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Abstract. Recent years have witnessed a rapid growth of knowledge
graphs (KGs) such as Freebase, DBpedia, or YAGO. These KGs store
billions of facts about real-world entities (e.g. people, places, and things)
in the form of triples. KGs are playing an increasingly important role
in enhancing the intelligence of Web and enterprise search and in sup-
porting information integration and retrieval. Linked Open Data (LOD)
cloud interlinks KGs and other data sources using the W3C Resource
Description Framework (RDF) and makes accessible on web querying.
DBpedia, a large-scale KG extracted from Wikipedia has become one of
the central interlinking hubs in the LOD cloud. Despite these impres-
sive advances, there are still major limitations regarding coverage with
missing information, such as type, properties, and relations. Defining
fine-grained types of entities in KG allows Web search queries with a
well-defined result sets. Our aim is to automatically identify entities to be
semantically interpretable by having fine-grained types in DBpedia. This
paper embeddings entire DBpedia, and applies a new approach based on
a tensor model for fine-grained entity type inference. We demonstrate the
benefits of our task in the context of fine-grained entity type inference
applying on DBpedia, and by producing a large number of resources in
different fine-grained entity types for connecting them to DBpedia type
classes.

Keywords: Knowledge graph · DBPedia embedding · Type
inference · Tensor factorization · Semantic web search

1 Introduction

Knowledge graphs (KGs), i.e., graph-based knowledge-bases, store information
about real-world objects (e.g. people, places, and things) in the form of RDF
triples (i.e. (subject, predicate, object)). Recent years have witnessed a rapid
growth of KGs driven by academic and commercial efforts, such as Yago [26,
49], Freebase [13], DBpedia [10,36], NELL [15], Google’s Knowledge Graph,
Microsoft’s Satori, Probase [3], and Google Knowledge Vault [25]. These KGs
have reached an impressive size, for instance, DBPedia a large-scale KG extracted
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from Wikipedia contains many millions of entities, organized in hundreds to
hundred thousands of semantic classes, and billions of relational facts (triples)
involving a large variety of predicates (relation types) between entities.

KGs are playing an increasingly important role in enhancing the intelligence
of Web and enterprise search and in supporting information integration and
retrieval. For Example, Freebase KG powered Google Knowledge Graph that
supports Google’s web search, or Microsoft’s Satori that supports Bing by pro-
viding richer data for Entity Pane, Carousel, and Facts Across Segments in the
search panel. Additionally, KGs are becoming important resources for different
Artificial Intelligence (AI) and Natural Language Processing (NLP) applications,
such as Question-Answering [11,22], Query Understanding through Knowledge-
Based Conceptualization [12], and Short Sentence Texts Understanding [51,53]
and Conceptualization using a probabilistic Knowledge bases. Despite these
impressive advances, there are still major limitations regarding coverage and
freshness, these KGs are incomplete with missing information, such as type,
properties, and relations [18,42,45,48,52,57].

Types in KG are used to express the concept of classes. According to KG
idiomatic usage, a KG object “has X, Y, Z types” is equivalent to an object “is
a member of the X, Y, Z classes”. In the case of Tom Hanks1 , the KG object for
Hanks would have the types person and Actor to indicate that the object is a
member of the Persons and Actors. However, an entity is usually not associated
to a limited set of generic types (Person, Location, and Organization) in KGs
but rather to a set of more specific (fine-grained) types. Evidence suggests that
performance of Web search queries (in case of exploring lists and collections)
can be dramatically improved by defining large numbers of these fine-grained
entity types in KG. Untyped entities and entities with incomplete set of types
are a common problem in Semantic Web KGs [42,45]. For example, one can find
by Web search queries the fact that Tom Hanks is a person, an actor, and a
person from California, USA. All these types are correct but some may be too
general to be interesting (e.g., person, actor), while other set of more specific
(fine-grained) types may be interesting but may be identified by web searching
(such as, list of films in any specific film genre of Tom Hanks film).

The Semantic Web’s Linked Open Data (LOD) cloud interlinks KGs and
other data sources using the W3C Resource Description Framework (RDF) [4]
and makes accessible on web querying through SPARQL. This LOD cloud is
growing rapidly. At the time of this writing, the LOD cloud contains 1,234
datasets with 16,136 links2. Several hundred data sets on the Web publish RDF
links pointing to DBpedia themselves and thus make DBpedia one of the central
interlinking hubs in the Linked Open Data (LOD) cloud [ref]. DBpedia ontology
forms a subsumption hierarchy consisting of a standard limited (760) set of
classes (types), and recent version of DBpedia has been incorporated a large
number (570,276) of YAGO types (mostly file-grained types) by linking YAGO
types taxonomy.

