
Chapter 6
A Hybrid High-Order Method
for Multiple-Network Poroelasticity

Lorenzo Botti, Michele Botti, and Daniele A. Di Pietro

Abstract We develop Hybrid High-Order methods for multiple-network poroelas-
ticity, modelling seepage through deformable fissured porous media. The proposed
methods are designed to support general polygonal and polyhedral elements. This is
a crucial feature in geological modelling, where the need for general elements arises,
e.g., due to the presence of fracture and faults, to the onset of degenerate elements
to account for compaction or erosion, or when nonconforming mesh adaptation is
performed. We use as a starting point a mixed weak formulation where an additional
total pressure variable is added, that ensures the fulfilment of a discrete inf-sup con-
dition. A complete theoretical analysis is performed, and the results are demonstrated
on a panel of numerical tests.

Keywords Hybrid High-Order methods · Discontinuous Galerkin methods ·
Polytopal methods · Multi-network poroelasticity · Barenblatt-Biot equations

L. Botti
Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
e-mail: lorenzo.botti@unibg.it

M. Botti
MOX-Laboratory for Modeling and Scientific Computing, Dipartimento di Matematica,
Politecnico di Milano, Milan, Italy
e-mail: michele.botti@polimi.it

D. A. Di Pietro (B)
IMAG, University of Montpellier, CNRS, Montpellier, France
e-mail: daniele.di-pietro@umontpellier.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. A. Di Pietro et al. (eds.), Polyhedral Methods in Geosciences,
SEMA SIMAI Springer Series 27,
https://doi.org/10.1007/978-3-030-69363-3_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69363-3_6&domain=pdf
mailto:lorenzo.botti@unibg.it
mailto:michele.botti@polimi.it
mailto:daniele.di-pietro@umontpellier.fr
https://doi.org/10.1007/978-3-030-69363-3_6


228 L. Botti et al.

6.1 Introduction

In this work, we develop and analyse Hybrid High-Order (HHO) methods for the
multiple-network poroelastic problem.

In the standard quasi-static poroelasticity theory [18], the medium is modelled
as a continuous superposition of solid and fluid phases. The corresponding set of
equations, named after Biot in recognition of his pioneering contributions [7, 8],
result from the balances of force and mass. Specifically, mechanical equilibrium is
assumed, with the total stress tensor decomposed into one contribution due to the
strain of the porous matrix and one due to the pore pressure; see [32]. A standard
description of the flow, on the other hand, is obtained combining the mass balance
with the Darcy law. This simplified description can fail to capture physically relevant
phenomena in fissured media. A modification of the Darcy model accounting for
the simultaneous presence of pore and fissure networks was originally proposed by
Barenblatt et al. in [4] for the rigid case. Plugging this description into the Biot model
gives raise to the so-called Barenblatt–Biot equations. These ideas can be naturally
extended to M porous networks, finding applications, e.g., in the modelling of the
interactions between biological fluids and tissue; see, e.g, [33]. A different extension
of the Biot model is considered in Chap. 4, where thermal effects are incorporated
into a single network model.

In the context of computational geosciences, the use of discretisation methods
that support general polytopal meshes and, possibly, high-order has been recently
advocated by several authors; see, e.g., [2, 3, 6, 15–17, 27, 31] and references therein.
The support of polyhedral meshes enables, e.g., a seamless treatment of degenerate
elements which may arise due to erosion or compaction in corner-point descriptions
of petroleum basins, of non-matching interfaces across fractures or faults, and of
non-conforming mesh refinement or agglomeration [5]. High-order methods, on the
other hand, typically lead to a better usage of computational resources than low-
order methods whenever the solution exhibits sufficient (local) regularity or mesh
adaptation is available.

Our focus is here on a specific family of polytopal discretisations, HHOmethods.
Originally introduced in [23] in the context of linear elasticity, HHOmethods rely on
two key ingredients: local reconstructions obtained by solving small, embarrassingly
parallel problems inside each element and stabilisation terms that penalise, inside
each element, residuals designed so as to preserve optimal approximation properties.
A general and up-to-date overview of HHO methods can be found in the recent
monograph [22]. Hybrid High-Order methods are linked to the hybridized version
of the Mixed Virtual Element methods considered in Chaps. 7 and 8; see [1, 24] and
also [22, Sects. 5.4 and 5.5]. Concerning their application to poroelasticity, we can
cite, in particular: the HHO-Discontinuous Galerkin method for the Biot problem
proposed and analysed in [9], based in turn on the methods of [23] for the mechanics
and [25] for the flow; its extension to nonlinear elastic laws proposed in [14], where
the mechanical term is discretised according to [13]; its application to the treatment
of stochastic coefficients considered in [12] in conjunction with Polynomial Chaos
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techniques. An abstract analysis framework covering general schemes for the linear
Biot problem in fully discrete formulation (cf. [20]) has been recently proposed in [10]
including, in particular, a variation of the method of [9] where also the flow equation
is discretised in the HHO spirit. Other applications of HHO methods to problems
in geosciences include flows in fractured porous media [16, 17] and miscible fluid
flows in porous media [2].

The method proposed in the present work uses as a starting point a mixed formu-
lation inspired by [30], where an additional total pressure variable is introduced that
accounts for the pore and mechanical pressures. Given an integer polynomial degree
k ≥ 0, the discretisation of the mechanical term in the equilibrium equation follows
[13] if k ≥ 1 and [12] if k = 0. This choice induces a natural discretisation for the
total pressure in the space of broken polynomials of total degree ≤k, which ensures
inf-sup stability. As it has been done in [10], we consider two different discretisations
of theDarcy term in themass balance equations (enforcingmass conservation in each
pore network). The first scheme is based on the HHOmethod of [26], so the discrete
unknowns for the pore pressures are located both at elements and faces. The second
scheme is obtained by using the Discontinuous Galerkin (DG) method of [25]. In
both cases, the linear exchange terms as well as the porosity are discretised using
element unknowns only. The resulting methods have several appealing features: they
support general polytopal meshes and high-order; they can be applied to an arbitrary
number M ≥ 1 of pore networks; they are well-behaved for quasi-incompressible
porous matrices; they deliver an L2-error estimate for the total pressure robust in the
entire range of geophysical parameters.

From the practical standpoint, a relevant difference between the two schemes is
that the HHO-HHO version can benefit from static condensation, leading to linear
systems where the only globally coupled unknowns are displacement and pore pres-
sure at faces, and global pressures at elements. On typical meshes, this results in
fewer unknowns compared to the HHO-DG scheme and better computational effi-
ciency, particularly in three space dimensions; see, e.g., the numerical tests onmeshes
with planar faces in [11]. On the other hand, the HHO-DG scheme may be easier to
implement, as it does not require the introduction of pore pressures at faces, nor the
computation of local pore pressure reconstructions or static condensation. From the
theoretical point of view, the analysis of the HHO-DG scheme requires elliptic reg-
ularity (in Theorem 6.2, the convexity of the domain is assumed) to achieve optimal
orders of convergence. As pointed out in [10], this is not the case for the HHO-HHO
scheme. In this paper, we focus on the HHO-DG scheme for the numerical tests of
Sect. 6.5, and postpone a comparison with the HHO-HHO scheme to a future work.

The rest of this paper is organised as follows. In Sect. 6.2 we establish the con-
tinuous setting and state the multiple-network poroelasticity problem in weak for-
mulation. Section 6.3 describes the discrete setting and contains the statement of the
discrete problem. The analysis of the method is carried out in Sect. 6.4 focusing,
for the sake of simplicity, on the HHO-HHO variant. The pivotal result is here an a
priori estimate for an abstract problem whose purpose is twofold: when applied to
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the HHO scheme, it yields its well-posedness; when applied to the error equations,
it establishes a basic error estimate. Finally, Sect. 6.5 contains a thorough numerical
validation of the method.

6.2 Continuous Setting

In what follows, given an open bounded set X ⊂ R
d , we denote by (·, ·)X the usual

scalar product of L2(X;R), L2(X;Rd), or L2(X;Rd×d), according to the context.
When X = �, the subscript is omitted. Given a vector space V and two real numbers
a < b, we additionally denote by C0([a, b]; V ) the spaces of continuous V -valued
functions of time on [a, b] and by Hm(a, b; V ) the space of V -valued functions that
are square-integrable along with their derivatives up to the m-th on (a, b), equipped
with the usual norms.

We consider the evolution over a finite time tF > 0 of a porous medium which, in
its reference configuration, occupies a fixed region of space � ⊂ R

d , d ∈ {2, 3}, and
hostsM ≥ 1 pore networks. For the sake of simplicity, we assume that� is a polygon
or a polyhedron, so that it can be covered exactly by a spatial meshmade of polygonal
or polyhedral elements. Denote by μ > 0 and λ ≥ 0 the Lamé parameters of the
matrix and, for any i ∈ �1, M�, by Ci ≥ 0, αi ∈ (0, 1], and Ki > 0, respectively,
the constrained specific storage, Biot–Willis, and permeability coefficients of each
network. We additionally denote by f ∈ H 1(0, tF; L2(�;Rd)) a volumetric force
and, for any i ∈ �1, M�, by gi ∈ C0([0, tF]; L2(�;R)) a source term for the i th
pore network. The above physical parameters and forcing terms will be collectively
referred to as the problem data.

