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Abstract. This paper shows new card-based cryptographic protocols
using private operations that are secure against malicious players. Phys-
ical cards are used in card-based cryptographic protocols instead of com-
puters. Operations that a player executes in a place where the other play-
ers cannot see are called private operations. Using several private opera-
tions, calculations of two variable boolean functions and copy operations
were realized with the minimum number of cards. Though the private
operations are very powerful in card-based cryptographic protocols, there
is a problem that it is very hard to prevent malicious actions during pri-
vate operations. Though most card-based protocols are discussed in the
semi-honest model, there might be cases when the semi-honest model is
not enough. Thus, this paper shows new protocols that are secure against
malicious players. We show logical XOR, logical AND, and copy proto-
cols, since we can execute any logical computations with a combination
of these protocols. We use envelopes as an additional tool that can be
easily prepared and used by people.

Keywords: Multi-party secure computation · Card-based
cryptographic protocols · Private operations · Logical computations ·
Copy · Malicious model

1 Introduction

Card-based cryptographic protocols [6,13,28] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used or users cannot trust the software on
the computer. Also, the protocols are easy to understand, thus the protocols
can be used to teach the basics of cryptography [4,19,23]. den Boer [2] first
showed a five-card protocol to securely calculate logical AND of two inputs.
Since then, many protocols have been proposed to realize primitives to calculate
any logical functions [1,12,14,16,29,33,39,40,48,49] and specific computations
such as a specific class of logical functions [7,24,26,34,37,41,44,47,53], million-
aires’ problem [20,32,38], voting [25,31,35,54], random permutation [8,10,11],
grouping [9], matching [19], ranking [51], proof of knowledge of a puzzle solu-
tion [3,5,18,21,22,42,43,45], and so on. This paper considers calculations of
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logical functions and a copy operation under the malicious model since any log-
ical function can be realized with a combination of these calculations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve millionaires’ problem [32]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards [40].
Another class of private operations is private input operations that are used
when a player inputs a private value [17,38,50]. These operations are not dis-
cussed in this paper since it is impossible to prevent false input from a malicious
player. If the input values are honestly given, the players can use the protocols
shown in this paper.

The biggest problem of protocols using private operations is malicious actions.
Most of the card-based protocols assume the semi-honest model, in which the play-
ers obey the rule of the protocols but try to obtain private information. However,
there are many cases when we must consider the malicious model. When we allow
malicious actions, protocols using private operations are not secure. Since private
operations are executed where the other player cannot see, any malicious opera-
tion is possible during the private operations, for example, watching the marks of
face-down cards or changing the positions of cards.

One countermeasure to malicious actions is setting a watch person. When
the protocols are executed by more than two players, it is possible to detect
malicious actions by the following rule: whenever a player executes a private
operation, another player watches the execution and reports incorrect behavior.
The XOR, AND, and copy protocols can be executed securely against a malicious
player when the protocols are executed by more than two players [40]. However,
when the protocols are executed by two players, it is impossible to use the above
method. If Bob watches Alice’s private operations, Bob knows all operations,
thus the relation between input data and output data is known to Bob. When
the output card is opened, the secure input data are known to Bob using the
relation between the input data and the output data.

Thus we need new protocols for the two-player case. Since Bob cannot watch
Alice’s private operations, some additional mechanism to prevent illegally watch-
ing the marks of face-down cards during private operations is necessary. This
paper introduces envelopes to prevent illegally watching the marks of face-down
cards. Cards that must not be seen are publicly put into an envelope. If the
envelope is opened, it can be detected by anyone. Envelopes are used in [30]
to realize cryptographic protocols that do not use physical cards. In card-based
cryptographic protocols, envelopes are used in [8,36,44,49] to realize some kind
of shuffles that are not easy to execute by people.

This paper shows new card-based cryptographic protocols that are secure
against malicious players using envelopes as an additional tool. The malicious
actions during private operations are prevented by adding error-correction cards.
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We show logical XOR, logical AND, and copy protocols since any logical func-
tions can be obtained with a combination of these protocols.

