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Abstract. One possible applicability of blockchain technology is in
identity management. Especially for public blockchains, the need to
reduce (ideally to zero) the exposure of sensitive identification data
is clear. Under these settings, zero-knowledge proofs, in particular in
the advanced forms of Zero-Knowledge Succinct Non-Interactive ARgu-
ments of Knowledge (zk-SNARK) and Zero-Knowledge Scalable Trans-
parent ARguments of Knowledge (zk-STARK), can be used as a poten-
tial privacy-preserving technique. The current work looks at the existing
libraries that implement zk-SNARKs and zk-STARKs and exemplifies
and discusses the use of zk-SNARKs in blockchain-based identity man-
agement solutions.

Keywords: Identity management · Blockchain · zk-SNARK ·
zk-STARK

1 Introduction

There is a high demand for secure, efficient, and interoperable digital identifica-
tion nowadays. This is a direct consequence of the increasing number of parties
(e.g., users, devices, services) that need to access and operate in the digital envi-
ronment. Identification is a prerequisite and a first-step for functionalities such
as access-control, permissions, confidential communication, etc.

Blockchain technology is a candidate for enhancing identity management by
introducing decentralization and other advantages (e.g., self-sovereignty, which
enables the user to own and control his identity). Nevertheless, for public
blockchains, the transaction details might contain sensitive data, and there-
fore it is important to minimize the exposure of such data within certain use
cases. Consequently, there has been a growing interest in using privacy-enhancing
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techniques for this type of blockchain [50]. Despite the added complexity, zero-
knowledge proofs, particularly Zero-Knowledge Succinct Non-Interac-tive ARgu-
ments of Knowledge (zk-SNARKs) [8] and Zero-Knowledge Scalable Transparent
ARguments of Knowledge (zk-STARKs) [4] seem promising.

We provide a comparison between zk-SNARKs and zk-STARKs and an
overview of the existent libraries that implement them. We refer to how zk-
SNARKs might be used for identity management on the blockchain and present
use-cases. We give practical examples of zk-SNARK programs for verification of
identity attributes compliance, for which we provide measurements in terms of
generation time and verification costs.

The remaining of the paper is organized as follows. Section 2 presents the
related work. Section 3 gives the necessary background. Section 4 presents avail-
able zk-SNARK and zk-STARK libraries. Section 5 exemplifies the applicability
of zk-SNARKs for blockchain identity management. Section 6 discusses the mea-
surements results, security aspects, and limitations. Section 7 concludes.

2 Related Work

The concept of zero-knowledge proof (zk-proof) was introduced in [27] by Gold-
wasser et al. Later, Blum et al. showed that non-interactive zk-proofs can exist
in the computational settings under the assumption of a Common Reference
String (CRS) [9]. Since then, several positive and negative results have been
given for zk-proofs in different models. Succinct zk-proofs were first presented in
[34], and succinct non-interactive zero-knowledge (NIZK) has been discussed in
[41]. SNARKs were first built in [8], together with some applicability (e.g., del-
egation of computation, two-party secure computation), under the assumption
that extractable collision-resistant hash functions exist. In [28], Groth presents
the NIZK arguments in sub-linear size and give a reduction to a constant num-
ber of group elements for a large CRS. Succinct arguments of NP-statements
that are fast to construct and verify, using Quadratic Span Programs instead of
Probabilistically Checkable Proofs (PCPs) were introduced in [25].

Various zero-knowledge proving systems were proposed during the years.
From these, we mention the Pinocchio system [49], SNARKs for C [5], Gep-
petto computation [18], and NIZK for a von Neumann Architecture [7]. Scalable
zero-knowledge was introduced in [6] and later used, for example, in the Coda
protocol [40]. Coda uses the recursive composition of zk-SNARKs to obtain a
succinct blockchain, removing the blockchain scalability issue. A pairing-based
(pre-processing) SNARK for arithmetic circuit satisfiability, which is an NP-
complete language, was presented in [29]. Based on this, various implementations
were given [10,30,56]. Bulletproofs, a more recent type of constraint zk-proofs
(i.e., the statement cannot be general), was introduced in [13]. zk-STARKs were
proposed in [4]. Valuable overviews on SNARKs, STARKs, and bulletproofs are
given in [13,50]. Recent proving systems include Sonic [39], Halo [11] and Libra
[57]. Distributed zk-proof generation was proposed in [56]. We recall a special
type of zk-proofs that was introduced in [24], somehow connected to our field of
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interest, the zero-knowledge proof-of-identity which proves a party’s identity by
demonstrating the knowledge of the private key that corresponds to the party’s
public key. Much subsequent work followed, which we deliberately omit here.