LetU := H 1
0 (�;Rd), P0 := {

q ∈ L2(�;R) : ∫
�
q = 0

}
, and, for all i ∈ �1, M�,

Pi := H 1
0 (�;R). We also set, for the sake of brevity, α := (1, α1, . . . , αM) ∈ R

M+1

and, denoting by p0 the total pressure field and, for any i ∈ �1, M�, by pi the pressure
field in the i th porous network, p := (p0, p1, . . . , pM). We consider a weak formula-
tion inspiredby (but not coincidentwith) the one considered in [30]: Find the displace-
ment u ∈ C0([0, tF];U), the total pressure p0 ∈ H 1(0, tF; P0) and, for all i ∈ �1, M�,
the i th pore network pressure pi ∈ C0([0, tF]; Pi ) ∩ H 1(0, tF; L2(�;R)) such that it
holds, for almost every t ∈ (0, tF], all v ∈ U , all q0 ∈ P0, and all qi ∈ Pi , i ∈ �1, M�,

2μ a(u(t), v) + b(v, p0(t)) = ( f (t), v) (6.1a)

b(u(t), q0) − λ−1(α· p, q0) = 0, (6.1b)

(dtψi ( p(t)), qi ) + (Si ( p(t)), qi ) + Ki c(pi , qi ) = (gi (t), qi ) ∀i ∈ �1, M�, (6.1c)

where we have set, for all i ∈ �1, M� and all q ∈ R
M+1,

ψi (q) :=Ciqi + αiλ
−1α·q, (6.2)
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and we have introduced the bilinear forms a : U × U → R, b : U × P0 → R, and
c : H 1(�;R) × H 1(�;R) → R such that, for allw, v ∈ U , allq0 ∈ P0, and all r, q ∈
H 1(�;R),

a(w, v) := (∇sw,∇sv), b(v, q0) := (∇·v, q0), c(r, q) := (∇r,∇q). (6.3)

In the expression of the bilinear form a,∇s denotes the symmetric part of the gradient
applied to vector fields. In (6.1b), the exchange term is expressed by the function
Si : RM+1 → R such that, for any q ∈ R

M+1,

Si (q) :=
M∑

j=1

ξi← j (qi − qj ),

where
{
ξi← j : i, j ∈ �1, M�

}
is a family of nonnegative real numbers such that

ξi← j = ξj←i for all i, j ∈ �1, M�. We assume that the initial pressures p0i ∈ Pi ,
i ∈ �0, M�, are given, so that an initial equilibrium displacement u0 ∈ U can be
computed from (6.1a).

6.3 Discrete Setting

6.3.1 Space and Time Meshes

We consider spatial meshes corresponding to couples Mh := (Th,Fh), where Th is
a finite collection of polyhedral elements such that h := maxT∈Th hT > 0 with hT

denoting the diameter of T , whileFh is a finite collection of planar faces. It is assumed
henceforth that the meshMh matches the geometrical requirements detailed in [22,
Definition 1.4]. This covers, essentially, any reasonable partition of� into polyhedral
sets, not necessarily convex.

For every mesh element T ∈ Th , we denote byFT the subset ofFh containing the
faces that lie on the boundary ∂T of T . For any mesh element T ∈ Th and each face
F ∈ FT , nT F is the constant unit vector normal to F pointing out of T . Boundary
faces lying on ∂� and internal faces contained in � are collected in the sets Fb

h and
F i

h , respectively. For any F ∈ F i
h , we denote by T1 and T2 the elements of Th such

that F ⊂ ∂T1 ∩ ∂T2. The numbering of T1 and T2 is arbitrary but fixed once and for
all, and we set nF := nT1F .

Our focus being on the h-convergence analysis, we consider a sequence of refined
polygonal or polyhedralmeshes that is regular in the sense of [22,Definition1.9]. This
implies, in particular, that the diameter hT of a mesh element T ∈ Th is comparable
to the diameter hF of each face F ∈ FT uniformly in h, and that the number of faces
in FT is bounded above by an integer N∂ independent of h; see [22, Lemma 1.12].
In order to have the stability of the bilinear form discretising the mechanical term
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when discrete unknowns are polynomials of degree k ≥ 1, we will further assume
that every element T ∈ Th is star-shaped with respect to every point of a ball of
diameter uniformly comparable to hT . This assumption ensures, in particular, that
uniform local Korn inequalities hold inside each element; cf. the Appendix of [11]
and also [22, Chap. 7].

The time mesh is obtained subdividing [0, tF] into N ∈ N
∗ uniform subintervals.

We introduce the timestep τ := tF/N and the discrete times tn := nτ , n ∈ �0, N�.
For all n ∈ �1, N� and all ϕ ∈ C0([0, tF]; V ) we let, for the sake of brevity,

ϕn := ϕ(tn)

and define the discrete backward time derivative operator δnt : C0([0, tF]; V ) → V
at time n as

δnt ϕ := ϕn − ϕn−1

τ
. (6.4)

Denoting by (·, ·)V an inner product in V with associated norm ‖·‖V , and letting
ϕ ∈ H 1(0, tF; V ), it holds

N∑

n=1

τ‖δnt ϕ‖2V ≤ ‖ϕ‖2H 1(0,tF;V ). (6.5)

6.3.2 Local and Broken Spaces and Projectors

Let a polynomial degree l ≥ 0 be fixed. For all X ∈ Th ∪ Fh , denote by Pl(X;R) the
space spanned by the restriction to X of d-variate polynomials of total degree ≤ l,
and let π l

X : L1(X;R) → P
l(X;R) be the corresponding L2-orthogonal projector

such that, for any v ∈ L1(X;R),

(π l
X v − v,w)X = 0 ∀w ∈ P

l(X;R).

Denoting by m ≥ 1 an integer, the vector version π l
X : L1(X;Rm) → P

l(X;Rm),
is obtained applying π l

X component-wise. We will also need, in what follows, the
space of d × d symmetric matrix-valued fields with polynomial entries, denoted by
P
l(T ;Rd×d

sym ).
At the global level, we introduce the broken polynomial space

P
l(Th;R) := {

v ∈ L1(�;R) : v|T ∈ P
l(T ;R) ∀T ∈ Th

}
,

the corresponding vector version P
l(Th;Rd), and the space Pl(Th;Rd×d

sym ) of d × d
symmetric matrix-valued fields with broken polynomial entries. The L2-orthogonal
projector onPl(Th;R) isπ l

h : L1(�;R) → P
l(Th;R) such that, for all v ∈ L1(�;R),
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(π l
hv)|T = π l

T v|T ∀T ∈ Th . (6.6)

Broken polynomial spaces constitute special instances of the broken Sobolev
spaces Hm(Th;R) := {

v ∈ L2(�;R) : v|T ∈ Hm(T ;R) ∀T ∈ Th
}
, which will be

used, along with their vector-valued counterparts, to express the regularity require-
ments on the exact solution in the error estimate of Theorems 6.1 and 6.2. For any
function v ∈ H 1(Th;R) we define, for all F ∈ F i

h , the jump operator such that

[v]F := v|T1 − v|T2 ,

where we remind the reader that T1 and T2 are the mesh elements that share F as
a face, taken in an arbitrary but fixed order. On boundary faces, the jump operator
simply returns the trace of its argument on ∂�.

6.3.3 Discrete Spaces and Reconstructions

To formulate the discrete problem, we need scalar and vector HHO spaces. From this
point on, we let an integer k ≥ 0 be fixed, corresponding to the polynomial degrees
of the discrete unknowns.

6.3.3.1 Scalar HHO Space and Pressure Reconstruction

The scalar HHO space, that will be used to discretise network pressures in the HHO-
HHO scheme (6.23), is

Qk
h
:=

{
q
h

= ((qT )T∈Th , (qF )F∈Fh ) :
qT ∈ P

k(T ;R) for all T ∈ Th and qF ∈ P
k(F;R) for all F ∈ Fh

}
.

The interpolator I kh : H 1(�;R) → Qk
h
is defined setting, for all q ∈ H 1(�;R),

I khq := (
(π k

T q|T )T∈Th , (π
k
Fq|F )F∈Fh

)
.

For all q
h

∈ Qk
h
, we define the broken polynomial function qh ∈ P

k(Th;R) obtained
patching element unknowns, that is,

(qh)|T := qT ∀T ∈ Th .

For any element T ∈ Th , we denote by Qk
T
the restriction of Qk

h
to T , andwe introduce

the pressure reconstruction rk+1
T : qk

T
→ P

k+1(T ;R) such that, for all q
T

∈ Qk
T
,



234 L. Botti et al.

(∇rk+1
T q

T
,∇w)T = −(qT ,�w)T +

∑

F∈FT

(qF ,∇w·nT F )F ∀w ∈ P
k+1(T ;R),

∫

T
rk+1
T q

T
=

∫

T
qT .

The global pressure reconstruction operator rk+1
h : Qk

h
→ P

k+1(Th;R) is obtained

patching the local ones: For all q
h

∈ Qk
h
,

(rk+1
h q

h
)|T := rk+1

T q
T

∀T ∈ Th .

6.3.3.2 Vector HHO Space, Strain, and Displacement Reconstructions

The vector HHO space, that will be used to discretise the displacement, is

V k
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh ) :

vT ∈ P
k(T ;Rd) for all T ∈ Th and vF ∈ P

k(F;Rd) for all F ∈ Fh

}
.

For all vh ∈ V k
h , we let vh ∈ P

k(Th;Rd) be such that

(vh)|T := vT ∀T ∈ Th .

The interpolator I kh : H 1(�;Rd) → V k
h is such that, for any v ∈ H 1(�;Rd),

I khv := (
(π k

T v|T )T∈Th , (π
k
Fv|F )F∈Fh

)
.

For any element T ∈ Th , we denote by V k
T the restriction of V k

h to T andwe introduce
the strain reconstruction Ek

T : V k
T → P

k(T ;Rd×d
sym ) such that, for all vT ∈ V k

T ,

(Ek
T vT , τ )T = −(vT ,∇·τ )T +

∑

F∈FT

(vF , τnT F )F ∀τ ∈ P
k(T ;Rd×d

sym ).

For any vT ∈ V k
T , we reconstruct from Ek

T vT a high-order displacement rk+1
T vT ∈

P
k+1(T ;Rd) enforcing the following conditions:

(∇srk+1
T vT − Ek

T vT ,∇sw)T = 0 ∀w ∈ P
k+1(T ;Rd),

∫

T
rk+1
T vT =

∫

T
vT , and

∫

T
∇ssrk+1

T vT = 1

2

∑

F∈FT

∫

F
(vF ⊗ nT F − nT F ⊗ vF ),

where ∇ss denotes the skew-symmetric part of the gradient applied to vector fields.
The global strain and displacement reconstructions Ek

h : V k
h → P

k(Th;Rd×d
sym ) and
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rk+1
h : V k

h → P
k+1(Th;Rd) are obtained setting, for all vh ∈ V k

h ,

(Ek
hvh)|T := Ek

T vT and (rk+1
h vh)|T := rk+1

T vT for all T ∈ Th .

We also define a global divergence reconstruction Dk
h : V k

h → P
k(Th;R) as the trace

of Ek
h , that is, for all vh ∈ V k

h ,

Dk
hvh := tr(Ek

hvh).

