
Chapter 8
Performances of the Mixed Virtual
Element Method on Complex Grids
for Underground Flow

Alessio Fumagalli, Anna Scotti , and Luca Formaggia

Abstract The numerical simulation of physical processes in the underground fre-
quently entails challenges related to the geometry and/or data. The former are mainly
due to the shape of sedimentary layers and the presence of fractures and faults, while
the latter are connected to the properties of the rockmatrix whichmight vary abruptly
in space. The development of approximation schemes has recently focused on the
overcoming of such difficulties with the objective of obtaining numerical schemes
with good approximation properties. In this work we carry out a numerical study on
the performance of the Mixed Virtual Element Method (MVEM) for the solution of
a single-phase flow model in fractured porous media. This method is able to handle
grid cells of polytopal type and treat hybrid dimensional problems. It has been proven
to be robust with respect to the variation of the permeability field and of the shape of
the elements. Our numerical experiments focus on two test cases that cover several
of the aforementioned critical aspects.

Keywords Virtual element method · Fracture flow · Grid generation ·
Mixed-dimensional problems · spe10 benchmark

8.1 Introduction

The numerical simulation of subsurface flows is of paramount importance in many
environmental and energy related applications such as themanagement of groundwa-
ter resources, geothermal energy production, subsurface storage of carbon dioxide.
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The physical processes are usually modeled, under suitable assumptions, by Darcy’s
law and its generalization to multiphase flow.

In spite of the simplicity of the Darcy model, the simulation of subsurface flow
is often a numerical challenge due to the strong heterogeneity of the coefficients,
porosity and permeability of the porous medium, and to the geometrical complexity
of the domains of interest. At the spatial scale of reservoirs, or sedimentary basins,
the porous medium has a layered structure due to the deposition and erosion of
sediments, and tectonic stresses can create, over millions or years, deformations,
folds, faults and fractures. In realistic cases the construction of a computational grid
that honours the geometry of layers and a large number of fractures is not only a
difficult task, but can also give poor results in terms of quality, creating, for instance,
very small or badly shaped elements in the vicinity of the interfaces.

In the framework of Finite Volume and Finite Elements methods one possibility
is to consider formulations that allow for coarse/agglomerated and regular grids cut
by the interfaces in arbitrary ways. The Embedded Discrete Fracture Model, for
instance, [43, 47, 53], can represent permeable fracture that cut the background grid
by adding additional transmissibility in the matrix resulting from the Finite Volumes
discretization; on the other hand the eXtended Finite Element Method can be used
to generalize a classical FEM discretization allowing for discontinuities inside an
element of the grid, see for example [23, 26, 31, 32] for the application of this
technique to Darcy’s problem.

A promising alternative consists in the use of numerical methods that are robust
in the presence of more general grids, in particular polygonal/polyhedral grids, and
that impose mild restriction on element shape: this is the case for the Virtual Element
Method (VEM), introduced in [6, 7, 18] and successfully applied now to a variety
of problems, including elliptic problems in mixed form which is the case of the
Darcy model considered in this work. See also [9, 10, 38, 40, 41]. By avoiding the
explicit construction of basis function VEM can indeed handle very general grids,
which might be useful in the aforementioned cases where the heterogeneity of the
medium and the presence of internal interfaces pose constraints to grid generation. In
the context of porous media simulations, mixed methods, i.e. methods that consider
both velocity and pressure as unknowns of the problem, are of particular interest
since they provide a good approximation of pressure as well as an accurate (and
conservative) velocity field. For these reasons, we focus our attention on the Mixed
Virtual Element Method (MVEM).

MVEM may be considered to belong to the general family of “Discontinuous
SkeletalMethods” described in [14]. Its formulation falls in the finite elementmethod
framework, where however shape functions are defined only implicitly by their prop-
erties, and degrees of freedom are obtained by suitable projection operators that
enable to compute the approximate bilinear forms. The latter include a computable
stabilization term necessary to recover well posedness. Low-order MVEM gives rise
to an algebraic problem akin to that produced by Mimetic Finite Differences. A
link among Mimetic Finite Differences and Hybrid Finite Volumes may be found
also in [28].
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The aim of this work is to consider practical grid generation strategies to deal
with such complex geometries and to test the performance of the MVEM method
on the different types of grid proposed. In particular, we want to investigate the
impact of grid type and element shape on properties of the linear system such as
sparsity and condition number, and eventually compare the errors. To this aim we
will consider two test cases from the literature, in particular two layers from the well-
known 10th SPE Comparative Solution Project (SPE10) dataset, described in [22],
characterized by a complex permeability field, and a test case for fractured media
taken from [30]. We focus our attention on grid generation strategies that can be
applicable in realistic cases: if it is certainly true that MVEM can handle general
polytopal grid the construction of such grids is often a difficult task. For this reason, in
addition to classical Delaunay triangular grids we consider the case of Voronoi grids,
rectangular Cartesian grids cut by fractures, and grids generated by agglomeration.
This latter strategy can be applied as a post-processing to all other grid types with the
advantage of reducing the number of unknowns. For the numerical implementation
of the test cases we have used the publicly available library PorePy [46].

The paper is structured as follows: in Sect. 8.2we present themathematical model,
i.e. the single phase Darcy model in the presence of fractures approximated as codi-
mension 1 interfaces. Section8.3 is devoted to the weak formulation of the problem
just introduced. Section8.4 introduces the numerical discretization by the Virtual
Element method, while in Sect. 8.5 we describe the grid generation strategies used
in the paper. Section8.6 presents the numerical tests, and Sect. 8.7 is devoted to
conclusions.

8.2 Governing Equations

We now introduce the mathematical models considered in this work. The realistic
modeling of subsurface flows requires a complex set of non-linear equations and
constitutive laws, however one of the key ingredient (upon a suitable linearisation)
is the single-phase flow model for a porous media, like the one already in Chap.1,
Sect. 1.2.1, based on Darcy’s law and mass conservation. We are here studying this
model, keeping in mind that it might be seen as a part of a more complex model. In
addition, it is of our interest to consider also fractures in the porous media, and this
calls for a more sophisticated approach.

As already mentioned, we set our study in a saturated porous medium represented
by the domain � ⊂ R

2. The boundary of �, indicated with ∂�, is supposed regular
enough (e.g. Lipschitz continuous). The boundary is divided into two disjoint parts
∂u� and ∂p� such that ∂u�̊ ∩ ∂p�̊ = ∅ and ∂u� ∪ ∂p� = ∂�. These portions of
the boundary will be used to define boundary conditions.

http://dx.doi.org/10.1007/978-3-030-69363-3_1
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8.2.1 Single-Phase Flow in the Bulk Domain

We briefly recall the mathematical model of single-phase flow in porous media,
referring to classical results in literature, see [4], for details. We are interested in the
computation of the vector field Darcy velocity u and scalar field pressure p, which
are solutions of the following problem

u + K∇ p = 0

∇ · u = f
in �,

u · n∂ = u on ∂u�,

p = p on ∂p�.

(8.1)

The parameter K is the 2 × 2 permeability tensor, which is symmetric and positive
definite. For simplicity, the dynamic viscosity of the fluid is included into K . The
source or sink term is named f . Finally, n∂ is the outward unit normal on ∂�, u and
p given boundary data.