The usability of zk-proofs (in particular zk-SNARKs and zk-STARKs) in
blockchain-based solutions has been discussed in several scenarios [50]. To exem-
plify, in [54], the authors presented an interoperable healthcare blockchain-
based system that uses zk-proofs to authenticate the beneficiaries, Zcash uses
zk-SNARKs to create shielded transactions [59], and zero-knowledge proof-of-
identity has been proposed to overcome Sybil attacks [15]. A proposal of an
identity management system that claims to preserve privacy in the blockchain
by the usage of zk-SNARKs was described in [38]. Currently, not much litera-
ture exists on zk-SNARKs and zk-STARKs usage for identity management on
the blockchain. But a considerable number of proposals exist for identity man-
agement on blockchain in general. A brief survey of current work and existing
solutions can be found in [48]. However, despite the apparently large number of
such solutions, their maturity remains still questionable [47].

3 Background

3.1 Blockchain-Based Identity Management

A blockchain stores data in a descentralized and distributed manner, by using
nodes that agree on the stored data using a consensus protocol. The data
is stored in blocks, which are collections of transactions. A nice overview on
blockchain is given in [58]. From the various blockchain implementations, we
mention Ethereum [22], which we will refer to in the paper because of its ability
to implement smart contracts. Smart contracts allow execution via a function-
based interface stored in the blockchain and hence might be used for identity and
attributes verification of the parties. Every operation performed in the Ethereum
blockchain (e.g., simple transactions, smart contract executions) requires gas.

A blockchain-based identity management solution uses the blockchain capa-
bilities to implement identity management functionalities. The identities can be
attested either by recognized authorities or by other entities in the blockchain
(normally considered of trust and above a certain threshold number). Each entity
has an identifier and some attributes, which can be stored on- or off-chain [19]. A
more detailed look over the identity management on blockchain is given in [48].

3.2 Zero-Knowledge Protocols

In a zero-knowledge protocol, a prover assures a verifier about the validity of a
statement, without revealing any information other than its validity. It is guar-
anteed that a malicious prover cannot fool the verifier to accept a false state-
ment (soundness). A more relaxed notion, named zero-knowledge arguments,
computationally bounds the capabilities of the malicious prover to polynomial
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strategies (computational soundness) [12]. Throughout the paper, we will refer to
zero-knowledge proofs-of-knowledge for which a prover can also demonstrate that
he knows a witness that satisfies the statement. The zero-knowledge property
assures that the proof does not disclose or damage the secrecy of the witness.
They exist in both interactive (i.e., requires interaction between the prover and
the verifier) and non-interactive (i.e., does not require interaction between the
prover and the verifier) versions, with heuristics (e.g., Fiat-Shamir [24]) that can
transform the former in the latest under certain conditions or with some neces-
sary changes. For general statements, non-interactive zero-knowledge protocols
are only possible under the assumption of a Common Reference String (CRS)
that needs to be known by both the prover and the verifier [13].

A type of non-interactive argument of knowledge is the zk-SNARK [8].
Besides the zero-knowledge property, the zk-SNARKs provide the property of
succintness, meaning that the proofs are small, and the verification is cheap and
does not require expensive processing [14,50,56]. Nevertheless, they come with
some drawbacks: the necessity of a trusted setup (they work in the CRS model)
and (still quite) a significant overhead for the setup and on the prover side [56].

Another zero-knowledge non-interactive construction is the scalable and
transparent argument of knowledge, zk-STARK [3]. Here transparency means
that randomness used by the verifier is publicly available, so the necessity of
a trusted setup is eliminated [4]. On the drawbacks, the proof size is consid-
erably larger than for zk-SNARKs [4]. Similar to SNARKs, STARKs can be
executed with or without zero-knowledge and designed to be interactive or non-
interactive [3].