6.3.3.3 Displacement and Pressure Spaces

The discrete spaces for the displacement including the strongly enforced homoge-
neous boundary conditions and for the total pressure including the zero-average
condition are, respectively:

Uk
h := {

vh ∈ V k
h : vF = 0 for all F ∈ Fb

h

}
and Pk

h,0 :=P
k(Th;R) ∩ P0,

with P0 defined in Sect. 6.2. When using the HHO method for the discretisation of
the flow equations, for any i ∈ �1, M�, the space for the i th network pressure is

Pk
h,i := Qk

h,D
with Qk

h,D
:=

{
q
h

∈ Qk
h

: qF = 0 for all F ∈ Fb
h

}
,

while, when using the DG method, we use instead

Pk
h,i :=P

k(Th;R).

6.3.4 Discrete Bilinear Forms

We discuss in this section the approximation of the continuous bilinear forms defined
in (6.3). In order to alleviate the exposition, from this point on we use the abridged
notation a � b for the inequality a ≤ Cb with real number C > 0 independent of
the meshsize, the time step and, for local inequalities, on the mesh element or face.
Further dependencies of the hidden constant will be specified when appropriate.

6.3.4.1 Mechanical Term

The discrete counterpart of the continuous bilinear form a is ah : V k
h × V k

h → R

such that, for all wh, vh ∈ V k
h ,
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ah(wh, vh) :=
{

(Ek
hwh, Ek

hvh) + sa,h(wh, vh) if k ≥ 1,

(E0
hwh, E0

hvh) + sa,h(wh, vh) + jh(r1hwh, r1hvh) if k = 0,

with stabilising bilinear form sa,h : V k
h × V k

h → R and jump penalisation bilinear
form jh : H 1(Th;Rd) × H 1(Th;Rd) → R such that

sa,h(wh, vh) :=
∑

T∈Th

∑

F∈FT

h−1
F (δkT FwT , δkT FvT )F ∀wh, vh ∈ V k

h,

jh(w, v) :=
∑

F∈Fh

h−1
F ([w]F , [v]F )F ∀w, v ∈ H 1(Th;Rd),

where, for all T ∈ Th and all F ∈ FT , δ
k
T FvT :=πk

F (rk+1
T vT − vF ) − πk

T (rk+1
T vT − vT ).

A discussion on the case k = 0, including a justification of the term involving the
bilinear form jh , can be found in [12]; see also [22, Sect. 7.6].

Following [22, Chap. 7], the bilinear form ah defines an inner product on Uk
h ,

and we denote by ‖·‖a,h the induced norm. The corresponding dual norm ‖·‖a,h,∗ is
defined such that, for any linear form h : U k

h → R,

‖h‖a,h,∗ := sup
vh∈Uk

h\{0}

h(vh)
‖vh‖a,h

. (6.7)

The following consistency property holds: For all w ∈ U ∩ Hk+2(Th;Rd),

‖Ea,h(w; ·)‖a,h,∗ � hk+1|w|Hk+2(Th ;Rd ), (6.8)

where the hidden constant is independent of both h and w and the consistency error
linear form Ea,h(w; ·) : Uk

h → R is such that, for all vh ∈ Uk
h ,

Ea,h(w; vh) := − (∇·∇sw, vh) − ah(I khw, vh). (6.9)

We additionally have the following discrete Korn–Poincaré inequality:

‖vh‖L2(�;Rd ) ≤ CK‖vh‖a,h ∀vh ∈ Uk
h, (6.10)

where the real number CK > 0 is independent of h, but possibly depends on �, d,
k, and the mesh regularity parameter. In the case k ≥ 1, this inequality results from
[22, Eq. (7.75) with 2μ = 1 and λ = 0 together with Remark 7.26] whereas, in the
case k = 0, it is a consequence of [22, Eq. (7.109) with λ = 0 and Remark 7.26].
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6.3.4.2 Pressure–Displacement Coupling

The coupling between the total pressure and the displacement is realised by means of
the bilinear form bh : V k

h × P
k(Th;R) such that, for all (vh, qh) ∈ V k

h × P
k(Th;R),

bh(vh, qh) := (Dk
hvh, qh).

The following inf-sup condition holds: There is a real number β > 0 independent of
h, but possibly depending on �, d, k, and the mesh regularity parameter, such that

β‖qh‖L2(�;R) ≤ ‖bh(·, qh)‖a,h,∗ ∀qh ∈ Pk
h,0. (6.11)

Moreover, we have the following consistency properties: For all v ∈ U ,

bh(I khv, qh) = b(v, qh) ∀qh ∈ Pk
h,0 (6.12)

and, for all q ∈ H 1(�;R) ∩ Hk+1(Th;R),

‖Eb,h(q; ·)‖a,h,∗ � hk+1|q|Hk+1(Th ;R), (6.13)

where the hidden constant is independent of both h and q and the consistency error
linear form Eb,h(q; ·) : U k

h → R is such that, for all vh ∈ Uk
h ,

Eb,h(q; vh) := − (∇q, vh) − bh(vh, π
k
h q). (6.14)

6.3.4.3 HHO Discretisaton of the Darcy Term

Denote by ∇h the broken gradient acting element-wise. The Darcy bilinear form c
is approximated by chhoh : Qk

h
× Qk

h
→ R such that, for all rh, qh

∈ Qk
h
,

chhoh (rh, qh
) := (∇hrk+1

h rh,∇hrk+1
h q

h
) + sc,h(rh, qh

),

with stabilising bilinear form

sc,h(rh, qh
) :=

∑

T∈Th

∑

F∈FT

h−1
F (δkT Fr T , δkT FqT

)F ,

where, for all T ∈ Th and all F ∈ FT , δ
k
T FqT := πk

F (rk+1
T q

T
− qF ) − πk

T (rk+1
T q

T
− qT ).

The bilinear form chhoh defines an inner product on Qk
h,D

as a consequence of [22,
Eq. (2.41) and Corollary 2.16], and we denote by ‖·‖c,h,hho the induced norm. The
corresponding dual norm is such that, for any linear form h : Qk

h,D
→ R,
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‖h‖c,h,∗ := sup
q
h
∈Qk

h,D
\{0}

h(qh
)

‖q
h
‖c,h,hho

. (6.15)

It follows from [22, Eq. (2.42)] that, for all r ∈ H 1
0 (�;R) ∩ Hk+2(Th;R) such that

�r ∈ L2(�;R),

‖Ehho
c,h (r; ·)‖c,h,∗ � hk+1|r |Hk+2(Th ;R), (6.16)

where the hidden constant is independent of both h and r , and the consistency error
linear form Ehho

c,h (r; ·) : Qk
h,D

→ R is such that, for all q
h

∈ Qk
h,D

,

Ehho
c,h (r; q

h
) := − (�r, qh) − chhoh (I khr, qh

). (6.17)

The following discrete Poincaré inequality results combining [22, Lemma 2.15 and
Eq. (2.41)]: For all q

h
∈ Qk

h,D
,

‖qh‖L2(�;R) ≤ CP‖qh
‖c,h,hho, (6.18)

with real number CP > 0 independent of h and q
h
, but possibly depending on �, d,

k, and the mesh regularity parameter.

6.3.4.4 DG Discretisation of the Darcy Term

For the DG approximation of the Darcy operator we need to assume k ≥ 1 to have
consistency. Let the normal trace average operator be defined such that, for all ψ ∈
H 1(Th;Rd) and all F ∈ F i

h shared by the mesh elements T1 and T2,

{ψ · n}F := 1

2

(
ψ |T1 + ψ |T2

)
|F · nF .

The DG method hinges on the bilinear form cdgh : Pk(Th;R) × P
k(Th;R) → R such

that, for all rh, qh ∈ P
k(Th;R),

cdgh (rh, qh) := (∇hrh,∇hqh) +
∑

F∈Fh

η

hF
([rh]F , [qh]F )F

−
∑

F∈Fh

[
([rh]F , {∇hqh · n}F )F + ({∇hrh · n}F , [qh]F )F

]
,

(6.19)

where the stabilisation parameter η > 0 is chosen large enough to ensure coercivity
with respect to the norm ‖·‖c,h,dg defined such that, for all qh ∈ P

k(Th;R),
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‖qh‖c,h,dg :=
⎛

⎝‖∇hqh‖2L2(�;Rd ) +
∑

F∈Fh

h−1
F ‖[qh]F‖2L2(F)

⎞

⎠

1
2

.

Let r ∈ H 1
0 (�,R) be such that �r ∈ L2(�,R), and consider the elliptic projection

problem that consists in finding rh ∈ P
k(Th;R) such that

cdgh (rh, qh) = −(�r, qh)L2(�) ∀qh ∈ P
k(Th,R). (6.20)

It is inferred from [21, Appendix A] that, if � is convex and r ∈ Hm+1(Th,R) for
some m ∈ {0, . . . , k}, it holds

‖rh − r‖L2(�) + h‖rh − r‖c,h,dg � hm+1|r |Hm+1(Th), (6.21)

with hidden constant independent of h and r .

6.3.5 Discrete Problems

Assume the initial pressures given, and denote by u0 ∈ U the corresponding initial
equilibrum displacement. Enforce the initial condition by setting

u0
h := I khu

0, p0h,i := π k
h p

0
i ∀i ∈ �0, M�. (6.22)

The discrete problem with HHO discretisation of the Darcy term (HHO-HHO
scheme) reads:

Problem 6.1 (HHO-HHO scheme) For n = 1, . . . , N, find un
h ∈ Uk

h, p
n
h,0 ∈ Pk

h,0

and, for all i ∈ �1, M�, pn
h,i

∈ Pk
h,i such that, for all vh ∈ U k

h, all qh,0 ∈ Pk
h,0, and

all q
h,i

∈ Pk
h,i , i ∈ �1, M�,

2μ ah(un
h, vh) + bh(vh, p

n
h,0) = ( f n, vh), (6.23a)

bh(un
h, qh,0) − λ−1(α· pnh, qh,0) = 0, (6.23b)

(δnt ψi ( ph), qh,i ) + (Si ( pnh), qh,i ) + Kic
hho
h (pn

h,i
, q

h,i
) = (gni , qh,i ) ∀i ∈ �1, M�,

(6.23c)

where we have set, for any n ∈ �0, N�, pnh := (pnh,0, p
n
h,1, . . . , p

n
h,M) and we remind

the reader that ψi is defined by (6.2).

