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Preface

The numerical simulation of physical systems in geoscience applications entails
several difficulties. Sources of complexity in the models include the presence of
strongly heterogeneous coefficients (possibly leading to local degeneration), ani-
sotropy, internal boundaries and strong nonlinearities. Realistic modelling addi-
tionally requires, in most circumstances, the coupling of different physics
accounting, e.g., for the interaction between the fluid flow and the mechanical
behaviour of the subsoil. The corresponding partial differential equations typically
have to be solved in non-trivial domains, following sedimentation layers, and
accounting for faults, fractures, or geometric features with very different scales.

The design and analysis of numerical technologies capable of handling such
complex situations is an extremely active research field. In the last few years, one
of the most relevant advances has been the development of numerical methods for
linear and nonlinear problems supporting polyhedral meshes. The first endeavours
to design numerical schemes supporting polyhedral meshes were independently
undertaken in the context of finite volume and mimetic methods, focusing on
low-order versions. Successful outcomes include Multi-Point Flux Approximation
(MPFA) methods [1, 2, 20] (see also [3]), Hybrid Mixed Mimetic (HMM) methods
[10, 19], and Vertex Approximate Gradient (VAG) methods [21]. Comprehensive
reviews of low-order polyhedral methods can be found in [16, 17]; see also the
introduction of [12] for a discussion of broader scope. The possibility to obtain
high-order approximations on general meshes was explored later on. Among the
first high-order polyhedral technologies, we can cite polytopal Discontinuous
Galerkin (PolyDG) methods [4, 6]; see also [13, 14], where a comprehensive set of
analysis tools was first developed. More recently, novel paradigms have resulted
from the hybridization of the finite element and PolyDG paradigms with mimetic
technologies. Particularly successful families of methods in this context include
Virtual Element methods (VEM) (in their standard [8], mixed [9], and noncon-
forming [5] flavours) and Hybrid High-Order (HHO) methods [12, 15].

The need for general meshes in the numerical simulation of geological systems
arises in several situations: in petroleum reservoir modelling, general polyhedral
elements can appear, e.g., when transitioning from the radial mesh around wells to
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the (structured) mesh used elsewhere; in petroleum basin modelling, fractures are
typically incorporated into the numerical models by the mutual sliding of two
portions of a corner-point grid along the fracture plane, resulting in highly non-
conforming meshes; in this same context, significant mesh distortion can occur
when coupled poromechanical models are considered; in the modelling of geo-
logical CO2 storage, nonconforming meshes can appear, e.g., when local mesh
adaptation is performed or in the presence of fractures, which can have a sizeable
impact on the flow patterns. Polyhedral meshes may also ease up the grid gener-
ation in the presence of internal interfaces, like faults or the ones between sedi-
mentation layers. Polyhedral mesh generation algorithms have been devised
resorting to Voronoi tessellation [11, 22], or by modifying hexahedra meshing
procedures, like in [23]. In the above and other situations, classical discretisation
methods are either not viable, or require ad hoc modifications which can possibly
add to the implementation complexity.

Polyhedral discretisation methods additionally pave the way to new computa-
tional strategies. In nuclear waste storage modelling, e.g., an accurate representation
of the storage site traditionally requires the use of small elements, which can
significantly add to the computational burden. With polyhedral meshes, on the other
hand, one can incorporate small geometric features into larger agglomerated ele-
ments, thus achieving a significant cost reduction without compromising the
accuracy; see, e.g., [4]. Polyhedral meshes can also be exploited to perform mesh
adaptation by locally coarsening an underlying fine mesh, as in [6, 7].

This monograph collects state-of-the-art contributions on polyhedral methods for
geoscience applications from top-level research groups. The methods and appli-
cations considered provide a wide overview of the subject, covering a significant
portion of the most up to date research topics. Different points of view are repre-
sented, leading to a balanced mix of theoretical results, overviews of the
state-of-the-art and numerical experimentation. The target audience of the book are
graduate students and academics active in the field of numerical analysis and sci-
entific computing, as well as researchers working in industry, environmental
agencies, or research centres who have to deal with the complex endeavour of
numerical simulation in geosciences.

An overview of the content of the monograph is provided in what follows:
Chapters 1–4 mainly focus on low-order polyhedral methods and their appli-

cations to nonlinear and/or coupled problems. Specifically, Chap. 1 introduces the
novel Locally Enriched Polytopal Non-Conforming (LEPNC) method, first in the
context of locally degenerate elliptic problems, then of more general, possibly
nonlinear models covered by the Gradient Discretization framework [18]. The latter
makes the object of Chap. 2, where its extension to degenerate parabolic equations
of porous medium type is considered. The simulation of two-phase Darcy flows in
fractured porous media is considered in Chap. 3, where the authors focus on VAG
schemes. Finally, Chap. 4 contains a general overview of MPFA and of the derived
Multi-Point Stress Approximation schemes followed by an application to
thermo-poroelasticity.
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Chapters 5–8 illustrate some applications of high-order methods of noncon-
forming, hybrid and mixed type; see [12, Chap. 5] for a broad discussion on the
links among these and related methods. Specifically, Chap. 5 hinges on the use of
PolyDG methods for the numerical modelling of seismic wave propagation and
fractured reservoir simulations, with particular focus on their efficient implemen-
tation. In Chap. 6, the authors develop and analyse an HHO method for
multiple-network poroelasticity relevant, e.g., in the simulation of fissured porous
media. Chapter 7 focuses on a mixed VEM discretization of the Richards equations,
modelling water flow in an unsaturated soil under the effect of gravity and the
action of capillarity. Mixed VEM are also considerd in Chap. 8, this time for
single-phase flows in fractured porous media.

Montpellier, France Daniele Antonio Di Pietro
Milan, Italy Luca Formaggia
Nice, France Roland Masson
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Chapter 1
Non-conforming Finite Elements
on Polytopal Meshes

Jérôme Droniou, Robert Eymard, Thierry Gallouët, and Raphaèle Herbin

Abstract In this work we present a generic framework for non-conforming finite
elements on polytopal meshes, characterised by elements that can be generic poly-
gons/polyhedra. We first present the functional framework on the example of a linear
elliptic problem representing a single-phase flow in porous medium. This framework
gathers a wide variety of possible non-conforming methods, and an error estimate
is provided for this simple model. We then turn to the application of the functional
framework to the case of a steady degenerate elliptic equation, for which a mass-
lumping technique is required; here, this technique simply consists in using a differ-
ent –piecewise constant– function reconstruction from the chosen degrees of free-
dom. A convergence result is stated for this degenerate model. Then, we introduce
a novel specific non-conforming method, dubbed Locally Enriched Polytopal Non-
Conforming (LEPNC). These basis functions comprise functions dedicated to each
face of the mesh (and associated with average values on these faces), together with
functions spanning the local P1 space in each polytopal element. The analysis of
the interpolation properties of these basis functions is provided, and mass-lumping
techniques are presented. Numerical tests are presented to assess the efficiency and
the accuracy of this method on various examples. Finally, we show that generic
polytopal non-conforming methods, including the LEPNC, can be plugged into the
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2 J. Droniou et al.

gradient discretization method framework, which makes them amenable to all the
error estimates and convergence results that were established in this framework for
a variety of models.

Keywords Nonconforming finite elements · General meshes

1.1 Introduction

Problems involving elliptic partial differential equations are often efficiently approx-
imated by the Lagrange finite element method, yielding an approximation of the
unknown functions at the nodes of the mesh. In some cases, it may however be
more interesting to approximate the unknown functions at the centre of the faces of
the mesh. This is for example the case for the Stokes and Navier-Stokes problems,
where an approximation of the velocity of a fluid at the faces of the mesh leads to
an easy way to take into account the conservation of fluid mass in each element.
This property is the basis of the success of the Crouzeix-Raviart approximation for
the incompressible Stokes and Navier-Stokes equations; see the seminal paper by
Crouzeix and Raviart [5], and recent extensions including linear elasticity [7].

Another situation for which approximating functions at the face centre is highly
relevant is found in underground flows in heterogeneous porous media. Several cou-
pled models require to simultaneously solve an elliptic equation associated with
the pressure of the fluid, and equations associated with the transport of species by
different mechanisms including convection with the displacement of the fluid, dif-
fusion/dispersion mechanisms, and chemical and thermodynamic reactions. In such
cases, the accuracy of the model on relatively coarse meshes can only be obtained if
the elements of the mesh are homogeneous, in order to compute the flows in the high
permeability zones as precisely as possible, without integrating in these zones some
porous volume belonging to low permeability zones. Non-conforming methods with
unknowns at the face naturally lead to finite volume properties on the elements, which
are useful for the discretisation of such coupled equations. Note that non-conforming
methods are in some way strongly linked with mixed finite elements on the same
mesh, in the sense that the matrix resulting from the mixed hybrid condensed for-
mulation for the Raviart-Thomas finite element is the same as the non conforming
P1 finite element [3, 18].

The aim of this chapter is twofold.
On one hand, we wish to provide a general framework for the functional basis of

non-conforming methods on polytopal meshes. Polytopal meshes have elements that
can be generic polygons or polyhedra; they have gained considerable interest because
they allow to mesh complex geometries or match specific underground features. For
example, in the framework of petroleum engineering, general hexahedra have been
used for several years; numerical developments for the computation of porous flows
on such grids may be found in [1], for multi-point flux approximation finite volume
methods for instance, in [19] for multi-point mixed approximations, or in [14] for
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mimetic finite difference methods. The use of polytopal meshes for underground
flows has motivated so many papers that it is impossible to give an exhaustive list;
we refer the reader to the introduction of [6] for a thorough literature review on the
topic.

Let us focus on the non-conforming finite element method for second order dif-
ferential forms, described on simplicial meshes for example in [4, 20]. By non-
conforming finite element method we refer to a method such that:

• the restriction to each element of the approximate solution belongs to H 1,
• the approximate solution can be discontinuous at the common face between two
elements everywhere, but some weak (averaged or at a certain point on the face)
continuity is imposed,

• the approximate gradient is defined as the broken gradient, which is locally (i.e.
on each cell) the gradient of the function.

The mathematical properties behind the nature of the continuity conditions at the
faces, needed for the convergence of the method, are sometimes called the “patch
test” [16]. In Sect. 1.2, we revisit these properties, plugging all the non-conforming
methods into a broken continuous H 1 space defined on a general polytopal mesh.
We thus obtain in Sect. 1.2.2, a general error estimate in the case of a linear elliptic
equation in heterogeneous and anisotropic cases. Section1.2 can be read as a simple
introduction, using a basic linear model as illustration, to generic non-conforming
finite-element methods on polytopal meshes.

In Sect. 1.3, we explore the use of these methods on a more challenging model,
which is however very relevant to applications in geosciences: a nonlinear degen-
erate elliptic equation of the Stefan or porous medium equation type. We introduce
in Sect. 1.3.2 a mass lumping technique, which is mandatory for designing robust
numerical schemes for this model.

We then focus, in Sect. 1.4, on a new specific non-conforming approximation on
general polytopal meshes, called the Locally Enriched Polytopal Non-Conforming
(LEPNC) method. This method is based on the H 1 piecewise approximation, impos-
ing the continuity of the mean value on the interfaces. The advantage of the method
presented here is its robustness, which is not the case for other possible simpler
methods, such as choosing on each cell polynomials of degree k with dim P

k(Rd)

larger than or equal to the number of faces of the polytopal cell (this condition
is necessary to obtain a decent approximation, see e.g. the hexagonal example of
Sect. 1.4, but it is not sufficient to solve robustness issues, see Remark 1.7). In par-
ticular, the LEPNC method allows for hanging nodes which frequently occur when
meshing two different zones such as in domain decomposition methods. Another
important feature of the finite element method presented here is that it can be used
together with P1 nonconforming finite elements on simplicial parts of the mesh. The
LEPNC basis functions are described in Sects. 1.4.1–1.4.2, and the approximation
properties of themethod are detailed in Sect. 1.4.3. The convergence theorems for the
LEPNC method are given in Sect. 1.4.5. Various numerical tests are then proposed
in Sect. 1.4.6, showing the accuracy and the efficiency of this method on problems
presenting some complex features.
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Section1.5 covers the generic analysis of the convergence of non-conforming
methods, which is encompassed in the framework of the Gradient Discretization
method [9]. Some perspectives are then drawn in Sect. 1.6.

1.2 Principles of Polytopal Non-conforming
Approximations

1.2.1 The Model: Linear Single-Phase Incompressible Flows
in Porous Media

The principles of a generic polytopal non-conforming method are first presented on
the following linear model of pressure for a single-phase incompressible flow in a
porous medium: {− div(�∇ū) = f + div(F) in �,

ū = 0 on ∂�,
(1.1)

with the following assumptions on the data:

• � is a polytopal open subset of Rd(d ∈ N
�), (1.2a)

• � is a measurable function from � to the set of d × d

symmetric matrices and there exists λ, λ > 0 such that,

for a.e. x ∈ �,�(x) has eigenvalues in [λ, λ], (1.2b)

• f ∈ L2(�) , F ∈ L2(�)d . (1.2c)

We note in passing that a polytopal open set is simply a bounded polygon (if d = 2)
or polyhedron (if d = 3) without slit, that is, it lies everywhere on one side of its
boundary; see [9, Section7.1.1] for a more formal definition.

The solution to (1.1) is to be understood in the standard weak sense:

Find ū ∈ H 1
0 (�) such that, ∀v ∈ H 1

0 (�),∫
�

�∇ū · ∇vdx =
∫

�

f vdx −
∫

�

F · ∇vdx.
(1.3)

1.2.2 Polytopal Non-conforming Method

Apolytopal non-conforming scheme for (1.3) is obtained by replacing the continuous
space H 1

0 (�) in this weak formulation by a finite-dimensional subspace of a “non-
conforming Sobolev space”. Let us first give the definition of polytopal mesh we will
be working with; this definition is a simplified version of [9, Definition 7.2].



1 Non-conforming Finite Elements on Polytopal Meshes 5

Definition 1.1 (Polytopal mesh) Let� satisfy Assumption (1.2a). A polytopal mesh
of � is a triplet T = (M,F ,P), where:

1. M is a finite family of non empty connected polytopal open disjoint subsets of
� (the “cells”) such that � = ∪K∈MK . For any K ∈ M, ∂K = K \ K is the
boundary of K , |K | > 0 is the measure of K and hK denotes the diameter of K ,
that is the maximum distance between two points of K .

2. F = Fint ∪ Fext is a finite family of disjoint subsets of� (the “faces” of themesh
– “edges” in 2D), such that any σ ∈ Fint is contained in � and any σ ∈ Fext is
contained in ∂�. Each σ ∈ F is assumed to be a non empty open subset of a
hyperplane of Rd , with a strictly positive (d − 1)-dimensional measure |σ |, and
a relative interior σ\σ of zero (d − 1)-dimensional measure. We denote by xσ

the centre of mass of σ . Furthermore, for all K ∈ M, there exists a subset FK

of F such that ∂K = ∪σ∈FK σ . We setMσ = {K ∈ M : σ ∈ FK } and assume
that, for all σ ∈ F , either Mσ has exactly one element and then σ ∈ Fext, or
Mσ has exactly two elements and then σ ∈ Fint. For K ∈ M and σ ∈ FK , nK ,σ

is the (constant) unit vector normal to σ outward to K .
3. P = (xK )K∈M is a family of points of � such that xK ∈ K for all K ∈ M. We

denote by dK ,σ the signed orthogonal distance between xK and σ ∈ FK (see
Fig. 1.1), that is:

dK ,σ = (x − xK ) · nK ,σ , for all x ∈ σ. (1.4)

(Note that (x − xK ) · nK ,σ is constant for x ∈ σ .) We then assume that each
cell K ∈ M is strictly star-shaped with respect to xK , that is dK ,σ > 0 for all
σ ∈ FK . This implies that for all x ∈ K , the line segment [xK , x] is included in
K .
For all K ∈ M and σ ∈ FK , we denote by DK ,σ the pyramid with vertex xK

and basis σ , that is

DK ,σ = {txK + (1 − t) y : t ∈ (0, 1), y ∈ σ }. (1.5)

We denote, for all σ ∈ F , Dσ = ⋃
K∈Mσ

DK ,σ (this set is called the “diamond”
associated with the face σ , and for obvious reasons DK ,σ is also referred to as
an “half-diamond”).

The size of the polytopal mesh is defined by hM = sup{hK : K ∈ M} and the
mesh regularity parameter γT is defined by:

γT = max
K∈M

(
max
σ∈FK

hK

dK ,σ

+ Card(FK )

)
+ max

σ∈Fint , Mσ ={K ,L}

(
dK ,σ

dL ,σ

+ dL ,σ

dK ,σ

)
. (1.6)

We can now define the notion of non-conforming Sobolev space, which is built
from the standard brokenSobolev space on amesh by imposing someweak continuity
property between the cells.
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Fig. 1.1 A cell K of a
polytopal mesh

Definition 1.2 (Non-conforming H 1
0 (�) space) Let T = (M,F ,P) be a polytopal

mesh of � in the sense of Definition 1.1. The non-conforming H 1
0 (�) space on T,

denoted by H 1
T,0, is the space of all functions w ∈ L2(�) such that:

1. [H 1-regularity in each cell] For all K ∈ M, the restrictionw|K ofw to K belongs
to H 1(K ). The trace of w|K on σ ∈ FK is denoted by w|K ,σ .

2. [Continuity of averages on internal faces] For all σ ∈ Fint withMσ = {K , L},
∫

σ

w|K ,σ =
∫

σ

w|L ,σ . (1.7)

3. [Homogeneous Dirichlet BC for averages on external faces] For all σ ∈ Fext

withMσ = {K }, ∫
σ

w|K ,σ = 0. (1.8)

If w ∈ H 1
T,0, its “broken gradient” ∇Mw is defined by

∀K ∈ M , ∇Mw = ∇(w|K ) in K

and we set ‖w‖H 1
T,0

:= ‖∇Mw‖L2(�)d .

It can easily be checked that ‖·‖H 1
T,0

is indeed a norm on H 1
T,0. The continuity

(1.7) is a “0-degree patch test”, and some functions in H 1
T,0(�) are therefore not

conforming (they do not belong to H 1
0 (�)). Actually, disregarding the boundary

condition (1.8), the non-conforming Sobolev space strictly lies between the classical
Sobolev space H 1(�) and the fully broken Sobolev space H 1(M) = {v ∈ L2(�) :
v|K ∈ H 1(K ) for all K ∈ M}.

A polytopal non-conforming approximation of (1.3) is obtained by selecting a
finite-dimensional subspace VT,0 ⊂ H 1

T,0, by replacing, in this weak formulation,
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the infinite-dimensional space H 1
0 (�) by VT,0, and by using broken gradients instead

of standard gradients:

Find u ∈ VT,0 such that, ∀v ∈ VT,0,∫
�

�∇Mu · ∇Mvdx =
∫

�

f vdx −
∫

�

F · ∇Mvdx.
(1.9)

Since ‖·‖H 1
T,0

is a norm on VT,0, the Lax-Milgram theorem immediately gives the
existence and uniqueness of the solution to (1.9). The following error estimate is a
straightforward consequence of the analysis carried out in Sect. 1.5 (see in particular
Theorem 1.6 and Proposition 1.1).

Theorem 1.1 (Error estimates for polytopal non-conforming methods) We assume
that the solution ū of (1.3) and the data � and F in Hypotheses (1.2) are such that
�∇ū + F ∈ H 1(�)d . Let VT,0 be a finite-dimensional subspace of H 1

T,0 and let u be
the solution of the non-conforming scheme (1.9). Then, there exists C > 0 depending
only on �, λ, λ in (1.2b) and increasingly depending on γT such that

‖ū − u‖L2(�) + ‖∇ū − ∇Mu‖L2(�)d ≤ ChM‖�∇ū + F‖H1(�)d + C min
v∈VT,0

‖ū − v‖H1
T,0

.

(1.10)

Remark 1.1 (Role of the terms in (1.10)) The term ChM‖�∇ū + F‖H 1(�)d in the
right-hand side of (1.10) comes from the non-conformity of the space VT,0, and
from the fact that an exact Stokes formula is not satisfied in this space (as measured
by WD in Sect. 1.5.1). The minimum appearing in (1.10) measures the approxima-
tion properties of the space VT,0, as in the second Strang lemma [15] (see SD in
Sect. 1.5.1).

1.3 Application to a Non-linear Model: Mass-Lumping

1.3.1 Model: Stationary Stefan/porous Medium Equation

Wenowconsider the polytopal non-conforming approximation of amore challenging
model, which encompasses the stationary versions of both the Stefan model and the
porous medium equation:

{
ū − div(�∇ζ(ū)) = f + div(F) in �,

ζ(ū) = 0 on ∂�.
(1.11)

A related unsteady problem is treated in Chap. 2; see, in particular, (2.1). We still
assume that (1.2) holds and, additionally, that

ζ : R → R is non-decreasing, ζ(0) = 0 and

∃C1,C2 > 0 such that |ζ(s)| ≥ C1|s| − C2 for all s ∈ R.
(1.12)

http://dx.doi.org/10.1007/978-3-030-69363-3_2
http://dx.doi.org/10.1007/978-3-030-69363-3_2
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The weak form of (1.11) is

Find ū ∈ L2(�) such that ζ(ū) ∈ H 1
0 (�) and, ∀v ∈ H 1

0 (�),∫
�

(ūv + �∇ζ(ū) · ∇v) dx =
∫

�

f vdx −
∫

�

F · ∇vdx.
(1.13)

1.3.2 Mass-Lumping

As explained in the introduction of [8] (see also Appendix B therein), using a stan-
dard (conforming or non-conforming) Galerkin approximation for (1.13) leads to a
numerical schemewhose properties are difficult to establish. In particular, no conver-
gence result seems attainable ifF �= 0 and, in the caseF = 0, onlyweak convergence
can be obtained in general. Instead, a modified approximation must be considered
that uses a mass-lumping operator for the reaction term.

Specifically, let VT,0 be a subspace of H 1
T,0; we select a basis (χi )i∈I of VT,0 and

disjoint subsets (Ui )i∈I of�, andwe define themass-lumping operator�T : VT,0 →
L∞(�) by:

∀v =
∑
i∈I

viχi , �Tv =
∑
i∈I

vi1Ui , (1.14)

where 1Ui (x) = 1 if x ∈ Ui and 1Ui (x) = 0 otherwise. Note that the design of �T

actually depends on VT,0, and not just on the polytopal mesh T, but the natural
notation �VT,0 has been simplified to �T for legibility.

The function �Tv is piecewise constant and can be considered a good substitute
of v, provided that each vi represents some approximate value of v on Ui . In this
setting, it also makes sense to define ζ(v) ∈ VT,0 by applying the non-linear function
ζ component-wise:

∀v =
∑
i∈I

viχi , ζ(v) =
∑
i∈I

ζ(vi )χi .

Remark 1.2 (Mass-lumping of the non-conforming P
1 method) Let us illustrate the

mass-lumping process on the non-conforming P
1 method on a simplicial mesh. A

basis of its space is given by (χσ )σ∈Fint , where each χσ is piecewise linear in each
element, with value 1 at the centre of σ and 0 at the centres of all other faces. A
mass-lumping operator �T for this method is constructed in the following way: for
each v = ∑

σ∈Fint
vσχσ , let �Tv be the piecewise constant function equal to vσ on

each diamond Dσ , σ ∈ Fint, (and �Tv = 0 on the half-diamonds around boundary
faces), see Fig. 1.2 for an illustration.

A non-conforming approximation of (1.13) is then obtained replacing H 1
0 (�) by

VT,0, ∇ with ∇M and using �V in the reaction and source terms:
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Fig. 1.2 Example of a non-conforming P
1 function (left) and its mass-lumped version (right)

Find u ∈ VT,0 such that, ∀v ∈ VT,0,∫
�

(�Tu �Tv + �∇Mζ(u) · ∇Mv) dx =
∫

�

f �Tvdx −
∫

�

F · ∇Mvdx.

(1.15)

Remark 1.3 (Computing the source and reaction terms) In practice, the right-hand
side in (1.15) is never computed exactly, but through a low order quadrature rule on
f , assuming that f is approximated by a piecewise constant function on each Ui . If
f is continuous, for example, one can take

∫
�

f �Tvdx ≈
∑
i∈I

|Ui | f (xi )vi

where xi is a point selected in or close to Ui . The reaction term in (1.15) is trivial to
(exactly) compute: ∫

�

�Tu�Tvdx =
∑
i∈I

|Ui |uivi .

Thematrix associated with this term in the scheme is therefore diagonal, as expected.
These considerations show that only the measures of (Ui )i∈I are actually needed to
implement (1.15).

The following convergence theorem results from the analysis in Sect. 1.5—see
Theorems 1.7 and 1.8 together with Lemma 1.4. Error estimates could also be stated,
but they are more complicated to present and require stronger assumptions on the
solution to the Stefan equation; we therefore refer the interested reader to [8] for
details, in which a partial uniqueness result is also stated for the solution of (1.15).
We also mention in passing that error estimates for transient Stefan/porous medium
equations are established in Chap. 2; these estimates are stated in the generic frame-
work of theGradient DiscretisationMethod,which covers polytopal non-conforming
methods.

Theorem 1.2 (Convergence of polytopal non-conforming methods for the Stefan
problem) Let γ > 0 be a fixed number, and let (Tm)m∈N be a sequence of polytopal

http://dx.doi.org/10.1007/978-3-030-69363-3_2
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meshes such that γTm ≤ γ for all m ∈ N and such that hMm → 0 as m → ∞. For
each m ∈ N, take a finite-dimensional subspace VTm ,0 of H 1

Tm ,0 and a mass-lumping
operator �Tm : VTm ,0 → L∞(�) as in (1.14), and assume the following:

min
v∈VTm ,0

‖φ − v‖H 1
T,0

→ 0 as m → ∞, ∀φ ∈ H 1
0 (�), (1.16)

max
v∈VTm ,0\{0}

‖v − �Tm v‖L2(�)

‖∇Mm v‖L2(�)d
→ 0 as m → ∞. (1.17)

Then, for all m ∈ N there exists um ∈ VTm ,0 solution of (1.15) and, as m → ∞,
�Tm ζ(um) → ζ(ū) strongly in L2(�), ∇Mm ζ(um) → ∇ζ(ū) strongly in L2(�)d ,
and �Tm um → ū weakly in L2(�), where ū is a solution to (1.13).

1.4 A Locally Enriched Polytopal Non-conforming Finite
Element Scheme

We describe here a non-conforming method that can be applied to almost any poly-
topal mesh as per Definition 1.1. Actually, the only additional assumption we make
on the mesh is the following:

∀σ ∈ F , σ is convex. (1.18)

This convexity assumption on the face is rather weak, and the cells themselves can
be non-convex – which is often the case in 3D.

Let us first describe the underlying idea. To ensure the consistency of themethod, a
basic requirement would be for the local spaces (restriction of VT,0 to a cell K ∈ M)
to contain P

1(K ). Denoting by P
1(M) the space of piecewise linear functions on

the mesh, without continuity conditions, this means that we should have P1(M) ∩
H 1

T,0 ⊂ VT,0. This suggests to take P
1(M) ∩ H 1

T,0 as our non-conforming finite-
dimensional space. However, if the number of faces of most of the elements is
greater than d + 1, the constraints of continuity at the faces will impede a correct
interpolation. For instance, on a domain � that can be meshed by uniform hexagons
(see Fig. 1.3), the space P1(M) ∩ H 1

T,0 is reduced to {0}. Indeed, the three boundary
conditions on the exterior edges of element 1 imply that the constant gradient vanishes
in element 1. Therefore the mean values at the three interior edges of element 1 also
vanish, so that the same reasoning holds in element 2. By induction, the gradient
vanishes in all the elements of the mesh.

We therefore enrich this initial space with functions associated with the faces,
that we use to ensure the proper continuity conditions by “localising” the basis of P1

inside each element. The resulting global basis is made of functions associated with
the faces and of additional local functions on the cell. As a consequence, we call
the corresponding method the Locally Enriched Polytopal Non-Conforming finite
element method (LEPNC for short).
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Fig. 1.3 Hexagonal mesh
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Remark 1.4 (Link with the non conforming P
1 finite element method) Note that,

when applied to a triangular mesh in 2D, the LEPNC yields 6 degrees of freedom
on each triangle, while the classical non conforming P

1 finite element (NCP1FE)
method has only 3. However, when performing static condensation (see Remark
1.12) on the LEPNC scheme on triangles, only the 3 degrees of freedom pertaining
to the faces remain, so that the computational cost is close to that of the NCP1FE
scheme. In fact, the precision of the methods are close. Morever, in the case of an
elliptic equation with non homogeneous Dirichlet boundary conditions and a zero
right hand side, the approximate solutions given by the NCP1FE and the condensed
LEPNC schemes are identical.

1.4.1 Local Space

We first describe the local spaces and shape functions. Let K ∈ M, for σ ∈ FK , the
pyramid DK ,σ has σ as one of its faces, as well as faces τ that are internal to K , and
gathered in the set FKσ,int; see Fig. 1.4 for an illustration.

Let φK ,σ : K → R be the piecewise-polynomial function such that, inside DK ,σ ,
φK ,σ is the product of the distances to each internal face τ ∈ FKσ,int, and outside
DK ,σ we set φK ,σ = 0. Additionally, φK ,σ is scaled in order to have an average equal
to one on σ . The function φK ,σ vanishes on all the faces of DK ,σ except σ . Under
the convexity assumption (1.18) and letting nKσ,τ be the outer unit normal to DK ,σ

on τ ∈ FKσ,int, we therefore set

φK ,σ (x) = cK ,σ

∏
τ∈FKσ,int

[
(xK − x) · nKσ,τ

]+ ∀x ∈ K , (1.19)

where s+ = max(s, 0) is the positive part of s ∈ R. As previouslymentioned, cK ,σ >

0 is chosen to ensure thatφK ,σ has an average of one onσ ; since this function vanishes
outside DK ,σ , this means that we have
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Fig. 1.4 Notations for the design of the local polytopal non-conforming space of Sect. 1.4.1

1

|σ |
∫

σ

φK ,σ = 1 , and
∫

σ ′
φK ,σ = 0 ∀σ ′ ∈ FK \{σ }. (1.20)

We then define the local space on K of the LEPNC method by

V LEPNC
K := span(P1(K ) ∪ {φK ,σ : σ ∈ FK }). (1.21)

The component P1(K ) will be responsible for the approximation properties of the
global space, whereas the face-based basis functions will be used to glue local spaces
together and ensure (1.7).

Remark 1.5 (Nature of the functions in the local space) The functions of V LEPNC
K are

continuous on K , and polynomial in each pyramid DK ,σ for σ ∈ FK . The maximal
polynomial degree of functions in V LEPNC

K is maxσ∈FK Card(Eσ ), where Eσ is the set
of edges of σ (vertices in 2D, in which case the maximal degree is 2).

A practical implementation of any non-conforming method requires to integrate
the local functions and their gradients on each cell. For V LEPNC

K , this is very easy:
one simply has to select quadrature rules in K that are constructed by assembling
quadrature rules on each pyramid. This is actually a standard way of constructing
quadrature rules on polytopal cells, these pyramids being then cut into tetrahedra on
which quadrature rules are known.

1.4.2 Global LEPNC Space and Basis of Functions

The global non-conforming space of the Locally Enriched Polytopal Non-
Conforming method is
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V LEPNC
T,0 = {v ∈ H 1

T,0 : v|K ∈ V LEPNC
K ∀K ∈ M}. (1.22)

By construction of (V LEPNC
K )K∈M, an explicit and local basis of V LEPNC

T,0 can be
constructed thanks to the functions (φK ,σ )K∈M , σ∈FK . For each σ ∈ F , first define
the function φσ : � → R by patching the local functions, in the cells on each side
of σ , associated with σ :

(φσ )|K = φK ,σ ∀K ∈ Mσ , (φσ )|L = 0 if L /∈ Mσ . (1.23)

The properties (1.20) ensure thatφσ satisfies 1. and 2. inDefinition 1.2 (it also satisfies
3. if σ ∈ Fint). We also note that each φσ is a sort of bubble function on the diamond
Dσ , as it vanishes on all its faces (but, contrary to standard bubble functions, φσ is
not in H 1(Dσ )).

We then select, for each K ∈ M,d + 1vertices (s0, . . . , sd)of K whichmaximise
the volume of their convex hull, that is, maximise their determinant; in fact the
determinant only needs to be non-zero, but maximising it leads to better conditioned
matrices. We then define the nodal basis (ψK ,i )i=0,...,d of P1(K ) associated to these
vertices, that is, the basis that satisfies ψK ,i (s j ) = 1 if i = j and 0 if i �= j . We will
see in Sect. 1.4.4 that this choice is relevant for mass lumping techniques. For each
i = 0, . . . , d, we set

φK ,i = ψK ,i −
∑

σ∈FK

ψK ,i,σ φK ,σ with ψK ,i,σ = 1

|σ |
∫

σ

ψK ,i . (1.24)

This choice ensures that ∫
σ

φK ,i = 0 ∀σ ∈ FK . (1.25)

Extended by 0 outside K , each φK ,i therefore belongs to H 1
T,0. It can also easily

be checked that {φK ,i : i = 0, . . . , d} ∪ {φK ,σ : σ ∈ FK } spans V LEPNC
K (the basis

(ψK ,i )i=0,...,d of P1(K ) can be obtained by linear combinations of these functions).
As shown in the following lemma, a basis of V LEPNC

T,0 is then obtained by gathering
all the functions (1.23) (for internal faces) and (1.24).

Lemma 1.1 (Basis of the LEPNC global space) The following family forms a basis
of V LEPNC

T,0 defined by (1.22):

{φK ,i : K ∈ M , i = 0, . . . , d} ∪ {φσ : σ ∈ Fint}. (1.26)

Moreover, for any v ∈ V LEPNC
T,0 we have

v =
∑
K∈M

d∑
i=0

vK ,iφK ,i +
∑

σ∈Fint

vσφσ , (1.27)
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with

vσ = 1

|σ |
∫

σ

v ∀σ ∈ Fint. (1.28)

and, for all K ∈ M ,
vK ,i = v|K (si ) ∀i = 0, . . . , d. (1.29)

Remark 1.6 (Single-valuedness of vσ ) We note that, since v ∈ H 1
T,0, the condition

(1.7) ensures that vσ is uniquely defined by (1.28) (it depends only on σ , not on the
choice of a cell inMσ in which we would consider the values of v).

Proof Proving (1.27)–(1.29) for a generic v ∈ V LEPNC
T,0 shows that (1.26) spans this

space, and also that it is a linearly independent family since all coefficients in the
right-hand side of (1.27) vanish when the left-hand side v vanishes.

Let us take v ∈ V LEPNC
T,0 . It suffices to show that (1.27) holds on each cell K ∈

M. Since {φK ,i : i = 0, . . . , d} ∪ {φK ,σ : σ ∈ FK } spans V LEPNC
K � v|K , there are

coefficients (λK ,i )i=0,...,d and (λK ,σ )σ∈FK such that

v|K =
d∑

i=0

λK ,iφK ,i +
∑

σ∈FK

λK ,σ φσ . (1.30)

Taking the average over one face σ ∈ FK and using (1.20) and (1.25), we obtain

λK ,σ = 1

|σ |
∫

σ

v|K .

Hence, by Remark 1.6, λK ,σ = vσ defined by (1.28). Applying now (1.30) at one of
the vertices si , recalling the definition (1.24), the fact that (ψK , j ) j=0,...,d is the nodal
basis associated with (s j ) j=0,...,d , and noticing that all functions φK ,σ vanish at the
vertices of K (consequence of (1.19) and of the fact that each vertex either does not
belong to DK ,σ , or belongs to one face in FKσ,int), we see that v|K (si ) = λK ,i . To
summarise, (1.30) is written

v|K =
d∑

i=0

vK ,iφK ,i +
∑

σ∈FK∩Fint

vσ φσ , (1.31)

the restriction of the last sum to internal edges coming from
∫
σ
v = 0 whenever

σ ∈ Fext, see (1.8). Since all functions φL ,i vanish on K whenever L �= K , and all
φσ vanish on K whenever σ /∈ FK , (1.31) proves that (1.27) holds on K . �

LetC(M) denote the functionswhose restriction to each K ∈ M is continuous on
K . Lemma1.1 shows us how to define a natural interpolatorIT : H 1(�) ∩ C(M) →
V LEPNC
T,0 : for all u ∈ H 1(�) ∩ C(M):
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LK

Fig. 1.5 Hexagons with aligned (left) and almost aligned (right) edges

ITu =
∑
K∈M

d∑
i=0

uK ,iφK ,i +
∑

σ∈Fint

uσφσ (1.32a)

where (uσ )σ∈Fint and (uK ,i )K∈M, i=0,··· ,d are defined by

uσ = 1

|σ |
∫

σ

u ∀σ ∈ Fint , (1.32b)

uK ,i = u|K (si ) ∀K ∈ M , ∀i = 0, . . . , d. (1.32c)

Remark 1.7 (The need to enrich the bubble functions) As the above construction
shows (see in particular (1.24)), the design of a finite-dimensional subspace of the
non-conforming space H 1

T,0 requires access, for each face σ of each cell K , to a
local basis function that has average 1 on σ and 0 on all other faces of K . Instead of
using the bubble functions (1.19), an alternative idea is to use a rich enough space
of polynomial functions. The question of “how rich” this space should be (which
degree the polynomials should have) is however not easy to answer,when considering
generic polytopal meshes.

Consider for example the cell K on the left of Fig. 1.5, an hexagon with 4 aligned
edges. Since it has a total of 6 edges, the minimum local space of polynomial should
be P2(K ), which has dimension 6. However, the restrictions of functions in P

2(K )

on the line of the aligned edges are polynomials of degree 2 in dimension 1, and
form therefore a space of dimension 3. This space is not large enough to contain, for
each of the 4 edges, a function with average 1 on this edge and 0 on all other edges.
This shows that we should at least consider P3(K ) as the local polynomial space on
K ; note that this argument only discusses the space dimension: it would still have to
be fully established that P3(K ) is indeed rich enough.

The situation is perhaps more severe, from the robustness point of view, for the
hexagon L on the right of Fig. 1.5. Since its edges are not aligned, from the pure
dimensional point of view it might be sufficient to consider P2(L) as the local poly-
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nomial space on L . However, because L has almost aligned edges, the basis functions
we would construct (with average 1 on one edge and 0 on all other edges) would
form an “almost dependent” set of functions – even more so as the edges become
more and more aligned, e.g. along a sequence of refined meshes. The practical con-
sequence is that, in an implementation of the scheme using these basis functions,
some local mass or stiffness matrices would be close to singular, which would lead
to an ill-conditioned global system and a poor numerical resolution.

On the contrary, the usage of the (piecewise-polynomial) basis functions (1.19)
solves these two issues: the local space is always defined as the span of P1 and
the bubble functions, independently of the cell geometry, and, even when edges
become aligned, the basis functions remain well independent (recall that the vertices
(s0, . . . , sd) are chosen in each cell to maximise the volume they encompass and
thus, in Fig. 1.5, they would be chosen as the three leftmost vertices in each case and
would not become aligned or close to aligned).

1.4.3 Approximation Properties of the LEPNC Space

The approximation properties of the LEPNC space require a slightly more stringent,
but still very flexible, regularity condition on the meshes than the boundedness of γT
(see (1.6)).

Definition 1.3 (ρ-regular polytope and polytopal mesh) A polytopal open set K ⊂
R

d is said to be a ρ-regular polytope, where ρ > 0, if:

1. There exists xK ∈ K and open disjoint simplices (Ki )i=1,...,n such that K =⋃n
i=1 K i , and, for i = 1, . . . , n, xK is a vertex of Ki , exactly one face of Ki is

included in ∂K and all the other faces of Ki are common with a neighbouring
simplex K j .

2. There exists xKi ∈ Ki such that B(xKi , ρhK ) ⊂ Ki .

A ρ-regular polytopal mesh of � is a polytopal mesh T as per Definition 1.1, such
that any cell K ∈ M is a ρ-regular polytope and if, for any simplex Ki as above,
there exists σ ∈ FK such that one face of Ki is included in σ .

Remark 1.8 (ρ-regular polytope and polytopal mesh) The number n in Definition
1.3 is always bounded by 1/ρd , the ratio of the measure of B(xK , hK ) and that of
B(xKi , ρhK ). As a consequence, it can be easily checked that γT (defined by (1.6))
is bounded above by a real number depending only on ρ.

The additional requirement, for a polytopal mesh, that one face of Ki is included
in one of the mesh face prevents the situation where the face of Ki that lies in ∂K
is actually split between two mesh faces (the mesh faces could be different from
the geometrical faces of its elements, e.g. in case of non-conforming meshes with
hanging nodes).
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To state approximation properties of the global non-conforming space (1.22), we
first define an alternate interpolator, which does not require the functions to be con-
tinuous on each cell and therefore enjoys boundedness properties for a larger class
of functions. For all K ∈ M, let JK : H 1(K ) → V LEPNC

K be such that

JK u = JFK u + PK (u − JFK u) ∀u ∈ H 1(K ), (1.33)

where
JFK u =

∑
σ∈FK

uσφK ,σ with (uσ )σ∈FK given by (1.32b), (1.34)

and PK : L2(K ) → V LEPNC
K is the L2-orthogonal projector on span{φK ,i : i =

0, . . . , d}. The global interpolator JT : H 1
0 (�) → V LEPNC

T,0 is obtained patching the
local ones:

(JTu)|K = JK (u|K ) ∀u ∈ H 1
0 (�) , ∀K ∈ M.

Using (1.20) and (1.25), it is easily verified that JTu indeed belongs to V LEPNC
T,0 .

Theorem 1.3 (Approximation properties of V LEPNC
T,0 ) Assume that T is a ρ-regular

polytopal mesh. Then, there exists C depending only on ρ such that

‖u − JTu‖L2(�) + hM‖∇M(u − JTu)‖L2(�) ≤ Ch2M|u|H2(�) ∀u ∈ H1
0 (�) ∩ H2(�),

(1.35)
where |·|H 2(�) denotes the H 2(�)-seminorm.

Remark 1.9 (Approximation properties in generic Sobolev spaces) Using the results
of [6, Chap. 1], a straightforward adaptation of the proof below shows that the
approximation property (1.35) also holds with L2, H 1

0 and H 2 replaced by L p,W 1,p
0

and W 2,p, for any p ∈ [1,∞).

Before proving this theorem, let us estabish the boundedness of the local interpo-
lator JK .

Lemma 1.2 (Boundedness of JK ) Assume that K is a ρ-regular polytope. Then,
there exists C > 0 depending only on ρ such that, for all u ∈ H 1(K ),

‖JK u‖L2(K ) ≤ C(‖u‖L2(K ) + hK‖∇u‖L2(K )d ) , (1.36)

‖∇JK u‖L2(K )d ≤ C‖∇u‖L2(K )d . (1.37)

Proof In this proof, C > 0 denotes a generic real number, that can change from one
line to the next but depends only on ρ.
Step 1: Polynomial invariance of JK and estimates on the basis functions.

The definitions (1.24) and (1.34) show that φK ,i = ψK ,i − JFK ψK ,i for all i =
0, . . . , d. Hence, PK (ψK ,i−JFK ψK ,i )=PKφK ,i=φK ,i and JKψK ,i = JFK ψK ,i +
φK ,i = ψK ,i . Since P1(K ) = span{ψK ,i : i = 0, . . . , d} this establishes the follow-
ing polynomial invariance of JK :
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JKq = q ∀q ∈ P
1(K ). (1.38)

The definition (1.19) and the ρ-regularity of K imply that φK ,σ ≥ cK ,σChnσ
σ on a

ball Bσ in σ of diameterChσ , where hσ is the diameter of σ and nσ = Card(FKσ,int).
Integrating this relation over Bσ , using (1.20) and noticing that |σ | ≤ C |Bσ |, we infer
cK ,σ ≤ Ch−nσ

σ and thus, since hK ≤ Chσ by ρ-regularity of K ,

|φK ,σ | ≤ C on K . (1.39)

The same definition (1.19) also yields |∇φK ,σ | ≤ cK ,σChnσ −1
K on K , and therefore

|∇φK ,σ | ≤ Ch−1
K on K . (1.40)

Step 2: Estimate on ∇JK u.
By (1.38), JK1 = 1 and thus ∇JK u = ∇JK (u − uK ), where uK = 1

|K |
∫
K u,

which implies

∇JK u = ∇JFK (u − uK ) + ∇PK [(u − uK ) − JFK (u − uK )]. (1.41)

Let us first estimate ∇JFK (u − uK ). By [9, Est. (B.11)] we have

|uσ − uK |2 ≤ ChK

|σ |
∫
K

|∇u|2dx ∀σ ∈ FK ,

from which we deduce

|∇JFK (u − uK )| ≤ C
∑

σ∈FK

hK

(|σ |hK )1/2
‖∇u‖L2(K )d |∇φK ,σ |.

The estimate (1.40) yields ‖∇φK ,σ ‖L2(K )d ≤ Ch−1
K |K |1/2 and thus, since |K | ≤

C |σ |hK and Card(FK ) ≤ C (consequence of Remark 1.8),

‖∇JFK (u − uK )‖L2(K )d ≤ C ‖∇u‖L2(K )d . (1.42)

The same arguments with φK ,σ instead of ∇φK ,σ and (1.39) instead of (1.40) yields

‖JFK (u − uK )‖L2(K ) ≤ ChK ‖∇u‖L2(K )d . (1.43)

We now turn to the second term in the right-hand side of (1.41). The range of PK

is contained in a space of piecewise polynomials, with uniformly bounded degree,
on a regular subdivision of K . The inverse inequality of [6, Lemma 1.28 and Remark
1.33] therefore gives

‖∇PK [(u − uK ) − JFK
(u − uK )]‖L2(K )d ≤ Ch−1

K ‖PK [(u − uK ) − JFK
(u − uK )]‖L2(K ).
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Since PK is an L2-orthogonal projection, we infer

‖∇PK [(u − uK ) − JFK
(u − uK )]‖L2(K )d ≤ Ch−1

K ‖(u − uK ) − JFK
(u − uK )‖L2(K )

≤ Ch−1
K ‖u − uK ‖L2(K ) + Ch−1

K ‖JFK
(u − uK )‖L2(K )

≤ C‖∇u‖L2(K )d , (1.44)

where we have used ‖u − uK‖L2(K ) ≤ ChK‖∇u‖L2(K )d (see [9, Est. (B.12)]) and
(1.43) in the last line. Combined with (1.42) and (1.41), this proves (1.37).

Step 3: Estimate on JK u.
We use the triangle inequality together with JK uK = uK (see (1.38)) to write

‖JK u‖L2(K ) ≤ ‖JK (u − uK )‖L2(K ) + ‖uK ‖L2(K )

≤ ‖JFK
(u − uK )‖L2(K ) + ‖PK [(u − uK ) − JFK

(u − uK )]‖L2(K ) + ‖u‖L2(K )

≤ ‖JFK
(u − uK )‖L2(K ) + ‖(u − uK ) − JFK

(u − uK )‖L2(K ) + ‖u‖L2(K )

≤ ChK ‖∇u‖L2(K )d + ‖u‖L2(K ),

where we have used the definition (1.33) of JK together with Jensen’s inequality (to
write ‖uK‖L2(K ) ≤ ‖u‖L2(K )) in the second line, and the same arguments that led to
(1.44) to conclude. The proof of (1.36) is complete. �

We can now complete the proof of Theorem 1.3.

Proof (Theorem 1.3)As in the proof ofLemma1.2,C denotes here a generic constant
that can change from one line to the other but depends only on ρ. Let K ∈ M and
denote by q1 the L2-orthogonal projection of u|K on P

1(K ). By [6, Theorem 1.45],
we have that

‖u − q1‖L2(K ) + hK‖∇(u − q1)‖L2(K )d ≤ Ch2K |u|H 2(K ). (1.45)

Using the polynomial invariance (1.38) and the triangle inequality, we write, for
s = 0, 1,

|u − JK u|Hs (K ) = |(u − q1) − JK (u − q1)|Hs (K ) ≤ |u − q1|Hs (K ) + |JK (u − q1)|Hs (K ).

The boundedness properties (1.36) and (1.37) together with the approximation prop-
erty (1.45) then yield

|u − JK u|Hs (K ) ≤ C(‖u − q1‖L2(K ) + h1−s
K ‖∇(u − q1)‖L2(K )d ) ≤ Ch2−s

K |u|H 2(K ).

Squaring, for each s = 0, 1, this inequality and summing over K ∈ M yields the
estimate on each term in the left-hand side of (1.35). �



20 J. Droniou et al.

1.4.4 Mass-Lumping of the LEPNC Method

As discussed in Sect. 1.3.2, approximating non-linear models such as (1.11) requires
the usage of mass-lumping, which necessitates to identify a basis of V LEPNC

T,0 such
that the coefficients of v ∈ V LEPNC

T,0 on this basis represent approximate values of v
in some portions of �.

Definition 1.4 (Mass-lumping operator for the LEPNC method) Let � ∈ [0, 1] be
a weight, representing the fraction of mass allocated to the faces. For each K ∈ M,
create a partition ((Ki )i=0,...,d , (Kσ )σ∈FK ) of K into (d + 1) + Card(FK ) sets, such
that, for all i = 0, . . . , d and σ ∈ FK ,

si ∈ Ki , xσ ∈ Kσ , (1.46)

|Ki | = (1 − �)
|K |
d + 1

, |Kσ | = �
|K |

Card(FK )
. (1.47)

The mass-lumping operator � LEPNC
T : V LEPNC

T,0 → L∞(�) is then defined by: for all
v ∈ V LEPNC

T,0 ,

� LEPNC
T v =

∑
K∈M

d∑
i=0

vK ,i1Ki +
∑

σ∈Fint

vσ 1Kσ
,

with (vσ )σ∈Fint and (vK ,i )K∈M, i=0,··· ,d given by (1.28)–(1.29).

Remark 1.10 (Shape of the partition of K ) Fig. 1.6 illustrates possible choices of
regions Ki and Kσ . In practice, due to the usage of quadrature rules for source
terms (see Remark 1.3), the precise shapes of these region are irrelevant. Only their
measures are required to implement the scheme (1.15).

The following lemma shows that the above designed mass-lumping technique
preserves the approximation properties of the LEPNC, see Lemma 1.4.

Lemma 1.3 (Estimate for the mass-lumping operator of the LEPNC) Let T be a
ρ-regular polytopal mesh in the sense of Definition 1.3, and let �LEPNC

T be given by
Definition 1.4. Then, there exists C > 0 depending only on ρ and d such that

‖v − �LEPNC
T v‖L2(�) ≤ ChM‖∇Mv‖L2(�)d ∀v ∈ V LEPNC

T .

Proof In this proof, C is a real number that may vary, but depends only on ρ and
d. Let v ∈ V LEPNC

T . For all K ∈ M, the function v|K is Lipschitz-continuous on
K and the ρ-regularity of K together with the mean value theorem gives, for all
i = 0, . . . , d and σ ∈ FK ,

|vK ,i − v| = |v|K (si ) − v| ≤ ChK‖∇v|K‖L∞(K )d on K



1 Non-conforming Finite Elements on Polytopal Meshes 21

Fig. 1.6 Regions for
mass-lumping of the LEPNC
method in dimension d = 2.
Here, � is small and most of
the weight has been put on
the three chosen vertices
(s0, s1, s2)

and
|vσ − v| ≤ ChK‖∇v|K‖L∞(K )d on K .

Writing v|K = ∑d
i=0 v1Ki + ∑

σ∈FK
v1Kσ

and subtracting the definition of� LEPNC
T v

we infer

|v|K − (�LEPNC
T v)|K | ≤

d∑
i=0

ChK‖∇v|K‖L∞(K )d 1Ki +
∑

σ∈FK

ChK‖∇v|K‖L∞(K )d 1Kσ
.

Since ∇v|K is piecewise polynomial on a regular subdivision of K , with a degree
bounded above by a positive real number depending only on ρ, the inverse Lebesgue
inequalities of [6, Lemma 1.25 and Remark 1.33] yield ‖∇v|K‖L∞(K )d ≤ C |K |− 1

2

‖∇v|K‖L2(K )d . Plugging this estimate into the above relation and using
∑d

i=0 1Ki +∑
σ∈FK

1Kσ
= 1 on K , we infer

|v|K − (�LEPNC
T v)|K | ≤ ChK |K |− 1

2 ‖∇v|K‖L2(K )d .

The proof is complete by taking the L2(K )-norm of this estimate, squaring, summing
over K ∈ M and taking the square root. �

1.4.5 Convergence Results

Together with the above analysis of the LEPNC properties, the general nonconform-
ing framework of Sect. 1.2 yields the following results.We first give an error estimate
for the LENPC approximation of the linear problem (1.1).
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Theorem 1.4 (Error estimates for the LEPNC approximation) We assume that the
solution ū of (1.3) and the data � and F in Hypotheses (1.2) are such that �∇ū +
F ∈ H 1(�)d and ū ∈ H 2(�). Let T be a ρ-regular polytopal mesh in the sense of
Definition 1.3. Let u be the solution of the non-conforming scheme (1.9), letting
VT,0 = V LEPNC

T,0 defined by (1.22). Then, there exists C > 0 depending only on �, ρ

and λ, λ in (1.2b) such that

‖ū − u‖L2(�) + ‖∇ū − ∇Mu‖L2(�)d ≤ ChM(‖�∇ū + F‖H 1(�) + |u|H 2(�)),

(1.48)
where |·|H 2(�) denotes the H 2(�)-seminorm.

Proof The result is an immediate consequence of Theorems 1.1 and 1.3. �

Turning to the nonlinear problem (1.13), the following theorem states the conver-
gence of the LEPNC method.

Theorem 1.5 (Convergence of the LEPNC method for the Stefan problem) Let
ρ > 0 be a fixed number, and let (Tm)m∈N be a sequence of ρ-regular polytopal mesh
polytopal meshes, in the sense of Definition 1.3, such that hMm → 0 as m → ∞.

Then, for all m ∈ N, letting VTm ,0 = V LEPNC
Tm ,0 defined by (1.22) and �Tm =

�LEPNC
Tm

from Definition 1.4, there exists um solution of (1.15) and, as m →
∞, � LEPNC

Tm
ζ(um) → ζ(ū) strongly in L2(�), ∇Mm ζ(um) → ∇ζ(ū) strongly in

L2(�)d , and � LEPNC
Tm

um → ū weakly in L2(�), where ū is a solution to (1.13).

Proof We apply Theorem 1.2. Property (1.16) is a consequence of Theorem 1.3, and
of the density of H 2(�) ∩ H 1

0 (�) in H 1
0 (�). Property (1.17) is proven by Lemma

1.3. �

1.4.6 Numerical Tests

Wepresent here some numerical results obtained by the LEPNCmethod on the linear
single-phase incompressible flow (1.1) and on the Stefan/porous medium equation
problem (1.11), on� = (0, 1)2 andwith the diffusion tensor� = Id. The schemeswe
consider are therefore (1.9) and (1.15) with the space V LEPNC

T,0 and the mass-lumping
operator �LEPNC

T . The tests below were run using the LEPNC implementation avail-
able in the HArDCore2D library [12]. We note that some of the tests here involve
non-homogeneous Dirichlet boundary conditions; adapting the LEPNC scheme to
this case is straightforward, and done as for standard non-conforming P

1 finite ele-
ments. We also refer the interested reader to Chap.2 for a numerical assessment of
the LEPNC (and comparison with other methods) on the transient porous medium
equation.

Let us first make some remarks relative to the practical implementation of these
LEPNC schemes.

http://dx.doi.org/10.1007/978-3-030-69363-3_2
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Remark 1.11 (Choice of implementation unknown for the Stefan model) Owing to
Lemma 1.1, the unknowns for the implementation of the LEPNC represent function
values XK ,i at the chosen vertices si inside each cell K ∈ M, and function values
Xσ at the center of mass of each face σ ∈ F (such values are order 2 approximations
of the averages appearing in (1.28)). When considering the scheme (1.15) for the
Stefan problem and because of the plateaux of ζ , however, these values may not be
values of u, but sometimes of ζ(u). Specifically, if� = 0, then the face values of the
unknowns u do not appear in the mass-matrix in each Newton iteration on (1.15); if
we were to use these face values as unknown Xσ for the implementation, they would
be multiplied in the stiffness matrix by ζ ′(Xk−1

σ ), where Xk−1
σ is the face value at

the previous Newton iteration; this factor ζ ′(Xk−1
σ ) could vanish, leading to a zero

line in the complete linear system. For this reason, when � = 0, each Xσ should
represent the value on σ of ζ(u), not u; this way, when writing Newton iterations,
no linearisation is performed on this unknown in the stiffness matrix, which ensures
that it remains invertible. For the same reason, if � = 1, each unknown XK ,i should
represent values at si of ζ(u), not u. We refer the reader to [8, Remark 3.1] for more
on this topic.

Remark 1.12 (Static condensation of cell-based degrees of freedom) For each
K ∈ M, the basis functions {φ̃K ,i : i = 0, . . . , d} have support in K . In the lin-
ear systems to be solved (at each iteration of the Newton algorithm in the case of
non-linear problems), the stencil of their associated unknowns therefore only con-
tains the unknowns of the other basis functions related to K , and of the basis functions
related to the faces of K . A static condensation process can thus be applied, exactly
as in Hybrid High-Order methods (see [6, Appendix B.3.2]), to eliminate the cell-
based unknowns. The resulting globally coupled linear system then only involves
face-based unknowns, and two faces are in a stencil of this matrix only if they share
a cell.

Remark 1.13 (Alternate construction of the basis functions) Instead of using the
nodal basis functions (ψK ,i )i=0,...,d in (1.24), one can instead take the scaled and
translated monomial basis functions: ψK ,0 = 1 and ψK ,i (x) = xi−xK ,i

hK
, where xi is

the i-th coordinate of x and xK ,i is the i-th coordinate of the centre of mass of K . The
obtained basis (φK ,i )i=0,...,d can afterwards be transformed by linear combinations
into a nodal basis (ensuring that (1.27)–(1.29) holds). This implementation is the
choice made in the HArDCore library.

When an analytical solution is available, we present error estimates in the follow-
ing relative norms:

EL2 := ‖u − ITū‖L2(�)

‖ITū‖L2(�)

and EH 1 := ‖∇M(u − ITū)‖L2(�)d

‖∇MITū‖L2(�)d

for the linear model, and
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Fig. 1.7 Examples of members from the mesh families used in numerical tests: hexagonal (left),
Kershaw (centre) and locally refined Cartesian (right)

EL2,ml := ‖�LEPNC
T (u − ITū)‖L2(�)

‖�LEPNC
T ITū‖L2(�)

and EH1,ζ := ‖∇M(ζ(u) − ITζ(ū))‖L2(�)d

‖∇MITζ(ū)‖L2(�)d

for the non-linear model; here ū is the exact analytical solution to (1.11), u is the
solution to the LEPNC scheme, IT is the interpolator defined by (1.32), and� LEPNC

T

is the mass-lumping operator given by Definition 1.4.
The tests have been run using three families of meshes, an example of each is

represented in Fig. 1.7: (mostly) hexagonal meshes, Kershaw meshes and locally
refined Cartesian meshes. The last two are taken from the FVCA5 Benchmark [13].
In all the tests we have chosen a mass-lumping weight � of 0 on the edges; tests
(not reported here) with other weights show similar results, except that the Newton
iterations converge sometimes more slowly when mass is allocated to the edges.

1.4.6.1 Linear Single-Phase Incompressible Flow

We first test the LEPNC method on (1.1) with � = Id and exact solution ū(x, y) =
sin(πx) sin(πy). For comparison, we also present the results obtained with the
HHO(k, �) method detailed in [6, Sect. 5.1], with degree of edge unknowns k = 0
and degree of element unknowns � = 1. The reason for choosing these particular
(k, �) is that the HHO(0, 1)method has (whether before or after static condensation)
the same number of degrees of freedom as the LEPNC method. The results for the
three families of meshes are presented in Fig. 1.8. Note that for the the HHO(0, 1)
method, the error EH 1 is measured using the discrete H 1-norm defined in [6, Eq.
(2.35)], and EL2 is computed from the L2-norm of the element unknowns.

As expected from Theorem 1.4, the rate of convergence of the LEPNC scheme
in H 1-norm is 1 on all three families of meshes. An improved rate of order 2 is
observed in L2-norm and, even though it is not stated in Theorem 1.4, it is also quite
expected since LEPNC is close to a lowest-order finite element method (we note that
improved L2 estimates can be obtained, using a Nitsche argument, in the context of
the GDM [11]).
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Fig. 1.8 Errors versus mesh size for the linear equation

In terms of H 1-error, HHO(0, 1) seems to over-perform LEPNC on all meshes,
especially on distorted ones (Kershaw, hexagonal) where the difference is a full
order of magnitude; the difference is less perceptible on more regular meshes like
the locally refined ones. This is also the case, although much less pronounced (factor
2 instead of a full order of magnitude), in L2-norm on hexagonal and Kershaw
meshes; interestingly, the trend is actually reversed on locally refined meshes, with
LEPNC providing an L2-error about five times smaller than HHO(0, 1), indicating
that LEPNC seems to produce a better approximation of the solution itself (if not its
gradient) on regular meshes. Of course, all these comparisons must be taken with a
grain of salt since they do not exactly use the same norms. Additionally, it should
be noted that the HHO(0, 1) scheme does not readily produce an explicit function
that embeds all the methods’ design (it is, in this sense, more of a virtual method),
whereas LEPNC does.

1.4.6.2 Stefan Problem

We consider the problem (1.13) with the following Stefan non-linearity:

ζ(s) =
⎧⎨
⎩
s if s ≤ 0,
0 if 0 ≤ s ≤ 1,
s − 1 if s ≥ 1.

Test S1. For this test, we take an exact smooth solution ū such that ζ(ū) is
also smooth, but not trivial (the solution ū crosses the value 0 at which ζ is not
differentiable). Setting s(x, y) = x+y√

2
the coordinate along the first diagonal, the

exact solution is ū(x, y) = (s(x, y) − 0.5)3. The functions ū and ζ(ū) are represented
in Fig. 1.9
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Fig. 1.9 Exact solution ū (left) and ζ(ū) (right) for test S1

Fig. 1.10 Errors versus mesh size for test S1

The convergence graphs are given in Fig. 1.10. For solutions that are piecewise
smooth on the mesh, the analysis of [8] shows that, for a low-order scheme as
the LEPNC, the expected rate of convergence in energy error EH 1,ζ for the regular
variable ζ(u) isO(h), which corresponds to the rate observed for all three families in
Fig. 1.10. The convergence rate in mass-lumped L2-norm on the u variable is always
larger than one: it is almost 2 for the hexagonal and locally refined mesh families,
and around 1.5 for the Kershaw family. This convergence is however less regular
than the convergence on the variable ζ(u).

Test S2. The previous test is not representative of the typical behaviour of solu-
tions to Stefan problems. In the general case, and in particular with null source terms,
these solutions ū are discontinuous in the range of values where ζ remains constant,
which therefore does not prevent ζ(ū) from being continuous. This next test case,
taken from [8], displays such a behaviour. Setting γ = 1

3 , the exact solution is

ū(x, y) = cosh(s(x, y) − γ ) if s(x, y) ≥ γ , ū(x, y) = 0 if s(x, y) < γ,
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Fig. 1.11 Exact solution ū (left) and ζ(ū) (right) for test S2

Fig. 1.12 Errors versus mesh size for test S2

where, as in Test S1, s(x, y) = x+y√
2
is the coordinate along the first diagonal. This

solution is discontinuous along the line s(x, y) = γ , but ζ(ū) is continuous (and
even in H 2(�)); see Fig. 1.11. This function corresponds to a zero source term in
(1.11).

The convergence results are presented in Fig. 1.12. As expected from the results of
[8], we observe in Fig. 1.12, left, an estimate of the kind EH 1,ζ = O(h). The conver-
gence rate in mass-lumped L2 error EL2,ml for the variable u is however much lower
(and, as in Test S1, rather irregular), which is expected since u is discontinuous; the
overall convergence rate of EL2,ml is aboutO(h0.6) for all mesh families. Figure1.13
shows the approximate variables u and ζ(u) obtained on the second hexagonal mesh
in the family; the discontinuity of ū, typical in Stefan’s problems, clearly impacts
the convergence on this variable.
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Fig. 1.13 Approximate solution u (left) and ζ(u) (right) obtained on the second member of the
hexagonal mesh family in test S2

1.4.6.3 Porous Medium Equation

We now consider the stationary porous medium equation, corresponding to (1.11)
with non-linearity

ζ(s) = |s|m−1s with m ≥ 1.

Test P1. For this test, the exact solutions ū and ζ(ū) are both smooth. We take
ū(x, y) = sin(πx) sin(πy), and m ∈ {1, 2, 3, 4}. Note that the case m = 1 actually
corresponds to ζ(s) = s, so (1.11) is the linear equation (1.1) with an added reaction
term u. The results of the test, on the same Kershaw, locally refined and hexagonal
meshes as in Tests S1 and S2, are presented in Fig. 1.14.

Looking first at the casem = 1,we notice that the results areworse on theKershaw
meshes; despite the smoothness of the solution, the distortion of these meshes impact
the approximation error negatively. We still see an order O(h) convergence in both
energy and mass-lumped L2 norm; this is expected for the energy error given that
LEPNC is a low-order scheme, but one could have hoped to see a super-convergence
effect in the L2-norm. On the contrary, for locally refined and hexagonal meshes,
this super-convergence is visible and the L2-norm error decays as O(h2), while the
energy norm decays as O(h).

Considering now the nonlinear cases m = 2, 3, 4, we see that the energy error
still decays as h for the locally refined and hexagonal meshes. However, the L2-
norm error no longer super-converges with an order 2, but rather with an order 1.5.
The results for the Kershaw meshes show much lower convergence rates. For m = 2
rate for the L2-norm error is still close to 1, but the energy error only decays as
about O(h0.5). For m = 3, 4, the rates in L2-norm and energy error are respectively
0.5 and 0.3 – at least at the considered mesh sizes. Looking at the pictures it seems
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Fig. 1.14 Errors versus mesh size for test P1

that the rate in energy norm has a tendency to increase towards the last meshes in
the Kershaw family. It should be mentioned here that for certain cases (typically,
the finest hexagonal or Kershaw meshes, with m = 3, 4), a straightforward Newton
algorithm does not converge and relaxation has to be applied.

Test P2. This test features a less regular exact solution ū. We take ū(x, y) =
max(ρ2 − r(x, y)2, 0), where ρ = 0.3 and r(x, y)2 = (x − 0.5)2 + (y − 0.5)2. In
the domain �, the graph of ū is the tip of a paraboloid; this solution belongs to
H 1(�) but not to H 2(�). We take m = 2, so ζ(ū) ∈ H 2(�). For this value of m,
the singularity of ū at the circle r(x, y)2 = ρ2 is typical of the singularity exhibited
by the Barenblatt solution in the transient setting [2, 17]. The results are presented
in Fig. 1.15. As in Test P1, we see that the energy error decays as O(h), except for
the very distorted Kershaw meshes for which a rate of about 0.3 is achieved with
the last two meshes (further refinement might improve that rate). In terms of the L2-
error, all three mesh families lead to a rate of convergence of about 1. Even for the
relatively regular mesh families (hexahedral, locally refined), no super-convergence
is observed. This is somehow expected given that the exact solution is not H 2-regular.
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Fig. 1.15 Errors versus mesh size for test P2

1.5 Analysis of Polytopal Non-conforming Finite Element
Schemes

Polytopal non-conformingfinite element schemes are gradient discretisationmethods
(GDM) and, as such, enjoy all the error estimates and convergence results of GDMs.
We recall here the notion of GDM and associated results, which yield in particular
the Theorems 1.1 and 1.2. Most of the following material is taken from [9, Sect. 9.1].

1.5.1 Gradient Discretisation Method

The GDM is a generic framework for designing and analysing numerical schemes
for elliptic and parabolic problems (although extensions to linear advection is also
possible [10]). It consists in replacing, in the weak formulation of the model, the
continuous space and operator by their discrete analogues given by a gradient dis-
cretisation (GD).
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Definition 1.5 (Gradient discretisation for homogeneous Dirichlet boundary con-
ditions) A gradient discretisation for homogeneous Dirichlet boundary conditions is
a triplet D = (XD,0,�D,∇D) where

• XD,0 is a finite-dimensional space of unknowns, that encodes the homogeneous
boundary conditions,

• �D : XD,0 → L2(�) is a linear operator that reconstructs a function from a vector
of unknowns,

• ∇D : XD,0 → L2(�)d is a linear operator that reconstructs a “gradient” from a
vector of unknowns; it must be chosen such that ‖∇D · ‖L2(�)d is a norm on XD,0.

A gradient discretisation D is said to have a piecewise constant reconstruction if
there exists a basis (ei )i∈I of XD,0 and disjoint subsets (Ui )i∈I of � such that

�Dv =
∑
i∈I

vi1Ui ∀v =
∑
i∈I

viei ∈ XD,0, (1.49)

where 1Ui is the characteristic function ofUi (equal to 1 in this set and to 0 elsewhere).

Once a GD D is chosen, a gradient scheme (GS) for the linear diffusion problem
(1.3) is obtained by writing:

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
�

�∇Du · ∇Dvdx =
∫

�

f �Dvdx −
∫

�

F · ∇Dvdx.
(1.50)

IfD has a piecewise constant reconstruction, then it makes sense, for a generic func-
tion g : R → R and v ∈ XD,0, to define g(v) ∈ XD,0 component-by-component: if
v = ∑

i∈I viei , then g(v) = ∑
i∈I g(vi )ei . This definition is justified by the following

commutation property, coming from (1.49):

�Dg(v) = g(�Dv) ∀v ∈ XD,0.

Then, a GS for the non-linear model (1.13) is obtained writing

Find u ∈ XD,0 such that, ∀v ∈ XD,0,∫
�

(�Du �Dv + �∇Dζ(u) · ∇Dv) dx =
∫

�

f �Dvdx −
∫

�

F · ∇Dvdx.
(1.51)

The accuracy and convergence of aGS is assessed through the following quantities
and notions.

1. Coercivity. The discrete Poincaré constant of a GD D is

CD := max
v∈XD,0

‖�Dv‖L2(�)

‖∇Dv‖L2(�)d
.

A sequence (Dm)m∈N is coercive if (CDm )m∈N is bounded.
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2. Consistency. The interpolation error of a GD D is

SD(φ) := min
v∈XD,0

(‖�Dv − φ‖L2(�) + ‖∇Dv − ∇φ‖L2(�)d
) ∀φ ∈ H 1

0 (�).

A sequence (Dm)m∈N is consistent if SDm (φ) → 0 as m → ∞, for all φ ∈
H 1

0 (�).
3. Limit-conformity. The defect of conformity of a GD D is

WD(ψ) := max
v∈XD,0\{0}

1

‖∇Dv‖L2(�)d

∣∣∣∣
∫
�

�Dv divψ + ∇Dv · ψx

∣∣∣∣ ∀ψ ∈ Hdiv(�).

A sequence (Dm)m∈N is limit-conforming if WDm (ψ) → 0 as m → ∞, for all
ψ ∈ Hdiv(�).

4. Compactness. A sequence (Dm)m∈N is compact if, for any (vm)m∈N such that
vm ∈ XDm ,0 for all m ∈ N and (‖∇Dm v‖L2(�)d )m∈N is bounded, the sequence
(�Dm v)m∈N is relatively compact in L2(�).

We then recall an error estimate for the linear model and a convergence result for
the non-linear model.

Theorem 1.6 (Error estimate for the linear model [9, Theorem 2.28]) Let ū be the
solution to (1.3), D be a GD, and u be the solution to the gradient scheme (1.50).
Then, there exists C depending only on � and λ, λ in (1.2b) such that

‖ū − �Du‖L2(�) + ‖∇ū − ∇Du‖L2(�)d ≤ C(1 + CD)(WD(�∇ū + F) + SD(ū)).

Theorem 1.7 (Convergence for the nonlinear model [8, Theorem 2.9]) Let (Dm)m∈N
be a sequence of GDs which is consistent, limit-conforming and compact (which
implies its coercivity [9, Lemma 2.10]), and such that each Dm has a piecewise
constant reconstruction. Then, for any m ∈ N there exists a solution to (1.51) with
D = Dm and there exists a solution ū to (1.13) such that, as m → ∞, the following
convergences hold:

�Dm um → ū weakly in L2(�),

�Dm ζ(um) → ζ(ū) strongly in L2(�),

∇Dm ζ(um) → ∇ζ(ū) strongly in L2(�)d .

The following lemma is particularly useful when considering mass-lumping of a
given gradient discretisation. It shows that, under a simple assumption comparing the
original and mass-lumped reconstructions, the properties of gradient discretisations
that ensure the convergence of the gradient scheme are preserved.

Lemma 1.4 (Mass-lumping preserves the approximation properties [9, Theorem
7.50]) Let (Dm)m∈N be a sequence of gradient discretisations that is coercive, consis-
tent, limit-conforming and compact. For each m ∈ N let D∗

m = (XDm ,0,�
∗
Dm

,∇Dm )

be a gradient discretisation that differs from Dm only through its function recon-
struction. Assume the existence of a sequence (ωm)m∈N of positive numbers such that
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ωm → 0 as m → ∞ and, for all m ∈ N,

‖�Dm v − �∗
Dm

v‖L2(�) ≤ ωm‖∇Dm v‖L2(�)d ∀v ∈ XDm ,0.

Then, the sequence (D∗
m)m∈N is also coercive, consistent, limit-conforming and com-

pact.

1.5.2 Non-conforming Gradient Discretisations

We recall here that polytopal non-conforming methods, as defined in Sect. 1.2, are
gradient discretisation methods for gradient discretisations that satisfy the properties
required for the error estimates/convergence of the scheme.

Let VT,0 be a finite-dimensional subspace of H 1
T,0, and define the gradient dis-

cretisation D by:

XD,0 = VT,0 , �Dv = v and ∇Dv = ∇Mv ∀v ∈ XD,0. (1.52)

Then, the non-conforming scheme (1.9), for the linear model, based on VT,0 is the
gradient scheme (1.50) based onD. Likewise, if�T : VT,0 → L∞(�) is a piecewise-
constant reconstruction of the form (1.14) andD∗ = (VT,0,�T,∇M), then the non-
conforming scheme (1.15) for the Stefan/PME model is the gradient scheme (1.51)
with D∗ instead of D.

Proposition 1.1 (Estimates for non-conforming methods [9, Proposition 9.5]) Let
T be a polytopal mesh and assume that γT ≤ γ . Let VT,0 be a finite-dimensional
subspace of H 1

T,0 and define the GDD by (1.52). Then, there exists C > 0 depending
only on � and γ such that

CD ≤ C (1.53)

SD(φ) ≤ C min
v∈VT,0

‖v − φ‖H 1
T,0

∀φ ∈ H 1
0 (�) , (1.54)

WD(ψ) ≤ ChM‖ψ‖H 1(�)d ∀ψ ∈ H 1(�)d . (1.55)

Theorem 1.8 (Properties of polytopal non-conforming methods [9, Theorem 9.6])
Let (Tm)m∈N be a sequence of polytopal meshes such that hMm → 0 as m → ∞ and
(γTm )m∈N is bounded. For each m ∈ N let VTm ,0 be a finite-dimensional subspace of
H 1

Tm ,0 and assume that

min
v∈VTm ,0

‖v − φ‖H 1
Tm ,0

→ 0 as m → ∞, ∀φ ∈ H 1
0 (�).

Then, the sequence (Dm)m∈N defined from (VTm ,0)m∈N as in (1.52) is coercive, con-
sistent, limit-conforming, and compact.
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Remark 1.14 (Mass-lumped non-conforming method) Combining this theoremwith
Lemma 1.4 shows that mass-lumped versions of polytopal non-conforming meth-
ods, such as the one presented in Sect. 1.4.4, usually also inherits the coercivity,
consistency, limit-conformity and compactness properties.

1.6 Perspectives

TheLEPNCpresented here is a low-ordermethod. It is possible to extend thismethod
into an arbitrary order approximation method. Let k ≥ 1 be a sought approximation
degree. For K ∈ M, σ ∈ FK and q ∈ P

k−1(σ ), by the Riesz representation theorem
in L2(σ ) for the Lebesgue measure weighted by φK ,σ (which is strictly positive on
σ ), there exists a unique qK ∈ P

k−1(σ ) such that

∫
σ

(φK ,σ )|σqKr =
∫

σ

qr , ∀r ∈ P
k−1(σ ). (1.56)

Set φK ,σ,q = φK ,σ q̂K , where q̂K ∈ P
k−1(K ) is defined by q̂K (x) = qK (πσ (x)) with

πσ : Rd → Hσ the orthogonal projection on the hyperspace Hσ spanned by σ . Then,
the local k-degree LEPNC space is

V LEPNC,k
K := span(Pk(K ) ∪ {φK ,σ,q : σ ∈ FK , q ∈ P

k−1(σ )}).

For any set of moments of degree≤ k − 1 on σ , there exists q ∈ P
k−1(σ ) that has the

same moments and thus, in virtue of (1.56), φK ,σ,q also has these same moments on
σ . Let (ψK ,i )i=1,...,nk be a basis of P

k(K ). For each i = 1, . . . , nk we can find a linear
combination

∑
σ∈FK

φK ,σ,qi that has the same moments of degree ≤ k − 1 as ψK ,i

on each σ ∈ FK . The function ψK ,i − ∑
σ∈FK

φK ,σ,qi therefore has zero moments
of degree ≤ k − 1 on each face and, extended by 0 outside K , satisfies the (k − 1)-
degree patch test: its moments on each face coincide when viewed from each side of
the faces.

When {K , L} = Mσ , for a given q ∈ P
k−1(σ ), by (1.56) the functions φK ,σ,q and

φL ,σ,q have the same moments of degree ≤ k − 1 on σ . Hence, in a similar way as
in (1.23), we can glue φK ,σ,q and φL ,σ,q to obtain a global function that satisfies the
(k − 1)-degree patch test.

The family of these extended functions span a non-conforming space that has
approximation properties of order k (that is, (1.35) holds with O(hk+1

M ) instead of
O(h2M) in the right-hand side). The only caveat is the following: letting (q j ) j=1,...,�k
be a basis ofPk−1(σ ), the family {ψK ,i : i = 1, . . . , nK } ∪ {φK ,σ,q j : σ ∈ FK , j =
1, . . . , �k} spans the local space V LEPNC,k

K ; however, it is not clear if, in general, this
family is linearly independent. Hence, describing a space of the local space (and,
in consequence, the global space) requires to actually solve local linear problems,
extracting a basis from a generating family.
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Chapter 2
Error Estimates for the Gradient
Discretisation Method on Degenerate
Parabolic Equations of Porous Medium
Type

Clément Cancès, Jérôme Droniou, Cindy Guichard, Gianmarco Manzini,
Manuela Bastidas Olivares, and Iuliu Sorin Pop

Abstract The gradient discretisation method (GDM) is a generic framework for the
spatial discretisation of partial differential equations. The goal of this contribution is
to establish an error estimate for a class of degenerate parabolic problems, obtained
under very mild regularity assumptions on the exact solution. Our study covers well-
known models like the porous medium equation and the fast diffusion equations, as
well as the strongly degenerate Stefan problem. Several schemes are then compared
in a last section devoted to numerical results.
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2.1 Introduction

Degenerate parabolic equations appear as mathematical models for numerous real-
life applications, like reactive solute transport in porous media, water infiltration in
the vadose zone, geological CO2 sequestration, oil recovery, biological systems, or
phase transition problems. In the simplest form, one has

∂t u − �ζ(u) = f in (0, T ) × �,

ζ(u) = 0 on (0, T ) × ∂�,

u(0, ·) = uini on �.

(2.1)

With L∞ denoting the space of essentially bounded functions and ‖ · ‖∞ the corre-
sponding norm, throughout this chapter we assume the following.

(A0) T > 0 and� is a bounded connected open set ofRd (d ∈ N
∗) with Lipschitz

continuous boundary ∂�.
(A1) ζ : R → R is continuous, non-decreasing and satisfies ζ(0) = 0.
(A2) uini ∈ L∞(�) with M0 := ‖uini‖∞.
(A3) f ∈ L∞((0, T ] × �) with M f := ‖ f ‖∞.

