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Abstract. The motor imagery brain-computer interface uses the human
brain intention to achieve better control. The main technical problems
are feature representation and classification of signal features for spe-
cific thinking activities. Inspired by the structure and function of the
human brain, we construct a neural computing model to explore the
critical issues in the representation and real-time recognition of the state
of specific thinking activities. In consideration of the physiological struc-
ture and the information processing process of the brain, we construct a
multi-scale cascaded Conv-GRU model and extract high-resolution fea-
ture information from the dual spatio-temporal dimension, effectively
removing signal noise, improving the signal-to-noise ratio, and reducing
information loss. Extensive experiments demonstrate that our model has
a low dependence on training data size and outperforms state-of-the-art
multi-intention recognition methods.

Keywords: Brain-computer interface · Motor imagery ·
Electroencephalography · Intention recognition

1 Introduction

Brain-computer interface (BCI) can convert neuron activities into signals, thus
providing the possibility for discovering the correlation between brain activi-
ties and human behaviors. The electroencephalography (EEG) collected by BCI
records brain activities with electrophysiological indicators. During brain activ-
ity, the sum of postsynaptic potentials is generated synchronously by a large
number of neurons. This process records the electrical wave changes during brain
activity, reflecting the electrophysiological activities of brain nerve cells in the
cerebral cortex or on scalp surface. By analyzing and modeling EEG signals,
such models could be applied to clinical practice such as EEG signal-controlled
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wheelchairs [8], brain wavelet-controlled exoskeleton [9], brain-controlled hearing
aid [10], biomedical implant antennas [1], and motor function recovery during
rehabilitation [6]. Other application fields include smart living [27], and speech
synthesis [3], etc. Through BCI technology, external devices can read brain nerve
signals and convert thinking activities into command signals to realize the human
mind control. As a result, EEG based intention recognition has been widely stud-
ied in recent years and has become one of the most important research topics in
pattern recognition.

1.1 Motivation

In EEG signal analysis, the EEG signal segment includes different frequency
bands, each with different degrees of correlation with specific brain activity.
Specifically, the frequency band represents brain state and qualitative assessment
of awareness; the whole band is between 0.5 Hz to 28 Hz [12]. This interval signal
can be decomposed into six types of waves, i.e., Delta, Theta, Alpha, Beta1,
Beta2, and Beta3. These waves record the characteristics of the motor or sensory
nerve action potentials. Among them, the Alpha wave fluctuates in the state
of eyes closed and relaxation, while the Beta wave is closely related to motion
behavior and attenuation of motion [24]. Different noise levels distribute in these
frequency bands, requiring to be removed via adequate measures. Using and
separating multiple waves can help to capture correlations between waves and
significant features [13,15,16]. On the other hand, extracting the correlations of
temporal and spatial features in all signal bands will improve the performance
of intention recognition [25]. On this basis, data flow visualization can help to
better understand the whole process of brain activity [4]. However, the factors
mentioned above have not been fully taken into account when performing motion
intention recognition.

1.2 Challenges

EEG based intention recognition developed rapidly and achieved specific grat-
ifying results. Nevertheless, due to technical limitations, there are still some
challenges:

– The brain signals are easily disrupted by a variety of biological signals and
environmental artifacts.

– Due to the non-stationary characteristics of electrophysiological brain signals,
the raw EEG signals have a low signal-to-noise ratio (SNR).

– Existing machine learning studies focus on static data, so it is impossible to
classify rapidly changing brain signals accurately.

1.3 Solution

To overcome these challenges, we take temporal features in multivariate time
series and spatial information into our consideration during feature representa-
tion and develop a model for multi-intention recognition (Fig. 1). To be more
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specific, we decompose mixed EEG signal collected with each electrode into sig-
nals at frequency bands to reduce noise caused by other frequency ranges and
slice the signal series of multiple electrodes into matrices with a sliding win-
dow. For filtered EEG arrays, the image mapping layer is utilized for processing
EEG arrays into visual images. Finally, we propose multi-scale cascaded Conv-
GRU networks (MCG) for image learning with spatio-temporal information. The
architecture of the neural network consists of another two parts, i.e., cascaded
CNN (convolutional neural network) and GRU (gated recurrent unit), which are
used to learn spatio-temporal characteristics, respectively. The multi-intention
recognition of dynamic data streams can be effectively solved in this way.

Fig. 1. The workflow of the proposed model MCG.

2 Related Work

Intention recognition can be treated as a classification problem, predicting mul-
tiple and subjective human intentions based on EEG traces, rather than actions
triggered by events or environment.

