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Preface

The International Workshop on Digital-forensics and Watermarking (IWDW) is a
premier forum for researchers and practitioners working on novel research, develop-
ment and application of digital watermarking and forensics techniques for multimedia
security. The 19th International Workshop on Digital-forensics and Watermarking
(IWDW 2020) was organized by the Digital Research & Innovation Capability Plat-
form at Swinburne University of Technology, Australia and the State Key Laboratory
of Information Security at the Institute of Information Engineering, Chinese Academy
of Sciences. It was held in Melbourne, Australia, during November 25–27, 2020.
Although IWDW 2020 was held with the aid of an online conference system due to the
persistent Covid-19 epidemic situation, it was very successful and as significant as the
previous editions. More than 160 people attended the workshop online.

IWDW 2020 aimed at promoting research and development in both new and tradi-
tional areas of multimedia security. The organizers updated the topics of interest in the
Call For Papers to reflect the new directions of emerging technologies such as
AI-generated multimedia and detection of them, DeepFake videos and detection
of them, convolutional neural networks and deep learning for multimedia security, and
social media steganography. IWDW 2020 received 43 valid submissions. The decisions
of the Technical Program Committee were made on a highly competitive basis. Only 20
submissions were accepted. The accepted papers cover many important topics in current
research in multimedia security, and the presentations were organized into four sessions
including “Steganography and Steganalysis”, “Watermarking”, “Multimedia Forensics”
and “Security of AI-based Multimedia Applications”. In addition, 3 invited keynotes
including “Using the sensor noise model to design better steganographic schemes” by
Dr. Patrick Bas, “DeepFake detection” by Dr. Wenbo Zhou, and “On the sharing-based
model of steganography” by Prof. Xianfeng Zhao reported new advances.

We would like to thank all of the authors, committee members, reviewers, keynote
speakers, volunteers and attendees. It is the participation of them all that made a
wonderful and special IWDW again. And we appreciate the generous support from the
organizers and sponsors. Finally, we hope that the readers will enjoy this volume and
find it rewarding in providing inspirations and possibilities for future work.

December 2020 Xianfeng Zhao
Yun-Qing Shi

Alessandro Piva
Hyoung Joong Kim
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Multi-modal Steganography Based
on Semantic Relevancy

Yuting Hu1,2, Zhongliang Yang1,2(B), Han Cao1, and Yongfeng Huang1,2

1 Department of Electronic Engineering,
Tsinghua University, Beijing 100084, China

huyt16@mails.tsinghua.edu.cn,

{yangzl15,caoh16}@tsinghua.org.cn, yfhuang@mail.tsinghua.edu.cn
2 Beijing National Research Center for Information Science and Technology,

Beijing 100084, China

Abstract. Traditional steganography embeds confidential information
by modifying the carrier at the symbol level, e.g., the pixels of an image
or the words of a text. Since modification traces will inevitably be left
on the carrier, it is hard to resist the detection of the steganalysis algo-
rithms. To address this problem, this paper proposes a novel stegano-
graphic framework called multi-modal steganography, which hides secret
messages at the semantic level. In this framework, multi-modal covers
are projected into a common semantic space, in which their relevancy
can be measured. The confidential information can be embedded in the
semantic relevancy among the covers with a relevancy-message mapping
algorithm. By choosing and sending a series of original multi-modal cov-
ers, the secret messages are transmitted to the receiver. In this paper, we
adopt text and image as the two modalities. A visual semantic embedding
model is utilized to measure the relevancy between the texts and images.
Both the theoretical analysis and experiments demonstrate that the pro-
posed multi-modal steganography has good resistance to the existing
steganalysis methods and high quality of concealment.

Keywords: Multi-modal steganography · Semantic relevancy · Visual
semantic embedding · Relevancy-message mapping

1 Introduction

Steganography is the art and science of hiding confidential information within
digital carriers [1,7,18]. There are three main types of steganography technolo-
gies according to [3], i.e., steganography by cover modification, steganography
by cover synthesis and steganography by cover selection.

Currently, steganography by cover modification is the most widely-used
steganography technology [9,11,20]. Secret messages are embedded in the cover

This research is supported by the National Key R&D Program (2018YFB0804103) and
the National Natural Science Foundation of China (No. U1705261 and No. U1836204).

c© Springer Nature Switzerland AG 2021
X. Zhao et al. (Eds.): IWDW 2020, LNCS 12617, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-69449-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69449-4_1&domain=pdf
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Semantic Space

Image
Text

Enjoy the beach!

Fig. 1. An example of the distribution of two modalities (i.e., images and texts) in a
common semantic space.

by modifying the content of the cover such as the pixels of an image or the words
of a text. The cover after modification is different from the original cover more
or less. Thus, steganalysis methods are able to detect the existence of the secret
messages based on the modification traces [4,13].

With the rapid development of deep learning, it is possible to generate texts
and images automatically based on recurrent neural networks and generative
adversarial networks. Steganography by cover synthesis has attracted more and
more research interests [14,18]. However, the difference between the distributions
of the generated covers and the original covers makes the steganalysis possible
[16,17].

Steganography by cover selection, also named as coverless information hid-
ing, embeds secret messages in a series of original covers without modification. A
series of covers which contain the secret messages are chosen from a constructed
database and sent to the receiver. Hash functions are designed to convert a cover
into a binary sequence based on the local features of the cover such as intensity
value [23], HOG [24] and SIFT [21]. Other method uses partial-duplicate image
retrieval to transmit secret color image [22]. But semantics of the covers are not
considered in these methods. The transmitted series of covers may be content-
independent while the contents in a post on the social networks are likely to be
relevant. Since these steganographic methods ignore the behavioral security [15],
they may be detected by side channel steganalysis [8]. In order to control the
topic of the images in each transmission, a coverless image steganography algo-
rithm is proposed based on latent dirichlet allocation (LDA) topic classification
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,i tn n are the sizes of the image database

and the text database, respectively

Fig. 2. The overall framework of the proposed multi-modal steganography.

[19]. However, the feature sequence of an image is fixed since it is constructed
by the relation of discrete cosine (DC) coefficients between the adjacent blocks
of the image. It is more secure and flexible if an image can represent various
sequences in different transmissions.

Although the aforementioned methods employ various steganography tech-
nologies, all of them have a common point. That is they implement the steganog-
raphy at the symbol level. These methods focus more on the low-level features
such as pixels, intensity value, HOG, SIFT, DC coefficients of an image. Conse-
quently, it is possible for the existing steganalysis tools to detect them somehow.
Therefore, it is time to conduct steganography at the semantic level.

As we know, digital multimedia is popular in network transmission. Generally
speaking, the modalities appearing on the same web page usually have higher
relevancy in semantics than those appearing on the different occasion. Figure 1
presents an example of the distribution of two modalities (i.e., images and texts)
in a common semantic space. The distance between the relevant modalities is
closer than that between the irrelevant ones. Meanwhile, there exist multiple
pieces of relevant data of one modality such as image for the data of another
modality such as text. This inspires us to hide the confidential information by
utilizing the semantic relevancy. For a simple example, if a text have 16 rele-
vant images, then transmitting the most relevant image can represent the secret
messages {0, 0, 0, 0} while transmitting the least relevant image can represent
{1, 1, 1, 1}. Since the transmitted text and images are original and relevant in
semantics, this kind of steganography can escape from the detection of the exist-
ing steganalysis methods. Two key difficulties are how to measure the semantic



6 Y. Hu et al.

relevancy among the multiple modalities and how to conceal the confidential
information in the semantic relevancy.

This paper proposes a multi-modal steganography framework based on
semantic relevancy. Texts and images, the most two widely-used modalities, are
adopted. The overall steganography framework is illustrated in Fig. 2. With a
visual semantic embedding (VSE) algorithm [2], texts and images can be pro-
jected into a common semantic space, in which the relevancy between two arbi-
trary modality data can be measured. The semantic relevancy can be converted
into a binary sequence with a relevancy-message mapping algorithm. After select-
ing the texts and images whose binary sequences are the same as the secret mes-
sage segments, the sender transmits the multi-modal covers to the receiver. This
work can be regarded as an extension version of the previous work of our research
group [5]. In the previous work, we propose a basic multi-modal steganography
(MM-Stega) framework. But the process of information extraction requires the
receiver to share a common image database with the sender, which is a huge syn-
chronization overhead. In this paper, this cost can be avoided with the proposed
relevancy-message mapping algorithm.

The main contributions of this paper are concluded as follows. We propose
a multi-modal steganography framework, which conduct steganography at the
level of semantics instead of symbol. Rather than modify or generate a cover,
we conceal the confidential information in the semantic relevancy among the
original covers. Therefore, this kind of steganography can escape from detection
of the existing steganalysis methods. Moreover, it will arouse lower suspicion to
transmit covers which are relevant in semantics since it obeys the routine of the
multimedia on the network transmission. In addition, the sequence represented
by an image can be various when different texts are chosen, which brings more
flexibility and security.

The rest of this paper is organized as follows. The proposed method is
described in detail in Sect. 2. The experimental results and analysis are shown
in Sect. 3. Finally, Sect. 4 concludes the paper.

2 The Proposed Multi-modal Steganography

In this section, we will illustrate the proposed multi-modal steganography frame-
work. The most two widely-used modalities, texts and images, are adopted. The
flow chart of the multi-modal steganography for covert communication is repre-
sented in Fig. 3. Before the covert communication, it is necessary to set up a text
database and an image database. The two databases are constructed by select-
ing a number of texts and images from the Twitter100k dataset [6], which is a
large-scale text-image dataset. A visual semantic embedding model [2] trained
on the Twitter100k dataset [6] is utilized to measure the relevancy between a
text and an image. We propose a relevancy-message mapping algorithm which
can map an image to a binary sequences for a given text.

The sender first converts the secret messages into a bit stream and divides it
into n binary segments with the equal length k, where n and k are set accord-
ing to the amount of the secret message. k is acknowledged by both sender
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Fig. 3. The flow chart of the proposed multi-modal steganography for covert commu-
nication at (a) sender and (b) receiver.

and receiver of the covert communication. After choosing a text randomly from
the text database, the relevancies between the text with all the images in the
image database are measured with the visual semantic embedding model. All
the images are sorted on the basis of the relevancies. Afterwards, each image
represents a k-bits binary sequence according to the relevancy-message mapping
algorithm. Then, images whose binary sequences are the same as the secret mes-
sage segments are selected. The images which have higher relevancies with the
selected text are prior to being selected and each image can only be selected at
most once. Finally, the combination of the text and the images is conveyed to
the receiver in order.

The receiver shares the same visual semantic embedding model with the
sender. After receiving a combination of one text and n images, the relevan-
cies between the images and the text are measured with the visual semantic
embedding model. Then, the binary sequence of each image is computed with
the relevancy-message mapping algorithm. After splicing the binary sequences
together into a bit stream in the order of the received images, the confidential
information is obtained by converting the bit stream.

To sum up, the main parts of the proposed method are the visual seman-
tic embedding model, relevancy-message mapping algorithm, information hiding
algorithm and information extraction algorithm.

2.1 The Visual Semantic Embedding Model

Visual semantic embedding model [2] is utilized to measure the semantic rel-
evancy between the two modalities. As illustrated in Fig. 4, the visual seman-
tic embedding model is composed of a text-embedding network and an image-
embedding network. The two embedding networks project the text and image
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Fig. 4. The overall network structure of the visual semantic embedding model, which
consists of a text-embedding network and an image-embedding network.

into a common semantic space, where the embeddings of the two modalities
which are relevant in semantics are close to each other. The details of the visual
semantic embedding model are the same as [5].

2.2 Relevancy-Message Mapping Algorithm

The relevancy between the two modalities is a decimal ranging from −1 to 1.
We denote the digits after decimal point as {d1, d2, ..., dn, ...}. Then the digits
{d1, d2, ..., dn, ...} can be converted to a binary sequence {b1, b2, ..., bn, ...} based
on the parity of each digit. That is,

bn =
{

0, if dn is even
1, if dn is odd

(1)

The message represented by an image for a given text is {bi, ..., bi+k−1},
where i, k ∈ {1, 2, 3, ...}. i will be set in the light of the distribution of the binary
sequence {b1, b2, ..., bn, ...}. k is the length of the message and is shared by both
sender and receiver.

In order to know the distribution of the binary sequence {b1, b2, ..., bn, ...},
we calculate the entropy and the joint entropy of the parity of each digit on the
dataset described in Sect. 3.2 according to the following formulas.

H(Bn) = −
∑

bn∈{0,1}
p(bn)logp(bn) (2)

H(Bi, ..., Bi+k−1) = −
∑

bi,...,bi+k−1∈{0,1}k

p(bi, ..., bi+k−1)logp(bi, ..., bi+k−1) (3)

The results of the entropy H(Bi) and the joint entropy H(Bi, ..., Bi+k−1) are
presented in Table 1 and Table 2, respectively. As we can see,

|H(Bi) − 1| < ε, when i ≥ 3, ε = 0.01 (4)



Multi-modal Steganography Based on Semantic Relevancy 9

|H(Bi, ..., Bi+k−1) −
i+k−1∑
n=i

H(Bn)| < ε, when i ≥ 3, ε = 0.02 (5)

It means that the parity of the third digit and the latter digits of the relevancy
is nearly random and independent, which can provide high diversity for the
message represented by the image. In this paper, the message represented by an
image for a given text is {b4, ..., b4+k−1}, where k is adjustable.

Table 1. The results of the entropy H(Bi).

i 1 2 3 4 5 6 7 8 9

H(Bi) 0.36 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2. The results of the joint entropy H(Bi, ..., Bi+k−1).

i 1 2 3 4 5

H(Bi, Bi+1) 1.70 1.57 2.00 2.00 2.00

H(Bi, Bi+1, Bi+2) 2.69 2.60 3.00 3.00 3.00

H(Bi, Bi+1, Bi+2, Bi+3) 3.69 3.63 3.99 3.99 3.99

H(Bi, Bi+1, Bi+2, Bi+3, Bi+4) 4.67 4.68 4.98 4.98 4.98

2.3 Information Hiding Algorithm

There are five steps in the information hiding procedure, which will be introduced
in detail as follows.

Confidential Messages Preprocessing. We convert the confidential infor-
mation into a binary sequence. The binary sequence is divided into n segments
with the equal length k. n is the number of the attached images to the selected
text. k is the number of bits which are represented by an image. n and k are set
according to the amount of the confidential information, the size of the image
database and the limitations of the data transmission platform.

Text Selection. We choose a text randomly from the text database.

Relevancy Measurement. For each image in the image database, we measure
the relevancy between the image with the selected text based on the well-trained
visual semantic embedding model. All the images in the image database are
sorted according to their relevancies to the selected text.
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Relevancy-Message Mapping. The message represented by each image for
the selected text is calculated with the relevancy-message mapping algorithm.

Image Selection. We compare the confidential information segments with the
messages represented by the images in the descend order of the relevancy between
the images and the selected text. The images which represent the same messages
as the confidential information segments are selected. The image having higher
semantic relevancy with the selected text is prior to be picked out.

After these five steps, we will get a text and n images which hide the confi-
dential information. Then these original multi-modal covers are transmitted to
the receiver.

2.4 Information Extraction Algorithm

The receiver shares the visual semantic embedding model and the parameter k
with the sender. After receiving the text and n images, three steps are operated
to extract the confidential information.

Relevancy Measurement. The relevancies between the received images and
the text are calculated with the shared visual semantic embedding model.

Relevancy-Message Mapping. The relevancy between the received image and
the text is converted to the message represented by the image according to the
relevancy-message mapping algorithm.

Confidential Information Recovery. All the messages represented by the
received images are spliced together into a bit stream. Finally, the bit stream is
transformed to the confidential information.

3 Experiments and Analysis

The performance of the proposed multi-modal steganography can be evaluated
from four aspects, i.e., hiding capacity, semantic relevancy, resistance to the
steganalysis methods and complexity.

3.1 Hiding Capacity

The hiding capacity of the proposed steganography is proportional to the num-
ber of companied images with a text and the bits contained by each image.
Assume each text is companied with n images and each image represents k-bit
binary sequence, then the hiding capacity of the proposed method is k × n bits.
The hiding capacity of the proposed method is adjustable. There is no obvious
limitation of n. Though k is limited by the size of the image database, the image
database can be enriched with the public Twitter100k dataset without much
effort.
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3.2 Semantic Relevancy

The imperceptibility of the proposed method depends on the semantic relevancy
between the selected two modalities. The more relevant between the text and
the images, the less suspicion will be aroused. We conduct the experiment on the
dataset proposed in [5], which contain 100 texts and 1,000 images. All the texts
and images are labeled with several tags such as people, clothes and flower. The
relevancy between a text and an image can be evaluated by matching the tags.
If a text and an image contain a common tag, the image is regarded as relevant
to the text in the experiment. For a given text, we define the relevant rate as
the ratio of the number of the relevant companied images to the number of all
the companied images with the text.

In our experiment, binary sequence is used as the confidential information.
For a given length of confidential information, all the possible binary sequences
are tested in the experiment. Since the number of the possible binary sequences
increases exponentially with n and k, we adopt n = 1, 2, 3, 4 and k = 1, 2, 3, 4, 5.
The relevant rate is calculated for each text in the text database and the result
of the average relevant rate is presented in Table 3.

Table 3. The average relevant rates at different values of k and n.

n k

1 2 3 4 5

1 0.87 0.85 0.82 0.80 0.78

2 0.85 0.84 0.82 0.80 0.78

3 0.85 0.84 0.81 0.80 0.78

4 0.84 0.83 0.81 0.80 0.78

As shown in Table 3, the average relevant rate is greater than 0.78 when
k ≤ 5 and n ≤ 4, which achieves a relative satisfying relevancy. Moreover, the
average relevant rate decreases very slightly (smaller than 0.01) with the increase
of n. Therefore, we can use more images to convey more confidential information
without much sacrifice of the imperceptibility.

Some examples of the proposed steganography are given in Fig. 5. Each secret
message is an English word of five characters, which can be transformed into 40-
bit binary sequence. The values of n and k are set to 8 and 5, respectively. That
is, each text is companied with 8 images and each image represents 5 bits. It can
be seen that the companied images are relevant to the text and the combination
of the two modalities is very natural.

3.3 Resistance to the Steganalysis Methods

Ideal steganography should have good resistance to the detection of the steganal-
ysis methods. However, existing steganalysis methods can successfully detect the
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Secret Message: China
It's always good to see your friends from sLOVEenija in Miami !!! #welcomeToMiami

Secret Message : Japan
Gorgeous scenery. Beautiful weather. FREEDOM!

Secret Message : Korea
Today began with a colourful start #toronto #sunrise

Fig. 5. Examples of the proposed multi-modal steganography. Each text is companied
with 8 images and each image represents 5 bits.

steganography by modification [10,12] and steganography by synthesis [16,17].
In contrast to the previous steganography which performs information hiding
at the symbol level, the proposed multi-modal steganography embeds confiden-
tial information based on the relevancy between two modalities at the semantic
level. All the covers keep natural and original without modification or synthesis.
In addition, the selected covers are highly relevant in semantics. Therefore, the
proposed multi-modal steganography is unlikely to be detected by the existing
steganalysis methods.

3.4 Complexity

Compared with the previous MM-Stega which embeds the secret messages in
the relative values of the semantic relevancies [5], the method proposed in this
work utilizes the value of the semantic relevance directly. Therefore, the space
complexity is reduced to a large extent because there is no need for the receiver to
have an image database same as the sender in the proposed method. Moreover,
in the previous MM-Stega, all the semantic relevancies between the received
text and each image in the image database are required to be computed. This
computational complexity is decreased in our method since only the relevancies
between the received text and the received images are needed at the receiver
end.

4 Conclusion

This paper puts forward a novel multi-modal steganography framework based
on semantic relevancy. A visual semantic embedding model is adopted to mea-
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sure the semantic relevancy between the two modalities, i.e., texts and images. A
relevancy-message mapping algorithm is proposed to calculate the messages rep-
resented by an image for a given text. The sequence represented by an image can
be various given different texts. Since the confidential information is hidden in
the relevancy between the two modalities at the semantic level, there is no need
to modify or generate the covers. Therefore, the proposed method can effectively
resist the detection of the existing steganalysis methods. Experiments verify that
the selected covers are highly relevant in semantics, which guarantees good secu-
rity. Moreover, the space complexity and the computational complexity of the
proposed method are much reduced compared with the previous MM-Stega since
there is no need for receiver to keep a same image database with the sender.
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Abstract. This paper presents a type of variable rate syndrome-trellis
codes (VR-STC) for bursty channels. It can embed message bits with
two different embedding rates. In the embedding, a cover vector is sliced
into segments, and the embedding rates for each segment depend on the
local channel distribution. The parities of stego segments are exploited
to indicate the selected embedding rates according to a mapping func-
tion between parities and embedding rates. The core of the VR-STC is
the parity-aware encoder, which can simultaneously output two candi-
date stego segments with different embedding rates and opposite parities,
either of which can be used to constitute the final stego vector. A Viterbi
algorithm is also suggested to find the closed stego segments. Besides,
the mapping function between parities and embedding rates is designed
by minimizing the embedding costs on a down sampled version of the
cover vector. It can further improve the undetectability of the VR-STC.
Experimental results on artificial signals and binary images suggest that
the proposed VR-STC can provide high success rate of embedding and
reduce the embedding cost on bursty channels.
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1 Introduction

Steganography is a technique about covert communication. One of its important
properties is undetectability, which calls for that the warden should not be able
to detect the existence of the embedded messages [1]. Besides circumventing
detection from the warden, it is also wished to maximize the embedding capacity
to face practical communication requirement. For this reason, undetectability
and capacity should be carefully balanced in designing steganographic schemes.

Modern steganographic schemes usually formulate the balance of steganogra-
phy as a minimization problem of a heuristically chosen distortion measurement.
Since the undetectability experimentally shows a strong relationship with the
media content, adaptive steganography takes into account the difference among
image region. In [2], web paper codes are suggested to avoid modifying “wet”
pixels, i.e., pixels not suitable for carrying message bits. Syndrome-trellis codes
(STCs) proposed in [3] provide a general methodology for embedding while min-
imizing an arbitrary additive distortion function near the theoretical bound.
Steganographic polar codes (SPCs) proposed in [4] suggest another near opti-
mal steganographic coding with low embedding complexity. Benefitting from
these proposals, adaptive steganographic schemes can focus on designing cost
functions [5,6].

These steganographic schemes usually assume that the cover follows a sta-
tionary distribution [1], which can be then used to select embedding parameters
[2–4], or to define cost functions [5,6]. In the case of STC framework, message
bits are embedded with an embedding rate fixed by the employed parity check
matrix, and the embedding changes follow a multivariate Bernoulli distribu-
tion [7]. However, multimodal signals in the real world sometimes have strong
time/space dependent behavior. For example, semantically meaningless frames
[8] or static scenes [9] may crop up in a video sequence, and the voice may sud-
denly change from talk-spurt to silent-period in VoIP transmission [10]. These
channels are not always suitable for steganography, and sometimes usable host
signals appear unpredictably. This paper models them as bursty channels [11].
They assumes that the channel would be bad for a long period of time once it
becomes bad. Take the binary image shown in Fig. 1 as an example. It can be
observed a large contiguous area of flatten region. Intuitively, image block (a)
could capture more message bits than (b), and block (c) only contains wet pixels
and should not be used. We could query the random permutation to overcome
the changing local distributions in this image. However, it requires capturing a
large number of cover pixels for a cover vector so that the distributions among
cover vectors vary little, which is not suitable for real time applications. Further-
more, the embedding rate has to be low enough to fit the worst embedding case,
e.g., a cover vector containing block (c) in Fig. 1, which wastes the embedding
capacity.

Regarding to the error correction code (ECC) applications, the changing local
distributions presented in bursty channels can be overcome by protecting data
with different importance [12–15]. In [14], the parity check bits on sub-blocks
of orthogonal Latin square codes are used to protect part of the word with
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Fig. 1. Demonstration of the bursty characteristic in a binary image.

double error correction and the other part with single error correction and dou-
ble error detection. In [13], a two-level burst error correcting unequal protection
code is proposed based on an existing construction of burst error correcting and
single-bit error correcting codes. It can protect different parts of the word from
different level burst error. However, the protection level is unchangeable for each
part of a word in these schemes. In [12], with a selection signal, the data length
of ECC can be dynamically changed to focus on the relatively more important
bit parts when the number of failures exceeds the error correction capability.
In [15], the reconfigurable ECC can adaptively change error correction capabil-
ity depending on the severities of static, spatial and temporal variations. They
motivate us to make the embedding rate of a steganographic scheme dynamically
adapt to the varying local signal distribution. Similar to the above schemes, a
selection signal indicating the embedding mode is in need. However, we can not
embed these signal bits directly, because they present regular statistics easy to
be detected. Moreover, inserting them into the message sequence would reduce
the embedding capacity seriously. In view of these, we present a construction of
adaptive steganographic codes, where embedding the selection signal affects the
embedding efficiency marginally.

In this paper, a type of variable rate syndrome-trellis codes (VR-STC) is
proposed for the bursty channel. Their embedding rates can be dynamically
adjusted to adapting to the local cover distribution. It is achieved by the pro-
posed parity-aware encoder. This encoder can simultaneously generate two stego
segments with different embedding rates and opposite parities acting as indicates
of embedding rates. One can determine the embedding rate according to the local
embedding cost, and select the stego segment with the corresponded parity. A
Viterbi algorithm is suggested to realize the parity-aware encoder. Furthermore,
the mapping between parities and embedding rates is designed by minimizing
the embedding costs on a type of down sampled images. It can further improve
the undetectability of the VR-STC. Experimental results on artificial signals and
binary images suggest that the proposed VR-STC can provide high success rate
of embedding and reduce the embedding cost on bursty channels.

2 Variable Rate STC

The variable rate STC (denoted as VR-STC) embeds message bits with two
alternative embedding rates, ρh and ρl. Between them which one is selected
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just now is indicated by the parity of the generated stego segment. This is
carried out by a parity-aware encoder, which divides a cover vector into segments,
and output two candidate stego segments with different embedding rates and
opposite parities for each segment. Herein the parity of a binary sequence means
its even or odd quality. Its value is 1 if the total number of “1” in the sequence
is odd. When the embedding cost of the stego segment obtained by the higher
embedding rate is unacceptable, e.g., it modifies some “wet” pixels, the other
one will be chosen as a part of the encoder output.

2.1 Parity-Aware Encoder

Fig. 2. a) is an example of the parity-check matrix H formed from two sub-submatrices
Ĥh and Ĥl. b) demonstrates the trellis constructed by the H shown in a), where a solid
edge indicates the end of a path with even-parity, and a dash edge indicates odd-parity.

Instead of determining whether an embedding cost is acceptable, we force the
parity of every stego segment to be a given value. This can provide flexible
configuration, because it allows us to choose appropriate embedding costs, or to
design secure mapping between parities and embedding rates.

The parity-aware encode is formed as a binary linear code. Its parity-check
matrix H is reconfigurable to support changing embedding rates. It is achieved
by adjusting the submatrices of H during runtime. The structure of H is designed
as an extension of that in STC [3]. Given cover vector x ∈ {0, 1}ln×1 and message
vector m ∈ {0, 1}lm×1, H ∈ {0, 1}ln×lm is constructed by placing a set of small
submatrices, Ĥ ∈ {0, 1}la×1b , along its diagonal. Further, Ĥ is composed of
smaller sub-submatrices Ĥl ∈ {0, 1}lal×lbl or Ĥh ∈ {0, 1}lah×lbh , where lal > lah.
Sub-submatrices with the same structure, whether adjacent to each other or not,
are shifted down by one row, as shown in Fig. 2(a). It can be observed that the
two sub-submatrices provide two embedding rates: ρh = ln/lah and ρl = ln/lal.
Note that the widths of all the submatrices are same and set with a common
multiple of lal and lah.
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Support that the two sub-submatrices have been pre-negotiated. Then the
encoder is to find a stego vector y ∈ {0, 1}ln×1 by optimizing:

y = arg min
Hy′=m

D(x,y′) (1)

s.t. H =
∑

i

Cst(i, Φ(o(i)), Ĥh, Ĥl) (2)

Hy = m (3)
Ry = o (4)

where o ∈ {0, 1}lr×1, lr = ln/la, is a binary sequence storing the specified parities
of each stego segment. Note that o can be arbitrarily adjusted during runtime,
and is not required to transmit to the receiver. Φ() defines a mapping function
which selects an embedding rate from {ρh, ρl} according to the input parity. We
will discuss its design in Sect. 3.2. R ∈ {0, 1}lr×ln is of form:

⎛

⎜⎜⎜⎝

1 · · · 1 0
1 · · · 1

. . .
0 1 · · · 1

⎞

⎟⎟⎟⎠

T

(5)

where the number of “1” in each column is equal to la.
Function Cst(i, Φ(o(i)), Ĥh, Ĥl) in Eq. (1) is used to generate H by using

submatrices Ĥ, each of which is constructed by Ĥl if Φ(o(i)) = ρl, or by Ĥh if
Φ(o(i)) = ρh. Figure 2(a) shows an example where Φ(o(i)) = ρh, ρl, ρh, ρh, ρl, · · ·
for i = 1, 2, 3, 4, 5, · · · .

Using a structure of H similar to the STC’ allows us to represent every
solution of Eq. (1) as a path through the syndrome trellis of H. This trellis
consists of two parallel graphs corresponded to ρh and ρl, respectively. The one
corresponded to ρh consists of state grids of (lah + 1) columns and 2lb,h rows.
The other consists of grids of (lal + 1) columns and 2lbl rows.

We know that the STC associates each node with a cost value storing the
minimal cost and a path index used to trace the previous path [3]. In the proposed
encoder, each node has to store two incoming paths with opposite parities in
order to find a path with a specified parity. As a result, the proposed encoder
needs to double the storage space compared with the STC.

2.2 Description of Viterbi Algorithm

We use the Viterbi algorithm to find the closed stego through the trellis. It is
similar to STC, except that the shortest path is now parity-aware. The algorithm
consists of the forward and the backward parts.

The forward part is used to construct the trellis. Each node in the trellis
stores two path indices with different parities and their cost. Supposing we are
at the i-th node in the j-th column of the k-th block, we use codd(i) and podd(i)
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to denote the minimal cost and corresponded path index, respectively, for the
incoming path with parity 1. Similarly, ceven(i) and peven(i) are for the incoming
path with parity 0. There are two edges leaving this node. One is labeled with 1,
corresponding to a stego element with value 1, and the other is labeled with 0.
Each of them updates not only both two paths’ costs, but also their parities. For
example, assume that there is an edge labeled with 1 that connects this node to
the i′-th node in the (j+1)-th column, meanwhile the j-th cover element is 0 and
assigned embedding cost w. Then this edge will increase the two paths’ weight
by w and flip their parities, because it alters the cover element and changes the
number of “1” in the stego vector. As a result, the candidate cost values and
path indices for the i′-th node in the (j +1)-th column provided by this edge are

c′
odd(i

′) =ceven(i) + w (6)
p′
odd(i

′) =i × 2 (7)
c′
even(i

′) =codd(i) + w (8)
p′
even(i

′) =i × 2 + 1 (9)

Note that we use the last bits of p′
odd(i

′) and p′
even(i

′) to indicate their prefixed
paths’ parities. For example, the last bit of p′

odd(i
′) in Eq. (7) means its prefixed

path has even parity. There are 2 edges entering a node, each of which can
provide 2 candidate paths with opposite parities. The one with a bigger weight
will be removed if two paths have the same parity. If the closest two paths with
different parities are provided by different edges, both of the entering edges will
be preserved. Therefore, each node in the trellis has at most two incoming paths.

The cover is divided into segments of length la. Each time one segment is
used to generate two parallel graphs of the trellis simultaneously. It can generate
la/lal grid blocks in the graph corresponded to Ĥl, and la/lah blocks in the graph
corresponded to Ĥh. We assume the value of o(k), namely which graph is to be
used, can be determined after the blocks in both graphs have been generated.
This is reasonable, since the closest path through a block in a graph can be
determined after the last column of this block has been generated. Thus we can
judge whether its obtained stego segment is acceptable. Blocks not in use are
removed from the graph. The designation of o is detailed in Sect. 3.2.

Figure 2(b) demonstrates an example of a constructed trellis, where the cho-
sen submatrices are same as that in Fig. 2(a). In the figure there are two graphs.
The above corresponds to sub-submatrix Ĥh and the below corresponds to Ĥl.
Grids in the same graph may be not adjacent. Further, some nodes may have
entering edges from two previous nodes.

The backward part of the algorithm is to trace the closest paths through
the two graphs. Which graph is to be used depends on the mapping function
Φ() and specified parity vector o in Eq. (1). The path tracing starts from the
reachable nodes in the last column of the last block in the graph specified by
Φ(o(lr)). A state is used to trace the path through this graph. If, for example,
o(lr) = 1 and Φ(o(lr)) = ρh, we choose the node with the minimum weight as
the final state, saying î, and use podd(̂i) associated with the last column of the
lr-th block generated by Ĥh to trace the previous nodes. Recall that the parity
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of the path traced next is indicated by the last bits of podd(̂i). Therefore, we
should use peven(�podd(̂i)/2�) associated with the last column but one to trace
the earlier nodes if the last bit of podd(̂i) is 0.

There are two graphs in the trellis. Each graph has its own last block. Conse-
quently, The backward part should use two states to trace two paths in different
graphs. After la/lah blocks generated by Ĥh (or la/lal blocks generated by Ĥl)
have been processed, Φ(o(lr − la/lal)) (or Φ(o(lr − la/lah))) is used to select the
graph to be processed next.

2.3 Corresponding Decoder

The corresponding decoder is simple. It divides the stego vector into segments of
length la, and then calculates their parities. For the segment with parity 1, it uses
the sub-submatrix, Ĥl or Ĥh, corresponded to Φ(1) to extract message bits. One
stego segment can extract la/lal message bits if using Ĥl, or la/lah message bits
otherwise. For the sake of simplifying the message extraction procedure, all the
stego segments generated by the same sub-submatrix can be combined together
and input into the original STC extractor to get the message bits embedded.

3 Implementation Details

3.1 Submatrix Selection

The submatrix Ĥ should be well defined according to the considered cover
images. Embedding message bits usually starts with assigning embedding cost w
for the cover vector x with the aid of certain cost function. Those wet elements
will be assigned with w(i) = ∞ in this step. The proposed encoder then divides
x into segments. Some of them present typical cover characteristics, i.e., they
do not have too many cases of w(i) = 0 or w(i) = ∞ [16], while the other may
contain a large number of wet elements.

As shown in Fig. 2(a), Ĥ can be constructed by either Ĥh or Ĥl. Between
them Ĥh provides a high embedding rate, and thus can be used in typical cover
segments to ensure the embedding efficiency. Therefore, the selection of Ĥh fol-
lows the common suggestions in [3].

The sub-submatrix Ĥl is used for those very wet segments. We consider the
extreme case where dura in every (dura+1) cover elements are wet. In this case
the width of Ĥl should satisfy lal ≥ (dura + 1) to guarantee that the processed
elements contains at least one dry element. Further, it can be observed that, in
the Viterbi algorithm, the i-th message bit being embedded is associated with
the current and previous (min{lbl, i} − 1) grid blocks:

m(i) =
lal∑

j=1

y((i − 1) × lal + j) × Ĥl(j, 1) + e(i) mod 2 (10)

e(i) =
i−1∑

k=i+1−min{lbl,i}

lal∑

j=1

y((k − 1) × lal + j) × Ĥl(j, i − k + 1) mod 2 (11)
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where e(i) can be considered as the carry of the last block and is determined
before generating the current block. As a result, the first column of Ĥl should be
all ones so that Eq. (10) can be solved by modifying the only one dry element.

Then the selection of the height of Ĥl, lbl is analyzed. Message bits can be
carried by the only one dry element in every lal elements in the extreme case we
considered. Thus the embedding encoder degenerates into an LSB replacement.
Equation (10) has only one solution given m(1), leaving a fixed e(1) for the next
embedding. Consequently, the second stego segment satisfying e(1)+

∑lal

j=1 y(j)
mod 2 = m(2) has only one solution given the index of the dry element. It is sim-
ilar when embedding the rest message bits. As a result, the expected embedding
cost is independent with the height of Ĥl and of value

D(x′,y′) =
1
2

∑

j∈Jdry

w(j) (12)

where Jdry is the index set of all the dry elements. Nevertheless, the number
of possible paths increases exponentially with the number of dry elements in a
cover segment. In this case, using a larger lbl can better ensurer the embedding
near the optimal bound boundary [3,7]. As a result, we select lbl according to
the cover distribution. For rather large wet region, a small value, e.g., lbl = 2
will suffice.

At last, we discuss the number of sub-submatrices in each Ĥ. It is equals to
la/lah for Ĥh, which can be set with a large value to increase the embedding
efficiency. Regarding to Ĥl, a large la/lal may waste the area suitable for the
embedding. However, a too small la/lal may raise embedding failures. From
Eq. (10) it can be derived that

o(i) =
i×(la/lal)∑

j=(i−1)×(la/lal)+1

m(j) + e(j) (13)

Since e(1) = 0, the probability of successfully embedding m(1) is only 1/2 if
la/lal = 1. To deal with it, It should satisfy that la/lal ≥ 2, or the first cover
segment processed by Ĥl could not be used to carry message bits. On the other
hand, there should be at least one Ĥl processing cover elements that contain
more than one dry element in a Ĥ, otherwise Eq. (10) is high likely to have no
solution given designated parities o(i) and message bits m((i − 1) × (la/lal) +
1),m((i − 1) × (la/lal) + 2). · · · .

3.2 Mapping Between Parity and Embedding Rate

In Eq. (1), function Φ() maps the parity of a stego segment to the embedding
rate used in that segment. It is used to allay the detectable influence incurred by
designating parities. Consider a down-sampled image X↓, each of whose pixels
is the sum of the pixels in the image segment at the same place in the originally
sized image X.
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X↓(i) =
i×la∑

j=(i−1)×la+1

X(j) (14)

Then designating the parities of the segments in the original image is equivalent
to an LSB replacement in this down-sampled version. In view of this, Φ() should
satisfy: 1) Φ() can be generated at both the sender and the receiver without any
side information of the cover image and the secret message. 2) Φ() should be
random, otherwise it would result in regular LSBs in the down-sampled image
indicating local wetness of the image. 3) Φ() should minimize the distortion
caused by modifying LSBs of the down-sampled image, because a warder may
train a steganalyzer on these down-sampled images to detect the proposed VR-
STC.

Herein we meet the above criteria by means of STC. Briefly, we obtain Φ()
by embedding encrypted indicators of embedding rates, ρ, in the down-sampled
image by the STC. The generation of Φ() is as follows.

1. Generate down-sampled image X↓ from cover image X by Eq. (14).
2. Use certain distortion measurement to define the embedding cost of each pixel

in X↓, yielding a cost map W ↓.
3. Divide X↓ into vectors x↓ of length ls1, which is equivalent to combine each

ls1 successive image segments in X into a group. Suppose there are l′ vectors
in total.

4. Generate a pseudorandom binary vector r ∈ {0, 1}l′ by pre-negotiated encryp-
tion method and key.

5. For the i-th x↓, segments in the cover image corresponding to the pixels in
this vector should embed message bits with the same embedding rate. This
embedding rate is determined based on the analysis in Sect. 3.1. Especially,
ρl will be selected if the number of dry elements is no more than la/lah in
some segments.

6. If ρl is selected, an indicator is saved as ρ(i) = 1 − r(i). This indicator will
be used to give the parities each stego segments in the group should have,
namely o((i − 1) × ls1 + 1),o((i − 1) × ls1 + 2), ...,o(i × ls1), in the next step.
Similarly, ρ(i) = r(i) will be saved if ρh is selected.

7. After obtaining a certain number of indicators, saying, ls2 indicators, they
are considered as a message vector and embedded into X↓ by the STC with
embedding rate 1/ls1 according to cost map W ↓, yielding the parities of each
stego segments o:

o = STC(ρ,X↓ mod 2,W ↓)

The above procedure gives us a Φ(), namely the parity and the embedding
rate associated with each stego segment. Then they are used to embed message
bits by the parity-aware encoder. In practice, we set 1 < ls1 ≤ 2 to fully utilize
the dry elements in image segments. Note that the length of each x↓ does not
need to be same. For example, we can set ls1 = 1 for the 1-st, 3-rd, 5-th x↓,
and ls1 = 2 for the 2-nd, 4-rd, and 6-th vectors. This is equivalent to embedding
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indicators with embedding rate 0.75. On the other hand, it calls for that all the
segment in a group should be embedded with the same embedding rate. As a
result, we have to reset the embedding rate of the first segment to ρl if we find
that the second segment have to be embedded with ρl.

4 Experimental Results

4.1 Embedding Efficiency Loss

The VR-STC performs similar to the combination of two STC codes if we
removed the parity limitation in Eq. (1). Sometimes the designated parity is
inconsistent with that of the stego vector found by the original STC, which
may lower the embedding efficiency. In this section we evaluate the embedding
efficiency loss caused by the parity designation.

For the sake of simplification, the parity-aware encoder is only equipped
with one sub-submatrix (i.e., ρl = ρh = ρ). We compare 4 parity designation
strategies: 1) message bits are embedded using the original STC (denoted as Arb-
parity), 2) the parities of all the stego segments are odd (denoted as Odd-parity),
3) the parities of all the stego segments are even (denoted as Even-parity), 4) the
parities are set by using the procedure presented in Sect. 3.2 (denoted as Opt-
parity). In each strategy, pseudorandom binary sequences of 480-bit length are
employed as cover vectors, whose embedding costs are supposed to be constant
(w(i) = 1), linear (w(i) = i), and square (w(i) = i2). They are used to embed
pseudorandom message bits at embedding rate ρ ∈ {1/6, 1/4, 1/3, 1/2}. The
width of submatrix is set as la = 12 in Odd-parity, Even-parity and Opt-parity.
Further, in Opt-parity, we set ls1 = 2 and ls2 = 2, and the embedding cost of
each element in x↓ is the average of the embedding costs of the dry elements in
the corresponded segment in the originally sized cover vector.

Figure 3 compares the embedding distortion among different parity desig-
nation strategies. The result is averaged over 100 times simulations. It can be
observed a constant gap between the VR-STC and the original STC, which
seems independent with the embedding rate. Moreover, the Opt-parity strategy
would further lower the embedding efficiency slightly. It may be because that
more cover elements have to be flipped to preserve the LSBs of the down-sampled
image. Nevertheless, the Opt-parity strategy performs best on the down-sampled
vectors due to its targeted design.

The influence of submatrix’ width, la, on the embedding efficiency loss is
further evaluated. We fix the embedding rate as ρ = 1/2 and vary la from
20 to 60. Experimental results shown in Fig. 4 indicate that enlarge the width
can allay the embedding efficiency loss, and reduce the embedding cost on the
down-sampled vectors. However, a large la would weaken the adaptiveness of the
proposed code on dynamic local cover distributions. Empirically, its value is set
so that la/lah ≤ 4.
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Fig. 3. Illustration of the embedding efficiency loss incurred by the VR-STC. The cover
vector is associated with a) constant, b) linear, and c) square embedding cost. d), e),
and f) show the embedding distortion on the down-sampled vectors, whose embedding
costs are obtained by using the embedding costs in a), b), and c) respectively.
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Fig. 4. Illustration of the influence of the width of submatrices on the embedding
efficiency loss. The embedding costs are constant in a) and d), linear in b) and e), and
square in c) and f). a)–c) show the results on the cover vectors, while d)–f) show the
results on the down-sampled versions.
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4.2 Performance on Artificial Bursty Channel

This section tests the adaptiveness of the VR-STC and original STC on bursty
channels. The definition of the bursty channel is similar to the classic one in
[11]. When referring to a (prob, dura)-channel, it means that the probability
of an incoming element being wet is prob, and each time the channel will stay
in wet for dura elements. The VR-STC is constructed by two sub-submatrices
providing embedding rates ρh = 1/2 and ρl = 1/6, and uses the Opt-parity
strategy. Both VR-STC and original STC employ linear embedding cost. The
other experimental settings are as same as those in Sect. 4.1.

Since the embedding rate keeps changing during the VR-STC’s embedding
procedure, we adjust the embedding rate of the original STC to be similar to
the average embedding rate of the VR-STC given a cover vector. The considered
settings of bursty channels, together with the averaged embedding rates provided
by the VR-STC in each setting, are listed in Tabel 1.

Table 1. Averaged embedding rates of VR-STC under different channel settings.

dura prob

0.1 0.2 0.3 0.4 0.5 0.6 0.7

3 240.00 192.64 181.20 132.72 99.92 94.88 90.64

5 199.28 142.56 116.16 91.44 82.00 82.80 82.08

7 149.28 116.16 105.68 81.16 80.04 80.08 80.04

The numbers of failed embedding attempts under different (prob, dura)-
channels are compared in Figs. 5(a) to 5(c). It can be observed that the VR-STC
can acquire stable and high successful rate when dura ≤ 6. In order to achieve a
similar embedding rate, the original STC has to use a fixed high embedding rate,
resulting in high failure rate. On the other hand, the constructed VR-STC does
not target at dura > 6, and thus performs poorly when dura = 7. We further
compare the averaged embedding costs of the successful embedding. The com-
parison results shown in Figs. 5(d) to 5(f) indicate that the VR-STC increases
the embedding cost slightly, which is coincides with the results in Sect. 4.1. Note
that some points are absent in these figures due to the lack of successful embed-
ding.

4.3 Performance on Binary Images

Binary images are frequently used in document images, handwritings, CAD
graphs and so on, and many steganographic schemes on them have been devel-
oped [17,18]. Further, their nonstationary property is easy to exhibit. As a result,
we compare the VR-STC and original STC on the binary images in the end of
this paper. The dataset presented in [17], which consists of 5000 binary images of
size 256×256, is employed. The VR-STC is constructed by two sub-submatrices
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Fig. 5. a), b), c) show the comparison of numbers of failed embedding attempts. d),
e), f) show the comparison of averaged embedding costs of successful embedding. In
each figure we fix the dura of (prob, dura)-channel and vary prob from 0.1 to 1.

providing embedding rates ρh = 1/2 and ρl = 1/8. Both VR-STC and STC
accept cover vectors of length 480, and the embedding rate of the original STC
is adjusted to be similar to that of the VR-STC. In the embedding procedure,
a cover image is divided into 2 × 4 sized blocks, and those containing different
pixel values are used to fill cover vectors. The threshold and reembedding mech-
anisms suggested in [17] are employed. The embedding costs are computed by
the measurement defined in [17] as well. Further, pixels with embedding costs
larger than 8 are set with wet.

Herein we only compare the imperceptibility of different schemes, since stego
binary images with better visual quality can usually provide stronger statistical
undetectability [17]. The perceptual distortion on stego images is compared in
Fig. 6. It suggests that the VR-STC can better avoid incurring distortion in flat
region. The Opt-parity strategy further reduces the embedding distortion by the
VR-STC on down-sampled images. Since the visual difference is subtle. We com-
pare the imperceptibility by some objective measurements including Hamming
distance, DRD [19], and ELD [20]. The comparison results listed in Table 2 sup-
port that the proposed scheme can generally preserve the visual quality better.
This is because the bursty characteristic of binary images makes the VR-STC
more suitable compared with the original STC.
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Table 2. Comparison of averaged embedding distortion between VR-STC and STC.

Averaged
capacity

Original sized image Down-sampled image

Hamming DRD ELD Hamming DRD ELD

VR-STC 4.51% 1120.42 1.8183 4249.55 405.88 3.0153 1631.01

Original STC 4.51% 1161.95 1.8203 4529.64 411.62 2.7129 1631.68

Fig. 6. Imperceptibility comparison on binary images. (a) and (d) are cover images.
(b) and (e) are the corresponded stego images obtained by the VR-STC. (c) and (f)
are stego images obtained by the original STC. (g)–(l) are the image segments cropped
from (a)–(f), respectively. (m) and (p) are the down-sampled versions of (a) and (d),
respectively. (n), (o), (q), and (r) are the difference maps between the down-sampled
versions of the cover and corresponded stego images.

5 Conclusion

In this paper, we consider a special channel for covert communication, the bursty
channel, and propose the variable rate syndrome-trellis codes (VR-STC) to fully
utilize this channel. The VR-STC provides two alternative embedding rates to
support this channel. Between them, the lower one is set to be low enough to pass
through the wet region, and the higher one is used to provide embedding capacity.
The stego vector is composed of a set of stego segments. Which embedding rate
is used for a segment is indicated by the parity of that segment. The core design
is the parity-aware encoder, which uses two sub-submatrices to generate two
candidate stego segments with different embedding rates and opposite parities.
Either of them can be used to form the final stego vector. We use the Viterbi algo-
rithm to find the closed stego segments generated by the two sub-submatrices.
Moreover, the selection of sub-submatrices is discussed. The mapping between
parities and embedding rates is optimized to attenuate the embedding effi-
ciency loss caused by the parity designation, meanwhile improving the statistical
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undetectability. Experimental results show that the proposed scheme is suitable
for bursty channels. It can provide considerable stego image quality without the
aid of random permutation. We also notice the relation between the VR-STC and
the batch steganography [21,22]. The latter focuses on the capacity spreading
strategy and pays less attention on the practical implementation details, such as
the transmission of cover merging and selection parameters. Thus the VR-STC
may help practically implement batch steganographic schemes. Nevertheless, the
cover images considered there are more stationary and easier to deal with.
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Abstract. Contrast enhancement is widely used to improve the visual quality of
images. This paper proposes a distortion function for steganography in enhanced
images. The pixel prediction error and the cost of the pixel value itself are joint
to fit the unique properties of enhanced image. Given a cover image, each pixel
is predicted by its neighbors. The prediction error, which reflects the texture
complexity, are combined with the cost of the pixel value itself to form the final
distortion function. With the proposed distortion function, secret data can be
embedded into the enhanced cover image with minimal image distortion using
syndrome trellis coding (STC). As a result, less detectable artifacts left in the
stego images, so that high undetectability is achieved.

Keywords: Steganography � Enhanced images � Distortion function

1 Introduction

Steganography is a technique to embed secret data into digital media to achieve covert
communication [1–3]. At the initial stage, most steganographic methods decrease the
number of modifications to guarantee undetectability [4–6]. However, the unde-
tectability of steganography is also determined by the locations of modifications. As
present, the most popular steganographic framework is based on the minimization of
additive distortion [7], which is achieved by syndrome trellis coding (STC) [8]. In this
framework, a distortion function is defined to assign embedding costs for all cover
elements to quantify the modification-effect. Many distortion functions have been
designed for natural image in spatial domain [9–12] and DCT domain [13–16].

For other kinds of images, new distortion functions should be developed to fit the
unique properties. Contrast enhancement is widely used to improve the visual quality
of images, especially the content details. Several original natural images and their
enhanced versions are shown in Fig. 1. The enhanced images are produced by his-
togram equalization which is a popular approach to achieve contrast enhancement [17].
From Fig. 1, we can see that the enhanced images are more legible than the original
ones. In the enhanced versions, the details are easy to identify. This is important to
medical, legal, and astronomical applications. In addition, the correlation between
pixels in enhanced images is different from that in original natural image, since the
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histograms of enhanced images have been extruded. So, the properties of enhanced
images are quite different with original natural images.

Existing distortion functions [9–16] aim to restrain the modifications caused by
embedding into texture and complex regions to conceal the modification trace.
Although these distortion functions perform well in original natural image, they are still
unsuitable for enhanced image since the unique properties of enhanced image have not
been considered. It is shown in [18] that the undetectability of existing steganographic
methods will decreased clearly when the cover image has been enhanced. The
modification-trace caused by existing steganographic methods can be discovered by
modern steganalytic tools easily when the cover images are enhanced. Therefore, it is
necessary to develop customized distortion function for enhanced image. To the best of
our knowledge, the distortion function designed for enhanced image has not been
reported in the literature.

To this end, we firstly propose a distortion function for steganography in enhanced
image. The pixel prediction error and the cost of the pixel value itself are joint to fit the
unique properties of enhanced image. Given a cover image, each pixel is predicted by
its neighbors. The prediction error, which reflects the texture complexity, are combined
with the cost of the pixel value itself to form the final distortion function. When secret

Fig. 1. Demonstration of (a)–(c) several natural images and (d)–(f) the corresponding enhanced
versions.
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data is embedded with the proposed distortion function, the obtained stego image lefts
less detectable artifacts.

2 Proposed Distortion Function

The structure of the proposed method is shown in Fig. 2. Given a cover image, each
pixel is predicted to form a predicted image. Meanwhile, the grayscale cost of each
pixel is employed to measure the embedding cost of gray level itself. Finally, the
predicted image and grayscale costs are used to calculate the final embedding cost of
each pixel.

2.1 Pixel Prediction

For an image X sized M � N, denote the (i, j)-th pixel as x(i, j), where i 2{1, 2,…,M},
j 2{1, 2, …, N}. To predict x(i, j), the pixels x(i + 1, j), x(i − 1, j), x(i, j + 1), and x(i,
j − 1) are employed. The nonexistent pixel which is out of the image boundary would
be obtained by pixel symmetric padding. For example, x(i + 1, j) can be obtained by
copying x(i − 1, j) when it is out of the image boundary, and vice versa.

Firstly, the vertical residual dv(i, j) and horizontal residual dh(i, j) of x(i, j) are
calculated using Eqs. (1) and (2). The reason for the using of quadratic difference is
that the correlation between pixels in natural image is nonlinear. It is the same with
enhanced natural image.

dvði; jÞ ¼ xði� 1; jÞ � xðiþ 1; jÞ½ �2 ð1Þ

dhði; jÞ ¼ xði; j� 1Þ � xði; jþ 1Þ½ �2 ð2Þ

Then, the rates rv(i, j) and rh(i, j) of the two kinds of residuals are calculated using
Eqs. (3) and (4) to measure the weights in vertical and horizontal directions. Where e =
10−8 is used to avoid the value of denominator becoming zero, and guarantee that the
summation of rv(i, j) and rh(i, j) is equal to 1. In addition, it can be seen that the vertical
rates rv(i, j) is determined by horizontal residual dh(i, j), and the horizontal rates rh(i,
j) is determined by vertical residual dv(i, j). The rationale is that a larger dh(i, j) means
weaker correlation in horizontal direction, so that the vertical weight should be larger.
In other words, rv(i, j) is in inverse proportion to dh(i, j). Conversely, rh(i, j) is in
inverse proportion to dv(i, j).

Pixel
PredictionCover image

Predicted
image

Grayscale costs

Cost
Calculation Embedding costs

Fig. 2. Sketch of the proposed method.
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rvði; jÞ ¼ dhði; jÞþ e
dvði; jÞþ dhði; jÞþ 2e

ð3Þ

rhði; jÞ ¼ dvði; jÞþ e
dvði; jÞþ dhði; jÞþ 2e

ð4Þ

Finally, pixel x(i, j) is predicted into x̂ði; jÞ using x(i + 1, j), x(i − 1, j), x(i, j + 1),
and x(i, j − 1) as shown in Eq. (5). Where wv(i, j) and wh(i, j) are the weights in vertical
and horizontal directions, which are defined in Eqs. (6) and (7). Since vertical and
horizontal texture complexity of different images are different, a parameter a 2 [0, 1] is
used to adjust the ratio of the weights in vertical and horizontal directions. Furthermore,
the number 4 of denominator in Eqs. (6) and (7) are used to normalize the summation
of the four weights to 1.

x̂ði; jÞ ¼ wvði; jÞ � xðiþ 1; jÞþwvði; jÞ � xði� 1; jÞþwhði; jÞ � xði; jþ 1Þþwhði; jÞ � xði; j� 1Þ
ð5Þ

wvði; jÞ ¼ rvði; jÞþ a
4

ð6Þ

whði; jÞ ¼ rhði; jÞþ 1� a
4

ð7Þ

To determine the value of a, eleven candidate values {0, 0.1, 0.2, …, 1} are
employed for pixel prediction respectively to obtain eleven predicted images. Each
predicted image is compared with the given image X, and the minimal MSE (Mean
Square Error) e is calculated using Eq. (8). Then, the value of a corresponding to the
minimal e is used as the final a.

e ¼ 1
MN

XM
i¼1

XN
j¼1

x̂ði; jÞ � xði; jÞ½ �2 ð8Þ

2.2 Cost Calculation

With the predicted pixel x̂ði; jÞ, the cost q(i, j) of modifying x(i, j) can be calculated
according to the difference between x(i, j) and x̂ði; jÞ. Since larger difference value
means weaker spatial correlation of pixels and means lower embedding cost, the cost
value should be in inverse proportion to difference value. So, q(i, j) can be calculated
using Eq. (9).

qði; jÞ ¼ qg xði; jÞð Þ
xði; jÞ � x̂ði; jÞj j þ e

ð9Þ
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where qg(z), z 2 {0, 1, …, 255} is the cost of the grayscale value of pixel x(i, j) itself,
which is proposed in [19], as shown in Eq. (10).

qg zð Þ ¼ 1

z� 255 z=255ð Þ1:001�� �� ð10Þ

We employ this grayscale cost to enrich our distortion function. The reason is that
the spatial correlation of the enhanced image is different with natural image. The
distribution of grayscale values of enhanced image is wider than that of natural image,
as shown in Fig. 3. At this case, the histogram of correlations of enhanced image is
weaker than that of natural image. Therefore, the embedding cost of gray level itself is
necessary for enhanced image. The process of distortion function design can be
summarized as the following algorithm.

ALG.1 Distortion function calculation

Input: Enhanced image X

Output: Embedding costs ρ(i, j)

1) Calculate the predicted pixel value ˆ j),(ix for each cover pixel x(i, j) using 
Equation (5);

2) Calculate the cost of the grayscale value for each cover pixel x(i, j) using 
Equation (10);

3) Obtain the final cost value for each cover pixel x(i, j) using Equation (9).

(a)                                                               (b) 

Fig. 3. Histogram comparison between (a) a natural image and (b) its enhanced version using
histogram equalization.
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After the embedding cost values are obtained, secret data can be embedded into
cover image X using the STC framework which minimizes the additive distortion
between X and its stego version.

3 Experimental Results

In this section, some experiments are conducted to verify the effectiveness of the
proposed distortion function. Firstly, we setup the experimental environments. We then
provide a study of undetectability of our method when compared to the current state of
the art.