We recall that the permeability tensor, for real applications, may vary several order
of magnitude from region to region (i.e., grid cells) and can be discontinuous.

8.2.2 Fracture Flow

We are interested in the simulation of single-phase flow in porous media in the
presence of fractures. For simplicity we start with a single fracture. The model
we are considering is the result of a model reduction procedure that approximates
the fracture as a lower dimensional object and derives new equations and coupling
conditions for the Darcy velocity and pressure both in the fracture and surrounding
porous medium. More details on this subject can be found in the following, not
exhaustive, list of works [2, 3, 12, 15, 17, 20, 23, 32, 33, 41, 48, 51, 58, 60], as
well as Chaps. 3, 4 and 5 of this Book.

In the following, the fracture is indicated with γ , and quantities related to the
porous media and the fracture are indicated with the subscript � and γ , respectively.
The fracture is described by a planar surface with normal vector denoted by n, which
also defines a positive and negative side of γ , indicated as γ + and γ −, see Fig. 8.1
as an example. Given a field u in � \ γ we indicate its trace on γ + and γ − as tru+
and tru−, respectively.

The fracture is characterized by an aperture εγ which, in the reduced model where
the fracture has co-dimension one, is only a model parameter. Finally, if the fracture
touches the boundarywe can apply natural or essential given boundary conditions;we
denote as ∂pγ and ∂uγ the portions of ∂γ where pressure and velocity are imposed.
We assume that ˚∂pγ ∩ ˚∂uγ = ∅ as well as ∂pγ ∪ ∂uγ = ∂γ . If a fracture tip does

http://dx.doi.org/10.1007/978-3-030-69363-3_3
http://dx.doi.org/10.1007/978-3-030-69363-3_4
http://dx.doi.org/10.1007/978-3-030-69363-3_5
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Fig. 8.1 Hybrid-
dimensional representation
of a fracture immersed in a
porous media

not touch the physical boundary a no-flow condition is imposed, so in this case we
assume that the immersed tip belongs to ∂uγ with an homogeneous condition.

We recall the system of equations that will be used in the sequel. In the bulk porous
medium � \ γ the problem is governed by the classic Darcy’s equations already
presented in (8.1), which we rewrite using the subscript � to identify quantities in
� \ γ

u� + K�∇ p� = 0

∇ · u� = f�
in � \ γ,

u� · n∂ = u� on ∂u� \ ∂γ,

p� = p� on ∂p� \ ∂γ.

(8.2a)

We assume that also the flow in the fracture is governed by Darcy’s law, however the
differential operators operate nowon the tangent space. Yet, for the sake of simplicity,
with an abuse of notation we use the same symbols to denote them. The system of
equations in the fracture is then given by

ε−1
γ uγ + Kγ ∇ pγ = 0

∇ · uγ − tru+ · n + tru− · n = fγ
in γ,

uγ · n∂ = uγ on ∂uγ,

pγ = pγ on ∂pγ.

(8.2b)

Here, uγ and pγ are given boundary data, and we recall that possible fracture tips
are in ∂uγ with uγ = 0. The parameter Kγ is the tangential effective permeability
in γ . In the 2D setting, where the reduced fracture model is one-dimensional, Kγ

is a positive quantity. In the 3D setting, it may be in general a rank-2 symmetric
and positive tensor. We may note in the equation representing the conservation of
mass the presence of an additional term that describes the flux exchange with the
surrounding porous media. To close the problem we need to complete the coupling
between fracture and bulk, and we consider the following Robin-type condition on
both sides of γ

εγ tru± · n ± κγ (pγ − trp±) = 0 on γ ±, (8.2c)
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with κγ > 0 being the normal effective permeability. Problem (8.2) consists of the
system of equations that describe the Darcy velocity and pressure in both the fracture
and surrounding porous medium. An analysis may be found, for instance, in [33] or
[40].

The case of N > 1 non-intersecting fractures the problem is analogous to the
one just described where γ = ∪N

i=1γi . However, if two or more fractures intersect we
need to introduce new conditions to describe the flux interchange between connected
fractures. At each intersection ι we denote with Iι the set of intersecting fractures
and we consider the following conditions on ι,

⎧
⎪⎨

⎪⎩

εια j tru j · t j + κι(pι − trp j ) = 0 ∀γ j ∈ Iι∑

γ j∈Iι
α j tru j · t j = 0 on ι, (8.3)

where ει is the measure of the intersection, pι is the pressure at the intersection, κι

is the permeability at the intersection and α ∈ {−1, 1} depends on the orientation
chosen for the normal t j to ∂γ j at the intersection. Note that t j is indeed on the
tangent plane of γ j . System (8.3) can be simplified by noting that it implies that pι

is equal to the average of the p j .

8.3 Weak Formulation

The numerical scheme that we will present in Sect. 8.4 is based on the weak for-
mulation of problem (8.1) and (8.2). Therefore, we will present in the following
the functional setting and the weak form we have used as basis for the numerical
discretization.We indicate with L2(A) the Lebesgue space of square integrable func-
tions on A, while Hdiv(A) is the space of square integrable vector functions whose
distributional divergence is in L2(A). They are Hilbert spaces with standard norms
and inner products. In particular, we denote with (·, ·)A the L2(A)-scalar product.
Moreover, given a functional space V and its dual V ′ we use 〈a, b〉, with a ∈ V and
b ∈ V ′ to denote the duality pairing between the given functional spaces.

8.3.1 Single-Phase Bulk Flow Without Fractures

If fractures are not present, the setting is rather standard. For simplicity, we assume
homogeneous essential boundary conditions u� = 0, otherwise a lifting technique
can be used to recover the original problem. We introduce the following functional
spaces for vector and scalar field, respectively,

V (�) = {v ∈ Hdiv(�) : trv · n∂ = 0 on ∂u�} and Q(�) = L2(�). (8.4)
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Here tr is the normal trace operator tr : Hdiv(�) → H− 1
2 (∂u�), which is linear and

bounded, see [13].
We can now introduce the following bilinear forms and functionals

a� : V (�) × V (�) → R : a�(u�, v�) = (H�u�, v�)�

b� : V (�) × Q(�) → R : b�(v�, p�) = −(∇ · v�, q�)�

G� : V (�) → R : G�(v�) = −〈trv� · n∂ , p�〉
F� : Q(�) → R : F�(q�) = −( f�, q�)�

where H� = K−1
� . We assume that K� ∈ [L∞(�)]2×2, with α|| y||2 ≤ yT K� y ≤

α|| y||2, a.e. in �, where y ∈ R
2 and 0 < α ≤ α.

Furthermore, we take p� ∈ H
1
2
00(∂p�), and f� ∈ L2(�). Let us note that a� :

V (�) × V (�) → R is continuous, coercive and symmetric, being K� symmetric.
We can now state the weak formulation of our problem: find (u�, p�) ∈ V (�) ×

Q(�) such that

a�(u�, v�) + b�(v�, p�) = G�(v�) ∀v� ∈ V (�)

b�(u�, q�) = F�(q�) ∀q� ∈ Q(�)
. (8.5)

The previous problem is well posed, provided |∂p�| > 0. See, for example, [13] for
a proof.

