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CHAPTER 15

Border Surveillance Using Computer Vision- 
Enabled Robotic Swarms for Semantically 

Enriched Situational Awareness

Georgios Orfanidis, Savvas Apostolidis, Georgios Prountzos, 
Marina Riga, Athanasios Kapoutsis, 

Konstantinos Ioannidis, Elias Kosmatopoulos, 
Stefanos Vrochidis, and Ioannis Kompatsiaris

15.1  IntroductIon

Political instabilities, war conflicts, economic crises and the maximization 
of personal profit comprise few of the main causalities that result in 
increased illegal events at border territories. Cross-border crime is referred 
to any serious crime with a cross-border dimension committed at or along 
the external borders [1]. Towards maximizing the overall profit, such 
activities involve in many cases the utilization of recent technological 
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advances such as innovative sensory systems and specialized equipment. 
Such technological tools facilitate the activities of criminals which eventu-
ally might lead even to human casualties as, for example, drug trafficking 
using unmanned aerial vehicles.

The effective control and identification of transnational crime activities 
are essential for ensuring peace and stability and for promoting pertinent 
political and socio-economic activities. At tactical level, European Border 
Surveillance System (EUROSUR) is a common example for such initia-
tives. EUROSUR [2] establishes a common framework for the exchange 
of information and cooperation between EU member states and Frontex 
to improve situation awareness and reaction capabilities at the external EU 
borders confronting cross-border crime and protecting lives of migrants. 
At operational level, considering also the diversity and the increased num-
ber of operational aspects, border authorities and relevant practitioners 
face important challenges in patrolling and protecting areas under their 
jurisdiction. The heterogeneity of the threats, the wideness of the sur-
veyed areas, the complexity of the operational environments and the 
adverse weather conditions are some characteristic subjects under consid-
eration from border practitioners. Thus, it is considered imperative in 
many cases for the operational personnel to be equipped with advanced 
surveillance systems in order to effectively complete their objectives.

Such systems mostly involve video and thermal cameras; dedicated sen-
sors for motion, pressure, etc.; RFID tags; radars; and satellite images. 
Despite their sufficient effectiveness, each system displays either environ-
mental restrictions or limited capacities due to spatial heterogeneity. In 
addition, the majority of these sensory systems are static resulting in 
restricted monitored areas strictly depending on their technical specifica-
tions. As a result, border authorities currently exploit novel technologies 
posing existing infrastructure as legacy systems. Unmanned vehicles (UxV) 
provide such cutting-edge technologies that can be utilized as either inde-
pendent or complement of existing border surveillance equipment. In this 
book chapter, we introduce and analyse relevant robotic technologies 
combined with swarm intelligence for a completely autonomous border 
surveillance system. In addition, pioneer visual detection approaches are 
presented for increased efficiency, while semantic data representation 
models upgrade the overall capacities for optimum situation awareness.

The rest of the chapter is organized as follows. Section 15.2 introduces 
swarm intelligence as an autonomous navigation scheme, while Sect. 15.3 
presents enhanced visual detection models. The following section describes 
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semantic enrichment models towards increased situation awareness, while 
Sect. 15.5 concludes the chapter by highlighting the benefits of such 
technologies.

15.2  Swarm IntellIgence 
for autonomouS navIgatIon

The utilization of different UxVs acquires much popularity in missions 
that demand immediate situation awareness or are considered as hazard-
ous for the integrity of human lives. Due to these technologies, data 
acquisition from the operational areas of interest is obtained currently 
safer, faster and more affordable as higher objectives can be accomplished 
without the need of specialized sensors. However, despite the convenience 
that a UxV can offer, such systems prerequisite a specialized operator in 
order to command and manipulate the assets. The complexity of the pro-
cess is increased in missions where multiple UxVs are commanded to com-
plete one major objective. In such cases, not only the total operator 
number is increased accordingly, but also the personnel must be in con-
tinuous communication to achieve the overall mission.