The problem resulting from theDG approximation of the flow operator (HHO-DG
scheme) reads:

Problem 6.2 (HHO-DG scheme) For n = 1, . . . , N, find un
h ∈ Uk

h and pnh,0 ∈ Pk
h,0

such that (6.23a)–(6.23b) hold for all vh ∈ U k
h and all qh,0 ∈ Pk

h,0, respectively, and,
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for all i ∈ �1, M�, pnh,i ∈ Pk
h,i such that, for all qh,i ∈ Pk

h,i , i ∈ �1, M�,

(δnt ψi ( ph), qh,i ) + (Si ( pnh), qh,i ) + Kic
dg
h (pnh,i , qh,i ) = (gni , qh,i ) ∀i ∈ �1, M�.

(6.24)

6.4 Convergence Analysis

We carry out a convergence analysis for the methods formulated in Sect. 6.3.5.
For the sake of conciseness, the focus is on the HHO-HHO scheme (6.23). The
modifications needed to adapt the results to the HHO-DG scheme are discussed in
Sect. 6.4.4. A unified analysis covering both HHO-HHO and HHO-DG methods for
the single-network Biot problem can be found in [10].

6.4.1 An Abstract A Priori Estimate

We derive an a priori estimate for an auxiliary problem analogous to (6.23), but with
modified right-hand side. Applied to the discrete problem (6.23), this estimate can
be used to infer its well-posendess. Applied to the error equations (6.50) below, it
gives a basic error estimate.

Problem 6.3 (HHO-HHO scheme with abstract right-hand side) Let the families of
linear forms (n1 : Uk

h → R)n∈�0,N�, and, for all i ∈ �1, M�, (n2,i : Pk
h,i → R)n∈�1,N�,

be given. Assumew0
h ∈ Uk

h, r
0
h,0 ∈ Pk

h,0, and, for all i ∈ �1, M�, r0h,i ∈ Pk
h,i also given.

For n = 1, . . . , N, wn
h ∈ Uk

h, r
n
h,0 ∈ Pk

h,0 and, for all i ∈ �1, M�, r nh,i ∈ Pk
h,i are such

that, for all vh ∈ Uk
h, all qh ∈ Pk

h,0, and all q
h,i

∈ Pk
h,i , i ∈ �1, M�,

2μ ah(wn
h, vh) + bh(vh, r

n
h,0) = n1(vh), (6.25a)

bh(wn
h, qh,0) − λ−1(α·rnh, qh,0) = 0, (6.25b)

(δnt ψi (rh), qh,i ) + (Si (rnh), qh,i ) + Ki c
hho
h (rnh,i , qh,i

) = n2,i (qh,i
) ∀i ∈ �1, M�,

(6.25c)

where, for any n ∈ �0, N�, rnh := (rnh,0, r
n
h,1, . . . , r

n
h,M).

Applying discrete time derivation to (6.25b) we obtain, for all n ∈ �1, N�,

bh(δ
n
t wh, qh,0) − λ−1(α·δnt rh, qh,0) = 0 ∀qh,0 ∈ Pk

h,0. (6.26)

Lemma 6.1 (Abstract a priori estimate) Assuming τ small enough (with threshold
independent of h), the solution to (6.25) satisfies the following a priori estimate:
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max
n∈�1,N�

(

μ‖wn
h‖2a,h + λ−1‖α·rnh‖2L2(�;R) +

M∑

i=1

Ci‖rnh,i‖2L2(�;R)

)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho ≤ exp

(
tF

1 − τ

)
(N + N0) , (6.27)

where we have introduced the exchange norm

‖rnh‖2ξ :=
M∑

i=1

M∑

j=1

‖ξi← j (r
n
h,i − rnh, j )‖2L2(�;R)

and we have set

N := 1

2μ
max

n∈�1,N�
‖n1‖2a,h,∗ + 1

μ

N∑

n=1

τ‖δnt 1‖2a,h,∗ +
M∑

i=1

N∑

n=1

τK−1
i ‖n2,i‖2c,h,∗,

(6.28a)

N0 := 2‖01‖a,h,∗‖w0
h‖a,h+2μ‖w0

h‖2a,h+
1

λ
‖α·r0h‖2L2(�;R)+

M∑

i=1

Ci‖r0h,i‖2L2(�;R).

(6.28b)

Moreover, it holds

β2

μ
max

n∈�1,N�
‖rnh,0‖2L2(�;R) ≤ 2

μ
max

n∈�1,N�
‖n1‖2a,h,∗ + 4β2 exp

(
tF

1 − τ

)
(N + N0) .

(6.29)

Proof We start by deriving a basic energy estimate and then, leveraging the discrete
inf-sup condition (6.11), deduce from the latter the estimate on the total pressure.

(i) Basic energy estimate. Let N ∈ �1, N� and n ∈ �1, N�. Taking vh = δnt wh in
(6.25a), qh,0 = −rnh,0 in (6.26), and, for all i ∈ �1, M�, q

h,i
= rnh,i in (6.25c), and

summing the resulting equations we obtain, after expanding δnt ψi (rh) according to
its definition,

2μ ah(wn
h , δnt w

n
h) + λ−1 (α·δnt rnh , α·rnh) +

M∑

i=1

Ci (δnt rh,i , r
n
h,i )

+
M∑

i=1

(Si (r
n
h), rnh,i ) +

M∑

i=1

Ki c
hho
h (rnh,i , r

n
h,i ) = n1(δ

n
t wh) +

M∑

i=1

2,i (r
n
h,i ). (6.30)

Denote by Ln = Ln
1 + · · ·Ln

5 and Rn = Rn
1 + Rn

2, respectively, the left- and
right-hand side of the above expression, and set L := ∑N

n=1 τLn and, for i ∈ {1, 2},
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Ri := ∑N
n=1 τRn

i .

(i.A) Lower bound for L. Recalling the definition (6.4) of the discrete time derivative
and using multiple times the formula

x(x − y) = 1

2

(
x2 + (x − y)2 − y2

)
(6.31)

with x = •n and y = •n−1, we can write for the first three terms in Ln

Ln
1 = μ

τ

(‖wn
h‖2a,h + ‖wn

h − wn−1
h ‖2a,h − ‖wn−1

h ‖2a,h
)
,

Ln
2 = 1

2λτ

(
‖α·rnh‖2L2(�;R) + ‖α·(rnh − rn−1

h )‖2L2(�;R) − ‖α·rn−1
h ‖2L2(�;R)

)
,

Ln
3 =

M∑

i=1

Ci

2τ

(
‖rnh,i‖2L2(�;R) + ‖rnh,i − rn−1

h,i ‖2L2(�;R) − ‖rn−1
h,i ‖2L2(�;R)

)
.

(6.32)
For the fourth term, using again (6.31) this time with x = rnh,i and y = rnh, j along
with ξi← j = ξj←i , we get

Ln
4 =

M∑

i=1

M∑

j=1

(ξi← j (r
n
h,i − rnh, j ), r

n
h,i )

= 1

2

M∑

i=1

M∑

j=1

(
‖ξ 1

2
i← j r

n
h,i‖2L2(�;R)+‖ξ 1

2
i← j (r

n
h,i−rnh, j )‖2L2(�;R)−‖ξ 1

2
j←i r

n
h, j‖2L2(�;R)

)

= 1

2

M∑

i=1

M∑

j=1

‖ξ 1
2
i← j (r

n
h,i − rnh, j )‖2L2(�;R) = 1

2
‖rnh‖2ξ .

(6.33)
Multiplying (6.30) by τ , summing over n ∈ �1, N�, using (6.32) and (6.33), and

telescoping out the appropriate summands, we get

μ‖wN
h ‖2a,h + 1

2λ
‖α·rN

h ‖2
L2(�;R)

+
M∑

i=1

Ci

2
‖rN

h,i‖2L2(�;R)
+ 1

2

N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho

≤ R + μ‖w0
h‖2a,h + 1

2λ
‖α·r0h‖2

L2(�;R)
+

M∑

i=1

Ci

2
‖r0h,i‖2L2(�;R)

. (6.34)

(i.B) Upper bound forR. A discrete integration by parts in time gives for the first
term
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R1 = N
1 (wN

h ) − 01(w
0
h) −

N∑

i=1

τ(δnt 1)(w
n−1
h )

≤ ‖N
1 ‖a,h,∗‖wN

h ‖a,h + ‖01‖a,h,∗‖w0
h‖a,h+

N∑

n=1

τμ− 1
2 ‖δnt 1‖a,h,∗μ

1
2 ‖wn−1

h ‖a,h

≤ 1

4μ
‖N

1 ‖2a,h,∗ + μ

2
‖wN

h ‖2a,h + ‖01‖a,h,∗‖w0
h‖a,h

+ 1

2μ

N∑

n=1

τ‖δnt 1‖2a,h,∗ + μ

2

N∑

n=0

τ‖wn
h‖2a,h,

(6.35)
where we have used multiple times the definition of dual norm (6.7) to pass to the
second line and we have concluded invoking the standard and generalised Young
inequalities and rearranging.

Moving to the second term, we use the definition (6.15) of the dual norm and the
Young inequality to write, for all i ∈ �1, M�,

N∑

n=1

τn2,i (r
n
h,i ) ≤

N∑

n=1

τK
− 1

2
i ‖n2,i‖c,h,∗ K

1
2
i ‖rnh,i‖c,h,hho

≤ 1

2

N∑

n=1

τK−1
i ‖n2,i‖2c,h,∗ + 1

2

N∑

n=1

τKi‖rnh,i‖2c,h,hho.

Hence, summing over i ∈ �1, M�,

R2 ≤ 1

2

M∑

i=1

N∑

n=1

τK−1
i ‖n2,i‖2c,h,∗ + 1

2

M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho. (6.36)

Gathering (6.35) and (6.36) and rearranging, we arrive at

R ≤ μ

2
‖wN

h ‖2a,h + 1

2

M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho + μ

2

N∑

n=0

τ‖wn
h‖2a,h

+ 1

4μ
‖N

1 ‖a,h,∗ + 1

2μ

N∑

n=1

τ‖δnt 1‖2a,h,∗ + 1

2

M∑

i=1

N∑

n=1

τK−1
i ‖n2,i‖2c,h,∗

+ ‖01‖a,h,∗‖w0
h‖a,h .

