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Abstract. Feature selection is an important process of high-dimensional
data analysis in data mining and machine learning. In the feature selec-
tion stage, the cost of misclassification and the structural information of
paired samples on each feature dimension are often ignored. To overcome
this, we propose semi-supervised feature selection based on cost-sensitive
and structural information. First, cost-sensitive learning is incorporated
into the semi-supervised framework. Second, the structural information
between a pair of samples in each feature dimension is encapsulated into
the feature graph. Finally, the correlation between the candidate feature
and the target feature is added, which avoids the misunderstanding of the
feature with low correlation as the salient feature. Furthermore, the pro-
posed method also considers the redundancy between feature pairs, which
can improve the accuracy of feature selection. The proposed method is
more interpretable and practical than previous semi-supervised feature
selection algorithms, because it considers the misclassification cost, struc-
tural relationship and the correlations between features and target fea-
tures. Experimental results show that the promising performance of the
proposed method outperforms the state-of-the-arts on eight data sets.

Keywords: Feature selection · Cost-sensitive · Structural
relationship · Semi-supervised

1 Introduction

Big data has widely appeared in various fields, such as pattern recognition and
machine learning [1,2]. A common problem in data processing is that the data
often contains some unimportant features [3,4], which will increase the calcula-
tion cost and affect the effectiveness of model training [5,6]. Therefore, feature
selection has become one of the important research fields of machine learning in
recent years.

Feature selection is used to delete redundant features for conducting dimen-
sionality reduction [1], which can help model training and reduce the impact of
“dimension disaster” [7]. Depending on the availability of sample labels, feature
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selection is divided into supervised, semi-supervised and unsupervised. Super-
vised feature selection [8] only uses labeled samples to train the model, and takes
the structural relationship between labels and features to choose the important
features, so as to explores the result of feature subset with the highest relevance
to the label. Unsupervised feature selection [9–11] uses unlabeled sample training
model, which selects the most representative features from the original feature
set according to certain evaluation criteria. Semi-supervised feature selection
[12,13] uses a small number of labeled samples and a lot of unlabeled samples to
achieve the optimal feature subset. These types of methods are efficient, because
they can not only mine the global and local structure of all samples, but also uti-
lize the small number of labels that providing category information. Therefore,
this paper focus on research on semi-supervised feature selection.

Various semi-supervised feature selection methods have been proposed
recently. For example, the typical feature selection based on classifier [14] (semi-
supervised support vector machine, S3VM), it uses support vector machine
(SVM) to tag no label samples, and then fused the “soft” label samples for
model training. Zhao and Liu [15] proposed a semi-supervised regularized fea-
ture selection framework based on spectral learning to evaluate the correlation of
features. In addition, Ren et al. [16] proposed a forward semi-supervised feature
selection framework based on wrapper type, which combines forward selection
with wrapper type to obtain the optimal feature subset. Chen et al. [17] combined
the traditional fisher-score method to obtain the global optimal feature subset
by the “soft” label of unlabeled samples with label propagation technology.

However, the existing semi-supervised feature selection methods have some
defects. First, many semi-supervised feature selection researches focus on the
lowest classification error rate without considering the misclassification cost. It
has assumed that different misclassifications owning the equal costs [18], which
may lead the model pays attention to samples which causes high misclassification
losses, resulting in biases in the features selected by the learning model. Second,
some advanced semi-supervised feature selection algorithms do not consider the
structural information of the paired samples in each feature dimension, which can
improve the performance of feature selection [19]. In addition, researchers believe
that the correlation of a single candidate features is equal to the correlation of
selected features, without considering the joint correlation of a pair of features,
which will regard low-relevance features as salient features. Therefore, some low-
correlation features are regarded as salient features.

To solve the above problems, we propose semi-supervised feature selection
based on cost-sensitive and structural information (SF CSSI). The contributions
of this paper are as follows:

– In practical applications, misclassification has always existed, however, the
cost of misclassification is always ignored by researchers. The proposed
method considers the misclassification cost and sets different penalty costs
for different categories samples. In contrast to conventional feature selection
methods, we try to minimize the total cost rather than the total error rate,
aiming to prevent disasters caused by mistakes with high costs.
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– In this paper, the proposed method converts each original feature vector into a
structure-based feature graph representation, which contains structural infor-
mation between sample pairs in each feature dimension, in order to preserve
more meaningful information. Furthermore, the proposed method constructs
feature information matrix to simultaneously maximize joint relevancy of dif-
ferent pairwise feature combinations in relation to the target feature graphs
and minimize redundancy among selected features, so as to obtain feature
subset with high correlation and low redundancy.