3.1 Experiment Setup

The 1338 images sized 512 � 384 in UCID [20] and the 10000 images sized
512 � 512 in BOSSbase ver. 1.01 [21] are processed with histogram equalization
(achieved by the function histeq(�) of MATLAB) to produce the enhanced images
which are then used as cover images for embedding.

To verify the effectiveness of the proposed method, we compare our method with
the popular distortion functions HILL [11], SUNIWARD [10] and WOW [9]. All
embedding tasks are done by the embedding simulator [22] since it is widely used to
simulate the optimal embedding. The payloads are set as 0.001, 0.002, 0.003, 0.004,
and 0.005 bpp (bits per pixel), respectively.

For steganlaysis, the popular feature extraction methods SRMQ1 [23] and SPAM
[24] are used to extract the feature sets of cover and stego images. Then, the ensemble
classifier [25] is used to measure the property of feature sets, which is widely used for
steganalysis. One-half of the cover and stego feature sets are used for training, while
the remaining sets are used for testing. Then the criterion to evaluate the undetectability
performance of steganography can be PE which is the minimal total error with identical
priors achieved on the testing sets, as shown in Eq. (11).

PE ¼ min
PFA

PFA þPMD

2

� �
ð11Þ

where and PFA and PMD are the false alarm rate and missed detection rate respectively.
A high value of PE means high undetectability.

3.2 Image Quality

The demonstrations of images before and after embedding are shown in Fig. 4. Where
Fig. 4(a) is a natural image without enhanced. Its enhanced version is shown in Fig. 4
(b) which is used as cover. After embedded by our method with payload 0.001, 0.002,
0.003, and 0.004 bpp respectively, the obtained stego images are shown in Fig. 4(c),
(d), (e) and (f) correspondingly.

It can be seen that the stego images are close to the cover version, which means the
visual quality of the stego images is satisfactory regardless of the payload. Therefore,
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the nice quality of enhanced image is reserved after embedded using our method. In
other words, our method decreases the usability of enhanced image very slightly.

3.3 Undetectability Comparison

The undetectability comparisons between our method and other distortion functions
against SPAM and SRMQ1 tested on UCID and BOSSbase ver. 1.01 are shown in
Fig. 5 and Fig. 6 respectively.

It is clear that the undetectability performance of our method is better than other
distortion functions for all cases, regardless of the steganalytic tools and payload. For
image set UCID, the improvement on PE by our method compared with HILL for
payload 0.001 bpp against SRMQ1 is 3.54%. Compared with SUNIWARD and WOW,
the improvements are 3.63% and 3.25% respectively for the same cases. For the cases
against SPAM, the improvement on PE by our method compared with HILL, SUNI-
WARD and WOW for payload 0.001 bpp are 3.30%, 3.45%, and 2.95% respectively.
For image set BOSSbase ver. 1.01, similar results can be observed. Compared with
HILL, the improvement on PE by our method for payload 0.001 bpp against SRMQ1 is
5.40%. Compared with SUNIWARD and WOW, the improvements are 6.36% and
5.45% respectively for the same cases. The improvement on undetectability is because

Fig. 4. Demonstrations of (a) original natural image, (b) enhanced cover image and the
corresponding stego images using our method with payload (c) 0.001 bpp, (d) 0.002 bpp,
(e) 0.003 bpp, and (f) 0.004 bpp.
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that our method is designed to fit the unique properties of enhanced image, while the
others not.

4 Conclusions

A distortion function for steganography in enhanced image is proposed in this paper.
The pixel prediction error and the cost of the pixel value itself are joint to fit the unique
properties of enhanced image. With the proposed distortion function, secret data can be
embedded into the enhanced cover image with less detectable artifacts left in the stego
images compared with existing distortion functions. Experimental results show that the
undetectability performance of the proposed scheme is better than existing

(a) (b) 

Fig. 5. Undetectability comparisons between the proposed method and several existing
distortion functions on UCID against (a) SRMQ1 and (b) SPAM.

(a) (b) 

Fig. 6. Undetectability comparisons between the proposed method and several existing
distortion functions on BOSSbase ver. 1.01 against (a) SRMQ1 and (b) SPAM.
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steganographic methods when check by modern steganalytic tools. We believe that the
proposed scheme would be of some help to the development of digital image
steganography, and more steganographic methods for special kinds of image can be
developed in the future.
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Abstract. This paper proposes a multi-modal steganography method
based on an improved text-image matching algorithm. At present, most
of the steganography methods are based on single modality of carriers
and embed confidential information into the carriers by cover modifica-
tion or cover synthesis. Since the distortions between the covers after
embedding and the original covers are inevitable, these steganography
methods can be detected by the existing steganalysis methods. To solve
this problem, we propose multi-modal steganography which hides the
confidential information in the semantic relevancy between two modali-
ties of original carriers. The semantic relevancy between the two modal-
ities is measured by text-image matching, which affects the impercep-
tibility of the proposed method to a large extent. In order to increase
the security of multi-modal steganography, we improve the current text-
image matching algorithm with adversarial learning and circle loss. By
selecting and transmitting the original multi-modal carriers with high
relevancy, the proposed method can escape from the detection of current
steganalysis methods. It is also illustrated by the theoretical analysis and
experimental results that the semantic relevancy between the selected
multi-modal carriers is enhanced.

Keywords: Multi-modal steganography · Text-image matching ·
Adversarial learning · Circle loss

1 Introduction

Steganography is a technique of communicating secret messages without being
noticed by a third party. With the popularity of the multimedia in network
transmission, steganography hides the secret messages into the digital carriers
such as images and texts and so on.
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Currently, most of the existing steganography methods are based on single
modality of carriers. Many steganography methods conceal secret messages by
modifying the content of the cover [2,19]. But the modification traces left on the
modified covers will make steganalysis possible [5,14]. With the development
of deep learning technologies such as recurrent neural networks and generative
adversarial networks, some steganography methods based on cover synthesis are
put forward [3,15,18]. However, these kind of steganography methods can be
detected by the steganalysis methods since the differences of the distribution
between the synthesized covers and the original covers are inevitable [16,17]. In
order to escape from the detection of the steganalysis methods, a kind of new
steganography methods named coverless information hiding is proposed [20–23].
In these methods, original covers which contain the secret messages are selected
from a constructed database and transmitted to the receiver. Nevertheless, the
covers selected by the most coverless information hiding methods are content-
irrelevant, which is not consistence with the general phenomena on the network
transmission. Therefore, this kind of steganography is likely to detected by side
channel steganalysis [8].

In order to resist the existing steganalysis methods, we propose a multi-modal
steganography method based on an improved text-image matching algorithm. It
can be regarded as an extension version of the previous work of our research
group [6]. In the previous work, we propose a basic multi-modal steganogra-
phy (MM-Stega) framework which utilizes a visual semantic embedding (VSE)
model [4] to measure the relevancy between the two modalities. But there is con-
stantly room for development. In this paper, we improve the text-image match-
ing algorithm from two aspects. One is to pull close the distributions of the two
modalities by utilizing adversarial learning. Another is to make the optimization
flexible by replacing the commonly-used triplet loss with circle loss. Then we
employee a two-stage procedure to train the text-image matching model with
a large number of text-image pairs in the Twitter100k dataset [7]. In this way,
the relevancy between the two modalities can be enhanced, which brings about
higher security of the multi-modal steganography method.

The advantages of the proposed multi-modal steganography are two fold.
First, since the secret messages are embedded in the relevancy between the two
modalities, the covers after embedding are still original. Therefore, steganaly-
sis methods based on the distortion between the original covers and the covers
after embedding are unable to detect the proposed steganography method. Sec-
ond, because the relevancy between the two modalities are measured with an
improved text-image matching algorithm with adversarial learning and circle
loss, the selected covers for covert communication are relevant in semantics.
Thus, the proposed method can also have good resistance to side channel ste-
ganalysis which are based on the correlation between the images sequence [8].

The rest of this paper is organized as follows. Section 2 introduces related
work about the baseline text-image matching model and two main loss functions
for text-image matching. The proposed multi-modal steganography method is
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described in detail in Sect. 3. The experimental results and analysis are presented
in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related Work

2.1 The Baseline Text-Image Matching Model

Visual semantic embedding (VSE) model [4] is adopted in the previous work of
multi-modal steganography [6], which is also the baseline text-image matching
model in this paper.

VSE model is made up of a text-embedding network and an image-embedding
network. The text and image embedding networks can project the two modalities
into a common space, where the embeddings of the two modalities which are
relevant in semantics are close in distance.

Text-Embedding Network. Recurrent neural network (RNN) has been
employed wildly in many natural language processing tasks. Each RNN has a
recurrent hidden state whose activation at each time is dependent on the input
at current time and the activations of the previous time. By this way, all the
information of a sequence is encoded. Gated recurrent unit (GRU) [1] is a vari-
ant of RNN, which adds an update gate and a reset gate to solve the gradient
explosion/vanishing problem of RNN.

In the text-embedding network, each word in the sentence is first converted
into a 300-dim word vectors with a trainable look-up table. Afterwards, a one-
layer GRU is employed to encode the sequence of the word vectors. The output
of the hidden state at the last time step is used as the output of the GRU, which
is a 1024-dim vector. At last, the text embedding u is normalized using its l2
norm.

Image-Embedding Network. VGG19 [11] has broad application in numerous
tasks of computer vision. It is adopted as the backbone of the image embed-
ding network. The model pretrained on the ImageNet [10] is used for parameter
initialization except for the final fully connected (FC) layer.

In the image-embedding network, the input image is resized to 224× 224× 3
and the output of the image embedding network is a 1,024-dim vector. Finally,
the image embedding v is normalized with its l2 norm.

2.2 Loss Functions

Triplet Loss. Triplet loss is a common ranking loss used in the works of text-
image matching [4,7,9]. It is defined as follows:

l(i, c) = max
c′

[α − s(i, c) + s(i, c
′
)]+ + max

i′
[α − s(i, c) + s(i

′
, c)]+ (1)

in which [x]+ = max(x, 0), α is a margin, c
′

denotes the hardest negative text
for the query image i and i

′
denotes the hardest negative image for the query

text c.
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Circle Loss. Circle loss is proposed recently for deep feature learning, aiming to
maximize the within-class similarity sp and minimize the between-class similarity
sn [12]. Different from the majority of loss functions such as the triplet loss which
seek to reduce (sn − sp), circle loss re-weights each similarity score to highlight
the less-optimized similarity scores by optimizing (αnsn − αpsp). Circle loss is
named due to its circular decision boundary αnsn−αpsp = m. By this way, circle
loss benefits the deep feature learning with flexible optimization and definite
convergence target. Circle loss is formulated by:

Lcircle = log[1 +
L∑

j=1

exp(γαj
n(sjn − Δn))

K∑

i=1

exp(γαi
p(s

i
p − Δp))], (2)

where γ is a scale factor, Δn and Δp are the between-class and within-class
margins, respectively. K and L are the number of within-class similarity scores
and between-class similarity scores, respectively.

Experiments have demonstrated that the superiority of the circle loss on
many deep feature learning tasks such as image retrieval, face recognition and
person re-identification.

3 The Proposed Multi-modal Steganography

In this section, we will illustrate the proposed multi-modal steganography based
on an improved text-image algorithm. The text-image matching model utilized
in this paper is an refined version of the baseline text-image matching model
[4] using adversarial learning [9] and circle loss [12]. The text-image matching
model is trained on the Twitter100k dataset [7], which is a public large-scale
text-image dataset. With the text-image matching model, the two modalities
can be projected into a common space, where the relevancy between them can
be measured directly by the distance of their embeddings. The text database and
image database required in our method are constructed by selecting a number
of texts and images from the Twitter100k dataset [7], which doesn’t need much
effort. The flow chart of our method for covert communication is represented in
Fig. 1.

To convey the secret message, the sender first converts the secret message
into a bit stream and divides it into n segments with the equal length k, where n
and k are set according to the amount of the secret message and k is shared by
the sender and receiver. Then each binary segment is transformed to a decimal
integer. Thus, the secret message is converted to n decimal integers. Afterwards,
a text is selected from the text database randomly. The relevancies between
the selected text and the images in the image database are computed with the
well-trained text-image matching model. Then all the images are sorted on the
basis of the relevancies. After that, n decimal integers serve as the sort indexes
to select n images from the image database. Each image can be selected at
most once. After an image is selected, the sort indexes of the images behind the
selected images are reduced by one. Finally, the selected text and n images are
transmitted to the receiver.
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Fig. 1. The flow chart of the proposed multi-modal steganography for covert commu-
nication at (a) sender and (b) receiver.

At the receiver end, the same text-image matching model and image database
are shared with the sender. After receiving the text, the relevancies between the
received text and the images in the image database are computed with the shared
text-image matching model. Afterwards, all the images are sorted according to
the relevancies. By matching the received images with the sorted images, the sort
indexes of the received images can be obtained, which are n decimal integers.
Then each decimal integer is converted into a binary sequence. After splicing the
binary sequences of the n decimal integer together into a bit stream, the secret
message can be recovered by converting the bit stream.

To conclude, the proposed multi-modal steganography has three main parts,
i.e., the text-image matching model, information hiding algorithm and informa-
tion extraction algorithm.

3.1 The Text-Image Matching Model

We utilize the VSE model [4] as the baseline text-image matching model in
our method. The VSE model [4] consists of a text embedding network and an
image embedding network, as introduced in Sect. 2.1. Text and image can be
transformed into the 1024-dim vectors u and v with the text embedding network
and the image embedding network, respectively.

In the previous work, the VSE model is optimized using triplet loss whose
formula is given in Sect. 2.2. However, as illustrated in [12], using triplet loss



46 Y. Hu et al.

lacks flexibility for optimization and leads to ambiguous convergence status. In
order to achieve a superior optimization for text-image matching, we replace the
triplet loss with a novel circle loss which is introduced in Sect. 2.2. The similarity
score in Eq. (2) is the inner product of the embeddings of text and image,

s(i, c) = v · u. (3)

Assume there are m pairs of texts and images in the training dataset. The
text embedding matrix is made up of m 1024-dim text vectors and the image
embedding matrix is formed of m 1024-dim image vectors. Then we can obtain
a similarity matrix S by computing the product of the text embedding matrix
and the image embedding matrix,

S =

⎡

⎢⎣
uT
1
...

uT
m

⎤

⎥⎦
[
v1 . . . uni

]
=

⎡

⎢⎣
s11 . . . s1m
...

. . .
...

sm1 . . . smm

⎤

⎥⎦ . (4)

In Eq. (4), the diagonal elements {s11, ..., smm} are within-class similarity
scores while the rest elements {sij}i�=j are between-class similarity scores. As
suggested in [12], the circle loss is computed by substituting all the similarity
scores in the similarity matrix into the Eq. (2). However, it is found by our
experiment that the performance is unsatisfactory in this way. To address this
problem, we refine the computation as follows. The circle loss is calculated with
the similarity scores of each row of the similarity matrix. Then the overall circle
loss is the sum of these circle losses, that is,

Lcircle,i = log[1 +
∑

j �=i

exp(γαj
n(sij − Δn))exp(γαi

p(sii − Δp))], (5)

Lcircle =
m∑

i=1

Lcircle,i. (6)

Besides circle loss, we also utilize adversarial learning to further improve the
text-image matching model. As illustrated in [9], the embedding distributions
of the two modalities have sensible discrepancy when VSE model [4] is used.
In order to pull close the embedding distributions of the two modalities in the
common space, a modality classification network is added to the baseline VSE
model for adversarial learning. The overall network structure of the text-image
matching model is illustrated in Fig. 2.

The modality classification network contains a three-layer fully-connected
network (FCN) to classify the embeddings of VSE into either image or text
modality. We use the same output sizes of the three FC layers as [9], i.e., 1,024,
256, and 2, respectively. The first two layers employee ReLU as the non-linear
activation and the last layer adopts the softmax function. The adversarial loss
is the modality classification loss which is a cross-entropy loss.
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Fig. 2. The overall network structure of the improved text-image matching model,
which consists of a text-embedding network, an image-embedding network and a modal-
ity classification network. Circle loss and adversarial loss are used to optimize the
networks.

For the purpose of optimizing the circle loss and the adversarial loss simul-
taneously, a gradient reversal layer (GRL) is added before the FCN. Therefore,
the total loss is defined as belows,

L = Lcircle − λLadversarial (7)

where λ is a factor controlling the weight of the adversarial loss, which is set to
0.1 in the experiment.

Since there are three networks to be optimized in our method, we use a two-
stage training procedure. In the first stage, only the parameters of the image-
embedding and the text-embedding networks are updated by minimizing the
circle loss as Eq. (6). In the second stage, the parameters of the modality clas-
sification network are updated when circle and adversarial loss are optimized
simultaneously as Eq. (7).

3.2 Information Hiding Algorithm

There are five steps in the information hiding procedure, which will be introduced
in detail as follows.

Step 1: Text selection. A text is selected randomly from the text database.
Step 2: Image sorting. The relevancies between the selected text and all the
images in the image database are measured with the text-image matching
model. All the images are sorted according to the relevancy in descending
order.
Step 3: Secret message preprocessing. The secret message is converted into a
bit stream and divided into n binary segments with the equal length k. n is the
number of the companied images to the selected text. k is the number of bits
which are represented by an image. n and k are set according to the amount
of the secret message, the size of the image database and the limitations of the
data transmission platform. Afterwards, each binary segment is transformed
to a decimal integer. In this way, the secret message is represented by n
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decimal integers, [i1, i2, ..., in]. The maximum and the minimum of the decimal
integers are 2k − 1 and 0, respectively.
Step 4: Image selection. The n decimal integers serve as the sort indexes of the
image to choose images from the sorted images. After an image is selected,
the sort indexes of the images behind the selected images are reduced by one.
Therefore, no repeated images will appear in the selected images.
Step 5: The selected text and n images are transmitted to the receiver by pub-
lic transmission channels such as Twitter and Weibo or private transmission
channels such as email.

3.3 Information Extraction Algorithm

The receiver shares the same text-image matching model, the image database
and k with the sender. After receiving a text and n images, three steps are
performed to extract the secret message.

Step 1: Image sorting. The relevancies between the received text and all the
images in the image database are calculated with the text-image matching
model. Then all the images are sorted on the basis of the relevancy in descend-
ing order.
Step 2: Image matching. The received images are compared to the sorted
images one by one. When a received image matches the sorted images, the
sort index is recorded and this image is taken from the sorted images. The
sort index starts from zero. In this way, n decimal integers can be obtained.
Step 3: Secret message recovery. After converting each decimal number to
a binary sequence, all the binary sequences are spliced together into a bit
stream. Finally, the secret message is recovered by converting the bit stream.

4 Experiments and Analysis

The performance of the proposed multi-modal method can be evaluated from
three aspects, i.e., text-image relevancy, hiding capacity and resistance to the
steganalysis methods.

4.1 Text-Image Relevancy

Since side channel steganalysis can detect steganography based on the correlation
of the images [8], the relevancies among the text and the companied images will
influence the security of the proposed methods. The higher the relevancy is, the
more secure the steganography method is.

In order to evaluate the relevancy between the texts and images, we use the
test dataset in [6]. The test dataset contains 100 texts and 1,000 images selected
from the Twitter100k dataset [7]. All the texts and images are labeled by hand
with several tags such as people, clothes and flower.

In [6], the relevancy between the two modalities is measured by matching
the tags. If a text and an image have a common tag, the image is regarded as
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Secret Message: China
It's always good to see your friends from sLOVEenija in Miami !!! #welcomeToMiami

Secret Message : Japan
Gorgeous scenery. Beautiful weather. FREEDOM!

Fig. 3. Examples of the proposed multi-modal steganography. Each text is companied
with 8 images and each image represents 5 bits.

relevant to the text. Given a text, matching rate@K is defined as the proportion
of the relevant images in the top K similar images computed by the text-image
matching model. Average matching rate@K is the mean of the matching rate@K
of all the texts in text database. When each image represents k bits, the candidate
pool contains K = 2k images. Table 1 presents the average matching rates at
different values of k when using baseline VSE model and our text-image matching
model improved with adversarial learning and circle loss.

Table 1. The average matching rates at different values of k when using baseline VSE
model and our text-image matching model improved with adversarial learning and
circle loss.

k 1 2 3 4 5 6

K 2 4 8 16 32 64

Baseline model 0.86 0.84 0.83 0.81 0.79 0.78

Ours Baseline model + adversarial learning 0.88 0.87 0.86 0.84 0.82 0.80

Baseline model + circle loss 0.91 0.90 0.87 0.86 0.84 0.81

Baseline model + adversarial learning + circle loss 0.92 0.91 0.88 0.87 0.85 0.82

As shown in Table 1, both adversarial learning and circle loss are beneficial
to the matching rate. The improvement of the average matching rate is nearly
2% when adversarial loss is employed and the benefit of circle loss is about 4%.
When adversarial learning and circle loss are utilized simultaneously, the average
matching rate increases by 5% approximately. The experiment results verify that
adversarial learning and circle loss are useful for text-image matching.

Some examples of the proposed method are given in Fig. 3. Each secret mes-
sage is an English word of five characters, which can be converted into 40-bit
stream. The values of n and k are set to 8 and 5, respectively. Therefore, each
text is attached with 8 images and each image represents 5-bits binary sequence.
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4.2 Hiding Capacity

The hiding capacity of the proposed method is the same as the multi-modal
steganography method proposed in [6]. The hiding capacity is proportional to
the number of attached images with a text and the bits represented by each
image. When the text is companied with n images and each image represents
k-bits binary sequence, the hiding capacity of the proposed method is k×n bits.

According to the experimental results in [6], the matching rate decreases
when the image database is shortened, as shown in Table 2. Therefore, n and
k are limited by the size of the image database. However, the image database
can be enlarged with the public Twitter100k dataset [7] without much effort.
Besides, n is also limited by the restriction of the transmission network, which
is very loose in many transmission channels.

Table 2. The average matching rates at different values of k when the size of the image
database is 500 and 1,000, respectively.

k 1 2 3 4 5 6

K 2 4 8 16 32 64

Size = 500 0.83 0.81 0.80 0.79 0.77 0.74

Size = 1,000 0.86 0.84 0.83 0.81 0.79 0.78

4.3 Resistance to the Steganalysis Methods

The resistance to the steganalysis methods is crucial for a steganography method.
However, a variety of the mainstream steganography methods can be detected
by the existing steganalysis methods based on the distortions between the cov-
ers after embedding and the original covers [13,14,16,17]. Different from these
steganography methods, the proposed multi-modal steganography hides secret
message in the relevancy between the text and the image without modifying or
generating the cover. All the covers keep natural and original. Therefore, existing
steganalysis methods based on the distortions of the covers after embedding are
unable to detect our method. Meanwhile, since the selected text and images are
highly relevant, the proposed steganography method can also escape from the
side channel steganalysis based on the correlation of the images [8].

5 Conclusion

This paper proposes a multi-modal steganography method based on a refined
text-image matching algorithm. The text-image matching model is improved by
using adversarial learning and circle loss. Experimental results shows that the
performance of our model for text-image matching is superior to the baseline
model. Due to the high relevancy between the selected text and images, the
proposed steganography method can escape from the side channel steganalysis
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based on the correlation of the images. Besides, since the covers transmitted in
the proposed steganography method are not modified or synthesized, existing
steganalysis methods based on the distortions between the covers after embed-
ding and the original covers are unlikely to detect our method.

References

1. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

2. Du, Y., Yin, Z., Zhang, X.: Improved lossless data hiding for JPEG images based
on histogram modification. Comput. Mater. Continua 55(3), 495–507 (2018)

3. Duan, X., Song, H., Qin, C., Khan, M.K.: Coverless steganography for digital
images based on a generative model. Comput. Mater. Continua 55(3), 483–493
(2018)

4. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic
embeddings with hard negatives. arXiv preprint arXiv:1707.05612 (2017)

5. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE
Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

6. Hu, Y., Li, H., Song, J., Huang, Y.: MM-stega: multi-modal steganography based
on text-image matching. In: Sun, X., Wang, J., Bertino, E. (eds.) ICAIS 2020.
CCIS, vol. 1254, pp. 313–325. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-8101-4 29

7. Hu, Y., Zheng, L., Yang, Y., Huang, Y.: Twitter100k: a real-world dataset for
weakly supervised cross-media retrieval. IEEE Trans. Multimed. 20(4), 927–938
(2018)

8. Li, L., Zhang, W., Chen, K., Zha, H., Yu, N.: Side channel steganalysis: when
behavior is considered in steganographer detection. Multimed. Tools Appl. 78(7),
8041–8055 (2019)

9. Liu, R., Zhao, Y., Wei, S., Zheng, L., Yang, Y.: Modality-invariant image-text
embedding for image-sentence matching. ACM Trans. Multimed. Comput. Com-
mun. Appl. 15(1), 27 (2019)

10. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

12. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6398–6407
(2020)

13. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Mul-
timed. Tools Appl. 77(9), 10437–10453 (2017). https://doi.org/10.1007/s11042-
017-4440-4

14. Xu, G., Wu, H., Shi, Y.: Structural design of convolutional neural networks for
steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

15. Yang, Z., Guo, X., Chen, Z., Huang, Y., Zhang, Y.: RNN-stega: linguistic steganog-
raphy based on recurrent neural networks. IEEE Trans. Inf. Forensics Secur. 14(5),
1280–1295 (2018)

16. Yang, Z., Huang, Y., Zhang, Y.: A fast and efficient text steganalysis method.
IEEE Signal Process. Lett. 26(4), 627–631 (2019)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1707.05612
https://doi.org/10.1007/978-981-15-8101-4_29
https://doi.org/10.1007/978-981-15-8101-4_29
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/s11042-017-4440-4
https://doi.org/10.1007/s11042-017-4440-4


52 Y. Hu et al.

17. Yang, Z., Wang, K., Li, J., Huang, Y., Zhang, Y.: TS-RNN: text steganalysis
based on recurrent neural networks. IEEE Signal Process. Lett. 26(12), 1743–1747
(2019). https://doi.org/10.1109/LSP.2019.2920452

18. Yang, Z., Zhang, S., Hu, Y., Hu, Z., Huang, Y.: VAE-stega: linguistic steganography
based on variational auto-encoder. IEEE Trans. Inf. Forensics Secur. 16, 880–895
(2020)

19. Zhang, Y., Ye, D., Gan, J., Li, Z., Cheng, Q.: An image steganography algorithm
based on quantization index modulation resisting scaling attacks and statistical
detection. Comput. Mater. Continua 56(1), 151–167 (2018)

20. Zheng, S., Wang, L., Ling, B., Hu, D.: Coverless information hiding based on robust
image hashing. In: Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M. (eds.) ICIC
2017. LNCS (LNAI), vol. 10363, pp. 536–547. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63315-2 47

21. Zhou, Z., Mu, Y., Wu, Q.M.J.: Coverless image steganography using partial-
duplicate image retrieval. Soft. Comput. 23(13), 4927–4938 (2018). https://doi.
org/10.1007/s00500-018-3151-8

22. Zhou, Z., Sun, H., Harit, R., Chen, X., Sun, X.: Coverless image steganography
without embedding. In: Huang, Z., Sun, X., Luo, J., Wang, J. (eds.) ICCCS 2015.
LNCS, vol. 9483, pp. 123–132. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27051-7 11

23. Zhou, Z., Wu, Q.J., Yang, C.N., Sun, X., Pan, Z.: Coverless image steganogra-
phy using histograms of oriented gradients-based hashing algorithm. J. Internet
Technol. 18(5), 1177–1184 (2017)

https://doi.org/10.1109/LSP.2019.2920452
https://doi.org/10.1007/978-3-319-63315-2_47
https://doi.org/10.1007/978-3-319-63315-2_47
https://doi.org/10.1007/s00500-018-3151-8
https://doi.org/10.1007/s00500-018-3151-8
https://doi.org/10.1007/978-3-319-27051-7_11
https://doi.org/10.1007/978-3-319-27051-7_11


Constructing Immune Cover for Secure
Steganography Based on an Artificial Immune

System Approach

Hongxia Wang1, Zhilong Chen2, and Peisong He1(&)

1 School of Cyber Science and Engineering, Sichuan University,
Chengdu 610065, People’s Republic of China

gokeyhps@scu.edu.cn
2 School of Information Science and Technology, Southwest Jiaotong

University, Chengdu 611756, People’s Republic of China

Abstract. Artificial Immune Systems (AIS) are a class of computationally
intelligent systems inspired by the principles and processes of the Biological
Immune System (BIS), and has been applied to many fields successfully by
exploit its characteristics of self-learning and self-organizing. In this paper, we
open a new field for applications of AIS, namely, immune cover construction for
steganography application. We proposed an AIS-based steganography frame-
work to improve the security of steganography by constructing immune cover
image in spatial domain. Texture complexity is a major factor in resisting ste-
ganalysis in images, so the proposed framework is designed by immune pro-
cessing to adaptively accentuate the texture region as well as maintain the
original characteristics of images, and then obtain more suitable and secure
immune cover image for steganography. This approach allows to construct more
setganalysis-secure data embedding using standard steganography algorithms.
Compared with state-of-the-art methods, the proposed method has an improved
ability to resist steganalysis.

Keywords: Image steganography � Artificial Immune System � Clonal
selection algorithm � Setganalysis

1 Introduction

Steganography is the practice of concealing a secret message (“payload”) within
another non-secret media (“cover”) in the most inconspicuous manner possible. In
order to achieve good concealment performance, researchers hope to make least
modification cost while ensuring the maximum embedding capacity [1]. Consequently,
they often design a series of strategies to meet this requirement. For example, the
prevailing steganographic schemes in spatial domain, such as HUGO [2], S-
UNIWARD [3], HILL [4], MDS-UNIWARD [5], are all focused on the design of
effective distortion function. In addition, the JPEG steganographic schemes by defining
cost functions is also proposed [6]. The minimal embedding distortion steganography
schemes embed data in less detectable regions and achieving higher security. However,
the usage of heuristically defined distortions is inevitably limited when it is used in
different scenarios, different embedding domains and different covers.
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In recent years, with the development of artificial intelligence, the deep learning-
based steganography has paid more attentions. However, most of the existing schemes
are limited to steganography modes based on GAN(Generative Adversarial Networks)
[7, 8] and CNN (Convolutional Neural Networks) [9, 10], and the security needs to be
further improved. Therefore, researchers look forward to combining more deep
learning models or other intelligent systems to expand the intelligent model of
steganography. Artificial Immune System (AIS) as an important branch in the field of
artificial intelligence, has flourished in recent years [11]. Artificial immune system
inspired by the concepts of the human immune system to solve computational prob-
lems. Many studies have shown that AIS is an efficient technique for optimization
problems. There are different AIS algorithms, such as clonal selection algorithm,
negative selection algorithm, immune network algorithm, and immune genetic algo-
rithm, etc. These algorithms have been studied mainly from the perspective of learning
and memory mechanisms of the immune system [12]. Perez et al. [13] proposed a
universal steganography detector based on an artificial immune system for JPEG
images, which can detect JPEG images modified with three well-known steganographic
tools: F5, Outguess or Steghide. El-Emama et al. [14] presented a novel image
steganography using a new intelligent technique, i.e., estimating the number of bits to
be hidden at each pixel with an adaptive genetic algorithm. In this paper, we are
devoted to designing a new steganography framework based on an artificial immune
system approach. Before data embedding, we first carry on the immune processing to
the original cover image, and obtain the immune cover image, and then embed the
message into the immune cover image, which makes the embedding traces are less
detectable. Therefore, the security performance are improved.

The rest of this paper is organized as follows. In Sect. 2, we describe the proposed
steganography framework based on AIS. The immune cover construction method
based on AIS is presented in Sect. 3, which is followed by the experimental results and
performance comparison in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Proposed Steganography Framework Based on Artificial
Immune System

Artificial immune system is an intelligent system that can learn from the mechanism
and characteristics of Biological Immune System (BIS) to prevent the external intru-
sion. This is very similar to the security requirement of steganography to resist the
statistical detection. Inspired by this principle, we can consider to utilize the intelligent
information processing ability of AIS to design a secure steganography framework.
This section summarizes the AIS-based steganography framework via immune cover as
shown in Fig. 1. First, the original cover image is optimized by an AIS approach to
obtain a new cover. This new cover via immune processing is called immune cover
image for information embedding. Moreover, the security of embedded information in
this immune cover is higher than that of the original cover image, then we use the
existing standard steganography algorithm to embed the secret message into the
immune cover image to obtain the stego-image.
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In order to make AIS-based steganography framework can well simulate the
mechanism of immune system, we need construct the mapping relationship of basic
components between biological immune system, artificial immune system and AIS-
based steganography framework. The immune system detects the foreign substances
which enters into or contacts with the body. Biological immune system can effectively
protect the body against pathogens and harmful microorganisms, while the artificial
immune system is a kind of computational intelligence which adopts the immune
behavior as biological immune system. The artificial immune algorithms typically
exploit the immune system’s characteristics of self-learning, self-organization, self-
adaptive and immune memory to solve effectively complex problems. Inspired by the
principle of biological immunity, we can regard the statistical changes caused by data
embedding as the pathogens invading the body. Based on the principle of artificial
immune, the design of secure steganography method can be seen as how to eliminate
these “pathogens” as possible, namely, eliminating these statistical changes. Therefore,
we can establish an AIS-based steganography model to make the statistical changes as
small as possible. The mapping relationship between the basic components of bio-
logical immune, artificial immune and AIS-based steganography model is listed in
Table 1.

In Table 1, the antigens in the biological immune system represent all kinds of
external pathogens that enter the body and start a process that can cause disease. The
body then usually produces antibodies to fight the antigens. For the steganography,
data embedding will change the statistical characteristics of the cover image, which is
similar to the impact of antigens on the body. Therefore, we can correspond the antigen
to the statistical changes caused by steganography. The different steganography algo-
rithms have different statistical changes to the cover image, so the antibodies should be

Original Cover Image Immune Cover Image
AIS Steganography

Stego-image

Fig. 1. Steganography framework based on artificial immune system.

Table 1. Mapping relationship of basic components.

BIS AIS AIS-based steganography framework

Antigen Objective and constraints Statistical changes caused by
steganography

Antibody Candidate solutions of
problem

Solutions to eliminate statistical changes

Fitness Ability of pattern matching Ability of eliminating statistical changes
Immune
response

Solution of problem Elimination of statistical changes
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mapped to solutions to eliminate these statistical changes from a security point of view
since the most secure steganographic schemes require minimal distortion embedding.
The fitness is initially determined by the stimulation response of a particular antibody
molecule to the currently presented antigenic pattern in BIS, while the fitness concept is
essential in order to evaluate the pattern matching ability in AIS. Consequently, the
fitness is used to measure the extent of eliminating statistical changes in the AIS-based
steganography framework, and the most secure steganographic scheme can be obtained
according to the fitness value.

3 Immune Cover Construction Based on Artificial Immune
System

Recent years, many content-adaptive steganographic schemes with minimal distortion
embedding tend to embed the secret message into highly textured regions of images,
where the embedding traces are less detectable [15]. However, not every image has rich
texture for steganography. Moreover, the modified pixels caused by steganography are
concentrated in the texture rich regions, so the embedding changes are also concen-
trated in the texture regions. For this reason, we consider to accentuate the texture of
the cover image for immune processing in this paper. We define the cover image after
immune processing to be immune cover image. In order to obtain a more suitable and
secure cover image for steganography, we use the clonal selection algorithm to opti-
mize the parameters of immune processing. When the parameters are optimal, the most
suitable and secure immune cover image for steganography can be obtained. We then
embed the secret message into this optimal immune cover image using an existing
standard steganographic scheme. Thus the embedded message is more difficult to be
detected by steganalysis techniques.

3.1 Immune Processing of Original Cover Image

The second-order derivative can be used to detect edges in an image. Since an
image is actually a two-dimensional signal, we would need to take the derivative in
both dimensions. Here, the Laplacian operator comes handy. The Laplacian operator of
f is defined by [16]

r2f ¼ @2f
@x2

þ @2f
@y2

ð1Þ

where r2 denotes the Laplacian operator. In fact, since the Laplacian uses the gradient
of images, it uses neighborhood pixels to improve local contrast and accentuate the
texture of images. For a digital image, we use the following filter template shown in
Fig. 2 to accentuate the texture of images.
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The 8-bit grayscale image and its texture accentuated version (with dimensions of
n1 � n2) are denoted by X ¼ ðxijÞn1�n2 and Y ¼ ðyijÞn1�n2 , xij; yij 2 0; 1; . . .; 255f g. The
accentuated pixel yij of pixel xij can be calculated by

yij ¼ xij þ az0ij; a[ 0 ð2Þ

and

z0ij ¼
zij;
T;

zij\T
other

�
ð3Þ

where a denotes the intensity factor that controls the extent of image texture, T [ 0 is a
threshold. The purpose of setting T is to avoid greatly reducing image quality due to
over accentuation to some pixels. In addition, zij can be computed as

zij ¼ 8xij � xiþ 1;j � xi�1;j � xi;jþ 1 � xi;j�1 � xi�1;j�1 � xi�1;jþ 1 � xiþ 1;j�1 � xiþ 1;jþ 1

ð4Þ

The larger the value of intensity factor a, the greater the extent of texture accen-
tuation. We will use the clonal selection algorithm to optimize a to get the optimal
accentuated image as immune cover image. The optimization process of inten-
sity factor a using clonal selection algorithm is immune processing to the original
cover images. After immune processing, we get the immune cover image for message
embedding. Different values of a will obtain different immune cover image, and the
purpose of immune processing is to get immune cover images more suitable and secure
for steganography, and for this reason, we use intensity factor a as an antibody in the
clonal selection algorithm.

In order to verify whether the intensity factor a is reasonable as an antibody and
whether it can improve the security of steganography algorithm, we set T = 8 and
execute four times experiments under a = 0, 0.3, 0.6, 0.9, respectively. All experiments
are conducted on 2000 grayscale images of size 512 � 512 that are downloaded from
BOSSbase ver. 1.01 [17]. We use HUGO algorithm [2] with a payload 0.4 bpp (bit per
pixel) to embed the secret messages, and the performances are evaluated with ste-
ganalyzers using the 34671-D SRM (Spatial Rich Models) feature set [18] with
ensemble classifiers [19]. We randomly selected 1000 images for training and used the
remaining 1000 images for testing. The security performance is expressed as the
average detection error rate PE defined as [2]. We compare the security performance

-1 -1 -1
-1 8 -1
-1 -1 -1

Fig. 2. Filter template for enhancing the texture of images.
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under different intensity factor a when resisting SRM steganalysis in Fig. 3, from
which we can see that generally the larger a is and the greater the detection error rate PE

is. That is, with the increate of a, the security performance is improved. Note that
a ¼ 0; the steganography will be HUGO algorithm. So the immune processing can
improve the security performance of steganography algorithm. However, the larger a
will result in the lower quality of immune cover image. If we embed the message into
the immune cover image with lower quality, the quality of stego-image will be also
low. Therefore, we need to optimize the intensity factor a as an antibody using
adaptive immune clonal selection algorithm, namely, the optimization process can get
more suitable and secure immune cover image for steganography.

3.2 Optimization Process of Immune Cover Image

As mentioned previously, the intensity factor a will act as the antibody. In fact, the
optimization of immune cover image is also the optimization of antibody a value. In this
paper, we apply clonal selection algorithm to optimize antibody a value. Firstly, the
expression forms of antibody need be determined. In artificial immune system, there are
many kinds of expression forms such as binary code and real number code. Here, binary
form is selected to encode antibody a value, and the length of coding is calculated by

L ¼ log2 1þ vmax � vmin

l

� �
ð5Þ

where l is the encoding precision, and vmin, vmax represent the minimum and maximum
values of the antibody a, respectively. The corresponding real value of antibody a can
be obtained by decoding as follows:

v ¼ vmin þ l
XL

i¼1
bi2

i�1; bi 2 1; 0f g; i ¼ 1; 2; . . .;L ð6Þ
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Fig. 3. Detection error rates PE under different intensity factor a.
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where bi denotes the i-th component of antibody coding with binary form. In the
process of optimizing antibody and improving antibody fitness, the parent antibody is
cloned and mutated to produce offspring antibody. The expression of mutation operator
yi is given by

yi ¼ xi � 2xici þ ci; 1� i� L ð7Þ

and

ci ¼ 1 ri �Pmu

0 other

�
ð8Þ

where ri is a random number and ri 2 0; 1½ �, and Pmu is the mutation rate. The mutation
is implemented by randomly changing one of the bits in a given string and inversion is
implemented by inverting a randomly chosen segment of the string. Here, if ci ¼ 0, the
antibody coding bit will remain unchanged, else, ci ¼ 1, the antibody coding bit will be
reversed. That is, 0 is changed to 1, and 1 is changed to 0, thus the antibody mutation is
implemented.

Let n be the number of clones, and the clonal operator may be formulated as

n ¼ 10� g� gmin

gmax � gmin
ð9Þ

in which g denotes the fitness of an antibody, and gmax, gmin correspond to the max-
imum and minimum fitness values in the current antibody population respectively.
A number of high affinity antibodies are selected and reproduced (clonal) according to
their fitness. That is, the higher the fitness of antibody, the higher the clonal rate. Those
antibodies whose fitness is less than a pre-specified threshold are eliminated (clonal
suppression) with an elimination rate.

The number of clones produced for each antibody is proportional to the measure of
its fitness with a given antigenic pattern. The clones generated undergo mutation
inversely proportional to their antigenic affinity. That is, the higher the fitness, the
lower the mutation rate. Since the AIS-based steganography is expected to obtain a
more suitable cover image for data embedding, the fitness of antibody should be related
to the detectability of the stego-image. The detection performance is mainly determined
by the embedding changes of the image. The smaller the embedding changes, the
greater the detection error rate. Namely, the security performance is higher. In this
paper, we compute the Euclidean distance between the statistical features of the stego-
image and the immune cover image as the fitness of antibodies. So the fitness can be
calculated as

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðFc
i � Fs

i Þ2
s ð10Þ
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where N is the dimension of statistical features such as SRM, and Fc
i , F

s
i are the i-th

dimensional feature component of immune cover image and stego-image, respectively.
Based on this fitness, we apply the clonal selection algorithm to optimize the

intensity factor a as the antibody to obtain the best one. That is, the most suitable and
secure immune cover image can be obtained for stenography. The block diagram of
optimization process of intensity factor a based on clonal selection algorithm is shown
in Fig. 4. The following describes the steps of optimization process.

1) Initialization: the intensity factor a of the texture accentuation acts as the antibody,
and the population size is the number of antibodies that works in each generation.
According to the population size of antibodies, the initial population of antibodies
with binary form is generated randomly based on Eq. (5).

2) Calculation of fitness: according to the intensity factor a, the texture accentuated
image as an immune cover image is obtained. Then, we calculate fitness value after
embedding secret message in an immune cover image based on Eq. (10).

3) Selection of the best a based on fitness and clonal rate: the clonal rate is between 0
and 1 that is used to get the number of clones an antibody. According to the
antibody fitness, the optimal antibodies are selected according to the clone rate and
cloned to form a clone pool.

4) Antibody mutation based on fitness and mutation rate: the cloned antibody will be
mutated. Mutation rate is between 0 and 1 that is the probability of a given feature
will be mutated, and the mutated antibodies and their number can be obtained
according to mutation rate and Eq. (7). This mutated antibodies are different from
their parents.

5) Replace parent antibody: calculate the fitness after antibody mutation in the clone
pool. If the fitness of the mutated antibody is higher than that of the parent anti-
body, the parent antibody will be replaced.

6) Replace the antibody whose fitness is the worst: the antibodies with the lowest
fitness are eliminated according to the elimination rate. At the same time, new
antibodies are generated randomly to replace the eliminated individuals to maintain
the diversity of antibody set and avoid falling into local optimization.

7) After completing one time iteration, a new population is generated. Let the pre-
specified iteration time be the stop condition. If the iteration time meets the stop
condition, the best antibody is output. Namely, the best intensity factor a of the
texture accentuation can be obtained.

Consequently, we use this best intensity factor a to get the most suitable and secure
immune cover image for data embedding. Finally, we use the existing standard
steganography algorithms to embed message into the obtained immune cover image,
and get the stego-image.
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Calculate fitness
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antibody

Yes
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Replace the antibody whose
fitness is the worst

Stop condition?
No
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Initialize antibodies
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¦Á
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Fig. 4. Optimization process of a based on clonal selection algorithm.
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4 Experimental Results and Analysis

4.1 Experiment Setups

All experiments are carried out on the image database BOSSbase ver. 1.01 [17], which
contains 10,000 gray-scale images of size 512 � 512. Before data embedding, we need
to perform immune processing on the original cover image to get the immune cover
image. For purpose of immune processing of the original cover image, we use clonal
selection algorithm to optimize the original cover image. The intensity factor a that
controls the extent of image texture will act as the antibody during optimizing the
original cover image. The parameters of clonal selection algorithm are set in Table 2.

After immune processing on the original cover image, we get the immune cover
image for embedding the secret message. In our experiments, HUGO as a basic
steganography method is employed for data embedding. In HUGO algorithm, the
parameters r; c can be tuned in order to minimize the detectability. In our experiments,
we set r; c to be the optimal values, namely, r ¼ 10, c ¼ 4. We use the simulated
optimal embedding as the default for HUGO algorithm and the performances are eval-
uated with steganalyzers using the 34671-D SRM feature set [18] and maxSRM feature
set [20], where the Fisher Linear Discriminants (FLD) ensemble classifier [19] with
default settings is used to train the binary classifiers. We randomly selected 5000 images
for training and used the remaining 5000 images for testing. The classification error
probabilityPE of FLD ensemble classifier is reported by themean value of the ensemble’s
testing errors based on ten times of randomly testing and different embedding payloads.

4.2 Imperceptibility

Five gray images of size 512 � 512, Lena, Baboon, House, Lake and Pepper shown in
Fig. 5, which contain landscape, animal, building and people are used as the original
cover images in the experiment. According to our method, we get the immune cover
images shown in Fig. 6. Then we embed the secret message into the obtained immune
cover images when the payload rate is 0.4 bpp, and get the stego-images shown in
Fig. 7. From Fig. 5, 6 and 7, we see that there are no obvious visual abnormality
between original cover images, immune cover images and stego-images.

Table 2. Parameters of clone selection algorithm.

Parameters Value

Initial population size of antibodies 30
Iteration times 20
Clonal rate 0.3
Mutation rate 0.2
Elimination rate 0.2
Intensity factor a as the antibody [0, 0.7]
Coding precision 0.01
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Table 3 and Table 4 list the PSNR (Peak Signal to Noise Ratio) values between
stego-images and original cover images, and between stego-images and immune cover
images, at different embedding payloads from 0.1 to 0.5 bpp. It can be seen that all of
PSNR values are larger than 38 dB in Table 3, and larger than 51 dB in Table 4.
Therefore, our scheme has a good imperceptibility.

Fig. 5. Original cover images. (a) Lena, (b) Baboon, (c) House, (d) Lake, (e) Peppers.

Fig. 6. Immune cover images. (a) Lena, (b) Baboon, (c) House, (d) Lake, (e) Peppers.

Fig. 7. Stego-images. (a) Lena, (b) Baboon, (c) House, (d) Lake, (e) Peppers.

Table 3. PSNR (dB) between stego-images and original cover images under different embedding
payload (bpp).

Image Payload
0.1 0.2 0.3 0.4 0.5

Lena 40.441 40.377 40.315 40.244 40.179
Baboon 39.173 39.129 39.082 39.034 38.982
House 46.568 46.370 46.175 45.957 45.741
Lake 39.645 39.603 39.554 39.511 39.459
Peppers 38.864 38.820 38.770 38.717 38.663
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4.3 Non-detectability

We adopt two popular feature sets to detect the existence of secret message in our
stego-image, including 34671-D SRM feature set and maxSRM feature set. The FLD
ensemble classifier is used for training and classification [19]. For the image database
containing 10,000 gray-scale images, half of the images and half of the stego-images
are used for training, while the rest are used for testing, where the stego-images are
generated using the HUGO at a specific payload from 0.1 to 0.5 bpp. Such process is
repeated ten times to obtain an average detection error rate PE. We compare the
performance of the non-detectability of our stego-images with other steganography
schemes under SRM feature set and maxSRM feature set, respectively (basic
steganography HUGO). And the results are illustrated in Fig. 8. Let’s denote our
proposed framework with the use of the basic steganography algorithm HUGO as the
Immune-HUGO. It can be seen from Fig. 8 that the PE values of our scheme is larger
than that of HUGO, S-UNIWARD and MDS-UNIWARD schemes under the five
payload rates, which indicates that the non-detectability of our scheme against SRM
and maxSRM statistical analysis is superior to that of HUGO, S-UNIWARD and MDS-
UNIWARD. It is verified that immune processing can improve the security of
steganography algorithm to resist statistical detection. Even HUGO algorithm with
lower security can also be improved by combining with artificial immune algorithm.

Table 4. PSNR (dB) between stego-images and immune cover images under different embedding
payload (bpp).

Image Payload
0.1 0.2 0.3 0.4 0.5

Lena 59.961 56.630 54.732 53.243 52.117
Baboon 60.742 57.168 55.014 53.510 52.255
House 60.757 57.417 55.519 54.087 52.909
Lake 60.642 57.235 55.144 53.644 52.507
Peppers 59.900 56.538 54.550 53.031 51.847
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Fig. 8. Comparison results of non-detectability under basic steganography HUGO. (a) SRM
feature, (b) maxSRM feature.
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However, we can also see from Fig. 8 that the security of our scheme is still lower
than that of HILL scheme. The reason is that our scheme is based on HUGO, and the
security of HUGO algorithm is far lower than that of HILL, so the security of our
scheme is higher than that of HUGO, but lower than HILL. What happens if we replace
the basic steganography algorithm HUGO with another, more secure steganography
algorithm? Let’s do an extending experiments by replacing the basic steganography
algorithm HUGO with S-UNIWARD, and further study the non-detectability of our
scheme. After replacing HUGO with S-UNIWARD, we compare the non-detectability
of our stego-images with other steganography schemes in Fig. 9. Let’s denote our
proposed framework with the use of basic steganography algorithm S-UNIWARD as
the Immune-UNIWARD. It can be seen that our scheme clearly outperforms HUGO, S-
UNIWARD, MDS-UNIWARD and HILL at different embedding payloads from 0.1 to
0.5 bpp. Extending experiments show that the proposed methods (Immune-UNIWARD)
can achieve higher level of security than the original methods.

5 Conclusions

In this paper, we propose a new AIS-based steganography framework by constructing
the immune cover image. Different from the previous schemes, the immune cover
image is firstly constructed by the optimization of clonal selection algorithm, and then
the secret message is embedded into the immune cover image by the existing
steganography such as HUGO and S-UNIWARD, thereby effectively defending the
steganalysis attack. Compared with state-of-the-art methods, our method has an
improved security to resist the SRM and maxSRM detection. The proposed method
provides a new solution for designing the intelligent steganography scheme based on
artificial immune system. Also, the strategy of constructing the immune cover image
could be extended with more advanced steganographic algorithms, such as HILL. In
the future, the AIS-based steganography framework could be extended to the JPEG
domain.
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Fig. 9. Comparison results of non-detectability under basic steganography S-UNIWARD.
(a) SRM feature, (b) maxSRM feature.
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Abstract. Nowadays, Convolutional Neural Network (CNN) based ste-
ganalytic schemes further improves the detection ability of the stegana-
lyzer comparing with feature based schemes. Besides steganalysis, CNN
model can also be used in steganography. Inheriting the mechanism from
adversarial attack to CNN model, adversarial embedding is a kind of
steganographic scheme that exploits the knowledge of CNN-based ste-
ganalyzer. Adversarial embedding can effectively improve security per-
formance of typical adaptive steganographic schemes. In this paper, we
propose a novel adversarial embedding scheme for steganography named
as Segmented Adversarial Embedding (SAE). The core of SAE is sepa-
rating the embedding process into several partial embedding processes
and performing adversarial embedding in each segment. In each partial
embedding process, there is an individual CNN model corresponding to
the current embedding stage. In the embedding process, a novel scheme is
applied in the cost adjustment. Comparing with the adjustment scheme
that utilizes the gradient sign, the new scheme also takes the gradient
magnitude into account, which further makes use of the gradient infor-
mation. Besides the typical implementation of SAE, we also develop a
simplified variant with lower complexity. The evaluations on different
kinds of steganalyzer prove that SAE is effective to improve the perfor-
mance of existing steganographic scheme.

Keywords: Steganography · Adversarial example · Deep learning

1 Introduction

Recently, adversarial example technique is utilized in steganography to enhance
the security performance. Typical distortion-minimizing steganographic schemes
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[7,8] define the steganographic model heuristically, while the adversarial schemes
exploit the knowledge of adversary, which inherit the concept of ASO (Adap-
tive Steganography by Oracle) [14]. The adversarial schemes are gradient-based,
which are derived from FGSM [9]. Except cover enhancing scheme proposed in
[21], most of adversarial schemes utilize gradient of the adversary to modulate
the embedding cost. Essentially, gradient-based scheme increases the classifica-
tion loss of the generated stego sample via gradient ascent, so as to confuse
the adversary. With the knowledge of adversary model, the adversarial stegano-
graphic schemes can improve the performance of existing distortion-minimizing
steganographic schemes.

Adversarial steganographic schemes can be categorized into two types, which
are feedback and non-feedback. In feedback scheme, amount of adversarial noise
is adjusted according to a specified criterion, in order to ensure the generated
adversarial stego sample is misclassified to cover by the target adversary. For
example, ADV-EMB [19] is a feedback scheme. In the embedding procedure
of ADV-EMB, cover is randomly divided into two non-overlapping parts and
embedding is performed in two divided steps. In the first step, the subsequence
of the message is embedded in the first part of cover with non-adjusted cost.
After the first embedding step, the gradient map to the partial embedded cover
is calculated to adjust the embedding cost. In the second step, the rest of the
message sequence is embedded into the second part of cover with the adjusted
cost. In the feedback step, generated candidate adversarial sample is tested by
the adversary. Multiple candidates with different amount of adjusted cost are
generated. The sample with the smallest amount and misclassified by the adver-
sary is the chosen one. The feedback scheme can be formalized to an optimal
problem to generate the adversarial sample that can precisely fool the adver-
sary. [1,2] explore the game theory in adversarial embedding, i.e., the min-max
game. In non-feedback scheme, the amount of adversarial noise is fixed, usually,
the cost of every cover element is adjusted by the gradient signal. For example,
AEN (Adversarial ENhancing) [16] directly exploits the gradient map to adjust
the embedding cost. The scheme proposed in [17] applies multiple iteratively
trained adversary to update the embedding cost multiple times. Non-feedback
scheme has no criterion to get an optimized adversarial stego sample, while
directly makes use of the gradient information to adjust cost.

In this paper we propose a non-feedback steganographic adversarial scheme
named Segmented Adversarial Embedding (SAE). In SAE, cover is divided into
several segments and the embedding is performed on these parts progressively.
There are multiple adversaries applied in the embedding, each adversary model
is corresponding to each intermediate embedding result. As the cost adjustment
scheme used in [19] is not suitable for SAE, SAE applies a novel cost adjust-
ing method, which is derived from the method used in additive side-informed
steganography [4]. In former adversarial embedding schemes [2,16,17,19,21], the
adversarial models are trained with fully embedded samples. In contrast, SAE
utilizes adversarial models trained with partially embedded samples correspond-
ing to each partial embedding process and generate the stego image progressively.
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This kind of ‘segmented’ embedding process adjusts the embedding cost multiple
times, which helps to improve the performance for the non-feedback embedding
scheme. The main contributions of our work are as follows:

(1) A novel non-feedback adversarial steganographic scheme is proposed. The
scheme generates the adversarial stego sample with multiple adversary pro-
gressively, which improves the performance against the steganalyzer.

(2) A novel cost adjusting method is used in the proposed scheme, which can
make more use of gradient.

(3) Besides the original version of SAE, another simplified version is proposed,
which has lower complexity than the original version and better performance
in some cases.

The rest of paper is organized as follows: Sect. 2 introduces the notations
used in the paper and cost adjustment. The proposed scheme is introduced in
Sect. 3. Section 4 is the experiment part. Section 5 is the conclusion.

2 Preliminary

2.1 Notation

Cover image is noted as C = (cij)H×W . Conventional stego image, which is not
generated via adversarial scheme, is noted as S = (sij)H×W . Adversarial stego
image is noted as Z = (zij)H×W . H is the height, W is the width, and i, j are
coordinate of image elements. Furthermore, the +1 cost in the position (i, j) is
noted as ρ+ij , while −1 cost is noted as ρ−

ij . The image set of a specific kind of
sample is noted as {·}, for example, cover set {C} and stego set {S}.

Neural network model in this paper is always a binary classifier and its train-
ing set is {C,S} or {C,Z}. The neural network is noted as F{C,S} or FS shortly.
Loss function is noted as J(X, y, FS). In the expression, y is the target cate-
gory. The gradient of J(X, y, FS) respects to X is noted as G = (gij)H×W =
∇XJ(X, y, FS).

2.2 Adversarial Cost Adjustment

In adversarial steganographic scheme, the cost adjustment is a key process. In
FGSM, the adversarial sample is generated via (1).

X̃ = X − sign(∇XJ(X, t)) (1)

In (1), X̃ is the generated sample being classified to the wrong category t,
−sign(∇XJ(X, t)) is the adversarial noise derived from gradient added to the
image X. In adversarial steganographic scheme, modification introduced by
embedding can be utilized as adversarial noise. The embedding cost is mod-
ulated by gradient (2). {

ρ+ij > ρ−
ij , if gij > 0;

ρ+ij < ρ−
ij , if gij < 0

(2)

The initial ρ+ij and ρ−
ij are equal, they are adjusted according to gij to follow the

direction of adversarial noise.
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3 Proposed Scheme

In this section, the proposed SAE is introduced in detail. Concepts of partial
embedding and progressive adversarial training are introduced in Sect. 3.1 and
3.2 respectively. The cost adjustment scheme is introduced in Sect. 3.3. In the
end, the implementation of SAE is introduced in Sect. 3.4. It is emphasized
that SAE contains two stages, which are training stage and generating stage. In
the training stage, target steganalyzers (adversaries) are trained with samples.
In the generating stage, the adversarial stego samples are generated via target
steganalyzers. The image sets used in two stages are isolated.