(6.37)

(i.C) Basic estimate. Combining (6.34) and (6.37) and multiplying by 2, we arrive
at
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μ‖wN
h ‖2a,h + λ−1‖α·rN

h ‖2L2(�;R) +
M∑

i=1

Ci‖rN
h,i‖2L2(�;R)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho ≤ μ

N∑

n=0

τ‖wn
h‖2a,h + N + N0.

(6.38)

The estimate (6.27) follows from the discrete Gronwall inquality of [28, Lemma 5.1].

(ii) Estimate on the total pressure. For all n ∈ �1, N�, using the inf-sup stability
(6.11) of the pressure-displacement coupling, we can write

β‖rnh,0‖L2(�;R) ≤ sup
vh∈Uk

h\{0}

bh(vh, r
n
h,0)

‖vh‖a,h
≤ sup

vh∈Uk
h\{0}

n1(vh) − 2μ ah(wn
h, vh)

‖vh‖a,h
≤ ‖n1‖a,h,∗ + 2μ ‖wn

h‖a,h,

(6.39)

where we have used (6.25a) in the second line and we have concluded using the
definition (6.7) of dual norm for the first term and a Cauchy–Schwarz inequality on
the symmetric positive definite bilinear form ah for the second. Squaring, dividing
both sides byμ, passing to themaximumovern ∈ �1, N�, andusing (6.27) to estimate
the second term in the right-hand side, (6.41) follows.

6.4.2 A Priori Estimate for the HHO-HHO Scheme

The following lemma contains an a priori estimate on the discrete solution, from
which the well posedness of problem (6.23) can be inferred.

Lemma 6.2 (A priori estimate on the discrete solution) Assuming τ small enough,
any solution

(
un
h, p

n
h,0, (ph,i )1≤i≤M

)
1≤n≤N to the discrete problem (6.23) satisfies the

following a priori bound:

max
n∈�1,N�

(

μ‖un
h‖2a,h + λ−1‖α· p‖2L2(�;R) +

M∑

i=1

Ci‖pnh,i‖2L2(�;R)

)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖pnh,i
‖2c,h,hho ≤ exp

(
tF

1 − τ

)
(A + B) ,

(6.40)
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where

A := C2
K

2μ
‖ f ‖2C0([0,tF];L2(�;Rd )) + 1

μ
‖ f ‖2H 1(0,tF;L2(�;Rd ))

+ CPtF

M∑

i=1

1

Ki
‖gi‖2C0([0,tF];L2(�;R))

B := 2CK‖ f 0‖L2(�;Rd )‖u0
h‖a,h + 2μ‖u0

h‖2a,h + λ−1‖α · p0h‖2L2(�;R)

+
M∑

i=1

Ci‖p0h,i‖2L2(�;R).

Moreover, it holds

β2

μ
max

n∈�1,N�
‖pnh,0‖2L2(�;R)

≤ 2C2
K

μ
‖ f ‖2C0([0,tF];L2(�;Rd ))

+ 4β2 exp

(
tF

1 − τ

)
(A + B) .

(6.41)

Proof We apply Lemma 6.1 with n1 = (
Uk

h � vh �→ ( f , vh) ∈ R
)
for all n ∈ �0, N�

and n2 =
(
Pn
h,i � q

h,i
�→ (gi , qh,i ) ∈ R

)
for all n ∈ �1, N� and all i ∈ �1, M�, and

show that

N ≤ A and N0 ≤ B. (6.42)

Let us prove the first bound in (6.42). Denote byN,i , i ∈ �1, 3�, the terms in the
right-hand side of (6.28a). We start by noticing that, for all n ∈ �0, N�,

‖n1‖a,h,∗ = sup
vh∈Uk

h\{0}

n1(vh)
‖vh‖a,h

= sup
vh∈Uk

h\{0}

‖ f n‖L2(�;Rd )‖vh‖L2(�;Rd )

‖vh‖a,h
= sup

vh∈Uk
h\{0}

CK‖ f n‖L2(�;Rd )‖vh‖a,h
‖vh‖a,h

≤ CK‖ f n‖L2(�;Rd ),

(6.43)

where we have used the definition (6.7) of the dual norm in the first line, a Cauchy–
Schwarz inequality to pass to the the second line, and the discrete Korn inequality
(6.10) to pass to the third line. As a consequence,

N,1 ≤ C2
K

2μ
max

n∈�1,N�
‖ f n‖2L2(�;Rd ) = C2

K

2μ
‖ f ‖2C0([0,tF];L2(�;Rd )). (6.44)

Proceeding similarly for the second term and invoking the boundedness (6.5) of the
discrete time derivative with V = L2(�;Rd) and ϕ = f , we get
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N,2 ≤ C2
K

2μ

n∑

n=1

τ‖δnt f ‖2L2(�;Rd ) ≤ C2
K

2μ
‖ f ‖2H 1(0,tF;L2(�;Rd )). (6.45)

To bound the third term, we observe that, using the definition (6.15) of the dual norm
and the Poincaré inequality in a similar manner as above, it holds, for all n ∈ �1, N�
and all i ∈ �1, M�, ‖n2,i‖c,h,∗ ≤ K−1

i CP‖gni ‖L2(�;R), hence

N,3 ≤ CP

M∑

i=1

1

Ki

N∑

n=1

τ‖gni ‖2L2(�;R)

≤ CPtF

M∑

i=1

1

Ki
max

n∈�1,N�
‖gni ‖2L2(�;R) = CPtF

M∑

i=1

1

Ki
‖gi‖2C0([0,tF];L2(�;R)).

(6.46)

Gathering (6.44)–(6.46), the first bound in (6.30) follows. The second bound in (6.30)
is an immediate after invoking (6.43) with n = 0. This concludes the proof.

6.4.3 Error Estimate for the HHO-HHO Scheme

Following the general ideas of [20], we estimate the error such that, for all n ∈ �0, N�,

enh := un
h − ûn

h, εnh,0 := pnh,0 − p̂nh,0, εnh,i := pn
h,i

− p̂n
h,i

∀i ∈ �1, M�,

(6.47)

where the interpolate of the continuous solution is obtained setting, for all n ∈ �0, N�,

ûn
h := I khu

n, p̂nh,0 := π k
h p

n
0 , p̂n

h,i
:= I kh p

n
i ∀i ∈ �1, M�. (6.48)

The starting point for the error analysis is the following proposition,which establishes
that the errors solve the auxiliary problem (6.25) for a suitable choice of the right-
hand sides 1 and 2,i , i ∈ �1, M�.

Proposition 6.1 (Error equations) We have that

e0h = 0, ε0h,0 = 0, ε0h,i = 0 ∀i ∈ �1, M�. (6.49)

Additionally, for n = 1, . . . , N, it holds, for all vh ∈ U k
h, all qh,0 ∈ Pk

h,0,

2μ ah(enh, vh) + bh(vh, ε
n
h,0) = 2μEa,h(un; vh) + Eb,h(pn0 ; vh), (6.50a)

bh(enh, qh,0) − λ−1(α·εnh, qh,0) = 0, (6.50b)

and, for all i ∈ �1, M� and all q
h,i

∈ Pk
h,i ,
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(δnt ψi (εh), qh,i ) + (Si (ε
n
h), qh,i ) + Ki c

hho
h (εnh,i , qh,i

)

= (dnt ψi ( p) − δnt ψi ( p), qh,i ) + Ehho
c,h (pni ; qh,i

), (6.50c)

where we have set, for all n ∈ �0, N�, εnh := (εnh,0, ε
n
h,1, . . . , ε

n
h,M) and, given a

function of time ϕ smooth enough, we have introduced the abridged notation
dnt ϕ := dtϕ(tn).

Proof Equation (6.49) is an immediate consequence of the definition (6.47) of the
errors along with the discrete initial condition (6.22).

Let now n ∈ �1, N�. To prove (6.50a), it suffices to subtract from both sides of
(6.23a) thequantity 2μ ah(û

n
h, vh) + bh(vh, p̂

n
h,0), observe that f

n = −2μ∇·(∇sun) −
∇pn0 almost everywhere in �, and recall the definitions (6.9) and (6.14) of the con-
sistency error linear forms associated with ah and bh .

Moving to (6.50b), we observe that, for all qh,0 ∈ Pk
h,0,

bh(û
n
h, qh,0) − λ−1(α· p̂nh, qh,0) = bh(I khu

n, qh,0) − λ−1(α·π k
h p

n, qh,0)

= b(u, qh,0) − λ−1(α· pn, qh,0) = 0,
(6.51)

where, to pass to the second line, we have used the consistency property (6.12)
of bh together with the definition (6.6) of the global L2-orthogonal projector and
qh,0 ∈ P

k(Th;R) to remove it from the second term, while the conclusion follows
from (6.1a) after observing that Pk

h,0 ⊂ P0. The error equation (6.50b) then follows
subtracting (6.51) from (6.23b) and using the linearity of the bilinear forms in the
left-hand side.

Finally, to prove (6.50c) for a given i ∈ �1, M� and q
h,i

∈ Pk
h,i , we subtract from

both sides the quantity (δnt ψi ( p̂h), qh,i ) + (Si ( p̂
n
h), qh,i ) + Ki chhoh ( p̂n

h,i
, q

h,i
) and

observe that

(gni , qh,i ) = (dnt ψi ( p), qh,i ) + (Si ( pn), qh,i ) − (Ki�pni , qh,i )

= (dnt ψi ( p) − δnt ψi ( p), qh,i ) + Ehho
c,h (pni ; qh,i

)

+ (δnt ψi ( p̂h), qh,i ) + (Si ( p̂
n
h), qh,i ) + Ki c

hho
h ( p̂n

h,i
, q

h,i
),

where, to pass to the second line, we have added and subtracted (δnt ψi ( p̂h), qh,i ) +
chhoh ( p̂n

h,i
, q

h,i
), used the fact that qh,i ∈ P

k(Th;R) along with the linearity of ψ and

the definition (6.6) of the global L2-orthogonal projector to write (δnt ψi ( p̂h), qh,i ) =
(δnt ψi ( p), qh,i ), and recalled the definition (6.17) of the consistency error associated
with the bilinear form chhoh .
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Theorem 6.1 (Error estimate for the HHO-HHO scheme) Assume the additional
regularity

u ∈ H 1(0, tF; Hk+2(Th;Rd)),

p0 ∈ H 1(0, tF; Hk+1(Th;R)),

∀i ∈ �1, M�, pi ∈ C0([0, tF]; Hk+2(Th;R)),

∀i ∈ �1, M�, ψi ( p) ∈ H 2(0, tF; L2(�;R)).

