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Abstract. Flow disturbances traveling in a nozzle can be amplified or
attenuated and generate excessive acoustic noise (e.g. jet engine exhaust)
or interact with shocks to cause excessive loading on components (e.g.
between turbine blades). Non-ideal gas-dynamic effects are investigated
within the framework of linearised inviscid quasi-one dimensional nozzle
flow. The transfer function of choked supersonic divergents is investigated
when prescribing an inlet entropy perturbation. Initial results using a van
der Waals gas highlight the contrast with ideal gas behaviour with and
without a shock in the divergent. For the chosen conditions, in the shock-
free configuration, a five-fold increase in amplification of pressure per-
turbations at higher wavelengths (relative to nozzle length) and stronger
attenuation (over one order of magnitude lower) at lower wavelengths
is observed when compared to an ideal gas. In the shocked configura-
tion, greater amplification is again observed in the van der Waals case
owing to the selectivity of the shock in amplifying the incoming density
perturbations. Furthermore, up to an order of magnitude greater shock
displacement is observed over the range of perturbation wavelengths in
the van der Waals case.

Keywords: Transfer function · Quasi-one dimensional nozzle flow ·
Non-ideal gas effects · Thermodynamic critical point · Dense gas

1 Linearised Quasi-One Dimensional Nozzle Flow

The equations governing the flow herein are the inviscid, quasi-one dimensional
Euler equations:
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where ρ, u, p, et are, respectively, the fluid density, velocity, pressure, total energy
(where et = e + u2/2) and A is the nozzle cross-section area. These are supple-
mented with the equation of state for internal energy, e, for an arbitrary gas.
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An infinitesimal harmonic (in time) perturbation of the base-flow is considered
for any of the primitive variables q ∈ {ρ, u, p} such that:

q(x, t) = q̄(x) + εq(x)′eiωt, (2)

where ω is the frequency of the perturbation (ω ∈ R>0), ε is an arbitrarily-small
non-dimensional parameter (ε � 1) and i2 = −1. Injecting this form in the
governing equations and retaining only first order terms yields the linearised
equations without any assumption on the gas model of the form:
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where q′ = [ρ′, u′, p′]T is the vector of complex perturbation values, c̃ = c(ρ̄, p̄) is
the isentropic speed of sound, c, evaluated on the base-flow thermodynamic prop-
erties and c̃ρ = (∂c/∂ρ)p (ρ̄, p̄), c̃p = (∂c/∂p)ρ (ρ̄, p̄). These are supplemented
with the Rankine–Hugoniot jump conditions and their linearised counter-part
to relate fluctuations either side of a shock to the base-flow values and their
gradients:
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(4)
where x′

s is the shock displacement and ℘ = ℘(ρ, p,M) is the shock-adiabat
pressure (such that pb = ℘(ρa, pa,Ma)), the derivatives of which are evaluated
using the base-flow values at the locations shown in Fig. 2. Integrating Eq. 3
yields the spatial distribution of q′ in a nozzle and thus the transfer function
(modulus and phase at the outlet) resulting from any combinations of physical
boundary conditions. A divergent with a linear increase in cross-section area
(henceforth referred to as a linear nozzle) is employed to expand a gas from
an initial strictly supersonic state (see schematic Fig. 3, left). Two cases are
investigated: a shock free nozzle and a divergent containing a compression shock.
It is assumed that the cross-section area is constant upstream and downstream
of the linear nozzle. An inlet perturbation in the form of entropy and acoustic
waves is prescribed. Such an analysis has been used for an ideal gas to provide
useful insight into the transfer function of choked nozzles e.g. [2].

2 Non-ideal Gas Model

Non-ideal gas properties are explored herein using the van der Waals (vdW)
gas equation. In the vicinity of the thermodynamic critical point (TCP), dense
gases (i.e. gases that are characterised by a large ratio of specific heat, cv to gas
constant, R) present a region where the fundamental derivative of gas dynamics,
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Fig. 1. (p-ϑ) diagrams for a van der Waals gas (with R/cv = 1.3×10−2). Isentropes are
shown in thin grey lines, with the region where they become concave (Γ < 0) shaded
in light blue. The two-phased region is shown in dark-grey. Left: isentrope chosen for
the supersonic expansion of Sect. 3.1. Right: supersonic expansion isentrope (yellow →
red) and subsonic compression (orange → maroon) chosen for Sect. 3.2. A schematic
of the corresponding locations in the nozzle is given in the bottom left.

Γ ≡ 1 + (ρ/c) (∂c/∂ρ)s, can become negative (see Fig. 1) denoting locally con-
cave isentropes. Admissible steady-state flows in this region have been explored
and categorised (see e.g. [4]). For supersonic expansions close to the TCP, cer-
tain stagnation conditions lead to the Mach number having a non-monotonous
behaviour as shown in Fig. 3 (left) which is impossible in ideal gases (we restrict
ourselves to expansions that contain only one sonic point). Furthermore, the
energy transfer properties of shocks in this region present an acute sensitivity
to the upstream state and Mach number, explored in [1], and allow for a degree
of control over the energy redistribution downstream of the shock. In Sects. 3
and 4, the computations are carried out using the van der Waals gas model and
the ideal gas model for comparison. In both cases, the ratio R/cv = 0.013 is used
which is representative of PP10 gas [1].

