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Abstract This chapter reviews the nodal Vertex Approximate Gradient (VAG) dis-
cretization of two-phase Darcy flows in fractured porous media for which the frac-
ture network is represented as a manifold of co-dimension one with respect to the
surrounding matrix domain. Different types of models and their discretizations are
considered depending on the transmission conditions set at matrix fracture inter-
faces accounting for fractures acting either as drains or both as drains or barriers.
Difficulties raised by nodal discretizations in heterogeneous media are investigated
and solutions to solve these issues are discussed. It includes the adaptation of the
porous volumes at nodal unknowns and discontinuous saturations accounting for
the jumps induced by the discontinuity in space of the capillary pressure functions.
A new Multi-Point upwind scheme is also introduced for the approximation of the
mobilities at matrix fracture interfaces to address the issue of fluxes not defined at
faces. The most accurate approach is based on the extension of the discontinuous
pressure model to two-phase Darcy flows taking into account the discontinuities of
both the pressures and saturations at matrix fracture interfaces. As opposed to single
phase flows, It improves the accuracy even in the case of fracture acting as drains. On
the other hand this approach can still exhibit a robustness issue in terms of nonlinear
convergence.

Keywords Two-phase Darcy flows + Heterogeneous media - Discrete fracture
matrix models - Nodal discretization + Finite volume - Vertex approximate
gradient - Discontinuous capillary pressures

K. Brenner - R. Masson ()
Université Cote d’Azur, CNRS, Inria, LJAD, Parc Valrose, 06108 Nice, France
e-mail: roland.masson @univ-cotedazur.fr

K. Brenner
e-mail: konstantin.brenner @univ-cotedazur.fr

J. Hennicker
University of Geneva, Geneva, Switzerland
e-mail: julian.hennicker@unige.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 73
D. A. Di Pietro et al. (eds.), Polyhedral Methods in Geosciences,

SEMA SIMAI Springer Series 27,

https://doi.org/10.1007/978-3-030-69363-3_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69363-3_3&domain=pdf
mailto:roland.masson@univ-cotedazur.fr
mailto:konstantin.brenner@univ-cotedazur.fr
mailto:julian.hennicker@unige.ch
https://doi.org/10.1007/978-3-030-69363-3_3

74 K. Brenner et al.

3.1 Introduction

Many real life applications in the geosciences like oil and gas recovery, basin mod-
elling, energy storage, geothermal energy or hydrogeology involve two-phase Darcy
flows in heterogeneous porous media. Such models are governed by nonlinear partial
differential equations typically coupling elliptic and degenerate parabolic equations.
Next to the inherent difficulties posed by such equations, further challenges are due
to the heterogeneity of the medium and the presence of discontinuities like frac-
tures. This has a strong impact on the complexity of the models, challenging the
development of efficient simulation tools.

This work focuses on the numerical modelling of two-phase Darcy flows in frac-
tured porous media, for which the fracture network is represented as a manifold
of co-dimension one with respect to the matrix domain. These reduced models are
obtained by averaging the physical unknowns as well as the conservation equa-
tions along the fracture width. They are termed hybrid-dimensional or also Discrete
Fracture Matrix (DFM) Darcy flow models. Given the high geometrical complex-
ity of real life fracture networks, the main advantages of these hybrid-dimensional
compared with equi-dimensional models are both to facilitate the mesh generation
and the discretisation of the model, and to reduce the computational cost of the
resulting schemes. This type of hybrid-dimensional models is the object of intensive
researches since the last 15 years due to the ubiquity of fractures in geology and their
considerable impact on the flow and transport in the porous medium.

DFM models are closed with appropriate transmission conditions at matrix frac-
ture (mf) interfaces which differ for fractures acting as drains or as barriers. For
single-phase flows there are two major approaches. The first, designed for mod-
elling highly conductive fractures and referred to as continuous pressure model [7,
17], assumes the continuity of the fluid pressure at the mf interfaces. The second
approach, referred to as discontinuous pressure model [10, 15, 24, 32, 33, 39, 41],
allows to represent fractures acting as permeability barriers by imposing Robin-type
transmission conditions at mf interfaces.

When the modelling of two-phase flow is concerned, three major types of models
can be distinguished. The first and most common type is based on a straightforward
adaptation of the single-phase continuous pressure model to the two-phase setting
(see [13, 14, 20, 38, 43, 44]), it assumes the continuity of each phase pressure at mf
interfaces which allows to capture the saturation jump for fractures acting as drains
and matrix as barrier. As for single-phase flow, this approach cannot account for
fractures acting as barriers. In contrast to the single-phase context, let us stress that,
due to heterogeneous capillary pressures, fractures having a large absolute perme-
ability may still act as barriers for a given phase, typically for the wetting phase for
fractures filled by the non-wetting phase (see [1]). Another existing type of models,
accounting for both drains or permeability barriers, is based on the linear (with-
out mobility but including gravity) single-phase Darcy flux conservation equation
imposed at mf interfaces for each phase. It is usually combined with Two-Point [1,
41] or Multi-Point [4, 5, 36, 46, 51, 52] cell-centred finite volume schemes for which
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the interfacial discontinuous pressures are eliminated when building the single phase
Darcy flux transmissibilities. These models account for the discontinuity of the pres-
sures but not of the mobilities at mf interfaces. Both previous types of models are
based on linear mf transmission conditions. The last type of models considers nonlin-
ear mf transmission conditions which are based on the nonlinear (including mobility)
two-phase normal flux continuity equations at mf interfaces. This type of models is
considered in [1, 2, 6, 16, 25, 26] using a two-point flux approximation in the frac-
ture width with upwinding of the mobilities, and in [3, 40] using a global pressure
formulation. Such nonlinear transmission conditions account for the discontinuity of
both the phase pressures and the mobilities at mf interfaces. A comparison of these
three types of models using reference equi-dimensional solutions can be found in
[1, 16].

Having in mind that tetrahedral meshes are commonly used to cope with the
geometrical complexity of fracture networks, nodal discretizations of DFM two-
phase Darcy flow models have a clear advantage over cell-centred or face based
discretizations thanks to their much lower number of degrees of freedom (d.o.f.).
This is in particular the case when considering fully coupled implicit time integration
which are necessary to avoid severe time step restrictions in high velocity regions
such as fractures and to account for the strong coupling between the pressure and
saturation unknowns at mf interfaces [9]. Alternatively, cell centred discretizations
have been considered for DFM two-phase flow models using the Two-Point Flux
Approximation (TPFA) asin [1, 6, 41] or Multi-Point Flux Approximations (MPFA)
asin [5, 36, 52]. Face based discretizations have been considered in [3, 38] using the
Mixed Hybrid Finite Element (MHFE) method and in [2, 37] using the Hybrid Finite
Volume (HFV) scheme. Non conforming discretizations have also been developed
for this type of models using XFEM discretizations as in [34] or Embedded Discrete
Fracture Models as in [50].

Nodal discretizations, such as the Control Volume Finite Element (CVFE) method,
have been first introduced in [20, 35, 43, 44] for DFM two-phase Darcy flow models
with continuous pressures at mf interfaces accounting for fractures acting as drains.
In this work, we review the Vertex Approximate Gradient (VAG) discretization intro-
ducedin[13, 14, 53] for continuous pressure models and in [16, 25] for discontinuous
pressure models. The VAG scheme is based on nodal d.o.f. like CVFE methods but
it also includes the cell d.o.f. which are eliminated at the linear algebra level at each
Newton iteration without any fill-in. These cell d.o.f. provide an additional flexibility
in the design of the discretization allowing to cope with traditional issues raised at
mf interfaces by nodal discretizations of the transport equation. On practical meshes,
for which the cell sizes at mf interfaces are much larger than the fracture width, these
issues are induced by the use of dual control volumes combined with heterogeneous
petrophysical and hydrodynamical properties defined on the primal mesh.

The outline of the remaining of this article is as follows. Section 3.2 describes the
DFM continuous and discontinuous pressure two-phase Darcy flow models as intro-
duced in [13, 16]. Section 3.3 presents the VAG discretizations of DFM continuous
pressure two-phase Darcy flow models. Several techniques to cope with the issues
raised by nodal discretizations at mf interfaces are discussed, including the adaptation
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of the control volumes at mf interfaces, a new Multi-Point upwind approximation of
the mobilities in Sect. 3.3.3, and taking into account the saturation jump for general
capillary pressure curves in Sect. 3.3.5. Section 3.4 reviews the VAG discretizations
of the three types of DFM discontinuous pressure two-phase Darcy flow models as
presented in [16, 25]. For each type of model and its VAG discretization, numerical
experiments are exhibited on 2D and 3D DFM models including comparisons of the
VAG discretizations to a face based scheme, as well as the comparison between the
hybrid-dimensional DFM models and the reference equi-dimensional model.

3.2 Two-Phase DFM Discontinuous and Continuous
Pressure Models

Let © be a bounded domain of R4, d = 2, 3 assumed to be polyhedral for d =3
and polygonal for d = 2. To fix ideas, the dimension will be fixed to d = 3 when
it needs to be specified, for instance in the naming of the geometrical objects or for
the space discretization. The adaptations to the case d = 2 are straightforward. Let
T = Ui ! T'; denotes the network of fractures I'; C €, i € I, such that each T; is a
planar polygonal simply connected open domain included in some plane of R? (see
Fig.3.1).

In the matrix domain €2, we denote by ¢,,(x) the porosity and by A,,(x) the
permeability tensor. Along the fracture network x € I', we denote by ¢(x) the
porosity averaged on the fracture width and by d;(x) the fracture aperture. The
permeability tensor is assumed constant along the width of the fracture and the
normal vector to the fracture is assumed to be a principal direction. It results that
we can define along the fracture network x € I', the tangential permeability tensor
A ¢ (x) and the normal permeability A, r(x).

