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Abstract. Data replication among multiple IT systems is ubiquitous among large
organizations and keeping them running is a critical success factor for their IT
departments. When services are disrupted, IT administrators must be able to find
the faults and rectify them quickly. Due to the scale and complexity of the data
replication environment, the fault diagnostic effort is both tedious and laborious.
This paper proposes an approach to fault diagnosis of the data replication software
through deep reinforcement learning. Empirical results show that the new method
can identify and deduce the software faults quickly with high accuracy.

1 Introduction

Data replication is one of the essential IT services in a large organization where data is
distributed and shared to service various business needs, and these replicating services
are conducted by numerous commercial software which had been built for this purpose
at very low latency. Their uptime and service are critical to the business’ functions,
so ensuring that they are operating at an optimum level is important [1]. However,
software in a complex IT environment will face operational issues and faults that can
be attributed to various reasons such as issues arise from underlying operating systems,
network connectivity, permission, and many other causes [2]. The amount of effort to
troubleshoot and resolve any IT fault consume the bulk of any IT administrator’s work
time and it varied from a short period if the fault is easy to fix to long-duration where
the fault may require software vendors to develop bug fixes plus the cycle of product
acceptance testing. The extent of this will exacerbate when multiple faults are occurring
concurrently and there is a limited number of IT administrators available to handle the
job. The IT administrators’ manual hands-on effort is not well known for scalability for a
larger number of IT systems, coverage in the period of support throughout the period on
24 × 365. In addition to that, they are prone to fatigue, human errors, and slowness. The
capability of any IT administrator is also limited to their skills and experience including
other social or human conditions too. As the data replicating environment comprise of a
multitude of software and hardware technology, any single IT administrator will find it
difficult to maintain a certain expert level of expertise across multiple software domains
[3].
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We propose a novel method to conduct fault detection and diagnosis for the data
replicating setup using deep reinforcement learning. To our best knowledge, there is
no prior research on applying Machine learning for fault diagnostics in the field of
data replication for databases. The computational search space to align the combination
of information from the Data Replicating Environment (DRE) versus the possible root
cause is high and difficult. For any single fault detected, theremay be other various forms
of causes. Techniques like decision trees, Bayesian networks, or statistical methods are
commonly used in the industry to meet this need. The diagnostic models are customized
to the solution that they are intended for, and they are not readily modifiable to fit in new
changes nor interoperable with other software domains. We want our new solution to
be general-purpose enough to adapt to any software domain and with greater flexibility
and ability to expand its knowledgebase of diagnosing faults with ease.

2 Literature Review and Background

A common implementation of fault diagnosis with machine learning involves the acqui-
sition of signals or data, the perform feature extraction, or information infusion before
using machine learning models to perform pattern recognition to derive fault diagnosis
[4]. Another approach is the use of a convolutional neural network for better accuracy
in fault diagnosis for industrial’s permanent magnet synchronous motors in conjunction
with the analysis of generalized frequency response function for [5].

Deep neural networks are used prevalently in both academia and industry for the
system’s fault diagnosis across different domains. But there are some shortcomings
that researchers have identified in the use of NN for this approach and they are; 1) the
complexity of mapping relationship between data and outcome of faults for complex,
non-linear systems, 2) the availability of labelled data and high quality extracted features
for the model training, 3) the configuration of the neural networks models need frequent
retraining, reconfiguration and optimization to keep them relevant [6].

The authors use Reinforcement Learning (RL) to diagnose the ball bearing faults in a
motor, by acquiring the signals from monitoring meters set against various components
within the motor and use Neural Network (NN) to predict the outcome [7]. The outcome
is compared against a set of labelled data that has been predetermined to gauge the
quality of their predictions. A q-table is built between the detected motor’s conditions
and the outcome of the predictions during training, which is used by the agent during its
knowledge exploitation phase. Another research [8] followed a similar approach with
a signal band filter in its fault determination criteria on signals data gained from rotary
machinery motors. These are initial research conducted in using deep reinforcement
learning for motor machine fault diagnosis and we observed that the application has
several features; it is an enclosed system with minimum or no direct interaction with
external entities. All the data input are signals from monitoring meters set around the
motor, and the data acquired are explicit homogeneous. There is a set of prelabelled data
that the RL’s NN can refer to. However, in a complex IT system environment, it is an
open system with many interfacing components and the data received for fault diagnosis
are heterogeneous in data type, categories, frequency of occurrence and status usage. It
requires an additional set of data manipulation and a new design before RL can be used