3 Transfer Function of a Choked Supersonic Nozzle

The results for the transfer function of the supersonic nozzle is divided into two
steps as illustrated in Fig. 2. First, results for the transfer function of a supersonic
expansion alone are presented followed by the results with the addition of a shock
in the divergent section.

3.1 Transfer Function of a Shock-Free Nozzle

For given thermodynamic inlet (subscript 1) and outlet states (subscript 2), the
transfer function of a linear nozzle for a given inlet perturbation depends on two
parameters: the mass flow through the nozzle, ṁ, and the ratio of the pertur-
bation wavelength, λ, and the nozzle length, L. Figure 3 presents the transfer
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Fig. 2. Top: Schematic of the ‘blocks’ in the transfer function of a choked supersonic
nozzle (NZ) containing a shock (SW). Bottom: shock-free and shocked nozzle ‘blocks’
with notations for the two configurations considered.

functions (in terms of modulus) for an inlet entropy perturbation over a range
of λ/L values. The inlet perturbation generates greater (×5) pressure pertur-
bation in the vdW case for larger wavelengths (relative to nozzle length). This
is of interest, for example, when considering ‘indirect noise’ generation in tur-
bines (i.e. acoustic noise generated from entropy perturbations [3]). Furthermore,
at higher wavelength, the density perturbations undergo greater amplification
in the vdW case than in the ideal gas case which could exacerbate the shock
transfer effects discussed in following section (and [1]). However, for λ ≤ L, the
density and pressure perturbations are, over most of the range, attenuated in
the vdW case compared to the ideal gas (e.g. at λ/L = 0.1 , |p′

2,vdw|/|p′
2,ig| ≈ 0.2

and |ρ′
2,vdw|/|ρ′

2,ig| ≈ 9 × 10−2).

3.2 Transfer Function of a Shocked Nozzle

The addition of a shock in the nozzle requires specifying two additional bound-
ary conditions: one is the exit thermodynamic state (state 2 in Fig. 2, bottom
right) to determine where the post-shock subsonic compression ends. The other is
the perturbation boundary conditions i.e. the magnitude and phase of upstream
propagating acoustic wave at the exit of the nozzle. In the case presented here,
there is no back-propagating forcing imposed at the exit of the nozzle. Further-
more, for the following results, the shock is placed at x̄s = 2L/3 thus determining
the extent of the subsonic compression and the exit conditions. The shock con-
figuration presented in this section was chosen based on the work carried out by
[1]. In the isolated shock case, Alferez & Touber identified shock transmission
properties allowing for a strong amplification of the entropy mode (up to two
orders of magnitude greater than the ideal gas case). In the current configura-
tion, presented in Fig. 4 (left), this overall amplification difference through the
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Fig. 3. Left: evolution of the Mach number along the thicker isentrope of Fig. 1 (left)
(s0 = s(T̄0, p̄0), where T̄0 = Tc and p̄0 = 0.6pc) for various mass flows. The thicker
line denotes ṁ used in the shock-free case. Subscript c denotes critical point values.
Right: Transfer function (modulus only) of the supersonic expansion along the thick
isentrope given in Fig. 1 (left) with M1 = 1.2 for an inlet entropy perturbation for
various wavelengths. Solid and dashed lines are for |ρ′

2/ε| and |p′
2/ε| respectively, with

red for ideal gas, black for vdW gas.

nozzle is comparable (the maximum ratio |ρ′
2,vdw|/|ρ′

2,ig| ≈ 149 for λ/L ≈ 0.14).
For both ideal gas and vdW gases, the transfer function for the density per-
turbation exhibits relatively little sensitivity to the perturbation wavelength for
higher wavelength and becomes more sensitive when λ/L < 1. For the pressure
perturbation however, there exists a wavelength which allows for a local mini-
mum in the perturbation value for the vdW gas. The shock transfer properties
are not only affected by the non-ideal effects linked to the proximity to the ther-
modynamic critical point but also by the non-uniformity of the base-flow either
side of the shock. The shock displacement, shown in Fig. 4 (right), varies signif-
icantly between ideal and vdW gases. The shock displacement in the vdW case
is greater than that in the ideal gas case over most of the range of wavelengths
presented with |x′

s,vdw|/|x′
s,ig| ≈ 10 at λ/L = 100. The vdW shock displacement

features a strong minimum around λ/L ≈ 0.15 causing the magnitude to drop
below that of the ideal gas. Transfer functions with slightly different mass flows
through the nozzle (maximum Δṁ/ṁM1=1.1 ≈ 9% for M1 = 1.2) are included in
Fig. 4 to demonstrate the sensitivity of the results to this parameter. The pres-
sure perturbation transfer function is the quantity that presents the strongest
sensitivity to mass flux around the point where |p′

2| undergoes a local minimum.