Itis assumed, for the sake of simplicity, that the matrix (resp. the fracture network)
has a single rock type. Hence, for each phase « € {nw, w} (where nw stands for the
non-wetting phase and w for the wetting phase) we denote by M, (s*) (resp. M ;’5 (s%)),
the matrix (resp. fracture network) phase mobility, and by P ,, (s™) (resp. Pe (s™)),
the matrix (resp. fracture network) capillary pressure function. The inverse of the
monotone graph extension of the matrix (resp. fracture network) capillary pressure

Fig. 3.1 Example of a 2D
DFM with the matrix domain I

€ and 3 intersecting fs
Q /

fractures I';,i =1,2,3
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is denoted by S (p) (resp. S?W (p)). We will also denote by p“ the phase density
which for the sake of simplicity is assumed constant for both phases o € {nw, w}.

Leta € {nw, w}, we denote by u, (resp. u"}) the phase pressure and by s, (resp.
s%) the phase saturation in the matrix (resp. the fracture network) domain. The Darcy

velocity of phase & € {nw, w} in the matrix domain is defined by
q,, = — M, (s,) A (Vi — p%8),

where g = —gVz stands for the gravity vector with g the gravitational acceleration
constant. The flow in the matrix domain is described by the volume balance equation

Gmdise + div(q®) =0, 3.1

for o € {nw, w}, and the closure laws defined by the macroscopic capillary pressure
law together with the sum to one of the phase saturations

nw nw nw w w nw
S =S8 (Pem)s  Pem = Uy, — Uy, Sp=1—5". (3.2)

On the fracture network I, we denote by V, the tangential gradient and by div,
the tangential divergence. In addition, we can define the two sides % of the fracture
network I" in  \ T and the corresponding unit normal vectors n* at I" inward to the
sides +. Let yp+ (resp. y*) formally denote the normal trace (resp. trace) operators at
both sides of the fracture network I for vector fields in Hg, (2 \ T') (resp. scalar fields
in H'(Q \ T). The Darcy tangential velocity of phase a € {nw, w} in the fracture
network I" integrated over the width of the fracture is defined by

Q% = —dp MEGDA (V% — pg,),

with g, = g — (g - n*)n™. The flow in the fracture network I is described, for each
phase o € {nw, w}, by the volume balance equation

dppdhss + dive(@D) + vur Q% + Ya-ql = 0, (3.3)
and by the closure laws

s;iW = S;iw(paf), Pe.f = u’}w — uv; s}” =1- sjﬁw. (3.4

3.2.1 Two-Phase DFM Discontinuous Pressure Model

We consider the transmission conditions introduced in [16]. They are based on a
two-point approximation of each phase normal flux within the fracture combined
with a phase potential upwinding of the phase mobility taking into account the phase
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Fig.3.2 (Left): example of a 2D DFM discontinuous pressure model with the normal vectors n* at

both sides of a fracture, the matrix phase pressure and saturation u},, sy, the fracture phase pressure
and saturation u‘}, s}"c, the matrix Darcy phase velocity q, and the fracture network tangential
Darcy phase velocity q‘;‘,. (Right): illustration of the coupling condition q‘;rﬁ = Yn+qj, for the

hybrid-dimensional discontinuous pressure model

saturation jump at the mf interface. Let us first define, for both phases o € {nw, w},
the “single” phase normal flux in the fracture network

yiuf‘n — u?

Vit = A
fin f df/2

—p%g-n*), 3.5)

which does not include the phase mobility. For any a € R, let us seta®™ = max{0, a}
and a~ = min{0, a}. The conditions coupling the matrix and fracture unknowns then
read, for o € {nw, w} (see the right Fig.3.2):

Yo = s Qe = MESEGEpea))(VEDT + MEGHVED ™. (3.6)

The hybrid dimensional two-phase flow discontinuous pressure model looks for
us, u";, 5o, s?, o € {nw, w}, satisfying (3.1)—(3.2) and (3.3)—(3.4) together with the
transmission conditions (3.6).

3.2.2 Two-Phase DFM Continuous Pressure Model

In the case of pervious fractures, for which the ratio of the transversal permeability
of the fracture to the width of the fracture is large compared with the ratio of the
permeability of the matrix to the size of the domain, it is classical to assume that the
phase pressures are continuous at the interfaces between the fractures and the matrix
domain. Let us also mention that in the context of two-phase flows the continuous
pressure DFM models have to be used with caution. It has been shown in [1, 16] that
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Fig. 3.3 Example of a 2D DFM continuous pressure model with the normal vectors n* at both
sides of a fracture, the phase pressure u® and its trace yu® on the fracture network I', the matrix

phase saturation s;y, the fracture phase saturation s;‘-, the matrix Darcy phase velocity q7, and the

fracture network tangential Darcy phase velocity q7-

even highly pervious fractures may still act as barriers. This is due to the potential
degeneracy of the mobilities in the transmission condition (3.6) and to the saturation
jumps resulting from the high contrast of the capillary pressure curves across mf
interface. Typically a fracture filled with the non-wetting phase would act as a barrier
for the wetting phase, and therefore would induce a discontinuity of the wetting
phase’s pressure. We refer to [1, 16] for a detailed comparison of continuous and
discontinuous pressure models in case of very pervious fractures.

The continuous pressure model replaces the transmission condition (3.6) by the
following phase pressure continuity conditions at mf interfaces:

yTul =y ul = u‘;‘c onTl, a € {nw, w}. (3.7

It results that we can denote by u“ the matrix pressure of phase @ € {nw, w} and
by yu® the fracture pressure of phase @ € {nw, w}, where y is the trace operator on
I for functions in H'(R2) (Fig. 3.3).

The hybrid dimensional two-phase flow continuous pressure model looks for sy, ,
s?‘-, and u*, @ = nw, w satisfying (3.1)—(3.2) and (3.3)-(3.4).

For both continuous and discontinuous pressure models, a no-flux boundary con-
ditions is prescribed at the tips of the immersed fractures, that is to say on 9" \ 9€2,
and the volume conservation and pressure continuity conditions are imposed at the
fracture intersections. We refer to [13, 16] for more details on those conditions.

Finally, one should provide some appropriate initial and boundary data. To fix
ideas, we consider in a non homogeneous Dirichlet boundary conditions on the matrix
boundary 0 Q2p;; C 92 and on the fracture boundary Xp;; C 9I" N 2. Homogeneous
Neumann boundary conditions are set on 02y = 992 \mm andon Xy = (o' N
9€2) \ Zpir.
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3.3 Vertex Approximate Gradient (VAG) Discretization of
Two-Phase DFM Continuous Pressure Models

The VAG discretization of hybrid dimensional two-phase Darcy flows introduced in
[13] considers generalised polyhedral meshes of €2 in the spirit of [29]. Let us briefly
recall some notations related to the space discretization. We denote by M the set of
disjoint open polyhedral cells, by F the set of faces and by V the set of nodes of the
mesh. For each cell K € M we denote by Fx C F the set of its faces and by Vg the
set of its nodes. Similarly, we will denote by V, the set of nodes of o € F. The set
M, denotes the two cells sharing an interior face o or the single cell to which the
boundary face o belongs. The set Mg (resp. Fs) is the subset of cells (resp. faces)
sharing the node s € V.

Let &, denote the set of edges of the face o € F. It is then assumed that for each
face o € F, there exists a so-called “centre” of the face x, € o \ UeE s € such that
X, = Zsev,, Bos.s Xs, With Zsevo Bss = 1,and B, > Oforalls € V,. The face o is
not necessarily planar, hence the term generalised polyhedral mesh. More precisely,
each face o is assumed to be defined by the union of the triangles 7, , defined by the
face centre X, and each edge e € &, .

The mesh is supposed to be conforming w.r.t. the fracture network I" in the sense
that there exists a subset Fr of F such that ' = . 7. 0. Weset

ve=J Vs

oeFr

and, for s € Vr, we define Fr s = Fs N Fr as the subset of faces in Fr sharing the
node s.
The VAG discretization proposed in [13] is based upon the following set of degrees
of freedom (d.o.f.)
D=MUVUFr

and the corresponding vector space:
Xp={v, R, veD}.

The d.o.f. are exhibited in Fig. 3.4 for a given cell K with one fracture face ¢ in bold.
Let us denote by L .
Voir = {s € V| x5 € 9Q2pir U Xpir},

the subset of Dirichlet nodes.

A finite element discretization is built from the vector space of d.o.f. Xp using a
tetrahedral sub-mesh of M and a second order interpolation at the face centres X,
o € F \ Fr defined by the operator I, : Xp — R such that
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I,(v) = Z Bo.sVs.

seV,

The tetrahedral sub-mesh is defined by
T ={Tkoe.e€&,0 € Fg,K e M}, (3.8)

where Tk ;. is the tetrahedron joining the cell centre Xk to the triangle 7, .. For a
given vp € Xp, we define the function w7vp as the continuous piecewise affine
function on each tetrahedron of 7 such that mrvp(Xkx) = vk, T7vp(Xs) = Vs,
T7vp(Xy) = Vo, and w7vp(Xy) = I (v) for all K e M, seV, o € Fr, and
o’ € F\ Fr. The nodal basis of this finite element discretization will be denoted by
Nk, Ns, N, for K € M,s €V, o0 € Fr.

