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Preface

This volume contains the papers presented during the 13th International Conference on
Information Technology and Communications Security (SECITC 2020) held on
November 19–20, 2020 online via ZOOM.

There were 41 submissions. Each submission was reviewed by at least 2, and on
average 3 program committee members. The committee decided to accept 17 papers.
The program also included 3 invited talks.

The SECITC conference started 13 years ago, when, in a small room at the
Bucharest University of Economic Studies, was held the first edition of the event. At
that time, the auditorium held approximately 15 students and professors.

Since then, the conference has grown significantly: the quality of the TPC and of the
submitted papers has been improved from year to year, and, of course, we had valuable
keynote speakers. Our conference is now indexed in several databases and probably a
notable thing to mention is that SECITC is listed within the IACR cryptologic events
calendar. Also, Springer agreed to publish the post proceedings (since 2015). The
conference covers topics from cryptographic algorithms to digital forensics and cyber
security and if this conference were to be initiated today, probably a better name for it
would be “CyberSecurity Conference”, but for now SECITC is already a brand and is
not yet the time for rebranding.

The conference was organized by the master programs for information security
within the Military Technical Academy and the Bucharest University of Economic
Studies, as well as the Institute for Advanced Technologies (two of this year’s co-chairs
are representatives of the Institute). At the same time, partners of the conference
included the master program Coding Theory and Information Storage within the
Faculty of Applied Sciences, Politehnica University of Bucharest and the Center for
Research and Training in Innovative Techniques of Applied Mathematics in Engi-
neering from the same university.

A special word of gratitude to the invited keynote speakers, Constantin Catalin
Dragan, Rémi Géraud-Stewart and Gerhard Hancke, who have certainly improved the
quality of our conference SECITC 2020.

Last but not least, we would like to thank all the TPC members for reviewing the
papers, the organizers and the technical committee for their efforts, and the sponsors for
their support.

November 2020 Diana Maimut
Andrei-George Oprina

Damien Sauveron
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Elementary Attestation
of Cryptographically Useful

Composite Moduli

Rémi Géraud-Stewart1,2(B) and David Naccache2

1 QPSI, Qualcomm Technologies Incorporated, San Diego, USA
rgerauds@qti.qualcomm.com

2 ÉNS (DI), Information Security Group, CNRS, PSL Research University,
75005 Paris, France

david.naccache@ens.fr

Abstract. This paper describes a non-interactive process allowing a
prover to convince a verifier that a modulus n is the product of two
primes (p, q) of about the same size. A further heuristic argument con-
jectures that p − 1 and q − 1 have sufficiently large prime factors for
cryptographic applications.

The new protocol relies upon elementary number-theoretic properties
and can be implemented efficiently using very few operations. This con-
trasts with state-of-the-art zero-knowledge protocols for RSA modulus
proper generation assessment.

The heuristic argument at the end of our construction calls for further
cryptanalysis by the community and is, as such, an interesting research
question in its own right.

1 Introduction

Several cryptographic protocols rely on the assumption that an integer n = pq is
hard to factor. This includes for instance RSA [RSA78], Rabin [Rab79], Paillier
[Pai99] or Fiat–Shamir [FS86]. A user generating their own keys can ensure that
n is indeed such a product; however this becomes a concern when n is provided
by a third-party. This scenario appears e.g. with Fiat–Shamir identification, or in
the context of certificate authentication: carelessly using an externally-provided
n may compromise security if n is incorrectly generated. Naturally, one cannot
ask for the factor(s) p, q to check n.

The state of the art in the matter are the zero-knowledge procotols of
Auerbach–Poettering [AP18] and Camenisch–Michels [CM99], which ascertain
that a given n is the product of safe primes of prescribed size. While correct
and very useful, these protocols are difficult to implement and analyze, and
have high computational costs. This motivates the search for simpler and more
efficient solutions.

This paper introduces an alternative protocol that nearly achieves the same
functionality with fewer operations and communication. The new protocol is also
simpler to understand and therefore to implement.
c© Springer Nature Switzerland AG 2021
D. Maimut et al. (Eds.): SecITC 2020, LNCS 12596, pp. 1–12, 2021.
https://doi.org/10.1007/978-3-030-69255-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69255-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-69255-1_1


2 R. Géraud-Stewart and D. Naccache

2 Preliminaries and Building Blocks

This paper uses the following notations: a|b denotes the concatenation of the
bitstrings a and b. If c is an integer, ‖c‖ = �log2 c� denotes the size of c, i.e. the
minimal number of bits needed to write c. We denote by 0� the �-bit all-zero
string. For A ∈ N we denote by [A] the set {0, 1, . . . , A − 1}. If X is a finite set,
then x

$←− X indicates sampling uniformly at random from X.

2.1 Camenisch–Michels Proofs

While this paper does not rely on [CM99] we feel that it is important to recall
Camenisch and Michels’ protocol (hereafter, CM) given that it is currently con-
sidered as the state-of-the-art tool for achieving the functionality that we try to
approach by our construction.

CM provides provable guarantees that an RSA modulus is well-formed. At
its heart is a pseudo-primality proof, combined with zero-knowledge proofs of
knowledge of a discrete logarithm, of a conjunction, and for belonging to a range.
We recall here the protocol for the sake of completeness, using the following
syntax [CS97]:

PK{(w) : P (x,w)}
refers to a proof of knowledge that property P holds, i.e., that the prover (hence-
forth P) knows a witness w that makes P (x,w) true.

Let n = pq be the number of interest, ε > 1 be a security parameter, � such
that 2� > n, G a cyclic group of prime order Q > 25+2ε�, and g, h ∈ G. There
are two main phases to the protocol [CM99, Sec 5.1]:

1. P computes

cp ← gphrp c′
p ← g

p−1
2 hr′

p

cq ← gqhrq c′
q ← g

q−1
2 hr′

q

where rp, r
′
p, rq, r

′
q are random integers. The values (cp, c

′
p, cq, c

′
q) are sent to

the verifier (henceforth V).
2. Run the protocol

PK{(x1, . . . , x11) :
c′
p = gx1hx2 ∧ c′

q = gx3hx4 ∧ cp = gx5hx6 ∧ cq = gx7hx8

∧ cpg
−1c′−2

p = hx9 ∧ cqg
−1c′−2

q = hx10 ∧ gnc−1
p c−1

q = hx11

∧ x1 ∈ [−2�′
, 2�′

] ∧ x4 ∈ [−2�′
, 2�′

]
∧ x1 ∈ pprimes(t) ∧ x3 ∈ pprimes(t)

∧ x5 ∈ pprimes(t) ∧ x7 ∈ pprimes(t)

}
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The pprimes(t) sub-algorithm denotes t rounds of the Lehmann primality
test for a committed number [CM99, Sec 4.2] and �′ = ε�+2. The above protocol
is a statistical zero-knowledge proof that n = pq is an RSA modulus where p, q
are safe primes.

Remark 1. As noted by [CM99], under some conditions running the protocol of
Gennaro et al. [GMR98] after the first phase we can remove the two last pseudo-
primality tests and reduce the number of rounds to t = 1. However this assumes
that n was not adversarially constructed and we cannot rely on this hypothesis
here.

Remark 2. As discussed in [CM99], the protocol can be extended to ensure addi-
tional properties of p and q, e.g. that (p + 1)/2 is prime, or that p and q satisfy
some lower bound.

The protocol’s cost is dominated by the four pseudo-primality tests, which use
O(t log n) exponentiations and exchange O(t log n) group elements.

2.2 Goldberg–Reyzin–Sagga–Baldimtsi Modulus Tests

Our first building block is a very elegant protocol published by Goldberg, Reyzin,
Sagga and Baldimtsi (GRSB) [GRSB19]. This protocols allows to verify that n
has exactly two prime factors.

A first GRSB protocol checks that a pair (n, e) defines a permutation
over Z/nZ. For typical parameter settings, this proof consists of nine inte-
gers, with proof generation and verification requiring both about nine modular
exponentiations.

A further protocol in [GRSB19] allows V to check that n is the product of
two distinct primes [GRSB19, Sec. 3.4] in a zero-knowledge fashion. We recall
the protocol here:

1. P and V agree on a security level κ, integer m := �32 · κ · ln 2�, and n.
2. V checks that n is a positive odd integer and that n isn’t a prime power,

otherwise the protocol stops with a failure.
3. V chooses m values ρi whose Jacobi symbol (ρi|n) = 1, and sends them to P

as challenge.
4. P checks for each ρi whether it is a quadratic residue modulo n: if it is, P

returns a square root σi of ρi to V; otherwise P returns σi = 0.
5. V checks that there are at least 3m/8 non-zero σi and that they all satisfy

σ2
i = ρi mod n.

As is, this protocol assumes that V is honest. The honest verifier assumption is
removed through a classical derivation of the ρis by hashing. Both protocols are
very efficient for P and V.
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2.3 Girault–Poupard–Stern Signatures

The GPS signature scheme was first proposed by Girault in 1991 [Gir91] without
a security proof; a first analysis was given in 1998 [PS98,PS99] by Poupard and
Stern. This was further refined by all three authors in 2006 [GPS06]. GPS has
been standardized as ISO/IEC 9798-5 in 2004.

Algorithms. GPS consists of four algorithms (Setup,Keygen,Sign,Verify) that we
now describe.

– GPS.Setup(λ) → pp: the public parameters consist of integers A,B and a
hash function h : {0, 1}∗ → [B]. They are chosen so that a security level λ is
achieved.

– GPS.Keygen(pp) → (sk, pk): The signer chooses two safe primes P = 2p + 1,
Q = 2q + 1, computes n ← PQ, and finds an element g ∈ Z/nZ whose order
is divisible by pq.1 The order of g (and therefore of the subgroup generated
by G) needs not be explicitly known.
The signer’s secret key is sk := n − ϕ(n), while the public key is given by
pk := (n, g).

– GPS.Sign(pp, sk,m) → σ:
1. r

$←− [A]
2. x ← gr mod n
3. c ← h(m,x)
4. y ← r + c · sk
5. If y ≥ A, restart from step 1 with a new value of r.

The signature is σ ← (x, c, y).

– GPS.Verify(pp, pk,m, σ) → {valid, invalid}: V checks the ranges:

x > 0 and x ∈ [n] and c ∈ [B] and y ∈ [A]

If either of these checks fails the signature is invalid. Otherwise, V computes:
1. c̃ ← h(m,x)
2. x̃ ← gy−nc̃ mod n
3. If c = c̃ and x̃ = x then σ is valid otherwise σ is invalid.

Security of GPS Signatures. Under the discrete logarithm with short exponent
assumption (DL-SEA, see below), and if sk · B/A and 1/B are negligible, GPS
signatures are existentially unforgeable under adaptive chosen message attacks
in the random oracle model [GPS06, Theorem 7].

DL-SEA is an ad-hoc strengthening of the usual discrete logarithm assump-
tion, which formalizes the notion that it should be hard to recover a discrete
logarithm, knowing that it is smaller than some known bound:

1 This is the case if and only if gcd(g − 1, n) = gcd(g + 1, n) = 1, which happens with
high probability.
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Definition 1 (DL-SEA, [GPS06]). For every polynomial Q and every PPT
Turing machine A running on a random tape ωM , for sufficiently large λ,

Pr
ωp,ωM

[A(n, g, sk, gx) = x | (n, g, sk) ← Setup(ωp, λ) ∧ x ∈ [sk]}] <
1

Q(λ)

where Setup is a randomized algorithm generating public parameters n, g from a
security parameter λ using the random tape ωp, and sk = n − ϕ(n).

In summary, the choice of parameters for GPS to be secure are:

– An integer n which is hard to factor;
– Integers B < A < n such that 2λB/A is negligible;
– A hash function h for which the random oracle model is appropriate.

For instance, at the 128 bit security level, B ∼ 2128, A ∼ 280+128+128 and
n ∼ 23072, with SHA-3 as h.

2.4 RSA Moduli with a Prescribed Pattern

To preserve compatibility with the notations of [Joy08] we will temporarily
rename the modulus N in this section. We will then revert back to the notation
n introduced previously. An RSA modulus generator is a PPT algorithm that
outputs p, q such that N = pq is an RSA modulus. There exist several algorithms
that output N with additional properties; one such family of algorithms gives
prescribed patterns: a bitstring (the “pattern”) is given as input to the generation
algorithm, and will be found in N . We denote n = ‖N‖.

Different methods are known to achieve this, depending on the pattern length
being considered [Len98,LdW05a,Joy08,LdW05b]. To the best of our knowledge,
no polynomial-time algorithm capable of imposing a pattern of more than 2n/3
bits while respecting the constraint ‖q‖ ∼= ‖p‖ has been described. The leading
motivations for such algorithms originates from the desire to compress RSA keys,
so that they can be stored on less bits and the from the intention to speed-up
modular reduction using “computation-friendly” moduli.

Let n > n0 be integers, κ � 2n/3, a predetermined portion NH of length κ.
The following algorithm [Joy08] outputs a pair (p, q) such that N = pq = NH‖NL

along with NL, with p of size n − n0 and q of size n0.

1. Sample p0 uniformly of length n − n0, and let

q0 =
⌊

NH
2n−κ

p0

⌋

.

2. Define recursively the triples (di, ui, vi) as:

(d0, u0, v0) = (p0, 0, 1)
(d−1, u−1, v−1) = (q0, 1, 0)

(di, ui, vi) =
(

di−2 mod di−1, ui−2 −
⌊

di−2

di−1

⌋

ui−1, vi−2 −
⌊

di−2

di−1

⌋

vi−1

)
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3. Define recursively the triples (xi, yi, zi) as:

(x0, y0, z0) =
(

0, 0,
(

NH2n−κ mod p0
)

+ 2n−κ−1
)

(xi, yi, zi) =
(

xi−1 +
⌊

zi−1

di

⌋

ui, yi−1 +
⌊

zi−1

di

⌋

vi, zi−1 mod di

)

such that |zi − xiyi| < 2n−κ−1. (This value decreases and then increases, so
once the condition is reached we can break out of the loop.)

4. Sieve the pairs (xi, yi) until both

p = p0 + xi

q = q0 + yi

are prime. If no such pair is prime, start over from Step 1.
5. Output NL ← N mod 2n−κ and p, q.

Note that the generation process can be repeated until (p, q) satisfies any desired
property (e.g., being safe primes).

3 Assembling the Puzzle to Get an Attestation

We decompose our construction into four steps.

Fig. 1. The general outline of the construction proposed in this paper.

3.1 Checking that n Has Exactly Two Prime Factors

Our first building block is the GRSB protocol that we run, unmodified, between
P and V.

Note that GRSB does not suffice, in itself, to guarantee n is cryptographically
useful. For instance, n = 3p with p > 3 will pass this phase but is clearly a bad
RSA modulus.
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3.2 Checking for Factor Sizes

The second building block checks that the two factors of n have the appropriate
size. We achieve this by requesting that P provides a valid GPS signature of
some agreed-upon message (e.g. n) to V.

The key observation here is that GPS signatures have a size that depends on
the factors of n. More precisely, if σ = (x, c, y) is the GPS signature and we are
working modulo n, the size of y essentially reveals the size of n’s factors (up to
a relatively small constant).

The following lemma makes this statement more precise and more general.

Lemma 1. Let p, q be two positive integers. Let u = ‖pq‖, v = ‖p + q‖, and
w = ‖p − q‖. Let Δ > 0, if v ≥ log2(22Δ−1 + 2u), then w ≤ Δ.

Proof. Without loss of generality, assume p ≤ q and let δ = q − p. Then

w = ‖δ‖ =
1
2
‖δ2‖ =

1
2
‖(p + q)2 − 4pq‖

≤ 1
2

∥

∥2v+1 − 2u+1
∥

∥ =
1
2
[1 + log2 |2v − 2u|]

≤ 1
2
[1 + 2Δ − 1] = Δ.

�
A valid GPS signature comprises y = r + c · sk which is of size max(‖A‖, ‖B‖ +
‖sk‖). With A, B being a public parameters and sk being p + q − 1 we see that
Lemma 1 can be used to set a threshold so that with typical GPS parameters,
pq is large enough and at most a discrepancy between p and q of about 200 bits
is possible.

This is unfortunately not enough: even if we know that n = pq with p and
q of similar size, partial Pohlig–Hellman factorization [vOW96] can exploit the
smoothness of p − 1 or q − 1 to factor n. Thus we need an additional building
block fill that gap.

3.3 Checking that n Is a Cryptographically Useful Modulus

What follows is only conjectured to be secure. The intuition is to restrict P to use
only certain moduli, obtained through a verifiable procedure that (hopefully!)
makes it hard to obtain smooth p − 1 and/or q − 1 or otherwise purposely
weaken n. Indeed, from a practical standpoint [vOW96] fails whenever (p− 1)/2
and (q − 1)/2 have each a large factor: (p − 1)/2 and (q − 1)/2 being primes is
ideal but not strictly necessary to resist this attack. This does not imply that
methods other than [vOW96] would fail to factor n but we know of no such
strategies and encourage the community to further scrutinize our proposal.

For preserving compatibility with Joye’s notations we switch again to the
notation N for the modulus.



8 R. Géraud-Stewart and D. Naccache

We now want to ensure that the factors of N (which we know to be exactly
two primes of comparable sizes), are not easy to factor. A complete but inefficient
solution consists in plugging-in the CM sub-protocol for safe-primality testing
[CM99]. Doing so has a sizable cost, so we take an alternative, cheaper route.