As related works, protocols that use additional cards and prevent active attacks
while a player executes a shuffle were shown [15]. Another type of active attack is
inputting a false value that is not 0 or 1. A protocol to detect such injection attacks
was discussed in [27]. Protocols that prevent revealing face-down cards were dis-
cussed in [52]. The protocol uses the technique of secret-sharing to prevent informa-
tion leakage by opening some numbers of cards. The protocol cannot be applied to
the problem discussed in this paper since a malicious player might reveal all cards.
Another usage of private operations is realizing a public shuffle by multiple pri-
vate shuffles [29]. Using the method, logical XOR, logical AND, and copy can be
executed since there are no malicious actions in these private shuffles. Though the
protocols are very simple, the private primitives used in the protocols is private
shuffles. Preventing malicious actions for the new protocols that use private ran-
dom bisection cuts and private reveals are not considered.

A protocol to detect malicious actions by executing two instances of a proto-
col and comparing the results was shown [46]. The protocol uses cases to prevent
revealing face-down cards. The functionality of cases is just the same as the one
of envelopes in this paper. The protocol uses twice as many cards as the origi-
nal protocols and it is impossible to correct the malicious actions. This paper’s
protocols use fewer cards and can correct the result by malicious actions.

In Sect. 2, basic notations and the private operations introduced in [40] are
shown. Section 3 shows XOR, AND, and copy protocols. Section 4 concludes the
paper.

2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols.
This paper is based on a two-color card model. In the two-color card model,

there are two kinds of marks, and . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is . It is impossible

to determine the mark in the back of a given card of .
One bit data is represented by two cards as follows: = 0 and =

1.
One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as .

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card of
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the sequence. . A sequence whose length is even is called

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players might

be malicious, that is, they might not obey the rule of the protocols. There is
no collusion between Alice and Bob, otherwise private input data can be easily
revealed.

2.2 Private Operations

We show three private operations introduced in [40]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =
{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =

commit(x), given , the player’s output , which is

or .

We sometimes write the result of the random bisection cut using bit b to a
sequence S1||S2(where |S1| = |S2|) as swap(b, S1||S2). swap(0, S1||S2) = S1||S2

and swap(1, S1||S2) = S2||S1 are satisfied.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
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reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations[39]. The first round
begins from the initial state. The first round is (possibly parallel) local exe-
cutions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values.

Let us show an example of a protocol execution and its space complexity and
time complexity.

Protocol 1 (AND protocol in [40])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).
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1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =
{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3.

The correctness of the protocol is shown in [40]. The number of cards is four,
since the cards of commit(x′) is re-used to set commit(0).

The first round ends at the instant when Alice sends commit(x′) and
commit(y) to Bob. The second round begins at receiving the cards by Bob. The
second round ends at the instant when Bob sends S2 to Alice. The third round
begins at receiving the cards by Alice. The number of rounds of this protocol is
three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to handing cards between players
and setting up so that the cards are not seen by the other players. Thus the
number of rounds is the criterion to evaluate the time complexity of card-based
protocols with private operations.

2.4 Malicious Actions During Private Operations

We show examples of cheats by a malicious player for the AND protocol shown
in Protocol 1. In the first round, Alice may open the cards of commit(x) and
read the secret input value x. Alice might swap the two cards of commit(x) and
use x̄ as the input value. In the second round, Bob might open the cards of
commit(y). Bob might set the cards incorrectly, for example, set

S2 =
{
commit(1)||commit(y) if x′ = 1
commit(y)||commit(1) if x′ = 0

then the result becomes x∨y instead of x∧y. Bob can set any other card sequences
to obtain other incorrect results. In the third round, Alice might execute a private
reverse selection using a value b′(�= b). To make the protocol secure against
malicious players, all of the above cheats must be prohibited or detected.