1 http://dbpedia.org/resource/Tom Hanks.
2 https://lod-cloud.net/.

http://dbpedia.org/resource/Tom_Hanks
https://lod-cloud.net/
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Although couple of approaches, such as SDType [47] a heuristic approach
and, SNCN [40] a hierarchical classification approach have been applied on
DBpedia for type inference, these approaches are successful in extracting com-
monly used coarse types, such as ‘Person’, ‘Artist’, ‘Movie’, or ‘Actor ’. In DBpe-
dia, a vast amount of entities missing of fine-grained types (depth of four to six
in type hierarchy). For instance, (at the time of this writing) 18805 number of
entities listed as American Film class (fine-grained type) within 94996 number
of entities from movie class (type) in DBpedia [footnote reference]. However,
according to current DBpedia online, only 83 entities (from actor class type) as
identified as American Film Actor which evident that 98% of entities missing of
this fine-grained entity type.

In recent years, representation learning in form of latent variable methods
[14,23,27,31,32,37–39,41,43,53] have increasingly been gained attention for the
statistical modeling of KGs, learning latent embeddings for entities and relation-
types from the data that can then be used as representations of their semantics.
These models have successfully been applied on FB15K [14] dataset, is a subset
of Freebase KG which has been commonly used to evaluate various KG com-
pletion task, and showing promising results in tasks related to link predictions.
DBpedia data are represented in the form of RDF [4] triples <subject, predicate,
object>, where the subject and object are entities and the predicate is the rela-
tion type. The representation learning from DBpedia (large-scale relational data)
has therefore become emerged especially for fine-grained entity type inference.

Modeling and fatorizing entire DBpedia is not a trivial task, as DBpedia
is very large scale (with millions of entities with billions of facts), and con-
tains heterogeneous information where mappings are created via a world-wide
crowd-sourcing effort to extract contents from the information created in various
Wikimedia projects. Such information includes infobox templates, categorisation
information, images, geo-coordinates, links to external web pages, disambigua-
tion pages, redirects between pages, and links across different language editions
of Wikipedia. Besides, A large number of fine-grained types (sub-class) from
YAGO type taxonomy are not systematically consistent in the DBpedia ontol-
ogy. Furthermore, (in the depth of five and six) are not coherently defined in
context to sub-class types hierarchy. In addition, A good number of types redun-
dant in DBpedia, such as 5 (five) different types exprese as Actor type class
(in Table 3). Although many of these types mapped to DBpedia types using
owl:equivalentClass, this leads inconsistency and miss proper fine-grained typ-
ing of entities in DBPedia. In this paper, we focus on the extraction of entity
fine-grained types, i.e., assigning fine-grained types to – or typing – entities in
DBpedia. The major two folds contributions of this paper are as follows:

1. This paper models entire DBpedia with a approach based on a tensor model
that learns latent embeddings for entities, relation-types and properties to
automatically identify entities to be semantically interpretable by having fine-
grained types for connecting them to DBpedia classes. The key idea behind of
modelling and applying factorization method is that it uses three-dimensional
arrays (tensor) to represent DBpedia and obtain probabilistic likelihoods of
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type-relations existing between entities (objects) by applying tensor factor-
ization (TF) techniques on DBpedia.

2. This paper proposes TypePathSample algorithm an efficient way to reduce the
computer complexity for the large-size of the dataset, yet operate on a repre-
sentative subset there of is to use KG partition. This will capture (observing)
rich interactions of all the entities of fine-grained types in populating tensor
according to fine-grained type entity constraint. This will transform as un-
observe from observing interactions of all the entities of coarse-grained types
according to fine-grained type entity constraint. Applying this algorithm to
DBpedia, we generate multiple samples of the coupled data with domain and
type, we fit a Coupled Matrix and Tensor Factorization (CMTF) model to
each sample and propose to simultaneous factorization by parallelization.

3. We demonstrate the benefits of this task in the context of fine-grained entity
type inference with experiments on a large-scale KG by producing 1.3 ×
105of resources in different fine-grained entity types for person entities from
one sample in DBpedia.

This paper is structured as follows. The next section contains related work. In
Sect. 2 explain BDpedia Knowledge Graph; modeling and factorizing DBpedia
with tensor factorization model. In Sect. 3 In Sect. 3.1 we introduce our approach.
In Sect. 3 we describe our experiments. We conclude in Sect. 5.

