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Abstract. We propose a novel approach to address one aspect of the
non-stationarity problem in multi-agent reinforcement learning (RL),
where the other agents may alter their policies due to environment
changes during execution. This violates the Markov assumption that
governs most single-agent RL methods and is one of the key challenges
in multi-agent RL. To tackle this, we propose to train multiple policies
for each agent and postpone the selection of the best policy at execu-
tion time. Specifically, we model the environment non-stationarity with a
finite set of scenarios and train policies fitting each scenario. In addition
to multiple policies, each agent also learns a policy predictor to deter-
mine which policy is the best with its local information. By doing so,
each agent is able to adapt its policy when the environment changes and
consequentially the other agents alter their policies during execution.
We empirically evaluated our method on a variety of common bench-
mark problems proposed for multi-agent deep RL in the literature. Our
experimental results show that the agents trained by our algorithm have
better adaptiveness in changing environments and outperform the state-
of-the-art methods in all the tested environments.

Keywords: Reinforcement learning · Multi-agent reinforcement
learning · Multi-agent deep deterministic policy gradient

1 Introduction

The development of modern deep learning has made reinforcement learning (RL)
more powerful to solve complex decision problems. This leads to success in many
real-world applications, such as Atari games [19], playing Go [22] and robotics
control [12]. Recently, there is growing focus on applying deep RL techniques to
multi-agent systems. Many promising approaches for multi-agent deep RL have
been proposed to solve a variety of multi-agent problems, such as traffic control

This work was supported in part by the National Key R&D Program of China (Grant
No. 2017YFB1002204), the National Natural Science Foundation of China (Grant No.
U1613216, Grant No. 61603368), and the Guangdong Province Science and Technology
Plan (Grant No. 2017B010110011).

c© Springer Nature Switzerland AG 2021
T. Uchiya et al. (Eds.): PRIMA 2020, LNAI 12568, pp. 165–181, 2021.
https://doi.org/10.1007/978-3-030-69322-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69322-0_11&domain=pdf
http://orcid.org/0000-0003-3989-0509
https://doi.org/10.1007/978-3-030-69322-0_11


166 Y. Wang and F. Wu

[18,27], multi-player games (e.g., StarCraft, Dota 2), and multi-robot systems
[16].

Despite the recent success of deep RL in single-agent domains, there are addi-
tional challenges in multi-agent RL. One major challenge is the non-stationarity
of multi-agent environment caused by agents that change their policies during the
training and testing procedures. Specifically, at the training time, each agent’s
policy is changing simultaneously and therefore the environment becomes non-
stationary from the perspective of any individual agent. To handle this issue,
multi-agent deep deterministic policy gradient (MADDPG) [17] proposed to uti-
lized a centralized critic with decentralized actors in the actor-critic learning
framework. Since the centralized Q-function of each agent is conditioned on the
actions of all the other agents, each agent can perceive the learning environment
as stationary even when the other agents’ policies change.

Although using a centralized critic stabilizes training, the learned policy of
each agent can still be brittle and sensitive to its training environment and part-
ners. It has been observed that the performance of the learned policies can be
drastically worse when some agents alter their policies during execution [11]. To
improve the robustness of the learned policies, minimax multi-agent deep deter-
ministic policy gradient (M3DDPG) [13]—a minimax extension of MADDPG—
proposed to update policies considering the worst-case situation by assuming
that all the other agents acts adversarially. This minimax optimization is useful
to learn robust policies in very competitive domains but can be too pessimistic
in mixed competitive and cooperative or fully cooperative problems as shown
later in our experiments.

In this paper, we consider one aspect of the non-stationarity issue in multi-
agent RL, where the other agents may alter their policies as a result of changes
in some environmental factors. This frequently happens in real-world activities.
For example, in a soccer game, a heavy rain or high temperature usually causes
the teams to change their strategies against each other. Take disaster response
as another example. First responders often need to constantly adjust their plan
in order to complete their tasks in the highly dynamic and danger environment.
Therefore, it is often desirable for the agents to learn policies that can adapt
with changes of the environment and others’ policies.