To illustrate the difficulty, consider the following procedure which generates
a couple (p, q) of primes whose product features a prescribed bit pattern NH :

1. Form a string N ′ := NH |ρ where ρ is a random bitstring.
2. Generate a prime p and compute q ← �x/p�
3. Increment q until the result is prime.

At the end of this procedure, p and q are prime and their product N = pq
features NH in its MSBs. Informally, because q is constrained we expect q to be
hard to control, and therefore it would be hard to ensure that q−1 is abnormally
smooth using this procedure. A malicious generator could however manipulate
p freely, so this approach is unsatisfactory. The above algorithm stops to work
as NH grows beyond n/2 bits while keeping the sizes of p and q balanced.

Joye’s protocol described in Sect. 2.4 [Joy08, 4.1, 4.2] enables us to fix 2
3 of

N ’s bits to a prescribed pattern, with p and q being generated simultaneously.
We conjecture that this causes p − 1 and q − 1 to “essentially” behave like large
random numbers, which are likely to have a large prime factor as expected by
the asymptotic distribution of factors in random integers2. This assumption is
made explicit below.

Note that from V’s viewpoint, checking that N features the prescribed pat-
tern is cost-less and that only the LSBs of N need to be transmitted to V. For
the above to work it is crucial to enforce that NH is beyond the control of P.
For instance set NH as equal to the digits of π = 3.14159 . . . or e = 2.71828 . . ..

One interesting question is whether RSA moduli indistinguishable from those
generated by Joye’s algorithm can be purposely crafted to be more vulnerable
than moduli formed by multiplying two random equal-size primes. The case
is clearly different with moduli generated by other bit prescription methods
because, unlike Joye’s algorithm, alternative methods pick p at random first
and only then generate q as a function of p and NH and. As we have already
explained, in such a scenario p can be chosen to be weak (e.g. p − 1 can be pur-
posely selected to be smooth). Therefore the conjecture upon which the heuristic
part of our construction relies is:

Conjecture: Given a challenge NH of size 2n
3 , it is hard to generate a

vulnerable N featuring the MSB pattern NH such that N has exactly two
prime factors of roughly equal size.

The above calls for a precise definition of the term “vulnerable”. Evidently, a
dishonest P could publish his random tape or run the proof with some public
test values for p, q. To capture simply the requirement we construe the term
“vulnerable” as follows:
2 In particular, the Golomb–Dickman constant λ ≈ 0.624 asymptotically governs the

relative size of the largest prime factor of an integer [KP76,Dic30,Gol64].
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A modulus of size n is vulnerable if its factoring is asymptotically easier
than the factorization of a modulus generated by picking two random n

2 -bit
primes.

3.4 Optional Security Measures

In this section we describe three optional security measures. All are heuristic
and incur additional computational cost for P and/or V.

The rationale behind these measures is that if a cryptanalysis whose work
factor is ω1 is found, the proposed countermeasures will multiply ω1 by a constant
factor ω2 that may put ω1 × ω2 out of practical reach.

1. The first countermeasure consists in using an n larger than required. This
reinforces the argument of Sect. 3.3, as larger smooth numbers are scarcer.
We recommend to use moduli whose size is larger by 62% than normal for
any desired security level. This is meant to account for the fact that the largest
prime factor of a random �-bit number is expected to be roughly 0.62�-bits
long [KP76].

2. The second countermeasure will put a burden on generation but leave veri-
fication unchanged: we require from n an additional short redundancy, e.g.
SHA(n) mod 224 = 0. It is reasonable to assume that there is no efficient
algorithm allowing to achieve this property along with a prescribed pattern.
Thus, to obtain n the generation procedure should be run on average 224

times. This places no extra burden on V and because moduli are usually
generated once for all in a device’s lifetime, slowing the modulus generation
process down on one occasion may pay back in case of an attack.

3. The third countermeasure is applicable when V witnesses the generation of n.
It consists in performing a cut-&-choose protocol to ascertain the freshness
and the conformity of the generated moduli:

– P and V generate a common secret key u using e.g. Diffie-Hellman.
– P picks t random wis and computes vi = hash(wi, u) for 0 ≤ i ≤ t − 1.
– P uses vi as a random tape to generate the modulus ni

– V picks a random index j and sends it to P
– P reveals to V:

w0, w1, . . . , wj−1, wj+1, . . . , wt−1

– V re-generates the corresponding t − 1 moduli

n0, n1, . . . , nj−1, nj+1, . . . , nt−1

and checks that all the above t − 1 moduli were properly generated.
– V tests using the first two phases of the protocol proposed in this paper

that nj has two large factors of equal size and if so, he signs nj to certify
it.

We see that this protocol reduces the cheating odds to 1
t where by “cheating”

we mean generating factors so that nj is easy to factor. It has the advantage
of ascertaining, in addition, the freshness of nj . Indeed, even if P would use
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a fixed random tape then the randomness injected by the V into the protocol
would ascertain that no entities other than P and V would be able to factor
nj .

4 Efficiency

The global computational cost of our protocol is dominated by Sect. 3.3, as
other phases essentially have the cost of a few full-sized modular multiplications.
While the complexity of Joye’s algorithm does not follow a simple expression,
we can consider that around 1/η2 primality tests are performed, where η is the
probability that an integer of size n is prime—by the prime number theorem η
is of the order of 1/ ln(2n) = 1/n ln 2. Thus the overall algorithmic complexity is
essentially ˜O(k logN3), where N is the modulus and k is the number of primality
testing rounds.

If the optional measures of Sect. 3.4 are implemented, the impact on total
complexity is a slowdown by a factor of about 4.25 � (1+λ)3 for the GPS phase
that dominates the slowdown in the other phases.

Note that if n is used to sign a message m, the protocol can made even more
efficient. Instead of just signing n during the GPS phase, use GPS to sign n|m.
This achieves both the goal of attesting the sizes of p, q and signing m. In such a
case, the attestation of n comes at the minimal price of phases 3.1 and 3.3 only.

5 Conclusion

In this paper we introduced a cheap non-interactive process for proving that
n = pq is a product of two equal-size primes. The process is completed with a
heuristic trick conjectured to be sufficient to ascertain that n is cryptographically
useful.

This raises a number of interesting research questions. For instance, speeding-
up or simplifying [CM99] by hybridizing it with the techniques. The same seems
also applicable to [GMR98] although we haven’t investigated this avenue.

More importantly, we invite the community to find attacks on the heuristic
phase of our protocol. A successful attack consists in exhibiting a modulus n
having exactly two equal-size prime factors and featuring 2

3‖n‖ prescribed LSBs3.
This n must be easier to factor than an n = pq where p, q are randomly generated
primes.

Acknowledgements. The authors are grateful to Arjen Lenstra for his pertinent
remarks on an earlier version of this article.
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Abstract. RFID is widely used in many security sensitive areas.
Researchers proposed many theoretical attacks and security implemen-
tation models on RFID devices. To test these theories and models is
challenging and difficult task. In this paper, we use three common-off-
the-shelf security testing platforms i.e. PN532, TI RF430CL330H and
Chameleon Mini, to test the most widely used standards ISO14443A,
ISO14443B and ISO18092. We present a detailed workflow of each plat-
form. Furthermore, we highlight the advantages and disadvantages of
each platform in regards fast implementation, delays and support for
different types of RFIDs.

Keywords: Radio Frequency Identification · Near Field
Communication · Smart card

1 Introduction

Radio-frequency identification (RFID) is a technique that allows the system to
perform contactless data exchange [1]. Near Field Communication is a technique
based on high frequency (13.56 MHz) RFID, which is widely used in contactless
smart cards [2–4]. These contactless cards are widely used in many security sensi-
tive scenes, e.g. payment [5,6] or access control [7,8]. Smart cards have drawn a lot
researchers to test security layers of the smart card by designing attacks to breach
the security and infer valuable information. Also to design add-on security layers
to make the smart cards more secure [9,10]. There are two main research stream
of attacking RFID i.e. skimming and relay attack [11]. One of the most frequently
used smart cards, Mifare Classic which is based on ISO14443A standard, had been
hacked by the researchers, using the weakness of the pseudo-random number gen-
erator to recover the keystream and read the information stored in the card [12].
Researcher also successfully hacked cards in ISO15692 standard [13]. Another pos-
sible attack method on NFC cards is the relay attack. Researchers had successfully
applied relay attack on NFC communication [14–17]. As alternative, researchers
also worked on defending NFC cards from attacks. Distance Bounding protocol is
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-69255-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69255-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-69255-1_2


14 Y. Liu et al.

an effective method to prevent relay attacks, using the timing of data exchange to
estimate the distance between two devices [18–20]. Work on security of short range
communication is also of wider interest to mobile and IoT areas [21–23].

This paper aims at testing off-the-shelf security testing platform for RFID
systems, emulating the communication between reader and tags in different stan-
dards. Three standards were considered, ISO14443A, ISO14443B and ISO18092.
We tested three platforms, PN532, TI RF430CL330H and Chameleon Mini.
Section 2 describes the basic modulation and bit coding of each standard and
general information of the devices that we used. Section 3 shows the details of
these standards. Section 4 shows the implementation of standards on different
platforms. Section 5 draws a conclusion and discusses the pros and cons of each
platform. This work follows on from prior work related to relay-resistant chan-
nels [24], focusing on underlying work of implmenting common contactless RFID
channels using mostly COTS hardware.

2 Background

In this paper, we focus on three standards, ISO14443A, ISO14443B and
ISO18092. These standards share some similarities. The communication radio
is 13.56 MHz. When initializing and doing anti-collision, the bit rates of these
channels are 106 kbits/s. The modulation and bit-coding when reader transmit-
ting data to card are different. ISO14443A, ISO18092 at the bit rate 106 kbit/s
in both passive and active mode use ASK 100% modulation and Modified Miller
code. The ISO14443B, ISO18092 at 212 kbit/s in active and passive mode use
ASK 10% modulation. However, ISO14443B uses NRZ code while ISO18092 uses
Manchester code. Table 1 shows the communication specification when transmit-
ting data from reader to card.

Table 1. Modulation and bit coding of transmission from reader to card [1]

Standard Modulation Bit coding

ISO14443A ASK 100% Modified Miller

ISO14443B ASK 10% NRZ Code

ISO18092 Passive Mode at 106 kbit/s ASK 100% Modified Miller

ISO18092 Active Mode at 106k bit/s ASK 100% Modified Miller

ISO18092 Passive Mode at 212 kbit/s ASK 10% Manchester Code

ISO18092 Active Mode at 212 kbit/s ASK 10% Manchester Code

The modulation and bit coding of data transmission from card to reader are
different. ISO14443A, ISO14443B and ISO18092 in its passive mode at 106 kbit/s
and 212 kbit/s, uses load modulation with sub carrier at 847 kHz. The subcar-
riers of ISO14443A and ISO18092 in passive mode at 106 kbit/s and 212 kbit/s
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are ASK modulated, while that of ISO14443B is BPSK. ISO18092 in active
mode at 106 kbit/s use ASK 100% while ISO18092 active mode at 212 kbit/s
use ASK 10%. ISO14443A, ISO18092 passive mode at both bit rate and active
mode at 212 kbit/s use Manchester Coding. ISO14443B uses NRZ code and Mod-
ified Miller code for ISO18092 in active mode at 106 kbit/s. Table 2 shows the
communication specification when transmitting data from card to reader.

We used TI RF430CL330H on TI MSP430G2, Chameleon Mini and PN532
breakout board to implement these standards. TI RF430CL330H is a transpon-
der that works at 13.56 MHz and supports ISO14443B standard. It can both emu-
late card and reader. We attached RF430BP booster pack with RF430CL330H
built-in from DLP design on the MSP430G2 launchpad to make it work. We need
to write the code to the memory of MSP430G2 to control RF430CL330H. PN532
supports reader and card emulation with ISO14443A and ISO18092, however, it
can only emulate ISO14443B reader. Different from TI RF430CL330H, we run
the codes using LibNFC library in the host machine, computer or Raspberry Pi,
to control PN532 through serial port. ChameleonMini has a ISO14443A card
emulator, which can work wirelessly, using the battery on the board.

Table 2. Modulation and bit coding of transmission from card to reader [1]

Standard Modulation Bit coding

ISO14443A Load modulation with sub
carrier at 847 kHz%

Manchester Code

ISO14443B Load modulation with sub
carrier at 847 kHz%

NRZ Code

ISO18092 Passive Mode at
106 kbit/s

Load modulation with sub
carrier at 847 kHz%

Manchester Code

ISO18092 Active Mode at
106 kbit/s

ASK 100% Modified Miller

ISO18092 Passive Mode at
212 kbit/s

Load modulation with sub
carrier at 847 kHz%

Manchester Code

ISO18092 Active Mode at
212 kbit/s

ASK 10% Manchester Code

3 Communication Standards

We tested three standards in this paper, ISO14443A, ISO14443B, ISO18092. We
emulated the full data exchange processes of ISO14443A and ISO18092. The
hardware we used does not support ISO14443B, thus we only built an emulated
reader for ISO14443B standard.
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3.1 ISO14443A

ISO14443A is a widely used standard. The communication process of ISO14443A
is, first initializing the reader and anti-collision. After that, the bit rate should
be decided. In this paper, we tested this standard using 106 kbit/s. Many devices
support the ISO14443A. We tried to build the ISO14443A card emulator using
PN532. When we put the card close enough to the reader, the card will be
charged. If the reader can provide enough power, the card will be turned on and
the processor inside it will start to work. After the card activated, it is in IDLE
state. The reader sends a REQA (Request-A) command to the card. The card
should send back a ATQA (Answer to Request) command as a response. After
that, the card will be in READY state. Then the reader will send a SELECT
command with NVB (number of valid bits) parameter to the card and start
the anti-collision algorithm. If the reader detected card’s ID in the received
ATQA command, the reader will embed this ID in the SELLECT command.
After the card received the SELECT command with its ID, it will send back
an SAK (SELECT-Acknowledge) command containing protocol information to
the reader. Then the card will be in ACTIVE state. If the protocol is valid, the
reader will send a RATS command (request for answer to select) to the card.
The card will answer back an ATS (answer to select) command. After the reader
received the ATS command, it will send a PPS (protocol parameter selection)
command to decide the baud rate of communication. Figure 1 shows the initial-
ization processes of ISO14443A. Then the card will keep waiting until the reader
send data to it. The data frame has 5 components. PCB (protocol control byte)
is at the start of the frame, the transmission behavior in the protocol is deter-
mined by this byte. After the PCB there is the CID (card identifier) is at the
second place, it is used to distinguish different cards. The NAD (node address) is
at the third place, it is used to check the compatibility between ISO14443-5 and
ISO7816-3. The data payload is following the CID. At the end of a frame there
is a CRC to check if error happened in the transmission. Besides, ISO14443A
uses odd parity to check the data integrity. We first used two PN532 to emulate
the reader and card. Instead send command to PN532 directly, we used an open

Fig. 1. ISO14443A initialization processes
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source library, LibNFC to control PN532. With the help of Libnfc, we can com-
plete the processes from initialization to READY state by writing a single line
of function. We can even write the register of PN532 to control all the processes.
We also tried Chameleon Mini and TI MSP430G2.

3.2 ISO14443B

When a type B card comes in the RF (radio frequency) field of a reader, it will be
in IDLE mode and wait for the REQB (Request-B) command from the reader.
After the card receives REQB, it will extract the parameter AFI (Application
Family Identifier) search it in the applications stored in the card storage. If the
AFI is found, the card will analyze another parameter M in REQB to confirm
that there is more than one available slot. If yes, the card will generate a random
slot number in ATQB (Answer to Request B) as a response to the reader. In
the ATQB command, there are important parameters information and a 4-byte
serial number. Different from type A cards, the serial number is not fixed. After
the reader received ATQB from card, it will send an application command with
4-byte ATTRIB prefix to process card selection. Figure 2 shows the initialization
of ISO14443B card. We build an ISO14443B reader by using PN532 and Libnfc.
However, compared to ISO14443A, ISO14443B is less popular. Thus we have
not found a card emulator to act as ISO14443B card. What we can do is using
an emulated reader and a real card.

Fig. 2. ISO14443b initialization processes

3.3 ISO18092

ISO18092 standard contains two modes, passive and active. In active mode, dur-
ing the data transmission, both the reader and the card will create an RF field to
send data. In passive mode, only the reader creates the RF field to communicate
with card, then the card modulates reader’s RF field to answer the reader. These
active or passive mode will remain the same in a single transaction. The data
frame of ISO18092 has 5 components: Preamble, SYNC, Length, Payload and
CRC. At the start of the frame, there are 48 bits of Manchester coded zeros or
more, which is called the Preamble. The SYNC value B24D is next to the end
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of preamble. After the SYNC, there is one Length byte, which stored the length
of payload plus one. Payload is the data to be sent. A two bytes CRC-CCITT
checksum value of Length and Payload is appended at the end of the data frame.

At the beginning of the communication, the reader keeps trying to find an
external RF field. If the reader receives response and it is in passive mode,
the reader will process initialization and single device detection (SDD). Next,
reader will decide the bit rate of data transmission. The reader uses time slot to
detect and communicate with individual cards. The maximum time slot number
is 16. The Time Slot Number (TSN) is defined in the polling request frame
(ATR REQ). When a card is in the RF field, it will select a random number R
between 0 and TSN. The card will be waiting until the Time Slot becomes R.
After that it will send the response of polling frame (ATR RES) and wait for
the reader’s data. The polling frame’s Length is 06h, 5 bytes payload and one-
byte length. First byte of payload is 00h, the second and third bytes in Felica
is the fixed system code 8008h. The fourth byte is 00h, also not changeable.
The fifth byte is TSN. The Length of polling response frame is 12h. The first
payload byte is fixed 01h, the next content of payload is NFCID2, a value that is
used to distinguish different devices. The 8-byte Pad is appended at the end of
NFCID2, but it is ignored when transferring data. If the reader finds changeable
parameter in the ATR REQ command, it may send a PSL REQ command to
modify parameters. After received by the card, the card should send command
to answer PSL REQ. The parameter selection can be ignored if there are no
editable parameters.