Adaptive Fault Diagnosis for Data Replication Systems 127

for this intent. The authors in [9] used RL for fault diagnosis on a virtualized network in
the cloud service, acquiring inputs from a list of subsystems within the Virtual Machine
(VM) networks and map to state-attribute vectors. It used an external entity to validate
the attributes in response to the state. The attributes are regarded as the diagnosed faults
and are manually mapped to external actions to remediate them. This gives rise to the
inspiration of a similar approach for this paper, but the main difference is in the setup of
the diagnosis validation module where we use a script-based approach as compared to
the manual mode in this research [9].

The current commonmethodof implementing fault diagnosis for complex IT systems
for both academia and industry is to usemachine learningmodels such asRandomForests
or Bayesian Network [10]. Both require well-designed models that are specifically tai-
lored to the intended IT systems where the fault detection and diagnosis procedures need
to be performed. The premise for the design of such complex and well-defined Fault
Detection and Diagnosis (FDD) model has complete knowledge of every sub-system,
components, relationship, and operations including data exchange in the IT system. The
limitation with this approach is that every implementation of these complex IT systems
is not generic and are tailored to specific business IT requirement [11]. So, having a
rigid and well-defined FDD agent will not have the adaptiveness nor flexibility to meet
the range of different system setup. It will require numerous customization which is
time-consuming and laborious.

What is required here is a new approach where the FDDmodel can be made general-
purpose enough to suit any combination of software for the IT systems; be it database,
web application, firewall, or network. It should minimize unnecessary steps of detailed
check procedures and able to deduce the diagnosis quickly simply by looking at the
symptoms and refer to its knowledge just an experienced IT administrator. It should be
flexible to extend or correct its existing model to cover any new alteration that occurs in
the IT system’s environment. In another word, we relate the new FDD model as a new
mechanic apprentice that need to learn on the job to perform the checks and deduce the
faults from the gathered information under the guidance of his supervisor. We expect
it to learn in both detecting and diagnosing adaptively, starting from an early stage
where it will do extensive checks on every aspect of the IT system, but once it reaches
a certain level of maturity, it should be able to determine from its expert knowledge
that the certain symptoms or events exhibited in the IT system can be related to certain
sub-domain of the system’s setup with great confidence, similar to the skill difference
between an inexperienced and an expert IT administrator.

3 Adaptive Fault Diagnosis (FD) Module Design

Deep Reinforcement Learning (DRL) [12] is used in performing the fault diagnosis
against the Data Replication Environment (DRE) with the objective of an intelligent
system that can emulate the learning and work process that is similar to a junior IT
administrator in managing a system related problem. Figure 1 shows an overview of the
FDDmodel. As an individual that is receiving on-the-job training, it will learn initially to
analyze every aspect of the DRE and gather all the related information. It also starts with
a little or no prior knowledge on the relationship between information and diagnostic
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conclusions, it interacts with its supervisor or someone with expert domain knowledge,
receiving guidance and information to derive the diagnosis. This iteration carries on
and the FDD will build up its knowledge slowly, and when it has sufficient knowhows
on the environment, it can derive an accurate deduction of the fault just by looking at
the environment’s symptoms without going through all the unnecessary and unrelated
system checks [12]. The justification for using DRL for supporting the fault diagnosis
is mentioned in problem definition, while these routines can be easily performed by
hardcoded, well-defined models, the scope for these groups of software fault diagnostic
system cannot be fixed. They must be flexible to cater to different fault scenarios and
grow to cover other forms of the software system that can be rolled under the FD’s
management. A series of data collection points are established to ingest and process
the information from the DRE before sending it to the FDR’s DRL unit [13]. Once
the agent has determined that there is a need to investigate, it will launch a series of
queries to acquire more details from the environment for its fault analysis and diagnostic
routine until it can reach a point where it can either deduce the root cause or listed
it as an unknown error, which triggers another routine to notify the IT administrator
for assistance and input. The FDD model can be split into 3 modules: Information
Acquisition (IA), Diagnostic Reinforcement Learning (DRL), and System Diagnostic
(SD) as shown in Fig. 2 [12].