The VAG scheme is a control volume scheme in the sense that it results, for each
d.o.f. not located at the Dirichlet boundary and each phase, in a volume balance
equation. The two main ingredients are therefore the conservative fluxes and the
porous volumes. The VAG matrix and fracture fluxes are exhibited in Fig.3.4. They
are derived from the variational formulation on the finite element subspace. For
up € Xp,the matrix fluxes Fg ,,(up) connectthe cell K € M toall the d.o.f. located
at the boundary of K, namely v € Ex = Vi U (Fx N Fr). They are defined by

Fiotup) = [ ~An0¥r7un(0 - Y 0dx = 3 Ty G = ),
K

V' EBK

with the cell transmissibilities
T} = / Aw(®)V1,(X) - Vi, (X)dx.
K

The fracture fluxes F, s(up) connect each fracture face o € Fr to its nodes s € V,
and are defined by

Fo,s(uD) = / _defVTVTCTuD(X) - Veyns(X)do (x) = Z TZS/(MG — Uy),

s'eV,

Fig. 3.4 Foracell K and a
fracture face o (in bold),
examples of VAG d.o.f. ug,
Us, Uy, Uy and VAG fluxes
FK,O» FK,s» FK,s’s Fa.s
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with the fracture face transmissibilities
TS = / dy(X)A f(X)Veyng(x) - Veyns(x)do (x),

where do (x) denotes the Lebesgue d — 1 dimensional measure on I".
The porous volumes are obtained by distributing the porous volumes of each cell
K € M and fracture face 0 € Fr to the d.o.f. located on their respective boundaries.

For each K € M we define a set of non-negative volume fractions (a K’U)UETK\VD'

satisfying Z ak.y < 1, and we set

veEk \ Vpir

Pk = OlK,V/ Om (X)dX.
K

Similarly, for all ¢ € Fr we set
¢a,s = 0Uss / ¢f (X)df (X)dU (X)v

with the non-negative volume fractions (oza,s)sev . satisfying Z U < 1.
SEVU\VDH
Then, we set for all K € M and o € Fr:

W=L%®ﬂ—§:¢m

veEx \ Vbir

@=/m®w®w®— Y o

$€Vs \Vbir

On practical meshes with cell sizes at mf interfaces much larger than the fracture
width, the flexibility in the choice of the weights ax ; and o, 5 is shown in [13] (see
also [30]) to be a crucial asset compared with usual CVFE approaches, allowing
to improve significantly the accuracy of the scheme. As exhibited in Fig.3.5, and
in contrast with the usual CVFE approaches, the fracture porous volumes can be
defined with no contribution of the matrix porous volume, thus avoiding to enlarge
artificially the flow path in the fractures and to slow down the front speed. This is
achieved by choosing the volume fractions such that

ago =0 forall o€ Fr, K € M,,
ags =0 forall seVr, K € M.



3 Nodal Discretization of Two-Phase Discrete Fracture Matrix Models 83

|

Fig.3.5 Example of control volumes at cells, fracture face, and nodes, in the case of two cells K and
L splitted by one fracture face o (the width of the fracture has been enlarged in this Figure). (left):
VAG choice of the porous volumes avoiding mixing between fracture and matrix porous volumes.
(right): CVFE like choice of the porous volumes mixing fracture and matrix porous volumes leading
to a considerable enlargement of the fracture drain on practical meshes

4

3.3.1 VAG Phase Potential Two-Point (TP) Upwind
Formulation

We consider in the following of Sect. 3.3, the usual approach (termed f-upwind model)
for which a single rock type is assigned to each d.o.f. Quite naturally, the fracture rock
type is associated with d.o.f. located on I', while the matrix rock type is associated
to the remaining d.o.f., that is we set

_ Pc,m(s) lf\) ¢ (VF U-:FF)»
Fen(9) = { P. () if v € (Vr U Fp),

and
wfey _ | Mp () ifv ¢ VrUFr),
M, (s) = { Mé(s) if v e (VU Fp), @ € 1m0l
The set of discrete unknowns is defined by the set of phase pressure u%, € Xp and
phase saturation s7, € Xp for each phase o € {nw, w}.
The “single” phase VAG Darcy fluxes, not including the phase mobility, are
defined, for each phase « € {nw, w}, by

Flo(t,v(u%) = FK,v(uaD) + pagFK,v(ZD)a
Fgfs(u%) = Fos(up) + p“gFos(zp),
with zp = (X,)yep, and for K € M, 0 € Fr, v € Eg, s € V,. They are combined

with the usual Two-Point (TP) phase potential upwinding of the mobilities [8, 23],
leading to the following two-phase Darcy VAG fluxes

i = Mg ) (Fg,p) ™ + My (s))(Fg (D)),

Ge s = M (s (Foup) ™ + M (s9)(Fg(up))™.
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Let us define the accumulation terms by

k = ¢xS5k K eM,
As =(¢o + Z bk.o)Se o e Fr,
KeM,
A(SX =( Z ¢K,s + Z ¢¢7,S)S;X9 seV \ VDir~
KeM; oeFrs

Note that neither the accumulation terms A% and A nor the mf fluxes take into
account the discontinuity of the saturations across mf interface. In other terms,
the discrete problem does not involve quantities such as P, ,,(sy). An alternative
approach is described in Sect.3.3.5.

For N € N*, let us consider the time discretization 1 =0 < ¢! < ... <" ! <
t"-.. <tV =T of the time interval [0, T]. We denote the time steps by At" =
t" —t"foralln =1, - - -, N. The superscript n will be used to denote the unknowns
at time ¢". To reduce the amount of notation, only the previous time step superscript
n — 1 will be specified in the following, while the superscript n will not be specified
by default.

The set of discrete equations couples the volume balance equations at each d.o.f.
excluding the Dirichlet nodes

A‘;( - At;('nil o
T~I— qugv=0, KeM,a=nww,
| vEXK
Ax — pon—
%4‘2‘]35_ Z q%’a =0,0 € Fr, a =nw, w,
seV, KeM,
‘A[s)[ — Ag’n_l o o
—am T Z —qgs T Z —qys=0,8€V\ Vpir, « =nw, w,
KeM; oeFrs
(3.9
combined with the closure laws
s+ =1,veD,
{ul’ﬁw —ul =P, (s)"), veD, (3.10)
and the Dirichlet boundary conditions
V= st Wt = ull s € Vi, G.11)

nw

for given spy; ¢ € [0, 11, upy: 5, 5 € Vpir-

To solve the discrete nonlinear system (3.9), one first uses the closure equations
(3.10) to eliminate the unknowns s}’ and u}/ for v € D reducing the system to the
primary unknowns u}", s, v € D coupled by the set of equations (3.9) and the
Dirichlet boundary conditions (3.11). A Newton’s method is used to solve this non-
linear system at each time step of the simulation. At each Newton step, the Jacobian
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matrix is assembled and the cell unknowns u7", s, K € M are eliminated without
any fill-in using the linearized cell volume balance equations reducing the system to
the node and fracture face primary unknowns only. This elimination results in a huge
gain in terms of system size in particular for tetrahedral meshes. The reduced linear
system is solved using a Krylov subspace solver preconditioned by a CPR-AMG
preconditioner. This preconditioner combines multiplicatively an AMG precondi-
tioner on a pressure block (elliptic part of the system) with a zero fill-in incomplete
factorization of the full system. Let us refer to [42, 47] for its detailed description.
In the following numerical experiments, the pressure block is simply obtain as the
sum over both phases of the volume balance equations on each fracture face and non
Dirichlet node.

3.3.2 What Is Wrong with Two-Point Upwinding at mf
Interfaces

In this Section, we discuss one particular difficulty that the nodal discretizations
have in regard of the discrete fluxes reconstruction. As shown below, due to the
dual control volumes at mf interfaces, nodal schemes may result in fluxes having an
opposite sign compared to the fluxes computed at the physical mf interfaces. Using
Two-Point upwinding, this results in an artificial diffusion of the saturation toward an
upstream direction. To avoid this drawback we propose below an alternative Multi-
Point upwinding technique.

For a given constant velocity q, letus choose up € Xp suchthatu, = —A ! q-X,
for all v € D. From —A,,Vrrup = q, we obtain

Fx s(up) =q~/ Vs (x)dx,
K

at a given fracture node s € Vr, and cell K € M.
For the sake of simplicity, let us assume the geometrical configuration illustrated
in Fig.3.6. It results that

Frs(up) = —1ls201q - my,

Fjs(up) = —5[8302|q - n3 = —Fg s(up),
Frs(up) = +5(s2831q - m,

Fk.o (up) = +5[ss11q - m,

Fjo,(up) = +5884lq - n = Fy ;5 (up).

We remark that, whatever the velocity q, either the flux Fk ¢(up) or the flux
F;s(up) have the opposite sign as the one of q - n. Assuming, to fix ideas that
q - n > 0, it results from the Two-Point upwinding used for the transport scheme
of a given phase with Darcy velocity q, that the phase propagates from the fracture
either to the upstream cell K or the upstream cell J.
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Fig. 3.6 Example of a 2D mesh with three isosceles triangular cells at the interface with a fracture
in bold. It is assumed that the unit normal vectors are such that np = —n, nj = —n3 and that
n; - n = 0. The cell centers are chosen as the isobarycenters of their 3 nodes

On the other hand, let us remark that the ill-orientated discrete fluxes cancel out
when summing over the cells connected to the node s and located on the same side
with respect to the planar fracture, that is we have

1
Fi.s(up) + Frs(up) + Fs(up) = Z|o10a]q - n. (3.12)

This property actually holds for an arbitrary number of polygonal cells sharing the
node s and whatever the choice of the cell centers. In the three-dimensional case, this
property also holds for tetrahedral meshes.

In the following Subsection, this property on the sum of the fluxes is exploited to
avoid the artificial diffusion of the phase toward an upstream direction.

