
Chapter 3
Nodal Discretization of Two-Phase
Discrete Fracture Matrix Models

Konstantin Brenner, Julian Hennicker, and Roland Masson

Abstract This chapter reviews the nodal Vertex Approximate Gradient (VAG) dis-
cretization of two-phase Darcy flows in fractured porous media for which the frac-
ture network is represented as a manifold of co-dimension one with respect to the
surrounding matrix domain. Different types of models and their discretizations are
considered depending on the transmission conditions set at matrix fracture inter-
faces accounting for fractures acting either as drains or both as drains or barriers.
Difficulties raised by nodal discretizations in heterogeneous media are investigated
and solutions to solve these issues are discussed. It includes the adaptation of the
porous volumes at nodal unknowns and discontinuous saturations accounting for
the jumps induced by the discontinuity in space of the capillary pressure functions.
A new Multi-Point upwind scheme is also introduced for the approximation of the
mobilities at matrix fracture interfaces to address the issue of fluxes not defined at
faces. The most accurate approach is based on the extension of the discontinuous
pressure model to two-phase Darcy flows taking into account the discontinuities of
both the pressures and saturations at matrix fracture interfaces. As opposed to single
phase flows, It improves the accuracy even in the case of fracture acting as drains. On
the other hand this approach can still exhibit a robustness issue in terms of nonlinear
convergence.
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3.1 Introduction

Many real life applications in the geosciences like oil and gas recovery, basin mod-
elling, energy storage, geothermal energy or hydrogeology involve two-phase Darcy
flows in heterogeneous porous media. Suchmodels are governed by nonlinear partial
differential equations typically coupling elliptic and degenerate parabolic equations.
Next to the inherent difficulties posed by such equations, further challenges are due
to the heterogeneity of the medium and the presence of discontinuities like frac-
tures. This has a strong impact on the complexity of the models, challenging the
development of efficient simulation tools.

This work focuses on the numerical modelling of two-phase Darcy flows in frac-
tured porous media, for which the fracture network is represented as a manifold
of co-dimension one with respect to the matrix domain. These reduced models are
obtained by averaging the physical unknowns as well as the conservation equa-
tions along the fracture width. They are termed hybrid-dimensional or also Discrete
Fracture Matrix (DFM) Darcy flow models. Given the high geometrical complex-
ity of real life fracture networks, the main advantages of these hybrid-dimensional
compared with equi-dimensional models are both to facilitate the mesh generation
and the discretisation of the model, and to reduce the computational cost of the
resulting schemes. This type of hybrid-dimensional models is the object of intensive
researches since the last 15 years due to the ubiquity of fractures in geology and their
considerable impact on the flow and transport in the porous medium.

DFM models are closed with appropriate transmission conditions at matrix frac-
ture (mf) interfaces which differ for fractures acting as drains or as barriers. For
single-phase flows there are two major approaches. The first, designed for mod-
elling highly conductive fractures and referred to as continuous pressure model [7,
17], assumes the continuity of the fluid pressure at the mf interfaces. The second
approach, referred to as discontinuous pressure model [10, 15, 24, 32, 33, 39, 41],
allows to represent fractures acting as permeability barriers by imposing Robin-type
transmission conditions at mf interfaces.

When the modelling of two-phase flow is concerned, three major types of models
can be distinguished. The first and most common type is based on a straightforward
adaptation of the single-phase continuous pressure model to the two-phase setting
(see [13, 14, 20, 38, 43, 44]), it assumes the continuity of each phase pressure at mf
interfaces which allows to capture the saturation jump for fractures acting as drains
and matrix as barrier. As for single-phase flow, this approach cannot account for
fractures acting as barriers. In contrast to the single-phase context, let us stress that,
due to heterogeneous capillary pressures, fractures having a large absolute perme-
ability may still act as barriers for a given phase, typically for the wetting phase for
fractures filled by the non-wetting phase (see [1]). Another existing type of models,
accounting for both drains or permeability barriers, is based on the linear (with-
out mobility but including gravity) single-phase Darcy flux conservation equation
imposed at mf interfaces for each phase. It is usually combined with Two-Point [1,
41] orMulti-Point [4, 5, 36, 46, 51, 52] cell-centred finite volume schemes for which
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the interfacial discontinuous pressures are eliminated when building the single phase
Darcy flux transmissibilities. These models account for the discontinuity of the pres-
sures but not of the mobilities at mf interfaces. Both previous types of models are
based on linear mf transmission conditions. The last type ofmodels considers nonlin-
ear mf transmission conditions which are based on the nonlinear (includingmobility)
two-phase normal flux continuity equations at mf interfaces. This type of models is
considered in [1, 2, 6, 16, 25, 26] using a two-point flux approximation in the frac-
ture width with upwinding of the mobilities, and in [3, 40] using a global pressure
formulation. Such nonlinear transmission conditions account for the discontinuity of
both the phase pressures and the mobilities at mf interfaces. A comparison of these
three types of models using reference equi-dimensional solutions can be found in
[1, 16].

Having in mind that tetrahedral meshes are commonly used to cope with the
geometrical complexity of fracture networks, nodal discretizations of DFM two-
phase Darcy flow models have a clear advantage over cell-centred or face based
discretizations thanks to their much lower number of degrees of freedom (d.o.f.).
This is in particular the case when considering fully coupled implicit time integration
which are necessary to avoid severe time step restrictions in high velocity regions
such as fractures and to account for the strong coupling between the pressure and
saturation unknowns at mf interfaces [9]. Alternatively, cell centred discretizations
have been considered for DFM two-phase flow models using the Two-Point Flux
Approximation (TPFA) as in [1, 6, 41] orMulti-Point Flux Approximations (MPFA)
as in [5, 36, 52]. Face based discretizations have been considered in [3, 38] using the
Mixed Hybrid Finite Element (MHFE) method and in [2, 37] using the Hybrid Finite
Volume (HFV) scheme. Non conforming discretizations have also been developed
for this type of models using XFEM discretizations as in [34] or Embedded Discrete
Fracture Models as in [50].

Nodal discretizations, such as theControlVolumeFiniteElement (CVFE)method,
have been first introduced in [20, 35, 43, 44] for DFM two-phase Darcy flowmodels
with continuous pressures at mf interfaces accounting for fractures acting as drains.
In this work, we review the Vertex Approximate Gradient (VAG) discretization intro-
duced in [13, 14, 53] for continuous pressuremodels and in [16, 25] for discontinuous
pressure models. The VAG scheme is based on nodal d.o.f. like CVFE methods but
it also includes the cell d.o.f. which are eliminated at the linear algebra level at each
Newton iteration without any fill-in. These cell d.o.f. provide an additional flexibility
in the design of the discretization allowing to cope with traditional issues raised at
mf interfaces by nodal discretizations of the transport equation. On practical meshes,
for which the cell sizes at mf interfaces are much larger than the fracture width, these
issues are induced by the use of dual control volumes combined with heterogeneous
petrophysical and hydrodynamical properties defined on the primal mesh.

The outline of the remaining of this article is as follows. Section3.2 describes the
DFM continuous and discontinuous pressure two-phase Darcy flow models as intro-
duced in [13, 16]. Section3.3 presents the VAG discretizations of DFM continuous
pressure two-phase Darcy flow models. Several techniques to cope with the issues
raised by nodal discretizations atmf interfaces are discussed, including the adaptation
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of the control volumes at mf interfaces, a new Multi-Point upwind approximation of
the mobilities in Sect. 3.3.3, and taking into account the saturation jump for general
capillary pressure curves in Sect. 3.3.5. Section3.4 reviews the VAG discretizations
of the three types of DFM discontinuous pressure two-phase Darcy flow models as
presented in [16, 25]. For each type of model and its VAG discretization, numerical
experiments are exhibited on 2D and 3D DFMmodels including comparisons of the
VAG discretizations to a face based scheme, as well as the comparison between the
hybrid-dimensional DFM models and the reference equi-dimensional model.

3.2 Two-Phase DFM Discontinuous and Continuous
Pressure Models

Let � be a bounded domain of Rd , d = 2, 3 assumed to be polyhedral for d = 3
and polygonal for d = 2. To fix ideas, the dimension will be fixed to d = 3 when
it needs to be specified, for instance in the naming of the geometrical objects or for
the space discretization. The adaptations to the case d = 2 are straightforward. Let
� = ⋃

i∈I �i denotes the network of fractures �i ⊂ �, i ∈ I , such that each �i is a
planar polygonal simply connected open domain included in some plane of Rd (see
Fig. 3.1).

In the matrix domain �, we denote by φm(x) the porosity and by �m(x) the
permeability tensor. Along the fracture network x ∈ �, we denote by φ f (x) the
porosity averaged on the fracture width and by d f (x) the fracture aperture. The
permeability tensor is assumed constant along the width of the fracture and the
normal vector to the fracture is assumed to be a principal direction. It results that
we can define along the fracture network x ∈ �, the tangential permeability tensor
� f (x) and the normal permeability λn, f (x).

It is assumed, for the sake of simplicity, that thematrix (resp. the fracture network)
has a single rock type. Hence, for each phase α ∈ {nw,w} (where nw stands for the
non-wetting phase andw for thewetting phase)we denote byMα

m(sα) (resp.Mα
f (s

α)),
thematrix (resp. fracture network) phasemobility, and by Pc,m(snw) (resp. Pc, f (snw)),
the matrix (resp. fracture network) capillary pressure function. The inverse of the
monotone graph extension of the matrix (resp. fracture network) capillary pressure

Fig. 3.1 Example of a 2D
DFM with the matrix domain
� and 3 intersecting
fractures �i , i = 1, 2, 3
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is denoted by Snwm (p) (resp. Snwf (p)). We will also denote by ρα the phase density
which for the sake of simplicity is assumed constant for both phases α ∈ {nw,w}.