3.1 Partial Embedding

Partial embedding is an embedding strategy that dividing the cover and mes-
sage sequence into several non-overlapping segments and performing embedding
on these segments separately. In each segment, embedding costs are updated
according to the former embedding result. In SMD (Synchronizing Modifica-
tion Direction) scheme [6,15,20], cover image is divided into several regularly
distributed lattices. The embedding is performed on lattices independently, but
in each lattice the cost is adjusted according to the intermediate embedding
result of former lattices, in order to encourage the same modification clustering.
In adversarial scheme ADV-EMB and its iterative version [2], cover is divided
into 2 parts pseudo-randomly. The embedding cost of second part is adjusted
according to the first part.

In SAE, cover sequence is divided into several parts averagely, so as to mes-
sage sequence. Unlike [19] and [2], whose separation length is alterable, the sepa-
ration length in SAE is fixed. The order of sequence is pseudo-random controlled
by seed. In this paper, the number of separating parts T is set to 4. Figure 1 illus-
trates the procedure of partial embedding used in SAE. The message sequence
m is averagely divided into 4 subsequence. These message sequences are noted
as m1, m2, m3 and m4. The message m is embedded into cover C, the gener-
ated stego image is S. Between C and S, there are 3 intermediate stego images,
which are noted as S1, S2 and S3. The final embedding result S can be also
noted as S4.

3.2 Progressive Adversarial Training

Besides partial embedding, progressive adversarial training is another important
concept of SAE. In [19] and [16], the target adversary model is trained from the
cover set {C} and the non-adversarial stego set {S}. With the consideration of
game theory, the iterative adversarial training is taken into account [2,17]. In
these iterative schemes, the adversarial stego sets {Z} are taken into the training
process of the adversary models. The ‘training-generating’ procedures performs
multiple times in order to improve the security.

Progressive adversarial training is a sort of iterative schemes. In the training
stage of SAE, adversarial training and partial embedding of samples are coupled
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Fig. 1. Partial embedding

together. The training sets used in adversarial training are partial embedded
samples. The process of training an adversary model FZi

contains 2 steps, which
is also illustrated in Fig. 2. Firstly, the image set {Zi} is generated. For each
sample, Zi is generated by embedding message mi into Zi−1, the embedding
cost is adjusted according to the gradient calculated from FZi−1 . Secondly, FZi

is trained (fine-tuning) from FZi−1 with cover set C and stego set Zi. The model
FZi and set Zi are used for the next ‘training-generating’ round.

3.3 New Cost Adjustment Scheme

A new cost adjustment scheme is applied in SAE. The scheme is inspired by
additive side-informed steganography [4]. In FSGM, the adversarial noise is
−sign(∇XJ(X, t)), which utilizes the sign of the gradient signal. One common
cost adjustment scheme used in feedback adversarial scheme is adjusting the cost
with constant ν > 1, whose expression is (3).

ρ+
′

ij =

{
ρ+ij/ν, if gij < 0;
ρ+ij · ν, if gij > 0

ρ−′
ij =

{
ρ−
ij/ν, if gij > 0;

ρ−
ij · ν, if gij < 0

(3)

With the adjustment by (3), there is an obvious gap between ρ+
′

ij and ρ−′
ij for each

element, in order to make modification tend to the expected direction. However,
it is not suitable for non-feedback scheme because it lacks of mechanism to
control the amount of adjusted cost. A large amount of adjusted cost has a
negative effect.
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Fig. 2. Training the model FZi via ‘training-generating’ process.

The adjustment scheme proposed in [4] takes the magnitude of quantiza-
tion residual into account. Inspired by [4], the proposed cost adjustment scheme
further exploits gradient. The magnitude of gradient reflects the impact on the
inference result. Considering the magnitude, the expression of new cost adjust-
ment scheme is (4). {

ρ+
′

ij = (1 + gij) · ρ+ij ;
ρ−′
ij = (1 − gij) · ρ−

ij

(4)

In (4), gij is normalized to [−1, 1] by gij = gij/max(‖G‖). The gradient signal gij
controls the intensity of adjustment. The performance of 2 adjustment schemes
are tested in experiment and (4) performs better.
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3.4 Process of SAE

In SAE, there are 4 partial embedding steps to generate an adversarial stego
sample. In each embedding step there is a particular adversary model to calcu-
late the gradient. For example, the adversarial gradient used for generating Zi is
calculated from model FZi−1 . Figure 3 is the flow chart of SAE, which displays
the data and model in each step. The unnecessary elements are omitted in Fig. 3,
i.e., message subsequence. The upper part is the training process. The lower part
is the generating process. In the figure, arrow colored in red is embedding oper-
ation, arrow colored in green is training operation. In the training process, the
conventional stego set {S1} is generated at first. S1 is the stego image that car-
ries the first 1/4 message segment. Then the model FS1 is trained from {C} and
{S1}. The following training process is introduced in Sect. 3.2. In the generat-
ing process, partial embedding is performed with the adversaries generated in
training process.

Fig. 3. The flow chart of SAE.

Besides the SAE displayed in Fig. 3, there is another simplified variant, which
is illustrated in Fig. 4. Considering the partial embedding in [19], the first part of
message is embedded in the cover with conventional scheme. In simplified SAE,
the partial embedding of first 1/4 meassge segment is conventional embedding.
The simplified variant is named as SAE-QC(SAE Quarter Conventional). SAE-
QC has less storage requirement (3 models vs. 4 models) and less running time
(times of gradient calculation).
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Fig. 4. The flow chart of SAE-QC

4 Experiments

4.1 Setup

The experiments, we choose UERD [10] as the distortion function to calculate
the initial cost, because it has less complexity comparing with J-UNIWARD [11]
and similar security performance.

The adversary model is an important component in SAE. In ALASKA2
steganalysis competition [5], EfficientNet [18] is widely used and proven well-
performed. In this paper, we employ a modified version of EfficientNet-B2, whose
input is single channel image and output is 2 category. As the input of the orig-
inal version of EfficientNet is RGB 3-channel image, we triple the single channel
input to adapt the EfficientNet structure. The model is fine-tuned from Ima-
geNet pre-trained model. Note that input of the neural network is spatial image
acquired from IDCT transformation without rounding operation.

The gradient map calculated from CNN model reflects the gradients in spatial
domain, which cannot be used for cost adjustment in DCT domain directly. The
spatial gradient is needed to be transformed to DCT gradient by (5).

Gdct8 = AGspa8AT (5)

In (5), Gspa8 is 8 × 8 gradient block in spatial domain, while Gdct8 is gradient
block in DCT domain. A and AT are the 2-D blockwise DCT transformation
matrixes. (5) is the typical DCT transformation. After the transformation (5),
Gdct8 is divided by the block quantization matrix Q8 (6).

Gdct8 = Gdct8./Q8 (6)
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For the image database, we choose official ALASKA2 JPEG base. The num-
ber of images is 80005. The image size is 256. The quality factor is 75. 40000
images are randomly selected as training set of adversary models. The rest of
images are used for evaluation, 20000 are for training steganalyzers, 20005 are
for testing. Stego image is generated via embedding simulator. The total payload
rate is set to 0.4 bpnzac.

Three kinds of steganalyzer are chosen for evaluation, which are EfficientNet-
B2, SRNet [3] and DCTR [12] + ensemble classifier [13]. EfficientNet-B2 is for
evaluation of targeted steganalysis, SRNet and DCTR + ensemble classifier are
for non-targeted steganalysis. CNN-based steganalyzers (EfficientNet-B2 and
SRNet) are implemented in PyTorch. The optimizer is AdamW and the ini-
tial learning rate is set to 0.001. Batch size is set to 64 and epoch number is set
to 50.

4.2 Security Performance of SAE

In this section, the security performance of SAE is evaluated by steganalyzer.
The result is shown in Table 1. Comparing with conventional UERD, UERD-
SAE decreases the detection accuarcy for 8.5%, 7.32%, 4.56% on EfficientNet,
SRNet and DCTR respectively. There are more improvements in CNN-based
steganlyzers than feature-based steganalyzers.

Table 1. Detection Accuracy evaluated on different steganalyzers. SAE is compared
with conventional UERD

EfficientNet SRNet DCTR

UERD 85.21% 85.96% 74.60%

UERD-SAE 76.71% 78.64% 69.95%

4.3 Security Performance of SAE-QC

The performance of SAE-QC is evaluated in this section. Table 2 is the result. For
feature-based steganalyzer (DCTR), UERD-SAE and UERD-SAE-QC is nearly
the same, while there are some differences for EfficientNet and SRNet. Generally,
UERD-SAE-QC has similar performance with UERD-SAE, and less complexity.

Table 2. Detection Accuracy evaluated on different steganalyzers. UERD-SAE-QC is
compared with UERD-SAE

EfficientNet SRNet DCTR

UERD-SAE 76.71% 78.64% 69.95%

UERD-SAE-QC 77.46% 77.51% 69.99%
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4.4 Comparison of Cost Adjustment Schemes

In this section we compare 2 cost adjustment schemes discussed in Sect. 3.3. The
first part is security evaluation. Table 3 is the result. As the cost adjustment
scheme (3) utilizes constant as factor to adjust cost, it is noted as UERD-SAE-
CA (Constant Adjustment). In comparison, scheme (4) is UERD-SAE. In scheme
(3), the constant for adjustment ν is set to 2. From Table 3, it can be seen
that UERD-SAE-CA performs even worse than conventional UERD. Without
feedback mechanism, scheme (3) cannot improve the security performance.

Table 3. Detection Accuracy evaluated on different steganalyzers. UERD-SAE-CA,
UERD-SAE and conventional UERD are in the evaluation

EfficientNet SRNet DCTR

UERD 85.21% 85.96% 74.60%

UERD-SAE-CA 90.14% 90.49 % 76.61%

UERD-SAE 76.71% 78.64% 69.95%

We randomly select 100 images from testing set to calculate the relative
modification rate of 2 cost adjustment schemes. The relative modification rate
is calculated by (7).

relative modification rate =
number of modifications

number of nzac
(7)

The relative modification rate of UERD-SAE is 0.0916, UERD-SAE-CA is
0.0955. Scheme (3) introduces more modifications. Figure 5 is the visualization
of the embedding. We pick out ‘00042.jpg’ from the testing set. Image in the left
is the cover. Image in the middle is the changed map of UERD-SAE. Image in
the right is the changed map of UERD-SAE-CA. The regions in yellow boxes
are in smooth area of the image. The white points indicates the positions of
modification. Note that their random seeds for embedding are equal. It can be
seen in the boxes that there are more modifications in UERD-SAE-CA than
in UERD-SAE. In UERD-SAE-CA, modifications “leak” into smooth area. The
modification in the smooth area has negative impact on the security.

Fig. 5. The visualization of modifications in UERD-SAE and UERD-SAE-CA.
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5 Conclusion

In this paper we propose a novel adversarial embedding scheme for JPEG
steganography, which is named as Segmented Adversarial Embedding (SAE).
The main contributions of our work including:

(1) Partial embedding is introduced into proposed scheme. In SAE, the mes-
sage is divided into subsequence and embedded into cover in several sep-
arated processes. The adversarial embedding is performed in each partial
embedding process. In each process, there is a specific adversary model for
calculating the gradient to adjust the embedding cost.

(2) A novel cost adjustment scheme is applied in SAE. The scheme exploits both
sign and magnitude of gradient signal to adjust embedding cost, rather than
only considering the sign.

(3) A simplified version of SAE is developed. The simplified SAE performs the
first segment embedding with conventional schemes rather than adversarial
embedding. Comparing with the original SAE, the simplified SAE has less
running complexity.

The future work will mainly focus on 2 aspects. First is to explore the
lightweight scheme to adjust the amount of cost being adjusted, rather than
performing embedding multiple times. Second is to explore the application of
knowledge distilling in adversarial embedding.
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Abstract. With the rapid development of natural language processing
technology, various linguistic steganographic methods have been pro-
posed increasingly, which may bring great challenges in the governance of
cyberspace security. The previous linguistic steganalysis methods based
on neural networks with word embedding layer could only extract the
context-independent word-level features, which are insufficient for cap-
turing the complex semantic dependencies in sentences, thus may limit
the performance of text steganalysis. In this paper, we propose a novel
linguistic steganalysis model. We first employ the BERT or Glove com-
ponent to extract the contextualized association relationships of words
in the sentences. Then we put these extracted features into BiLSTM to
further get context information. We use the attention mechanism to find
out local parts that may be discordant in text. Finally, based on these
extracted features, we use the softmax classifier to decide if the input
sentence is cover or stego. Experimental results show that the proposed
model can achieve currently the best performance of text steganalysis and
hidden capacity estimation. Further experiments found that proposed
model can even locate where the secret information may be embedded
in the text to a certain extent. To the best of our knowledge, we made
the first attempt to achieve text steganography positioning in the field
of text steganalysis (Code and datasets are available at https://github.
com/YangzlTHU/Linguistic-Steganography-and-Steganalysis).
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1 Introduction

Nowadays, people are used to share and transmit information conveniently on
the Internet with the development of networks. In the meantime, the challenges
of protecting information security and privacy have been paid attention by many
researchers [24]. According to Claude E. Shannon [17], encryption system, pri-
vacy system, and concealment system are the three main information secrecy
systems in cyberspace. The biggest difference between the concealment system
and the other two systems is the concealment system can hide the existence
of important information in the form of embedding them into common carri-
ers, ensuring its security. The history of people using steganography to transmit
secret information on various occasions can even be traced back to the 14th
and 15th centuries. Through steganography, secret messages are embedded into
cover carriers such as image [22,31], audio [28], text [6,11,27,32,34–36] and so
on [3,16]. Text is one of the most important information carriers in human
lives [12]. The extensive text interaction scenarios and massive text carriers
on the Internet have attracted more and more researchers in recent years to
study text steganography and use network texts to implement covert commu-
nication. However, text steganography can also be used by hackers, terrorists,
and other law breakers for illegitimate purposes, which threats cybersecurity
seriously. Therefore, it is crucial to develop an effective and powerful text ste-
ganalysis method.

A concealment system can be illustrated by Simmons’ “Prisoners’ Problem”
[18]. The core goal of steganography is to reduce the difference of statistical
distribution between carriers before and after steganography as much as possible.
However, steganalysis aims to recognize the difference to the greatest extent
possible.

Most of text steganography can be divided into two types, modification-
based [4] and generation-based [11,28,32]. Modification-based methods usu-
ally embed secret information by modifying the cover texts, such as synonym
substitution, etc. [5,15]. Generation-based text information hiding method can
automatically generate steganographic texts according to the secret information
[6,27,32,34,36].

Steganalysis of text always follows the same framework: extracting statisti-
cal features from texts and then send them to a specific classifier to determine
whether they are normal texts or steganographic texts. Traditional text steganal-
ysis methods usually construct simple text statistical features manually [20],
and then analyze the difference between normal texts and steganographic texts,
which is slow and not efficient enough. In recent years, with the development of
artificial neural networks (ANN) and natural language processing (NLP) technol-
ogy, more and more automatic steganographic texts generation models based on
neural networks have emerged, which have been able to generate steganographic
sentences with high quality [6,8,27,32,34,36]. So proposing stronger steganal-
ysis approaches to respond to the rapid developments in linguistic steganogra-
phy is very important. Due to the development of neural networks, many text
steganalysis methods have also introduced neural network models to achieve



82 J. Zou et al.

better detection results [1,23,25,29]. All these models roughly contain a word
embedding module, a hidden module and a final classification module. Although
these models can achieve a good steganalysis performance [1,25], it is seems
that they reach the ceiling, and the improvement in detection performance is
slow, such as [1,25]. One reason is that steganography could influence the cor-
relations between words thus changing the semantic features in texts [30], the
currently used word embedding layer, trained by the model self, only provides
the context-independent word-level features, which is not enough to obtain the
complex semantic dependencies in sentences.

In this paper, we first adopted BERT (Bidirectional Encoder Representation
from Transformers) [7], one of the most popular pre-trained language model
armed with Transformer [21], as an embedding layer, which can learn richer fea-
tures in the sentences, and Glove (Global Vectors for Word Representation) [14]
was also used as the embedding layer as a comparison. In order to fuse contextual
information, we used BiLSTM (Bidirectional Long Short-Term Memory) after
the output of embedding layer. Furthermore, the attention mechanism was also
introduced in the proposed model for focusing on the suspicious parts in sen-
tences. Experimental results show that the proposed model greatly exceeds all
the previous models in text steganalysis and hidden information capacity esti-
mation tasks, which show the state-of-the-art performance. Further experiments
found that proposed model can even locate where the secret information may
be embedded in the texts to a certain extent. To the best of our knowledge, we
made the first attempt to achieve text steganography positioning in the field of
text steganalysis.

In the remainder of this paper, Sect. 2 introduces related works on text ste-
ganalysis. We explain the proposed model in detail in Sect. 3. Section 4 reveals
on the experiments results and gives a comparison between different models.
Finally, conclusions are drawn in Sect. 5.

2 Related Works

In this section, we will first briefly describe the principle of text steganalysis, and
then introduce some existing text steganalysis works proposed in recent years.

In the field of natural language processing, a sentence can be considered as a
sequence signal. In the purpose of getting a semantically complete word sequence,
the statistical language model [2] is the most common approach, which learns
the conditional probability of each word in normal sentences, it can be expressed
in the following formula:

p(X) = p(x1, x2, . . . , xn)
= p(x1)p(x2|x1) . . . p(xn|xn−1),

(1)

where X denotes the whole sentence, which has n words, and xi is the i -th word
in it.

In recent years, many text steganography methods including modification or
generation forms, first analyze the statistical feature distribution in natural texts
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by using neural networks, and then reconstruct steganographic texts to reduce
the statistical distribution differences with the natural texts. Thus, the key task
of text steganalysis is to recognize these changes of the statistical features such
as the conditional probability.

There have been many methods in text steganalysis. For instance, in 2006,
Support Vector Machine (SVM) was used to distinguish the stego texts modified
by a lexical steganography algorithm [20]. In 2010, Yang and Cao [26] proposed
a novel linguistic steganalysis method through meta features and immune clone
mechanism. These approaches always use handcrafted features which are labor
intensive.

With the development of deep learning, neural networks have shown huge
advantages in many tasks. Some researchers have paid attention to using neural
networks to deal with text steganalysis. In 2019, Yang et al. [29] proposed a
fast and efficient text steganalysis method which mapped words into a semantic
space and used a hidden layer to extract the correlations between these words
by using Recurrent Neural Network (RNN). Wen et al. [23] used Convolutional
Neural Networks (CNN) to do text steganalysis, and a word embedding layer was
used to extract the semantic and syntax features of words. In order to capture
both local and long-distance contextual information in steganography texts, Bao
et al. [1] combined CNN and Long Short-Term Memory (LSTM) [9] recurrent
neural networks, and got the state-of-art results in the text steganalysis task.

As a matter of fact, in the generated steganographic texts, the word corre-
lation features may be distorted after being embedded with secret information
[30], resulting in the changes of the semantic relations in natural texts, which
helps us to achieve text steganalysis in the way of extracting and analyzing the
word correlations and semantic features related to words of the steganographic
texts in natural sentences. As mentioned above, there exist limitations in previ-
ous methods actually, that is they just use one word embedding layer to extract
text features, then fuse and analyze these features. However, a word embedding
layer can not fully represent more features, such as complex semantic relations,
dependencies between sentences and so on. These place restrictions on perfor-
mance of text steganalysis methods. Thus, for the purpose of extracting more
features not only at the level of words, but also at the semantic level, we take
the BERT, a pre-trained model, as the embedding layer, because of its powerful
feature representation ability, and Glove acts as a comparison. Furthermore, we
use the attention mechanism to locate the secret informations and heatmaps are
drawn.

3 The Proposed Model

The text steganalysis task can be formulated as a text classification problem. As
shown above, steganographic texts embedded secret information will influence
the correlations between words in sentences, further leading to change semantic
features. So if we can extract more informations other than word level, we can
reach better results in text steganalysis task. Taking into account this fact, we
proposed a novel model, the overall architecture of which is depicted in Fig. 1.
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Fig. 1. The overall framework of the proposed text steganalysis method. We use BERT
to extract more features (Glove for comparison), and we use BiLSTM further to fuse
context informations, the attention mechanism focuses on important parts.

3.1 Extracting Semantic Features

The BERT embedding layer takes the sentence as input and calculates the token-
level representations using the information from the whole sentence. Given the
input token sequence X = {x1,. . . ,xn} of length n, we firstly employ BERT com-
ponent with L transformer layers to calculate the contextualized representations
HL = {hL

1 ,. . . ,hL
n} ∈ R

n×dimh for the input tokens, dimh denotes the dimension
of the representation vectors. The input feature is H0 = {e1, . . . , en}, where the
token embedding, position embedding and segment embedding corresponding to
the input token xt combine et(t ∈ [1,n]). And the L transformer layers will refine
the token-level features layer by layer. The l -th layer representation is calculated
below:

H l = Transformerl(H l−1) (2)

where H l = {h1
l, . . . , hn

l}. We use HL to do the downstream task.
In addition, we use Glove as a control, which efficiently leverages statisti-

cal information by training only on the nonzero elements in a word-word co-
occurrence matrix, rather than on the entire sparse matrix or on individual
context windows in a large corpus [14].
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3.2 Feature Fusion

LSTM [9] is a variant of RNN which is very suitable for modeling sequential
signals such as text, it is good at learning long-term dependencies and avoiding
gradient vanishing and expansion problems. The input of LSTM is the output
of BERT, which is described as hk

L, where k is the k -th token in the sentence,
if ck−1 denotes the previous cell state and previous hidden state is sk−1, then
the current cell state ck and current hidden state sk are updated as follows:

ik = σ
(
Ww

i · wk + Wh
i · hk−1 + bi

)

fk = σ
(
Ww

f · wk + Wh
f · hk−1 + bf

)

ok = σ
(
Ww

o · wk + Wh
o · hk−1 + bo

)

ĉk = tanh
(
Ww

c · wk + Wh
c · hk−1 + bc

)

ck = fk � ck−1 + ik � ĉk

sk = ok � tanh
(
ck

)

(3)

where i, f and o are input gate, forget gate and output gate respectively, σ
is the sigmoid function and � stands for element-wise multiplication, and the
last hidden state vector sk is the representation of the sentence. In order to get
bidirectional information, we concatenate the forward hidden state vector −→sk and
the backward hidden state vector ←−sk as the last output of BiLSTM at step k,

←→
Sk = [−→sk ,←−sk ] (4)

Thus,
←→
S = [

←→
S1 , . . . ,

←→
Sn] ∈ R

2d×|n|, d is the hidden size of LSTM, we can
abbreviate the computation of the BiLSTM layer with

←→
S = BiLSTM(HL).

3.3 Attention Layer

Attention mechanism [21] can capture the important information in sentences,
so we set an attention layer after the BiLSTM layer. As shown above, the output
of BiLSTM

←→
S is the input of the attention layer, sk ∈ ←→

S , then we calculate
the self attention vector αi as follows:

Q = WQX ∈ Sd×n

K = WKX ∈ Sd×n

V = WV X ∈ Sd×n
(5)

eij = vT
α tanh(Wasi−1 + Uahj)

αij =
exp (eij)

∑Tx

k=1 exp (eik)

(6)

where we use a Multilayer Perceptron (MLP) [13] as the score function to cal-
cuLate the attention score. And Q is the query vector sequence, K is key vector
sequence, and V is value vector sequence. WQ, WK , WV , Wa and Ua are the
parameters of the attention layer. Finally we can get the attention matrix.
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3.4 Classification Layer

As text steganalysis is a sentence classification task, we calculate the average
attention score of the whole sentence rather than fed the token’s attention score
to a fully-connected layer. We designed a softmax normalization layer to yield a
probability distribution p ∈ R

dp over the decision space:

p = softmax(Wpαij + bp) (7)

where dp is the same as the number of labels, Wp and bp are the learned weights
and bias respectively.

3.5 Training

The model is trained by minimizing the cross entropy and the loss function is
expressed as following formula:

loss = −ΣiΣjy
j
i logŷj

i + λ||θ||2 (8)

where λ is the coefficient for L2-regularization, θ denotes the parameters that
need to be regularized, y denotes the true label, ŷ is the predicted label.

4 Experiments

4.1 Datasets and Experimental Settings

We use Twitter and News text media from the T-Steg dataset collected by Yang
et al. [33]. The natural steganographic texts were generated by Fang et al. [8]
with different embedding rates by altering the number of bits hidden per word
(bpw, bits per word). The details of Twitter and News datasets are described in
Table 1. In the purpose of training and testing the proposed model, we firstly mix
up the Cover-Texts and Stego-texts with different embedding rates respectively,
and then randomly select 60% of the sample for training, 20% of the samples
for validation, and the rest 20% of samples for testing. One goal of the proposed
model is to classify the Cover-Texts and Stego-texts.

For our experiments, we use the pre-trained “bert-base-uncased” model,
where the number of transformer layers is L = 12, the hidden size dimh is
768. The max length of sentences is set to be 128, we set the batch size to
32, the learning rate is 5e−5. Apart from this, we apply dropout [19] and L2-
regularization, the dropout rate is 0.1 and the coefficient rate λ of L2 is 1e−5.
We train the model for 20 epochs to get the best results. We used AdamW [10]
as the optimization method.

On the other hand, as comparison, we exchange BERT in the proposed model
with Glove1 to examine the proposed model’s performance, because Glove is a
more powerful model than Word2Vec, thus we can further verify if our model
can capture more features. For this, we set BiLSTM hidden size to be 300, batch
size to be 128, and adjust learning rate to be 1e−3.
1 Pre-trained word embedding of GloVe can be downloaded from http://nlp.stanford.

edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
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Table 1. The details of the training datasets [33]

Dataset Average length Sentence number Total words

Twitter 9.68 2,639,290 46,341

News 22.24 1,962,040 42,745

4.2 Evaluation Metrics

In the experiment, we use several evaluation indicators which are commonly used
in text steganalysis task to evaluate the performance of the proposed model.
These metrics are Accuracy (Acc), Precision (P) and Recall (R), which formulas
are described below:

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + TN

(9)

in the above formulas, TP (True Positive) represents the number of positive
samples which are predicted to be positive, FP (False Positive) is the number of
negative samples predicted to be positive, and the number of positive samples
predicted to be negative is FN (False Negative), TN (True Negative) illustrates
the number of negative samples predicted to be negative.

4.3 Models for Comparison

In order to comprehensively evaluate the proposed model, we compare it with
a range of baselines and state-of-the-art models, in addition, we also exchange
BERT with Glove [14] as the embedding layer to further verify the performance
of the proposed model:

1. A Fast and Efcient Text Steganalysis Method [29]: first analyzed the
correlations between words in steganographic texts, then mapped each word
to a semantic space and used a hidden layer to extract the correlations.

2. CNN based text steganalysis [23]: adopt CNN to capture complex depen-
dencies and learn feature representations automatically from the texts.

3. Text Steganalysis with Attentional LSTM-CNN [1]: combined CNN
and LSTM to capture both local and long-distance contextual information in
steganographic texts, it also used an attention mechanism.

4. Linguistic Steganalysis via Densely Connected LSTM with Feature
Pyramid [25]: proposed densely connected LSTM with feature pyramids
which can incorporate more low level features to recognize steganographic
texts.
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Fig. 2. The changes of text steganalysis performance of the different models on News
and Twitter Datasets with the increase of embedding rate

4.4 Experiment Results

Table 2 shows the performance comparison of the proposed model with other
models in the text steganalysis task under different embedding rate (bpw).
Table 3 shows the results of secret information estimation task. We first mixed
the texts of various embedding rates, then we used the proposed model to pre-
dict the embedding rate of the information hiding in each text, and record the
prediction accuracy as shown in Table 3. According to the results, we can draw
several conclusions as following.

Firstly, the proposed model has achieved the best detection results on vari-
ous metrics, no matter on News dataset or Twitter dataset. And the evaluation
indicators have been greatly improved, especially at low bpw on News dataset
and higher bpw on Twitter dataset as shown in Fig. 2. The reason could be that
News texts are more regular and longer than Twitter texts, which makes the
proposed model capture more features than other models even though at low
bpw. On the other hand, Twitter texts are anomalistic and shorter than News
texts, resulting in the difficulty in detection at low bpw, but as the bpw in Twit-
ter texts increase, the performance of the proposed model has been significantly
improved than other models. Figure 2 clearly shows these results.

Secondly, it is obvious that the detection performance of all models have
improved with the increasing of the embedding rate. This is easy to understand,
because once more information is embedded in texts, coherence of text semantics
and statistical distribution features will be changed more.

Thirdly, from Table 3, in the task of hidden information capacity estimation,
we can see the accuracies of the proposed model have achieved a higher level
especially BERT, reaching up to 93.83% and 85.74% in News and Twitter
datasets respectively, which are more excellent than other models [30]. This
means that the proposed model can estimate the capacity of hidden information
inside the natural texts more excellent.
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Table 2. Results of different steganalysis methods on different datasets.

Methods News [33] Twitter [33]

Yang et al. 2019 [29] bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.858 0.864 0.920 0.961 0.973 0.745 0.793 0.879 0.934 0.921

P 0.858 0.915 0.922 0.979 0.988 0.811 0.914 0.939 0.988 0.960

R 0.858 0.803 0.918 0.942 0.958 0.621 0.647 0.812 0.879 0.879

Wen et al. 2019 [23] bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.906 0.911 0.957 0.976 0.991 0.772 0.832 0.912 0.944 0.935

P 0.906 0.916 0.955 0.983 0.996 0.854 0.877 0.933 0.968 0.921

R 0.905 0.904 0.959 0.968 0.985 0.640 0.772 0.888 0.917 0.950

Yang et al. 2019 [1] bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.913 0.920 0.962 0.973 0.985 0.786 0.834 0.908 0.943 0.936

P 0.930 0.923 0.966 0.981 0.983 0.873 0.883 0.950 0.986 0.958

R 0.894 0.916 0.958 0.966 0.987 0.657 0.770 0.861 0.899 0.911

Yang et al. 2020 [25] bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.917 0.923 0.972 0.984 0.988 0.783 0.842 0.912 0.945 0.941

P 0.922 0.933 0.974 0.989 0.989 0.817 0.884 0.907 0.964 0.958

R 0.910 0.913 0.969 0.979 0.987 0.714 0.786 0.919 0.925 0.923

Glove -BiLSTM-Att bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.962 0.980 0.984 0.990 0.994 0.732 0.930 0.974 0.989 0.992

P 0.972 0.976 0.983 0.993 0.995 0.835 0.944 0.978 0.994 0.995

R 0.961 0.988 0.988 0.990 0.994 0.743 0.947 0.982 0.989 0.992

BERT -BiLSTM-Att bpw 1 2 3 4 5 1 2 3 4 5

Acc 0.972 0.986 0.992 0.994 0.998 0.786 0.941 0.986 0.992 0.996

P 0.974 0.992 0.996 0.999 0.998 0.914 0.966 0.991 0.997 1.000

R 0.977 0.983 0.991 0.990 0.998 0.744 0.945 0.989 0.992 0.995

In addition to the excellent performance in the above-mentioned text ste-
ganalysis and hidden information capacity estimation tasks, we also tried to
explore the unique performance of the proposed model. For example, we found
that it can locate which words are more likely to be embedded in the text to a
certain extent. We first used the method proposed by Fang et al. [8] to generate
some new sentences. In the process of generating these sentences, we randomly
selected a small number of words in the text to embed information with random
capacity (bpw was randomly set to 1–5), and the remaining words did not embed
information. Then we input these texts and normal texts into the proposed model
for steganalysis. When the model completed the judgment of whether the input
text was cover or stego, we extracted its attention weight vector, which reflected
the degree of attention the model pays to each word in the input text. Finally,
we visualized these results and shown in Fig. 3. The sentence on the left in Fig. 3
represents the input text, the red words are embedded with hidden information,
and the black words have no embedded information. On the right is the visual-
ization result of the model’s attention weight. The darker the color, the larger
the attention weight value, which means that for the text steganalysis character,
the model believes that this local area is worthy of attention.
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Table 3. The results of hidden information capacity estimation of the proposed model

Method News [33] Twitter [33]

Glove-BiLSTM-Att bpw 1 2 3 4 5 1 2 3 4 5

Acc 90.73 87.58 89.95 91.72 94.47 67.84 80.63 85.57 87.96 95.40

P 92.62 89.61 88.07 89.77 94.14 75.26 77.71 86.58 92.04 91.12

F1 91.66 88.58 89.00 90.74 94.30 71.36 79.14 86.07 89.96 93.214

Acc 91.43 81.30

BERT -BiLSTM-Att bpw 1 2 3 4 5 1 2 3 4 5

Acc 89.04 91.30 91.48 96.30 99.45 75.98 85.85 92.26 91.89 98.95

P 94.52 91.93 93.51 93.91 95.13 73.50 86.79 89.81 95.21 92.74

F1 91.70 91.62 92.48 95.09 97.24 74.72 86.32 91.02 93.52 95.75

Acc 93.83 85.74

Fig. 3. The figure describes the locations of secret informations in the sentences. The
real positions of cover words in sentences are marked red. The darker the color, the
greater the attention score. We can see the proposed model located the secret informa-
tions effectively. (Color figure online)

By analyzing the results in Fig. 3, we can see some very interesting and
valuable results. We found that the proposed model will give a relatively large
attention weight to the local area where the secret information is embedded in
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the input text, which shows that the model can indeed locate the area where the
secret information is embedded in the text to a certain extent. As far as we are
concerned, this should be the first attempt to locate the location of embedded
hidden information in the field of text steganalysis. Secondly, we found that the
attention weight of the proposed model does not all focus on the words embedded
in the secret information. In fact, it is like a “ripple” which gradually spreads
to the surrounding area with the embedded information as the core. This fur-
ther validates our previous analysis and our research motivation, that is, when
we embed secret information in a word in the text, it will affect the relation-
ship between the words around the entire word. The change of this association
relationship can be used as an analysis feature to achieve high accurate text
steganalysis after extraction.

5 Conclusion

With the developments of natural language processing technology, text steganal-
ysis has faced many challenges, especially when neural networks become popular.
Text steganography will change the correlations between words, thus we can do
texts steganalysis. However the embedding layers using in many texts steganal-
ysis models can not obtain complex semantic features in sentences which limits
the performance of many methods. In this paper, we first use BERT or Glove
as a embedding layer rather than traditional word embedding layers to capture
more features, then we use a BiLSTM and the attention mechanism to obtain
the important information in texts to do text steganalysis task. Experiments on
different datasets are conducted by using the proposed model, the results show
that the proposed scheme outperforms the state-of-the-art methods. Further-
more, we try for the first time to visualize attention weights in text steganalysis
task, results show that our model can locate the secret information in stegano-
graphic texts.
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Abstract. Steganography has long been considered as a way of hiding the fact
of secret communication. However, the fact that a message sender and a receiver
communicated with each other is seldom protected. It can be dangerous because
they often have very secret relationship. Noticeably, in recent two years some
researchers respectively proposed robust and secure steganographic schemes
which realize dependable steganography in the lossy channel of social media
without degrading the security and capacity, and more relevant technologies,
such as robust steganographic coding and fast steganography, were also pro-
posed. In this review, the sharing-based model of steganography implied by
social media and promoted by both the emerging advanced robust steganogra-
phy and fast steganography is formally presented and compared with the
dominating prisoner-warden model. It is shown that designing steganography
under the sharing-based model can protect the fact of communication and the
sender-receiver relationship instead of merely the fact of secret communication,
improving the overall security of steganographic systems.

Keywords: Steganography � Steganalysis � Security model � Social media �
Covert communication

1 Introduction

Steganography is an important way of covert communication in which a sender hides
secret message into cover content and sent the ostensibly natural stego-content to a
receiver. In contrast to cryptography, it protects the fact of secret activity instead of
only the content of secret message. The use of steganography has a long history but it
had not been scientifically developed until the last decade of the 20th century, when
people begun to use computer and multimedia in their daily life. Modern steganog-
raphy often takes multimedia, such as image, video, and audio, as covers because they
have more redundant information.

To define the roles and the scenarios in steganography, Simmons [1] proposed the
famous prisoner-warden model. In the model, which is illustrated in Fig. 1, two
prisoners Alice and Bob want to exchange secret message but can only ask the warden
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Eve to deliver stego-notes. In fact, Alice and Bob act as a sender and a receiver
respectively in covert communication, and Eve means a monitored channel. Alice and
Bob need conceal the fact of secret activity such as encryption, and Eve want to detect
it. If Eve modifies the notes, the channel is lossy; otherwise, it is lossless. Since most
multimedia delivery over network is point-to-point and lossless before the wide use of
social media, the prisoner-warden model using non-robust steganography has domi-
nated the research. In this direction, a series of algorithms and methods, together with
the analysis of them, have been proposed. This kind of steganography is designed to
suppress the embedding perturbation under a payload of secret message and the
assumption of no channel noise. The most important principles and methods of them
are collected in [2] and [3].

However, in fact the prisoner-warden model can be weak if a sender and a receiver
have secret relationship which needs protected. And unfortunately, it is often the case
in the real world. Intuitively, sharing stego-content over social media can alleviate the
problem because the content is sent in a multicast way so that the expected receiver is
protected. But as we know, the multimedia channels of social media are often designed
lossy for saving bandwidth and storage space. Transcoding is widely used in these
channels to compress the media and decrease the resolution sizes. As a result, such
protection can be impossible if only the traditional steganography is used.

To fulfill the demand of robust steganography which can make use of social media
channel by resisting the lossy processing, some new schemes and techniques have been
proposed [4–15]. An important part of them [4–7], which we call the advanced robust
steganographic schemes, realize the needed robustness without degrading the security
and capacity. Moreover, the development of fast steganography [16–18] is enabling
running the sophisticated steganographic software smoothly on mobile devices, which
are used as the primary way of accessing social media. In this review, we indicate that the
significance of them is not restricted to only exploiting new channels and new platforms.
Based on applying them to the content sharing channels over social media, we define the
sharing-based model of steganography and discuss its advantages. And then we will
introduce some technologies which support applying the model over social media.

Warden Eve
Stego-note Stego-note

Alice Bob

S S’

Fig. 1. Illustration of the prisoner-warden model. S′ may be equal to S or not. The former case
means a lossless channel, and the latter a lossy channel.
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2 Limitation of the Prisoner-Warden Model

Steganographers need hide their particular communication behavior and steganalysts
want to detect it. For the design of steganography, it is important to clarify the meaning
of such behavior and to what extent and scope it should be protected. Because
steganography is usually utilized in hostile environments, it is more likely that
steganographers want to conceal not only the fact of secret communication but also the
fact of communication. That is, the relationship between a sender and a receiver also
needs protected so that they can avoid incriminating each other.

Under the above requirement, the dominating prisoner-warden model shows lim-
itation. Alice and Bob only protect the fact of secret communication by asking Eve to
pass stego-notes. In fact, it assumes that contents can only be delivered in a point-to-
point way. It was reasonable at the time when multicast or broadcast delivery of
contents had not been widely used. As a result, Eve will also accuse Bob if he has
detected stego-notes from Alice, and vice versa. It makes a steganographic scheme
much weak in security as a system. In the time of big data analysis, one can assume a
monitor knows all contact information. Consequently, the sender-receiver relationships
in steganographic systems designed under the prisoner-warden model are unprotected.
It becomes more and more unreasonable because nowadays people widely share
contents in multicast or broadcast ways.

3 Sharing-Based Model Implied by Social Media

Alice

Manager

Intermediate
Stego-note

Warden

Bulletin board

Carl

......

Stego-note

Bob Zhao

S

S’

Alice

Manager

Intermediate
Stego-note

Warden

Bulletin board

Carl

......

Stego-note

Bob Zhao

S

S’

Fig. 2. Illustration of the sharing-based model, in which Alice and Bob hide the fact of
communication and their sender-receiver relationship.
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To strengthen the security, a sharing-based model, illustrated in Fig. 2, can be defined
from the above prisoner-warden model. Suppose that a bulletin board is shared among
all prisoners. Each one can put notes on it. Then, Alice and Bob can exchange message
by putting stego-notes there. It means using multicast channel. The bulletin board
manager may or may not revise the notes. Similarly, the former case means a lossy
channel, and the latter a lossless one. Because all prisoners may read the notes, the
warden has difficulty to recognize the sender-receiver relationship between Alice and
Bob. Interestingly, it seems that the sharing-based model had been used before the
emergence of Internet. For examples, in some films or stories, early spies had their
stego-notes posted on newspapers so that their comrade could receive secret message
without revealing their relationship. Similarly, some stego-notes could be broadcasted
by radio. They can be regarded as the early application of sharing-based model in
which protecting contact relations is extremely important.

In recent two decades, social media has provided people with a more and more
ubiquitous and feasible way of sharing content (see Fig. 3), implying that the sharing-
based model becomes more applicable. For examples, people can share contents on
blogs in a broadcast way, and they can choose to share them at a virtual circle of friends
in a multicast way. Noticeably, it was reported that in 2010 [19, 20], when lossy
processing was seldom used over network, some Russian spies arrested in the United
States hided messages in online public images to conceal the contact relation. However,
we think that the early effort to utilize the sharing-based model over social media was
hindered because such networks begun to apply transcoding to the delivered content for
saving bandwidth and storage space. Transcoding often consists of both lossy com-
pression and scaling down the resolution size of multimedia (see Fig. 4). As a result,
the traditional steganography becomes inapplicable. Such processing may happen at
the server or at the mobile front end. In either case, it is hard to avoid being transcoded
by breaking the system.

Social Media 
Networks

Transcoding

S

S’

S’

S’

S’
S’

Fig. 3. The wide use of sharing content over social media implies the sharing-based model but
how to make steganography robust and secure remains as a challenge. S is called an intermediate
medium.
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In the next section, we will show that the obstacle to applying steganography and
the sharing-based model over social media is being removed by the development of
some supporting techniques such as the advanced robust steganography and fast
steganography. Of course, in some social media systems, a user is allowed to partic-
ularly set the system so as to send out multimedia in a lossless way. However, in most
cases it only applies to point-to-point communication and such operation is seldom
used by a normal user. Because a steganographer tries to reveal normal behavior over
networks, such treatment violates his or her principles.

4 Techniques Which Support Sharing-Based Model

4.1 Technical Requirement of Applying the Model

To apply the sharing-based steganography over social media, we think three kinds of
technologies are needed.

Channel Modeling, Simulation, and Exploitation. Before any new design of robust
and secure steganography, the lossy processing ways of a channel should be recognized
and the parameters estimated. Then the channel can be simulated, tested locally and
exploited online.

Size scaling 
down

lossy 
compression 

Transcoding Shared on Social Media

Intermediate 
Media

Fig. 4. Transcoding often consists of both lossy compression and scaling down the resolution
size of multimedia.

Efficiency

Capacity

RobustnessSecurity

Fig. 5. The challenge of applying sharing-based model over social media is to coordinate some
performances that seemingly conflicts with each other.
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Robust and Secure Embedding with Capacity. New steganography should not only
have enough robustness to ensure reliable communization but also keep the covertness
and capacity as more as possible.

Fast and Secure Embedding with Capacity. New steganography should adapt to the
mobile devices so that it must be efficient. We have said that a steganographer tries to
reveal normal behavior over networks. So, if most people use mobile phone to send
contents, he or she should do it likewise.

By the requirement, the challenge of applying sharing-based model over social
media is to coordinate the seemingly conflicting performances, including security,
robustness, efficiency, and capacity (see Fig. 5). In the followed sub-sections, we will
introduce some of the supporting technologies and point out that the knack of fulfilling
such a tough task is to make the steganography adapt to the channels. Some techniques
for designing the robust steganography and fast steganography have been developed
for years but they may not directly aim at applying the sharing-based model.

4.2 Channel Modeling, Simulation, and Exploitation

Lossy 
Processing

S with
Size(S) and Quality(S)

S’ with
BS(S) and BCQ(S)

If Size(S)=BS(S) and Quality(S) = BCQ(S),  then S S’

Fig. 6. Modeling of the lossy multimedia processing made by some typical social media
networks, in which BS is for borderline size, and BCQ is for borderline compression quality.

Table 1. Some typical parameters of uploaded image and those of the downloaded, where the
boldfaced ones can be estimated as borderline parameters.

Format Upload size Upload QF Download size Download QF

JPEG 3000 � 2000 95 2048 � 1365 85
85 2048 � 1365 85
65 2048 � 1365 85

2048 � 1365 95 2048 � 1365 85
85 2048 � 1365 85
75 2048 � 1365 71
71 2048 � 1365 71
65 2048 � 1365 65

512 � 512 95 512 � 512 85
71 512 � 512 71
65 512 � 512 65
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Apparently, to apply sharing-based model over social media depends on successful
design of the advanced robust steganography, which not only resists the attack of
transcoding but also keeps as more as security and capacity. An important issue here is
how to recognize the channel’s processing and estimate the parameters so that new
steganography can be designed accordingly.

A typical method for channel recognition and estimation has been briefly intro-
duced in [4]. Here, we introduce and formalize it as follows. First, media samples are
uploaded onto the social media. Then, the transcoded samples can be downloaded and
compared with the uploaded ones. Often the processing, including size scaling and
content recompression, is easy to recognize and the parameters can be estimated
through the comparison. Zhao et al. [4] observed that most social media have two kinds
of following parameter as illustrated in Fig. 6 and Table 1, which is extremely
important for designing the advanced robust steganography.

Borderline Size (BS) Parameter. It is a size to which the channel changes an
uploaded medium. And the channel does not further decrease the size of an uploaded
medium if it is equal to or less than the BS. The BSs turn to be larger with the
improvement of computing capability. For example, 2048 � 1365 is a typical BS for
images as shown in Table 1.

Borderline Compression Quality (BCQ) Parameter. It is a compression quality to
which the channel changes an uploaded medium. And the channel does not further
change the quality of an uploaded medium if it is equal to or less than the BCQ, though
a recompression with the same parameters may be applied. Similarly, the BCQs turn to
be higher with the improvement of computing capability. For example, quality factor
(QF) 85 is a typical BCQ for images as shown in Table 1.

Consequently, the existence of BS parameter and BCQ parameter enables
steganographers to degrade the channel attack into a simpler one. Since designing a
scheme robust to size scaling is very difficult, some relevant robust steganographic
schemes try to avoid the scaling by using covers with BS as their sizes. In these cases,
the attack degrades to a recompression attack. If a delivered content with BS as its size
has a quality equal to BCQ, the attack is further degraded to a recompression with the
same quality parameters. The degraded attacks introduce less noises so that the
embedding energy can be smaller to keep the enough security.

4.3 Robust and Secure Steganography

By making use of the borderline parameters, current design of robust schemes can only
consider resisting lossy compression under the assumption that only borderline sized
media are used as covers. The difference is only whether BCQ is also used as the cover
quality. Up to now, many efforts [4–15] have been made to design robust and secure
image and video steganography, though some of them might only aim at exploiting
new point-to-point channels at the time.

Zhang et al. [8–12] proposed some watermarking-like techniques for designing a
class of robust steganography. The techniques, including coefficient inequality relation
adjustment, region selection, and adaptive dither modulation, have been respectively or
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jointly used to ensure reliable robustness. The level of robustness can be adjusted
according to the channel by changing the strength of the inequality or some relevant
parameters. Typically, in the DCT coefficient relationship based adaptive steganogra-
phy (DCRAS) [12], the embedded 0 and 1 are respectively represented by two
inequalities of same-mode JPEG coefficients in neighboring 4 blocks. The embedding
can adjust one of the coefficient values to satisfy either of them to embed 1 or 0. The
strength of the inequalities can be adjusted by adapting an additive parameter of the
inequality to the channel. The larger the parameter, the more the robustness needed.
The parameter value is estimated by simulating the channel locally. After the basic
embedding way is decided, distortions can be computed and then syndrome trellis
codes (STC) [21] can be used. In [10] featured regions are selected for improve the
robustness, and in [9], adaptive dither modulation, which takes quantization tables for
adaptively deciding the step sizes, is also used. However, the schemes give much lower
capacity. Only when the capacity is from 10% to 30% of a normal level, they have
accepted security. A detailed performance evaluation of this class of robust
steganography has been reported in [22].

To acquire the robustness, new ways of applying steganographic codes and error
correction codes (ECC) have also been proposed. Kin-Cleaves and Ker [13] designed
the dual STC by combining both the correction treatment and the embedding in STC
processing. A stego-image is made to have two syndromes simultaneously, and one of
them is used for error correction in supporting the robust extraction of message.
Experimental results show that it outperforms a straightforward combination of the
standard Reed Solomon (RS) codes and STC. Based on the observation that correcting
stego-content is more effective than correcting message in mitigating the error prop-
agation of STC decoding, Feng et al. [14] proposed to encode the output of STC
processing and correct stego-content before message extraction. To resist the contin-
uous errors of STC decoding, Bao et al. [15] proposed to use concatenated ECC
encoder with interweaving between the two sub-encoders. In decoding, the inter-
weaving between two sub-decoders disperses the continuous error resulting from STC
decoding so that the outer sub-decoder becomes more effective. These methods help
improve the robustness but often they cannot get rid of bit error independently.

More advanced robust steganography should have the robustness just enough to
resist the channel attack and maintain as more as security and capacity. Such a
steganographic scheme must find ways of exploiting the channel more accurately. As
we have discussed, if a delivered content has the size equal to BS and compression
quality equal to BCQ, the attacking noise, which only results from the recompression
under the same parameter, has the minimal energy. Moreover, Zhao et al. [4] observed
that when a JPEG image has been compressed under one QF many times, it becomes
stable, i.e., compressing it again almost changes no JPEG efficient of the image. This
result is due to the fact that two noises introduced by the same-parameterized JPEG
recompression, i.e., spatial quantization noise and coefficient quantization noise, turn to
diminish with each other. So, in the channel matching-based scheme, the embedding
and compression under the channel QF are repeated locally to let the intermediate
stego-image stable so that the lossy channel cannot affect it much. Tao et al. [5] also
proposed a channel matching-based scheme, in which a cover image is compressed
locally as in the channel and then embedded. The resulting stego-image serves as a

On the Sharing-Based Model of Steganography 101



reference to the robust adjustment of the cover image. However, this design assumes
that there is no quantization noise introduced by the pixel value rounding in spatial
domain, and it is not often the real case. In the scheme proposed by Lu et al. [6], how to
simulate and adjust the intermediate stego-image is learnt and executed by a neural
network, called auto-encoder. Consequently, more kinds of channels, which may have
some particular processing, can be automatically simulated. The above channel
matching-based methods, with the aid of ECC, can have a zero or very low bit error
rate with the capacity and security at the same level of their non-robust counterparts.
Although in [5] an adjusted intermediate image before lossy processing is more
detectable, in many cases lossy processing occurs at mobile devices so that steganalysts
cannot have the change to detect it.

More recently, Fan et al. [7] proposed a robust video steganographic scheme, in
which side information is embedded into another standalone domain to record the
selected frames where better performance of robustness has been given in local testing.
It has been shown that at a very little price of capacity and similarly with the aid of ECC,
a bit error rate less than 1% can be achieved without degrading the security. In some
cases, the error rate is 0%. In fact, such idea can be expanded to the design of many side
information-based robust steganographic schemes if they take both a data carrying
domain and a side information carrying domain in a single multimedium. For examples,
the accompanying voice can be used to record the robust video places, and the different
video domains and macroblocks, which do not interfere with each other, can be used as
the side information channel and the communication channel respectively.

4.4 Fast and Secure Steganography

Because most people use mobile devices to access social media, in the long run another
requirement for applying steganography and sharing-based model over social media is
to adapt the steganographic technique to these devices. In general, a mobile device has
much less computation power compared with a personal computer, and the dominating
adaptive steganography, such as the typical scheme named JUNIWARD (JPEG
UNIversal WAvelet Relative Distortion) [23], needs more computing resources than
common applications to improve the security. As a result, the challenge to fulfil the
above requirement is to design fast and secure steganography. Some pioneer work [16–
18] has designed fast steganography at very small price of security and capacity. We
shall briefly review them as follows.

UED (Uniform Embedding Distortion) [24] has long been regarded as a fast
steganographic scheme which directly evaluates embedding distortion in the embed-
ding coefficient domain. Nevertheless, its security under steganalysis is inferior to the
more secure JUNIWARD which evaluates the distortion in wavelet domain. To
improve the security of UED but still maintain the computational efficiency, Guo et al.
[16] proposed the UERD (Uniform Embedding Revisited Distortion). The scheme
jointly evaluates the distortion for modifying a coefficient with both the coefficient’s
quantization step value and a value indicating the sub-block’s complexity. The effi-
ciency is built on the following 2 facts. First, the coefficient’s quantization step value is
constant, and second, a sub-block’s complexity only needs computed once for all
coefficients in it. Experimental results [18] show that the time for computing the
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distortion of UERD is about 1/6 of the JUNIWARD, and the security level of UERD
under steganalysis is almost the same as that of JUNIWARD.

Besides the time for computing the distortion, another part of running time of
adaptive steganography is the time for computing STC. In general, adaptive
steganography takes all distortions, that is, distortions computed on every coefficient or
pixel, into the STC computation. Even if one only need embed in a low capacity, he or
she has to process all the image. Li et al. [17] proposed some ways of speeding up STC
by shortening the length of input. In their method, the cover coefficients can be selected
according to the values of their JPEG quantization steps. As we know, the smaller a
quantization step, the smaller the modified amplitude and the distortion value. So, only
coefficients with smaller JPEG quantization steps are selected and embedded. Another
scheme is based on segmentation of a cover. The new length of input is the original
length divided by the shortened times. Suppose the times is two. Each two neighboring
4-element segment is summed. On the same places in each segment, distortion is the
smallest one. STC is applied to the summed sequence so that the path is shortened. And
it has been shown that under such treatment messages can be extracted correctly.
Experimental results show that the detection error rate difference between the tradi-
tional use of STC and this scheme is no more than 1% under the steganalytic scheme
named DCTR (Discrete Cosine Transform Residual) [25].

Su et al. [18] proposed a fast steganographic scheme by simplifying the distortion
computation of JUNIWARD and concurrently computing the segmented STC paths.
JUNIWARD computes the embedding distortion by evaluating the change of wavelet
coefficients in the HL, LH, and HH sub-bands. However, the coefficients’ values in the
3 sub-bands have symmetry so that two of them is omitted in the scheme named fast
JUNIWARD in [18], saving about 2/3 of the time for computing the distortions without
degrading the security and capacity. In addition, experimental results show that if STC
paths, whose inputs are the permutated embedding domain and distortions, are seg-
mented and run separately and concurrently, the security under steganalysis will only
be affected very slightly. In the fast JUNIWARD, the paths are often segmented into 4
parts which are run concurrently in different CPU kernels in a mobile device, and the
error rate of it under DCTR steganalysis decreases by only about 1%–2% under the
payload of 0.3 bpnzAC (bit per non-zero Alternating-current Coefficient).

5 Concluding Remarks and Future Work

With the development of advanced robust steganography and fast steganography over
social media, the sharing-based model, which not only aims at protecting the secret
activity but also aims at protecting the sender-receiver relationship, becomes more
applicable and appealing. We think that it already has and will keep having remarkable
influence on the evolvement of steganographic technologies. More schemes are to be
designed robust at little price of capacity and security. And designing fast and secure
steganography fit for mobile devices and combining them with the robust steganog-
raphy become extremely important for better exploiting social media networks.
Moreover, how to build the upload and download channel in a secure manner will be
also important. Finally, it is interesting that the techniques of robustness and the
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techniques of covertness, previously for watermarking and steganography respectively,
come together in this scenario. We can expect new novel methods that combine and
balance them more cleverly and properly.
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Abstract. Users of personal health devices want an easy way to permanently
store their personal health sensor data and to share them with physicians and
other authorized users, trusting that the data will not be disclosed to third parties.
Digital watermarking for data leakage detection aims to prevent the unautho-
rized disclosure of data by imperceptibly marking the data for each authorized
user, so that the authorized user can be identified as the data leaker and be held
accountable. In this paper we present an approach for digital watermarking
conceived as part of a personal health sensor data management platform. The
approach comprises techniques for informed watermark embedding and non-
blind watermark detection. Based on a proof-of-concept prototype, the approach
is evaluated regarding configurability, robustness, and performance.

Keywords: Medical sensor data � Digital fingerprinting � Time series data

1 Introduction

Personal health sensor data are recorded by wearable devices that keep track of dif-
ferent indicators of an individual’s health. A diabetes patient, for example, may keep
with them a sensor for measuring blood glucose levels. The constant monitoring of
such sensitive personal information puts users of personal health sensors in a dilemma.
On the one hand, users of personal health devices want to retain control over the data
collected using those sensors. On the other hand, in order for the collected data to be
useful in preventing health issues, users want an easy-to-use platform to manage and
permanently store these data, and possibly share these data with selected other parties.

A management platform for personal health sensor data should facilitate sharing the
data with other individuals, e.g., physicians, or applications, e.g., for the analysis of
data in the context of pharmaceutical research. In order to retain control over the data,
first and foremost, data access should only be given to authorized data users. Fur-
thermore, every request for access to personal data should be logged to monitor and
audit requests for data by authorized users. In this regard, in case of data leakage, it
should be possible to identify and hold accountable the authorized user who leaked the
data. To this end, digital watermarking can be employed.
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In this paper, we propose an approach for the provisioning of watermarked personal
health sensor data and for the detection of data leakage. The approach is configurable to
balance the trade-off between usability of watermarked data and robustness against
attacks. The approach is evaluated using a proof-of-concept prototype with respect to
configurability, performance, and robustness against rounding value, random value,
deletion, subset selection, and mean collusion attacks.

The remainder of the paper is structured as follows. Section 2 briefly introduces the
data that should be watermarked and sketches the overall process. Section 3 describes
the approach in detail. Section 4 evaluates the approach based on a proof-of-concept
prototype. Section 5 describes a specific application scenario and the deployment of the
approach. Section 6 points to related work. Section 7 concludes the paper.

2 Problem Analysis and Overall Process

In this section we briefly introduce the data that should be watermarked as well as the
user and data access structure of a personal health sensor data platform. We sketch an
overall process for provisioning watermarked personal health sensor data and for data
leakage detection.

Let us first look at the data that are subject to watermarking. Every health sensor
produces a time-indexed sequence of measurements, typically with uniform intervals,
e.g. one measurement every five minutes. Every measurement comprises the device id,
the type of measurement, and the unit of measurement – these first three attributes are
fixed for each sensor – as well as the date, time, and the measured value. When
grouping the data by sensor and date, a sequence of time-value pairs remains. Such a
group of data is what we refer to as a dataset fragment (see Fig. 1 for an example), or
simply a fragment.