– The method proposed in this paper has rarely been studied, because it con-
siders misclassification cost, structural information and information measure-
ment of paired features. Experiments prove that the proposed method in this
paper can achieve better feature selection results on real datasets.

2 Approach

2.1 Notations

In this paper, matrices are written as boldface uppercase letters, vectors are
written as boldface lowercase letters and scalars are written as normal italic
letters. For matrix X, xi,j represents the element in the i-th row and j-th column

of X. The Frobenius norm of matrix X ∈ R
n×d is defined as ‖X‖F =

√∑
i,j x2

i,j
.

The l2,1-norm of matrix X is defined as ‖X‖2,1 =
∑n

i=1

√∑d
j=1 x2

ij
. For vector

x, its l1-norm is defined ‖x‖1 =
∑n

i=1 |xi|. The symbol � denotes multiplication
of corresponding elements and tr (X) represents the trace of matrix X.

In semi-supervised learning, the data set consists of two parts: labeled data
XL = (x1, x2, . . . , xl) and unlabeled data XU = (xl+1, xl+2, . . . , xl+u), u = n− l,
n represents the number of samples, l represents the number of labeled samples,
u represents the number of unlabeled samples. The corresponding labels is YL =
(y1, y2, . . . , yl)

T and the label of YU = (yl+1, yl+2, . . . , yl+u)T is unknown.

2.2 Cost-Sensitive Feature Selection

Given data set X = [x1,x2, · · · ,xn] ∈ R
n×d, n represents the number of sam-

ples, d represents the features of each sample. The traditional feature selection
imposes a sparsity penalty in the objective function, which makes the selected
features more sparse and more discriminative. The objective function of tradi-
tional feature selection [9] is defined as:

min
W

‖Y − XW‖2F + λ‖W‖2,1 (1)

However, cost-sensitive learning is embedded into feature selection frame-
work because the misclassification problem often occurs in practical applications.
Cost-sensitive learning assigns different cost parameters to different types of sam-
ples, without loss of generality, so the specified cost matrix is introduced into
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the feature selection framework. The traditional cost-sensitive feature selection
objective function [20] is defined as:

min
W

∥∥(XTW − Y) � C
∥∥
2,1

+ λ‖W‖2,1, (2)

where W ∈ R
d×m represents the feature weight matrix, Y ∈ R

n×m represents
labels, C ∈ R

n×m represents cost matrix, λ represents the penalty coefficient.

2.3 Feature Selection with Graph Structural Information

The structural information can provide more abundant representation but few
researchers pay attention to these between the features in each pairs of samples.

Therefore, each feature vector is transformed into a feature graph structure,
which encapsulates the pairwise relationship between samples. In addition, the
information theory criterion of Jensen-Shannon divergence is used to measure
the joint correlation between different paired feature combinations and target
labels. The specific process is as follows.

Let X = {f1, . . . ,fi, . . . ,fN} ∈ R
M×N represents a data set of M samples and

N features. Each original feature vector fi = (fi1, . . . ,fia, . . . ,fib, . . . ,fiM )T is
transformed into a feature graph Gi (Vi,Ei), where vertex via ∈ Vi represents
the a-th sample fia in feature fi (i.e., each vertex represents a sample), edge
(via,vib) ∈ Ei represents the weight of the a-th sample and the b-th sample
(i.e., the edge represents the correlation between a pair of samples in the cor-
responding feature dimension). In addition, we also construct a graph struc-
ture for the target feature Y. For classification problems, Y are discrete value
c ∈ {1, 2, . . . ,m}. Therefore, we calculate the continuous value of each discrete

target feature fi as
∧
fi =

( ∧
fi1 , . . . ,

∧
fia , . . . ,

∧
fib , . . . ,

∧
fiM

)T

,
∧

fia represents the

a-th sample in
∧
fi. When the fia in fi belongs to class m,

∧
fia is the mean value

of all class m samples in fi. Similarly, we construct the graph structure of the

target feature
∧
fi as

∧
Gi

(
∧
V i,

∧
Ei

)
.