4 Implementation

We have done experiments on NFC channels using ISO14443A, ISO14443B and
ISO18092 standards, respectively using different platforms.

4.1 PN532

We used PN532 breakout board from Adafruit to implement ISO14443A and
ISO18092 standard. We connected the PN532 board to the host machine by
the UART to USB convertor. We need to run the program on the host, send
the data to PN532 through serial port to control it. We used two PN532 to
implement standards, one acted as card and the other acted as reader. The
implementation process is, first we run our reader and card emulation program on
the host machine. The host machine will send command to serial port which are
connected by UART to USB convertor. The PN532 reader will receive command
from UART and send data by RF interface. Then PN532 card will receive data
from RF interface and send data to host by UART to USB convertor. The card
emulation program will receive data from serial port and reply through serial
port. The PN532 card will receive data and perform the response by RF interface.
Figure 3 shows the workflow of exchanging data using PN532.
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Fig. 3. Data exchange using PN532

To simplify the program development, we used Libnfc library such that we
can perform a set of complicated data transmissions by only implementing a
line of function, e.g. we initiate PN532 as reader using nfc initiator init func-
tion, implement nfc initiator select passive target function, the host machine
will control PN532 to send REQA command to the card and handle the ATQA
from card, then send SELECT command and deal with SAK from card. After
implemented this function, we can start data exchange with the card. When we
implement the functions in Libnfc in the program, Libnfc will receive the param-
eters, generate related data and send them through serial port. The PN532 will
receive the data through the UART to USB convertor and implement the com-
mand. After that, the PN532 will receive data and send the raw result back to
the host. The raw result will be analyzed by Libnfc and return a set of data as
the result of the function. Figure 4 shows the workflow of Libnfc.

4.2 TI RF430CL330H

We used TI RF430CL330H transponder to build testing platforms for ISO14443B
standard. The hardware we used is RF430BP booster pack with a RF430CL330H
on it. We attached the booster pack on a MSP430G2 launchpad. The connection
between these two board is I2C. After that, we connect the launchpad to com-
puter by a USB cable. The control method of this device is different from PN532.
We need to compile the program on PC using Code Composer Studio from TI,
then write the compiled code to the MSP430G2 launchpad. The MSP430G2
launchpad run the program and write the register of the booster pack to control
the RF430BP RF interface. When using PN532, we deal with the response data
on the host machine, however, in RF430BP, we actually run the host program
on MSP430G2. Sending data to host machine is optional. Figure 5 shows the
workflow of TI RF430CL330H.
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Fig. 4. Workflow of Libnfc

Fig. 5. Workflow of TI RF430CL330H

4.3 Chameleon Mini

Chameleon Mini is a hardware that we used for ISO14443A. The major difference
between Chameleon Mini and the devices mentioned above is, it does not need
a host. The firmware source code of Chameleon Mini is available on its website.
We can modify the source code to customize it. After we compile the source code
and write the data to the device, the device can start working with the power
supply of USB port or its own battery. Send debug message to computer is an
optional choice. Figure 6 shows the workflow of Chameleon Mini.
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Fig. 6. Workflow of Chameleon Mini

5 Conclusion

In this paper we implemented off-the-shelf card and reader emulators in dif-
ferent standards and tested the possibility of using different configurations on
each channel. Based on our analysis, it is suggested for ISO14443A, PN532 pro-
vides fast implementation and also provides support for ISO18092. Whereas
ChameleonMini provides low delay for ISO14443A. TI RF430CL330H support
ISO14443B card and reader emulation while PN532 only support ISO14443B
readers. PN532 can be used to emulate reader and card in ISO14443A and
ISO18092 standards. The advantage of PN532 is we can use Libnfc library to
simplify the code and reduce development time. We can also use Libnfc to mod-
ify the register of PN532 directly. The example program shows how to access
the register and we can add our own code to the example and compile them
to write our data to the register of PN532. This means we can use this plat-
form to test our own security implementation with flexibility. The drawback of
PN532 is the delay. We need to control PN532 through a USB cable that will
cost in order of milliseconds and may cause failure in some time sensitive appli-
cations. TI RF430CL330H can be used for ISO14443B standard. The advantage
of TI RF430CL330H is, the launchpad MSP430G2 can directly write the regis-
ter of the RF transponder to control the RF interface, which means the system
delay is low. The disadvantage of TI RF430CL330H is, the firmware source
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code of MSP430G2 is complicated and not easy to modify, which may signifi-
cantly increase the development time. Chameleon Mini is for ISO14443A, it can
work wirelessly, using the built-in battery slot without cable. The weak point of
Chameleon Mini is, though its hardware supports many modulation and codec,
its official firmware only support ISO14443A. If we want to use Chameleon Mini
to emulate other standards, we need to write the firmware by ourself.
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Abstract. We present a novel public key encryption scheme that
enables users to exchange many bits messages by means of at least two
large prime numbers in a Goldwasser-Micali manner. Our cryptosystem is
in fact a generalization of the Joye-Libert scheme (being itself an abstrac-
tion of the first probabilistic encryption scheme). We prove the security
of the proposed cryptosystem in the standard model (based on the gap
2k-residuosity assumption) and report complexity related facts. We also
describe an application of our scheme to biometric authentication and
discuss the security of our suggested protocol. Last but not least, we
indicate several promising research directions.

1 Introduction

The authors of [11] introduced a public key encryption (PKE) scheme1 repre-
senting a rather natural extension of the Goldwasser-Micali (GM) [9,10] cryp-
tosystem, the first probabilistic encryption scheme. The Goldwasser-Micali cryp-
tosystem achieves ciphertext indistinguishability under the Quadratic Residu-
osity (qr) assumption. Despite being simple and stylish, this scheme is quite
uneconomical in terms of bandwidth2. Various attempts of generalizing the
Goldwasser-Micali scheme were proposed in the literature in order to address
the previously mentioned issue. The Joye-Libert (JL) scheme can be considered
a follow-up of the cryptosystems proposed in [13] and [7] and efficiently supports
the encryption of larger messages.

Inspired by the Joye-Libert scheme, we propose a new public key cryptosys-
tem, analyze its security and provide the reader with an implementation and
performance discussion. We construct our scheme based on 2k-th power residue
symbols. Our generalization of the Joye-Libert cryptosystem makes use of two
1 Reconsidered in [5].
2 k · log2 n bits are needed to encrypt a k-bit message, where n is an RSA modulus as

described in [9,10].
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important parameters when it comes to the encryption and decryption func-
tions: the number of bits of a message and the number of distinct primes of a
public modulus n. Thus, our proposal not only supports the encryption of larger
messages (as in the Joye-Libert variant), but also operates on a variable number
of large primes (instead of two in the Joye-Libert case). Both these parameters
can be chosen depending on the desired security application.

Our scheme can be viewed as a flexible solution characterized by the ability of
making adequate trade-offs between encryption speed and ciphertext expansion
in a given context.

In biometric authentication protocols, when a user identifies himself using
his biometric characteristics (captured by a sensor), the collected data will vary.
Thus, traditional cryptographic approaches (such as storing a hash value) are
not suitable in this case, since they are not error tolerant. As a result, biometric-
based protocols must be constructed in a special way and, moreover, the system
must protect the sensitivity and privacy of a user’s biometric characteristics.
Such a protocol is proposed in [6]. Its core is the Goldwasser-Micali encryption
scheme. Thus, a natural extension of the protocol in [6] can be obtained using
our generalization of the Joye-Libert scheme. Thus, we describe such a biometric
authentication protocol and discuss its security.

Structure of the Paper. In Sect. 2 we introduce notations, definitions, security
assumptions and schemes used throughout the paper. Inspired by the Joye-Libert
PKE scheme and aiming at obtaining a relevant generalization, in Sect. 3 we
propose a new scheme based on 2k residues, prove it secure in the standard
model and analyze its performance compared to other related cryptosystems. An
application of our scheme to biometric authentication and its security analysis
are presented in Sect. 4. We conclude in Sect. 5 and in Appendix A we present
some optimized decryption algorithms for our proposed scheme.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. We use the
notation x

$←− X when selecting a random element x from a sample space X.
We denote by x ← y the assignment of the value y to the variable x. The
probability that event E happens is denoted by Pr[E]. The Jacobi symbol of

an integer a modulo an integer n is represented by
(

a

n

)
. Jn and J̄n denote the

sets of integers modulo n with Jacobi symbol 1, respectively −1. Throughout
the paper, we let QRn be the set of quadratic residues modulo n. We consider
as Zp = {−(p − 1)/2, . . . ,−1, 0, 1, . . . , (p − 1)/2} the alternative representation
modulo an integer p. The set of integers {0, . . . , a−1} is further denoted by [0, a).
Multidimensional vectors v = (v0, . . . , vs−1) are represented as v = {vi}i∈[0,s).

2.1 2k-th Power Residue

In this paper, we consider the 2k-th power residue symbol as presented in [15].
The classical Legendre symbol is obtained when k = 1.
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Definition 1. Let p be an odd prime such that 2k|p − 1. Then the symbol(
a

p

)
2k

= a
p−1
2k mod p

is called the 2k-th power residue symbol modulo p, where a
p−1
2k ∈ Zp.

Properties. The 2k-th power residue symbol satisfies the following properties

1. If a ≡ b mod p, then
(

a

p

)
2k

=
(

b

p

)
2k

2.
(

a2k

p

)
2k

= 1

3.
(

ab

p

)
2k

=
(

a

p

)
2k

(
b

p

)
2k

mod p

4.
(

1
p

)
2k

= 1 and
(

−1
p

)
2k

= (−1)(p−1)/2k

2.2 Computational Complexity

In our performance analysis we use the complexities of the mathematical opera-
tions listed in Table 1. These complexities are in accordance with the algorithms
presented in [8]. We do not use the explicit complexity of multiplication, but
instead we refer to it as M(·) for clarity.

Table 1. Computational complexity for μ-bit numbers and k-bit exponents

Operation Complexity

Multiplication M(μ) = O(μ log(μ) log(log(μ)))

Exponentiation O(kM(μ))

Jacobi symbol O(log(μ)M(μ))

2.3 Security Assumptions

Definition 2 (Quadratic Residuosity - qr, Squared Jacobi Symbol - sjs
and Gap 2k-Residuosity - gr). Choose two large prime numbers p, q ≥ 2λ

and compute n = pq. Let A be a probabilistic polynomial-time (PPT) algorithm
that returns 1 on input (x, n) or (x2, n) or (x, k, n) if x ∈ QRn or Jn or Jn\QRn.
We define the advantages

ADV qr
A (λ) =

∣
∣
∣Pr[A(x, n) = 1|x $←− QRn] − Pr[A(x, n) = 1|x $←− Jn \ QRn]

∣
∣
∣ ,

ADV sjs
A (λ) =

∣
∣
∣Pr[A(x2, n) = 1|x $←− Jn] − Pr[A(x2, n) = 1|x $←− J̄n]

∣
∣
∣ ,

ADV gr
A,k(λ) =

∣
∣
∣Pr[A(x, k, n) = 1|x $←− Jn \ QRn] − Pr[A(x2k

, k, n) = 1|x $←− Z
∗
n]

∣
∣
∣ .
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The Quadratic Residuosity assumption states that for any PPT algorithm A
the advantage ADV qr

A (λ) is negligible.
If p, q ≡ 1 mod 4, then the Squared Jacobi Symbol assumption states that for

any PPT algorithm A the advantage ADV sjs
A (λ) is negligible.

Let p, q ≡ 1 mod 2k. The Gap 2k-Residuosity assumption states that for any
PPT algorithm A the advantage ADV gr

A (λ) is negligible.

Remark 1. In [5], the authors investigate the relation between the assumptions
presented in Definition 2. They prove that for any PPT adversary A against the
gr assumption, we have two efficient PPT algorithms B1 and B2 such that

ADV gr
A,k(λ) ≤ 3

2

(
(k − 1

3
) · ADV qr

B1
(λ) + (k − 1) · ADV sjs

B2
(λ)

)
.

2.4 Public Key Encryption

A public key encryption (PKE) scheme usually consists of three PPT algorithms:
Setup, Encrypt and Decrypt. The Setup algorithm takes as input a security
parameter and outputs the public key as well as the matching secret key. Encrypt
takes as input the public key and a message and outputs the corresponding
ciphertext. The Decrypt algorithm takes as input the secret key and a ciphertext
and outputs either a valid message or an invalidity symbol (if the decryption
failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is captured in the following game:

Setup(λ): The challenger C generates the public key, sends it to adversary A
and keeps the matching secret key to himself.

Query: Adversary A sends to C two equal length messages m0,m1. The chal-
lenger flips a coin b ∈ {0, 1} and encrypts mb. The resulting ciphertext c is
sent to the adversary.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. He wins the
game, if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′] − 1/2|

where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

A (λ) is negligible.
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The Joye-Libert PKE Scheme. The Joye-Libert scheme was introduced in
[11] and reconsidered in [5]. The scheme is proven secure in the standard model
under the gr assumption. We shortly describe the algorithms of the Joye-Libert
cryptosystem.

Setup(λ): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that p, q ≥ 2λ and p, q ≡ 1 mod 2k. Output the public key
pk = (n, y, k), where n = pq and y ∈ Jn \ QRn. The corresponding secret key
is sk = (p, q).

Encrypt(pk,m): To encrypt a message m ∈ [0, 2k), we choose x
$←− Z

∗
n and

compute c ≡ ymx2k

mod n. Output the ciphertext c.

Decrypt(sk, c): Compute z ≡
(

c

p

)
2k

and find m such that the relation[(
y

p

)
2k

]m

≡ z mod p holds. Efficient methods to recover m can be found

in [12].

2.5 A Security Model for Biometric Authentication

We further consider the security model for biometric authentication described
in [3] in accordance with the terminology established in [6]. We stress that the
authors of [6] preferred a rather informal way of presenting their security model
while the approach of [3] is formal.

Participants and Roles. The data flow between the different roles assumed in
the authentication protocol of [3] is depicted in Fig. 1.

Fig. 1. Data flow and roles

The server-side functionality consists of three components to ensure that no
single entity can associate a user’s identity with the biometric data being col-
lected during authentication. The roles assumed in the authentication protocol
are:

– The Sensor (S) represents the client-side component. As in [6], we assume
that the sensor is capable of capturing the user’s biometric data, extracting
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it into a binary string3, and performing cryptographic operations such as
PKE. We also assume a liveness link between the sensor and the server-side
components, to provide confidence that the biometric data received on the
server-side is from a present living person.

– The Authentication Server (AS) is responsible for communicating with the
user who wants to authenticate and organizing the entire server-side proce-
dure. In a successful authentication the AS obviously learns the user’s iden-
tity, meaning that it should learn nothing about the biometric data being
submitted.

– The Database (DB) securely stores the users’ profile and its job is to execute
the pre-decision part of classification. Since the DB is aware of privileged
biometric data, it should learn nothing about the user’s identity, or even be
able to correlate or trace authentication runs from a given (unknown) user.

– The Matcher (M) completes the authentication process by taking the output
produced by the DB server and computing the final decision step. This implies
that the M possesses privileged information that allows it to make a final
decision, and again that it should not be able to learn anything about the
user’s real identity, or even be able to correlate or trace authentication runs
from a given (unknown) user.

Definition 4. Let v = {vi}i∈[0,s) and w = {wi}i∈[0,s) be two s-dimensional
vectors. Then the taxicab distance is defined as T (v, w) =

∑s−1
i=0 |vi − wi|. The

taxicab norm is defined as T (v, 0).

The first step in having a useful authentication protocol is for it to be sound.
This requirement is formalized in Requirement 1. Requirements 2. and 3. are
concerned with the sensitive4 relation between a user’s identity and its biometric
characteristics. We want to guarantee that the only entity in the infrastructure
that knows information about this relation is the sensor.

Requirement 1. The matcher M can compute the taxicab distance T (bi, b
′
i),

where bi is the reference biometric template and b′
i is the fresh biometric template

sent in the authentication request. Therefore, M can compare the distance to a
given threshold value d and the server AS can make the right decision.

Requirement 2. For any identity IDi0 , two biometric templates b′
i0

, b′
i1

, where
i0, i1 ≥ 1 and b′

i0
is the biometric template related to IDi0 , it is infeasible for

any of M, DB and AS to distinguish between (IDi0 , b
′
i0

) and (IDi0 , b
′
i1

).

Requirement 3. For any two users Ui0 and Ui1 , where i0, i1 ≥ 1, if Uiβ
, where

β
$←− {0, 1} makes an authentication attempt, then the database DB can only

guess β with a negligible advantage. Suppose the database DB makes a guess
β′, the advantage is |Pr[b = b′] − 1/2|.

3 We further consider the binary string as a vector of fixed length blocks.
4 In terms of the system’s security.
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3 A New Public Key Encryption Scheme

Inspired by the Joye-Libert scheme and wishing to obtain a meaningful gener-
alization, we propose a new public key cryptosystem in Sect. 3.1 and analyze its
security in Sect. 3.2. An implementation and performance analysis is provided
in Sect. 3.3.