Fig. 1. Example sensor data (left) and its grouping into a fragment (right) in JSON format
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In our personal health sensor data management platform, a dataset fragment is
treated as an atomic, i.e., basic and indivisible, unit for data sharing and watermarking.
The health sensor data pool, i.e., the data store of the platform, is regarded as a set of
such fragments.

In the following, we briefly introduce our personal health sensor data platform’s
user, authorization and access structure. We also sketch the overall process of provi-
sioning watermarked person health sensor data; details are discussed in Sect. 3. Note
that the only purpose of watermarking in our setting is to find out, given leaked data,
who, out of a set of authorized users, had originally requested (accessed) the leaked
data on the platform and subsequently disclosed the data.

We assume that there are many individuals who store their personal health sensor
data on the platform and many authorized data users (persons and applications who
request data) but only a few authorized data users per dataset fragment. Further, only
users who have actually requested (accessed) some fragment are potential leakers of
that fragment.

A central design choice concerns multiple requests by the same data user of the
same or overlapping data: If a user requests the same fragment multiple times, even in
different requests (e.g. once all blood glucose data of yesterday for all persons and once
the blood glucose data of Person X for the last week), then this fragment (e.g., yes-
terday’s blood glucose data of Person X) should always be watermarked the same way.
Otherwise, a single user could perform many similar requests and, with many differ-
ently watermarked versions of the same fragment, could be able to effectively remove
the watermark.

When a data user issues a request for data, the request is first broken down into
multiple requests, each answered by a single dataset fragment. When a user requests a
fragment for the first time, they are permanently associated with a watermark generated
for that fragment. Every time that same user now requests that particular fragment, the
same watermark associated with the combination of user and fragment is embedded
into the returned fragment.

Data leakage detection is initiated when a suspicious dataset is found in order to
answer two questions. First, does the dataset originate from the health sensor data pool?
Second, which of the authorized users leaked the data? These questions are not directly
answered for the suspicious dataset as a whole, but the suspicious dataset is partitioned
into dataset fragments and, by using non-blind watermark detection, these questions are
answered per fragment before being combined into an overall answer. Answering these
questions is complicated by the possibility that data leakers may have tried to remove
the watermark in the case of which we speak of noisy watermarked data.

3 Design

In this section we introduce the design of the watermarking approach. Watermark
embedding is used when a data user requests a dataset. Being aware of the data being
watermarked, malicious data users could attack the datasets to damage or remove the
watermarks before leaking the data. If a suspicious dataset is found, watermark detection

Towards Informed Watermarking of Personal Health Sensor Data 111



is used to identify the potential data leakers. Because of possible attacks, the watermark
detection must take modifications of datasets and their watermarks into account.

3.1 Preliminaries

Concerning watermark generation/embedding we make the following design choices.
(i) Watermarks are embedded only in the value field of measurements. With the fixed
time intervals, introducing errors to the time fields would be easily perceptible. (ii) A
watermark introduces a small error to every measurement value, and not only to
selected measurement values; this increases robustness against collusion attacks,
deletion attacks, and subset selection attacks without hampering usability. (iii) Water-
mark generation is informed: by considering the original, errors can be introduced
without making the watermark perceptible. (iv) Watermark generation is configurable
by usability constraints associated with type and unit of measurement to balance the
trade-off between usability of watermarked data and robustness against attacks. (v) A
secret key associated with each fragment keeps the watermark generation secure even if
the algorithm is publicly known (see [1]). (vi) To make watermarks reproducible and
avoid the necessity of storing the generated watermarks in the database, their gener-
ation is deterministic based on the original fragment, usability constraint, the frag-
ment’s secret key, and a watermark number associated in the request log with a user’s
(possibly repeated) requests of a fragment.

We realized the usability constraint as a concept consisting of the maximum error,
the sensor’s minimum and maximum value as well as the number of ranges. The
maximum error determines the (initial) maximum error range for each measurement
value. The maximum possible error range of each measurement may then be limited by
the sensor’s minimum and maximum value. The error must not fall below the mini-
mum value or exceed the maximum value. Finally, the number of ranges configures the
error distribution by indicating the number of error sub-ranges within the possible error
range with each error sub-range having a probability with which it is selected. The error
sub-ranges are halved into error sub-ranges below and above the original value. The
closer an error sub-range to the original value, the higher the probability to be selected.
In other words, the higher the number of ranges, the closer the errors are distributed to
the original value. Table 1 provides some example selection probabilities of error sub-
ranges using various configurations regarding the number of ranges. In summary, a
tight usability constraint, i.e., small maximum error and high number of ranges, results
in small errors providing high imperceptibility but less security.

Concerning watermark detection we make the following design choices. (i) Simi-
larity search is used to compute the probability of a suspicious fragment being a
fragment from the database. In case an attacker modifies a fragment by any means,
similarity search provides the possibility to identify the matching fragment from the
database. An increasing database size, however, requires an efficient similarity search
which is out of scope. (ii) Similarity search is also used to compute the probability of an
extracted watermark being an already embedded watermark. In case an attacker cor-
rupts a watermark by any means, similarity search provides the possibility to identify
the matching watermark. The downfall of using similarity search is that also innocent
data users are regarded as potential data leakers.
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3.2 Watermark Embedding

Whenever an authorized data user requests data – which corresponds to a set of
requested fragments –, watermark embedding is performed. For each requested frag-
ment, a matching watermark associated with its requesting data user is generated and
embedded resulting in a watermarked fragment. The combination of all watermarked
fragments is transmitted to the requesting data user as a watermarked dataset that fulfils
the user’s request. The approach for watermark embedding is illustrated in Fig. 2 and
discussed in more details below.

Task 1 (Watermark Generation). Watermark generation generates a matching water-
mark for each requested fragment based on the requested fragment, a usability con-
straint, and existing requests.

Table 1. Example selection probabilities of error sub-ranges using different number of ranges

Number of ranges Selection probabilities of
error sub-ranges of the lower
error range

Selection probabilities of
error sub-ranges of the upper
error range

Total

4 3 2 1 1 2 3 4

2 50% 50% 100%
4 25% 25% 25% 25% 100%
6 12.5% 12.5% 25% 25% 12.5% 12.5% 100%
8 6.25% 6.25% 12.5% 25% 25% 12.5% 6.25% 6.25% 100%

Fig. 2. The approach for watermark embedding
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The following steps are performed for each requested fragment. (1) The requested
fragment’s corresponding usability constraint is retrieved from the database. (2) The
watermark number is determined based on existing requests of that fragment stored in
the request log. (3) The pseudo random number generator (PRNG) is seeded using the
fragment’s secret key and the watermark number. (4) The selection probabilities of the
error sub-ranges are computed based on the usability constraint’s number of ranges
analogue to Table 1.

The following steps are performed for each measurement of the requested fragment.
(1) The error range is computed based on the usability constraint’s maximum error as
well as the sensor’s minimum and maximum value. (2) Assuming that preserving the
value structure of measurements is an easy way to improve imperceptibility, the error
range is further limited by constraints. These constraints (see Table 2) aim to preserve
the value structure of the previously watermarked measurement vw(t − 1), the mea-
surement to be watermarked v(t) and the next measurement v(t + 1). There are two rare
exceptions in which preserving the value structure is not desired, namely, if
vw(t − 1) = v(t) and if v(t) = v(t + 1). (3) The error sub-ranges below and above the
original value are computed based on the error range. (4) The PRNG selects an error
sub-range and then, within the selected error sub-range, the PRNG selects an error.

Task 2 (Embedding). The generated watermark is embedded by adding the watermark
to the requested fragment resulting in the watermarked fragment. More precisely, for
each measurement of the requested fragment the corresponding error of the watermark
is added.

3.3 Watermark Detection

Whenever a suspicious dataset is found somewhere, watermark detection can be
applied to determine if the suspicious dataset originates from the data pool and who
may have leaked the data. A suspicious dataset is fragmented into a set of suspicious
fragments based on sensor and date. For the sake of simplicity, we assume that the
timestamps of suspicious datasets are not modified. For each suspicious fragment, the
matching original fragment is identified by using fragment similarity search. If a
matching fragment is found, the embedded watermark is extracted, and the matching
fragment’s already embedded watermarks are re-generated. Because the extracted
watermark may be noisy due to attacks, possibly matching watermarks are detected by
watermark similarity searches. The combination of all matching watermarks of a
suspicious dataset reliably identifies potential data leakers. The approach for watermark
detection is visualized in Fig. 3 and discussed in the following.

Table 2. Constraints to preserve the value structure of measurements

Previous measurement value Next measurement value

if vw(t − 1) < v(t) then vw(t − 1) � vw(t) if v(t) < v(t + 1) then vw(t) � v(t + 1)
if vw(t − 1) > v(t) then vw(t − 1) � vw(t) if v(t) > v(t + 1) then vw(t) � v(t + 1)
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Task 1 (Fragment Similarity Search). The fragment similarity search identifies a
suspicious fragment’s matching original fragment.

The following steps are performed for each suspicious fragment. (1) The suspicious
fragment’s corresponding usability constraint is retrieved from the database. (2) The set
of relevant fragments are retrieved from the database. We used all fragments from the
database as relevant fragments. (3) For each relevant fragment, we perform a matching
measurements analysis to identify matching measurements between a suspicious and
relevant fragment by comparing their measurement timestamps. The result of a matching
measurements analysis is a list of suspicious measurements together with their matching
original measurement from a relevant fragment. This analysis is necessary because
measurements from the suspicious fragment may be removed. (4) For each relevant
fragment with the number of matching measurements equal to the suspicious fragment’s
number of measurements, the fragment similarity is computed using Eq. 1. (5) If the
original fragment with the highest similarity exceeds a user-defined threshold, the
matching fragment is identified. For the sake of simplicity, we only consider a suspicious
fragment’s most matching fragment instead of multiple very well matching fragments.

SimilarityFragment ¼
Pmatching measurements

i¼1 1� suspicious valuei�original valueij j
sensor0s maximum value

number of suspicious measurements
ð1Þ

Task 2 (Extraction). The embedded watermark is extracted by subtracting the matching
fragment from the suspicious fragment. More precisely, for each measurement of the
suspicious fragment the corresponding measurement value of the matching fragment is
subtracted.

Fig. 3. The approach for watermark detection
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Task 3 (Watermark Re-Generation). The matching fragment’s already embedded
watermarks are re-generated based on previous requests. Therefore, the watermark
numbers of the matching fragment are retrieved from the request log. The watermarks
are re-generated using the watermark generation algorithm from watermark embedding.
Additionally, any watermark combinations can be made, e.g. we compute mean
watermarks based on a user-defined parameter (“number of colluders”) to combine an
arbitrary number of watermarks.

Task 4 (Watermark Similarity Search). The watermark similarity search identifies
matching watermarks of the extracted watermark. Therefore, the watermark similarity
between the extracted watermark and each original watermark is computed using Eq. 2.
If the similarity of an original watermark is above a user-defined threshold, it is
considered a matching watermark.

SimilarityWatermark ¼
Pmatching measurements

i¼1 1� extracted errori�original errorij j
2�maximum error

number of matching measurements
ð2Þ

Task 5 (Leaker Identification). The leaker identification identifies potential data leakers
using the matching watermarks from the watermark similarity searches. The dataset
leakage probability of a data user is its average watermark similarity. A single fragment
may not reliably identify a leaking data user, but multiple fragments do by the
watermark combination.

4 Evaluation

In this section we evaluate the watermarking approach regarding configurability,
robustness and performance using a proof-of-concept prototype. The proof-of-concept
prototype is available online1.

4.1 Configurability

The usability constraint configures the watermark generation by stating the maximum
error, the sensor’s minimum and maximum value as well as the number of ranges. The
configurability of the watermarking approach ensures that data can be watermarked in a
way such that watermarked data remain useful for diagnostic purposes and by any
means do not lead to misdiagnosis of patients. In addition, if watermark embedding is
configurable based on type and unit of measurement, it could be applied to any kind of
sensor data.

Table 3 provides example deviations from the standardized metrics for continuous
blood glucose monitoring by Battelino et al. [2] using a looser and a tighter usability
constraint. In contrast, using the looser usability constraint results in little deviations in
the mean glucose management indicator and glycemic variability, while using the
tighter usability constraint results in no deviations in these metrics. The metrics

1 https://github.com/jku-win-dke/iwdw20-prototype.
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indicating the time within a range are computed by counting the number of mea-
surements within that range because each measurement is approximately 5 min long. In
both cases, using the looser and tighter usability constraint result in high relative
deviations. Nevertheless, these deviations may be negligible, considering absolute
deviations. Additionally, further tightening the usability constraint may also reduce
these deviations.

In summary, the errors introduced by watermarking are configurable by the
usability constraint. The tighter the usability constraint, the more imperceptible but less
secure the watermark. The determination of an imperceptible but secure usability
constraint is one of the major challenges using this approach.

4.2 Robustness

The robustness is evaluated regarding rounding value attacks, random value attacks,
deletion attacks, subset selection attacks and mean collusion attacks. To this end, we
watermarked a single fragment using a usability constraint with a maximum error of 0.5
and a number of ranges of 10. Then, we attacked the watermarked fragment using the
attacks listed above with different configurations and let the watermark detection
determine fragment similarity and watermark similarity.

The results of these simulations are shown in Tables 4, 5, 6, 7 and 8 with one table
per attack method and one line per configuration. The first column shows the config-
uration parameter, the second column shows the matching fragment similarity (between
the suspicious fragment and its matching original fragment) and Columns 3–7 shows
the matching watermark similarities for five different watermarks for this fragment
(Column Headings 1–5 indicate the watermark numbers). In Simulation 1–4 the to-be
matched embedded watermark is that with Watermark 1 (similarities are shown in
bold).

Table 3. Example deviations from standardized metrics using different usability constraints

Metrics Original Maximum error = 1.0,
Number of ranges = 2

Maximum error = 0.1,
Number of ranges = 20

Watermarked Δ Watermarked Δ

Mean Glucose 10.2609 10.2762 0.15% 10.2607 0.00%
Glucose Management Indicator 60.9965 61.0685 0.12% 60.9954 0.00%
Glycemic Variability 1 5.4146 5.4109 −0.07% 5.4146 0.00%
Glycemic Variability 2 15.1072 15.1415 0.23% 15.1067 0.00%
Time above Range: > 13.9 54 57 5.56% 54 0.00%
Time above Range: 10.1–13.9 78 74 −5.13% 77 −1.28%
Time in Range: 3.9–10.0 141 142 0.71% 140 −0.71%
Time below Range: 3.0–3.8 6 8 33.33% 7 16.67%
Time below Range: < 3.0 3 3 0.00% 2 −33.33%

Towards Informed Watermarking of Personal Health Sensor Data 117



The watermarking approach is robust if the matching watermark similarity of the
embedded watermark that is to be matched is markedly higher than the similarity with
other watermarks.

Simulation 1 (Rounding Value Attacks). The rounding value attack rounds the values
of the measurements based on a decimal digit, eventually distorting the watermark.
Table 4 provides an exemplary robustness report against rounding value attacks. The
watermark similarity decreases notably when rounding the measurements to whole
numbers, but this may also exceed the usability constraint. Considering a dataset of
multiple fragments, the watermark combination enables reliable identification of the
data user.

Simulation 2 (Random Value Attacks). The random value attack changes the values of
the measurements randomly based on a maximum error, eventually distorting the
watermark. Table 5 provides an exemplary robustness report against random value
attacks. The watermark similarity linearly decreases if the introduced maximum error
increases. Considering a dataset of multiple fragments, the watermark combination
enables reliable identification of the data user.

Simulation 3 (Deletion Attacks). The deletion attack removes measurements based on
a certain frequency. Table 6 provides an exemplary robustness report against deletion
attacks. Because of the time dependent watermark detection, all matching measure-
ments can be identified, and the watermark similarities are not compromised. The
matching fragment similarities differ among each other due to removed measurements.

Table 4. Example robustness against rounding value attacks

Decimal
digit

Matching fragment
similarity

Matching watermark similarity
1 2 3 4 5

4 99.87% 100.00% 88.65% 88.10% 89.06% 88.86%
3 99.87% 99.98% 88.65% 88.09% 89.06% 88.86%
2 99.87% 99.77% 88.65% 88.08% 89.04% 88.88%
1 99.86% 97.53% 88.22% 87.62% 88.80% 88.71%
0 99.53% 76.06% 72.61% 70.94% 72.35% 72.02%

Table 5. Example robustness against random value attacks

Maximum
Error

Matching fragment
similarity

Matching watermark similarity
1 2 3 4 5

0.1 99.83% 94.92% 87.34% 86.85% 87.36% 87.51%
0.2 99.76% 89.83% 84.51% 83.78% 84.24% 84.47%
0.3 99.68% 84.75% 80.87% 80.00% 80.33% 80.51%
0.4 99.59% 79.66% 76.67% 75.88% 75.98% 76.23%
0.5 99.50% 74.58% 72.16% 71.40% 71.29% 71.60%
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Simulation 4 (Subset Selection Attacks). The subset selection attack selects subsets of
measurements from each fragment of the dataset based on a certain start and end index.
Table 7 provides an exemplary robustness report against subset selection attacks. The
watermark similarities are not compromised because of the time dependent watermark
detection, while the fragment similarities differ among each other due to missing
measurements.

Simulation 5 (Mean Collusion Attacks). The mean collusion attack creates a new
dataset based on the mean values of differently watermarked measurements. The
watermark detection of a mean colluded dataset is always 100% successful if the
correct number of colluders is given to the algorithm due to being able to arbitrary
combine watermarks.

We are, however, more interested in providing the watermark similarities of col-
luded datasets without having to combine watermarks in the watermark detection.
Table 8 summarizes the results of the simulation where a different number of colluders
work together. In the first configuration two colluders attacked the watermark by
computing the mean of their watermarked fragments (with Watermark 1 and 2); in the
second configuration three colluders attacked the watermark by computing the mean of
their watermarked fragments (with Watermark 1, 2 and 3); and so forth. One can see in
the results that even without computing watermark combinations the watermark sim-
ilarity of each colluder is slightly increased compared to watermark similarities of
innocent data users.

Table 6. Example robustness against deletion attacks

Frequency Matching fragment similarity Matching watermark similarity
1 2 3 4 5

5 99.86% 100.00% 88.39% 87.64% 88.47% 89.11%
4 99.87% 100.00% 88.86% 87.74% 89.22% 88.65%
3 99.86% 100.00% 88.73% 88.17% 88.96% 88.85%
2 99.86% 100.00% 88.01% 88.22% 89.20% 88.79%

Table 7. Example robustness against subset selection attacks

Index Matching fragment similarity Matching watermark similarity
1 2 3 4 5

100–159 99.87% 100.00% 89.97% 89.26% 89.35% 88.00%
100–147 99.85% 100.00% 89.43% 87.84% 88.39% 87.07%
100–135 99.84% 100.00% 88.29% 85.68% 87.62% 86.51%
100–123 99.81% 100.00% 85.88% 84.41% 89.09% 85.35%
100–111 99.79% 100.00% 82.87% 88.09% 86.96% 85.86%
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In summary, the approach is robust against rounding and random value attacks at
least by the watermark combination of multiple fragments if the attacks do not modify
the data exceeding the usability constraint. Because of the time dependent detection,
the approach is robust against deletion and subset selection attacks. Nevertheless, the
time dependent detection also results in a vulnerability against attacks targeting the
time field, e.g. time shifting attacks. Finally, the approach is robust against mean
collusion attacks especially if watermark combinations are computed. Thus, in sum-
mary, the approach is robust against the evaluated attacking methods.

It should be noted that also other relevant attacks against watermarking of sensor
data exist. Imagine, as an example, an attacker who captures data sent by sensors and
compares it with the watermarked data obtained from the data platform. In this paper
we, however, do not consider such attacks.

4.3 Performance

The performance is evaluated by measuring the time required for watermark embed-
ding and watermark detection. The performance studies were conducted on a Lenovo
Thinkpad T470p with a locally installed PostgreSQL2 database and the file system for
data exchange. It should be noted that the time totals in the following two tables are
more than the sum of the components because they include computational overhead.

Simulation 6 (Watermark Embedding). The watermark embedding performance
depends on the number of requested fragments. Table 9 provides an exemplary per-
formance report of watermark embedding of requested datasets with different sizes. The
report shows that the time required for watermark embedding increases almost linearly
for every additional requested fragment. Nevertheless, the time required for watermark
embedding may be acceptable for practical use.

Table 8. Example robustness against mean collusion attacks without watermark combinations

Colluders Matching fragment similarity Matching watermark similarity
1 2 3 4 5

1, 2 99.90% 94.32% 94.32% 89.21% 90.89% 90.27%
1, 2, 3 99.91% 93.55% 92.92% 92.81% 90.80% 90.82%
1, 2, 3, 4 99.92% 93.11% 92.86% 92.23% 93.10% 90.85%
1, 2, 3, 4, 5 99.93% 93.13% 92.62% 92.00% 92.63% 92.68%

Table 9. Example performance of watermark embedding

Number of
fragments

Database
retrieval

Watermark
embedding

Dataset
providing

Total

1 205 ms 223 ms 109 ms 546 ms
7 329 ms 1 306 ms 573 ms 2 218 ms
29 410 ms 5 611 ms 2 336 ms 8 367 ms

2 https://www.postgresql.org/.
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Simulation 7 (Watermark Detection). The watermark detection performance depends
on the suspicious dataset’s number of fragments, the number of fragments used in the
fragment similarity searches, the number of already embedded watermarks of the
matching fragments and the number of colluders given to the detection. For the sake of
simplicity, we only evaluate the detection performance using a single watermarked
fragment. Furthermore, we only evaluate the detection performance without combining
watermarks because computing all possible combinations of multiple watermarks
quickly escalates. Table 10 provides an exemplary performance report of watermark
detection using different settings. Therefore, we randomly generated fragments stored
in the database with equal timestamps such that fragment similarity search has to be
performed for each generated fragment. We also set up a different number of water-
marks for the fragment used for watermark detection such that the watermark similarity
search has to be performed for each watermark. The report shows that for every
additional fragment and every additional watermark, the detection performance
decreases. Nevertheless, the detection performance may be acceptable for practical use.

In summary, the performance of watermark embedding and detection is sufficient
for practical usage. Considering a physician who typically requests data of a day, week
or month, the additional effort for watermark embedding is manageable.

5 Application Scenario: OwnYourData Semantic Containers
– My Personal Connected Health

This section describes an implementation and a concrete use case of digital water-
marking in semantic containers – a framework to exchange data between multiple
parties, which is promoted by OwnYourData as a privacy-preserving way of sharing
data. OwnYourData is an Austrian non-profit organization aiming to foster sharing of
personal data. Recently, OwnYourData was awarded the status of a MyData Operator3

in recognition of providing a human-centric infrastructure for personal data manage-
ment and sharing.

Table 10. Example performance of watermark detection

Number of
fragments

Number of
watermarks

Fragmentation Watermark
detection

Total

1 1 50 ms 240 ms 321 ms
1 100 42 ms 559 ms 606 ms

100 1 47 ms 1 663 ms 1 716 ms
100 100 43 ms 1 987 ms 2 035 ms

1 000 1 46 ms 24 690 ms 24 741 ms
1 000 100 40 ms 25 025 ms 25 071 ms

3 https://mydata.org/operators/.
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Building on the semantic container approach originally developed for decentralized
aeronautical information management [3], OwnYourData has further developed
Semantic Containers into a data mobility platform to exchange data in a secure and
traceable manner. An OwnYourData Semantic Container is a package containing a
dataset, semantic metadata describing the dataset and processing capabilities, together
with all the software necessary to interact with the data.

With 425 million adult people diagnosed with Diabetes worldwide this growing
epidemic requires adequate resources – including a data-driven approach for managing
the complex drug adjustment to control blood glucose levels. Self-monitoring devices
of blood glucose provide comprehensive insight for physicians, researchers, and the
pharmaceutical industry but at the same time require measures to protect this personal
identifiable information when sharing with individuals and companies. In the course of
the EU-funded project MyPCH4 this challenge was addressed using Semantic Con-
tainers as data sharing platform.

The Data Donation Dataflow5 developed in the course of the MyPCH project
demonstrates extracting periodic blood glucose measurement from a person with dia-
betes through Tidepool6 and storing this data in a local Semantic Container. Any data
request to this container requires authentication and provides a unique fingerprint (i.e.,
watermark) applied to the response. In case the receiving party leaks the received
dataset and an unauthorized dataset appears on the internet the person with diabetes can
match this dataset against the data in the Semantic Container to identify similarity with
the original data and then check if individual fragments (data from a specified day)
match the applied digital watermarking for all authenticated accounts.

To detect unauthorized distribution of Semantic Containers or of the data they
contain, the watermarking approach presented in this paper was implemented as native
capability within the Semantic Container framework, i.e., being part of the Semantic
Container base image7. The Semantic Container core functionality including digital
watermarking is provided as a REST API8. The ability to track unauthorized distri-
bution of data is the basis for trust in the platform and should encourage users to share
data.

6 Related Work

In this section we give a brief overview of the state of the art and how our settings and
design options relate to it. With the health sensors producing time-indexed sequences
of measurements, personal health sensor data may be regarded as time series data, c.f.
[4]. Typically, watermarking is used for data leakage detection [5].

4 https://wiki.geant.org/display/NGITrust/Funded+Projects+Call+1.
5 https://github.com/sem-con/sc-diabetes/tree/master/dataflows/Data_Donation.
6 https://www.tidepool.org/.
7 https://github.com/sem-con/sc-base.
8 https://api-docs.ownyourdata.eu/semcon/.
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Existing watermarking techniques for time series data focus on, among others,
tamper proofing and authentication, as shown in a review by Panah et al. [4]. We use,
however, watermarking for avoiding unauthorized re-sharing of personal health sensor
data. Furthermore, blind watermarking techniques of biomedical time series data has
been proposed by Duy et al. [6] and Pham et al. [7], respectively. Considering the
assumed setting with personal health sensor data stored in a database not being
modified, we use informed watermark embedding to improve the imperceptibility of
the watermark and we use non-blind watermark detection to improve detection per-
formance [1]. Ayday et al. [8] proposed a collusion-secure watermarking technique of
sequential data (including time series data) for data leakage detection. In contrast to
Ayday et al. [8], we aim to make every single measurement that is shared part of the
watermark to increase robustness against certain attacks but still considering preserving
the usability of the data.

7 Summary and Future Work

In this paper, we proposed and evaluated a watermarking approach for data leakage
detection of personal health sensor data. This approach may also be applicable to
different kinds of sensor data because it is based on watermarking only the value fields
of measurements. The approach is informed, meaning that both watermark embedding
and detection take advantage of an existing copy of the original data. In addition, the
watermark embedding is configurable by a usability constraint which depends on the
sensor type of the measurements being watermarked. The approach is also robust
against several attacks including mean collusion attacks. The performance of water-
mark embedding and detection is sufficient for practical use.

The watermarking approach provides high extensibility and adaptability because
the algorithms for watermark embedding and detection can be arbitrarily extended or
adapted. In addition, the watermark detection can be implemented or further improved
even if the watermarking system is already in production.

Future work may improve the algorithms of watermark embedding and detection.
In case of watermark embedding, especially watermark generation may be improved to
enable fast generation of maximally different and very well matching watermarks. In
case of watermark detection, improvement can be made by more time-independent
similarity searches, criteria to limit the number of relevant fragments for fragment
similarity search and considering multiple matching fragments.

Acknowledgments. Part of this work was conducted as part of the MyPCH project. This project
received funding from the EU’s Horizon 2020 program for research and innovation, NGI_Trust
funds via the Grant Agreement Number 825618.
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Abstract. A technique is put forward to hide data into an animated
GIF by exploiting the transparent pixels. Specifically, a new frame is
crafted based on the data to be embedded. The newly crafted frame is
inserted between 2 existing frames, and the delay time of the affected
frames are adjusted accordingly to achieve complete imperceptibility. To
the best of our knowledge, this is the first attempt to hide data into
an animated GIF by exploiting the transparent pixel. Irregardless of the
characteristics of the animated GIF image, the proposed method can
completely preserve the quality of the image before and after hiding data.
The hiding capacity achieved by the proposed method is scalable, where
more information can be embedded by introducing more frames into the
animated GIF. While file size expansion is inevitable, reverse zero run
length is adopted to suppress the expansion. The proposed method is
reversible, i.e., the original image can be recovered.

Keywords: Transparent pixel · Animated GIF · Complete quality
preservation · Data hiding · Reversible

1 Introduction

Graphic interface format (GIF) is a highly portable and platform-independent
image file format designed to show moving pictures through low bandwidth Inter-
net. It was developed by CompuServe in 1987, where further innovations such
as dirty rectangular and transparent pixel took place after the disclosure of the
GIF 89a specifications [1]. Although animated GIF contains no sound/voice, the
short visual content shows dynamic content, tells story, and captures emotion [4].

The popularity of animated GIF has been decaying, but recently social net-
working service platforms and online advertisers are making good use of ani-
mated GIFs despite broadband network connectivity. These creative utilizations
of animated GIF give new life to the originally dull image, including the transi-
tion of different combinations of outfit/shoes on the same model, handbag of a
specific model in different colors, to name a few. Furthermore, animated GIFs
c© Springer Nature Switzerland AG 2021
X. Zhao et al. (Eds.): IWDW 2020, LNCS 12617, pp. 125–135, 2021.
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can be easily generated nowadays thanks for the availability of freely available
encoder in many platforms, including online websites. There are also dedicated
websites to blog about, share, search, and create animated GIFs [2,5]. Moreover,
users also use animated GIFs in instant messaging platform and online forum to
show reactions or emotions.

Due to its popularity and large number in existence, many data hiding meth-
ods are designed to better manage GIFs over the years. Traditionally, data is
hidden into a digital content such as image to convey secret message [6,10]. One
of the earliest techniques designed for GIF is proposed by Kwan, where the color
palette is arranged in certain way to convey a secret message [8]. However, the
hiding capacity is low. In another technique called EzStego, Machado [9] pro-
posed to analyze the color palette of a GIF image and sort the indices based on
luminance. If an index needs to be replaced for hiding data, the nearby indices
(post- sorting) are considered. Later, Fridrich et al. [3] proposed to match the
parity of the sum of RGB triplet values to the data bit. The nearest RGB triplet
with matching sum is selected to represent the message bit. Data can also be
hidden without causing any distortion (i.e., complete quality preservation [16]),
but the requirement is to start with a GIF with at least 1 un-referenced indice.
Kim et al. is able to hide up to 8 bits per pixel without causing distortion when
there at least 128 un-referenced indices [7]. Recently, Wang et al. put forward
a technique to quantize colors in GIF [14]. Two similar colors C1 and C2 in
the color palette are combined by taking their weighted average to generate a
new color, where the notion of similarity is defined by some risk function. Pixels
having the index value of C1 or C2 are manipulated to hide data.

Although there are techniques designed to hide data into animated GIF,
they are treating each frame as a static image, where existing techniques such
as EzStego [9] and Fridrich et al.’s method [3] are deployed to hide data into the
selected frames. In other words, the conventional techniques either modify the
pixel index, color table entries, or the combination of both, where distortion is
inevitable. In spite the fact that LZW compression is exploited to hide data in
GIF [12], other parts of the GIF structure remain unexplored, particularly the
parts related to animation in GIF. Therefore, in this work, we propose to hide
data into an animated GIF file, where new frames are crafted based on the data
to be hidden. To the best of our knowledge, our technique is the first of its kind
to hide data by inserting new frames and using transparent pixel.

While the conventional techniques surveyed above are mostly designed for
steganography, our proposed method can be utilized in the applications of data
hiding such as fragile watermark for tamper detection and annotation. In addi-
tion, one may envisage a spectacular demo by using the proposed method in ani-
mated GIF thanks to its scalable capacity functionality. For example, a binary
animation can be hidden in an animated GIF, which is apparently normal.
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(a) File structure

(b) Graphic Control Extension.
Reproduced from [11].

Fig. 1. File structure of animated GIF and its graphic control extension.

2 Overview of GIF File Structure

Figure 1(a) shows the structure of a GIF file, which consists of protocol blocks
(for set-ups) and sub-blocks of graphics. Specifically, an animated GIF A of
dimension M × N pixels consists of an assemble of frames Af so that A = {Af}
for f = 1, 2, · · · , F , where F is the total number of frames. The logical screen
descriptor contains information such logical screen width and height, background
color index, etc. [1]. On the other hand, the global color table consists of 256
entries of RGB-triplets, and there is a function C that maps index to integer
RBG-triplet, i.e., C : [0, 255] → [0, 255] × [0, 255] × [0, 255]. To facilitate the
presentation, let Af (x, y) ∈ {0, 1, · · · , 255} denote the index at position (x, y)
within frame Af , where 1 ≤ x ≤ M and 1 ≤ y ≤ N . Each frame Af consists
of three data blocks, namely: graphic control extension, image descriptor, and
image data - see Fig. 1(b) [11].

Next, we focus on Transparent Color Flag (TCF) within the Packed Field
and Transparent Color Index (TCI). When TCF is set to TRUE, it enables an
index to be utilized as the transparent pixel, where color from a previous frame
is rendered instead of the color associated with the index. When TCI = τf =←
169 for example, the index ‘169’ is reserved and utilized for transparent pixel.
Therefore, if Af (x, y) = 169 = A916, the color C(169) (i.e., triplet of RBG
value) will not be displayed at position (x, y) in frame Af . Instead, the color
from the same location in the previous frame, i.e., Af−1(x, y), will be rendered.
The transparent pixel concept is introduced for compression purposes. Although
its performance varies depending on the characteristics of the animated GIF, a



128 K. Wong et al.

Fig. 2. Illustration of Af ′(x0, y0) referring to Af (x0, y0) = τf , i.e., transparent pixel.
The actual color (i.e., index 213) is traced and retrieved from Af−1. Here, (x0, y0) refer
to the center of the 3 × 3 image block.

compression ratio of 1.63:1 is reported in [13]. On the other hand, the disposable
method informs the decoder what to do with the current frame Af when the
decoder moves on to the next frame Af+1. A value of ‘0’ implies that the image
is static and the decoder cannot draw anything on top of it. This value is used
for non-animated (i.e., static) GIF. On the other hand, a value of ‘1’ informs the
decoder to leave the current image on screen and draw the next image on top of
it. There are other modes of operation but we omit the presentation here due to
space limitation. The length of display for each frame Af is controlled by using
the value as specified in the Delay Time field (denoted by df ). Basically a frame
Af will stay on the screen for df centi-seconds (i.e., 1/100 of a second). For
the purpose of this work, we set TCF to TRUE, and use ‘1’ for the disposable
method.

3 Proposed Data Hiding Method

In this section, we first propose a pre-processing step to prepare the animated
GIF A for data hiding purpose. The actual data hiding and extraction processes
are then put forward. Finally, we explain how reverse zerorun length encod-
ing [16] is adopted to overcome the problem of file size increment.

3.1 Pre-processing

A new frame Af ′ is created and inserted between Af and Af+1 to facilitate
data hiding. Each pixel index Af ′(x, y) is eventually modified to hide data.
Specifically, a new frame Af ′ is created by copying all indices from Af , i.e.,

Af ′(x, y) ← Af (x, y). (1)

Here, the same indices (hence colors) are copied from Af to ensure imperceptibil-
ity of the newly inserted frame Af ′ . However, Af ′ requires additional treatment
when there is at least one transparent pixel occurring in Af , or more precisely,
|{(x, y) : Af (x, y) = τf}| > 0, where |X| refers to the cardinality of the set X.
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Specifically, due to the simple duplication process of Eq. (1), an issue arises when
Af (x0, y0) = τf ∈ [0, 255], where the index τf is defined as the transparent pixel
in frame Af . In other words, Af (x0, y0) = τf means that an actual color in an
earlier frame, i.e., Aα(x0, y0), is referred for display, where α < f . In the event
we set τf ′ �= τf (i.e., we use different indices to define the transparent pixels in
Af and Af ′), the actual color of C(τf ) will be displayed at Af ′(x0, y0), instead
of the color in an earlier frame, namely, Aα(x0, y0).

To overcome the aforementioned issue, the main objective of the pre-
processing is to eliminate all transparent pixels in the newly created frame Af ′ ,
where every occurrence of the transparent index τf will be substituted by the
actual color (i.e., a RGB-triplet referred by an index) in the earlier frame Aα

for α < f . Figure 2 illustrates a scenario where Af (x0, y0) = τf is a trans-
parent pixel, which refers to the color shown at position Af−1(x0, y0). Hence,
the actual color C(213) shown at position Af−1(x0, y0) is traced and copied, in
other words, Af ′(x0, y0) = 213. The process is repeated to eliminate all trans-
parent pixels in Af ′ . Eventually, the newly added frame Af ′ consists entirely of
indices to actual RGB-triplets without any transparent pixels. In other words,
|{A′

f (x, y) = τf}| = 0.
Next, we have 2 scenarios to manage, namely, Af has a defined transparent

pixel, and Af does not have a defined transparent pixel. For the former scenario,
we continue to utilize the same transparent pixel, i.e, τf ← τf , instead of finding
another index for such purpose. On the other hand, for the latter situation,
we have to choose the transparent pixel τf ′ carefully. Specifically, all indices in
frame Af are scanned and the histogram Hf of the indices is constructed. Let
Hf (i) denote the frequency of occurrences for the index i, where 0 ≤ i ≤ 255.
We select the index i0 such that Hf (i0) is the minimum (i.e., occurring the
least in Af ), and set τf ′ ← i0. Note that in practice, a GIF image does not
utilize all 256 indices. Therefore, in general, Hf (i0) = 0 holds true and we can
hide 1 bit per pixel (bpp). On the other hand, when Hf (i0) > 0, we skip the
positions Af ′(x, y) (i.e., newly added frame) for data hiding when Af (x, y) = i0
(i.e., original frame). Here, we loose exactly Hf (i0) number of pixel locations
for data hiding, and the embedding reduces to 1 − Hf (i0)/M/N bpp.

In both cases, data hiding can take place, where defining a new transparent
pixel will not confuse the extraction process with the introduction of usable and
non-usable positions in Sect. 3.2.

3.2 Data Hiding

To hide data, the new frame Af ′ is compared with Af at each pixel location.
Specifically, the position Af ′(x, y) is skipped and we call it non-usable if the
following two conditions are true simultaneously:

τf �= τf ′ (2)
Af (x, y) = τf ′ . (3)

Note that such a decision is made to avoid ambiguity during data extrac-
tion because due to the simple duplication process (i.e., Eq. (1)), we cannot
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differentiate whether Af ′(x, y) = τf ′ is encoding ‘0’ (see Eq. (4)), which is mod-
ified from Af (x, y), or it is actually the original index for that pixel location.
Therefore, we skip these positions.

On the other hand, Af ′(x, y) is called usable and it is exploited to hide data
by using the basic rules below:

Af ′(x, y) ←
{

τf ′ if mk = 0;
‘No change’ otherwise. (4)

Here, the payload m is a binary sequence {mk} ∈ {0, 1}. The encoding rule basi-
cally utilizes the transparent pixel index to encode ‘0’, and utilizes the original
index to encode ‘1’. The process is repeated for each position (x, y) in the frame
Af ′ in the raster scanning order.

In order to maintain the length of the original animated GIF, the delay
time for frame Af and Af ′ need to be adjusted. Specifically, we set df ′ ←
�df/2�, where �z� refers to the largest integer smaller than or equal to z. Next,
we update df ← df − df ′ . Essentially, the proposed method splits Af into 2
frames, both having the exact same pixel values on screen, and the overall display
duration (i.e., delay time) remains unchanged. Since the exact same pixel values
are displayed for the same duration, the quality is completely preserved. In other
words, the pixel values rendered from the original and processed (embedded with
data) animated GIF images are exactly the same, and these pixels appear on
the screen for exactly the same duration. In fact, the duration df and df ′ can
be further manipulated to hide data, which will be explored as our future work.

By inserting a new frame between every 2 consecutive original frames, we
are increasing the number of frames from F to 2F − 1. In fact, to improve
hiding capacity, more new frames can be generated and inserted between any
two consecutive frames, including the pairs Af and Af ′ as well as Af ′ and Af+1.
This process can be repeated as long as all delay times (i.e., df and df ′) remain
≥ 0.02s, which is the smallest permissible value allowed by web browser.

3.3 Data Extraction and Reversibility

To extract data from the animated GIF embedded with data A′, the inserted
frames A′

f ′ are first identified. This process can be achieved by some pre-
arrangement, for example, a new frame is always added between 2 original frames
(i.e., Af and Af+1), and hence the odd numbered frames in A′ are the newly
inserted frames. The status (being usable or unusable) of each position in A′

f ′ is
verified by referring to Eq. (2) and (3). The sequence of embedded bits in A′

f ′ is
extracted from the usable locations by producing ‘1’ when A′

f ′(x, y) = A′
f (x, y)

or ‘0’ when A′
f ′(x, y) = τf ′ . The process is repeated for all inserted frames A′

f ′ .
The proposed method is obviously reversible, where the newly added frames

Af ′ can be removed and the original delay time df can be reassigned to recover
the original animated GIF image.
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3.4 Reducing File Size Increment

When a new frame is inserted, file size is inevitably increased. To reduce file size
expansion, the reverse zerorun length (RZL) encoding technique [16] is adopted.
Note that for each newly created frame Af ′ , prior to any modifications due
to data hiding purposes, Af ′ encodes a sequence of 1’s with length M × N (or
slightly lesser depending on Hf (τf ′) in Af ). Instead of using Eq. (4) to hide data
directly, the message is first pre-processed. Specifically, for each newly created
frame Af ′ , the data to be hidden φf is divided into segments each of length
k-bits, i.e., φf = [φ1

f , φ2
f , · · · , φD

f ] where D = |φf |/k. Here, each segment φk
f is

of length k bits except for φD
f , which can assume a length ≤ k bits.

Next, the decimal equivalent of φi
f , denoted by di

f , is computed and hence
0 ≤ di

f ≤ 2k − 1. Subsequently, di
f is utilized to generate a new segment μi

f for
i = 1, 2, · · · ,D. The segments μi

f are generated as follows:

μi
f = 00 · · · 0︸ ︷︷ ︸

di
f

1, (5)

which is sequence of di
f zeros, followed by a ‘1’ that serves as a delimiter. Note

that μi
f is of variable length. The new representation of the message, i.e., μi

f , is
then embedded by using Eq. (4). If the newly inserted frame Af ′ is unable to
hide all segments μi

f , a new frame Af ′′ can be inserted between Af ′ and Af+1

to create more room for data hiding.
To extract the hidden data segment encoded in the RZL format, the sequence

of 0’s and 1’s are first extracted from all usable pixel locations, where A′
f ′(x, y) =

τf ′ outputs a ‘0’, otherwise a ‘1’. The extracted sequence is then analyzed, where
the number of 0’s preceeding the value 1 is counted and converted into a binary
number with k-bits. For example, the following sequence of 19 bits are extracted
from 19 usable pixel locations:

00000︸ ︷︷ ︸
5

1 00000000︸ ︷︷ ︸
8

1 000︸︷︷︸
3

1. (6)

The corresponding decimal values 5, 8 and 3, are converted into binary numbers
101, 1000 and 11, respectively. Finally, leading zeros are injected to make up the
number of bits (i.e., length) for each segment. Suppose k = 6, then the segments
become 000101, 001000, and 000011, respectively.

4 Experiments

The proposed data hiding method is implemented in Python. 8 animated GIFs
from the world wide web are considered for experiment purpose, where the first
frame of each animated GIF is shown in Fig. 3. These GIFs are either gener-
ated by using graphic software or merging frames/scenes from video recording.
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(a) Mov01 (b) Mov02 (c) Mov03 (d) Mov04

(e) Mov05

(g) Mov06

(j) Draw1
(k) Draw2

Fig. 3. First frame of each animated GIF considered for experiment.

Additional information of these animated GIFs can be found in Table 1. They
are also made available online at [15] for reproducibility and future comparison
purpose. Google Chrome (version 73.0.3683.103), Safari (version 12.0.2), Firefox
(version 66.0.3) and Photos (system viewer for Windows 10) are utilized to dis-
play the animated GIFs. The processed animated GIFs can be viewed by using
the aforementioned browsers, and this observation also confirms that the pro-
cessed images are format compliant. It is verified that the hidden data can be
extracted by checking the status (i.e., usable or non-usable) of each pixel loca-
tions using Eq. (3). By visual inspection, the GIFs appear to be identical before
and after hiding data. Unless specify otherwise, F −1 new frames are introduced
to an animated GIF with F frames. Although frames of different sizes can be
created, for experiment purposes, the dimension of each new frame A′

f is set to
be the same as that of the original frame Af in the respective GIF.

Note that we do not evaluate image quality by using metrics such as MSE
or SSIM because the exact same RGB-triplet is rendered at each position, i.e.,
complete quality preservation. It is also noteworthy that, irregardless of the
statitics of the host image, the proposed method can surely embed data without
causing any quality degradation, while the conventional methods degrade the
image quality because 2 color indices are combined to free up an index [14] or
the pixel value is modified by mapping it to different color index [3].
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Table 1. Basic information about the animated GIFs considered for experiments.

GIF

filename

Image

dimensions

Total frames

(original)

Bit stream size (KBytes)

Original Basic RZL

k = 2 k = 3 k = 4 k = 5 k = 6

Mov01 350 × 196 71 2,000 3,958 3,303 3,022 2,722 2,463 2,283

Mov02 499 × 273 17 472 1,436 1,111 960 805 682 596

Mov03 500 × 254 15 1,276 2,259 1,934 1,776 1,622 1,492 1,404

Mov04 250 × 141 25 505 958 821 750 673 613 568

Mov05 260 × 208 23 485 1,036 875 792 697 624 569

Mov06 480 × 270 17 1,301 2,404 2,054 1,893 1,708 1,558 1,453

Draw1 400 × 426 6 665 1,087 934 865 798 747 714

Draw2 670 × 503 52 2,488 6,754 5,334 4,894 4,262 3,685 3,239

4.1 Hiding Capacity

The number of bits that can be inserted into each GIF (i.e., payload) of each
image is recorded in Table 2. All animated GIFs considered in this work consist of
transparent pixel in each frame, therefore we could conveniently set τf ′ ← τf . As
a result, all pixel locations are usable. When using the basic rules (i.e., Eq. (4))
to hide data, the payload is 1 bpp for each added frame. When using RZL, the
payload decreases when the parameter k is increased. The payload decreases by
a factor of ∼3 when k increases from 2 to 6. Although the payload achieved by
RZL(6) is slightly less than 1/5 of Basic, the suppression of bit stream expansion
is significant. On the other hand, the conventional methods are all limited by
the number of frames as well as number of pixels in the animated GIF to hide
data, i.e., non-scalable, while the proposed method is scalable at the expense of
larger file size.

4.2 File Size Expansion

It is expected that the bit stream size will expand since new frames are intro-
duced to hide data. The results are recorded in Table 1, with and without the
implementation of RZL. When using the basic rule to hide data, the average
expansion of bit stream size is 66.9%, which is reasonable since the number
of frames is almost doubled. For completion of discussion, we also record the
embedding efficiency η, which is defined as the number of embedded payload
bits for every increased bit in the host image. Specifically, we consider the ratio
of κ(A, k) to Δ(A,A′), where κ(A, k) is the embedding capacity for the image A
when using the parameter k, and Δ(A,A′) = FS(A′) − FS(A) refers to the file
size difference between the original image A and the processed image A′. Here,
higher value of η implies better performance, and vice versa. The average result
η̄ is recorded in the last row of Table 2 for k = 1, 2, · · · , 6. On average, the host
animated GIF image spends 1/0.28 ∼ 3.8 bits for hiding 1 bit of the payload.

On the other hand, when RZL is adopted, it is obvious that the expansion
in bit stream size is suppressed, where the effect is more apparent for larger k.
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Table 2. Embedding capacity (KBytes) for various k value after applying reserve zero
run length encoding [16]

Image Basic k = 2 k = 3 k = 4 k = 5 k = 6

Mov01 586 334 317 247 165 101

Mov02 266 152 144 112 75 47

Mov03 217 123 117 91 61 38

Mov04 103 59 55 42 29 18

Mov05 145 83 79 61 42 26

Mov06 253 144 138 105 71 44

Draw1 104 59 56 43 29 18

Draw2 2,098 1,198 1,142 885 600 375

η̄ 0.28 0.24 0.29 0.32 0.34 0.35

Specifically, the average bit stream size expansion drops from 44.8% to 16.7%
when k increases from 2 to 6. However, as noted in the previous sub-section,
payload is reduced when k increases. Interestingly, the embedding efficiency
decreases initially when RZL is adopted (i.e., k = 2), but the performance
improves steadily after for k > 2. A potential influence to the performance
is the LZW compression process, which is part of the GIF standard. This will
also be explored as one of our future work.

In contrast, the conventional mostly maintains the file size, with small vari-
ation due data hiding. While the proposed method and conventional methods
cited in this paper have their pros and cons, they can be combined to comple-
ment one an another. The combined deployment will be further explored as our
future work.

5 Conclusions

In this work, transparent pixel in animated GIF is manipulated to hide data.
Specifically, a new frame is introduced between 2 original frames, and each pixel
location is manipulated to hide data. When a location is assigned the transparent
pixel index, color from the previous frame is copied and rendered. Delay time of
each frame is adjusted accordingly to ensure the duration of the animated GIF
remains unchanged. Complete quality preservation is achieved irregardless of the
characteristics of the animated GIF image, and the proposed method is reversible
where the original animated GIF can be perfectly restored. Experiments suggest
that data can be hidden into and extracted from the animated GIF.

In future work, we want to explore how the delay time parameter in each
frame can be utilized to hide data. Furthermore, the joint utilization of the
proposed and the conventional data hiding methods will be investigated. The
influence of LZW compression in GIF on the file size increment due to data
hiding will be also be investigated.
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Abstract. Visible reversible watermark can clearly identify the copy-
right of digital works, and can completely remove the watermark when
it is needed. It can be utilized for visibly labeling the copyright of digi-
tal host. To protect the copyright of 3D mesh model, a visible reversible
watermarking based on mesh subdivision is proposed in this paper. First,
the smooth area of the 3D mesh model is projected onto the 2D plane for
cropping and subdivision to achieve the embedding of the visible water-
mark. Then, by comparing the vertex information of the original model
and the model with visible watermark, the index of the visible watermark
vertex is obtained, and it is embedded as a reversible watermark to the
rest of the model. The visible watermark can be removed by deleting the
vertices corresponding to the reversible watermark. Experimental results
and analysis show that the visible watermark and the host are tightly
integrated, and it is robust to translation, rotation, scaling, mesh subdi-
vision, and mesh smoothing. When unauthorized users try to delete the
watermark or steal the 3D mesh model, the host will be destroyed and
the model will be unusable. It has potential application in the copyright
protection of the 3D mesh model.

Keywords: 3D mesh model · Visible reversible watermark · Mesh
subdivision · Copyright protection

1 Introduction

In recent years, with the rapid development of computer-aided design, virtual
reality, 3D model processing and other technologies, 3D mesh models have played
an important role in industrial manufacturing, architectural design, cultural
relics protection, animation and game model design. For 3D mesh model, it
often faces three threats: data privacy leakage, malicious tampering and copy-
right disputes. If it is not well protected, it will result in risks of data security.

This work was supported in part by projects supported by National Natural Science
Foundation of China (Grant No. 92067104, U1936115, 62072055).

c© Springer Nature Switzerland AG 2021
X. Zhao et al. (Eds.): IWDW 2020, LNCS 12617, pp. 136–149, 2021.
https://doi.org/10.1007/978-3-030-69449-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69449-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-69449-4_11


Visible Reversible Watermarking for 3D Models Based on Mesh Subdivision 137

As an important method of copyright protection for digital products, digital
watermarking has been extensively developed and applied. Compared with invis-
ible watermark, visible watermark allows the observer to perceive the embedded
watermark information. It is suitable for identifying the copyright of 3D model,
and preventing illegal use of protected data, etc. For example, embedding com-
pany logo or some useful information on the 3D model can clearly identify the
model’s belonging. Moreover, visible reversible watermarking can visually pro-
tect the copyright of the host, and restore the original host by removing the
watermark without loss. They generally use the redundancy of the host to com-
press and make room for embedding watermark. Currently, visible reversible
watermarking is mainly focused raster image [4,10,12], few works has been done
to vector graphics [9]. As for 3D mesh model, although some reversible water-
marking schemes have been investigated in the past years, visible reversible
watermarking has not been reported to the best of our knowledge.

In this paper, leveraging the elements and data characteristics of the 3D mesh
model, a visible reversible watermark scheme for the 3D mesh model based on
mesh subdivision is proposed to explicitly identify the copyright of model. The
main contributions of the paper are summarized as follows.

(1) A visible reversible watermarking algorithm for 3D mesh model based on
mesh subdivision is proposed. To the best of our knowledge, it is the first
work on the visible reversible watermarking for 3D mesh model.

(2) Experimental results show that the watermarking algorithm has good robust-
ness to translation, rotation, scaling, mesh refinement and mesh smoothing,
the watermark is tightly integrated with the host, and the model will be
destroyed or degraded if an unauthorized user tries to remove the water-
mark.

The rest of the paper is organized as follows. The related work is introduced in
Sect. 2; the preprocessing of 3D mesh model is described in Sect. 3; The proposed
scheme is depicted in Sect. 4; experimental results and analysis are provided in
Sect. 5. Finally, some conclusions are drawn in Sect. 6.

2 Related Works

2.1 Reversible Watermarking for 3D Mesh Model

Jhou et al. proposed a reversible watermarking algorithm for 3D mesh model
based on vertex histogram translation [6]. It used the last few digits of the dis-
tance between the vertex and the centroid of the model to construct a histogram,
and then the watermark is embedded through the histogram translation. How-
ever, it requires the participation of the original model in watermark extraction,
and it cannot against RST transformation. Chuang et al. built a histogram
using the standard distance from the vertex to the centroid of the model, and
then used the histogram translation technique to achieve reversible informa-
tion hiding [3]. Since the standard distance is affine invariant, it is robust to
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RST transformation, but it needs to record side information to complete the
watermark extraction and carrier recovery process. Huang et al. calculated the
distance between vertices according to the geometric similarity of the vertices in
the neighborhood to construct a histogram, and realized the information embed-
ding through histogram translation [5]. It effectively reduced the distortion of the
watermark model, and is robust to vertex reordering operations, but its embed-
ding capacity is small. Wu et al. proposed a 3D model reversible watermarking
based on prediction error expansion [11]. It first obtains a set of independent
vertices from the 3D mesh model, each of which uses the centroid of its neigh-
boring vertices as prediction vertex, and then uses prediction error expansion
to achieve watermark embedding. The watermark extraction and carrier recov-
ery can be accomplished without the original model and other information, but
the correlation of the vertices is not fully utilized, which leads to large dis-
tortion of the watermarked model more obvious. Zhu et al. proposed to select
embeddable points based on the vertex curvature, and use the centroid coor-
dinates of the vertex neighborhood as the coordinate prediction value of the
embeddable points. Prediction error expansion is utilized to achieve information
embedding [15]. It effectively improves the invisibility of the model, and it is
robust to translation, rotation, and random noise, but its embedding capacity is
limited. Zhang et al. proposed a multi-layer multiple embedding scheme using a
hybrid strategy to predict errors [14]. It divides the area of the 3D mesh model
into a uniform area and a non-uniform area, and different strategies are imple-
mented to calculate the prediction error. The embedding strategy is adaptively
chosen according to the geometric relationship between vertices and their neigh-
boring vertices to realize information embedding. It can effectively reduce the
distortion of the watermarked model, and multiple embedding is used to increase
the capacity. Jiang et al. proposed a reversible information hiding using double-
layer prediction errors [7]. It is a reversible data hiding (RDH) algorithm for
3D mesh models based on the optimal three-dimensional prediction-error his-
togram (PEH) modification with recursive construction coding (RCC). Firstly,
it designs a double-layered prediction scheme to divide all vertices of 3D mesh
model into the embedded set and the referenced set according to the odd-even
property of indices in the vertex list. After that, the prediction errors(PEs) with
a sharp histogram are obtained, and every three adjacent PEs are combined
into one prediction error triplet (PET). A three-dimensional PEH with smaller
entropy than one-dimensional PEH by utilizing the correlation among PEs is
obtained. the three-dimensional PEH is projected onto one-dimensional space
for scalar PET sequence, which is suitable for using RCC. Finally, the PET
sequence and embed data are modified by RCC according to optimal probabil-
ity transition matrix(OTPM). Experimental results show that it outperforms
two state-of-the-art spatial-domain RDH algorithms for 3D mesh models.

2.2 Visible Watermarking for 3D Mesh Model

Compared with the reversible watermarking of the 3D mesh model, few stud-
ies have been done to visible watermarking. Lu et al. first proposed a visible
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watermarking for 3D mesh model [8]. Firstly, it projects the area to be embed-
ded onto a two-dimensional plane, and then the watermark is embedded in the
form of a vector. Finally, the area is projected back to the original model. The
core is to divide the triangular facets into two parts inside and outside the water-
mark. The Sutherland-Hodgeman polygon cropping can achieve good effect on
convex polygons. For concave polygons, it will be divided into several convex
polygons, which increases the complexity. Based on this, An et al. proposed a
visible watermarking algorithm for 3D mesh model based on mesh subdivision
and boundary adaptation [1]. It first generates the watermark to be embedded
through TTF character library, then selects the smoothest region of the model.
The watermark is embedded in the smoothest region. Although these two algo-
rithms achieve the visibility of the watermark, they cannot completely remove
the watermark when it is needed, which affects the usability of the 3D model.

To achieve reversibility, this paper proposes a visible reversible watermarking
scheme for 3D mesh model based on mesh subdivision based on literature [1,8].
It not only can explicitly identify the copyright of the 3D mesh model, but also
can completely remove the watermark information to obtain the original 3D
mesh model.

3 Preprocessing of 3D Mesh Model

To embed the visible watermark into 3D mesh model, some preprocessing opera-
tions need to be performed to 3D mesh model. They include the selection of the
embedding area, projection, panning, zooming operations and etc. Given a 3D
mesh model G = (V, F ), where V represents the vertex set of the 3D mesh model
V =

{
vi

∣
∣vi = (xi, yi, zi) ∈ R3, 1 ≤ i ≤ N

}
, F represents the triangular facets set

that form the 3D mesh model F =
{
fi = (vp, vq, vr) ∈ R3, 1 ≤ i ≤ Nf

}
. Here N

represents the total number of vertices in the 3D mesh model,and Nf represents
the total number of triangular facets in the 3D model. The embedded visible
watermark W can be expressed as W = (V w, Ew), where V w is the vertex set
of watermark V w = {vwi |vwi = (xw

i , y
w
i ) , 1 ≤ i ≤ Nw}, Ew is the set of edges of

the watermark Ew =
{
ewi =

(
vki , v

w
k

)∣∣vwi , v
w
k ∈ V w, 1 ≤ i, k ≤ Nw

}
, Nw is the

number of vertices of the watermark.