2 DBpedia Knowledge Graph

DBpedia [1,10,36], a large-scale KG extracted from Wikipedia currently
describes 6.6M entities, and 5.5M resources are classified in a consistent ontol-
ogy, such as 1.5M persons, 840K places, 496K works. Altogether the DBpedia
2016-10 release (see footnote 2) consists of 13 billion pieces of information (RDF
triples). Each resource in the DBpedia data set is denoted by a de-referenceable
Internationalized Resource Identifier (IRI)- or the Uniform Resource Identi-
fier (URI)-based reference of the form http://dbpedia.org/resource/Name. URI
uniquely identifying each entity in Semantic Web KGs. For instance, en entity
Tom Hanks can be found in DBpedia3, and in Wikipedia4. Every DBpedia entity
name resolves to a description-oriented Web document (or Web resource).

DBpedia is served on the web in three forms: First, it is provided in the form
of downloadable data sets where each data set contains the results of one of
the extractors; second, DBpedia is served via a public SPARQL endpoint and,
third, it provides dereferencable URIs according to the Linked Data principles.
DBpedia datasets in N3/TURTLE serialisation, and each triple is represented
as the form <head entity, relation, tail entity>.

The DBpedia data set can be accessed online via a SPARQL query endpoint5

and as Linked Data6. All list of types (coarse-grained or fine-grained) of an
3 http://dbpedia.org/resource/Name.
4 http://en.wikipedia.org/wiki/Name.
5 https://dbpedia.org/sparql.
6 http://mappings.dbpedia.org/server/ontology/classes/.

http://dbpedia.org/resource/Name
http://dbpedia.org/resource/Name
http://en.wikipedia.org/wiki/Name
https://dbpedia.org/sparql
http://mappings.dbpedia.org/server/ontology/classes/
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Table 1. Different RDF triple relations in DBpedia

a. Example of Type relation in a RDF triple

Subject/head entity <dbpedia.org/resource/Tom Hanks>
Predicate/relation <www.w3.org/1999/02/22-rdf-syntax-ns#type>
Object/tail entity <dbpedia.org/ontology/Actor>

b. Example of SPARQL query for finding types of an entity
select distinct ?Subject where ?Subject ?Predicate ?Object filter (?Object = <dbpedia.org/ontology/Actor>
&& ?Predicate = <www.w3.org/1999/02/22-rdf-syntax-ns#type>)

entity, or all list of entities for any types can be obtained by SPARQL search on
DBpedia (see in Table 1(b));

2.1 Modeling DBpedia

From modelling perspective, tensor representations are appealing to KG because
they provide an elegant way to represent multiple RDF triples. The interpreta-
tion of DBpedia can be interpreted as a tensor, where first mode of a tensor
therefore models the occurrences of all entities as a subject, the second mode
models the occurrences of all entities as an object, and the third mode models
the different relations, as illustrated in Fig. 2. Entities in DBpedia can be sub-
jects or objects in multiple relations (RDF triples) depending on relation types.
For instance, in a relation <Tom Hanks, starring, Inferno>, and in another
relation <Inferno, rdf-type, Movie>, where entity Inferno is a subject in one
relation and an object in another relation.

The DBpedia ontology consists of 760 classes (such as Thing, Person or
Movie) which form a subsumption hierarchy. Figure 1 depicts a part of the DBpe-
dia ontology, indicating the relations from the top class of the DBpedia ontology,
i.e. the classes with the highest number of instances. The complete DBpedia
ontology can be browsed online (see footnote 3). The file Instance Types (see
footnote 4) contains triples of the form <object> <rdf:type> <class> from the
mapping based extraction. We can therefore easily model a class as an object in
a rdf triple and populate to a tensor. However, a large number of fine-grained
types (sub-class) from YAGO type taxonomy are not systematically consistent
in the DBpedia ontology. Furthermore, (in the depth of five and six) are not
coherently defined in context to sub-class types hierarchy. To address this issue
we extended DBpedia type class hierarchy with YAGO type classes for each of
DBpedia ontology class using SPARQL [9] query with <http://www.w3.org/
2000/01/rdf-schema#subClassOf>. For instance, all 2502 [footnote reference]
sub classes of DBpedia ontology class for Actor can be derived by this SPARQL
query.