Let α ∈ {nw,w}, we denote by uα
m (resp. uα

f ) the phase pressure and by s
α
m (resp.

sα
f ) the phase saturation in the matrix (resp. the fracture network) domain. The Darcy

velocity of phase α ∈ {nw,w} in the matrix domain is defined by

qα
m = −Mα

m(sα
m)�m(∇uα

m − ραg),

where g = −g∇z stands for the gravity vector with g the gravitational acceleration
constant. The flow in the matrix domain is described by the volume balance equation

φm∂t s
α
m + div(qα

m) = 0, (3.1)

for α ∈ {nw,w}, and the closure laws defined by the macroscopic capillary pressure
law together with the sum to one of the phase saturations

snwm = Snwm (pc,m), pc,m = unwm − uwm, swm = 1 − snwm . (3.2)

On the fracture network �, we denote by ∇τ the tangential gradient and by divτ

the tangential divergence. In addition, we can define the two sides ± of the fracture
network � in � \ � and the corresponding unit normal vectors n± at � inward to the
sides±. Let γn± (resp. γ ±) formally denote the normal trace (resp. trace) operators at
both sides of the fracture network� for vector fields in Hdiv(� \ �) (resp. scalar fields
in H 1(� \ �). The Darcy tangential velocity of phase α ∈ {nw,w} in the fracture
network � integrated over the width of the fracture is defined by

qα
f = −d f M

α
f (s

α
f )� f (∇τu

α
f − ραgτ ),

with gτ = g − (g · n+)n+. The flow in the fracture network � is described, for each
phase α ∈ {nw,w}, by the volume balance equation

d f φ f ∂t s
α
f + divτ (qα

f ) + γn+qα
m + γn−qα

m = 0, (3.3)

and by the closure laws

snwf = Snwf (pc, f ), pc, f = unwf − uwf , swf = 1 − snwf . (3.4)

3.2.1 Two-Phase DFM Discontinuous Pressure Model

We consider the transmission conditions introduced in [16]. They are based on a
two-point approximation of each phase normal flux within the fracture combined
with a phase potential upwinding of the phase mobility taking into account the phase
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Fig. 3.2 (Left): example of a 2DDFM discontinuous pressure model with the normal vectors n± at
both sides of a fracture, the matrix phase pressure and saturation uα

m , s
α
m , the fracture phase pressure

and saturation uα
f , s

α
f , the matrix Darcy phase velocity qα

m and the fracture network tangential
Darcy phase velocity qα

f . (Right): illustration of the coupling condition qα
f,n+ = γn+qα

m for the
hybrid-dimensional discontinuous pressure model

saturation jump at the mf interface. Let us first define, for both phases α ∈ {nw,w},
the “single” phase normal flux in the fracture network

V α,±
f,n = λ f,n

(
γ ±uα

m − uα
f

d f /2
− ραg · n±

)

, (3.5)

which does not include the phase mobility. For any a ∈ R, let us set a+ = max{0, a}
and a− = min{0, a}. The conditions coupling the matrix and fracture unknowns then
read, for α ∈ {nw,w} (see the right Fig. 3.2):

γn±qα
m = qα

f,n± , qα
f,n± = Mα

f (S
α
f (γ

± pc,m))(V α,±
f,n )+ + Mα

f (s
α
f )(V

α,±
f,n )−. (3.6)

The hybrid dimensional two-phase flow discontinuous pressure model looks for
uα
m, uα

f , s
α
m, sα

f , α ∈ {nw,w}, satisfying (3.1)–(3.2) and (3.3)–(3.4) together with the
transmission conditions (3.6).

3.2.2 Two-Phase DFM Continuous Pressure Model

In the case of pervious fractures, for which the ratio of the transversal permeability
of the fracture to the width of the fracture is large compared with the ratio of the
permeability of the matrix to the size of the domain, it is classical to assume that the
phase pressures are continuous at the interfaces between the fractures and the matrix
domain. Let us also mention that in the context of two-phase flows the continuous
pressure DFMmodels have to be used with caution. It has been shown in [1, 16] that



3 Nodal Discretization of Two-Phase Discrete Fracture Matrix Models 79

Fig. 3.3 Example of a 2D DFM continuous pressure model with the normal vectors n± at both
sides of a fracture, the phase pressure uα and its trace γ uα on the fracture network �, the matrix
phase saturation sα

m , the fracture phase saturation sα
f , the matrix Darcy phase velocity qα

m and the
fracture network tangential Darcy phase velocity qα

f

even highly pervious fractures may still act as barriers. This is due to the potential
degeneracy of the mobilities in the transmission condition (3.6) and to the saturation
jumps resulting from the high contrast of the capillary pressure curves across mf
interface. Typically a fracture filled with the non-wetting phase would act as a barrier
for the wetting phase, and therefore would induce a discontinuity of the wetting
phase’s pressure. We refer to [1, 16] for a detailed comparison of continuous and
discontinuous pressure models in case of very pervious fractures.

The continuous pressure model replaces the transmission condition (3.6) by the
following phase pressure continuity conditions at mf interfaces:

γ +uα
m = γ −uα

m = uα
f on �, α ∈ {nw,w}. (3.7)

It results that we can denote by uα the matrix pressure of phase α ∈ {nw,w} and
by γ uα the fracture pressure of phase α ∈ {nw,w}, where γ is the trace operator on
� for functions in H 1(�) (Fig. 3.3).

The hybrid dimensional two-phase flow continuous pressure model looks for sα
m ,

sα
f , and uα , α = nw,w satisfying (3.1)–(3.2) and (3.3)–(3.4).
For both continuous and discontinuous pressure models, a no-flux boundary con-

ditions is prescribed at the tips of the immersed fractures, that is to say on ∂� \ ∂�,
and the volume conservation and pressure continuity conditions are imposed at the
fracture intersections. We refer to [13, 16] for more details on those conditions.

Finally, one should provide some appropriate initial and boundary data. To fix
ideas,we consider in a non homogeneousDirichlet boundary conditions on thematrix
boundary ∂�Dir ⊂ ∂� and on the fracture boundary�Dir ⊂ ∂� ∩ ∂�. Homogeneous
Neumann boundary conditions are set on ∂�N = ∂� \ ∂�Dir and on �N = (∂� ∩
∂�) \ �Dir.
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3.3 Vertex Approximate Gradient (VAG) Discretization of
Two-Phase DFM Continuous Pressure Models

The VAG discretization of hybrid dimensional two-phase Darcy flows introduced in
[13] considers generalised polyhedral meshes of� in the spirit of [29]. Let us briefly
recall some notations related to the space discretization. We denote byM the set of
disjoint open polyhedral cells, by F the set of faces and by V the set of nodes of the
mesh. For each cell K ∈ Mwe denote byFK ⊂ F the set of its faces and by VK the
set of its nodes. Similarly, we will denote by Vσ the set of nodes of σ ∈ F . The set
Mσ denotes the two cells sharing an interior face σ or the single cell to which the
boundary face σ belongs. The set Ms (resp. Fs) is the subset of cells (resp. faces)
sharing the node s ∈ V .

Let Eσ denote the set of edges of the face σ ∈ F . It is then assumed that for each
face σ ∈ F , there exists a so-called “centre” of the face xσ ∈ σ \ ⋃

e∈Eσ
e such that

xσ = ∑
s∈Vσ

βσ,s xs, with
∑

s∈Vσ
βσ,s = 1, and βσ,s ≥ 0 for all s ∈ Vσ . The face σ is

not necessarily planar, hence the term generalised polyhedral mesh. More precisely,
each face σ is assumed to be defined by the union of the triangles Tσ,e defined by the
face centre xσ and each edge e ∈ Eσ .

The mesh is supposed to be conforming w.r.t. the fracture network � in the sense
that there exists a subset F� of F such that � = ⋃

σ∈F�
σ . We set

V� =
⋃

σ∈F�

Vσ ,

and, for s ∈ V� , we define F�,s = Fs ∩ F� as the subset of faces in F� sharing the
node s.

TheVAGdiscretization proposed in [13] is based upon the following set of degrees
of freedom (d.o.f.)

D = M ∪ V ∪ F�

and the corresponding vector space:

XD = {vν ∈ R, ν ∈ D}.

The d.o.f. are exhibited in Fig. 3.4 for a given cell K with one fracture face σ in bold.
Let us denote by

VDir = {s ∈ V | xs ∈ ∂�Dir ∪ �Dir},

the subset of Dirichlet nodes.
A finite element discretization is built from the vector space of d.o.f. XD using a

tetrahedral sub-mesh of M and a second order interpolation at the face centres xσ ,
σ ∈ F \ F� defined by the operator Iσ : XD → R such that
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Iσ (v) =
∑

s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by

T = {TK ,σ,e, e ∈ Eσ , σ ∈ FK , K ∈ M}, (3.8)

where TK ,σ,e is the tetrahedron joining the cell centre xK to the triangle Tσ,e. For a
given vD ∈ XD, we define the function πT vD as the continuous piecewise affine
function on each tetrahedron of T such that πT vD(xK ) = vK , πT vD(xs) = vs,
πT vD(xσ ) = vσ , and πT vD(xσ ′) = Iσ ′(v) for all K ∈ M, s ∈ V , σ ∈ F� , and
σ ′ ∈ F \ F� . The nodal basis of this finite element discretization will be denoted by
ηK , ηs, ησ , for K ∈ M, s ∈ V , σ ∈ F� .

The VAG scheme is a control volume scheme in the sense that it results, for each
d.o.f. not located at the Dirichlet boundary and each phase, in a volume balance
equation. The two main ingredients are therefore the conservative fluxes and the
porous volumes. The VAG matrix and fracture fluxes are exhibited in Fig. 3.4. They
are derived from the variational formulation on the finite element subspace. For
uD ∈ XD, thematrix fluxes FK ,ν(uD) connect the cell K ∈ M to all the d.o.f. located
at the boundary of K , namely ν ∈ �K = VK ∪ (FK ∩ F�). They are defined by

FK ,ν(uD) =
∫

K
−�m(x)∇πT uD(x) · ∇ην(x)dx =

∑

ν ′∈�K

T
ν,ν ′
K (uK − uν ′),

with the cell transmissibilities

T
ν,ν ′
K =

∫

K
�m(x)∇ην ′(x) · ∇ην(x)dx.