Then, for a time step τ small enough (with threshold independent of h), it holds that

max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R) +
M∑

i=1

Ci ‖εnh,i‖2L2(�;R) + β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ +
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,hho � h2(k+1)A + τ 2B, (6.52)

where the hidden constant is independent of h, τ , of the problem data, of u, and of
pi , i ∈ �0, M�, but possibly depends on �, tF, the mesh regularity parameter, and k,
and we have set

A := ‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;Rd ))

+
M∑

i=1

K−1
i ‖pi‖2C0([0,tF];Hk+2(Th ;R)),

B :=
M∑

i=1

K−1
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)).

Proof For the sake of brevity, denote by Ehτ the left-hand side of (6.52). Applying
Lemma 6.1 with, for all n ∈ �1, N�,

n1 = 2μEa,h(un; ·) + Eb,h(pn0 ; ·),
n2,i = (dnt ψi ( p) − δnt ψi ( p), ·) + Ehho

c,h (pi ; ·) ∀i ∈ �1, M�,

using multiple times the triangle inequality, and rearranging the terms, we arrive at

Ehτ � μ−1 max
n∈�1,N�

‖2μEa,h(un; ·) + Eb,h(pn0 ; ·)‖2a,h,∗

+μ−1
N∑

n=1

τ‖δnt
(
2μEa,h(u; ·) + Eb,h(p0; ·)) ‖2a,h,∗

+
M∑

i=1

N∑

n=1

τK−1
i ‖Ehhoc,h (pni ; ·)‖2c,h,∗
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+
M∑

i=1

N∑

n=1

τK−1
i ‖(dnt ψi ( p) − δnt ψi ( p), ·)‖2c,h,∗ =:T1 + · · · + T4. (6.53)

We proceed to bound the terms in the right-hand side of the above expression. For
the first term, we write

T1 � μ−1

(
max

n∈�1,N�
‖2μEa,h(un; ·)‖2a,h,∗ + max

n∈�1,N�
‖Eb,h(pn0 ; ·)‖2a,h,∗

)

� h2(k+1) μ−1 max
n∈�1,N�

(
2μ|un|2Hk+2(Th ;Rd )) + |pn0 |2Hk+1(Th ;R))

)

≤ h2(k+1)
(
2‖u‖2C0([0,tF];Hk+2(Th ;Rd )) + μ−1‖p0‖2C0([0,tF];Hk+1(Th ;R))

)

� h2(k+1)A,

(6.54)

where, to pass to the second line, we have used the consistency properties (6.8) of ah
and (6.13) of bh , while the conclusion follows from the embedding H 1(0, tF; V ) ↪→
C0([0, tF]; V ) valid in dimension 1.

For the second term, we write

T2 � μ−1
N∑

n=1

τ
(‖2μEa,h(δnt u; ·)‖2a,h,∗ + ‖Eb,h(δnt p0; ·)‖2a,h,∗

)

� h2(k+1) μ−1
N∑

n=1

τ
(
2μ|δnt u|2Hk+2(Th ;Rd ) + |δnt p0|2Hk+1(Th ;R)

)

� h2(k+1)
(
‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;R))

)

� h2(k+1)A,

(6.55)

where, in the first line, we have used the fact that δnt
(
2μEa,h(u; ·) + Eb,h(p0; ·)) =

2μEa,h(δnt u; ·) + Eb,h(δnt p0; ·) followed by a triangle inequality, we have invoked the
consistency (6.8) of ah and (6.13) of bh to pass to the second line, and the boundedness
(6.5) of the backward time derivative operator to pass to the third line.

For the third term, the consistency properties (6.16) of chhoh readily give

T3 ≤ h2(k+1)
M∑

i=1

N∑

n=1

τK−1
i |pni |2Hk+2(Th ;R)

� h2(k+1)tF

M∑

i=1

K−1
i ‖pi‖2C0([0,tF];Hk+2(Th ;R)) � h2(k+1)A.

(6.56)

Let us now move to the fourth term. For the sake of conciseness, we let, for
all i ∈ �1, M�, ψi := ψi ( p), regarded as an element H 1(0, tF; L2(�;R)), and we
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conventionally denoteψ(x, t) := ψ(t)(x) for all t ∈ [0, tF] and almost every x ∈ �.
Let i ∈ �1, M�. It holds, for all n ∈ �1, N�,

dn
t ψi − δnt ψi = dn

t ψi − 1

τ

∫ tn

tn−1
dtψi (t) dt

= dn
t ψi − 1

τ

∫ tn

tn−1

(
dn
t ψi −

∫ tn

t
d2
t ψi (s) ds

)
dt

= 1

τ

∫ tn

tn−1

∫ tn

t
d2
t ψi (s) ds dt ≤

∫ tn

tn−1
|d2

t ψi (t)| dt.

Combining this result with the Jensen inequality, we infer

‖dn
t ψi − δnt ψi‖2L2(�;R) ≤

∫

�

∣∣∣∣

∫ tn

tn−1
|d2

t ψi (x, t)| dt
∣∣∣∣

2

dx

≤ τ

∫ tn

tn−1
‖d2

t ψi (t)‖2L2(�;R) dt

≤ τ‖ψi‖2H 2(tn−1,tn;L2(�;R)).

(6.57)

We next write, for all n ∈ �1, N�, all i ∈ �1, M�, and all q
h,i

∈ Pk
h,i ,

∣∣(dnt ψi − δnt ψi , qh,i )
∣∣ ≤ ‖dnt ψi − δnt ψi‖L2(�;R) ‖qh,i‖L2(�;R)

≤ τ
1
2 ‖ψi‖H 2(tn−1,tn;L2(�;R)) ‖qh,i‖L2(�;R)

� τ
1
2 ‖ψi‖H 2(tn−1,tn;L2(�;R)) ‖q

h,i
‖c,h,hho,

where we have used a Cauchy–Schwarz inequality in the first line, the bound (6.57)
in the second line, and a discrete global Poincaré inequality in HHO spaces (resulting
from a combination of [19, Proposition 5.4] and [26, Lemma 4]) to conclude. Using
the above estimate in conjunction with the definition (6.15) of the dual norm, we
have that

‖(dnt ψi ( p) − δnt ψi ( p), ·)‖2c,h,∗ � τ‖ψi ( p)‖2H 2(tn−1,tn;L2(�;R)).

Using this bound, we obtain

T4 �
M∑

i=1

N∑

n=1

τ 2K−1
i ‖ψi ( p)‖2H 2(tn−1,tn;L2(�;R))

= τ 2
N∑

i=1

K−1
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)) = τ 2B.

(6.58)

Plugging (6.54)–(6.58) into (6.53) yields (6.52).
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6.4.4 Error Estimate for the HHO-DG Scheme

The proof of the error estimate for theHHO-DGscheme follows by adapting the argu-
ments used in Theorem 6.1 to a different choice of the interpolates of the continuous
pressures in (6.48). For all n ∈ �0, N� and all i ∈ �1, M�, we set

εnh,i := pnh,i − p̂nh,i ,

where p̂0h,i := π k
h p

0
i and, for n ≥ 1, p̂nh,i is the solution of problem (6.20)with r = pni .

Theorem 6.2 (Error estimate for the HHO-DG scheme) Assume k ≥ 1, � convex,
and the additional regularity

u ∈ H 1(0, tF; Hk+2(Th;Rd)),

p0 ∈ H 1(0, tF; Hk+1(Th;R)),

ψ0( p) ∈ H 1(0, tF; Hk+1(Th;R))

∀i ∈ �1, M�, Si ( p) ∈ C0([0, tF]; Hk+1(Th;R)),

∀i ∈ �1, M�, ψi ( p) ∈ H 2(0, tF; L2(�;R)) ∩ H 1(0, tF; Hk+1(Th;R)),

with ψ0( p) := λ−1(α· p − p0). Then, for a time step τ small enough (with threshold
independent of h), it holds that

max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R) +
M∑

i=1

Ci ‖εnh,i‖2L2(�;R) + β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ +
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,dg � h2(k+1)Adg + τ 2Bdg, (6.59)

where the hidden constant is independent of h, τ , of the problem data, of u, and of
pi , i ∈ �0, M�, but possibly depends on �, tF, k, and we have set

Adg := ‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;Rd ))

+
M∑

i=0

λα−2
i ‖ψi ( p)‖2H 1(0,tF;Hk+1(Th ;R)) +

M∑

i=1

λα−2
i ‖Si ( p)‖2L2(0,tF;Hk+1(Th ;R)),

Bdg :=
M∑

i=1

λα−2
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)).
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Proof Proceeding as in the proof of Proposition 6.1 and recalling the definition of
the elliptic projection in (6.20), it is readily inferred that

e0h = 0, ε0h,i = 0, ∀i ∈ �0, M� (6.60a)

and, for n ∈ �1, N�, it holds, for all vh ∈ Uk
h , all qh,0 ∈ Pk

h,0,

2μ ah(enh, vh) + bh(vh, ε
n
h,0) = 2μEa,h(un; vh) + Eb,h(pn0 ; vh), (6.60b)

bh(δ
n
t eh, qh,0) − λ−1(δnt (α·εh), qh,0) = −(δnt (ψ0( p − p̂h), qh,0), (6.60c)

and, for all i ∈ �1, M� and qh,i ∈ Pk
h,i ,

(δnt ψi (εh), qh,i ) + (Si (ε
n
h), qh,i ) + Ki c

dg
h (εnh,i , qh,i )

= (Si ( pn− p̂nh), qh,i ) + (dnt ψi ( p) − δnt ψi ( p), qh,i ) + (δnt ψi ( p − p̂h), qh,i ),

(6.60d)

where, in (6.60c), we have applied discrete time derivation and introduced the linear
function ψ0 defined such that, for all q ∈ R

M+1, ψ0(q) := λ−1(α·q − q0). Then,
following the first two step of the proof of Lemma 6.1 we obtain an estimate similar
to (6.34), namely, for an arbitrary N ∈ �1, N� it holds

μ‖eN
h ‖2a,h +

‖α·εN
h ‖2

L2(�;R)

2λ
+

M∑

i=1

Ci

2
‖εN

h,i‖2L2(�;R)
+

N∑

n=1

τ

2
‖εnh‖2ξ +

M∑

i=1

N∑

n=1

τKi‖εnh,i‖2c,h,dg

≤
N∑

n=1

τ
(
2μEa,h(un; δnt eh) + Eb,h(pn0 ; δnt eh)

) +
M∑

i=0

N∑

n=1

τ(Eni,h( p), εnh,i ),

(6.61)

with En
0,h( p) := δnt ψ0( p − p̂h) and, for all i ∈ �1, M�,

En
i,h( p) := (dnt ψi ( p) − δnt ψi ( p)) + Si ( pn − p̂nh) + δnt ψi ( p − p̂h).