3 XOR, and and Copy Under Malicious Model

This section shows our new protocols for XOR, AND, and copy.
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3.1 Additional Assumptions for Preventing Malicious Actions

Throughout this paper, we assume that each input is given as a committed value.
The output must also be given as a committed value so that the output can
be used as an input to further computations. Though some multi-party secure
calculation protocols assume that each player knows his/her private input, there
are some cases when we cannot assume that. For example, suppose that x1, x2

are Alice’s private input values and y1, y2 are Bob’s private input values and
they want to securely calculate (x1 ∨ y1) ∧ (x2 ∨ y2). After commit(x1 ∨ y1) and
commit(x2 ∨y2) are calculated, they need to calculate logical AND of two secret
values. Thus, we need to calculate the logical functions of two committed inputs.
If Alice knows an input value, she first commits her input and a committed input
protocol can be used.

We add an assumption that for at least one input, say, x multiple copies
of commit(x) are given as input. The reason for this assumption is as follows.
When a player, say, Alice is given commit(x) and executes a private operation,
there is no way for the other player to detect whether Alice maliciously executed
swapping two cards of commit(x) and made commit(x̄). Since Bob does not
know x, Bob cannot claim that x̄ is used instead of x. To detect this type of
malicious operation, another copy of commit(x) must be given. Using the copy
of commit(x), Bob can detect that Alice used commit(x̄) instead of commit(x),
as shown in the protocols in this paper. Note that a method to obtain multiple
copies of inputs using envelopes is shown in Sect. 3.4.

Next, we need to prevent malicious reveal of committed input values. In the
following protocols, we use envelopes as an additional tool. The cards can be
put into an envelope and sealed. Opening the envelope can be easily detected
by anyone. Thus a malicious player cannot irregularly open envelopes during
private operations because it is detected by the other player. It is impossible to
distinguish two envelopes. No player can prepare the same envelopes in his/her
pocket and exchange them for the envelopes used in the protocol. Such envelopes
are used in some card-based protocols [8,36,44,49].

We show some basic operations and notations related to the envelopes. The
order of the cards put into an envelope is preserved when the cards are removed.
For example, a card sequence S is put into an envelope, the output card sequence
from the envelope must also be S. In the following protocols, two envelopes, the
left and the right envelope are used and the following two types of insertions
are applied. The first one is putting each card of commitments to the left and
right envelope. For example, put the left cards of commit(x) and commit(y)
into the left envelope and put the right cards of commit(x) and commit(y)
into the right envelope. When the players remove the cards from the envelopes,
commit(x) and commit(y) are obtained. We write the state of the two envelopes
as [commit(x), commit(y)]. When we swap the left and right envelopes, the
output cards become commit(x̄) and commit(ȳ). Thus we write the state of the
swapped envelopes as [commit(x̄), commit(ȳ)].

The second one is putting the left card of commit(x) and the two cards of
commit(y) to the left envelope, and putting the right card of commit(x) and
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the two cards of commit(z) to the right envelope. We write the state of the
two envelopes as [commit(x), commit(y)||commit(z)]. When we swap the two
envelopes, we can obtain [commit(x̄), commit(z)||commit(y)].

In this paper, private random bisection cuts are executed to these two
envelopes. When Alice executes a private random bisection cut to the two
envelopes that have [commit(x), commit(y)], [commit(x ⊕ b), commit(y ⊕ b)]
is obtained. When Alice executes a private random bisection cut to the two
envelopes that have [commit(x), commit(y)||commit(z)],
[commit(x ⊕ b), swap(b, commit(y)||commit(z))] is obtained.

With the envelopes, the activities by a malicious player are as follows when
the private primitives are private random bisection cuts, private reverse cuts,
and private reveals on the envelopes.

Assumption 1 (Operations by malicious players)

– When a malicious player executes a private operation, he/she can swap some
envelopes even if it is not allowed in the protocol.