An autonomous, yet safe and secure, navigation system for operating 
UxVs has been proven to be essential in numerous application fields. 
Introducing autonomy for navigation objectives decreases the operator’s 
interference in the overall operations since his involvement from a low- 
level operator is converted into a manipulator of higher-level objectives for 
the defined missions, without the requirement of a priori knowledge of 
utilizing multiple and heterogeneous UxVs. After the identification of 
high-level objectives, the navigation system will commence to design 
robot trajectories in order to successfully complete the overall goal of the 
defined mission. During the execution of the defined mission, the opera-
tor acts only as a supervisor nonetheless, for safety reasons; the system is 
responsive to any interference at any moment. Thus, the process is more 
effective since the operator can utilize multiple UxVs, without any special 
expertise and training, while simultaneously, the efficiency of the mission 
is increased, and the operational time is reduced.

The presented autonomous navigation system, developed specifically 
for border security operations, supports three different types of missions. 
More specifically:

15 BORDER SURVEILLANCE USING COMPUTER VISION-ENABLED ROBOTIC… 



246

• Strictly user-defined paths to be executed separately from UxVs
• Complete coverage of a polygon region of interest (ROI) over a 

map, utilizing multiple UxVs
• Continuous surveillance of an unknown, dynamically changed ROI 

utilizing multiple UxVs

For the first and most simple mission type, the operator/practitioner 
identifies a set of waypoints for a UxV over a map corresponding to the 
area of interest. The module provides high-level controls for the UxVs 
without the need of special training courses or awareness of technical 
limitations.

Moreover, operating multiple UxVs simultaneously is simplified, while 
the requirement of using multiple operators is no longer valid. This mis-
sion type is considered appropriate for objectives when specific locations 
must be monitored continuously.

The second type of mission provides the feature of commanding a 
swarm of UxVs to completely scan a user-defined ROI. Thus, the module 
is appropriate in covering wide, arbitrary-defined territories benefiting 
from the number of UxVs in order to significantly limit the overall execu-
tion time of the mission and constrain human interference. In addition, it 
is suitable for different types of UxVs, requiring just minor adjustments on 
the mission’s parameters according to the UxVs’ specifications. The over-
all mission is reduced to a multi-robot Coverage Path Planning (CPP) [3] 
problem. Receiving as input a polygon for ROI, the number of UxVs and 
a scanning density (distance between two sequential trajectories), the 
polygon is represented on an optimized grid for the specific problem, 
obtaining values that correspond to free space or an obstacle. The entire 
region is divided into exclusive subregions for every UxV with DARP 
algorithm [4]. For every subregion, an independent Spanning Tree 
Coverage (STC) [5] problem is solved. A Minimum Spanning Tree (MST) 
[6] is constructed, and a circumnavigating path is outlined. These paths 
incorporate energy aware features, posing them as resource efficient 
(Fig. 15.1).

Finally, the third mission type provides the capability to the operator to 
select a region over the map and continuously calculates the optimal mon-
itoring position for every UxV, in order to provide complete situation 
awareness of the region. The morphology of the region may be completely 
unknown and dynamically changed, while the number of UxVs may simi-
larly modified even during the mission. The autonomous navigator will 
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reallocate the available resources to provide the best possible result and 
fulfil the overall objective.

A relevant module as reported above was implemented according to a 
distributed, plug-n-play algorithm for multi-robot applications with a pri-
ori non-computable objective functions [7]. This algorithm extracts a sub- 
cost function individually for each UxV and achieves the overall objective 
of the swarm by optimizing them combined. Towards this objective, a 
distributed methodology according to the cognitive-based adaptive opti-
mization (CAO) algorithm [8] is implemented that approximates the evo-
lution of each robot’s cost function and adequately optimize its decision 
variables. The entire training procedure is performed online focusing only 
on problem-specific characteristics that affect the completion of mission 
objectives. The fast convergence of the algorithm can ensure fast adapta-
tion of the swarm to the mission, not only during the first stage but also 
during modifications of the ROI or the swarm itself (Fig.  15.2). As a 
result, border personnel acting as operators can leverage such systems 
without requiring specialized training courses, while operational effort is 
retained at low levels as the feature of autonomy is inherently integrated.