As follows from (A1), ζ ′ may become zero, or unbounded for certain arguments u.
Consequently, the equation may degenerate from a parabolic equation into an elliptic
or an ordinary one. The degeneracy regions are not known a-priori, but depend on
the solution itself and may change in time.

One of themost representative example in this sense, the porous medium equation
(PME), appeared in the last century as a mathematical model for the flow of an ideal
gas in a porous medium. In this case one has

ζ(u) = |u|m−1u for some m > 1. (2.2)

Compared to the heat equation,which is obtained form = 1 and inwhich the equation
is linear and parabolic everywhere regardless of the data, if m > 1 the nonlinear
diffusive term vanishes if u = 0, and the equation degenerates. In particular, this
leads to the occurrence of free boundaries separating regions in�where u > 0 from
those where u ≤ 0. These free boundaries have an a-priori unknown location and
move in time with a finite speed, which is the reason for calling such cases as “slow
diffusion” ones.

Another remarkable example in the category of “slow diffusion” equations is the
Stefan problem, which models phase transition problems like melting or solidifica-
tion. In this case

ζ(u) =
{

u, if u < 0,
max{0, u − 1}, if u ≥ 1.

(2.3)

Though bounded, ζ ′ is vanishing on the entire interval (0, 1).
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A different situation appears when ζ is as in (2.2), but withm ∈ (0, 1). In this case
no free boundaries occur, but ζ ′ → ∞ whenever u → 0 so the diffusion coefficient
becomes unbounded. This equation is also known as generalized porous medium
equation (GPME), and one speaks about a “fast diffusion”. It can appear as a math-
ematical model for reactive transport in porous media, for equilibrium kinetics (see
[5]). We also refer to Chap. 3 for the description of a more complex degenerate
parabolic model of two-phase flows. See also Chap. 7 for a numerical analysis of the
Richard’s equation, which is strongly related to the Stefan model.

The degeneracy has direct impact on the regularity of the solutions. Unlike the
regular parabolic case, the solutions to degenerate parabolic problems have lower
regularity, and the singularities are not smoothed out but may even develop in time.
Such effects are particularly encountered at the free boundaries. The lack of regularity
motivates the introduction of a notion of weak solution.

We use standard notations and function spaces in the functional analysis: L2(�),
L∞(�), H 1

0 (�), or its dual H−1(�). Whenever obvious, the domain � is left out.
With X being one of the spaces before, L2(0, T ; X) is the space of X -valued measur-
able functions that are square integrable in the sense of Bochner.We let (·, ·) stand for
the inner product on L2(�), or the duality pairing between H 1

0 (�) and H−1(�), and
‖ · ‖ for the norm in L2(�), or the straightforward extension to L2(�)d , and ‖ · ‖∞
is the L∞ norm in� or in (0, T ] × �. We will often write u or u(t) instead of u(t, x)

and use C to denote a generic positive constant independent of the discretisation
parameters or the function itself.

We start by defining a weak solution for (2.1):

Definition 2.1 A weak solution to (2.1) is a measurable function u : (0, T ) ×
� → R such that u ∈ H 1(0, T ; H−1(�)), ζ(u) ∈ L2(0, T ; H 1

0 (�)), u(0) = uini in
H−1(�) and, for a.e. t ∈ (0, T ] and for all v ∈ H 1

0 (�), it holds

(∂t u(t), v) + (∇ζ(u(t)),∇v) = ( f (t), v). (2.4)

The existence and uniqueness of a weak solution to (2.1) is proved e.g. in [1]
and [42] in the case where ζ is increasing. If ζ is merely nondecreasing, existence
and uniqueness still hold, see e.g. [14], as well as [44]. As already suggested, the
degenerate aspect of the problem makes the usual regularity theory for parabolic
problems (see for instance [35]) fail. What is kept is mainly the following:

• Maximum principle: the solution u belongs to L∞((0, T ] × �), with

‖u‖∞ ≤ M0 + T M f . (2.5)

• Energy estimate: Consider the primitive of ζ defined by � : R → R, �(v) =∫ v
0 ζ(z)dz. � is convex and positive and one has

∫
�

�(u(t)) + 1

2

∫ t

0

∫
�

|∇ζ(s)|2 ≤
∫

�

�(uini) + 1

2
‖ f ‖2L2(0,T ;H−1(�)). (2.6)

http://dx.doi.org/10.1007/978-3-030-69363-3_3
http://dx.doi.org/10.1007/978-3-030-69363-3_7
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• Continuity of ζ(u): it is shown in [54] under quite general assumptions on ζ

(including caseswhere ζ is constant on an interval) that ζ(u) belongs toC((0, T ] ×
�). In the casewhere ζ is increasing (thus invertible), one gets that u ∈ C((0, T ] ×
�) too. Because of the degeneracy of the problem, this estimate is not enough to
initiate a bootstrap to recover the usual parabolic regularity theory.

• Time continuity of u: even if ζ is not invertible, one can still give a (weaker)
sense to u(t) as a function (and not only as a distribution in H−1 as suggested by
Definition 2.1). Indeed, u ∈ C([0, T ]; L p(�)) for all p ∈ [1,+∞) thanks to [10].

Further regularity results in the PME case where ζ(u) = |u|m−1u (or more generally
when ζ is increasing) can be found in the monographs [49, 50] (see also [36] for the
local Hölder continuity), while the Stefan problem is extensively discussed in [39].

The literature on the numerical approximation of degenerate parabolic equations
is extremely rich. Often, the numerical scheme are including a regularisation step,
that is used to deal with the lack of regularity of the solution to degenerate problems.
Whenever regularisation is involved, this is mostly obtained through a perturbation
ζε of ζ , of which derivative is bounded away from 0 from below and from infinity
from above (see e.g. [41]). Alternatively, one can exploit the maximum principle and
perturb the boundary and initial data in such a way that the solution stays away from
values at which degeneracy is encountered.

Concerning various specific numerical schemes, we mention that often the time
stepping is of first order. In particular Euler implicit or semi-implicit methods are
popular, and this is due to the lack in regularity of the solution. For the spatial
discretisation we mention the conformal finite element schemes analysed e.g. in
[41] for the slow diffusion, or in [5] for the fast diffusion. The convergence of the
mixed finite element discretisation is proved in [4, 52] for the slow diffusion case,
and for a range allowing for both kind of degeneracies in [48]. We also mention
[53] for the analysis of a scheme combining mortars with mixed finite elements.
These papers are proving the convergence of the scheme by obtaining a-priori error
estimates rigorously. The convergence of finite volume schemes is proved in [2, 3,
28, 30] bymeans of compactness arguments, and in [29] for a finite volume phase-by-
phase upstream weighting. Error estimates are obtained in [34] for a multipoint flux
approximation scheme by using the equivalence with a mixed finite element scheme,
and in [45] for the simplest two-point approximation in the slow diffusion case, but
under minimal regularity assumptions. Discontinuous Galerkin schemes for porous
media flow models leading to degenerate parabolic equations are analysed e.g. in
[25, 26]. To conclude this paragraph, we mention that a-posteriori error estimates
for degenerate problems related to porous media flows are derived in [13, 51].

The goal of this chapter is to study in a general way a large class of numerical
approximation of (2.1), entering the framework of the so-called Gradient Discreti-
sation Method (GDM) [22]. This general framework is detailed in Sect. 2.3. The
ideas used in the numerical analysis below apply to methods which are energetically
stable (i.e., a discrete counterparts of (2.6) holds). Our approach does not require
any monotonicity properties of the approximation, like the maximum principle. This
choice is due to the fact that proving the maximum principle (2.5), as well as the
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(time-)continuity for ζ(u) and u, relies strongly on the monotonicity of Eq. (2.1),
which also extends to the time-discrete case but not to the fully discrete case provided
by the GDM. We mention that the convergence of the GDM for a class of problems
covering (2.1) when ζ is Lipschitz-continuous is obtained in [20, 27] by means of
compactness arguments; this convergence was extended in [24] to the cases of slow
and fast diffusion porous medium equations (for which ζ is not Lipschitz continu-
ous). The aim here is to extend such results by providing a-priori error estimates.
Note that the GDM for the stationary version of (2.1) is analysed in Chap. 1.

Remark 2.1 The present results can be adapted without any particular further diffi-
culty to the case of problems with anisotropy of the form

∂t u − ∇ · (�∇ζ(u)) = f in (0, T ) × �,

where � ∈ L∞(�;Rd×d) is a symmetric definite positive tensor field, i.e., �(x) =
�(x)T and there exists λm, λM > 0 such that

λm |v|2 ≤ �(x)v · v ≤ λM |v|2, x ∈ �, v ∈ R
d .

The paper is organised as follows. Section 2.2 is introducing the sequence of
time discrete in time problems. The time discretisation relies on the backward Euler
scheme and is thus very standard. The a-priori error estimates for the time discretisa-
tion are deeply inspired from [38], and do not require any regularity assumption on
the exact solution. Section 2.3 is devoted to the fully discrete setting. This encom-
passes the definition of the notions ofGradient Discretisation andGradient Scheme,
which were introduced in [23] and further developed in the monograph [22]. The
main result is an error estimate for any scheme entering this general framework of the
GDM.To this purpose, reasonable extra regularity slightly overpassing the aforemen-
tioned regularity results rigorously established in the literature will be assumed on
the solution u. Finally, several numerical schemes are compared in Sect. 2.4; these
schemes consist of the Locally Enriched Non-Conforming Polytopal scheme, the
Hybrid Mimetic Mixed method, two versions of the Vertex Approximate Gradient
scheme, the mass-lumped P

1 Finite Element scheme, the Hybridizable Discontinu-
ous Galerkin scheme, and the Conforming Virtual Element Method.

2.2 Time Discrete Problem

Our purpose in this section is to show how to derive an error estimate using only
minimal regularity assumptions for time-discrete approximations of (2.1). To this
end, we first establish some a-priori estimates on the time-discrete solution. This
section shall be seen as a first step towards the derivation of the fully discrete error
estimate of Theorem 2.3.

http://dx.doi.org/10.1007/978-3-030-69363-3_1
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2.2.1 The Time Discretisation

In view of the low regularity of the solution, we only consider first order time
discretisation schemes. To this aim we consider a sequence of times 0 = t (0) <

t (1) < · · · < t (N ) = T (N ∈ N
∗) and define the time steps δt (n+ 1

2 ) = t (n+1) − t (n)

(n ∈ {0, . . . , N − 1}). We let u(n) be a time discrete approximation of u(t (n)). To
define a weak solution to the time-discrete problems we use the set X0 := {u ∈
L2(�) : ζ(u) ∈ H 1

0 (�)}. The Euler implicit discretisation of (2.4) consists in find-
ing a sequence of solutions to the time discrete problems, as defined in

Definition 2.2 (Time discrete problem) Set u(0) = uini. With n ∈ {0, . . . , N − 1},
given u(n) ∈ X0, a weak solution u(n+1) ∈ X0 to the time discrete problem at time
step t (n+1) satisfies, for all v ∈ H 1

0 (�),

(u(n+1), v) + δt (n+ 1
2 )(∇ζ(u(n+1)),∇v) = (u(n), v) + δt (n+ 1

2 )( f (n+1), v), (2.7)

where f (n+1)(x) = 1

δt (n+ 1
2 )

∫ t (n+1)

t (n) f (s, x) ds.

Theorem 2.1 (Existence and uniqueness of a solution to the time discrete prob-
lem) There exists a unique family (u(n))n=0,...,N solution to the time discrete problem
in the sense of Definition 2.2.

Proof Follows by applying [21, Theorem A.1] to solve, at each step, the non-linear
elliptic problem w − δt (n+ 1

2 )�ζ(w) = u(n) + δt (n+ 1
2 ) f (n+1). �

2.2.2 A-Priori Estimates

Our goal is to provide a fully discrete error analysis for numerical schemes for (2.1).
For ease of legibility, we start by discussing some properties of the time discrete,
Euler implicit discretisation in (2.7). In doing so, we follow the ideas in [38], where
the convergence of a linear, time discrete scheme is proved for a class of problems
that includes (2.1).

We start with a remark on the essential boundedness of a solution. This property is
physically justified for many of the applications that can bemodelledmathematically
in the form of (2.1) (e.g. the gas flow in porousmedia flows, or the reactive transport).
In this context, the essential boundedness is inherited by the time discrete solutions,
which satisfy a maximum principle. However, since this property does not extend
to the fully discrete cases excepting some particular finite element or finite volume
discretisation, we will avoid using it below.

Assuming that the initial data and the source term are both essentially bounded,
as stated in Assumptions (A2) and (A3), one has

Lemma 2.1 Assume u(n) ∈ X0 is such that ‖u(n)‖∞ ≤ M0 + M f t (n). Then the solu-
tion u(n+1) of (2.7) satisfies ‖u(n+1)‖∞ ≤ M0 + M f t (n+1).
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These estimates are obtained straightforwardly by testing in (2.7) with v =
[ζ(u(n+1)) − ζ(M0 + M f t (n+1))]+, and with v = [ζ(u(n+1)) + ζ(M0 + M f t (n+1))]−
(with [s]+ = max(s, 0) and [s]− = min(s, 0)). We omit the details.

We state some elementary results that are used below, and which are valid for all
set of vectors an, bn ∈ R

d (d ≥ 1), n ∈ {0, . . . ,m}.

2
m∑

n=1

an · (an − an−1) = |am |2 − |a0|2 +
m∑

n=1

|an − an−1|2, (2.8)

2
m∑

n=0

n∑
j=0

an · a j =
∣∣∣∣∣

m∑
n=0

an

∣∣∣∣∣
2

+
m∑

n=0

|an|2, (2.9)

m∑
n=1

an · (bn − bn−1) = am · bm − a0 · b0 −
m∑

n=1

(an − an−1) · bn−1. (2.10)

Further, with the convex, positive primitive � of ζ appearing in (2.6), a classical
convexity relation yields

(b − a)ζ(b) ≥ �(b) − �(a) , ∀a, b ∈ R. (2.11)

Finally, we state for completeness the Young inequality, valid for any a, b ∈ R

and ε > 0,

ab ≤ 1

2ε
a2 + ε

2
b2. (2.12)

The stability of the time discrete scheme is stated in

Lemma 2.2 Let (u(n+1))n=0,...,N−1 be the sequence of time discrete solutions intro-
duced in Definition 2.2. Then,

N−1∑
n=0

δt (n+ 1
2 )‖∇ζ(u(n+1))‖2 ≤ C. (2.13)

Proof Taking in (2.7) v = ζ(u(n+1)) gives

(u(n+1) − u(n), ζ(u(n+1))) + δt (n+ 1
2 )‖∇ζ(u(n+1))‖2

= δt (n+ 1
2 )( f (n+1), ζ(u(n+1))). (2.14)

For the first term one uses (2.11) to obtain

(u(n+1) − u(n), ζ(u(n+1))) ≥
∫

�

�(u(n+1)) − �(u(n)) dx . (2.15)
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The second term needs no further discussion, whereas for the term on the right one
obtains

δt (n+ 1
2 )|( f (n+1), ζ(u(n+1)))|

≤ δt (n+ 1
2 )

2
‖ f (n+1)‖2H−1(�) + δt (n+ 1

2 )

2
‖∇ζ(u(n+1))‖2. (2.16)

Using (2.15) and (2.16) into (2.14) and summing the resulting relation over n ∈
{1, . . . , N − 1} yields

∫
�

�(u(n+1)) + 1

2

N−1∑
n=0

δt (n+ 1
2 )‖∇ζ(u(n+1))‖2

≤
∫

�

�(u(0)) +
N−1∑
n=0

δt (n+ 1
2 )

2
‖ f (n+1)‖2H−1(�). (2.17)

The first term on the right is bounded due toAssumption (A2). For the second term on
the right one uses Assumption (A3) and the fact that L∞((0, T ) × �) is continuously
embedded into L2(0, T ; H−1(�)), to obtain a uniform bound w.r.t. N . Since � is a
positive function, the first term on the left is positive, which provides (2.13). �

Remark 2.2 (Other estimates) Other a-priori estimates can be obtained if further
assumptions are made on ζ and on the initial data. For example, if ζ is Lipschitz and
ζ(uini) ∈ H 1

0 (�), then one can prove that ‖∇ζ(u)‖ and ‖∇ζ(u(n))‖ are uniformly
bounded (w.r.t. t , respectivelyn) and obtain L2 estimates for ∂tζ(u)or its timediscrete
counterpart.

2.2.3 Error Estimates, Time Discrete Case

We now establish error estimates for the time discrete scheme. The proof follows the
lines of [38, Sect. 4]. We use the following notations for the errors

eu(t) := u(t) − u(n+1),

eζ (t) := ζ(u(t)) − ζ(u(n+1)),

for t ∈ (t (n), t (n+1)] and n ∈ {0, . . . , N − 1}. With this, one has

Theorem 2.2 Let u be the solution in Definition 2.1, and (u(n+1))n=0,...,N−1 be the
sequence of solutions to the time discrete problems in Definition 2.2. Setting δt =
maxn∈{0,...,N−1} δt (n+ 1

2 ), one has

max
n∈{0,...,N−1} ‖eu(t

(n+1))‖2H−1(�) +
∫ T

0

(
eu(t), eζ (t)

)
dt ≤ Cδt. (2.18)
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Remark 2.3 Although the second term in (2.18) is not a proper norm, it can generate
an error estimate in a certain norm whenever the particular form of ζ is taken into
account. This idea is exploited, in the fully discrete setting, in Corollary 2.1 below.
Moreover, as for the a-priori estimates, under additional assumptions on ζ one can
get L2 error estimates for either ζ(u) (if ζ is Lipschitz continuous, as appearing in
the slow diffusion case) or u (if ζ is bijective and its inverse Lipschitz, as appearing
in the fast diffusion case).

Proof Before giving the proof we observe that, due to the monotonicity of ζ , the
second term in (2.18) is positive.

With j ∈ {0, . . . , N − 1} we integrate (2.4) in time for t ∈ (t ( j), t ( j+1)] and sub-
tract (2.7) for n = j to obtain

(eu(t
( j+1)) − eu(t

( j)), v) +
(

∇
∫ t ( j+1)

t ( j)
eζ (t)dt,∇v

)
= 0,

for all v ∈ H 1
0 (�). After summation over j ∈ {0, . . . , p} for some p ∈ {0, . . . , N −

1}, this yields

(
eu(t

(p+1)), v
)+

(
∇
∫ t (p+1)

0
eζ (t)dt,∇v

)
= 0, (2.19)

for all v ∈ H 1
0 (�). Taking v = ∫ t (p+1)

t (p) eζ (t)dt in the above equation provides

(
eu(t

(p+1)),

∫ t (p+1)

t (p)
eζ (t)dt

)

+
p∑

j=0

(
∇
∫ t ( j+1)

t ( j)
eζ (t)dt,∇

∫ t (p+1)

t (p)
eζ (t)dt

)
= 0. (2.20)

Fixing n ∈ {0, . . . , N − 1}, we sum (2.20) over p ∈ {0, . . . , n} and obtain

=:I1︷ ︸︸ ︷
n∑

p=0

(
eu(t

(p+1)),

∫ t (p+1)

t (p)
eζ (t)dt

)

+
n∑

p=0

p∑
j=0

(
∇
∫ t ( j+1)

t ( j)
eζ (t)dt,∇

∫ t (p+1)

t (p)
eζ (t)dt

)

︸ ︷︷ ︸
=:I2

= 0. (2.21)
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The first term can be rewritten as

I1 =
∫ t (n+1)

0

(
eu(t), eζ (t)

)
dt

︸ ︷︷ ︸
=:I11

+
n∑

p=0

∫ t (p+1)

t (p)

(
u(t (p+1)) − u(t), eζ (t)

)
dt

︸ ︷︷ ︸
=:I12

. (2.22)

Being positive, I11 needs no further handling. For I12 we write

u(t (p+1)) − u(t) =
∫ t (p+1)

t
∂suds

to obtain

|I12| =
∣∣∣∣∣∣

n∑
p=0

∫ t (p+1)

t (p)

(∫ t (p+1)

t
∂suds, eζ (t)

)
dt

∣∣∣∣∣∣
≤
(

max
n∈{0,...,N−1} δt

(n+ 1
2 )

)
‖∂t u‖L2(0,T ;H−1(�))‖∇eζ ‖L2(0,T ;L2(�)).

The regularity of the weak solution prescribed in Definition 2.1 and the a-priori esti-
mate (2.13) ensure the existence of a C > 0 not depending on the time discretisation
so that

‖∂t u‖L2(0,T ;H−1(�)) ≤ C, ‖∇eζ ‖L2(0,T ;L2(�)) ≤ C.

As a consequence, we obtain that

|I12| ≤ Cδt. (2.23)

Finally, using (2.9), I2 is nonnegative and can be underestimated by

I2 ≥ 1

2

∥∥∥∥∥∇
∫ t (n+1)

0
eζ (t)dt

∥∥∥∥∥
2

. (2.24)

Since n was chosen arbitrarily, using (2.22)–(2.24) in (2.21) yields

∫ T

0

(
eu(t), eζ (t)

)
dt + max

n∈{0,...,N−1}

∥∥∥∥∥∇
∫ t (n+1)

0
eζ (t)dt

∥∥∥∥∥
2

≤ Cδt. (2.25)
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To complete the proof of Theorem 2.2 one needs to estimate ‖eu‖H−1(�). This
follows straightforwardly from (2.19). For all v ∈ H 1

0 (�) such that ‖v‖H 1
0 (�) ≤ 1,

the Cauchy–Schwarz inequality yields

(
eu(t

(p+1)), v
) = −

(
∇
∫ t (p+1)

0
eζ (t)dt,∇v

)
≤
∥∥∥∥∥∇

∫ t (p+1)

0
eζ (t)dt

∥∥∥∥∥ .

Taking the supremum over such v, squaring and using (2.25) we infer

‖eu(t (p+1))‖2H−1(�) ≤ Cδt

and the proof is complete. �

2.3 Gradient Discretisation Method and Generic Error
Estimate

2.3.1 Definition of the Gradient Scheme

The principle of the GDM is to replace, in the weak formulation of the problem, the
continuous space and differential operators by discrete ones. To this aim a discrete
space and function/gradient reconstructions on this space are used. Altogether these
form a gradient discretisation (GD), denoted byD. In general, very few assumptions
are made on the GD [22]. However, to deal with the non-linearity in (2.1) we will
need, in a similar way as in [21], to consider nodal gradient discretisationswith piece-
wise constant reconstructions, and that also contain the definition of an interpolator.
Therefore, we take D = (XD,0,�D,∇D, ID) with

• (Space) XD,0 = {v = (vi )i∈I : vi = 0 for all i ∈ I∂}, where I is a finite set and
I∂ ⊂ I identifies the boundary degrees of freedom.

• (Function reconstruction) There is a partition (Ui )i∈I of � such that, for all v =
(vi )i∈I ∈ XD,0, the reconstructed function �Dv ∈ L∞(�) is defined by

�Dv =
∑
i∈I

vi1Ui , (2.26)

where 1Ui is the characteristic function of Ui .
• (Gradient reconstruction) ∇D : XD,0 → L2(�)d is a linear operator such that
v 
→ ‖∇Dv‖ is a norm on XD,0.

• (Interpolator) The components (vi )i∈i of v ∈ XD,0 represent values at points
(xi )i∈�, with xi ∈ Ui for all i ∈ I and xi ∈ ∂� whenever i ∈ I∂ . With Cpw,0(�)

the set of piecewise continuous functions on � that have a zero limit on ∂�, we
define the interpolator ID : Cpw,0(�) → XD,0 such that
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(IDφ)i = ess-limsup
x→xi , x∈Ui

φ(x), for all i ∈ I, (2.27)

where
ess-limsup
x→xi , x∈Ui

φ(x) = lim
ε→0

ess-sup
B(xi ,ε)∩Ui

φ.

The fact that the function reconstruction is piecewise constant enables us to define,
for g : R → R with g(0) = 0 and v ∈ XD,0, the element g(v) ∈ XD,0 by applying
g to each nodal value: if v = (vi )i∈I , we set g(v) = (g(vi ))i∈I . It then holds

�Dg(v) = g(�Dv) , ∀v ∈ XD,0. (2.28)

The subtle choice for the definition of the interpolator is motivated by the following
points. Since our study covers the Stefan problem, whose solution might be discon-
tinuous, there is a real need to define an interpolator that allows for merely piecewise
continuous functions. If φ is continuous, say φ ∈ C0(�), then

ess-limsup
x→xi , x∈Ui

φ(x) = φ(xi ), for all i ∈ I.

Therefore, for any continuous function g : R → R and φ ∈ C0(�),

IDg(φ) = g(IDφ). (2.29)

When φ is only piecewise continuous, then the definition (2.27) of the interpolator
ensures that (2.29) still holds as soon as g is continuous and nondecreasing.

We can now define the gradient scheme for (2.1) with implicit time stepping.
It is obtained from (2.7) using the discrete space for trial and test functions, and
replacing the functions and gradients by the corresponding reconstructions. This
gives a sequence of fully discrete, nonlinear algebraic problems, obtained for n ∈
{0, . . . , N − 1} and starting with u(0) = IDuini.

Problem P(n+1)
D : Given u(n) ∈ XD,0, find u(n+1) ∈ XD,0 such that

∫
�

�D(u(n+1) − u(n))�Dv

+δt (n+ 1
2 )

∫
�

∇Dζ(u(n+1)) · ∇Dv = δt (n+ 1
2 )

∫
�

f (n+1)�Dv (2.30)

for all v ∈ XD,0, where f (n+1) is introduced in Definition 2.2.
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Proposition 2.1 (Existence and uniqueness of a solution to the gradient scheme
[21, Lemma 2.7]) There exists a solution u = (u(n))n=0,...,N to the gradient scheme
and, if u1, u2 ∈ XN+1

D,0 are two solutions to this scheme, then ζ(u1) = ζ(u2) and
�Du1 = �Du2.

Remark 2.4 (Limit to the uniqueness) If ζ is strictly increasing, then we have com-
plete uniqueness of the solution: u1 = u2. However, when ζ has a plateau this unique-
ness may fail [21, Remark 2.8].

The accuracy of a GD is measured through three quantities: a discrete Poincaré
constant CD (yielding the coercivity of the method), a measure of the defect of the
discrete Stokes formula WD (associated with the limit-conformity of the method),
and a measure of the interpolation error SD (which, when it tends to zero, yields the
consistency of the method). The discrete Poincaré constant is

CD = max
v∈XD,0\{0}

‖�Dv‖
‖∇Dv‖ . (2.31)

The measure of the defect of the discrete Stokes formula isWD : Hdiv(�) → [0,∞)

where, for all ψ ∈ Hdiv(�) (that is, ψ ∈ L2(�)d and divψ ∈ L2(�)),

WD(ψ) := max
v∈XD,0\{0}

1

‖∇Dv‖
∣∣∣∣
∫

�

�Dvdivψ + ∇Dv · ψ

∣∣∣∣ . (2.32)

In the GDM, the interpolation error usually involves L2-errors in both function and
gradient approximation. However, for time-dependent problems such as (2.1), it will
be more efficient to use a weaker norm for the function approximation. We define
the discrete H−1-seminorm by: for φ ∈ L2(�),

|φ|D,∗ := max

{∫
�

φ�Dv : v ∈ XD,0 , ‖∇Dv‖ ≤ 1

}
. (2.33)

We then set, for φ ∈ Cpw,0(�) and ψ ∈ C0(�) ∩ H 1
0 (�),

S�,∗
D (φ) = |�D IDφ − φ|D,∗ and S∇

D(ψ) = ‖∇D IDψ − ∇ψ‖. (2.34)

2.3.2 A-Priori Estimates

We start with the observation that some properties of the solution to the original
problem (2.1), or its time discrete counterpart, are not preserved by the gradient
scheme (2.30). In particular we refer to the maximum principle (see Lemma 2.1),
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which in the spatially-continuous case is obtained by testing with a cut-off function.
However, in the spatially-discrete case the cut-off of an element in the finite dimen-
sional spacemay not belong to that space anymore, since the transition from negative
to positive values does not necessarily happen at edges or nodes. In the generic GDM
framework, to obtain a-priori estimates we are therefore restricted to using in (2.30)
test functions that are affine functions of ζ(u(n+1)); we howevermention that schemes
allowing to take nonlinear functions are designed and analysed in [9, 11, 12].

The following lemma extends the estimates in Lemma 2.2 to the fully discrete
case.

Lemma 2.3 For the sequence of fully discrete solutions of (2.30) it holds

N−1∑
n=0

δt (n+ 1
2 )‖∇Dζ(u(n+1))‖2

≤ C2
D‖ f ‖2L2(0,T ;L2(�)) + 2‖�(�Du(0))‖L1(�). (2.35)

Proof Choosing v = ζ(u(n+1)) in (2.30) leads, for all n ∈ {0, . . . , N − 1}, to
∫

�

�D(u(n+1) − u(n))�Dζ(u(n+1))

+δt (n+ 1
2 )

∫
�

∣∣∇Dζ(u(n+1))
∣∣2 = δt (n+ 1

2 )

∫
�

f (n+1)�Dζ(u(n+1)). (2.36)

Using (2.28) and the convexity inequality (2.11), we have

∫
�

�D(u(n+1) − u(n))�Dζ(u(n+1)) =
∫

�

(�Du(n+1) − �Du(n))ζ(�Du(n+1))

≥
∫

�

(�(�Du(n+1)) − �(�Du(n))). (2.37)

The right-hand side of (2.36) can be estimated thanks to Young and discrete Poincaré
inequalities as follows:

∫
�

f (n+1)�Dζ(u(n+1)) ≤ C2
D
2

‖ f (n+1)‖2 + 1

2C2
D

‖�Dζ(u(n+1))‖2

≤ C2
D
2

‖ f (n+1)‖2 + 1

2
‖∇Dζ(u(n+1))‖2. (2.38)

Combining (2.37) and (2.38) in (2.36), summing over n ∈ {0, . . . , N − 1}, and using
� ≥ 0, the proof of (2.35) is complete. �
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2.3.3 Error Estimate

With I nDu = IDu(t (n)) for n ∈ {0, . . . , N }, we define the errors in XD,0:

e(n)

D,u := u(n)

D − I nDu,

e(n)

D,ζ := ζ(u(n)

D ) − I nDζ(u),

as well as, for n ∈ {1, . . . , N },

ε
(n)

D,ζ :=
n∑

p=1

δt (p−
1
2 )e(p)

D,ζ .

The error estimates for the fully discrete approximation is stated in the following
theorem, whose proof is carried out in Sect. 2.3.4.

Theorem 2.3 (GDM error estimate for degenerate parabolic problem) Assume
that the solution u of (2.1) satisfies u(t, ·) ∈ Cpw,0(�) for all t ∈ [0, T ], ζ(u) ∈
C([0, T ];C0(�) ∩ H 1

0 (�)), and ∇ζ(u) ∈ C([0, T ]; Hdiv(�)). Then, there exists a
universal constant K , depending neither on the data of the continuous problem nor
on the discretisation parameters, such that

max
1≤n≤N

∣∣∣�De
(n)

D,u

∣∣∣2
D,∗

+ max
1≤n≤N

∥∥∥∇Dε
(n)

D,ζ

∥∥∥2

+
N−1∑
n=0

δt (n+ 1
2 )(�De

(n+1)
D,u ,�De

(n+1)
D,ζ ) ≤ K (1 + T )ED(u)2, (2.39)

where

ED(u)2 =
N−1∑
n=0

δt (n+ 1
2 )En

D(u)2 (2.40)

with, for n ∈ {0, . . . , N − 1},

En
D(u) :=

∣∣∣∣∣
1

δt (n+ 1
2 )

∫ t (n+1)

t (n)

�ζ(u(s)) ds − �ζ(u(t (n+1)))

∣∣∣∣∣
D,∗

+ S�,∗
D

(
u(t (n+1)) − u(t (n))

δt (n+ 1
2 )

)
+ S∇

D(ζ(u(t (n+1))))

+ WD(∇ζ(u(t (n+1)))). (2.41)

Due to the non-decreasing property of ζ and to (2.28) and (2.29), each term in the
sum in the left-hand side of (2.39) is non-negative.
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Remark 2.5 (Expected rates of convergence) Under regularity assumptions on u, a
rate of convergence in terms of time and mesh sizes can be obtained on ED(u).
Specifically, if ζ(u) ∈ C([0, T ]; H 2(�)), ∂t u ∈ L∞(0, T ; H 1

0 (�)) and �ζ(u) ∈
W 1,∞(0, T ; L2(�)), following the techniques in [22, Sect. 7.4] and using |φ|D,∗ ≤
CD‖φ‖ it can be proved, for all usual low-order gradient discretisations based on
meshes of maximum size h (which include all schemes used in Sect. 2.4 except VAG-
b), that En

D(u) ≤ Cu((1 + CD)δt (n+ 1
2 ) + h), where Cu only depends on u. Hence, in

this situation and setting δt = maxn∈{0,...,N−1} δt (n+ 1
2 ), we have

ED(u) ≤ T
1
2Cu((1 + CD)δt + h).

Remark 2.6 For the slow diffusion case and under the regularity stated in Definition
2.1, error estimates for a simple, two-point flux approximation scheme (which fits
in the GDM framework) are obtained in [45]. The approach there consists in using
a discrete Green function to estimate the error for the fully discrete approximation
of the sequence of time discrete approximations (Definition 2.2). This approach
involves a regularisation step, which we avoid here by using a different strategy.

For the nonlinearities appearing in theStefan andporousmediumequations, (2.39)
leads to the following error estimates on more natural quantities.

Corollary 2.1 (Estimate for the Stefan equation and the PME) Under the
assumptions and notations in Theorem 2.3, the following holds.

• (Stefan equation) Assume that ζ is Lipschitz-continuous with Lipschitz constant
Lζ . Then,

(
N−1∑
n=0

δt (n+ 1
2 )‖ζ(�Du(n+1)) − ζ(�D I n+1

D u)‖2
) 1

2

≤ (K (1 + T )Lζ )
1
2 ED(u). (2.42)

• (Slow diffusion PME) Let ζ(s) = |s|m−1s with m ≥ 1. Then, there exists Cm > 0
depending only on m such that

(
N−1∑
n=0

δt (n+ 1
2 )‖�Du(n+1) − �D I n+1

D u‖m+1
Lm+1(�)

) 1
m+1

≤ CmT
1

m+1 ED(u)
2

m+1 . (2.43)

• (Fast diffusion PME) Let ζ(s) = |s|m−1s with m < 1. Then, there exists Cm > 0
depending only on m such that
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(
N−1∑
n=0

δt (n+ 1
2 )‖ζ(�Du(n+1)) − ζ(�D I n+1

D u)‖ m+1
m

L
m+1
m (�)

) m
m+1

≤ CmT
m

m+1 ED(u)
2m
m+1 . (2.44)

Proof (Corollary 2.1) Stefan equation. Since ζ is a Lipschitz-continuous and non-
decreasing function, we have

|ζ(a) − ζ(b)|2 ≤ |ζ(a) − ζ(b)|Lζ |a − b| = Lζ (ζ(a) − ζ(b))(a − b) , ∀a, b ∈ R.

Used in (2.39), this relation proves (2.42).
Slow diffusion PME. We first prove that, for some km > 0,

|a − b|m+1 ≤ km(|a|m−1a − |b|m−1b)(a − b) , ∀a, b ∈ R. (2.45)

The case for b = 0 is trivial and reduces to km ≥ 1. Consider b �= 0 and set s =
a/b. To establish (2.45), we have to prove that |s − 1|m+1 ≤ km(|s|m−1s − 1)(s −
1), which reduces to |s − 1|m ≤ cm | |s|m−1s − 1|. The function s 
→ |s−1|m

| |s|m−1s−1| is
continuous on R (use a Taylor expansion about s = 1 to deal with the singularity)
and has limit 1 at ±∞. It is therefore bounded, which proves the required estimate.

Using (2.45) in (2.39), the estimate (2.43) follows.

Fast diffusion PME. Let a′, b′ ∈ R and apply (2.45) with 1
m > 1 instead of m

and a = ζ(a′) = |a′|m−1a′, b = ζ(b′) = |b′|m−1b′. Noting that |a| 1
m −1a = a′ and

|b| 1
m −1b = b′, we infer

|ζ(a′) − ζ(b′)| 1
m +1 ≤ k1/m(a′ − b′)(ζ(a′) − ζ(b′)).

Used in (2.39) this establishes (2.44). �

2.3.4 Proof of Theorem 2.3

We follow the approach of [17] which consists in identifying an error equation on
the discrete solution and the interpolate of the continuous solution, and estimating a
consistency error.

To identify the error equation we introduce the interpolates of the exact solution
and use (2.30) to obtain, for all j ∈ {0, . . . , N − 1},

∫
�

�D
(
e( j+1)
D,u − e( j)

D,u

)
�Dv + δt ( j+

1
2 )

∫
�

∇De
( j+1)
D,ζ · ∇Dv = E

j
D(v), (2.46)
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and all v ∈ XD,0, where the consistency error is defined by

E
j
D(v) := δt ( j+

1
2 )

∫
�

f ( j+1)�Dv −
∫

�

[
�D I j+1

D u − �D I j
Du
]
�Dv

−δt ( j+
1
2 )

∫
�

∇Dζ(I j+1
D u) · ∇Dv.

(2.47)

This is a linear form En
D : XD,0 → R. Its boundedness is established in

Lemma 2.4 For all v ∈ XD,0 and n ∈ {0, . . . , N − 1}, there holds

|En
D(v)| ≤ δt (n+ 1

2 )En
D(u)‖∇Dv‖. (2.48)

Proof Recalling (2.34), �D I n+1
D u − �D I nDu can be replaced by u(t (n+1)) − u(t (n))

in (2.47) with a cost measured by S�,∗
D . Specifically, by the definition of the discrete

H−1-seminorm in (2.33) we have

∣∣∣∣
∫

�

φ�Dv
∣∣∣∣ ≤ |φ|D,∗ ‖∇Dv‖ ∀φ ∈ L2(�) , ∀v ∈ XD,0, (2.49)

and thus, since I kDu = ID(u(t (k))) for k = n, n + 1,

∣∣∣
∫

�

[
�D I n+1

D u − �D I nDu
]
�Dv −

∫
�

[
u(t (n+1)) − u(t (n))

]
�Dv

∣∣∣
=
∣∣∣
∫

�

[
�D ID

(
u(t (n+1)) − u(t (n))

)− (
u(t (n+1)) − u(t (n))

)]
�Dv

∣∣∣
≤ S�,∗

D (u(t (n+1)) − u(t (n)))‖∇Dv‖.

Similarly, replacing ∇Dζ(I n+1
D u) = ∇D IDζ(u(t (n+1))) (see (2.29)) with

∇ζ(u(t (n+1))) incurs a cost measured by S∇
D(ζ(u(t (n+1)))):

∣∣∣∣
∫

�

∇Dζ(I n+1
D u) · ∇Dv −

∫
�

∇ζ(u(t (n+1))) · ∇Dv
∣∣∣∣ ≤ S∇

D(ζ(u(t (n+1))))‖∇Dv‖.

Hence,

En
D(v) = δt (n+ 1

2 )

∫
�

f (n+1)�Dv

−
∫

�

[
u(t (n+1)) − u(t (n))

]
�Dv − δt (n+ 1

2 )

∫
�

∇ζ(u(t (n+1))) · ∇Dv

+O1

[
S�,∗
D (u(t (n+1)) − u(t (n))) + δt (n+ 1

2 )S∇
D(ζ(u(t (n+1))))

]
‖∇Dv‖
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where, here and in the following, O1(X) denotes a generic function such that
|O1(X)| ≤ |X |. Now, by definition of WD(∇ζ(u(t (n+1)))),

∣∣∣∣
∫

�

∇ζ(u(t (n+1))) · ∇Dv + �ζ(u(t (n+1)))�Dv
∣∣∣∣ ≤ WD(∇ζ(u(t (n+1))))‖∇Dv‖

and thus, writing u(t (n+1)) − u(t (n)) = ∫ t (n+1)

t (n) ∂t u(s) ds (which is valid since the
equation (2.1) and the regularity∇ζ(u) ∈ C([0, T ]; Hdiv(�)) imply ∂t u ∈ C([0, T ];
L2(�))) and recalling the definition of f (n+1),

En
D(v) =

∫
�

[∫ t (n+1)

t (n)

( f − ∂t u)(s) ds + δt (n+ 1
2 )�ζ(u(t (n+1)))

]
�Dv

+ O1

[
S�,∗
D (u(t (n+1)) − u(t (n))) + δt (n+ 1

2 )S∇
D(ζ(u(t (n+1))))

+ δt (n+ 1
2 )WD(∇ζ(u(t (n+1))))

]
‖∇Dv‖. (2.50)

Since f − ∂t u = −�ζ(u), the property (2.49) yields

∣∣∣∣∣
∫

�

[∫ t (n+1)

t (n)

( f − ∂t u)(s) ds + δt (n+ 1
2 )�ζ(u(t (n+1)))

]
�Dv

∣∣∣∣∣
≤ δt (n+ 1

2 )

∣∣∣∣∣
1

δt (n+ 1
2 )

∫ t (n+1)

t (n)

�ζ(u(s)) ds − �ζ(u(t (n+1)))

∣∣∣∣∣
D,∗

‖∇Dv‖.

Plugging this estimate into (2.50) and recalling the definition (2.41) of En
D(v), this

shows (2.48). �

With Lemma 2.4 at hand, the next proposition is the main step towards the error
estimate in the fully discrete setting.

Proposition 2.2 For all n ∈ {1, . . . , N }, there holds

max
1≤n≤N

‖∇DεnD,ζ ‖2 + 4
N−1∑
n=0

δt (n+ 1
2 )(�De

(n+1)
D,u ,�De

(n+1)
D,ζ )

≤ 24T exp(1)ED(u). (2.51)

Proof Following the lines of the proof in the time discrete case, we sum (2.46) over
j ∈ {0, . . . , p − 1} with p ∈ {1, . . . , N }, leading to

∫
�

�De
(p)
D,u�Dv +

p−1∑
j=0

δt ( j+
1
2 )

∫
�

∇De
( j+1)
D,ζ · ∇Dv =

p−1∑
j=0

E
j
D(v). (2.52)
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Here, we used the fact that e0D,u = 0 thanks to the definition of u0 = IDuini. Choosing
v = δt (p− 1

2 )e(p)
D,ζ in the above equation and summing over p ∈ {1, . . . , n} for some

n ∈ {1, . . . , N } provides

I
(n)
1 + I

(n)
2 = R(n), (2.53)

where

I
(n)
1 :=

n∑
p=1

δt (p−
1
2 )

∫
�

�De
(p)
D,u�De

(p)
D,ζ ,

I
(n)
2 :=

n∑
p=1

p∑
j=1

δt (p−
1
2 )δt ( j−

1
2 )

∫
�

∇De
( j)
D,ζ · ∇De

(p)
D,ζ ,

R(n) :=
n∑

p=1

p−1∑
j=0

δt (p−
1
2 )E

j
D(e(p)

D,ζ ).

I
(n)
1 corresponds to the third term in (2.39). On the other hand, the identity (2.9)

ensures that

I
(n)
2 ≥ 1

2

∫
�

∣∣∣∇Dε
(n)

D,ζ

∣∣∣2 . (2.54)

The term R(n) can be reorganized as

R(n) =
n−1∑
j=0

E
j
D(ε

(n)

D,ζ ) −
n−1∑
j=1

E
j
D(ε

( j)
D,ζ ) := R

(n)
1 + R

(n)
2 .

Owing to Lemma 2.4, the first contribution R
(n)
1 can be estimated as follows:

∣∣∣R(n)
1

∣∣∣ ≤
n−1∑
j=0

∣∣∣E j
D(ε

(n)

D,ζ )

∣∣∣ ≤
n−1∑
j=0

δt ( j+
1
2 )E j

D(u)‖∇Dε
(n)

D,ζ ‖.

Applying Cauchy–Schwarz inequality and then the Young inequality (2.12) provides

∣∣∣R(n)
1

∣∣∣ ≤ T
n−1∑
j=0

δt ( j+
1
2 )E j

D(u)2 + 1

4
‖∇Dε

(n)

D,ζ ‖2 ≤ T ED(u)2 + 1

4
‖∇Dε

(n)

D,ζ ‖2,

so that, in view of (2.54), there holds

I
(n)
2 − R

(n)
1 ≥ 1

4
‖∇Dε

(n)

D,ζ ‖2 − T ED(u)2. (2.55)
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Using once again Lemma 2.4, one can bound the term R
(n)
2 by

R
(n)
2 ≤

n−1∑
j=1

∣∣∣E j
D(ε

( j)
D,ζ )

∣∣∣ ≤
n−1∑
j=1

δt ( j+
1
2 )E j

D(u)‖∇Dε
( j)
D,ζ ‖.

Using the Cauchy–Schwarz and Young inequality as above then yields

R
(n)
2 ≤ 2 T ED(u)2 + 1

8 T

n−1∑
j=1

δt ( j+
1
2 )‖∇Dε

( j)
D,ζ ‖2. (2.56)

Combining (2.55)–(2.56) in (2.53) provides

‖∇Dε
(n)

D,ζ ‖2 + 4
n−1∑
j=0

δt ( j+
1
2 )(�De

( j+1)
D,u ,�De

( j+1)
D,ζ )

≤ 1

2T

n−1∑
j=1

δt ( j+
1
2 )‖∇Dε

( j)
D,ζ ‖2 + 12 T ED(u)2.

The generalized Gronwall Lemma [32, Lemma 5.1] then yields

‖∇Dε
(n)

D,ζ ‖2 + 4
n−1∑
j=0

δt ( j+
1
2 )(�De

( j+1)
D,u ,�De

( j+1)
D,ζ ) ≤ 12T exp(1)ED(u).

Choosing n = N , and then n = argmax
j

‖∇Dε
( j)
D,ζ ‖2, we obtain (2.51). �

With Proposition 2.2 we have estimated �De
(n)

D,u�De
(n)

D,ζ and ∇Dε
(n)

D,ζ . The proof
of Theorem 2.3 is concluded by establishing the discrete L∞(0, T ; H−1(�)) esti-
mate on (�De

(n)

D,u)1≤n≤N . This is obtained in the lemma below. Together with Propo-
sition 2.2, this completes the proof of Theorem 2.3.

Lemma 2.5 For all n ∈ {1, . . . , N }, there holds
∣∣∣�De

(n)

D,u

∣∣∣2
D,∗

≤ 2‖∇Dε
(n)

D,ζ ‖2 + 2 T ED(u)2.

Proof Applying (2.52) for p = n and with v ∈ XD,0 such that ‖∇Dv‖ ≤ 1, using
the Cauchy–Schwarz inequality and recalling (2.48), we have

∫
�

�De
(n)

D,u�Dv ≤ ‖∇Dε
(n)

D,ζ ‖ +
n−1∑
j=0

δt ( j+
1
2 )E j

D(u).
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Taking the supremum over such v gives

‖�De
(n)

D,u‖D,∗ ≤ ‖∇Dε
(n)

D,ζ ‖ +
n−1∑
j=0

δt ( j+
1
2 )E j

D(u) ≤ ‖∇Dε
(n)

D,ζ ‖ + √
T ED(u),

and the proof follows straightforwardly. �

2.4 Numerical Examples

2.4.1 Numerical Results

For the numerical tests, we consider the porous medium equation in dimension
2, corresponding to (2.1) with ζ(u) = |u|m−1u for m ∈ {2, 3, 4}. The computational
domain is given by T = 1 and� = (0, 1)2, and the exact solution is u(t, x) = B(t0 +
t, x − x0), where t0 = 0.1, x0 = (0.5, 0.5) and

B(t, x) = t−
1
m

⎧⎨
⎩
⎡
⎣CB − m − 1

4m2

(
|x |
t

1
2m

)2
⎤
⎦

+

⎫⎬
⎭

1
m−1

, (2.57)

is the Barenblatt–Pattle solution. The initial solution is fixed by uini = u(0, ·). We
choose CB = 0.005, so that B remains equal to 0 on ∂� during the entire simulation
t ∈ [0, 1]. Note that by the offset t0 in B, the singularity of this function at t = 0 is
avoided, and the initial condition satisfies Assumption (A2).

The simulations are run over three different mesh families: a family of (mostly)
hexagonal meshes, a family of locally refined Cartesian meshes, and a family of
triangular meshes. Examples of members of each family are provided in Fig. 2.1.
We consider uniform time steps. For the coarsest mesh in each family, the time step
is δt (n+ 1

2 ) = 0.1 for all n; then, for each mesh refinement, the time step is divided by
4. Since we use implicit Euler time stepping, this means that the truncation error in
time decay as O(h2), where h is the mesh size; as our spatial methods (see below)
are low order, in the best possible situation (linear equations, smooth exact solution),
the maximal approximation rates areO(h) on gradients andO(h2) on functions. The
choice of time steps thus ensures that the spatial truncation error is the leading term
in the estimate. The following schemes will be used for the tests.

• LEPNC (Locally Enriched Polytopal Non-Conforming scheme), see Chap. 1 of
this book: applicable on generic polytopal meshes, one unknown per internal edge
(after static condensation), based on broken polynomial functions with weak con-
tinuity properties across the edges. We have taken a zero weight � on the edge
unknowns, so �D is only computed from the cell unknowns.

http://dx.doi.org/10.1007/978-3-030-69363-3_1
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Fig. 2.1 Examples of meshes used in numerical tests: hexagonal (left), locally refined Cartesian
(centre), and triangular (right)

• HMM (Hybrid Mimetic Mixed scheme) [22, Chap. 13]: applicable on generic
polytopalmeshes, one unknown per internal edge (after static condensation), based
on local reconstruction of piecewise constant functions and gradients. HMM are
the lowest-order version of the Hybrid High-Order (HHO) method, described in
[18] (see also Chap. 6 for an application of HHO to poroelasticity problems).

• MLP1 (Mass-Lumped P
1 finite element) [22, Sect. 8.4]: only applicable on trian-

gular meshes, one unknown per vertex, based on standard P
1 shape functions for

the gradient and piecewise constant reconstruction around each vertex.
• VAG-a (VertexApproximateGradient, first presentation) [22, Sect. 8.5]: applicable
on generic polytopal meshes, one unknown per internal vertex and one unknown
per cell, based on standard P

1 on a triangular subdivision of the cells (using the
center of the cell as additional vertex), with amass-lumping that equally distributes
the available area between cell and vertex unknowns. A local algebraic elimination
(static condensation) of cell unknowns is also performed, leading to a globally
coupled system on the vertex unknowns only. See also Chap. 3 for an application
of the VAG method to a two-phase flow model.

• VAG-b (Vertex Approximate Gradient, second presentation) [12]: as above, but
applied after writing the diffusion term as div(m|u|m−1∇u). Note that this scheme
does not present itself as a gradient scheme.

• CFVEM (Conforming Virtual Element) [6]: applicable on generic polytopal
meshes, one unknown per internal vertex, based on the elliptic projection of virtual
shape functions, with algebraic mass-lumping.

• HDG (Hybridizable Discontinuous Galerkin, order 1) [16]: applicable on generic
polytopal meshes (but the results are presented here only on triangular meshes),
based on modal Legendre–Dubiner basis functions with one polynomial of degree
1 per cell and edge. The degrees of freedom are reduced to only edge polynomials
after static condensation.

The LEPNC and HMM tests are based on the code available in the HArDCore2D
library [31] (based on the implementation principles of Hybrid High-Order meth-
ods [18]), while MLP1 tests were conducted using the code at the following URL:
github.com/jdroniou/matlab-PME.

http://dx.doi.org/10.1007/978-3-030-69363-3_6
http://dx.doi.org/10.1007/978-3-030-69363-3_3
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Remark 2.7 (CFVEM and P
1 finite elements on triangular meshes) On triangular

meshes and for the standard Laplace problem, CFVEM coincides with the conform-
ing P

1 finite element method. The results presented below however show different
behaviour of CFVEM andMLP1; the main reason can be found in the mass-lumping
strategy adopted for each method: for MLP1, a geometrical mass-lumping was used,
allocating to each vertex a mass corresponding to 1/3 of the sum of the areas of the
triangles it belongs to; for CFVEM, an algebraic mass-lumping was used, reducing
the standard mass matrix to a diagonal one by summing all elements on each row.

The accuracy of the schemes are provided through the following quantities, all
measured at the final time:

• Relative error in L2-norm between the (reconstructed) gradients of the approxi-
mation of ζ(u) and the interpolate of ζ(u):

EH 1,ζ = ‖∇D(ζ(uN ) − IDζ(u)(T, ·))‖
‖∇D IDζ(u)(T, ·)‖ . (2.58)

• Relative error in Lm+1-norm between the (reconstructed) functions of the approx-
imate solution and the interpolate of the exact solution u:

ELm+1 = ‖�D(uN − IDu(T, ·))‖Lm+1(�)

‖�D IDu(T, ·)‖Lm+1(�)

. (2.59)

• Fraction of negative mass over total mass:

NMass =

∫
�

(�DuN )−∫
�

|�DuN |
, (2.60)

where s− = max(−s, 0) is the negative part of s ∈ R.

2.4.1.1 Rates of Convergence Versus Mesh Size

We first present the relative errors versus the mesh sizes, for all considered schemes
and mesh families. The outputs are given in log-log graphs in Figs. 2.2, 2.3 and 2.4.
In these figures, the chosen reference slopes correspond to an estimate of the over-
all behaviour of the schemes, drawn from the tables as well as computed rates of
convergence from one mesh to the other. Combining estimates (2.39), (2.43) and
Remark 2.5, and considering averaged-in-time norms (which are less stringent than
the final time norms (2.58) and (2.59)), we would expect for a smooth enough exact
solution a rate of convergenceO(h

2
m+1 ) in Lm+1-norm on u andO(h) in L2-norm on

(the time integral of) ∇ζ(u).
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Fig. 2.2 Hexagonal meshes: errors versus mesh size
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Fig. 2.3 Locally refined Cartesian meshes: errors versus mesh size
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Fig. 2.4 Triangular meshes: errors versus mesh size



64 C. Cancès et al.

As can be seen in the numerical results, for the considered tests, the theoretical
rates for ELm+1 are sub-optimal for the lower values of m but tend to be close to
the observed results for m = 4. The general trend, seen in both the theoretical and
numerical results, is that the rates deteriorate as m increases. Two reasons can be
found for that: as m increases, the Lm+1-norm becomes more constrained, while the
regularity of the exact solution u decays (for example, it is H 1 in space for m = 2,
but no longer for m > 2).

Interestingly, but not surprisingly, the rates for EH 1,ζ seem to resist a little bit better
as m increases, although they appear to be slightly below 1 for m > 2 (which is not
surprising since, as mentioned, (2.58) is a more constraining norm than ‖∇Dε

(n)

D,ζ ‖).
Although EH 1,ζ measures an approximation of the gradient, which can be expected to
be of lower order than that of a function, it measures this in a norm that is independent
of m and relates to ζ(u), a function that has better regularity properties than u (for
example, it is H 1 in space irrespective of the value of m).

Comparing the various schemes, they all seem to adopt similar rates of conver-
gence for EH 1,ζ on hexagonal and locally refined Cartesian meshes; the differences
mostly lie in the multiplicative constants, with the largest factor between these multi-
plicative constants of order 10. More variation in the rates is observed on these mesh
families for ELm+1 , which is probably due to the variation ofm and reduced regularity
of u, as discussed above. The rates on triangular meshes seem to depend much more
on the chosen scheme. Focusing on EH 1,ζ , which is a more stable measure, we see
that MLP1 outperforms the other schemes, at least form = 2, 3; of course, the draw-
back of MLP1 is that it can only be applied on triangular meshes. The other outlier is
HDG, whose rates are much lower than the other schemes; the reason for that might
be found in the total number of degrees of freedom, after static condensation, which
is lower for HDG than some other schemes (see discussion in Sect. 2.4.1.2), and
which therefore prevents this scheme from achieving optimal rates with respect to
the mesh size.

It can also be noticed that some schemes produce a better EH 1,ζ error than others,
but that the “ranking” between the schemes can be reversed if we look at the error
ELm+1 .

2.4.1.2 Algebraic Complexity

We now briefly discuss the performance of the schemes relative to their algebraic
complexity, measured primarily here in terms of their number NDOFs of degrees
of freedom. Focusing only on m = 4 (the most severe case), and hexagonal and
triangular grids, we plot in Fig. 2.5 the energy error EH 1,ζ of each scheme versus its
degrees of freedom.

A first remark is that this measure is slightly more favourable to HDG than in
the previous section. Its rate remains a bit lower than that of the other schemes,
at least for the considered meshes, but perhaps less so than when comparing the
error versus the mesh size. We also notice that, on triangular meshes, the (mostly)
vertex-centered methods VAG-a, VAG-b, and MLP1 outperform the other schemes,
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Fig. 2.5 Energy error EH1,ζ versus number of degrees of freedom NDOFs, m = 4

which is expected: on triangular meshes, vertex-based methods have much fewer
degrees of freedom than edge-based methods such as LENCP or HMM. Curiously,
using the same argument, we would expect CFVEM, which is also a vertex-based
method, to behave better than it does; this could be explained by the different kind
of mass-lumping applied for these two methods.

On hexagonal meshes, except for LEPNC, all schemes presented here have a
comparable error vs. complexity. The advantage of vertex-based methods is less per-
ceptible on suchmeshes than on triangularmeshes, which is not surprising: triangular
meshes roughly have three times more edges than vertices, while hexagonal meshes
have 1.5 times more edges than vertices on average.

2.4.1.3 Positivity

Finally, we look at the positivity properties of the schemes. As the standard linear
heat equation, the porous medium equation satisfies a maximum principle: if the
initial solution and the source terms are positive, then the solution remains positive
for all times. Maintaining this property at the discrete level is particularly challeng-
ing, especially for schemes designed for generic polygonal/polyhedral meshes [19].
Except for MLP1 (which is restricted to triangular meshes), none of the schemes
presented here satisfy this property in general.

In Figs. 2.6, 2.7 and 2.8, we present the log-log graphs of the relative negative
masses NMass versus the mesh sizes. In most situations, the schemes produce some
negative mass, but it decays as the mesh is refined and is rather small relative to the
total mass of the solution at the final time. On hexagonal and locally refined Cartesian
meshes, the VAG and CFVEM schemes—which are (mostly) vertex-centered—have
better positivity properties than the edge-centered schemes LEPNC and HMM, with
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Fig. 2.6 Hexagonal meshes: fraction of negative mass NMass versus mesh size

Fig. 2.7 Locally refined Cartesian meshes: fraction of negative mass NMass versus mesh size

Fig. 2.8 Triangular meshes: fraction of negative mass NMass versus mesh size
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VAG-b outperforming all the other schemes. Surprisingly, perhaps, VAG-a andVAG-
b do not even produce negative values at the final time on locally refined meshes
(and are thus absent from Fig. 2.7). On triangular meshes, however, VAG-a produces
more negative mass than the other schemes (and an amount comparable to HDG),
with HMM and VAG-b being much closer to each other (with relative performance
depending onm), and LEPNC in between these clusters. MLP1 is known to preserve
positive values and is therefore not represented in Fig. 2.8. CFVEM was also found
to preserve positive values on these triangular meshes.

These results demonstrate a strong interaction between scheme design and mesh
geometries when it comes to preserving the maximum principle of the continuous
model.

2.4.2 A Word on Non-linear Iterative Schemes

The time discrete problems (2.7) or the fully discrete counterparts (2.30) are nonlin-
ear. To determine an approximation of the solution one needs to employ an iterative
method. The common choice is the Newton method (see, e.g., [7]), which converges
quadratically. However, this convergence is guaranteed only if the initial guess is
close enough to the solution. A choice at hand being the solution computed at the
previous time step, this means that the convergence is guaranteed if the differences
between the solutions at two successive times are small enough. This induces restric-
tions on the time step.

For (2.1), the Newton method can fail to converge due to the singularities of ζ ,
and in particular, for the fast diffusion case. To overcome this, one can regularise
ζ to avoid degeneracy, but even in this case, the convergence is only guaranteed
under severe restrictions on the time step. To address these shortcomings, alternative
iterative schemes have been designed. We mention here the relaxation scheme in
[33], which shows to be more stable w.r.t. the choice of the initial condition, and
the modified Picard scheme in [15], which is a simplified version of the Newton
method. Both schemes are converging linearly. For these, as for the Newton scheme,
the convergence is guaranteed rigorously under severe restrictions for the time step,
as proved in [47].

A fixed point (contraction) scheme exploiting the monotonicity of ζ has been
proposed in [43] for the fast diffusion case and extended to more general situations
in [46]. Though linear, the convergence is guaranteed under mild restrictions on the
time step, regardless of the initial guess, and for any spatial discretisation. Moreover,
as shown in [37], this scheme can be used to obtain a good initial guess for the
Newton scheme, which leads to a stable and fast convergent iterative method. We
also mention the scheme in [40], where the fixed point approach is combined with
the Picard or Newtonmethod by adding a is stabilisation term. This leads to a scheme
with the stability of the fixed point scheme and converging like the Picard scheme.

Finally, we refer to [8], where both u and ζ(u) are expressed in terms of a different
unknown, based on a properly chosen parametrisation. This allows reformulating the
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Newton method in such a way that the quadratic convergence is unaffected, but the
stability is significantly improved, so that larger time steps are allowed.

Here we discuss a simple iterative scheme that is inspired by the fixed point
approach in [37, 43]. We restrict to the case where ζ is Lipschitz continuous and
let Lζ denote the Lipschitz constant, but the idea can be extended to more general
situations as well, e.g., by applying the idea in [8]. For the ease of presentation, we
present the scheme in the time-discrete case, the fully discrete one being analogous.
With n ∈ {0, . . . , N − 1} fixed we start by observing that (2.7) can be rewritten as
the system

(u(n+1), ϕ) + δt (n+ 1
2 )(∇w(n+1),∇ϕ) = (u(n), ϕ) + δt (n+ 1

2 )( f (n+1), ϕ),

(w(n+1), ψ) = (ζ(u(n+1)), ψ),
(2.61)

for all ϕ ∈ H 1
0 (�) andψ ∈ L2(�). For a given L ≥ Lζ

2 , the iterative scheme consists
in finding the pairs (ui ,wi ) ∈ L2(�) × H 1

0 (�) (i ∈ N
∗) solving the linear systems

(ui , ϕ) + δt (n+ 1
2 )(∇wi ,∇ϕ) = (u(n), ϕ) + δt (n+ 1

2 )( f (n+1), ϕ),

(wi , ψ) = L(ui − ui−1, ψ) + (ζ(ui−1), ψ),
(2.62)

for all ϕ ∈ H 1
0 (�) andψ ∈ L2(�). A natural choice for the initial guess is u0 = u(n)

(the solution at the previous time step), but, as will be seen below, the convergence
is guaranteed for any starting point. To prove this, we define the iteration errors

eiu = u(n+1) − ui , and eiw = ζ(u(n+1)) − wi . (2.63)

From (2.61) and (2.62), the errors satisfy

(eiu, ϕ) + δt (n+ 1
2 )(∇eiw,∇ϕ) = 0,

(eiw, ψ) = L(eiu − ei−1
u , ψ) + (ζ(u(n+1)) − ζ(ui−1), ψ),

(2.64)

for all ϕ ∈ H 1
0 (�) and ψ ∈ L2(�). With this, the convergence result is

Lemma 2.6 The iterative scheme in (2.62) is convergent regardless of the initial
guess. More precisely, one has wi → ζ(u(n+1)) in H 1(�) and ui → u(n+1) in L2(�)

as i → ∞.

Proof Taking ϕ = eiw and ψ = eiu into (2.64) and subtracting the result gives

L‖eiu‖2 + δt (n+ 1
2 )‖∇eiw‖2 = (Lei−1

u − (ζ(u(n+1)) − ζ(ui−1)), eiu).

Since ζ is Lipschitz, by the choice of L one has |Lei−1
u − (ζ(u(n+1)) − ζ(ui−1))| ≤

L|ei−1
u |. This, together with the Cauchy–Schwarz inequality leads to

L‖eiu‖2 + δt (n+ 1
2 )‖∇eiw‖2 ≤ L‖ei−1

u ‖‖eiu‖.
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Applying now (2.12) and multiplying the resulting by 2 yields

L‖eiu‖2 + 2δt (n+ 1
2 )‖∇eiw‖2 ≤ L‖ei−1

u ‖2. (2.65)

Adding (2.65) for i = 1, . . . , k (k being arbitrary) leads to

L‖eku‖2 + 2δt (n+ 1
2 )

k∑
i=1

‖∇eiw‖2 ≤ L‖e0u‖2. (2.66)

This shows that the second term above is a convergent series, implying the first
convergence result. Using this convergence in the first equation of (2.64) completes
the proof. �

The convergence extends straightforwardly to the fully discrete case. We use the
notations in Sect. 2.3 and apply the GDM to the time discrete system in (2.62). Given
u(n) ∈ XD,0, for i ≥ 1 we seek ui ,wi ∈ XD,0 such that, for all φ,ψ ∈ XD,0,

∫
�

�Dui�Dφ + δt (n+ 1
2 )

∫
�

∇Dwi · ∇Dv

=
∫

�

�Du(n)�Dv + δt (n+ 1
2 )

∫
�

f (n+1)�Dv∫
�

�Dwi�Dψ = L
∫

�

�D(ui − ui−1)�Dψ +
∫

�

�Dζ(ui−1)�Dψ.

(2.67)

As before, a good starting point is u0 = u(n) but this choice is not required for the
convergence. Using the errors

eiD,u = u(n+1) − ui and eiD,w = ζ(u(n+1)) − wi , (2.68)

from (2.30) and (2.67) one obtains

∫
�

�DeiD,u�Dφ + δt (n+ 1
2 )

∫
�

∇DeiD,w · ∇Dφ = 0
∫

�

�DeiD,w�Dψ = L
∫

�

�D(eiD,u − ei−1
D,u)�Dψ

+
∫

�

�D
(
ζ(u(n+1)) − ζ(ui−1)

)
�Dψ.

(2.69)

The convergence of the fully discrete iteration is obtained by taking in the above
φ = eiD,w and ψ = eiD,u , and following the steps of the proof for Lemma 2.6.
More precisely, we obtain the L2-convergences∇Dwi → ∇Dζ(u(n+1)) and�Dui →
�Du(n+1), as i → ∞. We omit the details of the proof as they are similar to those
developed in the semi-discrete case above in this section.
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Chapter 3
Nodal Discretization of Two-Phase
Discrete Fracture Matrix Models

Konstantin Brenner, Julian Hennicker, and Roland Masson

Abstract This chapter reviews the nodal Vertex Approximate Gradient (VAG) dis-
cretization of two-phase Darcy flows in fractured porous media for which the frac-
ture network is represented as a manifold of co-dimension one with respect to the
surrounding matrix domain. Different types of models and their discretizations are
considered depending on the transmission conditions set at matrix fracture inter-
faces accounting for fractures acting either as drains or both as drains or barriers.
Difficulties raised by nodal discretizations in heterogeneous media are investigated
and solutions to solve these issues are discussed. It includes the adaptation of the
porous volumes at nodal unknowns and discontinuous saturations accounting for
the jumps induced by the discontinuity in space of the capillary pressure functions.
A new Multi-Point upwind scheme is also introduced for the approximation of the
mobilities at matrix fracture interfaces to address the issue of fluxes not defined at
faces. The most accurate approach is based on the extension of the discontinuous
pressure model to two-phase Darcy flows taking into account the discontinuities of
both the pressures and saturations at matrix fracture interfaces. As opposed to single
phase flows, It improves the accuracy even in the case of fracture acting as drains. On
the other hand this approach can still exhibit a robustness issue in terms of nonlinear
convergence.

Keywords Two-phase Darcy flows · Heterogeneous media · Discrete fracture
matrix models · Nodal discretization · Finite volume · Vertex approximate
gradient · Discontinuous capillary pressures

K. Brenner · R. Masson (B)
Université Côte d’Azur, CNRS, Inria, LJAD, Parc Valrose, 06108 Nice, France
e-mail: roland.masson@univ-cotedazur.fr

K. Brenner
e-mail: konstantin.brenner@univ-cotedazur.fr

J. Hennicker
University of Geneva, Geneva, Switzerland
e-mail: julian.hennicker@unige.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. A. Di Pietro et al. (eds.), Polyhedral Methods in Geosciences,
SEMA SIMAI Springer Series 27,
https://doi.org/10.1007/978-3-030-69363-3_3

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69363-3_3&domain=pdf
mailto:roland.masson@univ-cotedazur.fr
mailto:konstantin.brenner@univ-cotedazur.fr
mailto:julian.hennicker@unige.ch
https://doi.org/10.1007/978-3-030-69363-3_3


74 K. Brenner et al.

3.1 Introduction

Many real life applications in the geosciences like oil and gas recovery, basin mod-
elling, energy storage, geothermal energy or hydrogeology involve two-phase Darcy
flows in heterogeneous porous media. Suchmodels are governed by nonlinear partial
differential equations typically coupling elliptic and degenerate parabolic equations.
Next to the inherent difficulties posed by such equations, further challenges are due
to the heterogeneity of the medium and the presence of discontinuities like frac-
tures. This has a strong impact on the complexity of the models, challenging the
development of efficient simulation tools.

This work focuses on the numerical modelling of two-phase Darcy flows in frac-
tured porous media, for which the fracture network is represented as a manifold
of co-dimension one with respect to the matrix domain. These reduced models are
obtained by averaging the physical unknowns as well as the conservation equa-
tions along the fracture width. They are termed hybrid-dimensional or also Discrete
Fracture Matrix (DFM) Darcy flow models. Given the high geometrical complex-
ity of real life fracture networks, the main advantages of these hybrid-dimensional
compared with equi-dimensional models are both to facilitate the mesh generation
and the discretisation of the model, and to reduce the computational cost of the
resulting schemes. This type of hybrid-dimensional models is the object of intensive
researches since the last 15 years due to the ubiquity of fractures in geology and their
considerable impact on the flow and transport in the porous medium.

DFM models are closed with appropriate transmission conditions at matrix frac-
ture (mf) interfaces which differ for fractures acting as drains or as barriers. For
single-phase flows there are two major approaches. The first, designed for mod-
elling highly conductive fractures and referred to as continuous pressure model [7,
17], assumes the continuity of the fluid pressure at the mf interfaces. The second
approach, referred to as discontinuous pressure model [10, 15, 24, 32, 33, 39, 41],
allows to represent fractures acting as permeability barriers by imposing Robin-type
transmission conditions at mf interfaces.

When the modelling of two-phase flow is concerned, three major types of models
can be distinguished. The first and most common type is based on a straightforward
adaptation of the single-phase continuous pressure model to the two-phase setting
(see [13, 14, 20, 38, 43, 44]), it assumes the continuity of each phase pressure at mf
interfaces which allows to capture the saturation jump for fractures acting as drains
and matrix as barrier. As for single-phase flow, this approach cannot account for
fractures acting as barriers. In contrast to the single-phase context, let us stress that,
due to heterogeneous capillary pressures, fractures having a large absolute perme-
ability may still act as barriers for a given phase, typically for the wetting phase for
fractures filled by the non-wetting phase (see [1]). Another existing type of models,
accounting for both drains or permeability barriers, is based on the linear (with-
out mobility but including gravity) single-phase Darcy flux conservation equation
imposed at mf interfaces for each phase. It is usually combined with Two-Point [1,
41] orMulti-Point [4, 5, 36, 46, 51, 52] cell-centred finite volume schemes for which
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the interfacial discontinuous pressures are eliminated when building the single phase
Darcy flux transmissibilities. These models account for the discontinuity of the pres-
sures but not of the mobilities at mf interfaces. Both previous types of models are
based on linear mf transmission conditions. The last type ofmodels considers nonlin-
ear mf transmission conditions which are based on the nonlinear (includingmobility)
two-phase normal flux continuity equations at mf interfaces. This type of models is
considered in [1, 2, 6, 16, 25, 26] using a two-point flux approximation in the frac-
ture width with upwinding of the mobilities, and in [3, 40] using a global pressure
formulation. Such nonlinear transmission conditions account for the discontinuity of
both the phase pressures and the mobilities at mf interfaces. A comparison of these
three types of models using reference equi-dimensional solutions can be found in
[1, 16].

Having in mind that tetrahedral meshes are commonly used to cope with the
geometrical complexity of fracture networks, nodal discretizations of DFM two-
phase Darcy flow models have a clear advantage over cell-centred or face based
discretizations thanks to their much lower number of degrees of freedom (d.o.f.).
This is in particular the case when considering fully coupled implicit time integration
which are necessary to avoid severe time step restrictions in high velocity regions
such as fractures and to account for the strong coupling between the pressure and
saturation unknowns at mf interfaces [9]. Alternatively, cell centred discretizations
have been considered for DFM two-phase flow models using the Two-Point Flux
Approximation (TPFA) as in [1, 6, 41] orMulti-Point Flux Approximations (MPFA)
as in [5, 36, 52]. Face based discretizations have been considered in [3, 38] using the
Mixed Hybrid Finite Element (MHFE) method and in [2, 37] using the Hybrid Finite
Volume (HFV) scheme. Non conforming discretizations have also been developed
for this type of models using XFEM discretizations as in [34] or Embedded Discrete
Fracture Models as in [50].

Nodal discretizations, such as theControlVolumeFiniteElement (CVFE)method,
have been first introduced in [20, 35, 43, 44] for DFM two-phase Darcy flowmodels
with continuous pressures at mf interfaces accounting for fractures acting as drains.
In this work, we review the Vertex Approximate Gradient (VAG) discretization intro-
duced in [13, 14, 53] for continuous pressuremodels and in [16, 25] for discontinuous
pressure models. The VAG scheme is based on nodal d.o.f. like CVFE methods but
it also includes the cell d.o.f. which are eliminated at the linear algebra level at each
Newton iteration without any fill-in. These cell d.o.f. provide an additional flexibility
in the design of the discretization allowing to cope with traditional issues raised at
mf interfaces by nodal discretizations of the transport equation. On practical meshes,
for which the cell sizes at mf interfaces are much larger than the fracture width, these
issues are induced by the use of dual control volumes combined with heterogeneous
petrophysical and hydrodynamical properties defined on the primal mesh.

The outline of the remaining of this article is as follows. Section3.2 describes the
DFM continuous and discontinuous pressure two-phase Darcy flow models as intro-
duced in [13, 16]. Section3.3 presents the VAG discretizations of DFM continuous
pressure two-phase Darcy flow models. Several techniques to cope with the issues
raised by nodal discretizations atmf interfaces are discussed, including the adaptation
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of the control volumes at mf interfaces, a new Multi-Point upwind approximation of
the mobilities in Sect. 3.3.3, and taking into account the saturation jump for general
capillary pressure curves in Sect. 3.3.5. Section3.4 reviews the VAG discretizations
of the three types of DFM discontinuous pressure two-phase Darcy flow models as
presented in [16, 25]. For each type of model and its VAG discretization, numerical
experiments are exhibited on 2D and 3D DFMmodels including comparisons of the
VAG discretizations to a face based scheme, as well as the comparison between the
hybrid-dimensional DFM models and the reference equi-dimensional model.

3.2 Two-Phase DFM Discontinuous and Continuous
Pressure Models

Let � be a bounded domain of Rd , d = 2, 3 assumed to be polyhedral for d = 3
and polygonal for d = 2. To fix ideas, the dimension will be fixed to d = 3 when
it needs to be specified, for instance in the naming of the geometrical objects or for
the space discretization. The adaptations to the case d = 2 are straightforward. Let
� = ⋃

i∈I �i denotes the network of fractures �i ⊂ �, i ∈ I , such that each �i is a
planar polygonal simply connected open domain included in some plane of Rd (see
Fig. 3.1).

In the matrix domain �, we denote by φm(x) the porosity and by �m(x) the
permeability tensor. Along the fracture network x ∈ �, we denote by φ f (x) the
porosity averaged on the fracture width and by d f (x) the fracture aperture. The
permeability tensor is assumed constant along the width of the fracture and the
normal vector to the fracture is assumed to be a principal direction. It results that
we can define along the fracture network x ∈ �, the tangential permeability tensor
� f (x) and the normal permeability λn, f (x).

It is assumed, for the sake of simplicity, that thematrix (resp. the fracture network)
has a single rock type. Hence, for each phase α ∈ {nw,w} (where nw stands for the
non-wetting phase andw for thewetting phase)we denote byMα

m(sα) (resp.Mα
f (s

α)),
thematrix (resp. fracture network) phasemobility, and by Pc,m(snw) (resp. Pc, f (snw)),
the matrix (resp. fracture network) capillary pressure function. The inverse of the
monotone graph extension of the matrix (resp. fracture network) capillary pressure

Fig. 3.1 Example of a 2D
DFM with the matrix domain
� and 3 intersecting
fractures �i , i = 1, 2, 3
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is denoted by Snwm (p) (resp. Snwf (p)). We will also denote by ρα the phase density
which for the sake of simplicity is assumed constant for both phases α ∈ {nw,w}.

Let α ∈ {nw,w}, we denote by uα
m (resp. uα

f ) the phase pressure and by s
α
m (resp.

sα
f ) the phase saturation in the matrix (resp. the fracture network) domain. The Darcy

velocity of phase α ∈ {nw,w} in the matrix domain is defined by

qα
m = −Mα

m(sα
m)�m(∇uα

m − ραg),

where g = −g∇z stands for the gravity vector with g the gravitational acceleration
constant. The flow in the matrix domain is described by the volume balance equation

φm∂t s
α
m + div(qα

m) = 0, (3.1)

for α ∈ {nw,w}, and the closure laws defined by the macroscopic capillary pressure
law together with the sum to one of the phase saturations

snwm = Snwm (pc,m), pc,m = unwm − uwm, swm = 1 − snwm . (3.2)

On the fracture network �, we denote by ∇τ the tangential gradient and by divτ

the tangential divergence. In addition, we can define the two sides ± of the fracture
network � in � \ � and the corresponding unit normal vectors n± at � inward to the
sides±. Let γn± (resp. γ ±) formally denote the normal trace (resp. trace) operators at
both sides of the fracture network� for vector fields in Hdiv(� \ �) (resp. scalar fields
in H 1(� \ �). The Darcy tangential velocity of phase α ∈ {nw,w} in the fracture
network � integrated over the width of the fracture is defined by

qα
f = −d f M

α
f (s

α
f )� f (∇τu

α
f − ραgτ ),

with gτ = g − (g · n+)n+. The flow in the fracture network � is described, for each
phase α ∈ {nw,w}, by the volume balance equation

d f φ f ∂t s
α
f + divτ (qα

f ) + γn+qα
m + γn−qα

m = 0, (3.3)

and by the closure laws

snwf = Snwf (pc, f ), pc, f = unwf − uwf , swf = 1 − snwf . (3.4)

3.2.1 Two-Phase DFM Discontinuous Pressure Model

We consider the transmission conditions introduced in [16]. They are based on a
two-point approximation of each phase normal flux within the fracture combined
with a phase potential upwinding of the phase mobility taking into account the phase
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Fig. 3.2 (Left): example of a 2DDFM discontinuous pressure model with the normal vectors n± at
both sides of a fracture, the matrix phase pressure and saturation uα

m , s
α
m , the fracture phase pressure

and saturation uα
f , s

α
f , the matrix Darcy phase velocity qα

m and the fracture network tangential
Darcy phase velocity qα

f . (Right): illustration of the coupling condition qα
f,n+ = γn+qα

m for the
hybrid-dimensional discontinuous pressure model

saturation jump at the mf interface. Let us first define, for both phases α ∈ {nw,w},
the “single” phase normal flux in the fracture network

V α,±
f,n = λ f,n

(
γ ±uα

m − uα
f

d f /2
− ραg · n±

)

, (3.5)

which does not include the phase mobility. For any a ∈ R, let us set a+ = max{0, a}
and a− = min{0, a}. The conditions coupling the matrix and fracture unknowns then
read, for α ∈ {nw,w} (see the right Fig. 3.2):

γn±qα
m = qα

f,n± , qα
f,n± = Mα

f (S
α
f (γ

± pc,m))(V α,±
f,n )+ + Mα

f (s
α
f )(V

α,±
f,n )−. (3.6)

The hybrid dimensional two-phase flow discontinuous pressure model looks for
uα
m, uα

f , s
α
m, sα

f , α ∈ {nw,w}, satisfying (3.1)–(3.2) and (3.3)–(3.4) together with the
transmission conditions (3.6).