The fracture fluxes Fσ,s(uD) connect each fracture face σ ∈ F� to its nodes s ∈ Vσ

and are defined by

Fσ,s(uD) =
∫

σ

−d f � f ∇τ γ πT uD(x) · ∇τ γ ηs(x)dσ(x) =
∑

s′∈Vσ

T
s,s′
σ (uσ − us′),

Fig. 3.4 For a cell K and a
fracture face σ (in bold),
examples of VAG d.o.f. uK ,
us, uσ , us′ and VAG fluxes
FK ,σ , FK ,s, FK ,s′ , Fσ,s
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with the fracture face transmissibilities

T
s,s′
σ =

∫

σ

d f (x)� f (x)∇τ γ ηs′(x) · ∇τ γ ηs(x)dσ(x),

where dσ(x) denotes the Lebesgue d − 1 dimensional measure on �.
The porous volumes are obtained by distributing the porous volumes of each cell

K ∈ M and fracture face σ ∈ F� to the d.o.f. located on their respective boundaries.
For each K ∈ M we define a set of non-negative volume fractions

(
αK ,ν

)
ν∈�K \VDir

satisfying
∑

ν∈�K \VDir

αK ,ν ≤ 1, and we set

φK ,ν = αK ,ν

∫

K
φm(x)dx.

Similarly, for all σ ∈ F� we set

φσ,s = ασ,s

∫

σ

φ f (x)d f (x)dσ(x),

with the non-negative volume fractions
(
ασ,s

)
s∈Vσ \VDir

satisfying
∑

s∈Vσ \VDir

ασ,s ≤ 1.

Then, we set for all K ∈ M and σ ∈ F�:

φK =
∫

K
φm(x)dx −

∑

ν∈�K \VDir

φK ,ν ,

φσ =
∫

σ

φ f (x)d f (x)dσ(x) −
∑

s∈Vσ \VDir

φσ,s.

On practical meshes with cell sizes at mf interfaces much larger than the fracture
width, the flexibility in the choice of the weights αK ,s and ασ,s is shown in [13] (see
also [30]) to be a crucial asset compared with usual CVFE approaches, allowing
to improve significantly the accuracy of the scheme. As exhibited in Fig. 3.5, and
in contrast with the usual CVFE approaches, the fracture porous volumes can be
defined with no contribution of the matrix porous volume, thus avoiding to enlarge
artificially the flow path in the fractures and to slow down the front speed. This is
achieved by choosing the volume fractions such that

αK ,σ = 0 for all σ ∈ F�, K ∈ Mσ ,

αK ,s = 0 for all s ∈ V�, K ∈ Ms.
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Fig. 3.5 Example of control volumes at cells, fracture face, and nodes, in the case of two cells K and
L splitted by one fracture face σ (the width of the fracture has been enlarged in this Figure). (left):
VAG choice of the porous volumes avoiding mixing between fracture and matrix porous volumes.
(right): CVFE like choice of the porous volumesmixing fracture andmatrix porous volumes leading
to a considerable enlargement of the fracture drain on practical meshes

3.3.1 VAG Phase Potential Two-Point (TP) Upwind
Formulation

Weconsider in the followingofSect. 3.3, the usual approach (termed f-upwindmodel)
for which a single rock type is assigned to each d.o.f. Quite naturally, the fracture rock
type is associated with d.o.f. located on �, while the matrix rock type is associated
to the remaining d.o.f., that is we set

Pc,ν(s) =
{
Pc,m(s) if ν /∈ (V� ∪ F�),

Pc, f (s) if ν ∈ (V� ∪ F�),

and

Mα
ν (s) =

{
Mα

m(s) if ν /∈ (V� ∪ F�),

Mα
f (s) if ν ∈ (V� ∪ F�),

α ∈ {nw,w}.

The set of discrete unknowns is defined by the set of phase pressure uα
D ∈ XD and

phase saturation sα
D ∈ XD for each phase α ∈ {nw,w}.

The “single” phase VAG Darcy fluxes, not including the phase mobility, are
defined, for each phase α ∈ {nw,w}, by

Fα
K ,ν(u

α
D) = FK ,ν(u

α
D) + ραgFK ,ν(zD),

Fα
σ,s(u

α
D) = Fσ,s(u

α
D) + ραgFσ,s(zD),

with zD = (xν)ν∈D, and for K ∈ M, σ ∈ F� , ν ∈ �K , s ∈ Vσ . They are combined
with the usual Two-Point (TP) phase potential upwinding of the mobilities [8, 23],
leading to the following two-phase Darcy VAG fluxes

qα
K ,ν = Mα

K (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

ν (sα
ν )(Fα

K ,ν(u
α
D))−,

qα
σ,s = Mα

σ (sα
σ )(Fα

σ,s(u
α
D))+ + Mα

s (sα
s )(Fα

σ,s(u
α
D))−.
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Let us define the accumulation terms by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα
σ =(

φσ +
∑

K∈Mσ

φK ,σ

)
sα
σ , σ ∈ F�,

Aα
s =( ∑

K∈Ms

φK ,s +
∑

σ∈F�,s

φσ,s
)
sα
s , s ∈ V \ VDir.

Note that neither the accumulation terms Aα
σ and Aα

s nor the mf fluxes take into
account the discontinuity of the saturations across mf interface. In other terms,
the discrete problem does not involve quantities such as Pc,m(s f ). An alternative
approach is described in Sect. 3.3.5.

For N ∈ N
∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 <

tn · · · < t N = T of the time interval [0, T ]. We denote the time steps by �tn =
tn − tn−1 for alln = 1, · · · , N . The superscriptnwill be used to denote the unknowns
at time tn . To reduce the amount of notation, only the previous time step superscript
n − 1 will be specified in the following, while the superscript n will not be specified
by default.

The set of discrete equations couples the volume balance equations at each d.o.f.
excluding the Dirichlet nodes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K − Aα,n−1

K

�tn
+

∑

ν∈�K

qα
K ,ν = 0, K ∈ M, α = nw,w,

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
K ,σ = 0, σ ∈ F�, α = nw,w,

Aα
s − Aα,n−1

s

�tn
+

∑

K∈Ms

−qα
K ,s +

∑

σ∈F�,s

−qα
σ,s = 0, s ∈ V \ VDir, α = nw,w,

(3.9)
combined with the closure laws

{
snwν + swν = 1, ν ∈ D,

unwν − uwν = Pc,ν(snwν ), ν ∈ D,
(3.10)

and the Dirichlet boundary conditions

snws = snwDir,s unws = unwDir,s, s ∈ VDir, (3.11)

for given snwDir,s ∈ [0, 1], unwDir,s, s ∈ VDir.
To solve the discrete nonlinear system (3.9), one first uses the closure equations

(3.10) to eliminate the unknowns swν and uwν for ν ∈ D reducing the system to the
primary unknowns unwν , snwν , ν ∈ D coupled by the set of equations (3.9) and the
Dirichlet boundary conditions (3.11). A Newton’s method is used to solve this non-
linear system at each time step of the simulation. At each Newton step, the Jacobian
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matrix is assembled and the cell unknowns unwK , snwK , K ∈ M are eliminated without
any fill-in using the linearized cell volume balance equations reducing the system to
the node and fracture face primary unknowns only. This elimination results in a huge
gain in terms of system size in particular for tetrahedral meshes. The reduced linear
system is solved using a Krylov subspace solver preconditioned by a CPR-AMG
preconditioner. This preconditioner combines multiplicatively an AMG precondi-
tioner on a pressure block (elliptic part of the system) with a zero fill-in incomplete
factorization of the full system. Let us refer to [42, 47] for its detailed description.
In the following numerical experiments, the pressure block is simply obtain as the
sum over both phases of the volume balance equations on each fracture face and non
Dirichlet node.

3.3.2 What Is Wrong with Two-Point Upwinding at mf
Interfaces

In this Section, we discuss one particular difficulty that the nodal discretizations
have in regard of the discrete fluxes reconstruction. As shown below, due to the
dual control volumes at mf interfaces, nodal schemes may result in fluxes having an
opposite sign compared to the fluxes computed at the physical mf interfaces. Using
Two-Point upwinding, this results in an artificial diffusion of the saturation toward an
upstream direction. To avoid this drawback we propose below an alternative Multi-
Point upwinding technique.

For a given constant velocityq, let us choose uD ∈ XD such that uν = −�−1
m q · xν

for all ν ∈ D. From −�m∇πT uD = q, we obtain

FK ,s(uD) = q ·
∫

K
∇ηs(x)dx,

at a given fracture node s ∈ V� , and cell K ∈ Ms.
For the sake of simplicity, let us assume the geometrical configuration illustrated

in Fig. 3.6. It results that

FK ,s(uD) = − 1
2 |s2σ1|q · n1,

FJ,s(uD) = − 1
2 |s3σ2|q · n3 = −FK ,s(uD),

FI,s(uD) = + 1
2 |s2s3|q · n,

FK ,σ1(uD) = + 1
2 |ss1|q · n,

FJ,σ2(uD) = + 1
2 |ss4|q · n = FI,σ1(uD).

We remark that, whatever the velocity q, either the flux FK ,s(uD) or the flux
FJ,s(uD) have the opposite sign as the one of q · n. Assuming, to fix ideas that
q · n > 0, it results from the Two-Point upwinding used for the transport scheme
of a given phase with Darcy velocity q, that the phase propagates from the fracture
either to the upstream cell K or the upstream cell J .
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Fig. 3.6 Example of a 2D mesh with three isosceles triangular cells at the interface with a fracture
in bold. It is assumed that the unit normal vectors are such that n2 = −n, n1 = −n3 and that
n1 · n = 0. The cell centers are chosen as the isobarycenters of their 3 nodes

On the other hand, let us remark that the ill-orientated discrete fluxes cancel out
when summing over the cells connected to the node s and located on the same side
with respect to the planar fracture, that is we have

FK ,s(uD) + FI,s(uD) + FJ,s(uD) = 1

2
|σ1σ2|q · n. (3.12)

This property actually holds for an arbitrary number of polygonal cells sharing the
node s and whatever the choice of the cell centers. In the three-dimensional case, this
property also holds for tetrahedral meshes.

In the following Subsection, this property on the sum of the fluxes is exploited to
avoid the artificial diffusion of the phase toward an upstream direction.