– When a malicious player executes a private random bisection cut to two sets
of envelopes A and B using the same random bit, he/she can use different
bits to A and B.

– When a malicious player executes a private reveal on envelope A, he/she can
open another envelope B if it cannot be detected by the other player (for
example, the number of cards in A and B are the same). Also, he/she might
not place envelopes according to the opened cards.

– When a malicious player executes a private reverse cut using bit b, he/she
might use b̄ instead of b.

3.2 XOR Protocol

Protocol 2 (XOR protocol)
Input: two copies of commit(x) and one copy of commit(y).
Output: commit(x ⊕ y).

1. Alice and Bob publicly put cards of one commit(x) and commit(y) into two
envelopes. The left(right) cards of commit(x) and commit(y) are put into the
left(right) envelope. The two envelopes have [commit(x), commit(y)].
The remaining two cards of commit(x) are put into two new envelopes so that
the left(right) card is put into the left(right) envelope. The two envelopes have
[commit(x)].
The envelopes that have [commit(x)] and [commit(x), commit(y)] are handed
to Alice.

2. Alice executes a private random bisection cut on [commit(x)] and
[commit(x), commit(y)] using the same random bit b. Let the output be [S1]
and [S′

1, S
′′
1 ]. S1 = commit(x⊕b), S′

1 = commit(x⊕b), and S′′
1 = commit(y⊕

b). Alice hands [S1] and [S′
1, S

′′
1 ] to Bob.
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3. Bob first verifies that the envelopes are not opened. Then, Bob executes a
private reveal on [S1 = commit(x′)]. Bob verifies that the numbers of cards
in the envelopes are 1, otherwise Alice incorrectly handed envelopes. Bob pri-
vately swaps the two envelopes of [S′

1, S
′′
1 ] if x′ = 1, otherwise, does nothing.

Bob makes the two envelopes public, which are denoted [S′
2, S

′′
2 ].

4. Alice verifies that the envelopes are not opened. Alice and Bob open the
envelopes together and obtain S′

2 and S′′
2 . They turns (that is, face-up) S′

2. If
S′
2 = 0, S′′

2 is the output of the protocol. If S′
2 = 1, swap the two cards of S′′

2

and the result is the output of the protocol.

The protocol is three rounds. The first round is the public execution by Alice and
Bob. The second round is executed by Alice. The third round is executed by Bob.
The last execution by Alice and Bob does not need handing cards or envelopes.
Bob just makes the envelopes public and Bob can execute the operations in front
of Alice. Thus no overhead is necessary for the public execution. Therefore, the
number of rounds is considered to be three. The number of cards used in the
protocol is six.

Theorem 1. The output of the XOR protocol is correct even if Alice or Bob
is malicious. The protocol does not reveal the input values to the players if no
prohibited opening is executed.

Proof. First, we show the correctness when both Alice and Bob are honest.
Alice hands [S1] = [commit(x⊕b)] and [S′

1, S
′′
1 ] = [commit(x⊕b), commit(y⊕

b)] to Bob. Bob swaps the pair of [S′
1, S

′′
1 ] if x ⊕ b = 1. Thus [S′

2, S
′′
2 ] =

[commit((x⊕b)⊕(x⊕b)), commit((y⊕b)⊕(x⊕b))] = [commit(0), commit(x⊕y)].
Since S′

2 = commit(0), S′′
2 is not swapped and the output is commit(x ⊕ y).

Therefore, the output is correct. The protocol is secure since Alice sees S′
2 = 0

and Bob sees S′
2 = 0 and S1 = x⊕ b but b is an unknown random value for Bob.