3.1 Selection of Embedding Area

To achieve visibility of the embedded watermark, the smooth area on the 3D
mesh model can be selected for watermark embedding. The smoothness of the
3D mesh model area can be measured by the sum of the angles between the
adjacent facets of the vertices. By calculating the sum of the average angle of
the normal vectors of triangular facets in the k-order neighborhood of the vertex
vi, the vertex with the smallest sum of average angles vimin can be found, and
it is determined as the smoothest point. It is defined by

D (vi) =
∑

n=p

d (vi) , (1)
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d (vi) =
cos−1(−→nfk ,

−→nfl)
Ni

,fk, fl ∈ Nf (vi) , (2)

where p is the order of the neighborhood of the selected vertex, d (vi) is the sum
of the average of the angles of the first-order neighborhood of the vertex, Ni is
the number of first-order neighborhood triangles of vertex vi, Nf (vi) is the first-
order neighborhood facet set of vertex vi, fk, fl are the triangular facets in the
neighborhood of vertex vi. −→nfk , −→nfl are the normal vectors of fk, fl, respectively.

After selecting the smoothest point, to improve the calculation efficiency, the
smoothest point vimin is taken as the center of the circle, and a fixed threshold r
is taken as radius, a smooth area S can be determined for watermark embedding.
Figure 1 shows the first-order neighborhood of a vertex of the 3D mesh model.

Fig. 1. The first-order neighborhood of a vertex

3.2 Projection of the Embedding Area

Since a two-dimensional watermark W is used to crop the mesh plane of
the smooth area S, the smooth area S needs to be projected onto the two-
dimensional plane. The essence of the projection is the transformation of the
three-dimensional coordinate system [13]. Projection is to transform the direc-
tion of the original coordinate axis Z axis into the direction of the normal
vector −→n = (xn, yn, zn) of the smooth point vimin under the condition that
the origin is unchanged. The two-dimensional smooth area after the projection
is recorded as P = (V, F ), and the set of vertices in this area is recorded as
V = {vi|vi = (Xi, Yi)}.

The coordinates of the watermark W and the smooth area P are both two-
dimensional coordinates. Find the maximum and minimum of the horizontal and
vertical coordinates of the watermark W and the area P . And recorded them as
xw
max, x

w
min, y

w
max, y

w
min,Xmax,Xmin, Ymax, Ymin , respectively. The coordinates

of each vertex of the watermark W is multiplied by the scaling factor. So that
Xmax −Xmin > xw

max −xw
min, Ymax −Ymin > ywmax −ywmin. After that, the center

of gravity coordinates (xw
0 , y

w
0 ) of the watermark W is aligned with the center of

gravity coordinates (X0, Y0) of the smooth area P . So that, xw
0 = X0, y

w
0 = Y0.

After these operations, the watermark W is all contained in the two-dimensional
smooth area P . It guarantees that the watermark W can be completely displayed
in the smooth area p.
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4 The Proposed Visible Reversible Watermarking
Scheme

The framework of the proposed scheme is shown in Fig. 2. It consists of four
parts: visible watermark embedding, reversible watermark embedding, water-
mark removing, and recovery of 3D mesh model.

Fig. 2. The framework of the proposed scheme

Fig. 3. The flow chart of visible watermark embedding

4.1 Watermark Embedding

For the given 3D mesh model G = (V, F ) and watermark W = (V w, Ew),
the watermark embedding includes visible watermark embedding and reversible
watermark embedding.
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(1)Visible Watermark Embedding. The process of embedding a visible
watermark is shown in Fig. 3. The specific process is as follows.

Step 1. The ray method is used to determine the positional relationship between
all vertices in the projected two-dimensional smooth area P and the watermark
W [2], and then whether the vertices in the model mesh are inside or outside
the closed area of the watermark is determined.

Step 2. According to the positional relationship between the triangular facets
in the projected two-dimensional smooth area P and the watermark W , the
triangular facets which located inside the watermark W are subdivided [1].

Step 3. The two-dimensional plane with the watermark is projected back to the
original 3D mesh model. Finally, the obtained 3D mesh model G′ = (V ′, F ′)
is the model after embedding the watermark W . And the vertex set of the 3D
model is V ′ =

{
v′
i

∣
∣v′

i = (x′
i, y

′
i, z

′
i) ∈ R3, 1 ≤ i ≤ N ′} , the triangular facets set

that forms the 3D mesh model is F ′ =
{
f ′
i =

(
v′
p, v

′
q, v

′
r

) ∈ R3, 1 ≤ i ≤ N ′
f

}
, N ′

is the total number of vertices in the 3D model, and N ′
f is the total number of

the triangular facets in the 3D model.

(2)Reversible Watermark Embedding. To restore the original 3D mesh
model, the index information of the visible watermark is embedded to the rest
of the 3D model. The specific embedding process is as follows.

Step 1. Compare the vertices of the original 3D model G and the 3D model
with visible watermark G′, and record the different vertex sequences as V m ={
vmi

∣
∣vmi = (xm

i , ymi , zmi ) ∈ R3, 1 ≤ i ≤ Nm }, where Nm is the number of ver-
tices. The vertex sequence is the visible watermark vertex sequence.

Step 2. Record the vertex index of the vertex sequence V m = {vmi |vmi = (xm
i ,

ymi , zmi ) ∈ R3, 1 ≤ i ≤ Nm
}

as M = {mi, 1 ≤ i ≤ Nm}, where Nm is the num-
ber of indexes in the sequence, and it is the same as the number of vertices in
vertex sequence V m.

Step 3. Convert the index mi in the index sequence M into binary, and add “0”
in the front of the binary to make all binary digits be the same. After that, a
binary sequence M ′ = {m′

i, 1 ≤ i ≤ Nm} is obtained.

Step 4. A stream encryption (such as RC4, etc.) is used to encrypt the sequence
M ′ under the control of watermark embedding key KH . A binary sequence M ′

E

is obtained.

Step 5. Embed M ′
E into the 3D model G′ = (V ′, F ′), and then 3D mesh model

G′′ = (V ′′, F ′′) with the visible reversible watermark is generated. The embed-
ding is accomplished by the prediction error histogram modification proposed
in [7]. It designed a double-layered prediction scheme to obtain prediction errors
with a sharp histogram by utilizing the geometrical similarity among neighbour-
ing vertices. It does not change the topology and keep the vertices for prediction
unchanged in the embedding process, which guarantees the reversibility.
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Step 6. Based on a key t, except the index contained in M , randomly generate
two indices, and their corresponding vertices are represented as reference vertices
vf1, vf2, respectively. The two reference vertices are kept as a secret.

4.2 Watermark Removal and 3D Mesh Model Recovery

The watermark removal and 3D mesh model recovery operations are performed
to 3D mesh model G′′ = (V ′′, F ′′). The specific process is as follows.

Step 1. Obtain two reference vertices, and judge whether G′′ is undergone RST
operations according to the position relationship between vf1, vf2, and v′

f1, v
′
f2.

If it is, the corresponding inverse transform are performed to G′′.

Step 2. Extract the embedded watermark sequence M ′
E from the 3D mesh model

G′′ containing visible reversible watermarks, and then obtain the 3D mesh model
Gw = (V w, Fw);

Step 3. Decrypt the sequence M ′
E with information hiding key KH to get water-

mark sequence M ′.

Step 4. Remove the added “0” in front of the m′i. So that the sequence M ′ =
{m′i, 1 ≤ i ≤ Nm} is converted into M = {mi, 1 ≤ i ≤ Nm}, and then get the
vertex index of the embedded visible watermark;

Step 5. Traverse the 3D mesh model Gw = (V w, Fw), find the vertex index
which is the same as the vertex index in the sequence M = {mi, 1 ≤ i ≤ Nm},
and delete the corresponding vertex in the 3D model Gw = (V w, Fw) one by
one. In this way, the removal of visible watermark is completed. Finally, the 3D
mesh model Gw′ = (V w′, Fw′) is obtained.

5 Experimental Results and Analysis

5.1 Experimental Results

The configuration of the experimental platform is Intel(R)Core(TM)i5-5200U
CPU @ 2.20 GHz, 8 GB RAM, Windows 8.1, Visual Studio 2017, and OpenGL.
The 3D mesh models used in the experiment are shown in Fig. 4 (a)–(c), and
the basic attributes are shown in Table 1.

Experiments are done to the above 3D mesh models, and the experimental
results are shown in Fig. 4, where the selected embedding areas are shown in
Fig. 4 (d)–(f), the watermarked 3D mesh models are shown in Fig. 4 (g)–(o),
and the 3D mesh models after removing the visible watermark are shown in
Fig. 4 (p)–(r). The attributes of the watermarked model can be found in Table
2. From the experimental results, the proposed visible reversible watermarking
is effective.
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Fig. 4. Experimental results. (a)–(c):Original 3D mesh models;(d)–(f): Selected embed-
ding areas of 3D mesh models; (g)–(o):3D mesh models with watermark; (p)–(r):3D
mesh models after removing watermark.
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Table 1. The basic information of experimental models

Graphics Number of vertices (N) Number of facets (F)

G1 34817 69630

G2 7830 15488

G3 106289 212574

Table 2. Basic information of experimental models after embedding watermark

Graphics Number of vertices (N) Number of facets (F)

G1-1 35078 70152

G1-2 35641 71278

G1-3 35191 70867

G2-1 7908 15648

G2-2 7957 15865

G2-3 7964 15760

G3-1 106407 212810

G3-2 106397 212790

G3-3 107122 218453

5.2 Performance Analysis

(1)Analysis of Reversibility. To quantitatively analyze the distortion of the
3D mesh model, the average moving distance AvgD and the maximum mov-
ing distance MaxD of all vertices are used as the measurement criteria. The
calculation is

AvgD =
1
M

M−1∑

i=0

√√
√
√

3∑

j=1

(
xij − x′

ij

)2
, (3)

MaxD = max(

√√
√
√
√

3∑

j=1

(
xij − x′

ij

)2
⎞

⎠, i ∈ {0, 1, . . . ,M − 1}, (4)

where M represents the number of vertices of 3D mesh model, xij represents
the jth coordinate of the ith vertices of the original 3D mesh model, and x′

ij

represents the jth coordinate of the ith vertices of the 3D mesh model after the
watermark is removed.

Experiments are done to analyze the difference between the original 3D mesh
model and the 3D mesh model after watermark removal, and the results are
listed in Table 3. It can be found that the average difference between the 3D
mesh model after watermark removal and the original 3D mesh model is less than
10−10, while the maximum difference is less than 10−9. The results show that the
method proposed by Jiang et al. outperforms two state-of-the-art spatial-domain
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RDH algorithms for 3D mesh models. Furthermore, for the 3D mesh models after
watermark removal, the number of vertices and the number of triangular facets
are all the same as the original ones. Therefore, it can be concluded that the
proposed scheme in this paper is reversible.

Table 3. Analysis of difference between recovery model and original model (10−10)

Graphics Number of vertices (N) Number of facets (F) AvgD MaxD

After recovery After recovery

G1 34817 69630 6.1512 34.766

G2 7830 15488 3.2147 31.953

G3 106289 212574 9.4672 30.128

(2)Analysis of Robustness. For 3D mesh models, translation, rotation and
scaling are typical operations in real applications. Robustness against these oper-
ations is very important for a reversible watermarking. Experiments were done
to the watermarked models after different RST operations. Here, the robustness
is evaluated by the correlation between watermark extracted after RST trans-
formation and original watermark, and the results are listed in Table 4. From
the results, the correlation between watermark extracted after RST transforma-
tion and original watermark are all 1.00. The main reason is that two reference
vertices are selected after watermark embedding, and the host 3D mesh models
can be restored according to two reference vertices even the watermarked 3D
mesh models suffer RST operations. Therefore, it can achieve good robustness
against RST operations.

Table 4. Correlation between watermark extracted after RST transformation and
original watermark

Operations G1 G2 G3

Rotation (ρ = 30◦) 1.00 1.00 1.00

Rotation (ρ = 60◦) 1.00 1.00 1.00

Rotation (ρ = 120◦) 1.00 1.00 1.00

Translation (2.7, −1.2) 1.00 1.00 1.00

Translation (−6.3,1.9) 1.00 1.00 1.00

Translation (−3.1,1.3) 1.00 1.00 1.00

Scaling (ζ = 0.25) 1.00 1.00 1.00

Scaling (ζ = 1.50) 1.00 1.00 1.00

Scaling (ζ = 2.00) 1.00 1.00 1.00
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Experiments are also done to evaluate the influence of mesh subdivision and
smoothing on the watermarked 3D mesh models, and the results are shown in
Fig. 5. (a)–(c). From the results, it can be found that they have little influence
on the visibility of the watermark.

Fig. 5. Experimental results on the robustness of the 3D mesh model. (a)–(c): Sub-
division attack; (d)–(f): Smooth attack; (g)–(o): The result of the attacker manually
removing the watermark.

Meanwhile, analysis is made to analyze the possibility of unauthorized
removal of the visible watermark, and the experimental results are shown in
Fig. 5 (h)–(j). Since the adversary do not know the specific index position of the
watermark vertex, they can only delete the watermark vertex one by one through
the editing tool. Since there are thousands of embedded watermark vertices, it
is difficult to delete all watermark vertices. In addition, the watermark vertices
and the rest vertices of 3D mesh model are tightly integrated. In the process
of deleting the watermark vertices, the rest of the 3D mesh model’s vertices
are inevitably deleted, which will destroy the 3D mesh model and the 3D mesh
model is useless.

6 Conclusion

In this paper, a visible reversible watermarking for 3D mesh model based on
mesh subdivision is proposed. It not only can explicitly identify the copyright
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of the 3D mesh model, but also the authorized users can completely remove the
watermark to recover the original 3D mesh model. Experimental results show
that the operations including translation, rotation, scaling, subdivision, smooth-
ing, and etc. have no influence on the visibility of the embedded watermark.
When an unauthorized user attempts to delete the watermark or steal the 3D
mesh model, it will destroy the model and make the model unusable, because
the visible watermark is closely integrated with the 3D mesh model. To the best
of our knowledge, this is the first work of visible reversible watermarking for
3D mesh model. Our future work will be focused on the adaptive embedding of
visible watermark.
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Abstract. Splicing is one common type of forgery that maliciously
changes the image contents. To make the forged image more realistic,
blurring operations may be conducted to partial image regions or splicing
edges to promise visual consistency. Revealing the blurring inconsistency
among the whole image regions contributes to the splicing detection.
However, for the defocused image already containing blur inconsistency,
the existing methods cannot work well. Splicing detection and local-
ization in defocused image is a challenging problem. In this paper, we
overcome this problem by distinguishing multiple cues between raw nat-
urally blur and artificial blur. Firstly, after the overlapped image blocks
partition, three kinds of feature sets are extracted based on posterior
probability map, noise histogram and derivative co-occurrence matrix.
Then, an effective classifier is trained to determine the blur property of
each pixel. Finally, a localization map refinement is proposed by fusing
color segmentation probability map to improve the quality of the locat-
ing result. Experimental results demonstrate that the proposed method
is very effective to detect splicing for the defocused images. The local-
ization accuracy also outperforms the existing methods.

Keywords: Splicing localization · Raw naturally blur · Artificial blur

1 Introduction

Digital images can be easily tampered due to the availability and accessibil-
ity of diverse and powerful editors. Image tampering can falsify the truth and
maliciously mislead the public. Therefore, detecting whether an image is the
original output from the camera or tampered becomes increasingly attractive.
Splicing is one common tampering operation that intends to change the image
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contents. In the process of splicing, the cropping of image areas will generate
dentate boundaries, and forgers often need to blur such boundaries in order to
hide the tampering traces. When the sharpness of the splicing region is higher
than the background of the original image to be spliced, forgers even blur the
whole splicing region artificially. This is to ensure that the splicing region is
visually consistent in sharpness with the background of the original image, so
as to make the splicing image more realistic. And multiple images of different
types of blur (motion blur or out-of-focus blur) can also be spliced together by
forgers. Thus, the splicing detection through blur clues plays an important role
in tampering detection.

In early studies, some methods were proposed to detect splicing by reveal-
ing the blurring inconsistency among image regions. Some authors proposed the
method [1,3] to detect the incompatibility of different blur types in the image.
For example, motion blur caused by camera shakes cannot only exist in the par-
tial regions of the image, but exists globally. Therefore, the tampering traces can
be detected in such a splicing image which the stationary objects (walls or build-
ings) contain motion blur and other image areas contain only out-of-focus blur.
Other methods are mainly proposed based on that the local representation of blur
are not consistent with actual information about image. These detection meth-
ods include detecting the inconsistency in the extent of blur [2–4,25], abnormal
hue [19], and the direction and detail inconsistencies of motion blur [13,20,24].
However, for the defocused image already containing blur inconsistency, exist-
ing methods are difficult to identify the splice and accurately locate tampering
regions.

For the defocused image, it already contains a certain extent of out-of-focus
blur in the shooting process, which only depends on the own parameters of the
camera and the distance of focus. In this paper, we refer to this blur when
the camera parameters are fixed and only the focusing distance is controlled
as raw naturally blur. The emergence and application of Single Lens Reflex
(SLR) cameras make photos formed into different extents of raw naturally blur
inevitably. Figure 1 (a) shows an original image with raw naturally blur formed
during optical photography. When the forger wants to splice (a), he needs to
apply an artificial blur consistent with background to the splicing area in order

(a) Original image (b) Forged image

Fig. 1. (a) An original image with raw naturally blur. (b) A forged image generated
by splicing an artificial blurred region in the original image (a).
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to achieve a more pleasant visual effect, as shown in Fig. 1 (b). In essence, the
dissimilarity between raw naturally blur and artificial blur can be employed as
evidence of tampering, once it is discovered that can reveal the forgery history.
While it is not taken into consideration in previous approaches. In this paper, we
proposed a new method for splicing detection and localization by exploring the
dissimilarity between raw naturally blur and artificial blur in defocused images.

In order to distinguish raw naturally blur from blurs caused by artificially
manipulated, the blur types studied in this paper are explained in detail firstly.
Raw naturally blur is specifically defined as an out-of-focus blur that exists
in images stored directly in RAW format without any processing of the image
pixels. It has not been affected by camera embedding operations. And it is a
function of the distance between the subjects and a camera, which is different
from lens blur in optical aberration. We define artificial blur as a manipulation
of digital image pixels by some photo editing tools, and it is also similar to
actual out-of-focus effects. Since out-of-focus blur can be classified into para-
metric and non-parametric in practice, then we discuss the research based on
parametric types and extend our application to more complex non-parametric
types. The parametric out-of-focus blur is symmetric and modeled as a cylinder
disk with radius R. The non-parametric one is considered more complex and
it could be an asymmetric shape. In several works [5,12,14], it has been con-
firmed that non-parametric out-of-focus blurs are closer to optical out-of-focus
blur from the camera. In this paper, we study the parametric form of out-of-
focus blur which are more realistic in image forensics applications, and then
apply them to parametric and non-parametric blurry forgery localization. Based
on analysis of imaging procedure, we find that raw naturally blur is captured
directly in the presence of specific camera noise [17]. While artificial blur is the
smoothing of image pixels after imaging. It can be considered as a de-noising
operation performed by a filtering kernel. So we find the dissimilarity between
the two in the image noise component. In addition, blurring affects the edge
information of the image and the transition of the pixel value smoothly. Our
purpose is to expose these dissimilarities between raw naturally blur and artifi-
cial blur by describing features from posterior probability map, noise histogram
and derivative co-occurrence matrix.

In summary, the main contributions of our work are as follows. Firstly, mul-
tiple cues are explored for splicing regions detection in defocused image based on
posterior probability map, noise histogram and derivative co-occurrence matrix.
Compared with using single cue, the proposed multiple cues can reduce the mis-
judgment and improve the detection accuracy. Then, a localization map refine-
ment process is designed based on the map fusion. It is not only makes full use of
the binary result of SVM classification, but also image content characteristics, by
regarding for the intention of the forger to conceal the spliced area. Experimental
results demonstrate that the proposed method outperforms the existing methods
for splicing detection as well as localization. Furthermore, the proposed method
is robust to some post processing attacks, such as parametric/non-parametric
bluring and JPEG compression.
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2 Proposed Method

2.1 Investigating the Dissimilarity

As mentioned earlier, raw naturally blur is caused by different distances between
the subjects and a camera. While we can obtain that artificial blur operates the
selected area through moving the sliding filter to produce a smooth effect [27].
Filter functions of different window scales to make different blurry patterns, and
the blurring intensity is controlled by parameters. Therefore, we extract features
based on the unique pixel value smoothing, high-frequency noise reduction and
edge information elimination effects generated by artificial blur which is different
from raw naturally blur.

Posterior Probability Feature. The artificial blurring processing of a clear
image I is modeled as follows:

B(i, j) = I(i, j) ⊗ K(i, j) + η(i, j) (1)

where B is an artificial blurry image, K is a point spread function (PSF) rep-
resented by a filter kernel, η(i, j) is the additive white gaussian noise, such as
η(i, j) ∼ N(0, σ2) and ⊗ is the convolution operation, respectively. From the
perspective of the pixel values, which in raw naturally blur is determined by the
shooting content and there is usually no regular linear relationship. Each pixel
value B(i, j) after artificial blurs can be approximately expressed by a linear
combination of the pixel values of its neighborhoods with the same operation
mode. The linear relation between B(i, j) and their neighborhoods is given by:

B(i, j) =
n∑

x�=0

n∑

y �=0

ax,yB(i + x, j + y) − E (2)

where ax,y is the weighting coefficient and n is the number of its neighbouring
pixels. The coefficient is identical everywhere and controlled by the filter func-
tion only. It is verified artificial blurs can make the image pixels highly linear
correlated with each other. E denotes the matrix composed of the error between
the predicted and the actual gray value of each pixel, which is going to be
E =

∑n
x

∑n
y ax,yB(i, j), a0,0 = −1. Relearning this coefficient through images

perhaps yield a little powerful effect, but it takes tremendous effort and is not
very rewarding. Thus, based on the proper preset of ax,y from experience [7], we
filter the input image and get the error matrix E. The gaussian transformation
is then applied to each element of the error matrix E: pMap = exp(−E2). Dur-
ing this transformation, big values of E are mapped to small values (near 0) of
pMap in the range of [0, 1], and small of E are mapped to big (near 1) of pMap.
The result map is the probability of error E between actual pixels value of input
blurry image B and the expected pixel value of center position predicted by the
adjacent pixels, that is the posterior probability map (pMap).

Because of the strong correlation between the pixels of artificial blurry image
B, the element value of the error matrix E calculated will be so small that
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the probability value in the pMap will be large. However, it is opposite in raw
naturally blurry image that the element value of E will be so large that the
probability value in the pMap will be small. Which is caused by similar colors
within the shooting scene of raw naturally blur or the pixel smoothing effect of
artificial blur. Since the interference factors such as illumination of the shooting
process, the pixel values of the same color are not necessarily linearly correlated.
The color similarity of the shooting scene formed in raw naturally blurred image
has limited influence on the posterior probability. Therefore, the large average of
the posterior probability matrix is more likely due to the linear transformation
from artificial blur of the pixel value. And we prove that the pMap values of
artificial blurring images are closer to 1 (i.e. the posterior probability is larger),
whereas the posterior probabilities of raw naturally blur images are usually small.
We get the first feature on the pMap calculated above: F1 = mean(pMap).

Noise Histogram Feature. Due to the internal factors of the camera, raw nat-
urally blur images obtained directly from the camera often contain the unknown
actual noise pattern [9]. However, the purpose of artificial blur is to retain the
low-frequency content information of the image and filter the high-frequency
edged information, no matter what degrees of filter function. In order to achieve
the image blurring effect, it is equivalent to low-pass filter, and obviously the
high-frequency noise is usually reduced. Although the noise patterns from dif-
ferent camera sources can be used as cues for image classification, it only was
effective when detecting image splicing region from different cameras. Thus, we
aim to calculate statistical characteristics of the high-frequency noise histogram
to expose the trace left by artificial blur in raw naturally blur.

The high-frequency noise residual image is denoted as Noise, which refers
to the difference between the un-processing image and the artificially blurred
image: Noise(i, j) = I(i, j) − B(i, j). The histogram of high-frequency noise
residual image can capture the changes of neighboring pixels. We denote the
histogram of Noise is,

hist(k) =
M∑

i

N∑

j

δ(Noise(i, j) = k) (3)

where δ(·) is the impulse function and the image size is M × N . The value of
hist(k) represents the distribution frequency of the image gray level when the
pixel value is k.

When we focus on the bar to the central value equals to 0 in the high-
frequency noise histogram, it is the peak of histogram located. The higher peak
value indicates the less high-frequency noise. It is obviously that artificial blur
makes high-frequency noise less and the peak more prominent than raw naturally
blur, while the value of the bar to the other central positions of the histogram
decrease. In order to facilitate studying the distribution difference of raw nat-
urally blur and artificial blur in the histogram of high-frequency noise residual
image, we normalize this distribution of histogram in Fig. 2 through divided it by
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Fig. 2. The normalized histogram of high-frequency noise residuals in raw naturally
blur (blue) and artificial blur (red). (Color figure online)

hist(0) to enlarge the difference. To distinguish the difference of high-frequency
component between raw naturally blur and artificial blur, the normalized dis-
tribution frequency by discarding the peak value hist(0) is taken as the second
feature: F2 = hist(k)

hist(0) , with the value of k is a non-zero integer less than n.

Derivative Co-occurrence Matrix Feature One of the effects of blurring
is the reduction of information at the edges of the image. In order to avoid the
influence of input image contents on edge analysis, we investigate the change of
the edges in the derivative domain. The derivative image is represented as:

∇B(i, j) = ∇I(i, j) ⊗ K(i, j) + constant (4)

where ∇I(i, j) represents the derivative value of step edges in the input image,
which is decreasing in an obvious intensity by blurring operations. And ∇B(i, j)
represents the corresponding derivative value of step edges in the blurry image
and K(i, j) is same to the symbol K in Eq. (1). Compare Eq. (1) with Eq. (4), it
effectively highlights the rate of the gray values changes and removes undesired
distorted influences like additive noise η(i, j) into constant.

The weakening of the edge components from blurring effects is shown in
the derivative image as the decreases of the corresponding pixel values. We aim
to obtain a performance similar to the gray level co-occurrence matrix, which
reflects the local pattern of the image gray values about the adjacent interval and
the change amplitude [22]. The joint probability of each pixel pair occurrence in
derivative image is utilized to construct derivative co-occurrence matrix (DCM).
It describes the spatial correlation of the neighbors of derivative pixels.

DCM(a, b) =
M∑

i1,i2

N∑

j1,j2

δ(∇I(i1, j1) = a,∇I(i2, j2) = b) (5)

where (a, b) represents a pair of related pixels in a range of [−T, T ].
In addition, we have conducted the analysis deeply of how DCM shows the

traces of artificial blur from raw naturally blur. We set the center pixel position
of the derivative co-occurrence matrix to (0, 0) as the origin of coordinates, by
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establishing a planar cartesian coordinates system with it, the derivative co-
occurrence matrix can be divided into four regions. We formulate Ri as:

Ri =

⎧
⎪⎪⎨

⎪⎪⎩

R1, x > 0, y > 0
R2, x > 0, y < 0
R3, x < 0, y < 0
R4, x < 0, y > 0

(6)

where the x-axis and y-axis are defined by the horizontal direction and vertical
direction of DCM, respectively. Ri(i = 1, 2, 3, 4) corresponds to the first, second,
third, or fourth quadrant of the coordinate system is shown in Fig. 3.

Fig. 3. The derivative co-occurrence matrix of raw naturally blur and artificial blur,
respectively. And we graph the corresponding statistical result of the ratio of R2, R4

regions to the whole DCM for 10000 image blocks.

The value of the origin of DCM’s coordinates represents the number of pixels
with an image gradient of 0. Its increase depends on the smoothing effects. And
noise pixels concentrate on the second and fourth quadrants of DCM, which
points have opposite signs to the adjacent pixels. For raw naturally blurry image,
its amount of noise is numerous and will not be cut without human processing.
However, the noise in artificial blurry image will inevitably be reduced in part,
making the ratio of R2, R4 regions smaller. It has been proved that artificial
blur reduce the ratio of R2, R4 of the whole DCM, while there is no significant
reduction in raw naturally blur. Here, we show this in the statistics results of
10000 image blocks in raw naturally blur and artificial blur as is shown in Fig. 3.
And the derivative co-occurrence matrix (DCM) is taken as the third feature:
F3 = DCM(a, b), its dimension is (2T + 1)2.

2.2 Feature Classification

Based on the features of posterior probability, noise histogram and derivative co-
occurrence matrix are all sensitive to smoothing effects of pixels, we incorporate
the proposed three features to classify image blocks into raw naturally blur and
artificial blur. When the scale of the block is smaller, the extracted features per-
formance poorer. More time resources will be spent on training for classification
learning and the training results will be relatively terrible because of extremely
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Table 1. Comparison on the detection accuracy and training time loss of SVM classifier
for images of different scales.

Scale (pixels) 16 × 16 32 × 32 64 × 64 96 × 96 128 × 128

Accuracy 74.12 84.06 94.57 95.12 97.77

Time loss 120.19 74.23 62.31 68.59 175.98

insufficient pixel. On the contrary, the larger the block size is, the stronger the
performance expression of extracted features will be. In other words, if artificial
blurring operation is applied to the whole space domain, our features will show
better performance due to the increase of detection image size. However, it is
time-consuming to extract the features of large patch, and it will lead to rough
boundary localization in splicing detection. Therefore, according to the experi-
mental comparison in Table 1, a moderate size of 64 × 64 was selected for our
training. Since some image patches may not contain sufficient information to be
reliably analyzed for forensics purposes [10]. That is, some smooth blocks with-
out much effective information enough, which are not reliable in detection and
have to be singled out. The common canny edge detector is used to obtain the
number of edge pixels in an image block. If both the number of edge pixels and
the variance larger than thresholds, the block is considered as a texture block.
For a 64 × 64 block, the threshold of variance is set for 500 and the threshold of
edge pixels is selected to be 1% of the total number of pixels in a block. Conse-
quently, we designed this process for blocks of images with sufficient capacity to
encode information, which to single out blocks that are not suitable for forensic
SVM training.

Fig. 4. SVM training to classification.

We adopt Support Vector Machines (SVM) with radial basis function (RBF)
to achieve feature-based image blocks classification. The penalty parameter of
the error term and the kernel parameter were selected by grid search method with
cross validation [6], and the optimal parameters were trained on the whole input
image block set. The SVM model training of classification is shown in Fig. 4.
The training data are a large amount of texture block samples through cropping
with their corresponding labels, which comes from images of multiple outdoor
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scenes. For smooth blocks, we assign an initial set of features and corresponding
raw naturally blur labels to form its special samples. Specificly, the initial feature
is defined in an all 0 vector and has the same dimension as the feature vector
of texture blocks. This is to forcibly assign the specified label to the annotated
smooth block, and the accurate judgment of the test image will not be affected
in the subsequent experiments in this way.

2.3 Refine Splicing Localization

In practical forensic applications, we think more interests in forged regions local-
ization than image-level detection. When the input image was possibly spliced,
we expect to find the forged area perfectly and output the pixel level localiza-
tion result. First, the overlapping partition is carried out on the test image in
order to get the input blocks required by SVM. Corresponding to the settings in
SVM training and classification, smooth blocks in the overlapped blocks should
be marked their indexes and assigned with raw naturally blur labels. Then, the
trained SVM model is applied on texture blocks prediction. Second, the over-
lapping partition method can assign multiple labels for each pixel via predicted
result when the preset of overlapping step size to 1. When each pixel is owned
by different blocks, it contains n2 labels where n × n is the block scale. It is
worth noting that although smooth blocks are considered by SVM as raw natu-
rally blur labels directly, there is little influence on the predicting outcomes. The
reason is that our binary output map depends on a majority of votes strategy,
that is, the label of each pixel in binary output is indicated by the main one of
n2 overlapping labels.

Fig. 5. The scheme of refining localization by map fusing.

Third, in order to refine the localization result, we aim to correct labels in
binary output. The scheme of refining localization by map fusing is shown in
Fig. 5 specifically. It can be used as the basis of our refinement of localiza-
tion that forgers tend to choose color-independent objects for splicing to mask
discontinuous splicing backgrounds. We utilize Otsu’s method to segment color
similarity areas of the input color image, and calculate its posterior probability
matrix (see Sect. 2.1 for calculation details). Then, we traverse each local 8 × 8
pixel area of the binary output of SVM. Due to artificial blur makes posterior
probability (p) relatively larger than raw naturally blur. So we retain those areas
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of pMap to a suspicious area for artificial blur as our color segmentation prob-
ability map, when pixels of p > 0.5 more than half of the each local 8 × 8 pixel
area. Finally, the intersection of the color segmentation probability map and the
SVM binary output makes the boundary of binary output more refined and we
get the final localization result.

3 Experiments

3.1 Experimental Setup

To generate raw naturally blurred images, we shot images of the same 50 scenes
at different focusing distances by using the manual focusing. While keeping the
aperture and lens focal length constant and ensuring maximum stability, we
used Nikon D600 SLR camera to build our TIF image dataset with photo size of
6016×4016 pixels. For our localization experiments, we select the image patches
with size of ranging from 512 × 512 to 1664 × 1216 pixels. Because the depth of
field is proportional to the lens focal length, aperture value, and the square of
focusing distance [26], we control the former two variables so that the cause of
raw naturally blur was only due to the manual focusing controlled by the user.

Then, the un-processed dataset is categorized into two parts of high and low
blur degrees. Both two datasets stored in TIF format as well as JPG formats
for the compression quality factors of 100, 90, 80. Where the image blocks with
high degrees of out-of-focus blur are directly served as raw naturally blur without
any other operations. And artificial blur is obtained by filtering the image blocks
with low degrees of blur. A lower bound of artificial blur degrees is chosen as
R = 2, where the blur degree is negligible [3]. The upper bounds of blur degrees
are chosen differently since it is required to pay attention to keeping its qual-
ity indices much the same to raw naturally blur to eliminate the effects of the
inconsistency of blur degrees. In the process of this, the corresponding relation-
ship between the blur degrees and the quality indices of patches is established
through the two methods [15,16] of evaluation of image quality indices. Finally,
5000 raw naturally and 5000 artificial blur patches are used to form the training
set, and the additional 3000 patches were randomly selected respectively to form
the testing set.

Since we believe the above research based on the dissimilarity between raw
naturally blur and artificial blur is universal for both parametric and non-
parametric blur, we verify the feature effectiveness through experiments under
the same conditions. We first applied a cylinder disk with radius R as the fil-
ter function in parametric blurring tampering. Then we created 20 categories of
asymmetric kernel and resize into several scales for different blurring degrees to
generate non-parametric blurring kernel.

By randomly choosing 800 raw naturally blur images, we splice each of them
with a local extrinsic region from other images. Then, we artificially blurred
the spliced regions by setting equal to the blur extent of each background image
area. We obtain 800 images each using parametric/non-parametric artificial blur
kernel, a total of 1600 images for splicing detection. Each category consists of
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200 splicing images with tampering area proportions of 5, 15, 25 and 35 per-
cents. Through the analysis and attempts of the proposed feature, we also assign
specific values to the relevant parameters. The range of k is set at n = 5 for
1 ≤ k ≤ n in the noise histogram and the number of a pair of relating pixels
(a, b) is set at T = 3 in DCM, respectively. For an input image with R, G and
B color spaces, by transforming into the YCbCr domain, the values of the three
channels that luminance (Y), blue (Cb) and red (Cr) components are obtained.
Therefore, we take the luminance (Y) component as the input image and extract
the 55-dimensional feature to SVM for the following experiments.

3.2 Result Evaluation

Our first experiment examines the validity of the proposed feature for classi-
fication of raw naturally blur and artificial blur. For image filtering detection,
we do comparative analysis with TPM feature from the state-of-the-art method
Subramanyam et al. [21] on raw naturally blur and artificial blur image blocks.

Fig. 6. Comparison with TPM [21] method on ROC curves of features.

Fig. 7. Comparison with each single feature on ROC curves for ablation experiment.

As is shown in Fig. 6, our feature is highly effective against classification
between two categories of blocks (raw naturally blur and artificial blur) but the
performance of TPM is obviously worse than ours. Especially in TIF format and
JPG format at the compression factors equal and greater than 80, the AUC of
us is still greater than 0.92. It shows that the proposed feature is more robust
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to JPEG compression. Meanwhile, as the features we proposed contain multiple
cues, an ablation study is necessary to prove the effectiveness of each feature.
Separately, we utilize the feature F1, F2 and F3 to conduct image block classifica-
tion experiments to obtain the corresponding three ROC curves. In Fig. 7, ROC
curves of different image storage formats are summarized and compared, among
which the thickest is the feature F our proposed (F = [F1, F2, F3]). Figure 7
showed that when a single feature is used, the more mediocre effect than fea-
tures connected by same weights. Consequently, we use connected multiple cues
to the optimal AUC value.

Table 2. With confidence interval of 70%, our comparison of the recall rate of
the CFA [8], JNB [23], NOI [18] methods in parametric and non-parametric data,
respectively.

Parametic CFA [8](%) JNB [23](%) NOI [18](%) Ours(%)

JPG (80) 1.00 76.75 84.75 94.38

JPG (90) 37.75 82.00 93.88 97.25

JPG (100) 85.50 84.50 89.75 99.00

TIF 86.50 86.63 94.25 99.13

Non-parametic CFA [8](%) JNB [23](%) NOI [18](%) Ours(%)

JPG (80) 0.55 81.38 84.88 95.13

JPG (90) 33.25 83.00 90.00 95.63

JPG (100) 89.75 84.63 81.88 96.38

TIF 91.50 85.13 83.13 94.25

Next, we compare the performance of our method with Color Filter Array
(CFA) [8], Just Noticeable Blur (JNB) [23], Noise Variance (NOI) [18] methods
by considering various tampering area ratios in splicing images. In the first part,
we calculate the coincidence rate of each result and corresponding ground truth
as the evaluation indicator, the 70% confidence interval (i.e., count it as correct
detection one when the coincidence rate is greater than 70%) is chosen. For test
results less than this confidence interval, the area of misdetermination is large
enough to make us skeptical of the whole. So the test results with more than
70% coincidence rate can be accepted and trusted. We derive the recall rate
compared with other three methods as shown in Table 2. The CFA method is
able to locate the tampering area well in TIF format and JPG format with the
quality factor of 100, but greatly affected when the compression quality factor
is 90 and almost fails when 80. And we all got the highest recall rate for each
image storage format under the parametic/non-parametic artificial blur kernel.

In order to make a fair comparison of detecting results, it is necessary to
binarize output artifacts from methods CFA [8], JNB [23], NOI [18], which show
the probability that splicing forgery occurs. In the second part, we select its
threshold by maximizing the average accuracy of raw naturally and artificial
blur types detection for each method. If a probability value is larger than its
threshold, it belongs to the spliced region and indicated by white and the reverse



Defocused Image Splicing Localization by Distinguishing Multiple Cues 165

Fig. 8. Comparison of the locating results of test image in JPG (80) and TIF storage
format with CFA [8], JNB [23], NOI [18] and SC [11] methods. The test image is at the
beginning of the line, where the region inside the red curve is the splicing region. (The
SC [11] method has only a qualitative result without its binary map.) (Color figure
online)

Table 3. Comparison of locating accuracy of parametric and non-parametric dataset
with other methods.

JPG (80) JPG (90) JPG (100) TIF
Tamper CFA[8] JNB[23] NOI[18] Ours CFA[8] JNB[23] NOI[18] Ours CFA[8] JNB[23] NOI[18] Ours CFA[8] JNB[23] NOI[18] Ours
Ratio (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Parametric 5% 59.43 75.68 78.71 83.76 71.73 80.19 83.82 83.66 76.08 82.15 84.66 89.46 76.93 85.36 85.95 89.07
15% 55.45 76.72 79.68 87.62 67.62 79.87 85.32 88.41 79.31 81.81 85.92 92.96 80.00 81.99 87.28 92.81
25% 55.96 77.52 80.63 86.04 69.45 80.90 87.00 88.41 80.22 82.74 86.59 91.48 81.17 82.91 88.30 91.37
35% 56.61 74.60 78.71 87.78 68.97 76.94 84.47 89.72 81.35 78.36 84.54 94.01 82.41 78.61 86.07 93.89

Non-parametric 5% 54.92 76.56 79.15 83.12 66.92 79.11 82.46 81.43 82.61 80.57 80.47 84.92 83.40 80.77 81.23 84.06
15% 55.33 77.61 80.32 87.46 66.97 80.33 83.95 87.35 82.91 81.69 81.99 89.88 84.21 81.89 82.56 88.90
25% 55.86 78.41 81.26 85.44 68.27 81.42 85.41 86.81 82.60 82.72 81.77 88.92 83.74 82.89 82.67 88.12
35% 55.72 77.56 80.42 89.30 67.28 80.43 84.53 90.05 82.88 81.77 81.89 92.34 83.90 81.97 82.65 91.53

by black. We also compared with a novel self-supervised method based on deep
learning, which done for splicing localization by detecting image Self-Consistency
(SC) [11]. The artifacts and binary output generated by the methods of CFA [8],
JNB [23], NOI [18], SC [11] and ours for two example images in JPG (80) and TIF
storage formats are shown in Fig. 8, respectively. It is to mention that instead
of dealing with binary output result of the SC [11] method for calculating its
accuracies, we did a qualitative analysis with it. Because it has a poor locating
result on our forged dataset as well as a long time loss for detecting.

The locating accuracy is calculated by the coincidence rate between the
binary result and the ground truth, and as is shown in Table 3. By comparing
experiments on images of different storage formats, the CFA [8] method signifi-
cantly reduces the detection accuracy when the compression factor is small, while
JNB [23], NOI [18] and our method only change in a small range. It also verified
the robustness of our proposed method to the JPEG compression attacks. And
in the cases of different tampering ratios, only the detection accuracy of ours
increases with the tamper area getting larger. Although other methods are not
subject to the ratios of tamper area, our accuracy is outstanding than them. The
result shows that previous works have low performance because they do not take
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the dissimilarity we propose between raw naturally blur and artificial blur into
account. Moreover, our proposed feature works well even for complicated forms
of non-parametric blur kernels and JPEG compression post-processing attacks.

4 Conclusion

In this paper, we solve a challenging issue of splicing detection and localization
in defocused image by distinguishing raw naturally blur and artificial blur. The
first contribution is the extraction of three kinds of feature sets based on pos-
terior probability, noise histogram and derivative co-occurrence matrix though
detailed and extensive analysis. Secondly, an effective classifier of our multiple
cues is trained to determine the blur property of small image blocks and we
achieved outstanding performance of classification in comparative experiments
of filtering detection. Finally, we refine the localization map of splicing in defo-
cused image by fusing with the color segmentation probability map. Moreover,
the proposed method is robust to parametric and non-parametric blurring and
JPEG compression. Experimental results demonstrate that the proposed method
is superior to state-of-the art methods in splicing detection as well as the local-
ization accuracy. Still, we consider the more work ahead by deeply exploring the
contribution to each feature of different weights to blurring forensics.
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Abstract. Benefit from significant advances in deep learning,
widespread Deepfake videos with the convincing manipulations, have
posted a serious of threats to public security, thus the identification of
fake videos has become increasingly active in current researches. How-
ever, most present Deepfake detection methods concentrate on exposing
facial defects through direct facial feature analysis while merely con-
sidering the synergies with authentic behavior information outside the
facial regions. Meanwhile, schemes based on meticulous-designed neu-
ral networks are rarely efficient to provide subjective interpretations of
the final identification evidences. Therefore, to further enrich the diver-
sity of detection method and increase the interpretability of detection
evidences, this paper proposes a self-referential method to exploit audio-
visual consistency by introducing synchronous audio recordings as refer-
ence. In preprocess phase, we propose an audio-visual matching strategy
based on phonemes to segment videos, and control experiments have
proved that strategy outperforms common equal-length partition. To
deal with such video segments, an audio-visual coupling model (AVCM)
is employed for audio-visual feature representations, then similarity met-
rics are measured for mouth frames and related speech segments. Actu-
ally, synchronized pairs mean the high scores of similarity and asyn-
chronous pairs opposite. The evaluations on DeepfakeVidTIMIT indicate
that our method has achieved competitive results compared with current
main methods, especially in high quality datasets.

Keywords: Deepfake detection · Audio-visual consistency ·
Audio-visual matching · Convolutional neural networks

1 Introduction

Recently, tampered video content has a great improvement in the realism of
forgery by employing advanced neural networks, especially the generative adver-
sarial networks (GANs). Deepfake videos in which faces are swapped with
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another one’s faces are almost indistinguishable from human vision nowadays.
Widespread abuse of the accessible open face-swapped techniques has led to mass
fake news appearing in our life, which poses a significant concern to national
security and individual reputations. To contend with this growing threats, the
continual research efforts on Deepfake detection are in urgent demand.

Traditional forgery videos are processed per frame by using picture edit-
ing tools, like Adobe Premiere, and discordant visual defects caused by manual
manipulations are easily identified by the human eyes. Comparatively, Deepfake
videos are visually apparent, which achieve a higher level of realism. Therefore,
the current approaches are concerned not only with single frame, but also with
inconsistency of character behaviors (e.g. blink [11], head pose [19], etc.). In
terms of accuracy, most present methods have reached over 90% of accuracy on
open datasets. However, compared to the intuitive judgment by human eyes,
few main methods can provide persuasive evidences assisting operators to make
subjective inferences. To provide an interpretable solution, considering authentic
behavior information outside facial regions, it might be a well attempt to explore
the consistency of speeches and lip movements. In the case of audio as reference,
the related lip features can be easier to identify.

Audio-visual synchronisation is a crucial problem in film and television indus-
tries. In recent years, researches on consistency detection have conducted through
audio-visual content analysis. Different from Deepfake videos, the detection
objects of consistency algorithms are real videos with shifted audio. In com-
parison, Deepfake videos with similar imitations are less likely to be recognized
although existing some visual flaws in details. The work [7] has revealed the low
efficient performances of the lip-sync detection method [8] on Deepfake videos,
which indicates that present consistency algorithms need significant improve-
ments to adapt to Deepfake detection.

Despite the efforts on single frame processing, face-swapped techniques sel-
dom reach a high level on inter-frame processing. Therefore, exploring the con-
sistency of diversiform character behaviors has been a noteworthy solution. As
we consider, for a speaker, lip movements are the most delicate and ingenious
behaviors compared with other facial behaviors, which are hardly to be meticu-
lously imitated. To achieve self-reference, our work is dedicated to audio-visual
consistency detection by introducing synchronous audio as reference. Our work is
an improvement above the current audio-visual consistency algorithms. In terms
of partition strategy, we employ a matching strategy based on phonemes instead
of common equal-length partition. The varied-length audio-visual segments pro-
vide more elaborate and generic representations of features across individuals.
To adapt the matching strategy, we also propose an audio-visual coupling model
(AVCM) based on convolutional neural networks (CNNs) to capture the cor-
relation of lip shapes and speeches. We develop various experiments with dif-
ferent strategies on DeepfakeTIMIT [7] and present favorable comparisons with
previous works. The results indicate the audio-visual consistency detection on
Deepfake videos is significantly effective.
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2 Related Work

2.1 Deepfake Detection

There are two critical techniques—face synthesis and facial region splicing intro-
duced in Deepfake production pipelines which profoundly affect the quality of
the synthetic videos. Detections [10,11,13] on visual flaws in the facial regions
have been active areas. Li et al. [11] observed that the realistically-looking fake
faces were lack of eye blinking. The work [10] discovered that generated images
based on deep neural networks have distinct differences from real images in spe-
cific color spaces. Missing reflections and deficient details in the eye and teeth
regions were exposed in [13]. Additionally, some recent researches [12,19] have
exploited flaws caused by facial region splicing. Yang et al. [19] have presented
the inconsistency of 3D head poses between central facial regions and facial
splicing regions by using facial landmarks. The work in [12] explored the face-
warped artifacts surrounding facial regions. Succeed in previous works, we focus
on synthetic mouth regions to explore the consistency of speaking.

2.2 Audio-Visual Consistency Detection

Traditionally, linguistic knowledge considered as important domain knowledge
are extensively utilized to solve audio-visual consistency problems, such as [9,14].
Phoneme recognition and classify were applied in [9] to confirm precise audio-
visual correspondence, yet feature representations were in low efficiency. In recent
years, the development of neural networks has brought new solutions [2,8,18].
Siamese networks were employed for audio-visual feature representations [2].
Furthermore, Torfi et al. [2,18] proposed 3D convolutional neural networks for
feature extraction in the time domain and space domain. The work in [8] linearly
integrated audio features and visual features as inputs of long short-term memory
(LSTM) network to evaluate speaking consistency while it was proved inefficient
on Deepfake detection [7]. We suppose researchers who benefit from massive
data tend to overlook hidden linguistic knowledge behind speeches. In our work,
phonemes are introduced into matching strategy and a multimodal coupling
model is employed for similarity measure of audio-visual segments.

3 Workflow

The method accepts videos with authentic audio as inputs. We process these
inputs in four main stages in workflow (Fig. 1). In the phoneme alignment stage
(Sect. 3.1), audio is aligned and clipped into segments in sequence at the phoneme
level. In the mouth extraction stage (Sect. 3.2), mouth regions are captured.
Then we have audio segments and mouth frames matched into pairs by employing
specific partition strategies in audio-visual matching stage (Sect. 3.3). At last, in
similarity measure stage (Sect. 3.4), AVCM is trained using these pairs to capture
the relationship between audio and video features, then distinguishing positive
samples from negative ones by measuring similarity of audio-visual embedding.
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Fig. 1. Method overview. In the preprocessing phase (phoneme alignment, mouth
extraction and audio-visual matching), audio segments and mouth frames are matched
into pairs. In the model training phase (similarity measure), samples are divided accord-
ing to calculated similarity

3.1 Phoneme Alignment

Phonemes are objective physical phenomenons which distinguish one word from
another as the basic phonetic units. Actually, one phoneme corresponds to one
specific vocal action. The acoustic features of a specific phoneme have fair com-
monality across individuals. For a given audio, phoneme alignment refers to
computing the identity and timing of phonemes in sequence. In this section, we
have audio aligned by using a phoneme-based alignment tool P2FA [16] which
eventually produces an ordered phoneme sequence as follow.

A = (c1, c2, ..., cn) (1)
ck = (label, st, et) (2)

We denote A as the given audio which consists of n phoneme intervals ck, and
each ck represents a specific phoneme interval in which the phonetic identity
(label), start time (st) and end time (et) are recorded.

3.2 Mouth Extraction

We use face landmarks detected by dlib library to locate mouth regions. The
points numbered 48˜67 are used to mark the mouth area, in which point 66 is
located near the center of mouth area. The point is used as the center of the
clipped rectangle. Each frame is clipped into a 64 × 40 (W × H) gray-scale
mouth image to avoid the influence of colors.

3.3 Audio-Visual Matching

Unlike common equal-length partition strategy, we aim to produce audio-visual
pairs by employing a new matching strategy and have video clipped base on
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f1 f2 f3 f4 f8

SP SH SP N AH

a1 a4

Mouth frames

Phoneme intervals

Fig. 2. Audio-visual matching. Each frame with a specific phoneme interval is matched
to a fixed-length audio segment. A frame such as f5 cross over two phoneme intervals
are reuse. SP means a pause in speech.

phonemes. For a phoneme interval ci, as mouth frames are numbered in sequence,
we locate its corresponding frame sequence as Eq. (3), in which fs and fe rep-
resent the start frame number and end number of ci respectively. A[·, ·] means
a speech clip and f represents the video frame rate. In our design, each mouth
frame fi in located frame sequence and its corresponding audio segment ai make
up an audio-visual pair. The sequential pairs with same phoneme labels are
assembled into groups, called phoneme units.

ai =

⎧
⎪⎨

⎪⎩

A [st, st + len] , i = fs

A [(i − 1) ∗ len, i ∗ len] , i ∈ (fs, fe)
A [et − len, et] , i = fe

. (3)

len = 1/f (4)
fs = �st ∗ f� (5)
fe = �et ∗ f� (6)

As Fig. 2 shows, audio is clipped into continuous phoneme intervals, such as
SH, N, AH, etc. For a phoneme interval ci, it covers several mouth frames and
each frame fi is related to a fixed-length audio segment ai. This process doesn’t
introduce extra audio features beyond ck and pauses (SP in Fig. 2) in audio are
effectively skipped.

Pi = (fi, ai) (7)
Ui = (Pi1, Pi2, ..., Pin) (8)
Vi = (Ui1, Ui2, ..., Uim) (9)

Input videos are split into sequential phoneme units. The mathematical expres-
sions for these audio-visual clips are described in Eq. (7, 8, 9). A audio-visual
pair is recorded as Pi. Meanwhile, Ui refers to a phoneme unit which consists of
n Pis and Vi represents a video composed by m Uis.

3.4 Similarity Measure

In this section, we propose AVCM, which is a CNN model consists of audio
architecture and video architecture. AVCM is employed to measure similarity
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Fig. 3. The architecture of AVCM. The parameters of convolution layers are recorded
as Conv-channel-kernel-stride and pooling layers are recorded as Pool-kernel.

of audio-visual pairs. The similarity is a metric used to indicate the degrees of
synchronization of audio-visual pairs. Ideally, synchronized pairs correspond to
high scores and asynchronous pairs opposite. The model is trained to expand
the similarity of positive samples and minify the negative ones. More details are
described in Sect. 4.

4 AVCM

4.1 Architecture

The details of AVCM are described in Fig. 3. Different from Siamese Networks
in [18], we have developed two specific convolutional networks for audio embed-
ding and visual embedding respectively. In visual architecture, Conv2d layers
are used to process lip shape features. Considering the complicated and change-
able characteristics of lips, we improve the depth of the architecture. To solve
the problems of gradient diffusion and network degradation caused by deep net-
works, Residual Block based on ResNet [6] is introduced to ensure the sta-
ble convergence of the model. Maxpool is used for downsampling and reducing
redundant data. In audio architecture, Conv1d layers are employed processing
the mel-scale frequency information, and Conv Bank which is made up of serial
convolutional blocks with successively increasing receptive fields, is adapted to
capture long-term semantic information.

4.2 Audio-Visual Features

Image Features. A phoneme unit Ui with variable-quantity pairs is used as a
training batch. In each pair, mouth frame is converted to an array with 64 ×
40 (W × H) dimensions, then is normalized by subtracting mean and dividing
standard deviation.
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Audio Features. We use mel-scale spectrograms as audio features. In our
experiments, mel-scale spectrograms are computed from a power spectrum
(power of magnitude of 2048-sized STFT) on 40-ms windows length. To main-
tain the same scale with image features, the mel-scale spectrograms are then
processed with same normalization.

4.3 Contrastive Loss

To optimize the coupling of audio-visual features, a contrastive loss initially
proposed in [5] is employed. The loss function updates the model parameters by
reducing distances of synchronous pairs and increasing distances of asynchronous
pairs. The expressions are described as Eq. (10).

E = 1
2n

∑n
i=1 yd

2 + (1 − y)max(Margin − d, 0)2 (10)
d = ‖fi − ai‖2 (11)

In Eq. (10), E represents the loss of Ui with n pairs. Margin is a predefined
parameter and y is a flag argument that y = 1 represents synchronous pairs and
y = 0 represents opposite. The Euclidean distance d in Eq. (11) is calculated for
each Pi, which is negatively correlated with similarity metrics.

4.4 Model Details

Generally, a fixed value is set for batch size. While the pairs in Ui are variable-
quantity, to fit training batchs produced by matching strategy, a batch size
adaptation is employed by resetting the batch size to quantity of pairs for each
input. In the proposed model, we utilize the Adam optimizer for gradient descent
as initializing learningrate to 0.0005. To bring a more steady convergence,
weight decay is set to 0.0001 and grad norm is set to 5. Margin in contrastive
loss is set to 700–900. Further details can be found in our implementation code:
https://github.com/BrightGu/AVCDetection.

After training, real and fake samples are effectively divided into different
camps, in which real samples corresponding to higher similarity metrics while
fake samples opposite. Then, an optimal partition value is selected as threshold
used to determine whether a video is true or false in inferring stage.

5 Experiments

5.1 Dataset

To facilitate the development of Deepfake detection technologies, researchers
have published varied types of Deepfake datasets, including Faceforensics++
[15], Celeb-deepfakeforensics [20], DFDC [1], etc. However, no synchronized
voices are provided in most present datasets, which leaves our method with
no implementation conditions. Therefore, we evaluate proposed method on Vid-
TIMIT [17] and DeepfakeTIMIT [7] where synchronous audio-visual pairs are

https://github.com/BrightGu/AVCDetection
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Table 1. Data distributions of train set and test set

DataSet Type Train Test

VidTIMIT [17] Video 350 80

Clip 11277 2592

DeepfakeTIMIT [7] Video 240 80

Clip 7721 2592

produced from VidTIMIT and asynchronous pairs from DeepfakeTIMIT. Videos
in DeepfakeTIMIT are derived from VidTIMIT with faces swapped using the
open source GAN-based approach, and transcripts in speeches are from TIMIT
corups [4]. There are two subsets in DeepfakeTIMIT, referred to as high quality
(HQ) with 128 × 128 input/output size and low quality (LQ) with 64 × 64 size.
The detections are conducted on videos and phoneme units (clips in Table 1)
respectively. More details are showed in Table 1. In the following text, we use
DeepfakeTIMIT uniformly to represent the two datasets.