3.3.3 Multi-Point (MP) Upwind Fluxes at mf Interfaces

We first define an equivalence relation on each subsetMs of cells, for any fixed node
s ∈ V , by

K ≡Ms L ⇐⇒ there exists n ∈ N and a sequence (σi )i=1,...,n in Fs\F�,

such that K ∈ Mσ1 , L ∈ Mσn and Mσi+1 ∩ Mσi �= ∅
for i = 1, . . . , n − 1.
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Fig. 3.7 (left) 2D mesh with 3 fracture faces in bold and the 3 d.o.f. in Ms at the node s ∈ V� ,
(right) Darcy fluxes joining each cell L ∈ K s to the new d.o.f. K s, and joining the new d.o.f. K s to
the node s (the node s and K s are located at the same point s but they have been separated for the
sake of clarity of the Figure)

Let us then denote by Ms the set of all classes of equivalence of Ms and by Ks

the element of Ms containing K ∈ M. Obviously Ms might have more than one
element only if s ∈ V� . Note that Ks is both considered as a subset of cells of Ms

as well as an additional d.o.f. located at the same point than the node s i.e. we set
xK s

= xs (Fig. 3.7).
Let us define the phase mobilities

Mα

K s
, s ∈ V�, K s ∈ Ms, α ∈ {nw,w}, (3.13)

as matrix fracture additional unknowns. Then, using phase potential upwinding of
the mobilities, let us define for all L ∈ K s the half Darcy fluxes between L and K s

by
qα

L ,K s
= Mα

L (sα
L)(F

α
L ,s(u

α
D))+ + Mα

K s
(Fα

L ,s(u
α
D))−,

as well as the half Darcy flux between K s and s by

qα

K s,s
= Mα

s (sα
s )(Fα

K s,s
)− + Mα

K s
(Fα

K s,s
)+,

where we set by flux conservation

Fα

K s,s
=

∑

L∈K s

Fα
L ,s(u

α
D).

The flux continuity equation

qα

K s,s
=

∑

L∈K s

qα

L ,K s
, (3.14)
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is used to eliminate themobility unknownMα

K s
leading to the following convex linear

combination of the cells L ∈ K s and node s mobilities:

Mα

K s
=

∑

L∈K s

(Fα
L ,s(u

α
D))+Mα

L (sα
L) − Mα

s (sα
s )(

∑

L∈K s

Fα
L ,s(u

α
D))−

∑

L∈K s

(Fα
L ,s(u

α
D))+ − (

∑

L∈K s

Fα
L ,s(u

α
D))−

. (3.15)

We deduce the definition of the new Multi-Point upwind flux

qα
K ,s = qα

K ,K s
= Mα

K (sα
K )(Fα

K ,s(u
α
D))+ + Mα

K s
(Fα

K ,s(u
α
D))−,

denoted by VAG MP in the following and to be used in the conservation equations
(3.9). Compared with the Two-Point upwind flux

qα
K ,s = Mα

K (sα
K )(Fα

K ,s(u
α
D))+ + Mα

s (sα
s )(Fα

K ,s(u
α
D))−,

denoted by VAG TP, the VAG MP flux uses the fracture node saturation sα
s only if∑

L∈K s
Fα
L ,s(u

α
D) < 0, which, in view of (3.12), ensures that the phase will not go

out from the fracture on the wrong side in the case of a linear phase pressure field.
Note also that, if K s contains only one cell, both the VAG TP and VAGMP fluxes

match, this is why the fluxes qα
K ,σ , σ ∈ FK ∩ F� do not need to be modified.

Thematrix fracturemobility unknowns (3.13) and flux continuity equations (3.14)
can be kept in the nonlinear systemand solve simultaneouslywith the other unknowns
and equations. Let us recall that the CPR-AMG preconditioner combines multiplica-
tively an AMG preconditioner on a pressure block (elliptic part of the system) with
a zero fill-in incomplete factorization of the full system. The matrix fracture mobil-
ity unknowns Mα

K s
and the flux continuity equations (3.14), s ∈ V� , K s ∈ Ms, are

not included in the definition of the pressure block due to their hyperbolic nature. It
results that the pressure block has the same number of unknowns and sparsity pattern
as the one of the usual VAG TP scheme. Since the AMG step is the most expensive
part of the CPR-AMG two stage preconditioner, this explains why keeping thematrix
fracture mobility unknowns is quite efficient.

On the other hand, the elimination of the matrix fracture mobility unknowns
together with the flux continuity equations in (3.15) leads to a rather large fill-in of
the Jacobian (depending on the density of the fracture network) and also prevents the
elimination of the cell unknowns connected to the fractures. The following numerical
experiments confirm that it is much more efficient in terms of CPU time to keep the
matrix fracture mobility unknowns in the linear system.
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3.3.4 Numerical Experiments

The Objectives of this Subsection is to compare the solutions obtained with the
following schemes:

• the CVFE like VAG scheme with rock type mixture and Two-Point upwinding of
the mobilities at mf interfaces (VAG CVFE),

• the VAG scheme with no rock type mixture and Two-Point upwinding of the
mobilities at mf interfaces (VAG TP),

• the VAG scheme with no rock type mixture and Multi-Point upwinding of the
mobilities at mf interfaces (VAG MP). The VAG MP scheme is implemented
either with elimination of the interface mobility unknowns (VAG MP) or without
elimination of these unknowns (VAG MP no elim).

• the Hybrid Finite Volume (HFV) scheme with cell, face and fracture edge
unknowns as described in [37] (HFV).

All these schemes are implemented in the same code using the Fortran 90 pro-
gramming language combined with the gfortran compiler. The linear systems are
solved using the Slatec library [48] for the GMRes iterative solver and the ILU0
preconditioner as well as the AMG1R5 library for the Algebraic MultiGrid precon-
ditioner [45].
Tables3.1 and 3.2 exhibit the following entries:

• mesh: number of cells,
• dof : number of degrees of freedom of each scheme (with 2 physical primary
unknowns per d.o.f.),

• doflin : number of degrees of freedom in the linear system after reduction. Let us
recall that the cell unknowns are eliminated for VAG CVFE, VAG TP, HFV, and
VAG MP no elim, while the interface mobilities together with the cell unknowns
not connected to the fractures are eliminated for VAG MP,

• Nz : number of nonzero elements in the reduced Jacobian (with 2 × 2 matrix ele-
ments).

Note that for the VAG MP no elim implementation, the pressure block is stored
seperately after reduction with a lower number of d.o.f. and nonzero elements than
the remaining part of the Jacobian. This is a key point to lower the CPU timewhen the
CPR-AMG preconditioner is used. Then, the first doflin (resp. Nz) entry corresponds
to the pressure block, and the second entry to the remaining part.
These tables also include the following entries:

• N�t : number of successful time steps,
• Nchop: number of time step chops,
• NNewton : average number of Newton iterations per successful time step,
• NGMRes : average number of GMRes iteration per Newton step,
• CPU (s): CPU time in seconds.
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The CPU time takes into account the full time loop including the outputs in ensight
format files at each time step but excluding the preprocessing computations (mesh
reading, mesh connectivity, VAG transmissibilities, CSR format of the Jacobian)
which are negligeable in terms of CPU time compared with the time loop.

3.3.4.1 Tracer DFM Model with a Single Fracture

Let us denote by (x, y) the Cartesian coordinates of x and let us set � = (0, 1 m)2,
x1 = (0, 1

4 ), x2 = (1, 0.875). We consider a single fracture defined by � = (x1, x2)
with tangential permeability � f = 200 m2 and width d f = 10−3 m. The matrix
permeability is isotropic and set to �m = 1 m2. The matrix and fracture porosities
are set to φm = φ f = 1. Let us set

t =
(

1
0.625

)

, q =
(
1
1
3

)

.

We consider the hybrid-dimensional tracer model obtained from the two-phase
DFM model by setting Mα

m(s) = Mα
f (s) = s for α ∈ {nw,w}, Pc,m(s) = Pc, f (s) =

0, g = 0. The pressure analytical solution is defined for α ∈ {nw,w} by

uα(x, t) = 1 − �−1
m x · q,

leading to the matrix Darcy velocity

qα
m = q,

and the tangential fracture velocity integrated over the width

qα
f = d f � f

(t · �−1
m q)

|t|2 t,

This pressure solution is exactly solved by the VAG scheme usingDirichlet condition
at the boundary of the domain. An input Dirichlet boundary condition is imposed
for the non-wetting phase saturation (tracer) with zero value at the matrix boundary
and a value of 1 at the fracture boundary x1. The initial condition is defined by a
zero non-wetting phase saturation both in the fracture andmatrix domains. Figure3.8
illustrates that the tracer VAG TP solution goes out on the wrong side of the fracture
on a few layers of cells, while it is not the case for the HFV and VAG MP solutions
as expected. The VAG CVFE stationary tracer solution is not plotted since it is the
same than the VAG TP stationary tracer solution. Figure3.9 exhibits the stationary
solutions along the fracture showing that the HFV and VAG MP solutions match on
both meshes while the VAGTP solution is not fully converged even on the fine mesh.
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Fig. 3.8 Stationary solution for the non-wetting phase saturation (tracer) in the matrix and in the
fracture obtained by, from left to right, the HVF, VAG MP and VAG TP schemes, and, from top to
bottom, on the 16 × 16 and 128 × 128 topologically Cartesian meshes

Fig. 3.9 Stationary
non-wetting phase saturation
along the fracture as a
function of x obtained by the
HVF, VAG MP, VAG TP
schemes on the 16 × 16 and
128 × 128 topologically
Cartesian meshes

Figure3.10 exhibits the tracer volume in the fracture as a function of time. Again,
the HFV and VAG MP solutions match on both meshes, while the tracer front in
the fracture is clearly slown down for the VAG TP solution on both meshes. This is
much worse for the VAG CVFE solution due to the fracture enlargement resulting
from the rock type mixture at mf interfaces.
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Fig. 3.10 Volume of the
non-wetting phase in the
fracture as a function of time
for the HVF, VAG MP, VAG
TP, VAG CVFE scheme
solutions on the 16 × 16 and
128 × 128 topologically
Cartesian meshes

3.3.4.2 Large 2D DFM Model

This test case considers the DFM model with the matrix domain � = (0, 100m) ×
(0, 186.5m) and a fracture network including 581 connected components both exhib-
ited in Fig. 3.11. The fracture width is d f = 1 cm and the fracture network is homo-
geneous and isotropic with � f = 10−11 m2, φ f = 0.2. The matrix is homogeneous
and isotropic with �m = 10−14 m2, φm = 0.4.

The relative permeabilities are given by kα
r, f (s

α) = sα and kα
r,m(sα) = (sα)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snw) = −104 ln(1 − snw) Pa in
the matrix and to Pc, f (snw) = 0 Pa in the fracture network. The fluid properties are
defined by their dynamic viscosities μnw = 5. 10−3, μw = 10−3 Pa s and their mass
densities ρw = 1000 and ρnw = 700 kg m−3.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary
conditions are imposed at the top boundary with a wetting phase pressure of 1 MPa
and swm = 1, as well as at the bottom boundary with snwm = 0.9 and uw = 4MPa. The
remaining boundaries are assumed impervious and the final simulation time is fixed
to t f = 1800 days.