∧
via ∈

∧
Vi represents the a-th sample in target

feature
∧
fi,

( ∧
via ,

∧
vib

)
∈

∧
Ei is the weighted edge connecting the a-th sample and

the b-th sample of
∧
fi. This paper uses Euclidean distance to calculate the rela-

tionship between pairs of feature samples, that is, the weight of fia and fib can
be expressed as:

ω (via,vib) =
√

(fia − fib)
2 (3)

Similiarly, the weight of edge
( ∧
via ,

∧
vib

)
∈

∧
Ei in

∧
Gi

(
∧
V i,

∧
Ei

)
is expressed as

follows:
ω

( ∧
via,

∧
vib

)
=

√
(μia − μib)

2
, (4)

where μia is the mean value of all samples in fi from the same class m.
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Jensen Shannon divergence (JSD) is used to measure the divergence between
two probability distributions [21]. Give two (discrete) probability distributions
P = (p1, . . . ,pa, . . . pA) and K = (k1, . . . ,kb, . . . kB). The JSD between P and K
is defined as:

DJS (P, K) = HS

(P + K
2

)
− 1

2
HS (P) − 1

2
HS (K) , (5)

where HS (P) =
∑A

i=1 pi log pi is the Shannon entropy of probability distribu-
tion P. In the literature [22], the JSD has been used as a means of measuring the
information theoretic dissimilarity between graphs associated with their proba-
bility distributions. In this paper, we focus on the similarity between graph-based
feature representations. We use the negative exponent of DJS (P,K) to calculate
the similarity IS between probability distributions P and K, so:

IS (P,K) = exp {−DJS (P,K)} (6)

The information theoretic function is used to evaluate the relevance between
different feature combination and target labels to achieve the maximum correla-
tion and minimum redundancy standards. For a set of N features f1, . . . ,fi, . . . ,fN
and related continuous target feature Y, the correlation degree of feature pair
{fi, fj} is expressed as follows:

Ufi,fj
=

Is

(
Gi,

∧
G

)
+ Is

(
Gj ,

∧
G

)

Is (Gi,Gj)
, (7)

where Is is the JSD based similarity measure of information theory defined in

Eq. 6. Is

(
Gi,

∧
G

)
represents the correlation measures of feature fi with target

feature Y. Is

(
Gj ,

∧
G

)
represents the correlation measures of feature fj with

target feature Y. Is (Gi,Gj) denotes the redundancy of paired feature {fi, fj}.

Therefore, Ufi,fj
is large if and only if Is

(
Gi,

∧
G

)
+ Is

(
Gj ,

∧
G

)
is large and

Is (Gi,Gj) is small. This indicates that the pairwise feature {fi, fj} is informative
and less redundant.

Given the feature information matrix U and d-dimensional feature vector
w. The feature subset is identified by solving the maximization problem of the
following formula:

max f(w) = max
w∈Rd

wTUw, (8)

where w ∈ R
d, w = (w1, w2, · · · , wi, · · · , wn)T , wi > 0, wi represents the corre-

lation coefficient of the i-th feature.

2.4 Mathematical Formulation

The purpose of our proposed method is to improve the performance of feature
selection through structural information and misclassification costs when the
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data does not have a large number of labels. Therefore, we combine cost-sensitive
and Eq. 8 to propose semi-supervised feature selection based on cost-sensitive
and structural information. The specific mathematical expression is as follows:

min
w

α1tr(wTXTLXw) +
l∑

i=1

‖xiw − yi‖22ci + α2||w||1 − α3wTUw (9)

The first term represents the learning of local proximity structure, which helps
the model to select a representative feature subset by maintaining the local
structure of the samples. w represents the feature coefficient vector, L is the
Laplacian matrix, L = D − A, where D is a diagonal matrix, the diagonal
element satisfies Dii =

∑n
j=1 Aij and A is the affinity matrix, if i �= j, Aij =

exp(− ||xi −xj ||22
2σ2 ); otherwise, Aij = 0. The cost ci represents the cost, the second

term indicates that the loss of the original feature is combined with the cost
to obtain the misclassification cost loss. Since we judge the misclassification
result based on the label sample, we only use the labeled sample to calculate the
misclassification loss. The third term ‖w‖1 represents the sparse regular term,
which uses the l1-norm to shrink some coefficients to zero. The fourth term
encourages the selected features to be jointly more relevant with the target while
maintaining less redundancy between features, α1, α2 and α3 are the penalty
coefficients.