The first term in the right-hand side of (6.61) can be bounded as in (6.35). We bound
the second term by using the Cauchy–Schwarz and Young inequality to write

M∑

i=0

N∑

n=1

τ(En
i,h( p), ε

n
h,i ) ≤

M∑

i=0

N∑

n=1

τλ

2α2
i

‖En
i,h( p)‖2L2(�,R) +

N∑

n=1

τ

2λ
‖α·εnh‖2L2(�;R).

Therefore, proceeding as in steps (i.C) and (ii) of Lemma 6.1, yields
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max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R)
+

M∑

i=1

Ci ‖εnh,i‖2L2(�;R)
+ β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ + 2
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,dg � exp

(
tF

1 − τ

) (
T1 + T2 + T

dg
3 + T

dg
4

)
,

(6.62)

where

T
dg
3 :=

N∑

n=1

τ

(
M∑

i=0

λα−2
i ‖δnt ψi ( p − p̂h)‖2L2(�;R) +

M∑

i=1

λα−2
i ‖Si ( pn − p̂nh)‖2L2(�;R)

)

,

T
dg
4 :=

M∑

i=1

N∑

n=1

τλα−2
i ‖dnt ψi ( p) − δnt ψi ( p)‖2L2(�;R),

and the terms T1 and T2 are defined in (6.53) and bounded in (6.54) and (6.55),
respectively. The term T

dg
4 can be bounded using (6.57) and (6.58) to obtain T

dg
4 �

τ 2Bdg. Hence, it only remains to bound Tdg
3 . Owing to the linearity of the backward

time derivative δnt and the functions ψi and Si for all i ∈ �1, M�, the approximation
property (6.21) of the elliptic projection, and the boundedness property (6.5), we
infer

T
dg
3 � h2(k+1)

N∑

n=1

τ

(
M∑

i=0

λα−2
i ‖δnt ψi ( p)‖2Hk+1(Th ;R) +

M∑

i=1

λα−2
i ‖Si ( pn)‖2Hk+1(Th ;R)

)

� h2(k+1)Adg.

Combining the previous bounds with (6.62) leads to the conclusion.

Table 6.1 Model parameters

Parameter Unit Set i Set ii Set iii Set iv

μ MPa 4.2 4.2 4.2 4.2

λ MPa 2.4 2.4 · 105 2.4 2.4

α1 – 0.95 0.95 0.95 0.95

α2 – 0.12 0.12 0.12 0.12

C1 MPa−1 0.054 0.054 0.0 0.054

C2 MPa−1 0.014 0.014 0.0 0.014

K1 m2 MPa−1 s−1 6.18 · 10−6 6.18 · 10−6 6.18 · 10−6 10−12

K2 m2 MPa−1 s−1 2.72 · 10−5 2.72 · 10−5 2.72 · 10−5 10−11

ξ1←2 MPa−1 s−1 0.01 0.01 0.01 0.01



254 L. Botti et al.

Table 6.2 Convergence rates for the HHO-DG discretisation with polynomial degree k = 1 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 2.39e−01 – 5.60e−01 – 4.78e−01 – 2.48e−01 –

6.23e−02 1.94 1.11e−01 2.24 9.31e−02 2.36 4.80e−02 2.37

1.51e−02 2.05 2.28e−02 2.28 1.88e−02 2.31 1.01e−02 2.24

3.73e−03 2.01 4.92e−03 2.21 3.83e−03 2.29 2.52e−03 2.01

9.39e−04 1.99 1.08e−03 2.19 7.55e−04 2.34 6.28e−04 2.00

ii 2.43e−01 – 8.25e−01 – 1.43e−01 – 1.32e−01 –

6.26e−02 1.95 1.55e−01 2.41 3.76e−02 1.92 3.86e−02 1.77

1.51e−02 2.05 3.09e−02 2.33 9.16e−03 2.04 9.52e−03 2.02

3.73e−03 2.02 6.84e−03 2.18 2.34e−03 1.97 2.49e−03 1.93

9.35e−04 2.00 1.71e−03 2.00 6.04e−04 1.95 6.27e−04 1.99

iii 2.39e−01 – 5.67e−01 – 4.79e−01 – 3.08e−01 –

6.23e−02 1.94 1.14e−01 2.31 9.43e−02 2.34 6.48e−02 2.25

1.51e−02 2.05 2.40e−02 2.24 1.97e−02 2.26 1.40e−02 2.21

3.73e−03 2.01 5.50e−03 2.13 4.45e−03 2.15 3.27e−03 2.10

9.35e−04 2.00 1.38e−03 1.99 1.12e−03 1.99 8.19e−04 2.00

iv 2.42e−01 – 8.00e−01 – 7.78e−01 – 4.14e−01 –

6.25e−02 1.95 1.46e−01 2.46 1.41e−01 2.47 6.28e−02 2.72

1.51e−02 2.05 2.79e−02 2.39 2.62e−02 2.43 1.11e−02 2.50

3.73e−03 2.01 5.58e−03 2.32 4.88e−03 2.42 2.61e−03 2.09

9.39e−04 1.99 1.12e−03 2.31 8.43e−04 2.53 6.40e−04 2.03

6.5 Numerical Tests

In this section, we present some numerical examples to illustrate the theoretical
results. In order to confirm the convergence rates predicted in Theorem 6.2, we rely
on a manufactured smooth solution of a two-network poroelasticity problem (i.e. the
Barenblatt–Biot problem) on the unit square domain � = (0, 1)2 and time interval
[0, tF = 1). The exact displacement u and exact pressures p1 and p2 are given by,

u(x, t) = sin(π t)

(− cos(πx1) cos(πx2)
sin(πx1) sin(πx2)

)
,

p1(x, t) = π sin(π t)
[
sin(πx1) cos(πx2) + cos(πx1) sin(πx2)

]
,

p2(x, t) = π sin(π t)
[
sin(πx1) cos(πx2) − cos(πx1) sin(πx2)

]
.

The total pressure p0, volumetric load f , and source terms g1 and g2 are inferred
from the exact solution. In order to assess the robustness with respect to the model
coefficients, we consider the four sets of parameters depicted in Table 6.1. The first set
of model parameters is taken from [29]. The second, third, and fourth sets are meant
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Table 6.3 Convergence rates for the HHO-DG discretisation with polynomial degree k = 2 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 3.29e−02 – 8.38e−02 – 7.16e−02 – 3.31e−02 –

4.05e−03 3.02 7.36e−03 3.51 6.15e−03 3.54 2.65e−03 3.64

5.40e−04 2.91 8.04e−04 3.19 6.15e−04 3.32 3.48e−04 2.93

6.93e−05 2.96 8.58e−05 3.23 5.70e−05 3.43 4.55e−05 2.93

8.68e−06 3.00 9.43e−06 3.19 5.68e−06 3.33 5.68e−06 3.00

ii 3.36e−02 – 1.22e−01 – 1.69e−02 – 2.16e−02 –

4.05e−03 3.05 9.88e−03 3.63 2.33e−03 2.86 2.46e−03 3.13

5.37e−04 2.91 1.17e−03 3.08 3.21e−04 2.86 3.47e−04 2.83

6.82e−05 2.98 1.46e−04 3.00 4.20e−05 2.94 4.56e−05 2.93

8.52e−06 3.00 1.81e−05 3.01 5.52e−06 2.93 5.69e−06 3.00

iii 3.29e−02 – 8.61e−02 – 7.23e−02 – 4.77e−02 –

4.04e−03 3.02 7.84e−03 3.46 6.56e−03 3.46 4.39e−03 3.44

5.38e−04 2.91 9.51e−04 3.04 7.90e−04 3.05 5.39e−04 3.02

6.83e−05 2.98 1.20e−04 2.99 9.90e−05 3.00 6.81e−05 2.99

8.54e−06 3.00 1.49e−05 3.01 1.23e−05 3.01 8.45e−06 3.01

iv 3.35e−02 – 1.14e−01 – 1.12e−01 – 4.67e−02 –

4.05e−03 3.05 8.78e−03 3.71 8.36e−03 3.75 2.90e−03 4.01

5.40e−04 2.91 8.94e−04 3.30 7.69e−04 3.44 3.61e−04 3.01

6.93e−05 2.96 8.97e−05 3.32 6.56e−05 3.55 4.59e−05 2.98

8.68e−06 3.00 9.45e−06 3.25 5.80e−06 3.50 5.69e−06 3.01

to check the robustness of the method in the nearly incompressible case (i.e. large
values of λ), in the vanishing storage coefficients case, and in the small permeabilities
case, respectively. We remark that the value of μ and λ considered in the second test
corresponds to a Poisson ratio ν = 0.49999.

We consider the HHO method described in Sect. 6.3 with DG discretisation of
the Darcy term for polynomial degrees k ∈ {1, 2, 3} over a trapezoidal elements
mesh sequence (Th)j with 22+2 j elements, for j ∈ �1, 5�. The time discretisation is
based on Backward Differentiation Formulas (BDF) of order (k + 1) with a fixed
time step τ = 10−3. The boundary conditions are inferred from the exact solution.
On the bottom edge {x ∈ ∂� : x2 = 0}, we enforce Dirichlet conditions for the
displacement and Neumann conditions for both the network pressures p1 and p2. On
the rest of the domain boundary we set Neumann conditions for the displacement
and Dirichlet for the two pressures. Initial conditions are specified by means of L2-
projections over mesh elements according to (6.22). Initialisation is performed at
several time points (ti = −τ i, i = 1, ..., k + 1), in agreement with the BDF order.