Against this background, we propose policy adaptive multi-agent deep
deterministic policy gradient (PAMADDPG)—a novel approach based on
MADDPG—to learn adaptive policies for non-stationary environments. Specifi-
cally, it learns multiple policies for each agent and postpone the selection of the
best policy at execution time. By doing so, each agent is able to adapt its policy
when the environment changes. Specifically, we model the non-stationary envi-
ronment by a finite set of known scenarios, where each scenario captures possible
changing factors of the environment (e.g., weather, temperature, wind, etc. in
soccer). For each scenario, a policy is learned by each agent to perform well in
that specific scenario. Together with multiple policies for each agent, we also
train a policy predictor to predict the best policy using the agent’s local infor-
mation. At execution time, each agent first selects a policy based on the policy



PAMADDPG 167

predictor and then choose an action according to the selected policy. We eval-
uated our PAMADDPG algorithm on three common benchmark environments
and compared it with MADDPG and M3DDPG. Our experimental results show
that PAMADDPG outperforms both MADDPG and M3DDPG in all the tested
environments.

The rest of the paper is organized as follows. We first briefly review the
related work about handling non-stationary in multi-agent deep RL. Then, we
describe the background on the Markov game and the MADDPG method, which
are building blocks of our algorithm. Next, we propose our PAMADDPG algo-
rithm to learn multiple policies and policy predictors. After that, we present
the experiments with environments, setup, and results. Finally, we conclude the
paper with possible future work.

2 Related Work

In recent years, various approaches [20] have been proposed to tackle different
aspects of non-stationarity in multi-agent deep RL. We sample a few related
work about multi-agent deep RL as listed below.

2.1 Centralized Critic

Using the centralized critic techniques, [17] proposed MADDPG for multi-agent
RL using a centralized critic and a decentralized actor, where the training of each
agent is conditioned on the observation and action of all the other agents so the
agent can perceive the environment as stationary. [13] extended MADDPG and
proposed M3DDPG using minimax Q-learning in the critic to exhibit robustness
against different adversaries with altered policies. [8] proposed COMA using also
a centralized critic with the counterfactual advantage estimation to address the
credit assignment problem—another key challenge in multi-agent RL.

2.2 Decentralized Learning

A useful decentralized learning technique to handle non-stationarity is self-play.
Recent self-play approaches store the neural network parameters at different
points during learning. By doing so, self-play managed to train policies that
can generalize well in environments like Go [23] and complex locomotion tasks
[2]. Another technique [6] is by stabilizing experience replay using importance
sampling corrections to adjust the weight of previous experience to the current
environment dynamics.

2.3 Opponent Modeling

By modeling the opponent, [9] developed a second separate network to encode
the opponent’s behaviour. The combination of the two networks is done either
by concatenating their hidden states or by the use of a mixture of experts.
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In contrast, [21] proposed an actor-critic method using the same policy network
for estimating the goals of the other agents. [5] proposed a modification of the
optimization function to incorporate the learning procedure of the opponents in
the training of agents.

2.4 Meta-learning

By extending meta-learning approaches for single-agent RL such as model agnos-
tic meta-learning [3] to handle non-stationarity in multi-agent domains, [1] pro-
posed an optimization method to search for initial neural network parameters
that can quickly adapt to non-stationarity, by explicitly optimizing the initial
model parameters based on their expected performance after learning. This was
tested in iterated adaptation games, where an agent repeatedly play against the
same opponent while only allowed to learn in between each game.

2.5 Communication

In this direction, [7] proposed the deep distributed recurrent Q-networks, where
all the agents share the same hidden layers and learn to communicate to solve
riddles. [26] proposed the CommNet architecture, where the input to each hidden
layer is the previous layer and a communication message. [25] proposed the indi-
vidualized controlled continuous communication model, which is an extension
of CommNet in competitive setting. [4] proposed reinforced inter-agent learning
with two Q-networks for each agents where the first network outputs an action
and the second a communication message.

As briefly reviewed above, most of the existing work focus on handling
non-stationarity mainly during training procedure. Although meta-learning
approaches can learn to adapt agents’ policies between different game, it requires
to repeatedly play iterated adaptation games. In contrast, we build our algorithm
on top of MADDPG to address the non-stationarity problem in general multi-
agent RL at execution time. Besides, we do not assume explicit communication
among the agents during execution as in MADDPG.