2.5 Optimization

In order to optimize, Eq. 9 can be rewritten as follows:

min
w,Q

α1tr
(
wTXTLXw

)
+ tr

(
(XLw − YL)TC (XLw − YL)

)

+ α2tr
(
wTQw

) − α3wTUw,
(10)

where Q is the diagonal matrix. We use the idea of iterative learning to optimize
the objective function, that is, update w by fixing Q and update Q by fixing
w, until Eq. 9 converges, so that the optimal solution of weight vector w can be
obtained.

– Update w by fixing Q

When Q is fixed, Eq. 10 can be regarded as a function of w:

L (w) = α1tr
(
wTXTLXw

)
+ tr

(
(XLw − YL)TC (XLw − YL)

)

+ α2tr
(
wTQw

) − α3wTUw
(11)

We take the derivative of w in Eq. 11 and make it equal to zero:

∂L

∂w
= 2α1XTLXw+2XL

TCXLw− 2XL
TCYL +2α2Qw− 2α3Uw = 0 (12)
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According to Eq. 12, it is solved as follows:

w =
(
2α1XTLX + 2XL

TCXL + 2α2Q − 2α3U
)−1

2XL
TCYL (13)

– Update Q by fixing w

When w is fixed, Eq. 10 can be regarded as:

min
Q

α2tr
(
wTQw

)
(14)

By setting the partial derivative of the above function with respect to Q as
0 and according to the article [23], it is solved as follows:

Qii =
1

2 |wi| , (15)

where Q is a diagonal matrix and Qii = 1
2|wi| is the diagonal element.

Algorithm 1: The pseudo code of solving Eq. 9
Input: Data matrix X ∈ R

n×d, labeled data XL ∈ R
l×d, labels YL ∈ R

l, cost
matrix C ∈ R

l×l,
control parameters α1, α2, α3;

Output: w ∈ R
d;

1. Initialize t = 0 and Q(0);

2. Build affinity matrix A, Aij = exp(− ||xi−xj ||22
2σ2 ) or Aij = 0;

3. Build diagonal matrix D, Dii =
∑n

j=1 Aij ;
4. Build Laplacian matrix L, L = D − A;
5. repeat:

5.1 Update w(t+1)via Eq. 13;
5.2 Update Q(t+1) via Eq. 15;
5.3 t = t + 1;

until converges;

2.6 Convergence Analysis

Let w and Q be w(t) and Q(t) in the t-th iteration, and Eq. 10 can be rewritten
as:

E

(
w(t)

,Q(t)
)

= α1tr

((
w(t)

)T
XT LXw(t)

)
+ tr

((
XLw(t) − YL

)T
C

(
XLw(t) − YL

))

+ α2tr

((
w

(t)
)T

Q
(t)

w
(t)

)
− α3

(
w

(t)
)T

Uw
(t)

(16)

Because the objective function E
(
w(t),Q(t)

)
is a convex optimization prob-

lem about w, we have the following inequality:

E
(
w(t+1),Q(t)

)
≤ E

(
w(t),Q(t)

)
(17)

According to the article [23], we know that Eq. 14 is convergent, so we can
deduce that Eq. 10 is convergent about Q, so we express the convergence as the
following inequality:
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E
(
w(t+1),Q(t+1)

)
≤ E

(
w(t+1),Q(t)

)
(18)

Combining Eq. 17 and Eq. 18, we can get the inequality:

E
(
w(t+1),Q(t+1)

)
≤ E

(
w(t),Q(t)

)
(19)

Equation 16 is non-increasing at each iteration according to Eq. 19. Therefore,
the proposed Algorithm 1 is convergence.