3.3.3 Multi-Point (MP) Upwind Fluxes at mf Interfaces

We first define an equivalence relation on each subset M of cells, for any fixed node
s eV, by

K =pm, L <= thereexists n € N and a sequence (0;);=1,.._, in Fs\Fr,
such that K € M, , L € M,, and M, N M, # 0
fori=1,...,n—1.
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Fig. 3.7 (left) 2D mesh with 3 fracture faces in bold and the 3 d.o.f. in Mj at the node s € Vr,
(right) Darcy fluxes joining each cell L € K to the new d.o.f. K, and joining the new d.o.f. K to
the node s (the node s and K are located at the same point s but they have been separated for the
sake of clarity of the Figure)

Let us then denote by M, the set of all classes of equivalence of M, and by K
the element of M containing K € M. Obviously M, might have more than one
element only if s € Vr. Note that K is both considered as a subset of cells of M,
as well as an additional d.o.f. located at the same point than the node s i.e. we set
Xg, = Xs (Fig. 3.7).

Let us define the phase mobilities

M% . seVr, Ks € M, a € {nw, w}, (3.13)

as matrix fracture additional unknowns. Then, using phase potential upwinding of
the mobilities, let us define for all L € K the half Darcy fluxes between L and K
by

g% ¢ = ME GO FE ) + M (F (b)),

as well as the half Darcy flux between K and s by
A, = My (SO(Fg )7 + Mg (Fg )"

where we set by flux conservation

o a (a
Ffs,s - Z FLvs(uD)'
LeK,

The flux continuity equation

9% =D dix (3.14)

LeK;
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is used to eliminate the mobility unknown M=% leading to the following convex linear

combination of the cells L € K and node s mobilities:

D FR ) TME(sE) — MY F )

" LeK LeK

o« _ ) (3.15)
K Y FE )t = (O FE )T

LeK; LeK,

We deduce the definition of the new Multi-Point upwind flux
Axs = g 5. = Mg ) (Fg sp)™ + Mg (Fg ((up)) ™,

denoted by VAG MP in the following and to be used in the conservation equations
(3.9). Compared with the Two-Point upwind flux

q%.s = Mg (s (Fg JuH) ™ + MY (s (Fg (uH) ™,

denoted by VAG TP, the VAG MP flux uses the fracture node saturation s only if
» LeR, F g,s(u%) < 0, which, in view of (3.12), ensures that the phase will not go
out from the fracture on the wrong side in the case of a linear phase pressure field.

Note also that, if K s contains only one cell, both the VAG TP and VAG MP fluxes
match, this is why the fluxes ‘1%,07 o € Fx N Fr do not need to be modified.

The matrix fracture mobility unknowns (3.13) and flux continuity equations (3.14)
can be kept in the nonlinear system and solve simultaneously with the other unknowns
and equations. Let us recall that the CPR-AMG preconditioner combines multiplica-
tively an AMG preconditioner on a pressure block (elliptic part of the system) with
a zero fill-in incomplete factorization of the full system. The matrix fracture mobil-
ity unknowns M% and the flux continuity equations (3.14), s € Vr, Ky € M, are
not included in the definition of the pressure block due to their hyperbolic nature. It
results that the pressure block has the same number of unknowns and sparsity pattern
as the one of the usual VAG TP scheme. Since the AMG step is the most expensive
part of the CPR-AMG two stage preconditioner, this explains why keeping the matrix
fracture mobility unknowns is quite efficient.

On the other hand, the elimination of the matrix fracture mobility unknowns
together with the flux continuity equations in (3.15) leads to a rather large fill-in of
the Jacobian (depending on the density of the fracture network) and also prevents the
elimination of the cell unknowns connected to the fractures. The following numerical
experiments confirm that it is much more efficient in terms of CPU time to keep the
matrix fracture mobility unknowns in the linear system.
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3.3.4 Numerical Experiments

The Objectives of this Subsection is to compare the solutions obtained with the
following schemes:

e the CVEE like VAG scheme with rock type mixture and Two-Point upwinding of
the mobilities at mf interfaces (VAG CVFE),

e the VAG scheme with no rock type mixture and Two-Point upwinding of the
mobilities at mf interfaces (VAG TP),

e the VAG scheme with no rock type mixture and Multi-Point upwinding of the
mobilities at mf interfaces (VAG MP). The VAG MP scheme is implemented
either with elimination of the interface mobility unknowns (VAG MP) or without
elimination of these unknowns (VAG MP no elim).

e the Hybrid Finite Volume (HFV) scheme with cell, face and fracture edge
unknowns as described in [37] (HFV).

All these schemes are implemented in the same code using the Fortran 90 pro-
gramming language combined with the gfortran compiler. The linear systems are
solved using the Slatec library [48] for the GMRes iterative solver and the ILUO
preconditioner as well as the AMGIRS library for the Algebraic MultiGrid precon-
ditioner [45].

Tables 3.1 and 3.2 exhibit the following entries:

e mesh: number of cells,

e dof: number of degrees of freedom of each scheme (with 2 physical primary
unknowns per d.o.f.),

e dofi;,: number of degrees of freedom in the linear system after reduction. Let us
recall that the cell unknowns are eliminated for VAG CVFE, VAG TP, HFV, and
VAG MP no elim, while the interface mobilities together with the cell unknowns
not connected to the fractures are eliminated for VAG MP,

e N,: number of nonzero elements in the reduced Jacobian (with 2 x 2 matrix ele-
ments).

Note that for the VAG MP no elim implementation, the pressure block is stored
seperately after reduction with a lower number of d.o.f. and nonzero elements than
the remaining part of the Jacobian. This is a key point to lower the CPU time when the
CPR-AMG preconditioner is used. Then, the first dofy;, (resp. N.) entry corresponds
to the pressure block, and the second entry to the remaining part.

These tables also include the following entries:

e N,,: number of successful time steps,

® Ncjop: number of time step chops,

® Nyewron: average number of Newton iterations per successful time step,
e Ngures: average number of GMRes iteration per Newton step,

e CPU (s): CPU time in seconds.
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The CPU time takes into account the full time loop including the outputs in ensight
format files at each time step but excluding the preprocessing computations (mesh
reading, mesh connectivity, VAG transmissibilities, CSR format of the Jacobian)
which are negligeable in terms of CPU time compared with the time loop.

3.34.1 Tracer DFM Model with a Single Fracture

Let us denote by (x, y) the Cartesian coordinates of x and let us set = (0, 1 m)2,
x; = (0, %), x; = (1, 0.875). We consider a single fracture defined by I' = (x, X»)
with tangential permeability A ; =200 m? and width d; = 107> m. The matrix
permeability is isotropic and set to A,, = 1 m?. The matrix and fracture porosities
are set to ¢, = ¢y = 1. Let us set

- <0.6125)’ 1= (i)

We consider the hybrid-dimensional tracer model obtained from the two-phase
DFM model by setting M}, (s) = M;‘(s) =sfora € {(nw,w}, P.u(s) = P r(s) =
0, g = 0. The pressure analytical solution is defined for @ € {nw, w} by

uix,0)=1-A,'x-q,
leading to the matrix Darcy velocity

q, =4q
and the tangential fracture velocity integrated over the width

(A0,
I

qy =dsAy :
This pressure solution is exactly solved by the VAG scheme using Dirichlet condition
at the boundary of the domain. An input Dirichlet boundary condition is imposed
for the non-wetting phase saturation (tracer) with zero value at the matrix boundary
and a value of 1 at the fracture boundary x;. The initial condition is defined by a
zero non-wetting phase saturation both in the fracture and matrix domains. Figure 3.8
illustrates that the tracer VAG TP solution goes out on the wrong side of the fracture
on a few layers of cells, while it is not the case for the HFV and VAG MP solutions
as expected. The VAG CVFE stationary tracer solution is not plotted since it is the
same than the VAG TP stationary tracer solution. Figure 3.9 exhibits the stationary
solutions along the fracture showing that the HFV and VAG MP solutions match on
both meshes while the VAG TP solution is not fully converged even on the fine mesh.
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Fig. 3.8 Stationary solution for the non-wetting phase saturation (tracer) in the matrix and in the
fracture obtained by, from left to right, the HVF, VAG MP and VAG TP schemes, and, from top to
bottom, on the 16 x 16 and 128 x 128 topologically Cartesian meshes

Fig. 3.9 Stationary 1
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Figure 3.10 exhibits the tracer volume in the fracture as a function of time. Again,
the HFV and VAG MP solutions match on both meshes, while the tracer front in
the fracture is clearly slown down for the VAG TP solution on both meshes. This is
much worse for the VAG CVFE solution due to the fracture enlargement resulting
from the rock type mixture at mf interfaces.
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Fig. 3.10 Volume of the 0.0007
non-wetting phase in the S N DR E TR R SR
fracture as a function of time

for the HVF, VAG MP, VAG 0.0005
TP, VAG CVEFE scheme
solutions on the 16 x 16 and
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3.3.4.2 Large 2D DFM Model

This test case considers the DFM model with the matrix domain 2 = (0, 100 m) x
(0, 186.5 m) and a fracture network including 581 connected components both exhib-
ited in Fig.3.11. The fracture width is dy = 1 cm and the fracture network is homo-
geneous and isotropic with A y = 107" m?, ¢, = 0.2. The matrix is homogeneous
and isotropic with A,, = 107'% m?, ¢,, = 0.4.

The relative permeabilities are given by k‘r’f f(s"‘) =s%and k', (s*) = 59)?%, a €
{nw, w} and the capillary pressure is fixed to P, , (s™) = —10*In(1 — s™) Pa in
the matrix and to P, ;(s"") = 0 Pa in the fracture network. The fluid properties are
defined by their dynamic viscosities u™ = 5. 1073, u = 1073 Pa s and their mass
densities p" = 1000 and p™" = 700 kg m~3.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary
conditions are imposed at the top boundary with a wetting phase pressure of 1 MPa
and s); = 1, as well as at the bottom boundary with 5" = 0.9 and " = 4 MPa. The
remaining boundaries are assumed impervious and the final simulation time is fixed
to 7y = 1800 days.