Since DBpedia data are high-dimensional but very sparse, we approach the
problem of learning positive examples only from DBpedia, by assuming that
missing triples are very likely not true. We use the weighted-tensor interpretation
scheme to effectively model DBPedia for constructing the tensor. The weighting
tensor with different values for KG and text data is a particularly important
component of our model. Without applying weight in tensor construction, the

http://www.w3.org/2000/01/rdf-schema#subClassOf
http://www.w3.org/2000/01/rdf-schema#subClassOf
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objective function would place equal importance on fitting both observed and
unobserved values. Since DBPedia KB is very large scale, and constructed ten-
sors are therefore often very sparse, this will result in fitting a large number of
unobserved data and uncertainty in the observations. The weighting tensor pre-
vents this from happening by emphasizing only the observed (or certain) entries.
we approach the problem of learning positive examples only from DBpedia, by
assuming that missing triples are very likely not true. DBpedia consisting of
e entities and r different relations can then be represented in form of a tensor
X ∈ Re×e×r with entities

Xi,j,k =

{
1, if the relationship rk(ei; ej) exists in DBpedia.

0, otherwise.
(1)

The values (‘2’ or ‘1’) and (‘0’) of Xijk come from tensor model are regarded as
observed and un-observed data respectively, the representations of DBpedia are
therefore becomes possible for tensor factorization.

Fig. 1. (a) A part of DBPedia type hierarchy. (b) Representation of a third-order
tensor with RDF triples.

The schema information for RDF, which provides the concepts rdfs:domain
and rdfs:range for a semantic description of the entities contained in the KG.
These concepts are used to represent type-constraints on relation-types by defin-
ing the classes or types of entities which they should relate, where the domain
covers the subject entity classes and the range the object entity classes in a
RDF-Triple. DBPedia domain information can be found in the property of a rela-
tion by SPARQL [5] query with http://www.w3.org/1999/02/22-rdf-syntax-ns#
Property. For example, a set of actor typed entities can be a set of author typed
where these entities are involved with different domains. Ignoring these infor-
mation (inter-domains collaboration activities of entities) may effect on latent
features learning by factorization.

Leveraging Domain Knowledge. Most KGs (such as DBPedia, Freebase,
or Yago) store facts about real-world objects covering only numbers of specific
domains (e.g. “Movie”, “Book”, or “Place”). For instance, types in KG such as

http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
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actor, film, director, or producer and fine-grained types such as filmActor, TVAc-
tor, regularActor, guestActor, executiveDirector, AssistantProducer are in “film”
domain. Given the importance the fine-grained inference task in KG, typed enti-
ties (objects) for given fine-grained types in one domain (such as “film” domain)
are less likely to be entities in other domains (such as “book”, or “place”). For
instance, inferring entities for fine-grained types (such as regularActor, guestAc-
tor) would be a typed in Actor, those entities generally are in same domain
in KG.

Fig. 2. (left) Representation of a KG with different domains. (right) Modelling domain
knowledge in a tensor.

The collaborative activities between the entities in “film” domain are there-
fore higher importance for fine-grained type inference in this domain.

Partitioning via Type Path Hierarchy. Introduce Fine-grained type entity
constraint for Knowledge Graph: This fine-grained type entity constraint will
distinguish and separate types in KG into two sets of types – (a) Coarse-grained
types and (b) Fine-grained types. Developing an effective algorithm for type-
class path partitioning is an efficient way to reduce the computer complexity
for the large-size of the dataset, yet operate on a representative subset thereof
is to use KG partition. This will capture (observing) rich interactions of all the
entities of fine-grained types in populating tensor according to ‘fine-grained type
entity constraint’. This will transform as unobserved from observing interactions
of all the entities of coarse-grained types according to ‘fine-grained type entity
constraint’.
Proposed Algorithm:
Input: Knowledge Graph G = (T,E,R); where set T is a set of 5th level Types
in KG, T = {t1, ..., t|t|}; set E is a set of entities (objects), E = {e1, ..., e|e|},
and Es as subject set of entities which occur as subject in relation links, where
Es ∈ E; and and Eo as object set of entities which occur as object in relation
links where {Eo ∈ E} and, the set R is a set of relations (Predicates) between
entities, R = {r1, ..., r|r|}.
Output: set ∇Tc is a list of triples << (Es)i, (R)i, (Eo)i >> for each di ∈ T
(Types)
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Start
01: function TypePathSample (T,E,R)
02: d ← type
03: for each ri ∈ R do
04: for each ri ∈ d do
05: source (es) : R → Es � return source(e)
06: target (eo) : R → Eo � return target(e)
07: ed ← (es ∪ eo)
08: while ei ∈ ed or ri ∈ d do
09: Td ← select-triples {(es)i, (r)i, (eo)i}
10: end while
11: ∇Tc ← Tc

12: end for
13: end for
14: end function

Applying this algorithm to DBpedia, we generate multiple partitions of data
samples of the coupled data with domain and type, we fit a CMTF model to
each sample and propose to simultaneous factorization by parallelization.