3.1 Description

Setup(λ): Set an integer k ≥ 1. Randomly generate γ + 1 distinct large prime
numbers pi, i ∈ [0, γ + 1) such that pi ≥ 2λ and pi ≡ 1 mod 2k. Let n =

p0 · . . . · pγ . Select yi
$←− Z

∗
n, i ∈ [0, γ), such that the following conditions hold

1.
(

yi

pi

)
= −1

2.
(

yi

pγ

)
= −1

3.
(

yi

pj

)
2k

= 1, where j �= i

We denote by y = {yi}i∈[0,γ) and p = {pi}i∈[0,γ). Output the public key
pk = (n, y, k). The secret key is sk = p.

Encrypt(pk,m): To encrypt message m ∈ [0, 2kγ), first we divide it into γ

blocks m = m0‖ . . . ‖mγ−1. Then, we choose x
$←− Z

∗
n and compute c ≡

x2k ·
∏γ−1

i=0 ymi
i mod n. The output is ciphertext c.

Decrypt(sk, c): For each i ∈ [0, γ), compute mi = Decpi
(pi, yi, c).

Algorithm 1: Decpi
(pi, yi, c)

Input: The secret prime pi, the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 foreach s ∈ [1, k + 1) do

3 z ←
(

c

pi

)
2s

4 t ←
(

yi

pi

)
2s

5 t ← tmi mod pi

6 if t �= z then
7 mi ← mi + B
8 end
9 B ← 2B

10 end
11 return mi
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Correctness. Let mi =
∑k−1

w=0 bw2w be the binary expansion of block mi. Note
that

(
c

pi

)
2s

=
(

x2k ·
∏γ−1

v=0 ymv
v

pi

)
2s

=
(

ymi
i

pi

)
2s

=
(

yi

pi

)∑s−1
w=0 bw2w

2s

since

1.
(

x2k

pi

)
2s

= 1, where 1 ≤ s ≤ k

2.
(

yj

pi

)
2k

= 1, where j �= i

3.
∑k−1

w=0 bw2w =
(∑s−1

w=0 bw2w
)

+ 2s ·
(∑k−1

w=s bw2w−s
)

As a result, the message block mi can be recovered bit by bit using pi.

Remark 2. The case γ = k = 1 corresponds to the Goldwasser-Micali cryptosys-
tem [9] and the case γ = 1 corresponds to the Joye-Libert PKE scheme [11].

Remark 3. In the Setup phase, we have to compute a special type of yi. An
efficient way to perform this step is to randomly select yi,i

$←− Z
∗
pi

, yi,γ
$←− Z

∗
pγ

and wj
$←− Zp∗

j
, compute yj ← w2k

j mod pj and finally use the Chinese remainder
theorem to compute an element yi ∈ Z

∗
n such that yi ≡ yi,� mod p�.

3.2 Security Analysis

Theorem 1. Assume that the qr and sjs assumptions hold. Then, the proposed
scheme is ind-cpa secure in the standard model. Formally, let A be an efficient
PPT adversary, then there exist two efficient PPT algorithms B1 and B2 such
that

ADV ind-cpa
A (λ) ≤ 3

2
γ

(
(k − 1

3
) · ADV qr

B1
(λ) + (k − 1) · ADV sjs

B2
(λ)

)
.

Proof. To prove the statement, we simply replace the distribution of the public
key y for the encryption query. Let ni = pipγ , i ∈ [0, γ). Instead of choosing
yi ∈ Jni

\ QRni
we choose yi from the multiplicative subgroup of 2k residues

modulo ni. Under the gr assumption, the adversary does not detect the dif-
ference between the original scheme and the one with the modified yis. In this
case, the value c is not carrying any information about the message. Thus, the
ind-cpa security of our proposed cryptosystem follows.

Remark 4. Note that in Theorem 1 is sufficient to consider the gr assumption
modulo ni instead of modulo n. To prove this, lets consider an efficient PPT
distinguisher B for the gr assumption modulo n. Then we construct an efficient
distinguisher C for the gr assumption modulo ni.
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Thus, on input (yi, k, ni), C first randomly selects γ−1 primes {pj}j∈[0,γ)\{i}
such that pj ≡ 1 mod 2k and computes n = ni ·

∏
j∈[0,γ)\{i} pj . Then, using

the Chinese theorem, C computes a value ȳi such that ȳi ≡ yi mod ni and
ȳi ≡ 1 mod n/ni. Finally, C sends (ȳi, k, n) to B and he outputs B answer. It is
easy to see that C and B have the same success probability.

3.3 Implementation and Performance Analysis

Complexity Analysis. For simplicity, when computing the ciphertext expan-
sion, the encryption and the decryption complexities, we consider the length of
the prime numbers as being λ. Based on the complexities presented in Table 1,
we obtain the results listed in Table 2.

Table 2. Performance analysis for an η-bit message

Scheme Ciphertext size Encryption Complexity

GM [9] 2λ · η O(2M(2λ)η)

JL [11] 2λ · �η

k
� O(2(k + 1)M(2λ)�η

k
�)

This work (γ + 1) · λ · � η

γk
� O((γ + 1)(k + 1)M((γ + 1)λ)� η

γk
�)

Scheme Decryption Complexity

GM [9] O(log(λ)M(λ)η)

JL [11] O((2kλ + k2

2
)M(λ)�η

k
�)

This work O(γ(2kλ + k2

2
)M(λ)� η

γk
�)

Implementation Details. We further provide the reader with benchmarks for
our proposed PKE scheme.

We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00 GHz
and used GCC to compile it (with the O3 flag activated for optimization). Note
that for all computations we used the GMP library [2]. To calculate the running
times we used the omp get wtime() function [1]. To obtain the average running
time we chose to encrypt 100 128-bit messages.

For generating the primes needed in the Setup phase we used the naive imple-
mentation5. A more efficient method of generating primes is presented in [5,11].

We further list our results in Table 3 (running times in seconds). When ana-
lyzing Table 3, note that in the case γ = 1 we obtain the Goldwasser-Micali

5 i.e. we randomly generated r
$←− [2λ−k, 2λ−k+1) until the 2kr + 1 was prime.
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scheme (k = 1) and the Joye-Libert scheme (k = 2, 4, 8). We stress that we
considered λ = 15366.

For completeness, in Table 4 we also present the ciphertext size (in kilobytes
= 103 bytes) for the previously mentioned parameters.

Table 3. Average running times for a 128-bit message

Algorithm
γ = 1

k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.680128 0.632187 0.647911 0.648035 0.606200

Encrypt 0.001062 0.000661 0.000457 0.000333 0.000232

Decrypt 0.091672 0.091081 0.093016 0.090269 0.081925

Algorithm
γ = 2

k = 1 k = 2 k = 4 k = 8

Setup 1.115970 1.186430 1.592270 15.27510

Encrypt 0.001050 0.000778 0.000570 0.000477

Decrypt 0.098191 0.096581 0.093230 0.094690

Algorithm
γ = 4 γ = 8

k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.215690 14.67540 762.1870 109.4590 12429.10

Encrypt 0.001287 0.001190 0.001052 0.001829 0.002174

Decrypt 0.098939 0.097237 0.099977 0.096664 0.092930

Table 4. Ciphertext size for a 128-bit message

k = 1 k = 2 k = 4 k = 8 k = 16

γ = 1 49.152 24.576 12.288 6.1440 3.0720

γ = 2 36.864 18.432 9.2160 4.6080 −
γ = 4 30.720 15.360 7.6800 − −
γ = 8 27.648 13.824 − − −

4 An Application to Biometric Authentication

In [6], the authors propose a biometric authentication protocol based on the
Goldwasser-Micali scheme. A security flaw7 of the protocol was indicated and
fixed in [3]. A natural extension of Bringer et al.’s protocol can be obtained using
the scheme proposed in Sect. 3.1. Thus, we describe our protocol in Sect. 4.1 and
analyze its security in Sect. 4.2. A performance analysis is provided in Sect. 4.3.
6 According to NIST this choice of λ offers a security strength of 128 bits.
7 The running time is exponential in the number of users.
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4.1 Description

Enrollment Phase. In the protocol we consider Ui’s biometric template bi as
being a γM -dimensional vector bi = {bi,j}j∈[0,M), where bi,j = {bi,j,�}�∈[0,γ) and
bi,j,� ∈ [0, 2k).

In the enrollment phase, Ui registers (bi, i) at the database DB and (IDi, i)
at the authentication server AS, where IDi is Ui’s pseudonym and i is the index
of record bi in DB. Let N denote the number of records in DB. Note that the
matcher M possesses a key pair (sk, pk) for the scheme presented in Sect. 3.1.

We further denote by E(pk, ·) and EJL(pk, y�, ·) the encryption algorithms
for the scheme presented in Sect. 3.1 with pk = (n, y, k) and the Joye-Libert
scheme8 with pk = (n, y�, k), where � ∈ [0, γ).

Verification Phase. If a user Ui wishes to authenticate himself to AS, the
next procedure is followed:

1. S captures the user’s biometric data b′
i and sends to AS the user’s identity

IDi together with E(pk, b′
i) = {E(pk, b′

i,j)}j∈[0,M). Note that a liveness link
is available between S and AS to ensure that data is coming from the sensor
are indeed fresh and not artificial.

2. AS retrieves the index i using IDi and then sends EJL(pk, y�, tj) to the
database, for � ∈ [0, γ) and j ∈ [0, N), where tj = 1 if j = i, tj = 0 oth-
erwise.

3. For every s ∈ [0,M), DB computes

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
�=0

EJL(pk, y�, tj)bj,s,� mod n.

To prevent AS from performing an exhaustive search of the profile space,
DB re-randomizes the encryptions by calculating E(pk, bi,s) = x2k

s E(pk, bi,s),

where xs
$←− Z

∗
n. Then, DB sends E(pk, bi,s), for s ∈ [0,M) to the authentica-

tion server.
4. AS computes vs, s ∈ [0,M), where

vs = E(pk, b′
i,s)/E(pk, bi,s) mod n = E(pk, b′

i,s − bi,s), (1)

and b′
i,s −bi,s = {b′

i,s,� −bi,s,�}�∈[0,γ). Then, AS makes a random permutation
among vs, for s ∈ [0,M), and sends the permuted vector ws, for s ∈ [0,M),
to M. Note that Item 4 will return a valid result with high probability, thus
we do not explicitly require E(pk, bi,s) to be invertible.

8 Note that in this case we consider n to be a product of γ + 1 primes.
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5. M decrypts ws to check that the taxicab norm of the corresponding plaintext
vector

M−1∑
s=0

γ−1∑
�=0

|ws,�|

is equal to or less than d and sends the result AS.
6. AS accepts or rejects the authentication request accordingly.

Correctness (Requirement 1). We need to show that vs = E(pk, b′
i,s − bi,s), for

s ∈ [0,M). First observe that

E(pk, bi,s) =
N−1∏
j=0

γ−1∏
�=0

EJL(pk, y�, tj)bj,s,�

≡
N−1∏
j=0

γ−1∏
�=0

(r2
k

j,γy
tj

� )bj,s,�

≡ r2
k

i

γ−1∏
�=0

y
bi,s,�

� mod n.

Thus,

E(pk, b′
i,s)/E(pk, bi,s) ≡ E(pk, b′

i,s − bi,s) mod n.

It is obvious that the taxicab distance between bi and b′
i

M−1∑
s=0

γ−1∑
�=0

|b′
i,s,� − bi,s,�|

is equal to the taxicab norm of the plaintext vector corresponding to {vs}s∈[0,M)

and {ws}s∈[0,M).

4.2 Security Analysis

The proofs of Theorems 2 and 3 are similar to the security proofs from [6] and,
thus, are omitted. The only changes we have to make in the proofs of Theorems
2 and 3 is replacing Goldwasser-Micali with our scheme and, respectively, the
Joye-Libert scheme.

Theorem 2 (Requirement 2). For any identity IDi0 and two biometric tem-
plates b′

i0
, b′

i1
, where i0, i1 ≥ 1 and b′

i0
is the biometric template related to IDi0 ,

any M, DB and AS can distinguish between (IDi0 , b
′
i0

) and (IDi0 , b
′
i1

) with
negligible advantage.

Theorem 3 (Requirement 3). For any two users Ui0 and Ui1 , where i0, i1 ≥
1, if Uiβ

, where β
$←− {0, 1} makes an authentication attempt, then the database

DB can only guess β with a negligible advantage.
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4.3 Performance Analysis

It is easy to see that the sensor S and the matcher M perform only M encryp-
tions and, respectively, decryptions. Comparing our proposed protocol’s com-
plexity with Bringer et al.’s, reduces to comparing the scheme from Sect. 3.1
with the Goldwasser-Micali cryptosystem.9 On the authentication server’s side,
we perform γN Joye-Libert encryptions (which can be precomputed) and M
divisions. Bringer et al.’s protocol, performs step 2 using the Goldwasser-Micali
scheme and, thus, in step 4 they can use multiplications instead of divisions10.
Since we took into consideration the fix from [3] when proposing our protocol,
we have to perform M extra multiplications compared to the scheme in [6]. Since
we have to assemble our scheme’s ciphertexts from Joye-Libert’s ciphertexts we
have a blowout of γ multiplications on the database’s side. Thus, we perform
γMN/2 multiplications on average.

5 Conclusions and Further Development

Based on the Joye-Libert scheme we proposed a new PKE scheme, proved its
security in the standard model and analyzed its performance in a meaning-
ful context. We also described an application of our cryptosystem to biometric
authentication and presented its security analysis.

Future Work. An attractive research direction for the future is the construction
of lossy trapdoor functions (based on the inherited homomorphic properties of
our proposed cryptosystem). Another appealing future work idea is to propose
a threshold variant of our scheme and to discuss security and efficiency matters.

A Optimized Decryption Algorithms

In [12], the authors provide the reader with different versions of the decryption
algorithm corresponding to the Joye-Libert cryptosystem. We present slightly
modified versions of [12, Algorithm 3 and 4] in Algorithms 2 and 3. The authors
also propose two other optimizations [12, Algorithm 5 and 6], but their complex-
ity is similar with Algorithm 3 and 4’s complexity. Note that these optimizations
contain a typo: in line 5, Algorithm 5 and line 6, Algorithm 6 we should have
Ak−j �= C[k − j] mod p instead of A �= C[k − j] mod p.

For these algorithms to work we need to enhance the Setup algorithm of our
proposed cryptosystem. More precisely, we generate the γ + 1 prime numbers pi

with the supplementary restriction pi �≡ 1 mod 2k+1. For 0 ≤ i < γ, let p′
i =

(pi−1)/2k. We precompute Di = y
−p′

i
i for Algorithm 2 and Di[j] = D2j−1

i mod pi,
1 ≤ j ≤ k − 1, for Algorithm 3 and augment the private key with these values.
Remark that Algorithm 3 requires more memory than Algorithm 2.

9 See Sect. 3.3.
10 In Z2 addition and subtraction are equivalent.
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Algorithm 2: Fast decryption algorithm Version 1
Input: The secret values (pi, p

′
i, Di), the value yi and the ciphertext c

Output: The message block mi

1 mi ← 0, B ← 1

2 C ← cp′
i mod pi

3 foreach j ∈ [1, k − 1] do

4 z ← C2k−j

mod pi

5 if z �= 1 then
6 mi ← mi + B
7 C ← C · Di mod pi

8 end
9 B ← 2B, D ← D2 mod pi

10 end
11 if C �= 1 then
12 mi ← mi + B
13 end
14 return mi

Correctness. Let mi =
∑k−1

w=0 bw2w be the binary expansion of block mi. We
define αi[s] = 2k−sp′

i. Note that

cαi[s] ≡ (x2k ·
γ∏

v=1

ymv
v )αi[s]

≡ y
αi[s]

∑s−1
w=0 bw2w

i

≡ y
bs−12

k−1p′
i

i yαi[s]
∑s−2

w=0 bw2w

≡ (−1)bs−1yαi[s]
∑s−2

w=0 bw2w

mod pi

since

1. (x2k

)αi[s] = x2k−s(pi−1) = 1

2.
(

yj

pi

)
2k

= 1, where j �= i

3.
∑k−1

w=0 bw2w =
(∑s−1

w=0 bw2w
)

+ 2s ·
(∑k−1

w=s bw2w−s
)

4.
(

yi

pi

)
= −1

As a result, the message block mi can be recovered bit by bit using the values
pi, p′

i and the vector Di.

Implementation Details. The complexities of Algorithms 2 and 3 are O(γ(λ+
k2

2 + 3k
2 )M(λ)	 η

γk

) and O(γ(λ + k2

2 + k
2 )M(λ)	 η

γk

).

We further provide the reader with benchmarks for the optimized versions of
our PKE scheme (Tables 5 and 6).
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Algorithm 3: Fast decryption algorithm Version 2
Input: The secret values (pi, p

′
i, Di[1], . . . Di[k − 1]), the value yi and the

ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1

2 C ← cp′
i mod pi

3 foreach j ∈ [1, k − 1] do

4 z ← C2k−j

mod pi

5 if z �= 1 then
6 mi ← mi + B
7 C ← C · Di[j] mod pi

8 end
9 B ← 2B

10 end
11 if C �= 1 then
12 mi ← mi + B
13 end
14 return mi

Table 5. Average running times for Algorithm 2.