The time stepping is defined by At = Aty = 10 days, and for all n > 1 by

A" = max(Atyay, 1.2A1") with At = 10 days, (3.16)

in case of a successful time step Az", and At = AT[", in case of non convergence
of the Newton algorithm in Newton,x = 30 iterations. This last value is chosen not
to small to avoid too many time step failures even on the finest mesh but also not to
large to avoid increased CPU time in case of time step failures induced by residual
oscillations.

The criterion of convergence for the Newton algorithm is based on a relative
residual in /; norm smaller than Resp,x or on a Newton step in /o, norm (scaled by
107 for the primary pressure unknown and by 1 for the other primary unknown)

smaller than dx,x with

ReSmax = 1075, dxpmax = 1074, (3.17)
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Fig. 3.11 Triangular mesh of the DFM model with 32340 (32k) cells and 5344 fracture faces
(Courtesy of M. Karimi-Fard, Stanford, and A. Lapene, Total). This mesh is refined uniformly to
obtain the 129k and 517k cells meshes

Note also that the Newton step is relaxed such that its /o, norm (scaled by 1076 for
the primary pressure unknown and by 1 for the other primary unknown) is smaller
than dxobj with

dxepy = 1. (3.18)

The non-wetting phase saturation is exhibited at final simulation time in Fig.3.12
in the matrix and in the fracture network, and the volume of the non-wetting phase
as a function of time is presented in Fig.3.13. We clearly see in Figs.3.12 and 3.13
that the VAG CVEFE discretization considerably slows down the non-wetting phase
front in the fracture network due to the drain enlargement induced by the mixing of
matrix and fracture porous volumes at mf interfaces. The VAG TP discretization does
a better job but still underestimates the front speed in the fracture network. As clearly
exhibited by Fig.3.12, this is due to the fact that the VAG TP scheme propagates
the non-wetting phase on the wrong side of the fractures as explained in Sect. 3.3.2.
From Fig. 3.13, the VAG TP solution gets very close to the VAG MP solution after
two level of refinement of the coarse mesh, while the VAG CVFE solution has not
yet converged on the finest mesh. The comparison between the VAG MP and HFV
solutions shows that they are in good agreement for all meshes. It appears in Fig. 3.13
that the HFV scheme converges more slowly then the VAG MP scheme.

The numerical behavior of the four schemes is reported in Table 3.1 with CPU
time is in seconds on Intel E5-2670 2.6 GHz. We remark that the average number
of Newton iterations is in all cases quite smaller than Newtonn,, due to significant
variations in the number of Newton iterations during the simulation. This can be
explained typically by a higher number of Newton iterations when the non-wetting
phase reaches the tips of the fracture network.

For this large 2D network, the VAG MP implementation with elimination of
the matrix fracture mobilities leads to a twice large CPU time than the VAG MP
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Fig. 3.12 Non-wetting phase saturation in the matrix and fracture network at time 7 = 1800 days
for the HVFE, VAG MP, VAG TP, VAG CVFE schemes from left to right, and the 32k, 129k, 517k
cells meshes from top to bottom
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Fig. 3.13 Non-wetting phase volume in the fracture network as a function of time for the VAG MP,
HFV, VAG TP and VAG CFVE schemes on the 3 meshes of sizes 32k, 129k and 517k cells

implementation with no elimination. Regarding the comparison between VAG MP
and VAG TP, we notice a twice larger CPU time, which is a rather good result for
such a large network. The comparison between HFV and VAG MP shows for this
2D test case that HFV is competitive on the coarse mesh due to the additional matrix
fracture unknowns for VAG MP, but becomes more expensive on the two refined
meshes. We will see in the next test case that the situation is much more in favor of
the VAG schemes on tetrahedral 3D meshes.

3.3.4.3 3D DFM Model

The DFM model of matrix domain € = (0, 100 m)?> and its coarsest tetrahedral mesh
conforming to the fracture network are illustrated in Fig. 3.14. The fracture network
is assumed to be of constant aperture d; = 1 cm. The matrix and fracture porosities,
permeabilities, relative permeabilities and capillary pressures are the same as in the
previous test case. The fluid properties are also the same than in the previous test
case.

At initial time, the reservoir is fully saturated with the wetting phase. Then, non-
wetting phase is injected from below, which is managed by imposing Dirichlet con-
ditions at the bottom and at the top of the reservoir. We impose at the bottom bound-
ary either an overpressure Ap = 2 MPa or no overpressure Ap = 0 MPa w.r.t. the
hydrostatic distribution of the water pressure. The remaining boundaries are assumed
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Fig. 3.14 Geometry of the
domain 2 = 100 m x 100 m
x 100 m with the fracture
network in red (left),
coarsest tetrahedral mesh
with 47670 cells (right)

impervious and the final simulation time is fixed to 1, = 360 days for Ap =2 MPa
and to t; = 3600 days for Ap = 0 MPa. The time stepping is defined as in (3.16)
using At;,;; = 0.1 days, Newtonp,, = 30, and either Aty = 10 days for Ap =2
MPa or Aty = 100 days for Ap = 0 MPa. The criterion of convergence for the
Newton algorithm is defined as in (3.17) with Respy,x = 107 and dxpe = 107,
and the relaxation of the Newton step is controlled as in (3.18) by the parameter
dxobj = 1.

From Figs.3.15 and 3.16, we observe that the VAG TP and VAG CVFE schemes
are far from convergence even on the finest mesh with 450k cells while the solution
provided by the VAG MP scheme is quite close to the one of the HFV scheme. The
discrepancy between, on the one hand, the VAG TP and VAG CVFE, and, on the other
hand, the VAG MP and HFV schemes is even more striking on the coarse mesh for the
no-overpressure gravity dominant test case exhibited in Figs.3.17 and 3.18. In terms

A

Fig. 3.15 Non-wetting phase saturation solutions obtained with the HVF, VAG MP, VAG TP, VAG
CVEFE schemes from left to right, at time ¢y = 360 days (top), and at time ¢ = 100 days (bottom),
with overpressure Ap = 2 MPa, and the mesh of size 450k cells. The threshold in the matrix is
Sp > 0.1 (bottom)
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Fig. 3.16 Non-wetting phase volume in the fracture network as a function of time for the 3D DFM
test case with the overpressure Ap = 2 MPa using the VAG MP, HFV, VAG TP and VAG CFVE
schemes on the 2 meshes of sizes 47k and 450k cells

Fig. 3.17 Non-wetting phase saturation solutions obtained with the HVF, VAG MP, VAG TP, VAG
CVFE schemes from left to right, at time ¢y = 3600 days with no overpressure Ap = 0 MPa, and
the mesh of size 47k cells. The threshold in the matrix is S, > 0.1 (bottom)

of CPU time, as exhibited in Table 3.2, the VAG MP scheme implemented with no
elimination of the matrix fracture mobility unknowns is competitive compared with
the VAG TP scheme. It is also much cheaper than the HFV scheme which leads to a
much larger number of d.o.f. and requires both more Newton and GMRes iterations
than the VAG schemes. Note that the HFV scheme cannot be run in a reasonable
CPU time for the finest mesh of size 1600k cells.
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Fig. 3.18 Non-wetting 18
phase volume in the fracture 16
network as a function of time

for the 3D DFM test case i
with no overpressure 12

Ap = 0 MPa using the VAG 10
MP, HFV, VAG TP and VAG

CFVE schemes on the 47k 8T
cells mesh 6

4 HFV 47k ——
VAG MP 47k ——
B VAG TP 47k ——
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3.3.5 Capturing the Saturation Jumps at mf Interfaces

Given cellwise and fracture facewise constant rock types, the idea introduced in [20,
43, 44] for CVFE methods and in [14, 17, 31] for the VAG scheme is to define as
many saturations as rock types shared at a given node or fracture face. This allows
to capture the saturation jumps at rock type interfaces resulting from the continuity
of the capillary pressure in the graphical sense [18, 21, 22, 27, 28].

The choice of the primary unknowns may greatly affect the convergence of New-
ton’s method used to solve the nonlinear system at each time step of the simulation.
For the cells and the nodal d.o.f. associated with a single rock the choice of the
primary unknowns does not change compared to Sect. 3.3.1. That is we use the non-
wetting phase’s pressure and saturation as pair of primary unknowns. In contrast
the d.o.f. located at rock type interfaces require a special treatment. For such d.o.f.
v € Vr U Fr we set again the pressure of the non-wetting phase as the first pri-
mary unknown, while the second primary unknown is chosen based on the variable
switching strategy introduced in [14]. For a given rock type rt € R7 = {m, f} let
ﬁc,n denote the monotone graph extension of P, ; as introduced in [21, 22]. For each
subset x € {{m}, {m, f}} of RT, non-decreasing continuous functions

Pey (7)),
{ S;Wt(‘t), forallrt € y, (3.19)

LT

are built such that
Pey(7) € Pen(S™, (7)), forall T andrt € .
and such that P, , (t) + Znex S;f”r't(t) is strictly increasing. Then, we set

SY(0) =1 - 5" (0).

The variable 7 is going to be used as the second primary unknown.