3.1 Information Acquisition (IA) Module

The availability of timely and accurate information from various software subsystems
of the DRE is important to the diagnostic analysis process and they come in three forms:
logs, metrics, and events. All the DRE’s software; Oracle Database (DB) [14], Shareplex
[15], and Operating System (OS) [16], produce information about their states constantly
and proactively into log files under the software’s respective product directories. They are
available in a well-defined format and provide enough information to support a system
diagnosis effort. For the metrics part, these are system or software statistics that can only
be obtained through explicit command queries via OS’ shells or their respective utility
tools. The third form is the events that logically describe the experiences from the users
or another depending system while interacting with the DRE. It is a brief description of
encountered service’s anomalies for the FDDcan refer to for investigation. An event such
as login failure, slow replication, data not found as some examples. Once the inputs have
been processed with all the mandatory details extracted out, they are used to represent
the system environment’s state to the DRL and as input into both the SD modules.

3.2 Diagnostic Reinforcement Learning (DRL) for FD Module

The FDDmodule uses the Actor-Critic Deep Reinforcement Learning algorithm (DRL)
[17, 18]. Referring to Fig. 2, in this setup, the DRL’s Actor is performing as a function
approximator that tries to predict the best action for a given state, and in this case, the
best diagnosis. The DRL’s Critic also takes in the DRE’ state-input plus the Actor’s
action, join them and output the action’s maximum future reward, Q-value, for the given
state-action. The Critic uses the SD module to validate and score the Actor’s action.
There are 3 phases of learnings for the DRL as shown in Fig. 3 [18].
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1) Early learning phase; where the agent has little a-prior knowledge about the DRE
at the start, so it needs to perform exploration by interacting with it through trial-
and-error. It passes the DRE’s states into the SD module as symptoms and the SD
module runs through all the diagnostics routine against the DRE’s software to gather
information about their attributes and service status. The SD module will then be
processed and summarised the acquired information to formulate a service diagnosis
matrix as shown in Eq. (1) [18].

DRE′s diagnosed service matrix =

⎡
⎢⎢⎣

sdbs1 srpl1 snet1 sose1
sdbs2 srpl2 snet2 sose2
. . . . . . . . . . . .

sdbsn srpln snetn sosen

⎤
⎥⎥⎦ (1)

2) Middle learning phase; after it has gathered enough knowledge about the DRE, the
DRL’s Actor learns to predict the best action-diagnosis against the environment’s
symptoms-states using its neural networkwhich has been trained by using the knowl-
edgebase gathered from the earlier learning phase as its minibatch. There is a high
chance that the NN will predict incorrectly, so in such an event, the RL’s Critic will
run the validation process through the SD module which corrects and assign the
Q-value to the state-action pairs and then store in the Q-table, as well as updating
the knowledgebase. The gradual built-up of the knowledgebase will improve DRL’s
NN prediction accuracy [18].

3) High learning phase. By this stage, the DRL agent would have learned all the states
- symptoms that may associate with the faults in the DRE and can predict the best
actions-diagnosis with high accuracy. This is regarded as the exploitation of the
DRL’s rich build-up of knowledge where it can provide a very quick turnaround time
in identifying the faults’ matrix without performing excessive checks or validation
through the SDmodule. But during this period, the agent also performs a probability-
based decision between exploitation versus exploration; Exploitationwhere theDRL
decided to refer to its knowledgebase to respond the best action for the DRE’s state,
Exploration where DRL’s decide to run all the detailed checks through SD module
and get the diagnosis instead of relying on the NN’s prediction. At the start of
the learning cycle, the probability for exploration will be high at the low learning
phase but this diminishes over time when it reaches the high learning phase, where
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the exploration rate has decayed over iterations and the preference is shifting more
toward knowledge exploitation [18].