2.2 Factorizing DBpedia

Classical Tensor Factorization Models (TFM ) such as Singular Value Decompo-
sition (SVD) [20,28], CANDECOMP/PARAFAC Decomposition (CPD) [16,30]
can be regarded as Latent Factor Models (LFM) for multi-relational data [34,43].
Since DBpedia data is multi-relational, the tensor entries from them can be there-
fore factorized in order to directly comparable by transforming subject entities,
relations, object entities and domains to the same latent factor space. The global
dependencies are captured during learning the latent representations of each of
these dimensions of tensor. The latent ternary correlation subject, object, pred-
icate and domain can be inferred after factorizing the tensor model. We use
CP based Coupled Matrix and Tensor Factorization (CMTF) [8,9] for deriving
the latent relationships between dimensions of the tensor model. After latent fac-
tors generation via tensor factorization, we therefore follow tensor reconstruction
process to reveal new entries that are inferred from the latent factors.

As illustrated Fig. 2, the CMTF model, CP factorizes tensor X ∈ R
S×O×P ,

and a matrix Y ∈ R
P×D, can be formulated as

f(A,B,C,V) = ‖X − ‖A,B,C‖‖2 +
∥
∥Y − AVT

∥
∥ (2)

where X is factorized using a CP model on each mode-n matricization and
results in four latent factors matrices, A ∈ R

S×R, B ∈ R
O×R and C ∈ R

P×R

corresponding to the each dimensions of tensor X , V ∈ R
D×R are the factor

matrices extracted from matrix Y through matrix factorization.

Probabilistic Inference. Since DBPedia is multi-relational data, the similar-
ity of entities is therefore determined by the similarity of their relationships,
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following the intuition that “if two objects are in the same relation to the same
object, this is evidence that they may be the same object”. The collaborative
activities of entities as subjects As ∈ R

S×P and objects Ao ∈ R
O×P in rela-

tions in a domain can be modelled by the entity matrix Â, where Â, is QR
matrix factorization [17,29] of

∑
(As +Ao). For each domain the latent space Â

therefore reflects the similarity of entities in the relational domain. The type or
fine-grained type classes set Ce = {t1, t2, t3, ....tn} where Ce is a set of Types in
one KG. A list of type or fine-grained type classes that are considered for given
fine-grained type. For each fine-grained type in Ce the candidate entities set,
Êt = {ê1, ê2, ê3, ....ên} where Et is a set of typed entities in one KG.

We use the Bayes’ theorem [24,55] for predicting the class candidate entity
Et that have the highest posterior probability given Ce, p(Ce|Et). The posterior
probability is utilized to calculate the preference probability of an entity e to be
fine-grained typed t in Ce type classes by observing current type classes of entity
e, and latent similarity of entity e to fine-grained typed entity. The conditional
probability can be formulated as:

p(Ce|Et) =
p(Et|Ce)p(Ce)

p(Et)
(3)

where prior probability p(Ce) is the prior distributions of parameter set Ce in a
single domain before Et is observed, that is relative frequency with which obser-
vations from that class occur in a population. Generally, prior probability for
fine-grained type classes are lower compared to top level type classes in KG.
p(Ce|Et) is the joint probability of observing type class preference set Ce given
Et, and entity similarity preference given fine-grained type t. Using the assump-
tion of multinomial event model distribution for the Naive Bayes classifier, the
posterior probability pen,tr for fine-grained type te with fine-grained type class
Ce for candidate entity en, an instance of Et, is obtained by multiplying the
prior probability of te, P (Ce = te), with the probability of preference candidate
entity en, an instance of Et, given te, P (en|Ce = te) :

pen,te = p(te|Ce) =
|Ce|
∑

t=1

P (en|Ce = te)
|Êe|
∏

ê=1

P (Êe|Ce) (4)

where, P (Êe|Ce) is probability of likelihood for te in Ce, is derived from the
entities set, Êt = {ê1, ê2, ê3, ....ên} where values from reconstructed tensor X̂,
and entity similarity values from Â are used.