K. Brenner et al.

‘Wi
0L20T1 ve Sy 0 LS NE'S/TY Nr0E/HLT 39681 J009T | ou dIN DVA
0€T8 L9T Wy 0 LS T LT 39981 30091 dLOVA
669 0T S6'¢ 0 LS NTY NPLT 39981 30091 | HAAD OVA
Suoy oo, X X X X IN9'TT ALITE NTI8Y 30091 AdH
Wi

90€T 8¢ 98¢ 0 LS JOSY WL'T/TT JE6/18 MLYS | ou JIN DVA
0TEe Tt 98°¢ 0 LS NL'E NTST ALYS OSY dIN DVA
0SLT €61 8¢ 0 LS NT'T 318 3SES (187 dLOVA
1091 144! €9°¢ 0 LS NT'1 A18 NSES qOSy | HAAD DVA
006LS 66 08 0 LS NY'9 3026 ALSET YOSt AdH
"W

LET Sel €0'¢ 0 LS NIEI/T1T A11/6 309 JLY | ou dIN DVA

¥ST 8¢l LOE 0 LS 3068 b (54 309 ALy dIN DVA

Y01 901 06T 0 LS A1€T 36 8¢ ALY dLOVA

L6 06 16'C 0 LS AT€T 36 I8¢ ALY | FIAD DVA

798 $'8C 0y 0 LS 3789 386 MALYT ALY AdH

() ndD SPANION HOIIN N doopg VN IN "ifop fop ysow wAPg

100

SoLIue Ay} Jo uondrosap oy} 10 ¢ ¢ 1998 Jo Suruuidaq ay) 0) I9JaI AL “SumOUUN
Anpiqow oBHIUI JW Y JO (WIS OU JA DVA) UOHBUILIIS INOYIM 10 (JIN DVA) UOHBUIWI[S Y3 YN0 pajuawaldul st Swayds dIN OVA UL "SI199 40091
PUE YOS YL{ SOZIS JO SAYSOUW Iy} oY) U0 BN ¢ = dV 2Inssa1dIoro oy yim ased 1593 N d§ 2y} J0J uone[nuws dy) Jo IoIAeyaq [edlIownN '€ d[qelL



3 Nodal Discretization of Two-Phase Discrete Fracture Matrix Models 101

The main advantage of this framework, which applies to an arbitrary number of
rock types, is to incorporate in the construction of the functions (3.19) the saturation
jump condition at different rock type interfaces and to apply to general capillary
pressure functions. In practice, we use t = s for x = {m} and the parametrization
defined in [14] for x = {m, f}. This parametrization is based on a generalization
of variable switch approaches (see also [43]) between s%", s, p. and applies to
general, including non invertible, capillary functions (see numerical section for an
example and Fig. 3.20).

Let us set

rtxy =m, K eM, Xy = {m}, ve MUWN\ V),
{rta:f, o € Fr, {xvz{m,f},vevrufr.

Using the above framework, given the primary unknowns u'3’ = (u},"),ep and tp =

(tv)vep, we set uly, = (u)))yep with u}) = ul)" — P, (z,) for all d.o.f. v € D, and

we define the discrete values of the saturation as follows. For all cells K € M and

the nodes s € V \ Vr associated with the single matrix rock type, we set

Sk = Sy (Tk) = Sy (Tk) = Tk
Sk = St (Ts) = Sf‘m},m(rs) =1, K e M,

For the fracture faces o € Fr, we set

So = 8%, n, (Te) = S, 5y 7 (To)
S%’J = Soz (‘L’U) = S?m,f},m(rff)v K c MJ.

Xo Itk

For the nodes s € Vr, located at the mf interface, we set

S%,s = S;ts,rt,( (t5) = S?myf},m (Ts),
Sos = Sk, (Ts) = S{am,f},f(fs)v o € Frs.

As exhibited in Fig. 3.19, the above definition of the saturations at the mf interfaces
takes into account the jump of the saturations induced by the different rock types.

Let us remark that, in our specific example, since the matrix domain is homoge-
neous in terms of capillary pressure-saturation relation, the variables si ¢, K € Mj
(resp. sk .. K € M) refer to the same nodal (resp. facial) saturation values. Sim-

Fig. 3.19 Saturations inside S
the cells K and L, the el 15y
fracture face o and at the mf

interfaces taking into account
the saturation jumps induced

by the different rock types

B Sk.MS5, =
SK S;_

\56
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ilarly, the values sg ¢, 0 € Fr s are identical. This is however not true for general

heterogeneous matrix and fracture domains.
We define the accumulation terms by

A% = piss, K e M,
AL =osi+ Y PKoSE o € Fr,
KeM,
AL = ) frssiot D Gosste s €V\ Vbir,
KeM; oeFrs

and the VAG fluxes with TP phase potential upwinding of the mobilities by
. = My, (SO Fg , p) T + Mg, (% ) (Fg , (D)),
Go s = My (sS)(Fsup) ™ + Mg (s ) (Fy(up)) ™,

foralla € {nw,w}and K € M,o0 € Fr,v € Eg,s € V,.

The VAG TP discretization capturing the saturation jumps at rock type interfaces
looks for u'p’ and tp satisfying the conservation equations (3.9) together with the
Dirichlet boundary conditions

nw nw
Ts = Tpir,s Ug = uDir,s’ S e VDir~ (320)

It will be termed VAG TP m-upwind discretization in the following. The VAG MP
m-upwind discretization can also be defined as previously using the MP upwind flux

Txs = Ay 7. = My, (55 (Fg (D)™ + Mg (Fg (D)™,
for s € Vr with the interface mobility

D (F ) TME (s5) — MG (% ) F )

o LeK, LeK,

K N FE )t — (0 FE W) ’

LeK; LeK,

assuming that rt; = rtx for all L € K. This assumption can always be verified by
setting new interface face(s) between the different rock types in K. This discretiza-
tion will be termed VAG MP m-upwind discretization in the following.

A comparison of the f-upwind and m-upwind models with reference equi-
dimensional solutions can be found in [1, 16]. Basically, it concludes that, thanks
to the saturation jump capturing at mf interfaces, the m-upwind model provides a
better approximation than the f-upwind model as long as the fractures are not fully
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Fig. 3.20 (Top): capillary pressure as a function of the non-wetting phase saturation for both the
fracture (f) and matrix (m) rock types with b,, = 10* and by = 103 Pa. (Bottom): capillary pressure
and fracture and matrix non-wetting phase saturations as functions of the parameter = € [0, 12)

filled with the non-wetting phase. When the fractures are filled, the m-upwind model
overestimates the fracture capillary pressure and underestimates the capillary barrier
effect. In that case the f~-upwind model provides a better approximation.

In the following numerical section, the VAG TP and MP m-upwind discretizations
are compared both in terms of solutions and CPU times.

3.3.5.1 Numerical Experiments

In this subsection, we compare the m-upwind version of the VAG TP and VAG
MP schemes using the same code implementation as described in the beginning of
Sect. 3.3.4. The test case considers the large DFM model exhibited in Fig.3.21 with
domain 2 = (0, 85) x (0, 60) x (0, 140) m kindly provided by the authors of the
Benchmark [11, 12].

The fracture width is dy = 1 cm and the fracture network is homogeneous and
isotropic with A ; = 1071 m?, ¢, = 0.2. The matrix is homogeneous and isotropic
with A,, = 107'* m?, ¢,, = 0.4.
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Fig. 3.21 Large DFM model with its mesh of size 495233 tetrahedral cells and 66908 fracture
faces provided by the authors of the Benchmark [11]

The relative permeabilities are given by k! (s“) =s9 b and k%, (s5) = (sp Y, a e
{nw, w} and the capillary pressure is fixed to PC m(an) = —b, ln(l — s") Pain the
matrix andto P, f(s ") =—bsIn(l — s ") Pain the fracture network, with b = 103
Pa, and b,, = 10* Pa. The fluid propertles are defined by their dynamic viscosities

W =5.1073, u¥ = 1073 Pa s and their mass densities p" = 1000 and p™* = 700
kg m—3

The parametrization 7 at mf interfaces introduced in [14] is recalled below and
illustrated in Fig. 3.20 for the convenience of the reader.

(0 — T, T € [0, 77), (3.21)
T b bm .
St p1.1 (@41 —t)m —0)", 7 €ln,n),
l—(1—1)m 0
—(1=1)m, T € [0, 1),
S, y,m (T) = (=0 by 1070 (3.22)
T +1—-0—-1)0, T €T, 12),
and
—bsIn(l — 1), T [0, 1),
y
m.f) () —b,, 1n(r1 +(1—1)mm — r), T € [11, 1), (3:23)

by e s
where 7 = 1 — (;0)" " and o = 71 + (1 — 77) .
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Fig. 3.22 Non-wetting phase saturation volumes in the matrix (left) and in the fracture network
(right) as a function of time obtained for the VAG TP and the VAG MP m-upwind schemes

The reservoir is initially saturated with the wetting phase. Output Dirichlet bound-
ary conditions are imposed at the boundary {0, 85} x (0, 20) x (110, 140) with a
wetting phase pressure of 1 MPa and s,, = 1, and input Dirichlet boundary con-
ditions are set at the boundary {0} x (40, 60) x (0, 30) U (0, 30) x (40, 85) x {0}
with s} = 0.9 and " = 4 MPa. The remaining boundaries are assumed impervious
and the final simulation time is fixed to 1, = 3600 days. The time stepping is defined
as in (3.16) using At;,;; = 0.01 days, Atmax = 100 days and Newtony.x = 25. The
criterion of convergence for the Newton algorithm is defined as in (3.17) with
Resma = 107 and dxp., = 1074, and the relaxation of the Newton step is con-
trolled as in (3.18) by the parameter dx,;; = 1.