3.3 System Diagnostic (SD) Module

The DRE comprise of different software and technology working together to provide the
service [19]. Each software and technology have a unique list of configuration, checks,
operations, and attributes. So, the SD Module has several groups of check routines that
target this software, and within each group are sub-routines that query specific areas
in the software like privileges, permission, process status, usage statistics, and others.
Referring to Fig. 2, the DRL agent gives instructions to the SD module to do the checks
against DRE’s environment, ranging from comprehensive top-down checks or a few
selective ones. This is on par with the analogy of junior workers that need to perform
every check just to make sure, or a senior worker who can deduce roughly which exact
area that has to be verified before deducing the root cause. The SDmodule then performs
the detailed checks by running a long list of command queries and scripts against the
DRE’s software. Some of the details collected are the 1) states of their system processes,
2) space availability of directories in which the systems’ binary files reside on and their
information are processed, 3) current privileges of the system’s process, files, accounts
that they operate from, 4) details in their configurations and parameters that they are
using, operating or initialize from, 5) network connectivity that is required for their
operation, 6) statistics of specific operations like process backlogs, connectivity delays,
abnormal system values. Others contain a summary of software-wide statistics which
range in the thousands. The result is then consolidated as shown in Table 1 and sent back
to the RL agent. It is a matrix that presents the multiple sub-area under the DRE across
different software about their functional status from a high-level perspective. Further
details can be made available from the diagnostic module upon request, but the vast
amount of details will be too overwhelming for its administrators to go through. The
following is a tabulation of the output which each command performing the specific
information extraction from the various software.

The SD provides its diagnosed results of the DRE’s software status on the partic-
ipating server hosts, n, at their service group level instead of the technical attributes.
This is to give an overview of the DRE software’s availability from a general adminis-
trative perspective; taking into consideration their 1) process availability, 2) filesystem’s
attributes and permission, 3) responsiveness to administrative interaction, 4) communi-
cation functionality, 5) data transfer and input-output capability plus 6) software’s func-
tion and operation status. The vast specific software details can be made available and
they will be connected to the future Fault Resolution agent. The four diagnosed service
groups are as followed and in the matrix in Eq. (1); Database service, sdbsn, Shareplex
replication service, srpln, Network and communication services, snetn,,supporting the
OS environment, sosen.

4 Data Replication Environment (DRE)’s State Representation

For the DRE [18], it is hard to define its state due to its complex multi-tier software
setup and the characteristics of the IT applications under its service. A direct method
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is needed to identify a state in a database without time properties. Each software’s
operation information is mined continuously for anomalies and errors. We propose the
use of a matrix to capture a list of the events and processes’ status of the DRE’s software
across multiple sources and target instances, n. Therefore, the two sections in the state’s
matrix contain both information from both their logs and process status. For the logs,
the attributes are a numerical representation of the encountered error messages in their
respective logs, which are concatenated to 10 characters long and hashed using Secure
Hash Algorithm 1 (SHA1). The following is the list of the software’s logs location and
their respective variables assigned.

1. Oracle database’s alert logs with the prefix of ORA-XXX, files exist in the location;
$ORACLE_BASE/diag/rdbms/DB1/trace/alert_DB1.log, as oralogn.

2. Shareplex replication’s event_logs with the initial string of “Error”, files available
in the location at; $VARDIR/log/event_log, as splxlogn.

3. Network-related Listener’s logs with the prefix of LSNR-XXX, available in
$ORACLE_HOME/diag/network/log/.log as nwlogn.

4. OS’s error with the string, err, in /var/log/syslog, as oslogn.

For the process’s status, the status shows the presence of the DRE’s software main
processes in the VM host’s background as well as the reachability of remote VM from
the current VM. The representations are 1) Oracle DB’s primary process, smon, as oras-
tatn. 2) Shareplex replication’s main process, sp_cop, as splxstatn. 3) Oracle’s listener’s
processes and network, lsnrctl, as nwstatn. 4) Ping status from both UNIX nodes to
one another, as osstatn. The services under the different software are represented as; 1)
Oracle DB’s as orasvcn. 2) Shareplex replication as splxsvcn. 3) Oracle’s listener and
network, as nwsvcn. 4) Operating system and host’s, as ossvcn.