Deep learning has been successfully applied in many recognition tasks corre-
sponding to various types of data such as image, video, speech, and text [11,20].
These methods can also be migrated to the task of EEG signal detection. For
example, Alomari et al. [2] use a wireless EEG headset as a remote control for
a personal computer’s mouse cursor. Moreover, in their method, SVM is used
for a binary classification task. Kim et al. [13] obtain the Mu and Beta rhythms
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from the nonlinear EEG signals and perform prediction using a random forest
classifier. Zhang et al. [26] apply deep recurrent neural networks on EEG data
and improve performance in multiple classification tasks. At present, the classic
solution and EEG state recognition technology are respectively used to select
features of continuous-time series and distinguish manifolds between learning
states through supervised learning [14]. In BCI systems, processing dynamic
data flows often require feature representation with spatio-temporal clues. Mod-
eling the correlations between EEG wavelets and multiple intentions and the
problem of multi-intention recognition on dynamical data streams are not well
solved yet.

A lot of research has adopted CNN for classification on single-channel EEG
[21,23]. At the same time, the feature mapping needs to communicate the
complexity of the information without losing original richness or depth. Many
successful cases apply ConvNets (convolutional neural networks) to distinguish
pathological records from normal EEG recordings in the Temple University Hos-
pital EEG Abnormal Corpus. Furthermore, visualization of the ConvNet decod-
ing behavior shows that they use spectral power changes in Delta (0–4 Hz) and
Theta (4–8 Hz) frequency ranges [17]. Similar work has been performed based on
deep ConvNets to improve decoding errors in EEG signals of human observers
[5]. Among the visual researches of high-dimensional EEG data, many methods
visualize data as snapshots or sequential images showing the changing trend by
time-lapse method [4]. However, most of the mapping methods in these work use
more types of waves, which, to a certain extent, increase the complexity of the
method and waste more resources.

3 Method

This section will describe the proposed model multi-scale cascaded Conv-GRU in
detail, which is further divided into three parts: data acquisition, image mapping
layer, and architecture of neural network.

3.1 Data Acquisition

The EEG signals in this paper are based on the BCI system and collected with
a 64/14 electrodes headset. The design of data pretreatment is based on the
EEG source data. Specifically, once the subject’s action command is given, the
64/14 electrodes will pick up brain signals that reflect the brain activities of
different areas. Once a subject generates an intention in mind, the electrodes
will pick up voltage fluctuations that reflect multiple brain activities. The voltage
values from the scalp will be continuously captured by 64-channel or 14-channel
electrode sensors. EEG reading can be represented with a n-dimensional vector
Rt = [r1t , r2t , ..., rn

t ], where the ri
t is the reading of ith electrode sensor at time

step t, it can be seen as 1D vector with a certain amount of noise.
It is commonly known that EEG signals can also be divided into multiple

data streams according to frequency ranges, with each band having biological
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significance [9,22]. The EEG signals consist of multiple time series corresponding
to the measurements at different frequency bands [7]. The EEG signal can be
quantified in the frequency range from 0.5 Hz to 28 Hz [5]. The raw EEG signal
in ri

t can be segmented into different categories of bandwidth c, where c =
(δ, θ, α, β). This study focuses on two frequency bands from 8 Hz to 28 Hz, i.e.,
α and β.

Next, we will define the sliding window that further divides the filtered data.
To begins with, we need to ensure the maximum value of the possible window
scale. As the data in the EEGMMIDB dataset was collected from 64 electrodes,
the sliding window dimension is set as [64, 1] with sliding step size 1 here. The
data slices are generated along the time axis, and the resulting data matrix is
named a sliding matrix here. Finally, we can get N matrices with spatio-temporal
characteristics from the raw data in this way. The data segment is created as
follows:

S = [st, st+1, ..., st+N−1] (1)

st =

⎡
⎢⎢⎢⎣

r1t
r2t
...

r64t

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

rα,1
t rβ,1

t rraw,1
t

rα,2
t rβ,2

t rraw,2
t

...
...

...
rα,64
t rβ,64

t rraw,64
t

⎤
⎥⎥⎥⎦ (2)

where Sj is the jth data segment at time step t + j − 1, ∀j ∈ [1...N ]; each
electrode ri

t corresponds to three readings (say [rα,i
t , rβ,i

t , rraw,i
t ]) at time t, as

the filtering operation is adopted.

3.2 Image Mapping Layer

We convert the spatial distribution of electrodes in three-dimensional space
into coordinates in two-dimensional space while preserving the relative distance
between adjacent electrodes, as shown in Fig. 2. Specifically, this two-dimensional
space is a 32 × 32 mesh, where each pixel in the mesh is superimposed by three
channels, and each channel corresponds to a selected frequency band [4]. In this
paper, we select α, β, and raw data as the input of three channels. The next step
is the normalization that constrains the data range in a closed interval [0, 255].
The image synthesizer combines regularized data and generates suitable pixel
values for each targeting coordinate. As different electrodes represent different
brain regions, the real-time viewer can capture dynamic results in real-time.
The width and height of the energy map represent the spatial distribution of
mind activities in the cerebral cortex, and the energy map sequence represents
the temporal distribution of mind activities. The energy map sequence (image
sequence) NRGMapSeq can be denoted as follows:

NRGMapSeq = [It, It+1, ..., It+N−1] (3)

where NRGMapSeqj is the jth energy map (image) at time step t + j − 1,
∀j ∈ [1...N ].
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Fig. 2. The process of EEG data segment to image.