3.2.2 Two-Phase DFM Continuous Pressure Model

In the case of pervious fractures, for which the ratio of the transversal permeability
of the fracture to the width of the fracture is large compared with the ratio of the
permeability of the matrix to the size of the domain, it is classical to assume that the
phase pressures are continuous at the interfaces between the fractures and the matrix
domain. Let us also mention that in the context of two-phase flows the continuous
pressure DFMmodels have to be used with caution. It has been shown in [1, 16] that
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Fig. 3.3 Example of a 2D DFM continuous pressure model with the normal vectors n± at both
sides of a fracture, the phase pressure uα and its trace γ uα on the fracture network �, the matrix
phase saturation sα

m , the fracture phase saturation sα
f , the matrix Darcy phase velocity qα

m and the
fracture network tangential Darcy phase velocity qα

f

even highly pervious fractures may still act as barriers. This is due to the potential
degeneracy of the mobilities in the transmission condition (3.6) and to the saturation
jumps resulting from the high contrast of the capillary pressure curves across mf
interface. Typically a fracture filled with the non-wetting phase would act as a barrier
for the wetting phase, and therefore would induce a discontinuity of the wetting
phase’s pressure. We refer to [1, 16] for a detailed comparison of continuous and
discontinuous pressure models in case of very pervious fractures.

The continuous pressure model replaces the transmission condition (3.6) by the
following phase pressure continuity conditions at mf interfaces:

γ +uα
m = γ −uα

m = uα
f on �, α ∈ {nw,w}. (3.7)

It results that we can denote by uα the matrix pressure of phase α ∈ {nw,w} and
by γ uα the fracture pressure of phase α ∈ {nw,w}, where γ is the trace operator on
� for functions in H 1(�) (Fig. 3.3).

The hybrid dimensional two-phase flow continuous pressure model looks for sα
m ,

sα
f , and uα , α = nw,w satisfying (3.1)–(3.2) and (3.3)–(3.4).
For both continuous and discontinuous pressure models, a no-flux boundary con-

ditions is prescribed at the tips of the immersed fractures, that is to say on ∂� \ ∂�,
and the volume conservation and pressure continuity conditions are imposed at the
fracture intersections. We refer to [13, 16] for more details on those conditions.

Finally, one should provide some appropriate initial and boundary data. To fix
ideas,we consider in a non homogeneousDirichlet boundary conditions on thematrix
boundary ∂�Dir ⊂ ∂� and on the fracture boundary�Dir ⊂ ∂� ∩ ∂�. Homogeneous
Neumann boundary conditions are set on ∂�N = ∂� \ ∂�Dir and on �N = (∂� ∩
∂�) \ �Dir.
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3.3 Vertex Approximate Gradient (VAG) Discretization of
Two-Phase DFM Continuous Pressure Models

The VAG discretization of hybrid dimensional two-phase Darcy flows introduced in
[13] considers generalised polyhedral meshes of� in the spirit of [29]. Let us briefly
recall some notations related to the space discretization. We denote byM the set of
disjoint open polyhedral cells, by F the set of faces and by V the set of nodes of the
mesh. For each cell K ∈ Mwe denote byFK ⊂ F the set of its faces and by VK the
set of its nodes. Similarly, we will denote by Vσ the set of nodes of σ ∈ F . The set
Mσ denotes the two cells sharing an interior face σ or the single cell to which the
boundary face σ belongs. The set Ms (resp. Fs) is the subset of cells (resp. faces)
sharing the node s ∈ V .

Let Eσ denote the set of edges of the face σ ∈ F . It is then assumed that for each
face σ ∈ F , there exists a so-called “centre” of the face xσ ∈ σ \ ⋃

e∈Eσ
e such that

xσ = ∑
s∈Vσ

βσ,s xs, with
∑

s∈Vσ
βσ,s = 1, and βσ,s ≥ 0 for all s ∈ Vσ . The face σ is

not necessarily planar, hence the term generalised polyhedral mesh. More precisely,
each face σ is assumed to be defined by the union of the triangles Tσ,e defined by the
face centre xσ and each edge e ∈ Eσ .

The mesh is supposed to be conforming w.r.t. the fracture network � in the sense
that there exists a subset F� of F such that � = ⋃

σ∈F�
σ . We set

V� =
⋃

σ∈F�

Vσ ,

and, for s ∈ V� , we define F�,s = Fs ∩ F� as the subset of faces in F� sharing the
node s.

TheVAGdiscretization proposed in [13] is based upon the following set of degrees
of freedom (d.o.f.)

D = M ∪ V ∪ F�

and the corresponding vector space:

XD = {vν ∈ R, ν ∈ D}.

The d.o.f. are exhibited in Fig. 3.4 for a given cell K with one fracture face σ in bold.
Let us denote by

VDir = {s ∈ V | xs ∈ ∂�Dir ∪ �Dir},

the subset of Dirichlet nodes.
A finite element discretization is built from the vector space of d.o.f. XD using a

tetrahedral sub-mesh of M and a second order interpolation at the face centres xσ ,
σ ∈ F \ F� defined by the operator Iσ : XD → R such that
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Iσ (v) =
∑

s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by

T = {TK ,σ,e, e ∈ Eσ , σ ∈ FK , K ∈ M}, (3.8)

where TK ,σ,e is the tetrahedron joining the cell centre xK to the triangle Tσ,e. For a
given vD ∈ XD, we define the function πT vD as the continuous piecewise affine
function on each tetrahedron of T such that πT vD(xK ) = vK , πT vD(xs) = vs,
πT vD(xσ ) = vσ , and πT vD(xσ ′) = Iσ ′(v) for all K ∈ M, s ∈ V , σ ∈ F� , and
σ ′ ∈ F \ F� . The nodal basis of this finite element discretization will be denoted by
ηK , ηs, ησ , for K ∈ M, s ∈ V , σ ∈ F� .

The VAG scheme is a control volume scheme in the sense that it results, for each
d.o.f. not located at the Dirichlet boundary and each phase, in a volume balance
equation. The two main ingredients are therefore the conservative fluxes and the
porous volumes. The VAG matrix and fracture fluxes are exhibited in Fig. 3.4. They
are derived from the variational formulation on the finite element subspace. For
uD ∈ XD, thematrix fluxes FK ,ν(uD) connect the cell K ∈ M to all the d.o.f. located
at the boundary of K , namely ν ∈ �K = VK ∪ (FK ∩ F�). They are defined by

FK ,ν(uD) =
∫

K
−�m(x)∇πT uD(x) · ∇ην(x)dx =

∑

ν ′∈�K

T
ν,ν ′
K (uK − uν ′),

with the cell transmissibilities

T
ν,ν ′
K =

∫

K
�m(x)∇ην ′(x) · ∇ην(x)dx.

The fracture fluxes Fσ,s(uD) connect each fracture face σ ∈ F� to its nodes s ∈ Vσ

and are defined by

Fσ,s(uD) =
∫

σ

−d f � f ∇τ γ πT uD(x) · ∇τ γ ηs(x)dσ(x) =
∑

s′∈Vσ

T
s,s′
σ (uσ − us′),

Fig. 3.4 For a cell K and a
fracture face σ (in bold),
examples of VAG d.o.f. uK ,
us, uσ , us′ and VAG fluxes
FK ,σ , FK ,s, FK ,s′ , Fσ,s
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with the fracture face transmissibilities

T
s,s′
σ =

∫

σ

d f (x)� f (x)∇τ γ ηs′(x) · ∇τ γ ηs(x)dσ(x),

where dσ(x) denotes the Lebesgue d − 1 dimensional measure on �.
The porous volumes are obtained by distributing the porous volumes of each cell

K ∈ M and fracture face σ ∈ F� to the d.o.f. located on their respective boundaries.
For each K ∈ M we define a set of non-negative volume fractions

(
αK ,ν

)
ν∈�K \VDir

satisfying
∑

ν∈�K \VDir

αK ,ν ≤ 1, and we set

φK ,ν = αK ,ν

∫

K
φm(x)dx.

Similarly, for all σ ∈ F� we set

φσ,s = ασ,s

∫

σ

φ f (x)d f (x)dσ(x),

with the non-negative volume fractions
(
ασ,s

)
s∈Vσ \VDir

satisfying
∑

s∈Vσ \VDir

ασ,s ≤ 1.

Then, we set for all K ∈ M and σ ∈ F�:

φK =
∫

K
φm(x)dx −

∑

ν∈�K \VDir

φK ,ν ,

φσ =
∫

σ

φ f (x)d f (x)dσ(x) −
∑

s∈Vσ \VDir

φσ,s.

On practical meshes with cell sizes at mf interfaces much larger than the fracture
width, the flexibility in the choice of the weights αK ,s and ασ,s is shown in [13] (see
also [30]) to be a crucial asset compared with usual CVFE approaches, allowing
to improve significantly the accuracy of the scheme. As exhibited in Fig. 3.5, and
in contrast with the usual CVFE approaches, the fracture porous volumes can be
defined with no contribution of the matrix porous volume, thus avoiding to enlarge
artificially the flow path in the fractures and to slow down the front speed. This is
achieved by choosing the volume fractions such that

αK ,σ = 0 for all σ ∈ F�, K ∈ Mσ ,

αK ,s = 0 for all s ∈ V�, K ∈ Ms.
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Fig. 3.5 Example of control volumes at cells, fracture face, and nodes, in the case of two cells K and
L splitted by one fracture face σ (the width of the fracture has been enlarged in this Figure). (left):
VAG choice of the porous volumes avoiding mixing between fracture and matrix porous volumes.
(right): CVFE like choice of the porous volumesmixing fracture andmatrix porous volumes leading
to a considerable enlargement of the fracture drain on practical meshes

3.3.1 VAG Phase Potential Two-Point (TP) Upwind
Formulation

Weconsider in the followingofSect. 3.3, the usual approach (termed f-upwindmodel)
for which a single rock type is assigned to each d.o.f. Quite naturally, the fracture rock
type is associated with d.o.f. located on �, while the matrix rock type is associated
to the remaining d.o.f., that is we set

Pc,ν(s) =
{
Pc,m(s) if ν /∈ (V� ∪ F�),

Pc, f (s) if ν ∈ (V� ∪ F�),

and

Mα
ν (s) =

{
Mα

m(s) if ν /∈ (V� ∪ F�),

Mα
f (s) if ν ∈ (V� ∪ F�),

α ∈ {nw,w}.

The set of discrete unknowns is defined by the set of phase pressure uα
D ∈ XD and

phase saturation sα
D ∈ XD for each phase α ∈ {nw,w}.

The “single” phase VAG Darcy fluxes, not including the phase mobility, are
defined, for each phase α ∈ {nw,w}, by

Fα
K ,ν(u

α
D) = FK ,ν(u

α
D) + ραgFK ,ν(zD),

Fα
σ,s(u

α
D) = Fσ,s(u

α
D) + ραgFσ,s(zD),

with zD = (xν)ν∈D, and for K ∈ M, σ ∈ F� , ν ∈ �K , s ∈ Vσ . They are combined
with the usual Two-Point (TP) phase potential upwinding of the mobilities [8, 23],
leading to the following two-phase Darcy VAG fluxes

qα
K ,ν = Mα

K (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

ν (sα
ν )(Fα

K ,ν(u
α
D))−,

qα
σ,s = Mα

σ (sα
σ )(Fα

σ,s(u
α
D))+ + Mα

s (sα
s )(Fα

σ,s(u
α
D))−.
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Let us define the accumulation terms by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα
σ =(

φσ +
∑

K∈Mσ

φK ,σ

)
sα
σ , σ ∈ F�,

Aα
s =( ∑

K∈Ms

φK ,s +
∑

σ∈F�,s

φσ,s
)
sα
s , s ∈ V \ VDir.

Note that neither the accumulation terms Aα
σ and Aα

s nor the mf fluxes take into
account the discontinuity of the saturations across mf interface. In other terms,
the discrete problem does not involve quantities such as Pc,m(s f ). An alternative
approach is described in Sect. 3.3.5.

For N ∈ N
∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 <

tn · · · < t N = T of the time interval [0, T ]. We denote the time steps by �tn =
tn − tn−1 for alln = 1, · · · , N . The superscriptnwill be used to denote the unknowns
at time tn . To reduce the amount of notation, only the previous time step superscript
n − 1 will be specified in the following, while the superscript n will not be specified
by default.

The set of discrete equations couples the volume balance equations at each d.o.f.
excluding the Dirichlet nodes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K − Aα,n−1

K

�tn
+

∑

ν∈�K

qα
K ,ν = 0, K ∈ M, α = nw,w,

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
K ,σ = 0, σ ∈ F�, α = nw,w,

Aα
s − Aα,n−1

s

�tn
+

∑

K∈Ms

−qα
K ,s +

∑

σ∈F�,s

−qα
σ,s = 0, s ∈ V \ VDir, α = nw,w,

(3.9)
combined with the closure laws

{
snwν + swν = 1, ν ∈ D,

unwν − uwν = Pc,ν(snwν ), ν ∈ D,
(3.10)

and the Dirichlet boundary conditions

snws = snwDir,s unws = unwDir,s, s ∈ VDir, (3.11)

for given snwDir,s ∈ [0, 1], unwDir,s, s ∈ VDir.
To solve the discrete nonlinear system (3.9), one first uses the closure equations

(3.10) to eliminate the unknowns swν and uwν for ν ∈ D reducing the system to the
primary unknowns unwν , snwν , ν ∈ D coupled by the set of equations (3.9) and the
Dirichlet boundary conditions (3.11). A Newton’s method is used to solve this non-
linear system at each time step of the simulation. At each Newton step, the Jacobian
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matrix is assembled and the cell unknowns unwK , snwK , K ∈ M are eliminated without
any fill-in using the linearized cell volume balance equations reducing the system to
the node and fracture face primary unknowns only. This elimination results in a huge
gain in terms of system size in particular for tetrahedral meshes. The reduced linear
system is solved using a Krylov subspace solver preconditioned by a CPR-AMG
preconditioner. This preconditioner combines multiplicatively an AMG precondi-
tioner on a pressure block (elliptic part of the system) with a zero fill-in incomplete
factorization of the full system. Let us refer to [42, 47] for its detailed description.
In the following numerical experiments, the pressure block is simply obtain as the
sum over both phases of the volume balance equations on each fracture face and non
Dirichlet node.

3.3.2 What Is Wrong with Two-Point Upwinding at mf
Interfaces

In this Section, we discuss one particular difficulty that the nodal discretizations
have in regard of the discrete fluxes reconstruction. As shown below, due to the
dual control volumes at mf interfaces, nodal schemes may result in fluxes having an
opposite sign compared to the fluxes computed at the physical mf interfaces. Using
Two-Point upwinding, this results in an artificial diffusion of the saturation toward an
upstream direction. To avoid this drawback we propose below an alternative Multi-
Point upwinding technique.

For a given constant velocityq, let us choose uD ∈ XD such that uν = −�−1
m q · xν

for all ν ∈ D. From −�m∇πT uD = q, we obtain

FK ,s(uD) = q ·
∫

K
∇ηs(x)dx,

at a given fracture node s ∈ V� , and cell K ∈ Ms.
For the sake of simplicity, let us assume the geometrical configuration illustrated

in Fig. 3.6. It results that

FK ,s(uD) = − 1
2 |s2σ1|q · n1,

FJ,s(uD) = − 1
2 |s3σ2|q · n3 = −FK ,s(uD),

FI,s(uD) = + 1
2 |s2s3|q · n,

FK ,σ1(uD) = + 1
2 |ss1|q · n,

FJ,σ2(uD) = + 1
2 |ss4|q · n = FI,σ1(uD).

We remark that, whatever the velocity q, either the flux FK ,s(uD) or the flux
FJ,s(uD) have the opposite sign as the one of q · n. Assuming, to fix ideas that
q · n > 0, it results from the Two-Point upwinding used for the transport scheme
of a given phase with Darcy velocity q, that the phase propagates from the fracture
either to the upstream cell K or the upstream cell J .
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Fig. 3.6 Example of a 2D mesh with three isosceles triangular cells at the interface with a fracture
in bold. It is assumed that the unit normal vectors are such that n2 = −n, n1 = −n3 and that
n1 · n = 0. The cell centers are chosen as the isobarycenters of their 3 nodes

On the other hand, let us remark that the ill-orientated discrete fluxes cancel out
when summing over the cells connected to the node s and located on the same side
with respect to the planar fracture, that is we have

FK ,s(uD) + FI,s(uD) + FJ,s(uD) = 1

2
|σ1σ2|q · n. (3.12)

This property actually holds for an arbitrary number of polygonal cells sharing the
node s and whatever the choice of the cell centers. In the three-dimensional case, this
property also holds for tetrahedral meshes.

In the following Subsection, this property on the sum of the fluxes is exploited to
avoid the artificial diffusion of the phase toward an upstream direction.

3.3.3 Multi-Point (MP) Upwind Fluxes at mf Interfaces

We first define an equivalence relation on each subsetMs of cells, for any fixed node
s ∈ V , by

K ≡Ms L ⇐⇒ there exists n ∈ N and a sequence (σi )i=1,...,n in Fs\F�,

such that K ∈ Mσ1 , L ∈ Mσn and Mσi+1 ∩ Mσi �= ∅
for i = 1, . . . , n − 1.
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Fig. 3.7 (left) 2D mesh with 3 fracture faces in bold and the 3 d.o.f. in Ms at the node s ∈ V� ,
(right) Darcy fluxes joining each cell L ∈ K s to the new d.o.f. K s, and joining the new d.o.f. K s to
the node s (the node s and K s are located at the same point s but they have been separated for the
sake of clarity of the Figure)

Let us then denote by Ms the set of all classes of equivalence of Ms and by Ks

the element of Ms containing K ∈ M. Obviously Ms might have more than one
element only if s ∈ V� . Note that Ks is both considered as a subset of cells of Ms

as well as an additional d.o.f. located at the same point than the node s i.e. we set
xK s

= xs (Fig. 3.7).
Let us define the phase mobilities

Mα

K s
, s ∈ V�, K s ∈ Ms, α ∈ {nw,w}, (3.13)

as matrix fracture additional unknowns. Then, using phase potential upwinding of
the mobilities, let us define for all L ∈ K s the half Darcy fluxes between L and K s

by
qα

L ,K s
= Mα

L (sα
L)(F

α
L ,s(u

α
D))+ + Mα

K s
(Fα

L ,s(u
α
D))−,

as well as the half Darcy flux between K s and s by

qα

K s,s
= Mα

s (sα
s )(Fα

K s,s
)− + Mα

K s
(Fα

K s,s
)+,

where we set by flux conservation

Fα

K s,s
=

∑

L∈K s

Fα
L ,s(u

α
D).

The flux continuity equation

qα

K s,s
=

∑

L∈K s

qα

L ,K s
, (3.14)
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is used to eliminate themobility unknownMα

K s
leading to the following convex linear

combination of the cells L ∈ K s and node s mobilities:

Mα

K s
=

∑

L∈K s

(Fα
L ,s(u

α
D))+Mα

L (sα
L) − Mα

s (sα
s )(

∑

L∈K s

Fα
L ,s(u

α
D))−

∑

L∈K s

(Fα
L ,s(u

α
D))+ − (

∑

L∈K s

Fα
L ,s(u

α
D))−

. (3.15)

We deduce the definition of the new Multi-Point upwind flux

qα
K ,s = qα

K ,K s
= Mα

K (sα
K )(Fα

K ,s(u
α
D))+ + Mα

K s
(Fα

K ,s(u
α
D))−,

denoted by VAG MP in the following and to be used in the conservation equations
(3.9). Compared with the Two-Point upwind flux

qα
K ,s = Mα

K (sα
K )(Fα

K ,s(u
α
D))+ + Mα

s (sα
s )(Fα

K ,s(u
α
D))−,

denoted by VAG TP, the VAG MP flux uses the fracture node saturation sα
s only if∑

L∈K s
Fα
L ,s(u

α
D) < 0, which, in view of (3.12), ensures that the phase will not go

out from the fracture on the wrong side in the case of a linear phase pressure field.
Note also that, if K s contains only one cell, both the VAG TP and VAGMP fluxes

match, this is why the fluxes qα
K ,σ , σ ∈ FK ∩ F� do not need to be modified.

Thematrix fracturemobility unknowns (3.13) and flux continuity equations (3.14)
can be kept in the nonlinear systemand solve simultaneouslywith the other unknowns
and equations. Let us recall that the CPR-AMG preconditioner combines multiplica-
tively an AMG preconditioner on a pressure block (elliptic part of the system) with
a zero fill-in incomplete factorization of the full system. The matrix fracture mobil-
ity unknowns Mα

K s
and the flux continuity equations (3.14), s ∈ V� , K s ∈ Ms, are

not included in the definition of the pressure block due to their hyperbolic nature. It
results that the pressure block has the same number of unknowns and sparsity pattern
as the one of the usual VAG TP scheme. Since the AMG step is the most expensive
part of the CPR-AMG two stage preconditioner, this explains why keeping thematrix
fracture mobility unknowns is quite efficient.

On the other hand, the elimination of the matrix fracture mobility unknowns
together with the flux continuity equations in (3.15) leads to a rather large fill-in of
the Jacobian (depending on the density of the fracture network) and also prevents the
elimination of the cell unknowns connected to the fractures. The following numerical
experiments confirm that it is much more efficient in terms of CPU time to keep the
matrix fracture mobility unknowns in the linear system.
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3.3.4 Numerical Experiments

The Objectives of this Subsection is to compare the solutions obtained with the
following schemes:

• the CVFE like VAG scheme with rock type mixture and Two-Point upwinding of
the mobilities at mf interfaces (VAG CVFE),

• the VAG scheme with no rock type mixture and Two-Point upwinding of the
mobilities at mf interfaces (VAG TP),

• the VAG scheme with no rock type mixture and Multi-Point upwinding of the
mobilities at mf interfaces (VAG MP). The VAG MP scheme is implemented
either with elimination of the interface mobility unknowns (VAG MP) or without
elimination of these unknowns (VAG MP no elim).

• the Hybrid Finite Volume (HFV) scheme with cell, face and fracture edge
unknowns as described in [37] (HFV).

All these schemes are implemented in the same code using the Fortran 90 pro-
gramming language combined with the gfortran compiler. The linear systems are
solved using the Slatec library [48] for the GMRes iterative solver and the ILU0
preconditioner as well as the AMG1R5 library for the Algebraic MultiGrid precon-
ditioner [45].
Tables3.1 and 3.2 exhibit the following entries:

• mesh: number of cells,
• dof : number of degrees of freedom of each scheme (with 2 physical primary
unknowns per d.o.f.),

• doflin : number of degrees of freedom in the linear system after reduction. Let us
recall that the cell unknowns are eliminated for VAG CVFE, VAG TP, HFV, and
VAG MP no elim, while the interface mobilities together with the cell unknowns
not connected to the fractures are eliminated for VAG MP,

• Nz : number of nonzero elements in the reduced Jacobian (with 2 × 2 matrix ele-
ments).

Note that for the VAG MP no elim implementation, the pressure block is stored
seperately after reduction with a lower number of d.o.f. and nonzero elements than
the remaining part of the Jacobian. This is a key point to lower the CPU timewhen the
CPR-AMG preconditioner is used. Then, the first doflin (resp. Nz) entry corresponds
to the pressure block, and the second entry to the remaining part.
These tables also include the following entries:

• N�t : number of successful time steps,
• Nchop: number of time step chops,
• NNewton : average number of Newton iterations per successful time step,
• NGMRes : average number of GMRes iteration per Newton step,
• CPU (s): CPU time in seconds.
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The CPU time takes into account the full time loop including the outputs in ensight
format files at each time step but excluding the preprocessing computations (mesh
reading, mesh connectivity, VAG transmissibilities, CSR format of the Jacobian)
which are negligeable in terms of CPU time compared with the time loop.

3.3.4.1 Tracer DFM Model with a Single Fracture

Let us denote by (x, y) the Cartesian coordinates of x and let us set � = (0, 1 m)2,
x1 = (0, 1

4 ), x2 = (1, 0.875). We consider a single fracture defined by � = (x1, x2)
with tangential permeability � f = 200 m2 and width d f = 10−3 m. The matrix
permeability is isotropic and set to �m = 1 m2. The matrix and fracture porosities
are set to φm = φ f = 1. Let us set

t =
(

1
0.625

)

, q =
(
1
1
3

)

.

We consider the hybrid-dimensional tracer model obtained from the two-phase
DFM model by setting Mα

m(s) = Mα
f (s) = s for α ∈ {nw,w}, Pc,m(s) = Pc, f (s) =

0, g = 0. The pressure analytical solution is defined for α ∈ {nw,w} by

uα(x, t) = 1 − �−1
m x · q,

leading to the matrix Darcy velocity

qα
m = q,

and the tangential fracture velocity integrated over the width

qα
f = d f � f

(t · �−1
m q)

|t|2 t,

This pressure solution is exactly solved by the VAG scheme usingDirichlet condition
at the boundary of the domain. An input Dirichlet boundary condition is imposed
for the non-wetting phase saturation (tracer) with zero value at the matrix boundary
and a value of 1 at the fracture boundary x1. The initial condition is defined by a
zero non-wetting phase saturation both in the fracture andmatrix domains. Figure3.8
illustrates that the tracer VAG TP solution goes out on the wrong side of the fracture
on a few layers of cells, while it is not the case for the HFV and VAG MP solutions
as expected. The VAG CVFE stationary tracer solution is not plotted since it is the
same than the VAG TP stationary tracer solution. Figure3.9 exhibits the stationary
solutions along the fracture showing that the HFV and VAG MP solutions match on
both meshes while the VAGTP solution is not fully converged even on the fine mesh.
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Fig. 3.8 Stationary solution for the non-wetting phase saturation (tracer) in the matrix and in the
fracture obtained by, from left to right, the HVF, VAG MP and VAG TP schemes, and, from top to
bottom, on the 16 × 16 and 128 × 128 topologically Cartesian meshes

Fig. 3.9 Stationary
non-wetting phase saturation
along the fracture as a
function of x obtained by the
HVF, VAG MP, VAG TP
schemes on the 16 × 16 and
128 × 128 topologically
Cartesian meshes

Figure3.10 exhibits the tracer volume in the fracture as a function of time. Again,
the HFV and VAG MP solutions match on both meshes, while the tracer front in
the fracture is clearly slown down for the VAG TP solution on both meshes. This is
much worse for the VAG CVFE solution due to the fracture enlargement resulting
from the rock type mixture at mf interfaces.
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Fig. 3.10 Volume of the
non-wetting phase in the
fracture as a function of time
for the HVF, VAG MP, VAG
TP, VAG CVFE scheme
solutions on the 16 × 16 and
128 × 128 topologically
Cartesian meshes

3.3.4.2 Large 2D DFM Model

This test case considers the DFM model with the matrix domain � = (0, 100m) ×
(0, 186.5m) and a fracture network including 581 connected components both exhib-
ited in Fig. 3.11. The fracture width is d f = 1 cm and the fracture network is homo-
geneous and isotropic with � f = 10−11 m2, φ f = 0.2. The matrix is homogeneous
and isotropic with �m = 10−14 m2, φm = 0.4.

The relative permeabilities are given by kα
r, f (s

α) = sα and kα
r,m(sα) = (sα)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snw) = −104 ln(1 − snw) Pa in
the matrix and to Pc, f (snw) = 0 Pa in the fracture network. The fluid properties are
defined by their dynamic viscosities μnw = 5. 10−3, μw = 10−3 Pa s and their mass
densities ρw = 1000 and ρnw = 700 kg m−3.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary
conditions are imposed at the top boundary with a wetting phase pressure of 1 MPa
and swm = 1, as well as at the bottom boundary with snwm = 0.9 and uw = 4MPa. The
remaining boundaries are assumed impervious and the final simulation time is fixed
to t f = 1800 days.

The time stepping is defined by �t1 = �tini t = 10 days, and for all n ≥ 1 by

�tn+1 = max(�tmax , 1.2�tn) with �tmax = 10 days, (3.16)

in case of a successful time step �tn , and �tn+1 = �tn

2 , in case of non convergence
of the Newton algorithm in Newtonmax = 30 iterations. This last value is chosen not
to small to avoid too many time step failures even on the finest mesh but also not to
large to avoid increased CPU time in case of time step failures induced by residual
oscillations.

The criterion of convergence for the Newton algorithm is based on a relative
residual in l1 norm smaller than Resmax or on a Newton step in l∞ norm (scaled by
10−6 for the primary pressure unknown and by 1 for the other primary unknown)
smaller than dxmax with

Resmax = 10−5, dxmax = 10−4. (3.17)
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Fig. 3.11 Triangular mesh of the DFM model with 32340 (32k) cells and 5344 fracture faces
(Courtesy of M. Karimi-Fard, Stanford, and A. Lapène, Total). This mesh is refined uniformly to
obtain the 129k and 517k cells meshes

Note also that the Newton step is relaxed such that its l∞ norm (scaled by 10−6 for
the primary pressure unknown and by 1 for the other primary unknown) is smaller
than dxobj with

dxobj = 1. (3.18)

The non-wetting phase saturation is exhibited at final simulation time in Fig. 3.12
in the matrix and in the fracture network, and the volume of the non-wetting phase
as a function of time is presented in Fig. 3.13. We clearly see in Figs. 3.12 and 3.13
that the VAG CVFE discretization considerably slows down the non-wetting phase
front in the fracture network due to the drain enlargement induced by the mixing of
matrix and fracture porous volumes at mf interfaces. The VAGTP discretization does
a better job but still underestimates the front speed in the fracture network. As clearly
exhibited by Fig. 3.12, this is due to the fact that the VAG TP scheme propagates
the non-wetting phase on the wrong side of the fractures as explained in Sect. 3.3.2.
From Fig. 3.13, the VAG TP solution gets very close to the VAG MP solution after
two level of refinement of the coarse mesh, while the VAG CVFE solution has not
yet converged on the finest mesh. The comparison between the VAG MP and HFV
solutions shows that they are in good agreement for all meshes. It appears in Fig. 3.13
that the HFV scheme converges more slowly then the VAG MP scheme.

The numerical behavior of the four schemes is reported in Table3.1 with CPU
time is in seconds on Intel E5-2670 2.6GHz. We remark that the average number
of Newton iterations is in all cases quite smaller than Newtonmax due to significant
variations in the number of Newton iterations during the simulation. This can be
explained typically by a higher number of Newton iterations when the non-wetting
phase reaches the tips of the fracture network.

For this large 2D network, the VAG MP implementation with elimination of
the matrix fracture mobilities leads to a twice large CPU time than the VAG MP
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Fig. 3.12 Non-wetting phase saturation in the matrix and fracture network at time t f = 1800 days
for the HVF, VAG MP, VAG TP, VAG CVFE schemes from left to right, and the 32k, 129k, 517k
cells meshes from top to bottom
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Fig. 3.13 Non-wetting phase volume in the fracture network as a function of time for the VAGMP,
HFV, VAG TP and VAG CFVE schemes on the 3 meshes of sizes 32k, 129k and 517k cells

implementation with no elimination. Regarding the comparison between VAG MP
and VAG TP, we notice a twice larger CPU time, which is a rather good result for
such a large network. The comparison between HFV and VAG MP shows for this
2D test case that HFV is competitive on the coarse mesh due to the additional matrix
fracture unknowns for VAG MP, but becomes more expensive on the two refined
meshes. We will see in the next test case that the situation is much more in favor of
the VAG schemes on tetrahedral 3D meshes.

3.3.4.3 3D DFM Model

TheDFMmodel ofmatrix domain� = (0, 100m)3 and its coarsest tetrahedral mesh
conforming to the fracture network are illustrated in Fig. 3.14. The fracture network
is assumed to be of constant aperture d f = 1 cm. The matrix and fracture porosities,
permeabilities, relative permeabilities and capillary pressures are the same as in the
previous test case. The fluid properties are also the same than in the previous test
case.

At initial time, the reservoir is fully saturated with the wetting phase. Then, non-
wetting phase is injected from below, which is managed by imposing Dirichlet con-
ditions at the bottom and at the top of the reservoir. We impose at the bottom bound-
ary either an overpressure �p = 2 MPa or no overpressure �p = 0 MPa w.r.t. the
hydrostatic distribution of the water pressure. The remaining boundaries are assumed
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Fig. 3.14 Geometry of the
domain � = 100 m ×100 m
×100 m with the fracture
network in red (left),
coarsest tetrahedral mesh
with 47670 cells (right)

impervious and the final simulation time is fixed to t f = 360 days for �p = 2 MPa
and to t f = 3600 days for �p = 0 MPa. The time stepping is defined as in (3.16)
using �tini t = 0.1 days, Newtonmax = 30, and either �tmax = 10 days for �p = 2
MPa or �tmax = 100 days for �p = 0 MPa. The criterion of convergence for the
Newton algorithm is defined as in (3.17) with Resmax = 10−6 and dxmax = 10−5,
and the relaxation of the Newton step is controlled as in (3.18) by the parameter
dxobj = 1.

From Figs. 3.15 and 3.16, we observe that the VAG TP and VAG CVFE schemes
are far from convergence even on the finest mesh with 450k cells while the solution
provided by the VAG MP scheme is quite close to the one of the HFV scheme. The
discrepancy between, on the one hand, theVAGTP andVAGCVFE, and, on the other
hand, theVAGMP andHFV schemes is evenmore striking on the coarsemesh for the
no-overpressure gravity dominant test case exhibited in Figs. 3.17 and 3.18. In terms

Fig. 3.15 Non-wetting phase saturation solutions obtained with the HVF, VAGMP, VAG TP, VAG
CVFE schemes from left to right, at time t f = 360 days (top), and at time t = 100 days (bottom),
with overpressure �p = 2 MPa, and the mesh of size 450k cells. The threshold in the matrix is
Snwm > 0.1 (bottom)
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Fig. 3.16 Non-wetting phase volume in the fracture network as a function of time for the 3D DFM
test case with the overpressure �p = 2 MPa using the VAG MP, HFV, VAG TP and VAG CFVE
schemes on the 2 meshes of sizes 47k and 450k cells

Fig. 3.17 Non-wetting phase saturation solutions obtained with the HVF, VAGMP, VAG TP, VAG
CVFE schemes from left to right, at time t f = 3600 days with no overpressure �p = 0 MPa, and
the mesh of size 47k cells. The threshold in the matrix is Snwm > 0.1 (bottom)

of CPU time, as exhibited in Table3.2, the VAG MP scheme implemented with no
elimination of the matrix fracture mobility unknowns is competitive compared with
the VAG TP scheme. It is also much cheaper than the HFV scheme which leads to a
much larger number of d.o.f. and requires both more Newton and GMRes iterations
than the VAG schemes. Note that the HFV scheme cannot be run in a reasonable
CPU time for the finest mesh of size 1600k cells.
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Fig. 3.18 Non-wetting
phase volume in the fracture
network as a function of time
for the 3D DFM test case
with no overpressure
�p = 0 MPa using the VAG
MP, HFV, VAG TP and VAG
CFVE schemes on the 47k
cells mesh

3.3.5 Capturing the Saturation Jumps at mf Interfaces

Given cellwise and fracture facewise constant rock types, the idea introduced in [20,
43, 44] for CVFE methods and in [14, 17, 31] for the VAG scheme is to define as
many saturations as rock types shared at a given node or fracture face. This allows
to capture the saturation jumps at rock type interfaces resulting from the continuity
of the capillary pressure in the graphical sense [18, 21, 22, 27, 28].

The choice of the primary unknowns may greatly affect the convergence of New-
ton’s method used to solve the nonlinear system at each time step of the simulation.
For the cells and the nodal d.o.f. associated with a single rock the choice of the
primary unknowns does not change compared to Sect. 3.3.1. That is we use the non-
wetting phase’s pressure and saturation as pair of primary unknowns. In contrast
the d.o.f. located at rock type interfaces require a special treatment. For such d.o.f.
ν ∈ V� ∪ F� we set again the pressure of the non-wetting phase as the first pri-
mary unknown, while the second primary unknown is chosen based on the variable
switching strategy introduced in [14]. For a given rock type rt ∈ RT = {m, f } let
P̃c,rt denote the monotone graph extension of Pc,rt as introduced in [21, 22]. For each
subset χ ∈ {{m}, {m, f }} of RT , non-decreasing continuous functions

{
Pc,χ (τ ),

Snwχ,rt(τ ), for all rt ∈ χ,
(3.19)

are built such that

Pc,χ (τ ) ∈ P̃c,rt(S
nw
χ,rt(τ )), for all τ and rt ∈ χ,

and such that Pc,χ (τ ) + ∑
rt∈χ Snwχ,rt(τ ) is strictly increasing. Then, we set

Swχ,rt(τ ) = 1 − Snwχ,rt(τ ).

The variable τ is going to be used as the second primary unknown.
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The main advantage of this framework, which applies to an arbitrary number of
rock types, is to incorporate in the construction of the functions (3.19) the saturation
jump condition at different rock type interfaces and to apply to general capillary
pressure functions. In practice, we use τ = snw for χ = {m} and the parametrization
defined in [14] for χ = {m, f }. This parametrization is based on a generalization
of variable switch approaches (see also [43]) between snwf , snwm , pc and applies to
general, including non invertible, capillary functions (see numerical section for an
example and Fig. 3.20).

Let us set
{

rtK = m, K ∈ M,

rtσ = f, σ ∈ F�,

{
χν = {m}, ν ∈ M ∪ (V \ V�),

χν = {m, f }, ν ∈ V� ∪ F�.

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and τD =
(τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν − Pc,χν

(τν) for all d.o.f. ν ∈ D, and
we define the discrete values of the saturation as follows. For all cells K ∈ M and
the nodes s ∈ V \ V� associated with the single matrix rock type, we set

sα
K = Sα

χK ,rtK (τK ) = Sα
{m},m(τK ) = τK

sα
K ,s = Sα

χs,rtK (τs) = Sα
{m},m(τs) = τs, K ∈ Ms.

For the fracture faces σ ∈ F� , we set

sα
σ = Sα

χσ ,rtσ (τσ ) = Sα
{m, f }, f (τσ )

sα
K ,σ = Sα

χσ ,rtK (τσ ) = Sα
{m, f },m(τσ ), K ∈ Mσ .

For the nodes s ∈ V� , located at the mf interface, we set

{
sα
K ,s = Sα

χs,rtK (τs) = Sα
{m, f },m(τs),

sα
σ,s = Sα

χs,rtσ (τs) = Sα
{m, f }, f (τs), σ ∈ F�,s.

As exhibited in Fig. 3.19, the above definition of the saturations at themf interfaces
takes into account the jump of the saturations induced by the different rock types.

Let us remark that, in our specific example, since the matrix domain is homoge-
neous in terms of capillary pressure-saturation relation, the variables sα

K ,s, K ∈ Ms

(resp. sα
K ,σ , K ∈ Mσ ) refer to the same nodal (resp. facial) saturation values. Sim-

Fig. 3.19 Saturations inside
the cells K and L , the
fracture face σ and at the mf
interfaces taking into account
the saturation jumps induced
by the different rock types
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ilarly, the values sα
σ,s, σ ∈ F�,s are identical. This is however not true for general

heterogeneous matrix and fracture domains.
We define the accumulation terms by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα
σ = φσ s

α
σ +

∑

K∈Mσ

φK ,σ s
α
K ,σ , σ ∈ F�,

Aα
s =

∑

K∈Ms

φK ,ss
α
K ,s +

∑

σ∈F�,s

φσ,ss
α
σ,s, s ∈ V \ VDir,

and the VAG fluxes with TP phase potential upwinding of the mobilities by

qα
K ,ν = Mα

rtK (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

rtK (sα
K ,ν)(F

α
K ,ν(u

α
D))−,

qα
σ,s = Mα

rtσ (s
α
σ )(Fα

σ,s(u
α
D))+ + Mα

rtσ (s
α
σ,s)(F

α
σ,s(u

α
D))−,

for all α ∈ {nw,w} and K ∈ M, σ ∈ F� , ν ∈ �K , s ∈ Vσ .
The VAG TP discretization capturing the saturation jumps at rock type interfaces

looks for unwD and τD satisfying the conservation equations (3.9) together with the
Dirichlet boundary conditions

τs = τDir,s unws = unwDir,s, s ∈ VDir. (3.20)

It will be termed VAG TP m-upwind discretization in the following. The VAG MP
m-upwind discretization can also be defined as previously using the MP upwind flux

qα
K ,s = qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,s(u
α
D))+ + Mα

K s
(Fα

K ,s(u
α
D))−,

for s ∈ V� with the interface mobility

Mα

K s
=

∑

L∈K s

(Fα
L ,s(u

α
D))+Mα

rtL (s
α
L) − Mα

rtK (sα
K ,s)(

∑

L∈K s

Fα
L ,s(u

α
D))−

∑

L∈K s

(Fα
L ,s(u

α
D))+ − (

∑

L∈K s

Fα
L ,s(u

α
D))−

,

assuming that rtL = rtK for all L ∈ K s. This assumption can always be verified by
setting new interface face(s) between the different rock types in K s. This discretiza-
tion will be termed VAG MP m-upwind discretization in the following.

A comparison of the f-upwind and m-upwind models with reference equi-
dimensional solutions can be found in [1, 16]. Basically, it concludes that, thanks
to the saturation jump capturing at mf interfaces, the m-upwind model provides a
better approximation than the f-upwind model as long as the fractures are not fully
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Fig. 3.20 (Top): capillary pressure as a function of the non-wetting phase saturation for both the
fracture (f) andmatrix (m) rock types with bm = 104 and b f = 103 Pa. (Bottom): capillary pressure
and fracture and matrix non-wetting phase saturations as functions of the parameter τ ∈ [0, τ2)

filled with the non-wetting phase. When the fractures are filled, the m-upwind model
overestimates the fracture capillary pressure and underestimates the capillary barrier
effect. In that case the f-upwind model provides a better approximation.
In the following numerical section, the VAG TP and MP m-upwind discretizations
are compared both in terms of solutions and CPU times.

3.3.5.1 Numerical Experiments

In this subsection, we compare the m-upwind version of the VAG TP and VAG
MP schemes using the same code implementation as described in the beginning of
Sect. 3.3.4. The test case considers the large DFM model exhibited in Fig. 3.21 with
domain � = (0, 85) × (0, 60) × (0, 140) m kindly provided by the authors of the
Benchmark [11, 12].

The fracture width is d f = 1 cm and the fracture network is homogeneous and
isotropic with � f = 10−11 m2, φ f = 0.2. The matrix is homogeneous and isotropic
with �m = 10−14 m2, φm = 0.4.
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Fig. 3.21 Large DFM model with its mesh of size 495233 tetrahedral cells and 66908 fracture
faces provided by the authors of the Benchmark [11]

The relative permeabilities are given by kα
r, f (s

α
f ) = sα

f and k
α
r,m(sα

m) = (sα
m)2, α ∈

{nw,w} and the capillary pressure is fixed to Pc,m(snwm ) = −bm ln(1 − snwm ) Pa in the
matrix and to Pc, f (snwf ) = −b f ln(1 − snwf )Pa in the fracture network,withb f = 103

Pa, and bm = 104 Pa. The fluid properties are defined by their dynamic viscosities
μnw = 5. 10−3, μw = 10−3 Pa s and their mass densities ρw = 1000 and ρnw = 700
kg m−3.

The parametrization τ at mf interfaces introduced in [14] is recalled below and
illustrated in Fig. 3.20 for the convenience of the reader.

Snw{m, f }, f (τ ) =
{

τ, τ ∈ [0, τ1),
1 − (τ1 + (1 − τ1)

b f
bm − τ)

bm
b f , τ ∈ [τ1, τ2),

(3.21)

Snw{m, f },m(τ ) =
{
1 − (1 − τ)

b f
bm , τ ∈ [0, τ1),

τ − τ1 + 1 − (1 − τ1)
b f
bm , τ ∈ [τ1, τ2),

(3.22)

and

Pc,{m, f }(τ ) =
{−b f ln(1 − τ), τ ∈ [0, τ1),

−bm ln
(
τ1 + (1 − τ1)

b f
bm − τ

)
, τ ∈ [τ1, τ2), (3.23)

where τ1 = 1 − (
b f

bm
)

bm
bm−b f and τ2 = τ1 + (1 − τ1)

b f
bm .
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Fig. 3.22 Non-wetting phase saturation volumes in the matrix (left) and in the fracture network
(right) as a function of time obtained for the VAG TP and the VAG MP m-upwind schemes

The reservoir is initially saturatedwith the wetting phase. Output Dirichlet bound-
ary conditions are imposed at the boundary {0, 85} × (0, 20) × (110, 140) with a
wetting phase pressure of 1 MPa and swm = 1, and input Dirichlet boundary con-
ditions are set at the boundary {0} × (40, 60) × (0, 30) ∪ (0, 30) × (40, 85) × {0}
with snwm = 0.9 and uw = 4MPa. The remaining boundaries are assumed impervious
and the final simulation time is fixed to t f = 3600 days. The time stepping is defined
as in (3.16) using �tini t = 0.01 days, �tmax = 100 days and Newtonmax = 25. The
criterion of convergence for the Newton algorithm is defined as in (3.17) with
Resmax = 10−5 and dxmax = 10−4, and the relaxation of the Newton step is con-
trolled as in (3.18) by the parameter dxobj = 1.

The same issue at mf interfaces as for the VAG TP f-upwind approximation can
be noticed in Fig. 3.23 for the VAG TP m-upwind discretization in the sense that the
non-wetting phase can go out from the fractures on the wrong side for the VAG TP
approximation. Nevertheless, thanks to the rather large saturation jump captured by
the m-upwind model in this test case, it involves small amounts of the non-wetting
phase and does not have visible effects on overall quantities (see Fig. 3.22) nor on the
non-wetting phase saturation front (see Fig. 3.23). In terms of CPU time, as exhibited
in Table3.3, a factor of roughly 1.7 is observed in favor of the TP discretization due
to the additional mf interface unknowns on this rather large fracture network and to
the slightly larger number of Newton iterations for the MP scheme.

Let us refer to [13] for a numerical comparison between the m-upwind VAG TP
scheme and the m-upwind VAG CVFE scheme (i.e. without adaptive distribution
of the porous volumes at mf interfaces). It shows that the m-upwind VAG CVFE
scheme still slows down the transport in the fractures in particular for a high matrix
fracture permeability ratio.
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Fig. 3.23 Non-wetting phase saturation in the matrix (top) and in the fracture network (bottom)
obtained for the VAG TP (left) and VAG MP (right) m-upwind schemes at time t = 350 days

Table 3.3 Numerical behavior of the simulation field test case for the VAG TP and MP m-upwind
schemes. We refer to the beginning of Sect. 3.3.4 for the description of the entries

Scheme mesh dof doflin N z N�t Nchop NNewton NGMRes CPU (s)

VAG TP 495k 648k 150k 2.0M 80 4 6.8 28 8200

VAG MP 495k 718k 150/220k 2.0/4.8M 79 3 8.2 30 14190
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3.4 Vertex Approximate Gradient (VAG) Discretization
of Two-Phase DFM Discontinuous Pressure Models

Discontinuous pressuremodels are required to account for fractures acting as barriers.
Such barriers are usually induced by a low fracture normal permeability combined
with a capillary barrier effect. Note that even in the case of a high normal fracture
permeability, a barrier behavior can still be observed for a given phase due to the
degeneracy of the phase mobility when the fracture is filled by the other phase (see
[1, 16]). Compared to the single phase flow models the possibility of such capillary
barriers constitutes an additional motivation for the use of discontinuous pressure
models.

VAGdiscrete unknowns: as exhibited in Fig. 3.24, the discrete unknowns are defined
by the matrix d.o.f.

Dm = M ∪ {K s | K s ∈ Ms, s ∈ V \ V�} ∪ Dm f

and by the fracture d.o.f.
D f = F� ∪ V�,

where Dm f ⊂ Dm are the mf interface d.o.f.

Dm f = M� ∪ F�,

with

M� = {K s | K s ∈ Ms, s ∈ V�}, F� = {Kσ | K ∈ Mσ , σ ∈ F�}.

uM s
= uN s uKσ uσ

uLs
us

uKuN

uL

uKs

uM

uLσ

FKσ,σFK,Kσ

Fσ,s

us

uKs

FKs,s

uσ

uKσ

uKs′

uK

FK,Ks
FK,Ks′

Fig. 3.24 Single phase VAG discretization of the discontinuous pressure hybrid-dimensional
model: example of discrete unknowns in 2D with 3 fracture faces intersecting at node s (left),
and VAG fluxes (matrix fluxes in red, fracture fluxes in black and matrix fracture fluxes in dark red)
in a 3D cell K with a fracture face σ in bold (right)
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Let us setD = Dm ∪ D f and let us remark that for s ∈ V \ V� ,Ms is reduced to the
set of cells around s and the d.o.f. K s ∈ Ms is considered to match with the node s.

For each cell K ∈ M, let us also define the following subset of d.o.f. located at
the boundary of the cell:

�K = {K s, s ∈ VK , Kσ , σ ∈ F� ∩ FK }.

The subset of Dirichlet d.o.f. is denoted by DDir ⊂ D.
As in Sect. 3.3.5, the definition of the primary and secondary unknowns at the d.o.f.

located at the rock type interfaces is based on the parametrization of the capillary
pressure graphs (3.19). To fix ideas, we assume the presence of 3 rock types RT =
{m, fd , fb}where fd is a fracture drain rock type and fb is a fracture barrier rock type
while m denote again the matrix rock type Let the fracture network � be partitioned
into the networks �d of fractures acting as drains and the network �b of fractures
acting as barriers. In order to simplify the presentation of the numerical scheme, we
will assume that �d ∩ �b = ∅. Then, the collection χ of rock types associated with
any given d.o.f. take values in

{{m}, { fd}, { fb}, {m, fd}, {m, fb}}.

corresponding to assume no intersections between fractures acting as drain and bar-
rier. In practice, we use the parametrization τ = snw for χ = {m}, { fd}, { fb} and the
parametrizations defined in [14] for χ = {m, fd} or {m, fb}. More precisely, let us
set for � = b, d

{
rtK = m, K ∈ M,

rtσ = f�, {σ ∈ F� | xσ ∈ ��},

⎧
⎨

⎩

χν = {m}, ν ∈ Dm \ Dm f ,

χν = { f�}, {ν ∈ D f | xν ∈ ��} := D�
f ,

χν = {m, f�}, {ν ∈ Dm f | xν ∈ ��} := D�
m f ,

Using the above framework, given the primary unknowns unwD = (unwν )ν∈D and
τD = (τν)ν∈D, we set uwD = (uwν )ν∈D with uwν = unwν − Pc,χν

(τν) for all d.o.f. ν ∈ D,
and we define the discrete values of the saturation as follows. For all d.o.f. associated
with a single rock type, that is K ∈ M and σ ∈ F� we set

sα
K = Sα

χK ,rtK (τK ) = τK , sα
σ = Sα

χσ ,rtσ (τσ ) = τK ,

for all ν ∈ �K ∩ Dm \ Dm f , K ∈ M, we set

sα
K ,ν = Sα

χν,rtK (τν) = Sα
{m},m(τν) = τν,

for all s ∈ Vs, σ ∈ F� , we set

sα
σ,s = Sα

χs,rtσ (τs) = τs,
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while for all mf interface d.o.f. from Dm f , and with � = b, d, we impose

⎧
⎪⎨

⎪⎩

sα
K ,ν = Sα

χν,rtK (τν) = Sα
{m, f�},m(τν), ν ∈ �K ∩ D�

m f , K ∈ M,

sα
σ,Kσ

= Sα
χKσ ,rtσ (τKσ

) = Sα
{m, f�}, fd (τKσ

), Kσ ∈ F� ∩ D�
m f ,

sα

σ,K s
= Sα

χK s ,rtσ
(τK s

) = Sα
χ{m, f�}, fd

(τK s
), K s ∈ M� ∩ D�

m f , σ ∈ F�,K s
,

where F�,K s
= F�,s ∩ (

⋃
K∈K s

FK ).

Discrete fluxes: the VAG fluxes connect each cell K (resp. each fracture face σ ) to
its boundary d.o.f. ν ∈ �K (resp. s ∈ Vσ ) using the same transmissibility coefficients
as for the continuous pressure model

FK ,ν(uDm ) =
∑

ν ′∈�K

T
ν,ν ′
K (uK − uν ′), Fσ,s(uD f ) =

∑

s′∈Vσ

T
s,s′
σ (uσ − us′).

Additionally, two-point matrix fracture fluxes are defined by

FK s,s(uK s
, us) = TK s,s(uK s

− us), FKσ ,σ (uKσ
, uσ ) = TKσ ,σ (uKσ

− uσ ),

for s ∈ V� , K s ∈ Ms and σ ∈ F� , K ∈ Mσ , with

TK s,s = 1

3

∑

T∈� | s∈T

∫

T

2λ f,n

d f
dσ(x), TKσ ,σ =

∫

σ

2λ f,n

d f
dσ(x),

where � is the triangular submesh of � defined as the trace on � of the tetrahedral
submesh T introduced in (3.8) (see [15]) for details).

Setting zDm = (zν)ν∈Dm and zD f = (zν)ν∈D f , the two-phase VAG fluxes combine
the VAG single phase Darcy fluxes including gravity

Fα
K ,ν (u

α
Dm

) = FK ,ν (u
α
Dm

) + ραgFK ,ν (zDm ), Fα
σ,s(u

α
D f

) = Fσ,s(u
α
D f

) + ραgFσ,s(zD f ),

Fα

K s,s
(uα

K s
, uα

s ) = FK s,s(u
α

K s
, uα

s ) − 1

3
ρα

∑

T∈� | s∈T

∫

T
λ f,ng · nK s,T dσ(x),

Fα
Kσ ,σ (uα

Kσ
, uα

σ ) = FKσ ,σ (uα
Kσ

, uα
σ ) − ρα

∫

σ

λ f,ng · nK ,σdσ(x),

with the usual Two-Point phase potential upwinding of the mobilities, leading to
define

qα
K ,ν = Mα

rtK (sα
K )(Fα

K ,ν(u
α
D))+ + Mα

rtK (sα
K ,ν)(F

α
K ,ν(u

α
D))−,

for all K ∈ M, ν ∈ �K ,
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qα
σ,s = Mα

rtσ (s
α
σ )(Fα

σ,s(u
α
D))+ + Mα

rtσ (s
α
σ,s)(F

α
σ,s(u

α
D))−,

for all σ ∈ F� , s ∈ Vσ ,

qα

K s,s
= 1

Card(F�,K s
)

∑

σ∈F�,K s

(
Mα

rtσ (s
α

σ,K s
)(Fα

K s,s
(uα

K s
, uα

s ))
+

+Mα
rtσ (s

α
σ,s)(F

α

K s,s
(uα

K s
, uα

s ))
−
)

for all s ∈ V� , K s ∈ Ms, and

qα
Kσ ,σ = Mα

rtσ (s
α
σ,Kσ

)(Fα
Kσ ,σ (uα

Kσ
, uα

σ ))+ + Mα
rtσ (s

α
σ )(Fα

Kσ ,σ (uα
Kσ

, uα
σ ))−

for all σ ∈ F� , K ∈ Mσ .

Control volumes and accumulation terms: as for the continuous pressure model,
porous volumes φK ,ν , ν ∈ �K \ DDir (resp. φσ,s, s ∈ Vσ \ DDir) are obtained by dis-
tribution of the cell K ∈ M (resp. fracture face σ ∈ F�) porous volume. A porous
volume φσ,K s

(resp. φσ,Kσ
) is also distributed from the fracture face σ to the interface

d.o.f. K s (resp. Kσ ) for σ ∈ F�,K s
, K s ∈ M� (resp. for Kσ ∈ F�). These interface

porous volumes are required to avoid the singularity of the linear systems obtained
after Newton linearization. Their influence on the solution is small provided that they
are chosen small enough (see [25]). Then we set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φK =
∫

K
φm(x)dx −

∑

ν∈�K \DDir

φK ,ν , K ∈ M,

φσ =
∫

σ

d f (x)φ f (x)dx −
∑

s∈Vσ \DDir

φσ,s −
∑

K∈Mσ

φσ,Kσ

−
∑

K s∈M�\DDir | σ∈F�,K s

φσ,K s
,

σ ∈ F�,

and we define the accumulations terms by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K = φK sα

K , K ∈ M,

Aα

K s
=

∑

K∈Ms

φK ,K s
sα

K ,K s
, s ∈ V \ (DDir ∪ V�),

Aα
σ = φσ s

α
σ , σ ∈ F�,

Aα
s =

∑

σ∈F�,s

φσ,ss
α
σ,s, s ∈ V� \ DDir,

Aα
Kσ

= φσ,Kσ
sα
σ,Kσ

+ φK ,Kσ
sα
K ,Kσ

, Kσ ∈ F�,

Aα

K s
=

∑

K∈K s

φK ,K s
sα

K ,K s
+

∑

σ∈F�,K s

φσ,K s
sα

σ,K s
, K s ∈ M� \ DDir,
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Conservation equations: the VAG discretization of the discontinuous pressure
model solves for unwD and τD such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aα
K − Aα,n−1

K

�tn
+

∑

ν∈�K

qα
K ,ν = 0, K ∈ M,

Aα

K s
− Aα,n−1

K s

�tn
−

∑

K∈Ms

qα

K ,K s
= 0, s ∈ V \ (V� ∪ DDir),

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
Kσ ,σ = 0, σ ∈ F�,

Aα
s − Aα,n−1

s

�tn
−

∑

σ∈F�,s

qα
σ,s −

∑

K s∈Ms

qα

K s,s
= 0, s ∈ V� \ DDir,

Aα
Kσ

− Aα,n−1
Kσ

�tn
− qα

K ,Kσ
+ qα

Kσ ,σ = 0, Kσ ∈ F�,

Aα

K s
− Aα,n−1

K s

�tn
−

∑

K∈K s

qα

K ,K s
+ qα

K s,s
= 0, K s ∈ M� \ DDir,

τν = τDir,ν , unwν = unwDir,ν , ν ∈ DDir.

(3.24)

f andm-upwind discontinuous pressuremodels: the above discontinuous pressure
model, termed mf nonlinear model in the following, leads to difficulties to solve
the nonlinear system (3.24) due to the combination of highly contrasted matrix and
fracture rock types and to the small pore volumes atmf interface d.o.f. One possibility
to solve this issue, still preserving the ability to take into account fractures acting
as drains or barriers, is to linearize the matrix fracture transmission conditions w.r.t.
the mf interface unknowns and to apply a f or m-upwind approximation of the
mobilities. This idea, developed in [16] for the VAG discretization and in [1] for the
TPFA discretization, replaces the primary unknowns unwν , τν at matrix fracture d.o.f.
ν ∈ Dm f by both phase pressures unwν , uwν , ν ∈ Dm f , and the conservation equations
at matrix fracture d.o.f. by

Fα

K s,s
(uα

K s
, uα

s ) −
∑

K∈K s

Fα

K ,K s
(uα

Dm
) = 0, Fα

Kσ ,σ (uα
Kσ

, uα
σ ) − Fα

K ,Kσ
(uα

Dm
) = 0,

for K s ∈ M� and Kσ ∈ F� . Note that the pore volumes φσ,K s
and φσ,Kσ

are set
to zero. Since phase saturations are no longer defined at matrix fracture d.o.f., one
need to modify the upwind mobilities in the definition of the fluxes qα

K ,K s
, K s ∈ M�

now connecting directly the cell K and the fracture d.o.f. s, and in the definition
of qα

K ,Kσ
, Kσ ∈ F� now connecting the cell K and the fracture d.o.f. σ . These

new connectivities modify the fracture conservations equations for σ ∈ F� and s ∈
V� \ DDir as follows:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aα
σ − Aα,n−1

σ

�tn
+

∑

s∈Vσ

qα
σ,s −

∑

K∈Mσ

qα
K ,Kσ

= 0, σ ∈ F�,

Aα
s − Aα,n−1

s

�tn
−

∑

σ∈F�,s

qα
σ,s −

∑

K s∈Ms

qα

K ,K s
= 0, s ∈ V� \ DDir,

(3.25)

The modified fluxes are defined by

⎧
⎨

⎩

qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,K s
(uα

D))+ + Mα
rtK (Sα

χK s ,rtK
(τs))(Fα

K ,K s
(uα

D))−,

qα
K ,Kσ

= Mα
rtK (sα

K )(Fα
K ,Kσ

(uα
D))+ + Mα

rtK (Sα
χKσ ,rtK (τσ ))(Fα

K ,Kσ
(uα

D))−,

(3.26)

for the m-upwind discontinuous pressure model, and by

⎧
⎨

⎩

qα

K ,K s
= Mα

rtK (sα
K )(Fα

K ,K s
(uα

D))+ + Mα
rts(Sχs,rts(τs))(F

α

K ,K s
(uα

D))−,

qα
K ,Kσ

= Mα
rtK (sα

K )(Fα
K ,Kσ

(uα
D))+ + Mα

rtσ (Sχσ ,rtσ (τσ ))(Fα
K ,Kσ

(uα
D))−,

(3.27)

for the f-upwinddiscontinuous pressuremodel,where a fracture rock type rts has been
assigned to the node s. As for the continuous pressuremodel, aMulti-Point upwinding
can also be introduced for these fluxes using the additional mobility unknowns Mα

K s
,

and Mα
Kσ
, α ∈ {nw,w}. Note that, for fracture acting as drains, these f and m-upwind

discontinuous pressuremodels provide basically the same solutions than respectively
the f and m-upwind continuous pressure models. As already mentioned, this is not
the case of the mf nonlinear discontinuous pressure model (3.24) due to the possible
degeneracy of the phase mobilities appearing in the matrix fracture transmission
conditions.

3.4.1 Numerical Experiments

In this subsection, we compare on the following test case, the mf nonlinear, the
m-upwind and the f-upwind models using a reference solution obtained by the
equi-dimensional model. The code implementation is the same for all models and
described in the beginning of Sect. 3.3.4. The m-upwind and f-upwindmodels would
require the design of specific preconditioners due to the two independent elliptic pres-
sure unknowns at mf interfaces combinedwith a single independent elliptic unknown
at cells and fracture faces. This explains the use for these twomodels of the direct lin-
ear solver SuperLU from the library [49]. The GMRes iterative solver combined with
the CPR-AMGpreconditioner is still used for the mf nonlinear and equi-dimensional
models. It results that the overall numbers of Newton iterations NNewtonN�t are more
relevant for performance comparison than the CPU times which are not reported for
this test case.
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Fig. 3.25 Coarse mesh over
the domain under
consideration, which
contains two intersecting
fractures with high
permeability and low
capillarity and one upper
fracture with low
permeability and high
capillarity. The size of the
domain is 4m × 8m and the
fractures have an aperture of
4 cm

We consider a fractured domain as defined in Fig. 3.25. Thematrix permeability is
isotropic of 0.1 Darcy and matrix porosity is 0.2. The two lower fractures are drains
(fd ) of isotropic permeability 100.0 Darcy and porosity 0.4. In the upper fracture,
acting as a barrier (fb), the permeability is isotropic of 0.001 Darcy and the porosity
is 0.2. The capillary pressures are the same than in Sect. 3.3.5.1 with the Corey
parametersbm = 1bar in thematrix,b fb = 10 bar in the barrier fracture andb fd = 0.1
bar in the drain fractures. Initially, the reservoir is saturated with water (density
1000 kg/m3, viscosity 0.001 Pa s) and oil (density 700 kg/m3, viscosity 0.005 Pa s)
is injected in the bottom fracture, which is managed by imposing non-homogeneous
Neumann conditions at the injection location. The oil then rises by gravity, thanks to
it’s lower density compared to water and by the overpressure induced by the imposed
injection rate. Also, Dirichlet boundary conditions are imposed at the upper boundary
of the domain. Elsewhere, we have homogeneous Neumann conditions.

The tests are driven on triangular meshes, extended to 3D prismatic meshes by
adding a second layer of nodes as a translation of the original nodes in normal
direction to the plane of the original 2D domain (cf. Fig. 3.25). The equi-dimensional
mesh contains two layers of cells in the fractures. In order to focus on modelling
errors, themeshes are chosen to be finewith cell sizes of the same order as the fracture
aperture. The final simulation time is fixed to t f = 54 days. The time stepping is
defined as in (3.16) using �tini t = 0.01 days and �tmax = 0.1 days for the equi-
dimensional and hybrid dimensional mf nonlinear models, and �tini t = 0.002 days
and �tmax = 0.27 days for the hybrid-dimensional m-upwind and f-upwind models.
The maximum number of Newton iterations per time step is fixed as Newtonmax =
35. The criterion of convergence for the Newton algorithm is defined as in (3.17)
with Resmax = 10−6 and dxmax = 10−4, and the relaxation of the Newton step is
controlled as in (3.18) by the parameter dxobj = 0.5.

The hybrid dimensional mf nonlinear and m-upwind models make use of the
parametrization (3.21)–(3.23) at the mf interfaces.
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Fig. 3.26 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and f-
upwind discontinuous pressureDFMmodels (from left to right) numerical solutions for non-wetting
phase saturation at final time t = 54 days

Fig. 3.27 Comparison of the equi-dimensional model and of the mf nonlinear, m-upwind and
f-upwind discontinuous pressure DFM models (from left to right) numerical solutions for water
overpressure at final time t = 54 days

In this test case, we study the presence of a fracture, which acts as a barrier, both
by its low permeability and by its high capillarity compared to the rock matrix. As
a result of the higher capillarity, the sign of the matrix-fracture non-wetting phase
saturation jump Snwm (γ ± pc,m) − Snwf (γ ± pc,m) at the m f interfaces is non negative.

Figures 3.26, 3.27 and 3.28 compare the above mf nonlinear, m-upwind and f-
upwind discontinuous pressure models to a reference equi-dimensional model. For
the f-upwind and m-upwind models, mass transfer of the non-wetting phase from
the matrix to the barrier is overestimated, since in this direction, saturation jumps are
not accounted for. The assumption of constant saturation across the fracture for these
models consequently leads to an overestimation of the non-wetting phase leaving the
barrier. This overestimation is most severe for the m-upwind model, which takes into
account saturation jumps for fluxes directed from the fracture to the matrix. Again,
the mf nonlinear model does not suffer from the difficulties described above, since it
provides mass transport that passes by the m f interfaces and takes into account the
saturation jumps. Table 3.4 compares the numerical behavior of the different models
on this test case.
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Fig. 3.28 Matrix and fracture volumes occupied by the non-wetting phase as a function of time
for the equi-dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous
pressure DFM models

Table 3.4 Numerical behavior of the simulation obtained by the VAG scheme for the equi-
dimensional model and for the mf nonlinear, m-upwind and f-upwind discontinuous pressure DFM
models, as presented in Sect. 3.4. We refer to the beginning of Sect. 3.3.4 for the description of the
entries with doflin and Nz accounting for the elimination of the cell unknowns in the linear systems

Scheme mesh dof doflin N z N�t Nchop NNewton

equi dim. 22k 45k 23k 317k 589 2 4.1

mf
nonlinear

17k 35k 18k 261k 585 1 3.4

m-upwind 17k 35k 18k 266k 255 0 4.8

f-upwind 17k 35k 18k 266k 255 0 4.6

3.5 Conclusions and Perspectives

This article reviews the nodal VAG discretization of DFM two-phase Darcy flow
models. For linear transmission conditions, the adaptation of the control volumes
combined with a Multi-Point upwind approximation of the mobilities for f-upwind
models or taking into account the saturation jump for m-upwind models, allows to
obtain a similar accuracy as face based discretizations with a much lower CPU time
on tetrahedralmeshes. Nonlinearmf transmission conditions provide amore accurate
DFM model than linear transmission conditions. As discussed in [1, 16], they can
account for a large range of physical processes at mf interfaces which cannot be
captured by linear mf transmission conditions even in the case of fractures acting as
drains. It is typically the case for fractures acting as capillary barriers, or for highly
permeable fractures filled with a given phase acting as a barrier for the other phase.
The VAG discretization of DFM models with nonlinear mf transmission conditions
still raises the issue of numerical efficiency regarding the nonlinear convergence due
to the combination of highly nonlinear transmission conditions with tiny volumes at
mf interfaces. Improving the numerical efficiency for this type of DFMmodels is the
object of ongoing researches in two directions. The first is to go back to face based
discretizations allowing the elimination of the mf interface unknowns with a local
nonlinear interface solver as in [1] using TPFA discretization on orthogonal meshes
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and in [2] using an HFV discretization. The second perspective is to use the more
robust Hybrid Upwinding approximation of the mobilities to define the two-phase
Darcy fluxes at mf interfaces as proposed in [6] for TPFA schemes and in [19] for
the VAG discretization.
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Chapter 4
An Introduction to Multi-point Flux
(MPFA) and Stress (MPSA) Finite
Volume Methods
for Thermo-poroelasticity

Jan Martin Nordbotten and Eirik Keilegavlen

Abstract In this chapter, we give a unified introduction to the MPFA- and MPSA-
type finite volume methods for Darcy flow and poro-elasticity, applicable to general
polyhedral grids. This leads to a more systematic perspective of these methods than
has been exposed in previous texts, and we therefore refer to this discretization
family as the MPxA methods. We apply this MPxA framework to also define a
consistent finite-volume discretization of thermo-poro-elasticity. The present chapter
introduces the general theory and state-of-the-art ofMPFA-typemethods, leaving the
more technical results to the provided references. We close the chapter by a section
containing applications to problemswith complex geometries and non-linear physics.

Keywords Polyhedral grids · Finite volume methods · Elliptic equations ·
Coupled flow and mechanics

4.1 Introduction and Historical Context

The first so-called Multi-Point Finite Volumes methods were developed in the first
half of the 1990s, within the context of numerical discretizations for multi-phase
flow in geological porous media [1–4]. In particular, these methods are constructed
to solve the so-called pressure equation, which is a second-order elliptic partial
differential equation where it is understood that the material parameter may have
very low regularity in space. This equation is best presented as a system of first order
equations, consisting of balancing the flux q with a source r

∇ · q = r. (4.1.1)
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Complemented by the constitutive law that the flux is derived from afluid potential
p:

q + κ∇p = g. (4.1.2)

Here κ is the material tensor, which is essentially the permeability to flow. The
permeability may be both anisotropic and vary strongly as a function of space due to
the complex nature of natural rocks. In order to keep the presentation simple, we have
simplified terms. Thus it is understood that in applications, the conservation statement
is for the mass flux, while the right-hand side of Eq. (4.1.2) is the product of the
permeability and gravity, etc. For a detailed physical exposition of Eqs. (4.1.1–4.1.2),
see e.g. [5–8].

For problems on the form of Eqs. (4.1.1–4.1.2), favorable attributes of a numerical
discretization method can be summarized as follows (acknowledging that no list of
this form is complete):

(A) Flux balance: An exact local representation of fluid flux balance is considered
essential for stability of multi-phase flow simulations. This is made precise in
the sense that Stokes’ theorem must hold exactly for some volumes ω ∈ T ,
comprising a reasonably fine partitioning V of the domain:

∫
∂ω

q · n dS =
∫

ω

ψ dV . (4.1.3)

(B) Accuracy on coarse grids: In geological porous media, the regularity of coeffi-
cients is very low, and thus accuracy is to a large extent equated with accurate
handling of material discontinuities, in particular when the discontinuities
coincide with the boundaries ∂ω.

(C) Flexible grids:Whilemany early simulation studieswere conducted on regular
grids, both anisotropic coefficients, as well as complex geological features,
motivates discretizations suitable for complex grids.

(D) Symmetric and positive definite discretization matrix: A symmetric and posi-
tive definite (SPD)matrix allows for applicationofConjugateGradient solvers,
which have good performance, in particular with respect to memory usage.

(E) Local flux stencils: The size of the discretization stencil directly impacts both
memory usage, but also floating point operations associatedwithmatrix-vector
multiplication. A local expression for the flux (as opposed to a post-processed
flux), allows the use of automatic differentiation software for constructing the
Jacobian for non-linear problems.

(F) Monotonicity of solution: The continuous problem has the property that for a
positive source term ψ , and zero-pressure boundary conditions, the pressure
p that solves Eqs. (4.1.1–4.1.2) is guaranteed to be positive everywhere in the
interior of the domain.Monotonicity is closely related to spurious oscillations,
which is a major problem for multi-phase simulations.
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(G) Accuracy on fine grids: As the discretization grid is refined, the truncation error
of the discrete approximation should vanish, and the discrete approximation
should converge to the continuous solution.

It is perhaps intuitive that all these properties cannot be achieved optimally by
any linear discretization. By the late 1980s, it was well understood that none of the
existing methods at the time achieved all the favorable properties [9]. These were
standard Galerkin finite elements (P1-P1 finite elements or similar), Petrov-Galerkin
finite elements (P1-P0 finite elements on staggered grids, also known as Control
Volume Finite elements), Mixed Finite Elements (lowest-order Raviart-Thomas for
flux and P0 for pressure), or Two-Point Finite Volume methods (still the industry
standard for practical simulation). We will make a quick summary of the weakness
of each of these discretization methods, to better understand the relative advantages
(and disadvantages) of the Multi-Point Finite Volume methods.

Galerkin finite elements is perhaps the most common discretization method
available in the field of computational mathematics (for an introduction, see text-
books [10, 11]). This discretizationmethod iswell-suited for simplicial andCartesian
grids, but for more complex grids the definition of the elements becomes more
complicated. While Galerkin finite elements have both local stencils as well as lead
to SPD matrices, they need post-processing to obtain a local flux balance [12], and
are not particularly well suited to discontinuous permeability coefficients [13].

Petrov-Galerkin finite elements, or Control-Volume Finite Elements (CVFE) as
we will refer to the method, attempts to improve over the standard finite element
methods by introducing a dual grid around each vertex of the primal grid [14]. On
this dual grid, piecewise constant test functions are chosen, so that the local Stokes’
equation holds exactly. Nevertheless, the pressure solution p is still represented by
finite element functions, so the primal grid must still be relatively simple, and no
accuracy is gained over finite element methods with respect to discontinuous perme-
ability coefficients. Furthermore, due to the different choice of elements for the trial
and solution spaces, the symmetry of the discretization matrix is lost.

Mixed finite elements (MFE) is another way of generalizing finite element
methods [15]. In this approach, the first-order structure indicated inEqs. (4.1.1–4.1.2)
is retained explicitly, where the pressure is represented as piecewise constant, while
the flux is in a relatively simple space whose divergence is piecewise constant (for
relatively simple grids this is the lowest-order Raviart-Thomas space, but defining
this space becomes non-trivial even for perturbations of Cartesian grids [16, 17]). The
mixed-finite element method is accurate for material contrasts, and has an explicit
flux balance. On the other hand, it does not immediately lead to an SPD matrix
(without hybridization) and has relatively poor monotonicity properties [18].

Two-Point Finite Volume (TPFV) methods in are a sense the simplest methods
satisfying the flux balance. The methods consist of imposing Eq. (4.1.3) on any
polyhedral partition T of the domain, and then constructing an approximation to
q · n using the pressure values in the two neighbors of any face of the polyhedral
partitioning. This simplicity leads to a method satisfying all desired properties (A–F)
above, and one could ask if it is the perfect method. Unfortunately, the method is
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indeed too simple—and in contrast to the three preceding methods discussed—the
truncation error only vanishes on a quite restrictive class of grids, and thus in general
one can observe convergence to the wrong solution (see e.g. [19]).

The above summary gives some impression of the state-of the art when the multi-
pointmethodswere developed.As the name suggests, this family ofmethods attempts
to develop a discretization with favorable properties, not by improving on finite
element methods, but rather with basis in the TPFV method. More recently, it has
been shown how this development ties back to developments also in the finite element
literature, a topic that wewill return to at several points in later sections of the chapter.

The first multi-point methods were introduced in two independent papers at the
ECMOR conference at Røros, Norway in 1994 [1, 2], and an excellent introduc-
tion to the Multi-Point Flux Approximation (MPFA), and references to the early
literature, can be found by Aavatsmark [20]. However, since that introductory text
was written, these methods have seen significant development, both in terms of
applicability to complex problems, but also in terms of a maturing of our under-
standing of the multi-point methods as a general discretization approach. Our goal
with this chapter is therefore to provide a contemporary account of these methods.
With concrete reference to Aavatsmark [20], the current text covers a consistent
treatment of right-hand-side terms in the constitutive laws, more general continuity
conditions, discretization of elasticity and poro-elasticity, and a review of the mathe-
matical analysis of these methods. Moreover, our presentation of the method is based
on a more abstract construction than in the introduction by Aavatsmark, more suited
to general polyhedral grids.

We preempt some of the later discussion by already announcing some of the main
features of the multi-point methods. They are developed to have local flux balance,
(relatively) small stencils, and be accurate for challenging grids, including polyhe-
dral grids, and handle accurately heterogeneous permeability fields. It has also been
shown that the convergence properties of the methods are good, both for smooth and
non-smooth data. The cost of these advantages is that the discretization matrix is
only symmetric for simplicial grids, although it is in general positive definite. Mono-
tonicity of the discretization holds subject to conditions which are not prohibitively
harsh, but still strict enough to affect some realistic cases.

The chapter is subdivided as follows. In Sect. 4.2, wewill develop the general prin-
ciples ofmulti-point finite volumemethods, whichwe refer to asMPxAmethods.We
will see that these general principles imply a family of methods for elliptic problems
with conservation structure. Building on this, we will in Sect. 4.3 apply the general
principles to three concrete problems: First, fluid flow in porous media, as is the clas-
sical motivation for these methods, and leads to the MPFA methods. Secondly, to
momentum balance in elastic solids, which leads to the so-called Multi-Point Stress
Approximation (MPSA)methods. TheMPSAmethods are naturally suited combined
problem of fluid flow in elastically deformable materials, also known as poroelas-
ticity. Moreover, we also consider the case of thermo-poroelasticity, which includes
an advective term in addition to the coupling between heat, flow, and deformation.
Having developed the discretization methods for these concrete applications, we
will review the mathematical and numerical properties of these methods, as has been
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reported in literature in Sect. 4.4, together with applications to real-world data-sets
in Sect. 4.5.

4.2 Multi-point Finite Volume Methods

We will structure our presentation of the general construction of multi-point finite
volume methods in two parts. In Sect. 4.2.1, we will present the primal grid and the
conservation structure, which is common to all finite volume methods. In Sect. 4.2.2
we will detail the particular choices which give rise to the so-called multi-point
finite volume methods. Our goal throughout the exposition is to be both general
yet pedagogical. As a result, the presentation, in particular in Sect. 4.2.2, deviates
significantly from the presentation of these methods found in research articles. In
Sect. 4.2.3, we will discuss aspects related to efficient and stable implementation of
these methods.

All the derivations in this section are agnostic to the conservation law of interest
(mass or momentum). In order to emphasize this generality, we will in this section
refer to MPFA orMPSAmethods by the generic acronymMPxA. On the other hand,
in order to allow for a streamlined presentation, we will present a rather general
concept of the so-called O-methods, thereby excluding the less common variants of
the MPFA methods, namely the so-called L-, U-, and Z-methods [3, 21–23].

4.2.1 Finite Volume Methods

This section gives the basic notion of a finite volume method for a conservation law,
following e.g. [24, 25]. As alluded to in the introduction, a conservation law is a
statement of the form

d

dt

∫
ω

u dV +
∫

∂ω

n · τ dS =
∫

ω

r dV . (4.2.1)

Given that we have a domain of interest � ⊂ R
n, where n is the dimension of

the problem, the conservation law is interpreted as follows. We are concerned with
a conserved quantity u (e.g. mass, momentum or energy) within any measurable
subdomain ω ⊂ � with external normal vector n. The conservation law asserts that
the accumulation of u within ω, is determined by a flux field τ , which may represent
mass flux, energy flux or stress, and volumetric sources r.

As we are concerned with spatial discretization, we will in the remainder of this
section disregard the temporal term, and only consider the steady state of Eq. (4.2.1).
We note that when the variables are sufficiently regular, Eqs. (4.1.2) and (4.2.1) are
equivalent due to Stokes’ theorem. In absence of such regularity, Eq. (4.2.1) is a
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Fig. 4.1 The domain �

shown in thick solid black
line together with the finite
volume grid ωi (thinner solid
black lines corresponding to
faces between cells). Note
that the cells may be
polyhedral, and that more
than three cells may meet at
a vertex

more general statement than (4.1.2), and this is the motivation for discretizing Equa-
tion (4.2.1) directly. Discretization methods that are developed from this viewpoint
are known as finite volume methods.