A complete survey about recent efforts of dealing non-stationarity in multi-
agent RL can be found in [10,20].

3 Background

In this section, we introduce our problem settings and some basic algorithms on
which our approach is based.

3.1 Partially Observable Markov Games

In this work, we consider a partially observable Markov games [15] with N agents,
defined by: a set of states S describing the possible configurations of all agents,
a set of actions A1, . . . ,AN and a set of observations O1, . . . ,ON for each agent.
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To choose actions, each agent i uses a stochastic policy μθi
: Oi × Ai �→ [0, 1],

which produces the next state according to the state transition function T :
S × A1 × . . . × AN �→ S.

At each time step, each agent i obtains rewards as a function of the state and
agent’s action ri : S × Ai �→ R, and receives a local observation correlated with
the state oi : S �→ Oi. The initial states are determined by a state distribution
ρ : S �→ [0, 1]. Each agent i aims to maximize its own total expected return:
Ri =

∑T
t=0 γtrt

i , where γ ∈ (0, 1] is a discount factor and T is the time horizon.
Here, we assume that the state transition function T is unknown and there-

fore consider to learn the policies μθi
for each agent i using multi-agent rein-

forcement learning (RL) methods. Note that each agent must choose an action
based on its own policy and local observation during execution.

3.2 Multi-agent Deep Deterministic Policy Gradient

Policy gradient methods are a popular choice for a variety of RL tasks. The main
idea is to directly adjust the parameters θ of the policy in order to maximize the
objective J(θ) = Es∼pμ,a∼μθ

[R(s, a)] by taking steps in the direction of ∇θJ(θ),
i.e., the gradient of the policy written as:

∇θJ(θ) = Es∼pμ,a∼μθ
[∇θ log μθ(a|s)Qμ(s, a)] (1)

where pμ is the state distribution and Qμ is the Q-function.
The policy gradient framework has been extended to deterministic policies

μθ : S �→ A. In particular, under certain conditions the gradient of the objective
J(θ) = Es∼pμ [R(s, a)] can be written as:

∇θJ(θ) = Es∼D
[
∇θμθ(a|s)∇aQμ(s, a)

∣
∣
a=μθ(s)

]
(2)

Since the deterministic policy gradient (DPG) [24] relies on ∇aQμ(s, a), it
requires that the action space A (and thus the policy μ) be continuous. Deep
deterministic policy gradient (DDPG) [14] is a variant of DPG where the policy
μ and critic Qμ are approximated with deep neural networks. DDPG is an off-
policy algorithm, and samples trajectories from a replay buffer of experiences
that are stored throughout training. It also makes use of a target network, as in
DQN [19].

Multi-agent DDPG (MADDPG) [17] extends the DDPG method to multi-
agent domains. The main idea behind MADDPG is to consider action
policies of other agents. The environment is stationary even as the poli-
cies change, since P (s′|s, a1, . . . , aN , π1, . . . , πN ) = P (s′|s, a1, . . . , aN ) =
P (s′|s, a1, . . . , aN , π′

1, . . . , π
′
N ) for any πi �= π′

i. The gradient can be written as:

∇θi
J(μi) = Ex,a∼D

[
∇θi

μi(ai|oi)∇ai
Qμ

i (x, a1, . . . , aN )
∣
∣
ai=μi(oi)

]
(3)

where Qμ
i (x, a1, ..., aN ) is a centralized action-value function that takes as input

the actions of all agents, a1, . . . , aN , in addition to the state information x, and
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outputs the Q-value for agent i. Here, Qμ
i can be updated as:

L(θi) = Ex,a,r,x′
[
(Qμ

i (x, a1, . . . , aN ) − y)2
]
,

y = ri + γQμ′
i (x′, a′

1, . . . , a
′
N )

∣
∣
a′

j=μ′
j(oj)

(4)

where (x, a, r,x′) is sampled from the experience replay buffer D, recoding expe-
riences of all agents.