The time stepping is defined by �t1 = �tini t = 10 days, and for all n ≥ 1 by

�tn+1 = max(�tmax , 1.2�tn) with �tmax = 10 days, (3.16)

in case of a successful time step �tn , and �tn+1 = �tn

2 , in case of non convergence
of the Newton algorithm in Newtonmax = 30 iterations. This last value is chosen not
to small to avoid too many time step failures even on the finest mesh but also not to
large to avoid increased CPU time in case of time step failures induced by residual
oscillations.

The criterion of convergence for the Newton algorithm is based on a relative
residual in l1 norm smaller than Resmax or on a Newton step in l∞ norm (scaled by
10−6 for the primary pressure unknown and by 1 for the other primary unknown)
smaller than dxmax with

Resmax = 10−5, dxmax = 10−4. (3.17)
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Fig. 3.11 Triangular mesh of the DFM model with 32340 (32k) cells and 5344 fracture faces
(Courtesy of M. Karimi-Fard, Stanford, and A. Lapène, Total). This mesh is refined uniformly to
obtain the 129k and 517k cells meshes

Note also that the Newton step is relaxed such that its l∞ norm (scaled by 10−6 for
the primary pressure unknown and by 1 for the other primary unknown) is smaller
than dxobj with

dxobj = 1. (3.18)

The non-wetting phase saturation is exhibited at final simulation time in Fig. 3.12
in the matrix and in the fracture network, and the volume of the non-wetting phase
as a function of time is presented in Fig. 3.13. We clearly see in Figs. 3.12 and 3.13
that the VAG CVFE discretization considerably slows down the non-wetting phase
front in the fracture network due to the drain enlargement induced by the mixing of
matrix and fracture porous volumes at mf interfaces. The VAGTP discretization does
a better job but still underestimates the front speed in the fracture network. As clearly
exhibited by Fig. 3.12, this is due to the fact that the VAG TP scheme propagates
the non-wetting phase on the wrong side of the fractures as explained in Sect. 3.3.2.
From Fig. 3.13, the VAG TP solution gets very close to the VAG MP solution after
two level of refinement of the coarse mesh, while the VAG CVFE solution has not
yet converged on the finest mesh. The comparison between the VAG MP and HFV
solutions shows that they are in good agreement for all meshes. It appears in Fig. 3.13
that the HFV scheme converges more slowly then the VAG MP scheme.

The numerical behavior of the four schemes is reported in Table3.1 with CPU
time is in seconds on Intel E5-2670 2.6GHz. We remark that the average number
of Newton iterations is in all cases quite smaller than Newtonmax due to significant
variations in the number of Newton iterations during the simulation. This can be
explained typically by a higher number of Newton iterations when the non-wetting
phase reaches the tips of the fracture network.

For this large 2D network, the VAG MP implementation with elimination of
the matrix fracture mobilities leads to a twice large CPU time than the VAG MP
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Fig. 3.12 Non-wetting phase saturation in the matrix and fracture network at time t f = 1800 days
for the HVF, VAG MP, VAG TP, VAG CVFE schemes from left to right, and the 32k, 129k, 517k
cells meshes from top to bottom
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Fig. 3.13 Non-wetting phase volume in the fracture network as a function of time for the VAGMP,
HFV, VAG TP and VAG CFVE schemes on the 3 meshes of sizes 32k, 129k and 517k cells

implementation with no elimination. Regarding the comparison between VAG MP
and VAG TP, we notice a twice larger CPU time, which is a rather good result for
such a large network. The comparison between HFV and VAG MP shows for this
2D test case that HFV is competitive on the coarse mesh due to the additional matrix
fracture unknowns for VAG MP, but becomes more expensive on the two refined
meshes. We will see in the next test case that the situation is much more in favor of
the VAG schemes on tetrahedral 3D meshes.

3.3.4.3 3D DFM Model

TheDFMmodel ofmatrix domain� = (0, 100m)3 and its coarsest tetrahedral mesh
conforming to the fracture network are illustrated in Fig. 3.14. The fracture network
is assumed to be of constant aperture d f = 1 cm. The matrix and fracture porosities,
permeabilities, relative permeabilities and capillary pressures are the same as in the
previous test case. The fluid properties are also the same than in the previous test
case.

At initial time, the reservoir is fully saturated with the wetting phase. Then, non-
wetting phase is injected from below, which is managed by imposing Dirichlet con-
ditions at the bottom and at the top of the reservoir. We impose at the bottom bound-
ary either an overpressure �p = 2 MPa or no overpressure �p = 0 MPa w.r.t. the
hydrostatic distribution of the water pressure. The remaining boundaries are assumed
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Fig. 3.14 Geometry of the
domain � = 100 m ×100 m
×100 m with the fracture
network in red (left),
coarsest tetrahedral mesh
with 47670 cells (right)

impervious and the final simulation time is fixed to t f = 360 days for �p = 2 MPa
and to t f = 3600 days for �p = 0 MPa. The time stepping is defined as in (3.16)
using �tini t = 0.1 days, Newtonmax = 30, and either �tmax = 10 days for �p = 2
MPa or �tmax = 100 days for �p = 0 MPa. The criterion of convergence for the
Newton algorithm is defined as in (3.17) with Resmax = 10−6 and dxmax = 10−5,
and the relaxation of the Newton step is controlled as in (3.18) by the parameter
dxobj = 1.

From Figs. 3.15 and 3.16, we observe that the VAG TP and VAG CVFE schemes
are far from convergence even on the finest mesh with 450k cells while the solution
provided by the VAG MP scheme is quite close to the one of the HFV scheme. The
discrepancy between, on the one hand, theVAGTP andVAGCVFE, and, on the other
hand, theVAGMP andHFV schemes is evenmore striking on the coarsemesh for the
no-overpressure gravity dominant test case exhibited in Figs. 3.17 and 3.18. In terms

Fig. 3.15 Non-wetting phase saturation solutions obtained with the HVF, VAGMP, VAG TP, VAG
CVFE schemes from left to right, at time t f = 360 days (top), and at time t = 100 days (bottom),
with overpressure �p = 2 MPa, and the mesh of size 450k cells. The threshold in the matrix is
Snwm > 0.1 (bottom)
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Fig. 3.16 Non-wetting phase volume in the fracture network as a function of time for the 3D DFM
test case with the overpressure �p = 2 MPa using the VAG MP, HFV, VAG TP and VAG CFVE
schemes on the 2 meshes of sizes 47k and 450k cells

Fig. 3.17 Non-wetting phase saturation solutions obtained with the HVF, VAGMP, VAG TP, VAG
CVFE schemes from left to right, at time t f = 3600 days with no overpressure �p = 0 MPa, and
the mesh of size 47k cells. The threshold in the matrix is Snwm > 0.1 (bottom)

of CPU time, as exhibited in Table3.2, the VAG MP scheme implemented with no
elimination of the matrix fracture mobility unknowns is competitive compared with
the VAG TP scheme. It is also much cheaper than the HFV scheme which leads to a
much larger number of d.o.f. and requires both more Newton and GMRes iterations
than the VAG schemes. Note that the HFV scheme cannot be run in a reasonable
CPU time for the finest mesh of size 1600k cells.
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Fig. 3.18 Non-wetting
phase volume in the fracture
network as a function of time
for the 3D DFM test case
with no overpressure
�p = 0 MPa using the VAG
MP, HFV, VAG TP and VAG
CFVE schemes on the 47k
cells mesh

3.3.5 Capturing the Saturation Jumps at mf Interfaces

Given cellwise and fracture facewise constant rock types, the idea introduced in [20,
43, 44] for CVFE methods and in [14, 17, 31] for the VAG scheme is to define as
many saturations as rock types shared at a given node or fracture face. This allows
to capture the saturation jumps at rock type interfaces resulting from the continuity
of the capillary pressure in the graphical sense [18, 21, 22, 27, 28].

The choice of the primary unknowns may greatly affect the convergence of New-
ton’s method used to solve the nonlinear system at each time step of the simulation.
For the cells and the nodal d.o.f. associated with a single rock the choice of the
primary unknowns does not change compared to Sect. 3.3.1. That is we use the non-
wetting phase’s pressure and saturation as pair of primary unknowns. In contrast
the d.o.f. located at rock type interfaces require a special treatment. For such d.o.f.
ν ∈ V� ∪ F� we set again the pressure of the non-wetting phase as the first pri-
mary unknown, while the second primary unknown is chosen based on the variable
switching strategy introduced in [14]. For a given rock type rt ∈ RT = {m, f } let
P̃c,rt denote the monotone graph extension of Pc,rt as introduced in [21, 22]. For each
subset χ ∈ {{m}, {m, f }} of RT , non-decreasing continuous functions

{
Pc,χ (τ ),

Snwχ,rt(τ ), for all rt ∈ χ,
(3.19)

are built such that

Pc,χ (τ ) ∈ P̃c,rt(S
nw
χ,rt(τ )), for all τ and rt ∈ χ,

and such that Pc,χ (τ ) + ∑
rt∈χ Snwχ,rt(τ ) is strictly increasing. Then, we set

Swχ,rt(τ ) = 1 − Snwχ,rt(τ ).

The variable τ is going to be used as the second primary unknown.
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The main advantage of this framework, which applies to an arbitrary number of
rock types, is to incorporate in the construction of the functions (3.19) the saturation
jump condition at different rock type interfaces and to apply to general capillary
pressure functions. In practice, we use τ = snw for χ = {m} and the parametrization
defined in [14] for χ = {m, f }. This parametrization is based on a generalization
of variable switch approaches (see also [43]) between snwf , snwm , pc and applies to
general, including non invertible, capillary functions (see numerical section for an
example and Fig. 3.20).

Let us set
{

rtK = m, K ∈ M,

rtσ = f, σ ∈ F�,

{
χν = {m}, ν ∈ M ∪ (V \ V�),

χν = {m, f }, ν ∈ V� ∪ F�.