Next, consider the case when Alice is malicious and Bob is honest. If Alice
opens an envelope during the private operation, Bob can detect the misbehav-
ior. Next, consider the case when Alice does not execute the private random
bisection cut correctly. Since the numbers of cards in [S1] and [S′

1, S
′′
1 ] dif-

fers, the only cheat that cannot be detected by Bob is incorrectly swapping
envelopes. Let b and b′ be the random bits selected to swap the envelopes that
have [commit(x)] and [commit(x), commit(y)], respectively. The output by Alice
is [S1] = [commit(x⊕ b)] and [S′

1, S
′′
1 ] = [commit(x⊕ b′), commit(y ⊕ b′)]. After

Bob opens [S1] = [commit(x⊕b)], Bob swaps the envelopes if x⊕b = 1, thus the
result [S′

2, S
′′
2 ] = [commit(x⊕ b′ ⊕ x⊕ b), commit(y ⊕ b′ ⊕ x⊕ b)] = [commit(b⊕

b′), commit(y⊕b′⊕x⊕b)]. When the players open S′
2, they obtain no information

about x since S′
2 = commit(b⊕ b′). In addition, if b⊕ b′ = 1, the cards of S′′

2 are
swapped, thus the output is commit(y ⊕ b′ ⊕ x⊕ b⊕ (b⊕ b′)) = commit(y ⊕ x).
The result is correct regardless of the selection of b and b′.

Next, consider the case Bob is also malicious. When Bob opens the envelopes
of [S′

1, S
′′
1 ], the cheat can be detected by Alice. Next, consider the case when Bob

does not set the envelopes correctly. When Bob sees x ⊕ b, Bob does not swap
the envelopes correctly, that is, Bob selects some value b′′(�= x⊕ b) ∈ {0, 1} and
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swaps the envelopes of [S′
1, S

′′
1 ] using b′′. If b′′ = x ⊕ b, the result is correct as

shown above. Thus the only cheat selection of b′′ is b′′ = x ⊕ b = x ⊕ b ⊕ 1.
In this case, the result is [S′

2, S
′′
2 ] = [commit(x⊕b′⊕b′′), commit(y⊕b′⊕b′′)] =

[commit(b′ ⊕ b ⊕ 1), commit(y ⊕ b′ ⊕ x ⊕ b ⊕ 1)]. When Alice and Bob open S′
2,

they do not obtain information about x since the value is independent of x. If
b′ ⊕ b ⊕ 1 = 1, the two envelopes of S′′

2 is swapped. The result is correct since
the output is commit(y ⊕ b′ ⊕ x ⊕ b ⊕ 1 ⊕ (b′ ⊕ b ⊕ 1)) = commit(y ⊕ x). ��
Note that the protocol achieves an error-correction. Even if Alice and/or Bob
make mistakes in swapping envelopes, the mistakes are automatically corrected
as shown above.

3.3 And Protocol

Protocol 3 (AND protocol)
Input: two copies of commit(x) and one copy of commit(y).
Output: commit(x ∧ y).

1. Alice and Bob publicly put cards into two envelopes. The left card of
commit(x) and two new cards of commit(0) are put into the left envelope.
The right card of commit(x) and the two cards of commit(y) are put into the
right envelope. The envelopes have [commit(x), commit(0)||commit(y)].
The remaining two cards of commit(x) are put into two envelopes so that
the left(right) card is put into the left(right) envelope. The envelopes have
[commit(x)].
The envelopes that have [commit(x)] and [commit(x), commit(0)||commit(y)]
are handed to Alice.

2. Alice executes a private random bisection cut on [commit(x)] and
[commit(x), commit(0)||commit(y)] using the same random bit b. Let the out-
put be [S1] and [S′

1, S
′′
1 ]. S1 = commit(x′), where x′ = x⊕b. S′

1 = commit(x′)
and S′′

1 = swap(b, commit(0)||commit(y)). Alice hands [S1] and [S′
1, S

′′
1 ] to

Bob.
3. Bob first verifies that the envelopes are not opened. Bob executes a private

reveal on [S1 = commit(x′)]. Bob verifies that the numbers of cards in the
envelopes are 1, otherwise Alice incorrectly handed the envelopes. Bob pri-
vately swaps two envelopes of [S′

1, S
′′
1 ] if x′ = 1, otherwise, does nothing. Bob

makes the two envelopes public, which are denoted [S′
2, S

′′
2 ].