3.3 zk-SNARK and zk-STARK Program Representation

Quadratic Arithmetic Program (QAP)-based zk-SNARKs are used for imple-
menting practical use-cases. The predicate statement is internally codified in
terms of an arithmetic circuit and based on this codification, appropriate tools
can generate zk-SNARKs, by transforming the circuits into a QAP. QAPs
are based on pairings over elliptic curves, used to encode the computational
steps. Examples of elliptic curves include: the Barreto-Naehrig (BN) curves [2],
Edwards [21], MNT [42], BLS12-381 [61]. The arithmetic circuit used in a spe-
cific zk-SNARK corresponds to the finite field that underlines the elliptic curve
used, and a circuit wire corresponds to a single elliptic curve field element. After
assigning values to all of the circuit’s wires (the circuit represents a single com-
putation for specific public and private set of inputs), the next step for con-
structing a zk-SNARK is to provide a specific set of constraints that attest that
computation has been correctly performed. This set of constraints represents
the Rank-1 Constraint System (R1CS) and is used for preventing a malicious
prover to provide a verifier with an output that has not been created from
its inputs [50]. Other representing proof systems are considered to be Bilin-
ear Arithmetic Circuit Satisfiability (BACS), Unitary-Square Constraint Sys-
tems (USCS), and Two-input Boolean Circuit Satisfiability (TBCS) [36]. BACS
internally reduces to R1CS and TBCS internally reduces to USCS, being more
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efficient than using R1CS [36]. The tools that allow the proof predicate (i.e., the
statement) to be stated in a high-level language (so that is easier to learn and
use it) are called Domain-Specific Languages (DSL) tools. For zk-STARKs, the
predicate should be transformed in an Algebraic Intermediate Representation
(AIR) or a Permuted Algebraic Intermediate Representation (PAIR) [4].

4 zk-SNARK and zk-STARK Comparison and Available
Development Libraries

In this section, we compare zk-SNARKs and zk-STARKs and give an overview of
the main libraries that implement them. As already mentioned in Sect. 2, other
types of zk-proofs (e.g., bulletproofs) exist but are outside of the goal of this
paper. Nice comparisons between more types of zk-proofs are given in [13,50].

zk-SNARKs are defined in the CRS model, so they require an initial trusted
setup phase during which parties gain knowledge on a string (which can be fur-
ther thought of in terms of secret keys) [50,56]. The security of the zk-SNARKs is
based on the security of the trusted setup. Hence, if the trusted setup is compro-
mised, the whole system is damaged. On the contrary, zk-STARKs make use of
public randomness (they are transparent), thus eliminating the need for a secret
pre-shared value [4]. In many scenarios, this is a clear advantage of zk-STARKs
over zk-SNARKs because the setup might be a much too strong assumption and
transparency is necessary for public, distributed trust [4].

The proof size of the zk-SNARKs is small (they are succint), and the veri-
fication of such proof is fast [14,50,56]. They gain practicality due to the con-
stant proof size, regardless of the statement to be proved (e.g., Groth et al.
give a construction for which the proof consists of three group elements [29]).
In comparison, zk-STARKs generate much larger proofs (roughly 1000 times
larger [4]). In terms of verification, both systems have fast verification time,
with zk-SNARKs slightly outperforming zk-STARKs. zk-SNARKs are tradi-
tionally based on strong number-theoretical hardness assumptions that do not
hold against a quantum adversary [13]. Recently, post-quantum resistant zk-
SNARKs were introduced [16,26,45]. In comparison, zk-STARKs are normally
post-quantum secure [4] due to the quantum-resistant cryptographic primitives
they base on (e.g., collision-resistant hash functions, which are not known to be
broken by quantum computers [3]).