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and τD =
(τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν − Pc,χν

(τν) for all d.o.f. ν ∈ D, and
we define the discrete values of the saturation as follows. For all cells K ∈ M and
the nodes s ∈ V \ V� associated with the single matrix rock type, we set

sα
K = Sα

χK ,rtK (τK ) = Sα
{m},m(τK ) = τK

sα
K ,s = Sα

χs,rtK (τs) = Sα
{m},m(τs) = τs, K ∈ Ms.

For the fracture faces σ ∈ F� , we set

sα
σ = Sα

χσ ,rtσ (τσ ) = Sα
{m, f }, f (τσ )

sα
K ,σ = Sα

χσ ,rtK (τσ ) = Sα
{m, f },m(τσ ), K ∈ Mσ .

For the nodes s ∈ V� , located at the mf interface, we set

{
sα
K ,s = Sα

χs,rtK (τs) = Sα
{m, f },m(τs),

sα
σ,s = Sα

χs,rtσ (τs) = Sα
{m, f }, f (τs), σ ∈ F�,s.

As exhibited in Fig. 3.19, the above definition of the saturations at themf interfaces
takes into account the jump of the saturations induced by the different rock types.

Let us remark that, in our specific example, since the matrix domain is homoge-
neous in terms of capillary pressure-saturation relation, the variables sα

K ,s, K ∈ Ms

(resp. sα
K ,σ , K ∈ Mσ ) refer to the same nodal (resp. facial) saturation values. Sim-

Fig. 3.19 Saturations inside
the cells K and L , the
fracture face σ and at the mf
interfaces taking into account
the saturation jumps induced
by the different rock types
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ilarly, the values sα
σ,s, σ ∈ F�,s are identical. This is however not true for general

heterogeneous matrix and fracture domains.
We define the accumulation terms by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα
σ = φσ s

α
σ +

∑

K∈Mσ

φK ,σ s
α
K ,σ , σ ∈ F�,

Aα
s =

∑

K∈Ms

φK ,ss
α
K ,s +

∑

σ∈F�,s

φσ,ss
α
σ,s, s ∈ V \ VDir,

and the VAG fluxes with TP phase potential upwinding of the mobilities by

qα
K ,ν = Mα

rtK (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

rtK (sα
K ,ν)(F

α
K ,ν(u

α
D))−,

qα
σ,s = Mα

rtσ (s
α
σ )(Fα

σ,s(u
α
D))+ + Mα

rtσ (s
α
σ,s)(F

α
σ,s(u

α
D))−,

for all α ∈ {nw,w} and K ∈ M, σ ∈ F� , ν ∈ �K , s ∈ Vσ .
The VAG TP discretization capturing the saturation jumps at rock type interfaces

looks for unwD and τD satisfying the conservation equations (3.9) together with the
Dirichlet boundary conditions

τs = τDir,s unws = unwDir,s, s ∈ VDir. (3.20)

It will be termed VAG TP m-upwind discretization in the following. The VAG MP
m-upwind discretization can also be defined as previously using the MP upwind flux

qα
K ,s = qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,s(u
α
D))+ + Mα

K s
(Fα

K ,s(u
α
D))−,

for s ∈ V� with the interface mobility

Mα

K s
=

∑

L∈K s

(Fα
L ,s(u

α
D))+Mα

rtL (s
α
L) − Mα

rtK (sα
K ,s)(

∑

L∈K s

Fα
L ,s(u

α
D))−

∑

L∈K s

(Fα
L ,s(u

α
D))+ − (

∑

L∈K s

Fα
L ,s(u

α
D))−

,

assuming that rtL = rtK for all L ∈ K s. This assumption can always be verified by
setting new interface face(s) between the different rock types in K s. This discretiza-
tion will be termed VAG MP m-upwind discretization in the following.

A comparison of the f-upwind and m-upwind models with reference equi-
dimensional solutions can be found in [1, 16]. Basically, it concludes that, thanks
to the saturation jump capturing at mf interfaces, the m-upwind model provides a
better approximation than the f-upwind model as long as the fractures are not fully
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Fig. 3.20 (Top): capillary pressure as a function of the non-wetting phase saturation for both the
fracture (f) andmatrix (m) rock types with bm = 104 and b f = 103 Pa. (Bottom): capillary pressure
and fracture and matrix non-wetting phase saturations as functions of the parameter τ ∈ [0, τ2)

filled with the non-wetting phase. When the fractures are filled, the m-upwind model
overestimates the fracture capillary pressure and underestimates the capillary barrier
effect. In that case the f-upwind model provides a better approximation.
In the following numerical section, the VAG TP and MP m-upwind discretizations
are compared both in terms of solutions and CPU times.

3.3.5.1 Numerical Experiments

In this subsection, we compare the m-upwind version of the VAG TP and VAG
MP schemes using the same code implementation as described in the beginning of
Sect. 3.3.4. The test case considers the large DFM model exhibited in Fig. 3.21 with
domain � = (0, 85) × (0, 60) × (0, 140) m kindly provided by the authors of the
Benchmark [11, 12].

The fracture width is d f = 1 cm and the fracture network is homogeneous and
isotropic with � f = 10−11 m2, φ f = 0.2. The matrix is homogeneous and isotropic
with �m = 10−14 m2, φm = 0.4.
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Fig. 3.21 Large DFM model with its mesh of size 495233 tetrahedral cells and 66908 fracture
faces provided by the authors of the Benchmark [11]

The relative permeabilities are given by kα
r, f (s

α
f ) = sα

f and k
α
r,m(sα

m) = (sα
m)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snwm ) = −bm ln(1 − snwm ) Pa in the
matrix and to Pc, f (snwf ) = −b f ln(1 − snwf )Pa in the fracture network,withb f = 103

Pa, and bm = 104 Pa. The fluid properties are defined by their dynamic viscosities
μnw = 5. 10−3, μw = 10−3 Pa s and their mass densities ρw = 1000 and ρnw = 700
kg m−3.

The parametrization τ at mf interfaces introduced in [14] is recalled below and
illustrated in Fig. 3.20 for the convenience of the reader.

Snw{m, f }, f (τ ) =
{

τ, τ ∈ [0, τ1),
1 − (τ1 + (1 − τ1)

b f
bm − τ)

bm
b f , τ ∈ [τ1, τ2),

(3.21)

Snw{m, f },m(τ ) =
{
1 − (1 − τ)

b f
bm , τ ∈ [0, τ1),

τ − τ1 + 1 − (1 − τ1)
b f
bm , τ ∈ [τ1, τ2),

(3.22)

and

Pc,{m, f }(τ ) =
{−b f ln(1 − τ), τ ∈ [0, τ1),

−bm ln
(
τ1 + (1 − τ1)

b f
bm − τ

)
, τ ∈ [τ1, τ2), (3.23)

where τ1 = 1 − (
b f

bm
)

bm
bm−b f and τ2 = τ1 + (1 − τ1)

b f
bm .
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Fig. 3.22 Non-wetting phase saturation volumes in the matrix (left) and in the fracture network
(right) as a function of time obtained for the VAG TP and the VAG MP m-upwind schemes

The reservoir is initially saturatedwith the wetting phase. Output Dirichlet bound-
ary conditions are imposed at the boundary {0, 85} × (0, 20) × (110, 140) with a
wetting phase pressure of 1 MPa and swm = 1, and input Dirichlet boundary con-
ditions are set at the boundary {0} × (40, 60) × (0, 30) ∪ (0, 30) × (40, 85) × {0}
with snwm = 0.9 and uw = 4MPa. The remaining boundaries are assumed impervious
and the final simulation time is fixed to t f = 3600 days. The time stepping is defined
as in (3.16) using �tini t = 0.01 days, �tmax = 100 days and Newtonmax = 25. The
criterion of convergence for the Newton algorithm is defined as in (3.17) with
Resmax = 10−5 and dxmax = 10−4, and the relaxation of the Newton step is con-
trolled as in (3.18) by the parameter dxobj = 1.

The same issue at mf interfaces as for the VAG TP f-upwind approximation can
be noticed in Fig. 3.23 for the VAG TP m-upwind discretization in the sense that the
non-wetting phase can go out from the fractures on the wrong side for the VAG TP
approximation. Nevertheless, thanks to the rather large saturation jump captured by
the m-upwind model in this test case, it involves small amounts of the non-wetting
phase and does not have visible effects on overall quantities (see Fig. 3.22) nor on the
non-wetting phase saturation front (see Fig. 3.23). In terms of CPU time, as exhibited
in Table3.3, a factor of roughly 1.7 is observed in favor of the TP discretization due
to the additional mf interface unknowns on this rather large fracture network and to
the slightly larger number of Newton iterations for the MP scheme.

Let us refer to [13] for a numerical comparison between the m-upwind VAG TP
scheme and the m-upwind VAG CVFE scheme (i.e. without adaptive distribution
of the porous volumes at mf interfaces). It shows that the m-upwind VAG CVFE
scheme still slows down the transport in the fractures in particular for a high matrix
fracture permeability ratio.
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Fig. 3.23 Non-wetting phase saturation in the matrix (top) and in the fracture network (bottom)
obtained for the VAG TP (left) and VAG MP (right) m-upwind schemes at time t = 350 days

Table 3.3 Numerical behavior of the simulation field test case for the VAG TP and MP m-upwind
schemes. We refer to the beginning of Sect. 3.3.4 for the description of the entries

Scheme mesh dof doflin N z N�t Nchop NNewton NGMRes CPU (s)

VAG TP 495k 648k 150k 2.0M 80 4 6.8 28 8200

VAG MP 495k 718k 150/220k 2.0/4.8M 79 3 8.2 30 14190
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3.4 Vertex Approximate Gradient (VAG) Discretization
of Two-Phase DFM Discontinuous Pressure Models

Discontinuous pressuremodels are required to account for fractures acting as barriers.
Such barriers are usually induced by a low fracture normal permeability combined
with a capillary barrier effect. Note that even in the case of a high normal fracture
permeability, a barrier behavior can still be observed for a given phase due to the
degeneracy of the phase mobility when the fracture is filled by the other phase (see
[1, 16]). Compared to the single phase flow models the possibility of such capillary
barriers constitutes an additional motivation for the use of discontinuous pressure
models.

VAGdiscrete unknowns: as exhibited in Fig. 3.24, the discrete unknowns are defined
by the matrix d.o.f.

Dm = M ∪ {K s | K s ∈ Ms, s ∈ V \ V�} ∪ Dm f

and by the fracture d.o.f.
D f = F� ∪ V�,

where Dm f ⊂ Dm are the mf interface d.o.f.