4. Alice verifies that the envelopes that have [S′
2, S

′′
2 ] are not opened. Alice and

Bob open the envelopes together and obtains S′
2 and S′′

2 . They turn (that is,
face-up) S′

2. If S′
2 = 0, the left two cards of S′′

2 is the output of the protocol.
If S′

2 = 1, the right two cards of S′′
2 is the output of the protocol.

The protocol is three rounds. The protocol uses eight cards since two new cards
are used to set commit(0).

Theorem 2. The output of the AND protocol is correct even if Alice or Bob
is malicious. The protocol does not reveal the input values to the players if no
prohibited opening is executed.
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Proof. The desired output can be represented as follows.

x ∧ y =
{
y if x = 1
0 if x = 0

First, we show the correctness when both Alice and Bob are honest.
Alice hands [S1] = [commit(x ⊕ b)] and [S′

1, S
′′
1 ] = [commit(x ⊕ b),

swap(b, commit(0)||commit(y))] to Bob. Bob swaps the pair of [S′
1, S

′′
1 ] if x⊕b =

1. Thus [S′
2, S

′′
2 ] = [commit((x ⊕ b) ⊕ (x ⊕ b)), swap(x ⊕ b, swap(b, commit(0)||

commit(y))] = [commit(0), swap(x, commit(0)||commit(y))]. Thus the players
select the left two cards of swap(x, commit(0)||commit(y)). The selected cards
are commit(y) if x = 1 and commit(0) if x = 0. Thus, the output is correct.

The protocol is secure since Alice sees S′
2 = 0 and Bob sees S′

2 = 0 and
S1 = x ⊕ b but b is an unknown random value for Bob.

Next, consider the case when Alice is malicious and Bob is honest. If Alice
opens an envelope during the private operation, Bob can detect the misbehav-
ior. Next, consider the case when Alice does not execute the private random
bisection cut correctly. Since the numbers of cards in the envelopes for [S1]
and [S′

1, S
′′
1 ] differs, the only cheat that cannot be detected by Bob is incor-

rectly swapping envelopes. Let b and b′ be the random bits selected to swap
the envelopes that have [commit(x)] and [commit(x), commit(0)||commit(y)],
respectively. The output by Alice is [commit(x ⊕ b)] and [commit(x ⊕
b′), swap(b′, commit(0)||commit(y))]. After Bob opens [commit(x ⊕ b)], Bob
swaps the envelopes if x⊕ b = 1, thus the result [S′

2, S
′′
2 ] = [commit(x⊕ b′ ⊕ x⊕

b), swap(x⊕b, swap(b′, commit(0)||commit(y)))] = [commit(b⊕b′), swap(x⊕b⊕
b′, commit(0)||commit(y))]. When the players open S′

2, they obtain no informa-
tion about x since S′

2 = commit(b⊕b′). In addition, if b �= b′, the right two cards
of S′′

2 are used as the output otherwise, the left two cards of S′′
2 are used as the

output. This is equivalent to execute swap(b⊕b′, S′′
2 ) and select the left two cards.

Since swap(b⊕ b′, S′′
2 ) = swap(b⊕ b′, swap(x⊕ b⊕ b′, commit(0)||commit(y))) =

swap(x, commit(0)||commit(y)), the output is commit(0) if x = 0, otherwise the
output is commit(y). Therefore, the output is correct regardless of the selection
of b and b′.