Algorithm
γ = 1

k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.736027 0.691385 0.704239 0.673276 0.7184

Encrypt 0.001218 0.000787 0.000516 0.000383 0.000296

Decrypt 0.052399 0.026501 0.013326 0.006679 0.003577

Algorithm
γ = 2

k = 1 k = 2 k = 4 k = 8

Setup 1.210450 1.334020 1.926020 15.35740

Encrypt 0.001137 0.000843 0.000638 0.000555

Decrypt 0.052409 0.026340 0.013168 0.007064

Algorithm
γ = 4 γ = 8

k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.662620 15.26860 828.9620 107.6630 14429.00

Encrypt 0.001423 0.001318 0.001058 0.002007 0.00244632

Decrypt 0.054294 0.026909 0.012723 0.052906 0.026168
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Table 6. Average running times for Algorithm 3.

Algorithm
γ = 1

k = 1 k = 2 k = 4 k = 8 k = 16

Setup 0.702962 0.709076 0.684529 0.713416 0.711517

Encrypt 0.001117 0.000796 0.000499 0.000378 0.000287

Decrypt 0.048072 0.024782 0.012958 0.006617 0.003436

Algorithm
γ = 2

k = 1 k = 2 k = 4 k = 8

Setup 1.086650 1.181620 1.877680 13.54860

Encrypt 0.001177 0.000798 0.000600 0.000518

Decrypt 0.049691 0.025127 0.012281 0.006574

Algorithm
γ = 4 γ = 8

k = 1 k = 2 k = 4 k = 1 k = 2

Setup 3.354720 14.33620 847.9770 104.0870 12741.90

Encrypt 0.001323 0.001296 0.001087 0.001936 0.002280

Decrypt 0.050909 0.026515 0.012982 0.051005 0.024521
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11. Joye, M., Libert, B.: Efficient cryptosystems from 2k -th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 5

12. Joye, M., Libert, B.: Efficient Cryptosystems from 2k-th Power Residue Symbols.
IACR Cryptology ePrint Archive 2013/435 (2014)

13. Naccache, D., Stern, J.: A new public key cryptosytem based on higher residues.
In: CCS 1998, pp. 59–66. ACM (1998)

14. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing tem-
plate security and privacy in biometric authentication systems. IEEE Trans. Inf.
Foren. Secur. 7(2), 833–841 (2012)

15. Yan, S.Y.: Number Theory for Computing. Theoretical Computer Science,
Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04773-6

https://doi.org/10.1007/978-3-642-38348-9_5
https://doi.org/10.1007/978-3-662-04773-6


New Insights on Differential and Linear
Bounds Using Mixed Integer Linear

Programming

Anubhab Baksi(B)

Nanyang Technological University, Singapore, Singapore
anubhab001@e.ntu.edu.sg

Abstract. Mixed Integer Linear Programming (MILP) is a very com-
mon method of modelling differential and linear bounds. The Convex
Hull (CH) modelling, introduced by Sun et al. (Eprint 2013/Asiacrypt
2014), is a popular method in this regard, which can convert the con-
ditions corresponding to a small (4-bit) SBox to MILP constraints effi-
ciently. Our analysis shows, there are SBoxes for which the CH modelling
can yield incorrect modelling. The problem arises from the observation
that although the CH is generated for a certain set of points, there can
be points outside this set which also satisfy all the inequalities of the
CH. As apparently no variant of the CH modelling can circumvent this
problem, we propose a new modelling for differential and linear bounds.
Our modelling makes use of every points of interest individually. Addi-
tionally, we also explore the possibility of using redundant constraints,
such that the run time for an MILP solver can be reduced while keeping
the optimal result unchanged. With our experiments on round-reduced
GIFT-128, we show it is possible to reduce the run time a few folds using
a suitable choice of redundant constraints. We also present the optimal
linear bounds for 11- and 12-rounds of GIFT-128, extending from the
best-known result of 10-rounds.

Keywords: Differential cryptanalysis · Linear cryptanalysis · MILP ·
Heuristic

1 Introduction

Mixed Integer Linear Programming (MILP) is among the most frequently used
tool in symmetric key cryptography, as evident from a large volume of research
works [1,8,9,12,17,18,20,21]. More particularly, MILP is used to determine the
bounds for differential cryptanalysis [5] and linear cryptanalysis [11] for a lot of
modern ciphers. MILP aided techniques generally give an opportunity to cover
more rounds with more precision. Since the differential and linear cryptanalytic
methods are essential for any cipher design, MILP aided techniques are fre-
quently used in cipher design and further cryptanalysis, such as design of GIFT
[3] or the improved differential bounds on GIFT in [21].

In the process, the problem of differential/linear bounds for a (reduced round)
cipher is converted to an MILP instance, which is then solved using a standard
c© Springer Nature Switzerland AG 2021
D. Maimut et al. (Eds.): SecITC 2020, LNCS 12596, pp. 41–54, 2021.
https://doi.org/10.1007/978-3-030-69255-1_4
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solver. It is to be noted that the modelling from a differential/linear bound to
an MILP instance can be done in various ways. As the efficiency of such a solver
greatly depends on the formulated MILP instance, the research community has
been active to find out optimal way for modelling. For example, the authors
of [9] experiment with heuristic techniques that can make the MILP solver can
solve those instances in less time.

The full version of the paper can be found in [2]. This paper uses shorthand
notations for the interest of conciseness. In particular, it uses the string notation
for the SBox (instead of the more common table based notation), and � to
denote the cardinality. Conversion of elements of Fn

2 to-and-from F2n is assumed
intrinsically.

Our Contributions
The authors of [18] have introduced a MILP modelling by incorporating the
concept of Convex Hull (CH), which becomes quite popular in the literature
[14,17,19,21]. It follows-up from Mouha et al.’s model [12].

We observe a problem related to this modelling which is not reported so far
in the literature. We show the convex hull modelling only works when the SBox
meets certain condition. Thus, applying the convex hull method to an arbitrary
SBox may lead to incorrect results. The problem arises to due a property of the
convex hull. That is, it may happen that a point may be inside the hyper-volume
of the convex hull while the convex hull is generated excluding that point. Varia-
tions of the CH model, such as [17], are also affected by this problem. Eventually,
this problem does not occur in common SBoxes, like GIFT (1A4C6F392DB7508E)
[3] or PRESENT (C56B90AD3EF84712) [6]. In case the problem occurs, one may
need to look for an alternate modelling; since apparently no variant of the con-
vex hull modelling can properly work with such an SBox. To address this issue,
i.e., to work with all SBoxes, we propose a different MILP modelling. This mod-
elling works for both differential and linear cases, and can give the exact bound
(similar to [17]). Further, this model can be fine-tuned to use with impossible
differential cases (such as, [15]), or to find the minimum number of active SBoxes
(used in the design of the GIFT family of block ciphers [3]), or iterative trails (like
[21]). It is not explicitly tested though, this modelling will likely work for SBoxes
with higher (>4) sizes (unlike the CH modelling of [18]).

On top of this, we propose heuristic methods to reduce the execution time.
This is inspired from [9], where the authors experiment with various heuristics
to improve run time of the MILP instances. These heuristics create a new MILP
instance, but do not alter the actual MILP problem (thus, the optimal bound
remains unchanged). Using suitable heuristic may help the MILP solver to return
the optimal solution faster. We experiment with three main heuristics, along with
its combinations. We show how one heuristic applies better to the differential
cases, whereas the other applies better to the linear cases. We indeed show a few
folds reduction of run time compared to the corresponding no heuristic cases.
Interestingly, the idea for two of our main heuristics is actually taken from the
convex hull modelling of [18]. The third idea makes use of the optimal bounds
already available for smaller rounds.
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For benchmark, we take the lightweight cipher GIFT-128 [3], and run the
MILP differential and linear instances for reduced rounds. As mentioned, the
problem associated with convex hull modelling does not appear for the GIFT
SBox. Therefore, we are able to verify our results with existing MILP bounds
on GIFT reported in the literature, namely [8,9,17,20]; and also with [10], which
uses a Simple Theorem Prover (STP) based approach is used (instead of MILP).
We also test with GIFT-64 [3] and PRESENT [6]; and report the optimal linear
bounds for GIFT-128 for 11- and 12-rounds for the first time in the literature.

2 Background

As previously mentioned, the problem of differential or linear bounds is converted
to an MILP instance through a proper modelling. After this, this MILP instance
is solved by some state-of-the-art solver, like Gurobi1.

This idea of using MILP is introduced by Mouha et al. [12]. The next major
contribution comes from Sun et al. [18], where the convex hull (which is actually
a concept in computation geometry [4,13]) is used to form the linear constraints.
This is quite useful as the code to find convex hull is implemented in the open-
source tool Sage2. The authors of [18] also propose a heuristic algorithm to
reduce the number of constraints returned by the convex hull, so that the MILP
instance thus constructed becomes faster to solve (but it does not change the
underlying problem of differential/linear bound). However, this claim is appar-
ently not backed-up by any experimental result.

It may be noted that, we actually model the Difference Distribution Table
(DDT) [16, Chapter 3.4] (see see [Definition 2][2]) for the differential case, and
the Linear Approximation Table (LAT) [16, Chapter 3.3] (see [Definition 2][2])
for the linear case. The convex hull method treats a given DDT/LAT as distinct
points in a hyper-cube. Then, the hyper-dimensional convex hull of the desired
points in the DDT/LAT is computed. Since a convex hull is represented by a
set of linear inequalities, those can be directly used for the constraints for the
MILP instance3.

2.1 Sun et al. (Active SBox: Eprint’13/Asiacypt’14)

Convex Hull Based Modelling. The authors of [18] propose to use CH, which
converts the input difference–output difference relations of the DDT into linear
constraints. This modelling is particularly useful for bit-oriented ciphers like GIFT
[3]. Since this model, similar to that of [12], uses the number of active SBoxes; it
is not possible to get the exact bound, as the maximum transition probability for

1 https://www.gurobi.com/.
2 https://www.sagemath.org/.
3 The inequalities are not strict, i.e., of the type ≤ or ≥ (but not of the type < or >).

The MILP solvers generally cannot handle strict inequalities, hence the inequalities
representing CH suits well for forming the constraints of MILP instances.

https://www.gurobi.com/
https://www.sagemath.org/
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each active SBox is assumed when computing the bound. Although not explored,
a similar modelling would also work for the linear case.

Consider a w×v SBox where (x0, x1, . . . , xw−1) denotes the (non-zero) input
difference vector, and (y0, y1, . . . , yv−1) denotes the (non-zero) output difference
vector. A dummy variable A of type binary is created, which indicates whether
the SBox is active (A = 1) or not (A = 0). The following constraints capture
this property:

A − xi ≥ 0 for i = 0, 1, . . . , w − 1;
w−1∑

i=0

xi − A ≥ 0.

Now the augmented vector (x0, x1, . . . , xw−1, y0, y1, . . . , yv−1) denote a (non-
zero) input difference – (non-zero) output difference pattern in the DDT. Each
of the vectors denote a point in the hyper-dimension. Then the concept of CH
is applied on the set of all of the augmented vectors, to convert the set of hyper-
dimensional points to non-strict linear inequalities.

In order to reduce the number of linear constraints, which in turn is expected
to reduce the execution time for the MILP solver; the authors of [18] also dis-
cuss about a greedy algorithm. For example, the number of constraints for the
GIFT SBox can be reduced to 21 [21, Section 4.2]. The basic idea of the greedy
algorithm is to remove some of the linear constraints from the set of all linear
constraints for the CH.

2.2 Sun et al. (Exact Bound: Eprint’14)

Extending the works of [18], the authors of [17] incorporate the individual tran-
sitions into the hyper-dimensional points (by increasing the dimension). After
this, the convex hull is computed as in [18]. As the individual transitions of DDT
are modelled, now it is possible to find the exact bound, thereby improving the
modelling from [18]. The greedy algorithm proposed in [18] is used to reduce the
number of linear constraints in the CH.

To see how this modelling works, we adopt (from [21, Section 4.2]) the exam-
ple of the 4 × 4 SBox used in GIFT, 1A4C6F392DB7508E. There are 4 non-zero
transitions in the DDT, namely (16, 6, 4, 2). Those non-zero transitions are mod-
elled by respectively a three-dimensional point. In particular, the 16 transition
(corresponds to 2log2 16/16 = 1-probability) is modelled by (0, 0, 0); the 6 transi-
tion (corresponds to 2log2 6/16 ≈ 2−1.415-probability) is modelled by (0, 0, 1); the
4 transition (corresponds to 2log2 4/16 = 2−2-probability) is modelled by (0, 1, 0);
and finally the 2 transition (corresponds to 2log2 2/16 = 2−3-probability) is mod-
elled by (1, 0, 0). Now the eight-dimensional vectors (x0, x1, x2, x3, y0, y1, y2, y3),
which indicate the (non-zero) input difference – (non-zero) output difference rela-
tions of this SBox, are augmented with the corresponding three-dimensional vec-
tors indicate the individual transitions. Thus now we have points over the binary
eleven-dimensional space, on which the convex hull is computed. Finally, the
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objective function is set to minimize
∑2

i=0,(p0,p1,p2)=(2,4,6)

(
log2

pi

16 × qi

)
, where

(q0, q1, q2) is the augmented vector (denoting the individual transitions). The
exact complexity for differential distinguisher is calculated by raising the result
of the MILP solver to the power of 2.

2.3 Li et al. (Heuristic: Eprint’19)

On top of the MILP modelling proposed in [17], the authors of [9] experiment by
altering the following parameters (in such a way that the solution to the MILP
problem remains unchanged), as given next.

1. Number of constraints. Insert redundant constraint (i.e., this constraint is
satisfied given other constraints) to the MILP instance. This will not change
the solution, but will likely influence the solver’s run time.

2. Ordering of constraints. The ordering of the constraints given by the code
for convex hull can be altered. Similar to the previous case, the solution will
not change.

3. Ordering of variables. The linear constraints can be written by changing
the variables. For example, the constraint a0x0 + a1x1 + · · · + an−1xn−1 ≥ b
can be written as, a1x1 + · · · + an−1xn−1 + a0x0 ≥ b.

The authors show that, all three types of heuristics influence the search
strategy of Gurobi. Thus, by carefully studying the effect of those heuristics
on run time of Gurobi, it is possible to create a new instance of the MILP
problem which is faster to solve (but has the same optimal solution).

3 Problem with Convex Hull Modelling

In this part, we describe our finding on the convex hull modelling used to find
differential and linear bounds. For simplicity, we only consider the modelling
from [18], i.e., without probability encoding for individual transitions.

As noted already, the convex hull method solves the problem of convert-
ing a DDT/LAT to MILP-compatible format. It maps a set of binary hyper-
dimensional points to a system of non-strict linear inequalities with real coeffi-
cients. Thus, all the points will satisfy the corresponding linear constraints which
describe the convex hull.

However, there is no check to ascertain a point not in the set of hyper-
dimensional points does not satisfy all the linear constraints. As a convex hull
has certain other properties, it may happen that a particular point which is not
within the set of points (which is used to create the convex hull) still satisfies all
the inequalities that govern the convex hull. In other words, the hyper-volume
created by some other points includes this point. Thus, the convex hull model
will take this point as a valid point (i.e., as if this point belongs to the set of
points based on which the convex hull is generated). If used in the MILP instance,
the solver will consider the point (which is outside the set of points for which
the CH is generated, but inside the hyper-volume of the CH) as valid. This can
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lead to wrong results. Indeed, our experiments confirm that this actually occurs
to a number of SBoxes. For a simple example, consider the 4 × 4 trivial SBox:
0123456789ABCDEF. There are 16 non-zero transitions in its DDT. Each being

16, are at the diagonal: (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7),
(8, 8), (9, 9), (a, a), (b, b), (c, c), (d, d), (e, e), (f, f). Thus the convex hull is gen-
erated for the 16 eight-dimensional points. This is given by the following eight
linear inequalities with dummy variables z0, z1, . . . , z7 (each of type binary), as
returned by Sage: 1−z4 ≥ 0, 1−z5 ≥ 0, 1−z6 ≥ 0, 1−z7 ≥ 0, z4 ≥ 0, z5 ≥ 0, z6 ≥
0, z7 ≥ 0. Since the corner points of the eight-dimensional cube are used to create
the CH, it inherently contains all other points, i.e., all 256 points ∈ F

8
2 satisfy

all the inequalities of the CH. This is due to the following property: For any two
points u and v in convex hull, any linear combination of u and v is also in the
convex hull. Out of those 256 points which satisfy the generated CH, 16 are of
the form: (0, 0, 0, 0, y0, y1, y2, y3) or (x0, x1, x2, x3, 0, 0, 0, 0). Hence those points
can be caught by proper modelling; such as,

∑3
i=0 xi − 1 ≥ 0,

∑3
i=0 yi − 1 ≥ 0.

The rest 240 points (none of which is at the diagonal of the DDT), correspond
to zero transitions of the DDT; yet the convex hull model cannot capture it. As
a result, the MILP instance will consider those points as non-zero transitions.

Here we present a few typical SBoxes with the same undesirable CH prop-
erty: Some zero transitions in DDT or LAT lie within the hyper-volume of the
convex hull (which is generated by points with non-zero transitions). We take
the representatives of each of the 302 Affine Equivalence (AE) classes from
[7, Chapter 5.4.2]. The results are summarized in Table 1 (Table 1(a) for differen-
tial and Table 1(b) for linear). Out of the 302 SBoxes tested, 49 show undesired
property for differential and 13 for linear. For instance, with the AE represen-
tative #245 of [7] (40132567E8A9CDBF), the non-zero transitions in the DDT
are 16, 6, 4, 2. The number of points with non-zero transitions in its DDT is 86,
the corresponding convex hull is given by 59 linear inequalities. Out of the 170
zero transitions in the DDT (ignoring the cases where either the input difference
or the output difference is 0), 80 of those satisfy all the convex hull inequali-
ties. Thus, for this SBox, the usual MILP modelling given in [18] could lead to
incorrect results for the differential case.