4 Comparison to DNS

In this section, we compare the results obtained via linear analysis to those
obtained by solving the non-linear equations when the perturbation amplitude
is small (referred to as DNS results). An example case for the vdW gas is chosen
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Fig. 4. (Left) modulus of the transfer function where solid and dashed lines are for
|ρ′

2/ε| and |p′
2/ε| respectively and (Right) shock displacement magnitude for various

length-scale ratios (non-reflective outlet and no outlet forcing) in red for ideal gas, black
for vdW gas. The pre-shock conditions are: pa/pc = 0.13, Ta/Tc = 1 and Ma = 3.1
(obtained for M1 = 1.1). The exit conditions are p2/pc ≈ 1.30 for the ideal gas case
and p2/pc ≈ 1.29 for the vdW gas case. Lightly transparent curves are for slightly
different mass flows (M1 ∈ {1.05, 1.15, 1.2}) to illustrate sensitivity of the results to
this parameter.

for comparison: for γ = 1.013, the upstream shock values are set to Ma = 3.1,
pa/pc = 0.13 and Ta/Tc = 1 for an inlet Mach number M1 = 1.1 i.e. the case
of Fig. 4. The non-linear solver integrates Eq. 1 in time. First, a base-flow qb is
converged in time to a chosen precision. Then, an inlet density perturbation is
prescribed at a given frequency ω (to match the desired λ/L value) and a suffi-
ciently small amplitude ε (taken to be ε = 4×10−3). The solution is advanced in
time until a harmonic state is achieved giving the instantaneous perturbed flow
denoted by qn(t). For the following results, the comparison is carried out from
t = 10τ (where τ is the period of the inlet perturbation) when the behaviour
is expected to be harmonic. The numerical results plotted in Fig. 5 are thus
qn(t)−qb for t ∈ [10τ, 11τ ]. The numerical integration is carried out using a 3rd

order Runge–Kutta scheme for time integration and 4th order, 5 point-stencil
centered finite difference scheme to calculate spatial derivatives. The computa-
tional space is discretised using nx = 5.6 × 104 points in order to resolve the
shock displacement (the required number of points being estimated using the
linear results and verified a posteriori). A constant and uniform artificial bulk
viscosity is used to capture the discontinuity and tuned to ensure a scale separa-
tion between shock-thickness and perturbation wavelength while simultaneously
damping the spurious oscillations at the shock (an approach used and validated
in e.g. [1,7]). The inlet and outlet boundary conditions are enforced using a
characteristic formulation for an arbitrary gas (see e.g. [5]). The results of Fig. 5
demonstrate the validity of the analysis in the linear regime – here for ε ∼ 10−3

– as both the magnitude and phase of the shock displacement as well as the spa-
tial distribution of ρ′ are accurately recovered. The spatial distribution of the



18 S. D. Winn and E. Touber

density perturbation illustrates how the shock amplifies the density perturbation
and compresses its associated wavelength.

Fig. 5. Comparison of linear theory results to DNS results for a van der Waal gas for
t ∈ [10τ, 11τ ]. Top left: base-flow density distribution from DNS calculation with the
shock located at x̄s/L = 2/3. Top right: relative shock displacement over time. Black
lines for linear results and grey dots for DNS results. Bot.: spatial distribution of the
density perturbation for an inlet entropy perturbation at λ/L = 1, the thick black line
denotes the modulus of the perturbation resulting from the linear theory and the thin
grey lines are the results from the DNS at various t ∈ [10τ, 11τ ]. The red line denotes
the mean shock position.

5 Conclusion

Initial results concerning non-ideal effects in a both shock-free and shocked super-
sonic diffuser have been presented here. In the shock-free case, integration of the
linearised equations revealed a different redistribution of the inlet density per-
turbation across the primitive variables in the vdW case compared to the ideal
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gas case allowing for a stronger pressure perturbation at the outlet of the noz-
zle at large wavelengths (compared to the nozzle length). This illustrates that
the expansion through the nozzle itself, for a change of equation of state, is a
first means of redistribution of the initial inlet perturbation across the primi-
tive variables when compared to an ideal gas. For the case of shocked flow, the
shock chosen in Sect. 3.2 further illustrates the importance of the equation of
state in the redistribution of incoming primitive variable perturbations as the
density perturbation is selectively amplified through this shock. Furthermore,
for the conditions chosen in Sect. 3.2, the shock displacement is, over most of
the wavelength range, an order of magnitude greater in the vdW case than in
the ideal gas case. Such an increase in the displacement could lead to greater
aerothermal loads on the divergent (e.g. in the case of shocks between turbine
blades operating in a comparable region of (p-ϑ)-space such as those of [6]). The
impact of the outlet condition and possible upstream propagating acoustic waves
have yet to be explored. For the latter, a possible resonance (or anti-resonance)
of the shock displacement could be achieved by tuning the phase of an imposed
upstream propagating acoustic forcing at the outlet.
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