8.3.2 Fracture Flow

Weextend now theweak formulation for problem (8.2), with the simplifying assump-
tion that only one fracture is considered. Its extension tomultiple fractures is straight-
forward, see for example [15, 33].Also in this casewe assumehomogeneous essential
boundary conditions, otherwise a lifting technique can be used.

We need to introduce the space Hdiv(� \ γ ) as the space of vector function in
L2(� \ γ ) (which may be identified by L2(�) since γ has zero measure) whose
distributional divergence is in L2(	) for all measurable 	 ⊂ (� \ γ ). We need also
to impose some extra regularity on the trace on γ ±, due to the Robin-type condition
(8.2c). The reader may refer to [13, 36, 48] for a more detailed discussion on this
matter. In particular, we require that, for a v� ∈ Hdiv(� \ γ ) , trv+ · n ∈ L2(γ ) and
trv− · n ∈ L2(γ ), where tr here indicates the trace of v on the two sides of the fracture.
This space is equipped with the inner product

(u, v)Hdiv(�\γ ) = (u, v)� + (∇ · u,∇ · v)� + (tru+ · n, trv+ · n)γ + (tru− · n, trv− · n)γ ,

and induced norm. The new space for vector fields in the bulk is given by
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V̂ (�) = {v� ∈ Hdiv(� \ γ ) : trv� · n∂ = 0 on ∂u�} .

The functional spaces for vector and scalar fields defined on the fracture are

V (γ ) = {
vγ ∈ Hdiv(γ ) : trvγ · n∂ = 0

}
and Q(γ ) = L2(γ ),

where in this case the trace operator in V (γ ) is given by tr : Hdiv(γ ) → H− 1
2 (∂uγ ).

Note that in the case of 2D problems like the ones treated in this work, V (γ ) is in
fact a subspace of H 1(γ ) and the trace reduces to the value at the boundary point.

We introduce now the bilinear forms and functional for the weak formulation
of problem (8.2). First, we modify the bilinear form a� by taking into account the
coupling terms from (8.2c) as

â� : V̂ (�) × V̂ (�) → R : â�(u�, v�) = a�(u�, v�)� +
∑

∗∈{+,−}
(ηγ tru∗ · n, tru∗ · n)γ

where ηγ = εγ κ−1
γ and we have assumed that ηγ ∈ L∞(γ ). Second, the bilinear

forms associated with the fracture are given by

aγ : V (γ ) × V (γ ) → R : aγ (uγ , vγ ) = (Hγ uγ , vγ )γ

bγ : V (γ ) × Q(γ ) → R : bγ (vγ , pγ ) = −(∇ · vγ , pγ )γ

Gγ : V (γ ) → R : Gγ (vγ ) = −〈trvγ · n∂ , pγ 〉
Fγ : V (γ ) × R : Fγ (qγ ) = −( fγ , qγ )γ

wherewehaveH−1
γ = εγ Kγ andwehave assumed thatHγ ∈ L∞(γ ), pγ ∈ H

1
2 (∂pγ ),

and fγ ∈ L2(γ ). Third, we introduce the bilinear forms responsible for the flux
exchange between the fracture and the bulk medium

c± : V̂ (�) × Q(γ ) → R : c±(u�, qγ ) = ±(tru± · n, qγ )γ

c : V̂ (�) × Q(γ ) → R : c(u�, qγ ) =
∑

∗∈{+,−}
c∗(u�, qγ ).

Finally,we canwrite theweak formulation for problem (8.2): find (u�, p�, uγ , pγ ) ∈
V̂ (�) × Q(�) × V (γ ) × Q(γ ) such that

â�(u�, v�) + b�(v�, p�) + c(v�, pγ ) = G�(v�) ∀v� ∈ V̂ (�)

b�(u�, q�) = F�(q�) ∀q� ∈ Q(�)

aγ (uγ , vγ ) + bγ (vγ , pγ ) = Gγ (vγ ) ∀vγ ∈ V (γ )

bγ (uγ , qγ ) + c(u�, qγ ) = Fγ (qγ ) ∀qγ ∈ Q(γ )

(8.6)

The reader can refer to [23, 26, 32] for proofs of the well posedness of the problem,
provided suitable boundary conditions.
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8.4 Numerical Approximation by MVEM

The challenges in terms of heterogeneity of physical data and complexity of the
geometry due to the presence of fractures influence the choice of the numerical
scheme. A possible choice is the mixed finite element method, see [13, 56, 57].
However, this class of methods, capable of providing accurate results for pressure
and velocity fields, even in the presence of high heterogeneities, requires grids made
either of simplexes (triangles of tetrahedra) or quad/hexahedra. This can be inefficient
for the problem at hand, where instead methods able to operate on grids formed
by arbitrary polytopes are rather appealing. For this reason finite volume schemes,
see [27] for a review, are very much used in practice. However, they normally treat
the primal formulation and require good quality grids to obtain an accurate solution
and a good reconstruction of the velocity field. Indeed, it is known that convergence
of the method is guaranteed only if the grid has special properties.

Therefore, we focus here our attention on the low-order Mixed Virtual Element
Method, a numerical schemes that operates on polytopal grids and that has shown
to be rather robust with respect to irregularities in the data and in the computational
grid. We consider first the case of porous medium without fractures, focusing on
problems with highly heterogeneous permeability, and then the case of a fractured
porous medium, using the model described in Sect. 8.4.2. A different application of
the Mixed VEM for the numerical treatment of the Richards equations can be found
in Chap.7.

The actual implementation in PorePy adopts a flux mortar technique that allows
non-conforming coupling between inter-dimensional grids. We do not exploit the
possibility of having grids non-conforming to the fractures in this work, nevertheless
in Sect. 8.4.2 we will describe the mortar approach more in detail.

8.4.1 Bulk Flow Without Fractures

In this part we present the MVEM discretization of problem (8.5). A key point of the
virtual method is to use an implicit definition of suitable basis functions, and obtain
computable discrete local matrices by manipulating the different terms in the weak
formulation appropriately. In this work we consider only the low order case, yet the
method can be extended to higher order formulations.

We indicate the computational grid, approximation of �, as T (�). We assume
that � has polygonal boundary, so that T (�) covers � exactly. The set of faces of
T (�) is denoted as E(�), with the distinction between the internal and boundary
faces indicated by E(�̊) and E(∂�), respectively. We also specify the edges on
a specific portion of the boundary of � as E(∂u�) and E(∂p�). We clearly have
E(�̊) ∪ E(∂�) = E(�) as well as E(�̊) ∩ E(∂�) = ∅. In the sequel, we generally
indicate as C ∈ T (�) a grid cell and e ∈ E(�) a face between cells. Element C can
be a generic polygon (polyhedra in the 3D case).

http://dx.doi.org/10.1007/978-3-030-69363-3_7
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We introduce the finite dimensional subspaces, approximation of the continuous
spaces given in (8.4), as

Vh(�) = {v� ∈ V (�) : ∇ · v�|C ∈ P0(C) and ∇ × v�|C = 0, ∀C ∈ T (�),

trv� · ne ∈ P0(e), ∀e ∈ E(�)} ,

with P0(X) being the space of constant polynomials on X , while tr and ne the trace
and the normal associated to edge e. For the scalar field we set

Qh(�) = {q� ∈ Q(�) : q�|C ∈ P0(C)∀C ∈ T (�)} .