Dm f = M� ∪ F�,

with

M� = {K s | K s ∈ Ms, s ∈ V�}, F� = {Kσ | K ∈ Mσ , σ ∈ F�}.

uM s
= uN s uKσ uσ

uLs
us

uKuN

uL

uKs

uM

uLσ

FKσ,σFK,Kσ

Fσ,s

us

uKs

FKs,s

uσ

uKσ

uKs′

uK

FK,Ks
FK,Ks′

Fig. 3.24 Single phase VAG discretization of the discontinuous pressure hybrid-dimensional
model: example of discrete unknowns in 2D with 3 fracture faces intersecting at node s (left),
and VAG fluxes (matrix fluxes in red, fracture fluxes in black and matrix fracture fluxes in dark red)
in a 3D cell K with a fracture face σ in bold (right)
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Let us setD = Dm ∪ D f and let us remark that for s ∈ V \ V� ,Ms is reduced to the
set of cells around s and the d.o.f. K s ∈ Ms is considered to match with the node s.

For each cell K ∈ M, let us also define the following subset of d.o.f. located at
the boundary of the cell:

�K = {K s, s ∈ VK , Kσ , σ ∈ F� ∩ FK }.

The subset of Dirichlet d.o.f. is denoted by DDir ⊂ D.
As in Sect. 3.3.5, the definition of the primary and secondary unknowns at the d.o.f.

located at the rock type interfaces is based on the parametrization of the capillary
pressure graphs (3.19). To fix ideas, we assume the presence of 3 rock types RT =
{m, fd , fb}where fd is a fracture drain rock type and fb is a fracture barrier rock type
while m denote again the matrix rock type Let the fracture network � be partitioned
into the networks �d of fractures acting as drains and the network �b of fractures
acting as barriers. In order to simplify the presentation of the numerical scheme, we
will assume that �d ∩ �b = ∅. Then, the collection χ of rock types associated with
any given d.o.f. take values in

{{m}, { fd}, { fb}, {m, fd}, {m, fb}}.

corresponding to assume no intersections between fractures acting as drain and bar-
rier. In practice, we use the parametrization τ = snw for χ = {m}, { fd}, { fb} and the
parametrizations defined in [14] for χ = {m, fd} or {m, fb}. More precisely, let us
set for � = b, d

{
rtK = m, K ∈ M,

rtσ = f�, {σ ∈ F� | xσ ∈ ��},

⎧
⎨

⎩

χν = {m}, ν ∈ Dm \ Dm f ,

χν = { f�}, {ν ∈ D f | xν ∈ ��} := D�
f ,

χν = {m, f�}, {ν ∈ Dm f | xν ∈ ��} := D�
m f ,

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and
τD = (τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν − Pc,χν

(τν) for all d.o.f. ν ∈ D,
and we define the discrete values of the saturation as follows. For all d.o.f. associated
with a single rock type, that is K ∈ M and σ ∈ F� we set

sα
K = Sα

χK ,rtK (τK ) = τK , sα
σ = Sα

χσ ,rtσ (τσ ) = τK ,

for all ν ∈ �K ∩ Dm \ Dm f , K ∈ M, we set

sα
K ,ν = Sα

χν,rtK (τν) = Sα
{m},m(τν) = τν,

for all s ∈ Vs, σ ∈ F� , we set

sα
σ,s = Sα

χs,rtσ (τs) = τs,
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while for all mf interface d.o.f. from Dm f , and with � = b, d, we impose

⎧
⎪⎨

⎪⎩

sα
K ,ν = Sα

χν,rtK (τν) = Sα
{m, f�},m(τν), ν ∈ �K ∩ D�

m f , K ∈ M,

sα
σ,Kσ

= Sα
χKσ ,rtσ (τKσ

) = Sα
{m, f�}, fd (τKσ

), Kσ ∈ F� ∩ D�
m f ,

sα

σ,K s
= Sα

χK s ,rtσ
(τK s

) = Sα
χ{m, f�}, fd

(τK s
), K s ∈ M� ∩ D�

m f , σ ∈ F�,K s
,

where F�,K s
= F�,s ∩ (

⋃
K∈K s

FK ).

Discrete fluxes: the VAG fluxes connect each cell K (resp. each fracture face σ ) to
its boundary d.o.f. ν ∈ �K (resp. s ∈ Vσ ) using the same transmissibility coefficients
as for the continuous pressure model

FK ,ν(uDm ) =
∑

ν ′∈�K

T
ν,ν ′
K (uK − uν ′), Fσ,s(uD f ) =

∑

s′∈Vσ

T
s,s′
σ (uσ − us′).

Additionally, two-point matrix fracture fluxes are defined by

FK s,s(uK s
, us) = TK s,s(uK s

− us), FKσ ,σ (uKσ
, uσ ) = TKσ ,σ (uKσ

− uσ ),

for s ∈ V� , K s ∈ Ms and σ ∈ F� , K ∈ Mσ , with

TK s,s = 1

3

∑

T∈� | s∈T

∫

T

2λ f,n

d f
dσ(x), TKσ ,σ =

∫

σ

2λ f,n

d f
dσ(x),

where � is the triangular submesh of � defined as the trace on � of the tetrahedral
submesh T introduced in (3.8) (see [15]) for details).

Setting zDm = (zν)ν∈Dm and zD f = (zν)ν∈D f , the two-phase VAG fluxes combine
the VAG single phase Darcy fluxes including gravity

Fα
K ,ν (u

α
Dm

) = FK ,ν (u
α
Dm

) + ραgFK ,ν (zDm ), Fα
σ,s(u

α
D f

) = Fσ,s(u
α
D f

) + ραgFσ,s(zD f ),

Fα

K s,s
(uα

K s
, uα

s ) = FK s,s(u
α

K s
, uα

s ) − 1

3
ρα

∑

T∈� | s∈T

∫

T
λ f,ng · nK s,T dσ(x),

Fα
Kσ ,σ (uα

Kσ
, uα

σ ) = FKσ ,σ (uα
Kσ

, uα
σ ) − ρα

∫

σ

λ f,ng · nK ,σdσ(x),

with the usual Two-Point phase potential upwinding of the mobilities, leading to
define

qα
K ,ν = Mα

rtK (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

rtK (sα
K ,ν)(F

α
K ,ν(u

α
D))−,

for all K ∈ M, ν ∈ �K ,



110 K. Brenner et al.

qα
σ,s = Mα

rtσ (s
α
σ )(Fα

σ,s(u
α
D))+ + Mα

rtσ (s
α
σ,s)(F

α
σ,s(u

α
D))−,

for all σ ∈ F� , s ∈ Vσ ,

qα

K s,s
= 1

Card(F�,K s
)

∑

σ∈F�,K s

(
Mα

rtσ (s
α

σ,K s
)(Fα

K s,s
(uα

K s
, uα

s ))
+

+Mα
rtσ (s

α
σ,s)(F

α

K s,s
(uα

K s
, uα

s ))
−
)

for all s ∈ V� , K s ∈ Ms, and

qα
Kσ ,σ = Mα

rtσ (s
α
σ,Kσ

)(Fα
Kσ ,σ (uα

Kσ
, uα

σ ))+ + Mα
rtσ (s

α
σ )(Fα

Kσ ,σ (uα
Kσ

, uα
σ ))−

for all σ ∈ F� , K ∈ Mσ .

Control volumes and accumulation terms: as for the continuous pressure model,
porous volumes φK ,ν , ν ∈ �K \ DDir (resp. φσ,s, s ∈ Vσ \ DDir) are obtained by dis-
tribution of the cell K ∈ M (resp. fracture face σ ∈ F�) porous volume. A porous
volume φσ,K s

(resp. φσ,Kσ
) is also distributed from the fracture face σ to the interface

d.o.f. K s (resp. Kσ ) for σ ∈ F�,K s
, K s ∈ M� (resp. for Kσ ∈ F�). These interface

porous volumes are required to avoid the singularity of the linear systems obtained
after Newton linearization. Their influence on the solution is small provided that they
are chosen small enough (see [25]). Then we set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φK =
∫

K
φm(x)dx −

∑

ν∈�K \DDir

φK ,ν , K ∈ M,

φσ =
∫

σ

d f (x)φ f (x)dx −
∑

s∈Vσ \DDir

φσ,s −
∑

K∈Mσ

φσ,Kσ

−
∑

K s∈M�\DDir | σ∈F�,K s

φσ,K s
,

σ ∈ F�,

and we define the accumulations terms by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα

K s
=

∑

K∈Ms

φK ,K s
sα

K ,K s
, s ∈ V \ (DDir ∪ V�),

Aα
σ = φσ s

α
σ , σ ∈ F�,

Aα
s =

∑

σ∈F�,s

φσ,ss
α
σ,s, s ∈ V� \ DDir,

Aα
Kσ

= φσ,Kσ
sα
σ,Kσ

+ φK ,Kσ
sα
K ,Kσ

, Kσ ∈ F�,

Aα

K s
=

∑

K∈K s

φK ,K s
sα

K ,K s
+

∑

σ∈F�,K s

φσ,K s
sα

σ,K s
, K s ∈ M� \ DDir,
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Conservation equations: the VAG discretization of the discontinuous pressure
model solves for unwD and τD such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K − Aα,n−1

K

�tn
+

∑

ν∈�K

qα
K ,ν = 0, K ∈ M,

Aα

K s
− Aα,n−1

K s

�tn
−

∑

K∈Ms

qα

K ,K s
= 0, s ∈ V \ (V� ∪ DDir),

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
Kσ ,σ = 0, σ ∈ F�,

Aα
s − Aα,n−1

s

�tn
−

∑

σ∈F�,s

qα
σ,s −

∑

K s∈Ms

qα

K s,s
= 0, s ∈ V� \ DDir,

Aα
Kσ

− Aα,n−1
Kσ

�tn
− qα

K ,Kσ
+ qα

Kσ ,σ = 0, Kσ ∈ F�,

Aα

K s
− Aα,n−1

K s

�tn
−

∑

K∈K s

qα

K ,K s
+ qα

K s,s
= 0, K s ∈ M� \ DDir,

τν = τDir,ν , unwν = unwDir,ν , ν ∈ DDir.