3.3 Dealing Non-stationarity in MADDPG

As aforementioned, one of the key challenges in multi-agent RL is the environ-
ment non-stationarity. This non-stationarity stems from breaking the Markov
assumption that governs most single-agent RL algorithms. Since the transitions
and rewards depend on actions of all agents, whose decision policies keep chang-
ing in the learning process, each agent can enter an endless cycle of adapting
to other agents. Although using a centralized critic stabilizes training in MAD-
DPG, the learned policies can still be brittle and sensitive to changes of the
other agents’s policies.

To obtain policies that are more robust to changes in the policy of other
agents, MADDPG proposes to first train a collection of K different sub-policies
and then maximizing the ensemble objective maxθi

J(θi) as:

J(θi) = Ek∼uniform(1,K),s∼pμ,a∼μ(k) [Ri(s, a)]

= Ek,s

[
T∑

t=0

γtri(st, at
1, . . . , a

t
N )

∣
∣
∣
at

i=μ
(k)
i (ot

i)

]

= Es

[
1
K

K∑

k=1

Qμ
i (s, a1, . . . , aN )

∣
∣
∣
ai=μ

(k)
i (oi)

]
(5)

where μ
(k)
i is the k-th sub-policies of agent i. By training agents with an ensem-

ble of policies, the agents require interaction with a variety of the other agents’
policies. Intuitively, this is useful to avoid converging to local optima of the
agents’ policies. However, the ensemble objective only considers the average per-
formance of agents’ policies training by uniformly sampling the policies of the
other agents.

Alternatively, M3DDPG [13]—a variation of MADDPG—proposes to update
policies considering the worst situation for the purpose of learning robust
policies. During training, it optimizes the policy of each agent i under the
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Algorithm 1: Training and execution for PAMADDPG
1 # At training time:

2 ∀i : Πi ← ∅, φi ← initialize the predictor parameters
3 foreach scenario c ∈ C do
4 ∀i : Πi ← learn and add a set of policies for agent i
5 ∀i : φi ← learn and update the predictor for agent i

6 # At execution time:

7 ∀i : h0
i ← ∅

8 for time step t = 1 to T do
9 for agent i = 1 to N do

10 ot
i ← receive a local observation for agent i

11 μi ← select a policy from Πi by φi(o
t
i, h

t−1
i )

12 at
i ← select an action by μθi(o

t
i)

13 ht
i ← append ot

i to ht−1
i

14 Execute actions 〈at
1, . . . , a

t
N 〉 to the environment

15 Collect rewards 〈rt
1, . . . , r

t
N 〉 from the environment

16 return ∀i : Ri =
∑T

t=0 γtrt
i

assumption that all other agents acts adversarially, which yields the minimax
objective maxθi

J(θi) as:

J(θi) = min
aj �=i

Es∼pμ,ai∼μi
[Ri(s, a)]

= min
at

j �=i

Es

[
T∑

t=0

γtri(st, at
1, . . . , a

t
N )

∣
∣
∣
at

i=μi(ot
i)

]

= Es

[

min
aj �=i

Qμ
M,i(s, a1, . . . , aN )

∣
∣
∣
ai=μi(oi)

]

(6)

where Qμ
M,i(s, a1, . . . , aN ) is the modified Q function representing the current

reward of executing a1, . . . , aN in s plus the discounted worst case future return
starting from s. With the minimax objective, the training environment of each
agent becomes stationary because the behavior of all the other agents only
depends on −ri, i.e., the negative reward of agent i itself. However, this adver-
sarial assumption could be too pessimistic if the game among the agents is not
zero-sum or even is cooperative.

Ideally, the well trained agents should be able to adapt their policies with the
changes in the environment. This motivated the development of our algorithm
that will be introduced in details next.

4 Policy Adaptive MADDPG

In this section, we propose policy adaptive multi-agent deep deterministic policy
gradient (PAMADDPG), which is based on MADDPG, to deal with environment



172 Y. Wang and F. Wu

non-stationarity in multi-agent RL. As in MADDPG, our algorithm operate
under the framework of centralized training with decentralized execution. Thus,
we allow the agents to share extra information for training, as long as this
information is not used at execution time. We assume that the learned policies
can only use local information and there is no explicit communication among
agents during execution. Specifically, our algorithm is an extension of actor-critic
policy gradient methods with multiple decentralized actors and one centralized
critic, where the critic is augmented with extra information on the policies of
the other agents.