Therefore, the final matrix to represent the DRE’s state in Eq. (2).

DRE′s state =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

oralog1
oralog2
splxlog1
splxlog2
nwlog1
nwlog2
oslog1
oslog2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

orastat1
orastat2
splxstat1
splxstat2
nwstat1
nwstat2
osstat1
osstat2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

orasvc1
orasvc2
splxsvc1
splxsvc2
nwsvc1
nwsvc2
ossvc1
ossvc2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Table 1 describes the specific software validation and checks that need to be per-
formed to acquire the DRE’ collective status together with the associated details that
depict their respective software components including the checks are performed against
them. Each of the software is checked by different OS scripts which have encapsulated
commands to interrogate them on their respective service groups of logs, processes,
and services. For various software logs check, the scripts are check_alert_log_err.sh,
check_event_log_err.sh, check_os_log_err.sh on OracleDB with listener, Shareplex and
OS. As for all the DRE’s software processes checks, check_all_processes.sh will handle
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Table 1. Subsets of memory and logs checks

DRE’s software Service Group checks Software attribute Detail checks/description
OracleDB Process check Process’ stats DBs’ memory process in the OS

Process check Operation’s stats DB’s mode of operation
Service check Tablespace’s stats Tablespaces have enough space on DBs
…………….

Shareplex Service check Parameter setting parameters are valid in Shareplex instances
Process check
Service check

Process’s Status and operation Shareplex’s memory process in the OS

……………..
Network Process check Listener Process stats Oracle’s listener process on both nodes

Process check, Service check Listener.ora availability, and stats Listeners’ availability for service on both nodes
Process check, Service check Listener’s stats – error or available Listeners’ operations are valid and not in error
……….

OS Service check Disk space Free space availability on OS for both nodes
Service check Primary conf files Validate /etc/passwd, /etc/shadow, /etc/hosts, /etc/group files
Process check Network card operation Network card status and availability
….

this. The last group check is done by check_all_services.sh which validates their specific
services.

5 DRE’s Action of Diagnostic Prediction

The DRE’s state information from the previous section are the summarised raw input
which the FDR takes in, and part of its diagnostic routine is to show its ability to predict or
estimate the possible faults with theDRE’s software,much like an experiencedmechanic
that can pinpoint the fault with a car based on the symptoms described by the owner
[18]. Part of the outcome of the FDR is to produce the diagnostics report that shows
the status of the DRE’s operation at a high service level which indicates the software’s
respective sub-group and level of errors it has, in respect to the DRE’s environment state.
The outcome is a series of tuples that signify the status or condition of the software group
and their sub-group services in the arrangement of<software_typ> and<software_sub-
service_grp>. Their statuses are derived from a custom-built script which contains a list
of OS commands that extract and aggregate all the statistics from the various DRE
software into their respective sub-system service groups, as a mean to show the service
outage based on the state’s matrix from the environment in the previous chapter. The
process of showing the service-level exceptions will be later handled by the DRL’s NN.

DRE’s service level diagnosis = {dba, dbb, dbc, dbd, spa, spb, spc, spd, spe, spf,
nwa, nwb, nwc, osa, osb, osc, osd}.

Where,

1. forOracleDB, dba=DB’smemory process, dbb=DB’s Status, dbc=DB’sAccount
security, dbd = DB’s storage space.

2. for Shareplex, spa = Splx’s main processes, spb = splx’s console availability, spc
= splx’s queues operation, spd = splx’s configuration validity, spe = splx’s queues’
backlogs, spf = Splx’s DB accessibility.

3. for the networks, nwa=Network connectivity of Databases’ listeners, nwb= Splx’s
network connectivity, nwc = VM hosts interconnectivities.
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4. for the OS, osa = hosts’ OS unix account status, osb = hosts’ file storage space, osc
= hosts’ network card status, osd = hosts’ resource availability.