The same issue at mf interfaces as for the VAG TP f-upwind approximation can
be noticed in Fig. 3.23 for the VAG TP m-upwind discretization in the sense that the
non-wetting phase can go out from the fractures on the wrong side for the VAG TP
approximation. Nevertheless, thanks to the rather large saturation jump captured by
the m-upwind model in this test case, it involves small amounts of the non-wetting
phase and does not have visible effects on overall quantities (see Fig. 3.22) nor on the
non-wetting phase saturation front (see Fig. 3.23). In terms of CPU time, as exhibited
in Table 3.3, a factor of roughly 1.7 is observed in favor of the TP discretization due
to the additional mf interface unknowns on this rather large fracture network and to
the slightly larger number of Newton iterations for the MP scheme.

Let us refer to [13] for a numerical comparison between the m-upwind VAG TP
scheme and the m-upwind VAG CVEFE scheme (i.e. without adaptive distribution
of the porous volumes at mf interfaces). It shows that the m-upwind VAG CVFE
scheme still slows down the transport in the fractures in particular for a high matrix
fracture permeability ratio.
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Fig. 3.23 Non-wetting phase saturation in the matrix (top) and in the fracture network (bottom)
obtained for the VAG TP (left) and VAG MP (right) m-upwind schemes at time + = 350 days

Table 3.3 Numerical behavior of the simulation field test case for the VAG TP and MP m-upwind
schemes. We refer to the beginning of Sect. 3.3.4 for the description of the entries

Scheme | mesh dof dofiin Nz Nay Nenop Nnewton | NGMRres | CPU (s)
VAG TP | 495k 648k 150k 2.0M 80 4 6.8 28 8200
VAG MP | 495k 718k 150/220k | 2.0/4.8M | 79 3 8.2 30 14190
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3.4 Vertex Approximate Gradient (VAG) Discretization
of Two-Phase DFM Discontinuous Pressure Models

Discontinuous pressure models are required to account for fractures acting as barriers.
Such barriers are usually induced by a low fracture normal permeability combined
with a capillary barrier effect. Note that even in the case of a high normal fracture
permeability, a barrier behavior can still be observed for a given phase due to the
degeneracy of the phase mobility when the fracture is filled by the other phase (see
[1, 16]). Compared to the single phase flow models the possibility of such capillary
barriers constitutes an additional motivation for the use of discontinuous pressure
models.

VAG discrete unknowns: as exhibited in Fig. 3.24, the discrete unknowns are defined
by the matrix d.o.f.

Dy = MU{Ks|Ks € M, s € V\Vr}UD,

and by the fracture d.o.f.
Dy=FrUVr,

where D,y C D,, are the mf interface d.o.f.
Dmf = ./Vr U 71",
with

Mr ={Ks|Kse Mg, seVr}, Fr=1{K,|K e M,,o € Fr)

Fig. 3.24 Single phase VAG discretization of the discontinuous pressure hybrid-dimensional
model: example of discrete unknowns in 2D with 3 fracture faces intersecting at node s (left),
and VAG fluxes (matrix fluxes in red, fracture fluxes in black and matrix fracture fluxes in dark red)
in a 3D cell K with a fracture face o in bold (right)
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Letus set D = D, U D, and let us remark that fors € V \ Vr, MS is reduced to the
set of cells around s and the d.o.f. K5 € M is considered to match with the node s.

For each cell K € M, let us also define the following subset of d.o.f. located at
the boundary of the cell:

EKZ{ES,SEVK, KU,O'Gfrme}.

The subset of Dirichlet d.o.f. is denoted by Dpy C D.

Asin Sect. 3.3.5, the definition of the primary and secondary unknowns at the d.o.f.
located at the rock type interfaces is based on the parametrization of the capillary
pressure graphs (3.19). To fix ideas, we assume the presence of 3 rock types R7T =
{m, f4, f»} where f; is a fracture drain rock type and f;, is a fracture barrier rock type
while m denote again the matrix rock type Let the fracture network I" be partitioned
into the networks I'; of fractures acting as drains and the network I';, of fractures
acting as barriers. In order to simplify the presentation of the numerical scheme, we
will assume that Ty N T, = . Then, the collection x of rock types associated with
any given d.o.f. take values in

Um}, {fad. (o}, Am, fa}, {m. fo}}.

corresponding to assume no intersections between fractures acting as drain and bar-
rier. In practice, we use the parametrization T = s for x = {m}, { f4}, { f»} and the
parametrizations defined in [14] for x = {m, f;} or {m, f,}. More precisely, let us
set forx = b, d

Xv = {m}, v e D, \Dmfa_
xw=1{f} {veDslx eT.} =Dy,
Xv = {m» f*}v {V € Dmf |Xv (S F*} = D*

mf?

Ity =m, KGM,
ity = fo, {0 € Fr X, € T},

nw

Using the above framework, given the primary unknowns w3’ = (u}"),ep and
™ = (T))vep, We set uly, = (u})),ep withu) = u? — P. , (t,) foralld.o.f.v € D,
and we define the discrete values of the saturation as follows. For all d.o.f. associated
with a single rock type, thatis K € M and o € Fr we set

o o

Sk = Shem (Tk) =Tk, S5 =8 . (T) = Tk,

o>

forallv € Ex N Dy \ Dy, K € M, we set
v Sf(lmrtk (T) = S?m},m(fv) =Ty,

foralls € Vs, 0 € Fr, we set

Sos = Syom, (Ts) = Ts,
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while for all mf interface d.o.f. from D,,s, and with x = b, d, we impose

Sk =S (@) =S80, pya(m), vE EK_O Dy K eM,
Sy, =82 o (tk,) = 8%, 1 1 (1x,), Ko € Fr 0Dy,

o J— o . — o . * —
Sok, = SX?s.na (tg,) = SX(nnM.@ (t7g,), Kse MrnN Dmf, o€ Frz.

where Fr = Frs N (UKeK Fx).

Discrete fluxes: the VAG fluxes connect each cell K (resp. each fracture face o) to
its boundary d.o.f. v € E (resp. s € V,) using the same transmissibility coefficients
as for the continuous pressure model

Fxo(up,) = Y Te"(ug —uy), Foslup) = > T (ue — ug).

VEEK s'eV,
Additionally, two-point matrix fracture fluxes are defined by
Fg, s(ug  us) = Tg, ((ug, —us), Fg, ok, uo) =Tk, oWk, — o),

fors € Vr, Ks € Mg and o € Fr, K € M,, with

2Afn 2) fn
> /d—fjdo(x), Tk, o :/ad_f'da(x),

TeA |seT d I !

-
n
W[ =

where A is the triangular submesh of I" defined as the trace on I' of the tetrahedral
submesh 7 introduced in (3.8) (see [15]) for details).

Setting zp,, = (zv)vep,, and zp, = (2y)vep, , the two-phase VAG fluxes combine
the VAG single phase Darcy fluxes including gravity

Fg(up,) = FkyWp,) +p“8Fkv(ip,). Fosp,) = Fosup,)+ p*gFos(an,).

[

1
F%S’S(M%s, us) = Ffs,s(u%s’ Mg) - _pa Z / )\f’ng . nFS,TdO'(X),

3 _
TeA|seT
FE % i) = Fe oG . u) — p° f A a0 dor (X),
o

with the usual Two-Point phase potential upwinding of the mobilities, leading to
define
qk.» = My, O FR ,wp) ™ + Mg, (s% ) (FR,(up) ™,

forall K € M, v € Bg,
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qes = My O (Fgup)™ 4+ Mg (s8 ) (Fauh) ™,
forallo € Fr,s € V,,

1

Gos = Gy o (MO )(FF,  )”

UE}—I",fs

MG, (55, (Fy, (e )"
foralls € Vr, Ks € M, and

%, .. = My (s5 ¢ VFR, o (u%, ,ug)™ + My (s9)(F ,(u, ,u3))”

o

forallo € Fr, K € M,.

Control volumes and accumulation terms: as for the continuous pressure model,
porous volumes ¢k, V € Ex \ Dpir (resp. ¢os, S € V5 \ Dpjr) are obtained by dis-
tribution of the cell K € M (resp. fracture face o € Fr) porous volume. A porous
volume ¢, % (resp. ¢, k, ) is also distributed from the fracture face o to the interface
d.of. Ky (resp. K,) foro € -7'—1",?;’ K € Mr (resp. for K, € fr). These interface
porous volumes are required to avoid the singularity of the linear systems obtained
after Newton linearization. Their influence on the solution is small provided that they
are chosen small enough (see [25]). Then we set

¢x :/ Pndx— > $r. e
K vE€Ek \Dpir
o s€Vo \ Dpir KeM, o € Fr
— Z ¢O’,Fs’
K eMr\Dpis 0T %,

and we define the accumulations terms by

K = Pxsk K e M,
Ao = ) bkRSiR s € V\ (Dpir UV,
KeM;
Ag = qbﬂsz’ o € f[‘,
A = Z Po.55,s: s € Vr \ Doy,
06.7:[15
A(;(U = ¢U,Kosg,1(a + ¢K,K(,S%’Ka7 Ko' (S fr,
o o > el
Aafs = Z qbKafssK,fs + Z ¢a,fssmfsi K € Mr \ Dpir,
KEES 06-7"1—3?5
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Conservation equations: the VAG discretization of the discontinuous pressure
model solves for '3’ and tp such that

A% — A% .
Ath + Z: dk.,v =0, KeM,
Aa Aut n—1 ek
- ZqKKQ =0,s€V\ (VrUDpi),
M
Aot _Atx,n—l ke
(e
GAt" +Zq<‘is_ Zqﬁém =0,0 € Fr,
Vs KeM,
o ) (3.24)
o D 45— D 4R, =0.5€Vr\ Do
. oeFrs fseﬂs
At}l{a — A‘;(:l o o T
l" - qK,K,J +QKJ,0 = O» Ka S fl"v
Aa _ Aan 1
K J— -
At" ~ ) dig T =0, K5 € Mr \ Do,
KeK,
Ty = TDir,v>» uy" = uanﬁ—,v, V € Dpj;.