In this work, we consider a setting where agents are trained and executed in
an environment that can categorized into a finite set of scenarios. These scenarios
are known during training. However, at execution time, agents have no prior
knowledge about which scenario they will locate in. Therefore, the agents must
act adaptively during execution. Note that the scenarios cannot be modeled as
state variables because we make no assumption about the initial distribution
and transition probabilities of scenarios, which can be any probabilities in our
setting. Intuitively, a scenario in our setting models a collection of environmental
factors that can cause the agents to alter their policies.

Let C denote a finite set of scenarios for the agents. Here, each scenario c ∈ C
can be modeled by a partially observable Markov game as aforementioned. We
assume that all the scenarios in C have identical state space and the same action
and observation space for all the agents. Particularly, each scenario c ∈ C may
have different state transition function T c and different reward function rc

i for
each agent i, so that agents in different scenarios may require different policies.
Formally, we define a scenario c ∈ C as a tuple: 〈S, {Ai}, {Oi}, T c, {rc

i }〉 with
notations in Markov games.

As aforementioned, to be able to adapt in different scenarios, we propose to
train multiple policies for each agent and postpone the selection of its policy
at execution time. In addition to multiple policies for each agent, we also train
a policy predictor that can be used by the agent to determine the best policy
during execution. Given this, the agent is able to adapt its policy when the
environment changes. As summarized in Algorithm 1, PAMADDPG consists
of two main procedures: 1) learning multiple policies and 2) learning policy
predictors, which will be described in details next.

4.1 Learning Multiple Policies

We can extend the actor-critic policy gradient method as described in MADDPG
to work with each scenario. Specifically, given a scenario c ∈ C, the gradient for
policy μc

i with respect to parameters θc
i can be written as:

∇θc
i
J(μc

i ) = Ex,a∼Dc

[
∇θc

i
μc

i (ai|oi)∇ai
Qμ,c

i (x, a1, . . . , aN )
∣
∣
ai=μc

i (oi)

]
(7)

where Dc is the experience replay buffer recording experiences with tuples
(x, a1, . . . , aN , rc

1, . . . , r
c
N ,x′) of all agents at the scenario c and x = (o1, . . . , oN ).
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Here, the centralized action-value function Qμ,c
i is updated as:

L(θc
i ) = Ex,a,r,x′ [(Qμ,c

i (x, a1, . . . , aN ) − y)2]

y = ri + γ Qμ′,c
i (x′, a′

1, . . . , a
′
N )

∣
∣
a′

j=μ′c
j (oj)

(8)

where μ′c = {μθ′c
1

, . . . , μθ′c
N

} is the set of target policies with delayed parameters
θ′c

i .
Here, the key challenge is that policies trained by MADDPG may converge

to different local optima. Therefore, the other agents may choose policies that
are different from the ones learned by MADDPG. To address this, we propose
to train a collection of K different policies for each agent in a single scenario.
Each policy can have different initial parameters and selection of the partners’
policies. This will grow the populations in the policy set of each agent and further
improve the robustness during testing. Unlike MADDPG, we do not ensemble
the K policies to a single policy but keep all the individual policies as candidates
for execution.

4.2 Learning Policy Predictors

We denote φi : Hi → Δ(Πi) the policy predictor that uses agent i’s local obser-
vation history ht

i = (o1i , . . . , o
t
i) to compute the distribution over agent i’s policy

set Πi. Our goal is to determine at execution time which policy should be used
by agent i in order to achieve the best performance. Here, we use a recurrent
neural network to train a policy predictor φi, containing a layer of LSTM and
some other layers. This structure allows the agent to reason about the current
scenario using its observation sequence.