5.2 Evaluation on DeepfakeTIMIT

The experiments are conducted on two quality of subsets: HQ and LQ, with
two different evaluate objects: phoneme units (clips in Fig. 4) and videos. The
similarity metric of a clip is the average metric of pairs in the clip, and the metric
of a video is the average metric of clips in the video. The score distributions and
the FAR curves are described in Fig. 4. On the whole, the real samples and fake
samples are both distributed in a concentrated manner although there are some
overlaps which can’t be separated. For the detections on same object (Fig.4(a,
c) or Fig. 4(b, d)), the performances on LQ are slightly better than HQ. In
terms of the sample distributions, fake samples are in smoother distributions in
high-score areas on LQ, which means the number of indistinguishable extreme
points has been reduced. The possible explanation is that compared with LQ,
the image quality of HQ are closer to real samples which eventually leads to a
lower-efficient divide on HQ. For the detections on same datasets (Fig. 4(a, b)
or Fig. 4(c, d)), the performances on videos surpass the clips. We consider the
phenomenon is related to the mean-value strategy, which eliminates the effects
of extreme values to some extent. As the Fig. 4(b, d) shows, the overlaps are
reduced, and the smoother distributions of videos may probably caused by the
mean-value strategy.

From Fig. 4(a, c) or Fig. 4(b, d), we can see the similar trends of the FAR
curves. The similar trends mean that the inner distributions of samples in LQ
and HQ are the same. Actually, despite the input/output sizes in generative
model are different, the architectures remain the same, which eventually lead
to the similar trends. Moreover, in the case of consistent data distributions, LQ
with lower image quality is easier to identify than HQ.
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Fig. 4. The performances on LQ and HQ.

Table 2. Comparison of two matching strategies

Dataset Unit type AUC (%) EER (%) FRR@FAR10% (%)

PBP ELP PBP ELP PBP ELP

LQ Video 99.20 97.05 3.75 12.50 1.00 14.00

Clip 95.64 92.80 9.10 11.86 8.00 16.00

HQ Video 97.44 95.05 6.25 11.25 5.00 15.00

Clip 94.09 91.43 10.57 18.49 11.00 27.00

5.3 Comparison of Two Matching Strategies

To evaluate our method on Deepfake detection, the primary step is to find an
effective audio-visual matching strategy to have video segmented. In our method,
we have video segmented based on phonemes, called Phoneme-Based Partition
(PBP). As reference, we introduce another anchor strategy by clipping video into
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equal-length segments, called Equal-Length Partition (ELP). During training,
the only difference of the two strategies is batch size. For PBP, a batch means
a phoneme unit which consists of variable-quantity pairs, so we conduct extra
adaptive strategy.

Table 3. Comparison on DeepfakeTIMIT

Dataset Method AUC (%) EER (%) FRR@FAR10% (%)

LQ LSTM lip-sync [8] / 41.8 81.67

IQM+SVM [3] / 3.33 0.95

Face-Warp-ResNet50 [12] 99.9 / /

AVCM (ours) 99.2 3.75 1.00

HQ IQM+SVM [3] / 8.97 9.05

Face-Warp-ResNet50 [12] 93.2 / /

AVCM (ours) 97.44 6.25 5.00

The experimental results are described in Table 2. From Table 2, PBP outper-
forms ELP both on LQ and HQ. For video detection, the AUC metrics indicate
PBP has achieved 2.39% promotions on HQ and 2.15% promotions on LQ. Com-
pared with ELP, PBP is more in line with the rules of speech division. Despite
the extra work involved in phoneme alignment, PBP has realized promotions on
accuracy eventually. Experiments show that the phoneme-based partition scheme
can obtain more effective and universal audio-visual representations, and then
achieves better performances. Subjectively, LQ is more likely to be exposed, thus
the promotions (the proportion by which PBP exceeds ELP) on LQ, may have
certain increases over HQ. However, the results haven’t confirmed it, which indi-
cate that promotions have no appreciable expansion although evaluate objects
are in different qualities. We assume the possible reason is that the promotions
are related to sample distributions, and has no relevance to the image quality.
Indeed, the impacts based on different matching strategies are influenced by the
sample distributions.

In terms of data preprocessing, ELP performs more commonly, and it doesn’t
require participation of transcripts. Relatively, the implementations for PBP
seem more strict due to the extra work on phoneme alignment stage. On the
whole, PBP remains slight promotions in accuracy, yet ELP is also considered
as a valid alternative when there are no speeches or transcripts provided.

5.4 Comparison with Previous Methods

In this section, we choose three detection methods with different strategies in
contrast to our method: a common audio-visual consistency detection method
(LSTM lip-sync [8]), an image quality measurement method (IQM+SVM [3])
and a Deepfake detection method (Face-Warp-ResNet50 [12]). By contrast, we
have observed Deepfake videos from three different perspectives (consistency of
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behavior, image quality and warpped artifacts) which reveals some problems in
present Deepfake videos and further proves the feasibility of our method.

LSTM lip-sync [8] is a method used to checking audio-visual consistency on
videos with shifted audio. The results in Table 3 indicate that the performance
of it on Deepfake detection is distinctly undesirability. We consider the main
problem is the unreasonable features it captures. The method concentrates on
the study of continuous lip-movement information based on LSTM, yet such
long-range information are universally considered hard to characterize which
eventually lead to unsatisfactory results. Instead, our method explores the cor-
relation of speech features and lip shapes at the frame level, which leads us to
focus on not only lip shapes but also image quality. IQM+SVM [3] is a method
based on image quality measurement with SVM classifier. The performances on
HQ and LQ indicate that visual defects exist objectively in Deepfake videos and
can be effectively identified, and the flaws in LQ are more pronounced than HQ.
Moreover, without neural networks, traditional methods can also solve problems.
Face-Warp-ResNet50 [12] is an effective Deepfake detection method verified by
experiments, which aims to exposing distinctive artifacts around marginal areas
of fake faces. The method presents the best score on LQ and a slightly decreasing
score on HQ.

Compared with the above methods, the results in Table 3 demonstrate that
our method has achieved the best performances on HQ. Nevertheless, the per-
formances on LQ slightly lags behind IQM+SVM and Face-Warp-ResNet50.
The explanations, as we consider, are that when image quality is in low
degrees, IQM+SVM and Face-Warp-ResNet50 are more sensitive to obvious
visual defects. While image quality is in high degrees, visual defects are rela-
tively insidious. Compared with other facial areas, intricate lip shapes are harder
to imitate, which eventually results in relatively distinct flaws. Therefore, our
method which pays attention on mouth regions and introduces speech as refer-
ence, eventually achieves better performs on HQ. The results confirm that our
method provides greater accuracy and feasibility.

Despite the imperfect of present forging technologies, we consider, along
with the deeper researches on generative networks, the visual defects will be
more insidious, and then better detectors will be in urgent need. In addition to
the accuracy of the detectors remains to be improved, there also exist growing
demands for multi-dimensional forensics on current Deepfake detection. The
main reason is that it seems hard for people to make judgments based on
unexplainable conclusions given by deep neural network models. It is generally
expected to access evidence chains or semantic cooperations from multi-class
detections, which requires that detection methods must be diversified.

6 Conclusion

In this paper, we present a Deepfake detection method by exploiting audio-
visual consistency. As demonstrated, our approach explores visual defects in
synthetic mouth regions by introducing authentic audio as reference. Addition-
ally, the experiments indicate that phoneme-base partition performs a more effi-
cient adaption than equal-length partition. Meanwhile, the method offers a new
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solution for forgery detection through a referential pattern. Compared with the
existing methods that exploring unexplained visual features, our method greatly
enhances the interpretability and richness of evidences and can assist operators
to make subjective judgments to some extent. Based on varied experiments, we
form a more precise understanding of audio-video consistency, especially intro-
ducing phonemes into matching strategies. Considering present vast excellent
works on lip-sync video generation, we expect new breakthroughs on research
of audio-video consistency, which will firmly play a import role in the fields of
detection and generation.
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Abstract. In-field image sensor defects develop almost continually over
a camera’s lifetime. Since these defects accumulate over time, a forensic
analyst can approximate the age of an image under investigation based
on the defects present. In this context, the temporal accuracy of the
approximation is bounded by the different defect onset times. Thus, the
approximation of the image age based on in-field sensor defects can be
regarded as a multi-class classification problem. In this paper, we propose
to utilize two well-known machine learning techniques (i.e. a Naive Bayes
Classifier and a Support Vector Machine) to solve this problem. The
accuracy of each technique is empirically evaluated by conducting several
experiments, and the results are compared to the current state-of-the art
in this field. In addition, the prediction results are assessed individually
for each class.

Keywords: Digital image forensics · In-field sensor defects · Image
age approximation · Machine learning

1 Introduction

During the image acquisition processing pipeline, all the steps involved leave
unique traces in the image. These traces are at the core of digital image foren-
sics, as they can be used, for example, to detect image forgery or to identify
the camera used. There are three main sources that leave traces during image
acquisition (i.e. the lens, sensor, and color filter array) and their combination
forms the acquisition fingerprint. For a comprehensive overview of techniques
that exploit these traces, see [12].

In this paper, we focus on the traces introduced by the image sensor. Every
image sensor has imperfections. Some of these occur during the manufacturing
process, while others develop over a camera’s lifetime. In [7], Jessica Fridrich
shows how these imperfections can be used in digital image forensics. The Photo
Response Non Uniformity (PRNU) of a sensor represents the variations in quan-
tum efficiency among pixels. These variations result, among other reasons, from
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the slightly different pixel dimensions (i.e. due to imperfections in the manufac-
turing process). Since these variations are different for each device, the PRNU
represents a sensor fingerprint and identifies the imager used [7].

In-field sensor defects arise after the manufacturing process. In principle,
these defects are due to cosmic radiation, and once a pixel is defective, it can
no longer heal. As a result, in-field sensor defects accumulate over time and by
detecting their presence, the age of an image can be inferred. Image age approx-
imation is relevant to forensic analysts when the chronological order among
pieces of evidence can help to deduce a causal relationship between events. Since
the time information from the EXIF header is usually not trustworthy, reliable
methods for image age approximation are required.

Fridrich et al. introduced a technique to approximate the age of an image
based on the presence of in-field sensor defects in [8]. The assumed situation is
that a forensic analyst is provided with a set of trusted images for which the
acquisition time is known and a second untrustworthy set. The goal is to approx-
imate the age of the images from the second set relative to the first trustworthy
set. To achieve this, the authors proposed a maximum likelihood principle to
estimate the defect parameters, to define their onset times and to approximate
the acquisition times. This approach is currently the only technique that uses
sensor defects for temporal image forensics.

In [8], the authors estimated a certain index of the trustworthy set as the
age of an image under investigation. We remind that image age approximation is
based on in-field sensor defects, and therefore only the time interval between two
consecutive defect onset times can be predicted. In this paper, we consider image
age approximation as a multi-class classification problem and propose to utilize
traditional machine learning techniques to solve it. In particular, we train a
probabilistic (i.e. a Naive Bayes Classifier (NB)) and a geometric (i.e. a Support
Vector Machine (SVM)) classifier. The classifier accuracy of each approach is
empirically evaluated by conducting several experiments based on three data
sets, and the results are compared to the current state-of-the-art in this field
(introduced in [8]).

The remainder of this paper is organized as follows: In the next section we
discuss previous work on in-field sensor defects and image age approximation.
The different machine learning techniques are described in Sect. 3, followed by
a discussion of the practical implementation issues. The conducted experiments
and results are described in Sects. 5 and 6. Finally, the key insights are summa-
rized in Sect. 7.

2 Related Work

2.1 In-field Sensor Defects

As the name suggests, in-field sensor defects develop in-field, after the manufac-
turing process. The characteristics of these defects are studied in [5,9–11,15,16].

In principle, a pixel is made of silicon and cosmic rays can damage this
silicon layer. Typically, less than 2.3% of the pixel’s area are affected by this
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damage. As a result, a defect only affects the behavior of a single pixel. Never-
theless, because of preprocessing steps like demosaicing (i.e. interpolation), the
defect spreads over its neighboring pixels. Since cosmic radiation is the defect
source, defective pixels develop independently of one another and are uniformly
distributed over the entire image sensor. For example, defects would occur in
clumps if environmental stress were the defect source. In addition, if the sensor
is stored at the same altitude (i.e. with similar exposure to cosmic radiation),
new defects develop almost continuously. Chapman et al. analyze the influence
of ISO expansion, pixel size decrease, and smaller sensor areas on the defect
development rate in [2]. This combination increases the defect development rate
significantly.

The value of a pixel is determined by the incoming light. In particular, the
photoelectric effect is used to convert the incoming light into electrons, and by
quantizing the resulting voltage, the pixel’s value is defined. The quantization set-
ting defines the pixel’s dynamic range (usually [0, 255] ∈ N). A defect reduces this
range by introducing an offset. To model a defect we rely on the definition in [8],
except we define the model for a single pixel (i.e. all variables are scalars instead
of matrices). In this context, let I be the intensity of the incoming light to which a
certain pixel is exposed. The function f(I) R → [0, 255] ∈ N maps the incoming
light to the pixel’s dynamic range. A defective pixel can be defined as

f(I) = I + IK + τD + c + Ξ, (1)

where K represents the PRNU factor. The dark-current D depends on the ISO
setting, the exposure time and the temperature. These factors are combined in
τ and multiplied with D. Thus, the offset of the pixel varies as τ varies. A fixed
offset is denoted by c, and Ξ represents all other noise. Based on the defect type,
either D, c or both parameters are high (i.e. a hot pixel has a high dark-current).
We remind that the PRNU K develops during the manufacturing process and
therefore does not contain any age information. Examples of such in-field sensor
defects are illustrated in Fig. 1. The right image shows defects extracted from
a dark-field image. Dark-field images are calibration images where the camera’s
shutter is closed (i.e. I ≈ 0) and therefore the defect or rather its offset becomes
visible. As illustrated, a defect can vary in shape, size, and the affected color
channel. If the defect offset is high enough, the defect becomes visible in regular
scenes, as shown in Fig. 1 (left).

2.2 Method Proposed by Fridrich et al.

In [8], the authors assume that an analyst is given two sets of images. One
set contains trusted images in chronological order and the second set contains
images where the capturing time is unknown. To approximate the age of an image
from the second set relative to the first trustworthy set, the authors propose a
maximum likelihood technique.

In particular, a defect is considered being noise, and by applying a denoising
filter (i.e. a median filter) the defect is filtered out. The median filter resid-
ual, which is obtained by subtracting the median filtered image from the origi-
nal image, thus contains the defect’s magnitude (i.e. IK + τD + c). In [8], the
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Fig. 1. Examples of different in-field sensor defects extracted from a regular scene
image (left) and from captured dark-field images (right).

authors assume that the difference between the noise residual and the sum of all
defect parameters (K,D, c) is normally distributed, with a mean of zero and a
variance σ2. To estimate the unknown parameters θ = (K,D, c, σ) (before and
after the defect onset) and the defect onset time j, the authors propose a maxi-
mum likelihood approach. The onset time j represents the index of the trusted
set where the defect onset happens, and θ̂(0) denotes the estimated parameter
before the onset and θ̂(1) afterwards. To approximate the age of an image under
investigation, a maximum likelihood approach is used again, i.e.

ĵ = argmax
j

∏

i∈Ω

1√
2πσ̂

(Ψ)
(i)

exp
W(i) −

(
I(i)K

(Ψ)
(i) + τD

(Ψ)
(i) + c

(Ψ)
(i)

)

2σ̂
2(Ψ)
(i)

, (2)

where Ω denotes the set of all defective pixels and W(i) is the residual value of
the ith defective pixel from that image. Dependent on Ψ the defect parameters
are regarded either before or after the defect onset, i.e. Ψ = 1 if j is greater
as the estimated onset time for the ith defective pixel. Hence, the resulting
approximated acquisition time ĵ is the index at which the difference between
the residual value and the sum of the defect parameters is minimum for all
defects.

3 Machine Learning Approach

In this paper, we assume the same situation as in [8], where S denotes the set of
trusted images. However, instead of predicting a certain index of S, we consider
image age approximation as a multi-class classification task. This is reasonable
because image age approximation is based on the presence of in-field sensor
defects, and, therefore only the time interval between two consecutive defect
onsets can be predicted. Hence, the temporal prediction accuracy is bounded by
these intervals. A common way to solve such classification problems is by using
machine learning techniques. For this purpose, we propose to utilize a proba-
bilistic and a geometric classifier. However, the features used must be defined
before applying them.
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3.1 Features
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Fig. 2. Residuals of a defective pixel over the set of chronologically ordered images.
The defect onset at about image 1770 is clearly visible.

The spatial defect property can be described as a single peak in the middle of a
smooth image area (i.e. an area with constant pixel values). Such a peak can be
smoothed out by applying a median filter. At the positions at which the median
filter responds, the median filter residuals are not equal to zero. Furthermore, the
residual value reflects the height of the peak, or rather the defect’s magnitude.
For this reason the median filter residual is a good defect indicator and is used
as classification feature. In Fig. 2, the residual values of a single defective pixel
over S are shown. It is clearly visible that most of the residual values before the
defect onset are close to zero. The outliers can be explained with scene properties
(e.g. edges). In contrast, the residuals after the onset (around index 1770) are
much higher.

To construct the feature space, we consider d different defects and their
residuals. In this context, let X = X1, . . . , Xd be the set of d features (Random
Variables (RVs)) used for classification. With regard to the dynamic range of
a pixel from 0 to 255, a single feature Xi can have a value xi ∈ Z : −255 ≤
xi ≤ 255. If d features are regarded, then 511d feature combinations fully define
the feature space Ω. A single feature combination is denoted by the vector x ∈
[−255, 255]d, and it represents the observed residual values of a single image.
The vector x can also be interpreted as point in Ω.

3.2 Naive Bayes Classifier (NB)

The NB (described in [1]) is a probabilistic classifier based on the Bayes Theorem,
where

ŷ = argmax
y∈Y

P (y|x) = argmax
y∈Y

P (y)
d∏

i=1

P (x(i)|y) (3)

and Y denotes the set of k classes. To deduce P (y|x) the conditional probabilities
P (x(i)|y) have to be estimated. In order to estimate P (x(i)|y), the conditional
probability distribution p(Xi|Ψ) for defect Xi depending the defect’s presence
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(i.e. Ψ = ψ1 if the defect is present and Ψ = ψ0 otherwise) has to be estimated.
Depending on the class y and the defect Xi either p(Xi|ψ0) or p(Xi|ψ1) is con-
sidered. Hence, the estimation goal is to create k sets (one for each class), where
each set contains d estimated conditional probability distributions, e.g. the first
set consist of {p(X1|ψ0), . . . , p(Xd|ψ0)} since there is no defect present.

Since Xi is discrete, an intuitive way to estimate p(Xi|Ψ) is by the histogram
of relative residual frequencies. However, the main problem with using a his-
togram is the likelihood of zero probabilities for certain bins. A way to prevent
zero probabilities is through applying ‘additive smoothing’ [4], where a variable
γ is added to every bin. This process smooths out the histogram by adding a
uniform distribution. In order to estimate p(Xi|Ψ), let S

(Ψ)
Xi

⊂ S be a subset that
contains observations of residual values of the ith defect, dependent on Ψ (before
or after its onset).

p̂(Xi|Ψ) =
γ +

∑
x∈S

(Ψ)
Xi

I(xi = x)

|S(Ψ)
Xi

| + ωγ
, (4)

where ω = 511 and I(.) is the indicator function returning 1 if the condition is
true. A very small γ only adds a small probability to zero bins, while the original
distribution is relatively unaffected. By increasing γ, more and more peaks are
smoothed until only a uniform distribution remains (if γ → ∞).

Another approach is to assume that p(Xi|Ψ) follows a well defined probability
distribution, i.e. that it is normally distributed. In this context, the estimation
task is reduced to the estimation of the unknown parameters θ = (μ, σ). This
is done by computing the well known point estimators denoted as the empirical
mean and standard deviation. The resulting probability distribution is contin-
uous. Since Xi is a discrete RV, the probability of P (xi|Ψ) ∀ xi ∈ Xi given Ψ
is

P̂ (z − 1
2

≤ z = xi ≤ z +
1
2
|Ψ) =

1√
2πσ̂

∫ z+ 1
2

z− 1
2

exp− (z−μ̂)2

2σ̂2 dz, (5)

where z ∈ R. However, the assumption of a normal distribution determines
the distribution shape, regardless of whether this shape fits the actual residual
distribution.

In contrast, non-parametric density estimation techniques provide more flex-
ibility in the shape of the distribution. For this reason, we consider a Kernel
Density Estimation (KDE) technique (described in [13]) as last approach. Again,
the resulting distribution is continuous and

P̂ (z − 1
2

≤ z = xi ≤ z +
1
2
|Ψ)) =

1

|S(Ψ)
Xi

|h
∑

x∈S
(Ψ)
Xi

K

(
z − x

h

)
. (6)

A Gaussian kernel K(.) is used, and h denotes the bandwidth.
The prior probabilities P (y) of Eq. (3) can be estimated from the training

set using the relative amount of images per class.
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3.3 Support Vector Machine (SVM)

A SVM (described in [3]) is a geometric classifier, where the feature space is
interpreted as d dimensional Cartesian space. In particular, the feature space Ω
forms a d dimensional hypercube with an edge length of 511 (i.e. [−256, 256]).
The goal of a SVM is to find the best separating hyperplane which divides Ω
into two subspace, one for each class. For this reason, a SVM is a binary linear
classifier predicting the positive class if

h(x) = sgn(ωT x + b) (7)

results in a positive number. The separating hyperplane is defined by ωT x + b =
0. In order to apply a SVM to a multi-class classification problem, the problem
has to be divided into several binary classification tasks. In particular, k(k−1)

2
SVMs must be trained in a one vs. one scenario. The resulting classifier is of the
form

ŷ = argmax
y∈Y

⎛

⎝
∑

hy(x)∈Hy

hy(x)

⎞

⎠ , (8)

where Hy is a set containing the hyperplane functions hy between class y and
all other classes.

4 Practical Implementation Issues

To apply the proposed classifiers, the defect locations have to be known before-
hand. In [8], the authors suggest to threshold the residual variance in order to
define the defect candidates. Other in-field sensor defect detection techniques
are introduced in [6] and [14]. Besides the defect locations, the onset times have
to be known as well. To estimate the onset time, we exploit the difference in
the average residual value before and after the defect onset (i.e. we estimate j
where the difference is maximum). This approach works well for most defects.
However, since the onset times define the class borders (i.e. the classes), knowing
the correct onset times is crucial for the subsequent image age approximation.
For this purpose, a visual refinement of the onset times is necessary, i.e. the esti-
mated onset times have to be compared to the onset times defined by looking
at the chronologically ordered residuals (e.g. as shown in Fig. 2).

Furthermore, it is possible that multiple defects have their onset times at
the same index j. One explanation for this could be a higher exposure to cos-
mic radiation (e.g. caused by transport on an airplane) at this point in time.
Alternatively, there could be a significant time difference between the real onset
times; however, no images were available during this time. To deal with this
possibility, similar onset times are clustered using hierarchical clustering with a
single linkage and a cut-off depth t = 20. As a result, there are at least 20 images
between all onset times.

To process color images, the authors in [8] convert the images into grayscale
images beforehand. Since a defect is not always represented the same way in
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each color channel, a grayscale conversion can attenuate the defect intensity. To
cope with this, we select the color channel for each defect in which the average
residual value (over all training data) is maximum.

The estimation of p(Xi|Ψ) via the histogram with additive smoothing can
bias the age prediction result. This occurs when the relative residual frequency of
a certain value is equal before and after the defect onset. Because of the additive
smoothing property, the resulting probability is higher when fewer samples are
used for computation. For example, if the occurrence of 255 is 0 by taking residual
values into account either before or after the onset, and if fewer samples are
available before the onset, then the resulting probability of 255 before the defect
onset is higher.

A general problem for both continuous density estimation techniques are
the resulting probability values for marginal areas near −255 and 255 since the
probabilities are very low (probably below machine precision) at these points
and are set to zero.

5 Experiments

The age prediction accuracy of the classifiers is empirically evaluated based on
several experiments. For a better comparison between the proposed classifiers
and the maximum likelihood approach introduced in [8], we implemented this
method as a classifier and applied it to the same data sets. In this context, the
maximum likelihood approach of Eq. (2) changes to

ŷ = argmax
y∈Y

∏

i∈Ω

1√
2πσ̂

(y)
(i)

exp
W(i) −

(
I(i)K

(y)
(i) + τD

(y)
(i) + c

(y)
(i)

)

2σ̂
2(y)
(i)

. (9)

The defect parameters (K(y),D(y), c(y), σ(y)) are computed according to the
onset times defined by class y. All the experiments rely on images from three
different imagers, a Nikon E7600, a Canon PowerShot A720IS and a Sony DSC-
P8.

5.1 Data Sets

Let SN be a set of 1768 chronologically ordered images that were captured with
the Nikon. The set SC consists of 4379 chronologically ordered images taken
with the Canon and 2302 images captured with the Sony are in set SS . Figure
3 shows the relative amount of images taken per year. The images of all three
imagers were taken between 2003 and 2014. All devices were used as personal
cameras to capture regular scene images (e.g. vacation scenes). A sample of the
captured scenes from all three devices is illustrated in Fig. 4, in which 4 images
from each device are shown. The images captured in the years 2019 and 2020
were taken for this paper. These recently taken images were only captured with
the Nikon and Canon as only those devices are still available.
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Fig. 3. Relative amount of images per year and device.

A 7 megapixel Charged Coupled Device (CCD) sensor with a resolution of
3072 × 2304 is used for the Nikon, and a 8 megapixel CCD sensor with a 3264
× 2448 resolution is built into the Canon. The native Canon sensor resolution is
altered by a quality setting, whereby the images are stored in a format of 2592
× 1944. All Sony images were taken with a 3.2 megapixel CCD sensor with a
resolution of 2048 × 1536. All images are JPEG compressed 8 bit RGB color files.
On the basis of the given JPEG compressed datasets, an evaluation of different
compression ratios would imply ‘double compression’, which is of less relevance.

Fig. 4. Randomly sampled images from set SN , SC and SS .

Based on the onset time analysis, 8 classes were identified for the Nikon and
7 each for the Canon and Sony. In Fig. 5, the relative ratio of images and defect
onsets per class is illustrated. The first class always represents the time interval
between the first available image and the first defect onset. For this reason, there
is no defect present in the first class. In total, 23 defects spreading over 87 pixels
are found on the Nikon sensor. For the Canon, 17 defects spreading over 65 pixels
are used for age prediction, and 8 defects spreading over 42 pixels are used for
the Sony. The large proportion of defects in the last Canon and Nikon class is
due to the huge time gap between the last and penultimate class (as illustrated
in Fig. 3).
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Fig. 5. Relative amount of images and defects per class.

5.2 Performance Metric

The accuracy of a classifier can be expressed in terms of the probability of an
arbitrary object being misclassified. This error is known as the generalization
error. Unfortunately, it is not possible to compute this probability as only a
finite number of samples are available. However, it is possible to compute the
empirical error

LS(ŷ) =
1

|S|
n∑

i=1

I[ŷ 
= y], (10)

where I is the indicator function returning 1 only if the argument is true. The
empirical error is computed from a data set, also known as test set, that the
classifier has not seen before. In this context, the empirical error is an approxi-
mation of the generalization error. To compute the empirical error, we divide the
available data sets into a training and test set. This is done in a stratified man-
ner with a sampling ratio of 0.9. Since a stochastic process is used for sampling,
more than one training and evaluation operation is conducted. In particular, 200
different evaluations are carried out.

A natural upper classification bound is the empirical error that results from
predicting by chance (i.e. sampling from a uniform distribution U1/|Y |). Conse-
quently, the resulting upper bound of the empirical error is equal to 1 − 1/|Y |.
In order to evaluate the prediction performance for a single class, we computed
the f1-score

f1 =
2TP

2TP + FP + FN
(11)

for each class. To compute the f1-score for a single class, this class is regarded
as positive class, and all other classes are denoted as negative class. Taking into
account a random prediction (for all classes), the lower f1-score bound of the ith

class is

2αN
|Y |

2αN
|Y |+

(1−α)N
|Y | +αN− αN

|Y |
=

2αN
|Y |

N+|Y |αN
|Y |

= 2α
1+α|Y | , (12)

where N is the sample size of the test set and ni = αN are the number of
samples from the ith (positive) class. The amount of samples from the negative
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class (all other classes) is represented by (1−α)N . If the test data are uniformly
distributed over all classes, then α = 1/|Y | and the lower f1-score bound is equal
to 1/|Y | (as expected). If we assume a uniform random prediction for a single
class only, the lower f1-score bound is

2αN
|Y |

2αN
|Y | +αN− αN

|Y |
=

2αN
|Y |

αN+|Y |αN
|Y |

= 2
1+|Y | . (13)

This results from assuming FP = 0, i.e. no samples from other classes are
predicted as this class (precision = 1). Hence, if any method yields a higher
f1-score than 2/(1+ |Y |) for a single class, the prediction result for this class is
definitely better than a random prediction.

6 Results

Table 1. Represents the average empirical error (over 200 runs). The left value shows
the empirical error that results when it is assumed that the class probabilities follow the
training data distribution, and the right value results when uniform class probabilities
are assumed.

Device KDc NB-NE NB-HE NB-KDE SVM

Nikon 0.46 0.46/0.47 0.35/0.37 0.38/0.39 0.38/0.38

Canon 0.28 0.27/0.31 0.20/0.24 0.21/0.26 0.19/0.22

Sony 0.33 0.28/0.34 0.25/0.36 0.21/0.33 0.21/0.30

In Table 1 the empirical error for each method is shown. The ‘KDc’ method
represents the results of applying the technique introduced in [8]. This method
is used as reference as it represents the current state-of-the-art in this field. All
NB results are denoted by ‘NB-NE’, ‘NB-HE’ and ‘NB-KDE’, where p(Xi|Ψ) is
estimated either by assuming a normal distribution (‘NB-NE’), via a histogram
(‘NB-HE’), or through the KDE (‘NB-KDE’). Both parameters of the histogram
and the KDE are treated as hyperparameter, with the smoothing parameter
γ = 0.028 and the bandwidth h is set to 2.4 (for the Nikon and Canon) and 4.2
for the Sony.

The left values in Table 1 represent the empirical error when applying the
classifiers as stated in Sect. 3 (i.e. NB with priors P (y) according to the relative
amount of training data per class and the standard matlab implementation of
the SVM). Overall, the SVM achieves the best error rates, which are significantly
lower compared to the current state-of-the-art (‘KDc’). Compared to the SVM,
the error rates resulting from the NB using a histogram and a KDE probability
distribution estimation technique are only slightly worse but still significantly
lower than those produced using the ‘KDc’ method. However, these large dif-
ferences are based on the assumption that the image class distribution of the
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untrustworthy set follows the distribution of the training data (trusted set), and
this assumption is probably not applicable to real world data. For this purpose,
we have additionally trained the NB with uniform priors. Since the training data
are not uniformly distributed across the classes, the SVM tends to overfit classes
with more training data. In order to compensate this overfitting, we also impose
a uniform class distribution when training the SVM. This problem of unbalanced
classes is less important for learning the probability distributions p(x|Ψ) since
all data, either before or after the defect onset, are always taken into account
(i.e. across the class boundaries).
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Fig. 6. Illustrates the different probability distribution estimation techniques. The left
figure shows the relative residual frequencies before the defect onset and the right figure
illustrates the relative frequencies afterwards.

The empirical error rates when assuming a uniform class distribution are rep-
resented by the right values in Table 1. The SVM again achieves the best results,
which are considerably better than the ‘KDc’ method. In total, the second best
results are achieved with the ‘NB-HE’. Nevertheless, the ‘NB-KDE’ achieves
almost the same low error rates. As the results indicate, assuming a normal dis-
tribution of residual values is less correct. This claim is confirmed by looking at
Fig. 6. The relative residual frequency (before and after the onset) of a certain
defect is compared with the different density estimation techniques. It is clearly
visible that a normal distribution fits the residual distribution relatively well
before the onset, but not at all afterwards. The distribution shapes illustrated
look quite reasonable since regular scenes usually consist of many smooth areas,
which are represented by the high probability that a residual before the onset
is zero (see Fig. 6 (left)). The probabilities directly to the left and right of zero
are due to scene properties such as borders between two smooth areas (edges).
A negative residual value occurs when there are more ‘dark’ than ‘bright’ pixels
in the 3 × 3 median filter area, and the middle pixel is a bright one. A contrary
situation would cause a positive residual value. The symmetry of probabilities
is reasonable since these described situations are likely to be equally probable.
After the defect onset (see Fig. 6 (right)), a negative residual value is less likely.
This is due to the defect properties, where the defective pixel value is usually
higher than its neighbors.
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A residual value of zero (or near to zero) after the defect onset can be caused
by bright scenes or by the processing pipeline and image compression (i.e. atten-
uation of high frequencies). This is a problem when predicting the correct image
age since a residual of zero always indicates a not present defect. On the basis
of a feature analysis, there is an estimated probability of 0.2113, 0.1330 and
0.1847 (Nikon, Canon and Sony) that a residual value after the defect onset
is zero. These probabilities reflect the difference in the processing pipeline and
image compression. Which most likely causes the differences observed between
all three devices.
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Fig. 7. Represents the average (over 200 runs) f1-score for each class. The top row
represents the f1-score when the class probabilities are assumed to follow the train-
ing data distribution, and the bottom row represents the f1-score when uniform class
probabilities are assumed.

To asses the prediction performance of the individual classes, we evaluated
the f1-score for each class. In Fig. 7, the average f1-score (over all 200 runs) per
class is illustrated. The top row shows the f1-score per class and device, assuming
that the class probabilities follow the training data distribution, and the bottom
row represents the f1-score when uniform class probabilities are assumed. The
solid black horizontal line represents the derived lower bound of Eq. (13). A f1-
score higher than this line indicates a prediction result definitely better than a
random selection. The dashed black line reflects the weaker lower bound, where
a general random prediction (for every class) is assumed. This lower bound is
derived from Eq. (12) and is dependent on the sample class ratio.

The Nikon is the only device where all methods are definitely better than
random predictions (given all classes). With the Canon, the f1-score of class 3
yields the worst result. This might be due to the imbalance in the amount of
images between the classes. The Canon class 3 has the lowest amount of images
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as compared to the other classes. The same argument applies to the Sony, where
the classes 2, 3 and 5 yield the lowest f1-scores. A positive generalization effect
when assuming uniform class probabilities (for NB and SVM) is clearly visible,
i.e. the prediction performance is higher for classes with fewer images. The very
high f1-score of the last class for the Nikon and Canon is due to the particularly
high amount of defects that occur in this class (due to the huge time difference).

7 Conclusion

Approximating the age of a digital image based on the presence of in-field sensor
defects is a multi-class classification problem where a class is defined as the
time interval between two consecutive defect onset times. For this purpose, the
temporal prediction accuracy depends on the number of different defect onsets in
the available time interval. To solve this classification problem, standard machine
learning techniques are considered. In particular, a probabilistic (NB) and a
geometric classifier (SVM). In general, the SVM achieves the best age prediction
results, which are considerably better than the current stat-of-the-art introduced
in [8]. Thus, the described SVM is the recommended technique to approximate
the age of an image under investigation. Overall, the second best results are
achieved by the ‘NB-HE’. However, due to the small smoothing parameter γ,
this method tends to overfit the data. As illustrated in Fig. 6, the kernel density
estimation generalizes the observed relative residual frequency to a higher extent.
For this reason, this density estimation technique is preferable over all other
estimation techniques described.

In general, the more images available for training and the more defects per
class, the better the results. A higher amount of defects is particularly helpful
in predicting the age of an unseen image since the probability is higher that not
all defects are attenuated due to local scene properties (e.g. bright areas), or due
the differences in processing pipelines and image compression. We remind that
the observed probability of a residual value being zero after the defect onset is
0.2113, 0.1330 and 0.1847 (Nikon, Canon and Sony), which indicates an expected
significant prediction error.

In conclusion, image age approximation based on in-field sensor defects is
possible. In particular, when a class is defined by multiple defects, the accuracy
for that class is very high, i.e. an f1-score of 0.9976 for the Canon class 7 and
0.9227 for the last Nikon class.
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Abstract. Most image forensics techniques rely on the analysis of traces
left into the signal during the image acquisition process, which is sup-
posed to be common among most devices. However, recent advances in
visual technologies led several manufacturers to customize the acquisi-
tion pipeline in order to improve the image quality, by designing alter-
native coding schemes and in-camera processing. This fact threatens the
effectiveness of available forensic techniques. It is thus required to study
modern acquisition devices to both assess the effectiveness of available
techniques and to develop new effective approaches.

In this paper we focus on the source identification of images coming
from one of the most spread moderm smartphones, i.e. the iPhone X.
This model is significant since it comprises two main new features: the
new HEIF compression standard, set as the default image format, and a
brand new shooting mode, called Portrait Mode. We show that existing
source identification methods are ineffective when images are acquired in
Portrait Mode. We also show when and how it is possible to address this
limitation by removing non unique artefacts introduced by the camera
software.

Keywords: Image forensics · Source identification · PRNU ·
Smartphones

1 Introduction

Image authentication is based on the ability to verify the presence and consis-
tency of traces left into the image by the acquisition pipeline. Such a process is
usually represented as a composition of several steps [18]: the light is focused by
the lenses on the camera sensor and generally filtered by a CFA (Color Filter
Array), that selectively permits a certain component of light to pass through it
to the sensor. The three chromatic components of each pixel are then rebuilt by
a demosaicing interpolation. Additional in-camera processing (e.g. white balanc-
ing, gamma correction) are then applied to the image before the final compres-
sion, usually in JPEG format, and storage to the camera memory.

Most forensic technologies assume the above image life cycle. For instance,
one well-known tampering detection technique is based on the hypothesis that
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a tampered image underwent a double JPEG compression [1], one during the
acquisition and another one after the tampering operation. However, this hypoth-
esis certainly will not stand long due to the introduction of the new HEIF image
compression format on some recent smartphone models. Another relevant exam-
ple is related to the source identification based on the unique traces left into
the image or video by to the Photo Response Non Uniformity (PRNU) [3,16].
This trace allows to assess whether a picture belongs to a specific device by com-
paring noise pattern extracted from images. The effectiveness of this technique
is based on two main assumptions: (i) the reference pattern and the compared
images are pixel-by-pixel aligned and (ii) in-camera processing do not compro-
mise the noise pattern left during the acquisition process. Researchers already
highlighted that the first hypothesis does not stand anymore on most devices
since Electronic Image Stabilization (EIS) was introduced [11] into the video
acquisition pipeline. On the contrary, the second issue has been neglected until
now since the image generation process of most digital cameras does not ruin the
sensor pattern noise. However, new introduced coding schemes (e.g., HEVC in
HEIF images) and shooting modes (e.g., bokeh mode, night sight mode) strongly
affect the outputted signal thus posing in serious danger the applicability of the
technique.

In this paper, we begin addressing these issues by analyzing the Apple iPhone
X since, starting from this model, Apple set the default image format to HEIF.
Furthermore, this device allows to shot images in Portrait Mode, which causes
the background and the foreground to be processed in very different ways. This
model also represents a relevant reference being one of the most popular devices
(the best selling smartphone in 2018 [8]). Firstly, we investigate the presence of
PRNU traces on HEIC images in comparison to their JPEG counterparts. Then,
moving to the brand new Portrait Mode we highlight that in-camera processing
introduces a correlation artifact in the background that leads to extremely high
correlations even with images belonging to different devices. In this regard, we
show when and how it is possible to address this limitation in practical scenarios
by removing those non-unique artifacts.

The paper is organized as follow: in Sect. 2 a brief description of HEVC
coding and an introduction to the Portrait Mode based on available patents are
given; in Sect. 3, we summarize how PRNU-based source identification works
and we define how to address the issues raised in the Portrait Mode; in Sect. 4
we describe the performed experiments and we report the achieved results.

2 HEIC Format and Portrait Mode

HEIF (ISO/IEC 23008-12) [10] is a container format based on ISO Base Media
File Format [9], capable of encapsulating individual images or sequences. HEIF
standard supports different compression algorithms for the payload [7], but
typically uses HEVC: in this case, the format is also known as HEIC. More
specifically, although the HEVC/H.265 codec is designed for video streams, the
HEVC intra-frame encoding is exploited by HEIF specifications to compress
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single images. Similarly to JPEG, HEIC images are split into blocks that are
processed in the frequency domain by means of quantization and entropy encod-
ing of transformed coefficients. However, the HEVC algorithm provides, under
comparable compression factors, higher quality images: this is done by using
variable-size blocks (64 × 64, 32 × 32, 16 × 16, 8 × 8), by implementing adaptive
deblocking filters and Sample adaptive offset (SOA) filtering for a better recon-
struction of the original values, and by encoding the quantized coefficients using
context-adaptive binary arithmetic coding (CABAC).

With regard to the acquisition phase, the iPhone X is equipped with two rear
cameras: an f/1.8 wide lens camera and an f/2.4 telephoto sensor. When default
settings are used, images are taken with the wide lens camera; when Portrait
Mode is activated, the phone switches to the telephoto sensor1. This fact by
itself highlights that, in the source identification task, these images cannot be
generally compared with images captured with the phone in default settings since
they are acquired using a completely different sensor. Given a main subject in
the foreground (e.g., a face), Portrait Mode outputs an image with a blurred
background and a possibly enhanced subject (example in Fig. 2). This implies
that the image is further processed in-camera.

Implementation details of this shooting mode are not publicly available; how-
ever, the macro-structure of the Portrait Mode pipeline is described by some
Apple’s patents [2,15]. The system estimates the depth of scene points by stereo
pair triangulation and creates a stack of progressively blurred versions of the
acquired image, one for each desired plane of depth. Then the final image is
crafted by selecting the pixels of a plane of depth from the appropriate blurred
image in the stack. During the acquisition, the depth is likely produced with the
help of the wide lens camera; this is confirmed by the fact that the obstruction
of the f/1.8 lens with a finger prevents the depth map creation while shooting
in Portrait Mode.

Eventually, this acquisition produces three files:

1. A base portrait image (see Fig. 1) exported as HEIC or JPEG, usually accord-
ing to the option set by the user. The image resolution is the same of standard
images (4032×3024). The image file also contains the depthmap of the scene
as a binary EXIF metadata. The grayscale depthmap (see Fig. 3), with size
768 × 576, records the distances of scene points from the camera. Based on
the conducted experiments, the depthmap is created by the camera software
only if the scene is not completely flat.

2. An AAE file, representing a property list [19], an XML file that stores objects
and settings of Apple applications. This particular file defines a dictionary of
obscure key-value pairs for the iOS Photos application2.

3. A bokeh portrait image with blurred background (see Fig. 2), always exported
in JPEG format, generated with a post-processing pipeline that involves the

1 Information present in the image metadata. We noticed that the telephoto sensor is
exploited also when the zoom is activated in standard mode.

2 To the best of our knowledge there is no public documentation of this file’s content.
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original image, the depthmap and maybe the AAE file. Bokeh portrait images
also store the depthmap of the scene, like base images, in their EXIF meta-
data.

In the end, the bokeh portrait image is usually the one chosen by the user since
it appears as an aesthetically enhanced image where the background is blurred
to highlight the represented subject (a face or an object).

Fig. 1. Base portrait image. Fig. 2. Bokeh portrait image. Fig. 3. The scene depth-
map.

It should be noted that the above considerations stand for both iPhone X
and iPhone XS. However, in our tests we also considered an iPhone XR that
presents an important technological difference: it is equipped with a single rear
camera (an IR sensor is exploited to compute image depth), so that Portrait and
default photos are always acquired with the same sensor. This fact is extremely
important to highlight the main idea inspiring this paper, i.e. that the acquisition
pipeline and in camera processing are becoming model dependent, thus requiring
forensic analyses on specific brand and models.

3 Source Identification

In this section we summarise the PRNU-based image source identification and
the method adopted to mitigate the false alarm introduced by the Portrait Mode.

3.1 Image Source Identification

The image source identification based on PRNU is organized in two steps: i) a
reference sensor fingerprint is derived from still images acquired by the source
device; ii) given a query image, its noise residual is estimated and then compared
with the reference fingerprint to assess a possible match.
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The camera fingerprint K can be estimated from N images I1, . . . , IN cap-
tured by the source device. A denoising filter [13,14] is applied to each image
and the noise residuals W1, . . . ,WN are obtained as the difference between each
image and its denoised version. Then, the fingerprint estimate ˜K is derived by
the maximum likelihood estimator [4]:

˜K =
∑N

i=1 WiIi
∑N

i=1(Ii)2
. (1)

Given the probe image I, its noise residual W is estimated and the test statistic
is built as the peak to correlation energy (PCE) between I ˜K and W [6]. It is
expected that images belonging to the reference device will exhibit a PCE well
higher than a certain threshold (usually accepted around 60 [6]), whereas images
taken by other devices, also of the same model, will show low values of PCE.

3.2 Image Source Identification in Portrait Mode

As we will show in the experimental section, such an approach is proved to
work on images taken in default settings. Unfortunately, strong correlation peaks
also appear on images belonging to different devices when captured in Portrait
Mode. To highlight this fact, in Fig. 4 we compare the local PCE between two
base portrait photos of different devices and their corresponding bokeh portrait
versions3. The first case results in a PCE peak of 26, as expected lower than the
threshold; however, in their processed versions a huge local PCE peak of 47401
appears due to the image post processing.

Fig. 4. Local PCE between two base portrait photos from different devices (Left) and
between the bokeh portrait version of the same two images (Right).

We found this behavior in all bokeh portrait photos of our datasets and we
attribute it to the presence of some non-unique artifact that is concentrated on
3 Local PCE is computed by a 128 × 128 sliding window with 64 pixel shift.
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blurred regions, as highlighted by the brighter areas in Fig. 4. The existence of
this artifact is insidious for source identification, because its presence can lead
to mismatching attributions.

In order to mitigate this critical issue we adopted two main strategies: first
of all, in the PCE computation we limit the accepted peaks in a 10 pixel radius
circle centred in the frame origin, since when the image is taken in Portrait
Mode we do expect, at most, very subtle cropping operations to build the final
enhanced image. On the contrary, we set the PCE to 0 when the peak is found
elsewhere. This method allows to reduce false alarm rate. Furthermore, given
that the background post processing introduces a strong correlation artifact, we
exploited the depth map information to remove such post processed image parts,
as detailed in the following.

Pre-processing of a Probe bokeh portrait Image. By assuming that blurred
areas give little contribution to the height of the correlation peak (because of
the attenuated PRNU), the idea is to replace those areas with zeros to decrease
the energy of the signal. This is accomplished by means of the binarization of
the depth map to remove the (blurred) background. More specifically, given the
tested grey scale image I, its depth map D is converted into a binary matrix
D by choosing the threshold that maximizes the separability of foreground and
background [17]. Then, the image I is pixel wise multiplied by D to remove the
background. This processed image will then be ued for the computation of PCE.

Pre-processing of a Reference Fingerprint Computed from bokeh por-
trait Image. If the reference fingerprint has to be estimated from bokeh portrait
images, it is not possible to exploit in a straightforward way the previous method,
since the blurred background is present in different areas of each image. To cope
with this, we considered two ways to remove the traces of non unique artifacts:

In this scenario we tried to reduce artefact traces as much as possible also in
the reference signal, and we designed two strategies that operate on the estimated
fingerprint K:

– The first method (indicated as weighted fingerprint) requires, when estimating
the fingerprint from N images, to count for each pixel in how many images
that pixel belongs to the foreground region. At the end the fingerprint K
is multiplied with the normalized occurrence matrix to obtain the weighted
fingerprint Kw:

Kw = K ·
∑N

i=1 D̄
(i)

N
(2)

with D̄ ∈ {0, 1}m×n being the binarized depth map, in which a value of 1
indicates a foreground pixel and 0 a background pixel.
In this way, fingerprint regions estimated from foreground areas will be more
relevant in correlation, and, at the same time, the most artifact-affected
regions are not completely discarded, assuming that they preserve some traces
of PRNU.
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– The second method (indicated as binary fingerprint) is more drastic in exclud-
ing artifacts from the fingerprint; background areas of every image involved in
the estimation are removed from the fingerprint by replacing them with zeros,
as in probe signal background exclusion4. The fingerprint Kb is computed as:

Kb = K ·
N
∏

i=1

D̄(i) (3)

Note that Kw weighs pixels based on their frequency in the image fore-
grounds; Kb only considers the pixels that belong to the foreground in all images.

4 Experimental Results

In this section, we describe the results of the experiments performed to evaluate
the performance of source identification, when working with HEIC images and
then when dealing with Portrait Images.

4.1 Source Identification on HEIC vs. JPEG Images

The first experiment focuses on assessing the presence of PRNU trace in HEIC
images with default settings5.

We considered an iPhone X, iOS 12.1.4, and we estimated two sensor finger-
prints from 50 flat images in HEIC and JPEG format respectively. For each
fingerprint, we computed the PCE with 40 images of natural scenes captured
in both HEIC and JPEG format by the device. In Fig. 5 we report the PCE
histograms, where the label at the top refers to reference and test image formats,
in this order. Although the tested image contents are not the same, there is sta-
tistical evidence that JPEG images expose higher correlations. This fact could
be attributed both to a stronger presence of the PRNU trace and to non-unique
artifacts left by the denoising process onto JPEG images. However, JPEG arti-
facts would only appear when both reference and test belong to JPEG format
(fourth histogram). Here, we note that correlation grows in second and third
histograms too, where the reference or the probe only belongs to JPEG, thus
providing strong evidence that the peak difference is more likely attributable to
the HEVC coding that undermines the PRNU traces. To better emphasize this

4 Obviously, each background exclusion can erode the content of the fingerprint, and
exists the risk of reducing the signal to an excessively small patch. To avoid this
effect, it is recommended to estimate the fingerprint from photos that present large
foreground areas localized in the same region of the image surface.

5 Note that, due to the poor HEIC support of MATLAB and Python modules, HEIC
images have been converted to PNG, a lossless format, with libheif [12]; this pro-
cedure maintains the signal unaltered and allows reading the images with several
software libraries.



Facing Image Source Attribution on iPhone X 203

Fig. 5. PCE histograms, obtained comparing references in HEIC and JPEG format
with both HEIC and JPEG residuals. The red horizontal line marks the threshold
value. The label at the top refers to reference and test image formats, in this order.
(Color figure online)

fact, for each considered test, we also computed 40 mismatching PCE values
with images belonging to an iPhone 6.

Table 1. Accuracy and max threshold to achieve it.

Reference Test Accuracy Threshold

HEIC HEIC 0.975 55.7

HEIC JPEG 1.0 143.7

JPEG HEIC 1.0 143.9

JPEG JPEG 1.0 649.6

In Table 1 we report the accuracies and the max threshold that can be
used to achieve them. In HEIC-HEIC case, a threshold of 55.7 already causes a
mismatching.

Note that, although a threshold of 60 is commonly accepted as a guarantee of
low false alarm [5], JPEG images allow to set a much higher threshold (over 600)
while still granting perfect classification. This does not hold for HEIC images,
where the compression performed on images hinders the PRNU traces, thus
leading to harder-to-detect correlations. Based on these results, we should expect
lower robustness of the PRNU trace to compression and other processing since
it is already deteriorated by the HEVC encoding.

4.2 Source Identification of Portrait Images

We considered then an iPhone X, iOS 12.1.4, whose fingerprint was computed
from 50 images through Eq. 1. Tests were performed on 100 portrait images
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captured with the same device and 100 images taken with other similar devices
(iPhone X, iPhone XR, and iPhone XS Max). We considered three different
scenarios:

Case 1 : the device is available and the tested image is a base portrait photo.
Here, we estimate the fingerprint from base portrait images representing flat
scenes allowing to compute a good sensor reference pattern estimate. Further-
more, tested images are possibly untouched by further in-camera post processing.
In this case all the images are correctly classified (AUC = 1), as shown in Fig. 6.

Fig. 6. Case 1: the fingerprint is estimated from flat images and the test image is a
base portrait.

Case 2 : the device is available and the tested image are bokeh portrait photos,
i.e. they are internally processed resulting in blurred backgrounds. Here, we
applied both the baseline method and the strategy proposed in Sect. 3 to remove
the background with the Otsu thresholding and to limit the PCE in the strict
neighbours of the image frame. The reference is estimated as in Case 1. In Fig. 7
we report the ROC curve using the baseline method and the proposed approach.
Note that, with 0 FAR, the TPR increases from 0.73 to 0.87.

Case 3 : the device is not available and both reference and test are bokeh
portrait photos. In this case, the tested images are treated as in Case 2 ; fur-
thermore we try to remove the non unique artifact on reference side too by
computing the weighted and binary fingerprints (see Eqs. 2 and 3). In Fig. 8
the ROC curve is reported for baseline method and the proposed approaches. It
can be clearly seen that the baseline method is ineffective in this scenario and
that the proposed method employing the binary fingerprint provides a significant
improvement (TPR at 0 FAR shifts from 0 of the baseline to 0.45, and reaches
0.64 at 5% FAR). Note that in the weighted approach some background pixels
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Fig. 7. Case 2: the fingerprint is estimated from flat images and the test is a bokeh
portrait image.

contribute to the fingerprint formation. As the non-unique artifact in the back-
ground strongly correlates between images, this approach leads to an increase in
false alarm rate. The binary approach completely excludes background pixels,
thus providing more reliable fingerprints.

Fig. 8. Case 3: both fingerprint and test images belong to bokeh portrait images.

The results clearly show that the performance of PRNU-based source iden-
tification is clearly hindered in the presence of the artifacts left by the bokeh
mode, if no properly designed countermeasures are taken.
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5 Conclusions

In this paper, we observed that, although the sensor pattern noise is still present
on HEIC images, it is much more attenuated than in JPEG images, posing serious
limitations to its effectiveness in realistic scenarios. Furthermore, we noticed that
existing source identification methods are ineffective when images are acquired in
Portrait Mode. We showed when and how it is possible to address this limitation
by removing non-unique artifacts introduced by the device. A possible future
extension of this topic is the investigation of whether such artifacts allow to
identify the source camera firmware.

References

1. Bianchi, T., Piva, A.: Reverse engineering of double jpeg compression in the pres-
ence of image resizing. In: 2012 IEEE International Workshop on Information
Forensics and Security (WIFS), pp. 127–132, December 2012. https://doi.org/10.
1109/WIFS.2012.6412637

2. Bishop, T.E., Lindskog, A., Molgaard, C., Doepke, F.: Photo-realistic shallow
depth-of-field rendering from focal stacks (2017), uS Patent Publication Number
US20170070720A1

3. Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Source digital camcorder identifica-
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Abstract. Convolutional Neural Networks (CNNs) have become an
effective tool to detect image manipulation operations, e.g., noise addi-
tion, median filtering and JPEG compression. In this paper, we propose
a simple and practical method for adjusting the CNN’s first layer, based
on a proper scaling of first-layer filters with a data-dependent approach.
The key idea is to keep the stability of the variance of data flow in a CNN.
We also present studies on the output variance for convolutional filter,
which are the basis of our proposed scaling. The proposed method can
cope well with different first-layer initialization algorithms and different
CNN architectures. The experiments are performed with two challenging
forensic problems, i.e., a multi-class classification problem of a group of
manipulation operations and a binary detection problem of JPEG com-
pression with high quality factor, both on relatively small image patches.
Experimental results show the utility of our method with a noticeable
and consistent performance improvement after scaling.

Keywords: Image forensics · Convolutional Neural Network ·
First-layer convolutional filter · Image manipulation detection ·
Stability of variance

1 Introduction

Rapid technology development of cameras to capture digital images comes
together with a big suite of software to modify an image. Now changes on an
image can be so subtle that noticing them for the naked eye is a difficult task. At
the same time, the development of techniques that analyze intrinsic fingerprints
in image data, i.e., the image forensics research, is one of the most effective ways
to solve challenges related to the authentication of digital images.

Basic image manipulation operations such as median filtering, resampling
and noise addition are commonly used during the creation of tampered images.
Our objective is to detect traces left by these manipulation operations in an
image. It is not a surprise that the current trend is to use Convolutional Neural
Network (CNN) to detect image manipulations because of its very good forensic
performance. In the meanwhile, image forensics researchers in general agree that
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specific design is required in order to build successful CNNs for forensic tasks. In
particular, the CNN’s first layer needs to be carefully designed so as to extract
useful information relevant to the forensic task at hand [1,4,9]. Such relevant
information is often believed to be in the so-called image residuals, roughly
speaking, in the high-frequency components of the image.

Accordingly, for image manipulation detection, a common choice for the
CNN’s first layer is high-pass filters. Although satisfying results can be achieved,
one important aspect, i.e., the stability of the amplitude of the data flow in CNN,
has often been ignored or has not been carefully studied. We have the intuition
that after the image data passes through a first layer of high-pass filters, the
filters’ output becomes a weak signal. This would be detrimental to the training
of CNN because the data flow shrinks. In this paper, we show that this signal
shrinking indeed exists for first-layer filters generated by several popular ini-
tialization algorithms that have been used for detecting image manipulations. In
addition, with a proper formulation of the first-layer’s convolution operation and
based on natural image statistics, we provide an intuitive explanation regard-
ing the signal shrinking and subsequently propose a simple scaling method to
enhance the output signal. Experimental results, with different first-layer initial-
izations, CNN architectures and classification problems, show that the proposed
scaling method leads to consistent improvement of forensic performance.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review the related work. In Sect. 3 we present an experimental study, as well as an
intuitive theoretical explanation, regarding the variance of the output signal of
CNN’s first-layer filters of different initializations. Our proposed data-dependent
scaling method is described in Sect. 4. Experimental results are presented in
Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Related Work

Early methods for detecting basic image manipulation operations were based
on feature extraction and classifier training. Different handcrafted features were
proposed to detect specific and targeted manipulation operation, e.g., median fil-
tering, resampling and JPEG compression. Afterwards, researchers focus on the
more challenging problem of developing a universal method for image manip-
ulation detection. Various methods have been proposed, based on steganalysis
features, image statistical model and more recently deep learning.

During the last decade, deep learning methods, including CNNs, have gained
outstanding success in a wide range of research problems in the computer vision
field. CNNs can learn themselves useful features from given data, effectively
replacing the difficult task of handcrafted feature design for human experts. In
the recent years, CNNs have also been used to solve image forensic problems.
Researchers have noticed a fundamental difference between computer vision
tasks and image forensics tasks. The former focuses on the semantic content
of images, while the latter often looks for a weak signal representing the differ-
ence between authentic and manipulated images. Accordingly, image forensics
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researchers found that directly applying CNN initialization borrowed from the
computer vision field, e.g., the popular Xavier initialization [7], results in rather
limited performance in detecting image manipulation operations [1,4]. Different
customized CNN initialization algorithms have been proposed to cope better
with forensic tasks. The basic idea of these methods are more or less similar,
i.e., generating or using a kind of high-pass filters at the CNN’s first layer.

