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Abstract. In large-scale events where many people gather, providing
them with appropriate, efficient, and safe guidance about where to pro-
ceed is critical to ease congestion. We can evaluate guidance candidates
using a pedestrian flow simulator to find appropriate guidance. However,
evaluating many candidates by simulation requires high computational
cost, which prohibits real-time guidance. We propose a method that finds
appropriate guidance in real-time for observed situations based on deep
reinforcement learning. Our proposed method learns a function that out-
puts appropriate guidance given the observed situation to minimize the
average travel time of pedestrians. The difficulty here is that the real-
world measurements of pedestrian travel time are limited due to pri-
vacy issues since it tracks individuals. Though our method uses only the
observation obtained without locating specific individuals: the number
of pedestrians who are moving on roads, it is guaranteed by Little’s law
to be equivalent to minimizing the average travel time. Our experimen-
tal results for unknown pedestrian flow show that our proposed method
outperforms rule-based controls, and its guidance is as effective as one
selected from many candidates by repeated simulations with massive
computational cost.

Keywords: Crowd simulation · Reinforcement learning · Pedestrian
guidance

1 Introduction

At large-scale events where thousands of people gather, appropriate, safe, and
efficient guidance must be provided to ease congestion. To find appropriate
guidance, we can evaluate guidance candidates on a pedestrian flow simulator.
Yamashita et al. [9] developed a technique that simulated all candidates exhaus-
tively. To search for better guidance with fewer simulations, Otsuka et al. [5]
proposed to use Bayesian optimization (BO), and Shigenaka et al. [6] proposed
to use Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Although
both BO and CMA-ES methods require fewer simulations than an exhaustive
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Fig. 1. Our proposed scheme achieves pedestrian flow control using deep reinforce-
ment learning and simulator. Using the observed number of pedestrians on the roads
as a reward and observations, the Controller learns with various kinds of simulated
pedestrian flow data. After training, it can output appropriate guidance for unknown
pedestrian flows.

search, many evaluations with simulators are unavoidable and prohibit real-time
guidance for unknown pedestrian flow.

Therefore we proposed a new scheme shown in Fig. 1. Our method uses a
crowd simulation and reinforcement learning [7], which maximizes the reward
obtained by selecting the action based on the state observed by the agent. By
learning with various kinds of simulated pedestrian flow data (shown as Syn-
thetic Pedestrian Flow in the Fig. 1), our proposed method outputs guidance for
unknown pedestrian flows (shown as Unknown Pedestrian Flow in the Fig. 1).
We experimentally demonstrate the effectiveness of our proposed method using a
pedestrian flow simulator and consider an example problem that identifies which
roads to block and encourages detours when the number of pedestrians on each
road is observed as input.

We evaluate the guidance by the average travel time of pedestrians, where
shorter average travel time is better guidance. However, since pedestrian travel
times must track individuals, such measurements are often not provided due to
privacy concerns. Aggregated data are more readily available because it does not
locate specific individuals. As shown in the Fig. 1 as # Pedestrians between
Controller and Simulator, our method uses the observed number of pedestrians
on the roads as a reward and a state, which is one type of aggregated data. Min-
imizing the number of pedestrians is guaranteed by Little’s law to be equivalent
to minimizing the average travel times.

Kato et al. [2] proposed a method to guide pedestrians from the fireworks
event venue to the station. Their method also uses a crowd simulation and
reinforcement learning. However, their proposed method depends on the road
network, which makes it difficult to adjust the parameters. Because the reward
of our proposed scheme is normalized, it has the advantage of being independent
of the road network.

Our contributions are the followings: (1) To handle such congestion situations
in real-time, we propose a method that learns a function with a deep RL that
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outputs appropriate guidance based on observations. (2) The proposed reward
based on the number of pedestrians has no privacy issues, and is guaranteed to
be equivalent to the average travel time by Little’s law. (3) Experiment results
show that its performance exceeds a rule-based guidance policy and comes close
to one selected from many candidates by repeated simulations.

2 Problem Settings

We consider a situation where many people start walking at different times from
different beginning points to different end points by roads. The controller agent
selects a guidance (action) from a set of actions at each time step. The task
is to find the sequence of guidance that minimizes the average travel times of
people 1

I

∑I
i=1 τi, where τi is the travel time of pedestrian i and I is the number

of pedestrians. The definitions of each symbol in the paper are summarized in
Table 1.

3 Proposed Method

The total travel time of pedestrians is equivalent to the time integral of the
number of them moving at each time. This relationship, which is called Little’s
law [3], is shown in Fig. 2. Gray area S enclosed by the red line that indicates the
cumulative number of departures and the blue line that indicates the cumulative
number of arrivals at each time can be expressed by two types of expressions:
S =

∑I
i=1 τi =

∫ T

t=0
Ntdt ≈ ∑T

t=1 NtΔ, where Nt is the number of moving pedes-
trians at time t and Δ is the interval between adjacent time steps.