6 Empirical Analysis

This section describes the tests conducted for theFDmodule. The purpose of experiments
is to determine the effectiveness of the proposed FD method in producing the best
diagnosis for the DRE under simulated faults situation [18]. Before each experiment’s
iteration, the testing environment DRE’s services are restored to the baseline where all
the DRE’s services are functioning normally. Not all errors introduced can result in
a service’s disruption. The goal is to ascertain the diagnosis on those faults that can
disrupt the services and less toward those that are either too minor or ineffective to cause
major issues to the replication services. However, the test scope is limited to faults that
are recoverable and not on catastrophic failure, which is irrecoverable and can only be
solved by an entire system rebuild.

6.1 The Experimental Set-Up

The experiments are run on two Virtual Machines running on Linux OS and both have
Oracle DB and Shareplex installed on them. Each VM has 4 GB of RAM with 100 GB
of hard disk storage. The version of the Oracle software is 12 Enterprise edition and
the 9.1 for the Shareplex. The network protocol that both VMs use is TCPIP. For the
DBs, the simulated faults will impact Oracle’s primary memory process such as SMON
and PMON. Any failure of either one of these processes will cause the DB service
to stop. The script will do a root level kill to simulate the DB outage and a start-up
command is required via DB’s admin level is required in restoring it. The fault-inducing
and correcting scripts will modify the user account status to be in open or locked mode.
The Shareplex also require a user account to have a list of DB level privilege to function,
so some scripts simulate the absence and presence of these privileges from the accounts.
Likewise, for the schema objects that the user account owns and access; the Shareplex
created a list of DB objects under the user account during installation and it continues
to use them for its operation. Should there be any changes to their accessibility to the
user account of the validity of the object, it will cause Shareplex to malfunction. Scripts
are written to simulate this error too. Another factor to note is the availability of free
space within DB for the Shareplex to operate on. If there is insufficient space, then
Shareplex will not be able to write data into the DB and that results in the suspension
of its service. Some scripts constrict and free up the storage space. For the Shareplex’s
fault simulation, it follows a similar pattern as the DB, with the focus on their instance’s
primary processes that run on the OS. Their service disruption and restoration are done
by scripts that execute system-level commands against their console.

As for the network inter-connectivity, there are two main areas in which the fault
can be induced for this setup; 1) the connection via the TCPIP protocol at the OS level
between the two VM hosts and, 2) the ability of the software’s client to connect to the
current and remote DBs through the oracle’s network grid which comprises of listener
services, OCI library, and oracle-related network files setup. The scripts that perform the
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opposing functions of faults induction and restoration target the network card’s status,
the listener process availability and status, the presence and validity of the network
configuration files, as well as the OS’ network files under the /etc. folders.

For the OS, the emphasis here is on 1) the Unix user accounts that Oracle and
Shareplex need to use throughout their services, 2) the availability of free space on the
disk partitions that their home and operational directories are installed on, 3) the resource
availability in the OS which both Oracle and Shareplex can operate under and 3) status
of the network card. For each of the software’s core functionalities, two of its attributes
will be assessed and ametric is associated with it which measures its service’s normality.
A value of 0 indicates a normal state whereas>0 indicates an abnormality. Table 2 lists
all the software components and the respective commands that can simulate and restore
their faults.

However, the test does not include malicious or terminal faults to the software if they
are either irreversible or require a substantial amount of effort to restore them. Examples
of such faults are the corruption or deletion of the software’s binaries or libraries, deletion
of DB’s repository, file-based data store and erasure of OS’ disk mount-point. The neural
network that the RL used for its rewards-action prediction is made up of 3 hidden layers
of 30 nodes. It is trained with data in 50 batches and 500 epochs. Different configurations
and combinations of neural networks have been tested, and this setup was selected based
on the better results with the least fluctuations.

6.2 True Negative Test Results

Besides the data are obtained from the faults inducing scripts in the previous section,
another group of scripts has been created to induce software faults that have no impact
on their DRE’s software functionalities and services. This is to form the set of true
negative data to support and enrich the dataset for the NN’s training so that the NN can
be competent enough to recognize and differentiate the environment’s state data that can
cause service disruption or not.