Fig. 15.1 Multi-robot 
coverage paths in 
polygon ROI
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Fig. 15.2 Swarm adaptation to unknown ROI for surveillance during subse-
quent time steps (a–d)
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15.3  vISual detectIon capabIlItIeS

Similarly, due to the heterogeneity of the identified threats, systems uti-
lized by border practitioners should be equipped with enhanced capabili-
ties in identifying specific objects of interest. Considering also that a 
deployed surveillance system relies on robotic technologies, navigation 
systems are strictly related to object detection capacities for completeness 
in the context of autonomous functionalities. In principle, an object detec-
tion model corresponds to a schema for simultaneous recognition and 
localization over the projection plane of objects of interest within a visual 
representation.

Therefore, the real objective of object detection is to scan the acquired 
images for identifying any appearance of objects of interest and localizing 
the detected instances in the processed images. The localization result cor-
responds to a bounding box surrounding each object of interest, which 
can be provided in various formats, for example, in upper left and lower 
right coordinates, centre coordinates, width and height of the bounding 
box, etc. There are two main categories for visual object detectors: two- 
step and single-step approaches. The former perform an additional initial 
step for deciding the “objectiveness” of the area included in a bounding 
box to determine the best candidates for objects included in the image. 
The latter category performs both area selection and label assignment 
(classification) in the same step. The predominant method belonging to 
the first category is Faster RCNN [9] and typical examples of the second 
category are Single-Shot Detector (SSD) [10] and You Only Look Once 
Detector (YOLO) [11] with the latter having several improved versions. 
The object detector output involves a list of bounding boxes along with 
their corresponding class labels and their confidence scores. The latter 
roughly represents the estimation of how confident is the model for the 
assigned to this bounding box label. Object detection as a capacity is con-
sidered overall precise nonetheless, depending on the level of some limita-
tions, inefficient. Thus, a typical approach is to combine this functionality 
with a tracking module in order to monitor the identified objects. A 
tracker comprises a module which is provided with an initial bounding box 
for each detected object and attempts to estimate its motion from a 
sequence of images or video streams. In most cases, the application of an 
object tracker is computationally more effective rather than feeding con-
tinuously an object detector with sequential frames in systems that require 
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visually identification of specific objects. A typical, yet efficient and fast, 
tracker relies on the Kernelized Correlation Filters (KCF) [12].

Towards identifying the most efficient object detection model for bor-
der surveillance applications, multiple relevant models were deployed and 
properly evaluated considering both accuracy and execution time. After 
extensive experiments and evaluations, Faster RCNN [9] resulted in the 
most sufficient outcomes for the objects of interests as typically, the objects 
to be identified display small sizes (due to the height and angle of percep-
tion) and the model is reported as the most efficient for this objective.

Towards decreasing the overall execution time of the visual identifica-
tion system, a KCF tracker [12] is applied between two subsequent frames. 
At every key-frame, an object id is assigned to each distinct object in order 
to uniquely identify its presence. During the tracking frames, which are 
typically larger in number than the key-frames, the object ID remains 
unchanged. At the next key-frames, an Intersection-Over-Union compari-
son against a fixed threshold of the two bounding boxes is applied. The 
two bounding boxes, deriving from the object detector and the tracker 
respectively, are utilized to estimate if the same object is depicted within 
the bounding boxes’ boundaries. The entire scheme is depicted in 
Fig. 15.3.