(3.24)

f andm-upwind discontinuous pressuremodels: the above discontinuous pressure
model, termed mf nonlinear model in the following, leads to difficulties to solve
the nonlinear system (3.24) due to the combination of highly contrasted matrix and
fracture rock types and to the small pore volumes atmf interface d.o.f. One possibility
to solve this issue, still preserving the ability to take into account fractures acting
as drains or barriers, is to linearize the matrix fracture transmission conditions w.r.t.
the mf interface unknowns and to apply a f or m-upwind approximation of the
mobilities. This idea, developed in [16] for the VAG discretization and in [1] for the
TPFA discretization, replaces the primary unknowns unwν , τν at matrix fracture d.o.f.
ν ∈ Dm f by both phase pressures unwν , uwν , ν ∈ Dm f , and the conservation equations
at matrix fracture d.o.f. by

Fα

K s,s
(uα

K s
, uα

s ) −
∑

K∈K s

Fα

K ,K s
(uα

Dm
) = 0, Fα

Kσ ,σ (uα
Kσ

, uα
σ ) − Fα

K ,Kσ
(uα

Dm
) = 0,

for K s ∈ M� and Kσ ∈ F� . Note that the pore volumes φσ,K s
and φσ,Kσ

are set
to zero. Since phase saturations are no longer defined at matrix fracture d.o.f., one
need to modify the upwind mobilities in the definition of the fluxes qα

K ,K s
, K s ∈ M�

now connecting directly the cell K and the fracture d.o.f. s, and in the definition
of qα

K ,Kσ
, Kσ ∈ F� now connecting the cell K and the fracture d.o.f. σ . These

new connectivities modify the fracture conservations equations for σ ∈ F� and s ∈
V� \ DDir as follows:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
K ,Kσ

= 0, σ ∈ F�,

Aα
s − Aα,n−1

s

�tn
−

∑

σ∈F�,s

qα
σ,s −

∑

K s∈Ms

qα

K ,K s
= 0, s ∈ V� \ DDir,

(3.25)

The modified fluxes are defined by

⎧
⎨

⎩

qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,K s
(uα

D))+ + Mα
rtK (Sα

χK s ,rtK
(τs))(Fα

K ,K s
(uα

D))−,

qα
K ,Kσ

= Mα
rtK (sα

K )(Fα
K ,Kσ

(uα
D))+ + Mα

rtK (Sα
χKσ ,rtK (τσ ))(Fα

K ,Kσ
(uα

D))−,

(3.26)

for the m-upwind discontinuous pressure model, and by

⎧
⎨

⎩

qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,K s
(uα

D))+ + Mα
rts(Sχs,rts(τs))(F

α

K ,K s
(uα

D))−,

qα
K ,Kσ

= Mα
rtK (sα

K )(Fα
K ,Kσ

(uα
D))+ + Mα

rtσ (Sχσ ,rtσ (τσ ))(Fα
K ,Kσ

(uα
D))−,

(3.27)

for the f-upwinddiscontinuous pressuremodel,where a fracture rock type rts has been
assigned to the node s. As for the continuous pressuremodel, aMulti-Point upwinding
can also be introduced for these fluxes using the additional mobility unknowns Mα

K s
,

and Mα
Kσ
, α ∈ {nw,w}. Note that, for fracture acting as drains, these f and m-upwind

discontinuous pressuremodels provide basically the same solutions than respectively
the f and m-upwind continuous pressure models. As already mentioned, this is not
the case of the mf nonlinear discontinuous pressure model (3.24) due to the possible
degeneracy of the phase mobilities appearing in the matrix fracture transmission
conditions.

3.4.1 Numerical Experiments

In this subsection, we compare on the following test case, the mf nonlinear, the
m-upwind and the f-upwind models using a reference solution obtained by the
equi-dimensional model. The code implementation is the same for all models and
described in the beginning of Sect. 3.3.4. The m-upwind and f-upwindmodels would
require the design of specific preconditioners due to the two independent elliptic pres-
sure unknowns at mf interfaces combinedwith a single independent elliptic unknown
at cells and fracture faces. This explains the use for these twomodels of the direct lin-
ear solver SuperLU from the library [49]. The GMRes iterative solver combined with
the CPR-AMGpreconditioner is still used for the mf nonlinear and equi-dimensional
models. It results that the overall numbers of Newton iterations NNewtonN�t are more
relevant for performance comparison than the CPU times which are not reported for
this test case.
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Fig. 3.25 Coarse mesh over
the domain under
consideration, which
contains two intersecting
fractures with high
permeability and low
capillarity and one upper
fracture with low
permeability and high
capillarity. The size of the
domain is 4m × 8m and the
fractures have an aperture of
4 cm

We consider a fractured domain as defined in Fig. 3.25. Thematrix permeability is
isotropic of 0.1 Darcy and matrix porosity is 0.2. The two lower fractures are drains
(fd ) of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture,
acting as a barrier (fb), the permeability is isotropic of 0.001 Darcy and the porosity
is 0.2. The capillary pressures are the same than in Sect. 3.3.5.1 with the Corey
parametersbm = 1bar in thematrix,b fb = 10 bar in the barrier fracture andb fd = 0.1
bar in the drain fractures. Initially, the reservoir is saturated with water (density
1000 kg/m3, viscosity 0.001 Pa s) and oil (density 700 kg/m3, viscosity 0.005 Pa s)
is injected in the bottom fracture, which is managed by imposing non-homogeneous
Neumann conditions at the injection location. The oil then rises by gravity, thanks to
it’s lower density compared to water and by the overpressure induced by the imposed
injection rate. Also, Dirichlet boundary conditions are imposed at the upper boundary
of the domain. Elsewhere, we have homogeneous Neumann conditions.

The tests are driven on triangular meshes, extended to 3D prismatic meshes by
adding a second layer of nodes as a translation of the original nodes in normal
direction to the plane of the original 2D domain (cf. Fig. 3.25). The equi-dimensional
mesh contains two layers of cells in the fractures. In order to focus on modelling
errors, themeshes are chosen to be finewith cell sizes of the same order as the fracture
aperture. The final simulation time is fixed to t f = 54 days. The time stepping is
defined as in (3.16) using �tini t = 0.01 days and �tmax = 0.1 days for the equi-
dimensional and hybrid dimensional mf nonlinear models, and �tini t = 0.002 days
and �tmax = 0.27 days for the hybrid-dimensional m-upwind and f-upwind models.
The maximum number of Newton iterations per time step is fixed as Newtonmax =
35. The criterion of convergence for the Newton algorithm is defined as in (3.17)
with Resmax = 10−6 and dxmax = 10−4, and the relaxation of the Newton step is
controlled as in (3.18) by the parameter dxobj = 0.5.

The hybrid dimensional mf nonlinear and m-upwind models make use of the
parametrization (3.21)–(3.23) at the mf interfaces.
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Fig. 3.26 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and f-
upwind discontinuous pressureDFMmodels (from left to right) numerical solutions for non-wetting
phase saturation at final time t = 54 days

Fig. 3.27 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and
f-upwind discontinuous pressure DFM models (from left to right) numerical solutions for water
overpressure at final time t = 54 days

In this test case, we study the presence of a fracture, which acts as a barrier, both
by its low permeability and by its high capillarity compared to the rock matrix. As
a result of the higher capillarity, the sign of the matrix-fracture non-wetting phase
saturation jump Snwm (γ ± pc,m) − Snwf (γ ± pc,m) at the m f interfaces is non negative.

Figures 3.26, 3.27 and 3.28 compare the above mf nonlinear, m-upwind and f-
upwind discontinuous pressure models to a reference equi-dimensional model. For
the f-upwind and m-upwind models, mass transfer of the non-wetting phase from
the matrix to the barrier is overestimated, since in this direction, saturation jumps are
not accounted for. The assumption of constant saturation across the fracture for these
models consequently leads to an overestimation of the non-wetting phase leaving the
barrier. This overestimation is most severe for the m-upwind model, which takes into
account saturation jumps for fluxes directed from the fracture to the matrix. Again,
the mf nonlinear model does not suffer from the difficulties described above, since it
provides mass transport that passes by the m f interfaces and takes into account the
saturation jumps. Table 3.4 compares the numerical behavior of the different models
on this test case.
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Fig. 3.28 Matrix and fracture volumes occupied by the non-wetting phase as a function of time
for the equi-dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous
pressure DFM models

Table 3.4 Numerical behavior of the simulation obtained by the VAG scheme for the equi-
dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous pressure DFM
models, as presented in Sect. 3.4. We refer to the beginning of Sect. 3.3.4 for the description of the
entries with doflin and Nz accounting for the elimination of the cell unknowns in the linear systems

Scheme mesh dof doflin N z N�t Nchop NNewton

equi dim. 22k 45k 23k 317k 589 2 4.1

mf
nonlinear

17k 35k 18k 261k 585 1 3.4

m-upwind 17k 35k 18k 266k 255 0 4.8

f-upwind 17k 35k 18k 266k 255 0 4.6

3.5 Conclusions and Perspectives

This article reviews the nodal VAG discretization of DFM two-phase Darcy flow
models. For linear transmission conditions, the adaptation of the control volumes
combined with a Multi-Point upwind approximation of the mobilities for f-upwind
models or taking into account the saturation jump for m-upwind models, allows to
obtain a similar accuracy as face based discretizations with a much lower CPU time
on tetrahedralmeshes. Nonlinearmf transmission conditions provide amore accurate
DFM model than linear transmission conditions. As discussed in [1, 16], they can
account for a large range of physical processes at mf interfaces which cannot be
captured by linear mf transmission conditions even in the case of fractures acting as
drains. It is typically the case for fractures acting as capillary barriers, or for highly
permeable fractures filled with a given phase acting as a barrier for the other phase.
The VAG discretization of DFM models with nonlinear mf transmission conditions
still raises the issue of numerical efficiency regarding the nonlinear convergence due
to the combination of highly nonlinear transmission conditions with tiny volumes at
mf interfaces. Improving the numerical efficiency for this type of DFMmodels is the
object of ongoing researches in two directions. The first is to go back to face based
discretizations allowing the elimination of the mf interface unknowns with a local
nonlinear interface solver as in [1] using TPFA discretization on orthogonal meshes
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and in [2] using an HFV discretization. The second perspective is to use the more
robust Hybrid Upwinding approximation of the mobilities to define the two-phase
Darcy fluxes at mf interfaces as proposed in [6] for TPFA schemes and in [19] for
the VAG discretization.
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