Clearly, Vh(�) ⊂ V (�) and Qh(�) ⊂ Q(�). The degrees of freedom associated
with Vh(�) and Qh(�) are one scalar value for each face and one scalar value
for each cell, respectively. More precisely, if we generically indicate with dofi the
functional associated with the i-th degree of freedom, we have, for a v� ∈ Vh(�)

and a q� ∈ Qh(�)

dofiv� = trv� · nei and dofiq� = q�|Ci ,

where ei andCi are the i-th edge and cell, respectively, and tr now indicates the trace
associated to the edge ei .

Moreover, we can observe that in case of triangular grids Vh(�) coincides with
RT0(�), so the former can be viewed as a generalization of the well known Raviart-
Thomas finite elements.

By performing exact integration, the numerical approximation of the bilinear form
b� and of the functionals G�, F� are computable with the given definition of the
discrete spaces. However, for the term a� we need further manipulations to obtain
a computable expression. To this purpose, we define a suitable subspace of Vh(�),
defined as

Vh(�) = {v� ∈ Vh(�) : v�|C = KC∇vC for a vC ∈ P1(C)∀C ∈ T (�)} ,

where KC is a suitable constant approximation of K�|C , and we define a projection
operator �� : Vh(�) → Vh(�) so that for a v ∈ Vh(�) we have

a�(v − ��v,w) = 0, ∀w ∈ Vh(�).

We now set T� = I − ��, where T� : Vh(�) → V⊥
h (�) and the orthogonality con-

dition is governed by the bilinear form a�, which, being symmetric, continuous
and coercive, defines an inner product. Indeed, from the definition of �� we have
a�(T�v�,��w�) = 0 for all v�,w� ∈ Vh(�). Considering this fact, we have the
following decomposition

a�(u�, v�) = a�((�� + T�)u�, (�� + T�)v�) = a�(��u�,��v�) + a�(T�u�, T�v�).
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Now, thanks to the definition of Vh(�) the first term is computable in terms of the
degrees of freedom, see for instance [39], but not the second one. However, since it
gives the contribution of a� only on V⊥

h (�), it can be approximated with a suitable
stabilizing bilinear form s : Vh(�) × Vh(�) → R, i.e.

a�(T�u�, T�v�) ≈ s�(u�, v�).

For more details about s� refer to the works [5, 7, 18, 25, 40, 41]. The form s� must
satisfy the following equivalence condition:

∃υ∗, υ∗ ∈ R
+ : υ∗a�(u�, v�) ≤ s�(u�, v�) ≤ υ∗a�(u�, v�) ∀u�, v� ∈ Vh(�).

To illustrate our choice of s�, let us denote with ϕ a generic element of the basis of
Vh(�). The stabilization term, in our case, can be computed as

s�(ϕθ ,ϕχ ) =
∑

C∈T (�)

‖H�‖L∞(C)

Ndof (C)∑

i=1

dofi(T�ϕθ )dofi(T�ϕχ ), (8.7)

where Ndof (C) is the total number of degrees of freedom for the vector field for the
cell C and dofi gives the value of the argument at the i th-dof. The K� norm is a
scaling factor in order to consider also strong oscillations of physical parameters.
With the definition of the stabilization term now all the terms are computable and
the global system can be assembled. For more details on the actual computation of
the local matrices refer to [6, 40].

8.4.2 Fracture Flow

We introduce now the numerical scheme used for the approximation of problem
(8.6). We consider the notations and terms for the porous media from the previous
section. In fact, the derivation of the discrete setting for the porous media is similar
to what already presented. We focus now on the fracture discretization as well as on
the coupling term with the surrounding porous media.

In particular, for the implementation we have chosen PorePy [46], that consid-
ers an additional interface γ ± between the fracture and the porous media along
with a flux mortar technique to couple domains of different dimensions, allowing
also non-conforming grids between the domains. However, to avoid additional com-
plexity we consider only conforming grids so that the mortar variable behaves as a
Lagrange multiplier λh . The latter is the normal flux exchange from the higher to
lower dimensional domain. See Fig. 8.2 as an example.Geometrically (i) the interface
between the porous media and the fracture, (ii) the fracture, and (iii) the two inter-
faces coincide but they are represented by different objects with suitable operators
for their coupling. In the case of conforming discretizations these operators simply
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Fig. 8.2 On the left, the hybrid-dimensional representation of a fracture immersed in a porous
media with the two interfaces γ + and γ −, in red. On the right, the representation of the degrees of
freedom for vector fields

map the corresponding degrees of freedom, however in the case of non-conforming
discretizations projection operators should be considered.

As done before, we consider the special case of a single fracture, being its gen-
eralization straightforward. First of all, the velocity degrees of freedom for the rock
matrix in the proximity of the fracture are doubled as Fig. 8.2 shows. We can thus
represent tru± · n = λ±

h for both sides ± of the fracture itself. The term â� involves
the actual integration of the basis functions for each grid cells, which is not possible
since they are not, in general, analytically known.

Many of the following steps are similar to what already done for the bulk porous
media. We introduce a tessellation of γ into non-overlapping cells (segments in this
case), the grid is indicated with T (γ ) and the set of faces (edges) as E(γ ). Also
in this case, we divide the internal faces and the external faces E(γ̊ ) and E(∂γ ).
Moreover, the latter can also be divided into subset depending on the boundary
conditions E(∂uγ ) and E(∂pγ ). Clearly, we have E(γ ) = E(γ̊ ) ∪ E(∂γ ) as well as
E(∂uγ ) ∪ E(∂pγ ) = E(∂γ ). We introduce the functional spaces for the variables
defined on the fracture, for the vector fields we have

Vh(γ ) = {
vγ ∈ V (γ ) : ∇ · vγ |C ∈ R,∇ × vγ |C = 0 ∀C ∈ T (γ ), trvγ · ne ∈ R ∀e ∈ E(γ )

}
,

while for the scalar fields we consider the discrete space

Qh(γ ) = {
qγ ∈ Q(γ ) : qγ |C ∈ R∀C ∈ T (γ )

}
.

By keeping the same approach as before, we assume exact integration so that the
numerical approximation of the bilinear form bγ as well as functionals Gγ and Fγ

are computable with the given definition of the discrete spaces. The term aγ is not
directly computable, we thus introduce the subspace of Vh(γ ) as

Vh(γ ) = {
vγ ∈ Vh(γ ) : vγ |C = Kγ |C∇vC for a vC ∈ P1(C)∀C ∈ T (γ )

}
.
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We introduce the projection operator �γ from Vh(γ ) → Vh(γ ) such that for a v ∈
Vh(γ ) we have aγ (v − �γ v,w) = 0 for all w ∈ Vh . By introducing the operator
Tγ = I − �γ , we have the decomposition

aγ (uγ , vγ ) = aγ ((�γ + Tγ )uγ , (�γ + Tγ )vγ ) = aγ (�γ uγ ,�γ vγ ) + aγ (Tγ uγ , Tγ vγ ).