f and m-upwind discontinuous pressure models: the above discontinuous pressure
model, termed mf nonlinear model in the following, leads to difficulties to solve
the nonlinear system (3.24) due to the combination of highly contrasted matrix and
fracture rock types and to the small pore volumes at mf interface d.o.f. One possibility
to solve this issue, still preserving the ability to take into account fractures acting
as drains or barriers, is to linearize the matrix fracture transmission conditions w.r.t.
the mf interface unknowns and to apply a f or m-upwind approximation of the
mobilities. This idea, developed in [16] for the VAG discretization and in [1] for the
TPFA discretization, replaces the primary unknowns u?", 7, at matrix fracture d.o.f.
v € Dy, by both phase pressures u}", u,/, v € D,,r, and the conservation equations
at matrix fracture d.o.f. by

Fe (s, ug) — Z Fgo ) =0, Fg (5 .ul)—Fg wh)=0

KeK,

for ? € Mr and K, € fr Note that the pore volumes ¢, X, and ¢, g, are set
to zero. Since phase saturations are no longer defined at matrix fracture d.o.f., one
need to modify the upwind mobilities in the definition of the fluxes g ¢ ,Ks € Mr
now connectmg directly the cell K and the fracture d.o.f. s, and in the definition
of gx x.» Ko € Fr now connecting the cell K and the fracture d.o.f. o. These
new connectivities modify the fracture conservations equations for o € Fr and s €
Vr \ Dp;: as follows:
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Ag B A(;,nfl o o
T%—qus— Z dk k, =0, o € Fr,
seV, KeM,
Aa _Agt,n—l (325)
ST - > a— . 9% %, = 0.8 € Vr \ Do,
oeFrg KseM
The modified fluxes are defined by
g% & = M2 S8 (FE 1 () + Mg, (8%, 1 (B (FE £ (%),
(3.26)
ax k, = My SR FR g @p)T + Mg (S5 1 @) (F g W),
for the m-upwind discontinuous pressure model, and by
9% 2 = ME (S FE o W)+ ME (S0, (W) (F2 1 (%)),
(3.27)

ax k, = Mg, (SR (Fg g @p)™ + Mg (S, n, (o)) (FE g, (D)™,

for the f-upwind discontinuous pressure model, where a fracture rock type rtg has been
assigned to the node s. As for the continuous pressure model, a Multi-Point upwinding
can also be introduced for these fluxes using the additional mobility unknowns M< |
and M;g”, o € {nw, w}. Note that, for fracture acting as drains, these f and m—upwinsd
discontinuous pressure models provide basically the same solutions than respectively
the f and m-upwind continuous pressure models. As already mentioned, this is not
the case of the mf nonlinear discontinuous pressure model (3.24) due to the possible
degeneracy of the phase mobilities appearing in the matrix fracture transmission
conditions.

3.4.1 Numerical Experiments

In this subsection, we compare on the following test case, the mf nonlinear, the
m-upwind and the f-upwind models using a reference solution obtained by the
equi-dimensional model. The code implementation is the same for all models and
described in the beginning of Sect. 3.3.4. The m-upwind and f-upwind models would
require the design of specific preconditioners due to the two independent elliptic pres-
sure unknowns at mf interfaces combined with a single independent elliptic unknown
at cells and fracture faces. This explains the use for these two models of the direct lin-
ear solver SuperLU from the library [49]. The GMRes iterative solver combined with
the CPR-AMG preconditioner is still used for the mf nonlinear and equi-dimensional
models. It results that the overall numbers of Newton iterations Ny eywron Na; are more
relevant for performance comparison than the CPU times which are not reported for
this test case.
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Fig. 3.25 Coarse mesh over
the domain under
consideration, which
contains two intersecting
fractures with high
permeability and low
capillarity and one upper
fracture with low
permeability and high
capillarity. The size of the
domain is 4m x 8 m and the
fractures have an aperture of
4 cm

We consider a fractured domain as defined in Fig. 3.25. The matrix permeability is
isotropic of 0.1 Darcy and matrix porosity is 0.2. The two lower fractures are drains
(f4) of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture,
acting as a barrier (f;), the permeability is isotropic of 0.001 Darcy and the porosity
is 0.2. The capillary pressures are the same than in Sect. 3.3.5.1 with the Corey
parameters b,, = 1barin the matrix, by, = 10barin the barrier fractureand b, = 0.1
bar in the drain fractures. Initially, the reservoir is saturated with water (density
1000kg/m?, viscosity 0.001 Pa s) and oil (density 700 kg/m?, viscosity 0.005 Pa s)
is injected in the bottom fracture, which is managed by imposing non-homogeneous
Neumann conditions at the injection location. The oil then rises by gravity, thanks to
it’s lower density compared to water and by the overpressure induced by the imposed
injection rate. Also, Dirichlet boundary conditions are imposed at the upper boundary
of the domain. Elsewhere, we have homogeneous Neumann conditions.

The tests are driven on triangular meshes, extended to 3D prismatic meshes by
adding a second layer of nodes as a translation of the original nodes in normal
direction to the plane of the original 2D domain (cf. Fig. 3.25). The equi-dimensional
mesh contains two layers of cells in the fractures. In order to focus on modelling
errors, the meshes are chosen to be fine with cell sizes of the same order as the fracture
aperture. The final simulation time is fixed to r; = 54 days. The time stepping is
defined as in (3.16) using At;,;; = 0.01 days and Afp.x = 0.1 days for the equi-
dimensional and hybrid dimensional mf nonlinear models, and At;,;; = 0.002 days
and At = 0.27 days for the hybrid-dimensional m-upwind and f-upwind models.
The maximum number of Newton iterations per time step is fixed as Newtonn,x =
35. The criterion of convergence for the Newton algorithm is defined as in (3.17)
with Resmax = 107% and dxpna = 1074, and the relaxation of the Newton step is
controlled as in (3.18) by the parameter dx,,; = 0.5.

The hybrid dimensional mf nonlinear and m-upwind models make use of the
parametrization (3.21)—(3.23) at the mf interfaces.
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Fig. 3.26 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and f-
upwind discontinuous pressure DFM models (from left to right) numerical solutions for non-wetting
phase saturation at final time r = 54 days
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Fig. 3.27 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and
f-upwind discontinuous pressure DFM models (from left to right) numerical solutions for water
overpressure at final time ¢ = 54 days

Water Pressure

In this test case, we study the presence of a fracture, which acts as a barrier, both
by its low permeability and by its high capillarity compared to the rock matrix. As
a result of the higher capillarity, the sign of the matrix-fracture non-wetting phase
saturation jump S,",lw(yjE Pem) — S}W(yjE De.m) at the mf interfaces is non negative.

Figures 3.26, 3.27 and 3.28 compare the above mf nonlinear, m-upwind and f-
upwind discontinuous pressure models to a reference equi-dimensional model. For
the f-upwind and m-upwind models, mass transfer of the non-wetting phase from
the matrix to the barrier is overestimated, since in this direction, saturation jumps are
not accounted for. The assumption of constant saturation across the fracture for these
models consequently leads to an overestimation of the non-wetting phase leaving the
barrier. This overestimation is most severe for the m-upwind model, which takes into
account saturation jumps for fluxes directed from the fracture to the matrix. Again,
the mf nonlinear model does not suffer from the difficulties described above, since it
provides mass transport that passes by the mf interfaces and takes into account the
saturation jumps. Table 3.4 compares the numerical behavior of the different models
on this test case.
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Fig. 3.28 Matrix and fracture volumes occupied by the non-wetting phase as a function of time
for the equi-dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous
pressure DFM models

Table 3.4 Numerical behavior of the simulation obtained by the VAG scheme for the equi-
dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous pressure DFM
models, as presented in Sect. 3.4. We refer to the beginning of Sect. 3.3.4 for the description of the
entries with dof;;, and N, accounting for the elimination of the cell unknowns in the linear systems

Scheme mesh dof dofiin Nz Nay Nehop NNewton
equi dim. |22k 45k 23k 317k 589 2 4.1

mf 17k 35k 18k 261k 585 1 34
nonlinear

m-upwind | 17k 35k 18k 266k 255 0 4.8
f-upwind | 17k 35k 18k 266k 255 0 4.6

3.5 Conclusions and Perspectives

This article reviews the nodal VAG discretization of DFM two-phase Darcy flow
models. For linear transmission conditions, the adaptation of the control volumes
combined with a Multi-Point upwind approximation of the mobilities for f-upwind
models or taking into account the saturation jump for m-upwind models, allows to
obtain a similar accuracy as face based discretizations with a much lower CPU time
on tetrahedral meshes. Nonlinear mf transmission conditions provide a more accurate
DFM model than linear transmission conditions. As discussed in [1, 16], they can
account for a large range of physical processes at mf interfaces which cannot be
captured by linear mf transmission conditions even in the case of fractures acting as
drains. It is typically the case for fractures acting as capillary barriers, or for highly
permeable fractures filled with a given phase acting as a barrier for the other phase.
The VAG discretization of DFM models with nonlinear mf transmission conditions
still raises the issue of numerical efficiency regarding the nonlinear convergence due
to the combination of highly nonlinear transmission conditions with tiny volumes at
mf interfaces. Improving the numerical efficiency for this type of DFM models is the
object of ongoing researches in two directions. The first is to go back to face based
discretizations allowing the elimination of the mf interface unknowns with a local
nonlinear interface solver as in [1] using TPFA discretization on orthogonal meshes
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and in [2] using an HFV discretization. The second perspective is to use the more
robust Hybrid Upwinding approximation of the mobilities to define the two-phase
Darcy fluxes at mf interfaces as proposed in [6] for TPFA schemes and in [19] for
the VAG discretization.
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