3 Experiments

3.1 Evaluation and Apply on DBpedia and Freebase

Datasets. We apply and demonstrate the benefits of our task in the context
of fine-grained entity type inference applying on on DBpedia 2016–10 release
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dataset. The DBpedia 2016-10 release dataset7 published on the year 2017, at
the time of this writing this release is latest full version of DBpedia KG. To make
ready DBpedia dataset to apply tensor based model, we first A simple java pro-
gram is used to transfer textual based triples into readable format for applying
tensor based model. Prior to apply on DBpedia, we evaluate our approach on
Freebase FB15K dataset8; FB15K-237 Knowledge Base Completion Dataset9

and DBpedia 2016-10 release dataset (see Table 2). The FB15K (Bordes et al.
2013), is a subset of Freebase which has been commonly used to evaluate var-
ious KG completion models [14,31,32,37,38,53,54]. In the FB15K-237 Knowl-
edge Base Completion Dataset, the triples (entity- textual-entity) are derived
from 200 million sentences from the ClueWeb12 corpus coupled with Freebase
entity. There are around 3.9 million text descriptions corresponding to the rela-
tion types in Freebase. The FB15K-237 dataset has been used in [50,51,56] for
embedding representations for textual relations with Freebase entity mention
annotations.

Table 2. Datesets used in the experiments.

DBpedia

Dataset DBpedia 2016-10 release
# Entities 5.72 million
# Relations as object properties 1,105
# Relations as datatype properties 1,622
# Relations as specialised datatype properties 132
# Entity class types 760
# YAGO class types 570,276
# RDF triples from DBpedia 2016-10 release 494 million
# RDF triples from online DBpedia by SPARQL 1.2 million

Freebase

Datasets # Entities # Relations # Triples
FB15K 14,951 1,345 486,641
FB15K-327 14,951 2,766,477 3,977,677

Implementation for Experiment. For implementation, we use tensor-toolbox
[6] and poblano-toolbox [2] in Matlab. We construct a 3th order tensor where the
tensor size (5.72M × 5.72M × 27K) in 52 different domain with 494M entries
from DBpedia. First and second orders of this tensor are defined as Entity and
third order as Relation. We fit tensor factorization based model [41] to this tensor
where domain is coupled with relation in tensor; and apply TypePathSample
to make samples of the model. Each sample model is density reduced tensor
with same size. For instance, in first sample all other samples tensor entries
are transformed to unobserved. For evaluation we apply weighted tensor scheme
in constructing tensor from Freebase where the tensor size (14951 × 14951 ×
2,767,822) with 486541 entries from KG (FB15K); and 4460819 entries from
textual dataset (FB15K-237). We then apply domain-relevance weighted tensor
(DrWT) to construct 4th order tensor with domain entries, where the tensor size
7 https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10.
8 https://developers.google.com/freebase/.
9 FB15K-237 Knowledge Base Completion Dataset https://www.microsoft.com/en-

us/download/details.aspx?id=5231.

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
https://developers.google.com/freebase/
https://www.microsoft.com/en-us/download/details.aspx?id=5231
https://www.microsoft.com/en-us/download/details.aspx?id=5231
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Table 3. Fine-grained Entity Types Inference on DBpedia

