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Abstract. The discrepancy between manufactured and design geometry of tur-
bomachinery blades has a detrimental effect on the performance variability. In
this work, the authors propose a methodology to reduce the impact of the ran-
domness induced by the manufacturing process: a tolerance optimization is car-
ried out by resorting to an efficient robust optimization method based on quantile
regression. Its application to a typical two-dimensional supersonic nozzle cascade
for ORC showcases promising preliminary results.
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1 Introduction

The geometry of manufactured turbomachinery blades inevitably differs from the
design geometry, due to noise in the manufacturing process or in-service erosion. It
generally induces both an increase in performance variability while decreasing its mean
performance. Garzon [5] demonstrated that the mean loss coefficient of a flank-milled
integrally bladed rotor (IBR) increased by 23% due to manufacturing variability. Dow
proposed a robust design framework combining both geometric and tolerance optimiza-
tion of a compressor exit vane, leading to a quite large number of flow simulations per-
formed using the Multiple Blade Interacting Streamtube Euler Solver (MISES) code
[3]. Similarly to Dow, we assume that the geometric variability in manufactured turbine
blades can be described as a non-stationary Gaussian Random Field, representing the
error between the manufactured surface and the nominal (perfect) one, fully defined by
its autocovariance function.

The effect of tightening manufacturing tolerances is modelled by reducing the stan-
dard deviation of the random field locally. This work focuses on the tolerance optimiza-
tion by resorting to a Robust Optimization (RO) based on Quantile Regression [14],
yielding a low number of CFD simulations. The proposed method permits to quanti-
tatively highlight the regions of the blade that have the largest impact on the average
performance.

This methodology is applied to a typical supersonic nozzle cascade for ORC appli-
cations, using the popular NICFD flow solver SU2. Indeed, the peculiarities of organic
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fluids typically lead to supersonic turbine configurations featuring supersonic flows and
shocks, which can be influenced by the geometric tolerances of the blade manufactur-
ing, as emphasized in [11].

The supersonic nature of the blade makes the throat zone, especially in the super-
sonic area downstream the throat (both in the divergent and in the semi-bladed part),
very sensitive to the geometry. This behavior might be exploited in the manufactur-
ing phase, only if the effect is appropriately modeled and quantified. This long term
objective motivates the present research work.

In this paper, we propose an efficient framework for the robust design of the tol-
erances of a two-dimensional nozzle cascade. The originality w.r.t. [3] lies in the use
of a parcimonious RO method combined with an original parametrization of the design
space.

2 Methodology

The NICFD test-case is described in Subsect. 2.1. The uncertainty framework and in
particular the description of the perturbed blades generation from a given design vec-
tor is fully presented in Subsect. 2.2. The robust optimization method is described in
Subsect. 2.3.

2.1 NICFD Case Description

The targeted Organic Rankine Cycle (ORC) turbine is the geometry of an existing ORC
stator designed for a 300 kWe Combined-Heat-and-Power axial turbogenerator employ-
ing siloxane MDM as working fluid (whose properties are reported in Table 1). This
supersonic axial-flow turbine stator is characterized by converging-diverging blades and
it features significant fluid-dynamic penalties due to a strong shock-wave forming on
the rear suction side of the blade. This exemplary profile, originally presented in [1]
has been extensively studied in the open literature of ORC. In recent years, it has been
subjected to several deterministic optimization trials [9,16] and robust ones in [10,12].
The flow model focuses on the two-dimensional flow around the blade profiles at the
midspan section of the cascade considering operating conditions provided in Table 1.

In order to estimate the aerodynamic performances of the supersonic turbine, the
Non-Ideal Compressible-Fluid Dynamics solver included in the SU2 [4,8,17] suite is
employed, embedding in particular the Peng-Robinson-Stryjek-Vera Equation of State
to describe the fluid thermodynamic behavior. Inviscid fluxes are discretized using a
MUSCL approach based on an approximate Riemann solver of Roe upwind type [7,13,
15] along with the slope limiter proposed by van Albada. Additionally, Non-Reflecting
Boundary Conditions [6] are exploited to avoid spurious pressure oscillations due to
the reflection of spurious pressure waves at domain boundaries. The unstructured grids
are generated using an in-house tool based on an advancing-front/Delaunay algorithm.
Inviscid simulations are performed using a restart file corresponding to the baseline
simulation, on meshes constituted of 16k cells, selected in [12] after grid dependence
study, as optimal trade-off between accuracy and cost (Table 2).
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Table 1. MDM gas properties and
operating conditions.

Critical pressure 14.152 bar

Critical temperature 564.1K

Critical density 256.82 kg.m−3

γ 1.0165

Acentric factor ω 0.529

Gas constant 35.152 J/kg/K

μ 1.1517×10−5 Pa.s

k 0.03799W/(m.K)

Inlet total pressure [Pa] 8×105

Inlet total temperature [K] 545.15

Inlet axial angle [◦] 0

Outlet static pressure [Pa] 1.072×105

Table 2. Test-case: mach contours and 16k cells mesh.