4.1 Development Libraries

Several libraries that implement zk-SNARKs and zk-STARKs have been devel-
oped. Table 1 lists some of the existing zk-SNARK libraries together with the
language in which they are implemented, their representing proof predicate lan-
guage, the underlying elliptic curves, SNARK constructions that can be used in
the library, and the available DSL tools. Table 2 looks into the zk-SNARK DSL
tools and lists them with the associated language and the corresponding back-end
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Table 1. zk-SNARKs and zk-STARTKs libraries [46,50]

Library LanguageRepresenting
proof
predicate
language

Eliptic curves zk-SNARK/
zk-STARKs

Types

DSL Tools

libsnark [36] C++ R1CS;
BACS;

USCS; TBCS

BN [2];
Edwards [21];

MNT [42]

BCTV14 [7];
Groth16 [29];
GM17 [30]

ZoKrates [62];
JSnark/xjSnark
[1,35]; Snarky

[37]

DIZK [52] Java R1CS BN254 [2] Groth16 [29] –

Snarkjs [33] Javascript R1CS BN254 [2] BCTV14 [7];
Groth16 [29]

Circom[32]

Bellman [60] Rust R1CS BLS12-381 [61] Groth16 [29] ZoKrates [62]

ZEXE [53] Rust R1CS Edwards [21];
MNT [42], BN

[2]

Groth16
[29],

GM17 [30]

ZEXE’s snark-
gadgets [53]

libSTARK [3] C++ – – BN18 [4] –

genSTARK [31] Javascript - - BN18 [4] –

Table 2. DSL tools [46,50]

DSL tool Language Back-end zk-SNARK Library

ZoKrates [62] Rust; C++ libsnark [36]; Bellman [60]

JSnark/xjSnark [1,35] Java libsnark [36]

Circom [32] Javascript Snarkjs [33]

Snarky [37] OCaml libsnark [36]

ZEXE’s snark-gadgets [53] Rust ZEXE [53]

libraries. Table 1 also lists the available development libraries for zk-STARKs.
To the best of our knowledge, there are no DSL tools available for zk-STARKs
at the moment. Notice the significantly less number of implementations for zk-
STARKs, which we assume to be a natural consequence of a later definition of
zk-STARKs than zk-SNARKs and a currently lower practical interest.

5 Blockchain-Based Identity Management Using
zk-SNARKs

Currently, zk-SNARKs are more suitable to be used in a blockchain due to
their better capabilities (e.g., small and constant proof size). In time, if zk-
STARKs become more efficient, they could dominate because they do not use a
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trusted setup [3]. Further, we looked into the applicability of zk-SNARKs into
blockchain-based identity management.

5.1 General Architecture

In [38], Lee et al. gave a blockchain-based identity management scheme that
makes use of zk-SNARKs and is compatible with the ZoKrates process [20]. We
do not claim their proposal is secure, nor discuss other aspects here (this is out
of our scope) but only consider the general architecture depicted in Fig. 1 for
further testing. Important security considerations are discussed in Sect. 6.

Step 1. A user Alice asks a Certified Authority (CA) to certify her identity
and attributes. For security reasons (to prevent disclosure and changes), the
certificate certA is issued on a modified version of the data that is both hidding
and binding. For simplicity, we further consider this to be a cryptographically
hashed value HA. Step 1 is executed off-chain and the method by which the
authority verifies the validity of the identity attributes is out of our interest.

Step 2. The certificate certA for HA is uploaded in the blockchain. The scope
of certA is to certify that HA indeed corresponds to the identity and attributes
of Alice. As the certificate is publicly verified, this step can be performed either
by the CA (step 2”) or directly by Alice (step 2’).

Step 3. A Third Party publishes on the blockchain a smart contract to verify
some attributes of the users. For this, a one-time setup phase takes place, during
which a zk-SNARK proving and a verification key are generated. The Third
Party securely transmits the proving key to Alice. Based on the verification key,
a Solidity smart contract is generated and deployed on the blockchain to further
verify the given proofs against the value HA stored in the blockchain. Note that
the setup is independent of the first steps (up to the usage of a standard hash
function), so the user might join the system after the smart contract is deployed.

Fig. 1. General architecture of a blockchain-based identity management system that
uses zk-SNARKs
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Step 4. Alice now wants to prove something about herself (that derives directly
from her attributes) to the Third Party without exposing anything else about
her attributes. In fact, she does not want to reveal anything else except that her
attributes do satisfy a statement (e.g., she is an adult). To do so, she generates
a proof that will be verified by the smart contract previously deployed on the
blockchain. The proof is generated based on a witness that corresponds to HA

(and to Alice’s attributes) and the proving key. Alice sends the generated proof
together with the publicly stored value HA as input to the smart contract.