3.3 Architecture of the Neural Network

The input of the model is the sequence of 3-channel images (energy maps),
which represent the spatial-temporal EEG information. Firstly, the cascaded
convolutional neural network will catch partial distribution features from the
fragments in image sequence. The performance of the model enhances as the
number of convolutional cascade layers increase. After that, the GRU will receive
a vector of time series processed by the convolutional cascade layer and further
optimize time feature learning.

In order to get detailed and sufficient spatial distribution, the input images
can be expressed as:

NRGMapSeq = [It, It+1...It+N−1] ∈ R
N×c×h×w (4)

where N denotes the number of energy maps (images) and the size of each
energy map (image) is c × h × w (3 channels, height of 32 pixels, width of 32
pixels).

The energy map (image) sequence is input into a Conv2D (two-dimensional
convolutional neural networks), and each of the spatial features extracted from
the cascaded Conv2D representation is shown in Eq. (5).

SP = Cconv2D(NRGMapSeq) (5)

After the cascaded Conv2D layer, a fully connected layer is applied to connect
cascaded Conv2D with the next GRU layer. The RNN has sufficient ability to
process arbitrary sequential inputs by recursively applying a transition function
to hidden vector ht. The activation function of the current hidden state ht at t
time step can be computed as follows:

ht =

{
0 t = 0∫

(ht−1, xt) otherwise
(6)

where xt is the current state input, and ht−1 is the previous hidden state.
However, RNN has difficulty learning long-term dependency. The components
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of the gradient vector will vanish or explode exponentially over a long sequence.
As a variant of the LSTM (long short-term memory), the GRU synthesizes the
forget gate and input gate into one single update gate. Moreover, there is also a
mixture of cellular and hidden states with other modifications. The final model
is more straightforward than the standard LSTM model. Both LSTM and GRU
can retain important features through various gates to ensure that they will not
be lost in long-term propagation. Moreover, the GRU transition equations are
defined as follows:

zt = σ(Wz · [ht−1, xt])
rt = σ(Wr · [ht−1, xt])
ht = (1 − zt) × ht−1 + zt × tanh(W · [rt × ht−1, xt])

(7)

4 Experiments

4.1 Datasets

To verify the validity of the proposed method, we tested the proposed method
and all the benchmarking methods with cross-validation on EEGMMIDB1 and
EMOTIV2, respectively. The intention recognition is treated as a classification
task; that is to say, the proposed method MCG will classify five types of intention
for both datasets.

4.2 Benchmarking Methods

We compared the proposed model against various state-of-the-art methods. For
the baseline models, we kept the same structures and settings. We fed baselines
with different features extracted from the same datasets to evaluate the influence
of multi-resolution signals. Moreover, a brief introduction of the benchmarking
methods as described below:

– Alomari et al. [2]: A support vector machine-based method is used for binary
classification, along with features extracted from multi-resolution EEG sig-
nals.

– Shenoy et al. [18]: Regularisation is deployed to improve the robustness and
accuracy of CSP estimation in features extracting processing. Fisher linear
discriminant is used to perform binary tasks.

– Rashid et al. [16]: Neural network (NN) is utilized to perform EEG signal
binary-class tasks after decomposing the raw EEG data to extract significant
features.

– Kim et al. [13]: Random forest classifier is used for prediction, in which the
Mu and Beta rhythms are obtained from the nonlinear EEG signals.

– Sita et al. [19]: Features are extracted from open source EEG data, and LDA
solves multiple classification problems.

1 https://physionet.org/pn4/eegmmidb/.
2 https://drive.google.com/drive/folders/0B9MuJb6Xx2PIM0otakxuVHpkWkk.

https://physionet.org/pn4/eegmmidb/
https://drive.google.com/drive/folders/0B9MuJb6Xx2PIM0otakxuVHpkWkk


8 L. Yue et al.

– Zhang et al. [26]: Deep recurrent neural networks are applied on an open EEG
database for multiple classifications.

– Chen et al. [7]: Multi-task RNNs model (MTLEEG) is proposed for motion
intention recognition based EEG signals.

