or the average number of individuals contaminated by one ill
person, to values under 1 [11].

In epidemiological studies, it is desirable to develop and parameterise math-
ematical models in order to predict and define control strategies and understand
the impact of immune individuals on the dynamics of a disease [9]. Here, a com-
putational model based on a stochastic cellular automaton (CA) is proposed to
better understand the COVID-19 dynamics and respective herd immunity.

Cellular automata are discrete dynamical systems defined by a regular grid
of cells, each one defined by a finite number of discrete states. The dynamics
of a CA are defined locally, since each cell changes its state based on its own
present state and those of its neighbouring cells. This principle is simple, but a
CA can present arbitrary global complex behaviours. In addition, a stochastic
CA defines its next state considering also a given probability distribution.

This article is organised as follow: in Sect. 2, we discuss and describe a
stochastic CA implementation in order to model the dynamics of COVID-19
in a given population and a methodology to evaluate and understand the possi-
bility of a herd immunity to appear in the population. In Sect. 3, we present the
results of this evaluation. In Sect. 4, we discuss the results and propose future
improvements to the model.

2 Model

Computational epidemiology models can include CAs [8,9,12] in order to simu-
late epidemic spreading.

Consider a closed population, without migrations, with n× n individuals,
where each one has contact only with its direct neighbours, only interact-
ing socially with them. Consider also that one of these individuals (patient
zero) is contaminated with SARS-CoV-2, gets COVID-19, therefore being capa-
ble of following one of the four dynamics mentioned before (No Symptoms,
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Mild/Moderate Symptoms, Severe Symptoms or Critical Symptoms).
According to Fig. 1, which describes these four dynamics based on [4,6,7], each
one shows up in a specific portion of a population: for example, 55% of the
contaminated individuals follow the Mild/Moderate Symptoms dynamics,
meaning that, if someone gets COVID-19, there is a 55% probability of the
person to present moderate symptoms.

Fig. 1. Timeline, progression and mortality by severity of COVID-19, due to [10], after
[4,6,7,13]. This chart provides the overall scheme for the framework explored in the
present work, with the actual values being just references of the disease at the time it
was crafted.

In the given population of n× n individuals, if one has COVID-19, in addition
to presenting the respective symptoms with a given probability the person has
a chance of contaminating the neighbourhood, so the same neighbourhood of
one individual defines the chances of being contaminated. As the neighbours of
a member of the population get contaminated by SARS-CoV-2, the probability
of this member to be contaminated gets higher and higher. In this case we
can observe that two probabilities define the behaviour of an individual: the
chance of getting ill and the possible dynamics the person will follow after getting
contaminated.

Other probabilities affect the behaviour of the members of this population.
For example, if one presents no symptoms, SARS-CoV-2 will be incubated for
around five days and the person will become immune but contagious afterwards.
This first period of incubation makes this individual already contagious since
first day of contamination. Around 10 days later he or she will cease to be



268 I. Lima and P. P. Balbi

contagious and will not represent a risk for his or her neighbours. These durations
of each state of the No Symptoms dynamics will not be deterministic, since
the incubation period can take more or less days to be completed. Also the
probability of an individual with no symptoms contaminating others is higher
than the probability of an individual in hospitalisation. On the other hand, an
hospitalised individual has a probability of dying because of the severity of the
COVID-19 symptoms.

After some time, the whole population will be contaminated and submitted
to the effects of COVID-19. Some individuals will become immune, others will
eventually die and others will not even get sick at all. Going back to the beginning
of the contamination proccess, if the population is initially immune, due to a
vaccine, social isolation, or any other precautionary attitude, could the global
dynamics of the population during the contamination evolve differently?

This question can be addressed by means of stochastic CAs [8,12]. The states
defined by Fig. 1 can represent the states of a cell inside a CA of n× n cells, with
a fix boundary condition, assuming No Interaction state for missing neighbours.