Step 5. The Third Party checks the result of the smart contract execution by the
public address of Alice. If the proof is valid, then Alice proved that she satisfies
the statement without revealing anything else about her attributes (under the
assumptions of the zero-knowledge property of the proof and the one-way prop-
erty of HA). Otherwise, Alice is not able to prove that she satisfies the required
statement (this can mean that her attributes do not fulfill the requirements, or
that a malicious actor tried to use a fake identity). Note that HA needs to be
available in the public proof so that the validity of certA for HA can be publicly
checked (this prevents Alice to use different attributes than the certified ones).

5.2 Use-Cases

We looked into the European Union (EU) regulation on electronic identifica-
tion and trust services for electronic transactions in the European Single Mar-
ket (eiDAS) [55]. The eiDAS Security Assertion Markup Language (SAML)
Attribute Profile provides the list of attributes included in the eiDAS inter-
operability framework that supports cross-border identification and authentica-
tion processes [55]. The mandatory identity attributes required by the above-
mentioned regulation are FamilyName, FirstName, DateOfBirth, PersonIden-
tifier, whereas optional attributes are the BirthName (either First Names at
Birth or Family Name at Birth), PlaceOfBirth, CurrentAddress, and Gender.
The optional attributes may be supplied if available and acceptable by an EU
country’s national law [55]. We will refer to a simplified example, where we are
interested in letting a user prove that he/she is older than a certain age, while
not exposing his/her exact age or other information about the age (up to a neg-
ligible probability). This is an example that might be useful for online shopping,
access to different services, or voting, and it has been previously considered in
the literature [38].

5.3 zk-SNARK Implementation

We propose two simplified real-life examples of how zk-SNARKs can be used
in identity management. In Sect. 6, we provide measurements of the proposed
examples, in terms of proof generation time, amount of Ethereum gas used to
deploy the verifier smart contract on a blockchain testnet and the amount of
Ethereum gas used for making a verification transaction to the smart contract.
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Program 1. zk-SNARK for identity management
import ”hashes/sha256/512bitPacked.zok” as sha256packed
def main(field pub year1, field pub year2, field check year, field pub id, private field
year, private field rand) -> (field):
field[2] hash year = sha256packed([0, pub id, year, rand])
assert(pub year1 == hash year[0])
assert(pub year2 == hash year[1])
field rez = if year < check year then 1 else 0 fi
return rez

Program 2. zk-SNARK for identity management
import ”hashes/sha256/512bitPacked.zok” as sha256packed
def main(field hash ident1, field hash ident2, field check year, field pub id, private field
year, private field id, private field rand) -> (field):
field[2] result = sha256packed([pub id, year, id, rand])
assert(hash ident1 == result[0])
assert(hash ident2 == result[1])
field rez = if year < check year then 1 else 0 fi
return rez

Tools and Environments. For implementing the zk-SNARK program we used
the ZoKrates DSL tool [62]. ZoKrates provides a plugin for Remix IDE tool [51]
and enables compiling a proof, computing a witness for the proof, performing
the SNARK setup, as well as generating and offering the possibility of exporting
the verifier smart contract (that further should be deployed on the blockchain
public network). However, ZoKrates is also providing an API, in the zoktares-js
Javascript library, which can be installed as a Node package [62] and used to
perform the above-mentioned steps. Besides those reasons, we choose this tool
also because it supports integration with the blockchain network and is easier
and straightforward to implement and test such zk-proofs. The ZoKrates zk-
SNARK programs were written in Rust language. The default proving scheme
for the ZoKrates Remix plugin is the one from [29], and it uses the Bellman
library [60] as back-end. To compute the hash value, we used the sha256packing
function, a component of the standard ZoKrates library [62].