The Quantity of Interest (QoI) considered is the standard deviation of the distribu-
tion of the static pressure measured half-axial chord downstream the blade, denoted as
ΔP. This objective function is selected since minimizing it directly increases the perfor-
mance of the stator as it minimizes the impact of the shock, which is the main source
of loss here. It also has a beneficial effect on the downstream rotor, as it makes the
flow entering it more uniform. Figure 2 illustrates the NICFD test-case by providing the
Mach contours and showcasing the mesh.

2.2 Modeling Geometric Variability

2.2.1 Random Field Generation
Following [2,3,11], we assume that the geometric variability in manufactured turbine
blades can be accurately described as a non-stationary Gaussian Random Field e(s,ω),
ω being a coordinate in the sample space Ω, and (Ω,F ,P) a complete probability
space. The arclength s ∈ [0,1] parametrizes the location on the blade surface, starting at
the trailing edge (s= 0), going around the leading edge (s= 1

2 ), and continuing back to
the trailing edge on the opposite side of the blade (s= 1).

The Random field e(s,ω) represents the error between the manufactured surface
and the nominal (perfect) one in the normal direction at the point parametrized by s. It
is fully defined by its mean ē(s) (null here) and autocovariance function C(s, t): it cap-
tures the correlation between manufacturing errors at locations along the blade surface
parametrized by s, t ∈ [0,1], and describes the smoothness and correlation length of the
random field. It is written as [11]:

C(s, t) = σ(s) σ(t) ρ(s, t) (1)
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where σ(s) is the standard deviation of the random field at location s, which quantifies
locally the level of manufacturing variability. Its modeling is described in Subsect. 2.2.2,
and is the goal of the present work. The non-stationary autocorrelation function ρ is
defined by:

ρ(s, t) = exp

(
− |s− t|2
L(s)L(t)

)
(2)

where

L(s) = L0+(LLE −L0)exp

(
−|s− 1

2 |2
w2

)
(3)

The values L0 = 0.1, w = 0.1 and LLE = 1.0× 10−2, all normalized by the blade
half-arclength were used [11]. In the present study, the trailing edge is modeled as a
straight segment, thus, the impact of manufacturing variability at the trailing edge is not
addressed.

In order to sample a random field e(•,ω) on a setS = {s1, ...,snblade}, representing
the values in [0,1] parametrizing the nblade nodes on the blade profile, the following
procedure is applied:

• The discrete covariance matrix C= [C(si,s j)]i∈�1,nblade� is generated.• A gaussian vector g ∈ Rnblade is generated, with g ∼ N (0,C).

For more details, the reader is referred to [11].

2.2.2 σ(s) Parametrization: Design Vector
A standard approach [11] consists in assuming a constant standard deviation of the ran-
dom field: σ(s) = σ0, for a given constant σ0 = 3×10−5m here. The goal of the present
work is to find an optimal distribution of σ(•) leading to a reduced detrimental impact
of geometric variability on the prescribed blade profile, satisfying a (manufacturing)
cost constraint. Here we simply search for a distribution satisfying

∫
[0,1] σ(s)ds= σ0. A

two-degree of freedom parametrization is chosen here, based:

σx(s) = σ0+b(s,x) (4)

where b(s,x) is a cubic Béziers curve in [0,1], defined by 4 so-called control points
P0,P1,P2,P3 ∈ R2:

b(s,x) = P0(1− s)3+3P1s(1− s)2+3P2s
2(1− s)+P3s

3. (5)

To ensure
∫
[0,1] (

¯
s,x)ds = 0, we choose P0 = (0,x2), P1 = (0.5− x0,x1), P2 = (0.5+

x0,−x1) and P3 = (0,−x2), with x= (x0,x1,x2) denoting the design vector. The design
space is chosen as Ω = [−3,3]× [−2σ0,2σ0]× [σ0,σ0]. Figure 1 provides an illustra-
tion of this parametrization, and the corresponding influence of the local level of man-
ufacturing variability on the blade. In the following, a random field as described in
Subsect. 2.2.1 based on the standard deviation σx(s) is denoted by ex(s,ω).
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Fig. 1. Random Field Illustration. (a) Distribution σx(s), with x= (0.5,2σ0,0). (b) Blade geom-
etry. Baseline (black) and corresponding σx(s) perturbation (blue) with scale = 50.

Figure 2 presents examples of realizations for a given design vector.

Fig. 2. Random field realizations: x= (0.5,2σ0,0), scale = 20.