In order to construct a numerical method from Eq. (4.2.1), we consider a non-
overlapping partitioning of � into a finite set of N subdomains ωk ∈ T , for k =
1 . . .N . An example of such a partitioning for N = 7 is given by the solid lines in
Fig. 4.1.

The subdomains ωk are referred to as control volumes, or simpler, cells. For any
two cells ωk1 and ωk2 that are neighbors, in the intersection of their boundaries is
measurable, meas

(
∂ωk1 ∩ ∂ωk2

)
> 0, we refer to this intersection as a face, and the

collection of faces if denotedF . We extend the definition of a face to also account for
intersections with the boundary, such that if meas

(
∂ωk1 ∩ ∂�

)
> 0, this also defines

a face, and is included in F . In particular, we recognize that all faces of, say, ωk is a
subset of F , and we denote this subset as Fk . These definitions allow us to rewrite
(the steady state of) Eq. (4.2.1) as

∑
σ∈Fk

∫
σ

nσ,k · τ dS =
∫

ωk

r dV . (4.2.2)

Equation (4.2.2) must hold for any k, due to Eq. (4.2.1). Moreover, we recognize
that it is tempting to define the normal flux out of ωk through σ as

qσ,k ≡
∫

σ

nσ,k · τ dS. (4.2.3)

A finite volume method is then any method that can be written on the form

∑
σ∈Fk

qσ,k =
∫

ωk

r dV for all ωk ∈ T (4.2.4)

The finite volume method has local flux balance if for any σ = ∂ωk1 ∩ ∂ωk2 , it
holds that
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qσ,k1 = −qσ,k2 . (4.2.5)

Since wewill only consider methods with local flux balance, we therefore identify
the face flux as the flux from the cell with the lower index, i.e. for k1 < k2, then we
define

nσ ≡ nσ,k1 and qσ ≡ qσ,k1 .

4.2.2 MPxA Finite Volume Methods

The basic construction of a finite volume method is agnostic to how the numerical
flux field qσ is obtained, and indeed is common for hyperbolic, parabolic and elliptic
conservation laws. As stated in the introduction, this chapter deals with methods
for problems where there is a proportionality between q and ∇u, as indicated in
Eq. (4.1.2). In the absence of the time-derivative, such conservation laws are referred
to as elliptic, and include Fourier, Fick, Darcy, Hooke and other constitutive laws.

To be precise, we will thus consider constitutive laws on the form

τ = C∇u + g. (4.2.6)

Here C is understood to be a local linear operator from the space of functions
spanned ∇u, to the space associated with the flux τ . The residual g is in practice
derived from a known external force, we will consider it as such. The precise defi-
nition of the function spaces depends on the regularity imposed on u and q, but also
whether one considers scalar of vector equations. As this precision will not be impor-
tant for introducing the numerical methods, we will omit these details here (for a
detailed exposition of the function spaces, see e.g. [24, 26, 27]).

4.2.2.1 Grid Structure

The MPxA methods are a family of methods for approximating the normal flux qσ

from Eq. (4.2.6), based on a core set of foundational principles. To construct an
MPxA approximation, additional structure must be introduced relative to the bare-
bones finite volume structure given in Sect. 4.2.1. In particular, we associate with
each cell ωk a point xk , which we will refer to as its center. The point xk should be
chosen such thatωk is star-shaped relative to xk (this is always possible for simplexes,
but may not be possible for non-convex polyhedral). Moreover, we identify that the
partition T gives rise to vertexes of the grid (intersection points of multiple cells),
which wewill refer to as V . We will denote the subset of V that are logical vertexes of
ωk as Vk , such that every point s ∈ Vk satisfies s ∈ ∂ωk . Conversely, we will denote
the subset of T that meet at a vertrex s ∈ V as Ts, such that for every subdomain
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Fig. 4.2 This figure provides an illustration of the extra grid structure used for MPxA methods
relative to the basic finite volume grid shown in Fig. 4.1. The division of faces into subfaces is
indicated by two nuances of grey, while cell centers are indicated by dots. The dual grid is indicated
by dashed lines, and the subgrid is thus obtained as the quadrilaterals having two dashed and two
solid-grey boundaries

ωk ∈ Ts, it again holds that s ∈ ∂ωk . The definitions of Fs and Vσ , for all σ ∈ F , are
analogous.

With the preceding definitions, we introduce a refinement of the finite volume
grid structure, as shown in Fig. 4.2. First, we refine the faces of the grid as follows:
Let every face σ ∈ F be partitioned into subfaces σ̃ ∈ Sσ , such that each subface
contains exactly one vertex of σ . Thus, if the set of all subfaces is denoted S, then
for any pair of a face σ ∈ F and a vertex s ∈ Vσ , there is a unique element of Sσ,s.
Extending the notational convention above, we denote the subfaces of ωk meeting at
a vertex s ∈ Vk as Sk,s.

We introduce the following definition of a dual grid: For each vertex s ∈ V , let
the dual cell ω∗

s ∈ T ∗
s be defined such that subfaces in σ̃ ∈ Ss are contained in ω∗

s ,
and the cell-centers xk of the cells ωk ∈ Ts are on the boundary of the dual cell, i.e.
xk ∈ ∂ω∗

s . Finally, let the dual cells be a non-overlapping partitioning of the domain
�. The intersection of the primal and dual grids creates an even finer grid T̃ , elements
of which are uniquely defined by a cell and a corner. Thus, the subcell ω̃k,s ∈ T̃ is
defined as ω̃k,s = ωk ∩ ω∗

s . Again, we retain the same conventions on subscripts, so
that in particular T̃s are the subcells adjacent to the corner s.

4.2.2.2 Approximation Spaces

The MPxA approximations do not attempt to construct the numerical flux qσ over a
face σ ∈ F directly, but instead construct approximations over the subfaces σ̃ . The
subface normal fluxes q̃σ̃ are then subsequently assembled such that

qσ =
∑
σ̃∈S

q̃σ̃ . (4.2.7)
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The MPxA methods for the fluxes over the subfaces σ̃ ∈ Ss are based on the
following common seven ingredients:

(i) A linear approximation uk,s(x) to the potential field within each subcell ω̃k,s ∈
T̃ .

(ii) A constant approximation τk,s to the flux field within each subcell ω̃k,s ∈ T̃ .
(iii) A constant approximation gk to the external force field within each cell ωk ∈

T .
(iv) A relation between the potential fields uk,s(x), flux fields τk,s, and force field

gk , consistent with (4.2.6).
(v) Local flux balance over each subface σ̃ ∈ Ss in the sense of (4.2.3) and

(4.2.5):

∫
σ̃

τk1,s · nσ̃ dS =
∫

σ̃

τk2,s · nσ̃ dS ≡ q̃σ̃ . (4.2.8)

(vi) Continuity between the linear potential field approximations at the cell centers
xk , i.e. for a given ωk ∈ T , and any s1, s2 ∈ Vk

uk,s1(x) = uk,s2(x) ≡ uk . (4.2.9)

(vii) A minimization of a quadratic penalty functionMs, measuring the disconti-
nuity of the linear potential fields across subfaces σ̃ ∈ Ss. The precise choice
of the penalty function used in this minimization gives rise to variations in
the method, as detailed in the next section.

If one of the subfaces σ̃ ∈ Ss is on the boundary of the domainΩ , additional condi-
tions apply, as discussed in Sect. 4.2.2.3. We emphasize that the method formulation
given below applies independent of the boundary condition assigned.

The core MPxA ingredients are perhaps most intuitively understood by the
following interpretation: The potential field is piecewise linear function relative to the
fine grid obtained from the intersection of the primal and dual grid, with a minimum
of continuity imposed in order to allow for a compromise between a consistent
discretization and flexible grids, while always allowing for a static condensation in
terms of cell-center potentials alone. The numerical flux is a derived quantity from
the potential field.

The continuity requirements on the piecewise linear potential field are chosen to
have a very particular structure. With reference to Fig. 4.2, continuity conditions
are essentially imposed at cell centers (points in the figure), and across subfaces
(various thick grey lines). Thus no continuity is explicitly enforced over the edges
of the dual grid. This observation justifies the claim that all degrees of freedom in
the construction can be locally eliminated with respect to the cell-center potentials
uk . This is the key to an efficient numerical implementation, and also implies that
the resulting discretization matrix has minimum size (potential variables in the cell
centers).
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To make the above claims more precise, we now introduce discrete operators
that allow for an efficient presentation of MPxAmethods in general. A more detailed
discussionwith focus on implementation in provided in Sect. 4.2.3, while application
of the general framework, that is, identification of the discrete operators for specific
equations is considered in Sect. 4.3

We denote vectors of variables by bold letters, and matrixes by capitals. First,
let the finite volume method, Eq. (4.2.4), be represented in matrix form in terms
of a divergence matrix D (simply a summation over fluxes, accounting for sign
convention). Similarly, we represent the summation over subfluxes, weighted by the
area of the subcells, as defined in Eq. (4.2.7) as �F . Then Eqs. (4.2.4) and (4.2.7)
are equivalent to

Dq = D�F q̃ = r. (4.2.10)

Furthermore, let the vector of cell center potentials be denoted u, and the vector
containing the degrees of freedom for the linear pressure variations in each subcell
ũ. We denote the operator that extracts u from ũ as E, such that

u = Eũ. (4.2.11)

The (continuous) gradient induces a map from ũ to piece-wise constant vector
fields on each subcell, and we denote the matrix representation of this map as G. We
denote the discrete constitutive law by the matrix B, such that Eq. (4.2.6) becomes

τ = BGũ + E∗g. (4.2.12)

Here E∗ is the matrix that maps cell values to the individual subcells (in a sense
dual to E).

We furthermore denote byF the matrix that extracts normal subface fluxes q̃ from
the fluxes τ on the side of the face with the lower index (similar to definition used
in (4.2.5b)), and conversely we denote by F̂ the matrix that extracts normal subface
normal fluxes q̃ from the fluxes τ on the side of the face with the higher index. The
flux balance and the definition of the subface fluxes is summarized in matrix form as

Fτ = F̂τ , (4.2.13)

q̃ = Fτ . (4.2.14)

Finally, let the penalty function M(ũ) = ∑
s∈V

Ms(ũ) be the (still quadratic)

measure of the total discontinuity of ũ across subfaces σ̃ ∈ S.
Then the MPxA method can then be explicitly defined as follows:

Definition 4.2.1 (generalized MPxA (global)) Let Nu,g be the null-space of the
constraints given inEqs. (4.2.11–4.2.13), subject to a given potentialu and an external
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field g. Then the MPxA method is defined by the pair (ũ, τ ) ∈ Nu,g such that

(ũ, τ ) = arg min
(ũ′

,τ ′)∈Nu,g

M(
ũ′)

, (4.2.15)

and the numerical flux is defined as q = Quu + Qgg ≡ �FF(BGũ + E∗g).
We emphasize that M is a sum of local quadratic measures Ms for each s ∈ V ,

and moreover that the constraints (4.2.11–4.2.13) are all local expressions relative
to subcells ω̃ ∈ T̃s. That is to say that the matrices B,E,E∗,F, F̂ and G can all
be written as a sum of local matrices for each vertex, e.g. B = ∑

s∈V
Bs, where the

local matrices such as Bs are in terms of degrees of freedom only associated with the
subcells in T̃s. This gives rise to the local formulation of MPxA, which is defined as

Definition 4.2.2 (generalized MPxA (local)) For a vertex s ∈ V , and for a given
potential u, let Nu,g,s be the null-space of the constraints

u = Esũs, τ s = BsGsũs + E∗
sg, and Fsτ s = F̂sτ s. (4.2.16)

in terms of the local degrees of freedom ũs and τ s on subcells in T̃s. Then the local
problem for the MPxA method is defined by the pair (ũs, τ s) ∈ Nu,s such that

(ũs, τ s) = arg min
(ũ′

s,τ
′
s)∈Nu,g,s

Ms
(
ũ′
s

)
, (4.2.17)

and the numerical flux is assembled as q = Quu+Qgg ≡ �F
∑
s∈V

Fs
(
BsGsũs + E∗

sg
)
.

The local formulation of MPxA is clearly equivalent to the global formulation.
As a consequence, the minimization problems (4.2.15) are local linear saddle-point
problems of modest size for each vertex of the grid, and can be solved efficiently
(and in parallel, if desired), using any standard explicit linear solver. We shall return
to the structure of the local problems in Sect. 4.2.3.3.

Since theminimization problem is quadratic, the numerical flux is a linear function
of the potential u. The MPxA finite volume discretization matrix is obtained by
combining the numerical flux and the finite volume method, Eq. (4.2.10), to obtain
the linear system

DQuu = r − DQgg (4.2.18)

We will return to the properties of the matrix DQu in Sect. 4.4.
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4.2.2.3 Penalty Functions

An attractive feature of the MPxA methods is that the penalty functionsMs used in
minimization problems (4.2.15) can be chosen to enhance various properties of the
MPxA methods.

The natural starting point for developing quadratic minimization problems to
penalize the discontinuities in the linear pressure approximation, is to consider the
norm of the discontinuities across subfaces [28]. Thus, for every subface σ̃ ∈ S, we
define the penalty function

Mσ̃ (u) ≡
∫

σ̃

(
uk1,s(x) − uk2,s(x)

)2
dS. (4.2.19)

As previously, k1, k2 and s are the indexes such that ω̃k1,s and ω̃k1,s are the two
subcells sharing the subface σ̃ . Anypositive linear combination of the subface discon-
tinuity measure will be a new measure of discontinuity, and thus it is follows that for
any vertex, we make the natural definition

Ms(u) ≡
∑
σ̃∈Ss

cσ̃Mσ̃ (u). (4.2.20)

The weights cσ̃ can in principle be chosen to optimize the method, although the
simple choice cσ̃ = 1 appears sufficient in practice.

Since the potentials uk,s(x) are approximated as linear, the integral in Eq. (4.2.19)
is a quadratic function on the subface σ̃ , and can be exactly evaluated using only
a low number of quadrature points (two in 2D and four in 3D). The majority of
MPxA literature simplify the minimization problem further, and consider only a
single quadrature point. We will for historic reasons denote this minimization with
the Greek letter η, and introduce the simplified penalty functions

Mη

σ̃
(u) ≡ (

uk1,s
(
xη

σ̃

) − uk2,s
(
xη

σ̃

))2
. (4.2.21)

The definition of the simplified penalty functions is completed by specifying the
points xη

σ̃
. The common choice is obtained if the face σ subdivided into subfaces

relative to a central point xσ . Then let η ∈ [0, 1), and define

xη

σ̃
= xσ + η

xs − xσ

|xs − xσ | . (4.2.22)

In this expression, we have used xs to denote the coordinate of vertex s. Given
Mη

σ̃
(u), the full expression for minimization Mη

s (u) is defined analogously to
Eq. (4.2.20).

Themain advantage of the simplified penalty functionsMη
s , is that it can be shown

that for many common grid types (all grids in 2D, and e.g. Cartesian or simplicial
grids in 3D, but not grids containing pyramids), the optimal value of theminimization
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problems (4.2.17) is indeed 0. That is to say, that the minimization problem can be
omitted, and be replaced by the direct condition that

Mη

σ̃
(u) = 0 (4.2.23)

for all subfaces σ̃ ∈ S. When this condition holds, the pressure is indeed continuous
across the subface exactly at the point xη

σ̃
, and this point is then referred to as a

continuity point in the literature [20].
Two particular choices of xη

σ̃
are particularly appealing and common in practice:

η = 0 leads to a simple method that has the best monotonicity properties on quadri-
laterals [29]. η = 1

3 leads to a method which has a symmetric discretization method
on simplexes [30, 31]. Another possible choice is to take η = 1

2 , which gives a
high-order method on smooth problems on quadrilaterals [32]. We will return to this
topic in more detail in Sect. 4.4 of the chapter.

4.2.3 Implementation Aspects

To further explore the approximation properties and implementation of the MPxA
methods, it is instructive to consider the local problem (4.2.2) in some more detail.
As discussed above, the approximation spaces on the subcells are not rich enough
to allow full continuity over subfaces σ̃ ∈ Ss, thus MPxA can be interpreted as
a discontinuous Galerkin method with a particular set of continuity constraints on
potentials and normal fluxes over the subfaces. Critical for efficiency and implemen-
tation, we exploit the two-scale approximation, in that the (fine scale) degrees of
freedom associated with the potential gradients on the subcells can be eliminated
by static condensation around each vertex s. This leaves a method where only the
(coarse scale) cell center degrees of freedom enter into the global problem.

4.2.3.1 Local Minimization Problem

To be concrete, we make the choice of representing the linear potential field, uk,s
in a subcell by its value in the cell center, uk , and the (constant) components of its
gradient, which we denote hk,s. To understand an efficient implementation of the
local linear system set in Definition 4.2.2, it is instructive to discuss the size of the
matrices that form the problem. To that end, let nf = |Ss| be the number of subfaces

meeting in s, and similarly nc =
∣∣∣T̃s

∣∣∣ be the number of cells that has s as vertex. The

number of faces with Neumann and Dirichlet boundary conditions are denoted nσ̃ ,N

and nσ̃ ,D, respectively. Let d be the dimension of the potential field u, this will be 1
for scalar equations and the spatial dimension n for vector equations, and nσ̃ ,q be the
number of quadrature points on subface σ̃ .
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As degrees of freedom in the local linear system, we use the cell center potentials
us in Ts and the components of the gradients in the subcells T̃s, represented by hs, so
that the full vector of local unknowns is ũs = (us,hs)T . This representation has the
advantage that the matrices E and G take the particularly simple form

Esũs = (
I 0

)
ũs = us,

Gsũs = (
0 I

)
ũs = hs.

The flux field can therefore be recovered directly from hs using (4.2.12), where we
see that the (local) matrix that contains the constitutive law,Bs is of size (nc · d · n)×
(nc · d · n).

The computation of subface normal fluxes is split into internal and boundary

faces: The internal faces are covered by the matrices FI
s and F̂

I
s , both of size(

d · (
nf − nσ̃ ,N − nσ̃ ,D

))×(nc · d · n), which represent the multiplication by subface
normal vectors of the flux on the neighboring cells of lower and higher index, respec-
tively. The normal flux over faces with Neumann and Dirichlet boundary conditions
is computed from the matrices FN

s and FD
s , of size

(
d · nσ̃ ,N

) × (nc · d · n) and(
d · nσ̃ ,D

) × (nc · d · n), respectively. The evaluation of the potential at the subface
quadrature points is similarly split: For internal subfaces, the matrix MI

s of size(
d · ∑

σ̃∈S i
s

nσ̃ ,q

)
×(nc · d · n) has elements composed of the distance from cell centers

to subface quadrature points; here S i
s denotes the internal subfaces of vertex s. M̂

I
s is

the corresponding matrix for neighboring cells of higher index, while MD
s and MN

s
are assigned for subfaces with Dirichlet and Neumann boundary conditions, respec-
tively. Finally, we similarly define the matrix Ê

∗
s relative to E∗

s , and the internal and
boundary components.

With the above definitions, the penalty term is stated in terms of the local variables
as

Ms(ũs) = Ms(us,hs) = �

∥∥∥
((

E∗,I
s − Ê

∗,I
s

)
us +

(
MI

s − M̂
I
s

)
hs

)∥∥∥2
, (4.2.24)

where the norm is the sum of the integral (4.2.19) taken over all subfaces σ̃ ∈ Ss,
and where � a diagonal matrix containing the quadrature weights for the integrals.
The minimization problem is subject to the constraints that us and g are given, as
well as

τ s = Bshs + E∗
sg,Fsτ s = F̂sτ s,FN

s τ s = qNs ,E∗,D
s us + MD

s hs = uDs . (4.2.25)

Here, we have retained the explicit dependency of the constraints on τ s, and
introduced the Neumann and Dirichlet conditions as qNs and uDs , respectively. These
conditions are void if none of the subfaces around vertex s are located on the domain
boundary. We have assumed that the number of quadrature points on subfaces with
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Dirichlet conditions is sufficiently low for the relevant constraint to be fulfilled
exactly; as an alternative, the condition MD

s us = uDs can be incorporated into the
minimization problem. While the matrices FD

s and MN
s are not used in the method

constructions, they canbeused in post-processing to calculate the normal flux through
Dirichlet faces and potential on Neumann faces, respectively.

We pause to consider the size of the local problem (4.2.24)–(4.2.25), and specifi-
cally compare the number of degrees of freedom and constrains. We limit ourselves
here to internal vertexes, similar reasoning applies to vertexes on the domain
boundary. The number of subcell gradient degrees of freedom is nk · d · n, while
there are nσ̃ · d equations for flux continuity, and

(
d · ∑

σ̃∈Ss

nσ̃ ,q

)
quadrature points

for potential continuity. If n = 2, nσ̃ = nc independent of the cell type thus if each
subfaces is assigned a single quadrature point, nσ̃ ,q = 1, then the number of equa-
tions equals the number of gradient unknowns. In 3d, the situation is more nuanced:
For simplex and logically Cartesian grids, nσ̃

nc
= 3

2 , thus with a single quadrature
point on each subface, the number of equations and gradient unknowns still match.
For general cell shapes, notably pyramids, this is no longer the case, and the method
with a single quadrature point fails.

4.2.3.2 Expression in Terms of Coarse Degrees of Freedom

To arrive at a discretization in terms of the coarse scale, cell center, degrees of
freedom, the next step is to eliminate the subcell gradients hs. Which approach is
practical here depends on the size of the minimization problem.When the number of
equations andgradient unknownsmatch, it turns out that the value of theminimization
problem is in fact zero, and the problem can be formulated as a linear system on the
form (with τ s eliminated)

⎛
⎜⎜⎜⎝

MI
s − M̂

I
s

FsBs − F̂sBs

FN
s Bs

MD
s

⎞
⎟⎟⎟⎠hs = −

⎛
⎜⎜⎜⎝

E∗,I
s − Ê

∗,I
s

0
0

E∗,D
s

⎞
⎟⎟⎟⎠us +

⎛
⎜⎜⎜⎝

0(
E∗,′
s − Ê

∗
s

)
gs

qNs
uDs

⎞
⎟⎟⎟⎠. (4.2.26)

This system can be solved to express hs as a linear function of us and the right-
hand side terms. We write the respective solutions as hus = Suus, hgs = Sggs, h

N
s =

SNqNs and hDs = SDuDs , where the matrices S∗ are computed from the left and right
hand sides of (4.2.26). The solvability of (4.2.26) depends on the grid types and
problem under consideration, and problems can arise in special cases such as some
non-matching grids in 3D. However, for regular grids (simplicial and Cartesian) for
the problems considered in Sect. 4.4 and 4.5 (with the exception of Sect. 4.4.3),
Eq. (4.2.26) is solvable. The size of the left-hand side matrix is relatively small (see
Sect. 4.2.3.3), and in our experience an explicit construction of its inverse, drawing
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upon LAPACK routines for inversion of dense matrices, is an efficient option. With
the explicit inverse available, the matrices S{u,g,N ,D} can be constructed by matrix
multiplications.

Themore general casewithmultiple quadrature points leads to a trueminimization
problem, and thus resolves many of the cases where (4.2.26) is not suitable. Since
this is a quadratic minimization problemwith linear constraints, the minimum can be
found in the standard way as the solution to a linear system of equation obtained via
a Lagrange multiplier vector λ. For completeness, we state this system for internal
cells (i.e. with no boundary cells), for which the constrained system is:

((
MI

s − M̂
I
s

)T
�T�

(
MI

s − M̂
I
s

) (
FsBs − F̂sBs

)T

FsBs − F̂sBs 0

)(
hs
λ

)

= −
(
2
(
MI

s − M̂
I
s

)T
�T�

(
E∗,I
s − Ê

∗,I
s

)
0

)
us +

(
0(

E∗,′
s − Ê

∗
s

)
gs

)
.

(4.2.27)

Thus the local system is still linear, and has the advantage that unique solvability
can be proved for many classes of grids due to the relationship to the minimization
problem [28]. However, Eq. (4.2.27) contains nσ̃ · d extra unknowns, corresponding
to the Lagrange multipliers for flux continuity.

4.2.3.3 Computational Cost

We make the following comments on the local problems: Their size depends on the
number of cells that share the vertex s, the dimension of the potential field, and the
number of quadrature points assigned on the subfaces. In practice, 12 gradients are
eliminated for scalar problems on a Cartesian 2d grid with a single quadrature points,
up to on the order of a few hundred degrees of freedom for vector problems on 3d
unstructured grids with multiple quadrature points [33]. The choice of quadrature
rule thus has a significant impact on the overall cost of discretization, and count in
favor of using few quadrature points when this is feasible. Independent of which
strategy is chosen, the local problems can be solved in parallel.

4.3 Multi-point Methods for Thermo-poroelasticity

In this section, we will apply concretely the discretization concepts presented in
Sect. 4.2 to the problem of thermo-poroelasticity. As in Sect. 4.2, our aim is to be
pedagogical, andwewill defer the discussion ofmathematical properties to Sect. 4.4.
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We will address the discretization for thermo-poroelasticity through four steps,
following the natural progression from flow in porous media in Sect. 4.3.1, via elas-
ticity in Sect. 4.3.2, and then combining the concepts to poroelasticity in Sect. 4.3.3.
Finally, the full thermo-poroelastic discretization in presented in Sect. 4.3.4.

4.3.1 Flow in Porous Media

The basic equations for flow in porous media, as far as this exposition is concerned,
are captured by the (steady state) conservation law for fluid flow, Eq. (4.2.1), and
Darcy’s law relating pressure gradients to fluid flux. In preparation for poroelasticity
later, we will denote the pressure potential as p, and the fluid flux as τp, and re-state
conservation and Darcy’s law in terms of these variables as

∫
∂ω

n · τp dS =
∫

ω

rp dV , (4.3.1)

τp = −κ∇p + g. (4.3.2)

In a slight abuse of language,will refer to the 2ndorder tensorκ as the permeability,
and g as gravity.

The Multi-Point Flux Approximation (MPFA) follows exactly the general struc-
ture of MPxA methods, with Eq. (4.3.2) imposed exactly in order to define the
discrete constitutive law B. We will avoid restating the equations of Sect. 4.2.2, and
summarize that a numerical fluid normal flux q is defined by the MPFA method as
a linear function of pressure, i.e. the finite volume scheme for Eqs. (4.3.1–4.3.2) is
given as

Dpq = rp, (4.3.3)

q = Qpp + Qgg. (4.3.4)

Here we use the subscript p on the discrete divergence operator for this scalar
problem, in order to distinguish it from the divergence operator for vector problems
in the next sections.

With the choice of the simplified penalty function Mη
s and thus replacing the

minimization problem by Eq. (4.2.23), themethod is referred to simply as theMPFA-
O (η), and represents one of the two original MPFA methods [3]. When the full
penalty function Ms is used, we refer to this as the generalized MPFA-O method.

It is not a priori obvious whether we should consider the pressure p as representing
a cell-center variable or a mean value for the cell. However, when reviewing the
conservation law, we note that the conserved quantity is actually the integrated mass
density over the cell, which is related to pressure via a constitutive law. As such, in
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most implementations, it is most natural to consider the pressure as a mean value for
the cell.

For the scalar problem, several specialized variants of the MPFA methods can be
derived [3, 21–23]. However, each of these variants utilize a separate calculation for
each of the subface fluxes. As such, these variants cannot be interpreted as having
a unique piecewise linear pressure field, and are thus more complex to describe,
implement and analyze. Their usage is limited in practice.

4.3.2 Elasticity

The equations of elasticity have the same basic elliptic structure as those for flow,
however they have significant differences in the details. First, we note that the defor-
mation vector u takes the role of potential, while the stress tensor π takes the role
of a flux. The steady state of conservation of momentum is the balance equation for
forces

∫
∂ω

n · π dS =
∫

ω

ru dV . (4.3.5)

Note that this is a vector equation. Elastic materials satisfy Hooke’s law, which
can be written as

π = C : ε(∇u) + χ. (4.3.6)

Here ε(∇u) denotes thematerial strain, which in the regime of small deformations
can be linearized as

ε(∇u) = ∇u + ∇uT

2
. (4.3.7)

The external tensor field χ can arise from an existing stress state in the material,
or as we will see below, from interactions with a separate process in composite
materials. We will assume that the external tensor field is always symmetric.

The strain tensor ε(∇u) is symmetric by definition, and we therefore refer to
Eqs. (4.3.6)–(4.3.7) as Hooke’s law with strong symmetry. In general, the gradient
of the deformation ∇u need not be symmetric, and as a consequence, the compound
action of C and ε does not have a unique inverse when Hooke’s law is written on the
form (4.3.6)–(4.3.7). This has consequences for the stability of numerical methods,
as we will see below.

We therefore consider also an alternative formulation of Hooke’s law, known
as Hooke’s law with weak symmetry. Equations (4.3.6) and (4.3.7) can then be
equivalently stated as
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π = C : (∇u + b) + χ, (4.3.8)

where b is the asymmetry of the gradient of deformation,whichwewill at themoment
treat as unknown. In order to determine b, we enforce that the stress is symmetric.
It turns out that it is sufficient to impose symmetry of the stress tensor weakly [33,
34]. Pre-empting that we will impose symmetry on the dual grid, we state the weak
symmetry as follows: For all subdomains ω∗ ∈ �, it holds that

∫
ω∗
as(π) dS = 0, (4.3.9)

where the asymmetry of a tensor is defined as

as(π) = π + πT

2
. (4.3.10)

It is straight-forward to verify, by setting b = −as(∇u), that Eqs. (4.3.8)–(4.3.10)
are satisfied by the solution of Eqs. (4.3.6)–(4.3.7), and have also been recently
considered in the mixed finite element context (see e.g. [34]).

4.3.2.1 MPSA with Strong Symmetry

The MPxA finite volume method can be applied directly to Eqs. (4.3.5–4.3.7), in
exact analogy to the scalar case, and we refer to this as the generalized MPSA-O
method. As with the fluid flow, we can use the constitutive law (3.6) directly to define
the discrete constitutive law B.

Again we will avoid restating the equations of Sect. 4.2.2, and summarize that a
numerical normal stress (i.e. traction) w is defined by the MPSA method as a linear
function of pressure, i.e. the finite volume scheme for Eqs. (4.3.5–4.3.7) is given as

Duw = ru, (4.3.11)

w = Wuu + Wχχ . (4.3.12)

Note that while the action of Dp and Du are logically similar, the matrixes have
slightly different structure as Eq. (4.3.11) represent n times as many degrees of
freedom due to the vector nature of the elasticity equations.

It turns out that the simplifiedpenalty functionMη
s is not suitable for elasticitywith

strong symmetry. Indeed, the symmetry of the stress tensor reduces the number of
constraints imposed by the local balance stated in Eq. (4.2.13), and the minimization
problem given by (4.2.26) for the simplified penalty functions fail to have a unique
solution.On the other hand, it can be shown that Eq. (4.2.27) does have a solution, and
as such, only the generalized MPSA-O method is applicable elasticity with strong
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symmetry [35]. While the generalizedMPSA-Omethod is well suited for polyhedral
grids in 2D and 3D, it is deficient on simplicial meshes [28, 33]. As is the case with
mixed finite elements [34], it turns out that the formulation with weakly imposed
symmetry is preferable.

4.3.2.2 MPSA with Weak Symmetry

When we consider the constitutive law with weak symmetry, we quickly note that
the MPxA framework needs an adaptation in order to accommodate the condition
Eq. (4.3.10). Indeed, by imposing Eq. (4.3.10) on each dual cell, it is equivalent to
stating that for all s ∈ V , it holds that

∑
ω̃∈T̃s

∫
ω̃

as(π) dS = 0. (4.3.13)

Since the stress π is approximated as constant on each subcell, Eq. (4.3.13) can
easily be represented in terms of degrees of freedom as the matrix equation

Sπ = 0, (4.3.14)

where again thematrix S can bewritten as a sum of localmatrices for each vertex, e.g.
S = ∑

s∈V
Ss.With this tool in hand, theMPxA framework can be used directly to obtain

a discretization, which we refer to as MPSA-W (W signifying weak symmetry), and
state to be precise as:

Definition 4.3.1 (MPSA-W (elasticity))LetNu be the null-space of the vector exten-
sion of the constraints given in Eqs. (4.2.11)–(4.2.13), as well as (4.3.14), subject to a
given displacement u. Then the MPSA-Wmethod is defined by the pair (ũ,π) ∈ Nu

such that

(ũ,π) = arg min
(ũ′

,τ ′)∈Np

M(
ũ′)

, (4.3.16)

and the numerical normal stress is defined as w = Wuu + Wχχ ≡ �FFπ .
Clearly, due to the choice of imposing the asymmetry of the stress on the dual

grid, the MPSA-W method reduces to local calculations in the same way as other
MPxA methods.

TheMPSA-Wdiscretization is now obtained by combining the normal stress from
the MPSA-Wmethod with the momentum balance, Eq. (4.3.11), in exactly the same
manner as for the generalized MPSA-O method.

The MPSA-W method behaves qualitatively analogously to the MPFA methods,
and can be used together with either the full penalty functions or the simplified
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penalty functions. In contrast to the generalized MPSA-O method, the MPSA-W
method is equally applicable to polyhedral as well as simplicial grids [33].

4.3.3 Poroelasticity

We will consider the linearized equations for poro-elasticity, after an implicit
discretization over a time-step length θ . Then the linear system for pressure and
displacement consists of two conservation laws for the fluid and solid [27]:

∫
ω

α : ∇u + cp dV + θ

∫
∂ω

n · τp dS =
∫

ω

rp dV , (4.3.17)

∫
∂ω

n · π dS =
∫

ω

ru dV , (4.3.18)

as well as the constitutive laws for fluid flow (Darcy) and stress in poroelastic
materials (Biot), stated in the form with weak symmetry:

τp = −κ∇p + g, (4.3.19)

π = C : (∇u + b) − αp, (4.3.20)

∫
ω∗
as(π) dS = 0. (4.3.21)

Relative to the previous sections, we have introduced the Biot coupling coefficient
α, which is in general a symmetric second-order tensor (but often approximated as a
scalar times an isotropic tensor in practice), as well as the effective compressibility
term c, containing contributions from both bulk and fluid compressibility. Note also
that the information from the previous time-step is integrated into the right-hand side
term rp.

In order to obtain a numerical stress function for poroelasticity, we follow the
MPxA framework outlined in Sect. 4.2.2. From the perspective of the mechanics,
the pressure is an external stress in the constitutive law, while conversely, from the
perspective of flow, the mechanics affects the conservation statement.

We will therefore for the mechanical calculation consider the fluid pressure as the
(previously external) imposed stress for the cell. The MPxA framework can then be
applied directly, as in the case of Sect. 4.3.2. To incorporate the newmaterial constants
arising from the coupling terms, let C be the application of the compressibility factor
c at the cell level. Moreover, let A1 and A2 be the application of the Biot coefficient
α at the subcell level, where A1 acts as the double inner-product on tensors (confer
Equation (4.3.17)), while A2 acts a tensor-scalar product (confer Equation (4.3.20)).
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Finally, similarly to �F we let �T be the summation over subcells, weighted by the
subcell volumes.

With these definitions, the MPSAmethod can be directly applied to the linearized
equations for poroelasticity. For completeness, we state its definition as:

Definition 4.3.2 (MPSA-W (poroelasticity)) LetNu,p be the null-space of the vector
extension of the constraints given in Eqs. (4.2.11)–(4.2.13), as well as (4.3.14),
subject to a given displacement u and a pressure p. Then the MPSA-W method for
poroelasticity is defined by the pair (ũ,π) ∈ Nu,p such that

(ũ,π) = arg min
(ũ′

,π ′)∈Nu,p

M(
ũ′)

, (4.3.24)

and the numerical normal stress is defined as w = W(u, p) = Wuu + Wpp ≡
�FFπ − �FFA2E∗p. Moreover, the impact of displacement on the fluid mass
conservation law is given by J(u, p) = Juu + Jpp ≡ �FA1Gũ.

We note that the linear discretization matrices Wu,Wp, Ju and Jp are implicitly
defined, since ũ and π are linear functions of u and p. As previously, all the mini-
mization problems can be solved in parallel for each vertex of the grid. Moreover,
the same points about simplified penalty functions as discussed in Sect. 4.3.2.2 are
applicable.

We close this section by stating the full discrete system for the poroelastic
Eqs. (4.3.17–4.3.21):

Juu + Jpp + Cp + θDpq = rp, (4.3.25)

Duw = ru, (4.3.26)

q = Qpp + Qgg, (4.3.28)

w = Wuu + Wpp. (4.3.29)

By eliminating the flux and normal stress, we get a system of matrix equations
only in terms of cell-center pressure and displacement, given as

(
DuWu DWp

Juu C + θDpQp + Jp

)(
u
p

)
=

(
ru

rp − θDpQgg

)
. (4.3.30)

As expected, Eqs. (4.3.25–4.3.29), and consequently also (4.3.30), has essentially
the same structure as the continuous problem. The exception is the presence of the
term Jp, which appears implicitly in the pressure conservation equation, since the
discrete displacement gradient ∇u calculated by the MPSA method also depends on
the pressure. This dependence is weak and can be interpreted as the expansion of a
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(sub)cell due to an increment of pressure in that cell. As such, it has the structure of
a Laplacian operator, scaled by the bulk modulus of the solid C, and the square of
the characteristic length scale of the cell �x, i.e., the following spectral equivalence
holds [27]:

(4.3.31)

4.3.4 Thermo-poroelasticity

As the final application of the MPxA framework, we will consider the transport of
heat in a poroelastic medium. Again, we will consider the equations subject to an
implicit discretization over a time-step length θ . One has a choice in which variable
to use to represent heat, however we will for simplicity consider temperature φ, as
we are primarily interested in the spatial discretization of the linearized equations.
Then the linear system for pressure, displacement and temperature then consists of
three conservation laws for the fluid, entropy, and solid [8, 36]:

∫
ω

αp : ∇u + cp,pp + cp,φφ dV + θ

∫
∂ω

n · τp dS =
∫

ω

rp dV , (4.3.32)

∫
ω

αφ : ∇u + cφ,pp + cφ,φφ dV + θ

∫
∂ω

n · τφ dS =
∫

ω

rφ dV , (4.3.33)

∫
∂ω

n · π dS =
∫

ω

ru dV , (4.3.34)

as well as the constitutive laws for fluid flow (Darcy), heat transfer (Fourier’s law and
advection), and stress in thermo-poroelastic materials, the latter stated in the form
with weak symmetry:

τp = −κp∇p + g, (4.3.35)

τφ = −κφ∇φ + φτp, (4.3.36)

π = C : (∇u + b) − αpp − αφφ, (4.3.37)

∫
ω∗
as(π) dS = 0. (4.3.38)

Relative to the previous sections, we have for each of the fluid and thermal
conservation laws separate linearized constitutive laws cφ,p, cφ,φ , cp,p, and cp,φ , Biot



142 J. M. Nordbotten and E. Keilegavlen

coupling coefficients αp and αφ , and constitutive laws κp and κφ . Furthermore, we
notice that the constitutive law for heat flux, given in Eq. (4.3.36), is non-linear due
to the presence of the product φτp, representing heat advection with the fluid flux.

With exception of the head advection term, the coupled problem represented by
Eqs. (4.3.32–4.3.38) presents no new challenges relative to the poroelastic problem
considered in Sect. 4.3.3, and the application of the MPxA method for the problem
is equivalent. Thus we have the following discrete system for thermo-poroelasticity,
which is the discrete analog of Eqs. (4.3.32–4.3.38). The conservation laws take the
form:

Jp,uu + Jp,pp + Cp,pp + Cp,φφ + θDpqp = rp, (4.3.39)

Jφ,uu + Jφ,φφ + Cφ,pp + Cφ,φφ + θDpqφ = rφ, (4.3.40)

Duw = ru. (4.3.41)

While the constitutive laws take the form:

qp = Qp,pp + Qp,gg, (4.3.42)

qφ = Qφ,φφ + φ∗qp, (4.3.43)

w = Wuu + Wpp + Wφφ. (4.3.44)

The discrete matrixes are constructed exactly as in Definition 4.3.2, with the
notational convention that (say) Wφ is calculated using the coupling coefficient αφ ,
whileWp is calculated using the coupling coefficient αp. Similarly, the discrete flux
stencilQφ,φ is calculated using the MPFAmethod of Sect. 4.3.1, with the coefficient
tensor κφ .

It remains to define the temperature φ∗ on faces of the grid. We denote the matrix
with these temperatures on the main diagonal as φ∗, for which the simplest and most
commonly choice is obtained via the so-called upstream weighting [7, 37]. Thus, for
any face σ ∈ F , with neighboring cells ωk1 and ωk2 where k1 < k2, then

φ∗
σ,σ =

{
φk1 if qp,σ ≥ 0,
φk2 if qp,σ < 0.

(4.3.45)

The entries of φ∗ are typically taken as zero away from the main diagonal.
A compact and simple discretization for coupled thermo-poromechanics is then

obtained in terms of cell-center variables as
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⎛
⎜⎝
DuWu DuWp DuWφ

Jp,uu Cp,p + θDpQp,p + Jp,p Cp,φ

Jφ,uu Cφ,p + θDpφ
∗Qp,p Cφ,φ + θDpQφ,φ + Jφ,φ

⎞
⎟⎠

⎛
⎜⎝

u
p
φ

⎞
⎟⎠ =

⎛
⎜⎝

ru
rp − θDpQp,gg

rφ − θDpφ
∗Qp,gg

⎞
⎟⎠.

(4.3.46)

Note that this discretization inherits the non-linearity of the original problem
(4.3.32–4.3.38), due to the presence of the advective term, which explicitly becomes
θDpφ

∗Qp,pp.

4.4 Mathematical Properties of MPxA Methods

Since their inception, the MPFA (and later MPSA) methods have been intensely
studied. Various viewpoints have been considered, using both analysis frameworks
building on theory of finite volume and mixed finite element methods, as well as
numerical validations. As a whole, these studies provide a comprehensive perspec-
tive on not just the properties of the MPFA finite volume discretization for the model
problem from the introduction, Eqs. (4.1.2–4.1.2), but also the performance for elas-
ticity and coupled problems as discussed in Sects. 4.3.2–4.3.4. We will summarize
some of the main aspects below.

4.4.1 Analysis of Consistency and Convergence

Already in the earliest papers on MPFA methods, the consistency of the discretiza-
tion was validated on parallelogram grids [3, 4]. More general analysis followed
a decade later, and the first proof of convergence was established by Klausen and
Winther, considering perturbations of parallelogram grids [38]. That analysis explic-
itly constructed a mixed finite element method which is algebraically equivalent to
the MPFA method with simplified quadrature, by using the local problems detailed
in Sect. 4.2.2 and 4.2.3 to define so-called “broken” finite element spaces for the
flux.

While the analysis of Klausen, Winther provides both convergence as well as
rates of convergence, it is quite restrictive, and does not apply to polyhedral grids
nor non-smooth coefficients. The analysis was later extended to general polyhe-
dral grids by Klausen and Stephansen by exploiting a link to mimetic finite differ-
ences [39]. A different approach was pursued by Agelas et al. [26], where they
considered a formulation of the MPFAmethod in terms of the finite volume analysis
framework [24]. This yielded convergence proofs through compactness arguments
for quite general grids, and with minimal assumptions on the coefficients. On the
other hand, this generality reduces the regularity of the exact solution, and thus
explicit rates of convergence cannot be considered in this framework. Furthermore,
the proofs suffered from an a priori assumption that the local formulation of MPFA
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was uniformly coercive (with respect to all corners of the grid and all grid refine-
ment). Such an assumption automatically holds for self-similar grid refinements, but
was not proved.

The approach of Agelas was extended to show the convergence ofMPSA for elas-
ticity, and later also to show the convergence of MPFA + MPSA for the poroelastic
problem of Sect. 4.3.3 [27, 28]. In these proofs, the general case of penalty functions
with multiple quadrature points, as introduced in Sect. 4.2.2.3, was first consid-
ered. Considering the full penalty formulation had the further advantage of avoiding
the local coercivity assumptions of Agelas, as the local coercivity could be proved
based on the structure of the minimization problems. Moreover, the convergence
proofs were shown to hold even for degenerate coefficients, such as incompressible
materials and near-zero time-step size.

It is worth noting the related development of so-called Multipoint Flux Mixed
finite Element (MFME) [40] and Multipoint Stress Mixed Finite Element (MFSE)
[41] methods. These methods are obtained from mixed-finite element methods with
BDM1 elements for flux (or stress) and P0 elements for pressure (or displacement),
using various quadrature rules to eliminate the flux variables. The resulting methods,
for which detailed analysis is possible based on standard theory of mixed finite
elements, are close cousins of the MPxA finite volume methods described herein.
However, these methods are less suited for geometrically complex problems, since
the quadrature rules lead to reduced rates of convergence for rough grids [42], and
the underlying finite element spaces preclude the applications to polyhedral grids.

4.4.2 Monotonicity

The question of monotonicity is essentially a translation of Hopf’s lemma from the
continuous problem to the discrete problem. For the scalar case, Hopf’s lemma can be
stated as the property that for a zero right-hand side rp = 0, then the maximum (and
minimum) value of the solution p should be found on the boundary of the domain
[43].

Several numerical methods preserve themonotonicity property, in particular those
that lead to discretization matrices on the form ofM-matrices such as TPFA and FE.
On the other hand, this property is in no way guaranteed, and as an example, theMFE
method is in general not monotone. As the MPFA discretization does not guarantee
anM-matrix, the question of monotonicity is subtle.

Sufficient and necessary conditions for any finite volume discretization to satisfy
a discrete maximum principle can be established in the case of quadrilateral grids
[29, 44]. As a result, it is now known that there are essentially three categories of
grid (cells): (1) Those for which essentially any finite volume methods will lead to
monotone discretization, (2) Those for which it is possible by a judicious choice to
construct a monotone discretization, and (3) Those for which no linear finite volume
discretization (with a relatively compact stencil) exists.
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Clearly, point (3) above means that there are certain grids which are sufficiently
bad that the performance of a MPxA discretization cannot be guaranteed, and these
are in general grids combining high aspect ratios with a high degree of skewness.
Point (2) above furthermore inspired research into constructing MPxA methods that
are optimal with respect to monotonicity. Such methods can be constructed either
by optimizing the location of quadrature points in the penalty functions [29, 45], or
by allowing for more general formulation of the MPxA methods than that outlined
in Sect. 4.2.2. As a result of the latter approach, the MPxA-Z method with a larger
stencil [22], and theMPxA-Lmethodwith a smaller stencil [21, 23], were developed.

4.4.3 Numerical Investigations of Convergence

Complementing to the analysis summarized above, it is worth noting that the conver-
gence properties of the MPFA and MPSA methods have been extensively studied
numerically. These numerical investigations also consider problems not covered by
analysis, due to either challenging coefficients [46], non-linearities [30], or grids
[47]. We will review some of these results here, emphasizing the results that give a
most comprehensive understanding of the general features of the MPxA methods.

4.4.3.1 Convergence Rates for Smooth Solutions

For problems with smooth coefficients on regular domains, the analysis of MPFA
methods indicates that one can expect 2nd order convergence of the potential and 1st
order convergence of the fluxes [38]. In practice 2nd order convergence of fluxes has
been observed in numerical calculations for the flow problem, and what appears to
be 1.5 order convergence for the elasticity and Biot problems. We will revisit some
of these results here [27].

The problem under consideration is the poroelastic equations as presented in
Sect. 4.3.3, with the MPFA andMPSAmethods using full penalty functions as given
in Eq. (4.2.20), and with the elasticity discretized with strong symmetry.

With the L2 norms defined as

‖u‖T ,0 =
(∑
k∈T

mku
2
k

)1/2

and ‖q‖F ,0 =
(∑

σ∈F
m2

σq
2
σ

)1/2

. (4.4.1)

We can define errors using the following L2 type metrics, where variables in plain
type are the exact analytical solution, and variables in bold are the discrete solutions,
as in the preceding sections. The error in primary variables is then measured as
relative to the projection�T which returns cell-center values (i.e. (�T p)k = p(xk)):
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εu = ‖u − �T u‖T ,0

‖�T u‖T ,0
and εp = ‖p − �T p‖T ,0

‖�T p‖T ,0
(4.4.2)

and the error in secondary variables as relative to the projection �F which returns
face-center fluxes (i.e. (�Fτ)σ = τ(xσ ) · nσ ):

επ = ‖w − �Fπ‖F ,0

‖�Fπ‖F ,0
and εq =

∥∥q − �Fτp
∥∥
F ,0∥∥�Fτp

∥∥
F ,0

. (4.4.3)

Finally, we also consider the error based on the L2 seminorm of pressure, which
discards the datum value, defined as

εp,| = inf
p0∈R

‖p − �T p + p0‖T ,0

‖�T p‖T ,0
. (4.4.4)

In order to illustrate the numerical convergence rate of the primary variables,
we give the primary error associated with the primary variables displacement and
pressure as

εu,p = εu + cεp. (4.4.5)

Furthermore, it can be shown that the MPSA-MPFA discretization is stable even
for degenerate timestep size τ → 0 and compressibility c → 0, subject to a weighted
combination of the norms above [27]. Thus, we introduce the so-called stable error

ε� = εu + επ + (θ + c)εp + θεq + εp,|. (4.4.6)

The numerical convergence rates for a smooth manufactured solution on irregular
simplicial, irregular quadrilateral, and unstructured polyhedral grids, as illustrated
in Fig. 4.3. The calculations are based on seven levels of refinement for each grid
type, for which the finest grid level has a characteristic cell diameter of h ∼ 2−7, the
results of which are summarized in Table 4.1. We note that as expected, 2nd order

Fig. 4.3 From left to right the figures illustrate grid types a (quadrilaterals),b (triangles), c (unstruc-
tured grids). Furthermore, in grey-scale, the figures indicate the structure of the analytical solution
used for this example
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Tables 4.1 Asymptotic convergence rate of stable primary error εu,p and stable error ε� for grids
of types A, B, and C. We recall that τ is the dimensionless time-step, and c is the dimensionless
compressibility

εu,p τ = 1 τ = 10−6

Grid A B C A B C

c = 1 2.00 1.97 1.99 1.99 1.95 1.98

c = 10−2 2.00 1.97 1.99 1.98 1.94 1.98

c = 10−6 2.00 1.97 1.99 1.98 1.94 1.98

ε� τ = 1 τ = 10−6

Grid A B C A B C

c = 1 1.36 1.36 1.27 1.09 1.14 1.16

c = 10−2 1.32 1.32 1.23 1.20 1.29 1.28

c = 10−6 1.32 1.32 1.23 1.20 1.29 1.29

convergence is observed for primary variables, and better-than-1st order convergence
is observed for fluxes and stresses.

4.4.3.2 Convergence Rates for Singular Solutions

In order to assess the convergence rates for non-smooth problems, Eigestad and
Klausen considered domains with discontinuous permeability coefficients, such as
illustrated in Fig. 4.4 [46].

For such domains, analytical solutions can be defined on using polar coordinates
around the center point, on the form

p(r, θ) = rα(ai cos(αθ) + bi sin(αθ)). (4.4.7)

The constants α, ai and bi, for i = 1, 2, depend on the permeability contrast
chosen, and in particular, the exponentα also determines the regularity of the solution,
i.e.

p ∈ H 1+α(�). (4.4.8)

For such problems, they report a loss of convergence rate, such that one observes
that the pressure converges at a rate of εp ∼ hmin(2,2α) while the flux converges at

Fig. 4.4 Partitioning of
domain such that a
non-trivial material
discontinuity can be defined
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Fig. 4.5 Convergence of pressure (dashed lines) and flux (solid lines) for the MPFA method for
the non-smooth problem of Sect. 4.4.3.1, on both random (black) and uniform grids (blue). The
observed convergence rates for this problem, where the exact solution is order 1.5 for pressure and
order 0.75 for flux. For comparison, the TPFA method was included in the original study, which
does not converge (not shown in figure). Note that the blue dashed line is not visible behind the
black dashed line

a rate εq ∼ hmin(1,α). For the particular choice of θ = 2π/3, and a permeability
contrast k1

k2
= 100, the resulting analytical solution has the exponent α ≈ 0.75.

Figure 4.5 illustrates the convergence for this case, based on the MPFA method with
simplified penalty functions (η = 0), and both regular and perturbed grid sequences.

4.4.3.3 Robustness on Degenerate Grids

Contrasting the previous two studies, Nilsen et al. emphasized degeneracies of the
grid (as opposed to regularity-preserving refinements) [47]. To this end, they consid-
ered a series of cases with polyhedral grids, grids of high aspect ratio, and unusual
refinement strategies. All of their calculations considered the MPSA discretization
with strong symmetry, applied to either elasticity or coupled with MPFA for Biot.

An illustrative example from that study, considers a problem of non-matching
grids, meeting at a thin layer, as illustrated in Fig. 4.6 (left). The thin layer is
discretized by a finer grid which has roughly isotropic shape, as shown in Fig. 4.6
(right). The color scale in that figure indicates the approximation error relative to a
smooth reference solution, which can be seen to be less than 4% in displacement
(left figure) and as much as around 50% in the grid cells immediately adjacent to the
thin layer for the volumetric strain (right figure).

To study the robustness of the method the ratio of the thin layer as compared to the
external grid cells was varied from a factor 1 to a factor 20 (for comparison, Fig. 4.6.
illustrates a factor 7 difference in grids). Recall that the grid cells in the thin layer
are nearly isotropic in shape, thus when the thickness of the thin layer is reduced,
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Fig. 4.6 Illustration of the grid used for robustness study (left). Note there is a vertical section of
thin cells in the middle of the domain, mimicking a thin geological layer, as shown in the zoom
(right). The discretization on the right-hand side of the thin layer is intentionally chosen to be slightly
coarser than the left-hand side to ensure that the inner layer of grid cells is always non-matching
relative to the surroundings. The color map on the left indicates the relative error in the x-component
of displacement, while the color map on the right indicates the relative error in volumetric strain,
both as compared to a manufactured analytical solution for this problem

the number of cells in the layer is simultaneously increased, thus introducing an
increasing number of hanging nodes between. The study can thus be seen both as a
study of robustness to an abrupt change in grid sizes in the discretization, as well as
a study in the robustness to hanging nodes.

The results are shown in Fig. 4.7, where a comparison is also made to a Virtual
Element Discretization for the same grid [48]. As can be seen, the approximation
quality of the MPSA method is essentially unaffected by the presence of the thin

Fig. 4.7 Error in numerical approximation relative to analytical solution for grid types as shown
in this figure. Blue lines are the MPSA method with strong symmetry from Sect. 4.3.2.1, while for
comparison, an elasticity discretization using the virtual element method [49] is also shown. Errors
are shown for displacement, volumetric strain, and stress in the rows, respectively, and using the L2

and maximum norms in the columns. The x-axis of all figures denotes the aspect ratio between the
thin layer and the outer grid, thus the right-most data-point corresponds to a factor 20 finer grid in
the thin layer
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layer, both in the L2 and L∞ norms. In particular, the stability in the L∞ norm shows
that spurious oscillations are not introduced in the transition between the grids.

4.4.3.4 Convergence for Thermo-poroelasticity

We close this section with a convergence study for the MPxA discretization of the
full thermo-poroelastic problem. To our knowledge, results for this problem have
not been reported before. The domain is the unit square, and the grid is formed by
quadrilaterals that are roughly perturbed on all refinement levels. As in the study
discussed in Sect. 4.4.3.1, we consider a single time step for the system, with time
discretization by a backward Euler approach. All parameters are assigned unit values
in this case. The manufactured solution is given by

u =
(

sin(2πx)y(1 − y)
sin(2πx) sin(2πy)

)
, p = sin(2πx)y(1 − y), φ = xy(1 − x)(1 − y).

The thermo-poroelastic system was discussed with MPSA/MPFA as discussed in
Sect. 4.3.4, while a single point upstream approach was applied for the temperature
advection term.

The convergence behavior is shown in Fig. 4.8. Displacement and pressure retain
the second order convergence observed on the comparable test for the poro-elastic
system considered in Sect. 4.4.3.1. For the temperature, the first order scheme for
advection makes the convergence deteriorate to first order as the grid is refined, as
expected from the theory of hyperbolic conservation laws [37].Without the advective
term, temperature also showed second order convergence. Finally, the mechanical
stress and the fluid fluxes both are first order convergent on the perturbed grids. The
test case thus confirms that the combinedMPxA schemes can be applied successfully
applied to problems including a non-linear advection term.

Fig. 4.8 Convergence plot for the thermo-poroelasticity problem described in Sect. 4.4.3.4. The
convergence for the primary variables is shown to the left, to the right is shown the convergence
results for mechanical stresses and fluid fluxes. The error is plottet in terms of the characteristic
grid size dx
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4.5 Applications to Complex Problems

Having reviewed the mathematical properties of MPxA methods in the previous
section, we here show application-motivated scenarios where the methods can be
applied. We present three setups: Poro-elastic deformation during fluid injection,
thermo-poroelastic response to cooling, and flow through a fractured porous media.
The cases are designed to showcase the applicability of MPxA methods on a wide
range of grids, and the cells is the three cases are respectively perturbed hexahedra,
prismatically extended polygons and simplexes. All simulations use the open source
simulation tool PorePy [50], which provides an implementation of MPxA method
that follow the principles discussed in this chapter, see [50, 51] for details.

4.5.1 Poro-elastic Response to Fluid Injection

We consider the poro-elastic response to fluid injection a domain of 10×10×1.8 km,
covered by 71 × 71 × 40 = 201640 cells forming a Cartesian grid. The test case is
motivated by CO2 storage, although only single-phase flow is considered, with alter-
nating layers of high and low-permeable domains that act as storage formation and
trap, respectively [5]. The permeability contrast is four to five orders of magnitude,
while the elastic moduli are heterogeneous, though of comparable size. The height
of the layers varies, so that the computational cells are perturbed from their original
hexahedral form, as indicated in Fig. 4.9.

The system is discretized with MPSA/MPFA, and fluid injection in the middle of
storage layer was simulated. Figure 4.9 shows the fluid pressure and the vertical
displacement in a cut domain. The pressure solution adapts to the permeability
contrast, while the displacement various smoothly throughout the domain. As
expected, there are no signs of pressure oscillations due to the stabilization term
Jp, see Sect. 4.3.3, despite the presence of strong permeability contrasts, which is
known to cause problems for many discretization schemes [52]. The example thus
illustrates the robustness of the MPxA discretizations of poro-elastic problems with
strongly heterogeneous parameters.

4.5.2 Thermo-poroelastic Response to Cooling

To illustrate MPxA applied to the full thermo-poroelastic system, we consider a 3D
unit cube that undergoes cooling. Specifically: The domain is cooled at the bottom
by a fixing a temperature lower than the initial state. Fluid is allowed to leave through
the top, the bottom is impermeable for fluid flow, while the lateral sides are assigned
homogeneous Neumann conditions for both fluid and temperature. The domain is
fixed on all sides except the bottom, which is free to move. The domain is meshed
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Fig. 4.9 Simulation of fluid injection into a poro-elastic cube. Fluid is injected into the middle of
the domain, and the domain is cut to show the effects near the injection point. Top: Increase in fluid
pressure due to injection, measured in bar. Bottom: Vertical displacement, measured in meters

with polyhedral cells formed by first taking theVoronoi diagramof a 2d triangulation,
and then extruding the grid in the third direction. The resulting grid has 4275 cells,
with a mixture of 6, 7 and 8 faces per cell.

On this mesh, the full thermo-poroelastic system is discretized as described in
Sect. 4.3.4. Snapshots of the time evolution of temperature, pressure and displace-
ment are shown in Fig. 4.10. At an early stage, the couplings in the system lead
to noticeable 3d effects towards the bottom of the domain and significant displace-
ments. The snapshots at later stages reflect the gradual cooling of the domain, and
a decrease in pressure and displacement gradients. Note also that the pressure has
low regularity at early time, as is expected since the elliptic term for the pressure
in Eq. (4.3.30) scales with θ . This is consistent with the use of a weighted norm in
Eq. (4.4.6).

From this simulation, we conclude that the MPxA family of method can handle
problems with strong multi-physics couplings with no stability issues. Moreover, the
example illustrates the schemes’ applicability to general polyhedral grids; indeed,
the implementation employed herein is agnostic both to spatial dimension and grid
type.
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Fig. 4.10 Thermo-poroelastic deformation of a domain meshed by a polyhedral grid. The domain
is cut to expose the 3d structure of the grid cells. The figure shows temperature (top), pressure
(middle) and displacement in a direction approximately parallel to the cutting plane (bottom) at an
early (left) and late (right) stage
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4.5.3 Flow in Fractured Porous Media

Our final example considers simulation of flow in a 3d domain that contains a network
of intersecting fractures. The fractures are modeled as manifolds of co-dimension 1
that are embedded in the host medium. Intersections between fractures form lines of
co-dimension 2, while the intersection of intersection lines define intersection points.
The fracture network and its host medium thus together define a hierarchy of domains
with decreasing dimensions, which we refer to as a mixed-dimensional geometry
[53]. Following the model defined e.g. in [51] flow in each of the subdomains is
modeled by Eqs. (4.1.1)–(4.1.2), with the modification that (4.1.2) is void in 0d
domains.

To define the coupling between subdomains, let�h and�l be two domains so that
a part of the boundary ∂�h geometrically coincides with�l , and let � be an interface
between the subdomains. The flow over � is then governed by the Darcy-like flux
law

λ = κ(tr ph − pl)

Here, λ is the interface flux, κ is the interface permeability, tr ph denotes the trace
of the pressure in �h, evaluated on the relevant part of ∂�h, and pl is the pressure in
�l . The interface flux can be considered a mortar variable, which is represented as
a Neumann boundary condition to �h and a source term for �l .

Following the principles outlined in [51], the MPFA discretization can readily be
adapted to mixed-dimensional flow problems. As an illustration we consider the final
test case in the benchmark study proposed in [54]. The case consists of a 3d domain
with 52 fractures that further form 106 intersection lines as indicated in Fig. 4.11.
Boundary conditions are set up to drive flow through the host domain and the fracture
network, with an inlet in the upper left corner referring to Fig. 4.11, and outlets in
the two corners of the domain that are in the lower left part of the figure.

The computational mesh is constructed to conform with all fractures and fracture
intersection lines. The resulting mesh consists of almost 260K 3d cells, 52k 2d cells
(on fracture planes), 1.6k 1d cells (intersection lines) and 105k mortar variables. The
MPFA discretization of the full problem produce almost 420K degrees of freedom
with almost 23Mnon-zeromatrix elements. The resulting pressure profile is shown in
Fig. 4.11. The results obtainedwithMPFA are in good agreement with other methods
applied to this benchmark, see [55]. The test case thus illustrates the applicability of
the MPFAmethod also to non-standard problems such as flow in mixed-dimensional
geometries.
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Chapter 5
High–order Discontinuous Galerkin
Methods on Polyhedral Grids for
Geophysical Applications: Seismic Wave
Propagation and Fractured Reservoir
Simulations

Paola F. Antonietti, Chiara Facciolà, Paul Houston, Ilario Mazzieri,
Giorgio Pennesi, and Marco Verani

Abstract We present a comprehensive review of the current development of dis-
continuous Galerkin methods on polytopic grids (PolyDG) methods for geophysical
applications, addressing as paradigmatic applications the numerical modeling of
seismic wave propagation and fracture reservoir simulations. We first recall the the-
oretical background of the analysis of PolyDG methods and discuss the issue of
its efficient implementation on polytopic meshes. We address in detail the issue of
numerical quadrature and recall the new quadrature free algorithm for the numeri-
cal evaluation of the integrals required to assemble the mass and stiffness matrices
introduced in [22]. Thenwe present PolyDGmethods for the approximate solution of
the elastodynamics equations on computational meshes consisting of polytopic ele-
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ments. We review the well-posedness of the numerical formulation and hp-version
a priori stability and error estimates for the semi-discrete scheme, following [10].
The computational performance of the fully-discrete approximation obtained based
on employing the PolyDGmethod for the space discretization coupled with the leap-
frog time marching scheme are demonstrated through numerical experiments. Next,
we address the problem of modeling the flow in a fractured porous medium and
we review the unified construction and analysis of PolyDG methods following [16].
We show, in a unified setting, the well-posedness of the numerical formulations and
hp-version a priori error bounds, that are then validated through numerical tests. We
also briefly discuss the extendability of our approach to handle networks of partially
immersed fractures and networks of intersecting fractures, recently proposed in [15].

Keywords High–order Discontinuous Galerkin · Polygonal and polyhedral
meshes · Fast implementation · Quadrature free · Seismic wave propagation ·
Fractured reservoir simulations

5.1 Introduction

Many geophysical and engineering applications, including, for example, fluid-
structure interaction, crack and wave propagation phenomena, and flow in fractured
porous media, are characterized by a strong complexity of the physical domain,
possibly involving faults and/or fractures, heterogeneous media, moving geome-
tries/interfaces and complex topographies. Whenever classical finite element meth-
ods are employed to discretize the underlying differential model, the process of
mesh generation can represent a severe bottleneck for the simulation process, as
classical finite element methods (in three-dimensions) typically only support com-
putational grids composed of tetrahedral/hexahedral/prismatic/pyramidal elements.
To overcome this limitation, in the last decade a wide strand of literature has focused
on the design of numerical methods that support computational meshes composed
of general polygonal and polyhedral (polytopic, for short) elements. In the con-
forming setting, we mention, for example, the Composite Finite Element Method,
see, e.g., [103, 104], the Mimetic Finite Difference (MFD) method, see, e.g., [7,
18, 42, 58–60, 106], the Polygonal Finite Element Method, see, e.g., [140], the
eXtended Finite Element Method, see, e.g., [88, 97, 141], and, more recently, the
Virtual ElementMethod (VEM), see, e.g., [8, 9, 39–41, 43–48]. In the setting of non-
conforming/discontinuous polygonal methods, we mention, for example, Composite
Discontinuous Galerkin Finite Element methods [19, 20], Hybridizable Discontin-
uous Galerkin methods [75–78], the Hybrid High-Order (HHO) method [1, 53–
55, 71, 72, 84–87], the non-conforming VEM [24, 35, 68], and Gradient Schemes
[90]. This article focuses on discontinuous Galerkin (DG) methods on polytopic
grids (PolyDG), which represent the natural extension of the classical discontinuous
Galerkin method on tetrahedral/hexahedral grids to meshes composed of arbitrarily-
shaped polytopic elements. Due to the fact that the discrete space is constructed based
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on employing piecewisediscontinuous polynomials,DGmethods are naturally suited
to robustly support polytopic meshes. In fact, in the last few years intensive research
has been undertaken on this topic; in particular, we refer here to the pioneering works
[12, 36–38, 67], the more recent results [5, 11, 21, 22, 26, 30, 63], and refer to [13,
66], and the references therein, for a comprehensive review.

This article focuses on two challenging applications in geophysics, namely, seis-
mic wave propagation and fractured reservoir simulations and presents a review
of PolyDG methods for this class of problems, as well a detailed discussion on
the development of efficient quadrature rules on polytopic elements that allows a
massively-parallel implementation of PolyDG methods on parallel architectures.
From the mathematical and modeling viewpoints, these two paradigmatic applica-
tions share a number of challenges. For example, they both require, at the same
time (i) a flexible description of the domain involving multiple scales, interfaces,
network of fractures, and strongly heterogeneous media; and (ii) an accurate repre-
sentation of the solution field, particularly for wave propagation phenomena, where
a sufficiently high number of nodes per wavelength is needed to keep numerical dis-
persion and dissipation errors low. PolyDG methods are perfectly suited to tame all
these mathematical and numerical challenges, indeed (i) they are naturally oriented
towards high-order approximations, in any space dimension, and feature a high-
level of intrinsic parallelism; (ii) the dimension of the local approximation space
only depends on the local approximation order, and is independent of the shape of an
element and the number of faces/edges of an element. As a consequence, in contrast
to other polytopic finite elementmethods, on agglomeration basedmeshes the dimen-
sion of the local space remains under control; (iii) they can handle mesh elements
with possibly an unbounded number of faces and face/edge degeneration can be sup-
ported. We point out that the last feature is very important in practical applications,
since it allows for hybrid mesh algorithms that efficiently deal with heterogeneous
media, localized geological/topographic irregularities, faults and fractures charac-
terizing geophysical applications. The main idea consists in generating an initial
(hexahedral/tetrahedral in three dimensions, for example) mesh, based on employing
standard mesh generators; then elements intersecting the geological irregularities are
suitably cut and/or agglomerated, thus generating polytopes, while keeping a regular
structure elsewhere, cf. Figure5.1 for an illustrative example. Beyond the simplicity
of generating the computational hybrid grids based on a convenient combination of
hexahedral/tetrahedral/polyhedral elements, one of the other advantages of polytopic
decompositions over standard simplicial/hexahedral grids is that, even on relatively
simple geometries, the average number of elements needed to discretize complicated
domains is substantially smaller [19, 20], without enforcing any domain approxi-
mation. This advantage becomes even more evident whenever the domain contains
complex geometrical features (large number of fractures, fractures intersecting with
small angles, etc.) and the underlying grid is chosen to be matching with the inter-
faces.

In the following we provide a brief description of the contents of each of the fol-
lowing sections, and highlight their scientific importance within the community. In
Sect. 5.2 we introduce the notation and the key theoretical results needed to analyze
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Fig. 5.1 A three-dimensional example of hybrid hexahedral/polyhedral grid of the Acquasanta
railway bridge on theGenoa-Ovada railway (Italy). Themesh is obtained by exploiting the flexibility
of polyhedral elements near the Acquasanta bridge (cf. the region delimitated by the red line of the
zoom) while keeping a regular structure elsewhere

PolyDG approximations. In particular, we summarize the main theoretical results
concerning this class of methods outlined in [13, 63, 66, 67]. Following [63, 66],
we start from the generalization of the standard shape-regularity property to poly-
topic elements and introduce some trace and inverse inequalities and polynomial
approximation properties of the underlying discrete spaces. These results represent
the main tools for handling elements with a degenerating and/or unlimited number
of faces/edges. The contents of this section form the basis for the theoretical analysis
of the discretization schemes for seismic wave propagation and flow in fractured
porous media presented in the second part of the manuscript.

Section5.3 focuses on the construction and outline of a new technique for the
efficient computation of integrals of polynomial functions over convex and non-
convex polytopic domains, and its application to the numerical computation of the
terms appearing in the weak formulation of PolyDG methods. The classical (and
most widely employed) approach for the integration of polynomial functions over
polytopes is the so called sub-tessellation method: here, the domain of integration
is sub-divided (sub-tessellated) into d-simplices, whereby standard quadrature rules
are employed, cf. [101, 117, 122, 137, 139, 150] and also [115, 151] for a similar
quadrature approachwhere the polytopic domain of integration is sub-tessellated into
d−parallelograms. However, the sub-tessellation method is generally computation-
ally expensive as it leads to a very large number of function evaluations, particularly
when the integrand is a high order polynomial. For this reason, the development
of quadrature rules that avoid sub-tessellation and optimize the number of function
evaluations is an active research field. Several approaches have been proposed; in
particular, we mention [105, 126, 145, 146], for example. Other approaches are
represented by the Moment Fitting Equation technique, firstly proposed in [116],
for the construction of quadrature rules on polygons featuring the same symmetry
as the regular hexagon. The key idea here is, starting from a quadrature rule on the
integration domain which integrates exactly a class of basis functions for a desired
function space, an iterative node elimination procedure is then applied under an
exactness constraint. This leads to the definition of a new quadrature rule where the
number of function evaluations is optimized. Further improvements of the moment
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fitting equation algorithm can also be found in [123] and [138], see also [124] for
a generalization to more general convex and non-convex polytopic domains. The
main drawback of the moment fitting approach is the need to store the resulting
nodes and weights for every polytope, which severely affects memory efficiency
when applied to finite element approximations. An alternative approach designed
to overcome the limitations of the sub-tessellation and the moment fitting equation
methods is based on employing the generalized version of Stokes’ theorem; with
this approach, the integral over a generic domain is reduced to an integration over
its boundary; we refer to [143] for further details. Following this idea, Sommariva
and Vianello proposed in [135] a quadrature rule where, if an x- or y-primitive of
the integrand is available (as for bivariate polynomial functions), the integral over
the polygon is reduced to a sum of line integrations over its edges, each of which
is then computed exactly with a Gaussian one dimensional quadrature rule. The
authors also generalized this approach to the more general case when the primitive
is not known. While this algorithm does not directly require a sub-tessellation of
the polygon, a careful choice of the parameters in the proposed formula leads to a
quadrature rule that can be viewed as a particular sub-partition of the polygon itself.
Moreover, in this case it is not possible to guarantee that all of the quadrature points
lie inside the domain of integration. An alternative approach, proposed by Lassere in
[114], provides a very efficient formula for the integration of homogeneous functions
over convex polytopes. Here, the essential idea is to exploit the generalized Stokes’
theorem together with Euler’s homogeneous function theorem, cf. [134], in order to
reduce the integration over a polytope only to boundary evaluations. The main differ-
ence with respect to the work presented in [135] is the possibility to apply the same
idea recursively, leading to a quadrature formula which exactly evaluates integrals
over a polygon/polyhedron by employing only point-evaluations of the integrand
and its partial derivatives at the vertices of the polytope. This technique has been
recently extended to general convex and non-convex polytopes in [74]. In Sect. 5.3
we present an efficient quadrature free algorithm for the numerical approximation of
integrals of polynomial functions over general polygonal/polyhedral elements that
do not require an explicit construction of a sub-tessellation. The method extends the
idea of [74, 114] and is based on successive application of Stokes’ theorem; thereby,
the underlying integral may be evaluated using only the values of the integrand and
its derivatives at the vertices of the polytopic domain. To demonstrate the practi-
cal performance of this quadrature free method we present some numerical results
obtained by the numerical computation of the stiffness and mass matrices arising
from hp-version PolyDG discretization of second-order elliptic partial differential
equations.

Section5.4 focuses on the analysis of PolyDG methods for the numerical dis-
cretization of seismic wave propagation; that is the ground motion phenomenon
induced by the passage of body waves radially from the source of earthquake energy
released into the surrounding soil medium. In the context of numerical modeling of
direct and inverse wave propagation phenomena, many contributions can be found
in the literature, stimulated not only by geophysical problems but also from vibroa-
coustics, aeroacoustic, acoustics, and electromagnetics engineering applications [50,
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51, 70, 80, 82, 89, 102, 111, 144, 149]. Here, our target are large-scale seismolog-
ical phenomena and ground-motion induced by seismic events. Seismic waves are
elastic waves propagating within the Earth and along its surface as a result of an
earthquake, or of an explosion. Seismic waves induce a vibratory ground–motion
in the area surrounding the seismic source. From the mathematical viewpoint, the
propagation of seismic waves in a (visco)elastic heterogeneous material can be mod-
eled by means of the elastodynamics equation. In order to solve the elastodynamics
equation based on employing a finite element based numerical scheme, a number of
distinguishing challenges have to simultaneously be taken into account which reflect
the key features required by the numerical scheme: accuracy, geometric flexibility
and scalability. High-order accuracy is mandatory in order to correctly approximate
wave velocities, i.e., to keep as low as possible both the numerical dissipation and
dispersion. Geometric flexibility is mandatory since within earthquake engineering
the computational domain usually features complicated geometrical details, as well
as sharp contrasts in the media. Finally, for real earthquake models, the size of the
excited body is very large compared to the wave lengths of interest: this typically
leads to numerical models featuring hundred of millions of unknowns, and therefore
massively parallel scalable algorithms are required. Within the context of numeri-
cal methods for the approximation of the elastodynamics equation in computational
seismology, spectral element methods are one of the most successfully employed
tools, in particular for large scale applications; see, for example, [52, 93, 100, 112,
113]. To enhance the flexibility of spectral element methods, in recent years DG and
DG spectral element (DGSE) methods have been extensively used for elastic waves
propagation, see e.g. [6, 10, 11, 25, 29, 83, 91, 92, 110, 121, 125, 131, 132], and
[17] for an overview on the numerical modeling of seismic waves by DGSE meth-
ods. Given their local nature, DG methods are particularly well suited to deal with
highly heterogeneous media, or in soil-structure interaction problems, where local
refinements are needed to resolve the different spatial scales [120]. In the context of
time integration of the (second-order) ordinary differential systems stemming from
spatial discretization of second-order hyperbolic partial differential equations we
also mention the DG time-integration scheme of [27]. Very recently, also PolyDG
methods have been shown to be perfectly suited to reduce the complexity of mod-
elling wave propagation problems. Indeed, on the one hand they further enhance the
geometric flexibly offered by ‘classical’ DG schemes on simplicial/tensor-product
meshes, allowing for grids composed by arbitrarily shaped elements, with possi-
bly degenerating faces, thus reducing the computational costs related to the process
of grid generation, while maintaining the same degree of accuracy. On the other
hand, they guarantee lower dispersion errors compared to classical DG schemes on
simplicial/tensor-product grids of comparable granularity, see [26].

Section5.5 is concernedwith the numerical approximation ofDarcy flows through
porous media enclosing networks of fractures. The focus is on presenting a unified
design and analysis of PolyDG methods on general polytopic meshes with possibly
degenerating edges/faces. The problemof developing efficient numericalmethods for
fractured reservoir simulations has received increasing attention in the past decades,
being fundamental inmany energy and environmental engineering applications, such



5 High–order DG Methods on Polyhedral Grids for Geophysical Applications 165

as water resources management, oil migration tracing, isolation of radioactive waste
and groundwater contamination, for example. Fractures are regions of the porous
medium featuring a different porous structure, so that they usually have a strong
impact on the flow, possibly acting as barriers for the fluid (when they are filled with
low permeable material), or as preferential paths (when their permeability is higher
than that of the surrounding medium). Moreover, fractures are characterised by a
very small width compared to their length and to the size of the domain. For this rea-
son, one popular modelling choice consists in treating them as (d − 1)-dimensional
interfaces between d-dimensional porous matrices, d = 2, 3. The development of
this kind of reduced models has been addressed for single-phase flows in several
works, see, e.g., [2, 3, 98, 118]. We will refer mainly to the model described in
[118], see also [81], which considers the simplified case of a single, non-immersed
fracture. Here, the flow in the porous medium (bulk) is assumed to be governed
by Darcy’s law and a suitable reduced version of the law is formulated also on the
surface modelling the fracture. Physically consistent coupling conditions are then
added (in strong form) to account for the exchange of fluid between the fracture and
the porous medium. We remark that this model is able to handle both fractures with
low and large permeability. Even if the use of this kind of dimensionally reduced
models avoids the need for extremely refined grids inside the fracture domains, in
realistic cases, the construction of a computational grid aligned with the fractures
is still a major issue. For example, fractured oil reservoirs can feature thousands of
fractures, which are often intersecting with small angles or nearly coincident [96].
In line with the discussion above, our aim is then to take advantage of the intrinsic
geometric flexibility of PolyDG methods for the approximation of the coupled bulk-
fracture problem, thus avoiding the limitations imposed by standard finite element
methods. We also point out that various other numerical methods supporting poly-
topic elements have been employed in the literature for the approximation of this
problem. In particular, we mention [18, 96], where a mixed approximation based on
Mimetic Finite Differences has been explored; the works [47, 48], where a frame-
work for treating flows in Discrete Fracture Networks based on the Virtual Element
Method has been introduced, and [71], where the Hybrid High-Order method has
been employed. We also mention that an alternative strategy consists in the use of
non-conforming discretizations. Here, the bulk grid can be chosen fairly regular since
fractures are allowed to arbitrarily cut it. We refer to [81, 94, 99] for the use of the
eXtended Finite Element Method and to [61] for the Cut Finite Element Method.
Notice that the geometric flexibility of PolyDG methods illustrated above is not
the only motivation to employ these kinds of techniques for addressing this prob-
lem. Another important issue is that the discontinuous nature of the solution at the
matrix-fracture interface is intrinsically captured in the choice of the discrete spaces.
Moreover, coupling conditions between bulk and fracture can be easily reformulated
using jump and average operators (basic tools for the construction of DG methods)
and then naturally embedded in the variational formulation. Furthermore, employing
the abstract setting, based on the flux-formulation, introduced in [33] for the unified
analysis of all DG methods present in the literature, it is possible to introduce a
unified framework where, according to the desired approximation properties of the
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model, one may resort to either a primal or mixed approximation for the problem in
the bulk, as well as to a primal or mixed approximation for the problem in the fracture
network. In particular, the primal discretizations are obtained using the Symmetric
Interior Penalty DG method [32, 148], whereas the mixed discretizations are based
on employing the Local DG (LDG) method of [79], both in their generalization to
polytopic grids. Finally, we point out that, even if not addressed here, our formula-
tion can be extended to the case of networks of intersecting fractures, cf. [15] and
Sect. 5.5.4.