For conducting the tests we used an Intel(R) Core(TM) i7-3632QM CPU
@ 2.20 GHz with 8 GB of RAM, Windows 8.1 64-bit Operating System, and
Chrome 85 as web browser version. We note that better configurations of the
machine used for calculations could improve the results, but to what extent the
configuration matters, is not a subject of this research. We also note that by
using the Remix IDE tool, the time required for the generation of proof might
not be accurate because the calculations are made by calling methods from an
interface and not by calling them thought the command line.

zk-SNARK Usage Examples. Similar to [55], we exemplify how to use a
zk-SNARK to prove that the attributes committed in the blockchain (and cer-
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tified by the CA) correspond to a user who satisfies a certain statement. We
are interested if the user is born before a year of interest. In the first case, we
assumed that each identity attribute is separately hashed and certified in the
blockchain. For demonstrating purposes, in Program 1, we only used the year of
birth attribute, but adding more attributes to the scheme can be done similarly.
In the given example, pub id is the public identifier of the user (which, for our
example is just 128-bits long but can be easily expanded), (pub year1, pub year2)
is the value HA, certified and stored in the blockchain, which is further compared
to the hash hash year computed on the private inputs (the private random value
rand is added to eliminate immediate brute force attacks on the year of birth,
if pub id is small enough). Finally, the validity of the statement is checked. In
the second case, we assume that a single certificate is issued for all the user’s
attributes. For demonstrating purposes, we assume that the user has only two
attributes: the year of birth (year) and a personal identification number (id).

One can add more attributes, such as the ones from Sect. 5.2 [55]. The
ZoKrates code that acts as basics for the general proof is illustrated in Pro-
gram 2. The difference between the code in Program 1 and Program 2 is that in
the latter the sha256 is applied to all the attributes at once, whereas in the first
example, each attribute will require the storage of a hash and a certification in
the blockchain. We will discuss more about this in the next session.

Table 3 shows the measurements for the exemplified zk-SNARKs programs
given before. We used Remix environments for deploying and running blockchain
transactions: Javascript Ethereum Virtual Machine (VM) and Injected Web3
(with Metamask Ethereum wallet, a Google Chrome extension [17]). Remix
makes a distinction between execution and transaction costs: execution costs
are the costs used on the virtual machine without deployment costs or costs
related to function calling, whereas transaction costs include the execution costs
as well as the cost of sending contracts and data to the blockchain. When exe-
cuting transactions using a testnet on Remix, the transactions can be viewed
on Etherscan [23], and there are other gas-related measurement fields available,
such as the gas limit (i.e., the maximum gas amount that can be used in a
function execution) and the gas used (i.e., the actually used gas amount). Tak-
ing this into consideration, for organizing reasons, we choose to represent them
together in the last four lines of Table 3, with the mention that the significance
of the value depends on the used environment: execution or transaction cost if
the environment is Javascript Ethereum VM and gas used or gas limit if the
environment is Injected Web3 over Kovan public testnet network.

The setup and the proof generation time do not require Ethereum transac-
tions. They are performed by the ZoKrates plugin and, therefore, have the same
values irrespective of the Remix environments. We note that the setup genera-
tion time is indeed the highest computational step of the zk-SNARK generation
process, but the time for generating a proof is quite acceptable (in the settings
mentioned before, using an interface).

We deployed the verifier smart contracts on Kovan testnet, available at [43,44].
The cost of deploying the verifier depends on the environment, and not on the
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Table 3. ZoKrates Remix plugin generation and verification measurements

Program 1 Program 2

Setup (seconds) 187 237

Proof (seconds) 70 90

Environment Javascript
Ethereum VM

Injected Web3
(Kovan
network)

Javascript
Ethereum VM

Injected Web3
(Kovan
network)

Trans. Cost/Gas
Limit Deploy
Verifier

1299416 gas 1060320 gas 1299148 gas 1060104 gas

Exec. Cost/Gas
Used Deploy Ver-
ifier

933368 gas 1060320 gas 933168 gas 1060104 gas

Trans. Cost/Gas
Limit verifyTx

287032 gas – 286904 gas –

Exec. Cost/Gas
Used verifyTx

245280 gas – 245280 gas –

proposed example, which is expected as the syntax for the smart contract is the
same, and the internal parameters differ slightly. Also, it seems that the gas limit
for deploying the smart contract into a public testnet is less than the transaction
cost for deploying the verifier on the other environment.