By the definition of Vh(γ ) the first term is now computable, while the second term,
which is not computable, is replaced by the stabilization term

aγ (Tγ uγ , Tγ vγ ) ≈ sγ (uγ , vγ )

with the request that sγ scales as aγ , meaning that

∃υ∗, υ∗ ∈ R : υ∗sγ (uγ , vγ ) ≤ aγ (uγ , vγ ) ≤ υ∗sγ (uγ , vγ ) ∀uγ , vγ ∈ Vh(γ ).

Denoting an element of the basis of Vh(γ ) as φ, the actual construction of sγ is given
by the formula

sγ (φθ ,φχ ) =
∑

C∈T (γ )

h
∥
∥K−1

γ

∥
∥
L∞(C)

Ndof (C)∑

i=1

dofi(Tγ φθ )dofi(Tγ φχ ),

with h the diameter of the current cell C . With the previous choices all the terms are
computable and the fracture problem can be assembled. For more details see [5, 7,
18, 40, 41].

To couple the bulk and fracture flow, a Lagrange multiplier λ±
h is used to represent

the flux exchange between the fracture and the surrounding porousmedia.We assume
conforming grids, meaning that the fracture grid is conforming with the interface
grid as well as the faces of the porous media are conforming with the interface
grid. See Fig. 8.3 as an example. For space compatibility, we assume the Lagrange
multiplier be a piece-wise constant polynomial. The interface condition (8.2c) is
directly computable with the degrees of freedom introduced providing a suitable
projection of the pressure p� at the fracture interface. Our choice is to consider the
same value of the pressure at neighbouring cells, however other approaches can be
used, see for example [57].

Fig. 8.3 Representation of
the conforming
computational grids for the
porous media, the fracture,
and the two interfaces
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8.5 Grid Generation

The generation of grids for realistic fractured porous media geometries is a challeng-
ing task, whose complete automatic solution is still an open problem, particularly
for 3D configurations. We here give a brief overview of some techniques that have
been proposed, with no pretence of being exhaustive.

8.5.1 Constrained Delaunay

The generation of a grid of simplexes (triangles in 2D, tetrahedra in 3D) conformal
to a fracture network may be performed in principle by employing a constrained
Delaunay algorithm. It is an extension of the well known Delaunay algorithm to the
case where the mesh has to honour internal constraints (or describe a non-convex
domain). Usually it starts from a representation of the domain and in 3D it first
generates constrained Delaunay triangulation on the fracture and boundary geom-
etry, then new nodes are added in the domain to generate a final grid that satisfies
a relaxed Delaunay criterion to honour the internal interfaces. The description of
the constrained Delaunay procedure may be found, for instance, in [21]. Another
general reference for mesh generation procedures is [34]. However, in practical sit-
uations several issues may arise. The presence of fractures intersecting with small
angles, for instance, may produce an excessive refinement near the intersections
in order to maintain the Delaunay property. In 3D there is the additional issue of
the possible generation of extremely badly distorted elements, often called slivers,
whose automatic removal is problematic, when not impossible, under the constraint
of conformity with complex internal surfaces.

Several techniques have been proposed to ameliorate the procedure. For instance
in [49, 50] the authors present a procedure that modifies the fracture network trying
to maintain its characteristics of connectivity and effective permeability, while elim-
inating geometrical situations where that may impair the effectiveness of a Delaunay
triangulation. In the second reference, a special decision strategy (called “Gabriel
criterion”) is used to select a part of the fracture network to which triangulation can
be constrained without leading to an excessive degradation in cells quality, or exces-
sively fine grids. The procedure has proved rather effective on moderately complex
network in 2D, while the results for 3D configurations seem less convincing.

We mention for completeness that an alternative procedure for generating simpli-
cial grids is the one based on the front advancing technique (maybe coupled with the
Delaunay procedure). It is implemented in several software tools, see for instance [35,
59]. However, its use in the context of fractures media is at the moment very limited,
probably because of the lack of results of the termination of the procedure, con-
trary to the Delaunay algorithm where one can prove that, under mild conditions,
the generation terminates in a finite number of steps. Moreover it has a much higher
computational cost. The interested reader may consult the cited references.
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In our case PorePy considers the software Gmsh [44] for the generation of the
Delaunay bidimensional grids. The grid size in the configuration file is specifically
tuned to obtain high quality triangles. Indeed, we consider distances between frac-
tures, between a fracture and the domain boundary, and length of fracture branches.
With these precautions, we usually obtain quality grids that are suitable for numerical
studies.

8.5.2 Grids Cut by the Fracture Network

An alternative possibility to create a grid conforming to fractures or, in general,
planar interfaces, consists in cutting a regular Cartesian or simplex mesh, as shown
in Fig. 8.4 for the case of a Cartesian mesh. The resulting grid will be formed by
polytopal elements in the vicinity of the fractures. The main issue in this procedure
is the possible generation of badly shaped or very small elements as a consequence
of the cut. Another technical problem is the necessity of having efficient techniques
for computing intersections and constructing the polytope. To this respect, one may
adopt the tools available in specialized libraries like CGAL [19], or developed by the
RING Consortium [54]. Clearly, the adoption of this technique calls for numerical
schemes able to operate on general polytopal elements. This method, when applied
to Cartesian grids, has the advantage of maintaining a structured grid away from
the fracture network, where the sparsity of the linear system may ease its numerical
solution, but it does not allow local refinements (unless by using hanging nodes,
which increase computational complexity). In general it is a valid alternative to a
direct triangulation provided the numerical scheme be robust with respect to the
presence of small or high aspect ratio elements.

We outline a possible algorithm for the case of a Cartesian background grid,
adopted in this work. We start by creating a Cartesian mesh of rectangular ele-
ments and compute the intersections among the edges of the grid and the segments
describing the fractures. This step is rather straightforward for Cartesian grids. The
intersection points can be easily sorted according to a parametric coordinate to create
the mesh of each fracture. Then, each cell cut by one or more fractures is split into
two, three or four polygonal sub cells as follows: (i) for each point, the signed dis-

Fig. 8.4 Creation of a polygonal mesh from a regular Cartesian grid
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tance from the fracture is computed, and (ii) points on the same side of the fracture
are grouped, and sorted in counter-clockwise direction.

To avoid non-convex cells the cells containing the fracture tips are split in three
by connecting the tip with the nodes of the edge that is crossed by the prolongation
of the fracture. However, in principle it would be possible to consider a single cell
with two coincident faces.

8.5.3 Agglomeration

Polytopal grids can be generated by agglomerating simplicial elements produced,
for instance, by a constrained Delaunay procedure. For example, in [16], tetrahedra
are agglomerated (and nodes moved) to try to produce hexahedral elements in large
part of the domain, with a twofold objective: on the one hand the reduction of the
total number of degrees of freedom and consequent reduction of computational com-
plexity, on the other hand, the generation of a grid more suitable for finite volume
schemes based on two-point flux approximation (TPFA).

In a more general setting, agglomeration may join together elements whose value
of physical parameters are similar, with the final objective of reducing computa-
tional cost, as well as eliminating excessively small elements. The numerical method,
however, should be able to operate properly on the possible irregularly shaped and
non-convex elements generated by the procedure. The technique is clearly a post-
processing one, since it requires to have amesh to start with. Its basic implementation
is however rather simple and is similar to that used in some multigrid solvers, like
in [45].