5.2 Theoretical Framework of PolyDG Methods

In this section we introduce the necessary notation and key analytical results required
for the definition and analysis of PolyDG approximations. In particular, we summa-
rize the main theoretical results concerning this class of methods contained in [13,
63, 65, 67], where an hp-version interior penalty PolyDG method for the numeri-
cal approximation of elliptic problems on polytopic meshes has been proposed and
analysed. The exploitation of grids consisting of general polytopic elements poses
a number of key challenges. Indeed, in contrast to the case when standard-shaped
elements are employed, polytopes may admit an arbitrary number of faces/edges and
the measure of these faces/edges may potentially be much smaller than the measure
of the element itself. In [12, 13, 67] it is assumed that the number of edges/faces of
each mesh element is uniformly bounded. In [63, 65] this assumption is no longer
required (i.e., elementswith an arbitrary number of possibly degenerating faces/edges
are admitted). However, this comes at the cost of adding an assumption (see Sect. 5.2
below) that may be regarded as the natural generalization to polytopic grids of the
classical shape-regularity assumption [65]. For ease of presentation, we adopt the
setting of [63, 65]; for the generalization to other classes of polytopic meshes, we
refer to the recent article [62]. In particular, in Sect. 5.2.1, we introduce the notation
related to the discretization of domains using polytopic elements and state the reg-
ularity assumptions on the meshes. In Sect. 5.2.2 we define the DG discrete spaces
and introduce standard jump and average operators. Finally, in Sect. 5.2.3, starting
from the mesh assumptions of Sect. 5.2.1, we state trace inverse inequalities and
approximation results for general polytopic elements that are sensitive to the type
of edge/face degeneracy described above. We also remark that the capability of the
method of handling faces with arbitrarily small measure is intimately related to the
correct choice of the discontinuity-penalization function, which will be introduced
in the following sections.

We will employ the following notation. For an open, bounded domain D ⊂ R
d ,

d = 2, 3, we denote by Hs(D) the standard Sobolev space of order s, for a real
number s ≥ 0. For s = 0, we write L2(D) in lieu of H 0(D). The usual norm on
Hs(D) is denoted by || · ||Hs (D) and the usual seminorm by | · |Hs (D). We denote the
corresponding Sobolev spaces of vector-valued functions and symmetric tensors by
Hm(�) = [Hm(D)]d ,Hm(D) = [Hm(D)]d×d

sym ,d = 2, 3, respectively.Wealso intro-
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duce the standard space Hdiv(D) = {v : D → R
d : ||v||L2(D) + ||∇ · v||L2(D) < ∞}.

Given a decomposition of the domain into a computational mesh Th , we denote by
Hs(Th) the standard broken Sobolev space, equipped with the broken norm || · ||s,Th .
Furthermore, we denote by Pk(D) the space of polynomials of total degree less than
or equal to k ≥ 1 on D. The symbols � and � will signify that the inequalities hold
up to multiplicative constants that are independent of the discretization parameters,
but might depend on the physical parameters of the underlying problem.

5.2.1 Grid Assumptions

Following [13, 65, 67], we introduce the notation related to the subdivision of the
computational domain � ⊂ R

d , d = 2, 3, by means of polytopic meshes. We con-
sider classes of meshes Th made of disjoint open polygonal/polyhedral elements E .
For each element E ∈ Th , we denote by |E | its measure, hE its diameter and we set
h = maxE∈Th hE . With the aim of handling hanging nodes, we introduce the concept
of mesh interfaces, which are defined as the intersection of the (d − 1)-dimensional
facets of two neighbouring elements. We need now to distinguish between the case
when d = 3 and d = 2:

• when d = 3, each interface consists of a general polygon, which we assume may
be decomposed into a set of co-planar triangles.We assume that a sub-triangulation
of each interface is provided and we denote the set of all these triangles by Fh . We
then use the terminology face to refer to one of the triangular elements in Fh ;

• when d = 2, each interface simply consists of a line segment, so that the concepts
of face and interface are in this case coincident; however, we still denote by Fh

the set of all faces.

Here, we note that Fh is always defined as a set of (d − 1)-dimensional simplices
(triangles or line segments).

In order to introduce the PolyDG formulation, it is useful to further subdivide the
set Fh into

Fh = F I
h ∪ F B

h ,

where F I
h is the set of interior faces and F B

h is the set of faces lying on the boundary
of the domain ∂�. Moreover, if ∂� is split into the Dirichlet boundary �D and the
Neumann boundary �N , we will further decompose the set F B

h = F D
h ∪ F N

h , where
F D
h and F N

h are the boundary faces contained in �D and �N , respectively. Implicit
in this definition is the assumption that the mesh Th conforms to the partition of ∂�.
Next, we outline the key assumptions that the underlying polytopic mesh Th needs
to satisfy in order to derive suitable inverse inequalities and approximation results.
To this end, we write SF

E to denote a d-dimensional simplex contained in E which
shares a specific face F ⊂ ∂E , F ∈ Fh .With this notationwe introduce the following
definition.
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Fig. 5.2 Two examples of polytopic-regular elements as in Definition 5.1. Here, all the triangles
SFE (coloured in teal) have height of size comparable to the diameter hE . Note also that the element
on the right is not covered by the union of the simplices

Fig. 5.3 Example of an
element that violates
polytopic-regularity: the
shape of the polygon does
not allow for the definition of
a triangle SFE with base F
whose height is comparable
to the diameter hE

Definition 5.1 A family of meshes {Th}h is said to be polytopic-regular if, for any
h and for any E ∈ Th , there exists a set of non-overlapping (not necessarily shape-
regular) d-dimensional simplices {SF

E }F⊂∂E contained in E , such that for all faces
F ⊂ ∂E , the following condition holds

hE � d|SF
E |

|F | , (5.1)

where the hidden constant is independent of the discretization parameters, the number
of faces of the element, and the face measure.

We remark that the union of simplices {SF
E }F⊂∂E does not have to cover, in general,

the whole element E , that is ∪F⊂∂E S̄F
E ⊆ Ē , see Fig. 5.2 for an example. We also

stress that this definition does not require any restriction on either the number of
faces per element or their relative measure. In particular, it allows the size of a
face |F |, F ⊂ ∂E , to be arbitrarily small compared to the diameter of the element
hE , provided that the height of the corresponding simplex SF

E is comparable to hE .
Figure5.2 shows two examples of elements belonging to a polytopic-regular mesh,
while Fig. 5.3 shows an element which may not satisfy the definition, for example,
when the length of the vertical section of the boundary in the lower right-hand corner
tends to zero at a faster rate than the mesh size h. We refer to [65] for more details.

Assumption 5.1 We assume that the family ofmeshes {Th}h is uniformly polytopic-
regular. �
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This assumption will allow us to state the inverse trace estimate (5.1) below. The
next definition and assumption are instrumental for the validity of the approximation
results (5.2) below.

Definition 5.2 [13, 63, 65, 67] A coveringT# = {TE } related to the polytopic mesh
Th is a set of shape-regular d-dimensional simplices TE , such that for each E ∈ Th ,
there exists a TE ∈ T# such that E � TE .

Assumption 5.2 [13, 63, 65, 67] There exists a covering T# of Th (see Definition
5.2) and a positive constant O�, independent of the mesh parameters, such that

max
E∈Th

card{E ′ ∈ Th : E ′ ∩ TE �= ∅, TE ∈ T# s.t. E ⊂ TE } ≤ O�,

and hTE � hE for each pair E ∈ Th and TE ∈ T#, with E ⊂ TE . �

Assumption 5.2 implies that, when the computational meshTh is refined, the amount
of overlap present in the covering T# remains bounded.

5.2.2 PolyDG Discrete Spaces

Given a polytopic mesh partition Th of the domain �, the corresponding scalar,
vector-valued and symmetric tensor-valued discontinuous finite element spaces are
defined as

QDG
h = {qh ∈ L2(�) : q|E ∈ PpE (E) ∀E ∈ Th}, (5.2)

WDG
h = {w ∈ [L2(�)]d : w|E ∈ [PpE (E)]d ∀E ∈ Th}, (5.3)

WDG
h = {w ∈ [L2(�)]d×d

sym : w|E ∈ [PpE (E)]d×d
sym ∀E ∈ Th}, (5.4)

wherewe assume that pE ≥ 1 for all E ∈ Th . To avoid technicalities, for the analysis,
we assume that a local bounded variation property holds for both the polynomial
approximation degrees and the local mesh sizes, cf. [127].

Remark 5.1 From the implementation point of view, an essential feature of DG
methods is that the local elemental polynomial spaces can be defined in the physical
space, without the need to introduce a mapping to a reference element, as is typically
necessary for classical finite element methods. This allows DG methods to naturally
deal with general polytopic elements with polynomial degrees varying from one
element to the other. A possible approach for the definition of the basis functions
was first proposed in [67], based on the definition of the polynomial spaces over
suitably defined bounding boxes of each polytopic element. More precisely, given
an element E ∈ Th , we can define its (for example) Cartesian bounding box BE , such
that the sides of BE are alignedwith theCartesian axes and Ē ⊆ B̄E . On theCartesian
bounding box BE , we can then define a standard polynomial space, employing, for
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example, tensor-product Legendre polynomials. Finally, the polynomial basis over
the general polytopic element may be defined by simply restricting the support of
the basis functions to E ; we refer to [65] for further details. We also mention that
another key aspect related to the implementation of DG methods is the design of
efficient numerical integration schemes over polytopic elements; this issue will be
addressed in detail in the forthcoming (Sect. 5.3.1),where a quadrature-free approach
for the efficient integration of polynomial functions over polytopic domains will be
discussed, following the recent work [22].

In order to efficiently dealwith discontinuous functions,we now introduce average
and jump operators on a face, which play a central role in the design and analysis
of all DG methods [33]. Let F ∈ F I

h be an interior face shared by the elements
E±. We define n± to be the unit normal vectors on F pointing exterior to E±,
respectively. Then, for sufficiently regular scalar-valued, vector-valued, and tensor-
valued functions q, v, and τ , respectively, we define the standard average {·} and
jump �·� operators on F as

{q} = 1

2
(q+ + q−), �q� = q+n+ + q−n−,

{v} = 1

2
(v+ + v−), �v� = v+ · n+ + v− · n−,

{τ } = 1

2
(τ+ + τ−), �τ� = τ+n+ + τ−n−,

(5.5)

where the subscript ± on q, v, and τ denote the respective traces of the functions
on F restricted to E±, respectively. To tackle elastic wave propagation phenomena,
we also need the following jump operator for a sufficiently regular vector-valued
function v:

[[[v]]] = v+ � n+ + v− � n−,

where v � n = (vn� + nv�)/2. Notice that with the above definition [[[v]]] is a
d × d symmetric tensor. On a boundary face F ∈ F B

h we set analogously {q} = q,
�q� = qn, {v} = v, �v� = v · n, [[[v]]] = v � n, {τ } = τ , and �τ� = τn, where n is
the outward unit normal vector on ∂�, cf. [33, 34]. For future use, we remark that
on every F ∈ F I

h we can use the definition of jump and average operators to write

�qv� = �v�{q} + {v} · �q�. (5.6)

We also recall the identity:

∑

E∈Th

∫

∂E
qv · nE =

∫

F I
h ∪F B

h

{v} · �q� +
∫

F I
h

�v�{q}, (5.7)

cf. [32], where we have used the compact notation
∫
Fh

=∑F∈Fh

∫
F .
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5.2.3 Trace Inverse Estimates on Polytopic Elements

Trace inverse estimates are one of the key tools employed to study the stability and
error analysis of DG-methods: they bound the norm of a polynomial on an element’s
face/edge by the norm on the element itself. In particular, Lemma 5.1 is required to
establish the stability of the PolyDG approximation of second-order elliptic partial
differential equations. Trace inverse estimates on polytopic elements are obtained
under the polytopic-regular Assumption 5.1 as in [63], Lemma 4.1, and [21, 65]; the
proof is reported here for completeness.

Lemma 5.1 Let E be a polytope satisfying Assumption 5.1 and let q ∈ PpE (E).
Then, we have

||q||2L2(∂E) � p2E
hE

||q||2L2(E), (5.8)

where the hidden constant depends on the dimension d, but it is independent of
the discretization parameters, i.e., the local mesh size hE and the local polynomial
approximation degree pE , and the number of faces that the element possesses.

Proof The proof follows immediately if we apply “classical” hp-version inverse
estimate valid for generic simplices, see, e.g., [147], to each simplex SF

E ⊂ E , cf.
Assumption 5.1, together with (5.1), i.e.,

||q||2L2(∂E) =
∑

F⊂∂E

||q||2L2(F) � p2E
∑

F⊂∂E

|F |
|SF

E | ||q||2L2(SF
E )

� p2E
hE

||q||2L2(
⋃

F⊂∂E SF
E )

≤ p2E
hE

||q||2L2(E).

5.2.4 Polynomial Approximation over Polytopic Elements

A crucial mathematical tool needed to study the a priori error analysis of PolyDG
methods are hp-interpolation estimates. In [13, 65, 67] standard results on simplices
are extended to polytopic elements, based on considering appropriate coverings and
submeshes consisting of d-dimensional simplices (where standard results can be
applied) and using an appropriate extension operator. In [63] these results are further
extended in order to be successfully applied also in the case when the number of
edges/faces is unbounded. Here, we recall the results contained in [13, 63, 65, 67].

Let E : Hs(�) → Hs(Rd), s ≥ 0, be the continuous extension operator intro-
duced by Stein in [136], such that E (q)|� = q and ||E q||Hs (Rd ) � ||q||Hs (�). Based
on the existence of a suitable covering of the polytopic mesh (see Definition 5.2), we
can state the following approximation result.
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Lemma 5.2 [13, 63, 65, 67] Assume that Assumptions 5.1 and 5.2 are satisfied.
Given E ∈ Th, let TE ∈ T# be the corresponding simplex such that E ⊂ TE (seeDefi-
nition 5.2). For q ∈ L2(�), such thatE q|TE ∈ HrE (TE ), for some rE ≥ 0, there exists
a sequence of approximations �

pE
E q ∈ PpE (E), pE = 0, 1, 2, . . ., of q satisfying

||q − �
pE
E q||Hm (E) � hsE−m

E

prE−m
E

||E q||HrE (TE ), 0 ≤ m ≤ rE . (5.9)

Moreover, if rE ≥ 1 + d/2,

||q − �
pE
E q||L2(∂E) � hsE−1/2

E

prE−1/2
E

||E q||HrE (TE ). (5.10)

Here, sE = min(pE + 1, rE )and thehidden constants dependon the shape-regularity
of TE , but are independent of q, hE , pE and the number of faces per element. �

Proof See [67] for a detailed proof of (5.9) and [63] for the proof of (5.10).

We note that the inequalities (5.8) and (5.10) hold on the whole boundary of E , and
not just on one of its edges/faces; this is of fundamental importance in the analysis
when considering elements that contain an arbitrary number of faces.

5.3 Computing Integrals over Polytopic Mesh Elements
and Mesh Interfaces

In this section we review the quadrature free approach for the efficient computation
of the volume/face integral terms appearing in PolyDG methods. We point out that
our approach is completely general and can be directly applied to other discretization
schemes, such as VEM, HHO, Hybridizable DG, andMFD, for example. We present
the main idea of the algorithm and show that our integration approach leads to a
considerable improvement in the computational performance compared to classical
quadrature algorithms based on sub-tessellation, in both two– and three–dimensions.

5.3.1 Quadrature Free Algorithm

First, we recall the idea introduced by Chin, Lasserre, and Sukumar in [74] for the
integration of homogeneous function g over a polytopic domain P , where

• P ⊂ R
d ,= 2, 3, is a closed polytope, whose boundary ∂P is defined by m

(d − 1)–dimensional faces Fi , i = 1, . . . ,m, cf. Fig. 5.4. Each face Fi lies in
a hyperplane Hi identified by a vector ai ∈ R

d and a scalar number bi , such that
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x ∈ Hi ⇐⇒ ai · x = bi , i = 1, . . . ,m. (5.11)

We observe that ai , i = 1, . . . ,m, can be chosen as the unit outward normal vector
to Fi , i = 1, . . . ,m, respectively, relative toP .

• g : P → R is ahomogeneous functionof degreeq ∈ R, i.e., for allλ > 0, g(λx) =
λqg(x) for all x ∈ P .

Euler’s homogeneous function theorem [134] states that, if g is a homogeneous
function of degree q ≥ 0, then the following identity holds:

q g(x) = ∇g(x) · x ∀x ∈ P. (5.12)

We point out that, in view of the application to polygonal/polyhedral finite element
methods, we are interested in the integration of a particular class of homogeneous
functions, namely polynomial homogeneous functions of the form

g(x) = xk11 xk22 · · · xkdd , where kn ∈ N0, for n = 1, . . . , d, (5.13)

that is a homogeneous function of degree q = k1 + · · · + kd , and the general partial
derivative ∂g

∂xn
is still a homogeneous function of degree q − 1.

Next we recall the generalized Stokes’ theorem, cf. [143]: given a generic vector
field X : P → R

d , we have that

∫

P
(∇ · X(x))g(x) +

∫

P
∇g(x) · X(x) =

∫

∂P
X(x) · n(x)g(x), (5.14)

where n is the unit outward normal vector to P . Selecting X = x in (5.14), and
employing (5.12), gives

∫

P
g(x) = 1

d + q

∫

∂P
x · n(x)g(x) = 1

d + q

m∑

i=1

bi

∫

Fi

g(x) . (5.15)

Equation (5.15) states that the integral of a homogeneous function g over a polytope
P can be computed by integrating the same function over the boundary faces Fi ⊂
∂P , i = 1, . . . ,m. By recursion, we can further reduce each term

∫
Fi
g(x), i =

1, . . . ,m, to the integration over ∂Fi , i = 1, . . . ,m, respectively. To this end, Stokes’
theorem needs to be applied on the hyperplane Hi , i = 1, . . . ,m, in which each
Fi , i = 1, . . . ,m, lies, respectively. In order to proceed, let γ : R

d−1 → R
d be the

function which expresses a generic point x̃ = (x̃1, . . . , x̃d−1)
� ∈ R

d−1 as a point in
R

d that lies on Hi , i = 1, . . . ,m, i.e.,

x̃ �−→ γ (x̃) = x0,i +
d−1∑

n=1

x̃nein, with ein ∈ R
d , ein · eim = δnm . (5.16)
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Fig. 5.4 Left: Example of a two–dimensional polytope P and its face Fi . The hyperplane Hi is
defined by the local origin x0,i and the vector ei1. Right: the dodecahedronP with pentagonal faces
and the face Fi ⊂ ∂P with unit outward normal vectorni . Here, Fi has five edges Fi j , j = 1, . . . , 5,
and five unit outward normal vectors ni j , j = 1, . . . , 5, lying on the planeHi . The hyperplaneHi
is identified by the local origin x0,i and the orthonormal vectors ei1, ei2. Figure taken from [22]

Here, x0,i ∈ Hi , i = 1, . . . ,m, is an arbitrary point which represents the origin of the
coordinate system onHi , and {ein}d−1

n=1 is an orthonormal basis onHi , i = 1, . . . ,m;
see Fig. 5.4. We observe that x0,i does not have to lie inside Fi , i = 1, . . . ,m. By
defining F̃i ⊂ R

d−1 such that γ (F̃i ) = Fi , i = 1, . . . ,m, we obtain

∫

Fi

g(x) =
∫

F̃i

g(γ (x̃)), i = 1, . . . ,m. (5.17)

It is easy to prove that, writing Fi j ⊂ ∂Fi j = 1, . . . ,mi , to denote the vertices/edges
of Fi , i = 1, . . . ,m, for d = 2, 3, respectively, the following identity holds

ñi j = E�ni j , i = 1, . . . ,m, j = 1, . . . ,mi , (5.18)

where ni j is the unit outward normal vectors to Fi j lying inHi , E ∈ R
d×(d−1), whose

columns are the vectors {ein}d−1
n=1, i = 1, . . . ,m, F̃i j ⊂ ∂ F̃i is the preimage of Fi j

with respect to themap γ , and ñi j are the corresponding unit outward normal vectors;
we refer to [22] for more details. Next we recall the following result.

Proposition 5.1 [22, Proposition 1] Let Fi , i = 1, . . . ,m, be a face of the polytope
P , and let Fi j , j = 1, . . . ,mi , be the planar/straight faces/edges such that ∂Fi =
∪mi

j=1Fi j for some mi ∈ N. Then, for any homogeneous function g, of degree q ≥ 0,
the following identity holds

∫

Fi

g(x) = 1

d − 1 + q

( mi∑

j=1

di j

∫

Fi j

g(x) +
∫

Fi

x0,i · ∇g(x)
)
, (5.19)

where di j denotes theEuclidean distance between Fi j and x0,i , x0,i ∈ Hi , is arbitrary,
i = 1, . . . ,m.
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Algorithm 5.1 I(N ,E, k1, . . . , kd) = ∫E xk11 . . . xkdd
if N = 0 (E = (v1, . . . , vd ) ∈ R

d is a point)

return I(N ,E, k1, . . . , kd ) = vk11 · · · vkdd ; (5.20)

else if 1 ≤ N ≤ d − 1 (E is a point if d = 1 or an edge if d = 2 or a face if d = 3)

I(N ,E, k1, . . . , kd ) = 1

N +∑d
n=1 kn

( m∑

i=1

di I(N − 1,Ei , k1, . . . , kd )

+ x0,1 k1 I(N ,E, k1 − 1, k2, . . . , kd )

+ · · · + x0,d kd I(N ,E, k1, . . . , kd − 1)
)
;

else if N = d (E is an interval if d = 1 or a polygon if d = 2 or a polyhedron if d = 3)

I(N ,E, k1, . . . , kd ) = 1

N +∑d
n=1 kn

( m∑

i=1

bi I(N − 1,Ei , k1, . . . , kd )
)
.

end if

Using Proposition 5.1, togetherwith equation (5.15), we obtain the following identity

∫

P
g(x) = 1

d + q

m∑

i=1

bi
d − 1 + q

( mi∑

j=1

di j

∫

Fi j

g(x) +
∫

Fi

x0,i · ∇g(x)
)
, (5.21)

where we recall that ∂P = ∪m
i=1Fi and ∂Fi = ∪mi

j=1Fi j , for i = 1, . . . ,m. We point
out that in two-dimensions, i.e., d = 2, then Fi j is a point and (5.21) states that the
integral of g on P can be computed by vertex-evaluations of the integrand plus a
line integration of the partial derivative of g. If d = 3 we can apply Stokes’ Theorem
recursively to

∫
Fi j

g(x). We point out that, whenever g is a homogeneous polynomial
function of the form (5.13), so that the derivatives of g(·) are homogeneous polyno-
mial functions as well, it is possible to recursively apply formula (5.21) to the terms
involving the integration of the derivatives of g. With this observation in mind, we
define the function that returns the integral of the polynomial xk11 . . . xkdd over E as

I(N ,E, k1, . . . , kd) =
∫

E
xk11 . . . xkdd , (5.22)

where E ⊂ R
d , d = 2, 3, can be a N -polytopic domain of integration, with N =

1, . . . , d, ∂E = ∪m
i=1Ei , where each Ei ⊂ R

d is a (N − 1)-polytopic domain. When
N = d and d = 2, 3, Ei , i = 1, . . . ,m, will be an edge or a face, respectively; see
Table5.1 for details. According to Proposition 5.1, the recursive definition of the
function I(·, ·, . . . , ·) is given in Algorithm 5.1. We point out that the computational
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Table 5.1 Polytopic domains of integration E as a function of the dimension d, cf. Algorithm 5.1

N = 3 N = 2 N = 1 N = 0

d = 3 E = P is a
polyhedron

E = Fi ⊂ ∂P is a
polygon

E = Fi j ⊂ ∂Fi is an
edge

E = Fi jk ⊂ ∂Fi j is a
point

d = 2 E = P is a polygon E = Fi ⊂ ∂P is an
edge

E = Fi j ⊂ ∂Fi is a
point

d = 1 E = P is an interval E = Fi ⊂ ∂P is a
point

complexity of Algorithm 5.1 depends in general on the number of recursive calls
of the function I(·, ·, . . . , ·); a detail discussion on the FLOPS required by Algo-
rithm 5.1 and on optimization strategies to improve the computational complexity
of Algorithm 5.1 are discussed in [22]. Here, we just remark that in the context of
employing the quadrature free approach within a polygonal finite element method,
we are not interested in integrating a single monomial function, but instead an entire
family of monomials, which, for example, form a basis for the space of polynomials
of a given degree over a given polytopic element E ∈ Th . For example, when d = 2,
let us consider the evaluation of

∫

E
xk1 yk2 ∀ k1, k2 ≥ 0, k1 + k2 ≤ p. (5.23)

As shown in [22], when employing Algorithm 5.1 with an with an optimal choice of
the points which define the origin of the coordinate system on each element facet,
the total number of FLOPs required for the computation of (5.23) is approximately
O(p3), as p increases. To improve efficiency, an alternative approach, cf. Algo-
rithms 5.2 and 5.3, are based on the observation that, using the notation of Algo-
rithm 5.1, if the values of I(N − 1,E j , k1, . . . , kd), j = 1, . . . ,m,I(N ,E, k1 −
1, . . . , kd) . . .I(N ,E, k1, . . . , kd − 1), for 1 ≤ N ≤ d − 1, in Algorithm 5.1, have
already been computed, then the computation of I(N ,E, k1, . . . , kd) is extremely
cheap. Indeed, since we must store the integrals of all the monomials on E any-
way, we can start by computing and storing

∫
E xk1 yk2 related to the lower degrees

k1, k2 and N = 1, then exploit these values in order to compute the integrals with
higher degrees k1, k2 and higher dimension N of the integration domain E. We
remark that, in Algorithm 5.3, di j represents the Euclidean distance between Ei j and
x0, j = 1, . . . ,mi j .

Algorithm 5.2 Algorithm for integrating all monomials up to order p over E
∂E = {E1, . . . ,Em} where Ei ⊂ ∂E;
F = FaceIntegrals(d − 1,E1, . . . ,Em , k1, . . . , kd );, cf. Algorithm 5.3
for a1 = 0 : k1, . . . , ad = 0 : kd ; k1 + k2 + . . . + kd ≤ p do

V (a1, . . . , ad ) = 1
d+∑d

n=1 an

∑m
i=1 bi F(a1, . . . , ad , i);

end for
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Algorithm 5.3 Algorithm F = FaceIntegrals(N ,E1, . . . ,Em, k1, . . . , kd);
F(−1 : k1, . . . ,−1 : kd , 1 : m) = 0;
for i=1:m do

choose x0 as the first vertex of Ei ;
∂Ei = {Ei1, . . . ,Eimi } where Ei j ⊂ ∂Ei , j = 1, . . . ,mi ;
if N − 1 > 0 then

E = FaceIntegrals(N − 1,Ei1, . . . ,Eimi , k1, . . . , kd );
else if N-1=0 (Ei j = (v1, . . . , vd ) ∈ R

d is a point) then
E(a1, . . . , ad , j) = va11 . . . vadd ∀ 0 ≤ an ≤ kn, n = 1, . . . , d, j = 1, . . . ,mi ;

end if
for a1 = 0 : k1, . . . , ad = 0 : kd ; k1 + k2 + . . . + kd ≤ p do

F(a1, . . . , ad , i) = 1

N +∑d
n=1 an

( mi∑

j=1

di j E(a1, . . . , ad , j) + x0,1k1F(a1 − 1, . . . , ad , i)

+ · · · + x0,dkd F(a1, . . . , ad − 1, i)
)
;

end for
end for

5.3.2 Volume and Interface Integrals over Polytopic Mesh
Elements

Tofix the ideas, we restrict our discussion to the two-dimensional scalar case, but note
that the three-dimensional and vector-/tensor-valued cases follow in a completely
analogous manner. Let {φi }Nh

i=1 be a basis for the discrete space QDG
h defined as

in (5.2) whose dimension is Nh . For the construction of the discrete space QDG
h

we can exploit, for example, the approach presented in [67], based on employing
polynomial spaces defined over the bounding box of each element, cf. Remark 5.1.
More precisely, given an element E ∈ Th , we first construct the Cartesian bounding
box BE , such that E ⊂ BE and define a linear map between FE : B̂ → BE such that

FE : x̂ ∈ B̂ �−→ FE (x̂) = JE x̂ + tE , (5.24)

where B̂ = (−1, 1)d and JE ∈ R
d×d is the (diagonal) Jacobi matrix of the transfor-

mation, and tE ∈ R
d is the translation between the point 0 ∈ B̂ and the baricenter of

the bounded box BE , see Fig. 5.5.
We first discuss the application of Algorithm 5.2 for the efficient computation of

the local volume integrals over polytopic mesh elements, focusing on the local mass
and stiffness volume matrices defined as

ME
i, j =

∫

�

φi,Eφ j,E , VE
i, j =

∫

�

∇φi,E · ∇φ j,E , i, j = 1, . . . , NpE , (5.25)
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Fig. 5.5 Example of a
polygonal element E ∈ Th ,
the relative bounding box
BE , the map FE and
Ê = F−1

E (E). Figure taken
from [22]

respectively, for all E ∈ Th . Here, NpE is the dimension of the local discrete space,
and φi,E and φ j,E are the restriction to E of φi and φ j , respectively. Employing the
transformation FE given in (5.24) we have for the mass matrix

ME
i, j =

∫

E
φi,Eφ j,E =

∫

Ê
φ̂i φ̂ j |JE |, i, j = 1, . . . , NpE , (5.26)

where Ê = F−1
E (E) ⊂ B̂, see Fig. 5.5, and the Jacobian of the transformation FE is

constant and is given by |JE | = (JE )1,1(JE )2,2, thanks to the definition of the map
(5.24).

In order to employAlgorithm 5.2, we need to identify the coefficients of the homo-
geneous polynomial expansion for the function φ̂i (x̂, ŷ)φ̂ j (x̂, ŷ). We can write, for
example, any shape function φ̂ = φ̂i (x̂, ŷ) as the product of one–dimensional Leg-
endre polynomial Li , i.e., φ̂i (x̂, ŷ) = Li1(x̂)Li2(ŷ), and each Legendre polynomial
can be expanded as

Li1(x̂) =
i1∑

m=0

Ci1,m x̂m, Li2(ŷ) =
i2∑

n=0

Ci2,n ŷn. (5.27)

Therefore, we have

ME
i, j =

∫

Ê

( i1∑

m=0

Ci1,m x̂
m
)( i2∑

n=0

Ci2,n ŷ
n
)( j1∑

s=0

C j1,s x̂
s
)( j2∑

r=0

C j2,r ŷ
r
)
|JE | (5.28)

=
∫

Ê

(i1+ j1∑

k=0

Ci1, j1,k x̂
k
)(i2+ j2∑

l=0

Ci2, j2,l ŷ
l
)
|JE | (5.29)

=
i1+ j1∑

k=0

i2+ j2∑

l=0

Ci1, j1,k Ci2, j2,l |JE |
∫

Ê
x̂ k ŷl , (5.30)
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where we have defined the compact notation

Ci, j,k =
∑

n+m=k

(
Ci,n C j,m

)
, for 0 ≤ i, j ≤ pE , 0 ≤ k ≤ i + j, (5.31)

and where we stress that the coefficients Ci, j,k can be evaluated, once and for all,
independently of the polygonal element E .

Concerning the general element of the volume matrix VE
i, j , cf. (5.25), we can

proceed as before; indeed, following [22], we obtain

VE
i, j =

i1+ j1−2∑

k=0

i2+ j2∑

l=0

C′
i1, j1,k Ci2, j2,l (J−1

E )21,1|JE |
∫

Ê
x̂ k ŷl

+
i1+ j1∑

k=0

i2+ j2−2∑

l=0

Ci1, j1,k C′
i2, j2,l (J−1

E )22,2|JE |
∫

Ê
x̂ k ŷl ,

where Ci, j,k is defined in (5.31), and

C′
i, j,k =

∑

n+m=k

C ′
i,n C

′
j,m, 1 ≤ i, j ≤ pE , for 0 ≤ k ≤ i + j − 2. (5.32)

Here,C ′
i,n = (n + 1)Ci,n+1,C ′

j,m = (m + 1)C j,m+1 are the expansion coefficients of
the derivatives of the Legendre polynomialswhich are again computable independent
of the element E , E ∈ Th , i.e.,

L0
′(x̂) = 0, Li

′(x̂) =
i−1∑

m=0

(m + 1)Ci,m+1 x̂
m =

i−1∑

m=0

C ′
i,m x̂m, for i > 0.(5.33)

We next recall how to compute the key terms that arise in the interface integrals
when PolyDG methods are employed for the numerical approximation of second-
order partial differential equations. As before, we can transform the integral over a
physical face F ⊂ ∂E to the corresponding integral over the face F̂ = F−1

E (F) ⊂ ∂ Ê
on the reference rectangular element Ê . From the definition of the jump and average
operators, cf. (5.5), on each face F ∈ Fh

I shared by the elements E+ and E− we
need to assemble contributions of the form

S±/∓
i, j =

∫

F
(φi,E±n±) · (φ j,E∓n∓), i = 1, . . . , NpE± , j = 1, . . . , NpE∓ , (5.34)

I±/∓
i, j = 1

2

∫

F
(∇φi,E± · n±)φ j,E∓ , i = 1, . . . , NpE± , j = 1, . . . , NpE∓ . (5.35)

Analogously, on the boundary face F ∈ Fh
B belonging to E+ ∈ Th we only have to

compute
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S+/+
i, j =

∫

F
φi,E+ φ j,E+ , I+/+

i, j =
∫

F
(∇φi,E+ · n+) φ j,E+ , (5.36)

for i, j = 1, . . . , NpE+ . We next recall how to efficiently compute terms of the form

S+/+
i, j =

∫

F
(φi,E+n+) · (φ j,E+n+) =

∫

F
φi,E+φ j,E+ ,

S+/−
i, j =

∫

F
(φi,E+n+) · (φ j,E−n−) = −

∫

F
φi,E+φ j,E− ,

(5.37)

and refer to [22] for further details and discussion on the efficient computation of the
terms I±/∓

i, j . Reasoning as before, we obtain

S+/+
i, j =

i1+ j1∑

k=0

i2+ j2∑

l=0

Ci1, j1,k Ci2, j2,l JF+

∫

F̂+
x̂ k ŷl ,

S+/−
i, j = −

i1+ j1∑

k=0

i2+ j2∑

l=0

X̃i1, j1,k Ỹi2, j2,l JF+

∫

F̂+
x̂ k ŷl ,

(5.38)

whereJF+ is defined asJF+ = ‖J−�
E+ n̂F̂+‖|JE+| and n̂F̂+ is the unit outward normal

vector to F̂+. In (5.38), the coefficients Ci, j,k are defined as in (5.31), whereas X̃ and
Ỹ are defined as

X̃i, j,k =
∑

n+m=k

(
Ci,n X̃ j,m

)

Ỹi, j,k =
∑

n+m=k

(
Ci,n Ỹ j,m

)

⎫
⎪⎪⎬

⎪⎪⎭
for 0 ≤ i ≤ pE+ , 0 ≤ j ≤ pE− , 0 ≤ k ≤ i + j.

(5.39)

Here, as before, Ci,n are the coefficients of the homogeneous function expansion of
the Legendre polynomials in (−1, 1), while X̃ j,m and Ỹ j,m are defined by

X̃ j,m =
j∑

r=m

C j,r

(
r

m

)
(J̃1,1)m (t̃1)r−m

Ỹ j,m =
j∑

r=m

C j,r

(
r

m

)
(J̃2,2)m (t̃2)r−m

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for 0 ≤ m ≤ pE− , m ≤ j ≤ pE− . (5.40)

Finally, in the definition above t̃1 and t̃2 are the two components of the vector t̃ of
the composite map F̃(x̂) = F−1

E−(FE+(x̂)), cf. Figure5.6, defined as

F̃(x̂) = J−1
E−(JE+ x̂ + tE+) − J−1

E−tE− = J−1
E−JE+
︸ ︷︷ ︸

J̃

x̂ + J−1
E−(tE+ − tE−)
︸ ︷︷ ︸

t̃

. (5.41)
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Fig. 5.6 Example of polygonal elements E± ∈ Th , together with the bounded boxes BE± , and the
local maps FE± : Ê → E± for the common face F ⊂ E±. Figure taken from [22]

We conclude this section by observing that for the computation of the local forcing
term

∫

E
f (x)φi,E (x)dx, i = 1, . . . , NpE , (5.42)

the quadrature freemethod allows to exactly evaluate (5.42) when f is a polynomial
function. If f is a general function, an explicit polynomial approximation of f is
required.

5.3.3 Numerical Results

The aim of this section is to present some numerical computations to assess the
practical performance of the quadrature free algorithm.

5.3.3.1 Example 1: Integration of Bivariate Polynomials over a Given
Polygon

We first present some numerical results in order to test the performance of the
method proposed in Algorithm 5.1 for the integration of bivariate polynomials over
a given polygon P ⊂ R

2 based on employing the recursive algorithm described in
Sect. 5.3.1, i.e.,

∫
P xk yl = I(2,P, k, l).

For the sake of comparison, we also present the analogous computations carried
out based on employing the sub-tessellation technique. In this case, the domain of
integration P is firstly decomposed into triangles; then on each sub-triangle we
employ a tensor product Gauss quadrature rule consisting ofN2 nodes and weights,
which is defined based on application of theDuffy transformation. In order to guaran-
tee the exact integration of xk yl , we selectN = ⌈ k+l

2

⌉+ 1. In order to compare both
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Fig. 5.7 Example 1 (Sect. 5.3.3.1). Domains of integrationP: triangle (Pa , left) and an irregular
polygon with 15 faces (Pb, right)

Table 5.2 Example 1 (Sect. 5.3.3.1). Vertex coordinates of polygons Pa and Pb of Fig. 5.7

vertex (x , y)-coordinates

Pa 1 (−1.000000000000000, −1.000000000000000)

2 (1.000000000000000, 0.000000000000000)

3 (−1.000000000000000, 1.000000000000000)

Pb 1 (0.413058522141662, 0.781696234443715)

2 (0.024879797655533, 0.415324992429711)

3 (−0.082799691823524, 0.688810136531751)

4 (−0.533191422779328, 1.000000000000000)

5 (−0.553573605852999, 0.580958514816226)

6 (−0.972432940212767, 0.734117068746903)

7 (−1.000000000000000, 0.238078507228890)

8 (−0.789986179147920, 0.012425068086110)

9 (−0.627452906935866, −0.636532897516109)

10 (−0.452662174765764, −1.000000000000000)

11 (−0.069106265580153, −0.289054989277619)

12 (0.141448047807069, −0.464417038155806)

13 (1.000000000000000, −0.245698820584615)

14 (0.363704451489016, −0.134079689960635)

15 (0.627086024018283, −0.110940423607648)

approaches, we integrate bivariate polynomials of different degrees on the triangle
and the irregular polygon depicted in Fig. 5.7; see Table5.2 for the list of vertex coor-
dinates for both domains. In Figs. 5.8 and 5.9 we compare the CPU time (in seconds)
taken to evaluate the underlying integral (onPa andPb, respectively) up tomachine
precision, using the quadrature free algorithm and the sub-tessellation method. We
remark that the times for the quadrature free algorithm include the computation of
bi , ni , and di j , j = 1, . . . ,mi , i = 1, . . . ,m. The times for sub-tessellation method
include the one-time computation of the N2 nodes and weights on the reference
triangle, the time required for sub-tessellation, as well as the time needed for numer-
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Fig. 5.8 Example 1 (Sect. 5.3.3.1). CPU times as a function of the integrand. Integration domain
Pa of Fig. 5.7

ical integration on each sub-triangle. From the results reported in Figs. 5.8 and 5.9 it
is clear that the quadrature free algorithm outperforms sub-tessellation; indeed, for
both domains of integration, we observe an improvement in the CPU-time required
to evaluate the underlying integral of between one- to two-orders of magnitude when
the former approach is employed. Moreover, even when the integration domain con-
sists of a triangle (Pa), the quadrature free algorithm still outperforms classical
quadrature rules, even though in this case no sub-tessellation is undertaken.

5.3.3.2 Example 2: Computation of the PolyDG Stiffness and Mass
Matrices in Three-Dimensions

We now compare the performance of the quadrature free algorithm and the sub-
tessellation method when employed to assemble the stiffness and mass matrices for
the PolyDG approximation of a second-order elliptic diffusion-reaction problem in
three-dimensions. Here, the polyhedral grids have been obtained by agglomeration
starting from a partition � consisting of hexahedral elements. The agglomeration
is performed based on employing the METIS library for graph partitioning, cf., for
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Fig. 5.9 Example 1 (Sect. 5.3.3.1). CPU times as a function of the integrand. Integration domain
Pb of Fig. 5.7

example, [108, 109] so that each polyhedral element is typically non-convex. In
Fig. 5.10 we show three typical examples of polyhedral elements generated from the
agglomeration process. We now compare the CPU time required by the quadrature
free method with the quadrature integration/sub-tessellation approach to assemble
the volume and mass matrices, denoted by V and M, respectively, as well for the
computation of the interface matrices S and I; cf. Sect. 5.3.2. We point out that, to
assemble the volume and mass matrices based on employing the sub-tessellation
algorithm, we exploit the fact that the polyhedral mesh is obtained by agglomeration
of hexahedral elements, so that the sub-tessellation into hexahedra of each polyhedral
mesh element is already given. In Fig. 5.11 (left) we report the CPU time needed for
the computation of the volume matrices V and M, for a set of agglomerated poly-
hedral grids where we fix the polynomial approximation degree p ∈ {1, 2, 3, 4, 5}
and we vary the number of elements Ne ∈ {5, 40, 320, 2560, 20480}; in all cases
the agglomerated elements are formed from approximately 10 (fine) hexahedral ele-
ments. The analogous results obtained based on computing the interface matrices S
and I (right) are shown in Fig. 5.11 (right); furthermore, these timings are compared
on a log-log plot in Fig. 5.12. From the computations shown in Figs. 5.11 and 5.12,
we clearly observe that the quadrature free method substantially outperforms the
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Fig. 5.10 Example 2 (Sect. 5.3.3.2). Typical agglomerated element shapes
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Fig. 5.11 Example 2 (Sect. 5.3.3.2). Comparison of the CPU time needed to assemble the volume
matrices M and V (left) and the interface matrices S and I (right) for a three–dimensional problem
by using the proposed quadrature free method and the classical sub-tessellation method. Each line
is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3, 4, 5} and measuring the
CPU time by varying the number of elements (Ne) of the underlying mesh
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Fig. 5.12 Example 2 (Sect. 5.3.3.2). Comparison of the CPU time needed to assemble the volume
matrices M and V (left) and the interface matrices S and I (right) for a three–dimensional problem
by using the proposed quadrature free method and the classical sub-tessellation method. Each line
is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3, 4, 5} and measuring the
CPU time by varying the number of elements (Ne) of the underlying mesh

sub-tessellation quadrature approach, both for the computation of the volume and
the face integrals. We refer to [22] for additional numerical computations, where the
issue of computational complexity is also addressed.
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5.4 PolyDG Methods for Seismic Wave Propagation

In this section we present an overview of high-order PolyDGmethods for the approx-
imate solution of wave propagation problems modeled by the elastodynamics equa-
tions on computational meshes consisting of polytopic elements. In particular, we
discuss the model problem, analyze the well-posedness of the semidiscrete formu-
lation and derive an hp–version a priori error bound. The theoretical estimates are
then validated through two-dimensional numerical computations carried out on both
benchmark, as well as real test cases. The dispersion analysis, in two-dimensions, is
not reported here, for the sake of brevity, and can be found in [26], where it has been
shown that polygonal meshes behave similarly to classical simplicial/quadrilateral
grids in terms of dispersion errors. For the sake of brevity, we focus here on the elas-
todynamics equation;more sophisticatedmodel problems can be successfully treated
as well, for example, see [10, 11, 28], respectively, for elasto-acoustic coupling and
non-linear sound waves phenomena.

5.4.1 Model Problem and Its PolyDG Semidiscretization

We consider an elastic body occupying an open, bounded polyhedral domain � ⊂
R

d , d = 2, 3, and denote by n the outward normal unit vector to its boundary. The
boundary ∂� is assumed to be composed of two disjoint portions �D �= ∅ and �N ,
i.e., �D ∩ �N = ∅. For a final observation time T > 0, let u : � × [0, T ] → R

d

be the displacement vector. The equations of the initial/boundary-value problem of
(linear) elastodynamics are given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρü − ∇ · σ = f, in � × (0, T ],
u = 0, on �D × (0, T ],

σn = 0, on �N × (0, T ],
u = u0, in � × {0},
u̇ = u1, in � × {0}.

(5.43)

Here, f ∈ L2((0, T ]; L2(�)) is the (given) external load and u0 ∈ H1
0,�D

(�) and
u1 ∈ L2(�) are (given) initial data, where H1

0,�D
(�) denotes the space of vector-

valued functions in H1(�) whose trace vanishes on �D . Finally, ρ ∈ L∞(�) is
the medium density. As constitutive law for the stress tensor σ : � × [0, T ] → S,
S being the space of d × d symmetric real-valued matrices, d = 2, 3, we assume
the generalized Hooke’s law, i.e., σ (u) = Dε(u), where the fourth order stiffness
tensorD : S → S is defined asDτ = 2μτ + λtr(τ )I for any τ ∈ S, and ε(u) is the
symmetric gradient of u, i.e., ε(u) = 1

2

(∇u + ∇u�). Here, I is the identity tensor,
tr(·) represents the trace operator, and λ,μ ∈ L∞(�) are the first and the second
Lamé parameters, respectively. We assume that D is symmetric, positive definite
and uniformly bounded over �. We recall that the compressional (P) and shear
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(S) wave velocities can be obtained through the relations cP = √
(λ + 2μ)/ρ and

cS = √
μ/ρ, respectively. The weak formulation of problem (5.43) reads as follows:

for all t ∈ (0, T ] find u = u(t) ∈ H1
0,�D

(�) such that:

⎧
⎨

⎩

∫

�

ρü · v +
∫

�

Dε(u) : ε(v) =
∫

�

f · v ∀ v ∈ H1
0,�D

(�),

u(·, 0) = u0, u̇(·, 0) = u1.

(5.44)

Problem (5.44) is well posed and its unique solution u ∈ C((0, T ]; H1
0,�D

(�)) ∩
C1((0, T ]; L2(�)), see [130, Theorem 8–3.1].

Based on employing the notation of Sect. 5.2, we introduce the PolyDG semidis-
cretization of problem (5.44): for all t ∈ (0, T ], find uh = uh(t) ∈ W DG

h such that

∫

�

ρ üh · v + B(uh, v) =
∫

�

f · v ∀v ∈ W DG
h , (5.45)

supplementedwith the initial conditions uh(0) = u0
h and u̇h(0) = u1

h , where u0
h, u1

h ∈
W DG

h are suitable approximations of u0 and u1, respectively. Here, we also assume
thatD and ρ are element-wise constant over the mesh Th . The bilinear formB(·, ·) :
W DG

h × W DG
h → R is defined as

B(u, v) =
∫

�

σ (u) : ε(v) +
∫

�

σ (u) : R([[[v]]]) +
∫

�

R([[[u]]]) : σ (v) +
∫

F I
h ∪F D

h

η [[[u]]] : [[[v]]] (5.46)

for all u, v ∈ W DG
h . Here, R(·) : L1(F I

h ∪ F D
h ) → WDG

h is the lifting operator of
the traces of d × d symmetric tensors defined as

∫

�

R([[[w]]]) : σ (v) = −
∫

F I
h ∪F D

h

[[[w]]] : {σ (v)} ∀v ∈ W DG
h . (5.47)

The penalization function η : Fh → R+ in (5.46) is defined face-wise as

η = σ0DE

⎧
⎪⎪⎨

⎪⎪⎩

max
E∈{E1,E2}

(
p2E
hE

)
, F ∈ F I

h , F ⊂ ∂E1 ∩ ∂E2,

p2E
hE

, F ∈ F D
h , F ⊂ ∂E ∩ �D.

(5.48)

whereDE = |(D|E )1/2|22 for any E ∈ Th (here | · |2 is the operator norm induced by
the l2-norm onR

n , where n denotes the dimension of the space of symmetric second-
order tensors, i.e., n = 3 if d = 2, n = 6 if d = 3), and σ0 is a positive parameter at
our disposal.
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5.4.2 Well-Posedness, Stability and Error Analysis
of the Semidiscrete Formulation

In this section we prove stability and error estimates for the PolyDG semidiscretiza-
tion defined in (5.45). To this end, we define the space W̃

DG
h = W DG

h ⊕ H1
0,�D

(�)

endowed with the following DG norm

‖v‖2DG =
∥∥∥D

1
2 ε(v)

∥∥∥
2

L2(�)
+
∥∥∥η

1
2 [[[v]]]

∥∥∥
2

L2(F I
h ∪F D

h )
∀v ∈ W̃

DG
h ; (5.49)

here, we have used the compact notation ‖ · ‖2
L2(F I

h ∪F D
h )

=∑F∈F I
h ∪F D

h
‖ · ‖2L2(F)

.

From the preliminary results of Sect. 5.2 we immediately have the following esti-
mates; we refer to [26] for more details.

Lemma 5.3 Assume that Th satisfies Assumption 5.1. Then, for any w ∈ W DG
h we

have that

∥∥η−1/2{w}∥∥2L2(F I
h ∪F D

h )
� 1

σ0
‖w‖L2(�) , (5.50)

where the hidden constant is independent of pE , |E |, and w, and where σ0 is the
constant appearing in the definition of the penalty function, cf. (5.48).

Lemma 5.4 Assume that Th satisfies Assumption 5.1. For any v ∈ W̃
DG
h we have

that

‖R([[[v]]])‖2L2(�) � 1

σ0
‖η 1

2 [[[v]]] ‖2L2(F I
h ∪F D

h )
,

where σ0 is the constant appearing in the definition of the penalty function, cf. (5.48).

Proof The proof follows by observing that if v ∈ H1
0,�D

(�), then [[[v]]] = 0 and the
estimate is trivial. If v ∈ W DG

h , by using the definition of the lifting operator (5.47)
together with Lemma 5.3 the result follows immediately.

Based on employing the above results and standard DG arguments, the well-
posedness of the PolyDG formulation (5.45) can be established.

Lemma 5.5 Assume that Th satisfies Assumption 5.1,and that the constant σ0

appearing in the definition (5.48) of the penalization function is chosen sufficiently
large. Then,

B(v, v) � ‖v‖2DG , B(v,w) � ‖v‖DG ‖w‖DG ∀v,w ∈ W̃
DG
h .

We next provide a stability result of the semidiscrete PolyDG formulation (5.45) in
the following energy norm

‖uh(t)‖2E = ‖ρ 1
2 u̇h(t)‖2L2(�) + ‖uh(t)‖2DG ∀t ∈ (0, T ]. (5.51)
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Proposition 5.2 Let f ∈ L2((0, T ];L2(�))anduh ∈ C2((0, T ];W DG
h )be theapprox-

imate solution of (5.45) obtained with the stability constant σ0 defined in (5.48)
chosen sufficiently large. Then,

‖uh(t)‖E � ‖u0h‖E +
t∫

0

‖f(τ )‖L2(�), 0 < t ≤ T . (5.52)

Proof Selecting v = u̇h ∈ W DG
h in (5.45), integrating in time between 0 and t ,

employing Lemma 5.3 together with the arithmetic-geometric inequality, and choos-
ing σ0 large enough, we get

‖uh‖2E + 2
∫

�

R([[[uh]]]) : σ (uh) � ‖uh‖2E.

Moreover, from Lemma 5.4 it also follows that

2

∣∣∣∣
∫

�

R(
[[u0

h]
]
) : σ (u0

h)

∣∣∣∣ �
1√
σ0

‖η 1
2
[[[u0

h]
]] ‖L2(F I

h ∪F D
h )

∥∥σ (u0
h)
∥∥
L2(�)

� 1√
σ0

‖u0
h‖2E.

Therefore, substituting these inequalities, and applying theCauchy-Schwarz inequal-
ity yields

‖uh‖2E � ‖u0
h‖2E + 2

t∫

0

‖uh‖E‖f‖L2(�).

The statement of the proposition now follows by employingGronwall’s lemma [129].

Before providing hp-version error bounds, we observe that formulation (5.45) is
not strongly-consistent, due to the presence of the lifting operator. It is easy to see
that the error u − uh satisfies the following error equation

∫

�

ρ (ü − üh) · vh + B(u − uh, vh) + Rh(u − uh, vh) = 0 ∀vh ∈ W DG
h ,

(5.53)

where the residual Rh(·, ·) : W̃ DG
h × W DG

h → R is defined by

Rh(w, vh) = −
∫

F I
h ∪F D

h

{σ (w)} : [[[vh]]] −
∫

�

σ (w) : R([[[vh]]]),

for allw ∈ W̃
DG
h and for allvh ∈ W DG

h , andwherewehaveused also thatRh(wh, vh) =
0 whenever wh ∈ W DG

h , cf. (5.47).
In order to derive a priori error bounds for the semidiscrete scheme, we assume

that Assumption 5.2 is satisfied; we define, component-wise, the extension opera-
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tors E : H s(�) → H s(Rd×d), s ∈ N0, as in Sect. 5.2.4, cf. also [136]; we employ
the tensorial and vectorial counterpart of the approximation estimates outlined in
Sect. 5.2.4, cf. also [26, 63], to obtain the following bound

‖u − �u‖2E �
∑

E∈Th

h2(sE−1)
E

p2(rE−3/2)
E

(
‖Eu‖2HrE (TE ) + h2E

p3E
‖Eu̇‖2HrE (TE )

)
, (5.54)

where sE = min(pE + 1, rE ). The hidden constant depends on the material param-
eters and on the shape-regularity of TE , but is independent of q, hE , pE and the
number of faces per element. Moreover, the global interpolant � is defined elemen-
twise as �u|E = �

pE
E u for any E ∈ Th , where �

pE
E is vector-valued counterpart of

the interpolant defined in Lemma 5.2.
The last ingredient we need is the following bound on the residual; we refer to

[26] for the proof.

Lemma 5.6 For any w ∈ W̃
DG
h and vh ∈ W DG

h , the following bound holds

|Rh(w, vh)| �

⎛

⎝
∑

E∈Th

h2(sE−1)
E

p2(rE−3/2)
E

‖Eσ (w)‖2HrE (TE )

⎞

⎠
1/2

‖vh‖DG , (5.55)

where sE = min(pE + 1, rE ) for all E ∈ Th. The hidden constant depends on the
material parameters and the shape-regularity of TE , but is independent of q, hE , pE ,
and the number of element faces.

We can now state the main result of this section.

Theorem 5.1 Let Assumptions 5.1 and 5.2 be satisfied. Moreover, assume that the
analytical solution u of (5.43) is sufficiently regular. For any time t ∈ [0, T ], let uh ∈
W DG

h be the PolyDG solution of problem (5.45) obtained with a penalty parameter
σ0 appearing in (5.48) sufficiently large. Then, for any time t ∈ (0, T ] the following
bound holds

‖u − uh‖2E �
∑

E∈Th

h
2(sE−1)
E

p
2(rE−3/2)
E

(
‖Eu‖2HrE (TE )

+ h2E
p3E

‖Eu̇‖2HrE (TE )
+ ‖Eσ (u)‖2HrE (TE )

)

+ h
2(sE−1)
E

p
2(rE−3/2)
E

∫ t
0

(
‖Eu̇‖2HrE (TE )

+ h2E
p3E

‖Eü‖2HrE (TE )
+ ‖Eσ (u̇)‖2HrE (TE )

)
,

(5.56)

with sE = min(pE + 1,mk) for all E ∈ Th. The hidden constants depends on the
material parameters and the shape-regularity of TE , but is independent of q, hE , pE
and the number of element faces.

Proof We recall the main steps of the proof and refer to [26] for more details. Let
� be defined as (5.54). We write the error as u − uh = eh − eI with eh = uh − �u
and eI = u − �u, and rewrite the error equation (5.53) for vh = ėh , to obtain
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∫

�

ρ ëh · ėh + B(eh, ėh) =
∫

�

ρ ëI · ėh + B(eI , ėh) + Rh(eI , ėh),

where we have also used that Rh(eh, ėh) = 0 since eh, ėh ∈ W DG
h . Using the defini-

tion of the energy norm (5.51), integrating in time between 0 and t , and exploiting
that eh(0) = 0, and reasoning as in the proof of Proposition 5.2 yields

‖eh‖2E + 2
∫

�

R([[[eh]]]) : σ (eh) � ‖eh‖2E,

provided the penalty parameter is chosen sufficiently large. Therefore, we get

‖eh‖2E �
t∫

0

∫
�

ρ ëI · ėh +
t∫

0
B(eI , ėh) +

t∫

0
Rh(eI , ėh)

=
t∫

0

∫
�

ρ ëI · ėh + B(eI , eh) −
t∫

0
B(ėI , eh) − Rh(eI , eh) +

t∫

0
Rh(ėI , eh),

where in the second step we have used integration by parts for the second and third
term on the right hand side together with eh(0) = 0. Employing Jensen and Cauchy-
Schwarz inequalities for first term on the right hand side, the fact that Rh(eI , eh) =
Rh(u, eh), Lemma 5.5, the definition of the energy norm (5.51), and Lemma 5.6, we
get

‖eh‖2E � ‖eI‖E‖eh‖E +
t∫

0

‖ėI‖E ‖eh‖E + I(u)‖eh‖E +
t∫

0

I(u̇)‖eh‖E,

where

I(u) =
⎛

⎝
∑

E∈Th

h2(sE−1)
E

p2(mE−3/2)
E

‖Eσ (u)‖2HmE (TE )

⎞

⎠
1/2

,

cf. Lemma 5.6. Applying the arithmetic-geometric inequality with δ > 0 we have

(1 − δ)‖eh‖2E � 1

δ
(‖eI‖2E + I2(u)) +

t∫

0

(‖ėI‖E + I(u̇))‖eh‖E.

Choosing δ small enough and applying Gronwall’s lemma [129] we get

‖eh‖2E � ‖eI‖2E + I2(u) +
t∫

0

(‖ėI‖2E + I2(u̇)).

The proof is completed by employing (5.54) and the definition of I(u). �
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5.4.3 Numerical Results

Before presenting some numerical experiments, we first discuss the algebraic for-
mulation of the semidiscrete formulation and the time integration of the correspond-
ing system of second-order ordinary differential equations. We suppose that � is
partitioned into Nel disjoint polytopic elements Er , r = 1, ..., Nel , and denote by
npE = dim(PpE ), and set Ndof =∑Nel

r=1 npE to be the dimension of each component

of a function inW DG
h . We introduce a basis {�1

i , . . . ,�
d
i }Ndof

i=1 , d = 2, 3, for the finite
element space W DG

h . By expressing uh ∈ W DG
h as a linear combination of the basis

functions, i.e.,

uh(x, t) =
d∑

s=1

Ndof∑

j=1

�s
j (x)Us

j (t),

and writing Eq. (5.45) for any test function �s
i (x) ∈ W DG

h , s = 1, . . . , d, we obtain
the following system of second order differential equations

MÜ(t) + BU(t) = F(t) ∀t ∈ (0, T ), (5.57)

for the displacements U(t) = (U1(t), . . . , Ud(t))T . Here, F = (F1(t), . . . , Fd(t))T

represents the external applied load, M and B are the (symmetric and positive def-
inite) mass and stiffness matrices, respectively. To integrate the system (5.57) in
time we consider the explicit, second-order accurate, and conditionally stable leap-
frog scheme: we subdivide the interval (0, T ] into NT equal subintervals of size

t = T/NT and at every time level tn = n
t we solve the system

MU(tn+1) = [2M − 
t2B
]
U(tn) − MU(tn−1) + 
t2F(tn), for n = 1, ..., NT ,

(5.58)

with

MU(t1) = [M − 
t2

2
B
]
U(t0) − 
tMU̇(t0) + 
t2

2
F(t0), (5.59)

supplementedwith the initial conditions.We recall that to ensure stability, the explicit
time integration leap-frog scheme must satisfy the usual Courant–Friedrichs–Levy
(CFL) condition that imposes a restriction on 
t of the form


t ≤ CCFL(cP , σ0)
h

p2
,

where h is the maximum mesh size and p is the polynomial approximation degree
(supposed to be uniform here, for the sake of simplicity). The constantCCFL depends
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Fig. 5.13 Example 1 (Sect. 5.4.3.1). Mesh configurations considered with increasing number of
polygonal elements: Nel = 100, 200, 300, 500

on the compressional wave velocity cP = √
(λ + 2μ)/ρ and on the stability param-

eter σ0, cf. (5.48), and can be estimated as in [26], cf., also, [29].

5.4.3.1 Example 1: Smooth Problem with a Known Analytical Solution

Wefirst consider thewave propagation problem in� = (0, 1)2,where�N = (0, 1) ×
{1},�D = ∂� \ �N , λ = μ = ρ = 1 and boundary conditions, initial conditions and
the forcing term f are selected so that the analytical solution of (5.43) is given by

u(x, t) = cos(
√
2π t)

[− sin(πx) sin(πy)2

cos(πx) sin(πy)2

]
. (5.60)

For the proceeding computations we set the final time T = 0.6 and time step 
t =
10−5. Firstly, we consider the convergence of the PolyDGmethodwith p-refinement.
To this end, in Fig. 5.14 (left) we plot ‖u(T ) − uh(T )‖E versus the polynomial degree
pE = p, for all E ∈ Th , on a fixed polygonal meshTh consisting of 300 elements; cf.
Figure5.13. Here, on a semi-logarithmic scale, we observe that the convergence line
is approximately straight, thereby indicating exponential convergence of the PolyDG
method as p is uniformly enriched. Secondly, we consider the h-convergence of the
PolyDG approximation computed on the sequence of meshes depicted in Fig. 5.13.
In Fig. 5.14 (right), we observe that ‖u(T ) − uh(T )‖E behaves likeO(h p) as h tends
to zero, for each fixed p; this is in agreement with the a priori error bound stated in
Theorem 5.1.

5.4.3.2 Example 2: Elastic Wave Propagation in a Heterogeneous
Medium

For an application of the presented PolyDGmethod, we study the elastic wave prop-
agation in the computational domain � = (0, 38.4) km × (0, 10) km representing
an idealized bidimensional Earth’s cross section, see Fig. 5.15. The bottom and the
lateral boundaries are set far enough from the point source (white dot in Fig. 5.15) in
order to prevent any reflections from the boundaries of the waves of interest. At the
top of the model a free-surface boundary condition is imposed, i.e., σn = 0, whereas
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Fig. 5.14 Example 1 (Sect. 5.4.3.1). Computed error ‖u(T ) − uh(T )‖E versus the polynomial
degree p, fixing Nel = 300 (left) and versus the mesh size h = 1/Nel , Nel = 100, 200, 300, 500
(right) fixing p = 2, 3, 4, 5. Results are obtained choosing as observation time T = 0.6 with 
t =
10−5

Fig. 5.15 Example 2 (Sect. 5.4.3.2). Unstructured polygonal grid. The mesh spacing varies from
hE ≈ 160 m for material 1 to hE ≈ 1500 m for material 7; cf. Table5.3. The source location
xs = (19.4, 7.8) km is indicated by a white circle

homogeneous Dirichlet conditions are set in the remaining part of the boundary. We
simulate a point source load of the form

f(x, t) =
(
0, Ae−10−4‖x−xs‖2(1 − 2π2 f 20 (t − t0)

2)e−π2 f 20 (t−t0)2
)

,

with A = 103 N, f0 = 2Hz and t0 = 2 s applied at the point xs = (19.4, 7.8) km.We
assign constant material properties within each region as described in Table5.3. The
computational domain is discretized using an unstructured grid consisting of 4870
(agglomerated) polygonal elements, with a mesh size varying from hE ≈ 160 m for
material 1 to hE ≈ 1500 m for material 7; cf. Table5.3. The grid spacing is chosen
small enough not only to describe with sufficient precision the physical profile of the
submerged topography, but also to guarantee that over the whole domain there is at
least 5 points per wavelength with polynomial degree equal to 4 to keep numerical
dispersion anddissipation errors sufficiently small, i.e., of order ofmachine precision,
see [26]. In Fig. 5.16 we report a set of snapshots of the diplacement magnitude



5 High–order DG Methods on Polyhedral Grids for Geophysical Applications 195

Table 5.3 Example 2 (Sect. 5.4.3.2). Material properties used for the computational domain in
Fig. 5.15

Material ρ [kg/m3] cp [m/s] cs [m/s]
1 1800 1321 294

2 1800 2024 450

3 2050 1920 600

4 2050 1920 650

5 2050 2000 650

6 2400 3030 1515

7 2450 3200 1600

Fig. 5.16 Example 2 (Sect. 5.4.3.2). Snapshots of the computed displacement magnitude |u| =√
u2
1 + u2

2 at different time t = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 s. Due to the material heterogeneities,
high oscillations and perturbations of the wave front can be observed. Waves moving leftwards with
respect to the point source location are clearly visible. The displacement magnitude is measured in
meters

|u| =
√

u2
1 + u2

2 computed with the proposed method (with σ0 = 10 and polynomial
degree equal to 4) coupled with the leap-frog scheme, fixing the final observation
time T = 5 s and time step
t = 10−4 s. The discontinuities between themechanical
properties of the materials produce oscillations and perturbations on the wave front.
In particular, due to the stratigraphy of the model, the energy is focussed towards the
left of the domain, reaches the surface of the model and (most of it) remains trapped
within the first layer. All these complex and relevant phenomena are well captured
by the proposed PolyDG method, see Fig. 5.16.
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5.5 PolyDG Methods for Flow in Fractured Porous Media

The aim of this section is to present an overview of the results presented in [16],
where a unified formulation and analysis of PolyDG approximations of flows in frac-
tured porous media is provided for all primal-primal, primal-mixed, mixed-primal
and mixed-mixed formulations. More precisely, a primal-primal setting consists of
having the pressure as only unknown for both the bulk and fracture problems. When
dealingwith the approximation ofDarcy’s flow, onemay also resort to amixed-mixed
approach, where the flow is described through an additional unknown representing
the (averaged) velocity of the fluid in both the bulk and the fracture. This variable,
often referred to as Darcy’s velocity, is of primary interest in many engineering
applications [57, 119], so that the mixed setting is often preferred to the primal one,
whichmay only return the velocity after post-processing the computed pressure, thus
entailing a potential loss of accuracy. On the other hand, the primal-primal approach
is easier to solve, featuring a smaller number of degrees of freedom. For this reason,
our aim is to design a unified setting where, according to the desired approximation
properties of the model, one may resort to either a primal or mixed approximation
for the problem in the bulk, as well as to a primal or mixed approximation for the
problem in the fracture. In particular, for the primal discretizations we employ the
Symmetric Interior Penalty discontinuous Galerkin method [32, 148], whereas for
the mixed discretizations we employ the local DG (LDG) method of [79], both in
their generalization to polytopic grids [13, 63, 64, 66, 67]. Our main reference for
the design of such a setting is the work by Arnold et al. [33], where a unified analysis
of all DG methods present in the literature is undertaken. This framework is based
on the flux-formulation, where the so-called numerical fluxes are introduced on ele-
mental interfaces as approximations of the analytical solution. Different choices of
the numerical fluxes affect the stability and the accuracy of the underlying PolyDG
method and provide conservation properties of desired quantities such as, for exam-
ple, mass, momentum, and energy [66]. In the particular context of flow in fractured
porous media, we also show that the coupling conditions between bulk and fracture
problems may be imposed through a suitable definition of the numerical fluxes on
the fracture faces. Such an abstract setting allows us to analyze theoretically, in a
unified manner, all the possible combinations of primal-primal (PP), mixed-primal
(MP), primal-mixed (PM) and mixed-mixed (MM) formulations for the bulk and
fracture problems, respectively.

The rest of the section is organized as follows. In Sect. 5.5.1 we introduce the
model problem; the discretization based on employing PolyDG methods is pre-
sented, in the unified setting of [33], in Sect. 5.5.2. In Sect. 5.5.3, we recall the main
theoretical results, namely well-posedness and stability, and present a priori error
bounds. Illustrative numerical tests are presented in Sect. 5.5.4 to confirm the theo-
retical bounds. Moreover, we assess the capability of the method in handling more
complicated geometries, presenting some test cases featuring networks of partially
immersed fractures.
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5.5.1 Model Problem

To describe the flow, which we assume to be single-phase flow, we adopt the math-
ematical model of [118]. This model was first introduced in [2, 3] for fractures with
large permeability and is here generalised to handle also the low permeable case. An
extension to two-phase flows can be found in [99, 107]. To keep the presentation
as simple as possible, we assume that the porous medium is cut by a single, non
immersed fracture. We refer to [4] for the extension of the model to totally immersed
fractures. Finally, in order to handle networks of intersecting fractures, some physical
conditions need to be added to describe the behavior of the flow at the intersection
points/lines. A possible choice is to impose pressure continuity and balance of fluxes
as in [56, 96]. Other, more general conditions, where the angle between fractures
is taken into account and jumps of the pressure across the intersection are allowed,
may be found, for example, in [95, 133].

In the following we assume that the porous matrix is represented by the open,
bounded, and polygonal/polyhedral domain � ⊂ R

d , d = 2, 3 and the fracture is
described by the (d − 1)-dimensional C∞ manifold (with no curvature) � ⊂ R

d−1,
d = 2, 3. Since we are assuming that � is not immersed, it separates � into the two
connected disjoint subdomains �1 and �2. We decompose the boundary of � into
two disjoint subsets ∂�D and ∂�N , i.e., ∂� = ∂�D ∪ ∂�N , with ∂�D ∩ ∂�N = ∅,
and we define ∂�D,i = ∂�D ∩ ∂�i and ∂�N ,i = ∂�N ∩ ∂�i , for i = 1, 2. For the
fracture domain we set ∂� = � ∩ ∂� with ∂� = ∂�D ∪ ∂�N . Finally, we denote
by n� the normal unit vector on � with a fixed orientation from �1 to �2. Our
model considers Darcy’s flow in its mixed form for the problem both in the bulk
and the fracture. More precisely, in addiction to the Darcy’s pressure, we take into
account an auxiliary vector-valued variable, called Darcy’s velocity. This quantity
is of primary interest in many engineering applications, such as oil recovery and
groundwater pollution modeling. Indeed, in these cases, in order to be effective, the
simulation of the phenomenon requires very accurate approximation of the velocities
of the involved fluids. The coupled bulk-fracture model problem in mixed form is
given by:

ui = νi∇ pi in �i , (5.61a)

−∇ · ui = fi in �i , (5.61b)

pi = 0 on ∂�D,i , (5.61c)

ui · ni = 0 on ∂�N ,i (5.61d)

u� = ντ
���∇τ p� in �, (5.61e)

−∇τ · u� = �� f� − �u� in �, (5.61f)

p� = 0 on ∂�D, (5.61g)

u� · τ = 0 on ∂�N , (5.61h)

−{u} · n� = β��p� · n� on �, (5.61i)

−�u� = α�({p} − p�) on �. (5.61j)
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In the bulk, in each domain �i , i = 1, 2, the motion of an incompressible fluid with
pressure pi and velocity ui is described by (5.61a)–(5.61b), supplemented by the
boundary conditions (5.61c)–(5.61d). Moreover, fi ∈ L2(�i ) represents a source
term, and νi = νi (x) ∈ R

d×d is the bulk permeability tensor, which we assume to
be symmetric, positive definite, uniformly bounded from below and above and with
entries that are bounded, piecewise continuous real-valued functions. Denoting by
p� and u� the fracture pressure and velocity, respectively, on the manifold � repre-
senting the fracture, we formulate a reduced version of Darcy’s law in the tangential
direction, cf. equations (5.61e)–(5.61f), and assume that the fracture permeability
tensor ν� , has a block-diagonal structure when written in its normal and tangential
components and that ντ

� ∈ R
(d−1)×(d−1) is positive definite and uniformly bounded.

Moreover, ν� satisfies the same regularity assumptions as those satisfied by the bulk
permeability ν. In (5.61e)–(5.61f)–(5.61g)–(5.61h), f� ∈ L2(�), τ is the vector in
the tangent plane of� normal to ∂� and∇τ and∇τ · denote the tangential gradient and
divergence operators, respectively. Finally, we close the model providing the inter-
face conditions (5.61i)–(5.61j) where β� = 1

2η�
, α� = 2

η�(2ξ−1) and η� = ��

νn
�
, �� > 0

being the fracture thickness. Finally, in the definition of α� , the closure parameter
ξ > 1/2 is related to the pressure profile across the fracture aperture. We refer to
[118] for a rigorous derivation of the model. An analogous model has been used in
Chap.8, where it has been solved numerically with a mixed virtual element method.
Other type of schemes for fracture porous media may be found in Chaps. 3 and 4 of
this volume.

To introduce the weak formulation, we first introduce the bulk pressure and veloc-
ity spaces:

Mb = L2(�), Vb = {v ∈ Hdiv(�) : �v�|� ∈ L2(�), {v}|� ∈ [L2(�)]d , v · n|∂�N = 0}.

Similarly, for the fracture pressure and velocity we define the spaces

M� = L2(�), V� = {v� ∈ Hdiv,τ (�) : v� · τ |∂� = 0}.

We equip the spaces Vb and V� with the norms

||v||2Vb = ||v||2L2(�) + ||∇ · v||2L2(�) + ||�v�||2L2(�) + ||{v}||2L2(�),

||v�||2V� = ||v�||2L2(�) + ||∇τ · v�||2L2(�),

respectively. Finally, we define the global spaces for the pressure and the velocity
as M = Mb × M� and W = Vb × V� , respectively, equipped with the canonical
norms for product spaces. We can now formulate problem (5.61) in weak form as
follows: find (u, u�) ∈ W and (p, p�) ∈ M such that

A((u, u�), (v, v�)) + B((v, v�), (p, p�)) = 0,

−B((u, u�), (q, q�)) = F p(q, q�)
(5.62)

http://dx.doi.org/10.1007/978-3-030-69363-3_8
http://dx.doi.org/10.1007/978-3-030-69363-3_3
http://dx.doi.org/10.1007/978-3-030-69363-3_4
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for all (v, v�) ∈ W and (q, q�) ∈ M , where the bilinear forms A(·, ·) : W × W → R

and B(·, ·) : W × M → R are defined as

A((u, u�), (v, v�)) = a(u, v) + a�(u�, v�),

B((v, v�), (q, q�)) = b(v, q) + b�(v�, q�) + d(v, q�),

respectively, with

a(u, v) =
∫

�

ν−1u · v +
∫

�

1

α�

�u��v� +
∫

�

1

β�

{u} · {v},

a�(u�, v�) =
∫

�

(ντ
���)−1u� · v�,

and

b(v, q) =
∫

�
∇ · v q, b�(v�, q�) =

∫

�
∇τ · v� q�, d(v, q�) = −

∫

�
�v�q�.

(5.63)

Finally the linear operator F p(·) : M → R is defined as F p(q, q�) = ∫
�
f q +∫

�
�� f�q� .
We next recall the following well-posedness result: we refer to [16] for the proof.

Note that the existence and uniqueness of the problem can be proven only under the
condition that the parameter ξ > 1/2.

Theorem 5.2 Suppose that ξ > 1/2, then problem (5.62) admits a unique solution.

5.5.2 PolyDG Discretization of Flow in Fractured Porous
Media: A Unified Approach

In this section we present, in a unified setting, a family of discrete formulations for
the coupled bulk-fracture problem (5.62). In particular, the problem in the bulk and
the one in the fracture can be either discretized in their mixed or primal form. We
then derive four formulations that embrace all the possible combinations of primal-
primal, mixed-primal, primal-mixed and mixed-mixed discretizations. The primal
discretizations will be based on the Symmetric Interior Penalty DGmethod (SIPDG)
[32, 148], while the mixed approach will exploit the Local Discontinuous Galerkin
method (LDG) [69, 79, 128], including their extension to polytopic grids [13, 63,
64, 66, 67]. The derivation follows the approach of [33] based on the introduction of
the numerical fluxes, which approximate the trace of the solutions on the boundary of
each mesh element. In particular, the imposition of the coupling conditions (5.61i)–
(5.61j) will be achieved through a proper definition of the numerical fluxes on the
faces belonging to the fracture.
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Fig. 5.17 Example of two
neighboring elements of a
polygonal bulk mesh aligned
with the fracture and of the
induced subdivision

We consider a sequence of meshes Th that are aligned with the fracture � and
we denote, as in Sect. 5.2, by Fh the set of all the faces of the mesh Th , that we can
decompose as Fh = F I

h ∪ F B
h ∪ �h , where now F I

h is the set of interior faces not
belonging to the fracture, F B

h is the set of faces lying on the boundary of the domain
∂� (which can be further decomposed into F B

h = F D
h ∪ F N

h ) and �h is the set of
fracture faces. In particular, the induced subdivision of the fracture �h consists of
the faces of the elements of Th that share part of their boundary with the fracture,
so that, according to the definition of Fh given in Sect. 5.2.1, �h is made up of line
segments when d = 2 and of triangles when d = 3. In the latter case, the triangles
are not necessarily shape-regular and they may present hanging nodes, due to the fact
that the sub-triangulations of each elemental interface is chosen independently from
the others. For this reason, we here extend the concept of interface introduced in
Sect. 5.2.1 also to the (d − 2)-dimensional facets of elements in �h , defined again as
intersection of boundaries of two neighbouring elements.When d = 2, the interfaces
reduce to points (see Fig. 5.17), while when d = 3 they consists of line segments.
Moreover, since we aim at employing PolyDG methods also for the discretization of
the problem in the fracture, we denote by E�,h the set of all the interfaces (that we
will also call edges) of the elements in �h , and we write, accordingly to the previous
notation, E�,h = EI

�,h ∪ EB
�,h , with EB

�,h = ED
�,h ∪ EN

�,h .
For the forthcoming stability and error analysis, we assume that both the bulk

and fracture sequence of meshes are polytopic-regular, according to Assumption
5.1 and that the covering satisfies Assumption 5.2. Moreover, we suppose that the
permeability tensors ν and ν� are piecewise constant on mesh elements, i.e., ν|E ∈
[P0(E)]d×d for all E ∈ Th , and ν�|F ∈ [P0(F)](d−1)×(d−1) for all F ∈ �h .

First, to each element E ∈ Th and F ∈ �h we associate the integers pE ≥ 1 and
pF ≥ 1, and introduce the finite-dimensional spaces:
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Qb
h = {q ∈ L2(�) : q|E ∈ PpE (E) ∀E ∈ Th},

Wb
h = {v ∈ [L2(�)]d : v|E ∈ [PpE (E)]d ∀E ∈ Th},

Q�
h = {q� ∈ L2(�) : q�|F ∈ PpF (F) ∀F ∈ �h},

W�
h = {v� ∈ [L2(�)]d−1 : v�|F ∈ [PpF (F)]d−1 ∀F ∈ �h}.

We remark that the polynomial degrees in the bulk and fracture discrete spaces are
chosen independently of each other.