For the script to induce this group of faults, research has beenmade across the DRE’s
software to identify those faults that have a high chance of occurring but they don’t have
a direct consequential effect that can either disrupt the entire software’s stability or create
outage on the DRE’s functionalities. This is verified by the SD module which confirms
the presence of any service disruption. For this group, the service disruption matrix
values should all be zero. Once these faults are induced, the software will capture their
exceptions and events in their event or trace logs, which in turn are detected by the FD
module.

6.3 Evaluation Criteria and Benchmarking

This section describes how the FDmodule is evaluated and the criteria used in its assess-
ment. The faults statistics cover the four main DRE’s software; Database, Replication,
Network, operating system, and service level are represented by a vector with each ele-
ment representing the service. And within each element is a scalar value from 0 to 1,
values that are >0 indicate the faults’ severity whereas 0 is when every component is
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Table 2. Faults induction and restoration on DRE software’s component services (service status
flag: 0 – good, 1 – faults)

Software Component/services Target for faults Fault inducing action Service restoring
action

Databases Memory process PMON, SMON
processes availability

Kill off PMON
process
Kill off SMON
process

Start oracle instance
(which start both
PMON and SMON)

Status DB operational and
service status

Shutdown and start
in mount mode

Open DB for use

Account security DB’s System and splx
accounts’ status
Splx has quota on splx
tablespace

Lock up system and
splx DB account
Splx user has no
quota on tablespace
to write

Unlock system and
splx DB user account
Splx has quota to
write on tablespace

DB storage space Amount of free space
in system and splx
tablespaces

Shrink tablespace to
100% full

Increase tablespace
space to have 20% of
free space

Shareplex replication Mmain processes Shareplex main
processes availability
Sp_cop, Capture,
Read, Exp, Imp, Post
processes

Kill off individual
processes

Restart sp_cop to
resume all processes

Queues’ operation Capture, Export,
Import, Post and
Read’s queues

Stop the queues’
operations

Start the queues’
operations

DB accessibility DB connection using
splx Unix account
from current and
opposite VM hosts

Lock DB user
account

Unlock DB user
account

Network connectivity Oracle listeners Source & target
Listeners
Source & target host
connect to target DB
via sqlplus

Stop the listener
process to stop user
from connecting to
on-site DBs

Start the listener
process to allow user
to connect to on-site
DBs

Oracle network files Essential files
availability;
tnsnames.ora,
listener.ora

Delete off network
files

Restore network files

VM hosts Each VM host can
reach the opposite
node

Disable sshd service Enable sshd service

Host OS Unix account status splx and oracle’s Unix
accounts

Lock the Unix user
accounts

Unlock the Unix user
accounts

Essential OS system
files

Essential Unix files
like /etc./hosts

Delete the /etc./hosts
file

Restore /etc./hosts file

Network card status Network service on
enps03network cards
on both hosts

Disable network card Enable network card

operating normally. This forms the basis for the primary evaluation criteria. The sta-
tistical differences among fault diagnosis of DRE’s states can indicate the progress of
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the DRE’s overall service of whether they are improving or degrading. Each diagnosis
is correlated to the detailed diagnostic statistics that were generated by the FD module
which will be vital for the next module of fault resolution.

6.4 Test Results

This section described the results obtained from the FD module after it completed the
training and subjected to the evaluation test processes. By this stage, the FD module
has been trained thoroughly and it is regarded to be equivalent to achieving the expert
level of fault diagnostic capability. The minimum expectation of its prediction accuracy
internally is expected to reach 85% accuracy and more. A sample of the DRE’s states,
including both the predicted and actual service outage results, are shown in Table 3;
1) The DRE state data are derived from the information gathered against the DRE’s
software components from their logs, internal system statistics, and monitoring after
simulating fault are induced. 2) The FD module predicted the service outage results
after it received the DRE input based on its learned NN. 3) The SDmodule produced the
real detailed results by running a list of diagnostic routines against the DRE environment
to derive and aggregate the actual statistics. 4) The classification of the outage results is
derived by comparing the sum of the predicted results’ values against the actual service
outage results. 5) The MASE score is calculated based on the difference in the vectors’
values between the predicted and actual results.