In our case, PorePy has the capability to agglomerate cells based on two different
criteria: (i) by volume,meaning that cellswith small volumes are groupedwith neigh-
bouring cells. This procedure continues until the new created cells have volumes that
are comparable with an average volume in the grid. This procedure can be effective
in presence of uniform physical data in different part of the computational domain
and in particular in presence of fracture networks. In the case of highly variable
data, e.g. permeability, the previous procedure may not be effective since cells with
very different properties may bemerged together. For this reason PorePy implements
another strategy, (ii) based on the agglomeration in the algebraic multigrid method.
It adopts a measure of the strength of connections between DOFs to select the cells
to be joined, based on a two-point flux approximation discretization, for more details
see [40, 61]. Examples of these strategies are given in [38, 40–42, 51].

Remark 1 The agglomeration procedure is even more effective when a time depen-
dent problem is solved, like linear and non-linear transport of a tracer or the heat
equation. Other strategies might be more appropriate to optimize the grid for a spe-
cific physical process.
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8.5.4 Voronoi

Voronoi grids are of particular interest for methods such as Finite Volumes with
TPFA, since they guarantee that the line connecting the centroids of neighbouring
cells is always orthogonal to the shared face. Under this assumption the two point
approximation of the flux is consistent if the permeability tensor is diagonal. How-
ever, producing Voronoi diagrams that honour the internal interfaces represented
by the fracture is not an easy task, particularly for complex 3D configurations. An
attempt in that direction has been performed in [11, 55].

In this work, limited to 2D cases, we generate Voronoi diagrams that honour
the geometry of the fractures and the boundaries of the domain by first creating a
Cartesian grid (see Sect. 8.5.2) and positioning a seed at the centre of cells not cut
by the fractures. Then, we start from the discretization of the fractures induced by
the intersection with the background grid, and for each fracture cell we position two
seeds on opposite sides of the fracture at a small distance δ as shown in Fig. 8.5. This
will create a Voronoi cell with a face exactly on the fracture. The same technique
is used to obtain boundary faces in the desired position. Close to each fracture tip
xT we position four seeds in xT ± δ1n ± δ2 t where n and t are the normal and the
tangent unit vectors to the fracture and δ1,2 are user defined distances. This ensures
that the fracture is honoured up to the tip and has the correct length. Similar strategies
are applied at fracture intersections. The position of the seeds and faces close to the
intersections is also shown in Fig. 8.5. Note that with this strategy the Voronoi cells
far from fractures are rather regular, since they reflect the underlying Cartesian grid.

An advantage of Voronoi grids is that faces are planar and cells are convex by
construction. However, an important drawback is that the number of faces per cell
can be quite large. Moreover, as pointed out before, the construction of a constrained
grid in general realistic configurations is an open problem.

Fig. 8.5 On the left, graphical representation of Voronoi grid with fractures. On the right, details
on the construction for fracture intersection and fracture tip



316 A. Fumagalli et al.

8.6 Numerical Results

In this section, we present two test cases to show the performances and the potential-
ity of the previously introduced algorithms. In particular, in the first test case we have
a setting where the permeability experiences a high variation between neighbouring
cells. In the second test case a network of fractures is considered with different types
of intersections: in this case the challenge is more related to the geometrical com-
plexity to create the computational grid. In both test cases, agglomerating procedures
are used to reduce the computational cost of the simulations.

8.6.1 Heterogeneous Porous Medium: Layers from SPE10

The aim of this test case is to validate the effectiveness of the MVEM scheme in
presence of highly heterogeneous permeability. We consider two distinct layers of
the SPE10 [22] benchmark problem, in particular layer 4 and 35 (by starting the
numeration from 1), from now on denoted as L4 and L35, respectively. The main
difference between them is that the latter has distinctive channels of high permeability
which are not present in layer 4. The permeability is assumed to be scalar in each cell,
and each layer is composed by a computational grid of 60 × 220. Figure8.6 on the
left shows the permeability fields for both layers. Note that in both cases permeability
spans about six order of magnitude.

Fig. 8.6 Permeability field for the test case of Sect. 8.6.1 for layer 4 on the top and 35 on the bottom.
On the left the reference values, on the centre and right the values obtained after the clustering with
arithmetic and harmonic mean, respectively. The values are given in log10
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Table 8.1 Average, minimum and maximum value of cell area and number of faces per cell for
the six grids employed for test case Sect. 8.6.1

Aspect ratio Cell area nfaces
Average Min Max Average Min Max Average Min Max

L4 2.37 1.50 4.37 108 37.2 242 12.2 6 20

L35 2.37 1.13 5.83 111 37.2 297 12.2 6 22

To lighten the computational effort, we apply an agglomerating procedure to group
cells and obtain a smaller problem. Starting from square cells the algorithm creates
cells by considering the procedure in Sect. 8.5.3 and, for each agglomerated cell, the
associated permeability will be computed in two different ways: as the arithmetic and
harmonic average. The former is more suited for flow parallel to layers of different
permeability, while for orthogonal flow the harmonic average gives more realistic
results. For a more detailed discussion see [52]. We consider both approaches, see
Fig. 8.6 on centre and right, which represents the agglomerated permeability of both
layers by considering the arithmetic and harmonic means. For layer 4 the figures look
similar, while for layer 35 the channels for the agglomerated problem with harmonic
mean are narrower than the original ones and than those obtained in the agglomerated
grid with arithmetic mean.

In Table8.1, we summarize the geometric properties of the grids obtained by
means of cells clustering for the two layers. We can observe that the area of the
cells and the average number of faces per cell is similar in the two cases, however,
in layer 35 we have slightly more elongated elements on average, reflecting the
channelized permeability field. The aspect ratio is estimated using the area of the
cells, the maximum distance between points and is rescaled so that square cells (or
equilateral triangles, see Sect. 8.6.2) have aspect ratio 1.

We impose a pressure gradient from left to right with synthetic values 1 and 0,
respectively. The other boundaries are sealed with homogeneous Neumann condi-
tions.

To compare the accuracy of the proposed clustering techniques, we compute the
errors in the pressure with respect to the problem on the original grid solved with a
two-point flux approximation scheme [1, 37], which, in this case since the grid is
K -orthogonal, is consistent and converges quadratically to the exact solution, thus
can be considered as a valid reference. We name this solution “reference” and we
indicate the pressure as pref . The error is computed as

err = ‖�ref p − pref‖L2(�)

‖pref‖L2(�)

where �ref is the piecewise constant projection operator that maps from the current
grid to the reference one. Due to the clustering procedure its construction is rather
straightforward, since the cells of the original mesh are nested in the agglomerated
one. We can notice that the errors obtained for the layer 4 with both averaging pro-
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Fig. 8.7 Pressure and Darcy velocity fields for the test case of Sect. 8.6.1 for layer 4 on the top
and 35 on the bottom. On the left the reference solution, on the centre and right the values obtained
after the clustering with arithmetic and harmonic mean, respectively. The arrows are scaled by the
same value in each layer and the pressure ranges from 0 to 1, blue to red respectively

cedure are comparable and around 4%, which can be acceptable in most of real
applications. In the case of layer 35 the situation is more involved, in fact the arith-
metic mean gives an error of approximately 3.5% while the harmonic mean of 13%.
We can explain this big discrepancy by noticing that, when a channel of high per-
meability is composed by few cells in its normal direction, during the agglomeration
procedure it is possible that some of these cells are grouped with the surrounding
lower permeability cells. The harmonic mean will bring the permeability value of the
agglomerated cell closer to the lower value than the higher, dramatically changing
the connectivity properties of the obtained permeability field. This can be noticed in
the permeability field reported in Fig. 8.6, suggesting that harmonic averaging can
be unsuited for parallel flow in strongly channelled domains.