4.3 Results and Discussion

Visual Verification and Analysis. The image mapping layer generates the
brain energy maps, in which each image represents the spatial distribution of
the corresponding areas for mind activities, and the energy map sequence repre-
sents the temporal distribution or dynamic real-time results. From Fig. 3(a), we
can intuitively observe the energy changes corresponding to different actions on
different imagery tasks. As displayed in Fig. 3(b), we reserved two brain energy
mapping channel respectively. In this way, we can clearly understand the spatio-
temporal characteristics of both the two waveforms, which provides more possi-
bilities and ideas for brain working mechanism research.

(a) Filtered EEG (Channel 1: α; Channel
2: β; Channel 3: Raw)

(b) Decomposition of waveforms. (Channel 1: α;
Channel 2: β; Channel 3: -)

Fig. 3. Brain energy maps from the image mapping layer on EEGMMIDB dataset.

Table 1. Comparisons of different waveband components on EEGMMIDB.

Method Accuracy Precision Recall F1-score AUC

MCG-α 0.7722 0.8763 0.7121 0.7857 0.9500

MCG-β 0.8923 0.7707 0.8144 0.7919 0.9619

MCG-α, β 0.9650 0.9650 0.9806 0.9727 0.9740

MCG 0.9870 0.9981 0.9681 0.9829 0.9740

Effect of Filtering. In this subsection, we used different combinations of wave-
forms to test the model in terms of accuracy, precision, recall, F1-score, and
AUC. As shown in Table 1, for the combination of input signal (α, β, raw),
MCG achieves the best performance on multiple indicators on the whole, which
directly verifies the importance of filtering and the combination of raw signal
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Table 2. Comparisons of evolution models on EEGMMIDB.

Input Method Class Accuracy

α CNN Multiple (5) 0.7109

α CasCNN Multiple (5) 0.7556

α CasCNN+GRU Multiple (5) 0.7722

β CNN Multiple (5) 0.7161

β CasCNN Multiple (5) 0.7632

β CasCNN+GRU Multiple (5) 0.8923

α, β CNN Multiple (5) 0.8218

α, β CasCNN Multiple (5) 0.7723

α, β CasCNN+GRU Multiple (5) 0.9829

α, β, raw CNN Multiple (5) 0.8401

α, β, raw CasCNN Multiple (5) 0.9356

α, β, raw CasCNN+GRU Multiple (5) 0.9868

with α and β. This combination maximally preserves the useful wavebands and
avoids the loss of the original features of the data.

Comparisons of Evolution Models. Furthermore, we compared MCG with
evolution models of CNN and cascade structure CNN (see Table 2). In the scope
of this paper, the evolution model means we remove some layers in the model,
such as GRU and CasCNN, and only use the deep convolutional network (CNN)
to train the data. By observing the influence of these layers on the experimental
results, we could see that both GRU and CasCNN improved the accuracy.

Comparisons of MCG and Benchmarking Methods. To prove the gen-
eralization and robustness of MCG, we further compared MCG with multiple
state-of-the-art methods, on EEGMMIDB and EMOTIV datasets. Although the
EMOTIV is collected with EMOTIV Epoc+ headset, which contains fewer sen-
sors and has a lower sampling rate, i.e., 14 sensors and 128 Hz sampling rate.
The comparisons as shown in Table 3 and 4, have vividly illustrated that MCG
achieve stable and brilliant performance in terms of accuracy.

Table 3. Comparisons of MCG and benchmarking methods on EEGMMIDB.

Index Method Class Accuracy

1 Almoari et al. [2] Binary 0.7500

2 Shenoy et al. [18] Binary 0.8206

3 Rashid et al. [16] Binary 0.9199

4 Kim et al. [13] Multiple (3) 0.8050

5 Sita et al. [19] Multiple (3) 0.8500

6 Zhang et al. [26] Multiple (5) 0.9590

7 Chen et al. [7] Multiple (5) 0.9786

8 MCG Multiple (5) 0.9868
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Table 4. Comparisons of MCG and benchmarking methods on EMOTIV.

Index Method Class Accuracy

1 Almoari et al. [2] Binary 0.5627

2 Shenoy et al. [18] Binary 0.5553

3 Rashid et al. [16] Binary 0.7538

4 Kim et al. [13] Multiple (3) 0.7695

5 Sita et al. [19] Multiple (3) 0.6985

6 Zhang et al. [26] Multiple (5) 0.7361

7 Chen et al. [7] Multiple (5) 0.8396

8 MCG Multiple (5) 0.8600

5 Conclusions

In this paper, we propose MCG model, which uses the image mapping layer to
capture spatial information of the EEG signals and combines spatial-temporal
characteristics to identify multiple motion intentions. The proposed model is
capable of discovering the brain changes corresponding to different actions. That
is, the feature representation achieved through the image mapping layer reflects
not only the changes in brain-related different movements but also dynamic
responses of the brain in real-time corresponding to specific actions. Experimen-
tal results illustrate that the recognition efficiency is the highest among state-
of-the-are methods on the multi-classification task of intention recognition.
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