Table 3. Results of service outage prediction & scores against DRE’s state

DRE State Service outage Predicted Service outage Actual with rounding Classes MASE
[0,64655058,76223968,0,0,0,0,64351381] 
[1,0,1,0,0,0,0,0] [1,0,0,0,0,0,0,0]

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0,0,0,
0,0],[0,0,0,0,0,0]]

[[6,1,0,1,3,1],[2,2,1,1,0,0],[1,0,0,0,0,0],[0,0
,0,0,0,0],[0,0,0,0,0,0]]

TP 0.6

[46968001,0,0,0,0,0,0,64351381] 
[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0,0,0,
0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0
,0,0,0,0],[0,0,0,0,0,0]]

TP 0.3

[46968001,0,0,0,0,0,0,64351381] 
[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0,0,0,
0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0
,0,0,0,0],[0,0,0,0,0,0]]

TP 0.2

[46968001,0,0,0,0,0,0,0] [0,0,1,0,0,0,0,0] 
[0,0,0,0,0,0,0,0]

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,
0,0],[0,0,0,0,0,0]]

[[6,1,0,1,3,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0
,0,0,0,0],[0,0,0,0,0,0]]

TP 0.1

[46968001,0,0,0,0,0,0,64351381] 
[0,1,0,0,0,0,0,0] [0,1,0,0,0,0,0,0]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0,0,0,
0,0],[0,0,0,0,0,0]]

[[0,0,0,1,0,2],[2,2,2,1,0,0],[1,0,0,0,0,0],[0,0
,0,0,0,0],[0,0,0,0,0,0]]

TP 0.6

…. …. …. … ….

6.5 Service Outage Classification Results

The test is conducted with a list fault inducing scripts with 80 entries. 30 of them have a
direct effect on the software’s functionalities which impact the DRE’s software services,
and 50 of them do not. It is expected that the FD module can predict accurately for
both groups. The results are split into qualitative and quantitative groups. Table 4 is the
tabulation of the prediction’s result classes in a confusionmatrix. The results showed that
the SD module can predict the group of service outage to the information received from
the DRE’s environment. While it has high capability in recognizing most of the induced
faults that can affect the DRE’s software functionalities, it fair less when it comes to
the detection of those in the other groups. Based on the result, the FD’s sensitivity is
0.355, specificity is 0.645, precision is 0.871. The SD module has shown to be accurate
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Table 4. Confusion matrix of the
classification of the service outage’s prediction

N = 80 Predicted: yes Predicted: no

Actual: yes 27(TP) 4(FN)

Actual: no 1(FP) 49(TN)
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Fig. 3. MASE score of True and positive
predicted results

enough that its prediction can produce the correct category of service outage for the
given environment state’s data input. It has the competency to differentiate if the inputs
are related to DRE’s service functionalities.

6.6 Service Outage’s Prediction Accuracy

For this test, The SD module forms the baseline in which the FD’s predictions are
measured against. Each value in the service outage results produced by both the FD and
SD is calculated using the Mean Square Error approach, and they are summed up to
form the total overall degree of accuracy for the SD. The results are shown in the chart
in Fig. 3. Based on the results, the accuracy is below the mark of 0.3 and below except
for one entry that scored 0.6. This can be since this is a DRL based Fault diagnosis that
learns adaptively with the environment. While it is experienced to recognize the fault
scenario that it was had trained for. However, for new and unfamiliar ones, it has some
deviations. One possible solution is to enable more iterations of exposure for the SD
module’s DRL to learn more about the true positive and negative of DRE’s scenario.
However, the list of potential faults that can affect DRE is controlled and limited, the
next possible solution is to expose the NN to the more true-negative class scenario which
does not impact the DRE. This has more potential to be generated in greater volumes
and can assist in enriching NN’s training dataset.

7 Conclusion

The FD module has been proven that it be able to produce the outcome of the service
outage based on the DRE’s state information with good accuracy. It made use of the
model-free actor-criticDeepReinforcement learning to learn against theData replication
setup predict the outage gradually as it interacts with it and learns with the help of the SD
module that corrects its prediction. It is adaptive to the DRE and available to configure to
support heterogeneous platforms and software without restriction to the data replication
architecture.
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