For the evaluation process in order to identify the adequacy of the 
module, the PascalVoc evaluation metric was exploited [13]. The resulted 
object detection accuracy values are provided in Table  15.1 where 11 
classes of objects of interest were used. The presented work emphasized 
mostly on identifying maritime vehicles leading to identifying four rele-
vant classes: ships, speedboats, inflatable and regular boats. The latter class 
corresponds to vehicles that could not be categorized in the other classes; 
nonetheless, the object corresponds to a boat instance. This fact reveals 
the high importance of maritime border surveillance since the measures 

Fig. 15.3 Pipeline for an object tracker in surveillance application
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that should be considered for each maritime vehicle are diverse; thus, it is 
imperative to be able to classify such type of vehicles. On the contrary, the 
performance for some classes suffers since the distinction between these 
classes is occasionally vague. A typical example of such case would be a 
light speedboat compared with an inflatable boat with a powerful engine. 
Figure 15.4 depicts some characteristic examples of visual results acquired 
with the application of the Faster-RCNN model.

The integration of cognition functionalities comprises a real multilevel 
asset of the system as object of interests can be identified accurately via 
processing visual data. Following a hierarchical data flow, the outcomes 
can be enriched with additional information, while the feature of auton-
omy can be significantly extended for various operational scenarios.

Therefore, a detailed, yet comprehensive, operational overview can be 
presented to the operator decreasing the required commanding effort and 
focusing more on operational goals.

Fig. 15.4 Visual results of Faster-RCNN
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15.4  SemantIc enrIchment for IncreaSed 
SItuatIon awareneSS

Such surveillance systems display an increased complexity at operational 
level from the practitioners’ perspective as usually, they are not familiar-
ized with such technologies. Noncomprehensive sensor readings and 
detection outcomes might result in an obsolete system, and eventually, 
practitioners exploit traditional methods of monitoring the areas of their 
jurisdiction. In order to facilitate the operational activities of border prac-
titioners and increase their situation awareness, relevant systems integrate 
technologies at a higher level of implementation to obtain the desired 
objectives. Such technologies involve the utilization of semantics which 
refer to the linguistic study of meaning in language coherent to the opera-
tor. Therefore, semantic enrichment provides a knowledge framework 
built upon the acquired data and the detection outcomes so that the oper-
ator could be comprehensively be informed.

More specific, ontologies are a means for specifying a vocabulary for 
conceptualizing and representing a shared domain of discourse [14] in a 
formal, structured and semantically enriched way. Knowledge in ontolo-
gies is modelled via the knowledge graphs by defining common compo-
nents, like classes (objects, concepts and other entities existing in a domain 
of interest), properties (attributes, relationships that hold between them), 
axioms (expressed in a logical form) and rules (if-then statements for logi-
cal inferences). With the use of semantic reasoners such as FACT++ [15], 
Pellet [16] and HermiT [17], logical consequences and new assertions 
(facts) that are not explicitly expressed in an ontology can be derived.

Ontologies play a key role in facilitating the understanding, sharing and 
reuse of knowledge between different components within complex sys-
tems such as swarm robotics. They have been widely used for situation 
awareness [18] and decision- making [19] and in IoT infrastructures [20], 
natural language processing [21] and many more. They demonstrate mul-
tiple benefits and capabilities in improved searching, data integration, 
interoperability, multilinguality and dynamic content generation in an 
extensive range of areas such as security, healthcare [22], telecommunica-
tions, archive portals and law [23].

In the current work, we focus on the semantic representation and 
enrichment of sensor-based data sourced from different surveillance com-
ponents (additional sensors, etc.), for extracting potential threats and 
alerts in the surveillance area, enhancing the representation of the derived 
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detections and improving the situation awareness of the end-users. 
Eventually, the displayed information to the operator is formatted accord-
ing to common representation models that are widely utilized in their 
operational activities at a daily basis.

Therefore, the corresponding service of the increased situation aware-
ness is strictly dependent with the application and the described opera-
tional scenarios. More specifically, an ontology was developed for the 
representation and semantic integration of heterogeneous data generated 
and exchanged across the cooperative surveillance systems. The proposed 
semantic model is compliant and extends the EUCISE2020 data model 
[24], a CISE (Common Information Sharing Environment)-based col-
laborative initiative for promoting automated information sharing between 
maritime monitoring authorities. In a nutshell, the CISE data model iden-
tifies seven core data entities (Agent, Object, Location, Document, Event, 
Risk and Period) and eleven auxiliary (Vessel, Cargo, Operational Asset, 
Person, Organization, Μovement, Incident, Anomaly, Action, Unique 
Identifier and Μetadata). An illustration of our ontology-based serializa-
tion of the EUCISE2020 model is presented in Fig. 15.5.