6 Results and Discussion

The verifier smart contract provides a public function called verifyTx that can
be executed to verify the correctness of a proof. For the Ethereum VM environ-
ment, the execution cost for calling this function is the same, irrespective of the
program. For the Kovan network, at the moment of writing, we were not able
to determine the gas limit and the gas used for performing such transactions,
as there seemed to be a bug in the Remix IDE. For the testnet, the transaction
fees (calculated as gas price multiplied by the gas used, where the gas price, for
our case, equals 9 Gwei) at the exchange from October, 3rd 2020 are 0.00954288
Ether for the first program, respectively 0.009540936 Ether for the second one
(2.84 EUR). For smart contract deployments, these are rather acceptable fees
that can make more feasible the usage of zk-SNARKs on the blockchain.

Similar experiments were undertaken at the end of June 2020. Then we
obtained a significantly larger setup and proof generation time. However, we
were able to determine the cost for making verifyTx transactions on Kovan test-
net: the gas limit for making such transactions was smaller than the transaction
cost of making such transactions on the Ethereum VM environment. We noted
that the price for smart contract transactions has increased since our previ-
ous experiments, therefore, the costs for using such solutions should be taken
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into consideration. Consequently, we remark the continuous development of the
ZoKrates Remix plugin, but also its instability.

On the implementation side, the public user identifier used for the given
zk-SNARK programs is of type field and can store a maximum of 128 bits (a
ZoKrates library constraint). This limitation can cause problems, for example
when using an Ethereum public address as a public identifier. However, it can
be mitigated by using two parameters of type field (an Ethereum address has
256 bits), but one should pay attention to their concatenation.

The considered solution stores the certificates in the blockchain which might
be arguable by itself, as certification is by construction publicly verifiable.
Despite an overload, certification in blockchain might bring some benefits (e.g.,
transparency in the sense that anyone can see the certificates and their history).
However, the implication of such certification regarding the overall security must
be thought of. We assumed certification over a simple hashing on the data, so by
using a cryptographically weak hash function the system becomes vulnerable.
Brute force attacks caused by a possible small set of values for the attributes
(e.g.., possible years of birth) must be mitigated.

Moreover, mechanisms against malleable proof must be considered, prevent-
ing an adversary to generate a valid proof, different than, but computed from an
eavesdropped valid proof [62]. In the absence of other mechanisms (e.g., verifica-
tion of correspondence between the committed value on-chain and the executor
of the smart contract), the scheme is directly vulnerable to replay attacks: an
adversary can fake Alice’s identity by reusing a proof that Alice had previously
used. Another risk, introduced by construction, resides in the number of users
that need to share the proving key generated at setup and used as input together
with the witness to generate a valid proof for the deployed smart contract [50].

Depending on the application, the attributes can be individually hashed and
certificated or a single hash and one certificate can be used for all attributes. If
a single hash is used, the prover is obliged to use all the attributes to generate
the proof, regardless of the statement of interest. Adding more parameters to
the proof will increase its complexity and therefore the cost of the verifyTx
will increase. The advantage is in terms of storage space and computation of
certifications (constant, regardless of the number of attributes). Choosing what
to be stored on the blockchain and the exact form (e.g., the hash, or more general
the commitment scheme) remains open to specific application requirements. If
sensitive data are stored on-chain, the confidentiality is always at risk, being
computationally secured and thus, in time, predisposed to attacks.

Considering the above-mentioned aspects, we highlight that we do not claim
the general architecture in Fig. 1 is secure but only use it as an example for our
experiments. The motivation or feasibility of applying zk-SNARKs in off-chain
settings might be separately investigated. More in-depth implementation details
and security analysis of the approach [38] we have considered for our examples,
as well as finding better zk-SNARKs solutions or arguing about their utility are
outside of the goal of this paper. They remain of interest for future work.
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7 Conclusions

Blockchain-based identity management is a domain that might benefit from the
usage of zk-SNARKs and zk-STARKs. In this paper, we looked into the practical
side of using zk-SNARKs in identity management, by using the ZoKrates library
[62] and proposing programs for certain use cases. Although these privacy-
preserving technologies seem promising, they are not yet ready to be used in pro-
duction: the open-source libraries are under development, continuously improved
and tested, and still not fully analyzed in terms of security. Improvements in the
efficiency of SNARKs and STARKs are also topics for further research.
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