Next, consider the case Bob is also malicious. When Bob opens the envelopes
of [S′

1, S
′′
1 ], the cheat can be detected by Alice. Next, consider the case when Bob

does not set the envelopes correctly. When Bob sees x⊕b, Bob does not swap the
envelopes correctly, that is, Bob selects some value b′′(�= x⊕b) ∈ {0, 1} and swaps
the envelopes of [S′

1, S
′′
1 ] using b′′. When b′′ = x⊕b, the output is correct since it

is the correct value. Thus the only cheat selection of b′′ is b′′ = x ⊕ b = x⊕ b⊕1.
In this case, the result is [S′

2, S
′′
2 ] = [commit(x ⊕ b′ ⊕ b′′), swap(b′′, swap(b,

commit(0)||commit(y)))] = [commit(b⊕ b′ ⊕ 1), swap(x⊕ b⊕ b′ ⊕ 1, commit(0)||
commit(y))]. When Alice and Bob open S′

2, they do not obtain information
about x since the value is independent of x.

In addition, if b⊕ b′ ⊕1 = 1, the right two cards of S′′
2 are used as the output

otherwise, the left two cards of S′′
2 are used as the output. This is equivalent

to execute swap(b ⊕ b′ ⊕ 1, S′′
2 ) and select the left two cards. Since swap(b ⊕
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b′ ⊕ 1, S′′
2 ) = swap(b ⊕ b′ ⊕ 1, swap(x ⊕ b ⊕ b′ ⊕ 1, commit(0)||commit(y))) =

swap(x, commit(0)||commit(y)), the output is commit(0) if x = 0, otherwise the
output is commit(y). Therefore, the output is correct regardless of the selection
of b and b′. ��
Note that even if Alice and/or Bob make mistakes in swapping envelopes, the
mistakes are automatically corrected as shown above.

3.4 COPY Protocol

Next, we show a copy protocol. Multiple copies of output data of computation
might be needed in some cases, for example, use the output result to a further
computation. A method to obtain m(> 1) copies of the output is preparing m
copies of commit(y).

In the XOR protocol, at the first step of the protocol, they put cards
into two envelopes so that [commit(x), commit(y), commit(y), . . . , commit(y)]
is obtained. At the last step, S′′

2 is m pairs of cards. When they need to swap the
cards, each pair of S′′

2 is swapped. Then we can obtain m copies of commit(x⊕y).
In the AND protocol, at the first step of the protocol, they put cards into two

envelopes so that [commit(x), (commit(0), . . . , commit(0))||(commit(y), . . . ,
commit(y))] is obtained, that is, put m copies of commit(0)(commit(y)) to the
left(right) envelope. At the last step, if S′

2 = 0, the output is the left m pairs of
cards. Otherwise, the output is the right m pairs of cards.

We can obtain another protocol that directly increases the number of copies
of input data using the XOR protocol. Two copies of commit(x) are given as
input. Execute the XOR protocol with two copies of commit(x) and m copies of
commit(0). Then the players obtain m copies of commit(x) as the output since
x ⊕ 0 = x.

Last, we show a method to obtain multiple copies of input x using two

envelopes. For any number n, cards are publicly put into the left(right)
envelope and the envelopes are sealed. The two envelopes are given to the input
player. The input player privately sets the two envelopes according to the private
input value x. Then all players publicly open the seals of the envelopes and two
piles of cards are obtained. When the players select one card from each of the
piles, a copy of commit(x) can be obtained, thus n copies of commit(x) can be
obtained.

When we calculate general logical functions using the above primitives, we
need to prepare two copies of each input. Any number of copies of a value can
be obtained by using the copy protocol at any time, if there are two copies
of the value. Obtaining two copies of an output value can be realized by the
above protocols, thus any logical functions can be calculated securely using these
protocols.
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4 Conclusion

This paper proposed new protocols using private operations that are secure
against malicious players. We show logical XOR, logical AND, and copy pro-
tocols that use envelopes for an additional tool. Since the envelopes are a very
powerful tool to restrict shuffle executions, malicious executions are corrected in
the protocols.

We can consider weak tools for preventing illegal opening face-down cards, for
example, seals on the marks of the cards. They cannot restrict shuffle executions.
One of the open problems is considering secure protocols with such tools.
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