We next focus on equations (5.61a)–(5.61b) in the bulk and equations (5.61e)–
(5.61f) in the fracture.We proceed as in [33], and multiply equations (5.61a)–(5.61b)
by (sufficiently smooth) vector-valued and scalar-valued test functions, respectively,
integrate by parts over an element E ∈ Th , and sum over all elements. Analogously,
we multiply equations (5.61e)–(5.61f) by (sufficiently smooth) test functions, inte-
grate by parts over an element F ∈ �h and sum over all the elements in �h . We
then discretize, use identity (5.7), and integrate by parts again the first equation in
the bulk and the first equation in the fracture, to get the following general discrete
formulation: find ph ∈ Qb

h , uh ∈ Wb
h , p�,h ∈ Q�

h , and u�,h ∈ W�
h such that

∫

Th

ν−1uh · v =
∫

Th

∇ ph · v +
∫

F I
h ∪�h

{ p̂ − ph}�v� +
∫

F I
h ∪F B

h ∪�h

� p̂ − ph� · {v},
(5.64)

∫

Th

uh · ∇q −
∫

F I
h ∪F B

h ∪�h

{û} · �q� −
∫

F I
h ∪�h

�û�{q} =
∫

Th

f q, (5.65)

∫

�h

(ντ
���)−1u�,h · v� =

∫

�h

∇ p�,h · v� +
∫

EI
�,h

{ p̂� − p̂�,h}�v��+
∫

E�,h

� p̂� − p̂�,h� · {v�}, (5.66)

∫

�h

u�,h · ∇q� −
∫

E�,h

{û�} · �q�� −
∫

EI
�,h

�û��{q�} =
∫

�h

�� f�q� −
∫

�h

�û�q�

(5.67)

for all q ∈ Qb
h , v ∈ Wb

h , q� ∈ Q�
h and v� ∈ W�

h . We point out that, in order to sim-
plify the notation, we have dropped the subscript τ from the tangent gradient and
divergence operators. Here, in the spirit of [33], the numerical fluxes

p̂ = ( p̂E )E∈Th , û = (ûE )E∈Th , p̂� = ( p̂�,F )F∈�h , û� = (û�,F )F∈�h ,

are approximations to the analytical solutions u and p, respectively, on the boundary
of E and to p� and u� , respectively, on the boundary of the fracture face F . The
numerical fluxes p̂, û, p̂� , û� must be interpreted as linear functionals taking values
in the spaces �E∈Th L

2(∂E), [�E∈Th L
2(∂E)]d , �F∈�h L

2(∂F), [�F∈�h L
2(∂F)]d ,

respectively. By suitably choosing the numerical fluxes, we can obtain all the pos-
sible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed
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Table 5.4 Primal forms for the DG discretizations of the bulk-fracture problems

Method Primal bilinear form Reference equations

Primal-Primal (PP) AP
b (p, q) + AP

� (p�, q�) +
C((p, q), (p�, q�))

(5.74), (5.75), (5.76)

Mixed-Primal (MP) AM
b (p, q) + AP

� (p�, q�) +
C((p, q), (p�, q�))

(5.75), (5.76), (5.86)

Primal-Mixed (PM) AP
b (p, q) + AM

� (p�, q�) +
C((p, q), (p�, q�))

(5.74), (5.76), (5.97)

Mixed-Mixed (MM) AM
b (p, q) + AM

� (p�, q�) +
C((p, q), (p�, q�))

(5.76), (5.86), (5.97)

formulations for the bulk and fracture, respectively. In Table5.4 we summarize the
bilinear forms for all formulations, whose precise definition will be given in the
forthcoming sections.

5.5.2.1 Primal-Primal Formulation

Toobtain the primal-primal formulation, based on the symmetric interior penaltyDis-
continuous Galerkin (SIPDG) method, we choose the numerical fluxes p̂ = p̂(ph),
û = û(ph, p�,h), p̂� = p̂�(p�,h), and û� = û�(p�,h) as follows

p̂ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{ph} onF I
h

0 onF D
h

ph onF N
h

ph on�h

û =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{ν∇ ph} − σF�ph� onF I
h

ν∇ ph − σF phnF onF D
h

0 onF N
h

−[α�({ph} − p�,h)
nF
2 + β��ph�] on�h

(5.68)

p̂� =

⎧
⎪⎨

⎪⎩

{p�,h} onEI
�,h

0 onED
�,h

p�,h onEN
�,h,

û� =

⎧
⎪⎨

⎪⎩

{ντ
���∇ p�,h} − σe�p�,h� onEI

�,h

ντ
���∇ p�,h − σe p�,hne onED

�,h

0 onEN
�,h .

(5.69)

Here, we have introduced the discontinuity penalization parameters σ and σ� ∈
L∞(eI ∪ eD). In particular, they are non-negative bounded functions and their precise
definitions will be given inDefinition 5.5 below.Moreover, we have used the notation
σF = σ |F , for F ∈ F I

h ∪ F D
h and σe = σ�|e for e ∈ eI ∪ eD . Note also that, with this

choice, the numerical flux p̂ is double valued on �h and single valued on F I
h ∪ F B

h .
By using the above definitions, and after eliminating the velocities uh and u�,h in an
elementwise manner as in [33], based on the fact that ∇Qh ⊆ Wh , ∇Q�

h ⊆ W�
h and

employing the lifting operators
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L SI P
b : [L1(F I

h ∪ F D
h )]d → Wb

h,

∫

�

L SI P
b (ξ) · v = −

∫

F I
h ∪F D

h

{v} · ξ , (5.70)

L SI P
� : [L1(EI

�,h ∪ eD)]d−1 → W�
h ,

∫

�

L SI P
� (ξ�) · v� = −

∫

EI
�,h∪eD

{v�} · ξ�,

(5.71)

for all v ∈ Wb
h and v� ∈ W�

h , respectively, we obtain the following discrete formu-
lation: find (ph, p�

h ) ∈ Qb
h × Q�

h such that

APP
h

(
(ph, p

�
h ), (q, q�)

) = LPP
h (q, q�) ∀(q, q�) ∈ Qb

h × Q�
h , (5.72)

where the superscript PP stands for primal-primal and LPP
h : Qb

h × Q�
h → R is

defined as LPP
h (q, q�) = LP

b(q) + LP
�(q�) and APP

h : (Qb
h × Q�

h ) × (Qb
h × Q�

h ) →
R is given by

APP
h

(
(ph, p

�
h ), (q, q�)

) = AP
b(ph, q) + AP

�(p�,h, q�) + C((ph, p�,h), (q, q�)),(5.73)

with

AP
b(ph, q) =

∫

Th

ν∇ ph · ∇q +
∫

Th

νL SI P
b (�ph�) · ∇q

+
∫

Th

νL SI P
b (�q�) · ∇ ph +

∫

F I
h ∪F D

h

σF�ph� · �q�, (5.74)

AP
�(p�,h, q�) =

∫

�h

ντ
���∇ p�,h · ∇q� +

∫

�h

ντ
���L

P
� (�p�,h�) · ∇q�

+
∫

�h

ντ
���L

SI P
� (�q��) · ∇ p�,h +

∫

EI
�,h∪ED

�,h

σe�p�,h� · �q��,

(5.75)

C((ph, p�,h), (q, q�)) =
∫

�h

β��ph� · �q� +
∫

�h

α�({ph} − p�,h)({q} − q�,h),

(5.76)
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and

LP
b(q) =

∫

Th

f q, LP
�(q�) =

∫

�h

�� f�q�. (5.77)

5.5.2.2 Mixed-Primal Formulation

We next address the choice of the numerical fluxes that leads to a mixed-primal
formulation. Here, the mixed formulation will be based on the use of the LDG
method [69, 79, 127, 128]. To this end, we define the numerical fluxes p̂ = p̂(ph)
and û = û(uh, ph, p�,h) for the bulk as

p̂ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{ph} + b · �ph� onF I
h ,

0 onF D
h ,

ph onF N
h ,

ph on�h,

û =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{uh} − b�uh� − σF �ph� onF I
h ,

uh − σF phnF onF D
h ,

0 onF N
h ,

−[α�({ph} − p�,h)
nF
2 + β��ph�] on�h,

(5.78)

whereas for the numerical fluxes in the fracture we adopt the same definition as in
(5.68). Here, b ∈ [L∞(F I

h )]d is a (possibly null) facewise constant vector-valued
function such that ||b||∞,F I

h
� 1. With this definition of the numerical fluxes, we

obtain the following discrete mixed problem: find
(
(ph, uh), p�

h

) ∈ Qb
h × Wb

h × Q�
h

such that

Mb(uh, v) + Bb(ph, v) = 0 ∀v ∈ Wb
h, (5.79)

−Bb(q, uh) + Sb(ph, q) + C1(ph, q, p�,h) = LP
b(q) ∀q ∈ Qb

h, (5.80)

AP
�(p�,h, q�) + C2(ph, p�,h, q�) = LP

�(q�) ∀q� ∈ Q�
h , (5.81)

where

Mb(uh, v) =
∫

Th

ν−1uh · v,

Bb(ph, v) = −
∫

Th

∇ ph · v +
∫

F I
h

�ph� · ({v} − b�v�) +
∫

F D
h

phv · nF ,

Sb(ph, q) =
∫

F I
h ∪F D

h

σF�ph� · �q�,

C1(ph, q, p�,h) =
∫

�h

β��ph� · �q� +
∫

�h

α�({ph} − p�,h){q},

C2(ph, p�,h, q�) =
∫

�h

α�(p�,h − {ph})q�,

and AP
�(·, ·) and LP

�(·) are defined as in (5.75) and (5.77), respectively. Also note
that we have C((ph, p�,h), (q, q�)) = C1(ph, q, p�,h) + C2(ph, p�,h, q�). For the
purpose of the analysis, the bulk velocity uh can be eliminated elementwise by
introducing the lifting operator, L LDG

b : [L1(F I
h ∪ F D

h )]d → Wb
h , defined by
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∫

Th

L LDG
b (ξ) · v = −

∫

F I
h

({v} − b�v�) · ξ −
∫

F D
h

ξ · v ∀ v ∈ Wb
h (5.82)

to obtain the following discrete formulation: find (ph, p�
h ) ∈ Qb

h × Q�
h such that

AMP
h

(
(ph, p

�
h ), (q, q�)

) = LMP
h (q, q�) ∀(q, q�) ∈ Qb

h × Q�
h , (5.83)

where the superscript MP stands for mixed-primal andAMP
h : (Qb

h × Q�
h ) × (Qb

h ×
Q�

h ) → R is defined as

AMP
h

(
(ph, p

�
h ), (q, q�)

) = AM
b (ph, q) + AP

�(p�,h, q�) + C((ph, p�,h), (q, q�)).

(5.84)

Here, LMP
h : Qb

h × Q�
h → R is given by

LMP
h (q, q�) = LM

b (q) + LP
�(q�), (5.85)

with

AM
b (ph, q) =

∫

Th

ν(∇ ph + L LDG
b (�ph�)) · (∇q + L LDG

b (�q�))+
∫

F I
h ∪F D

h

σF�ph� · �q� +
∫

�h

β��ph� · �q� +
∫

�h

α�({ph} − p�){q},
(5.86)

LM
b (q) =

∫

Th

f q. (5.87)

5.5.2.3 Primal-Mixed Formulation

We next address the choice of the numerical fluxes that lead to a primal-mixed
formulation, i.e. we approximate the problem in the bulk using the SIPDG method,
and the problem in the fracture in mixed form, employing the LDG method. In the
bulk we define the numerical fluxes p̂ and û as in (5.68), whereas in the fracture we
define the numerical fluxes p̂� = p̂�(p�,h) and û� = û�(u�,h, p�,h) as follows

p̂� =

⎧
⎪⎨

⎪⎩

{p�,h} + b� · �p�,h� onEI
�,h,

0 onED
�,h,

p�,h onEN
�,h,

û� =

⎧
⎪⎨

⎪⎩

{u�,h} − b��u�,h� − σe�p�,h� onEI
�,h,

u�,h − σe(p�,hne − g�ne) onED
�,h,

0 onEN
�,h .

(5.88)



206 P. F. Antonietti et al.

Here, b� ∈ [L∞(eI )]d−1 is a vector-valued function that is constant on each edge and
it is chosen such that ||b�||∞,eI � 1. This choice leads to the following primal-mixed
problem: find

(
ph, (p�

h , u�,h)
) ∈ Qb

h × Q�
h × W�

h such that

AP
b (ph, q) + C1((ph, q), p�,h) = LP

b (q) ∀q ∈ Qb
h, (5.89)

M�(u�,h, v�) + B�(p�,h, v�) = 0 ∀v� ∈ W�
h , (5.90)

−B�(q�, u�,h) + S�(p�,h, q�) + C2(ph, (p�,h, q�)) = LP
�(q�) ∀q� ∈ Q�

h ,

(5.91)

where

M�(u�,h, v�) =
∫

�h

(ντ
���)−1u�,h · v�,

B�(p�,h, v�) = −
∫

�h

v� · ∇ p�,h +
∫

EI
h,�

�p�,h� · ({v�} − b��v��) +
∫

ED
h,�

p�,hv� · ne,

Sb(p�,h, q�) =
∫

E�,h

σe�p�,h� · �q��,

and AP
b(ph, q) and LP

b(q) are defined as in (5.74) and (5.77), respectively. The
variableu�,h can be eliminated element-wise based on employing the lifting operator,
L LDG

� : [L1(EI
h ∪ ED

h )]d → W�
h , defined by

∫

�h

L LDG
� (ξ�) · v� = −

∫

EI
�,h

({v�} − b��v��) · ξ� −
∫

ED
�,h

ξ� · v� ∀ v� ∈ W�
h ,

(5.92)

to obtain the following primal formulation: find (ph, p�
h ) ∈ Qb

h × Q�
h such that

APM
h

(
(ph, p

�
h ), (q, q�)

) = LPM
h (q, q�) ∀(q, q�) ∈ Qb

h × Q�
h , (5.93)

where the superscript PM stands for primal-mixed andAPM
h : (Qb

h × Q�
h ) × (Qb

h ×
Q�

h ) → R is defined as

APM
h

(
(ph, p

�
h ), (q, q�)

) = AP
b(ph, q) + AM

�(p�,h, q�) + C((ph, p�,h), (q, q�)).

(5.94)

Here, LPM
h : Qb

h × Q�
h → R is given by

LPM
h (q, q�) = LP

b(q) + LM
�(q�), (5.95)

with

AM
�(p�,h, q�) =

∫

�h

ντ
���(∇ p�,h + L LDG

� (�p�,h�)) · (∇q� + L LDG
� (�q��)) (5.96)
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+
∫

EI
�,h∪ED

�,h

σe�p�,h� · �q��, (5.97)

LM
�(q�) =

∫

�h

�� f�q�. (5.98)

5.5.2.4 Mixed-Mixed Formulation

Finally, if we approximate both the problem in the bulk and in the fracture with
the LDG method by choosing the bulk numerical fluxes p̂ = p̂(ph) and û =
û(uh, ph, p�,h) as in (5.78) and the fracture numerical fluxes p̂� = p̂�(p�,h) and
û� = û�(u�,h, p�,h) as in (5.88), we obtain the following mixed-mixed formulation:
find (ph, p�,h) ∈ Qb

h × Q�
h and (uh, u�,h) ∈ Wb

h × W�
h such that

Mb(uh, v) + Bb(ph, v) = Fb(v) ∀v ∈ Wb
h, (5.99)

−Bb(q, uh) + Sb(ph, q) + C1(ph, q, p�,h) = Gb(q) ∀q ∈ Qb
h, (5.100)

M�(u�,h, v�) + B�(p�,h, v�) = F�(v�) ∀v� ∈ W�
h , (5.101)

−B�(q�, u�,h) + S�(p�,h, q�) + C2(ph, (p�,h, q�)) = G�(q�) ∀q� ∈ Q�
h .

(5.102)

Again, based on employing the definition of the lifting operators (5.82) and (5.92),
the bulk and fracture velocities can be eliminated, to yield the following equivalent
formulation: find (ph, p�,h) ∈ Qb

h × Q�
h such that

AMM
h

(
(ph, p

�
h ), (q, q�)

) = LMM
h (q, q�) ∀(q, q�) ∈ Qb

h × Q�
h , (5.103)

where the superscript MM stands formixed-mixed andAMM
h : (Qb

h × Q�
h ) × (Qb

h ×
Q�

h ) → R is defined as

AMM
h

(
(ph, p

�
h ), (q, q�)

) = AM
b (ph, q) + AM

�(p�,h, q�) + C((ph, p�,h), (q, q�)),

(5.104)

and LMM
h : Qb

h × Q�
h → R is given by

LMM
h (q, q�) = LM

b (q) + LM
�(q�). (5.105)

5.5.3 Well-Posedness and Error Estimates

In this section, we recall the main results that ensure that the primal-primal (PP)
(5.72),mixed-primal (MP) (5.83), primal-mixed (PM) (5.93) andmixed-mixed (MM)
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(5.103) formulations are well-posed. We recall that, for the analysis, we assume
the permeability tensors ν and ντ

� to be piecewise constant and that we employ
the following notation ν̄E = |√ν|E |22 and ν̄τ

F = |√ντ
�|F |22, where | · |2 denotes the

l2-norm. First, we give an appropriate definition of the discontinuity penalization
parameters, so that we can work in a polytopic framework. Taking as a reference
[13, 63, 64, 66, 67], we give the following two definitions for the bulk and fracture
penalty functions.

Definition 5.5 The penalization parameter σ : Fh \ �h → R
+ for the bulk problem

is defined facewise as

σ(x) = σ0

{
maxE∈{E+,E−}

ν̄E p2E
hE

if x ⊂ F ∈ F I
h , F̄ = ∂ Ē+ ∩ ∂ Ē−,

ν̄E p2E
hE

if x ⊂ F ∈ F D
h , F̄ = ∂ Ē ∩ ∂�̄,

(5.106)

with σ0 > 0 independent of pE , |E |, and |F |. Analogously, the penalization param-
eter σ� : e → R

+ for the fracture problem is defined edgewise as

σ�(x) = σ0,�

{
maxF∈{F+,F−}

ν̄τ
F p

2
F

hF
if x ⊂ e ∈ eI , ē = ∂ F̄+ ∩ ∂ F̄−,

ν̄τ
F p

2
F

hF
, if x ⊂ e ∈ eD, ē = ∂ F̄ ∩ ∂�̄,

(5.107)

with σ0,� > 0 independent of pF , |F |, and |e|.
Writing Q̃b = {q = (q1, q2) ∈ H 1(�1) × H 1(�2)} ∩ H 2(Th) and Q̃� = H 1(�) ∩
H 2(�h), we introduce the spaces Qb(h) = Qb

h + Q̃b and Q�(h) = Q�
h + Q̃�

endowed with the energy norm

|||(q, q�)|||2 = ||q||2b,DG + ||q�||2�,DG + ||(q, q�)||2C, (5.108)

where

||q||2b,DG = ||ν1/2∇q||20,Th
+ ||σ 1/2

F �q�||20,F I
h ∪F D

h
,

||q�||2�,DG = ||(ντ
���)1/2∇q�||20,�h

+ ||σ 1/2
e �q��||20,eI∪eD ,

||(q, q�)||2C = ||β1/2
� �q�||20,�h

+ ||α1/2
� ({q} − q�)||20,�h

.

We remark that all the bilinear formsA∗∗
h (·, ·), ∗∗ ∈ {PP, MP, MM, PM}, defined

in Sect. 5.5.2 are also well-defined on the extended space Qb(h) × Q�(h). We now
recall the following result, and refer to [16] for the proof.

Lemma 5.7 The following bounds hold

AP
b(q, q) � ||q||2b,DG ∀q ∈ Qb

h, (5.109)

AP
b(p, q) � ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h), (5.110)

AP
�(q�, q�) � ||q�||2�,DG ∀q� ∈ Q�

h , (5.111)
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AP
�(p�, q�) � ||p�||�,DG ||q�||�,DG ∀p�, q� ∈ Q�(h), (5.112)

AM
b (q, q) � ||q||2b,DG ∀q ∈ Qb

h, (5.113)

AM
b (p, q) � ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h), (5.114)

AM
�(q�, q�) � ||q�||2�,DG ∀q� ∈ Q�

h , (5.115)

AM
�(p�, q�) � ||p�||�,DG ||q�||�,DG ∀p�, q� ∈ Q�(h). (5.116)

The first and third estimates hold provided that σ0 and σ0,� are chosen sufficiently
large.

Employing Lemma 5.7, we can easily prove the well-posedness of all of our discrete
problems, as stated in the following proposition.

Proposition 5.3 Let the penalization parameters σ for the problem in the bulk and
in the fracture be defined as in (5.106) and (5.107), respectively, and suppose that
for the primal formulations σ0 and σ0,� are chosen sufficiently large. Then, all the
formulations (5.72), (5.83), (5.93) and (5.103) are well-posed.

Next we prove error bounds in the discrete energy norm (5.108). To this end, for
each subdomain �i , i = 1, 2, we denote by Ei the classical continuous extension
operator (cf. [136]) Ei : Hs(�i ) → Hs(Rd), for s ∈ N0. Similarly, we denote by E�

the continuous extension operator E� : Hs(�) → Hs(Rd−1), for s ∈ N0. We then
make the following regularity assumptions for the analytical solution (p, p�) of
problem (5.62).

Assumption 5.3 Let T# = {TE } and F# = {TF } denote the associated coverings of
� and �, respectively, cf. Definition 5.2. We assume that the analytical solution
(p, p�) is such that:

A1 For every E ∈ Th , if E ⊂ �i , we have Ei pi |TE ∈ HrE (TE ), where rE ≥ 1 + d/2
and TE ∈ T#, with E ⊂ TE ;

A2 For every F ∈ �h , we have E� p�|TF ∈ HrF (TF ), where rF ≥ 1 + (d − 1)/2 and
TF ∈ F#, with F ⊂ TF . �

Assumption 5.4 We assume that the normal components of the exact fluxes ν∇ p
and ��ντ

�∇ p� are continuous across mesh interfaces, that is �ν∇ p� = 0 on F I
h and

���ντ
�∇ p�� = 0 on eI . �

From Proposition 5.3 and Strang’s second lemma, the following abstract error bound
follows directly.

Lemma 5.8 Let the hypotheses of Proposition 5.3 be satisfied. Then, for all the
discrete formulations presented in Sect.5.5.2, the following abstract error bound
holds

|||(p, p�) − (ph, p�,h)||| � inf
(q,q�)∈Qb

h×Q�
h

|||(p, p�) − (q, q�)|||

+ sup
(w,w�)∈Qb

h×Q�
h

|R∗∗
h ((p, p�), (w,w�))|

|||(w,w�)||| ,
(5.117)
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where the residual R∗∗
h is defined as

R∗∗
h ((p, p�), (w,w�)) = A∗∗

h ((p, p�), (w,w�)) − L∗∗
h (w,w�),

with ∗∗ ∈ {PP, MP, MM, PM}.
We now recall the following result that provides a bound on the residuals stemming
from formulations (5.72), (5.83), (5.93) and (5.103).

Lemma 5.9 [16, Lemma 5.6, Lemma 5.7] Let (p, p�) be the analytical solution
of problem (5.62) satisfying the regularity Assumptions 5.3 and 5.4. Then, for every
w ∈ Qb(h) and w� ∈ Q�(h), we have that

|RP
b (p,w)|2 �

∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

||E p||2HrE (TE )

[
ν̄2
E

]
· ||w||2b,DG, (5.118)

|RP
� (p�,w�)|2 �

∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

||E p�||2HrF (TF )

[
(ν̄τ

F��)2
]

· ||w�||2�,DG, (5.119)

|RM
b (p,w)|2 �

∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

||E p||2HrE (TE )

[
ν̄2
E

]
· ||w||2b,DG, (5.120)

|RM
� (p�,w�)|2 �

∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

||E p�||2HrF (TF )

[
ν̄τ
F��)2

]
· ||w�||2�,DG . (5.121)

The above bounds, together with the observation that, for all the cases, the residual
can always be split into two contributions: one involving the approximation of the
problem in the bulk and one involving the approximation of the problem in the
fracture, i.e.,

R∗∗
h ((p, p�), (w,w�)) = R∗

b(p,w) + R∗
�(p�,w�), (5.122)

are the key ingredients required to derive main result of this section.

Theorem 5.3 Let T# = {TE } and F# = {TF } denote the associated coverings of
� and �, respectively, consisting of shape-regular simplices as in Definition 5.2,
satisfying Assumption 5.2. Let (p, p�) be the solution of problem (5.62) and
(ph, p�,h) ∈ Qb

h × Q�
h be its approximation obtained with the method PP, MP, MM

or PM, with the penalization parameters given by (5.106) and (5.107) and σ0 and
σ0,� sufficiently large for the primal formulations. Moreover, suppose that the ana-
lytical solution (p, p�) satisfies the regularity Assumptions 5.3 and 5.4. Then, the
following error bound holds
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|||(p, p�) − (ph, p�,h)|||2 �
∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

G∗
E (ν̄E )||E p||2HrE (TE ) +

∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

G∗
F (ν̄τ

F )||E� p�||2HrF (TF ),

where E p is to be interpreted as E1 p1 when E ⊂ �1 or as E2 p2 when E ⊂ �2. Here,
sE = min(pE + 1, rE ), sF = min(pF + 1, rF ), and the constants satisfy

GP
E (ν̄E ) � ν̄E GP

F (ν̄τ
F ) � ν̄τ

F , GM
E (ν̄E ) � ν̄E GM

F (ν̄τ
F ) � ν̄τ

F��.

Proof From Lemma 5.8 we deduce that the error satisfies the following abstract
bound

|||(p, p�) − (ph, p�,h)||| � inf
(q,q�)∈Qb

h×Q�
h

|||(p, p�) − (q, q�)|||
︸ ︷︷ ︸

I

+

sup
(w,w�)∈Qb

h×Q�
h

|Rh((p, p�), (w,w�))|
|||(w,w�)|||

︸ ︷︷ ︸
I I

. (5.123)

For the term I , exploiting the approximation results stated in Lemma 5.2, we obtain

I �
∑

E∈Th

ν̄E
h2(sE−1)
E

p2(rE−1)
E

||E p||2HrE (TE ) +
∑

F∈�h

ν̄τ
F��

h2(sF−1)
F

p2(rF−1)
F

||E p�||2HrF (TF ).

(5.124)

The statement of the theorem follows from (5.124), together with the bound on Term
I I deriving from what observed in (5.122) and Lemma 5.9.

If the hypotheses of Theorem 5.3 hold, we can also derive error estimates for the
velocities u and u� for the mixed-primal, primal-mixed, and mixed-mixed formu-
lations. More precisely, if (u, u�) ∈ W and (p, p�) ∈ M is the solution of problem
(5.62), then, if

(
(ph, uh), p�,h

) ∈ Qb
h × Wb

h × Q�
h is the approximation obtained

with the mixed-primal method (5.80), we have that

||u − uh ||20,Th
�
∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

GM
E ||E p||2HrE (TE ) +

∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

GP
F ||E� p� ||2HrF (TF ).

Analogously, if
(
ph, (p�,h, u�,h)

) ∈ Qb
h × Q�

h × W�
h is the approximation computed

with the primal-mixed method (5.90), we deduce that
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||u� − u�,h ||20,�h
�
∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

GP
E ||E p||2HrE (TE ) +

∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

GM
F ||E� p� ||2HrF (TF ).

Finally, if
(
(ph, uh), (p�,h, u�,h)

) ∈ Qb
h × Wb

h × Q�
h × W�

h is the approximation
obtained with the mixed-mixed method (5.100), then the following bound holds

||u − uh ||20,Th
+ ||u� − u�,h ||20,�h

�
∑

E∈Th

h2(sE−1)
E

p2(rE−1)
E

GM
E ||E p||2HrE (TE )

+
∑

F∈�h

h2(sF−1)
F

p2(rF−1)
F

GM
F ||E� p�||2HrF (TF ).

Here, the constants GM
E , G

P
F , G

P
E and GM

F are defined as in Theorem 5.3. We refer
to [16] for further details.

5.5.4 Numerical Results

In this section we present three sets of two-dimensional numerical experiments
employing the paradigmatic primal-primal and mixed-primal settings. With the
first set of experiments we aim to validate the theoretical convergence results of
Sect. 5.5.3, by considering a test case with known analytical solution. With the sec-
ond and third sets of experiments, we assess the capability of themethod for handling
more complicated geometries, namely networks of partially immersed fractures and
networks of intersecting fractures. All the numerical tests have been implemented in
Matlab® and the polygonal meshes conforming to the fractures have been obtained
by suitably modifying the code PolyMesher [142].

5.5.4.1 Example 1: Problem with a Known Analytical Solution

We consider the domain � = (0, 1)2 and the fracture � = {(x, y) ∈ � : x = 0.5}.
Following [14, 73], we select the analytical solution in the bulk and the fracture as
follows

p =
{
sin(4x) cos(πy) if x < 0.5,

cos(4x) cos(πy) if x > 0.5,
p� = ξ [cos(2) + sin(2)] cos(πy),

so that they satisfy the coupling conditions (5.61i)–(5.61j) with ν = I, provided that
β� = 2, that is νn

�/�� = 4. In particular, here we choose the tangential and normal
components of the permeability tensor in the fracture as ντ

� = 102 and νn
� = 4 · 10−2,

respectively, and the fracture thickness �� = 10−2. Moreover, in the experiments we
set ξ = 3

4 . We impose Dirichlet boundary conditions on the whole ∂� and also on
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Fig. 5.18 Example 1 (Sect. 5.5.4.1). Three refinements of the polygonal mesh grid conforming to
the fracture

∂�. Finally the source terms are chosen accordingly as

f =
{
sin(4x) cos(πy)(16 + π2) if x < 0.5,

cos(4x) cos(πy)(16 + π2) if x > 0.5,
f� = cos(πy)[cos(2) + sin(2)](ξντ

�π2 + 4
��

).

In Fig. 5.18, we show three levels of refinement of the polygonal mesh conforming
to the fracture employed in the computations. In order to test the h-convergence
properties of our methods, thus validating the error estimate for the energy norm
stated in Theorem 5.3, we compute the quantity ||p − ph ||1,Th + ||p� − p�,h ||1,�h .
The plots in Fig. 5.19 show the computed errors as a function of the inverse of the
mesh size h (loglog scale), together with the expected convergence rates. In par-
ticular, Fig. 5.19a shows the results obtained with the primal-primal approximation,
while Fig. 5.19b shows the analogous results for the mixed-primal method. Each
plot consists of four lines: every line shows the behaviour of the energy norm of the
error for a different polynomial degree in the bulk (we consider uniform polynomial
degrees pE = 1, 2, 3, 4 for all E ∈ Th). For the fracture problem we always choose
a uniform quadratic polynomial degree, i.e., kF = 2 for all F ∈ �h . For both the (PP)
and (MP) method the theoretical convergence rates are clearly obtained, coinciding
with min(pE , pF ). In particular, the convergence rate is equal to 1 in the linear case,
i.e., when pE = 1 for all E ∈ Th , and it is equal to 2 in all the other cases, since the
approximation of the fracture problem is always quadratic. Note also that the (PP)
and (MP) methods achieve the same level of accuracy.

5.5.4.2 Example 2: Immersed Fractures

Wenow investigate the capability of our discretizationmethods to dealwith immersed
fractures. To this end, we take as a reference [4], where themathematical model [118]
is extended to fully immersed fractures. In particular, we supplement Eqs. (5.61) with
a condition prescribing the behaviour of the fluid at the fracture tips immersed in the
porous medium. As in [4], we impose that ντ

�∇τ p� · τ = 0 on ∂� \ ∂�, i.e., that the
mass transfer across the immersed tips can be neglected.
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Fig. 5.19 Example 1 (Sect. 5.5.4.1). Computed errors as a function of 1/h (loglog scale) and
expected convergence rates for uniform bulk polynomial degrees pE = 1, 2, 3, 4 for all E ∈ Th
and fixed uniform fracture polynomial degree pF = 2 for all F ∈ �h . Case Primal-Primal on the
left and Mixed-Primal on the right

We employ again the paradigmatic primal-primal and mixed-primal approxima-
tion schemes to reproduce some numerical experiments already proposed in [4]. We
consider the computational domain � = (0, 1)2 cut by four partially immersed frac-
tures, namely �1 = {(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.2}, �2 = {(x, y) ∈ (0, 1)2 :
x ≤ 0.7, y = 0.4},�3={(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.6},�4={(x, y) ∈ (0, 1)2 :
x ≤ 0.7, y = 0.8}. The fractures �2 and �4 are impermeable (ντ

� = νn
� = 10−2),

while �1 and �3 are partially permeable (νn
� = 10−2, ντ

� ∈ {100, 1}). With the aim
of investigating the dependence of the flow on the physical properties of the frac-
tures, we consider two different configurations (A and B), by varying the value of
the permeability ντ

� on the partially permeable fractures �1 and �3 and the bound-
ary conditions as illustrated in Fig. 5.20. At the extremities of the fractures that are
non-immersed, i.e., ∂� ∩ ∂�, we impose boundary conditions that are consistent
with those imposed on ∂� at that point. In both cases we consider an isotropic bulk
permeability tensor, i.e., ν = I and we assume that all the fractures have aperture
�� = 0.01. Moreover, we take the forcing terms f = f� = 0, so that the flow is only
generated by the boundary conditions. Finally, we choose the parameter ξ = 0.55.
Our results have been obtained with Cartesian grids aligned with the fractures, con-
sisting of 26243 elements; this is approximately the same as in [4]. We remark that
each immersed fracture tips coincides with a mesh vertex (in the case when the
fracture ends at an edge of an element, the tip is considered as an additional vertex
for the quadrilateral, which then becomes a pentagon). For both the (PP) and (MP)
approximations we choose uniform linear polynomial degrees for both the bulk and
fracture problems. In Fig. 5.21 we show the results obtained with the (PP) and (MP)
methods for configuration A; in Fig. 5.22 we show analogous results for the config-
uration B. In particular, in both figures, we report the pressure field in the bulk with
the streamlines of the velocity (left), the value of the bulk pressure along the line
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Fig. 5.20 Example 2 (Sect. 5.5.4.2). Immersed fractures: configurations and boundary condition
for the test cases A and B

Fig. 5.21 Example 2 (Sect. 5.5.4.2). Immersed fractures; configuration A, primal-primal approxi-
mation (top) and mixed-primal approximation (bottom)

x = 0.65 (middle) and the pressure field inside the four fractures (right). The top
line of each figure encloses the results obtained with the (PP) approximation, while
the bottom line presents those obtained with the (MP) method. For both the (PP) and
(MP) schemes, our results are in perfect agreement with those obtained in [4], thus
showing that our approximation schemes can be easily extended to the treatment of
more complex situations. Moreover, for this example, we observe that the (PP) and
(MP) methods deliver the same level of accuracy.
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Fig. 5.22 Example 2 (Sect. 5.5.4.2). Immersed fractures; configuration B, primal-primal approxi-
mation (top) and mixed-primal approximation (bottom)

5.5.4.3 Example 3: Network of Intersecting Fractures

We conclude with a test case, already presented in [14], that aims at investigating the
capability of our method for dealing with a network of intersecting fractures, which
is also totally immersed in the bulk domain. In order to proceed, we need to comple-
ment our mathematical model (5.61) with some conditions at the intersection points,
prescribing the behaviour of the fluid. In particular, we impose pressure continuity
and flux conservation, as in [49, 56, 96]. At the immersed tips we impose the no flux
condition ντ

�∇τ p� · τ = 0 as above. We also mention that this numerical experiment
was first presented in [18] employing the mimetic finite difference method. Here, we
employ a suitable modification of the primal-primal scheme, which is able to han-
dle intersecting fractures by virtue of an appropriate definition of jump and average
operators at the intersection points. We refer to [15] for a detailed analysis of this
scheme.

In the numerical simulations, we consider the bulk domain � = (0, 1)2 and the
network made of 10 intersecting fractures that is shown in Fig. 5.23a.

We impose homogeneous Dirichlet boundary conditions on the whole ∂� and
define the source terms in the bulk and in the fracture as

f (x, y) =
{
10 if (x − 0.1)2 + (y − 0.1)2 ≤ 0.04,

−10 if (x − 0.9)2 + (y − 0.9)2 ≤ 0.04,
f� = 0,
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Fig. 5.23 Example 3 (Sect. 5.5.4.3). Network of intersecting fractures: computational domain (left)
and a sample of the polygonal mesh employed for the computations (right)

Fig. 5.24 Example 3 (Sect. 5.5.4.3). Network of intersecting fractures: discrete pressure in the
bulk for the three test cases, no fractures (left), permeable network ντ

� = νn� = 1000 (middle),
impermeable network ντ

� = νn� = 0.001 (right)

respectively. We note that the source term in the bulk is defined so that a source
is present in the lower left corner of the domain and a sink in its top right cor-
ner. We assume that the porous medium in the bulk is isotropic and homogeneous,
i.e., ν = Id. With the aim of testing the behaviour of the bulk pressure depending
on the permeability properties of the fracture network, we consider three different
configurations:

1. No fractures are present in the porous medium;
2. Permeable network: all the fractures have high permeability properties with

ντ
� = νn

� = 1000 and constant thickness �� = 0.01;
3. Impermeable network: all the fractures have blocking properties with ντ

� =
νn

� = 0.001 and constant thickness �� = 0.01.
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In Fig. 5.23b we show a detail of the polygonal mesh conforming to the fracture
network that we employed for the simulations. The discrete pressures for the problem
in the bulk, obtainedwith the primal-primal approximation, in the three cases outlined
above, are presented in Fig. 5.24. In particular, one may observe that, when the
network is permeable, the bulk pressure is only marginally affected by the presence
of the fractures, so that it reachesmaximumandminimumvalues that are only slightly
lower than those of the non-fractured case (see the comparison between Fig. 5.24a
and Fig. 5.24b). In contrast, in the impermeable case, jumps of the bulk pressure
across the fractures are clearly observed, cf., Fig. 5.24c. Finally, we note that our
results are in good agreement with those obtained in [96].

5.6 Conclusions

In this work we have provided a comprehensive review of the current development of
PolyDG methods for geophysical applications, addressing as paradigmatic applica-
tions the numericalmodeling of seismicwave propagation and fracture reservoir sim-
ulations. After having recalled the theoretical background of the analysis of PolyDG
methods (cf. Section5.2), in Sect. 5.3we discussed the issue of efficiently implement-
ing DG methods on polytopic meshes, addressing in detail the issue of numerical
quadrature and recalling the main results contained in [22], where a new quadrature
free algorithm for the numerical evaluation of the integrals required to assemble the
mass and stiffness matrices has been proposed. More precisely, a cubature method,
which does not require the definition of a set of nodes and weights on the domain
of integration, and allows for the exact integration of polynomial functions based
on evaluating the integrand only at the vertices of the polytopic integration domain,
is presented and tested in both two- and three-dimensions. This approach shows a
remarkable gain in terms of CPU time with respect to classical quadrature rules,
while maintaining the same degree of accuracy. In Sect. 5.4 we presented PolyDG
methods for the approximate solution of the elastodynamics equations on compu-
tational meshes consisting of polytopic elements. We analysed the well-posedness
of the numerical formulation and proved hp-version a priori error estimates for the
semi-discrete scheme. The fully discretemethod is then obtained based on employing
the leap-frog scheme for the time discretization. To test the numerical performance
and fully exploit the flexibility in the process of mesh design offered by polytopic
elements numerical experiments have been presented. Section5.5 focused on the
problem of modeling the flow in a fractured porous medium. For ease of presenta-
tion and analysis we have assumed the medium to be cut by a single non-immersed
fracture and have reviewed the unified development and analysis of PolyDGmethods
for this class of problems. These error bounds have been validated through numerical
tests. Moreover, we have demonstrated that our approach can be extended to handle
networks of partially immersed fractures and networks of intersecting fractures, cf.
[15]. To conclude we mention that the current developments of PolyDG methods,
not discussed here for the sake of brevity, include the exploitation of agglomeration-
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based algorithms to designmultilevel andmultigridmethods for the efficient iterative
solution of the (linear) system of equations stemming from the PolyDG discretiza-
tion. Indeed, multigrid/multilevel solvers require the definition of a succession of
coarse grids, based on the original ‘fine’ grid. The process of defining the coarser
grids involves what is called agglomeration, i.e., the combination of several nodes
or control volumes or coefficients from the original grid. In this context, the flexi-
bility offered by polytopic grids can be fully exploited. Some pioneering works on
the analysis of agglomeration-based multigrid/multilevel solvers and precondition-
ers can be found in [21, 23, 30]; cf. also the classical approach based on a sequence
of simplicial/quadrilateral meshes [31].
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Chapter 6
A Hybrid High-Order Method
for Multiple-Network Poroelasticity

Lorenzo Botti, Michele Botti, and Daniele A. Di Pietro

Abstract We develop Hybrid High-Order methods for multiple-network poroelas-
ticity, modelling seepage through deformable fissured porous media. The proposed
methods are designed to support general polygonal and polyhedral elements. This is
a crucial feature in geological modelling, where the need for general elements arises,
e.g., due to the presence of fracture and faults, to the onset of degenerate elements
to account for compaction or erosion, or when nonconforming mesh adaptation is
performed. We use as a starting point a mixed weak formulation where an additional
total pressure variable is added, that ensures the fulfilment of a discrete inf-sup con-
dition. A complete theoretical analysis is performed, and the results are demonstrated
on a panel of numerical tests.
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6.1 Introduction

In this work, we develop and analyse Hybrid High-Order (HHO) methods for the
multiple-network poroelastic problem.

In the standard quasi-static poroelasticity theory [18], the medium is modelled
as a continuous superposition of solid and fluid phases. The corresponding set of
equations, named after Biot in recognition of his pioneering contributions [7, 8],
result from the balances of force and mass. Specifically, mechanical equilibrium is
assumed, with the total stress tensor decomposed into one contribution due to the
strain of the porous matrix and one due to the pore pressure; see [32]. A standard
description of the flow, on the other hand, is obtained combining the mass balance
with the Darcy law. This simplified description can fail to capture physically relevant
phenomena in fissured media. A modification of the Darcy model accounting for
the simultaneous presence of pore and fissure networks was originally proposed by
Barenblatt et al. in [4] for the rigid case. Plugging this description into the Biot model
gives raise to the so-called Barenblatt–Biot equations. These ideas can be naturally
extended to M porous networks, finding applications, e.g., in the modelling of the
interactions between biological fluids and tissue; see, e.g, [33]. A different extension
of the Biot model is considered in Chap. 4, where thermal effects are incorporated
into a single network model.

In the context of computational geosciences, the use of discretisation methods
that support general polytopal meshes and, possibly, high-order has been recently
advocated by several authors; see, e.g., [2, 3, 6, 15–17, 27, 31] and references therein.
The support of polyhedral meshes enables, e.g., a seamless treatment of degenerate
elements which may arise due to erosion or compaction in corner-point descriptions
of petroleum basins, of non-matching interfaces across fractures or faults, and of
non-conforming mesh refinement or agglomeration [5]. High-order methods, on the
other hand, typically lead to a better usage of computational resources than low-
order methods whenever the solution exhibits sufficient (local) regularity or mesh
adaptation is available.

Our focus is here on a specific family of polytopal discretisations, HHOmethods.
Originally introduced in [23] in the context of linear elasticity, HHOmethods rely on
two key ingredients: local reconstructions obtained by solving small, embarrassingly
parallel problems inside each element and stabilisation terms that penalise, inside
each element, residuals designed so as to preserve optimal approximation properties.
A general and up-to-date overview of HHO methods can be found in the recent
monograph [22]. Hybrid High-Order methods are linked to the hybridized version
of the Mixed Virtual Element methods considered in Chaps. 7 and 8; see [1, 24] and
also [22, Sects. 5.4 and 5.5]. Concerning their application to poroelasticity, we can
cite, in particular: the HHO-Discontinuous Galerkin method for the Biot problem
proposed and analysed in [9], based in turn on the methods of [23] for the mechanics
and [25] for the flow; its extension to nonlinear elastic laws proposed in [14], where
the mechanical term is discretised according to [13]; its application to the treatment
of stochastic coefficients considered in [12] in conjunction with Polynomial Chaos

http://dx.doi.org/10.1007/978-3-030-69363-3_4
http://dx.doi.org/10.1007/978-3-030-69363-3_7
http://dx.doi.org/10.1007/978-3-030-69363-3_8
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techniques. An abstract analysis framework covering general schemes for the linear
Biot problem in fully discrete formulation (cf. [20]) has been recently proposed in [10]
including, in particular, a variation of the method of [9] where also the flow equation
is discretised in the HHO spirit. Other applications of HHO methods to problems
in geosciences include flows in fractured porous media [16, 17] and miscible fluid
flows in porous media [2].

The method proposed in the present work uses as a starting point a mixed formu-
lation inspired by [30], where an additional total pressure variable is introduced that
accounts for the pore and mechanical pressures. Given an integer polynomial degree
k ≥ 0, the discretisation of the mechanical term in the equilibrium equation follows
[13] if k ≥ 1 and [12] if k = 0. This choice induces a natural discretisation for the
total pressure in the space of broken polynomials of total degree ≤k, which ensures
inf-sup stability. As it has been done in [10], we consider two different discretisations
of theDarcy term in themass balance equations (enforcingmass conservation in each
pore network). The first scheme is based on the HHOmethod of [26], so the discrete
unknowns for the pore pressures are located both at elements and faces. The second
scheme is obtained by using the Discontinuous Galerkin (DG) method of [25]. In
both cases, the linear exchange terms as well as the porosity are discretised using
element unknowns only. The resulting methods have several appealing features: they
support general polytopal meshes and high-order; they can be applied to an arbitrary
number M ≥ 1 of pore networks; they are well-behaved for quasi-incompressible
porous matrices; they deliver an L2-error estimate for the total pressure robust in the
entire range of geophysical parameters.

From the practical standpoint, a relevant difference between the two schemes is
that the HHO-HHO version can benefit from static condensation, leading to linear
systems where the only globally coupled unknowns are displacement and pore pres-
sure at faces, and global pressures at elements. On typical meshes, this results in
fewer unknowns compared to the HHO-DG scheme and better computational effi-
ciency, particularly in three space dimensions; see, e.g., the numerical tests onmeshes
with planar faces in [11]. On the other hand, the HHO-DG scheme may be easier to
implement, as it does not require the introduction of pore pressures at faces, nor the
computation of local pore pressure reconstructions or static condensation. From the
theoretical point of view, the analysis of the HHO-DG scheme requires elliptic reg-
ularity (in Theorem 6.2, the convexity of the domain is assumed) to achieve optimal
orders of convergence. As pointed out in [10], this is not the case for the HHO-HHO
scheme. In this paper, we focus on the HHO-DG scheme for the numerical tests of
Sect. 6.5, and postpone a comparison with the HHO-HHO scheme to a future work.

The rest of this paper is organised as follows. In Sect. 6.2 we establish the con-
tinuous setting and state the multiple-network poroelasticity problem in weak for-
mulation. Section 6.3 describes the discrete setting and contains the statement of the
discrete problem. The analysis of the method is carried out in Sect. 6.4 focusing,
for the sake of simplicity, on the HHO-HHO variant. The pivotal result is here an a
priori estimate for an abstract problem whose purpose is twofold: when applied to
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the HHO scheme, it yields its well-posedness; when applied to the error equations,
it establishes a basic error estimate. Finally, Sect. 6.5 contains a thorough numerical
validation of the method.

6.2 Continuous Setting

In what follows, given an open bounded set X ⊂ R
d , we denote by (·, ·)X the usual

scalar product of L2(X;R), L2(X;Rd), or L2(X;Rd×d), according to the context.
When X = �, the subscript is omitted. Given a vector space V and two real numbers
a < b, we additionally denote by C0([a, b]; V ) the spaces of continuous V -valued
functions of time on [a, b] and by Hm(a, b; V ) the space of V -valued functions that
are square-integrable along with their derivatives up to the m-th on (a, b), equipped
with the usual norms.

We consider the evolution over a finite time tF > 0 of a porous medium which, in
its reference configuration, occupies a fixed region of space � ⊂ R

d , d ∈ {2, 3}, and
hostsM ≥ 1 pore networks. For the sake of simplicity, we assume that� is a polygon
or a polyhedron, so that it can be covered exactly by a spatial meshmade of polygonal
or polyhedral elements. Denote by μ > 0 and λ ≥ 0 the Lamé parameters of the
matrix and, for any i ∈ �1, M�, by Ci ≥ 0, αi ∈ (0, 1], and Ki > 0, respectively,
the constrained specific storage, Biot–Willis, and permeability coefficients of each
network. We additionally denote by f ∈ H 1(0, tF; L2(�;Rd)) a volumetric force
and, for any i ∈ �1, M�, by gi ∈ C0([0, tF]; L2(�;R)) a source term for the i th
pore network. The above physical parameters and forcing terms will be collectively
referred to as the problem data.

LetU := H 1
0 (�;Rd), P0 := {

q ∈ L2(�;R) : ∫
�
q = 0

}
, and, for all i ∈ �1, M�,

Pi := H 1
0 (�;R). We also set, for the sake of brevity, α := (1, α1, . . . , αM) ∈ R

M+1

and, denoting by p0 the total pressure field and, for any i ∈ �1, M�, by pi the pressure
field in the i th porous network, p := (p0, p1, . . . , pM). We consider a weak formula-
tion inspiredby (but not coincidentwith) the one considered in [30]: Find the displace-
ment u ∈ C0([0, tF];U), the total pressure p0 ∈ H 1(0, tF; P0) and, for all i ∈ �1, M�,
the i th pore network pressure pi ∈ C0([0, tF]; Pi ) ∩ H 1(0, tF; L2(�;R)) such that it
holds, for almost every t ∈ (0, tF], all v ∈ U , all q0 ∈ P0, and all qi ∈ Pi , i ∈ �1, M�,

2μ a(u(t), v) + b(v, p0(t)) = ( f (t), v) (6.1a)

b(u(t), q0) − λ−1(α· p, q0) = 0, (6.1b)

(dtψi ( p(t)), qi ) + (Si ( p(t)), qi ) + Ki c(pi , qi ) = (gi (t), qi ) ∀i ∈ �1, M�, (6.1c)

where we have set, for all i ∈ �1, M� and all q ∈ R
M+1,

ψi (q) :=Ciqi + αiλ
−1α·q, (6.2)
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and we have introduced the bilinear forms a : U × U → R, b : U × P0 → R, and
c : H 1(�;R) × H 1(�;R) → R such that, for allw, v ∈ U , allq0 ∈ P0, and all r, q ∈
H 1(�;R),

a(w, v) := (∇sw,∇sv), b(v, q0) := (∇·v, q0), c(r, q) := (∇r,∇q). (6.3)

In the expression of the bilinear form a,∇s denotes the symmetric part of the gradient
applied to vector fields. In (6.1b), the exchange term is expressed by the function
Si : RM+1 → R such that, for any q ∈ R

M+1,

Si (q) :=
M∑

j=1

ξi← j (qi − qj ),

where
{
ξi← j : i, j ∈ �1, M�

}
is a family of nonnegative real numbers such that

ξi← j = ξj←i for all i, j ∈ �1, M�. We assume that the initial pressures p0i ∈ Pi ,
i ∈ �0, M�, are given, so that an initial equilibrium displacement u0 ∈ U can be
computed from (6.1a).

6.3 Discrete Setting

6.3.1 Space and Time Meshes

We consider spatial meshes corresponding to couples Mh := (Th,Fh), where Th is
a finite collection of polyhedral elements such that h := maxT∈Th hT > 0 with hT

denoting the diameter of T , whileFh is a finite collection of planar faces. It is assumed
henceforth that the meshMh matches the geometrical requirements detailed in [22,
Definition 1.4]. This covers, essentially, any reasonable partition of� into polyhedral
sets, not necessarily convex.

For every mesh element T ∈ Th , we denote byFT the subset ofFh containing the
faces that lie on the boundary ∂T of T . For any mesh element T ∈ Th and each face
F ∈ FT , nT F is the constant unit vector normal to F pointing out of T . Boundary
faces lying on ∂� and internal faces contained in � are collected in the sets Fb

h and
F i

h , respectively. For any F ∈ F i
h , we denote by T1 and T2 the elements of Th such

that F ⊂ ∂T1 ∩ ∂T2. The numbering of T1 and T2 is arbitrary but fixed once and for
all, and we set nF := nT1F .

Our focus being on the h-convergence analysis, we consider a sequence of refined
polygonal or polyhedralmeshes that is regular in the sense of [22,Definition1.9]. This
implies, in particular, that the diameter hT of a mesh element T ∈ Th is comparable
to the diameter hF of each face F ∈ FT uniformly in h, and that the number of faces
in FT is bounded above by an integer N∂ independent of h; see [22, Lemma 1.12].
In order to have the stability of the bilinear form discretising the mechanical term
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when discrete unknowns are polynomials of degree k ≥ 1, we will further assume
that every element T ∈ Th is star-shaped with respect to every point of a ball of
diameter uniformly comparable to hT . This assumption ensures, in particular, that
uniform local Korn inequalities hold inside each element; cf. the Appendix of [11]
and also [22, Chap. 7].

The time mesh is obtained subdividing [0, tF] into N ∈ N
∗ uniform subintervals.

We introduce the timestep τ := tF/N and the discrete times tn := nτ , n ∈ �0, N�.
For all n ∈ �1, N� and all ϕ ∈ C0([0, tF]; V ) we let, for the sake of brevity,

ϕn := ϕ(tn)

and define the discrete backward time derivative operator δnt : C0([0, tF]; V ) → V
at time n as

δnt ϕ := ϕn − ϕn−1

τ
. (6.4)

Denoting by (·, ·)V an inner product in V with associated norm ‖·‖V , and letting
ϕ ∈ H 1(0, tF; V ), it holds

N∑

n=1

τ‖δnt ϕ‖2V ≤ ‖ϕ‖2H 1(0,tF;V ). (6.5)

6.3.2 Local and Broken Spaces and Projectors

Let a polynomial degree l ≥ 0 be fixed. For all X ∈ Th ∪ Fh , denote by Pl(X;R) the
space spanned by the restriction to X of d-variate polynomials of total degree ≤ l,
and let π l

X : L1(X;R) → P
l(X;R) be the corresponding L2-orthogonal projector

such that, for any v ∈ L1(X;R),

(π l
X v − v,w)X = 0 ∀w ∈ P

l(X;R).

Denoting by m ≥ 1 an integer, the vector version π l
X : L1(X;Rm) → P

l(X;Rm),
is obtained applying π l

X component-wise. We will also need, in what follows, the
space of d × d symmetric matrix-valued fields with polynomial entries, denoted by
P
l(T ;Rd×d

sym ).
At the global level, we introduce the broken polynomial space

P
l(Th;R) := {

v ∈ L1(�;R) : v|T ∈ P
l(T ;R) ∀T ∈ Th

}
,

the corresponding vector version P
l(Th;Rd), and the space Pl(Th;Rd×d

sym ) of d × d
symmetric matrix-valued fields with broken polynomial entries. The L2-orthogonal
projector onPl(Th;R) isπ l

h : L1(�;R) → P
l(Th;R) such that, for all v ∈ L1(�;R),
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(π l
hv)|T = π l

T v|T ∀T ∈ Th . (6.6)

Broken polynomial spaces constitute special instances of the broken Sobolev
spaces Hm(Th;R) := {

v ∈ L2(�;R) : v|T ∈ Hm(T ;R) ∀T ∈ Th
}
, which will be

used, along with their vector-valued counterparts, to express the regularity require-
ments on the exact solution in the error estimate of Theorems 6.1 and 6.2. For any
function v ∈ H 1(Th;R) we define, for all F ∈ F i

h , the jump operator such that

[v]F := v|T1 − v|T2 ,

where we remind the reader that T1 and T2 are the mesh elements that share F as
a face, taken in an arbitrary but fixed order. On boundary faces, the jump operator
simply returns the trace of its argument on ∂�.

6.3.3 Discrete Spaces and Reconstructions

To formulate the discrete problem, we need scalar and vector HHO spaces. From this
point on, we let an integer k ≥ 0 be fixed, corresponding to the polynomial degrees
of the discrete unknowns.

6.3.3.1 Scalar HHO Space and Pressure Reconstruction

The scalar HHO space, that will be used to discretise network pressures in the HHO-
HHO scheme (6.23), is

Qk
h
:=

{
q
h

= ((qT )T∈Th , (qF )F∈Fh ) :
qT ∈ P

k(T ;R) for all T ∈ Th and qF ∈ P
k(F;R) for all F ∈ Fh

}
.

The interpolator I kh : H 1(�;R) → Qk
h
is defined setting, for all q ∈ H 1(�;R),

I khq := (
(π k

T q|T )T∈Th , (π
k
Fq|F )F∈Fh

)
.

For all q
h

∈ Qk
h
, we define the broken polynomial function qh ∈ P

k(Th;R) obtained
patching element unknowns, that is,

(qh)|T := qT ∀T ∈ Th .

For any element T ∈ Th , we denote by Qk
T
the restriction of Qk

h
to T , andwe introduce

the pressure reconstruction rk+1
T : qk

T
→ P

k+1(T ;R) such that, for all q
T

∈ Qk
T
,
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(∇rk+1
T q

T
,∇w)T = −(qT ,�w)T +

∑

F∈FT

(qF ,∇w·nT F )F ∀w ∈ P
k+1(T ;R),

∫

T
rk+1
T q

T
=

∫

T
qT .

The global pressure reconstruction operator rk+1
h : Qk

h
→ P

k+1(Th;R) is obtained

patching the local ones: For all q
h

∈ Qk
h
,

(rk+1
h q

h
)|T := rk+1

T q
T

∀T ∈ Th .

6.3.3.2 Vector HHO Space, Strain, and Displacement Reconstructions

The vector HHO space, that will be used to discretise the displacement, is

V k
h :=

{
vh = ((vT )T∈Th , (vF )F∈Fh ) :

vT ∈ P
k(T ;Rd) for all T ∈ Th and vF ∈ P

k(F;Rd) for all F ∈ Fh

}
.

For all vh ∈ V k
h , we let vh ∈ P

k(Th;Rd) be such that

(vh)|T := vT ∀T ∈ Th .

The interpolator I kh : H 1(�;Rd) → V k
h is such that, for any v ∈ H 1(�;Rd),

I khv := (
(π k

T v|T )T∈Th , (π
k
Fv|F )F∈Fh

)
.

For any element T ∈ Th , we denote by V k
T the restriction of V k

h to T andwe introduce
the strain reconstruction Ek

T : V k
T → P

k(T ;Rd×d
sym ) such that, for all vT ∈ V k

T ,

(Ek
T vT , τ )T = −(vT ,∇·τ )T +

∑

F∈FT

(vF , τnT F )F ∀τ ∈ P
k(T ;Rd×d

sym ).

For any vT ∈ V k
T , we reconstruct from Ek

T vT a high-order displacement rk+1
T vT ∈

P
k+1(T ;Rd) enforcing the following conditions:

(∇srk+1
T vT − Ek

T vT ,∇sw)T = 0 ∀w ∈ P
k+1(T ;Rd),

∫

T
rk+1
T vT =

∫

T
vT , and

∫

T
∇ssrk+1

T vT = 1

2

∑

F∈FT

∫

F
(vF ⊗ nT F − nT F ⊗ vF ),

where ∇ss denotes the skew-symmetric part of the gradient applied to vector fields.
The global strain and displacement reconstructions Ek

h : V k
h → P

k(Th;Rd×d
sym ) and
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rk+1
h : V k

h → P
k+1(Th;Rd) are obtained setting, for all vh ∈ V k

h ,

(Ek
hvh)|T := Ek

T vT and (rk+1
h vh)|T := rk+1

T vT for all T ∈ Th .

We also define a global divergence reconstruction Dk
h : V k

h → P
k(Th;R) as the trace

of Ek
h , that is, for all vh ∈ V k

h ,

Dk
hvh := tr(Ek

hvh).

6.3.3.3 Displacement and Pressure Spaces

The discrete spaces for the displacement including the strongly enforced homoge-
neous boundary conditions and for the total pressure including the zero-average
condition are, respectively:

Uk
h := {

vh ∈ V k
h : vF = 0 for all F ∈ Fb

h

}
and Pk

h,0 :=P
k(Th;R) ∩ P0,

with P0 defined in Sect. 6.2. When using the HHO method for the discretisation of
the flow equations, for any i ∈ �1, M�, the space for the i th network pressure is

Pk
h,i := Qk

h,D
with Qk

h,D
:=

{
q
h

∈ Qk
h

: qF = 0 for all F ∈ Fb
h

}
,

while, when using the DG method, we use instead

Pk
h,i :=P

k(Th;R).

6.3.4 Discrete Bilinear Forms

We discuss in this section the approximation of the continuous bilinear forms defined
in (6.3). In order to alleviate the exposition, from this point on we use the abridged
notation a � b for the inequality a ≤ Cb with real number C > 0 independent of
the meshsize, the time step and, for local inequalities, on the mesh element or face.
Further dependencies of the hidden constant will be specified when appropriate.

6.3.4.1 Mechanical Term

The discrete counterpart of the continuous bilinear form a is ah : V k
h × V k

h → R

such that, for all wh, vh ∈ V k
h ,
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ah(wh, vh) :=
{

(Ek
hwh, Ek

hvh) + sa,h(wh, vh) if k ≥ 1,

(E0
hwh, E0

hvh) + sa,h(wh, vh) + jh(r1hwh, r1hvh) if k = 0,

with stabilising bilinear form sa,h : V k
h × V k

h → R and jump penalisation bilinear
form jh : H 1(Th;Rd) × H 1(Th;Rd) → R such that

sa,h(wh, vh) :=
∑

T∈Th

∑

F∈FT

h−1
F (δkT FwT , δkT FvT )F ∀wh, vh ∈ V k

h,

jh(w, v) :=
∑

F∈Fh

h−1
F ([w]F , [v]F )F ∀w, v ∈ H 1(Th;Rd),

where, for all T ∈ Th and all F ∈ FT , δ
k
T FvT :=πk

F (rk+1
T vT − vF ) − πk

T (rk+1
T vT − vT ).

A discussion on the case k = 0, including a justification of the term involving the
bilinear form jh , can be found in [12]; see also [22, Sect. 7.6].

Following [22, Chap. 7], the bilinear form ah defines an inner product on Uk
h ,

and we denote by ‖·‖a,h the induced norm. The corresponding dual norm ‖·‖a,h,∗ is
defined such that, for any linear form 
h : U k

h → R,

‖
h‖a,h,∗ := sup
vh∈Uk

h\{0}


h(vh)
‖vh‖a,h

. (6.7)

The following consistency property holds: For all w ∈ U ∩ Hk+2(Th;Rd),

‖Ea,h(w; ·)‖a,h,∗ � hk+1|w|Hk+2(Th ;Rd ), (6.8)

where the hidden constant is independent of both h and w and the consistency error
linear form Ea,h(w; ·) : Uk

h → R is such that, for all vh ∈ Uk
h ,

Ea,h(w; vh) := − (∇·∇sw, vh) − ah(I khw, vh). (6.9)

We additionally have the following discrete Korn–Poincaré inequality:

‖vh‖L2(�;Rd ) ≤ CK‖vh‖a,h ∀vh ∈ Uk
h, (6.10)

where the real number CK > 0 is independent of h, but possibly depends on �, d,
k, and the mesh regularity parameter. In the case k ≥ 1, this inequality results from
[22, Eq. (7.75) with 2μ = 1 and λ = 0 together with Remark 7.26] whereas, in the
case k = 0, it is a consequence of [22, Eq. (7.109) with λ = 0 and Remark 7.26].
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6.3.4.2 Pressure–Displacement Coupling

The coupling between the total pressure and the displacement is realised by means of
the bilinear form bh : V k

h × P
k(Th;R) such that, for all (vh, qh) ∈ V k

h × P
k(Th;R),

bh(vh, qh) := (Dk
hvh, qh).

The following inf-sup condition holds: There is a real number β > 0 independent of
h, but possibly depending on �, d, k, and the mesh regularity parameter, such that

β‖qh‖L2(�;R) ≤ ‖bh(·, qh)‖a,h,∗ ∀qh ∈ Pk
h,0. (6.11)

Moreover, we have the following consistency properties: For all v ∈ U ,

bh(I khv, qh) = b(v, qh) ∀qh ∈ Pk
h,0 (6.12)

and, for all q ∈ H 1(�;R) ∩ Hk+1(Th;R),

‖Eb,h(q; ·)‖a,h,∗ � hk+1|q|Hk+1(Th ;R), (6.13)

where the hidden constant is independent of both h and q and the consistency error
linear form Eb,h(q; ·) : U k

h → R is such that, for all vh ∈ Uk
h ,

Eb,h(q; vh) := − (∇q, vh) − bh(vh, π
k
h q). (6.14)

6.3.4.3 HHO Discretisaton of the Darcy Term

Denote by ∇h the broken gradient acting element-wise. The Darcy bilinear form c
is approximated by chhoh : Qk

h
× Qk

h
→ R such that, for all rh, qh

∈ Qk
h
,

chhoh (rh, qh
) := (∇hrk+1

h rh,∇hrk+1
h q

h
) + sc,h(rh, qh

),

with stabilising bilinear form

sc,h(rh, qh
) :=

∑

T∈Th

∑

F∈FT

h−1
F (δkT Fr T , δkT FqT

)F ,

where, for all T ∈ Th and all F ∈ FT , δ
k
T FqT := πk

F (rk+1
T q

T
− qF ) − πk

T (rk+1
T q

T
− qT ).

The bilinear form chhoh defines an inner product on Qk
h,D

as a consequence of [22,
Eq. (2.41) and Corollary 2.16], and we denote by ‖·‖c,h,hho the induced norm. The
corresponding dual norm is such that, for any linear form 
h : Qk

h,D
→ R,
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‖
h‖c,h,∗ := sup
q
h
∈Qk

h,D
\{0}


h(qh
)

‖q
h
‖c,h,hho

. (6.15)

It follows from [22, Eq. (2.42)] that, for all r ∈ H 1
0 (�;R) ∩ Hk+2(Th;R) such that

�r ∈ L2(�;R),

‖Ehho
c,h (r; ·)‖c,h,∗ � hk+1|r |Hk+2(Th ;R), (6.16)

where the hidden constant is independent of both h and r , and the consistency error
linear form Ehho

c,h (r; ·) : Qk
h,D

→ R is such that, for all q
h

∈ Qk
h,D

,

Ehho
c,h (r; q

h
) := − (�r, qh) − chhoh (I khr, qh

). (6.17)

The following discrete Poincaré inequality results combining [22, Lemma 2.15 and
Eq. (2.41)]: For all q

h
∈ Qk

h,D
,

‖qh‖L2(�;R) ≤ CP‖qh
‖c,h,hho, (6.18)

with real number CP > 0 independent of h and q
h
, but possibly depending on �, d,

k, and the mesh regularity parameter.

6.3.4.4 DG Discretisation of the Darcy Term

For the DG approximation of the Darcy operator we need to assume k ≥ 1 to have
consistency. Let the normal trace average operator be defined such that, for all ψ ∈
H 1(Th;Rd) and all F ∈ F i

h shared by the mesh elements T1 and T2,

{ψ · n}F := 1

2

(
ψ |T1 + ψ |T2

)
|F · nF .

The DG method hinges on the bilinear form cdgh : Pk(Th;R) × P
k(Th;R) → R such

that, for all rh, qh ∈ P
k(Th;R),

cdgh (rh, qh) := (∇hrh,∇hqh) +
∑

F∈Fh

η

hF
([rh]F , [qh]F )F

−
∑

F∈Fh

[
([rh]F , {∇hqh · n}F )F + ({∇hrh · n}F , [qh]F )F

]
,

(6.19)

where the stabilisation parameter η > 0 is chosen large enough to ensure coercivity
with respect to the norm ‖·‖c,h,dg defined such that, for all qh ∈ P

k(Th;R),
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‖qh‖c,h,dg :=
⎛

⎝‖∇hqh‖2L2(�;Rd ) +
∑

F∈Fh

h−1
F ‖[qh]F‖2L2(F)

⎞

⎠

1
2

.

Let r ∈ H 1
0 (�,R) be such that �r ∈ L2(�,R), and consider the elliptic projection

problem that consists in finding rh ∈ P
k(Th;R) such that

cdgh (rh, qh) = −(�r, qh)L2(�) ∀qh ∈ P
k(Th,R). (6.20)

It is inferred from [21, Appendix A] that, if � is convex and r ∈ Hm+1(Th,R) for
some m ∈ {0, . . . , k}, it holds

‖rh − r‖L2(�) + h‖rh − r‖c,h,dg � hm+1|r |Hm+1(Th), (6.21)

with hidden constant independent of h and r .

6.3.5 Discrete Problems

Assume the initial pressures given, and denote by u0 ∈ U the corresponding initial
equilibrum displacement. Enforce the initial condition by setting

u0
h := I khu

0, p0h,i := π k
h p

0
i ∀i ∈ �0, M�. (6.22)

The discrete problem with HHO discretisation of the Darcy term (HHO-HHO
scheme) reads:

Problem 6.1 (HHO-HHO scheme) For n = 1, . . . , N, find un
h ∈ Uk

h, p
n
h,0 ∈ Pk

h,0

and, for all i ∈ �1, M�, pn
h,i

∈ Pk
h,i such that, for all vh ∈ U k

h, all qh,0 ∈ Pk
h,0, and

all q
h,i

∈ Pk
h,i , i ∈ �1, M�,

2μ ah(un
h, vh) + bh(vh, p

n
h,0) = ( f n, vh), (6.23a)

bh(un
h, qh,0) − λ−1(α· pnh, qh,0) = 0, (6.23b)

(δnt ψi ( ph), qh,i ) + (Si ( pnh), qh,i ) + Kic
hho
h (pn

h,i
, q

h,i
) = (gni , qh,i ) ∀i ∈ �1, M�,

(6.23c)

where we have set, for any n ∈ �0, N�, pnh := (pnh,0, p
n
h,1, . . . , p

n
h,M) and we remind

the reader that ψi is defined by (6.2).

The problem resulting from theDG approximation of the flow operator (HHO-DG
scheme) reads:

Problem 6.2 (HHO-DG scheme) For n = 1, . . . , N, find un
h ∈ Uk

h and pnh,0 ∈ Pk
h,0

such that (6.23a)–(6.23b) hold for all vh ∈ U k
h and all qh,0 ∈ Pk

h,0, respectively, and,
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for all i ∈ �1, M�, pnh,i ∈ Pk
h,i such that, for all qh,i ∈ Pk

h,i , i ∈ �1, M�,

(δnt ψi ( ph), qh,i ) + (Si ( pnh), qh,i ) + Kic
dg
h (pnh,i , qh,i ) = (gni , qh,i ) ∀i ∈ �1, M�.

(6.24)

6.4 Convergence Analysis

We carry out a convergence analysis for the methods formulated in Sect. 6.3.5.
For the sake of conciseness, the focus is on the HHO-HHO scheme (6.23). The
modifications needed to adapt the results to the HHO-DG scheme are discussed in
Sect. 6.4.4. A unified analysis covering both HHO-HHO and HHO-DG methods for
the single-network Biot problem can be found in [10].

6.4.1 An Abstract A Priori Estimate

We derive an a priori estimate for an auxiliary problem analogous to (6.23), but with
modified right-hand side. Applied to the discrete problem (6.23), this estimate can
be used to infer its well-posendess. Applied to the error equations (6.50) below, it
gives a basic error estimate.

Problem 6.3 (HHO-HHO scheme with abstract right-hand side) Let the families of
linear forms (
n1 : Uk

h → R)n∈�0,N�, and, for all i ∈ �1, M�, (
n2,i : Pk
h,i → R)n∈�1,N�,

be given. Assumew0
h ∈ Uk

h, r
0
h,0 ∈ Pk

h,0, and, for all i ∈ �1, M�, r0h,i ∈ Pk
h,i also given.

For n = 1, . . . , N, wn
h ∈ Uk

h, r
n
h,0 ∈ Pk

h,0 and, for all i ∈ �1, M�, r nh,i ∈ Pk
h,i are such

that, for all vh ∈ Uk
h, all qh ∈ Pk

h,0, and all q
h,i

∈ Pk
h,i , i ∈ �1, M�,

2μ ah(wn
h, vh) + bh(vh, r

n
h,0) = 
n1(vh), (6.25a)

bh(wn
h, qh,0) − λ−1(α·rnh, qh,0) = 0, (6.25b)

(δnt ψi (rh), qh,i ) + (Si (rnh), qh,i ) + Ki c
hho
h (rnh,i , qh,i

) = 
n2,i (qh,i
) ∀i ∈ �1, M�,

(6.25c)

where, for any n ∈ �0, N�, rnh := (rnh,0, r
n
h,1, . . . , r

n
h,M).

Applying discrete time derivation to (6.25b) we obtain, for all n ∈ �1, N�,

bh(δ
n
t wh, qh,0) − λ−1(α·δnt rh, qh,0) = 0 ∀qh,0 ∈ Pk

h,0. (6.26)

Lemma 6.1 (Abstract a priori estimate) Assuming τ small enough (with threshold
independent of h), the solution to (6.25) satisfies the following a priori estimate:
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max
n∈�1,N�

(

μ‖wn
h‖2a,h + λ−1‖α·rnh‖2L2(�;R) +

M∑

i=1

Ci‖rnh,i‖2L2(�;R)

)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho ≤ exp

(
tF

1 − τ

)
(N
 + N0) , (6.27)

where we have introduced the exchange norm

‖rnh‖2ξ :=
M∑

i=1

M∑

j=1

‖ξi← j (r
n
h,i − rnh, j )‖2L2(�;R)

and we have set

N
 := 1

2μ
max

n∈�1,N�
‖
n1‖2a,h,∗ + 1

μ

N∑

n=1

τ‖δnt 
1‖2a,h,∗ +
M∑

i=1

N∑

n=1

τK−1
i ‖
n2,i‖2c,h,∗,

(6.28a)

N0 := 2‖
01‖a,h,∗‖w0
h‖a,h+2μ‖w0

h‖2a,h+
1

λ
‖α·r0h‖2L2(�;R)+

M∑

i=1

Ci‖r0h,i‖2L2(�;R).

(6.28b)

Moreover, it holds

β2

μ
max

n∈�1,N�
‖rnh,0‖2L2(�;R) ≤ 2

μ
max

n∈�1,N�
‖
n1‖2a,h,∗ + 4β2 exp

(
tF

1 − τ

)
(N
 + N0) .

(6.29)

Proof We start by deriving a basic energy estimate and then, leveraging the discrete
inf-sup condition (6.11), deduce from the latter the estimate on the total pressure.

(i) Basic energy estimate. Let N ∈ �1, N� and n ∈ �1, N�. Taking vh = δnt wh in
(6.25a), qh,0 = −rnh,0 in (6.26), and, for all i ∈ �1, M�, q

h,i
= rnh,i in (6.25c), and

summing the resulting equations we obtain, after expanding δnt ψi (rh) according to
its definition,

2μ ah(wn
h , δnt w

n
h) + λ−1 (α·δnt rnh , α·rnh) +

M∑

i=1

Ci (δnt rh,i , r
n
h,i )

+
M∑

i=1

(Si (r
n
h), rnh,i ) +

M∑

i=1

Ki c
hho
h (rnh,i , r

n
h,i ) = 
n1(δ

n
t wh) +

M∑

i=1


2,i (r
n
h,i ). (6.30)

Denote by Ln = Ln
1 + · · ·Ln

5 and Rn = Rn
1 + Rn

2, respectively, the left- and
right-hand side of the above expression, and set L := ∑N

n=1 τLn and, for i ∈ {1, 2},
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Ri := ∑N
n=1 τRn

i .

(i.A) Lower bound for L. Recalling the definition (6.4) of the discrete time derivative
and using multiple times the formula

x(x − y) = 1

2

(
x2 + (x − y)2 − y2

)
(6.31)

with x = •n and y = •n−1, we can write for the first three terms in Ln

Ln
1 = μ

τ

(‖wn
h‖2a,h + ‖wn

h − wn−1
h ‖2a,h − ‖wn−1

h ‖2a,h
)
,

Ln
2 = 1

2λτ

(
‖α·rnh‖2L2(�;R) + ‖α·(rnh − rn−1

h )‖2L2(�;R) − ‖α·rn−1
h ‖2L2(�;R)

)
,

Ln
3 =

M∑

i=1

Ci

2τ

(
‖rnh,i‖2L2(�;R) + ‖rnh,i − rn−1

h,i ‖2L2(�;R) − ‖rn−1
h,i ‖2L2(�;R)

)
.

(6.32)
For the fourth term, using again (6.31) this time with x = rnh,i and y = rnh, j along
with ξi← j = ξj←i , we get

Ln
4 =

M∑

i=1

M∑

j=1

(ξi← j (r
n
h,i − rnh, j ), r

n
h,i )

= 1

2

M∑

i=1

M∑

j=1

(
‖ξ 1

2
i← j r

n
h,i‖2L2(�;R)+‖ξ 1

2
i← j (r

n
h,i−rnh, j )‖2L2(�;R)−‖ξ 1

2
j←i r

n
h, j‖2L2(�;R)

)

= 1

2

M∑

i=1

M∑

j=1

‖ξ 1
2
i← j (r

n
h,i − rnh, j )‖2L2(�;R) = 1

2
‖rnh‖2ξ .

(6.33)
Multiplying (6.30) by τ , summing over n ∈ �1, N�, using (6.32) and (6.33), and

telescoping out the appropriate summands, we get

μ‖wN
h ‖2a,h + 1

2λ
‖α·rN

h ‖2
L2(�;R)

+
M∑

i=1

Ci

2
‖rN

h,i‖2L2(�;R)
+ 1

2

N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho

≤ R + μ‖w0
h‖2a,h + 1

2λ
‖α·r0h‖2

L2(�;R)
+

M∑

i=1

Ci

2
‖r0h,i‖2L2(�;R)

. (6.34)

(i.B) Upper bound forR. A discrete integration by parts in time gives for the first
term
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R1 = 
N
1 (wN

h ) − 
01(w
0
h) −

N∑

i=1

τ(δnt 
1)(w
n−1
h )

≤ ‖
N
1 ‖a,h,∗‖wN

h ‖a,h + ‖
01‖a,h,∗‖w0
h‖a,h+

N∑

n=1

τμ− 1
2 ‖δnt 
1‖a,h,∗μ

1
2 ‖wn−1

h ‖a,h

≤ 1

4μ
‖
N

1 ‖2a,h,∗ + μ

2
‖wN

h ‖2a,h + ‖
01‖a,h,∗‖w0
h‖a,h

+ 1

2μ

N∑

n=1

τ‖δnt 
1‖2a,h,∗ + μ

2

N∑

n=0

τ‖wn
h‖2a,h,

(6.35)
where we have used multiple times the definition of dual norm (6.7) to pass to the
second line and we have concluded invoking the standard and generalised Young
inequalities and rearranging.

Moving to the second term, we use the definition (6.15) of the dual norm and the
Young inequality to write, for all i ∈ �1, M�,

N∑

n=1

τ
n2,i (r
n
h,i ) ≤

N∑

n=1

τK
− 1

2
i ‖
n2,i‖c,h,∗ K

1
2
i ‖rnh,i‖c,h,hho

≤ 1

2

N∑

n=1

τK−1
i ‖
n2,i‖2c,h,∗ + 1

2

N∑

n=1

τKi‖rnh,i‖2c,h,hho.

Hence, summing over i ∈ �1, M�,

R2 ≤ 1

2

M∑

i=1

N∑

n=1

τK−1
i ‖
n2,i‖2c,h,∗ + 1

2

M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho. (6.36)

Gathering (6.35) and (6.36) and rearranging, we arrive at

R ≤ μ

2
‖wN

h ‖2a,h + 1

2

M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho + μ

2

N∑

n=0

τ‖wn
h‖2a,h

+ 1

4μ
‖
N

1 ‖a,h,∗ + 1

2μ

N∑

n=1

τ‖δnt 
1‖2a,h,∗ + 1

2

M∑

i=1

N∑

n=1

τK−1
i ‖
n2,i‖2c,h,∗

+ ‖
01‖a,h,∗‖w0
h‖a,h .

(6.37)

(i.C) Basic estimate. Combining (6.34) and (6.37) and multiplying by 2, we arrive
at
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μ‖wN
h ‖2a,h + λ−1‖α·rN

h ‖2L2(�;R) +
M∑

i=1

Ci‖rN
h,i‖2L2(�;R)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖rnh,i‖2c,h,hho ≤ μ

N∑

n=0

τ‖wn
h‖2a,h + N
 + N0.

(6.38)

The estimate (6.27) follows from the discrete Gronwall inquality of [28, Lemma 5.1].