The proposed extension of the EUCISE2020 model is related to the 
following types: (i) further specialization of objects and vehicles and (ii) 
addition of classes and properties representing the detection of incidents, 
objects and persons. For demonstration purposes, we consider one rather 
common scenario in maritime surveillance that involves the detection of 
an oil spill over sea surface. Whenever an oil spill is detected, an instance 
of PollutionIncident class (Fig. 15.6) is created, which involves an inci-
dent of OilSpill and is associated with respective PollutionType and 

Fig. 15.5 Core classes of our ontology-based serialization of the EUCISE2020 
model, along with their main interrelationships
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NatureType instances. Also, an instance of Detection is created (Fig. 15.7), 
which is associated with all relevant information populated in the 
AttachedDocument, Geometry and the OperationalAsset classes that 
made the detection via the appropriate data and object properties includ-
ing hasAnalysisDataset, hasStartLocation and hasSource.

On the basis of the implemented ontology, semantic reasoning tech-
niques (SPARQL rules and constraints) might be additionally adopted to 
aggregate data from various sources and to achieve both low-level fusion 
from external resources (such as geospatial services) and high-level fusion 
by combining information from geographically dispersed and heteroge-
neous sensors. This approach facilitates the automatic detection and infer-
ence of complex events of interest like threats, abnormal activities and 
illegal border trespassing. In general, SPARQL is a highly expressive RDF 
query language that allows querying the linked data, by matching one 
more or patterns against the relationships of the knowledge base while 

Fig. 15.6 An instance of oil spill associated with a pollution event of specific pol-
lution and nature type

Fig. 15.7 An instance of Detection type associated with an operational asset, a 
document of reporting and the location of interest
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supporting features like aggregation, negation, filtering, constraints and 
property paths.

Overall, such technologies target eventually to present the system’s 
outcomes within a common representation framework. The displayed 
alerts and information follow a widely utilized template which was derived 
from the operational needs of the corresponding experienced personnel. 
Thus, the system interacts with the operator using one common basis for 
which the results are comprehensive and intentionally simplified in order 
for the operators to increase their situation awareness and focus on opera-
tional tasks.

15.5  concluSIonS

Recent technology advancements are considered to be sufficiently mature 
for integration in many systems and applications. Even in very complex 
operational scenarios like border surveillance, cutting-edge technologies 
can perform adequately well. The relevant practitioners can benefit of such 
systems towards improving their operational capabilities. As the challenges 
that they have to confront display significant diversities, the utilized sur-
veillance systems must integrate specialized capacities.

Towards this objective, swarm robotics can broaden the solutions that 
are provided to the border practitioners. Such systems enhanced with 
additional features can be used effectively to monitor distant territories. In 
this chapter, three different pillars of services in different levels of implan-
tation were presented towards describing a fully autonomous and opera-
tional surveillance systems. More specific, an optimizer for autonomous 
navigation of a swarm was presented. The service provides high-level com-
mands to the practitioner to mitigate the complexity of operating such 
systems while retaining, nonetheless, their effectiveness in monitoring 
tasks. In addition, visual recognition of object of interests can increase the 
detection capabilities of the overall system leading to a truly autonomous 
surveillance framework. Finally, the integration of semantics improve the 
practitioners’ perception for the identifying events increasing the level of 
the current situation awareness. These three types of technology have 
been proven particularly efficient in monitoring tasks since they have been 
extensively deployed in relevant systems as independent features.

Therefore, their integration along with their combination comprises a 
significant added value for an autonomous surveillance system since each 
additional feature increases its main operational objective.
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