∑T
t=1 NtΔ

is the summation for the time direction, and
∑I

i=1 τi is the summation for each
pedestrian. Approximation is acceptable when Δ is small enough for fluctuation
in Nt. Therefore, average travel time 1

I

∑I
i=1 τi = S

I can be minimized by taking
actions that minimize the total number of pedestrians traveling at each time∑T

t=1 Nt = S
Δ because I and Δ are constants.

Little’s law holds even for a single pedestrian. The tasks of minimizing the
time for a moving object to reach its goal have frequently been addressed in the
history of reinforcement learning [7]. The Little’s law discussed here clarifies that
a small negative reward to each step usually leads to the shortest travel time1.
Our proposed method will be useful for tasks where a moving object must reach
its goal in the shortest time.

In addition, if the absolute values of the rewards widely vary, adjusting the
other RL parameters is difficult. Therefore, the rewards must be normalized,
for example, into a range of −1 to 1 (see Footnote 1). It is very difficult to
assess how effective the currently selected strategy is without any evaluation
criteria. Therefore, we propose a method to evaluate the relative effectiveness
of the currently selected strategy by comparing it with the strategy that does
1 https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-

Environment-Best-Practices.md.

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Best-Practices.md
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Best-Practices.md
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not do anything (no strategy). Thus we propose the reward edge/open shown
in Table 4. This reward satisfies −1 ≤ rt ≤ 1, and rt = 1 when Nt = 0, and it
satisfies rt = 0 when Nt = No

t if No
t > 0.

In the case that the number of pedestrians is observed for the reward, using
the observation as the state is more convenient and efficient. To measure the
number of pedestrians, just measuring their total does not identify where the
congestion is occurring. Also, observing the number of people only at one time
step does not tell whether their number is increasing or decreasing. For example,
we can use the number of pedestrians on each road of multiple time steps as the
state.

4 Experiments

We evaluated our proposed method on a task as an example that finds guidance
to ease congestion around the entrance at the start of a big event. We used an in-
house crowd simulator [5], where pedestrians move on the road network. Figure 3
shows the road network around Japan National Stadium in Tokyo, which is the
stage of the simulation. Pedestrians start to walk from six stations to the sta-
dium’s six gates, and are crowded on the roads in front of the gates. Pedestrians
pass through 317 roads. For a state, we used the number of pedestrians on these
roads for the past four steps, which give a 1268-dimensional vector.

The number of pedestrians in one scenario ranged from 10,000 to 90,000 in
10,000 increments. In each scenario, the proportion of stations where pedestrians
appear was varied using random numbers from a Dirichlet distribution. The
expected value was set as the ratio of Table 2 by referring to the actual number

Fig. 2. Little’s law: red line repre-
sents cumulative number of depar-
tures, and blue line represents cumu-
lative number of arrivals. Red and
blue lines eventually meet at (T, I),
where let T be the time when the last
person arrives. S is the gray area sur-
rounded by red and blue lines. (Color
figure online)

Table 1. Notation

Symbol Description

I number of pedestrians in system:

i ∈ {1, · · · , I}
J number of roads: j ∈ {1, · · · , J}
T number of time steps: t ∈ {1, · · · , T}
Δ intervals between adjacent time steps

Nt number of moving pedestrians at time t

No
t the total number of pedestrians on the roads

with the strategy that does not do anything

vi
t velocity of pedestrian i at time t

ρi
t density of a road in front

of pedestrian i at time t

ρ
j
t averaged density of a road j at time t

x
j
t number of pedestrians on road j at time t

τi travel time of pedestrian i



338 H. Shimizu et al.

Fig. 3. Ratio of pedestrians emerg-
ing from each station.

Table 2. Ratio of
pedestrians emerging
from each station.

Station ID Usage

ratio of

pedestri-

ans

1 29%

2 11%

3 6%

4 11%

5 20%

6 22%

Table 3. Maximum
number of people who
pass each second at
each gate.

Gate ID Throughput

[person/sec]

A 3

B 8

C 3

D 3

E 5

F 3

of station users. The timing of the pedestrians emerging from the station was
distributed, so that they peaked 30 min after the start of simulation. At its
entrance, assuming that the number of security staff varies depending on the
gate, the maximum number of people who pass through it per second were set
(Table 3).

We consider a guidance that temporarily closes the gate to avoid congestion
at it. When a gate is closed, we assumed that pedestrians head to the nearest
open gate. Since there are six gates, there are 26 = 64 open and closed combi-
nations. However, we added a constraint that no more than two adjacent gates
can be closed simultaneously to avoid long detours. Then we have 39 guidance
candidates. Guidance lasts at least ten minutes, and a different guidance can be
selected every ten minutes. The simulation time is set to 250 min to allow all
pedestrians to enter the stadium regardless of which guidance to choose. Guid-
ances are selected 25 times per episode. In the proposed method, a strategy of
doing nothing (no strategy) corresponds to open all the gates always.