Figure8.7 shows the pressure fields for both layers and for the two approaches.
On top of the pressure fields the Darcy velocity is also represented with grey arrows.
We notice that for layer 4 pressures and velocities look very similar, while for layer
35 the pressure field and velocity of the agglomerated problem with harmonic mean
look quite different compared with the reference solutions as well as that obtained
with the agglomeration strategy that uses the arithmetic mean.

To improve the effectiveness of this approach, a local numerical upscaling tech-
nique could be considered to compute amore representative value of the permeability
for grouped cells. However, in this case wemight expect a higher computational cost.
See [29] for a more detailed presentation of upscaling techniques.

To conclude this test case, let us now analyse the properties of the systemmatrix to
verifywhat is the impact of element size and shape in the different cases. Note that the
problem is in mixed form and our analysis considers the entire saddle point matrix.
Since the number of unknowns is not exactly the same after grid agglomeration we
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Table 8.2 Matrix properties for test case Sect. 8.6.1

NDOF Ncells Nfaces n K (A)

L4 (mean K) 16345 2269 14076 22.17 8.29e+06

L4 (harmonic K) 16345 2269 14076 22.17 8.44e+06

L35 (mean K) 16010 2210 13800 22.53 8.29e+06

L35 (harmonic K) 16010 2210 13800 22.53 8.39e+06

describe matrix sparsity by means of the average number of non-zero entries per row
n, computed as

n = nz
NDOF

,

where nz is the number of non-zero entries and NDOF is the number of unknowns.
Moreover we will compare the values of condition number K (A) estimated by the
method condest provided by Matlab®. In Table8.2 we consider the two layers,
L4 and L35, and by “mean K”, “harmonic K” we identify the averaging of perme-
ability in the agglomerated cells, the arithmetic and harmonic mean respectively.
This choice has no impact on the matrix size or sparsity but may result in different
condition numbers. We can observe that the four matrices are very similar in terms
of size, sparsity and condition number, and that the large number of faces per ele-
ment reflects in the average number of entries per row. It can be also observed that
mesh agglomeration is slightly more effective in layer L35 due to its channelized
permeability distribution.

8.6.2 Fracture Network

This test case considers the Benchmark 3 of the study [30] presented in Sect. 4.3.
Our objective is to study the impact of the grid on the solution quality provided by
the MVEM. The domain contains a fracture network made of 10 fractures and 6
intersections, one of which is of L-shape. For the detailed fracture geometry, we
refer to the aforementioned work. See Fig. 8.8 for a representation of the problem
geometry.

We consider three types of grids: Delaunay, Cartesian cut, and Voronoi. Since the
fracture network may create small cells, on top of these three grids an agglomeration
algorithm is used to agglomerate cells of small volume. These cells are merged
with neighbouring cells, trying to obtain a more uniform cell size in the grid. The
Delaunay grid is created by the software Gmsh [44], tuned to provide high quality
elements in proximity of small fracture branches or almost intersecting fractures.
The six different grids we are considering are reported in Fig. 8.9 along with the
number of cells associated to the rock matrix and fractures.

http://dx.doi.org/10.1007/978-3-030-69363-3_4
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Fig. 8.8 Geometry of the
domain for the benchmark
used in Sect. 8.6.2

We see that some of the agglomerated elements have internal cuts, in particular
for Delaunay agglomerated grid in Fig. 8.9, and for all the clustered grids we have
cells that are not shape regular and in some cases not even star-shaped. For classical
finite elements or finite volumes we might expect low quality results.

Another result of the agglomeration is a reduction of the number of very small
or very stretched cells. In Fig. 8.10 we can observe histograms of an estimate of
the cells aspect ratio for the different grids. We can see that for the Cartesian cut
grid and the Voronoi grid the maximum aspect ratio decreases remarkably with the
agglomeration, while in the case of a Delaunay grid we have the opposite effect. As

Fig. 8.9 Benchmark 3 of Sect. 8.6.2: Fracture network on top left, on the others the grids for
different approaches. In the brackets the number of cells (bulk, fracture)
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Fig. 8.10 Histograms of the cells aspect ratio for the different types of grid in test case Sect. 8.6.2

Table 8.3 Average, minimum and maximum value of cell area and number of faces per cell for
the six grids employed for test case Sect. 8.6.2

Cell area nfaces
Average Min Max Average Min Max

Delaunay 7.8431e-04 8.4186e-05 2.1020e-03 3 3 3

Delaunay
agglom.

9.1075e-04 3.9631e-04 2.1767e-03 3.1557 3 8

Cut 7.7160e-04 8.4664e-08 9.1833e-04 3.9769 3 6

Cut agglom. 9.4967e-04 3.9945e-04 2.2589e-03 4.4311 3 10

Voronoi 6.5746e-04 4.6260e-07 1.2686e-03 4.4694 3 14

Voronoi
agglom.

9.0171e-04 3.3000e-04 3.4502e-03 5.1109 4 16

we will show later high anisotropy can result in a less effective stabilization for the
MVEMmatrix. Moreover, in Table8.3 we show that cells agglomeration leads to an
increase of the mean and minimum cell areas, but also to an increase of the number
of faces per cell.

Referring to the colour code given in Fig. 8.8, we set the aperture ε = 10−4 for
all the fractures and the permeability is set to kγ = κγ = 104 for all the fractures
depicted in red and kγ = κγ = 10−4 for the ones in blue. The former behave as
high flow channels while the latter as low permeable barriers. The rock matrix is
characterized by a unit scalar permeability. In [30] two sets of boundary conditions
were considered, left-to-right and bottom-to-top. In our case we choose the former,
meaning that we set a value of pressure equal to 4 on the left side of � and to 1 on
the right side of �. The other two boundaries are considered as impervious.
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Fig. 8.11 On the left, pressure over line for the test case of Sect. 8.6.2. The grey solutions are the
one reported in [30]. Most of the plots overlap with the reference solution, in black. On the right,
the difference over the same line between a solution and the reference one

In Fig. 8.11 (left) we report the plot of pressure over the line (0, 0.5) − (1, 0.9), by
using the grids shown in Fig. 8.9. In light grey we present the results obtained in the
benchmark [30] and in black the reference solution. The latter has been calculated
with mimetic finite difference, on a very refined grid that represents fractures as the
same dimension of the porous media. We clearly see that all the proposed methods
overlap with the reference solution showing high accuracy even on such coarse
grids. In particular, results do not deteriorate with the agglomerating procedure.
Moreover, comparing with the results obtained in [30] the ones given by the MVEM
are, generally, of higher quality.

In Fig. 8.11 (right),we show the pressure difference between the reference solution
and the ones obtained with the considered grids, over the reference solution itself.
The errors are quite small except for the two peaks in correspondence of the pressure
jump in the picture at the left of the same Figure. The reason can be associated to
the sampling procedure used in the extraction of these data.