SRM (Spatial Rich Model) filters are one popular and effective way to initial-
ize the first layer of CNNs that are used to solve image forensic problems, e.g.,
the detection of manipulation operations [3], of splicing and copy-move forgeries
[10], and of inpainted images [9]. SRM filters, a group of handcrafted high-pass
filters originally designed for steganalysis [5], are put at CNN’s first layer as
initialization and this often leads to very good forensic performances. Indeed, as
shown later in this paper, in many cases that we tested, SRM filters outperform
other kinds of first-layer filters, especially after the proposed scaling.

Bayar and Stamm [1] proposed a new type of constrained filters for the first
layer of a CNN designed to detect image manipulation operations. The idea is
to constrain the network’s first layer to learn a group of high-pass filters. This is
realized by normalizing the filters before each forward pass of the CNN training.
The normalization consists of two steps: firstly, the center element of filter is
reset as −1; secondly, all the non-center elements are scaled so that they sum
up to 1. In this way the sum of all filter elements is 0, and the constrained first-
layer filter behaves like a high-pass one which is effective in suppressing image
content. Recently, Castillo Camacho and Wang [2] proposed an alternative way of
initializing CNN’s first layer for image manipulation detection. This is essentially
an adaptation of the conventional Xavier initialization [7] to the situations where
it is required to generate high-pass filters after initialization. This method can
generate a set of random high-pass filters to be put at CNN’s first layer.

In this paper, we consider four different algorithms for first-layer initialization
of CNNs with the application to image manipulation detection: the conventional
Xavier initialization from the computer vision community [7], the initialization
with SRM filters [5], Bayar and Stamm’s constrained filters [1], and Castillo
Camacho and Wang’s high-pass filter initialization [2]. We show that all the
four methods can produce filters which shrink the input signal at their output,
and that our proposed data-dependent scaling can noticeably and consistently
improve the forensic performance for all the four initialization algorithms when
tested on different CNN architectures and forensic problems.

3 Variance of Output of Convolutional Filter

It is demonstrated that the stability of the data flow in CNN, as reflected by the
variance of the signal in and out a layer, is beneficial for the training of CNN
[7,8]. Ideally, the variance of input and output of a layer should be equal to each
other. In this section, we first show that we can predict the variance of the output
of a convolutional filter by using statistics of input signal and elements of the
filter. Then, we present observations and understandings regarding the output
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variance for the four initialization algorithms of convolutional filter which are
mentioned in the last section. For the sake of brevity, the four algorithms are
hereafter called Xavier [7], SRM [5], Bayar [1], and Castillo [2].

3.1 Formulation

Motivation. We observe potential limitations of the four initialization algo-
rithms and have the intuition that the variance of output of a convolutional
filter initialized by them may change substantially compared to the input. SRM
[5] and Bayar [1] do not take into account the output variance during the ini-
tialization, because the two algorithms put directly third-party SRM filters or
normalized high-pass filters at first layer without modelling the relation between
input and output. Xavier [7] and Castillo [2] consider the input-output relation
and generate pseudo-random filters. These two initialization algorithms are based
on a statistical point of view and realized by drawing pseudo-random samples,
so in practice properties of initialized filters may differ for different realizations.
Therefore, it is interesting and important to experimentally and theoretically
study the actual output variance for each realization of initialized filter.

Formulation for Computing Output Variance. A convolutional layer used
in CNN contains a set of learnable filters (also called kernels) [8]. During the
forward pass, the kernel moves in a sliding-window manner across the input and
computes a weighted sum of the local input data and the kernel. This procedure
results in a so-called activation map comprising all the local results computed
at every sliding movement of the kernel. Now assume that the kernel contains
N scalars denoted by W = (w1, w2, ..., wN ), then the local input data involved
in the computation also contains N scalars, denoted by X = (x1, x2, ..., xN ). It
is easy to see that the local output y is simply the dot product of W and X, as:

y = 〈W,X〉 =
N∑

i=1

wi.xi. (1)

In Xavier [7] and Castillo [2], both wi and xi are assumed as independent
random variables. In this paper, we take a new and more practical point of view.
Since we focus on a proper scaling of a given kernel, we assume that the kernel
elements wi are known constants, which can be generated by any initialization
algorithm. In addition, we do not consider xi as independent; instead, we con-
sider them as mutually correlated random variables reflecting the natural image
statistics [11]. With these assumptions and based on the property of variance of
weighted sum of variables, we can compute the variance of the output y as

Var(y) = Var

(
N∑

i=1

wi.xi

)
=

N∑

i=1

N∑

j=1

wiwjCov(xi, xj)

=
N∑

i=1

w2
i Var(xi) + 2

∑

1≤i

∑

<j≤N

wiwjCov(xi, xj).

(2)
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Table 1. Considered manipulation operations and their parameters.

Median filtering FilterSize = 3

Gaussian blurring StandardDeviation = 0.5, FilterSize = 3

Additive Gaussian noise StandardDeviation = 1.1

Resampling ScalingFactor ∈ {0.9, 1.1}
JPEG compression QualityFactor ∈ {90, 91, ..., 100}

The last expression just divides all the relevant terms into two groups: variance
terms and covariance terms of the input signal components (x1, x2, ..., xN ).

Furthermore, it is well-known that natural images have approximate transla-
tion invariance [11], implying that Var(xi), i = 1, 2, ..., N are almost identical. In
addition, the neighboring pixels are usually highly-correlated [11], which means
that Cov(xi, xj) is close to Var(xi). We approximate Var(xi) by Var(x), the
overall variance of input. Then we have the following approximation of Eq. (2):

Var(y) ≈ Var(x)

⎛

⎝
N∑

i=1

w2
i + 2

∑

1≤i

∑

<j≤N

wiwjCij

⎞

⎠ , (3)

with Cij = Cov(xi, xj)/Var(x) which are in practice smaller than but very close
to 1 for small natural image patches due to high correlation of neighboring pixels.
Experimentally the above equation approximates very well the output variance.
It also helps us to understand the output variance of popular initialized filters
used for manipulation detection, as presented in the remaining of this section.

3.2 Convolutional Filter Initialized with High-Pass Filter

We first consider convolutional filter initialized as each of the 30 SRM filters1 of
shape 5×5 (so here N = 25). In order to test on real data for convolutional filter,
we take as input 64 × 64 grayscale image patches generated from the Dresden
database [6]. The image manipulation operations that we want to detect are
listed in Table 1. We then compute the variance of output of each SRM filter
by two different methods: the first one with Eq. (3) and the second one with
actual convolution between the input and the filter. Hereafter, we call the first
as covariance-based method because Eq. (3) is mainly based on the covariance
terms Cov(xi, xj) of the input signal components (x1, x2, ..., xN ), and we call
the second one as convolution-based method. For the first method, the covariance
terms are estimated from 5 × 5 small patches (same size as SRM filters) which
are randomly extracted from the aforementioned 64×64 Dresden image patches.

The results of Var(y)/Var(x), i.e., the ratio of output and input variance,
are shown in Fig. 1. We can see that the amplitude of Var(y)/Var(x) is very

1 The 30 SRM filters can be found in the class of SrmFiller, starting from line 347
of this webpage https://github.com/tansq/WISERNet/blob/master/filler.hpp.

https://github.com/tansq/WISERNet/blob/master/filler.hpp
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Fig. 1. The value of Var(y)/Var(x) for each of the 30 SRM filters obtained by using
the covariance-based method of Eq. (3) and the convolution-based method.

small for all 30 SRM filters, which lies basically in a range from 0 to 0.016 with
a mean of about 0.005. The output of majority of SRM filters has a variance
smaller than 1% of input variance, reflecting the signal shrinkage. It can also be
observed that the two methods to obtain output variance give very close results
of Var(y)/Var(x), implying the coherence of the prediction by Eq. (3) with the
practical convolution results.

In order to understand the small output variance for SRM filters, we start
from one important property of these high-pass filters. Like many high-pass
filters, e.g., Laplacian filter, the sum of all filter elements is equal to 0 for
all 30 SRM filters of shape 5 × 5 (i.e., N = 25), which means that we have∑N

i=1 wi = 0 (cf., link in footnote (See footnote 1)). It is then easy to deduce
that

∑N
j=1 wj .

∑N
i=1 wi =

∑N
i=1

∑N
j=1 wi.wj = 0. By dividing the wi.wj terms

into two groups, we obtain

N∑

i=1

w2
i + 2

∑

1≤i

∑

<j≤N

wiwj = 0. (4)

The left-hand side of the above equation is almost same as the term in the
bracket of Eq. (3), except that in the above Eq. (4) we replace Cij by 1. As
mentioned earlier, for small natural image patches, we have the property that
Cij are usually smaller than but very close to 1. This is verified by experiments
on Dresden database where the minimum Cij value is 0.9573 for 5 × 5 small
patches. Not surprisingly, this minimum Cij value is attained between two pixel
positions which are the farthest from each other within the 5 × 5 small patch.
From the above analysis we can see that the term in the bracket of Eq. (3) is
close to 0, which results in a small value of output variance Var(y) for 30 SRM
filters. This intuitively explains the small Var(y)/Var(x) values shown in Fig. 1.

Regarding the high-pass filter initialized by Bayar [1] and Castillo [2], we
simulated 10, 000 filters with both algorithms and calculated the variance of
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Fig. 2. Two histograms of occurrences of output-input variance ratio Var(y)/Var(x)
for 10, 000 Xavier filters. Please refer to main text for detailed explanation.

output of simulated filters. We also observe very small values of the ratio of
output-input variance, with 0.005 and 0.006 as mean value of Var(y)/Var(x),
respectively for Bayar and Castillo. Due to space limit, we do not show detailed
results, but these small mean values further confirm the behavior that high-pass
filters result in small output variance with significant signal shrinkage.

3.3 Convolutional Filter with Xavier Initialization

With curiosity, we also carry out studies for Xavier [7] which generates 5×5 filters
filled with pseudo-random samples drawn from a zero-mean uniform distribution.
We created 10, 000 Xavier filters using PyTorch and Fig. 2 shows two histograms
of occurrences of output-input variance ratio, i.e., Var(y)/Var(x): the left one
is for the range of 0 to 3 with a bin width of 0.02, while the right one shows
detailed occurrences for the first bin of the left histogram for the range of 0 to
0.02 with a bin width of 0.001. We computed the mean value of Var(y)/Var(x)
for the 10, 000 simulations of Xavier and found that the mean is close to 1
(desired value of Xavier); this is because of a long tail of big values that we do
not completely show in Fig. 2. The left histogram of Fig. 2 does not have a peak
around 1; instead, the highest occurrences occur near 0. This is a little surprising
yet understandable according to Eq. (3). In fact, the elements of Xavier filter
are drawn from a zero-mean distribution, so the bracket term in Eq. (3) tends
to have a small value. However, due to numerical sampling and in particular
considering the relatively low number of 25 pseudo-random samples (for 5 × 5
filter), it is possible for the bracket term to take big values in certain simulations.
Experimentally this bracket term of Eq. (3) can be as big as 13 for some Xavier
filters. In addition, from the right histogram of Fig. 2, for Xavier the occurrences
of Var(y)/Var(x) being very small values, i.e., less than 0.01, is very low: 109
out of 10, 000 simulations (i.e., around 1% probability). In contrast, the majority
of this variance ratio is less than 0.01 for high-pass filters as presented in last
subsection. We guess that it is still related to the numerical sampling of Xavier
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because it can be rare to have 25 pseudo-random samples which sum up to a
value extremely close to 0.

4 Scaling of Convolutional Filter

From results and analysis in Sect. 3, we can see that the variance of output of
convolutional filter initialized by popular algorithms can be significantly smaller
than the variance of input. This is particularly true for high-pass filter: the ratio
of output-input variance Var(y)/Var(x) is usually smaller than 0.01. The output
signal after convolution operation substantially shrinks. This can be detrimental
to the training of CNN, and as shown later in Sect. 5 the CNN training sometimes
fails in such situations.

Using a data-dependent approach (i.e., dependent on input data), we propose
a simple yet effective scaling of the first-layer convolutional filter. The idea is
to keep the variance stable after scaling for the input and output of any given
filter generated by popular initialization algorithms. Corresponding to the two
methods to compute output variance in Sect. 3, we propose two different ways
to calculate the scaling factor s, as presented below. After obtaining the scaling
factor, the elements of the given filter W = (w1, w2, ..., wN ) are properly scaled
as W̃ = s.W. We then initialize the first-layer filter with the scaled version W̃.

Covariance-Based Method. From Eq. (3), it can be seen that in order to make
Var(y) and Var(x) approximately equal to each other, we need to compensate
for the effect of the term in the bracket. So the scaling factor is computed as:

s =

√√√√√1
/ ⎛

⎝
N∑

i=1

w2
i + 2

∑

1≤i

∑

<j≤N

wiwjCij

⎞

⎠. (5)

In practice, we take random small patches of the same shape of the convolutional
filter to be scaled (e.g., 5×5) from a small portion of the training data. We then
estimate the variance and covariance terms on these small patches to obtain the
values of Cij = Cov(xi, xj)/Var(x). Afterwards the scaling factor s is computed
by using Eq. (5), and at last we obtain the scaled version W̃ of any given filter
W from the considered four initialization algorithms.

Convolution-Based Method. This is a straightforward approach. The output
ŷ is computed, for a small portion of the training data x̂ as input, by carrying
out the convolution operation. The scaling factor is simply calculated as

s =
√

Var(x̂)/Var(ŷ). (6)

From a practical point of view, the covariance-based method might be a
slightly better option than the convolution-based method mainly because of its
higher flexibility. In fact, for the covariance-based method, the computation of
the variance and covariance terms of the input can be performed only once for
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any number of filters for which we want to scale. By contrast, the convolution-
based method has to be rerun every time we have a new filter to analyze. Nev-
ertheless, it is worth mentioning that both methods are experimentally quick
enough to be used in CNN initialization. The running time is about several
seconds, as presented in the next paragraph.

According to our experiments, for a training set of about 100, 000 images of
64×64 pixels from all classes, taking 10% of the training data for the convolution-
base method and 10 small patches (e.g., of 5 × 5 pixels) per image of the
10% training data for the covariance-based method, we achieve a good trade-off
between computation time and stability of the result. Using more training data
has very small impact on the obtained scaling factor. Even using 100% of the
training set results in a change smaller than 0.1%. The amount of time to calcu-
late the scaling factor is less than 3 s per first-layer filter for both methods, on a
desktop with Intel R© Xeon E5-2640 CPU and Nvidia R© 1080 Ti GPU (covariance-
based method on CPU and convolution-based method on GPU). This is run for
one time before the CNN training. The computation time increases very slowly
when having more filters for the covariance-based method, because as mentioned
above the variance and covariance terms can be reused. We believe that the com-
putation time of scaling factor is negligible when compared to the typical time
required to train a CNN model.

5 Experimental Results

Several experiments are performed in order to test and show the efficiency of our
proposed scaling. These experiments consider the four filter initialization algo-
rithms mentioned earlier, two CNN architectures (CNN of Bayar and Stamm [1]
and a smaller CNN without fully-connected layer designed by ourselves), and
two forensic problems (a multi-class problem of detecting a group of manipula-
tion operations and a binary problem of detecting JPEG compression of high
quality factor). For the multi-class problem, we also consider a different number
of filters used in the first layer of the CNN of Bayar and Stamm [1]. The imple-
mentation and experiments were conducted using PyTorch v1.4.0 with Nvidia R©

1080 Ti GPU. The experimental data was created from the Dresden database
[6]. Full-resolution Dresden images are split for training, validation and testing
with ratio of 3:1:1 and converted to grayscale. Patches of 64×64 pixels were ran-
domly extracted from full-resolution grayscale Dresden images. This relatively
small size of image patches makes the forensic problems more challenging.

5.1 Multi-class Problem with CNN of Bayar and Stamm [1]

We first consider the multi-class problem of classifying six different kinds of
image patches: the original patches and the five classes of manipulated patches as
explained in Table 1. The parameters for the resampling and JPEG compression
manipulations are taken randomly from the specified sets in Table 1. The total
number of patches in training set is 100, 000 (≈16,667 patches per class), while
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the number of patches in testing set is 32, 000 (≈5,333 patches per class). The
number of training and testing samples is same as in [1]. It is worth mentioning
that the manipulations and their parameters in this paper are borrowed from [2]
and more challenging than those in [1]. The patch size is also smaller than [1]:
our patches are of 64 × 64 pixels, while [1] mainly considers 256 × 256 patches.

Table 2. Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
The experiments were performed with four initialization algorithms and their scaled
versions for first-layer filters of the CNN of Bayar and Stamm [1]. In parentheses is the
improvement of scaled version compared to the corresponding original version.

Initialization Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] A. 94.19 96.04 (+1.85) 96.02 (+1.83)

Bayar [1] B. 96.15 (+1.96) 96.22 (+2.03)

Castillo [2] 93.71 96.45 (+2.74) 96.42 (+2.71)

SRM [5] 94.39 96.54 (+2.15) 96.55 (+2.16)

Xavier [7] 93.48 94.61 (+1.13) 94.71 (+1.23)

We use the successful CNN architecture of Bayar and Stamm [1] in this set
of experiments and initialize the three filters in the CNN’s first layer with four
different algorithms: Bayar [1], SRM [5], Castillo [2], and Xavier [7]. We carry out
5 runs for each algorithm and the corresponding two scaled versions. For SRM,
for each run we randomly select 3 filters from the pool of 30 SRM filters. We
compare each original initialization algorithm with their scaled versions obtained
with the covariance-based method and the convolution-based method presented
in Sect. 4. For fair comparisons, we make sure that for each run the scaled versions
share the same “base filters” of the original version before performing scaling.
We follow exactly the same training procedure described in [1], including number
of epochs, optimization algorithm, learning rate schedule, etc.

For Bayar algorithm [1], we have tested two variants of the scaling of the first-
layer filters. The first one (“Bayar A.”) follows closely the idea of Bayar’s original
constrained training strategy: we carry out scaling of the normalized high-pass
filter at the beginning of each forward pass (please refer to the second last
paragraph of Sect. 2 for detail of the normalization procedure proposed in [1]).
The second variant (“Bayar B.”) is computationally cheaper and less complex:
the scaling of normalized high-pass filter is only performed in the initialization,
and we no longer impose normalization constraint during training. Our intuition
behind the second variant is that with a proper scaling of initialized filters even
a free training without the constraint of [1] may provide satisfying performance.

The detection performances in terms of test accuracy (i.e., classification accu-
racy on testing set) for this multi-class problem are presented in Table 2. The
reported results are average of 5 runs with randomness, e.g., different first-layer
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Fig. 3. Curves of test accuracy (average of 5 runs) for the multi-class forensic problem,
during the whole 60 training epochs of the CNN of [1]. The curves are for SRM and
Xavier, original version and scaled version by the covariance-based method.

“base filters”. However, for each run, the “base filters” are the same for the orig-
inal and scaled versions: original version direct uses these filters, while scaled
versions apply proper scaling on the “base filters” and then use the scaled ones.

We can see from Table 2 that the test accuracy of all the initialization algo-
rithms is consistently and noticeably improved after scaling. Improvement of at
least 1.13% and as high as 2.74% is obtained. We also observe that the results
of the two scaling methods are very close to each other. We checked the com-
puted scaling factors and found that they are indeed almost identical for the two
methods. Furthermore, for the two scaling variants of Bayar [1], variant B gives
slightly better results, which is also computationally cheaper as it only performs
scaling in initialization without enforcing any constraint during CNN training.
This implies that with a good initialization after proper scaling, it might not be
necessary to impose training constraint. It is worth mentioning that the results
of Bayar in Table 2 are in general lower than those reported in [1] because we now
consider a more challenging forensic problem with more difficult manipulations
and on smaller patches. The results of Castillo in Table 2 are better than those
presented in [2]. This may be due to the differences in the number of training
epochs (we follow [1] and train with more epochs) and in the adopted optimiza-
tion algorithm and learning schedule. In addition, the three kinds of high-pass
filters (especially SRM) indeed outperform Xavier, before and after scaling. This
demonstrates the difference between forensics and computer vision tasks. Nev-
ertheless, the performance of Xavier is also improved after scaling because as
analyzed in Sect. 3.3 Xavier can also result in small variance of output. In fact,
for Xavier the probability to have Var(y) smaller than half of Var(x) is about
52.20% in our 10, 000 simulations.

We also observe that the proposed scaling helps to have quicker increase
of forensic performance during CNN training. We show in Fig. 3 curves of test
accuracy of SRM and Xavier (average of 5 runs), before and after the covariance-
based scaling. It can be observed that the convergence speed is considerably
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Table 3. Test accuracy for the multi-class forensic problem (in %, average of 5 runs).
We still use the CNN of [1] but change the number of first-layer filters from 3 to 30.

Initialization Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] B 94.91 96.11 (+1.20) 96.04 (+1.13)

Castillo [2] 94.11 96.31 (+2.20) 96.32 (+2.21)

SRM [5] 94.37 96.51 (+2.14) 96.49 (+2.12)

Xavier [7] 91.80 96.03 (+4.23) 96.02 (+4.22)

improved for SRM. For both algorithms, the curve of scaled version is always
above that of original version during the whole 60 epochs. It is also interesting
to notice that the scaled Xavier performs slightly better than the original SRM.

With 30 Filters at First Layer. Next, we present results for the same multi-
class problem while changing the number of filters in the first layer of the CNN
of [1] to 30. We make this change for two reasons: first, to test our approach with
a different number of filters in the first layer; and second, to use all the 30 SRM
filters which is a common practice in image forensics, e.g., for detecting splicing
and copy-move forgeries [10]. For this scenario we still test the four initialization
algorithms but only use variant B for scaled Bayar as it proved to obtain slightly
better results while being computationally cheaper. The results are presented in
Table 3. Again, we observe that scaling the filters with any of the two methods
leads to consistently better test accuracy, with an improvement ranging from
1.13% to 4.23%. We notice from Tables 2 and 3 that after increasing the number
of first-layer filters, 1) the original version of high-pass initialization (Bayar,
Castillo and SRM) has slightly improved or comparable performance while the
accuracy of Xavier decreases; and 2) the scaled version of Bayar, Castillo and
SRM has comparable performance with the case of 3 filters while Xavier has
noticeable improvement. We guess the reason for the good performance of scaled
Xavier may be that with 30 filters there is more chance to have a very good filter
which after scaling can improve the result. Understanding these observations is
not the focus of our paper, and we plan to conduct further analysis in the future.

5.2 JPEG Binary Problem with CNN of Bayar and Stamm [1]

We notice in the multi-class problem that JPEG compression is the most dif-
ficult manipulation to detect. In this section we consider the binary classifica-
tion between original patches and JPEG compressed patches with parameters
in Table 1 (i.e., very high quality factor between 90 and 100). This allows us
to test the proposed scaling on a different challenging forensic problem. We use
the CNN of Bayar and Stamm [1]. The number of training and testing patches
per class is the same as in last subsection. All CNN training settings are kept
unchanged.
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For this binary problem, we consider two initialization algorithms of Bayar
[1] and SRM [5], original and scaled versions (variant B for scaled Bayar). Table 4
presents the obtained results (average of 5 runs). This challenging problem makes
the original version of both Bayar and SRM struggle to achieve a good perfor-
mance. Especially, training of SRM can occasionally fail, leading to accuracy
close to random guess. Much better average test accuracy is achieved by scaled
versions. For SRM [5], a boost of more than 14% is obtained with scaling.

Table 4. Test accuracy for the binary JPEG forensic problem (in %, average of 5 runs).
The experiments were performed with Bayar and SRM, original and scaled versions
(variant B for scaled Bayar), on the CNN of [1].

Initialization Original
version

Convolution-based
scaling

Covariance-based
scaling

Bayar [1] B. 88.27 90.80 (+2.53) 90.80 (+2.53)

SRM [5] 78.24 92.33 (+14.09) 92.44 (+14.20)

Fig. 4. Curves of test accuracy for the JPEG binary forensic problem: scaled version of
SRM (average of 5 runs) with bars of maximum and minimum accuracy at each epoch
among 5 runs; and the best run and the worst run of original version of SRM.

We show in Fig. 4 some curves of test accuracy for scaled (covariance-based)
and original SRM [5]. The curve of scaled version shows the maximum and min-
imum test accuracy together with the average at each epoch among the 5 runs.
For the original version of SRM we can have very different results. Therefore,
we show the best and the worst curves of test accuracy among all the 5 runs.
As we can see the worst case does not improve during the whole procedure
and the test accuracy remains close to 50%. The difference may come from the
randomly selected three first-layer SRM filters in each run (certain SRM filters
perform worse than others according to our observation). We would like to men-
tion that for each run, although we select randomly different SRM filters, the
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Table 5. Test accuracy for the multi-class and binary problems with our proposed
smaller CNN without fully-connected layer (in %, average of 5 runs). The columns of
“Bayar” and “SRM” present results of original version. “Scaling-conv” and “Scaling-
cov” represent respectively convolution-based and covariance-based scaling method.

Problem Bayar Scaling-conv Scaling-cov SRM Scaling-conv Scaling-cov

Multi-class 95.24 96.17(+0.93) 96.18(+0.94) 95.72 97.06(+1.34) 97.09(+1.37)

Binary 90.56 93.72(+3.16) 93.74(+3.18) 89.85 95.11(+5.26) 95.12(+5.27)

same selected filters are used to carry out comparisons between the original and
scaled versions. Therefore, even for filters that result in bad performance for the
original version, we can obtain a much better performance after scaling them.

5.3 Multi-class and Binary Problems on a Different Smaller CNN

We then test both the multi-class and JPEG binary problems on a different
CNN designed by ourselves. We first describe the architecture of this smaller
network. Let Ck(M or A) denote a Convolutional-BatchNorm-Tanh(-MaxPool
or -AveragePool) layer with k filters. For the first layer we use Hk which denotes
a Convolutional layer with k filters. The architecture of our smaller CNN is H3-
C40M-C25M-C20M-C15M-C6A. The first four layers have a kernel size of 5 × 5
while for the last two layers the kernel size is 1×1. All convolutional stride size is
1. The first layer and the last two layers do not have zero-padding, for the other
layers the padding size is 2. This is a network without fully-connected layer. To
compare with, the architecture proposed by Bayar and Stamm [1] is H3-C96M-
C64M-C64M-C128A-F200-F200-F6, where Fk denotes a fully-connected layer
with k neurons and Tanh. The number of learnable parameters of the CNN of
[1] is about 337K, while our smaller CNN has about 41K parameters.

Using our smaller CNN, we test both the multi-class and the binary problems
on a different CNN architecture. All the data preparation and experimental
setting are the same as those described in Sects. 5.1 and 5.2. For this set of
experiments, we compare the original and scaled versions of Bayar [1] and SRM
[5] (variant B for scaled Bayar). Table 5 presents the obtained results. We can
see that in all cases the scaled version leads to improved performance compared
to the original version. The improvement of test accuracy goes from 0.93% for
multi-class problem with Bayar, to 5.27% for binary problem with SRM.

Our objective in this subsection is to show that with a different CNN, our
proposed scaling can still reliably improve the performance for different initializa-
tion algorithms and forensic problems. Meanwhile, it can be noticed that perfor-
mance is better with our smaller CNN when compared to the network of [1]. The
understanding of this point is beyond the scope of this paper. Our guess is that
the forensic problems and/or the amount of data cope better with the smaller
CNN’s size (less parameters) and architecture (only comprising convolutional
layers without fully-connected layer). The thorough analysis and understanding
of the relationships between these factors is one part of our future work.
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6 Conclusion

We propose a new and effective scaling approach for adjusting first-layer filters
of CNNs used for image manipulation detection. The proposed scaling is com-
putationally efficient and data-dependent (i.e., scaling factor dependent on the
input). We also present theoretical and experimental studies which help to under-
stand why the ratio of output-input variance for first-layer convolutional filter
can be a (very) small value. Experimental results, with different CNNs, filter
initialization algorithms and forensic problems, show that our proposed scaling
can consistently improve performance of CNN-based image manipulation detec-
tion. Although practically and intuitively we can understand the effectiveness
of the proposed filter scaling operation, a rigorous theoretical analysis would be
necessary to explain the observed performance improvement. We would like to
conduct research on a possible scaling of deeper layers and to extend experiments
to more CNNs (e.g., XceptionNet and ResNet), training settings and multimedia
security problems. It is also interesting to study the impact of amount of training
data and CNN architecture on the forensic performance. One limitation of our
work is that we only consider image manipulation detection under ideal labora-
tory conditions. We plan to carry out relevant studies for more challenging and
practical forensic problems, e.g., the detection of malicious and realistic image
forgeries and image forensics with mismatch between training and testing data.
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Abstract. The ISO setting, which is also known as film speed, influences the
noise characteristics of output images. As a consequence, it plays an important
role in noise based forensics. Whenever the ISO setting information cannot be
retrieved from the image metadata, estimating the ISO setting of a probe image
from its content is of forensic significance. In this work, we propose a convo-
lutional neural network, called ISONet, for ISO setting estimation. The proposed
ISONet can successfully infer the ISO setting both globally (image-level) and
locally (patch-level). It not only works on uncompressed images, but also is
effective on JPEG compressed images. We apply the ISONet on two typical
forensic scenarios, one is the image splicing localization and the other is the
Photo Response Non-Uniformity (PRNU) correlation prediction. A series of
experiments show that the ISONet can yield a remarkable improvement in both
forensic scenarios.

Keywords: ISO setting � Convolutional neural network � Image splicing
localization � Photo response non-uniformity � Correlation prediction

1 Introduction

Nowadays, the Internet is overflowing with images captured by digital cameras. At the
same time, more and more user friendly software makes image tampering accessible to
everybody, threatening the credibility of image contents in insurance claims and courts.
To address this challenge, a large number of techniques are proposed to verify the
integrity of digital images [1–3]. Different methods are based on different assumptions
or different forensic information concerning the questioned image. For example, the
works in [4–8] assume that blurring, median filtering, resampling, contrast enhance-
ment, and double JPEG compression is involved in the image tampering, respectively.
In [9–11], the authors explore the information of photo response non-uniformity
(PRNU), color filter array (CFA) pattern, and JPEG quality factor for forensic pur-
poses. Among various types of forensic information, knowledge of the camera settings
during the image acquisition is of our interest.

In practice, the photographers like to set the camera according to the subject and
environment. Among the common adjustable settings, the ISO speed can significantly
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affect the characteristics of the output image, e.g., higher ISO speed generally leads to
brighter image, at the expense of more noticeable noise [12]. Figure 1 shows two
images of similar scene with different ISO settings. It is observed that the ISO3200
image (Fig. 1(c)) is much noisier than the image taken with ISO100 (Fig. 1(a)). This
suggests that estimating the ISO setting from the output image should be possible.
From the perspective of forensics, estimating the ISO setting is significant for under-
standing the history of the probe image and furthermore, revealing potential forgeries.
First, it is reasonable to assume that the effect of ISO speed on an original image is
global. Inconsistences may occur when a forgery is created by splicing two images with
different ISO speed together [13]. Second, knowledge of ISO setting is important side
information in certain forensic scenarios [14].

The objective of this study is to estimate the ISO setting of a probe image, both
globally (image-level) and locally (patch-level), without a reference to the EXIF data.
To this end, we propose a convolutional neural network (CNN) [15] to infer the ISO
setting from the image alone. The contributions of this work are summarized as
following:

1) A CNN model, which is called ISONet, is proposed to estimate the ISO setting of a
given image. The proposed ISONet works on both uncompressed images and
JPEG compressed images.

2) The proposed ISONet achieves improved image splicing localization performance
compared with state-of-the-art noise based methods.

3) We show that PRNU correlation prediction can also benefit from the proposed
ISONet.

The rest of this paper is organized as follows. After reviewing the related works in
Sect. 2, we provide details of the proposed ISONet in Sect. 3. Experimental study is
presented in the fourth section, and the conclusion is drawn in Sect. 5.

2 Prior Work

The last decade witnessed a large number of successful data-driven image forensic
methods [5, 11, 16–20]. Rather than presenting a thorough survey of these methods we
review a few closely related works. In [5], a median filtering forensic method was
proposed by adding a filter layer to the CNN model. In [11], JPEG quality factor was
estimated by a CNN with pixel precision. In [16], a camera model fingerprint was

Fig. 1. Images taken under different ISO settings. (a) ISO100, (b) magnified region of (a),
(c) ISO3200, (d) magnified region of (c).
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extracted with a Siamese network. In [17], a CNN-based model was proposed to
improve the sensor pattern noise extraction. In [18], a CNN model was proposed to
predict the correlation between an image patch and the reference PRNU.

Inspired by the works mentioned above, we attempt to infer the ISO setting from a
probe image for forensic purpose with CNN. To our best knowledge, no previous work
in image forensics area focused on ISO setting estimation. However, there are a number
of image splicing localization methods based on noise level estimation [13, 21–26].
Considering the fact that a higher ISO setting introduces a higher noise level to the
image content, we believe that these noise based methods are most relevant to our work
and thus will be compared in Sect. 4.

Another motivation for our work is enhancing the performance of PRNU corre-
lation predictor. PRNU, caused by inhomogeneity of silicon wafers, has been proved to
be a reliable fingerprint that provides a link between an image and its source camera.
An absence of the PRNU in a certain location of the investigated image can be regarded
as a valuable clue of tampering. However, even in a pristine image, the strength of
PRNU signal varies significantly over different regions of the image. To reduce false
alarms in PRNU based tampering detection, a correlation predictor that can produce an
expected PRNU strength is proposed in [27]. In [14], the authors pointed out that the
PRNU correlation predictor should be ISO setting specific. Hence, we infer that the
correlation predictor can also benefit from the proposed ISONet.

3 ISONet

In this section, we describe the structure, training, and inferring process of the ISONet.
Considering that the effect of ISO setting on output imagesmay be significantly altered by
JPEG compression, we trained two versions of ISONet. One is for uncompressed images,
which is called ISONet-uncompressed, and the other is for JPEG compressed images,
called ISONet-JPEG. The two versions of ISONet share exactly the same structure.1

3.1 Network Structure

The CNN architecture used in this work is similar to the well-known Very Deep Neural
Networks [28], which consist of a convolutional part and a fully connected part. We

Fig. 2. The structure of the proposed ISONet. The input is a 64 � 64 RGB image patch and the
output is a real number indicating the ISO setting.

1 Source code is available at https://github.com/zengh5/ISONet.
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choose such a structure based on the following considerations. First, the work of [29]
showed that it is possible to infer the local noise level using a stack of convolutional
layers with 3 � 3 kernels. Second, as reported in [13], the local noise levels are not
determined by ISO speed only, but also affected by local image content. We reasonably
believe that the convolutional part can learn the local noise level information and local
image content simultaneously. The remaining fully connected part can be used to map
the two types of information to ISO speed.

The detail architecture of ISONet is illustrated in Fig. 2. It consists of seven con-
volutional layers and three fully connected layers. From the first to the last convolu-
tional layer, the number of feature maps is set to 32, 64, 64, 64, 32, 16, and 8,
respectively. Two max-pooling layers are inserted after the second convolutional layer
and the last layer to reduce the feature dimension. The filter size is 3 � 3 and no
padding is used, so the feature maps shrink two pixels after each convolutional layer.
The activation function is ReLU for all layers. The input of the network is a 64 � 64
RGB image patch, and the output is a real number related to the ISO setting.

3.2 Training

To train the ISONet-uncompressed, 240 full size uncompressed images with the ISO
speed of {100, 200, 400, 800, 1600, and 3200} are randomly selected from the
BOSSraw database [30]. The BOSSraw dataset includes 10,000 images from 7 cam-
eras. We try our best to force the selected images to fairly represent all the cameras.
Each ISO setting occurs in 40 images. 1064 64 � 64 patches are randomly cropped
from each full size image. The rotation and flip based data augmentation is then
adopted to generate the final training dataset, which includes 3 � 240 � 1064 =
766,080 patches. For the training target, we define an ISO metric as

MISO ¼ log2ðISO speed=100Þ ð1Þ

Such definition reflects the fact that the ISO speed is unevenly distributed in
practice, i.e., dense in low ISO region and sparse in high ISO region. The number of
epochs is set to 50. The learning rate starts at 1e−3 for the first 10 epochs, then changes

Table 1. Cameras involved in training ISONet-JPEG.

ISO 100 200 400 800 1600 3200

Dataset DID Warwick
Camera Olympus_C0 Nikon_C0 Olympus_C0 Olympus_C0 Canon 6D Canon 6D

Panasonic_C0 Olympus_C0 Olympus_C1 Olympus_C1 Canon 6D
MkII

Canon 6D
MkII

Pentax_C0 Olympus_C1 Panasonic_C0 Pentax_C0 Canon 80D Canon 80D
Ricoh_C0 Panasonic_C0 Sony_H50_C0 Sony_H50_C0 Fujifilm

X_C1
Fujifilm
X_C1

Pentax_C0 Pentax_C0
Ricoh_C0 Ricoh_C0
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to 1e−4 for the following 20 epochs, and finally switches to 1e−5 for the remaining 20
epochs. The ADAM algorithm [31] is adopted to optimize ISONet with the MSE loss
function.

The training process of the ISONet-JPEG is the same as that of the ISONet-
uncompressed, except the used images. The images with ISO speed of {100, 200, 400
and 800} are from the Dresden Image Database (DID) [32]. For the ISO1600 and
ISO3200 images, since there is not enough images with these ISO settings in DID, we
use the images from the Warwick Image Database [33] instead. All the images are in
JPEG format. The involved cameras are listed in Table 1.

3.3 Inference

Inference of the ISO setting of a probe image is simple feed-forward process. For the
convenience of subsequent forensic analysis, we estimate the ISO setting both globally
(image-level) and locally (patch-level). Probe images are cropped to non-overlapping
64 � 64 patches p ið Þ; i ¼ 1; 2; 3; . . .; N, and fed into the trained network. The network

outputs the estimated ISO metric M̂ ið Þ
ISO for each patch. The ISO metric of the whole

image is estimated as the median value of the estimated ISO metric of all patches.

M̂image
ISO ¼ median M̂ ið Þ

ISO

� �
ð2Þ

4 Experiments

To evaluate the performance of the proposed ISONet, we conducted three experiments
as follows. First, the accuracy of the ISO setting estimation on image patches is
measured in the baseline experiment. Second, the ISONet-uncompressed is applied in
image splicing localization, where images with distinct ISO settings are spliced into a
forged image. Third, the ISONet-JPEG is used to infer the ISO setting from JPEG
images and enhance the performance of PRNU correlation predictor.

Before moving to the experimental results, it is worthwhile to point out the dif-
ference between the forensic senarios investigated in Sects. 4.2 and 4.3. In Sect. 4.2,
we restrict ourselves to the image splicing scenario, where a forged image is created by
copying a certain region from one source image and pasting into another one (target
image). The ISO settings in capturing these two source images are different. In
Sect. 4.3, the forged image can be created by any type of tampering operation, e.g.,
copy-move, splicing, or object removing with the Clone Stamp Tool in Photoshop
software. The assumption is that the investigator has the fingerprint and the correlation
predictor of the camera at hand. Although the final results can be shown in a similar
manner, generally speaking, the forensic strategies for these two scenarios are com-
pletely different. As can be seen in the following, our proposed ISONet is helpful in
both scenarios.
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4.1 Baseline Results

We first test the performance of the ISONet-uncompressed. For each ISO setting, 40
full size images are selected from the BOSSraw dataset and 2,400 64 � 64 patches are
cropped from each image, resulting in 96,000 patches for each ISO speed. We assure
the test images are not involved in training. The results are shown with box plots in
Fig. 3(a), where the red central mark is the median value, and the edges of the box are
the 25th and 75th percentiles. It can be observed that the ISONet-uncompressed can
infer the ISO setting from the image patches accurately, especially for high ISO cases,
e.g. ISO1600 and ISO3200.

We then test the performance of the ISONet-JPEG. The experimental setting is
similar to that of the ISONet-uncompressed, except for that the images are from DID
and Warwick. In selecting the test images, we assure the cameras are not involved in
training. The results are shown in Fig. 3(b), from which it can be observed that the
ISONet-JPEG can infer the ISO setting from the JPEG compressed image patches well,
except for the ISO3200 images, where the ISO metrics are underestimated and over-
lapped with the metrics of ISO1600 images for some cases. Comparing with the results
of uncompressed images shown in Fig. 3(a), it seems that the noise characteristics of
high ISO images are more blurred by JPEG compression than that of low ISO images.

4.2 Image Splicing Localization

The promising results of ISO setting estimation on image patches suggest that ISONet
can be used for image splicing localization when the source images involved in splicing
are with distinct ISO settings. Since, to our best knowledge, there is no previous data-

(a) (b)

Fig. 3. Performance of ISO setting estimation on 64 � 64 image patches. (a) Uncompressed
images, (b) JPEG compressed images.
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driven based method available for comparison we compared the proposed ISONet-
uncompressed to state-of-the-art noise based methods [13, 21, 23]2.

Figure 4 shows an image splicing example, in which a badge from one ISO800
image is spliced into one ISO200 image. The original images involved in such a
forgery are shown in the Fig. 4(a) and (b). For a fair comparison, all the compared
methods are tested on non-overlapping 64 � 64 blocks, and K-means algorithm is used
to cluster these blocks into an original cluster and a spliced cluster based on the forensic
metrics obtained with corresponding methods. The localization results of the proposed
method, the method [13], the method [21] and the method [23] are shown in Fig. 4(c),
(d), (e), and (f), respectively. While the proposed ISONet and the method of [13] are
able to provide meaningful clues, the proposed method has fewer false alarms.

We also make a quantitative comparison between the proposed method and the
compared methods on uncompressed images from the BOSSraw database. 40 ISO100
images are fixed as the background. A randomly selected 1024 � 1024 region from an
image with ISO speed 2 200; 400; 800; 1600; 3200f g is spliced into each background
image to generate a forged image. We use the block detection accuracy (BDA) and the
block false positive (BFP) to evaluate the splicing localization performance, as in [13,
21] and [23]. BDA is the probability of image blocks in the spliced region that are
correctly detected and BFP is the probability of image blocks in the original region that
are falsely detected. Figure 5 shows the average BDA/BFP rates over 40 images when
the spliced regions are taken with different ISO settings. The red square lines represent
the ISONet, the green circle marked lines represent the method in [21], the blue
rhombus marked lines represent the method in [23], and the magenta star marked lines
represent the method in [13]. The ISONet consistently performs the best among the
compared four methods, especially when ISO speed difference between the spliced
region and the background is small. For example, when the spliced regions are from
ISO400 images, the ISONet achieves BDA = 99.0% and BFP = 7.4%, while the
method in [21] achieves BDA = 67.9% and BFP = 16.3%, the method in [23] achieves

Fig. 4. Image splicing localization. (a) A source image taken with ISO speed = 800, (b) another
source image taken with ISO speed = 200, (c) the result with the proposed ISONet, (d) the
method in [13], (e) the method in [21], (f) and the method in [23]. The true positives are marked
in green and the false alarms are marked as red. (Color figure online)

2 The implementation of [13] is available in https://github.com/zengh5/Exposing-splicing-sensor-noise,
and the implementations of [21, 23] are available in https://github.com/MKLab-ITI/image-forensics/
tree/master/matlab_toolbox.
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BDA = 76.5% and BFP = 14.7%, and the method in [13] achieves BDA = 83.0% and
BFP = 11.3%.

It is worthwhile to point out that all the compared noise based methods, as well as
the ISONet, are not robust to JPEG compression after image splicing. However, the
proposed ISONet-JPEG can be used to reveal the forgery (no double compression)
when the source images are in JPEG format.

In addition to testing on our own generated spliced images, we also tested the
proposed model on the Realistic Tampering dataset [34]. For most of the tampering
cases in this dataset, the involved source images are captured with very low ISO setting,
e.g. ISO100, which makes it impossible to localize the forgery by local ISO estimation.
Even so, the proposed model can give valuable clues for some forgery cases. Figure 6
shows such an example. For the forgery case shown in Fig. 6(a), a football is spliced
into the lawn background. The background image seems taken with ISO100 and the
patch containing the football may be from a high ISO image, e.g., ISO400 or ISO800.

4.3 PRNU Correlation Prediction

In PRNU based forgery localization, a PRNU correlation predictor is used to predict
the PRNU strength of a given image patch, which is essential for reducing the false

Fig. 5. BDA/BFP rates comparison for image splicing localization. The forged images are
generated by splicing 1024 � 1024 blocks of different ISO settings into ISO100 images.

Fig. 6. Local ISO number estimation result for a tampering case from [34]. (a) Tampered image,
(b) ground truth mask, (c) block-wise ISO number estimation result with ISONet.
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alarms [27]. The authors of [14] pointed out that the correlation predictor should be
ISO specific. In this subsection, we show how the proposed ISONet can enhance the
performance of correlation predictor, and furthermore, enhance the performance of the
PRNU based forgery localization.

First, we trained four versions of correlation predictors for the Pentax_OptioA40
camera model in DID: ISO100, ISO200/400, ISO800, and mixed ISO. The ISO100 and
ISO800 correlation predictors are trained with 20 images of the corresponding ISO
settings. The number of ISO200 or ISO400 images is insufficient in this cameramodel for
training correlation predictors separately, thus we combine 10 ISO200 images and 10
ISO400 images to train one correlation predictor denoted as ISO200/400. The mixed
correlation predictor is trained with 20 images randomly chosen from the 60 images used
for ISO100, ISO200/400, and ISO800. The standard 15D content based features as well as
correlations are computed on image patches of 128 � 128 pixels. The least square
estimator is used to obtain the predictors as in [27]. Then, 10,000 128 � 128 patches of
each ISO setting are used to test the performance of the correlation predictors. As in [34],
we use the coefficient of determination (r2) to evaluate the quality of the obtained cor-
relation predictors. This coefficient, ranging from 0 to 1, is the proportion of the variance
in the dependent variable that is predictable from the independent variables. The higher
the r2 value, the higher quality the correlation predictor is. Table 2 compares r2 when the
matched correlation predictor (the ISO setting of the test image is the same with the
correlation predictor), themixed correlation predictor, and the predictor chosen according
to the ISONet-JPEG are used for prediction. It is observed that the predictors chosen
according to the ISONet-JPEG show superior performance over the mixed correlation
predictor, and perform similar to the matched correlation predictors. With the help of the
ISONet-JPEG, for most test images the matched correlation predictor works without an
error, except for a few ISO100 images that are wrongly classified as ISO200 images.

To provide a more intuitive example, we examine the influence of the correlation
predictor in PRNU based forgery localization on a tampered image. The original image
shown in Fig. 7(a) is taken with the setting of ISO400. The tampered image (Fig. 7(b))
is manipulated by copying a ship to the same image in Adobe Photoshop. The Standard
Localization Algorithm from [34] (Algorithm 1 of [34]) is applied to the tampered
image.3 We set the window size x ¼ 129, analysis stride Dx ¼ 64, and threshold
s = 0.7 for the Standard Localization Algorithm. Figure 7(c) shows the result without
correlation predictor. Alternatively, a fixed threshold based on peak-to-correlation-
energy (PCE) [35] is used, i.e., the patches whose PCE values are lower than a given

Table 2. Coefficient of determination r2 of the correlation predictions obtained by different
correlation predictors. By choosing the predictor according to the estimated ISO using ISONet,
the value of r2 can be significantly improved over that of the mixed predictor.

Matching Mixed Estimated
ISO 100 200/400 800 100 200/400 800 100 200/400 800

r2 0.700 0.314 0.111 0.584 0.240 0 0.682 0.314 0.111

3 Source code is available at https://github.com/pkorus/multiscale-prnu.
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threshold t are declared to be suspicious. Here we experimentally set t = 2.4 A lot of
false alarms occur in the area of trees. This is due to the fact that it is hard to extract the
PRNU signal from the textual area. Figure 7(d) shows the result when the ISO100
correlation predictor (mismatched) is used. Compared to Fig. 7(c), the false alarms in
the area of trees have been suppressed because the weak PRNU strength in these areas
has been taken into consideration by the correlation predictor. However, there are false
alarms in the pristine ship and the beach at the bottom of the image caused by the
overestimation of the ISO100 correlation predictor. In the proposed scheme, the ISO
metric of the tampered image is first estimated with the ISONet-JPEG, which outputs
2.093. Then the ISO200/400 correlation predictor is chosen according to the definition
of the ISO metric in (1) for forgery detection. Figure 7(e) shows the localization result
with fewer false alarms compared to Fig. 7(c) and (d).

To summarize, both the correlation predictor and the PRNU based forgery local-
ization can benefit from the proposed ISONet.

5 Conclusion

In this paper, a CNN-based model is proposed to estimate the ISO setting of a given
image both globally and locally. The estimated ISO setting is a kind of important
information in the image forensics. When the ISONet is used for image splicing

Fig. 7. PRNU based forgery detection results of an ISO400 image. (a) Original image,
(b) forged image, (c) without correlation predictor, a fixed threshold PCE = 2 is used, (d) with a
mismatched ISO100 correlation predictor, (e) with the ISO200/400 correlation predictor chosen
according to the proposed ISONet.

4 For an ISO400 image of JPEG format, the PRNU signal is very weak even in the pristine area. Thus,
the threshold here is much lower than that used in camera identification.
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localization, it achieves superior performance to state of the art noise based methods.
We also show that the PRNU correlation prediction can benefit from the proposed
ISONet. The application of the ISONet may span beyond the scenarios discussed in this
paper. For example, the estimated ISO speed may be useful side information for
steganalysis.

Given the prospective performance reported in this work, it is worthwhile to
pointed out the generalizability of the ISONet may not satisfy enough for unknown
camera models, especially in the case of ISONet-JPEG. We hypothesize that it is due to
different camera models compress images with different quality, which makes JPEG
images taken with the same ISO settings from different camera models have different
noise characteristics. Inferring the ISO settings that never seen in training, such as
ISO160, is also of our interest in future.
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Abstract. With the development of information security, localization
of image manipulations havs become a hot topic. In this paper, a hybrid
loss network is proposed for the manipulated image forensics. First, the
patch prediction module extracts corresponding features representing the
discrepancy of the tampered region boundaries. Then, these features are
constrained by the Pixel Normalization, thereby improving the classifi-
cation performance for the tampered patches. Finally, multi-scale patch
prediction masks and semantic information are fused to segment out the
tampered regions. The experiments demonstrate the proposed model can
achieve high performance.

Keywords: Image manipulation localization · Pixel normalization ·
Hybrid loss network

1 Introduction

With the rapid development of digital media technology, the emergence of a large
number of image editing software enables people to easily manipulate the content
of the image, which leads to a sharp decline in the authenticity of the image,
resulting in a serious reduction in the credibility of the image. The frequently
tampered images have caused serious adverse consequences in many aspects of
our life, such as military, judicial, media, etc. [26]. To address this threat, image
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manipulation detection and localization have received extensive attention, which
aims to recognize the tampered regions.

According to whether the content of the image has been changed or not,
the image forgery techniques can be broadly divided into two categories [16]: (1)
content-preserving, and (2) content-changing. Content-preserving manipulations
(e.g., blur, compression, and enhancement) only change the visual quality of the
image, but do not affect the underlying semantic information of the image. How-
ever, content-changing manipulations (e.g., splicing, copy-move, and removal)
can alter the content of the image arbitrarily, which is also our focus.

In contrast to image object detection which aims to recognize all foreground
objects, the image manipulation detection which aims to localize specific regions
(including foreground object, or background, or even an erased area), is more
difficult and challenging. Depending on the characteristics, most prior works use
handcrafted or predetermined features such as JPEG compression artifacts [1,
11], Camera Filter Array (CFA) pattern [4,8], edge inconsistencies [21], and
local noise pattern [6,19,25] to segment out the tampered region in an image.
Nevertheless, most of these methods focus on one specific type of manipulation
resulting in their poor generalization ability. With the great success of deep
learning in computer vision, a significant number of deep learning based methods
have been proposed to address earlier issues. Although these methods improve
the generalization ability of models, they usually rely on heavy, time-consuming
pre- and/or post-processing and are still limited to predetermined features [3,
16,24,27].

Focusing on the above investigation, we proposed a unified neural network
architecture for image manipulation localization. The proposed network is an
end-to-end, multi-task model without pre- and/or post-processing, which inte-
grates the classification of the large, middle, and small patch. The whole coarse-
to-fine manipulation localization process can be divided into two stages: 1)
Stage-1, the classification process of multi-scale patches cooperates to localize
the tampered region from coarse to fine. 2) Stage-2, multi-scale semantic con-
tent is introduced into image segmentation to eliminate patch-effect and obtain
better pixel-wise localization results.

The main contributions of the present study are as follows:

– A unified hybrid loss network without any pre- and/or post-processing is pro-
posed, which can simultaneously realize the detection of multi-scale tampered
patches and the pixel-wise segmentation of tampered regions.

– A patch prediction module based on statistical property differences is pro-
posed, thereby remaining the spatial position relationship between patches
intactly and classifying the tampered patches effectively.

– A new regularization method called Pixel Normalization (Pixel Norm) is pro-
posed. This method can alleviates the influence of image content on feature
extraction and improve the detection performance of the proposed model.

The rest of this paper is organized as follows: Sect. 2 discusses the related
work, Sect. 3 elaborates the proposed model, Sect. 4 details experiments, and
Sect. 5 presents conclusions.
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2 Related Works

2.1 Traditional Image Processing Based Methods

Before the emergence of deep learning based approaches, the traditional image
forensics method was always the first choice of image forgery detection. These
methods always take advantage of some physical characteristics as the foundation
for detection/localization, including frequency domain characteristics [12,22],
artifacts left by JPEG compression [5,10,22], noise pattern [14,15,19], and CFA
pattern [20]. Specifically, under the assumption that the tampered regions and
the authentic regions have undergone different JPEG compressions, the tam-
pered regions by the analysis of the compression errors through different JPEG
compression qualities was detected [10]. In [8], a Gaussian Mixture model was
proposed to classify CFA present areas (authentic areas) and CFA absent areas
(tampered areas). However, CFA based methods only apply to tampered regions
and non-tampered regions from different cameras. Mahdian et al. [15] modeled
the local noise to localize the boundary of the tampered regions.

2.2 Deep Learning Based Methods

In recent years, inspired by the success of deep learning techniques in the com-
puter vision field, a number of deep learning based methods have been proposed
to address the forgery detection. In contrast to traditional image processing
based methods, deep learning approaches can extract multi-hierarchical features,
which is conducive to improving the generalization ability of models. MFCN [21]
is a multi-task fully convolutional network that is simultaneously trained on the
edge binary mask and the tampered region mask. Tampered region edge detec-
tion is helpful to reduce the error detection rate of non-tampered pixels and
can yield finer localization of the spliced region. Bappy et al. [3] proposed an
LSTM based network to find out the small patches on the boundaries of the
tampered regions. Then, this network was jointly trained with pixel-wise seg-
mentation for finer localization. However, the scale of the patch is difficult to
determine. If it is too large, the localization result is very coarse. If it is too
small, the information provided by the patch is less, resulting in the small patch
is difficult to detect. Authors in [27] utilized the mainstream object detection
network, supplemented by some specific features to identify fake objects, but
this method fails to achieve pixel-wise segmentation. The fusion of spatial fea-
tures and frequency domain feature is adopted in [16] for detecting manipulated
image regions. Work in [24] formulated the image manipulation detection task
as a local anomaly detection problem. A learnable decision function is proposed
to establish the mapping between the difference of the local feature and the
corresponding forgery label.
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Fig. 1. Overview of the proposed method.

3 Proposed Method

3.1 Overview

The logical structure of the proposed method is shown in Fig. 1. Firstly, the input
will be filtered by three residual blocks. Pooling operations following the convolu-
tion operations are introduced into the model to compress the data dimensions.
Then, the output feature maps of each residual block are sent to the patch
prediction module we proposed to perform the multi-scale localization of the
boundaries of the tampered region. Although the size of the extracted patch in
the prediction module is 16 × 16, these feature maps have undergone multiple
pooling operations. The size of 16 × 16 patch extracted by the patch prediction
module mapping to the original image is 16, 32, and 64, respectively. Finally,
the patch prediction masks will undergo a series of convolution and up-sample
operations to yield the final pixel-wise manipulation localization mask.

3.2 Patch Prediction Module

For a forgery image, even with careful inspection, it is difficult to recognize the
tampered regions, because advanced manipulation techniques cannot leave any
visible traces. However, the manipulation must distort the statistical proper-
ties of an image, especially in the boundaries that tampered and non-tampered
regions share. Although these differences are indistinguishable to humans, we
can use deep learning techniques to represent the statistical properties of the
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Fig. 2. Diagrammatic overview of the patch prediction process of a single feature map.

images and further capture these differences. Thus, we propose a patch predic-
tion module to learn the correlation between the patches extracted from each
feature map.

As shown in Fig. 2, the patch prediction process of a feature map is con-
sidered as an example. Firstly, the dimension of a feature map is (1, 1,H,W ),
16 × 16 pooling operation is used to simultaneously extract the patch of the
image and calculate the m statistical features of each patch. In this work, the
most common statistics, maximum, minimum, mean and variance, are selected
as indicators to represent the statistical properties of the extracted patches.
After the pooling operation, m statistical feature maps have been obtained, the
dimension of which is (1, 1,m,H/16,W/16). It is worth noting that, in addi-
tion to batch (N), channel (C), height (H), and weight (W ), the dimension of
the feature map has been increased by one dimension, the number of statistical
feature (S). Then, the statistical feature maps are normalized by the proposed
Pixel Normalization. Finally, the patch prediction mask can be achieved by a
convolutional layer with sigmoid activation function.