2.2.3 Stochastic Model
For a given design vector x, a random field ex is defined based on its local standard
deviation distribution σx(•). A geometric error realization ex(•,ω∗(x) following ex is
then sampled, corresponding to a perturbed blade geometry, where ω∗(x) represent-
ing a coordinate in the sample space depending on x. A CFD simulation permits the
evaluation of the QoI ΔP(x,ω∗(x), or simply the random QoI ΔP(x). In other terms,
x �→ ΔP(x) can be represented as a scalar stochastic model, as several simulations of
the same input normally result in different outputs.
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2.3 (Robust) Optimization Framework

The objective of the present work is to find an optimal distribution of the standard devi-
ation of the random field describing the geometric discrepancy between manufactured
blades and the nominal (perfect) one. Such optimal distribution would permit to limit
the detrimental effect on the variability of the scalar random QoI ΔP. We propose to
recast this problem as a robust optimization one, formulated as follows:

Minimize q80[ΔP(x)]

s.t. x ∈ Ω ⊂ R3 (6)

where q80 is the 80% quantile operator induced by the random field ex. Other statistics
could have been chosen, such as linear combination of the mean and standard deviation,
other quantiles... In order to solve Eq. 6, we resort to a methodology based on Quan-
tile Regression (QR) [14] for Robust Optimization. This method is suitable for low
dimensional design space, and high dimensional (possibly non-parametric) stochastic
space, which is consistent with the problem we propose to solve. An initial Design of
Experiment (DoE) of size n0= 300 is first generatedT = {xi,ΔP(xi)}i, based on Latin
Hypercube Sampling (LHS). A QR based on nCP = 37 so-called Control Points is built.
The seminal work described in [14] is slightly modified: the bayesian description of the
QR enabling to obtain uncertainties in the QR derivation based on so-called Markov-
Chain Monte-Carlo (MCMC) is replaced by building several QR representations based
on random generation of the Control Points. It enables to cheaply obtain an estima-
tion of the mean and quantiles of the QR, used to select promising designs. At each
optimization iteration, K = 8 CFD runs are performed to update the DoE.

3 Results

Some preliminary results are presented: the optimal configuration is compared w.r.t. the
baseline one x0, which corresponds to a constant standard deviation distribution, i. e.
σ(s) = σ0. The robust optimization framework required 38 iterations to converge, for
which 8 CFD simulations are run in parallel in less than 2m, so that the final number
of CFD run is n f = 604. To assess the quantile results for both the baseline x0 and the
optimal design x∗, 200 samples following respectively ex0 and ex∗ are generated and
assessed by the NICFD solver. First, the so-called Probability Density Function (PDF)
of the QoI ΔP is built, as the empiric 80% quantile, as reproduced in Fig. 3(a). We can
observe that the PDF corresponding to the optimized design is significantly less spread
than for the baseline configuration, while the difference between both quantiles is small
(0.15%). This noticeable favorable impact may be due to the choice of a high quantile
for the statistics. Same comments apply to the total loss pressure coefficient Y PDF
3(b).

Figure 5 represents the local distribution of the standard deviation for the optimized
case, and examples of realizations of perturbed blade geometries.

To exhibit the impact of the distribution of the standard deviation on the blade aero-
dynamics, the contours of Coefficient of Variation (CoV) of the Mach number is pre-

sented in Fig. 4, withCov=
σ
μ
. The CoV values are estimated locally at the nodes of the
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mesh, using standard empirical estimators. The Mach CoV for the baseline in Fig. 4(a)
is very similar to the analysis obtained in [11] from a RANS simulation. The result
obtained for the optimized design emphasizes that the CoV increases in the shock zone,
while it decreases in the isentropic region upstream the blade and at the beginning of
the bladed channel.

Fig. 3. PDF of the QOIs ΔP (a) and total pressure loss Y (d): baseline design x0 (black) and
optimal design x∗ (red). The vertical line exhibits the 80% quantile.

Fig. 4. Contours of mach CoV[%] for the baseline and the optimal designs, based on 200 CFD
samples.
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Fig. 5.Optimized design: random field realizations and local distribution of the standard deviation
(scale = 20).

4 Conclusions and Future Works

The present research work proposed a methodology for optimizing the distribution of
the geometric variability. This problem is solved by resorting to a modified state-of-
the-art robust optimization method based on QR. We demonstrated its impact applying
it to a two-dimensional nozzle cascade, using an inviscid NICFD solver. The robust
optimization problem, characterized by a design space of small dimensionality (d = 3)
and large stochastic dimension, required at total of 608 CFD evaluations: n0 = 300 for
the initialization, and 37 iterations of K = 8 CFD runs performed in parallel. A signifi-
cant improvement of the statistics and the PDF of the QOIs is obtained. Those are still
preliminary results. Future work will consist mainly in improving the parametrization
of the design space and considering RANS simulations.
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