Fine-grained types # Entities

present in

DBpedia

# Entities

new

identified

http://dbpedia.org/class/yago/WikicatAmericanFilmActors 83 9787

http://dbpedia.org/class/yago/WikicatTelevisionActors 21 5225

http://dbpedia.org/class/yago/WikicatFilmDirectors 291 5310

http://dbpedia.org/class/yago/WikicatFilmsByAmericanDirectors 101 18805

http://dbpedia.org/class/yago/WikicatFilmProducers 2196 1695

http://dbpedia.org/class/yago/WikicatActionFilms 107 235

http://dbpedia.org/class/yago/WikicatAdventureFilms 110 582

http://dbpedia.org/class/yago/WikicatComedyFilms 124 3524

http://dbpedia.org/class/yago/WikicatHorrorFilms 116 1194

http://dbpedia.org/class/yago/WikicatDramaFilms 189 2360

http://dbpedia.org/class/yago/WikicatCrimeFilms 124 980

http://dbpedia.org/class/yago/WikicatMysteryFilms 118 511

http://dbpedia.org/class/yago/WikicatMusicalFilms 125 374

http://dbpedia.org/class/yago/WikicatFantasyFilms 116 718

http://dbpedia.org/class/yago/WikicatScienceFictionFilms 117 276

http://dbpedia.org/class/yago/WikicatRomanceFilms 109 492

http://dbpedia.org/class/yago/WikicatThrillerFilms 126 560

http://dbpedia.org/class/yago/WikicatAnimatedFilms 104 492

http://dbpedia.org/class/yago/WikicatArtFilmss 192 205

http://dbpedia.org/class/yago/WikicatRomanticComedyFilms 98 256

http://dbpedia.org/class/yago/WikicatShortFilms 204 245

http://dbpedia.org/class/yago/WikicatDocumentaryFilms 109 2105

http://dbpedia.org/class/yago/WikicatWarFilms 114 178

http://dbpedia.org/class/yago/WikicatPoliticalFilms 24 178

http://dbpedia.org/class/yago/WikicatTelevisionFilms 227 1652

http://dbpedia.org/class/yago/WikicatTelevisionActors 5200 248

http://dbpedia.org/class/yago/WikicatAmericanFilmActresses 7278 495

http://dbpedia.org/class/yago/WikicatVoiceActors 708 451

http://dbpedia.org/class/yago/WikicatChildActors 911 98

http://dbpedia.org/class/yago/WikicatMusicalTheatreActors 56 61

http://dbpedia.org/class/yago/WikicatVideoGameActors 17 98

http://dbpedia.org/class/yago/WikicatStageActors 209 2119

http://dbpedia.org/class/yago/WikicatAmericanActors 8823 964

(14951 × 14951 × 2,767,822 × 52). We use CP [16,30] based 4th-order Tensor
Factorization for the latent factor generation, and use CP-ALS algorithm [19,21,
33] for computing tensor factorization. Since domain information is not depended
in one other dimension of the tensor, we use 4th order tensor factorization instead
of using Coupled Matrix Tensor Factorization (CMTF) [8,9]. We also apply
non-negativity constrain [35] for effectively interpreting factor components from
tensor factorization.

We demonstrate the benefits of our approach in the context of fine-grained
entity type inference with experiments on a large-scale KG DBpedia by pro-
ducing a large number of resources indifferent fine-grained entity types for con-
necting them to DBpedia type classes. Some new resources unidentified in Film
domain in DBpedia are listed in Table 3. In Table 3, new identified entities for

http://dbpedia.org/class/yago/WikicatAmericanFilmActors
http://dbpedia.org/class/yago/WikicatTelevisionActors
http://dbpedia.org/class/yago/WikicatFilmDirectors
http://dbpedia.org/class/yago/WikicatFilmsByAmericanDirectors
http://dbpedia.org/class/yago/WikicatFilmProducers
http://dbpedia.org/class/yago/WikicatActionFilms
http://dbpedia.org/class/yago/WikicatAdventureFilms
http://dbpedia.org/class/yago/WikicatComedyFilms
http://dbpedia.org/class/yago/WikicatHorrorFilms
http://dbpedia.org/class/yago/WikicatDramaFilms
http://dbpedia.org/class/yago/WikicatCrimeFilms
http://dbpedia.org/class/yago/WikicatMysteryFilms
http://dbpedia.org/class/yago/WikicatMusicalFilms
http://dbpedia.org/class/yago/WikicatFantasyFilms
http://dbpedia.org/class/yago/WikicatScienceFictionFilms
http://dbpedia.org/class/yago/WikicatRomanceFilms
http://dbpedia.org/class/yago/WikicatThrillerFilms
http://dbpedia.org/class/yago/WikicatAnimatedFilms
http://dbpedia.org/class/yago/WikicatArtFilmss
http://dbpedia.org/class/yago/WikicatRomanticComedyFilms
http://dbpedia.org/class/yago/WikicatShortFilms
http://dbpedia.org/class/yago/WikicatDocumentaryFilms
http://dbpedia.org/class/yago/WikicatWarFilms
http://dbpedia.org/class/yago/WikicatPoliticalFilms
http://dbpedia.org/class/yago/WikicatTelevisionFilms
http://dbpedia.org/class/yago/WikicatTelevisionActors
http://dbpedia.org/class/yago/WikicatAmericanFilmActresses
http://dbpedia.org/class/yago/WikicatVoiceActors
http://dbpedia.org/class/yago/WikicatChildActors
http://dbpedia.org/class/yago/WikicatMusicalTheatreActors
http://dbpedia.org/class/yago/WikicatVideoGameActors
http://dbpedia.org/class/yago/WikicatStageActors
http://dbpedia.org/class/yago/WikicatAmericanActors
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fine grained types http://dbpedia.org/class/yago/WikicatAmericanFilmActors
http://dbpedia.org/class/yago/WikicatTelevisionActors and http://dbpedia.
org/class/yago/WikicatFilmDirectors are 9787; 5225 and 5225 respectfully.