3 Experiments

In this section, we evaluated our proposed SF CSSI and other six comparison
methods on eight data sets. Specially, we first employed each feature selection
method to choose the new feature subsets from original data sets, and then
utilized support vector machine classification to evaluate the selected subsets.

3.1 Datasets and Comparison Methods

The data sets (i.e., madelon, SECOM, chess, isolet, Hill-with, Hill-without, musk
and sonar) are from UCI Machine Learning Repository1. We summarized the
detail of all data sets in Table 1.

Table 1. Summarization of data sets.

Datasets Samples Features Classes

madelon 2000 500 2
SECOM 1967 590 2
chess 3196 36 2
isolet 1560 617 2
Hill-with 606 100 2
Hill-without 606 100 2
musk 486 166 2
sonar 208 360 2

We compared our proposed method with six comparison methods and the
details of them are listed as follow:

– Cost-Sensitive Laplacian Score (CSLS [24]) uses Laplacian graphs and the
cost of misclassification between classes to score each feature individually.

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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– Semi-supervised feature selection based on joint mutual information (Semi-
JMI [25]) uses the redundancy between features and the correlation between
features and labels to complete feature selection.

– Semi-supervised feature selection based on information theory method (Semi-
IMIM [25]) only uses the correlation between features and labels to complete
feature selection.

– Cost-Sensitive Feature Selection via F-Measure Optimization Reduction
(CSFS [20]) introduces cost sensitivity to select features, which optimizes
F-measure instead of accuracy to take class imbalance issue into account.

– Cost-sensitive feature selection via the l2,1-norm (CSEFS [26]) combines l2,1-
norm minimization regularization and loss term of embedding misclassifica-
tion cost to select feature subset.

– Semi-supervised Feature Selection via Rescaled Linear Regression (RLSR
[17]) uses a set of scale factors to adjust regression coefficients, then uses
regression coefficients to rank features.

3.2 Experimental Settings

The experiment of this paper is implemented with the MATLAB 2018a under
Windows 10 system. Referring to [27] article’s method, we can divide the data
set into three parts: labeled sample set (L), unlabeled sample set (U), and test
sample set (T). For each of data sets, the labeled samples were randomly selected
with the given ratio {10%, 20%, 30%}.

We use 10-fold cross-validation to generate training sample set and test sam-
ple set, then randomly select L and U from the training sample set for training,
and finally use T to test the performance of different methods. All algorithms
perform 10 times 10-fold cross-validation and take the average of the 10 experi-
mental results as the final total cost, which reduce the accidental occurrence. We
set the parameters α1, α2 and α3 in Eq. 9 in range of

{
10−3, 10−1, ..., 101, 103

}
.

For other comparison methods, we set these according to their corresponding
literature.

Table 2. Total cost (cost ± std) of misclassification on eight data sets. Bold numbers
indicate the best results.

Cost Data sets CSLS Semi-JMI Semi-IMIM CSEFS CSFS RLSR Proposed

cost1 = 10
cost2 = 25

madelon 1399.40 ± 17.57 1396.65 ± 20.88 1394.35 ± 19.39 1540.60 ± 74.59 1462.65 ± 19.22 1405.23 ± 23.38 1369.56± 12.96

SECOM 273.65 ± 5.87 270.26 ± 5.51 269.02 ± 5.19 268.03 ± 5.41 268.88 ± 5.70 269.01 ± 6.60 266.09± 4.41
chess 2494.00 ± 9.98 2349.15 ± 20.86 2624.30 ± 12.03 2485.75 ± 15.27 2726.00 ± 24.67 2074.65 ± 10.29 515.00± 0.00
isolet 525.50 ± 19.97 553.00 ± 22.84 538.90 ± 22.34 413.20 ± 19.60 352.05 ± 28.52 349.35 ± 15.91 346.60± 10.53
Hill-with 167.50 ± 18.73 177.38 ± 18.68 147.05 ± 63.65 157.35 ± 23.30 105.10 ± 17.08 102.75 ± 21.07 100.40± 15.60
Hill-without 1.05 ± 0.72 141.40 ± 52.04 168.30 ± 1.35 1.35 ± 1.22 2.50 ± 5.52 4.05 ± 5.90 0.65± 0.89
musk 165.20 ± 7.77 133.10 ± 7.94 145.75 ± 10.33 151.50 ± 11.77 132.30 ± 11.33 141.00 ± 17.88 130.00± 6.10
Sonar 99.20 ± 11.40 94.20 ± 6.17 93.95 ± 6.96 93.55 ± 7.26 99.00 ± 9.52 98.20 ± 8.79 89.35± 4.77