2.1 Implementing a Stochastic CA to Represent COVID-19
Dynamics

In a n× n stochastic CA implementing the dynamic described above, some states
can be defined, following the model described in Fig. 1 as a basis for the
behaviour of the CA:

0. Susceptible: capable of being contaminated;
1. No Symptoms: free of symptoms during the incubation period;
2. Moderate Symptoms: presenting moderate symptoms;
3. Severe Symptoms: presenting severe symptoms;
4. Critical Symptoms: presenting critical symptoms;
5. Hospitalisation: the period of hospitalisation after presenting severe symp-

toms;
6. ICU/Ventilation: the period of hospitalisation with ventilation after pre-

senting critical symptoms;
7. Contagious Without Symptoms: immune to the disease, but capable of

contaminating neighbours;
8. Contagious Moderate Symptoms: immune to the disease, but capable

of contaminating neighbours after presenting moderate symptoms;
9. Contagious Severe Symptoms: immune to the disease, but capable of

contaminating neighbours after hospitalisation;
10. Contagious Critical Symptoms: immune to the disease, but capable of

contaminating neighbours after hospitalisation with ventilation;
11. Dead: those who died and are removed from the population, therefore no

longer interacting;
12. Immune: immune to the disease and incapable of contaminating neigh-

bours.



Preliminaries on a Stochastic Cellular Automaton 269

In terms of a SIR model (with its Susceptible, Infected and Removed
states), our Susceptible state is SIR’s Susceptible, the present Immune and
Dead states can collectively be regarded as Removed, and the remaining states
correspond to Infected. A SEIR (Susceptible, Exposed, Infected and Removed)
model is not suitable in this case since the incubation period of SARS-CoV-2
makes an individual contagious since the very first day of infection.

First, it is important to define that each state has a contamination proba-
bility: for example, a cell with Contagious Without Symptoms state has 100%
probability of contaminating the neighbourhood, considering that one individual
in this situation would not notice having COVID-19 and would keep having social
interactions with others normally. The contamination probability is defined as
follow: for Susceptible, Dead and Immune individuals it will be considered to
be inexistent; for Hospitalisation and ICU/Ventilation will be 10%; and for the
other states it will be considered 100%.

Second, it is necessary to define and describe the state transition rules for
the states. For states like Susceptible, the transition is defined by a probability
of contamination given by the states of its neighbourhood. For other states,
the transition is defined not by its neighbours, but by a duration. In this case,
each day will be represented as a time step in the CA. Since this duration is
not deterministic, a uniform distribution can be applied within ±20% of the
duration to define the number of time steps a cell stays in the respective state.

The state transitions are described as follows:

– If a cell is in Susceptible state, the next state will be No Symptoms, according
to the average probability of contamination given by each one of its neighbours
in a Moore neighbourhood with radius = 1;

– The No Symptoms state has a duration of about five days, according to Fig. 1.
The next possible states are Contagious Without Symptoms with 30% prob-
ability, Moderate Symptoms with 55% probability, Severe Symptoms with
10% probability, and Moderate Symptoms with 5%. So, after the respective
stochastic duration of the No Symptoms state, any cell will have these prob-
abilities of chaging to one of the corresponding states;

– The transitions of Hospitalisation, ICU/Ventilation, Contagious Without
Symptoms, Contagious Moderate Symptoms, Contagious Severe Symptoms
and Contagious Critical Symptoms sates are defined only by the duration of
the previous states and can be understood with Fig. 1;

– The state transition to Immune is also defined by the duration of the previous
states if the cell has the states Contagious Without Symptoms to Contagious
Critical Symptoms;

– Finally, the state transition to Dead is aditionally defined by a death
probability which is applied for cells in Hospitalisation state (15%) and
ICU/Ventilation (50%) state.

With those state transitions defined, a stochastic CA can be implemented and
run, stopping when a steady-state global state is achieved. This steady-state can



270 I. Lima and P. P. Balbi

be defined as a global configuration whose cells are only in the Susceptible, Dead
or Immune states. The starting configuration, or time step zero, can be defined
as one made up by a single cell in the No Symptoms state and all the others in
the Susceptible state.

Some information could be obtained from this stochastic CA, such like:

– The dynamics of the number of cells with Susceptible state along the time
steps, representing how many individuals are not infected;

– The dynamics of the number of cells with Dead state along the time steps,
represeting how many individuals died;

– The dynamics of the number of cells with other states along the time steps,
represeting how many individuals are currently infected.

With a stochastic CA implemented to emulate COVID-19 in the proposed
population, the question about the impact of initially immune individuals in the
global behaviour can then be investigated in terms of understandind what could
be the necessary herd immunity to impact the dynamics as desired.