Finally, as done in [30] we compute the errors in the rock matrix between the
reference and the computed solution. We consider the following formula

err2m = 1

|�|(�pre f )2
∑

f =Km∩Kref,m

| f | (pm |Km − pre f |Kref,m

)2
, (8.8)

where pm |Km is the pressure of them-method at cell Km , pre f is the reference pressure
at cell Kref,m , and�pre f is the maximum variation of the pressure on all the domain.
These errors are reported in Table8.4. All the errors are quite small and comparable
with those reported in [30]. When the agglomeration procedure is adopted, the errors
slightly increase due to the smaller number of cells except for the Cartesian cut case
where the error doubles, remaining nevertheless acceptable.

Let us now analyse the properties of the systemmatrix to verify what is the impact
of element size and shape in the different cases. We remind that the grids have
been generated with comparable resolution to obtain similar numbers of degrees
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Table 8.4 Pressure error between the reference solution and the compute with theMVEMby using
formula 8.8

Original Agglomerated

Delaunay 0.013008 0.014267

Cartesian cut 0.012865 0.025827

Voronoi 0.0085291 0.010037

Table 8.5 Matrix properties for test case Sect. 8.6.2

NDOF Ncells Nfaces n K (A)

Delaunay 3741 1373 2162 5.15 4.82e+10

Delaunay
agglom.

3384 1196 1982 5.51 3.85e+10

Cut 4961 1495 1296 6.00 4.23e+10

Cut agglom. 4474 1252 2814 7.42 3.67e+10

Voronoi 6095 1738 3913 7.33 4.10e+10

Voronoi
agglom.

5118 1326 3348 9.32 3.21e+10

of freedom, however, the number of unknowns is not exactly the same. Results
are summarized in Table8.5. From the point of view of the degrees of freedom the
Voronoi grid is the most demanding because, for a given space resolution it generates
very small cells close to the intersections and tips, however, it is also the one that
benefits the most from agglomeration. The conditioning is of the same order of
magnitude for all grids, and improves with agglomeration. In particular the best
result is obtained for the agglomerated Voronoi grid despite the large number of
faces per element that results from clustering of general polygons and reflects in the
slightly larger number of non-zero entries per row.

We can also observe that, even if the sparsity of the matrices is similar in all cases,
the pattern can change significantly. In Fig. 8.12 we compare the matrix structure
corresponding to a Delaunay grid and a Cartesian cut one: the underlying structure
of the Cartesian grid has a visible impact on the sparsity pattern. A similar structure
is observed for the case of the Voronoi grid since, away from the fracture network,
the seeds are positioned to obtain a Cartesian grid. Let Tα denote the time required
to solve 1000 times the system arising from the discretization on a mesh α with the
“\” method from Matlab®, and let T̃α = Tα

(Nα
DOF)

3 be the time normalized against
the third power of the system size. The corresponding values, reported in Table8.6,
seem to indicate that, for the same sparsity, a faster solution is obtained with a more
compact pattern. Solution strategies for this kind of problem can be found in [24].

We can also compare the performances of an iterative solver on the samematrices.
Given the small size of the problem and the fact that the preconditioner we adopt is
not ad hoc for the problem it is not fair to compare the computational time of a direct
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Fig. 8.12 The sparsity patterns for a Delaunay grid (left) and the Cartesian cut grid (right)

Table 8.6 Normalized time for the solution of the linear systems corresponding to the different
grids

Delaunay Delaunay
agglom.

Cut Cut agglom. Voronoi Voronoi
agglom.

T̃α 2.630e-10 3.410e-10 1.889-e10 2.262e-10 1.394e-10 2.246e-10

and iterative solver, but we can highlight the differences in number of iterations for
the different grids. Since the system matrix can be rearranged as

A =
[

M B̂T

−B C

]

we employed the following block preconditioner

P =
[
M 0
0 −S̃

]

where S̃ is approximated using the lumped version of M , called M̃ , i.e. S̃ =
−C − BM̃−1 B̂T , and applied GMRES with a tolerance on the normalized resid-
ual of 10−6. Results are summarized in Table8.7. The number of iterations reflects
the differences in condition number; note that the chosen preconditioner reduces
conditioning of approximately 4 orders of magnitude in all cases except for the case
of the agglomerated cut (and, to a lesser extent, Voronoi) grid where it is slightly less
effective.

Finally, we study the effect of element shape on the MVEM stabilization term.
We define element-wise an index
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Table 8.7 Number of GMRES iterations for the solution of the linear systems corresponding to
the different grids

Delaunay Delaunay
agglom.

Cut Cut agglom. Voronoi Voronoi
agglom.

Nit 27 30 24 75 34 47

K (P−1A) 8.72e+06 8.64e+06 7.92e+06 3.12e+07 8.95e+06 8.97e+06

Fig. 8.13 On the left, κi on the Delaunay grid, on the right the same index on the Voronoi grid
before clustering

κi = ||Si ||
||Si || + ||Ai ||

where Si and Ai are the local stability and consistency contributions to the matrix
arising from the discretization of the bilinear form a� on the i−th element.

As shown in Fig. 8.13 in the case of a Delaunay grid the norm of the stabilization
term in each local matrix is comparable to the norm of the consistency term, i.e.
κi � 0.5 everywhere. In the Voronoi grid instead we have elements with extremely
high aspect ratios (up to 60), or, in other words, we have small edges compared to
the typical mesh size. In this latter case the norm of the stability term is one order of
magnitude smaller in elements with very small edges. A discussion of the stability
bounds for grids in the case of small edges can be found in [7, 8] for the primal
formulation of elliptic problems.

8.7 Conclusion

In this work we have presented and discussed the performances of the Mixed Virtual
Finite ElementMethod applied to underground problems. One of itsmain advantages
is the possibility to handle, in a natural way, grid cells of any shape becoming suit-
able for its usage in problems with complex geometries, such as subsurface flows. A
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second strong point is the ability of the scheme to handle, in a robust way, strong vari-
ations of the permeability matrix which is again a common aspect for underground
processes. Finally, the numerical scheme is also locally mass conservative making
it very suitable in the coupling of other physical processes, like transport problems.
We have tested the capabilities of the scheme with respect to two test cases that are
known in literature and stress the two aforementioned critical points: heterogeneity
and geometrical complexity. A first remark is that the mixed virtual element method
gives high quality results also for challenging grids and physical data, making it
a promising and interesting scheme for industrial applications. Moreover we per-
formed some comparisons of the system matrices arising from the discretization of
the problem on different types of grids: Delaunay, Voronoi, Cartesian grids cut by
fractures. We observed similar condition numbers and sparsity, but a better sparsity
patterns for grids obtained from the modification of structured ones. We also applied
agglomeration by means of permeability based and volume based clustering: besides
reducing the computational cost this technique allowed us to eliminate small cells
and, in some cases, cells with very large aspect ratios where the MVEM stabilization
term employed in this work does not scale correctly. Future research may focus on
the choice of the most effective stabilization term formulation for the grid type, as
well as to the generalization of this work to the three dimensional case, including the
discussion of corner point grids, which are widely used in subsurface flows but pose
many challenges due to the presence of non-planar faces and non-convex elements.
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