cost1 = 25
cost2 = 10

madelon 1675.57 ± 14.98 1678.53 ± 19.80 1652.81 ± 12.71 1536.18 ± 25.85 1577.72 ± 23.29 1526.05 ± 18.59 1510.15± 13.54

SECOM 168.90 ± 27.01 161.10 ± 26.70 165.75 ± 30.30 163.45 ± 22.17 167.45 ± 21.50 154.80± 19.11 158.40 ± 20.37
chess 1193.80 ± 4.52 964.65 ± 8.23 1060.85 ± 7.13 1222.60 ± 34.73 1175.15 ± 7.43 921.00± 7.32 1222.60 ± 34.73
isolet 350.35 ± 11.60 432.90 ± 15.18 435.85 ± 12.80 334.40 ± 11.16 331.35 ± 8.08 321.85 ± 6.33 318.76± 5.73
Hill-with 533.10 ± 32.68 499.20 ± 54.94 464.15 ± 42.81 482.80 ± 53.24 482.80 ± 53.34 454.45 ± 68.49 411.95± 43.52
Hill-without 1115.20 ± 34.18 428.10 ± 55.74 427.26 ± 53.62 43.60 ± 32.47 2.35 ± 1.98 9.30 ± 1.99 1.60± 2.50
musk 150.15 ± 7.01 129.50 ± 9.66 133.95 ± 6.83 137.40 ± 9.81 128.95 ± 11.14 129.75 ± 12.04 128.65± 11.09
Sonar 168.90 ± 27.01 161.10 ± 26.70 165.75 ± 30.30 163.45 ± 22.17 167.45 ± 21.50 154.80 ± 19.11 153.40± 20.37
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Table 3. The value of specificity on eight data sets. Bold numbers indicate the best
results.

Cost Data sets CSLS Semi-JMI Semi-IMIM CSEFS CSFS RLSR Proposed

cost1 = 10
cost2 = 25

madelon 61.34 ± 0.70 60.98 ± 0.86 60.41 ± 0.96 56.31 ± 0.18 58.19 ± 0.62 57.99 ± 0.38 63.93± 1.96

SECOM 98.30 ± 0.23 98.90 ± 0.13 98.91 ± 0.14 97.88 ± 0.10 93.65 ± 0.39 93.61 ± 0.39 99.59± 0.12
chess 1.04 ± 0.08 26.70 ± 2.03 78.81 ± 2.50 18.23 ± 0.41 1.12 ± 0.93 26.01 ± 1.39 90.83± 0.02
isolet 80.51 ± 0.73 79.68 ± 1.10 80.39 ± 0.96 84.80 ± 1.03 86.00 ± 1.35 86.61 ± 1.26 86.99± 0.54
Hill-with 89.09 ± 2.45 86.02 ± 2.22 88.85 ± 2.25 89.04 ± 2.95 89.83 ± 2.48 90.22 ± 2.76 93.12± 4.20
Hill-without 99.96 ± 0.10 84.00 ± 1.51 81.78 ± 9.61 99.86 ± 0.10 99.68 ± 0.93 99.83 ± 0.22 99.87± 0.19
musk 81.27 ± 1.30 85.48 ± 1.14 83.87 ± 1.43 82.90 ± 1.70 85.39 ± 1.43 84.35 ± 2.39 88.63± 1.13
Sonar 83.46 ± 6.01 81.35 ± 6.57 82.50 ± 7.25 84.94 ± 5.33 86.06 ± 5.55 82.96 ± 5.84 96.06± 1.93

cost1 = 25
cost2 = 10

madelon 56.78 ± 0.48 56.59 ± 1.00 56.18 ± 1.18 56.46 ± 0.83 56.47 ± 1.12 55.35 ± 0.77 61.35± 0.54