It may be noted that the undesired property may also hold if each transition
in DDT/LAT is modelled by separate convex hulls. It also appears that this
characteristic of CH does not follow the affine equivalence property, therefore
it is likely that more such SBoxes exist – finding which is left open for future
research. See [2, Section 3] for more details.

Equality Constraints. Together with the inequality constraints, there is a
Sage API which returns the equality constraints4. The problem mentioned here
will likely not appear if both the equality and the inequality constraints are used,

4 https://doc.sagemath.org/html/en/reference/discrete geometry/sage/geometry/
polyhedron/base.html#sage.geometry.polyhedron.base.Polyhedron base.
equations list.

https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/base.html#sage.geometry.polyhedron.base.Polyhedron_base.equations_list
https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/base.html#sage.geometry.polyhedron.base.Polyhedron_base.equations_list
https://doc.sagemath.org/html/en/reference/discrete_geometry/sage/geometry/polyhedron/base.html#sage.geometry.polyhedron.base.Polyhedron_base.equations_list
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Table 1. Typical SBoxes with undesired zero transitions in respective convex hulls

(a) Differential (b) Linear
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245 86 59 80 261 75 67 69 278 70 58 65 292 55 22 150 258 28 34 24

246 82 54 77 262 75 59 68 279 64 78 59 294 58 48 56 290 40 36 26

247 84 49 78 263 75 57 69 280 72 73 66 295 58 60 53 292 32 16 26

250 80 56 74 264 80 65 74 281 70 79 64 296 52 72 47 293 44 93 38

251 80 52 74 265 74 72 68 282 71 61 66 297 46 22 126 294 28 22 26

252 80 49 76 266 68 80 62 283 71 46 68 298 46 22 125 295 28 53 24

253 73 42 70 267 68 52 64 284 68 52 61 299 42 22 114 296 40 36 34

254 73 76 69 268 68 98 63 286 67 63 61 300 30 12 189 297 24 12 62

255 73 56 69 269 82 68 75 287 58 28 53 301 28 12 176 298 24 14 20

256 73 48 68 270 82 39 77 288 49 18 135 302 16 8 210 299 32 16 26

257 73 54 66 272 72 80 68 289 58 16 159 300 16 8 154

258 79 71 70 276 82 55 75 290 48 46 44 301 16 8 186

260 80 59 74 277 76 72 69 291 50 22 137 302 16 8 210

although it is not verified explicitly. Nonetheless, this is not mentioned in the
literature to the best of our knowledge.

4 Automated Bounds with MILP: Our Proposal

In case the problem (described in Sect. 3) is observed for the given SBox, a new
modelling different from that of [18] may be of interest since no variant of the
CH based model can circumvent this problem, to the best of our knowledge. In
this regard, we devise a new strategy for a Substitution-Permutation Network
(SPN) permutation. We describe our modelling for 4×4 SBox only for simplicity,
though it can be generalized if needed. We denote the state size and number of
rounds as b (counting from 0) and η (counting from 1), respectively.

Our modelling is inspired from the MILP modelling proposed in [1] and the
concept of indicator constraint (also known as the big M method) used in linear
programming where the large constant, M , is chosen. In our case, it is sufficient
to choose M = twice the SBox size (=8). Unlike [1], however, we do not rely on
any Boolean function based optimization; the constraints are directly fed to the
MILP instance instead.

To get the optimal differential probability, the result from the MILP solver is
negated (assuming the maximization variation, see Sect. 4.1), and raised to the
power of 2. So, if εd is the result from the MILP solver, the attacker will need at
least 2εd+1 chosen inputs, following [16, Chapter 3.4]. For the linear case, if the
result from the MILP solver (for the maximization variation) is εl, the attacker
would need at least 22εl known inputs [16, Chapter 3.3].
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4.1 Modelling

In this part, we describe the MILP modelling for the differential case. The MILP
formulation for the linear case is much alike, hence we skip the details for concise-
ness. For completeness, the main differences in the linear case are as follow. The
absolute values for the biases are considered. Since ± 1

2 linear bias is equivalent
to 1 differential probability, each Qp

i,j in the linear case are multiplied by 2 (the
notations are described later).

Assume each of the p transitions (corresponds to 2log2 p/16 probability tran-
sition, 1 ≥ p > 0) has qp frequency in the DDT. For example, there are fifty-
seven 2 transitions (each corresponds to 2−3 probability transition) for the SBox
40132567E8A9CDBF, as can be seen from its DDT in [2, Table 2]; hence q2 = 57.

First, for the ith SBox (i = 0, 1, . . . , b/4 − 1) at the jth round (j = 1, . . . , η);
we create the binary variables:

Qi,j to indicate if it is active;
Qp

i,j to indicate if it takes a p transition;
Qp

i,j,l, for l = 0, 1, . . . , qp − 1 to indicate which among the qp trails is chosen;
xi,j = (x0

i,j , x
1
i,j , x

2
i,j , x

3
i,j) to indicate the input difference;

yi,j = (y0
i,j , y

1
i,j , y

2
i,j , y

3
i,j) to indicate the output difference.

Next, we set the constraints for each SBoxes:

MQi,j ≥ ∑3
l=0 x

l
i,j +

∑3
l=0 y

l
i,j to check if it is active;

Qi,j =
∑

p Q
p
i,j to ensure if active, it will take exactly

one of the qp trails;
For each p transition, do:

Qp
i,j,l =

∑qp−1

l=0 Ql
i,j to check which trail among all qp-trails is chosen.

After this, each Qp
i,j,l for l = 0, 1, . . . , qp − 1 and for each p, is used to model

respective transitions. For example, the (6, 7) trail which is a 4 transition in the
DDT for the SBox 40132567E8A9CDBF (see [2, Table 2] for its DDT) is modelled
as: MQ4

i,j ≥ (x0
i,j)+(1−x1

i,j)+(1−x2
i,j)+(x3

i,j)+(y0
i,j)+(1−y1

i,j)+(1−y2
i,j)+

(1 − y3
i,j). Basically, each negative literal is taken as is, and each positive literal

is subtracted from 1; then added together.
Also, we have to give the initial input difference to at least one variable at

the beginning (j = 1), i.e.,
∑b/4−1

i=0

∑3
l=0 xl

i,1 ≥ 1.
There will be additional constraints representing the linear layer. For a bit-

permutation based cipher like GIFT-128, 128 equality constraints are inserted
for each round from 2 to η. For example, the second entry in the permutation
(1 → 33) is modelled as x1

8,j = y1
0,j−1. If required, this can be generalized to

other type of linear layers.
We fit the objective function: Minimize

∑b/4−1
i=0

∑η
j=1

∑
p<1 log2

p
16 × Qp

i,j . It

is typically written as: Maximize
∑b/4−1

i=0

∑η
j=1

∑
p<1

(− log2
p
16

) × Qp
i,j .
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4.2 Optimizations

Using the idea described earlier (in Sect. 4.1), we construct the MILP problems
and attempt to solve them using the Gurobi solver. Being inspired from [9], we
put redundant constraints in the MILP problem. Using redundant constraints
together with the usual constraints does not change the optimal result, but could
make the execution faster. Refer to [2, Section 4.2] for more discussion.

As for the choice of the heuristics, we reuse the idea of CH [18]/Sect. 2.1.
Therefore, we put additional constraints in the MILP problem together with the
usual constraints (described in Sect. 4.1). We basically employ three main heuris-
tics and combinations of those heuristics. The main heuristics are termed as All
Convex Hull, Chosen Convex Hull and Previous Solutions and are described
next.

All Convex Hull (All-CH). In this heuristic, we use all the inequalities gen-
erated for the convex hull. The convex hull is generated with all points in the
DDT/LAT the correspond to non-zero transitions. The choice of this heuristic
is motivated by the observation that the claim made in [18] (i.e., having all the
inequalities from the convex hull in the MILP instance will make the solver taking
more time) is apparently not supported by any experimental result. Follow-up
works, such as [17,21], seem to accept this claim without any apparent exper-
imental result too. In fact, it is claimed in [14] that, increasing the size of the
constraints that describe the DDT of an SBox may indeed reduce the run time.

Chosen Convex Hull (Chosen-CH). In this heuristic, we reduce the number
of inequalities for the convex hull (which is generated with points corresponding
to non-zero transitions of the DDT/LAT) by applying a randomized version of
the greedy algorithm (the greedy algorithm is proposed in [18]). The randomiza-
tion is applied in tie-breaking: When multiple inequalities are not satisfied by
same number of zero transitions, we break time tie uniformly. This way, we run
the algorithm few times to get the smallest number of constraints. Therefore,
this heuristic can be thought as an improvement over that of [18], as it is non-
deterministic in nature and chooses the smallest system of inequalities after a
few runs.

Previous Solutions (Prev-Sol). Suppose, we want to know the optimal
bound for round η and we already have optimal bounds (possibly by solving
MILP instances) for rounds 0, 1, . . . , η − 15. In this case, the solutions for the
previous rounds can be fed to the MILP instance. Since we know the optimal
bounds for smaller rounds, the objective functions can be assigned to those opti-
mal bounds; thus creating new constraints. For example, suppose we have the

5 Note that, this assumption is practical. As the run time for higher rounds take
significantly longer than the smaller rounds, generally the solutions for the smaller
rounds are available.
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optimal solutions up to 3rd round: s1, s2, s3; and want the optimal solution for
the 4th (so, η = 4) round. We create the 1-round objective function for each
round {(1), (2), (3), (4)}, and assign with s1 to create 4 constraints. Next, we
create the 2-round objective function by adding the 1-round objective functions
for two consecutive rounds {(1, 2), (2, 3), (3, 4)}, and assign each with s2 to cre-
ate 3 constraints. Finally, we create the 3-round objective function by adding
the 1-round objective functions for three consecutive rounds {(1, 2, 3), (2, 3, 4)},
and assign each with s3 to create 2 constraints. More discussion is omitted here
for the interest of brevity, an interested reader may refer to [2, Section 4.2].

4.3 Results

Here we present our experimental results for the differential and linear cases
for GIFT-128, GIFT-64 and PRESENT for reduced rounds. Results are obtained
from a workstation with 16× Intel Xeon E7-8880 physical cores (shared among
multiple users), running Gurobi 8.1 on 64-bit Ubuntu 18.04. It remains to see
how those heuristics perform with a different solver and/or environment.

The experimental results for run time are summarized in Table 2. Here we
present the average run time (in seconds) for the differential and linear MILP
instances for reduced round (1 to 8) GIFT-128 corresponding to the cases where
no heuristic is applied (only the usual constraints are used); usual constraints
with all-CH constraints are used, usual constraints with chosen-CH constraints
are used, usual constraints with previous solutions are used, usual constraints
with previous solutions and all-CH constraints are used, usual constraints with
previous solutions and chosen-CH constraints are used. The MILP instances with
previous solutions as heuristic appear to slow down the solver for the differential
case, particularly round 5 onward.

Table 2. Average run time for MILP instances for GIFT-128 with various heuristics

Round(s) 1 2 3 4 5 6 7 8

– 4.29 16.68 16.06 504.66 6698.07 914.91 1142.62 3142.78

D
iff

e
re

n
ti

a
l All-CH 0.25 3.47 15.05 63.15 931.07 607.34 754.12 2708.20

Chosen-CH 0.69 6.23 25.56 173.39 1949.50 1148.18 1239.64 4671.95

Prev-Sol 2.49 0.55 11.00 2097.36 12754.98 70514.22 122874.35 123434.43

Prev-Sol + All-CH 0.89 1.21 12.94 2034.16 9841.02 47055.10 127680.92 200204.50

Prev-Sol + Chosen-CH 0.38 1.06 10.51 1943.44 10867.38 40964.27 103575.79 229649.26

L
in

e
a
r

– 0.33 0.62 2.71 80.98 4546.46 2108.19 6814.77 38826.96

All-CH 0.31 1.67 4.18 28.84 80.36 2698.96 3374.94 15166.05

Chosen-CH 0.38 0.73 2.24 10.69 3205.41 1241.32 2649.87 13120.24

Prev-Sol 0.15 0.49 1.40 32.87 2435.58 1110.57 2639.03 20523.93

Prev-Sol + All-CH 0.22 0.61 2.01 19.46 52.88 1546.41 1750.24 9199.43

Prev-Sol + Chosen-CH 0.21 1.35 2.56 16.42 50.77 1764.47 1992.35 7065.79
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The relative (1.0×) run times for each of the heuristics, with respect to the
cases where no heuristic is used; can be seen from Fig. 1. The differential case
is shown in Fig. 1(a) (a zoomed in version till the 5th round is also shown), and
the linear case is given in Fig. 1(b). As evident from the experimental results,
it is generally difficult to find a general trend. Still, one may notice significant
improvement in run time, generally by a few folds. For example, the all-CH
heuristic is more suitable for the differential case; whereas the both the previous
solutions with all-CH and the previous solutions with chosen-CH is more suitable
for the linear case. Also, it appears that all three the previous solutions based
heuristics model perform somewhat similarly for the differential case, and in
general are slower than that of no heuristic. However, the same three heuristics
perform faster than no heuristic for the linear case.

Table 3 shows the optimal bounds till round 12 for GIFT-128, GIFT-64 and
PRESENT. We do not put the average run time corresponding to rounds 9 onward
as those cases are not run sufficient times (as each of such cases takes a long
time to run). These results are consistent with the existing literature [8–10,17,20].
Moreover, we present the optimal linear bounds of GIFT-128 for 11th and 12th

rounds. For more information, one may refer to [2, Section 4.3, Section B].
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Fig. 1. Relative performance of MILP heuristics for GIFT-128
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Table 3. Optimal bounds for GIFT-128, GIFT-64 and PRESENT

Round(s) 1 2 3 4 5 6 7 8 9 10 11 12

GIFT-128 Differential 1.415 3.415 7.000 11.415 17.000 22.415 28.415 39.000 45.415 49.415 54.415 60.415

Linear 1.000 2.000 3.000 5.000 7.000 10.000 13.000 17.000 22.000 26.000 31.000 36.000

GIFT-64 Differential 1.415 3.415 7.000 11.415 17.000 22.415 28.415 38.000 42.000 48.000 52.000 58.000

Linear 1.000 2.000 3.000 5.000 7.000 10.000 13.000 16.000 20.000 25.000 29.000 31.000

PRESENT Differential 2.000 4.000 8.000 12.000 20.000 24.000 28.000 32.000 36.000 41.000 46.000 52.000

Linear 1.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000 22.000

5 Conclusion

We attempt to study the problem of modelling differential and linear bounds
using MILP in depth. In the process, we revisit the modelling proposed in [18],
and explore a related shortcoming. It may happen for an SBox that the hyper-
volume of convex hull will contain some undesired points. Although this probably
does not happen with the commonly used SBoxes, it can still be inferred that
this model is not generic as it depends on specific properties of the SBox.

Therefore, we propose our new MILP modelling which works for any SBox
and is partly inspired from [1]. Our modelling is simpler, and it does not require
specialized library call like convex hull or Boolean logic minimization. At the
same time, we also follow [9], where the authors observe that the number of
constraints can influence the solution time taken by the MILP solver Gurobi.
Being motivated by their research, we experiment with redundant constraints.
The redundant constraints are inserted along with the usual constraints (which
are enough to specify the MILP instance). Those constraints do not change the
optimal solution, but can improve the run time. With our experiment, we observe
significant speed-up with the redundant constraints, compared to the case with
only usual constraints. We also show that one needs separate heuristic depending
on the MILP instance is for differential or linear bound.

In the future scope, one may extend the search for heuristics. As we are
always using our own constraints (described in Sect. 4.1), any other modelling
can be used as a heuristic. This includes, the branch number based model [12] or
that of [1]. One may also try to model the zero transitions (using an analogous
modelling to ours), and use those as redundant constraints in a way that the
MILP instance does not take those transitions. The effect of the heuristics is
not straightforward, and more experiments are needed in this direction. Next,
the problem with convex hull modelling can be more formally studied, and the
SBoxes can be characterized with respect to this problem. Lastly, the effect of a
different solver and/or environment can be studied.
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Abstract. This paper shows new card-based cryptographic protocols
using private operations that are secure against malicious players. Phys-
ical cards are used in card-based cryptographic protocols instead of com-
puters. Operations that a player executes in a place where the other play-
ers cannot see are called private operations. Using several private opera-
tions, calculations of two variable boolean functions and copy operations
were realized with the minimum number of cards. Though the private
operations are very powerful in card-based cryptographic protocols, there
is a problem that it is very hard to prevent malicious actions during pri-
vate operations. Though most card-based protocols are discussed in the
semi-honest model, there might be cases when the semi-honest model is
not enough. Thus, this paper shows new protocols that are secure against
malicious players. We show logical XOR, logical AND, and copy proto-
cols, since we can execute any logical computations with a combination
of these protocols. We use envelopes as an additional tool that can be
easily prepared and used by people.