Here, φi(ot
i, h

t−1
i ) is a function that takes the input of the current observation

ot
i and the last-step history ht−1

i at the time step t, and outputs the policy
distribution pt

i(·) ∈ [0, 1] over agent i’s policy set Πi. Now, the action selection
process of agent i at time step t can be written as:

pt
i = φi(ot

i, h
t−1
i )

μi = arg maxμ′
i∈Πi

pt
i(μ

′
i)

at
i = μθi

(ot
i)

(9)

Together with training the policy, we use replay buffer to train φi in order
to avoid the early instability and adverse effects during training process. Specif-
ically, we create a dedicated replay buffer Bi for φi during training. It stores
(hi, μi) at the end of each episode, where hi = (o1i , . . . , o

T
i ) is agent i’s observa-

tion sequence at this episode and μi is the currently trained policy. The main
training procedure of φi is to sample a random minibatch of samples (hi, μi)
from Bi and update the parameters of φi by minimizing the cross-entropy loss
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function as follow:

∇pi
J(φi) = E(hi,μi)∼Bi

[
T∑

t=1

CE
(
φi(ot

i, h
t−1
i ), t

)
]

= E(hi,μi)

⎡

⎣
T∑

t=1

∑

μ′
i∈Πi

−yμ′
i log

(
pt

i(μ
′
i)

)
⎤

⎦

where yμ′
i =

{
1, μ′

i = μi

0, μ′
i �= μi

and pt
i = φi(ot

i, h
t−1
i ).

(10)

The overall learning procedures of PAMADDPG are outlined in Algorithm
2.

5 Experiments

We empirically evaluate our algorithm on three domains built on top of the
particle-world environments1 originally used by the MADDPG paper [17]. To
create various scenarios, we modify some of the physical properties of the envi-
ronments so that the agents must alter their policies in order to success in
different scenarios. By doing so, we expect to examine the adaptiveness of our
PAMADDPG algorithm when testing in different scenarios.

5.1 Environments

The particle world environment consists of N cooperative agents, M adversarial
agents and L landmarks in a two-dimensional world with continuous space. In the
experiments, we consider two mixed cooperative and competitive domains (i.e.,
Keep-away and Predator-prey) and one fully cooperative domain (i.e., Coop-
erative navigation), as shown in Fig. 1, and modify these domains to generate
different scenarios as below.

(a) Keep-away

predator 1

prey

predator 2

predator 3

(b) Predator-prey (c) Cooperative navigation

Fig. 1. Illustrations of the three environments.

1 Code from: https://github.com/openai/multiagent-particle-envs.

https://github.com/openai/multiagent-particle-envs


PAMADDPG 175

Algorithm 2: Learning agents’ policies and predictors
1 foreach episode do
2 Initialize a random process N for action exploration
3 Receive initial observations x = (o1, . . . , oN )
4 for time step t = 1 to T do
5 For each agent i, select ai = μθi(oi) + Nt w.r.t the current policy and

exploration noise
6 Execute action a = (a1, . . . , aN ) and observe reward r = (r1, . . . , rN )

and new state x′

7 Store (x, a, r,x′) in D and set x ← x′

8 for agent i = 1 to N do
9 Sample a random minibatch of M samples (xm, am, rm,x′m) from

replay buffer D
10 Set ym = rm

i + γ Qμ′
i (x′, a′)

∣
∣
a′

j=μ′
j(o

m
j )

11 Update critic by minimizing the loss:

L(θi) =
1

M

M∑

m=1

(ym − Qμ
i (xm, am))2

12 Update actor using the sampled gradient:

∇θiJ(μi) ≈ 1

M

M∑

m=1

∇θiμi(o
m
i )

∇aiQ
μ
i (xm, am)

∣
∣
ai=μi(o

m
i )

13 Sample a random minibatch of K samples (hk
i , μk

i ) from replay
buffer Bi

14 Update predictor φi by minimizing the loss:

∇piJ(φi) ≈ 1

K

K∑

k=1

T∑

t=1

∑

μ′
i

−yμ′
i log(pt

i(μ
′
i))

15 Update target network parameters θi for each agent i as:
θ′

i ← τθi + (1 − τ)θ′
i

16 Collect history hi = (o1i , . . . , o
T
i ) and store (hi, μi) in replay buffer Bi for

each agent i

Keep-Away. This environment consists of L landmarks including a target
landmark, N = 2 cooperating agents who know the target landmark and are
rewarded based on their distance to the target, and M = 2 agents who must
prevent the cooperating agents from reaching the target. Adversaries accomplish
this by physically pushing the agents away from the landmark, temporarily occu-
pying it. While the adversaries are also rewarded based on their distance to the
target landmark, they do not know the correct target.
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We create K = 3 scenarios that require agents to learn to adapt with. In
each scenario, we simulate different “wind” conditions in the environment. The
wind will affect the moving speed of the agents in a certain direction computed
as: v′

i = vi + w ∗ βi, where vi is the original speed, w = [wN , wW , wS , wE ] is
the wind force for four directions, and βi = 5 is the acceleration rate. In the
experiments, we consider no wind (i.e., w = 0) in Scenario 1, southwest wind
(i.e., wS = wW = 0.5 and 0 otherwise) in Scenario 2, and northeast wind (i.e.,
wN = wE = 0.5 and 0 otherwise) in Scenario 3 respectively.