SECOM 98.86 ± 0.19 98.89 ± 0.22 98.93 ± 0.17 98.94 ± 0.22 99.86 ± 0.18 98.93 ± 0.17 99.89± 0.06
chess 38.39 ± 0.30 48.04± 0.43 45.35 ± 0.46 44.26 ± 2.05 41.77 ± 1.22 46.97 ± 0.65 46.67 ± 1.12
isolet 82.53 ± 0.44 78.44 ± 0.61 75.77 ± 6.46 80.76 ± 0.61 81.10 ± 0.64 82.04 ± 0.56 83.17± 0.26
Hill-with 82.29 ± 3.21 87.89 ± 2.25 87.71 ± 3.06 87.65 ± 3.21 87.65 ± 3.21 91.62 ± 2.32 92.89± 1.25
Hill-without 67.16 ± 1.32 36.61 ± 2.00 80.55 ± 2.20 77.77 ± 2.64 77.77 ± 2.64 79.31 ± 1.52 82.46± 7.30
musk 81.02 ± 1.32 84.72 ± 1.63 83.57 ± 1.52 83.01 ± 1.22 84.35 ± 1.39 84.72 ± 1.86 85.40± 1.88
Sonar 87.08 ± 3.28 87.10 ± 3.71 86.93 ± 3.70 87.06 ± 3.51 86.59 ± 3.66 85.67 ± 2.55 87.23± 4.98

The total cost, specificity and sensitivity are used as evaluation indicators to
evaluate the performance of all methods on eight data sets.

The total cost is calculated as follows:

Total Cost = sum (ci) , (20)

ci =
{

cost1 or cost2 , predicted label �= true label
0 , otherwise , (21)

where ci represents the misclassification cost of a sample. If the predicted label
is equal to the true label, the cost of ci is 0, otherwise, the cost of ci is equal

Table 4. The value of sensitivity on eight data sets. Bold numbers indicate the best
results.

Cost Data sets CSLS Semi-JMI Semi-IMIM CSEFS CSFS RLSR Proposed

cost1 =
10
cost2 =
25

madelon 59.51 ± 0.68 59.93 ± 0.62 60.27 ± 0.54 55.42 ± 2.89 56.36 ± 1.22 55.32 ± 0.38 61.56± 0.96

SECOM 80.46 ± 3.01 81.35 ± 3.57 82.50 ± 3.25 84.94 ± 4.33 84.06 ± 3.55 82.96 ± 4.84 86.06± 0.30
chess 94.58 ± 0.13 99.28± 0.10 84.12 ± 1.65 94.52 ± 0.15 97.87 ± 0.21 97.44 ± 0.16 90.10 ± 0.02
isolet 81.33 ± 0.76 78.89 ± 0.48 79.97 ± 0.81 84.95 ± 1.01 89.81 ± 0.62 90.03 ± 0.37 92.11± 0.68
Hill-with 73.56 ± 1.68 77.81 ± 2.09 80.93 ± 1.06 77.01 ± 1.81 90.68 ± 2.82 90.92 ± 2.28 91.84± 1.45
Hill-without 99.15 ± 0.18 92.31 ± 4.24 90.10 ± 4.75 99.46 ± 0.22 99.49 ± 0.42 99.10 ± 0.42 99.58± 0.45
musk 81.19 ± 1.78 83.54 ± 1.58 81.54 ± 2.17 82.29 ± 1.33 83.22 ± 1.97 82.60 ± 2.69 86.40± 1.88
Sonar 38.38 ± 12.61 38.61 ± 11.28 3.91 ± 12.62 38.07 ± 11.91 38.49 ± 12.74 36.63 ± 13.26 58.10± 2.31

cost1 =
25
cost2 =
10

madelon 56.36 ± 0.93 56.04 ± 0.89 56.11 ± 0.93 56.66 ± 1.45 57.30 ± 0.84 56.22 ± 1.08 60.16± 0.54