Keywords: Multi-party secure computation · Card-based
cryptographic protocols · Private operations · Logical computations ·
Copy · Malicious model

1 Introduction

Card-based cryptographic protocols [6,13,28] were proposed in which physical
cards are used instead of computers to securely calculate values. They can be
used when computers cannot be used or users cannot trust the software on
the computer. Also, the protocols are easy to understand, thus the protocols
can be used to teach the basics of cryptography [4,19,23]. den Boer [2] first
showed a five-card protocol to securely calculate logical AND of two inputs.
Since then, many protocols have been proposed to realize primitives to calculate
any logical functions [1,12,14,16,29,33,39,40,48,49] and specific computations
such as a specific class of logical functions [7,24,26,34,37,41,44,47,53], million-
aires’ problem [20,32,38], voting [25,31,35,54], random permutation [8,10,11],
grouping [9], matching [19], ranking [51], proof of knowledge of a puzzle solu-
tion [3,5,18,21,22,42,43,45], and so on. This paper considers calculations of
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logical functions and a copy operation under the malicious model since any log-
ical function can be realized with a combination of these calculations.

Operations that a player executes in a place where the other players cannot
see are called private operations. These operations are considered to be exe-
cuted under the table or in the back. Private operations are shown to be the
most powerful primitives in card-based cryptographic protocols. They were first
introduced to solve millionaires’ problem [32]. Using three private operations
shown later, committed-input and committed-output logical AND, logical XOR,
and copy protocols can be achieved with the minimum number of cards [40].
Another class of private operations is private input operations that are used
when a player inputs a private value [17,38,50]. These operations are not dis-
cussed in this paper since it is impossible to prevent false input from a malicious
player. If the input values are honestly given, the players can use the protocols
shown in this paper.

The biggest problem of protocols using private operations is malicious actions.
Most of the card-based protocols assume the semi-honest model, in which the play-
ers obey the rule of the protocols but try to obtain private information. However,
there are many cases when we must consider the malicious model. When we allow
malicious actions, protocols using private operations are not secure. Since private
operations are executed where the other player cannot see, any malicious opera-
tion is possible during the private operations, for example, watching the marks of
face-down cards or changing the positions of cards.

One countermeasure to malicious actions is setting a watch person. When
the protocols are executed by more than two players, it is possible to detect
malicious actions by the following rule: whenever a player executes a private
operation, another player watches the execution and reports incorrect behavior.
The XOR, AND, and copy protocols can be executed securely against a malicious
player when the protocols are executed by more than two players [40]. However,
when the protocols are executed by two players, it is impossible to use the above
method. If Bob watches Alice’s private operations, Bob knows all operations,
thus the relation between input data and output data is known to Bob. When
the output card is opened, the secure input data are known to Bob using the
relation between the input data and the output data.

Thus we need new protocols for the two-player case. Since Bob cannot watch
Alice’s private operations, some additional mechanism to prevent illegally watch-
ing the marks of face-down cards during private operations is necessary. This
paper introduces envelopes to prevent illegally watching the marks of face-down
cards. Cards that must not be seen are publicly put into an envelope. If the
envelope is opened, it can be detected by anyone. Envelopes are used in [30]
to realize cryptographic protocols that do not use physical cards. In card-based
cryptographic protocols, envelopes are used in [8,36,44,49] to realize some kind
of shuffles that are not easy to execute by people.

This paper shows new card-based cryptographic protocols that are secure
against malicious players using envelopes as an additional tool. The malicious
actions during private operations are prevented by adding error-correction cards.
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We show logical XOR, logical AND, and copy protocols since any logical func-
tions can be obtained with a combination of these protocols.

As related works, protocols that use additional cards and prevent active attacks
while a player executes a shuffle were shown [15]. Another type of active attack is
inputting a false value that is not 0 or 1. A protocol to detect such injection attacks
was discussed in [27]. Protocols that prevent revealing face-down cards were dis-
cussed in [52]. The protocol uses the technique of secret-sharing to prevent informa-
tion leakage by opening some numbers of cards. The protocol cannot be applied to
the problem discussed in this paper since a malicious player might reveal all cards.
Another usage of private operations is realizing a public shuffle by multiple pri-
vate shuffles [29]. Using the method, logical XOR, logical AND, and copy can be
executed since there are no malicious actions in these private shuffles. Though the
protocols are very simple, the private primitives used in the protocols is private
shuffles. Preventing malicious actions for the new protocols that use private ran-
dom bisection cuts and private reveals are not considered.

A protocol to detect malicious actions by executing two instances of a proto-
col and comparing the results was shown [46]. The protocol uses cases to prevent
revealing face-down cards. The functionality of cases is just the same as the one
of envelopes in this paper. The protocol uses twice as many cards as the origi-
nal protocols and it is impossible to correct the malicious actions. This paper’s
protocols use fewer cards and can correct the result by malicious actions.

In Sect. 2, basic notations and the private operations introduced in [40] are
shown. Section 3 shows XOR, AND, and copy protocols. Section 4 concludes the
paper.

2 Preliminaries

2.1 Basic Notations

This section gives the notations and basic definitions of card-based protocols.
This paper is based on a two-color card model. In the two-color card model,

there are two kinds of marks, and . Cards of the same marks cannot be

distinguished. In addition, the back of both types of cards is . It is impossible

to determine the mark in the back of a given card of .
One bit data is represented by two cards as follows: = 0 and =

1.
One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is

called a commitment of x, and denoted as commit(x). It is written as .

Note that when these two cards are swapped, commit(x̄) can be obtained. Thus,
logical negation can be calculated without private operations.

A set of cards placed in a row is called a sequence of cards. A sequence of
cards S whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card of
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the sequence. . A sequence whose length is even is called

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by two players, Alice and Bob. The players might

be malicious, that is, they might not obey the rule of the protocols. There is
no collusion between Alice and Bob, otherwise private input data can be easily
revealed.

2.2 Private Operations

We show three private operations introduced in [40]: private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut)
A private random bisection cut is the following operation on an even sequence

S0 = s1, s2, . . . , s2m. A player selects a random bit b ∈ {0, 1} and outputs

S1 =
{
S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose the bit b.

Note that if the private random cut is executed when m = 1 and S0 =

commit(x), given , the player’s output , which is

or .

We sometimes write the result of the random bisection cut using bit b to a
sequence S1||S2(where |S1| = |S2|) as swap(b, S1||S2). swap(0, S1||S2) = S1||S2

and swap(1, S1||S2) = S2||S1 are satisfied.

Primitive 2 (Private reverse cut, Private reverse selection)
A private reverse cut is the following operation on an even sequence S2 =

s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{
S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player must not disclose b.

Note that the bit b is not newly selected by the player. This is the difference
between the primitive in Primitive 1, where a random bit must be newly selected
by the player.

Note that in some protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
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reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{
s1, s2, . . . , sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1

Primitive 3 (Private reveal) A player privately opens a given committed bit.
The player must not disclose the obtained value.

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Even
if Bob privately opens the cards, Bob obtains no information about x if b is
randomly selected and not disclosed by Alice. Bob must not disclose the obtained
value. If Bob discloses the obtained value to Alice, Alice knows the value of the
committed bit.

2.3 Space and Time Complexities

The space complexity of card-based protocols is evaluated by the number of
cards. Minimizing the number of cards is discussed in many works.

The number of rounds was proposed as a criterion to evaluate the time com-
plexity of card-based protocols using private operations[39]. The first round
begins from the initial state. The first round is (possibly parallel) local exe-
cutions by each player using the cards initially given to each player. It ends at
the instant when no further local execution is possible without receiving cards
from another player. The local executions in each round include sending cards
to some other players but do not include receiving cards. The result of every
private execution is known to the player. For example, shuffling whose result is
unknown to the player himself is not executed. Since the private operations are
executed in a place where the other players cannot see, it is hard to force the
player to execute such operations whose result is unknown to the player. The
i(> 1)-th round begins with receiving all the cards sent during the (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
local executions until no further local execution is possible without receiving
cards from another player. The number of rounds of a protocol is the maximum
number of rounds necessary to output the result among all possible inputs and
random values.

Let us show an example of a protocol execution and its space complexity and
time complexity.

Protocol 1 (AND protocol in [40])
Input: commit(x) and commit(y).
Output: commit(x ∧ y).
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1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =
{
commit(y)||commit(0) if x′ = 1
commit(0)||commit(y) if x′ = 0

and hands S2 to Alice.
3. Alice executes a private reverse selection on S2 using the bit b generated in the

private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3.

The correctness of the protocol is shown in [40]. The number of cards is four,
since the cards of commit(x′) is re-used to set commit(0).

The first round ends at the instant when Alice sends commit(x′) and
commit(y) to Bob. The second round begins at receiving the cards by Bob. The
second round ends at the instant when Bob sends S2 to Alice. The third round
begins at receiving the cards by Alice. The number of rounds of this protocol is
three.

Since each operation is relatively simple, the dominating time to execute
protocols with private operations is the time to handing cards between players
and setting up so that the cards are not seen by the other players. Thus the
number of rounds is the criterion to evaluate the time complexity of card-based
protocols with private operations.

2.4 Malicious Actions During Private Operations

We show examples of cheats by a malicious player for the AND protocol shown
in Protocol 1. In the first round, Alice may open the cards of commit(x) and
read the secret input value x. Alice might swap the two cards of commit(x) and
use x̄ as the input value. In the second round, Bob might open the cards of
commit(y). Bob might set the cards incorrectly, for example, set

S2 =
{
commit(1)||commit(y) if x′ = 1
commit(y)||commit(1) if x′ = 0

then the result becomes x∨y instead of x∧y. Bob can set any other card sequences
to obtain other incorrect results. In the third round, Alice might execute a private
reverse selection using a value b′(�= b). To make the protocol secure against
malicious players, all of the above cheats must be prohibited or detected.

3 XOR, and and Copy Under Malicious Model

This section shows our new protocols for XOR, AND, and copy.
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3.1 Additional Assumptions for Preventing Malicious Actions

Throughout this paper, we assume that each input is given as a committed value.
The output must also be given as a committed value so that the output can
be used as an input to further computations. Though some multi-party secure
calculation protocols assume that each player knows his/her private input, there
are some cases when we cannot assume that. For example, suppose that x1, x2

are Alice’s private input values and y1, y2 are Bob’s private input values and
they want to securely calculate (x1 ∨ y1) ∧ (x2 ∨ y2). After commit(x1 ∨ y1) and
commit(x2 ∨y2) are calculated, they need to calculate logical AND of two secret
values. Thus, we need to calculate the logical functions of two committed inputs.
If Alice knows an input value, she first commits her input and a committed input
protocol can be used.

We add an assumption that for at least one input, say, x multiple copies
of commit(x) are given as input. The reason for this assumption is as follows.
When a player, say, Alice is given commit(x) and executes a private operation,
there is no way for the other player to detect whether Alice maliciously executed
swapping two cards of commit(x) and made commit(x̄). Since Bob does not
know x, Bob cannot claim that x̄ is used instead of x. To detect this type of
malicious operation, another copy of commit(x) must be given. Using the copy
of commit(x), Bob can detect that Alice used commit(x̄) instead of commit(x),
as shown in the protocols in this paper. Note that a method to obtain multiple
copies of inputs using envelopes is shown in Sect. 3.4.

Next, we need to prevent malicious reveal of committed input values. In the
following protocols, we use envelopes as an additional tool. The cards can be
put into an envelope and sealed. Opening the envelope can be easily detected
by anyone. Thus a malicious player cannot irregularly open envelopes during
private operations because it is detected by the other player. It is impossible to
distinguish two envelopes. No player can prepare the same envelopes in his/her
pocket and exchange them for the envelopes used in the protocol. Such envelopes
are used in some card-based protocols [8,36,44,49].

We show some basic operations and notations related to the envelopes. The
order of the cards put into an envelope is preserved when the cards are removed.
For example, a card sequence S is put into an envelope, the output card sequence
from the envelope must also be S. In the following protocols, two envelopes, the
left and the right envelope are used and the following two types of insertions
are applied. The first one is putting each card of commitments to the left and
right envelope. For example, put the left cards of commit(x) and commit(y)
into the left envelope and put the right cards of commit(x) and commit(y)
into the right envelope. When the players remove the cards from the envelopes,
commit(x) and commit(y) are obtained. We write the state of the two envelopes
as [commit(x), commit(y)]. When we swap the left and right envelopes, the
output cards become commit(x̄) and commit(ȳ). Thus we write the state of the
swapped envelopes as [commit(x̄), commit(ȳ)].

The second one is putting the left card of commit(x) and the two cards of
commit(y) to the left envelope, and putting the right card of commit(x) and
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the two cards of commit(z) to the right envelope. We write the state of the
two envelopes as [commit(x), commit(y)||commit(z)]. When we swap the two
envelopes, we can obtain [commit(x̄), commit(z)||commit(y)].

In this paper, private random bisection cuts are executed to these two
envelopes. When Alice executes a private random bisection cut to the two
envelopes that have [commit(x), commit(y)], [commit(x ⊕ b), commit(y ⊕ b)]
is obtained. When Alice executes a private random bisection cut to the two
envelopes that have [commit(x), commit(y)||commit(z)],
[commit(x ⊕ b), swap(b, commit(y)||commit(z))] is obtained.

With the envelopes, the activities by a malicious player are as follows when
the private primitives are private random bisection cuts, private reverse cuts,
and private reveals on the envelopes.

Assumption 1 (Operations by malicious players)

– When a malicious player executes a private operation, he/she can swap some
envelopes even if it is not allowed in the protocol.

– When a malicious player executes a private random bisection cut to two sets
of envelopes A and B using the same random bit, he/she can use different
bits to A and B.

– When a malicious player executes a private reveal on envelope A, he/she can
open another envelope B if it cannot be detected by the other player (for
example, the number of cards in A and B are the same). Also, he/she might
not place envelopes according to the opened cards.

– When a malicious player executes a private reverse cut using bit b, he/she
might use b̄ instead of b.

3.2 XOR Protocol

Protocol 2 (XOR protocol)
Input: two copies of commit(x) and one copy of commit(y).
Output: commit(x ⊕ y).

1. Alice and Bob publicly put cards of one commit(x) and commit(y) into two
envelopes. The left(right) cards of commit(x) and commit(y) are put into the
left(right) envelope. The two envelopes have [commit(x), commit(y)].
The remaining two cards of commit(x) are put into two new envelopes so that
the left(right) card is put into the left(right) envelope. The two envelopes have
[commit(x)].
The envelopes that have [commit(x)] and [commit(x), commit(y)] are handed
to Alice.

2. Alice executes a private random bisection cut on [commit(x)] and
[commit(x), commit(y)] using the same random bit b. Let the output be [S1]
and [S′

1, S
′′
1 ]. S1 = commit(x⊕b), S′

1 = commit(x⊕b), and S′′
1 = commit(y⊕

b). Alice hands [S1] and [S′
1, S

′′
1 ] to Bob.



Card-Based Cryptographic Protocols Against Malicious Players 63

3. Bob first verifies that the envelopes are not opened. Then, Bob executes a
private reveal on [S1 = commit(x′)]. Bob verifies that the numbers of cards
in the envelopes are 1, otherwise Alice incorrectly handed envelopes. Bob pri-
vately swaps the two envelopes of [S′

1, S
′′
1 ] if x′ = 1, otherwise, does nothing.

Bob makes the two envelopes public, which are denoted [S′
2, S

′′
2 ].

4. Alice verifies that the envelopes are not opened. Alice and Bob open the
envelopes together and obtain S′

2 and S′′
2 . They turns (that is, face-up) S′

2. If
S′
2 = 0, S′′

2 is the output of the protocol. If S′
2 = 1, swap the two cards of S′′

2

and the result is the output of the protocol.

The protocol is three rounds. The first round is the public execution by Alice and
Bob. The second round is executed by Alice. The third round is executed by Bob.
The last execution by Alice and Bob does not need handing cards or envelopes.
Bob just makes the envelopes public and Bob can execute the operations in front
of Alice. Thus no overhead is necessary for the public execution. Therefore, the
number of rounds is considered to be three. The number of cards used in the
protocol is six.

Theorem 1. The output of the XOR protocol is correct even if Alice or Bob
is malicious. The protocol does not reveal the input values to the players if no
prohibited opening is executed.

Proof. First, we show the correctness when both Alice and Bob are honest.
Alice hands [S1] = [commit(x⊕b)] and [S′

1, S
′′
1 ] = [commit(x⊕b), commit(y⊕

b)] to Bob. Bob swaps the pair of [S′
1, S

′′
1 ] if x ⊕ b = 1. Thus [S′

2, S
′′
2 ] =

[commit((x⊕b)⊕(x⊕b)), commit((y⊕b)⊕(x⊕b))] = [commit(0), commit(x⊕y)].
Since S′

2 = commit(0), S′′
2 is not swapped and the output is commit(x ⊕ y).

Therefore, the output is correct. The protocol is secure since Alice sees S′
2 = 0

and Bob sees S′
2 = 0 and S1 = x⊕ b but b is an unknown random value for Bob.

Next, consider the case when Alice is malicious and Bob is honest. If Alice
opens an envelope during the private operation, Bob can detect the misbehav-
ior. Next, consider the case when Alice does not execute the private random
bisection cut correctly. Since the numbers of cards in [S1] and [S′

1, S
′′
1 ] dif-

fers, the only cheat that cannot be detected by Bob is incorrectly swapping
envelopes. Let b and b′ be the random bits selected to swap the envelopes that
have [commit(x)] and [commit(x), commit(y)], respectively. The output by Alice
is [S1] = [commit(x⊕ b)] and [S′

1, S
′′
1 ] = [commit(x⊕ b′), commit(y ⊕ b′)]. After

Bob opens [S1] = [commit(x⊕b)], Bob swaps the envelopes if x⊕b = 1, thus the
result [S′

2, S
′′
2 ] = [commit(x⊕ b′ ⊕ x⊕ b), commit(y ⊕ b′ ⊕ x⊕ b)] = [commit(b⊕

b′), commit(y⊕b′⊕x⊕b)]. When the players open S′
2, they obtain no information

about x since S′
2 = commit(b⊕ b′). In addition, if b⊕ b′ = 1, the cards of S′′

2 are
swapped, thus the output is commit(y ⊕ b′ ⊕ x⊕ b⊕ (b⊕ b′)) = commit(y ⊕ x).
The result is correct regardless of the selection of b and b′.