2.2 Analysing Herd Immunity

Using the COVID-19 stochastic CA model proposed above, the impact of ini-
tially immune individuals can be studied by changing the initial global state of
the lattice. Besides initialising the CA with one contaminated cell and all the
others as susceptible, randomly distributed immune cells can replace some of the
susceptible cells.

Accordingly, firstly, an initial n× n grid with cells in the Susceptible state is
created; then, one single cell is randomly chosen and reassigned to No Symptoms
state (patient zero); finally, a randomly chosen percentage (m) of the remaining
cells are reassigned to the Immune state. Since the CA is stochastic, a number
of 10 simulations should be performed, each one executing the required amount
of time steps until convergence of the predefined global configuration; along
the way, the following should be monitored (to be later averaged out of the 10
simulations):

– The number of susceptible cells which did not have their state changed;
– The peak amount of cells actively infected;
– The final amount of immune cells;
– The total number of dead cells after convergence;
– The necessary number of time steps to converge.

Finally, the value of m may be increased between zero and 90%, with steps
of 5%, allowing to check the variation of each output in terms of the number of
initially immune cells. This procedure should be able to support the analysis of
a possible herd immunity in the proposed population.
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3 Results

The proposed procedure was run, monitoring the average outputs described ear-
lier. Considering the average of 10 simulations for each value of initially immune
individuals between zero and 90%, with steps of 5%, a total number of 190 sim-
ulations of the model were obtained, on a grid of 100 × 100 = 10000 cells with a
fix boundary condition, assuming No Interaction state for missing neighbours.
The implementation was written in Mathematica’s native Wolfram language.

Fig. 2. Population configurations by the proportion of initially immune cells.

Figure 2 displays the impact of initially immune individuals on the dynamic
of the population. First, we can observe this impact on the remaining cells in
Susceptible state, or the impact on the number of individuals who were not
contaminated during the propagation of the SARS-CoV-2. In a first moment, it
is possible to infer that the more immune individuals initially in the population,
the less susceptible individuals it has, but this linear relation is predominant only
after an initial proportion of immunity of 65%. Before this value, the final amount
of susceptibles is under 1% of the population and starts increasing around 45%
of immunity. Second, we notice the impact of initially immune individuals on the
infection peak, or the maximum number of active cases. The peak appears to
have a negative linear correlation with the immunity ratio until this proportion
achieves 65%, where it remains under 1% of the population. Third, the impact
of the immunity ratio on the total amount of deaths. This behaviour is similar
to the variation of the infection peak, but less linear.

Figure 3 gives an idea of the duration of the COVID-19 pandemic in the
proposed population, as impacted by the immunity ratio. Apparently, ratios
under 55% display a positive correlation, or a tendency of the pandemic to take
longer time periods to end as the population increases its initial immunity. In
other words, the remaining susceptible individuals do not receive any protection
against contamination, but SARS-CoV-2 takes a longer time to spread. For ratios
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Fig. 3. Variation of the number of steps necessary to converge the CA by the proportion
of initially immune cells.

over 55%, the pandemic takes less and less time to end, meaning that more
individuals are not contaminated in the proccess.

The general picture indicates that there is a big change of their dynamics
around 60% of immunity ratio.

4 Concluding Remarks

The proposed COVID-19 stochastic CA model allowed preliminary tests on
building a framework to analyse the dynamics of the disease in a given pop-
ulation. More precisely, we performed an initial study on the impact of initially
immune individuals in the dynamics of SARS-CoV-2 propagation in a population
of static individuals interacting socially only with their neighbours in a Moore
neighbourhood of radius one. Different levels of initial immunity rates, from zero
to 90%, were evaluated, and the dynamics presented a threshold around 60% of
immunity.

The model parameterisation regarding the contamination probabilities and
the duration of each state was somewhat arbitrary, so that herd immunity results
obtained should be revisited for proper confidence; nevertheless, it is surprising
and encouraging that the 60% value that came out the experiments are definitely
in tune with the current literature [1,5]. An explanation could be that the whole
stochastic CA based architecture we defined may be endowed of a high degree
of robustness to the its parameter values. But definite conclusion demands more
evaluation, so that forthcoming research efforts should include better analysing
the model probabilities of propagation and duration. And this is the direction
we are taking.
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