4 Related Work

RESCAL [43] is the state-of-the-art method for link prediction and type infer-
ence in KGs that has been used for type inference on YAGO [7] entire KG [44].
This approach defines statistical models for modeling tensor representation of
binary relational data on KGs and explains triples via pairwise interactions of
latent features Though, YAGO one of the large scale KB in LOD cloud is fac-
torized with RESCAL and able to predict the likelihood of any of the 4.3 x 1014
possible triples in the YAGO 2 core ontology [44]; DBpedia is not yet modelled
with such latent factor model. Paulheim, H. and Bizer, C. proposed SDType
algorithm [46,47] a probabilistic method for predicting missing type of entities
in DBpedia. Their approach which is based on conditional probabilities, such
that predicts approximate types of entities by considering the observed types
of subjects and objects in a relation. For each relation, this approach uses the
statistical distribution of types in DBpedia based on the property of the subject
and object for assuming the types of entities. This approach heuristically suggest
that an entity should have certain types if it has certain relations connected to
other entities. For example, a statement like <Tom Hanks, starring, Inferno>,
this may give result that Tom Hanks is an actor [47].

Though, SDType algorithm has been applied to DBpedia and produced
meaningful results in predicting entities for generic (coarse-grained type) classes,
(such as actor, writer, or movie); in context to more specific (fine-grained types)
classes, (such as American film actor, science-fiction writer, or thriller movie)
this heuristic approach is not capable to produce meaningful results. This is
because, SDType uses relations between entities as indicators for types, and
relations between entities in DBpedia are coherently specific to generic entity
types whereas too general to more specific types. Considering previous example,
starring relations may be indicators for actor (generic type), however this is too
general for all sub-class types of actor (such as film actor, voice actor or tele-
vision actor) to indicate or distinguish. One recent state-of-the-art fine-grained
type entity inference approach [41] which mainly focus on the fine-grained type
entity inference task in the KGs via tensor factorization and probabilistic infer-
ence methods. First, it looks into the scope of utilizing embedded knowledge
inside the KGs that will be efficiently captured to the fine-grained type entity
inference task. Besides, it explores the advantages of using linked entity supple-
mentary information to this task by effective incorporation of additional data to
KGs. Furthermore, the use of similarity of entities in the KGs is also considered
to the fine-grained type entity inference task. Experimental results show that
this novel approach has achieved a significant improvement in the accuracy of
fine-grained types entity inference in a KG. We models entire DBpedia follow-
ing this tensor model based approach that learns latent embeddings for entities,

http://dbpedia.org/class/yago/WikicatAmericanFilmActors
http://dbpedia.org/class/yago/WikicatTelevisionActors
http://dbpedia.org/class/yago/WikicatFilmDirectors
http://dbpedia.org/class/yago/WikicatFilmDirectors
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relation-types and properties to automatically identify entities to be semanti-
cally interpretable by having fine-grained types for connecting them to DBpedia
classes.

5 Conclusion

The performance of Web search queries (in case of exploring lists and collections)
can be dramatically improved by defining large numbers of these fine-grained
entity types in KG. This paper models entire DBpedia with a approach based
on a tensor model that learns latent embeddings for entities, relation-types and
properties to automatically identify entities to be semantically interpretable by
having fine-grained types for connecting them to DBpedia classes. The key idea
behind of modelling and applying factorization method is that it uses three-
dimensional arrays (tensor) to represent DBpedia and obtain probabilistic like-
lihoods of type-relations existing between entities (objects) by applying tensor
factorization (TF) techniques on DBpedia. This paper proposes a novel way to
reduce the computer complexity for the large-size of the dataset, yet operate on
a representative subset there of is to use KG partition. Applying this algorithm
to DBpedia, we generate multiple samples of the coupled data with domain and
type, we fit a Coupled Matrix and Tensor Factorization (CMTF) model to each
sample and propose to simultaneous factorization by parallelization. We demon-
strate the benefits of this task in the context of fine-grained entity type inference
with experiments on a large-scale KG by producing 1.3 × 105 of resources in dif-
ferent fine-grained entity types for person entities from one sample in DBpedia.
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