We compared the proposed method with open as the baseline, where all
gates are always open and no guidance is applied. We also prepared a rule-based
guidance shown as rule, where all gates are open if the population densities
(number of people/road area) of all roads in front of the gates are less than a
threshold, and the gate with the highest density road is closed if there is a road
above the threshold. The threshold was set to 1.0 person/square meter.

greedy shows the guidance obtained by repeated simulations for compari-
son. With 25 time steps and 39 actions, there are 3925 ∼ 1040 guidance combina-
tions. Since the computation time to execute every simulation combination is too
long, greedy starts from open and tries all the actions at each time step, and
then adopts the best action sequentially in chronological order. fix randomly
selects the guidance policy obtained by greedy for test scenarios, regardless
of the actual scenario. We also prepared the comparing methods with various
rewards shown in Table 4, referring to the study of RL in traffic signal control.
Note that there is privacy issues if its expression contains τi.

As a learning model, we used a state-of-the-art RL method called Advantage
Actor-Critic (A2C) [4,8], which learns based on the experiences gained after
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every episode is completed. The value function (V (x)) and the action-value func-
tion (Q(x, a)) were approximated by a common neural network with two hidden
layers, each of which has 100 units. We used the ReLU function [1] to make each
layer output nonlinear, and actions were sampled by softmax function of Q-value
during training.

5 Results

Figure 4 shows the average travel time for each episode when training with the
rewards in Table 4. We used 16 training scenarios, which consist of eight different
amounts of pedestrians ranging from 10,000 to 80,000, each with two different
station use ratios. We performed 200 episodes × 16 simulations scenarios for
training: 3,200 times for each deep RL. Within 200 episodes, the average travel
time of edge/open, speed, time/open, and timeOnce/open converge stably
to smaller values than others.

We created 90 test scenarios, consisting of nine groups whose number of
pedestrians ranged from 10,000 to 90,000 in 10,000 increments, which is not
included in the training data. Table 5 shows the result of applying the guidances
to the test scenarios. Figure 5 shows the breakdown of the average travel time
by the number of pedestrians. Both Table 5 and Fig. 5 are evaluated as a ratio
of open. Although the average travel time of fix resembled that of rule, its
effect was less effective than greedy. Note that the greedy and fix methods
need iterative evaluations (39 × 25 = 975 times of simulations) for the target
scenario. These results required about 25 min to execute 39 parallel simulations
25 times.

Although time/open was the best RL results in Table 5, it is problematic due
to privacy issues. speed also gives good results when I is large; its performance

Table 4. (left) Rewards for deep RL.
Rewards with /open use the result of open
for normalizing.

Name Reward

edge/open

(proposed

method)

max

(
−1,

No
t −Nt
No

t

)
if No

t > 0

0 if No
t = 0 and Nt = 0

−1 if No
t = 0 and Nt > 0

edge (I − Nt)/I

timeOnce/open
(
∑

i τo
i − τi)/

∑
i τo

i if t = T

0 if t �= T

timeOnce
− ∑

i τi/TI if t = T

0 if t �= T

time/open
∑

i
τo

i −τi
τo

i
1l((t − 1)Δ < τi ≤ tΔ)

goal 1
I

∑I
i 1l((t − 1)Δ < τi ≤ tΔ)

goalCum 1
I

∑I
i 1l(τi ≤ tΔ)

speed (v̄max − vt)/v̄max,

where v̄max = 1
I

∑I
i vmax

i

and vt = 1
Nt

∑
j x

j
t × v(ρj)

Fig. 4. (right) Evaluation values in
episodes during training of reinforce-
ment learning. Horizontal axis is num-
ber of episodes. Vertical axis is average
travel time.



340 H. Shimizu et al.

Fig. 5. (left) Evaluation of each method
against test data. Horizontal axis is num-
ber of pedestrians. Vertical axis is ratio of
average travel time to open. Each point is
the average of the results of 10 test data.

Table 5. (right) Average ratio of travel
time to open for each method for 90 sce-
narios. Ref. represents reference methods
for comparison. open took 1493.2 [s] on
average. Bold indicates results that are
not significantly different from best result
(time/open) except for greedy in paired
t-test (p < 0.05).

Method Ratio to open %

Ref. rule 87.5

greedy 74.1

fix 90.4

RL: reward edge/open 79.8

edge 91.9

timeOnce/open 80.8

timeOnce 113.7

time/open 79.0

goal 132.5

goalCum 115.5

speed 85.0

is poor when I is small (Fig. 5). This method increases the moving speed by
increasing users of the detours, which may cause extra travel time. Therefore,
our proposed edge/open yields the best result as the RL reward. The time
required for the method to make a decision was about 5 ms each time, which
was much smaller than greedy (25 min), and satisfies the demand for real-time
use.

In Figs. 4 and 5, we can compare the solid line (with /open) and dashed lines
(without /open) of the same color. These results show that normalization with
/open is effective. Figure 6 shows road conditions in the same simulations of
edge/open and open. 40 min after the start, the pedestrians did not select gate
D in open, but edge/open guides them to it by closing other gates. At 80 min,
edge/open has lines at five gates with better balance than open. At 120 min,
although open has a long line at gate A, most pedestrians of edge/open have
already entered the stadium.
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Fig. 6. I = 80000. Average travel times of open and edge/open were 2481.0 and
1658.3 [s], respectively. Dot colors represent pedestrian speeds: blue is fast and red is
slow. Red lines in front of gates are pedestrian lines for entry. (Color figure online)
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