(ii) Estimate on the total pressure. For all n ∈ �1, N�, using the inf-sup stability
(6.11) of the pressure-displacement coupling, we can write

β‖rnh,0‖L2(�;R) ≤ sup
vh∈Uk

h\{0}

bh(vh, r
n
h,0)

‖vh‖a,h
≤ sup

vh∈Uk
h\{0}


n1(vh) − 2μ ah(wn
h, vh)

‖vh‖a,h
≤ ‖
n1‖a,h,∗ + 2μ ‖wn

h‖a,h,

(6.39)

where we have used (6.25a) in the second line and we have concluded using the
definition (6.7) of dual norm for the first term and a Cauchy–Schwarz inequality on
the symmetric positive definite bilinear form ah for the second. Squaring, dividing
both sides byμ, passing to themaximumovern ∈ �1, N�, andusing (6.27) to estimate
the second term in the right-hand side, (6.41) follows.

6.4.2 A Priori Estimate for the HHO-HHO Scheme

The following lemma contains an a priori estimate on the discrete solution, from
which the well posedness of problem (6.23) can be inferred.

Lemma 6.2 (A priori estimate on the discrete solution) Assuming τ small enough,
any solution

(
un
h, p

n
h,0, (ph,i )1≤i≤M

)
1≤n≤N to the discrete problem (6.23) satisfies the

following a priori bound:

max
n∈�1,N�

(

μ‖un
h‖2a,h + λ−1‖α· p‖2L2(�;R) +

M∑

i=1

Ci‖pnh,i‖2L2(�;R)

)

+
N∑

n=1

τ‖rnh‖2ξ +
M∑

i=1

N∑

n=1

τKi‖pnh,i
‖2c,h,hho ≤ exp

(
tF

1 − τ

)
(A + B) ,

(6.40)
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where

A := C2
K

2μ
‖ f ‖2C0([0,tF];L2(�;Rd )) + 1

μ
‖ f ‖2H 1(0,tF;L2(�;Rd ))

+ CPtF

M∑

i=1

1

Ki
‖gi‖2C0([0,tF];L2(�;R))

B := 2CK‖ f 0‖L2(�;Rd )‖u0
h‖a,h + 2μ‖u0

h‖2a,h + λ−1‖α · p0h‖2L2(�;R)

+
M∑

i=1

Ci‖p0h,i‖2L2(�;R).

Moreover, it holds

β2

μ
max

n∈�1,N�
‖pnh,0‖2L2(�;R)

≤ 2C2
K

μ
‖ f ‖2C0([0,tF];L2(�;Rd ))

+ 4β2 exp

(
tF

1 − τ

)
(A + B) .

(6.41)

Proof We apply Lemma 6.1 with 
n1 = (
Uk

h � vh �→ ( f , vh) ∈ R
)
for all n ∈ �0, N�

and 
n2 =
(
Pn
h,i � q

h,i
�→ (gi , qh,i ) ∈ R

)
for all n ∈ �1, N� and all i ∈ �1, M�, and

show that

N
 ≤ A and N0 ≤ B. (6.42)

Let us prove the first bound in (6.42). Denote byN
,i , i ∈ �1, 3�, the terms in the
right-hand side of (6.28a). We start by noticing that, for all n ∈ �0, N�,

‖
n1‖a,h,∗ = sup
vh∈Uk

h\{0}


n1(vh)
‖vh‖a,h

= sup
vh∈Uk

h\{0}

‖ f n‖L2(�;Rd )‖vh‖L2(�;Rd )

‖vh‖a,h
= sup

vh∈Uk
h\{0}

CK‖ f n‖L2(�;Rd )‖vh‖a,h
‖vh‖a,h

≤ CK‖ f n‖L2(�;Rd ),

(6.43)

where we have used the definition (6.7) of the dual norm in the first line, a Cauchy–
Schwarz inequality to pass to the the second line, and the discrete Korn inequality
(6.10) to pass to the third line. As a consequence,

N
,1 ≤ C2
K

2μ
max

n∈�1,N�
‖ f n‖2L2(�;Rd ) = C2

K

2μ
‖ f ‖2C0([0,tF];L2(�;Rd )). (6.44)

Proceeding similarly for the second term and invoking the boundedness (6.5) of the
discrete time derivative with V = L2(�;Rd) and ϕ = f , we get
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N
,2 ≤ C2
K

2μ

n∑

n=1

τ‖δnt f ‖2L2(�;Rd ) ≤ C2
K

2μ
‖ f ‖2H 1(0,tF;L2(�;Rd )). (6.45)

To bound the third term, we observe that, using the definition (6.15) of the dual norm
and the Poincaré inequality in a similar manner as above, it holds, for all n ∈ �1, N�
and all i ∈ �1, M�, ‖
n2,i‖c,h,∗ ≤ K−1

i CP‖gni ‖L2(�;R), hence

N
,3 ≤ CP

M∑

i=1

1

Ki

N∑

n=1

τ‖gni ‖2L2(�;R)

≤ CPtF

M∑

i=1

1

Ki
max

n∈�1,N�
‖gni ‖2L2(�;R) = CPtF

M∑

i=1

1

Ki
‖gi‖2C0([0,tF];L2(�;R)).

(6.46)

Gathering (6.44)–(6.46), the first bound in (6.30) follows. The second bound in (6.30)
is an immediate after invoking (6.43) with n = 0. This concludes the proof.

6.4.3 Error Estimate for the HHO-HHO Scheme

Following the general ideas of [20], we estimate the error such that, for all n ∈ �0, N�,

enh := un
h − ûn

h, εnh,0 := pnh,0 − p̂nh,0, εnh,i := pn
h,i

− p̂n
h,i

∀i ∈ �1, M�,

(6.47)

where the interpolate of the continuous solution is obtained setting, for all n ∈ �0, N�,

ûn
h := I khu

n, p̂nh,0 := π k
h p

n
0 , p̂n

h,i
:= I kh p

n
i ∀i ∈ �1, M�. (6.48)

The starting point for the error analysis is the following proposition,which establishes
that the errors solve the auxiliary problem (6.25) for a suitable choice of the right-
hand sides 
1 and 
2,i , i ∈ �1, M�.

Proposition 6.1 (Error equations) We have that

e0h = 0, ε0h,0 = 0, ε0h,i = 0 ∀i ∈ �1, M�. (6.49)

Additionally, for n = 1, . . . , N, it holds, for all vh ∈ U k
h, all qh,0 ∈ Pk

h,0,

2μ ah(enh, vh) + bh(vh, ε
n
h,0) = 2μEa,h(un; vh) + Eb,h(pn0 ; vh), (6.50a)

bh(enh, qh,0) − λ−1(α·εnh, qh,0) = 0, (6.50b)

and, for all i ∈ �1, M� and all q
h,i

∈ Pk
h,i ,
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(δnt ψi (εh), qh,i ) + (Si (ε
n
h), qh,i ) + Ki c

hho
h (εnh,i , qh,i

)

= (dnt ψi ( p) − δnt ψi ( p), qh,i ) + Ehho
c,h (pni ; qh,i

), (6.50c)

where we have set, for all n ∈ �0, N�, εnh := (εnh,0, ε
n
h,1, . . . , ε

n
h,M) and, given a

function of time ϕ smooth enough, we have introduced the abridged notation
dnt ϕ := dtϕ(tn).

Proof Equation (6.49) is an immediate consequence of the definition (6.47) of the
errors along with the discrete initial condition (6.22).

Let now n ∈ �1, N�. To prove (6.50a), it suffices to subtract from both sides of
(6.23a) thequantity 2μ ah(û

n
h, vh) + bh(vh, p̂

n
h,0), observe that f

n = −2μ∇·(∇sun) −
∇pn0 almost everywhere in �, and recall the definitions (6.9) and (6.14) of the con-
sistency error linear forms associated with ah and bh .

Moving to (6.50b), we observe that, for all qh,0 ∈ Pk
h,0,

bh(û
n
h, qh,0) − λ−1(α· p̂nh, qh,0) = bh(I khu

n, qh,0) − λ−1(α·π k
h p

n, qh,0)

= b(u, qh,0) − λ−1(α· pn, qh,0) = 0,
(6.51)

where, to pass to the second line, we have used the consistency property (6.12)
of bh together with the definition (6.6) of the global L2-orthogonal projector and
qh,0 ∈ P

k(Th;R) to remove it from the second term, while the conclusion follows
from (6.1a) after observing that Pk

h,0 ⊂ P0. The error equation (6.50b) then follows
subtracting (6.51) from (6.23b) and using the linearity of the bilinear forms in the
left-hand side.

Finally, to prove (6.50c) for a given i ∈ �1, M� and q
h,i

∈ Pk
h,i , we subtract from

both sides the quantity (δnt ψi ( p̂h), qh,i ) + (Si ( p̂
n
h), qh,i ) + Ki chhoh ( p̂n

h,i
, q

h,i
) and

observe that

(gni , qh,i ) = (dnt ψi ( p), qh,i ) + (Si ( pn), qh,i ) − (Ki�pni , qh,i )

= (dnt ψi ( p) − δnt ψi ( p), qh,i ) + Ehho
c,h (pni ; qh,i

)

+ (δnt ψi ( p̂h), qh,i ) + (Si ( p̂
n
h), qh,i ) + Ki c

hho
h ( p̂n

h,i
, q

h,i
),

where, to pass to the second line, we have added and subtracted (δnt ψi ( p̂h), qh,i ) +
chhoh ( p̂n

h,i
, q

h,i
), used the fact that qh,i ∈ P

k(Th;R) along with the linearity of ψ and

the definition (6.6) of the global L2-orthogonal projector to write (δnt ψi ( p̂h), qh,i ) =
(δnt ψi ( p), qh,i ), and recalled the definition (6.17) of the consistency error associated
with the bilinear form chhoh .
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Theorem 6.1 (Error estimate for the HHO-HHO scheme) Assume the additional
regularity

u ∈ H 1(0, tF; Hk+2(Th;Rd)),

p0 ∈ H 1(0, tF; Hk+1(Th;R)),

∀i ∈ �1, M�, pi ∈ C0([0, tF]; Hk+2(Th;R)),

∀i ∈ �1, M�, ψi ( p) ∈ H 2(0, tF; L2(�;R)).

Then, for a time step τ small enough (with threshold independent of h), it holds that

max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R) +
M∑

i=1

Ci ‖εnh,i‖2L2(�;R) + β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ +
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,hho � h2(k+1)A + τ 2B, (6.52)

where the hidden constant is independent of h, τ , of the problem data, of u, and of
pi , i ∈ �0, M�, but possibly depends on �, tF, the mesh regularity parameter, and k,
and we have set

A := ‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;Rd ))

+
M∑

i=1

K−1
i ‖pi‖2C0([0,tF];Hk+2(Th ;R)),

B :=
M∑

i=1

K−1
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)).

Proof For the sake of brevity, denote by Ehτ the left-hand side of (6.52). Applying
Lemma 6.1 with, for all n ∈ �1, N�,


n1 = 2μEa,h(un; ·) + Eb,h(pn0 ; ·),

n2,i = (dnt ψi ( p) − δnt ψi ( p), ·) + Ehho

c,h (pi ; ·) ∀i ∈ �1, M�,

using multiple times the triangle inequality, and rearranging the terms, we arrive at

Ehτ � μ−1 max
n∈�1,N�

‖2μEa,h(un; ·) + Eb,h(pn0 ; ·)‖2a,h,∗

+μ−1
N∑

n=1

τ‖δnt
(
2μEa,h(u; ·) + Eb,h(p0; ·)) ‖2a,h,∗

+
M∑

i=1

N∑

n=1

τK−1
i ‖Ehhoc,h (pni ; ·)‖2c,h,∗
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+
M∑

i=1

N∑

n=1

τK−1
i ‖(dnt ψi ( p) − δnt ψi ( p), ·)‖2c,h,∗ =:T1 + · · · + T4. (6.53)

We proceed to bound the terms in the right-hand side of the above expression. For
the first term, we write

T1 � μ−1

(
max

n∈�1,N�
‖2μEa,h(un; ·)‖2a,h,∗ + max

n∈�1,N�
‖Eb,h(pn0 ; ·)‖2a,h,∗

)

� h2(k+1) μ−1 max
n∈�1,N�

(
2μ|un|2Hk+2(Th ;Rd )) + |pn0 |2Hk+1(Th ;R))

)

≤ h2(k+1)
(
2‖u‖2C0([0,tF];Hk+2(Th ;Rd )) + μ−1‖p0‖2C0([0,tF];Hk+1(Th ;R))

)

� h2(k+1)A,

(6.54)

where, to pass to the second line, we have used the consistency properties (6.8) of ah
and (6.13) of bh , while the conclusion follows from the embedding H 1(0, tF; V ) ↪→
C0([0, tF]; V ) valid in dimension 1.

For the second term, we write

T2 � μ−1
N∑

n=1

τ
(‖2μEa,h(δnt u; ·)‖2a,h,∗ + ‖Eb,h(δnt p0; ·)‖2a,h,∗

)

� h2(k+1) μ−1
N∑

n=1

τ
(
2μ|δnt u|2Hk+2(Th ;Rd ) + |δnt p0|2Hk+1(Th ;R)

)

� h2(k+1)
(
‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;R))

)

� h2(k+1)A,

(6.55)

where, in the first line, we have used the fact that δnt
(
2μEa,h(u; ·) + Eb,h(p0; ·)) =

2μEa,h(δnt u; ·) + Eb,h(δnt p0; ·) followed by a triangle inequality, we have invoked the
consistency (6.8) of ah and (6.13) of bh to pass to the second line, and the boundedness
(6.5) of the backward time derivative operator to pass to the third line.

For the third term, the consistency properties (6.16) of chhoh readily give

T3 ≤ h2(k+1)
M∑

i=1

N∑

n=1

τK−1
i |pni |2Hk+2(Th ;R)

� h2(k+1)tF

M∑

i=1

K−1
i ‖pi‖2C0([0,tF];Hk+2(Th ;R)) � h2(k+1)A.

(6.56)

Let us now move to the fourth term. For the sake of conciseness, we let, for
all i ∈ �1, M�, ψi := ψi ( p), regarded as an element H 1(0, tF; L2(�;R)), and we
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conventionally denoteψ(x, t) := ψ(t)(x) for all t ∈ [0, tF] and almost every x ∈ �.
Let i ∈ �1, M�. It holds, for all n ∈ �1, N�,

dn
t ψi − δnt ψi = dn

t ψi − 1

τ

∫ tn

tn−1
dtψi (t) dt

= dn
t ψi − 1

τ

∫ tn

tn−1

(
dn
t ψi −

∫ tn

t
d2
t ψi (s) ds

)
dt

= 1

τ

∫ tn

tn−1

∫ tn

t
d2
t ψi (s) ds dt ≤

∫ tn

tn−1
|d2

t ψi (t)| dt.

Combining this result with the Jensen inequality, we infer

‖dn
t ψi − δnt ψi‖2L2(�;R) ≤

∫

�

∣∣∣∣

∫ tn

tn−1
|d2

t ψi (x, t)| dt
∣∣∣∣

2

dx

≤ τ

∫ tn

tn−1
‖d2

t ψi (t)‖2L2(�;R) dt

≤ τ‖ψi‖2H 2(tn−1,tn;L2(�;R)).

(6.57)

We next write, for all n ∈ �1, N�, all i ∈ �1, M�, and all q
h,i

∈ Pk
h,i ,

∣∣(dnt ψi − δnt ψi , qh,i )
∣∣ ≤ ‖dnt ψi − δnt ψi‖L2(�;R) ‖qh,i‖L2(�;R)

≤ τ
1
2 ‖ψi‖H 2(tn−1,tn;L2(�;R)) ‖qh,i‖L2(�;R)

� τ
1
2 ‖ψi‖H 2(tn−1,tn;L2(�;R)) ‖q

h,i
‖c,h,hho,

where we have used a Cauchy–Schwarz inequality in the first line, the bound (6.57)
in the second line, and a discrete global Poincaré inequality in HHO spaces (resulting
from a combination of [19, Proposition 5.4] and [26, Lemma 4]) to conclude. Using
the above estimate in conjunction with the definition (6.15) of the dual norm, we
have that

‖(dnt ψi ( p) − δnt ψi ( p), ·)‖2c,h,∗ � τ‖ψi ( p)‖2H 2(tn−1,tn;L2(�;R)).

Using this bound, we obtain

T4 �
M∑

i=1

N∑

n=1

τ 2K−1
i ‖ψi ( p)‖2H 2(tn−1,tn;L2(�;R))

= τ 2
N∑

i=1

K−1
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)) = τ 2B.

(6.58)

Plugging (6.54)–(6.58) into (6.53) yields (6.52).
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6.4.4 Error Estimate for the HHO-DG Scheme

The proof of the error estimate for theHHO-DGscheme follows by adapting the argu-
ments used in Theorem 6.1 to a different choice of the interpolates of the continuous
pressures in (6.48). For all n ∈ �0, N� and all i ∈ �1, M�, we set

εnh,i := pnh,i − p̂nh,i ,

where p̂0h,i := π k
h p

0
i and, for n ≥ 1, p̂nh,i is the solution of problem (6.20)with r = pni .

Theorem 6.2 (Error estimate for the HHO-DG scheme) Assume k ≥ 1, � convex,
and the additional regularity

u ∈ H 1(0, tF; Hk+2(Th;Rd)),

p0 ∈ H 1(0, tF; Hk+1(Th;R)),

ψ0( p) ∈ H 1(0, tF; Hk+1(Th;R))

∀i ∈ �1, M�, Si ( p) ∈ C0([0, tF]; Hk+1(Th;R)),

∀i ∈ �1, M�, ψi ( p) ∈ H 2(0, tF; L2(�;R)) ∩ H 1(0, tF; Hk+1(Th;R)),

with ψ0( p) := λ−1(α· p − p0). Then, for a time step τ small enough (with threshold
independent of h), it holds that

max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R) +
M∑

i=1

Ci ‖εnh,i‖2L2(�;R) + β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ +
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,dg � h2(k+1)Adg + τ 2Bdg, (6.59)

where the hidden constant is independent of h, τ , of the problem data, of u, and of
pi , i ∈ �0, M�, but possibly depends on �, tF, k, and we have set

Adg := ‖u‖2H 1(0,tF;Hk+2(Th ;Rd )) + μ−1‖p0‖2H 1(0,tF;Hk+1(Th ;Rd ))

+
M∑

i=0

λα−2
i ‖ψi ( p)‖2H 1(0,tF;Hk+1(Th ;R)) +

M∑

i=1

λα−2
i ‖Si ( p)‖2L2(0,tF;Hk+1(Th ;R)),

Bdg :=
M∑

i=1

λα−2
i ‖ψi ( p)‖2H 2(0,tF;L2(�;R)).
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Proof Proceeding as in the proof of Proposition 6.1 and recalling the definition of
the elliptic projection in (6.20), it is readily inferred that

e0h = 0, ε0h,i = 0, ∀i ∈ �0, M� (6.60a)

and, for n ∈ �1, N�, it holds, for all vh ∈ Uk
h , all qh,0 ∈ Pk

h,0,

2μ ah(enh, vh) + bh(vh, ε
n
h,0) = 2μEa,h(un; vh) + Eb,h(pn0 ; vh), (6.60b)

bh(δ
n
t eh, qh,0) − λ−1(δnt (α·εh), qh,0) = −(δnt (ψ0( p − p̂h), qh,0), (6.60c)

and, for all i ∈ �1, M� and qh,i ∈ Pk
h,i ,

(δnt ψi (εh), qh,i ) + (Si (ε
n
h), qh,i ) + Ki c

dg
h (εnh,i , qh,i )

= (Si ( pn− p̂nh), qh,i ) + (dnt ψi ( p) − δnt ψi ( p), qh,i ) + (δnt ψi ( p − p̂h), qh,i ),

(6.60d)

where, in (6.60c), we have applied discrete time derivation and introduced the linear
function ψ0 defined such that, for all q ∈ R

M+1, ψ0(q) := λ−1(α·q − q0). Then,
following the first two step of the proof of Lemma 6.1 we obtain an estimate similar
to (6.34), namely, for an arbitrary N ∈ �1, N� it holds

μ‖eN
h ‖2a,h +

‖α·εN
h ‖2

L2(�;R)

2λ
+

M∑

i=1

Ci

2
‖εN

h,i‖2L2(�;R)
+

N∑

n=1

τ

2
‖εnh‖2ξ +

M∑

i=1

N∑

n=1

τKi‖εnh,i‖2c,h,dg

≤
N∑

n=1

τ
(
2μEa,h(un; δnt eh) + Eb,h(pn0 ; δnt eh)

) +
M∑

i=0

N∑

n=1

τ(Eni,h( p), εnh,i ),

(6.61)

with En
0,h( p) := δnt ψ0( p − p̂h) and, for all i ∈ �1, M�,

En
i,h( p) := (dnt ψi ( p) − δnt ψi ( p)) + Si ( pn − p̂nh) + δnt ψi ( p − p̂h).

The first term in the right-hand side of (6.61) can be bounded as in (6.35). We bound
the second term by using the Cauchy–Schwarz and Young inequality to write

M∑

i=0

N∑

n=1

τ(En
i,h( p), ε

n
h,i ) ≤

M∑

i=0

N∑

n=1

τλ

2α2
i

‖En
i,h( p)‖2L2(�,R) +

N∑

n=1

τ

2λ
‖α·εnh‖2L2(�;R).

Therefore, proceeding as in steps (i.C) and (ii) of Lemma 6.1, yields
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max
n∈�1,N�

(

μ‖enh‖2a,h + λ−1‖α·εnh‖2L2(�;R)
+

M∑

i=1

Ci ‖εnh,i‖2L2(�;R)
+ β2

μ
‖εnh,0‖2L2(�;R)

)

+
N∑

n=1

τ‖εnh‖2ξ + 2
M∑

i=1

N∑

n=1

τKi ‖εnh,i‖2c,h,dg � exp

(
tF

1 − τ

) (
T1 + T2 + T

dg
3 + T

dg
4

)
,

(6.62)

where

T
dg
3 :=

N∑

n=1

τ

(
M∑

i=0

λα−2
i ‖δnt ψi ( p − p̂h)‖2L2(�;R) +

M∑

i=1

λα−2
i ‖Si ( pn − p̂nh)‖2L2(�;R)

)

,

T
dg
4 :=

M∑

i=1

N∑

n=1

τλα−2
i ‖dnt ψi ( p) − δnt ψi ( p)‖2L2(�;R),

and the terms T1 and T2 are defined in (6.53) and bounded in (6.54) and (6.55),
respectively. The term T

dg
4 can be bounded using (6.57) and (6.58) to obtain T

dg
4 �

τ 2Bdg. Hence, it only remains to bound Tdg
3 . Owing to the linearity of the backward

time derivative δnt and the functions ψi and Si for all i ∈ �1, M�, the approximation
property (6.21) of the elliptic projection, and the boundedness property (6.5), we
infer

T
dg
3 � h2(k+1)

N∑

n=1

τ

(
M∑

i=0

λα−2
i ‖δnt ψi ( p)‖2Hk+1(Th ;R) +

M∑

i=1

λα−2
i ‖Si ( pn)‖2Hk+1(Th ;R)

)

� h2(k+1)Adg.

Combining the previous bounds with (6.62) leads to the conclusion.

Table 6.1 Model parameters

Parameter Unit Set i Set ii Set iii Set iv

μ MPa 4.2 4.2 4.2 4.2

λ MPa 2.4 2.4 · 105 2.4 2.4

α1 – 0.95 0.95 0.95 0.95

α2 – 0.12 0.12 0.12 0.12

C1 MPa−1 0.054 0.054 0.0 0.054

C2 MPa−1 0.014 0.014 0.0 0.014

K1 m2 MPa−1 s−1 6.18 · 10−6 6.18 · 10−6 6.18 · 10−6 10−12

K2 m2 MPa−1 s−1 2.72 · 10−5 2.72 · 10−5 2.72 · 10−5 10−11

ξ1←2 MPa−1 s−1 0.01 0.01 0.01 0.01
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Table 6.2 Convergence rates for the HHO-DG discretisation with polynomial degree k = 1 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 2.39e−01 – 5.60e−01 – 4.78e−01 – 2.48e−01 –

6.23e−02 1.94 1.11e−01 2.24 9.31e−02 2.36 4.80e−02 2.37

1.51e−02 2.05 2.28e−02 2.28 1.88e−02 2.31 1.01e−02 2.24

3.73e−03 2.01 4.92e−03 2.21 3.83e−03 2.29 2.52e−03 2.01

9.39e−04 1.99 1.08e−03 2.19 7.55e−04 2.34 6.28e−04 2.00

ii 2.43e−01 – 8.25e−01 – 1.43e−01 – 1.32e−01 –

6.26e−02 1.95 1.55e−01 2.41 3.76e−02 1.92 3.86e−02 1.77

1.51e−02 2.05 3.09e−02 2.33 9.16e−03 2.04 9.52e−03 2.02

3.73e−03 2.02 6.84e−03 2.18 2.34e−03 1.97 2.49e−03 1.93

9.35e−04 2.00 1.71e−03 2.00 6.04e−04 1.95 6.27e−04 1.99

iii 2.39e−01 – 5.67e−01 – 4.79e−01 – 3.08e−01 –

6.23e−02 1.94 1.14e−01 2.31 9.43e−02 2.34 6.48e−02 2.25

1.51e−02 2.05 2.40e−02 2.24 1.97e−02 2.26 1.40e−02 2.21

3.73e−03 2.01 5.50e−03 2.13 4.45e−03 2.15 3.27e−03 2.10

9.35e−04 2.00 1.38e−03 1.99 1.12e−03 1.99 8.19e−04 2.00

iv 2.42e−01 – 8.00e−01 – 7.78e−01 – 4.14e−01 –

6.25e−02 1.95 1.46e−01 2.46 1.41e−01 2.47 6.28e−02 2.72

1.51e−02 2.05 2.79e−02 2.39 2.62e−02 2.43 1.11e−02 2.50

3.73e−03 2.01 5.58e−03 2.32 4.88e−03 2.42 2.61e−03 2.09

9.39e−04 1.99 1.12e−03 2.31 8.43e−04 2.53 6.40e−04 2.03

6.5 Numerical Tests

In this section, we present some numerical examples to illustrate the theoretical
results. In order to confirm the convergence rates predicted in Theorem 6.2, we rely
on a manufactured smooth solution of a two-network poroelasticity problem (i.e. the
Barenblatt–Biot problem) on the unit square domain � = (0, 1)2 and time interval
[0, tF = 1). The exact displacement u and exact pressures p1 and p2 are given by,

u(x, t) = sin(π t)

(− cos(πx1) cos(πx2)
sin(πx1) sin(πx2)

)
,

p1(x, t) = π sin(π t)
[
sin(πx1) cos(πx2) + cos(πx1) sin(πx2)

]
,

p2(x, t) = π sin(π t)
[
sin(πx1) cos(πx2) − cos(πx1) sin(πx2)

]
.

The total pressure p0, volumetric load f , and source terms g1 and g2 are inferred
from the exact solution. In order to assess the robustness with respect to the model
coefficients, we consider the four sets of parameters depicted in Table 6.1. The first set
of model parameters is taken from [29]. The second, third, and fourth sets are meant
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Table 6.3 Convergence rates for the HHO-DG discretisation with polynomial degree k = 2 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 3.29e−02 – 8.38e−02 – 7.16e−02 – 3.31e−02 –

4.05e−03 3.02 7.36e−03 3.51 6.15e−03 3.54 2.65e−03 3.64

5.40e−04 2.91 8.04e−04 3.19 6.15e−04 3.32 3.48e−04 2.93

6.93e−05 2.96 8.58e−05 3.23 5.70e−05 3.43 4.55e−05 2.93

8.68e−06 3.00 9.43e−06 3.19 5.68e−06 3.33 5.68e−06 3.00

ii 3.36e−02 – 1.22e−01 – 1.69e−02 – 2.16e−02 –

4.05e−03 3.05 9.88e−03 3.63 2.33e−03 2.86 2.46e−03 3.13

5.37e−04 2.91 1.17e−03 3.08 3.21e−04 2.86 3.47e−04 2.83

6.82e−05 2.98 1.46e−04 3.00 4.20e−05 2.94 4.56e−05 2.93

8.52e−06 3.00 1.81e−05 3.01 5.52e−06 2.93 5.69e−06 3.00

iii 3.29e−02 – 8.61e−02 – 7.23e−02 – 4.77e−02 –

4.04e−03 3.02 7.84e−03 3.46 6.56e−03 3.46 4.39e−03 3.44

5.38e−04 2.91 9.51e−04 3.04 7.90e−04 3.05 5.39e−04 3.02

6.83e−05 2.98 1.20e−04 2.99 9.90e−05 3.00 6.81e−05 2.99

8.54e−06 3.00 1.49e−05 3.01 1.23e−05 3.01 8.45e−06 3.01

iv 3.35e−02 – 1.14e−01 – 1.12e−01 – 4.67e−02 –

4.05e−03 3.05 8.78e−03 3.71 8.36e−03 3.75 2.90e−03 4.01

5.40e−04 2.91 8.94e−04 3.30 7.69e−04 3.44 3.61e−04 3.01

6.93e−05 2.96 8.97e−05 3.32 6.56e−05 3.55 4.59e−05 2.98

8.68e−06 3.00 9.45e−06 3.25 5.80e−06 3.50 5.69e−06 3.01

to check the robustness of the method in the nearly incompressible case (i.e. large
values of λ), in the vanishing storage coefficients case, and in the small permeabilities
case, respectively. We remark that the value of μ and λ considered in the second test
corresponds to a Poisson ratio ν = 0.49999.

We consider the HHO method described in Sect. 6.3 with DG discretisation of
the Darcy term for polynomial degrees k ∈ {1, 2, 3} over a trapezoidal elements
mesh sequence (Th)j with 22+2 j elements, for j ∈ �1, 5�. The time discretisation is
based on Backward Differentiation Formulas (BDF) of order (k + 1) with a fixed
time step τ = 10−3. The boundary conditions are inferred from the exact solution.
On the bottom edge {x ∈ ∂� : x2 = 0}, we enforce Dirichlet conditions for the
displacement and Neumann conditions for both the network pressures p1 and p2. On
the rest of the domain boundary we set Neumann conditions for the displacement
and Dirichlet for the two pressures. Initial conditions are specified by means of L2-
projections over mesh elements according to (6.22). Initialisation is performed at
several time points (ti = −τ i, i = 1, ..., k + 1), in agreement with the BDF order.

In Tables 6.2, 6.3 and 6.4 we report the convergence rates for the four set of model
parameters indicated in Table 6.1. We use the following shorthand notations for the
error measures:
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Table 6.4 Convergence rates for the HHO-DG discretisation with polynomial degree k = 3 based
on manufactured solutions of the Barenblatt–Biot problem, see text for details

Set ‖ehτ ‖∞,1 EOC ‖ε0,hτ ‖∞,0 EOC ‖ε1,hτ ‖∞,0 EOC ‖ε2,hτ ‖∞,0 EOC

i 3.30e−03 – 8.57e−03 – 7.41e−03 – 2.77e−03 –

2.42e−04 3.77 5.34e−04 4.00 4.48e−04 4.05 1.66e−04 4.06

1.42e−05 4.09 2.64e−05 4.34 2.03e−05 4.46 9.44e−06 4.14

9.26e−07 3.94 1.41e−06 4.23 8.87e−07 4.52 6.29e−07 3.91

5.79e−08 4.00 7.49e−08 4.24 3.89e−08 4.51 3.89e−08 4.02

ii 3.36e−03 – 1.19e−02 – 1.94e−03 – 1.83e−03 –

2.43e−04 3.79 7.14e−04 4.06 1.42e−04 3.77 1.57e−04 3.54

1.42e−05 4.10 3.83e−05 4.22 8.91e−06 4.00 9.39e−06 4.07

9.14e−07 3.96 2.37e−06 4.01 5.94e−07 3.91 6.28e−07 3.90

5.66e−08 4.01 1.45e−07 4.03 3.83e−08 3.96 3.89e−08 4.01

iii 3.31e−03 – 8.94e−03 – 7.62e−03 – 4.80e−03 –

2.42e−04 3.77 5.78e−04 3.95 4.88e−04 3.97 3.17e−04 3.92

1.42e−05 4.10 3.15e−05 4.20 2.65e−05 4.20 1.73e−05 4.19

9.14e−07 3.95 1.99e−06 3.99 1.67e−06 3.99 1.10e−06 3.98

5.67e−08 4.01 1.22e−07 4.02 1.03e−07 4.02 6.78e−08 4.02

iv 3.34e−03 – 1.09e−02 – 1.08e−02 – 3.25e−03 –

2.42e−04 3.78 6.23e−04 4.13 5.95e−04 4.18 1.78e−04 4.19

1.42e−05 4.09 2.91e−05 4.42 2.53e−05 4.56 9.62e−06 4.21

9.27e−07 3.94 1.45e−06 4.33 9.93e−07 4.67 6.31e−07 3.93

5.79e−08 4.00 7.47e−08 4.28 3.94e−08 4.66 3.89e−08 4.02

‖ehτ‖∞,1 := max
n∈�1,N�

‖un
h − I khu

n‖a,h,
‖εi,hτ‖∞,0 := max

n∈�1,N�
‖pni,h − π k

h p
n
i ‖L2(�;R), ∀i ∈ �0, 2�.

Each error measure is accompanied by the corresponding estimated order of con-
vergence (EOC). The observed convergence rates are in agreement with the error
estimate of Theorem 6.2. We remark that the performance is not affected by the dif-
ferent choices of the model parameters. Hence, the method is robust in all the limit
cases of vanishing storage, nearly incompressible, and poorly permeable media.
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Chapter 7
The Mixed Virtual Element Method
for the Richards Equation

Dibyendu Adak, Gianmarco Manzini, and Sundararajan Natarajan

Abstract The time-dependentRichards equation can be reformulated as a nonlinear,
possibly degenerate, parabolic problem in mixed form by applying the Kirchhoff
transformation. A preliminary time integration yields the variational formulation.
A numerical treatment of this problem using polygonal and polyhedral meshes is,
then, feasible by applying the mixed virtual element method. In this setting, we study
a semi-discrete and a fully-discrete virtual element approximation. The theoretical
analysis shows that our virtual element formulations are well-posed and convergent,
and optimal convergence rates for the approximation errors can be proved. Such
theoretical results are confirmed and the accuracy is assessed by investigating the
behavior of the method on a set of representative numerical experiments.

Keywords Richard equation · Mixed virtual element method · Polygonal mesh ·
Low-order approximation · Convergence analysis

7.1 Introduction

The mathematical model of the water flow in an unsaturated soil under the effect of
gravity and the action of capillarity is based on the Richards equation. This equation
was proposed for the first time by the English mathematician and physicist Lewis
F. Richardson in his book Weather prediction by numerical process published in
1922 (for the new edition see Ref. [77]). Nonetheless, credits were later attributed to
Lorenzo A. Richards for the work in his Ph.D. thesis Capillary conduction of liquids
through porous mediums published in 1933 [76].
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Due to the complexity of the nonlinear phenomena that are taken into account
by the Richards equation, only a few simplified cases offer an analytical solution.
Therefore, the numerical approach is the only option that is really available in the
majority of the situations found in practice, which normally involve very different
initial and boundary conditions and a wide range of soils. A significant amount
of work to improve effectiveness of numerical simulation in term of robustness and
reliability has been carried out in the last three decades, but the computer resolution of
the Richards equation still challenges the numerical modelers. A review of the major
advancements in the development of numerical methods for solving the Richards
equation is beyond the scope of this chapter, but can be found in the recently published
paper of Ref. [55].

In short, among the major difficulties of the numerical approximation of the
Richards equation, we find that such equation can change type being elliptic in the
fully saturated flow regime and parabolic in the partially saturated flow regime, and
its solutions can be characterized by an important lack of regularity. Theoretical prop-
erties of the solution of degenerate nonlinear parabolic problems were studied in [4,
70, 80]. To overcome the issue of the poor regularity of the solutions, a nonlinear
mixed formulation discretized by mixed finite elements was proposed in Ref. [69]. It
was, then, further extended in [8], where a nonlinear mixed finite element method is
proposed for a degenerate parabolic equation arising in flows in porous media. Other
discretizations that provide good approximations to the solution of the Richards
equation are given by relaxation schemes [58], multiscale mixed/mimetic methods
on corner-point grids [1],mixed transformfinite elementmethods for solving the non-
linear equation for flow in variably saturated porous media [10] finite volumes [54,
64], mixed finite element discretizations [81], mixed finite element discretization
on non-matching multiblock grids [83], discontinuous Galerkin finite element meth-
ods [59] also with adaptivity [60]. In case of implicit schemes, iterative methods are
considered for solving the resulting nonlinear equations (see, e.g., [34, 50, 56, 74]).
Convergence results for implicit discretization schemes are found in [73, 75, 78].

In this paper, we consider the mixed finite element formulation that was originally
proposed in [78] in the new framework of mixed virtual element method (mixed
VEM) recently introduced in [16]. Such discretization can also be interpreted as a
generalization of the low-order Raviart-Thomas mixed finite element method for
simplexes to more general polytopal meshes in the two-dimensional (2D) and three-
dimensional (3D) setting. In Chap. 8, the Mixed VEM is applied to the numerical
treatment of single-phase flows in underground media.

Despite its recentness, the virtual elementmethod has been proved to be successful
in many different domains of numerical analysis of partial differential equations
(PDEs). A brief historical overview and some background material is presented in
the next subsection.

http://dx.doi.org/10.1007/978-3-030-69363-3_8
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7.1.1 Background Material on the VEM

The VEM was originally developed as a variational reformulation of the nodal
mimetic finite difference (MFD) method [20, 27, 41, 65] for solving diffusion prob-
lems on unstructured polygonal meshes. A survey on the MFDmethod can be found
in the review paper [63] and the research monograph [21]. The VEM inherits the
flexibility of the MFDmethod with respect to the admissible meshes and this feature
is well reflected in the many significant applications that have been developed so far,
see, for example, [5, 7, 12–19, 22–26, 28–33, 35, 37–39, 44, 45, 51, 52, 67, 68,
71, 72, 79, 82]. Moreover, the connection between the VEM and the finite elements
on polygonal/polyhedral meshes is thoroughly investigated in [48, 53, 66], between
VEM and discontinuous skeletal gradient discretizations in [53], and between the
VEM and the BEM-based FEM method in [47]. The VEM was originally formu-
lated in [11] as a conforming FEM for the Poisson problem. It was later extended to
convection-reaction-diffusion problems with variable coefficients in [3, 18]. Mean-
while, the nonconforming formulation for diffusion problems was proposed in [9] as
the finite element reformulation of [62] and later extended to general elliptic prob-
lems [36, 49], Stokes problem [46], eigenvalue problems [57], and the biharmonic
equation [6, 84].MixedVEMfor elliptic problemswere introduced in [42] in aBDM-
like setting and further developed in [16] in an RT-like setting. The connection with
De Rham diagrams and Nedelec elements with application to electromagnetism has
been explored in [15].

7.1.2 Structure of the Paper

The outline of the paper is as follows. In Sect. 7.2, we introduce the Richards equa-
tion, which we reformulate in mixed form after the Kirchhoff transformation and a
preliminary time integration that yields the variational formulation. In Sect. 7.3, we
discuss the virtual element approximation of the resulting nonlinear parabolic prob-
lem and formulate the semi-discrete and fully-discrete formulations. In Sect. 7.4, we
investigate the convergence of both formulations, and prove optimal convergence
rates. In Sect. 7.5, we assess the accuracy of the virtual element approximation by
investigating the behavior of the method in solving two representative benchmark
problems. In Sect. 7.6, we offer our final conclusions.

7.1.3 Notation and a Few Technical Definitions

Weuse the standard definition and notation of Sobolev spaces, norms and seminorms,
cf. [2]. Let k be a nonnegative integer number. The Sobolev space Hk(ω) consists of
all square integrable functions with all square integrable weak derivatives up to order
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k that are defined on the open, bounded, connected subsetω ofRd , d = 2, 3.As usual,
if k = 0, we prefer the notation L2(ω). Norm and seminorm in Hk(ω) are denoted
by || · ||k,ω and | · |k,ω, respectively, and (·, ·)ω denote the L2-inner product. We omit
the subscript ω in the L2-inner product notation when ω is the whole computational
domain�. In a few situations, for the sake of clarity, wemay prefer to use the integral
notation of the inner product.

We denote the linear space of polynomials of degree up to � defined on ω by
P�(ω), with the useful conventional notation that P−1(ω) = {0}. Space P�(ω) is the
span of the finite set of scaled monomials of degree up to �, that are given by

M�(ω) =
{ (

x − xω

hω

)α

with |α| ≤ �

}
,

where

• xω denotes the center of gravity of ω and hω its characteristic length, as, for
instance, the edge length or the cell diameter for d = 2 and 3, respectively;

• α = (α1, . . . , αd) is the d-dimensional multi-index of nonnegative integersαi with
degree |α| = α1 + . . . + αd ≤ � and such that xα = xα1

1 . . . xαd
d for any x ∈ R

d and
∂ |α|/∂xα = ∂ |α|/∂xα1

1 . . . ∂xαd
d .

We will also use the set of scaled monomials of degree exactly equal to �, denoted
by M∗

�(ω) and obtained by setting |α| = � in the definition above. The dimension
of P�(ω) equals N�, the cardinality of the basis set M�(ω). For d = 2, it holds
N� = (� + 1)(� + 2)/2; for d = 3, it holds N� = (� + 1)(� + 2)(� + 3)/6.

To ease the exposition, we assume that � is a polytopal domain, i.e., a polygon
for d = 2 and a polyhedron for d = 3.We consider a family of mesh decompositions
denoted by T = {�h}h , where each mesh �h is a set of non-overlapping, bounded
elements P such that � = ∪P∈�hP. The subindex h that labels each mesh �h is
the supremum of the diameters hP = supx,y∈P |x − y| of the elements of �h . For
d = 2, each element P has a non-intersecting polygonal boundary ∂P formed by
NE

P straight edges e connecting NV
P vertices; note that NV

P = NE
P . In this case, the

sequence of vertices forming ∂P is oriented in the counter-clockwise order and the
vertex coordinates are denoted by xi := (xi , yi ), i = 1, 2, . . . , NV . For d = 3, each
elements P has a non-intersecting polyhedral boundary ∂P formed by NF

P planar
faces f connecting NV

P vertices with coordinates xi := (xi , yi , zi ), i = 1, 2, . . . , NV .
We denote the measure of P by |P| and its barycenter (center of gravity) by xP :=
(xP, yP) when d = 2 or xP := (xP, yP, zP) when d = 3. Hereafter, we will refer to
a 2D edge and a 3D face as the “mesh face” (or, simply, the “face”), and we will try
to be dimension independent if not otherwise specified. We denote the unit normal
vector to mesh face f ∈ ∂P by nP,f and assume that these vectors are pointing out of
P. Moreover, we assume that the orientation of the mesh faces in every mesh is fixed
once and for all, so that we can unambiguously introduce nf, the unit normal vector
to face f. The orientation of this vector is independent of the elements P to which f
may belong, and may differ from nP,f only by the multiplicative factor −1.
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7.2 The Mixed Variational Formulation of the Richards
Equation

We consider the Richards equation

∂θ(ψ)

∂t
− div (krel(θ(ψ))∇(ψ + z)) = f, (7.1)

defined for (x, t) ∈ � × R
+ where � ⊂ R

d for d = 2, 3 is the computational
domain, the scalar variableψ(x, t) is the pressure head, θ(ψ) is the saturation curve,
krel(ψ) is the relative permeability curve, z is the vertical coordinate oriented against
the gravity direction and parallel to ẑ = (0, 1)T for d = 2, ẑ = (0, 0, 1)T for d = 3,
and f (x, t) is the right-hand side source term. The Richards equation models the
flow of water in sub-surface soils, and is generally non-linear and degenerate due to
the non-linear dependence of the saturation and relative permeability curves on the
pressure head. A source of degeneracy lies in the non-linear dependence of the rela-
tive permeability on ψ , which can become zero. A rather common way to cope with
this kind of non-linearities consists in reformulating the partial differential equation
by the Kirchhoff transformation [8, 54, 69, 75, 78, 81, 83], which introduces the
alternative unknown p to be used instead of the pressure head variable ψ . Further-
more, Eq. (7.1) can change type in � ⊂ R

d , being elliptic in the fully saturated flow
regime, i.e., when θ(ψ) is constant in time, and parabolic in the partially saturated
flow regime. To deal with such situations, after the Kirchhoff transformation we
consider the mixed form of the Richards equation where the mathematical model is
split in the flux equation and the mass conservation equation.

To solve the Richards equation numerically, we consider the mixed formulation
based upon the Kirchhoff transformation, which is given by:

K : R → R such that ψ → K(ψ) =
∫ ψ

0
krel(θ(s)) ds.

As krel ◦ θ(·) is invertible, we rewrite Eq. (7.1) in terms of p = K(ψ) by noting that
∇ p = K′(ψ)∇ψ and setting β(p) = θ(ψ) = (θ ◦ K−1

)
(p) and γ (p) = K′(ψ) =

krel(θ(ψ)).
We recall that� is a polytopal domain (i.e., a polyhedron for d = 3; a polygon for

d = 2) with Lipschitz continuous boundary � = �D
⋃

�N , where �D and �N are
disjoint subsets of the domain boundary. We use such partition of � to set Dirichlet-
type boundary conditions on �D and Neumann-type boundary conditions on �N . We
also assume that |�D| �= 0, where |�D| is the (d − 1)-Lebesgue measure of �D . Let
J = (0, T ] ⊂ R

+ be a finite time interval with T being the final time. The model
problem associated with Eq. (7.1), which we shall approximate numerically, is given
by
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∂β(p)

∂t
− div

(
(∇ p + γ (p) ẑ)

) = f in J × �, (7.2)

p =gD on J × �D, (7.3)

(∇ p + γ (p) ẑ) · n =0 on J × �N , (7.4)

p =p0 at t = 0 in �. (7.5)

Well-posedness and solvability in weak sense of elliptic-parabolic problems
like (7.2)–(7.5) have been investigated by many authors. In this work, we mainly
refer to [4] for the definition of weak solution and the basic assumptions on the
equation coefficients, that we list below:

(A1) β(·) is a C1, non-decreasing, and Lipschitz continuous function; thus,

|β(ξ) − β(η)| ≤ C |ξ − η|, ∀ξ, η ∈ R;

(A2) γ (·) is a continuous and bounded function satisfying

|γ (ξ) − γ (η)|2 ≤ C
(
β(ξ) − β(η)

)
(ξ − η), ∀ξ, η ∈ R;

(A3) β(p0) is essentially bounded in � and the initial state p0 is taken in L2(�);

(A4) gD ∈ L2(J ; H 1(�D)) ∩ L∞(J ; L∞(�D));

(A5) f ∈ L2(J ; L2(�)).

Assumption (A2) implies that

∣∣∣∣γ (ξ) − γ (η)
∣∣∣∣2
0,� ≤ C

(
β(ξ) − β(η), ξ − η

)
(7.6)

whenever ξ, η : � → R are integrable functions. Moreover, under Assumptions
(A1)–(A5), existence and uniqueness of a solution p ∈ L2(J ; H 1(�)) in weak sense
is proved in [4] and the following regularity results hold:

β(p) ∈ L∞(J ; L1(�)), ∂β(p)/∂t ∈ L2(J ; H−1(�)),

and

u = −(∇ p + γ (p) ẑ) ∈ L2(J ; (L2(�))d).

Since ∂β(p)/∂t ∈ L2(J ; H−1(�)), a variational formulation of problem (7.2)–(7.5)
would require test functions in H 1(�), which is a quite restrictive condition. An
alternative approach involving more regular terms in the equations and, therefore,
less regular test functions is possible by a preliminary time integration [69]. In fact, it
holds that β(p) ∈ L2(J ; H 1(�)) for p ∈ L2(J ; H 1(�)) because β(p) is a Lipschitz
continuous function from (A1). Since ∂β(p)/∂t ∈ L2(J ; H−1(�)) we obtain that
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β(p) ∈ C0(J ; L2(�)), see [61, Chap. I]. Thus, we integrate Eq. (7.2) in time and,
for (almost) every t ∈ J , we obtain

β(p) + div
∫ t

0
u(s) ds = β(p0) +

∫ t

0
f (s) ds,

where u = −(∇ p + γ (p) ẑ) and p0 is the initial solution state introduced in (A3). It
was also proved that [8]:

∫ t

0
u(s) ds ∈ H 1(J ; (L2(�))d) ∩ L2(J ; (H 1(�))d).

Themixed variational formulation of problem (7.2)–(7.5) is given by: For all t ∈ J ,
find (u(t, ·), p(t, ·)) ∈ H(div;�) × L2(�) such that

(β(p), q) +
(
div

∫ t

0
u(s) ds, q

)
= (β(p0), q) +

( ∫ t

0
f (s) ds, q

)
∀q ∈ L2(�),

(7.7)

(u, v) − (p, div (v)) + (γ (p) ẑ, v) = 〈gD,n · v〉 ∀v ∈ H(div;�), (7.8)

where the continuous bilinear form that provides the Dirichlet boundary condition
in the right-hand side of (7.8) is given by

〈gD,n · v〉 = −
∫

�D

gDn · v ds,

and n is the unit vector orthogonal to �D and pointing out of �.

7.3 The Mixed Virtual Element Method for the Richards
Equation

In this section, we introduce the mixed virtual element method and consider its
application to the numerical resolution of the Richards equation. To this end, we
first present the basic assumptions on the mesh families that are admissible in the
refinement process. Then, we define the local and global mixed virtual element
space for the low-order approximation of the flux vector fields and the piecewise
constant approximation of the hydraulic head (pressure) field. We equip the virtual
element space with a stabilized virtual element inner product, which is used in the
semi-discrete approximation of the Richards equation in mixed form. The virtual
inner product possesses the three properties of stability, continuity and consistency,
which are crucial to prove the convergence of the method. By integrating on the
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time subintervals of a suitable partition of the time domain, we eventually derive the
fully-discrete virtual element formulation.

Mesh regularity assumptions In order to use the interpolation and projection error
estimates from the theory of polynomial approximation of functions in Sobolev
spaces, we need a few regularity assumptions on the family of mesh decompositions
T = {�h}h . We state the mesh regularity assumptions for the 2D and 3D case as
follows.

Assumption (Mesh regularity)

• For d = 2, there exists a positive constant � independent of h such that for every
polygonal element P it holds that

(M1) P is star-shaped with respect to a disk with radius ≥ �hP;
(M2) for every edge e ∈ ∂P it holds that he ≥ �hP.

• For d = 3, there exists a positive constant � independent of h such that for every
polyhedral element P and every mesh face f ∈ ∂P it holds that

(M1) P is star-shaped with respect to a ball with radius ≥ �hP and every f is
star-shaped with respect to a disk with radius ≥ �hf;

(M2) for every edge e ∈ ∂f and every face f it holds that he ≥ �hf ≥ �2hP. �

Remark 7.1 The star-shapedness property (M1) implies that the elements and the
mesh faces are simply connected subsets of Rd and R

d−1, respectively. The scal-
ing property (M2) implies that the numbers of edges and faces in the elemental
boundaries is uniformly bounded over the whole mesh family T .

These mesh assumptions are quite general and, as observed from the very first
publication on the VEM, see, for example, [11], allow us a great flexibility in the
geometric shape of the elements of each mesh used in the numerical formulation. For
example, non-convex elements or elements with hanging nodes are admissible. As
alreadymentioned in Sect. 7.1.3, we retain a few additional but absolutely reasonable
restrictions, e.g., elemental boundaries are given by portions of straight lines for
d = 2 and mesh faces are planar for d = 3. We also avoid elements with intersecting
boundaries, elements with “holes”, and elements totally surrounding other elements.
It is worth mentioning, however, that examples of calculations using meshes with
such kind of “exotic”-shaped elements have already been presented to the VEM
community to challenge the robustness of the method [71].

Virtual element space The low regularity of the exact solution motivates us to
consider the low-order mixed virtual element approximation. To this end, we define
the global virtual element space for the vector fields as:

Vh :=
{
vh ∈ H(div;�) : vh |P ∈ Vh(P) ∀P ∈ �h

}
, (7.9)

where Vh(P) is the local (elemental) virtual element space. According to [16], we
define it as
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Vh(P) :=
{
vh ∈ H(div; P) : vh · nP,f ∈ P0(f)∀f ∈ ∂P, div vh ∈P0(P), rot vh = 0

}
(7.10)

for a two-dimensional polygon. A similar definition holds when P is a three-
dimensional polyhedron, which can be given by using the condition curl vh = 0
instead of rot vh = 0 in definition (7.10), see Ref. [15]. The degrees of freedom that
uniquely characterize the virtual element vector-valued fields vh inVh are the average
on each mesh face of the normal component of vh :

• (D1)
1

|f|
∫

f
vh · nf ds for all faces f.

This choice of degrees of freedom perfectly matches the degrees of freedom at
k = 0 considered in the mixed VEM formulation of Refs. [15, 16], where a proof
of unisolvence can be found. The restriction of (D1) to the boundary faces of the
polytopal element P are the degrees of freedom of the virtual element vector-valued
fields in Vh(P), and can be proved to be unisolvent for such functions. It is worth
noting thatVh(P) is indeed the local Raviart-Thomas space RT0(P)when element P
is a d-simplex (triangle for d = 2, tetrahedron for d = 3), so, in this sense, the space
Vh(P) is a generalization of the lowest-order Raviart-Thomas space to a polytopal
cell. The degrees of freedom in (D1) make it possible to compute the divergence of
every vector field in Vh , which by definition (7.10) is a piecewise constant scalar
function on mesh �h . From the Gauss-Green theorem and since vh · nP,f is constant
on every elemental face f, we find that

div vh |P = 1

|P|
∑
f∈∂P

|f| vh · nP,f,

where we recall that nP,f is the unit normal vector to f pointing out of P. This choice
of degrees of freedom is also consistent with the fact that any vector-valued field vh of
Vh belongs to H(div;�) and that its normal components must be continuous across
the mesh faces. As the degree of freedom associated with each mesh face is unique,
this condition is automatically satisfied by the mixed virtual element discretization.

Using the degrees of freedom of vh , we can compute the elemental orthogonal
projection operator onto the constant vector fields

∫
P

(
vh − �0

0(vh)
) · q dV = 0 ∀q ∈ (P0(P)

)2
. (7.11)

Aglobal projection operator,whichwe still denote as�0
0 with some abuse of notation,

can be defined by setting (�0
0vh)|P = �0

0(vh |P), where the �0
0 on the right must be

intended as the local operator defined by (7.11). We also denote the interpolation of
a vector field v ∈ H(div;�) by vI , which is the vector field in Vh with the same
degrees of freedom of v. From the standard polynomial approximation theory for
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Sobolev spaces [40], we know that

||v − vI ||0,� + ||v − �0
0(v)||0,� ≤ Chs |v|s,� 0 < s ≤ 1. (7.12)

Inequality (7.12) will be useful in the convergence analysis of Sect. 7.4.

Virtual element inner product in Vh . We recall that

(vh,wh) =
∫

�

vh(x) · wh(x) dV =
∑
P∈�h

∫
P
vh(x) · wh(x) dV

=
∑
P∈�h

(vh,wh)P (7.13)

is the usual L2 inner product between vector fields.
On the virtual element space Vh , we consider the bilinear form defined by

(uh, vh)Vh =
∑
P∈�h

(uh, vh)Vh(P)

=
∑
P∈�h

(∫
P

�0
0uh · �0

0vh dV + SP
((
1 − �0

0

)
uh,
(
1 − �0

0

)
vh
))

.

(7.14)

The last summation argument on the right, viz. SP (·, ·), is the stabilization term, and
its properties are such that the bilinear form (7.14) is indeed an inner product on Vh .
Any symmetric and coercive bilinear form that scales like the inner product (·, ·)P

can be used as the stabilization of (·, ·)Vh(P). Formally, we assume that there exist
two real positive constants c∗ and c∗ that are independent of h (and P), and such that

c∗(vh, vh)P ≤ SP (vh, vh) ≤ c∗(vh, vh)P ∀vh ∈ Vh . (7.15)

This assumption implies that SP (·, ·) is “spectrally equivalent” to the inner product
in L2(P), and, hence, is an inner product. It is clear at this point that relation (7.14)
defines an inner product on Vh and the induced norm is given by:

|||vh|||2Vh
= (vh, vh)Vh =

∑
P∈�h

(∫
P

∣∣�0
0vh
∣∣2 dV + SP

((
1 − �0

0

)
vh,
(
1 − �0

0

)
vh
))

for every vh ∈ Vh . Note, indeed, that |||vh|||Vh = 0 implies, for any P, that
||�0

0vh ||0,P = 0 and, using (7.15), that ||(1 − �0
0)vh ||0,P = 0. Therefore, �0

0vh = 0
and (1 − �0

0)vh = 0, and the decomposition vh = �0
0vh + (1 − �0

0)vh implies that
vh = 0. The other properties of an inner product follows from the definition of
(·, ·)Vh(P).
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The local bilinear form (·, ·)Vh has three important properties, that follows from
its definition: stability, continuity, and consistency.

– Stability: there exist two constants α∗, α∗ > 0 independent of h such that

α∗(vh, vh)P ≤ (vh, vh)Vh(P) ≤ α∗(vh, vh)P (7.16)

for all vh ∈ Vh and every element P. Adding the contribution of all the elements
yields the equivalence between the two norms || · ||0,� and ||| · |||Vh :

(α∗)
1
2 ||vh ||0,� ≤ |||vh |||Vh

≤ (α∗)
1
2 ||vh ||0,� . (7.17)

– Continuity: using the same constant α∗ introduced above, which, we recall, is
independent of h, it holds that

(vh,wh)Vh ≤ α∗||vh||0,�||wh ||0,� (7.18)

for all vh,wh ∈ Vh . This property is an obvious consequence of the Cauchy-
Schwarz inequality (vh,wh)Vh ≤ |||vh|||Vh |||wh|||Vh and the stability established
in (7.17), which gives us the bounds |||vh|||Vh ≤ (α∗)1/2||vh ||0,� and |||wh|||Vh ≤
(α∗)1/2||wh||0,�.

– Consistency: for every element P ∈ �h and every constant vector-valued field q
defined on P, it holds that

(vh,q)Vh(P) = (vh,q)P (7.19)

for all vh ∈ Vh(P).

We will use this properties systematically in the convergence analysis of Sect. 7.4.

Approximation of the scalar variable We approximate the scalar variable p by a
scalar function that is piecewise constant on the elements of mesh �h . For the sake
of exposition, we denote the space of these functions by Qh = P0(�h). Such a space
is clearly a subspace of L2(�), and its formal definition is:

Qh := {qh ∈ L2(�) : qh |P ∈ P0(P) ∀P ∈ �h
}
. (7.20)

Every scalar function qh in Qh is uniquely identified by the set of constant values
associated with the mesh elements, i.e., qh = (qP)P∈�h , where

• (D2): qP = 1

|P|
∫

P
qh dV .

We introduce the local orthogonal projection operatorsPP
h : L2(P) → P0(P), which

allows us to associate a square integrable function q with the set of its cell averages
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on the cells of the current mesh�h , and a global orthogonal projection operatorPh :
L2(�) → Qh , such that (Phq)|P = PP

h q = (1/ |P|) ∫P q dV for every q ∈ L2(�)

and P ∈ �h . To ease the exposition, we will use the subscript pI as an alternative
notation for Ph p, and, with some abuse of notation, for PP

h p without specifying the
element P.

Standard results from the theory of the polynomial approximation in Sobolev
spaces state that:

||p − pI ||0,P ≤ ChsP|p|s,P 0 < s ≤ 1,

see, again, Ref. [40].

Semi-discrete virtual element formulation The semi-discrete virtual element for-
mulation corresponding to the semi-discrete mixed variational formulation (7.7)–
(7.8) is given by: For all t ∈ J , find (uh(t), ph(t)) ∈ Vh × Qh such that

(β(ph), qh) +
(
div

∫ t

0
uh(s) ds, qh

)
= (β(p0h), qh)+

( ∫ t

0
f (s) ds, qh

)

∀qh ∈ Qh,

(7.21)

(uh, vh)Vh
− (ph, div vh) +

∑
P∈�h

γ (pP)
(
ẑ I , vh

)
P = 〈ḡD, vh〉h ∀vh ∈ Vh .

(7.22)

In (7.21), β(ph) is the discrete scalar field {β(pP)} ∈ Qh . Moreover, we require that
the initial solution p0h := ph(0) satisfies

(β(p0) − β(p0h), qh) = 0 ∀qh ∈ Qh, (7.23)

wherewe recall that p0 is the initial solution state introduced in (A3). Condition (7.23)
may be accomplished by taking

p0h |P = β−1

(
1

|P|
∫

P
β(p0) dV

)
∀P ∈ �h .

The Dirichlet boundary condition on the right-hand side of (7.8) is numerically
approximated in (7.22) by the bilinear form

〈ḡD, vh〉h = −
∑
f⊂�D

|f|vP,f ḡD,f where ḡD,f = 1

|f|
∫

f
gD ds.

Since n · vh |f is a constant on each f due to definition of the degrees of freedom (D1),
it holds that 〈ḡD, vh〉h = 〈gD,n · vh〉.
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Fully-discrete virtual element formulation The fully-discrete scheme is obtained
on a partition of the time interval J formed by NT non-overlapping sub-intervals
[tn−1, tn] of size �tn = tn − tn−1 for n = 1, . . . , NT , where t0 = 0 and t NT = T
and such that T =∑NT

n=1 �tn . We denote the maximum time step by �t and take
the reasonable assumption that there exists a constant C providing a uniform bound
from below for each time step �tn , i.e. C �t ≤ �tn . For any vector or scalar time
dependent field η(t, ·) defined on J × � we use the notation ηn = η(tn, ·), and we
denote the average of η(t, ·) over the time interval [tn−1, tn] by

〈η〉n = 1

�tn

∫ tn

tn−1
η(t, ·) dt so that

∫ tn

0
η(t, ·) dt =

n∑
k=1

�t k 〈η〉k .

We formulate the fully-discrete virtual element scheme by numerically approximat-
ing the time integral of uh in (7.21) as follows

∫ tn

0
uh(s) ds ≈

n∑
k=0

�t kuk
h . (7.24)

This expression can be interpreted as a first-order accurate approximation of the
interpolant of the time integral of u in (7.7):

∫ tn

0
uI (s) ds =

n∑
k=1

�t k 〈uI 〉k where 〈uI 〉k = 1

�t k

∫ t k

tk−1
uI (s) ds.

We obtain a fully-discrete numerical approximation to (7.7)–(7.8), which is based
on a time-stepping scheme equivalent to the forward Euler method for ordinary
differential equations. Thus, the fully-discrete virtual element formulation is given
by: For every n = 1, . . . , NT , find (un

h, p
n
h) ∈ Vh × Qh such that

(
β(pnh), qh

)+
(
div

n∑
k=0

�t kuk
h, qh

)
= (β(p0h), qh

)+
( n∑

k=0

�t k 〈 f 〉k , qh
)

∀qh ∈ Qh,

(7.25)(
un
h, vh

)
Vh

− (pnh , div vh)+
∑
P∈�h

γ (pnP)
(
ẑ I , vh

)
P = 〈ḡnD, vh

〉
h ∀vh ∈ Vh

(7.26)

and

〈
ḡnD, vh

〉
h

= −
∑
f⊂�D

|f|vh |f ḡnD,f. (7.27)
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In (7.27), we denote the face average value of gD at themesh face f and time instant tn

by ḡnD,f. Sincen · vh |f is a constant on each f due to definition of the degrees of freedom
(D1), it holds that

〈
ḡnD, vh

〉
h = 〈gnD,n · vh

〉
, where gnD is the Dirichlet boundary data

taken at time tn .

7.4 Convergence Analysis

The main results of this section are stated in Theorem 7.1 for the convergence of the
semi-discrete scheme, and in Theorem 7.2 for the convergence of the fully discrete
scheme. In both cases, optimal convergence rates with respect to the order of the
approximation are derived.

Theorem 7.1 (Convergence of the semi-discrete scheme) Let (u(t, ·), p(t, ·)) for
t ∈ (0, T ] be the flux and scalar solution of the mixed variational formulation (7.7)–
(7.8) under Assumptions (A1)-(A5) and (uI (t, ·), pI (t, ·)) their interpolants inVh ×
Qh. Let (uh(t, ·), ph(t, ·)) ∈ Vh × Qh for t ∈ (0, T ] be the flux and scalar solution of
the semi-discrete virtual element formulation (7.21)–(7.22) under themesh regularity
assumptions (M1)–(M2). Then, for every time T there exists a constant C(T ) =
O(T exp(T )) independent of h such that

∣∣∣
∣∣∣
∫ T

0
(ph − pI ) dt

∣∣∣
∣∣∣2
0,�

+
∣∣∣
∣∣∣
∫ T

0

(
uh − uI

)
dt
∣∣∣
∣∣∣2
0,�

≤ C(T )h2. (7.28)

Theorem 7.2 (Convergence of the fully-discrete scheme) Let (u(t, ·), p(t, ·)) for
t ∈ (0, T ] be the flux and scalar solution of the mixed variational formulation (7.7)–
(7.8) under Assumptions (A1)-(A5) and (uI (t, ·), pI (t, ·)) their interpolants inVh ×
Qh. Let (uh(t, ·), ph(t, ·)) ∈ Vh × Qh for t ∈ (0, T ] be the flux and scalar solution
of the fully-discrete virtual element formulation (7.25)–(7.26) under mesh regularity
assumptions (M1)–(M2). We assume that ∂u/∂t ∈ L2(J, (L2(�))d), and ∂p/∂t ∈
L2(J, L2(�))). Then, for every time T there exists a constant C(T ) = O(T exp(T ))

independent of h such that

∣∣∣∣∣∣
NT∑
n=1

�tn(pnh − 〈pI 〉n)
∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣

NT∑
n=1

�tn(un
h − 〈uI 〉n)

∣∣∣∣∣∣2
0,�

≤ C(T )
(
�t2 + h2

)
.

(7.29)

The proofs of both theorems require some preliminary technical results that are
stated and proved in the next subsections. More precisely, in Sect. 7.4.1 we prove
the inf-sup condition and derive the error equations for both the semi-discrete and
the fully-discrete VEM. In Sect. 7.4.2 we transform the error equations, introduce
some estimates of the approximation error and, at the end of the section, we prove
Theorem 7.1. Similar arguments are applied in Sect. 7.4.3 and fully discrete analogs
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of the results of Sect. 7.4.2 are derived. Theorem 7.2 is proved at the end of the
section.

7.4.1 Inf-sup Condition and Error Equations

The first lemma of this section provides the inf-sup condition for the pair of discrete
spaces Vh − Qh .

Lemma 7.1 (Inf-sup condition) Let us assume that (A1)–(A5) and (M1)–(M2) hold,
and, further, that � is a convex domain with Lipschitz continuous boundary. Then,
for every scalar function qh ∈ Qh there exists a vector function ṽq ∈ Vh such that

div ṽqh = qh and ||̃vq ||0,� ≤ C ||div ṽq ||0,� = C ||qh ||0,�,

for some real positive constant C independent of h, q and vq .

Proof Let q ∈ Qh . Due to the discrete inf-sup condition shown in [43], there exists
a vector vq ∈ H(div;�) ∩ (L2+ε(�))2, ε > 0, such that

div vq = qh and |||vq |||Vh ≤ C ||qh ||0,�, (7.30)

where the constantC is independent of h. The lemma follows by taking ṽq = (vq)I ∈
Vh , and noting that in each element P we have

(
div ṽq

)
|P = (div (vq)I

)
|P = Ph

(
div (vq)

)
|P = Ph

(
qh
)
|P = qh |P = qP,

and
||̃vq ||0,� = ||(vq)I ||0,� ≤ ||vq ||0,� ≤ α∗|||vq |||Vh ≤ C ||qh ||0,�.

In the last chain of inequalities the final constant C absorbs α∗ and the constant of
the inequality in (7.30). �

The error equations for the semi-discrete and fully-discrete formulations are
derived in the following lemma.

Lemma 7.2 (Error equations)

(i) Semi-discrete error equations. Let (u, p) be the solution of (7.7)–(7.8) and
(uh, ph) be the solution of (7.21)–(7.22). Then, it holds:

(
β(ph) − β(p), qh

)+
(
div
∫ t

0

(
uh − uI

)
ds, qh

)
= 0 ∀qh ∈ Qh, (7.31)

(uh, vh)Vh − (u, vh) − (ph − pI , div vh) + ((γ (ph) − γ (p)
)
ẑ, vh

) = 0

∀vh ∈ Vh . (7.32)
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(i i) Fully-discrete error equations. Let (u, p) be the solution of (7.7)–(7.8) and
(uh, ph) be the solution of (7.25)–(7.26). Then, it holds:

(β(pnh) − β(pn), qh) +
(
div

n∑
k=1

�t k
(
uk
h − 〈uI 〉k

)
, qh
)

= 0 ∀qh ∈ Qh,

(7.33)

(un
h, vh)Vh − (un, vh) − (pnh − pnI , div vh) + ((γ (pnh) − γ (pn)

)
ẑ, vh

) = 0

∀vh ∈ Vh . (7.34)

Proof Assertion (i) follows on taking the difference between (7.7) and (7.21)
and using (7.23), and between (7.8) and (7.22), and noting that

(
divu(s), qh

) =(
divuI (s), qh

)
for every s ∈ (0, t] and 〈ḡD, vh〉h = 〈gD,n · vh〉.

Assertion (i i) follows on taking the difference between (7.7) (with t = tn)
and (7.25) and using (7.23), and between (7.8) and (7.26) (with t = tn), and not-
ing that

(
div 〈u〉k , qh

) = (div 〈uI 〉k , qh
)
at any time instant t k with 1 ≤ k ≤ n and〈

ḡnD, vh
〉
h

= 〈gnD,n · vh
〉
. �

7.4.2 Convergence of the Semi-discrete Approximation

To prove the convergence of the semi-discrete approximation (7.21)–(7.22), we
need to estimate the time-integral between 0 and T of the two errors (ph − pI )
and

(
uh − uI

)
. These two errors measure the distance between the virtual element

solution pair (ph, vh) and the pair (pI ,uI ) interpolating the exact solution fields
(p,u). To derive the estimate, we need two preliminary results that are stated and
proved in Lemmas 7.3–7.4, and using error equations (7.31)–(7.32). All the con-
stants that appear in these mathematical developments are independent of the mesh
size parameter h but may depend on the final time T . When this occurs, we denote
this dependence by C(T ). In the next lemmas, we use the symbol uπ to denote the
piecewise constant vector-valued field given by taking the elemental averages of u,
which is the exact flux solution field evaluated at time t .

Lemma 7.3 Under Assumptions (A1)–(A5) and (M1)–(M2), there exists a positive
constant C, which is independent of h and T , such that

∣∣∣∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣∣∣∣2
0,�

≤ C

(
T
∫ T

0

(
β(ph) − β(p), ph − p

)
dt

+
∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
dt
∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣
∫ T

0

(
u − uI

)
dt
∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣
∫ T

0

(
u − uπ

)
dt
∣∣∣∣∣∣2
0,�

)
, (7.35)

where uπ denotes the piecewise constant vector-valued field given by taking the
averages of u on elements P ∈ �h.
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Proof First, we integrate error equation (7.32) in time between t = 0 and T :

∫ T

0

((
uh, vh

)
Vh

− (u, vh
))

dt −
(∫ T

0

(
ph − pI

)
dt, div vh

)

+
(∫ T

0

(
(γ (ph) − γ (p)) ẑ

)
dt, vh

)
= 0. (7.36)

In view of Lemma 7.1, there exists a vector ṽh ∈ Vh such that

div ṽh =
∫ T

0

(
ph − pI

)
dtand||̃vh ||0,� ≤ C

∣∣∣
∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣
∣∣∣
0,�

. (7.37)

ConstantC is independent of h and qh = ∫ T
0

(
ph − pI

)
dt , cf. Lemma 7.1, and, thus,

it is independent of T . We set vh = ṽh and use the expression of div ṽh in (7.36);
then, we reorder the terms of the equation to obtain:

∣∣∣∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣∣∣∣2
0,�

=
∫ T

0

((
uh, ṽh

)
Vh

− (u, ṽh
))

dt

+
(∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt, ṽh

)
. (7.38)

We use the consistency condition from (7.19) to transform the above relation as
follows:

∣∣∣
∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣
∣∣∣2
0,�

=
∫ T

0

((
uh − uπ , ṽh

)
Vh

− (u − uπ , ṽh
))

dt

+
(∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt, ṽh

)
= (I ) + (I I ) + (I I I ). (7.39)

We estimate separately the three terms in the right-hand side of (7.39) by using the
Cauchy-Schwarz and the Young inequality for some non-negative coefficient ε, the
inequality in (7.37), and, for the first term, the stability condition on the Vh-inner
product:

(I ) =
∣∣∣∣
∫ T

0

(
uh − uπ , ṽh

)
Vh

dt

∣∣∣∣ ≤ α∗

2ε

∣∣∣∣∣∣
∫ T

0
(uh − uπ ) dt

∣∣∣∣∣∣2
0,�

+ εα∗

2
||̃vh ||20,�

≤ α∗

2ε

∣∣∣∣∣∣
∫ T

0
(uh − uπ ) dt

∣∣∣∣∣∣2
0,�

+ εα∗C
2

∣∣∣∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣∣∣∣2
0,�

. (7.40)

(I I ) =
∣∣∣∣
∫ T

0

(
u − uπ , ṽh

)
dt

∣∣∣∣ ≤ 1

2ε

∣∣∣
∣∣∣
∫ T

0
(u − uπ ) dt

∣∣∣
∣∣∣2
0,�

+ ε

2
||̃vh ||20,�

≤ 1

2ε

∣∣∣
∣∣∣
∫ T

0
(u − uπ ) dt

∣∣∣
∣∣∣2
0,�

+ εC

2

∣∣∣
∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣
∣∣∣2
0,�

. (7.41)
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(I I I ) =
∣∣∣∣
( ∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt, ṽh

)∣∣∣∣
≤ 1

2ε

∣∣∣∣∣∣
∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt
∣∣∣∣∣∣2
0,�

+ ε

2
||̃vh ||20,�

≤ 1

2ε

∣∣∣∣∣∣
∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt
∣∣∣∣∣∣2
0,�

+ εC

2

∣∣∣∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣∣∣∣2
0,�

.

(7.42)

By choosing a suitable value of ε, we absorb the pressure term, i.e., the term that
depends on ph − pI , in the right-hand side of (7.40), (7.41), and (7.42) within the
left-hand side of (7.39) and we obtain the inequality:

∣∣∣
∣∣∣
∫ T

0

(
ph − pI

)
dt
∣∣∣
∣∣∣2
0,�

≤ C

( ∣∣∣
∣∣∣
∫ T

0
(uh − uπ ) dt

∣∣∣
∣∣∣2
0,�

+
∣∣∣
∣∣∣
∫ T

0
(u − uπ ) dt

∣∣∣
∣∣∣2
0,�

+
∣∣∣
∣∣∣
∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt
∣∣∣
∣∣∣2
0,�

)
. (7.43)

We transform the first term of the right-hand side of (7.43) by adding and subtracting
uI and u to the integral argument and applying the triangular inequality

∣∣∣
∣∣∣
∫ T

0
(uh − uπ ) dt

∣∣∣
∣∣∣2
0,�

≤
∣∣∣
∣∣∣
∫ T

0
(uh − uI ) dt

∣∣∣
∣∣∣2
0,�

+
∣∣∣
∣∣∣
∫ T

0
(uI − u) dt

∣∣∣
∣∣∣2
0,�

+
∣∣∣
∣∣∣
∫ T

0
(u − uπ ) dt

∣∣∣
∣∣∣2
0,�

(7.44)

We transform the last term of the right-hand side of (7.43) by applying Jensen’s
inequality and (7.6), which follows from assumption (A2), and we obtain:

∣∣∣
∣∣∣
∫ T

0

(
γ (ph) − γ (p)

)
ẑ dt
∣∣∣
∣∣∣2
0,�

≤ T
∫ T

0
||γ (ph) − γ (p)||20,� dt

≤ CT
∫ T

0

(
β(ph) − β(p), ph − p

)
dt, (7.45)

where constant C is independent of h and T . The assertion of the lemma follows on
using inequalities (7.44) and (7.45) in (7.43) to obtain (7.35). �

Lemma 7.4 Under Assumptions (A1)–(A5) and (M1)–(M2), for every time T>0
there exists a positive constant C(T )=O(exp(T )), which is independent of h,
such that

∫ T

0

(
β(ph) − β(p), ph − p

)
dt +

∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
dt
∣∣∣∣∣∣2
0,�

≤ C(T )

(∫ T

0

∣∣∣∣p − pI
∣∣∣∣2
0,� dt +

∫ T

0

∣∣∣∣u − uI
∣∣∣∣2
0,� dt +

∫ T

0

∣∣∣∣u − uπ

∣∣∣∣2
0,� dt

)
, (7.46)



7 The Mixed Virtual Element Method for the Richards Equation 277

where uπ denotes the piecewise constant vector-valued field given by taking the
averages of u on elements P∈�h.

Proof Adding error equation (7.31) with qh = ph − pI and error equation (7.32)

with vh =
∫ t

0

(
uh(s) − uI (s)

)
ds yields

(
β(ph) − β(p), ph − pI

)+
(
uh,
∫ t

0

(
uh − uI

)
ds
)
Vh

−
(
u,

∫ t

0

(
uh − uI

)
ds
)

+
((

γ (ph) − γ (p)
)
ẑ,
∫ t

0

(
uh − uI

)
ds
)

= 0. (7.47)

We subtract uπ by exploiting consistency property (7.19) and we obtain

(
β(ph) − β(p), ph − pI

)+
(
uh − uπ ,

∫ t

0

(
uh − uI

)
ds
)
Vh

−
(
u − uπ ,

∫ t

0

(
uh − uI

)
ds
)

+
((

γ (ph) − γ (p)
)
ẑ,
∫ t

0

(
uh − uI

)
ds
)

= 0,

(7.48)

and, then, we add and subtract uI and the scalar solution field p in (7.48) and we
find that

(
β(ph) − β(p), ph − p

)+
(
uh − uI ,

∫ t

0

(
uh − uI

)
ds
)
Vh

= (β(ph) − β(p), pI − p
)

+
(
u − uπ ,

∫ t

0

(
uh − uI

)
ds
)

−
(
uI − uπ ,

∫ t

0

(
uh − uI

)
ds
)
Vh

+
((

γ (p) − γ (ph)
)
ẑ,
∫ t

0

(
uh − uI

)
ds
)
. (7.49)

The second term in the left-hand side of (7.49) can be further transformed by noting
that

(
uh − uI ,

∫ t

0

(
uh − uI

)
ds
)
Vh

= d

dt

1

2

∣∣∣
∣∣∣
∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣
∣∣∣
∣∣∣2
Vh

.