In Tables 6.2, 6.3 and 6.4 we report the convergence rates for the four set of model
parameters indicated in Table 6.1. We use the following shorthand notations for the
error measures:
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Table 6.4 Convergence rates for the HHO-DG discretisation with polynomial degree k = 3 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 3.30e−03 – 8.57e−03 – 7.41e−03 – 2.77e−03 –

2.42e−04 3.77 5.34e−04 4.00 4.48e−04 4.05 1.66e−04 4.06

1.42e−05 4.09 2.64e−05 4.34 2.03e−05 4.46 9.44e−06 4.14

9.26e−07 3.94 1.41e−06 4.23 8.87e−07 4.52 6.29e−07 3.91

5.79e−08 4.00 7.49e−08 4.24 3.89e−08 4.51 3.89e−08 4.02

ii 3.36e−03 – 1.19e−02 – 1.94e−03 – 1.83e−03 –

2.43e−04 3.79 7.14e−04 4.06 1.42e−04 3.77 1.57e−04 3.54

1.42e−05 4.10 3.83e−05 4.22 8.91e−06 4.00 9.39e−06 4.07

9.14e−07 3.96 2.37e−06 4.01 5.94e−07 3.91 6.28e−07 3.90

5.66e−08 4.01 1.45e−07 4.03 3.83e−08 3.96 3.89e−08 4.01

iii 3.31e−03 – 8.94e−03 – 7.62e−03 – 4.80e−03 –

2.42e−04 3.77 5.78e−04 3.95 4.88e−04 3.97 3.17e−04 3.92

1.42e−05 4.10 3.15e−05 4.20 2.65e−05 4.20 1.73e−05 4.19

9.14e−07 3.95 1.99e−06 3.99 1.67e−06 3.99 1.10e−06 3.98

5.67e−08 4.01 1.22e−07 4.02 1.03e−07 4.02 6.78e−08 4.02

iv 3.34e−03 – 1.09e−02 – 1.08e−02 – 3.25e−03 –

2.42e−04 3.78 6.23e−04 4.13 5.95e−04 4.18 1.78e−04 4.19

1.42e−05 4.09 2.91e−05 4.42 2.53e−05 4.56 9.62e−06 4.21

9.27e−07 3.94 1.45e−06 4.33 9.93e−07 4.67 6.31e−07 3.93

5.79e−08 4.00 7.47e−08 4.28 3.94e−08 4.66 3.89e−08 4.02

‖ehτ‖∞,1 := max
n∈�1,N�

‖un
h − I khu

n‖a,h,
‖εi,hτ‖∞,0 := max

n∈�1,N�
‖pni,h − π k

h p
n
i ‖L2(�;R), ∀i ∈ �0, 2�.

Each error measure is accompanied by the corresponding estimated order of con-
vergence (EOC). The observed convergence rates are in agreement with the error
estimate of Theorem 6.2. We remark that the performance is not affected by the dif-
ferent choices of the model parameters. Hence, the method is robust in all the limit
cases of vanishing storage, nearly incompressible, and poorly permeable media.

Acknowledgements M. Botti acknowledges funding from the European Commission through the
H2020-MSCA-IF-EF project PDGeoFF, Polyhedral Discretisation Methods for Geomechanical
Simulation of Faults and Fractures in Poroelastic Media (Grant no. 896616).



6 A Hybrid High-Order Method for Multiple-Network Poroelasticity 257

References

1. J. Aghili, S. Boyaval, D.A. Di Pietro, Hybridization of mixed high-order methods on general
meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134
(2015)

2. D. Anderson, J. Droniou, An arbitrary order scheme on generic meshes for miscible displace-
ments in porous media. SIAM J. Sci. Comput. 40(4), B1020–B1054 (2018)

3. P.F. Antonietti, C. Facciolà, A. Russo, M. Verani, Discontinuous Galerkin approximation of
flows in fractured porous media on polytopic grids. SIAM J. Sci. Comput. 41(1), A109–A138
(2019)

4. G.I. Barenblatt, Iu.P. Zheltov, I.N. Kochina, Basic concepts in the theory of seepage of homo-
geneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

5. F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro, P. Tesini, On the flexibility of agglomeration
based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65
(2012)

6. S. Berrone, A. Borio, C. Fidelibus, S. Pieraccini, S. Scialò, F. Vicini, Advanced computation of
steady-state fluid flow in discrete fracture-matrixmodels: FEM-BEMandVEM-VEM fracture-
block coupling. GEM Int. J. Geomath. 9(2), 377–399 (2018)

7. M.A. Biot, General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–164
(1941)

8. M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys.
26(2), 182–185 (1955)

9. D. Boffi, M. Botti, D.A. Di Pietro, A nonconforming high-order method for the Biot problem
on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016)

10. L. Botti,M.Botti, D.A.Di Pietro, An abstract analysis framework formonolithic discretisations
of poroelasticity with application to Hybrid High-Order methods (2020). Published online.
https://dx.doi.org/10.1016/j.camwa.2020.06.004

11. L. Botti, D.A. Di Pietro, J. Droniou, A Hybrid High-Order discretisation of the Brinkman
problem robust in the Darcy and Stokes limits. Comput. Methods Appl. Mech. Eng. 341,
278–310 (2018)

12. M. Botti, D.A. Di Pietro, A. Guglielmana, A low-order nonconforming method for linear
elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 354, 96–118 (2019)

13. M. Botti, D.A. Di Pietro, P. Sochala, A Hybrid High-Order method for nonlinear elasticity.
SIAM J. Numer. Anal. 55(6), 2687–2717 (2017)

14. M. Botti, D.A. Di Pietro, P. Sochala, A Hybrid High-Order discretisation method for nonlinear
poroelasticity. Comput. Methods Appl. Math. 20(2), 227–249 (2020)

15. K. Brenner,M. Groza, C. Guichard, R.Masson, Vertex approximate gradient scheme for hybrid
dimensional two-phase Darcy flows in fractured porous media. ESAIM Math. Model. Numer.
Anal. 49(2), 303–330 (2015)

16. F. Chave, D.A. Di Pietro, L. Formaggia, A Hybrid High-Order method for Darcy flows in
fractured porous media. SIAM J. Sci. Comput. 40(2), A1063–A1094 (2018)

17. F. Chave, D.A. Di Pietro, L. Formaggia, A Hybrid High-Order method for passive transport in
fractured porous media. Int. J. Geomath. 10(12) (2019)

18. O. Coussy, Poromechanics (Wiley, 2004)
19. D.A. Di Pietro, J. Droniou, A Hybrid High-Order method for Leray-Lions elliptic equations

on general meshes. Math. Comput. 86(307), 2159–2191 (2017)
20. D.A. Di Pietro, J. Droniou, A third Strang lemma for schemes in fully discrete formulation.

Calcolo 55(40) (2018)
21. D.A. Di Pietro, J. Droniou, A third Strang lemma for schemes in fully discrete formulation,

4 2018. Preprint arXiv 1804.09484. https://arxiv.org/abs/1804.09484. Contains an additional
Appendix with respect to the published paper

22. D.A. Di Pietro, J. Droniou, The Hybrid High-Order Method for Polytopal Meshes. Number 19
inModeling, Simulation and Application (Springer International Publishing, 2020). https://dx.
doi.org/10.1007/978-3-030-37203-3

https://dx.doi.org/10.1016/j.camwa.2020.06.004
https://arxiv.org/abs/1804.09484
https://dx.doi.org/10.1007/978-3-030-37203-3
https://dx.doi.org/10.1007/978-3-030-37203-3


258 L. Botti et al.

23. D.A. Di Pietro, A. Ern, A hybrid high-order locking-free method for linear elasticity on general
meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

24. D.A. Di Pietro, A. Ern, Arbitrary-order mixedmethods for heterogeneous anisotropic diffusion
on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2017)

25. D.A. Di Pietro, A. Ern, J.-L. Guermond, Discontinuous Galerkin methods for anisotropic
semidefinite diffusion with advection. SIAM J. Numer. Anal. 46(2), 805–831 (2008)

26. D.A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of
diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl.
Math. 14(4), 461–472 (2014)

27. R. Eymard, T. Gallouët, C. Guichard, R. Herbin, R. Masson, TP or not TP, that is the question.
Comput. Geosci. 18(3–4), 285–296 (2014)

28. J.G.Heywood,R.Rannacher, Finite-element approximation of the nonstationaryNavier-Stokes
problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2),
353–384 (1990)

29. A.E. Kolesov, P.N. Vabishchevich, Splitting schemes with respect to physical processes for
double-porosity poroelasticity problems (2016)

30. J.J. Lee, E. Piersanti, K.-A. Mardal, M.E. Rognes, A mixed finite element method for nearly
incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41(2), A722–A747
(2019)

31. J.M. Nordbotten, Stable cell-centered finite volume discretization for Biot equations. SIAM J.
Numer. Anal. 54(2), 942–968 (2016)

32. K. Terzaghi, Theoretical Soil Mechanics (Wiley, New York, 1943)
33. B. Tully, Y. Ventikos, Cerebral water transport using multiple-network poroelastic theory:

application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188–215 (2011)


	6 A Hybrid High-Order Method  for Multiple-Network Poroelasticity
	6.1 Introduction
	6.2 Continuous Setting
	6.3 Discrete Setting
	6.3.1 Space and Time Meshes
	6.3.2 Local and Broken Spaces and Projectors
	6.3.3 Discrete Spaces and Reconstructions
	6.3.4 Discrete Bilinear Forms
	6.3.5 Discrete Problems

	6.4 Convergence Analysis
	6.4.1 An Abstract A Priori Estimate
	6.4.2 A Priori Estimate for the HHO-HHO Scheme
	6.4.3 Error Estimate for the HHO-HHO Scheme
	6.4.4 Error Estimate for the HHO-DG Scheme

	6.5 Numerical Tests
	References