3.3 Pixel Normalization

In the prior works, a family of feature normalization methods have been proposed
for different scenarios and tasks, including Batch Norm [9], Layer Norm [2]. They
all obey a general formulation of feature normalization:

x̂i = 1
σi

(xi − μi) (1)

where x is the feature computed by a layer, and i is an index. In the case of 2D
images, i = (iN , iC , iH , iW ) is a 4D vector indexing the features in (N,C,H,W )
order, where N is the batch axis, C is the channel axis, and H and W are
the spatial height and weight. μi and σi in Eq. 1 are the mean and standard
deviation. They can be calculated by the following formulas:

μi = 1
m

∑

k∈Si

xk σi =
√

1
m

∑

k∈Si

(xk − μi)
2 + ε (2)
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Fig. 3. Normalization methods. Each subplot shows a feature map tensor, with N as
the batch axis, C as the channel axis, S as the statistics axis, and (H,W ) as the spatial
axes. The pixels in blue are normalized by the same mean and variance, computed by
aggregating the values of these pixels. (Color figure online)

where ε is an arbitrarily small value. Si is a set of pixels which are used to
compute the mean and standard deviation. m is the size of this set. The difference
between these methods mainly lies in how the set Si is defined, discussed as
follows Fig. 3:

In Batch Norm, the set Si is defined as:

Si = {k|kC = iC} (3)

where kC (and iC) denotes the sub-index of k (and i) along the axis C. That is
to say that the pixels sharing the same channel index are normalized together.
Batch Norm computes the μ and σ along the (N,H,W ) axes. In Layer Norm,
the set Si is defined as:

Si = {k|kN = iN} (4)

meaning that Layer Norm computes the μ and σ along the (C,H,W ) axes.

Pixel Normalization (Pixel Norm). As analyzed in the previous section, in
the terms of the features received by Pixel Norm, i = (iN , iC , iS , iH , iW ) is a 5D
vector indexing the features in (N,C, S,H,W ) order, where S is the statistics
axis. So, the Pixel Norm actually performs feature normalization on n features
with (C,S,H,W ) order, respectively. Formally, in Pixel Norm, the set Si is
defined as:

Si = {k|kH,W = iH,W } (5)

meaning that Pixel Norm computes the μ and σ along the (C,S) axes. The
computation of Pixel Norm is illustrated in Fig. 3 (rightmost).
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For the features with (C,S,H,W ) order, each pixel along the (C,S) axes rep-
resents the corresponding statistical feature extracted from a patch in an image.
Due to each patch containing different contents, there may be great differences
between the statistics for each patch, i.e., the magnitude of statistics, which
may affect the performance of the patch classification. To avoid this problem,
the Pixel Norm is proposed to normalize each pixel along the (C,S) axes, making
the statistical properties of each patch tend to be similarly distributed. Because
of the share of the convolution kernel parameters, similar statistical properties
distribution is more conducive to the patch detection.

3.4 Training Loss

The proposed model has a total of four outputs. We used different cross-entropy
losses for different branch learning. The total loss function of the proposed model
is defined as:

Ltotal = α1Flarge + α2Fmid + α3Fsmall + α4Cseg (6)

where Flarge is the Focal loss [13] of the large patch classification, Fmid is the
Focal loss of the middle patch classification, Fsmall is the Focal loss of the small
patch classification, and Lseg is the standard cross-entropy for the final pixel-wise
segmentation loss. α1, α2, α3, and α4 are the pre-defined hyper-parameter. In
this work, they are defined as 0.6, 0.1, 0.1, and 0.2, respectively. Finally, the four
losses are summed together to produce the loss function for the whole model.

4 Experiments

In this section, extensive experiments are carried out to demonstrate the effec-
tiveness of each part of the proposed model. We evaluate the proposed model on
four image forensics benchmarks and compare the results with state-of-the-art
methods.

4.1 Implementation Settings

In data preparation, the input image size is resized to (256, 384, 3). Image flipping
is used for the data augmentation. According to the existing ground truth masks,
we can easily generate the patch ground truth mask. The batch size of the
proposed model is 16. The whole network is optimized by Adam with a learning
rate set at 1e−3 (pre-train) and 5e−4 (fine-tune). The training ends at epoch
200. All experiments are performed on a single NVIDIA 2080Ti GPU.
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(a) The model with Pixel Norm (b) The model without Pixel Norm

Fig. 4. The F1 score and loss of the model with and without Pixel Norm

4.2 Experimental Analysis

We use pixel-level F1 score and Area Under the receiver operating characteristic
Curve (AUC) as our evaluation metrics for performance comparison.

Pre-trained Model. We compare our model with different state-of-the-art
methods on four standard manipulated datasets, NIST16 [18], CASIA (includ-
ing CASIA 1.0 and CASIA 2.0) [7], COVER [23], and Columbia datasets [17].
According to the observation, except for CASIA, the other three standard
datasets do not have enough samples for network training. Thus, we adopt a
strategy that we use CASIA 2.0 to pre-train the model, then fine-tune the model
on CASIA 1.0, NIST16, COVER, and Columbia.

Impact of Pixel Normalization. In order to emphasize the significance of the
proposed Pixel Norm, when pre-training the model, we compare the performance
of the model with Pixel Norm and without Pixel Norm. Under the same training
conditions, the test results are shown in Fig. 4. Figure 4 intuitively shows the loss
and F1 score of different scale patches and final segmentation with the network
training. In contrast, the model with Pixel Norm can converge faster and the F1
score of different scale patches and final segmentation all improve.

Comparison Against Existing Methods. We compare our method with
various state-of-the-art methods, including ELA [10], NOI [15], MFCN [21], J-
LSTM [3], RGB-N [27], LSTM-ED-S [16], and ManTra-Net [24].

Table 1 shows the F1 score comparison results between our method and the
other methods. Table 2 shows the AUC comparison results between our method
and the other methods. It is worth noticing that both the F1 score and AUC of
the CASIA dataset have two results. The value outside (.) is the result of model
fine tuning and the value in (.) is the result of model non-fine tuning. From
the results in Table 1 and Table 2, we can find that our model outperforms the
other state-of-the-art methods on NIST16, CASIA, and Columbia. Especially
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Table 1. F1 score comparison on four benchmarks. ‘-’ denotes that the result is not
available in the literature.

Method NIST16 CASIA Columbia COVER

ELA [10] 0.236 0.214 0.470 0.222

NOI [15] 0.285 0.263 0.574 0.269

MFCN [21] 0.570 0.541 0.612 -

J-LSTM [3] - - - -

RGB-N [27] 0.722 0.408 0.697 0.437

LSTM-ED-S [16] - 0.432 - -

ManTra-Net [24] - - - -

Ours 0.756 0.548(0.469) 0.902 0.435

Table 2. AUC comparison on four benchmarks. ‘-’ denotes that the result is not
available in the literature.

Method NIST16 CASIA Columbia COVER

ELA [10] 0.429 0.613 0.581 0.583

NOI [15] 0.487 0.612 0.546 0.587

MFCN [21] - - - -

J-LSTM [3] 0.764 - - 0.614

RGB-N [27] 0.937 0.795 0.858 0.817

LSTM-ED-S [16] 0.857 0.814 - -

ManTra-Net [24] 0.795 0.817 0.824 0.819

Ours 0.927 0.858(0.797) 0.942 0.813

on Columbia, the F1 score of our model increases by 0.205. One of the reasons
is that images in Columbia are uncompressed and do not undergo any post-
processing operations, which preserves the changes of statistical properties so
well that the proposed model can accurately classify tampered patches.

For the poor performance on COVER, one possible explanation is that
COVER only focuses on the copy-move operation which only causes the small
change of statistical properties, and COVER is a relatively small dataset, not
enough to fine-tune the model to adapt the new changes of statistical properties.

Qualitative Result. In Fig. 5, we provide the segmentation results of some
examples produced by the proposed network. Different scale patch prediction
masks resize to the same size as the original images. The prediction modules of
different scale patches have completed the localization of the tampered region
edges from coarse to fine. The fusion of semantic information and prediction
masks also effectively eliminates the patch-effect.
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Ground truth maskTampered image Large patch prediction mask middle patch prediction mask Small patch prediction mask Final prediction mask

Fig. 5. Some of the segmentation examples.

5 Conclusions

In this paper, we propose an end-to-end model that can realize the coarse-to-fine
localization of the tampered regions without any pre- and/or post-processing.
The proposed model is sensitive to the statistical properties of the images and
suitable for any manipulation types. The proposed Pixel Normalization proves
that the classification ability of the model can be improved by appropriate con-
straints on the features. The experiments show the superiority of our model,
which significantly outperforms the state-of-the-art works on four manipulated
image benchmarks. For multi-task learning, the coefficient of each loss functions
are predefined, but they may be not necessarily optimal. The dynamic adjust-
ment strategy of the coefficients will be explored in the future.
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Abstract. Deep neural network-based keyword spotting (KWS) have
embraced the tremendous success in smart speech assistant applications.
However, the neural network-based KWS have been demonstrated sus-
ceptible to be attacked by the adversarial examples. The investigation
of efficient adversarial generation would mitigate the security flaws of
network-based KWS via adversarial training. In this paper, we pro-
pose to use the conditional generative adversarial network (CGAN) to
efficiently generate speech adversarial examples. Specifically, we first
present a target label embedding method to map the class-wise label
into feature maps. Then, we utilize generative adversarial network for
constructing the target speech adversarial examples with such feature
maps. The target KWS classification network is then integrated with
CGAN framework, where the classification error of the target network
is back-propagated via gradient flow to guide the generator updating,
but the target network itself is frozen. The proposed method is evalu-
ated on a set of state-of-the-art deep learning-based KWS classification
networks. The results validate the effectiveness of the generated adver-
sarial examples. In addition, experimental results also demonstrate that
the transferability of generated adversarial example among the different
KWS classification networks.

Keywords: Speech adversarial examples · Conditional generative
adversarial network · Keyword spotting (KWS)

1 Introduction

Nowadays, deep neural networks (DNNs) have become a critical backbone
for speech recognition and verification systems. They have been extensively
employed in many practical application, ranging from voice assistant on mobiles
(i.e., Siri, Google Assistant, Alexa) to smart speaker on the intelligent home
device (i.e., Apple Homepod, Amazon Echo). With increasing usage of those
smart devices, the potential security risk aroused.
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The security risk of DNNs is introduced by the adversarial attack, a mali-
cious attack approach that imposed carefully-crafted adversarial perturbation
on the legitimate input of DNNs to cause misclassification. Recently, researchers
attempted to investigate the possibility of adversarial attack in the speech
domain. Some work [10,16] have demonstrated that legitimate voice inputs
crafted by injecting small perturbations could mislead the DNN-based recog-
nition systems. Several works also suggested that vulnerable of different speech-
domain application to adversarial attack, including but not limited to speaker
verification [3,14], keyword spotting (KWS) classification [1,5,26], and speech-
to-text transcription [2,11,19].

Although existing works on the adversarial attack of the recognition sys-
tems have been reported, they are still existing challenges. More specifically,
the state-of-the-art adversarial attack approaches in image domain or speech
domain, making several unrealistic hypotheses on the time-cost setting, espe-
cially having unlimited time for generating adversarial perturbation. For image
adversarial attack, the legitimate input images are typically static and constant.
However, speech signals have different temporal characteristic: first, in real-world
speech applications, the legitimate inputs are typically streaming voice input;
therefore, the existing speech adversarial attacks, which depend on complicated
iterative optimization approaches [2,27] and evolutionary algorithms [1,5], are
too slow to realize those real-time speech processing systems attack; Second, it
impossible for the adversary to generate adversarial speech perturbation during
input-streaming phase due to the inherent sequential of speech signals, which the
existing perturbation generation methods are based on the entire speech input.

To solve these issues, we attempt to use a CGAN-based method to gener-
ate speech adversarial perturbation. Specifically, we first present a target label
embedding method to map the class-wise label information to feature maps,
which used to guide the generator generate specific target perturbation; and
then integrate the target network into the adopted CGAN framework. The goal
of generator should meet two goals simultaneously: 1) deceiving the discriminator
treating the adversarial example as the legitimate one, and 2) making the target
network misclassified the adversarial example to specific target. The discrimi-
nator is to distinguish the constructed adversarial examples from the legitimate
ones. The target network is fixed during training. Its classification loss is feedback
via gradient flow to the generator, guiding the generator to adjust the pertur-
bation towards the misclassification direction. Experimental results validate the
attacking capability of proposed method on several widely-used KWS classifica-
tion networks while maintaining imperceptual to human. The contributions of
this work are summarized as follows

1) We present a target label embedding to map the target label to feature maps,
which could enable us to use one trained generator to construct the adver-
sarial example with the arbitrary specific target. By incorporating the target
KWS classification network into our specially devised GAN framework, we
successfully trained a generator that could generate the adversarial pertur-
bation.
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2) We conduct extensive experiments to demonstrate our generated adversarial
examples could effectively fool the KWS classification network systems with
high confidence, while retaining reasonably good perception quality. In addi-
tion, experimental results suggest that the transferability of the generated
adversarial examples.

The rest of this work is organized as follows. We first briefly review related
work in Sect. 2. Our proposed targeted speech adversarial example generation
using CGAN is presented in Sect. 3, with a thorough discussion on the network
architecture, loss function and training strategy. Experimental results are pro-
vided in Sect. 4, and finally we conclude this work in Sect. 5.

2 Related Work

In this section, we first review the recent generative adversarial network and its
implementation in adversarial examples, and then survey the advance speech
adversarial examples generation task.

2.1 Generative Adversarial Network

The generative adversarial network (GAN) was first proposed by Goodfellow et
al. [6]. The most significant idea of GAN is to establish a game between two net-
works, i.e., the generator and discriminator network. After sufficient training, the
generator obtains the ability to generate the samples whose distribution resem-
bles to the training data. Mirza et al. [15] introduced the conditional version of
GAN (CGAN). The critical point of CGAN is introducing the label information
into generator, which could generate samples conditioned on label. CGAN has
achieved tremendous success in many computer vision tasks such as conditional
image generation [17], image-to-image translation [9], and text-to-image synthe-
sis [20]. Compared with the extensive study of GAN in the image domain, there
are far less works in the speech domain. Pascual et al. [18] devised a generative
adversarial network for speech enhanced task, which could remove noise from the
raw speech input and obtain more clear speech clip. Recently, GAN is treated
as a kind of adversarial examples generation method. For examples, Hu et al.
[8] proposed to use GAN to generate adversarial malware examples, which could
bypass the detection systems. Xiao [24] et al. used GAN to generate realistic
adversarial image examples, which could learn the latent adversarial representa-
tion that deceives the victim model. Wang et al. [22] proposed to use GAN to
generate adversarial examples, but they need to train a model for each target,
which is lower-efficient in adversarial examples generation.

2.2 Speech Adversarial Example

Recently, adversarial examples attack in the speech domain has arouse attention
of researchers. Carlini et al. [2] utilized the fast gradient sign method (FGSM)
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to generate speech adversarial perturbation. The results have illustrated that
the generated adversarial examples can successfully degrade the performance of
speech recognition network. Alzantot et al. [1] proposed to utilize the genetic
algorithm to search adversarial examples from a set of candidate population.
The sought adversarial example was successfully misclassified to the assigned
class. Inspired by [1], Du et al. [5] proposed a particle swarm optimization-
based method to seek speech adversarial examples. These two methods involve
solving a complicated optimization problem with several heuristic tricks. How-
ever, the computational cost of the above optimization-based methods is quite
heavy. Recently, Xie et al. [26] proposed to utilize U-Net-based model with tar-
get class embedding to generate adversarial perturbation. Unlike the aforemen-
tioned approaches, our proposed framework implants the target network to a
conditional generative adversarial network, and uses the gradient information
feedback by the target network to guide the training of the generator. Once
completing the training, the generator can efficiently generate perturbation for
a given speech and target label.

3 Adversarial Examples Generation with GAN

In this section, we first propose the problem formulation and target label embed-
ding. Then the network architecture of our proposed method is presented. Fol-
lowing that, the loss function is thoroughly discussed, and finally the training
strategy is provided.

3.1 Problem Formulation

Let X be the original speech waveform space, and Y be the ground-truth label
space. A well-trained keyword spotting (KWS) classification network f(·), which
is expected to receive a speech sample clip x ∈ X , and output its corresponding
category y ∈ Y, i.e., f(x) = y. Given such KWS classification network f(·), an
input speech sample x, and a pre-specified target category yt �= y, the goal of
our targeted speech adversarial example generation scheme have two-folds. First,
we would like to generate a speech adversarial example x′ that could effectively
deceive the given KWS classification network, i.e.,

f(x′) = yt, where yt �= y. (1)

Second, the generated adversarial example x′ should be similar to the original
sample x in terms of human auditory perception. That is, the common listener
cannot tell the different between x and x′ when listening to them.

More formally, to realize the aforementioned two goals, we aim to find a
tiny additive perturbation δ such that x′ = x + δ. Under this formulation, the
adversarial example generation algorithm can be expressed as the following opti-
mization problem

δ∗ = arg min
δ

�(f(x + δ), yt) (2)

s.t.: yt �= y, and ‖δ‖ < ε. (3)
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Fig. 1. The overview of the proposed framework.

where �(·) is the loss function to evaluate the classification accuracy, if and only
if f(x′) = yt it reaches the minima. Here ‖·‖ is the similarity metrics �2, and ε
denotes the maximum perturbation magnitude.

3.2 Target Label Embedding

Inspired by the conditional generative adversarial network [4,12], we design a
target label embedding. In order to motivate the generator to learn the target
class information, we propose to using the k-class label embedding method.
That method is used to ensure that a single trained model could be re-used
for attacking against various of target classes instead of single-specific design.
Formally, the embedding feature map of class-aware target label can be expressed
as following

ξ = {E1, E2, ..., Ek} . (4)

where ξ is the embedded feature map, and Ek represents the embedding fea-
ture map of class k. ξ is designed to be trainable, each of them corresponds
to one specific target class. Given an arbitrary target class yt, the target label
feature map Et is extracted through target label embedding. The feature map
is concatenated with the speech signal to form the input of model.

3.3 Framework Overview

Figure 1 illustrates the overview architecture of the proposed framework. In gen-
eral, our framework is mainly composed of three components: a generator G, a
discriminator D and the target KWS classification network f . This is a com-
petitive learning among three parties: generator G, discriminator D and KWS
classification network f , where the KWS part is fixed. The crucial parts of our
method is to utilize the target label embedding and the conditional generative
adversarial network (CGAN) to generate adversarial example. The goal of the
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GAN components is to learn the latent representation to deceive the target
model, under small perturbation constraint. Mathematically, the original speech
x and specific target label embedding ξ is fed into generator and its output
G(x, ξ) as the adversarial perturbation, which can be formulated as

x′ = x + G(x, ξ). (5)

Then, x′ is fed into the discriminator D and the target model f , respectively. The
function of discriminator D is to distinguish the generated adversarial examples
from the benign ones, forcing the generator G to produce the perturbation that
is indistinguishable to the discriminator. The target classifier f is involved to
guide the generator to craft generated examples that would be misclassified to
a pre-specified target label.

3.4 Loss Function

To train a generator that misleads the KWS classification network to misclassify
adversarial examples to a specified target, the loss is a critical point to ensure
the training process. In general, there are two networks, i.e., generator G(·) and
discriminator D(·), to be trained. Each network shall be trained with a well
designed loss function. More specifically, for the generator, we define its loss
function as

LG = Ladv + αLf + βL2, (6)

where Ladv is the loss to denote the fooling capability of generator on the discrim-
inator; Lf is the adversarial loss, representing the attacking ability of generator
on the target classifier; The last term L2 is �2-norm loss of the adversarial per-
turbation, which is adopted here to expect an acceptable auditory quality of
speech adversarial example. The parameters α and β are the weights to bal-
ance the importance among the three loss terms. We will give the more detailed
explanation on each term in (6) as follows

Adversarial Loss Ladv: To encourage the generator to seek an appropriate per-
turbation that misleads the classification of discriminator, the generator receives
the feedback of discriminator to enhance its fooling ability consistently. To this
end, the adversarial loss is designed as follows

Ladv = Ex[log(1 − D(x′))], (7)

where Ex[·] denotes the exception operator over the training data. It can be seen
that minimizing Ladv is equivalent to maximizing the classification probability
D(x′) towards to 1. This essentially guides the constructed adversarial example
to mimic the legitimate speech data distribution.

Target Classifier Loss Lf : One primary goal of the generator is to deceive
the target KWS classification network. Then the classifier loss Lf of target net-
work shall measure the distance between the targeted label with the classifier
prediction of the adversarial example. Mathematically, we have

Lf = Ex[�ce(f(x′, yt))], (8)
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where yt is the specific target label of an adversary, x′ is the constructed adver-
sarial examples, and �ce(·) denotes the cross-entropy loss function that commonly
used in multiple classification tasks. As one can see, the loss Lf encourages the
constructed adversarial speech examples are classified to the target label yt.

Perturbation Constrain Loss L2: The goal of L2 is to bound the magnitude
of perturbation, that is to say it can ensure the auditory quality of constructed
adversarial examples. To make adversarial examples as similar as the original
one, we shall �2-norm to bound the magnitude of the adversarial perturbation,
i.e.,

L2 = ‖x′ − x‖2. (9)

This loss function could control the total magnitude of the perturbation, avoiding
the perturbation exceed the normal range. That is, the perturbation magnitude
should keep smaller when training the generator.

For the discriminator, its goal is to distinguish the generated adversarial
examples(fake) from the legitimate ones(true). We adopt the following loss func-
tion

LD =
1
2

(Ex [log(1 − D(x))] + Ex [log(D(x′))]) , (10)

where D(x′) ∈ [0, 1] denotes the probability that the adversarial example is
classified as true by the discriminator D. Note that this loss function for dis-
criminator is similar to the one used in LSGAN [13], in which could make the
GAN training procedure more stable.

Finally, by combining the loss function for generator (LG) and discriminator
(LD), we can acquire the generator by solving the following min-max optimiza-
tion problem

G� = arg min
G

max
D

(LG + LD) , (11)

where G� is a well-trained generator. Once training completed, one can effi-
ciently generate the adversarial for the given input and arbitrary target with G�.
However, training (11) is not a trivial task. In the next section, we discuss the
training strategy that deliberately designed for the targeted adversarial examples
generation task.

3.5 Training Strategy

During the training phase, the generator and discriminator are trained in an
alternating way, i.e., when training the generator, the discriminator is fixed and
vice versa. It is also worth pointing out that the network parameters of the
target network are fixed during the entire training stage. That is, the KWS
classification network prediction errors can be backpropagated via gradients to
the generator G, but the weights of the target network itself is not updated.
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4 Experimental Result

In this section, we first introduce the dataset and experimental setting that are
used throughout the experiments. Then, a number of state-of-the-art KWS clas-
sification networks is implemented, and retreat as our victim models. Following
that, the perceptual quality of the generated adversarial example is evaluated.
Finally, the robustness of the generated adversarial examples is discussed.

4.1 Experimental Settings

Dataset. Our experiments are conducted on the following datasets: the Google
single-word speech command dataset SpeechCmd [23]. The SpeechCmd consists
of 65000 audio files of 30 single words. Each word file is a one-second speech
clip of a single word, the following ten classes are selected as our dataset: “yes”,
“no”, “up”, “down”, “left”, “right”, “on”, “off”, “stop”, and “go”. We split it
into a training set, a validation set and a test set in the ratio 80%: 10%: 10%.
Experimental results are all based on the test set. As practiced in previous work
[18], the input of model is preprocessing with normalized into [−1, 1]. The α is
set to 1, β is set to 100.

Evaluation Metric. The mainly performance metric of adversarial attack
against to KWS classification network is the attack success rate (success rate) of
the generated adversarial examples, which can be expressed as

success rate =
#{misclassified samples}

#{test samples} , (12)

where #{·} returns the cardinality of the input set.
SNR is commonly used to evaluate the quality of generated adversarial speech

in previous works [5,27]. Therefore, we use SNR to evaluate the audio quality of
generated adversarial examples. SNR is calculated as follows

SNR(x′) = 10 · log10
Px

Pδ
, (13)

where x′, x are the adversarial example and the geniue speech, respectively; δ is
the generated perturbation noise. Px and Pδ denote the energies of the intrinsic
speech signal and the perturbation noise, respectively. Specifically, a large SNR
value indicates a small noise scale.

4.2 Attacking to the Network-Based KWS Classifiers

The attacking is assumed implemented under the white-box scenario, where
an adversary can utilize the gradient of the target network for attacks. More
specifically, in the forward propagation phase of the entire training procedure,
for each batch of input speech data x, we random select batch target class yt,
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Fig. 2. The confusion matrix of the success rate for the ResNet18-based KWS classi-
fication network [7] on the SpeechCmd dataset. Our targeted attack enforces a given
speech that originally belongs to the source label misclassified as the target label. The
diagonal entries are all set as zeros because they indicate the source equals target,
which is a correct classification rather than an intended attack.

and fetch the corresponding embedding feature map ξ. The selected feature maps
are concatenated to the raw speech signal as input feed to generator G to form
perturbation Gt(x, ξ). Then, the constructed adversarial examples are fed into
the target network to compute the loss between the output and the batch of the
target label. The network parameters of the generator are then updated with the
gradient information that back-propagated from the loss. Finally, we can obtain
a well-trained model to realized the targeted attack on a KWS classification
network.

The attacking experiments are conducted on four state-of-the-art KWS clas-
sification networks: WideResNet [28], VGG19 [21], ResNet18 [7], ResNeXt [25].
These are well known for their good classification performance in the Tensor-
flow Speech Recognition Challenge1. Therefore, we modify them to adapt the
spectrogram input.

In attacking specific a target network, we generate the adversarial examples
for ten targets label with the trained generator over test dataset. Figure 2 illus-
trates the attack success rate results for the ResNet18 [7], which is presented
in the form of confusion matrix. Note that, the diagonal values of the confusion
matrix are all intentionally set are zero. This is because diagonal entry indicates
the source equals target, which is a correct classification rather than an intended
attack. As shown in Fig. 2 the success rate of our method against the ResNet18
network generally larger than 94%(the average success rate is 94.81%). In other

1 https://www.kaggle.com/c/tensorflow-speech-recognition-challenge.

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
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Fig. 3. The bot-plot of the success rate for the four KWS classification networks on
the SpeechCmd dataset.

words, the average classification accuracy of the target KWS network on gen-
erated adversarial examples is about 5.19%, which means that our generated
adversarial examples could nearly paralyze the ResNet18-based KWS classifier.
Take the target attack “yes” → “left” as an example. Our generated adversarial
examples which sound like “yes” could be misclassified as the opposite “left”
by ResNet18-based KWS classifier of high confidence 99.22%. This could cause
high security risks for some critical KWS classifiers, e.g., the KWS equipped in
the smartphone. With more carefully examination, one can notice that, on one
hand, the success rate of the target “left” and “go” are all exceeding 96% (the
average success rate’s for “no”, “up”, are 97.17%, 96.77%, respectively). This
implies that these particular words are more prone to be as the targets when
attacking the ResNet18-based KWS classifier. On the other hand, when the
source words are “no”, “up”, “left” and “stop”, the average attack success rate
are 96.65%, 96.81%, 96.05% and 96.52%, all exceeding 96%. This phenomenon
suggests that these words would be much easier to be deceived, which many
guide the adversary to exploit such vulnerable words when implementing an
attack. Similar observations can also be made in another victim model. In short
summary, the success rate results verify that our method can effectively attack
the target network-based KWS classifier.

To better illustrate the results, we further present a boxplot to show the
attack success rate, against the different model. The comparison results are
shown in Fig. 3. From the boxplot in Fig. 3, on the one hand, we can observe that
the median of success rate of WideResNet, VGG19, ResNet18 and ResNeXt are
all exceeding 94% (94.74%, 94.79%, 95.71% and 94.85%, respectively). In the
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other hand, the outlier points are few with the value are all exceed 80%. The
results suggest that our method could successful attack different KWS classifier.

Table 1. Comparison the proposed method with Alzantot et al. [1] and SirenAttack
[5] on WideResNet [28], VGG19 [21], ResNet18 [7], ResNeXt [25]

Model/Method Accuracy Alzantot [1] SirenAttack [5] Proposed

success rate SNR(dB) Time(s) success rate SNR(dB) Time(s) success rate SNR(dB) Time(s)

WideResNet 94.49% 83.27% 14.51 37.28 89.25% 17.57 368.29 94.04% 18.77 0.008

VGG19 91.35% 81.39% 13.53 34.81 88.10% 18.22 332.26 93.01% 18.54 0.006

ResNet18 92.13% 80.25% 13.72 44.35 87.35% 15.87 340.31 94.81% 18.25 0.008

ResNeXt 93.57% 86.14% 14.85 33.87 90.05% 17.03 317.92 94.52% 18.85 0.007

Fig. 4. The comparison of the SNR for four KWS classification network on the
SpeechCmd dataset.

Furthermore, we compare the proposed method with two recently state-of-
the-art works, Alzantot et al. [1] and SireAttack [5], against four target models
on SpeechCmd. The comparison results are listed in Table 1, from which one can
observe that our method generally achieves superior performance. For instance,
when attacking ResNet18, the average success rate for [1] is 80.25% with average
SNR 13.72 dB, and the average time for generating an adversarial speech clip is
44.35 s; The average success rate for [5] is 87.35% with average SNR 15.87 dB,
and the average time for generating an adversarial speech clip is 340.31 s. For
comparison, our proposed method yields attack success rate with 94.81% with
average SNR 18.25 dB, but only takes 0.0008 s for generating an adversarial
example on average.

4.3 Quality Evaluation of the Generated Adversarial Examples

We compute the average SNR values between the original sample with the gener-
ated adversarial example for each target. The results are shown in Fig. 4. Specif-
ically, the highest average SNR is 18.85 dB for ResNeXt. As illustrated in Fig. 4,
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when the target model is ResNeXt, the SNR value of generated adversarial
examples is the highest. Further analysis with Table 1, the adversarial examples
with lower SNR value could achieve higher success rate and well transferability,
for example, adversarial examples generated by generator trained on ResNet18
could achieve higher success rate (94.81%) with the lowest SNR among four vic-
tim models.

Fig. 5. Confusion matrix of the attack success rate of transferability among different
victim models.

4.4 Transferability of Generated Adversarial Example

Finally, we assess whether the generated adversarial examples against one spe-
cific network can fool another networks. We use the adversarial examples gen-
erated in Sect. 4.2. For example, we choose the ResNet18 network as our tar-
get network, let another three networks WideResNet, ResNeXt, VGG19 as the
unknown networks. Adversarial examples generated by ResNet18 are used to
attack another three networks. The comprehensive results are listed in Fig. 5. As
shown in Fig. 5, we can achieve success rate with the result that min 23.61%, max
77.72%, average 40.19%. Take the “ResNet18” → “VGG19” network as exam-
ple. Adversarial examples generated by the trained generator on ResNet18 to
attack the “VGG19” with 77.72% average success rate, which means the 77.72%
of adversarial examples generated by ResNet18 can deceive the VGG19. Fur-
thermore, adversarial example with the highest capacity of transferability is
generated by the generator trained with ResNet18, for which these adversarial
examples have lower SNR value that indicates more perturbation is introduced.
Moreover, from Fig. 5 we can see, the average success rate of adversarial exam-
ples generated with the generator trained with WideResNet is 28.05%, which
means these adversarial examples have the worse transferability. In contrast,
the WideResNet is most robust against adversarial examples generated by the
generator trained with other models.
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5 Conclusion

In this work, we utilize the conditional adversarial generative network to gen-
erate speech adversarial examples. More specifically, we first presented a target
label embedding that could map the target label to feature map. Combined with
generative adversarial networks, one could generate speech adversarial examples
with the specific target label, which could successfully paralyze network-based
KWS classification networks. Our proposed method integrates the target net-
work into generative adversarial network framework. Once completing the train-
ing, the well-trained generator could efficiently generate adversarial samples for
the arbitrary specific target. Experiments demonstrate the transferability of the
generated adversarial examples among the different state-of-the-art classification
networks.
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Abstract. Since the emergence of adversarial examples brings great
security threat to deep neural network which is widely used in various
fields, their forensics become very important. In this paper, a lightweight
model for the forensics of adversarial example based on DCT-like domain
is proposed. The DCT-like layer realizes the block conversion of data
from the spatial domain to the frequency domain. Together with the
color space transformation layer and the residual layer, the DCT-like
layer realizes the simulation of JPEG quantization error. The feature
statistical layer is used to obtain the statistical feature values of the fea-
ture map output by the frequency-division convolution, and at the same
time, it also contains learnable hyperparameters. The group BN strategy
ensures the effectiveness of the DCT-like layer and the feature statistical
layer and promotes the accuracy of forensics. Experiments show that the
proposed model not only reaches the highest accuracy we know, but also
it only needs to train for one epoch to get a high-performance.

Keywords: Deep neural network · Adversarial example · Forensics

1 Introduction

Due to the good performance of the convolutional neural networks (CNNs) across
fields, it is widely used in various multimedia fields, including image recognition
[8], semantic segmentation [5], video processing [1], and so on. However, the
discovery of adversarial examples [20] exposes the vulnerability of neural net-
works. As long as a small disturbance that human vision cannot detect is added

This work was jointly supported by the National Natural Science Foundation of
China (Grant No. 61772281, 61702235, 62072250, U1636117, and U1636219), in
part by the National Key R&D Program of China(Grant No. 2016YFB0801303 and
2016QY01W0105), in part by the plan for Scientific Talent of Henan Province (Grant
No.2018JR0018), in part by Postgraduate Research & Practice Innovation Program
of Jiangsu Province (Grant No. KYCX20 0974) and the Priority Academic Program
Development of Jiangsu Higher Education Institutions (PAPD) fund.

c© Springer Nature Switzerland AG 2021
X. Zhao et al. (Eds.): IWDW 2020, LNCS 12617, pp. 265–279, 2021.
https://doi.org/10.1007/978-3-030-69449-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69449-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-69449-4_20


266 J. Zhao and J. Wang

to the sample to be tested, the convolutional neural network can draw com-
pletely wrong conclusions. With the iterative upgrade of the adversarial meth-
ods [10,15], a large number of adversarial examples continue to emerge. Since
traditional forensics methods are powerless in the face of massive data, a rapid
forensics scheme against adversarial examples needs urgently to be proposed.

At present, the forensics methods of adversarial examples are divided into
traditional manual feature extraction methods and CNN-based detection meth-
ods. Most of the existing detection schemes are based on the former, which is
possibly related to the risk of a secondary attack of the detection models based
on CNNs. Grosse et al. [7] found that the difference of the maximum value,
average value, and energy distribution between the examples can be used to
detect adversarial examples. Li and Li [11] proposed a detection method that
uses SVM to classify classifier-level features. This method directly obtains the
output feature maps of each convolutional layer of the original classifier and
sends the statistical features of them to the SVM for classification. Liu et al. [13]
used a set of steganographic analysis methods and proposed an enhanced version
of SRM (ERSM) based on the spatial domain rich model (SRM) [4] to achieve
high accuracy of the detection of adversarial examples. Their work reveals sim-
ilarities between the forensics of adversarial examples and steganalysis. In these
methods, the process of classification is separated from the process of feature
extraction, and end-to-end forensics cannot be realized. Besides, the statistical
values of examples play a fundamental role in all of these methods. This has
a great similarity with other image forensics fields, such as JPEG recompres-
sion forensics [22] and photograph (PG) and computer-generated (CG) images
forensics [16,21].

Carrara et al. [3] proposed a typical detection scheme based on the CNN
model. They extracted the neuron output of fully connected layer of the original
classifier, and a long short-term memory (LSTM) [19] model is used to detect
adversarial examples. This method relies on the results of the inner layer of the
original model and cannot achieve end-to-end forensics, too.

Our experiments show that when the errors generated during the JPEG
compression process, including conversion errors, quantization errors, trunca-
tion errors, and rounding errors [22], are sent to the neural network for training,
a good forensic result can be obtained. Among these errors, the values of quanti-
zation errors are usually the largest and occupy the most important part of the
effective features. Also, the effectiveness of steganalysis methods proves the fea-
sibility of frequency domain forensics. Inspired by these phenomena, we designed
a lightweight adversarial examples forensics model based on DCT-like domain,
which mainly contains the following innovations:

– The convolution layer is used to simulate the block Discrete Cosine Trans-
formation (DCT) to optimize the transformation coefficient along with the
gradient update and transform the image from the spatial domain to a new
DCT-like domain, which is more suitable for forensics. At the same time,
the transformation process from RBG color space to YCbCr space is sim-
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Fig. 1. The Proposed Model. The image in the upper left corner denotes the example
to be determined. The final output “Na” and “Ad” represent natural examples and
adversarial examples.

ulated, and the Chroma Green (Cg) channel is extended to obtain better
performance.

– A feature statistical layer is proposed to directly obtain the maximum, vari-
ance, skewness, and other statistical values of the feature maps output from
convolutional layers, and these values become effective for forensics under the
effect of group regularization. According to the type of feature, the parameters
are adopted to give the feature statistical layer learning ability.

– The Remainder layer is constructed to enlarge the difference between sample
classes. The combination of the residual layer, DCT-like layer, and IDCT-like
layer is taken to simulate the quantization error in the JPEG compression
process, and the amplification of feature difference expands the room for
accuracy improvement.

The rest of this paper is as follows: In Sect. 2, the proposed model is elabo-
rated, including DCT-like layer, Remainder layer, Color Space Transformation,
Feature Statistical layer and Group BN Strategy. In Sect. 3, experiments are
conducted. And in Sect. 4, we conclude.

2 The Proposed Method

The overall structure of the forensics model proposed in this paper is shown in
Fig. 1. It includes color space conversion layer, DCT-like layer, remainder layer,
frequency division convolutional layer, feature statistical layer, full connection
layer, etc.
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2.1 Quantization Error and DCNN

During JPEG compression, the image is Transformed in 8× 8 small blocks. The
Discrete Cosine Transformation (DCT) can be expressed by matrix multiplica-
tion. In this paper, × means matrix multiplication, and · means the multipli-
cation of corresponding elements in the matrixes. Let X represent the input
sample, MDCT represent the DCT matrix, and the transformation process can
be represented by Eq. 1.

XDCT = Flatten(X) × MDCT (1)

In Eq. 1, Flatten() means to divide X into small blocks of size 8 × 8 and
flatten the elements in each small block into one-dimensional form. Let SDCT ()
denote Block DCT, SIDCT () denote Block Inverse DCT (IDCT), and MQ

denote the quantization table of JPEG compression. Let round() represent the
rounding function, then the quantization error ERRQ generated during the
JPEG compression process can be expressed by Eq. 2.

ERRQ = X − SIDCT (round(
SDCT (X)

MQ
) · MQ ) (2)

floor(SDCT (X)/MQ ) = SDCT (X)/MQ − SDCT (X)%MQ (3)

ERRQ = X − SIDCT ((SDCT (X)/MQ − SDCT (X)%MQ ) · MQ )
= SIDCT (SDCT (X) − (SDCT (X)/MQ − SDCT (X)%MQ ) · MQ

= SIDCT (SDCT (X) − SDCT (X) + SDCT (X)%MQ · MQ )
= SIDCT (SDCT (X)%MQ · MQ )

(4)
ERRQ = ConvIDCT (Remainder(ConvDCT (X)/MQ ) · MQ ) (5)

In this paper, round() in Eq. 2 is rounding down operation. Let floor() repre-
sent this operation, and % denotes the remainder symbol. Then Eq. 3 is gotten.
Replace the round(SDCT (X)/MQ ) in Eq. 2 with the right half of Eq. 3, then
Eq. 4 is gotten.

Assuming that convolutional layer ConvIDCT and ConvDCT are used
to simulate SIDCT () and SDCT () respectively, and the remainder layer,
Remainder(), is used to simulate %. Substitute them into Eq. 4, then Eq. 5
could be obtained.

Equation 5 shows that by constructing ConvIDCT, ConvDCT, and Remain-
der in the DCNN, the quantization error can be easily obtained using the neural
network.

2.2 DCT-Like Layer

In the DCT process of JPEG-compression, the input example X is divided into
small blocks with a size of 8 × 8, and then each block is flattened into a one-
dimensional vector. Using Width and Height to express the original image width
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and height. After partitioning, X became a three-dimensional matrix with the
shape of (Width/8)×(Height/8)×64, which is represented by Mblock . MDCT is
a 64×64 matrix. By post-multiplying each column vector of MDCT by Mblock ,
the element with the same frequency of all the blocks can be obtained. Let Coln
represent the nth column of the MDCT , and Rowm is the mth small block in
the Mblock (m,n ∈ [1, 2, · · · , 64]). The process of right-multiplying Mblock with
MDCT is shown in Eq. 6, which is the same as the process of the convolution
operation. The window sliding of the convolution process ensures that each block
in the Mblock is traversed.

Mblock × MDCT

=

⎡
⎢⎢⎣
Row1 × Col1 Row1 × Col64

. . .

Row64 × Col1 Row64 × Col64

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

64∑
i=1

Row1i × Col1i

64∑
i=1

Row1i × Col64i

. . .
64∑
i=1

Row64i × Col1i

64∑
i=1

Row64i × Col64i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

In Eq. 6, Rowmi and Colni represent the ith element in Row and Col, respec-
tively. This means that if each column of MDCT is used to initialize the weight
of an 8 × 8 convolution kernel respectively, and the stride of convolution is set
to 8, then XDCT can be obtained through convolution. ConvDCT is used to
represent the convolutional layer above, so XDCT could be computed by Eq. 7.

XDCT = SDCT (X) = ConvDCT (X) (7)

Similarly, the convolutional layer ConvIDCT can be used to achieve IDCT
of small blocks. XIDCT is used to represent the result of IDCT of blocks, and
Eq. 8 is gotten.

XIDCT = SIDCT (X) = ConvIDCT (X) (8)

Since DCT and IDCT are inverse transforms to each other, ConvDCT and
ConvIDCT are also inverses into each other. In other words, they satisfy Eq. 9.

X = ConvIDCT (ConvDCT (X)) (9)

Experiments show that the high forensics precision of adversarial examples
can be achieved without transforming back to the spatial domain behind the
Remainder layer. Therefore, in the proposed method of this paper, we only use
the ConvDCT layer.
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The weight of the convolution kernels of the ConvDCT layer will be updated.
This means that as the training progresses, the input example X will gradually
deviate from the DCT domain, and it will be transferred to a DCT-like domain
that is more conducive to forensics. Besides, each convolution kernel also contains
a trainable bias.

2.3 Remainder Layer

In the experiment of using JPEG compression error to detect adversarial exam-
ples, we find that the error generated by JPEG compression with a quality factor
of 100 is the most effective. This means that each element of MQ in Eq. 4 is 1.
However, MQ of JPEG compression has a fixed numerical range and is not
specifically customized for forensics. In other words, MQ with each element of
1 is not the best choice and it needs to be optimized with the training of the
network.

It is noteworthy that the transformation domain images obtained with the
ConvDCT layer include 64 feature graphs (Width/8)×(Height/8), each of which
is composed of the same frequency parts of all the 8 × 8 blocks. In other words,
when example X is feed to the ConvDCT layer, a matrix with the shape of
64 × 8 × 8 will be gotten. A matrix with a shape of 64 × 8 × 8 is initialized to 1,
and it is registered as an updatable parameter. Each 8 × 8 submatrix is given a
bias, then the Remainder layer is constructed.

2.4 Color Space Transformation

For color images, JPEG compression is performed in YCbCr space. Experiments
show that forensics in the YCbCr color space is also better than RGB space.
Let XRBG denote samples in the RBG color space, and XY CbCr to represent
samples in the YCbCr color space. The process of color space transformation is
very simple and can be expressed by Eq. 10.

XY CbCr =

⎡
⎢⎣

0.299 0.587 0.114
− 0.169 − 0.331 0.500

0.500 − 0.419 − 0.081

⎤
⎥⎦ · XRGB

+ [ 0 128 128 ] T

(10)

The Cg channel of X is represented by XCg . It can be calculated by Eq. 11.

XCg = [−0.362 0.500 − 0.138] · XRGB + 128 (11)

The process of Eq. 10 and Eq. 11 can be simulated by four convolution kernels
with a shape of 1 × 1 × 3, and the bias can be simulated with the bias of the
convolution kernel to achieve good results. This layer is called the color space
conversion layer and is expressed by the ConvTran Layer, then Eq. 12 is gotten.

XY CbCr = ConvTran(XRGB ) (12)
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Similar to the ConvDCT and ConvIDCT layers, as the training process pro-
gresses, the weight value of ConvTran will gradually deviate from the value in
Eq. 10. At the same time, XY CbCr will no longer be an image of YCbCr color
space strictly, but gradually enter another color space which is more suitable for
forensics.

2.5 Feature Statistical Layer

The emergence of the global pooling layer [12] has brought many benefits to the
neural network, such as reducing the number of network parameters, speeding
up the training speed, and reducing the phenomenon of overfitting. The global
pooling layer is usually divided into a global maximum pooling layer and a global
average pooling layer, and their role is usually understood as downsampling.
From the perspective of forensics, the maximum and average of the feature maps
are statistical features. In this paper, the global pooling layer is expanded to
obtain the statistical values such as variance, minimum, skewness, and kurtosis
of the feature map. Then a new layer—Feature Statistical Layer—is gotten. The
operation of the feature statistical layer on the data is shown in Fig. 2.

max min mean var skew

statistical

w1 w2 w3 w4 w5

max min mean var skewbias  +
output

Fig. 2. Feature statistical layer. The colored parallelograms on the left represent the
feature maps output by the convolution layer, and the colored squares on the right
represent the feature values calculated on these feature maps. The colored rectangle at
the bottom represents the one-dimensional vector formed by multiplying the features
by the corresponding weights. (Color figure online)

In Fig. 2, w1 − w5 represents the weights of maximum, minimum, mean,
variance, and skewness respectively. In the experiment, the validity of these five
features has been verified. And bias is a bias term. After obtaining the statistical
values of the feature maps, they are multiplied by the corresponding weights
according to the feature type. Then, these features will be flattened into a one-
dimensional vector. Finally, a bias is added to all of the features to obtain the
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final output. Outfs is the output of the feature statistical layer. max(), min(),
mean(), var(), and skew() are used to calculate the maximum, minimum, mean,
variance, and skewness respectively.

2.6 Group BN Strategy

The ConvDCT layer outputs 64 feature maps with the shape of (Width/8) ×
(Height/8), corresponding to 64 different frequencies. However, the numerical
ranges of different frequencies are quite different. This difference spans several
orders of magnitude, and it severely hinders the increase of the forensics accuracy.

A similar problem also appears in the feature statistical layer. After acquiring
various types of feature values, there are also huge differences in the numerical
ranges of different features. Relying only on their corresponding weights to bal-
ance this difference will be a slow process, and may even lead to non-convergence
of the network, ultimately wasting a lot of computing resources.

These two differences are both generated between different types. To solve
this kind of problem, we adopt the strategy of grouping Batch Normalization
(BN [9]) layers. In the ConvDCT layer, the feature maps correspond to a set of
64 BN layers divided by frequencies. In the feature statistical layer, we adopt
five independent BN layers corresponding to five types of features: maximum,
minimum, mean, variance, and skewness. This solution is called a Group BN
Strategy. Both the ConvDCT layer and the feature statistical layer mentioned
above contain an additional Group BN Strategy.

3 Experimental Results

3.1 Experiment Introduction

The data set used in this paper is based on the ImageNet2012 data set [17]. First,
we randomly selected 40,000 images from the ImageNet2012 dataset. 25,000 of
these images were put into the training set, 5,000 into the validation set, and
10,000 into the test set. Next, we used FGSM [6], Deepfool [14], and C&W
methods [2] to generate adversarial examples for these images on VGG16 [18],
respectively. FGSM includes versions with disturbance coefficients of 2, 4, 6 and
8. In this way, a total of 6 child data sets are generated, each of which contains
50,000 examples for training, 10,000 examples for validation and 20,000 examples
for the test. All experiments in this paper run on an Nvidia RTX 2080Ti Graphics
Processing Unit (GPU).

3.2 Performance Evaluation

Model Efficiency. As mentioned above, the proposed method is a lightweight
forensics model. This is not only because the training time for one epoch of the
model is short, but also because the number of epochs required for training is
small. Usually, one epoch of training is able to achieve the desired results. The
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accuracy and loss curves during the training on the C&W data set are shown in
Fig. 3.

It can be seen from Fig. 3 (b) that the over-fitting phenomenon has occurred
after the eighth epoch of the training process. At the same time, Fig. 3 (a) shows
that the accuracy has also reached its maximum in the eighth epoch. At this
time, the accuracy on the validation set is 95.18%. The learning rate of all the
training processes in Fig. 3 is 0.0001. In order to achieve high accuracy with
only one training epoch, we made a slight adjustment to the learning rate. The
learning rate on the C&W dataset is set to 0.00095. The accuracy of each data
set is shown in Table 1.

Table 1. Accuracies on Different Data Set

Attack method FGSM(ε = 2) FGSM(ε = 4) Deepfool C&W

acc(1) 99.16% 99.66% 98.54% 93.46%

acc(max) 99.64% 99.93% 99.31% 95.02%

In Table 1, acc(1) is the accuracy of only one period of training, and acc(max)
represents the maximum accuracy achieved. By comparing the data of acc(1)
and acc(max), it can be found that there is a gap of less than 2% between
the accuracy achieved by only one epoch training and the maximum accuracy
achieved by multi-epoch training. This is an acceptable range. Therefore, in
practical application, the model proposed in this paper only needs one training
epoch.

Module Effectiveness
Effectiveness of Group BN Strategy. The group BN strategy is necessary for the
ConvDCT layer. The network cannot converge without the group BN strategy to
normalize data in the DCT-like domain. After a long time of small fluctuations,
the accuracy is still around 50%.

In the feature statistical layer, group BN strategy are not necessary for most
features that have been adopted. Such features include maximum, mean, min-
imum, and variance. For some features, however, it is still necessary. Such fea-
tures include skewness and kurtosis. In other words, if the feature statistical
layer only includes maximum, mean, minimum and variance, the network can
converge normally without the group BN strategy. Figure 4 shows the network
training situation when these four feature values are used and the group BN
strategy is not included, the four features and the grouping regularization strat-
egy are used, and the network is trained with the skewness and the group BN
strategy. These experiments are performed on the Deepfool data set.

In Fig. 4, comparing the accuracy curves of Fig.(a) and Fig.(b), it can be
found that the group BN strategy not only speeds up the training process but
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(a) Accuracy curve (b) Loss curve

Fig. 3. The training process of the proposed model on the C&W dataset. The train acc
and val acc are the accuracies of the model on the training set and validation set
respectively, and the train loss and val loss are the value of the loss function on the
training set and validation set respectively.

also helps to improve the accuracy. Comparing Fig.(b) and Fig.(c), it can be seen
that skewness is very effective as an independent feature. It plays an important
role to the final accuracy of the network. And it must be used together with the
group BN strategy, so the group BN strategy in the feature statistical layer is
also very important.

Effectiveness of ConvTran and ConvDCT. The comparison of the accuracy of
the network without the ConvTran layer, the network without the ConvDCT
layer, and the network without both is shown in Table 2. Here, only the FGSM
data set with a disturbance coefficient of 2 is adopted.

In Table 2, FGSM(1) represents the accuracy after one epoch of training on
the FGSM data set, and FGSM(max) is the highest accuracy achieved on the
FGSM data set during 10 epochs. The following Deepfool(1), Deepfool(max),
C&W(1), and C&W(max) have similar meanings. Comparing the first and fourth
rows, the YCbCr color space is very important for the ConvDCT layer. It is as
if the YCbCr color space exists specifically for the DCT domain. The data in
the second and third lines indicate that ConvDCT layer is one of the basic
structures of the model proposed in this paper, and it plays the most important
role in the performance of forensic. Without its presence, the neural network is
even completely incapable of detection in some data sets, such as the C&W data
set.

Effectiveness of Feature Statistical Layer. The effectiveness of the feature statis-
tical layer is directly related to the selected features. When we select only one of
the maximum or mean, it is simply a global pooling layer with weights and bias.
In the case that different features are selected by the feature statistical layer, the
accuracy of the network is listed in Table 3. For the convenience of presentation,
Table 3 contains the results of only one training epoch.
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(a) Maximum, mean, minimum, and vari-
ance, without group BN strategy

(b) Maximum, mean, minimum, and vari-
ance, with group BN strategy

(c) Maximum, mean, minimum, variance,
skewness, with group BN strategy

Fig. 4. The accuracy curves of Grouping BN strategy of the feature statistical layer.
The train acc and val acc are the accuracies on the training set and validation set
respectively.

For the comparison with traditional modules, the first and second rows in
Table 3 do not include parameters. In other words, the first row uses the global
maximum pooling layer and the second row uses the global average pooling layer.
Comparing with the following lines, the first two lines have poor forensic effect.
This shows that the feature statistical layer is superior to the global pooling layer,
and the forensics ability of a single feature is limited for adversarial examples.
The following rows of data prove the effectiveness of the combined features. The
data in the last row is not significantly improved compared with the second-to-
last row, indicating that the network performance has reached the bottleneck
after the number of features reaches five. It is reasonable to select five features.

3.3 Experiment of Comparison

On the datasets generated by FGSM (ε = 2, 4, 6, 8), Deepfool, and C&W method,
we compare the detection rates of the proposed method, Feature Squeezing [23],
and ESRM [13]. Their accuracies are shown in Table 4.

In Table 4, on FGSM (ε = 2, 4, 8), Deepfool, and C&W data sets, the accu-
racies of the proposed method only trained for one epoch exceeded the final
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Table 2. Effectiveness of ConvTran layer and ConvDCT layer

Attacke method FGSM(1) FGSM(max) Deepfool(1) Deepfool(max) C&W(1) C&W(max)

No ConvTran 96.26% 96.88% 89.44% 91.38% 74.71% 77.53%

No ConvDCT 70.59% 74.67% 55.60% 58.25% 50.58% 51.30%

No Both 60.32% 65.86% 58.88% 60.47% 50.43% 50.93%

Complete 99.16% 99.64% 98.54% 99.07% 93.46% 95.02%

Table 3. Contrast of Different Features

Attack method FGSM(ε = 2) FGSM(ε = 4) FGSM(ε = 6) FGSM(ε = 8) Deepfool C&W

max 96.52% 98.19% 98.96% 99.63% 90.15% 82.38%

mean 96.06% 98.47% 94.61% 99.76% 89.62% 70.60%

max, mean, min 99.34% 99.81% 99.89% 99.93% 98.49% 89.54%

max, mean, var 99.03% 99.89% 99.86% 99.94% 98.60% 93.42%

max, mean, min, var 99.26% 99.62% 99.84% 99.94% 98.62% 91.53%

max, mean, var, skew 99.24% 99.82% 99.85% 99.96% 98.05% 92.97%

all 99.16% 99.66% 99.03% 99.98% 98.54% 93.46%

all, kurt 99.16% 99.87% 99.92% 99.98% 98.12% 93.27%

accuracies of Feature Squeezing and ESRM. On the C&W data set, the highest
accuracy of the proposed method is still greatly improved compared with the
accuracy of the first epoch.

Feature squeezing is essentially an example repair method. Its approach is
to try to erase the adversarial of examples by some traditional signal processing
methods so that the original classifier can recognize correctly. Of course, the dif-
ferent recognitions of the original classifier can be used to detect the adversarial
examples. However, this method makes the detection accuracy directly related
to the amplitude of adversarial perturbations. As shown in Table 4, it performs
well on the C&W datasets. With the increase of perturbation coefficient ε on the
FGSM dataset, its accuracy shows a significant downward trend. We calculated
the adversarial distortions of each dataset, which is shown in Table 5.

The adversarial distortion [20] is a measure of the perturbations of the adver-
sarial examples compared with its corresponding natural examples. Let Xad

represent the adversarial example, and Xna represents the natural example cor-
responding Xad . n is the number of pixels in sample X. The distortion XDis

can be calculated by Eq. 13. The larger the distortion is, the more adversar-
ial noise is added. The distortions in Table 5 are consistent with the detection
accuracies of Feature Squeezing on these data set.

XDis = ||Xad − Xna ||2/
√

n (13)

The ROC curves of the proposed method (training for one epoch), ESRM,
cascade classifier [11], and feature squeezing [23] on the Deepfool dataset are
shown in Fig. 5. The accuracy of the cascade classifier is 79.54%. According to
Table 5 and Fig. 5, except for the method proposed in this paper, ESRM has the
best detection performance on each data set.
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Table 4. Comparison of Accuracies of Different Methods

Attack method Detection method Detection accuracy

FGSM(ε = 2) The Proposed Method(1) 99.16%

The Proposed Method(max) 99.64%

Feature Squeezing [23] 67.45%

ESRM [13] 98.10%

FGSM(ε = 4) The Proposed Method(1) 99.66%

The Proposed Method(max) -

Feature Squeezing [23] 64.64%

ESRM [13] 98.53%

FGSM(ε = 6) The Proposed Method(1) 99.03%

The Proposed Method(max) -

Feature Squeezing [23] 57.60%

ESRM [13] 99.03%

FGSM(ε = 8) The Proposed Method(1) 99.98%

The Proposed Method(max) -

Feature Squeezing [23] 55.85%

ESRM [13] 99.35%

Deepfool The Proposed Method(1) 98.54%

The Proposed Method(max) 99.07%

Feature Squeezing [23] 61.12%

ESRM [13] 95.13%

C&W The Proposed Method(1) 93.46%

The Proposed Method(max) 95.02%

Feature Squeezing [23] 92.09%

ESRM [13] 92.87%

ESRM is a traditional detection scheme, which is based on the traditional
steganalysis method. And is very sensitive to the adversarial distortions. On the
FGSM data set, with the increase of perturbation coefficient ε, its detection per-
formance is significantly improved. At the same time, it does not perform as well
on the Deepfool and C&W datasets. Due to the separation of the feature extrac-
tion process and training process, this detection scheme cannot be supported by
GPU parallel computing acceleration. With high time complexity, the training
process is very long on large data sets. In contrast, the proposed method needs
only one training epoch to achieve the desired effect of the application. On the
data set including 50,000 examples used in this paper, this process takes only
no more than 5 min.

The proposed method uses a powerful DCT-like domain and the feature
statistical layer to achieve high-precision forensics of adversarial examples in a
short time. On the whole, compared with the existing forensics methods, the
proposed program has obvious advantages in training time and forensics effect.
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Table 5. Distortions of Different Dataset

Attack method Distortion

FGSM(ε = 2) 1.99

Deepfool 1.11

C&W 0.86

Fig. 5. ROC Curves of Different Methods

4 Conclusion

In this paper, a lightweight forensics model of adversarial examples based on the
DCT-like domain and the feature statistical layer is proposed. It cleverly com-
bines the quantization error in JPEG compression, manual feature extraction
and deep neural network. Inspired by the quantization error in JPEG compres-
sion, we designed the color space transformation layer and the DCT-like layer
based on the convolutional layer. The feature statistical layer is used to effectively
obtain the feature value in the frequency domain. The experiment demonstrates
the superiority of the proposed model in the forensics of adversarial examples.
In future work, we will explore more features and functions of the DCT-like
domain.
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