Predator-Prey. In this environment, N = 4 slower cooperating agents must
chase M = 2 faster adversary around a randomly generated environment with
L = 2 large landmarks impeding the way. Each time the cooperative agents
collide with an adversary, the agents are rewarded while the adversary is penal-
ized. Agents observe the relative positions and velocities of the agents, and the
landmark positions.

We create K = 3 scenarios to simulate different body conditions for the
good and bad agents. This is done by using different maximum speeds v̄ and
accelerations β for the agents in the environment, i.e., (v̄good, βgood, v̄bad, βbad).
We set the parameters so that the agents will compete in different levels, i.e.,
weak, medium, and strong. Specifically, we set (3.0, 3.0, 3.9, 4.0) in Scenario 1,
(2.0, 4.0, 2.6, 5.0) in Scenario 2, and (3.0, 5.0, 3.9, 6.0) in Scenario 3.

Cooperative Navigation. In this environment, agents must cooperate through
physical actions to reach a set of L landmarks. Agents observe the relative posi-
tions of other agents and landmarks, and are collectively rewarded based on
the proximity of any agent to each landmark. In other words, the agents have to
“cover” all of the landmarks. Furthermore, the agents occupy significant physical
space and are penalized when colliding with each other.

Similar to the Keep-away environment described above, we created K = 3
scenarios in this environment also with three wind conditions, i.e., no wind for
Scenario 1, southeast wind for Scenario 2, and northwest wind for Scenario 3.

5.2 Setup

We compared our PAMADDPG algorithm with MADDPG2 and M3DDPG3,
which are currently the leading algorithms for multi-agent deep RL, on the
environments as described above. In our implementation, the agents’ policies
are represented by a two-layer ReLU MLP with 64 units per layer, which is the
same as MADDPG and M3DDPG, and the policy predictors are represented by
a two-layer ReLU MLP and a layer of LSTM on top of them.

We used the same training configurations as MADDPG and M3DDPG, and
ran all the algorithms until convergence. Then, we tested the policies computed

2 Code from: https://github.com/openai/maddpg.
3 Code from: https://github.com/dadadidodi/m3ddpg.

https://github.com/openai/maddpg
https://github.com/dadadidodi/m3ddpg
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Fig. 2. Overall performance of PAMADDPG (PA), MADDPG (MA), and M3DDPG
(M3) on the environments.

by the algorithms on each environment with 10,000 further episodes and report
the averaged results. For fair comparison, all algorithms were tested on a fixed
set of environment configurations. Each testing environment is generated by ran-
domizing the basic configurations and randomly selecting a scenario. As afore-
mentioned, the agents do not know which scenario is selected for the environment
during testing procedure.

Note that MADDPG and M3DDPG do not consider different scenarios in
their original implementations. For fair comparison, we try to train their poli-
cies in a way that their performance is improved when working with different
scenarios. Specifically, in our experiments, MADDPG trained policies with all
scenarios and optimized the objective as:

J(θi) = Ec∼uniform(C),s∼pc,a∼μ[Ri(s, a)] (11)

As aforementioned, we do not know the true distribution before testing so MAD-
DPG was trained with the uniformly distributed scenarios. Following the min-
max idea of the standard version, M3DDPG maximized the objective in the
worst-case scenario in the experiments as:

J(θi) = minc∈C,aj �=i
Es∼pc,ai∼μi

[Ri(s, a)] (12)

By doing so, we can evaluate the effectiveness of our algorithm with multiple
policies comparing with MADDPG and M3DDPG using only a single policy for
each agent when the environment changes.