Then, we remove the time derivative by integrating in time from t = 0 to the final
time T , thus obtaining
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∫ T

0

(
β(ph) − β(p), ph − p

)
dt + 1

2

∣∣∣∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
ds
∣∣∣∣∣∣∣∣∣2

Vh

=
∫ T

0

(
β(ph) − β(p), pI − p

)
dt +

∫ T

0

(
u − uπ ,

∫ t

0

(
uh − uI

)
ds
)
dt

−
∫ T

0

(
uI − uπ ,

∫ t

0

(
uh − uI

)
ds
)
Vh

dt

+
∫ T

0

((
γ (ph) − γ (p)

)
ẑ,
∫ t

0

(
uh − uI

)
ds
)
dt. (7.50)

The global equivalence relation (7.17) implies that

∫ T

0

(
β(ph) − β(p), ph − p

)
dt + 1

2

∣∣∣
∣∣∣
∫ T

0

(
uh − uI

)
ds
∣∣∣
∣∣∣2
0,�

≤
∫ T

0

(
β(ph) − β(p), ph − p

)
dt + 1

2α∗

∣∣∣
∣∣∣
∣∣∣
∫ T

0

(
uh − uI

)
ds
∣∣∣
∣∣∣
∣∣∣2
Vh

. (7.51)

We develop the first term of the right-hand side of (7.50) by applying the Young
inequality for some positive coefficient ε that will be determined in the following
and we use Assumption (A1) to obtain:

∣∣∣
∫ T

0

(
β(ph) − β(p), pI − p

)
dt
∣∣∣ ≤

∫ T

0

∣∣∣(β(ph) − β(p), pI − p
)∣∣∣ dt

≤ 1

2ε

∫ T

0

∣∣∣∣pI − p
∣∣∣∣2
0,� dt + ε

2

∫ T

0

∣∣∣∣β(ph) − β(p)
∣∣∣∣2
0,� dt

≤ 1

2ε

∫ T

0

∣∣∣∣pI − p
∣∣∣∣2
0,� dt + Cε

2

∫ T

0

(
β(ph) − β(p), ph − p

)
dt. (7.52)

We apply the Young inequality to the second and third term of the right-hand side
of (7.50), and the stability condition of the inner product in Vh to obtain the two
inequalities

∣∣∣
∫ T

0

(
u − uπ ,

∫ t

0

(
uh − uI

)
ds
)
dt
∣∣∣ ≤ 1

2ε

∫ T

0

∣∣∣∣∣∣(u − uπ

)∣∣∣∣∣∣2
0,�

dt

+ ε

2

∫ T

0

∣∣∣∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣∣∣∣2
0,�

dt; (7.53)

∣∣∣
∫ T

0

(
uI − uπ ,

∫ t

0

(
uh − uI

)
ds
)
Vh

dt
∣∣∣ ≤ α∗

2ε

∫ T

0

∣∣∣
∣∣∣(uI − uπ

)∣∣∣
∣∣∣2
0,�

dt

+ α∗ε
2

∫ T

0

∣∣∣∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣∣∣∣2
0,�

dt. (7.54)
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Finally, we develop the fourth term of the right-hand side of (7.50) by applying the
Young inequality and Assumption (A2) to obtain:

∣∣∣
∫ T

0

((
γ (ph) − γ (p)

)
ẑ,
∫ t

0

(
uh − uI

)
ds
)
dt
∣∣∣

≤
∫ T

0

∣∣∣((γ (ph) − γ (p)
)
ẑ,
∫ t

0

(
uh − uI

)
ds
)∣∣∣ dt

≤ 1

2ε

∫ T

0

∣∣∣∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣∣∣∣2
0,�

dt + ε

2

∫ T

0

∣∣∣∣γ (ph) − γ (p)
∣∣∣∣2
0,� ds

≤ 1

2ε

∫ T

0

∣∣∣
∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣
∣∣∣2
0,�

dt + Cε

2

∫ T

0

(
β(ph) − β(p), ph − p

)
ds.

(7.55)

We apply inequalities (7.52), (7.53), (7.54) and (7.55) to (7.50). By taking a suitable
value of ε, the second term of the right-hand side of (7.52) and (7.55) may be
absorbed by the left-hand side of (7.50). Combining this with (7.51) and collecting
all constants in C yields:

∫ T

0

(
β(ph) − β(p), ph − p

)
dt +

∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
ds
∣∣∣∣∣∣2
0,�

≤ C

(∫ T

0

∣∣∣∣(uI − uπ

)∣∣∣∣2
0,� dt +

∫ T

0

∣∣∣∣(u − uπ

)∣∣∣∣2
0,� dt

+
∫ T

0

∣∣∣∣pI − p
∣∣∣∣2
0,� dt +

∫ T

0

∣∣∣
∣∣∣
∫ t

0

(
uh − uI

)
ds
∣∣∣
∣∣∣2
0,�

dt

)
. (7.56)

We eliminate the last term in the right-hand side of (7.56) by applying the Gronwall
inequality, which also determines the dependence C(T ) = O(exp(T )) on the value
of the final time T , to obtain:

∫ T

0

(
β(ph) − β(p), ph − p

)
dt +

∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
ds
∣∣∣∣∣∣2
0,�

≤ C(T )

(∫ T

0

∣∣∣∣(uI − uπ

)∣∣∣∣2
0,� dt +

∫ T

0

∣∣∣∣pI − p
∣∣∣∣2
0,� dt

)
. (7.57)

The lemma follows by adding and subtracting u in the first term in the right-hand
side and using the triangular inequality.

Proof of Theorem 7.1 We use inequality (7.35) from Lemma 7.3 to bound the first
termof the left-hand side of (7.28). Then,we use inequality (7.46) fromLemma (7.4).
We obtain
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∣∣∣∣∣∣
∫ T

0
(ph − pI ) dt

∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣
∫ T

0

(
uh − uI

)
dt
∣∣∣∣∣∣2
0,�

≤ C(T )

( ∫ T

0
||p − pI ||20,� dt

+
∫ T

0
||u − uI ||20,� dt +

∫ T

0
||u − uπ ||20,� dt

)
,

(7.58)

where C(T ) = O(T exp(T )). Finally, we estimate the spatial convergence rate by
using the interpolation bounds (7.12) for s = 1.

7.4.3 Convergence of the Fully-Discrete Approximation

To prove the convergence of the fully-discrete approximation (7.25)–(7.26), we need
to estimate the time-integral between 0 and T of the two errors (ph − pI ) and

(
uh −

uI
)
. These two errors measure the distance between the virtual element solution

pair (ph, vh) and the pair (pI ,uI ) interpolating the exact solution fields (p,u). To
derive the estimate, we need two preliminary results that are stated and proved in
Lemmas 7.5 and 7.7 from the error equations (7.33)–(7.34). It is worth noting that
these lemmas are the discrete analog of the Lemmas 7.3, and 7.4 of the semi-discrete
formulation. In the following analysis, all the constants that appear in the inequality
chains are independent of the mesh size parameter h but may depend on the final
time T . When this occurs, we denote this dependence by C(T ). In the proof of the
next lemmas, we use the symbol un

π to denote the piecewise constant vector field
given by taking the elemental averages of un , which is the exact flux field evaluated
at time tn .

Lemma 7.5 Under Assumptions (A1)–(A5) and (M1)–(M2), there exists a positive
constant C, which is independent of h and T , such that

∣∣∣
∣∣∣

NT∑
n=1

�tn
(
pnh − pnI

)∣∣∣
∣∣∣2
0,�

≤ C

(
T

NT∑
n=1

�tn
(
β(pnh) − β(pn), pnh − pn

)

+
∣∣∣∣∣∣

NT∑
n=1

�tn
(
un
h − 〈uI 〉n

)∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣

NT∑
n=1

�tn
(
un − 〈uI 〉n

)∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣

NT∑
n=1

�tn
(
un − un

π

)∣∣∣∣∣∣2
0,�

)
, (7.59)

where un
π denotes the piecewise constant vector-valued field given by taking the

averages of u on elements P ∈ �h at time tn.

Proof We use a fully discrete analog of the argument that we used to prove
Lemma 7.5. First, we multiply the error equation (7.34) by �tn and sum for
n = 1, . . . , NT to obtain:
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( NT∑
n=1

�tnun
h, vh

)
Vh

−
( NT∑

n=1

�tnun, vh
)

−
( NT∑

n=1

�tn
(
pnh − pnI

)
, div vh

)

+
( NT∑

n=1

�tn
(
γ (pnh) − γ (pn)) ẑ

)
, vh
)

= 0. (7.60)

In view of Lemma 7.1, there exists a vector ṽh ∈ Vh such that

div ṽh =
NT∑
n=1

�tn
(
pnh − pnI

)
and ||̃vh||0,� ≤ C

∣∣∣∣∣∣
NT∑
n=1

�tn
(
pnh − pnI

)∣∣∣∣∣∣
0,�

. (7.61)

Constant C is independent of h and qh =∑NT
n=1 �tn

(
pnh − pnI

)
, cf. Lemma 7.1, and,

thus, it is independent of T . We set vh = ṽh and use the expression of div ṽh in (7.60);
then, we reorder the terms of the equation to obtain:

∣∣∣
∣∣∣

NT∑
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�tn
(
pnh − pnI

)∣∣∣
∣∣∣2
0,�

=
( NT∑
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�tnun
h, ṽh

)
Vh

−
( NT∑

n=1

�tnun, ṽh
)

+
( NT∑

n=1

�tn
(
γ (pnh) − γ (pn)

)
ẑ, ṽh

)
. (7.62)

We use the consistency condition from (7.19) to transform the above relation as
follows:

∣∣∣∣∣∣
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(
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)∣∣∣∣∣∣2
0,�

=
( NT∑
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(
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)
, ṽh
)
Vh

−
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(
un − unπ

)
, ṽh
)

+
( NT∑
n=1

�tn
(
γ (pnh ) − γ (pn)

)
ẑ, ṽh

)
= (I ) + (I I ) + (I I I ). (7.63)

We estimate separately the three terms in the right-hand side of (7.63) by using the
Cauchy-Schwarz and the Young inequality for some non-negative coefficient ε, the
inequality in (7.61), and, for the first term, the stability condition on the Vh-inner
product:

(I ) =
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(
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)
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(7.64)
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(I I ) =
∣∣∣∣∣
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(7.65)

(I I I ) =
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( NT∑
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)
ẑ, ṽh
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ẑ
∣∣∣
∣∣∣2
0,�

+ ε

2
||̃vh||20,�

≤ 1

2ε

∣∣∣∣∣∣
NT∑
n=1

�tn
(
γ (pnh) − γ (pn)

)
ẑ
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.

(7.66)

By choosing a suitable value of ε we absorb the pressure term, i.e., the term that
depends on pnh − pnI , in the right-hand side of (7.64), (7.65) and (7.66) within the
left-hand side of (7.63) and we obtain the inequality:
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ẑ
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0,�

⎞
⎠ . (7.67)

We transform the first term of the right-hand side of (7.67) by adding and subtracting
〈uI 〉n and un to the summation argument and applying the triangular inequality

∣∣∣∣∣∣
NT∑
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)∣∣∣∣∣∣2
0,�

≤
∣∣∣∣∣∣
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)∣∣∣∣∣∣2
0,�

+
∣∣∣∣∣∣
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�tn
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)∣∣∣∣∣∣2
0,�

+
∣∣∣
∣∣∣
NT∑
n=1

�tn
(
un − unπ

)∣∣∣
∣∣∣2
0,�

. (7.68)

We transform the last termof the right-hand side of (7.67) byusing Jensen’s inequality
and inequality (7.6), cf. Assumption (A2), and noting that �tn ≤ T ; hence,
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∣∣∣∣∣∣
NT∑
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�tn
(
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)
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∣∣∣∣∣∣2
0,�

≤
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(
�tn

)2∣∣∣∣γ (pnh) − γ (pn)
∣∣∣∣2
0,�

≤ C
NT∑
n=1

(
�tn

)2(
β(pnh) − β(pn), pnh − pn

)

≤ CT
NT∑
n=1

�tn
(
β(pnh) − β(pn), pnh − pn

)
, (7.69)

where constant C is independent of h and T . The assertion of the lemma follows on
using inequalities (7.68) and (7.69) in inequality (7.67) to obtain (7.59). �

Aswehave already noted in the opening comments of this section, next Lemma7.7
is a fully discrete analog of Lemma 7.4. In its proof, all time integrals must be
substituted by summations over the time index n. To simplify the proof, we find it
convenient to introduce the special summation symbol:

Sn
h =

{
0 for n = 0,∑n

k=1 �t k
(
uk
h − 〈uI 〉k

)
for n ≥ 1.

(7.70)

The properties listed in Lemma 7.6 will be used in the proof of Lemma 7.7.

Lemma 7.6 For n ≥ 1, there hold:

(i) Sn
h − Sn−1

h = �tn
(
un
h − 〈uI 〉n

); (7.71)

(ii) 2
(Sn

h − Sn−1
h ,Sn

h

)
Vh

= ∣∣∣∣∣∣Sn
h

∣∣∣∣∣∣2
Vh

− ∣∣∣∣∣∣Sn−1
h

∣∣∣∣∣∣2
Vh

+ ∣∣∣∣∣∣Sn
h − Sn−1

h

∣∣∣∣∣∣2
Vh

;
(7.72)

(iii) 2
NT∑
n=1

(
Sn
h − Sn−1

h ,Sn
h

)
Vh

= ∣∣∣∣∣∣SNT
h

∣∣∣∣∣∣2
Vh

+
NT∑
n=1

∣∣∣∣∣∣Sn
h − Sn−1

h

∣∣∣∣∣∣2
Vh

. (7.73)

Proof Item (i) is an immediate consequence of definition (7.70). Item (ii) follows
from this obvious equality:

2
(Sn

h − Sn−1
h ,Sn

h

)
Vh

= (Sn
h ,Sn

h

)
Vh

− (Sn−1
h ,Sn−1

h

)
Vh

+ (Sn
h ,Sn

h

)
Vh

+ (Sn−1
h ,Sn−1

h

)
Vh

− 2
(Sn−1

h ,Sn
h

)
Vh

.(7.74)

Item (iii) follows from item (ii) by summing (7.72) from n = 1 to n = NT to obtain

2
NT∑
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(
Sn
h − Sn−1

h ,Sn
h

)
Vh

=
NT∑
n=1

( ∣∣∣∣∣∣Sn
h

∣∣∣∣∣∣2
Vh

−
∣∣∣∣∣∣∣∣∣Sn−1

h

∣∣∣∣∣∣∣∣∣2
Vh

)
+

NT∑
n=1

∣∣∣∣∣∣∣∣∣Sn
h − Sn−1

h

∣∣∣∣∣∣∣∣∣2
Vh

and noting that the first term on the right-hand side is a telescopic sum. �
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Lemma 7.7 Under Assumptions (A1)–(A5) and (M1)–(M2), for every time T > 0
there exists a positive constant C(T ) = O(exp(T )) such that

NT∑
n=1

�tn(β(pnh) − β(pn), pnh − pn) +
∣∣∣∣∣∣

NT∑
n=1

�tn
(
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0,�
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( NT∑
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�tn
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∣∣∣∣2
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∣∣∣∣2
0,�

+
NT∑
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�tn
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π

∣∣∣∣2
0,�

)
, (7.75)

where constant C(T ) is independent of themesh size parameter h, andun
π denotes the

piecewise constant vector-valued field given by taking the averages of u on elements
P ∈ �h at time tn.

Proof We use (7.70) with n = NT to reformulate the left-hand side of (7.75) as
follows:

NT∑
n=1

�tn
(
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)+
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(
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. (7.76)

We add (α∗)−1∑NT
n=1

∣∣∣∣∣∣Sn
h − Sn−1

h

∣∣∣∣∣∣2
Vh

to the right-hand side of (7.76) and, then,
we substitute (7.73) to obtain the inequality:

NT∑
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NT∑
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(Sn
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�tn
,Sn
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)
Vh

)
,

(7.77)

where constant C depends on α∗ but is independent of h. Next, we derive an expres-
sion for the summation argument in the right-hand side of (7.77), which depends on
the interpolation errors pn − pnI and un − 〈uI 〉n .

Adding error equation (7.33) with qh = pnh − pnI and error equation (7.34) with
vh = Sn

h yields
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(
β(pnh) − β(pn), pnh − pnI

)+ (un
h,Sn

h

)
Vh

− (un,Sn
h

)
+((γ (pnh) − γ (pn)

)
ẑ,Sn

h

) = 0. (7.78)

We subtract uπ by exploiting the consistency property (7.19) and we obtain

(
β(pnh) − β(pn), pnh − pn

)+ (un
h − un

π ,Sn
h

)
Vh

− (un − un
π ,Sn

h

)+
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γ (pnh) − γ (pn)
)
ẑ,Sn

h

)
= 0, (7.79)

and, then, we add and subtract 〈uI 〉n and the scalar solution field pn

(
β(pnh) − β(pn), pnh − pn

)+ (un
h − 〈uI 〉n ,Sn
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)
Vh
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)
ẑ,Sn
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)
. (7.80)

Using (7.71) and adding and subtracting un in the third term of the right-hand side
yield:

(
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h
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ẑ,Sn

h

)
. (7.81)

Finally, we substitute (7.81) in the right-hand side of (7.77) to obtain the inequality:
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h
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. (7.82)

To estimate the first term of the right-hand side of (7.82), we apply the Young
inequality for some positive coefficient ε that will be determined in the following,
use Assumption (A1), and obtain:
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)
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(7.83)

To estimate the second, third and fourth terms of the right-hand side of (7.82) we
apply the Young inequality and definition (7.70), and the consistency condition for
the inner product in Vh , and we obtain:
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(7.85)
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. (7.86)

To estimate the last term of the right-hand side of (7.82), we apply the Cauchy-
Schwarz and Young inequalities with the same coefficient ε, Assumption (A2), and
definition (7.70), and we obtain:
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NT∑
n=1

�tn
∣∣∣((γ (pnh ) − γ (pn)

)
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We apply inequalities (7.83)–(7.87) to (7.82). By taking a suitable value of ε, the
second term of the right-hand side of (7.83) and (7.87) is absorbed by the left-hand
side of (7.82), thus giving
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(7.88)

Finally, we eliminate the last term in the right-hand side of (7.88) by applying the
discrete Gronwall inequality, and we find the assertion of the lemma with a constant
C(T ) = O(exp(T )), which is independent of h. �

Proof of Theorem 7.2 Adding and subtracting pnI to the first term on the left-hand
side of (7.29) and using the triangular inequality yield:
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0,�

. (7.89)

The first term on the right-hand side is controlled by using inequality (7.59) from
Lemma 7.5. Then, we use inequality (7.75) from Lemma 7.7 and the Jensen inequal-
ity. We obtain
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where C(T ) = O(T exp(T )). We estimate the the error terms Ti , i = 1, 4 in the
right-hand side of (7.90) as follows [78], by noting that ph = Ph ph , pI = Ph p,
〈pI 〉n = Ph 〈p〉n , �tn < T and the projection operator Ph for h → 0 is (uniformly)
bounded. We find that:
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I

∣∣∣∣2
0,� +

NT∑
n=1

�tn
∣∣∣∣un

I − 〈uI 〉n
∣∣∣∣2
0,�

≤ C

(
h2

NT∑
n=1

�tn
∣∣∣∣un

∣∣∣∣2
1,� + �t2

∫ T

0

∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣2
0,�

dt

)

≤ C

(
h2
(∫ T

0

∣∣∣∣u∣∣∣∣21,� dt + O(�t)

)
+ �t2

∫ T

0

∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣2
0,�

dt

)
,

T4 ≤ Ch2
NT∑
n=1

�tn
∣∣∣∣un

∣∣∣∣2
1,� ≤ Ch2

(∫ T

0

∣∣∣∣u∣∣∣∣21,� dt + O(�t)

)
.

and the theorem follows by using these estimates in inequality (7.90).

7.5 Numerical Experiments

In this section, we study the convergence properties of the proposed mixed VEM
numerically. To perform this study, we consider four different types of meshes, viz.,
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(a) (b)

(c) (d)

Fig. 7.1 A schematic representation of different discretizations employed in this study

structured square, distorted square, regular polygonal and Voronoi meshes. Figure
7.1 shows a schematic representation of the meshes employed in this study.

Before studying the Richards equation, the mixed VEM developed herein is val-
idated for the simplest model problem:

−div
(∇ p

) = f in �, (7.91)

p =gD on �, (7.92)

where � is the unit square, and f and Dirichlet boundary conditions gD are chosen
on the whole boundary � so that the exact solution is p = sin(πx) sin(πy). We
discretize the domain with the four mesh families shown in Fig. 7.1. Figure 7.2
shows the convergence of the error for the pressure approximation measured in the
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Fig. 7.2 Convergence of the relative pressure error in the L2 norm with respect to mesh size h for
different mesh discretizations

L2 norm versus the mesh size parameter h. The optimal convergence rate for the
approximation of p, which must be proportional to O(h), is clearly observed.

To investigate the performance of the mixed VEM in treating numerically the
Richards equation, we consider the manufactured solution test case proposed in [74],
with exact solution given by

p(x, y, t) =
⎧⎨
⎩

−2(es − 1)

es + 1
for s ≥ 0,

−s for s < 0,

where s = x − y − t . The forcing term f and Dirichlet boundary conditions gD on
the whole boundary � are enforced accordingly. We assume that γ = 0 and take

β(p) =

⎧⎪⎨
⎪⎩

π2 − p2

2
for p ≥ 0,

π2

2
for p < 0

.
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The virtual element discretization is solved over the unit square � and from t = 0
up to the final time T = 1.

We consider the nonlinear implicit scheme given by taking the difference of both
Eqs. (7.25) and (7.26) at two consecutive time instants tn−1 and tn . To solve the
resulting nonlinear system for the degrees of freedom of the virtual element approx-
imations uh and ph , we apply the Picard linearization procedure discussed in [74]:

κ(pn,i
h , qh) + (divunh , qh

)+
(β(pn,i−1

h ) − β(pn−1
h )

�tn
, qh
)

=
(

〈 f 〉n , qh
)

+ κ(pn,i−1
h , qh)

(7.93)(
un,i
h , vh

)
Vh

−
(
pn,i
h , div vh

)
= 〈 ¯gDn, vh

〉
h ∀vh ∈ Vh (7.94)

where i and i − 1 are two consecutive inner iteration steps and κ is a suitable constant
scaling factor (in all our calculations we set κ = 2). A Newton-type linearization is
an alternative and effective choice for the solution of the implicit nonlinear problem
provided by the VEM. However, as this problem has only a mild non-linearity, we
preferred staying on the Picard’s iterative method. The computations are performed
over the four mesh families shown in Fig. 7.1. The initial mesh size of all the mesh
families is taken such that h ≈ 0.35; the time increment is �T = 0.01. Except for
the Voronoi meshes, the run parameters h and �T are approximately halved at each
refinement step until �T = 0.000625. In the case of Voronoi meshes, the tolerance
for the stopping criteria is set as 1×10−10.

Figure 7.4 shows the plots of the L2 relative errors on the pressure approximation
with respect to h when the various meshes are refined. We can infer from these plots
that our numerical approach yields a rate of convergence of about 0.94, which is,
thus, very close to the theoretical estimate of 1 from Theorem 7.2.

Next, we study the convergence of the relative error in the pressure approximation
in L2 norm for two cases: (a) Case A: constant�t , varying h and (b) Case B: constant
h, varying �t , when the domain is discretized with square and Voronoi meshes. For
CaseA,�t is assumed to be 0.00125 and for Case B, h is considered to be≈ 0.03143.
Figure 7.3 show the convergence of the relative error in the L2 norm for Case A and
B, respectively. It can been seen that in both cases, the rate of convergence is close
to 1, as predicted by theoretical estimate (Fig. 7.4).

Remark 7.2 Finally, we note that in these practical calculations, instead of (7.93)–
(7.94) we could use the alternative equation for n > 1

(β(pnh) − β(pn−1
h )

�tn
, qh
)

+ (div un
h, qh

) =
(

〈 f 〉n , qh
)

∀qh ∈ Qh . (7.95)

Indeed, Eqs. (7.95) and (7.25) are equivalent as the former is readily derived by
subtracting the latter equation taken at the time steps n and n − 1. Picard (or Newton)
linearization can be also applied for the numerical resolution.
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Fig. 7.3 Richards equation: convergence of the relative pressure error in the L2 norm with respect
to mesh size h for different mesh discretizations. The mesh size h and the time increment �t are
approximately halved at each refinement step

Fig. 7.4 Convergence of the relative pressure error in the L2 norm: awith respect to time increment,
�t for constant mesh size h and b with respect to the mesh size for a constant time increment �t .
Results are shown for the square mesh family (circles) and the Voronoi mesh family (diamonds)
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7.6 Conclusions

We applied the mixed virtual element method to the numerical treatment of the
Richards equation in weak form for the computer modeling of flows in soils in
partially to fully saturated regimes. We obtain such a variational formulation by
applying the Kirchoff transformation and a preliminary integration in time. Then,
we approximated the resulting nonlinear parabolic problem in mixed form by the
mixed virtual element method in space on unstructured polytopal meshes to obtain
the semi-discrete and fully-discrete mixed VEM. We theoretically proved that both
formulations are convergent and derive an estimate of the convergence rates. Finally,
we studied the behaviour and the accuracy of themixed virtual element discretization
and assessed its flexibility with respect to the geometric shape of the mesh elements.
To this end, we considered a steady-state and a time-dependent benchmark problem
that we solved on a set of polygonal meshes. The numerical results are in perfect
agreement with the theoretical expectations from the convergence analysis.

Acknowledgements GM has been partially supported by the ERC Project CHANGE, which has
received funding from the European Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant agreement No. 694515).
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Chapter 8
Performances of the Mixed Virtual
Element Method on Complex Grids
for Underground Flow

Alessio Fumagalli, Anna Scotti , and Luca Formaggia

Abstract The numerical simulation of physical processes in the underground fre-
quently entails challenges related to the geometry and/or data. The former are mainly
due to the shape of sedimentary layers and the presence of fractures and faults, while
the latter are connected to the properties of the rockmatrix whichmight vary abruptly
in space. The development of approximation schemes has recently focused on the
overcoming of such difficulties with the objective of obtaining numerical schemes
with good approximation properties. In this work we carry out a numerical study on
the performance of the Mixed Virtual Element Method (MVEM) for the solution of
a single-phase flow model in fractured porous media. This method is able to handle
grid cells of polytopal type and treat hybrid dimensional problems. It has been proven
to be robust with respect to the variation of the permeability field and of the shape of
the elements. Our numerical experiments focus on two test cases that cover several
of the aforementioned critical aspects.

Keywords Virtual element method · Fracture flow · Grid generation ·
Mixed-dimensional problems · spe10 benchmark

8.1 Introduction

The numerical simulation of subsurface flows is of paramount importance in many
environmental and energy related applications such as themanagement of groundwa-
ter resources, geothermal energy production, subsurface storage of carbon dioxide.
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The physical processes are usually modeled, under suitable assumptions, by Darcy’s
law and its generalization to multiphase flow.

In spite of the simplicity of the Darcy model, the simulation of subsurface flow
is often a numerical challenge due to the strong heterogeneity of the coefficients,
porosity and permeability of the porous medium, and to the geometrical complexity
of the domains of interest. At the spatial scale of reservoirs, or sedimentary basins,
the porous medium has a layered structure due to the deposition and erosion of
sediments, and tectonic stresses can create, over millions or years, deformations,
folds, faults and fractures. In realistic cases the construction of a computational grid
that honours the geometry of layers and a large number of fractures is not only a
difficult task, but can also give poor results in terms of quality, creating, for instance,
very small or badly shaped elements in the vicinity of the interfaces.

In the framework of Finite Volume and Finite Elements methods one possibility
is to consider formulations that allow for coarse/agglomerated and regular grids cut
by the interfaces in arbitrary ways. The Embedded Discrete Fracture Model, for
instance, [43, 47, 53], can represent permeable fracture that cut the background grid
by adding additional transmissibility in the matrix resulting from the Finite Volumes
discretization; on the other hand the eXtended Finite Element Method can be used
to generalize a classical FEM discretization allowing for discontinuities inside an
element of the grid, see for example [23, 26, 31, 32] for the application of this
technique to Darcy’s problem.

A promising alternative consists in the use of numerical methods that are robust
in the presence of more general grids, in particular polygonal/polyhedral grids, and
that impose mild restriction on element shape: this is the case for the Virtual Element
Method (VEM), introduced in [6, 7, 18] and successfully applied now to a variety
of problems, including elliptic problems in mixed form which is the case of the
Darcy model considered in this work. See also [9, 10, 38, 40, 41]. By avoiding the
explicit construction of basis function VEM can indeed handle very general grids,
which might be useful in the aforementioned cases where the heterogeneity of the
medium and the presence of internal interfaces pose constraints to grid generation. In
the context of porous media simulations, mixed methods, i.e. methods that consider
both velocity and pressure as unknowns of the problem, are of particular interest
since they provide a good approximation of pressure as well as an accurate (and
conservative) velocity field. For these reasons, we focus our attention on the Mixed
Virtual Element Method (MVEM).

MVEM may be considered to belong to the general family of “Discontinuous
SkeletalMethods” described in [14]. Its formulation falls in the finite elementmethod
framework, where however shape functions are defined only implicitly by their prop-
erties, and degrees of freedom are obtained by suitable projection operators that
enable to compute the approximate bilinear forms. The latter include a computable
stabilization term necessary to recover well posedness. Low-order MVEM gives rise
to an algebraic problem akin to that produced by Mimetic Finite Differences. A
link among Mimetic Finite Differences and Hybrid Finite Volumes may be found
also in [28].
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The aim of this work is to consider practical grid generation strategies to deal
with such complex geometries and to test the performance of the MVEM method
on the different types of grid proposed. In particular, we want to investigate the
impact of grid type and element shape on properties of the linear system such as
sparsity and condition number, and eventually compare the errors. To this aim we
will consider two test cases from the literature, in particular two layers from the well-
known 10th SPE Comparative Solution Project (SPE10) dataset, described in [22],
characterized by a complex permeability field, and a test case for fractured media
taken from [30]. We focus our attention on grid generation strategies that can be
applicable in realistic cases: if it is certainly true that MVEM can handle general
polytopal grid the construction of such grids is often a difficult task. For this reason, in
addition to classical Delaunay triangular grids we consider the case of Voronoi grids,
rectangular Cartesian grids cut by fractures, and grids generated by agglomeration.
This latter strategy can be applied as a post-processing to all other grid types with the
advantage of reducing the number of unknowns. For the numerical implementation
of the test cases we have used the publicly available library PorePy [46].

The paper is structured as follows: in Sect. 8.2we present themathematical model,
i.e. the single phase Darcy model in the presence of fractures approximated as codi-
mension 1 interfaces. Section8.3 is devoted to the weak formulation of the problem
just introduced. Section8.4 introduces the numerical discretization by the Virtual
Element method, while in Sect. 8.5 we describe the grid generation strategies used
in the paper. Section8.6 presents the numerical tests, and Sect. 8.7 is devoted to
conclusions.

8.2 Governing Equations

We now introduce the mathematical models considered in this work. The realistic
modeling of subsurface flows requires a complex set of non-linear equations and
constitutive laws, however one of the key ingredient (upon a suitable linearisation)
is the single-phase flow model for a porous media, like the one already in Chap.1,
Sect. 1.2.1, based on Darcy’s law and mass conservation. We are here studying this
model, keeping in mind that it might be seen as a part of a more complex model. In
addition, it is of our interest to consider also fractures in the porous media, and this
calls for a more sophisticated approach.

As already mentioned, we set our study in a saturated porous medium represented
by the domain � ⊂ R

2. The boundary of �, indicated with ∂�, is supposed regular
enough (e.g. Lipschitz continuous). The boundary is divided into two disjoint parts
∂u� and ∂p� such that ∂u�̊ ∩ ∂p�̊ = ∅ and ∂u� ∪ ∂p� = ∂�. These portions of
the boundary will be used to define boundary conditions.

http://dx.doi.org/10.1007/978-3-030-69363-3_1
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8.2.1 Single-Phase Flow in the Bulk Domain

We briefly recall the mathematical model of single-phase flow in porous media,
referring to classical results in literature, see [4], for details. We are interested in the
computation of the vector field Darcy velocity u and scalar field pressure p, which
are solutions of the following problem

u + K∇ p = 0

∇ · u = f
in �,

u · n∂ = u on ∂u�,

p = p on ∂p�.

(8.1)

The parameter K is the 2 × 2 permeability tensor, which is symmetric and positive
definite. For simplicity, the dynamic viscosity of the fluid is included into K . The
source or sink term is named f . Finally, n∂ is the outward unit normal on ∂�, u and
p given boundary data.

We recall that the permeability tensor, for real applications, may vary several order
of magnitude from region to region (i.e., grid cells) and can be discontinuous.

8.2.2 Fracture Flow

We are interested in the simulation of single-phase flow in porous media in the
presence of fractures. For simplicity we start with a single fracture. The model
we are considering is the result of a model reduction procedure that approximates
the fracture as a lower dimensional object and derives new equations and coupling
conditions for the Darcy velocity and pressure both in the fracture and surrounding
porous medium. More details on this subject can be found in the following, not
exhaustive, list of works [2, 3, 12, 15, 17, 20, 23, 32, 33, 41, 48, 51, 58, 60], as
well as Chaps. 3, 4 and 5 of this Book.

In the following, the fracture is indicated with γ , and quantities related to the
porous media and the fracture are indicated with the subscript � and γ , respectively.
The fracture is described by a planar surface with normal vector denoted by n, which
also defines a positive and negative side of γ , indicated as γ + and γ −, see Fig. 8.1
as an example. Given a field u in � \ γ we indicate its trace on γ + and γ − as tru+
and tru−, respectively.

The fracture is characterized by an aperture εγ which, in the reduced model where
the fracture has co-dimension one, is only a model parameter. Finally, if the fracture
touches the boundarywe can apply natural or essential given boundary conditions;we
denote as ∂pγ and ∂uγ the portions of ∂γ where pressure and velocity are imposed.
We assume that ˚∂pγ ∩ ˚∂uγ = ∅ as well as ∂pγ ∪ ∂uγ = ∂γ . If a fracture tip does

http://dx.doi.org/10.1007/978-3-030-69363-3_3
http://dx.doi.org/10.1007/978-3-030-69363-3_4
http://dx.doi.org/10.1007/978-3-030-69363-3_5
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Fig. 8.1 Hybrid-
dimensional representation
of a fracture immersed in a
porous media

not touch the physical boundary a no-flow condition is imposed, so in this case we
assume that the immersed tip belongs to ∂uγ with an homogeneous condition.

We recall the system of equations that will be used in the sequel. In the bulk porous
medium � \ γ the problem is governed by the classic Darcy’s equations already
presented in (8.1), which we rewrite using the subscript � to identify quantities in
� \ γ

u� + K�∇ p� = 0

∇ · u� = f�
in � \ γ,

u� · n∂ = u� on ∂u� \ ∂γ,

p� = p� on ∂p� \ ∂γ.

(8.2a)

We assume that also the flow in the fracture is governed by Darcy’s law, however the
differential operators operate nowon the tangent space. Yet, for the sake of simplicity,
with an abuse of notation we use the same symbols to denote them. The system of
equations in the fracture is then given by

ε−1
γ uγ + Kγ ∇ pγ = 0

∇ · uγ − tru+ · n + tru− · n = fγ
in γ,

uγ · n∂ = uγ on ∂uγ,

pγ = pγ on ∂pγ.

(8.2b)

Here, uγ and pγ are given boundary data, and we recall that possible fracture tips
are in ∂uγ with uγ = 0. The parameter Kγ is the tangential effective permeability
in γ . In the 2D setting, where the reduced fracture model is one-dimensional, Kγ

is a positive quantity. In the 3D setting, it may be in general a rank-2 symmetric
and positive tensor. We may note in the equation representing the conservation of
mass the presence of an additional term that describes the flux exchange with the
surrounding porous media. To close the problem we need to complete the coupling
between fracture and bulk, and we consider the following Robin-type condition on
both sides of γ

εγ tru± · n ± κγ (pγ − trp±) = 0 on γ ±, (8.2c)
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with κγ > 0 being the normal effective permeability. Problem (8.2) consists of the
system of equations that describe the Darcy velocity and pressure in both the fracture
and surrounding porous medium. An analysis may be found, for instance, in [33] or
[40].

The case of N > 1 non-intersecting fractures the problem is analogous to the
one just described where γ = ∪N

i=1γi . However, if two or more fractures intersect we
need to introduce new conditions to describe the flux interchange between connected
fractures. At each intersection ι we denote with Iι the set of intersecting fractures
and we consider the following conditions on ι,

⎧
⎪⎨

⎪⎩

εια j tru j · t j + κι(pι − trp j ) = 0 ∀γ j ∈ Iι∑

γ j∈Iι
α j tru j · t j = 0 on ι, (8.3)

where ει is the measure of the intersection, pι is the pressure at the intersection, κι

is the permeability at the intersection and α ∈ {−1, 1} depends on the orientation
chosen for the normal t j to ∂γ j at the intersection. Note that t j is indeed on the
tangent plane of γ j . System (8.3) can be simplified by noting that it implies that pι

is equal to the average of the p j .

8.3 Weak Formulation

The numerical scheme that we will present in Sect. 8.4 is based on the weak for-
mulation of problem (8.1) and (8.2). Therefore, we will present in the following
the functional setting and the weak form we have used as basis for the numerical
discretization.We indicate with L2(A) the Lebesgue space of square integrable func-
tions on A, while Hdiv(A) is the space of square integrable vector functions whose
distributional divergence is in L2(A). They are Hilbert spaces with standard norms
and inner products. In particular, we denote with (·, ·)A the L2(A)-scalar product.
Moreover, given a functional space V and its dual V ′ we use 〈a, b〉, with a ∈ V and
b ∈ V ′ to denote the duality pairing between the given functional spaces.

8.3.1 Single-Phase Bulk Flow Without Fractures

If fractures are not present, the setting is rather standard. For simplicity, we assume
homogeneous essential boundary conditions u� = 0, otherwise a lifting technique
can be used to recover the original problem. We introduce the following functional
spaces for vector and scalar field, respectively,

V (�) = {v ∈ Hdiv(�) : trv · n∂ = 0 on ∂u�} and Q(�) = L2(�). (8.4)
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Here tr is the normal trace operator tr : Hdiv(�) → H− 1
2 (∂u�), which is linear and

bounded, see [13].
We can now introduce the following bilinear forms and functionals

a� : V (�) × V (�) → R : a�(u�, v�) = (H�u�, v�)�

b� : V (�) × Q(�) → R : b�(v�, p�) = −(∇ · v�, q�)�

G� : V (�) → R : G�(v�) = −〈trv� · n∂ , p�〉
F� : Q(�) → R : F�(q�) = −( f�, q�)�

where H� = K−1
� . We assume that K� ∈ [L∞(�)]2×2, with α|| y||2 ≤ yT K� y ≤

α|| y||2, a.e. in �, where y ∈ R
2 and 0 < α ≤ α.

Furthermore, we take p� ∈ H
1
2
00(∂p�), and f� ∈ L2(�). Let us note that a� :

V (�) × V (�) → R is continuous, coercive and symmetric, being K� symmetric.
We can now state the weak formulation of our problem: find (u�, p�) ∈ V (�) ×

Q(�) such that

a�(u�, v�) + b�(v�, p�) = G�(v�) ∀v� ∈ V (�)

b�(u�, q�) = F�(q�) ∀q� ∈ Q(�)
. (8.5)

The previous problem is well posed, provided |∂p�| > 0. See, for example, [13] for
a proof.

8.3.2 Fracture Flow

Weextend now theweak formulation for problem (8.2), with the simplifying assump-
tion that only one fracture is considered. Its extension tomultiple fractures is straight-
forward, see for example [15, 33].Also in this casewe assumehomogeneous essential
boundary conditions, otherwise a lifting technique can be used.

We need to introduce the space Hdiv(� \ γ ) as the space of vector function in
L2(� \ γ ) (which may be identified by L2(�) since γ has zero measure) whose
distributional divergence is in L2(	) for all measurable 	 ⊂ (� \ γ ). We need also
to impose some extra regularity on the trace on γ ±, due to the Robin-type condition
(8.2c). The reader may refer to [13, 36, 48] for a more detailed discussion on this
matter. In particular, we require that, for a v� ∈ Hdiv(� \ γ ) , trv+ · n ∈ L2(γ ) and
trv− · n ∈ L2(γ ), where tr here indicates the trace of v on the two sides of the fracture.
This space is equipped with the inner product

(u, v)Hdiv(�\γ ) = (u, v)� + (∇ · u,∇ · v)� + (tru+ · n, trv+ · n)γ + (tru− · n, trv− · n)γ ,

and induced norm. The new space for vector fields in the bulk is given by
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V̂ (�) = {v� ∈ Hdiv(� \ γ ) : trv� · n∂ = 0 on ∂u�} .

The functional spaces for vector and scalar fields defined on the fracture are

V (γ ) = {
vγ ∈ Hdiv(γ ) : trvγ · n∂ = 0

}
and Q(γ ) = L2(γ ),

where in this case the trace operator in V (γ ) is given by tr : Hdiv(γ ) → H− 1
2 (∂uγ ).

Note that in the case of 2D problems like the ones treated in this work, V (γ ) is in
fact a subspace of H 1(γ ) and the trace reduces to the value at the boundary point.

We introduce now the bilinear forms and functional for the weak formulation
of problem (8.2). First, we modify the bilinear form a� by taking into account the
coupling terms from (8.2c) as

â� : V̂ (�) × V̂ (�) → R : â�(u�, v�) = a�(u�, v�)� +
∑

∗∈{+,−}
(ηγ tru∗ · n, tru∗ · n)γ

where ηγ = εγ κ−1
γ and we have assumed that ηγ ∈ L∞(γ ). Second, the bilinear

forms associated with the fracture are given by

aγ : V (γ ) × V (γ ) → R : aγ (uγ , vγ ) = (Hγ uγ , vγ )γ

bγ : V (γ ) × Q(γ ) → R : bγ (vγ , pγ ) = −(∇ · vγ , pγ )γ

Gγ : V (γ ) → R : Gγ (vγ ) = −〈trvγ · n∂ , pγ 〉
Fγ : V (γ ) × R : Fγ (qγ ) = −( fγ , qγ )γ

wherewehaveH−1
γ = εγ Kγ andwehave assumed thatHγ ∈ L∞(γ ), pγ ∈ H

1
2 (∂pγ ),

and fγ ∈ L2(γ ). Third, we introduce the bilinear forms responsible for the flux
exchange between the fracture and the bulk medium

c± : V̂ (�) × Q(γ ) → R : c±(u�, qγ ) = ±(tru± · n, qγ )γ

c : V̂ (�) × Q(γ ) → R : c(u�, qγ ) =
∑

∗∈{+,−}
c∗(u�, qγ ).

Finally,we canwrite theweak formulation for problem (8.2): find (u�, p�, uγ , pγ ) ∈
V̂ (�) × Q(�) × V (γ ) × Q(γ ) such that

â�(u�, v�) + b�(v�, p�) + c(v�, pγ ) = G�(v�) ∀v� ∈ V̂ (�)

b�(u�, q�) = F�(q�) ∀q� ∈ Q(�)

aγ (uγ , vγ ) + bγ (vγ , pγ ) = Gγ (vγ ) ∀vγ ∈ V (γ )

bγ (uγ , qγ ) + c(u�, qγ ) = Fγ (qγ ) ∀qγ ∈ Q(γ )

(8.6)

The reader can refer to [23, 26, 32] for proofs of the well posedness of the problem,
provided suitable boundary conditions.
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8.4 Numerical Approximation by MVEM

The challenges in terms of heterogeneity of physical data and complexity of the
geometry due to the presence of fractures influence the choice of the numerical
scheme. A possible choice is the mixed finite element method, see [13, 56, 57].
However, this class of methods, capable of providing accurate results for pressure
and velocity fields, even in the presence of high heterogeneities, requires grids made
either of simplexes (triangles of tetrahedra) or quad/hexahedra. This can be inefficient
for the problem at hand, where instead methods able to operate on grids formed
by arbitrary polytopes are rather appealing. For this reason finite volume schemes,
see [27] for a review, are very much used in practice. However, they normally treat
the primal formulation and require good quality grids to obtain an accurate solution
and a good reconstruction of the velocity field. Indeed, it is known that convergence
of the method is guaranteed only if the grid has special properties.

Therefore, we focus here our attention on the low-order Mixed Virtual Element
Method, a numerical schemes that operates on polytopal grids and that has shown
to be rather robust with respect to irregularities in the data and in the computational
grid. We consider first the case of porous medium without fractures, focusing on
problems with highly heterogeneous permeability, and then the case of a fractured
porous medium, using the model described in Sect. 8.4.2. A different application of
the Mixed VEM for the numerical treatment of the Richards equations can be found
in Chap.7.

The actual implementation in PorePy adopts a flux mortar technique that allows
non-conforming coupling between inter-dimensional grids. We do not exploit the
possibility of having grids non-conforming to the fractures in this work, nevertheless
in Sect. 8.4.2 we will describe the mortar approach more in detail.

8.4.1 Bulk Flow Without Fractures

In this part we present the MVEM discretization of problem (8.5). A key point of the
virtual method is to use an implicit definition of suitable basis functions, and obtain
computable discrete local matrices by manipulating the different terms in the weak
formulation appropriately. In this work we consider only the low order case, yet the
method can be extended to higher order formulations.

We indicate the computational grid, approximation of �, as T (�). We assume
that � has polygonal boundary, so that T (�) covers � exactly. The set of faces of
T (�) is denoted as E(�), with the distinction between the internal and boundary
faces indicated by E(�̊) and E(∂�), respectively. We also specify the edges on
a specific portion of the boundary of � as E(∂u�) and E(∂p�). We clearly have
E(�̊) ∪ E(∂�) = E(�) as well as E(�̊) ∩ E(∂�) = ∅. In the sequel, we generally
indicate as C ∈ T (�) a grid cell and e ∈ E(�) a face between cells. Element C can
be a generic polygon (polyhedra in the 3D case).

http://dx.doi.org/10.1007/978-3-030-69363-3_7
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We introduce the finite dimensional subspaces, approximation of the continuous
spaces given in (8.4), as

Vh(�) = {v� ∈ V (�) : ∇ · v�|C ∈ P0(C) and ∇ × v�|C = 0, ∀C ∈ T (�),

trv� · ne ∈ P0(e), ∀e ∈ E(�)} ,

with P0(X) being the space of constant polynomials on X , while tr and ne the trace
and the normal associated to edge e. For the scalar field we set

Qh(�) = {q� ∈ Q(�) : q�|C ∈ P0(C)∀C ∈ T (�)} .

Clearly, Vh(�) ⊂ V (�) and Qh(�) ⊂ Q(�). The degrees of freedom associated
with Vh(�) and Qh(�) are one scalar value for each face and one scalar value
for each cell, respectively. More precisely, if we generically indicate with dofi the
functional associated with the i-th degree of freedom, we have, for a v� ∈ Vh(�)

and a q� ∈ Qh(�)

dofiv� = trv� · nei and dofiq� = q�|Ci ,

where ei andCi are the i-th edge and cell, respectively, and tr now indicates the trace
associated to the edge ei .

Moreover, we can observe that in case of triangular grids Vh(�) coincides with
RT0(�), so the former can be viewed as a generalization of the well known Raviart-
Thomas finite elements.

By performing exact integration, the numerical approximation of the bilinear form
b� and of the functionals G�, F� are computable with the given definition of the
discrete spaces. However, for the term a� we need further manipulations to obtain
a computable expression. To this purpose, we define a suitable subspace of Vh(�),
defined as

Vh(�) = {v� ∈ Vh(�) : v�|C = KC∇vC for a vC ∈ P1(C)∀C ∈ T (�)} ,

where KC is a suitable constant approximation of K�|C , and we define a projection
operator �� : Vh(�) → Vh(�) so that for a v ∈ Vh(�) we have

a�(v − ��v,w) = 0, ∀w ∈ Vh(�).

We now set T� = I − ��, where T� : Vh(�) → V⊥
h (�) and the orthogonality con-

dition is governed by the bilinear form a�, which, being symmetric, continuous
and coercive, defines an inner product. Indeed, from the definition of �� we have
a�(T�v�,��w�) = 0 for all v�,w� ∈ Vh(�). Considering this fact, we have the
following decomposition

a�(u�, v�) = a�((�� + T�)u�, (�� + T�)v�) = a�(��u�,��v�) + a�(T�u�, T�v�).
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Now, thanks to the definition of Vh(�) the first term is computable in terms of the
degrees of freedom, see for instance [39], but not the second one. However, since it
gives the contribution of a� only on V⊥

h (�), it can be approximated with a suitable
stabilizing bilinear form s : Vh(�) × Vh(�) → R, i.e.

a�(T�u�, T�v�) ≈ s�(u�, v�).

For more details about s� refer to the works [5, 7, 18, 25, 40, 41]. The form s� must
satisfy the following equivalence condition:

∃υ∗, υ∗ ∈ R
+ : υ∗a�(u�, v�) ≤ s�(u�, v�) ≤ υ∗a�(u�, v�) ∀u�, v� ∈ Vh(�).

To illustrate our choice of s�, let us denote with ϕ a generic element of the basis of
Vh(�). The stabilization term, in our case, can be computed as

s�(ϕθ ,ϕχ ) =
∑

C∈T (�)

‖H�‖L∞(C)

Ndof (C)∑

i=1

dofi(T�ϕθ )dofi(T�ϕχ ), (8.7)

where Ndof (C) is the total number of degrees of freedom for the vector field for the
cell C and dofi gives the value of the argument at the i th-dof. The K� norm is a
scaling factor in order to consider also strong oscillations of physical parameters.
With the definition of the stabilization term now all the terms are computable and
the global system can be assembled. For more details on the actual computation of
the local matrices refer to [6, 40].

8.4.2 Fracture Flow

We introduce now the numerical scheme used for the approximation of problem
(8.6). We consider the notations and terms for the porous media from the previous
section. In fact, the derivation of the discrete setting for the porous media is similar
to what already presented. We focus now on the fracture discretization as well as on
the coupling term with the surrounding porous media.

In particular, for the implementation we have chosen PorePy [46], that consid-
ers an additional interface γ ± between the fracture and the porous media along
with a flux mortar technique to couple domains of different dimensions, allowing
also non-conforming grids between the domains. However, to avoid additional com-
plexity we consider only conforming grids so that the mortar variable behaves as a
Lagrange multiplier λh . The latter is the normal flux exchange from the higher to
lower dimensional domain. See Fig. 8.2 as an example.Geometrically (i) the interface
between the porous media and the fracture, (ii) the fracture, and (iii) the two inter-
faces coincide but they are represented by different objects with suitable operators
for their coupling. In the case of conforming discretizations these operators simply
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Fig. 8.2 On the left, the hybrid-dimensional representation of a fracture immersed in a porous
media with the two interfaces γ + and γ −, in red. On the right, the representation of the degrees of
freedom for vector fields

map the corresponding degrees of freedom, however in the case of non-conforming
discretizations projection operators should be considered.

As done before, we consider the special case of a single fracture, being its gen-
eralization straightforward. First of all, the velocity degrees of freedom for the rock
matrix in the proximity of the fracture are doubled as Fig. 8.2 shows. We can thus
represent tru± · n = λ±

h for both sides ± of the fracture itself. The term â� involves
the actual integration of the basis functions for each grid cells, which is not possible
since they are not, in general, analytically known.

Many of the following steps are similar to what already done for the bulk porous
media. We introduce a tessellation of γ into non-overlapping cells (segments in this
case), the grid is indicated with T (γ ) and the set of faces (edges) as E(γ ). Also
in this case, we divide the internal faces and the external faces E(γ̊ ) and E(∂γ ).
Moreover, the latter can also be divided into subset depending on the boundary
conditions E(∂uγ ) and E(∂pγ ). Clearly, we have E(γ ) = E(γ̊ ) ∪ E(∂γ ) as well as
E(∂uγ ) ∪ E(∂pγ ) = E(∂γ ). We introduce the functional spaces for the variables
defined on the fracture, for the vector fields we have

Vh(γ ) = {
vγ ∈ V (γ ) : ∇ · vγ |C ∈ R,∇ × vγ |C = 0 ∀C ∈ T (γ ), trvγ · ne ∈ R ∀e ∈ E(γ )

}
,

while for the scalar fields we consider the discrete space

Qh(γ ) = {
qγ ∈ Q(γ ) : qγ |C ∈ R∀C ∈ T (γ )

}
.

By keeping the same approach as before, we assume exact integration so that the
numerical approximation of the bilinear form bγ as well as functionals Gγ and Fγ

are computable with the given definition of the discrete spaces. The term aγ is not
directly computable, we thus introduce the subspace of Vh(γ ) as

Vh(γ ) = {
vγ ∈ Vh(γ ) : vγ |C = Kγ |C∇vC for a vC ∈ P1(C)∀C ∈ T (γ )

}
.
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We introduce the projection operator �γ from Vh(γ ) → Vh(γ ) such that for a v ∈
Vh(γ ) we have aγ (v − �γ v,w) = 0 for all w ∈ Vh . By introducing the operator
Tγ = I − �γ , we have the decomposition

aγ (uγ , vγ ) = aγ ((�γ + Tγ )uγ , (�γ + Tγ )vγ ) = aγ (�γ uγ ,�γ vγ ) + aγ (Tγ uγ , Tγ vγ ).

By the definition of Vh(γ ) the first term is now computable, while the second term,
which is not computable, is replaced by the stabilization term

aγ (Tγ uγ , Tγ vγ ) ≈ sγ (uγ , vγ )

with the request that sγ scales as aγ , meaning that

∃υ∗, υ∗ ∈ R : υ∗sγ (uγ , vγ ) ≤ aγ (uγ , vγ ) ≤ υ∗sγ (uγ , vγ ) ∀uγ , vγ ∈ Vh(γ ).

Denoting an element of the basis of Vh(γ ) as φ, the actual construction of sγ is given
by the formula

sγ (φθ ,φχ ) =
∑

C∈T (γ )

h
∥
∥K−1

γ

∥
∥
L∞(C)

Ndof (C)∑

i=1

dofi(Tγ φθ )dofi(Tγ φχ ),

with h the diameter of the current cell C . With the previous choices all the terms are
computable and the fracture problem can be assembled. For more details see [5, 7,
18, 40, 41].

To couple the bulk and fracture flow, a Lagrange multiplier λ±
h is used to represent

the flux exchange between the fracture and the surrounding porousmedia.We assume
conforming grids, meaning that the fracture grid is conforming with the interface
grid as well as the faces of the porous media are conforming with the interface
grid. See Fig. 8.3 as an example. For space compatibility, we assume the Lagrange
multiplier be a piece-wise constant polynomial. The interface condition (8.2c) is
directly computable with the degrees of freedom introduced providing a suitable
projection of the pressure p� at the fracture interface. Our choice is to consider the
same value of the pressure at neighbouring cells, however other approaches can be
used, see for example [57].

Fig. 8.3 Representation of
the conforming
computational grids for the
porous media, the fracture,
and the two interfaces
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8.5 Grid Generation

The generation of grids for realistic fractured porous media geometries is a challeng-
ing task, whose complete automatic solution is still an open problem, particularly
for 3D configurations. We here give a brief overview of some techniques that have
been proposed, with no pretence of being exhaustive.

8.5.1 Constrained Delaunay

The generation of a grid of simplexes (triangles in 2D, tetrahedra in 3D) conformal
to a fracture network may be performed in principle by employing a constrained
Delaunay algorithm. It is an extension of the well known Delaunay algorithm to the
case where the mesh has to honour internal constraints (or describe a non-convex
domain). Usually it starts from a representation of the domain and in 3D it first
generates constrained Delaunay triangulation on the fracture and boundary geom-
etry, then new nodes are added in the domain to generate a final grid that satisfies
a relaxed Delaunay criterion to honour the internal interfaces. The description of
the constrained Delaunay procedure may be found, for instance, in [21]. Another
general reference for mesh generation procedures is [34]. However, in practical sit-
uations several issues may arise. The presence of fractures intersecting with small
angles, for instance, may produce an excessive refinement near the intersections
in order to maintain the Delaunay property. In 3D there is the additional issue of
the possible generation of extremely badly distorted elements, often called slivers,
whose automatic removal is problematic, when not impossible, under the constraint
of conformity with complex internal surfaces.

Several techniques have been proposed to ameliorate the procedure. For instance
in [49, 50] the authors present a procedure that modifies the fracture network trying
to maintain its characteristics of connectivity and effective permeability, while elim-
inating geometrical situations where that may impair the effectiveness of a Delaunay
triangulation. In the second reference, a special decision strategy (called “Gabriel
criterion”) is used to select a part of the fracture network to which triangulation can
be constrained without leading to an excessive degradation in cells quality, or exces-
sively fine grids. The procedure has proved rather effective on moderately complex
network in 2D, while the results for 3D configurations seem less convincing.

We mention for completeness that an alternative procedure for generating simpli-
cial grids is the one based on the front advancing technique (maybe coupled with the
Delaunay procedure). It is implemented in several software tools, see for instance [35,
59]. However, its use in the context of fractures media is at the moment very limited,
probably because of the lack of results of the termination of the procedure, con-
trary to the Delaunay algorithm where one can prove that, under mild conditions,
the generation terminates in a finite number of steps. Moreover it has a much higher
computational cost. The interested reader may consult the cited references.
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In our case PorePy considers the software Gmsh [44] for the generation of the
Delaunay bidimensional grids. The grid size in the configuration file is specifically
tuned to obtain high quality triangles. Indeed, we consider distances between frac-
tures, between a fracture and the domain boundary, and length of fracture branches.
With these precautions, we usually obtain quality grids that are suitable for numerical
studies.

8.5.2 Grids Cut by the Fracture Network

An alternative possibility to create a grid conforming to fractures or, in general,
planar interfaces, consists in cutting a regular Cartesian or simplex mesh, as shown
in Fig. 8.4 for the case of a Cartesian mesh. The resulting grid will be formed by
polytopal elements in the vicinity of the fractures. The main issue in this procedure
is the possible generation of badly shaped or very small elements as a consequence
of the cut. Another technical problem is the necessity of having efficient techniques
for computing intersections and constructing the polytope. To this respect, one may
adopt the tools available in specialized libraries like CGAL [19], or developed by the
RING Consortium [54]. Clearly, the adoption of this technique calls for numerical
schemes able to operate on general polytopal elements. This method, when applied
to Cartesian grids, has the advantage of maintaining a structured grid away from
the fracture network, where the sparsity of the linear system may ease its numerical
solution, but it does not allow local refinements (unless by using hanging nodes,
which increase computational complexity). In general it is a valid alternative to a
direct triangulation provided the numerical scheme be robust with respect to the
presence of small or high aspect ratio elements.

We outline a possible algorithm for the case of a Cartesian background grid,
adopted in this work. We start by creating a Cartesian mesh of rectangular ele-
ments and compute the intersections among the edges of the grid and the segments
describing the fractures. This step is rather straightforward for Cartesian grids. The
intersection points can be easily sorted according to a parametric coordinate to create
the mesh of each fracture. Then, each cell cut by one or more fractures is split into
two, three or four polygonal sub cells as follows: (i) for each point, the signed dis-

Fig. 8.4 Creation of a polygonal mesh from a regular Cartesian grid
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tance from the fracture is computed, and (ii) points on the same side of the fracture
are grouped, and sorted in counter-clockwise direction.

To avoid non-convex cells the cells containing the fracture tips are split in three
by connecting the tip with the nodes of the edge that is crossed by the prolongation
of the fracture. However, in principle it would be possible to consider a single cell
with two coincident faces.

8.5.3 Agglomeration

Polytopal grids can be generated by agglomerating simplicial elements produced,
for instance, by a constrained Delaunay procedure. For example, in [16], tetrahedra
are agglomerated (and nodes moved) to try to produce hexahedral elements in large
part of the domain, with a twofold objective: on the one hand the reduction of the
total number of degrees of freedom and consequent reduction of computational com-
plexity, on the other hand, the generation of a grid more suitable for finite volume
schemes based on two-point flux approximation (TPFA).

In a more general setting, agglomeration may join together elements whose value
of physical parameters are similar, with the final objective of reducing computa-
tional cost, as well as eliminating excessively small elements. The numerical method,
however, should be able to operate properly on the possible irregularly shaped and
non-convex elements generated by the procedure. The technique is clearly a post-
processing one, since it requires to have amesh to start with. Its basic implementation
is however rather simple and is similar to that used in some multigrid solvers, like
in [45].

In our case, PorePy has the capability to agglomerate cells based on two different
criteria: (i) by volume,meaning that cellswith small volumes are groupedwith neigh-
bouring cells. This procedure continues until the new created cells have volumes that
are comparable with an average volume in the grid. This procedure can be effective
in presence of uniform physical data in different part of the computational domain
and in particular in presence of fracture networks. In the case of highly variable
data, e.g. permeability, the previous procedure may not be effective since cells with
very different properties may bemerged together. For this reason PorePy implements
another strategy, (ii) based on the agglomeration in the algebraic multigrid method.
It adopts a measure of the strength of connections between DOFs to select the cells
to be joined, based on a two-point flux approximation discretization, for more details
see [40, 61]. Examples of these strategies are given in [38, 40–42, 51].

Remark 1 The agglomeration procedure is even more effective when a time depen-
dent problem is solved, like linear and non-linear transport of a tracer or the heat
equation. Other strategies might be more appropriate to optimize the grid for a spe-
cific physical process.
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8.5.4 Voronoi

Voronoi grids are of particular interest for methods such as Finite Volumes with
TPFA, since they guarantee that the line connecting the centroids of neighbouring
cells is always orthogonal to the shared face. Under this assumption the two point
approximation of the flux is consistent if the permeability tensor is diagonal. How-
ever, producing Voronoi diagrams that honour the internal interfaces represented
by the fracture is not an easy task, particularly for complex 3D configurations. An
attempt in that direction has been performed in [11, 55].

In this work, limited to 2D cases, we generate Voronoi diagrams that honour
the geometry of the fractures and the boundaries of the domain by first creating a
Cartesian grid (see Sect. 8.5.2) and positioning a seed at the centre of cells not cut
by the fractures. Then, we start from the discretization of the fractures induced by
the intersection with the background grid, and for each fracture cell we position two
seeds on opposite sides of the fracture at a small distance δ as shown in Fig. 8.5. This
will create a Voronoi cell with a face exactly on the fracture. The same technique
is used to obtain boundary faces in the desired position. Close to each fracture tip
xT we position four seeds in xT ± δ1n ± δ2 t where n and t are the normal and the
tangent unit vectors to the fracture and δ1,2 are user defined distances. This ensures
that the fracture is honoured up to the tip and has the correct length. Similar strategies
are applied at fracture intersections. The position of the seeds and faces close to the
intersections is also shown in Fig. 8.5. Note that with this strategy the Voronoi cells
far from fractures are rather regular, since they reflect the underlying Cartesian grid.

An advantage of Voronoi grids is that faces are planar and cells are convex by
construction. However, an important drawback is that the number of faces per cell
can be quite large. Moreover, as pointed out before, the construction of a constrained
grid in general realistic configurations is an open problem.

Fig. 8.5 On the left, graphical representation of Voronoi grid with fractures. On the right, details
on the construction for fracture intersection and fracture tip
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8.6 Numerical Results

In this section, we present two test cases to show the performances and the potential-
ity of the previously introduced algorithms. In particular, in the first test case we have
a setting where the permeability experiences a high variation between neighbouring
cells. In the second test case a network of fractures is considered with different types
of intersections: in this case the challenge is more related to the geometrical com-
plexity to create the computational grid. In both test cases, agglomerating procedures
are used to reduce the computational cost of the simulations.

8.6.1 Heterogeneous Porous Medium: Layers from SPE10

The aim of this test case is to validate the effectiveness of the MVEM scheme in
presence of highly heterogeneous permeability. We consider two distinct layers of
the SPE10 [22] benchmark problem, in particular layer 4 and 35 (by starting the
numeration from 1), from now on denoted as L4 and L35, respectively. The main
difference between them is that the latter has distinctive channels of high permeability
which are not present in layer 4. The permeability is assumed to be scalar in each cell,
and each layer is composed by a computational grid of 60 × 220. Figure8.6 on the
left shows the permeability fields for both layers. Note that in both cases permeability
spans about six order of magnitude.

Fig. 8.6 Permeability field for the test case of Sect. 8.6.1 for layer 4 on the top and 35 on the bottom.
On the left the reference values, on the centre and right the values obtained after the clustering with
arithmetic and harmonic mean, respectively. The values are given in log10
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Table 8.1 Average, minimum and maximum value of cell area and number of faces per cell for
the six grids employed for test case Sect. 8.6.1

Aspect ratio Cell area nfaces
Average Min Max Average Min Max Average Min Max

L4 2.37 1.50 4.37 108 37.2 242 12.2 6 20

L35 2.37 1.13 5.83 111 37.2 297 12.2 6 22

To lighten the computational effort, we apply an agglomerating procedure to group
cells and obtain a smaller problem. Starting from square cells the algorithm creates
cells by considering the procedure in Sect. 8.5.3 and, for each agglomerated cell, the
associated permeability will be computed in two different ways: as the arithmetic and
harmonic average. The former is more suited for flow parallel to layers of different
permeability, while for orthogonal flow the harmonic average gives more realistic
results. For a more detailed discussion see [52]. We consider both approaches, see
Fig. 8.6 on centre and right, which represents the agglomerated permeability of both
layers by considering the arithmetic and harmonic means. For layer 4 the figures look
similar, while for layer 35 the channels for the agglomerated problem with harmonic
mean are narrower than the original ones and than those obtained in the agglomerated
grid with arithmetic mean.

In Table8.1, we summarize the geometric properties of the grids obtained by
means of cells clustering for the two layers. We can observe that the area of the
cells and the average number of faces per cell is similar in the two cases, however,
in layer 35 we have slightly more elongated elements on average, reflecting the
channelized permeability field. The aspect ratio is estimated using the area of the
cells, the maximum distance between points and is rescaled so that square cells (or
equilateral triangles, see Sect. 8.6.2) have aspect ratio 1.

We impose a pressure gradient from left to right with synthetic values 1 and 0,
respectively. The other boundaries are sealed with homogeneous Neumann condi-
tions.

To compare the accuracy of the proposed clustering techniques, we compute the
errors in the pressure with respect to the problem on the original grid solved with a
two-point flux approximation scheme [1, 37], which, in this case since the grid is
K -orthogonal, is consistent and converges quadratically to the exact solution, thus
can be considered as a valid reference. We name this solution “reference” and we
indicate the pressure as pref . The error is computed as

err = ‖�ref p − pref‖L2(�)

‖pref‖L2(�)

where �ref is the piecewise constant projection operator that maps from the current
grid to the reference one. Due to the clustering procedure its construction is rather
straightforward, since the cells of the original mesh are nested in the agglomerated
one. We can notice that the errors obtained for the layer 4 with both averaging pro-
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Fig. 8.7 Pressure and Darcy velocity fields for the test case of Sect. 8.6.1 for layer 4 on the top
and 35 on the bottom. On the left the reference solution, on the centre and right the values obtained
after the clustering with arithmetic and harmonic mean, respectively. The arrows are scaled by the
same value in each layer and the pressure ranges from 0 to 1, blue to red respectively

cedure are comparable and around 4%, which can be acceptable in most of real
applications. In the case of layer 35 the situation is more involved, in fact the arith-
metic mean gives an error of approximately 3.5% while the harmonic mean of 13%.
We can explain this big discrepancy by noticing that, when a channel of high per-
meability is composed by few cells in its normal direction, during the agglomeration
procedure it is possible that some of these cells are grouped with the surrounding
lower permeability cells. The harmonic mean will bring the permeability value of the
agglomerated cell closer to the lower value than the higher, dramatically changing
the connectivity properties of the obtained permeability field. This can be noticed in
the permeability field reported in Fig. 8.6, suggesting that harmonic averaging can
be unsuited for parallel flow in strongly channelled domains.

Figure8.7 shows the pressure fields for both layers and for the two approaches.
On top of the pressure fields the Darcy velocity is also represented with grey arrows.
We notice that for layer 4 pressures and velocities look very similar, while for layer
35 the pressure field and velocity of the agglomerated problem with harmonic mean
look quite different compared with the reference solutions as well as that obtained
with the agglomeration strategy that uses the arithmetic mean.

To improve the effectiveness of this approach, a local numerical upscaling tech-
nique could be considered to compute amore representative value of the permeability
for grouped cells. However, in this case wemight expect a higher computational cost.
See [29] for a more detailed presentation of upscaling techniques.

To conclude this test case, let us now analyse the properties of the systemmatrix to
verifywhat is the impact of element size and shape in the different cases. Note that the
problem is in mixed form and our analysis considers the entire saddle point matrix.
Since the number of unknowns is not exactly the same after grid agglomeration we
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Table 8.2 Matrix properties for test case Sect. 8.6.1

NDOF Ncells Nfaces n K (A)

L4 (mean K) 16345 2269 14076 22.17 8.29e+06

L4 (harmonic K) 16345 2269 14076 22.17 8.44e+06

L35 (mean K) 16010 2210 13800 22.53 8.29e+06

L35 (harmonic K) 16010 2210 13800 22.53 8.39e+06

describe matrix sparsity by means of the average number of non-zero entries per row
n, computed as

n = nz
NDOF

,

where nz is the number of non-zero entries and NDOF is the number of unknowns.
Moreover we will compare the values of condition number K (A) estimated by the
method condest provided by Matlab®. In Table8.2 we consider the two layers,
L4 and L35, and by “mean K”, “harmonic K” we identify the averaging of perme-
ability in the agglomerated cells, the arithmetic and harmonic mean respectively.
This choice has no impact on the matrix size or sparsity but may result in different
condition numbers. We can observe that the four matrices are very similar in terms
of size, sparsity and condition number, and that the large number of faces per ele-
ment reflects in the average number of entries per row. It can be also observed that
mesh agglomeration is slightly more effective in layer L35 due to its channelized
permeability distribution.

8.6.2 Fracture Network

This test case considers the Benchmark 3 of the study [30] presented in Sect. 4.3.
Our objective is to study the impact of the grid on the solution quality provided by
the MVEM. The domain contains a fracture network made of 10 fractures and 6
intersections, one of which is of L-shape. For the detailed fracture geometry, we
refer to the aforementioned work. See Fig. 8.8 for a representation of the problem
geometry.

We consider three types of grids: Delaunay, Cartesian cut, and Voronoi. Since the
fracture network may create small cells, on top of these three grids an agglomeration
algorithm is used to agglomerate cells of small volume. These cells are merged
with neighbouring cells, trying to obtain a more uniform cell size in the grid. The
Delaunay grid is created by the software Gmsh [44], tuned to provide high quality
elements in proximity of small fracture branches or almost intersecting fractures.
The six different grids we are considering are reported in Fig. 8.9 along with the
number of cells associated to the rock matrix and fractures.

http://dx.doi.org/10.1007/978-3-030-69363-3_4
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Fig. 8.8 Geometry of the
domain for the benchmark
used in Sect. 8.6.2

We see that some of the agglomerated elements have internal cuts, in particular
for Delaunay agglomerated grid in Fig. 8.9, and for all the clustered grids we have
cells that are not shape regular and in some cases not even star-shaped. For classical
finite elements or finite volumes we might expect low quality results.

Another result of the agglomeration is a reduction of the number of very small
or very stretched cells. In Fig. 8.10 we can observe histograms of an estimate of
the cells aspect ratio for the different grids. We can see that for the Cartesian cut
grid and the Voronoi grid the maximum aspect ratio decreases remarkably with the
agglomeration, while in the case of a Delaunay grid we have the opposite effect. As

Fig. 8.9 Benchmark 3 of Sect. 8.6.2: Fracture network on top left, on the others the grids for
different approaches. In the brackets the number of cells (bulk, fracture)
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Fig. 8.10 Histograms of the cells aspect ratio for the different types of grid in test case Sect. 8.6.2

Table 8.3 Average, minimum and maximum value of cell area and number of faces per cell for
the six grids employed for test case Sect. 8.6.2

Cell area nfaces
Average Min Max Average Min Max

Delaunay 7.8431e-04 8.4186e-05 2.1020e-03 3 3 3

Delaunay
agglom.

9.1075e-04 3.9631e-04 2.1767e-03 3.1557 3 8

Cut 7.7160e-04 8.4664e-08 9.1833e-04 3.9769 3 6

Cut agglom. 9.4967e-04 3.9945e-04 2.2589e-03 4.4311 3 10

Voronoi 6.5746e-04 4.6260e-07 1.2686e-03 4.4694 3 14

Voronoi
agglom.

9.0171e-04 3.3000e-04 3.4502e-03 5.1109 4 16

we will show later high anisotropy can result in a less effective stabilization for the
MVEMmatrix. Moreover, in Table8.3 we show that cells agglomeration leads to an
increase of the mean and minimum cell areas, but also to an increase of the number
of faces per cell.

Referring to the colour code given in Fig. 8.8, we set the aperture ε = 10−4 for
all the fractures and the permeability is set to kγ = κγ = 104 for all the fractures
depicted in red and kγ = κγ = 10−4 for the ones in blue. The former behave as
high flow channels while the latter as low permeable barriers. The rock matrix is
characterized by a unit scalar permeability. In [30] two sets of boundary conditions
were considered, left-to-right and bottom-to-top. In our case we choose the former,
meaning that we set a value of pressure equal to 4 on the left side of � and to 1 on
the right side of �. The other two boundaries are considered as impervious.
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Fig. 8.11 On the left, pressure over line for the test case of Sect. 8.6.2. The grey solutions are the
one reported in [30]. Most of the plots overlap with the reference solution, in black. On the right,
the difference over the same line between a solution and the reference one

In Fig. 8.11 (left) we report the plot of pressure over the line (0, 0.5) − (1, 0.9), by
using the grids shown in Fig. 8.9. In light grey we present the results obtained in the
benchmark [30] and in black the reference solution. The latter has been calculated
with mimetic finite difference, on a very refined grid that represents fractures as the
same dimension of the porous media. We clearly see that all the proposed methods
overlap with the reference solution showing high accuracy even on such coarse
grids. In particular, results do not deteriorate with the agglomerating procedure.
Moreover, comparing with the results obtained in [30] the ones given by the MVEM
are, generally, of higher quality.

In Fig. 8.11 (right),we show the pressure difference between the reference solution
and the ones obtained with the considered grids, over the reference solution itself.
The errors are quite small except for the two peaks in correspondence of the pressure
jump in the picture at the left of the same Figure. The reason can be associated to
the sampling procedure used in the extraction of these data.

Finally, as done in [30] we compute the errors in the rock matrix between the
reference and the computed solution. We consider the following formula

err2m = 1

|�|(�pre f )2
∑

f =Km∩Kref,m

| f | (pm |Km − pre f |Kref,m

)2
, (8.8)

where pm |Km is the pressure of them-method at cell Km , pre f is the reference pressure
at cell Kref,m , and�pre f is the maximum variation of the pressure on all the domain.
These errors are reported in Table8.4. All the errors are quite small and comparable
with those reported in [30]. When the agglomeration procedure is adopted, the errors
slightly increase due to the smaller number of cells except for the Cartesian cut case
where the error doubles, remaining nevertheless acceptable.

Let us now analyse the properties of the systemmatrix to verify what is the impact
of element size and shape in the different cases. We remind that the grids have
been generated with comparable resolution to obtain similar numbers of degrees
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Table 8.4 Pressure error between the reference solution and the compute with theMVEMby using
formula 8.8

Original Agglomerated

Delaunay 0.013008 0.014267

Cartesian cut 0.012865 0.025827

Voronoi 0.0085291 0.010037

Table 8.5 Matrix properties for test case Sect. 8.6.2

NDOF Ncells Nfaces n K (A)

Delaunay 3741 1373 2162 5.15 4.82e+10

Delaunay
agglom.

3384 1196 1982 5.51 3.85e+10

Cut 4961 1495 1296 6.00 4.23e+10

Cut agglom. 4474 1252 2814 7.42 3.67e+10

Voronoi 6095 1738 3913 7.33 4.10e+10

Voronoi
agglom.

5118 1326 3348 9.32 3.21e+10

of freedom, however, the number of unknowns is not exactly the same. Results
are summarized in Table8.5. From the point of view of the degrees of freedom the
Voronoi grid is the most demanding because, for a given space resolution it generates
very small cells close to the intersections and tips, however, it is also the one that
benefits the most from agglomeration. The conditioning is of the same order of
magnitude for all grids, and improves with agglomeration. In particular the best
result is obtained for the agglomerated Voronoi grid despite the large number of
faces per element that results from clustering of general polygons and reflects in the
slightly larger number of non-zero entries per row.

We can also observe that, even if the sparsity of the matrices is similar in all cases,
the pattern can change significantly. In Fig. 8.12 we compare the matrix structure
corresponding to a Delaunay grid and a Cartesian cut one: the underlying structure
of the Cartesian grid has a visible impact on the sparsity pattern. A similar structure
is observed for the case of the Voronoi grid since, away from the fracture network,
the seeds are positioned to obtain a Cartesian grid. Let Tα denote the time required
to solve 1000 times the system arising from the discretization on a mesh α with the
“\” method from Matlab®, and let T̃α = Tα

(Nα
DOF)

3 be the time normalized against
the third power of the system size. The corresponding values, reported in Table8.6,
seem to indicate that, for the same sparsity, a faster solution is obtained with a more
compact pattern. Solution strategies for this kind of problem can be found in [24].

We can also compare the performances of an iterative solver on the samematrices.
Given the small size of the problem and the fact that the preconditioner we adopt is
not ad hoc for the problem it is not fair to compare the computational time of a direct
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Fig. 8.12 The sparsity patterns for a Delaunay grid (left) and the Cartesian cut grid (right)

Table 8.6 Normalized time for the solution of the linear systems corresponding to the different
grids

Delaunay Delaunay
agglom.

Cut Cut agglom. Voronoi Voronoi
agglom.

T̃α 2.630e-10 3.410e-10 1.889-e10 2.262e-10 1.394e-10 2.246e-10

and iterative solver, but we can highlight the differences in number of iterations for
the different grids. Since the system matrix can be rearranged as

A =
[

M B̂T

−B C

]

we employed the following block preconditioner

P =
[
M 0
0 −S̃

]

where S̃ is approximated using the lumped version of M , called M̃ , i.e. S̃ =
−C − BM̃−1 B̂T , and applied GMRES with a tolerance on the normalized resid-
ual of 10−6. Results are summarized in Table8.7. The number of iterations reflects
the differences in condition number; note that the chosen preconditioner reduces
conditioning of approximately 4 orders of magnitude in all cases except for the case
of the agglomerated cut (and, to a lesser extent, Voronoi) grid where it is slightly less
effective.

Finally, we study the effect of element shape on the MVEM stabilization term.
We define element-wise an index
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Table 8.7 Number of GMRES iterations for the solution of the linear systems corresponding to
the different grids

Delaunay Delaunay
agglom.

Cut Cut agglom. Voronoi Voronoi
agglom.

Nit 27 30 24 75 34 47

K (P−1A) 8.72e+06 8.64e+06 7.92e+06 3.12e+07 8.95e+06 8.97e+06

Fig. 8.13 On the left, κi on the Delaunay grid, on the right the same index on the Voronoi grid
before clustering

κi = ||Si ||
||Si || + ||Ai ||

where Si and Ai are the local stability and consistency contributions to the matrix
arising from the discretization of the bilinear form a� on the i−th element.

As shown in Fig. 8.13 in the case of a Delaunay grid the norm of the stabilization
term in each local matrix is comparable to the norm of the consistency term, i.e.
κi � 0.5 everywhere. In the Voronoi grid instead we have elements with extremely
high aspect ratios (up to 60), or, in other words, we have small edges compared to
the typical mesh size. In this latter case the norm of the stability term is one order of
magnitude smaller in elements with very small edges. A discussion of the stability
bounds for grids in the case of small edges can be found in [7, 8] for the primal
formulation of elliptic problems.

8.7 Conclusion

In this work we have presented and discussed the performances of the Mixed Virtual
Finite ElementMethod applied to underground problems. One of itsmain advantages
is the possibility to handle, in a natural way, grid cells of any shape becoming suit-
able for its usage in problems with complex geometries, such as subsurface flows. A
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second strong point is the ability of the scheme to handle, in a robust way, strong vari-
ations of the permeability matrix which is again a common aspect for underground
processes. Finally, the numerical scheme is also locally mass conservative making
it very suitable in the coupling of other physical processes, like transport problems.
We have tested the capabilities of the scheme with respect to two test cases that are
known in literature and stress the two aforementioned critical points: heterogeneity
and geometrical complexity. A first remark is that the mixed virtual element method
gives high quality results also for challenging grids and physical data, making it
a promising and interesting scheme for industrial applications. Moreover we per-
formed some comparisons of the system matrices arising from the discretization of
the problem on different types of grids: Delaunay, Voronoi, Cartesian grids cut by
fractures. We observed similar condition numbers and sparsity, but a better sparsity
patterns for grids obtained from the modification of structured ones. We also applied
agglomeration by means of permeability based and volume based clustering: besides
reducing the computational cost this technique allowed us to eliminate small cells
and, in some cases, cells with very large aspect ratios where the MVEM stabilization
term employed in this work does not scale correctly. Future research may focus on
the choice of the most effective stabilization term formulation for the grid type, as
well as to the generalization of this work to the three dimensional case, including the
discussion of corner point grids, which are widely used in subsurface flows but pose
many challenges due to the presence of non-planar faces and non-convex elements.
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