SECOM 85.08 ± 3.02 86.10 ± 3.71 86.93 ± 2.70 28.63 ± 2.04 87.06 ± 3.51 83.59 ± 3.10 87.22± 3.32
chess 98.25 ± 0.66 97.87 ± 0.25 98.35 ± 0.18 97.50 ± 0.88 98.78 ± 0.39 98.05 ± 0.22 98.98± 0.02
isolet 89.02 ± 0.51 86.49 ± 0.62 87.37 ± 0.59 90.36 ± 0.45 90.61 ± 0.41 90.71 ± 0.30 90.96± 0.18
Hill-with 67.16 ± 1.32 76.61 ± 2.00 80.55 ± 2.20 77.77 ± 2.64 74.77 ± 2.65 79.31 ± 1.52 82.46± 7.30
Hill-without 90.91 ± 3.13 58.55 ± 9.90 56.17 ± 9.71 96.26 ± 3.41 99.71 ± 0.26 98.90 ± 0.25 99.86± 0.12
musk 80.06 ± 1.50 83.00 ± 1.28 82.48 ± 1.28 82.29 ± 1.71 83.22 ± 1.97 80.87 ± 1.70 84.23± 1.27
Sonar 39.46 ± 12.24 39.85 ± 12.75 39.21 ± 11.71 38.86 ± 11.06 38.37 ± 9.50 44.99 ± 8.24 46.92± 11.92
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Fig. 1. The total cost of different methods under different labeled samples, at eight
data sets while cost1 = 10, cost2 = 25.
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to cost1 or cost2 (cost1 and cost2 represent the costs of being judged as positive
and negative samples, respectively).

For a binary classification, there are four possible results: TP (True Positive)
is positive instances correctly classified and TN (True Negative) is negative
instances correctly classified. FP (False Positive) is negative instances incor-
rectly classified and FN (False Negative) is positive instances misclassified.

Specificity refers to the proportion of samples that are actually negative which
are judged to be negative. It can be calculated by the following formula:

specificity =
TN

FP + TN
(22)

Sensitivity refers to the proportion of samples that are actually positive which
are judged to be positive. It can be calculated by the following formula:

sensitivity =
TP

TP + FN
(23)

3.3 Experiment Results and Analysis

In this experiment, we reported the cost, specificity and sensitivity of all methods
on eight UCI datasets in Table 2, Table 3 and Table 4 under different cost value
settings and listed our observations as follows. In addition, we use a line chart to
show the changing trend of the total cost under different proportions of labeled
samples. It can be seen from Fig. 1.

From Table 2, we can know that the proposed SF CSSI method outperformed
other methods on most cases. Especially, on the chess data set, the total cost
of SF CSSI has reduced by 75% compared with the second best approach Semi-
JMI, when cost1 = 10 and cost2 = 25. When cost1 = 25 and cost2 = 10, 31%
reduction was achieved by the proposed method SF CSSI on the Hill-without
data set, compared to the second best approach CSFS.

From Table 3 and Table 4, the proposed model has high specificity and sen-
sitivity. The highest specificity was obtained on SECOM and Hill-without data
sets. The highest sensitivity was obtained on isolet and Hill-without data sets
compared with other methods. In addition, specificity and sensitivity are com-
monly used diagnostic methods in clinical practice. The higher the value is, the
more real, reliable and practical the diagnosis result will be.

From Fig. 1, the more labeled data we have, the lower cost we can achieve,
in most cases. We also notice that SF CSSI outperformed other CSLS, CSFS
and CSEFS methods on almost all cases, which indicates that CSLS, CSFS and
CSEFS can be improved with unlabeled data. This verifies the effectiveness of
the semi-supervised feature selection method. In addition, the proposed method
has the minimum total cost on most cases, especially in Hill-without data set.

3.4 Conclusion

This paper considers the misclassification and the structural information of the
paired samples on each feature dimension. In addition, the information theory
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method is used to introduce a feature information matrix to simultaneously
maximize joint relevancy of different pairwise feature combinations in relation
to the target feature graphs and minimize redundancy among selected features.
Compared with previous research on semi-supervised feature selection, this paper
comprehensively considers the cost of misclassification, the structure information
of paired samples on the feature dimension, and the information relationship of
paired features. In general, it is more interpretable and generalizable for our
method than others in this paper. Experiments on 8 real data sets show that
the proposed method has better feature selection results.

In future work, we will try to extend our method to conduct a cost-sensitive
multi-class classification.
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