5.3 Results

We measure the performance of agents with policies learned by our PAMAD-
DPG and agents with policies learned by MADDPG and M3DDPG in each
environment. In the first two mixed cooperative and competitive domains, we
switch the roles of both normal agent and adversary as in the MADDPG and
M3DDPG papers to evaluate the quality of learned policies trained by different
algorithms.

The results on the three environments are demonstrated in Fig. 2. As shown in
the figure, each group of bar shows the 0−1 normalized score for the environment,
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Fig. 3. Performance of PAMADDPG (PA), MADDPG (MA), and M3DDPG (M3) on
different scenarios.

where a higher score shows better performance for the algorithm. In the first
two environments, PAMADDPG outperforms M3DDPG and MADDPG because
PAMADDPG achieves higher scores when playing normal agents (i.e., PA vs MA,
PA vs M3) than the ones as adversaries (i.e., MA vs PA, M3 vs PA). Interestingly,
PAMADDPG performs better when playing against MADDPG (i.e., PA vs MA,
MA vs PA) than the case against M3DDPG (i.e., PA vs M3, M3 vs PA) in the
Keep-away environment, while PAMADDPG shows better performance against
M3DDPG than the case against MADDPG in the Predator-prey environment.
Intuitively, this is because the Predator-prey environment is more competitive
than the Keep-away environment so that M3DDPG who considers the worst-
case situation works better than MADDPG when paired with our algorithm. In
the Cooperative navigation environment, PAMADDPG consistently outperforms
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Fig. 4. Learning reward of PAMADDPG (PA), MADDPG (MA), M3DDPG (M3), and
DDPG on the Cooperative navigation environment after 10,000 episodes.

MADDPG and M3DDPG. M3DDPG has the worst performance in terms of
scores because this environment is a fully cooperative domain while M3DDPG
makes unrealistic assumption that all the other agents act adversarially.

Figure 3 shows the results of our PAMADDPG comparing with MADDPG
and M3DDPG when testing on different scenarios in each environment. In the
Keep-away environment, PAMADDPG outperforms MADDPG and M3DDPG
on Scenarios 2 and 3 while performs similarly on Scenario 1. This is because
MADDPG and M3DDPG tends to converge to the policies fitting Scenario
1, which is expected to work poorly in Scenarios 2 and 3. In contrast, our
PAMADDPG can adapt its policies to fit different scenarios during testing. In
the Predator-prey environment, PAMADDPG outperforms MADDPG on Sce-
narios 1 and 3 but not Scenario 2, and M3DDPG on Scenarios 1 and 2 but not
Scenario 3. Similar to the Keep-away environment, this is because MADDPG
converges to the policies fitting Scenario 2 while M3DDPG converges to the
policies fitting Scenario 3. As we can see from the figure, PAMADDPG achieves
slightly less scores than MADDPG and M3DDPG on Scenarios 2 and 3 respec-
tively. This is because the Predator-prey environment is very competitive and the
policy predictors in PAMADDPG take time to form correct predictions. In the
Cooperative navigation environment, our PAMADDPG outperforms MADDPG
and M3DDPG for all the scenarios. Again, M3DDPG has the worst performance
because this is a fully cooperative environment.

Figure 4 shows the average reward of different approaches on the Cooperative
navigation environment during the training process. As we can see from the
figure, our PAMADDPG algorithm converges to better reward than all the other
methods. As expected, the reward of DDPG decreases after 80,000 episodes due
to non-stationarity in multi-agent RL. As shown in the figure, the reward of
MADDPG fluctuates about 60,000 episodes while the reward of PAMADDPG
becomes stable after convergence.
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6 Conclusion

In this paper, we addressed the non-stationarity problem in multi-agent RL and
proposed the PAMADDPG algorithm. We model the non-stationarity in the
environment as a finite set of scenarios. At training time, each agent learns mul-
tiple policies, one for each scenario, and trains a policy predictor that can be used
to predict the best policy during execution. With the multiple policies and policy
predictor, each agent is able to adapt its policy and choose the best one for the
current scenario. We tested our algorithm on three common benchmark environ-
ments and showed that PAMADDPG outperforms MADDPG and M3DDPG in
all the tested environment. In the future, we plan to conduct research on learning
the scenarios directly from the environment.
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