Next, consider the case Bob is also malicious. When Bob opens the envelopes
of [S′

1, S
′′
1 ], the cheat can be detected by Alice. Next, consider the case when Bob

does not set the envelopes correctly. When Bob sees x ⊕ b, Bob does not swap
the envelopes correctly, that is, Bob selects some value b′′(�= x⊕ b) ∈ {0, 1} and
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swaps the envelopes of [S′
1, S

′′
1 ] using b′′. If b′′ = x ⊕ b, the result is correct as

shown above. Thus the only cheat selection of b′′ is b′′ = x ⊕ b = x ⊕ b ⊕ 1.
In this case, the result is [S′

2, S
′′
2 ] = [commit(x⊕b′⊕b′′), commit(y⊕b′⊕b′′)] =

[commit(b′ ⊕ b ⊕ 1), commit(y ⊕ b′ ⊕ x ⊕ b ⊕ 1)]. When Alice and Bob open S′
2,

they do not obtain information about x since the value is independent of x. If
b′ ⊕ b ⊕ 1 = 1, the two envelopes of S′′

2 is swapped. The result is correct since
the output is commit(y ⊕ b′ ⊕ x ⊕ b ⊕ 1 ⊕ (b′ ⊕ b ⊕ 1)) = commit(y ⊕ x). ��
Note that the protocol achieves an error-correction. Even if Alice and/or Bob
make mistakes in swapping envelopes, the mistakes are automatically corrected
as shown above.

3.3 And Protocol

Protocol 3 (AND protocol)
Input: two copies of commit(x) and one copy of commit(y).
Output: commit(x ∧ y).

1. Alice and Bob publicly put cards into two envelopes. The left card of
commit(x) and two new cards of commit(0) are put into the left envelope.
The right card of commit(x) and the two cards of commit(y) are put into the
right envelope. The envelopes have [commit(x), commit(0)||commit(y)].
The remaining two cards of commit(x) are put into two envelopes so that
the left(right) card is put into the left(right) envelope. The envelopes have
[commit(x)].
The envelopes that have [commit(x)] and [commit(x), commit(0)||commit(y)]
are handed to Alice.

2. Alice executes a private random bisection cut on [commit(x)] and
[commit(x), commit(0)||commit(y)] using the same random bit b. Let the out-
put be [S1] and [S′

1, S
′′
1 ]. S1 = commit(x′), where x′ = x⊕b. S′

1 = commit(x′)
and S′′

1 = swap(b, commit(0)||commit(y)). Alice hands [S1] and [S′
1, S

′′
1 ] to

Bob.
3. Bob first verifies that the envelopes are not opened. Bob executes a private

reveal on [S1 = commit(x′)]. Bob verifies that the numbers of cards in the
envelopes are 1, otherwise Alice incorrectly handed the envelopes. Bob pri-
vately swaps two envelopes of [S′

1, S
′′
1 ] if x′ = 1, otherwise, does nothing. Bob

makes the two envelopes public, which are denoted [S′
2, S

′′
2 ].

4. Alice verifies that the envelopes that have [S′
2, S

′′
2 ] are not opened. Alice and

Bob open the envelopes together and obtains S′
2 and S′′

2 . They turn (that is,
face-up) S′

2. If S′
2 = 0, the left two cards of S′′

2 is the output of the protocol.
If S′

2 = 1, the right two cards of S′′
2 is the output of the protocol.

The protocol is three rounds. The protocol uses eight cards since two new cards
are used to set commit(0).

Theorem 2. The output of the AND protocol is correct even if Alice or Bob
is malicious. The protocol does not reveal the input values to the players if no
prohibited opening is executed.
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Proof. The desired output can be represented as follows.

x ∧ y =
{
y if x = 1
0 if x = 0

First, we show the correctness when both Alice and Bob are honest.
Alice hands [S1] = [commit(x ⊕ b)] and [S′

1, S
′′
1 ] = [commit(x ⊕ b),

swap(b, commit(0)||commit(y))] to Bob. Bob swaps the pair of [S′
1, S

′′
1 ] if x⊕b =

1. Thus [S′
2, S

′′
2 ] = [commit((x ⊕ b) ⊕ (x ⊕ b)), swap(x ⊕ b, swap(b, commit(0)||

commit(y))] = [commit(0), swap(x, commit(0)||commit(y))]. Thus the players
select the left two cards of swap(x, commit(0)||commit(y)). The selected cards
are commit(y) if x = 1 and commit(0) if x = 0. Thus, the output is correct.

The protocol is secure since Alice sees S′
2 = 0 and Bob sees S′

2 = 0 and
S1 = x ⊕ b but b is an unknown random value for Bob.

Next, consider the case when Alice is malicious and Bob is honest. If Alice
opens an envelope during the private operation, Bob can detect the misbehav-
ior. Next, consider the case when Alice does not execute the private random
bisection cut correctly. Since the numbers of cards in the envelopes for [S1]
and [S′

1, S
′′
1 ] differs, the only cheat that cannot be detected by Bob is incor-

rectly swapping envelopes. Let b and b′ be the random bits selected to swap
the envelopes that have [commit(x)] and [commit(x), commit(0)||commit(y)],
respectively. The output by Alice is [commit(x ⊕ b)] and [commit(x ⊕
b′), swap(b′, commit(0)||commit(y))]. After Bob opens [commit(x ⊕ b)], Bob
swaps the envelopes if x⊕ b = 1, thus the result [S′

2, S
′′
2 ] = [commit(x⊕ b′ ⊕ x⊕

b), swap(x⊕b, swap(b′, commit(0)||commit(y)))] = [commit(b⊕b′), swap(x⊕b⊕
b′, commit(0)||commit(y))]. When the players open S′

2, they obtain no informa-
tion about x since S′

2 = commit(b⊕b′). In addition, if b �= b′, the right two cards
of S′′

2 are used as the output otherwise, the left two cards of S′′
2 are used as the

output. This is equivalent to execute swap(b⊕b′, S′′
2 ) and select the left two cards.

Since swap(b⊕ b′, S′′
2 ) = swap(b⊕ b′, swap(x⊕ b⊕ b′, commit(0)||commit(y))) =

swap(x, commit(0)||commit(y)), the output is commit(0) if x = 0, otherwise the
output is commit(y). Therefore, the output is correct regardless of the selection
of b and b′.

Next, consider the case Bob is also malicious. When Bob opens the envelopes
of [S′

1, S
′′
1 ], the cheat can be detected by Alice. Next, consider the case when Bob

does not set the envelopes correctly. When Bob sees x⊕b, Bob does not swap the
envelopes correctly, that is, Bob selects some value b′′(�= x⊕b) ∈ {0, 1} and swaps
the envelopes of [S′

1, S
′′
1 ] using b′′. When b′′ = x⊕b, the output is correct since it

is the correct value. Thus the only cheat selection of b′′ is b′′ = x ⊕ b = x⊕ b⊕1.
In this case, the result is [S′

2, S
′′
2 ] = [commit(x ⊕ b′ ⊕ b′′), swap(b′′, swap(b,

commit(0)||commit(y)))] = [commit(b⊕ b′ ⊕ 1), swap(x⊕ b⊕ b′ ⊕ 1, commit(0)||
commit(y))]. When Alice and Bob open S′

2, they do not obtain information
about x since the value is independent of x.

In addition, if b⊕ b′ ⊕1 = 1, the right two cards of S′′
2 are used as the output

otherwise, the left two cards of S′′
2 are used as the output. This is equivalent

to execute swap(b ⊕ b′ ⊕ 1, S′′
2 ) and select the left two cards. Since swap(b ⊕
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b′ ⊕ 1, S′′
2 ) = swap(b ⊕ b′ ⊕ 1, swap(x ⊕ b ⊕ b′ ⊕ 1, commit(0)||commit(y))) =

swap(x, commit(0)||commit(y)), the output is commit(0) if x = 0, otherwise the
output is commit(y). Therefore, the output is correct regardless of the selection
of b and b′. ��
Note that even if Alice and/or Bob make mistakes in swapping envelopes, the
mistakes are automatically corrected as shown above.

3.4 COPY Protocol

Next, we show a copy protocol. Multiple copies of output data of computation
might be needed in some cases, for example, use the output result to a further
computation. A method to obtain m(> 1) copies of the output is preparing m
copies of commit(y).

In the XOR protocol, at the first step of the protocol, they put cards
into two envelopes so that [commit(x), commit(y), commit(y), . . . , commit(y)]
is obtained. At the last step, S′′

2 is m pairs of cards. When they need to swap the
cards, each pair of S′′

2 is swapped. Then we can obtain m copies of commit(x⊕y).
In the AND protocol, at the first step of the protocol, they put cards into two

envelopes so that [commit(x), (commit(0), . . . , commit(0))||(commit(y), . . . ,
commit(y))] is obtained, that is, put m copies of commit(0)(commit(y)) to the
left(right) envelope. At the last step, if S′

2 = 0, the output is the left m pairs of
cards. Otherwise, the output is the right m pairs of cards.

We can obtain another protocol that directly increases the number of copies
of input data using the XOR protocol. Two copies of commit(x) are given as
input. Execute the XOR protocol with two copies of commit(x) and m copies of
commit(0). Then the players obtain m copies of commit(x) as the output since
x ⊕ 0 = x.

Last, we show a method to obtain multiple copies of input x using two

envelopes. For any number n, cards are publicly put into the left(right)
envelope and the envelopes are sealed. The two envelopes are given to the input
player. The input player privately sets the two envelopes according to the private
input value x. Then all players publicly open the seals of the envelopes and two
piles of cards are obtained. When the players select one card from each of the
piles, a copy of commit(x) can be obtained, thus n copies of commit(x) can be
obtained.

When we calculate general logical functions using the above primitives, we
need to prepare two copies of each input. Any number of copies of a value can
be obtained by using the copy protocol at any time, if there are two copies
of the value. Obtaining two copies of an output value can be realized by the
above protocols, thus any logical functions can be calculated securely using these
protocols.
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4 Conclusion

This paper proposed new protocols using private operations that are secure
against malicious players. We show logical XOR, logical AND, and copy pro-
tocols that use envelopes for an additional tool. Since the envelopes are a very
powerful tool to restrict shuffle executions, malicious executions are corrected in
the protocols.

We can consider weak tools for preventing illegal opening face-down cards, for
example, seals on the marks of the cards. They cannot restrict shuffle executions.
One of the open problems is considering secure protocols with such tools.
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Abstract. We propose an anonymous credential system equipped with
independent decentralized authorities who issue credentials. In our sys-
tem, the number of authorities can dynamically increase or decrease. A
credential is a private secret key issued by an authority, and it is given to
an entity distinguished by an identifier. In the issuing phase, an author-
ity only has to sign identifiers. In the proving phase, under a principle of
“commit-to-id”, an entity proves to a verifier the knowledge of his/her
identifier and private secret keys by generating a unified proof. The
verifier should resist against collusion attacks executed by adversaries
who bring together the private secret keys issued to different identifiers.
To construct our system, we employ two building blocks; the structure-
preserving signature scheme and the Groth-Sahai non-interactive proof
system. Both blocks work in the setting of bilinear groups. To attain the
collusion resistance, we propose a notion of “bundled language” that is
abstraction of simultaneous pairing-product equations which include an
identifier as a variable.

Keywords: Anonymous credential system · Attribute ·
Decentralized · Collusion resistance · Identifier

1 Introduction

Global identifiers are useful digital-identity data on our connected networks.
Legitimately issued e-mail addresses and e-passports can be global identifiers,
which are used in registration phase of our activity on networks. Universally
unique identifiers (UUID) stipulated by ISO/IEC 11578:1996 are global identi-
fiers for devices with MAC addresses. Once a global identifier is linked to an
entity, the attribute credentials of the entity can be issued to the identifier by
authorities. In the proving phase, the entity proves its possession of authorized
attribute credentials.

Privacy protection on connected networks is a demand arising from the trend
that governments and platform-enterprises collect much information of individ-
uals. This trend is because public monitoring is critical in cyber-physical soci-
eties. Another reason is because data-driven decision-making becomes important
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for corporate entrepreneurship. Under the demand, we should distinguish cases
where identity information of entities is not needed. In the cases, the entities
should be authenticated and authorized by their attributes without identity data.
Cryptography can provide the solution for the cases, which is called anonymous
credential systems [5,7,8]. The entity is able to prove to a verifier the possession
of authorized attribute credentials anonymously.

There arises another trend that an individual is registered and authenti-
cated by independent decentralized authorities the number of which dynamically
increases or decreases in the world. For example, Single-Sign-On at “social-login”
has already become popular in cyber-physical space. Thus, we need to seek a pri-
vacy protecting cryptographic primitive that can treat independent decentralized
multi-authorities. An ingredient is to develop a decentralized multi-authority
anonymous credential system (DMA-ACS), in which attribute credentials are
attached to a global identifier. We note that “global” is useful in the case of
decentralized multi-authorities. However, there is a challenging task; attaining
collusion resistance. That is, in the case of DMA-ACS for which we will try, the
verifier should resist against collusion attacks by adversaries who bring together
the attribute credentials issued to different identifiers. Note that the collusion
resistance has been already pursued in attribute-based cryptographic primitives
such as attribute-based encryption [14] and signatures [15], but in the case of
DMA-ACS, it has not been studied yet.

1.1 Our Contribution and Related Work

Our Contribution. In this paper, we define syntax and security definitions
of DMA-ACS with collusion resistance in scope. Especially we give three secu-
rity definitions. One is existential unforgeability (EUF) against collusion attacks
that cause mis-authorization. Note that in a real scenario the number of author-
ities is increasing/decreasing, and hence an adversary can corrupt some of the
authorities and get the master secret keys of them. We will reflect the corrupted
authorities in the definition.

The other two security definitions are anonymity and unlinkability. Here we
should distinguish the two types of anonymity; anonymity at the issuing phase
and anonymity of the proofs generated by entities. The former anonymity means
that the issuer is blinded under mechanisms such as a blind signature scheme.
On the other hand, the latter anonymity means that even the issuer cannot get
any information on identifiers from given proofs. The anonymity defined and
proved in this paper is the latter one. As for unlinkability, it is security notion
on the proofs; if any PPT adversary cannot distinguish whether two given proofs
are generated by an entity having a single identifier or by two entities having
different identifiers, ACS is said to have unlinkability of proofs. In our definitions,
the unlinkability of proofs implies the anonymity of proofs, and we will prove
the relation.

Then, we propose a generic construction of DMA-ACS. A functional feature
is that an attribute authority who issues a private secret key to a prover only has
to sign prover’s identifier. We remark that the authorities use a set of common
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public parameters. This is a natural scenario under a standard like NIST FIPS
186-4. The prover who has private secret keys as authorized attributes generates
a proof under a principle of “commit-to-identifier”. The verifier who has to check
the validity of the proof downloads the public keys of the authorities from nearest
repository servers, and executes verification.

We give the generic construction by employing two building blocks; the
structure-preserving signature scheme (SPS) [3] and the Groth-Sahai non-
interactive proof system [9,13]. The both blocks are based on asymmetric bilin-
ear groups. A constructional feature is that we use the notion of “bundled lan-
guage” which was proposed by [4]. That is, the above principle corresponds to
simultaneous pairing-product equations that are in the verification phase of the
structure-preserving signatures. More precisely, a prover first generates a com-
mitment c0 to her identifier i. Then for each authority index ‘a’, she also gener-
ates commitments (ca

i )i to the components of the structure-preserving signature
σa = (σa

i )i in the componentwise way (i.e. for each i separately). Then, she
computes proofs πa for each ‘a’ by using the pairing-product equation for veri-
fication of the message-signature pair (i, σa). She merges all the commitments
and proofs as a whole proof π = (c0, ((ca

i )i, π
a)a).

We prove that our construction satisfies the above three security definitions.
As for EUF against collusion attacks, collusion resistance is a direct consequence
of the binding property of the commitment c0 to i because c0 is common in the
generation of proofs (πa)a. EUF is due to the knowledge extraction property
of the Groth-Sahai proofs and the EUF property of the structure-preserving
signatures. As for anonymity and unlinkability of proofs, we first prove that
our unlinkability implies anonymity. Then, unlinkability is derived from the
two properties; the perfectly hiding property of commitments and the perfect
witness-indistinguishability of proofs. We must note that these two properties
hold in the simulation mode of the commitments, which is due to the simulation-
mode commitment key that is in the common-reference string. This notion is
known as the dual-mode commitment [9,13]).

Related Work. We briefly compare the related work on ACS with our proposed
DMA-ACS. Table 1 shows the comparison. dACS1 is our DMA-ACS that employs
the SPS scheme of [1], and dACS2 is our DMA-ACS that employs the SPS scheme
of [3]. |A′| is the number of attribute credentials involved in a proof (see Sect. 4.1).
Note that, in our DMA-ACS, each attribute credential is issued by an possibly
independent authority.

Camenisch et al. [5] proposed ACS with the universal composability prop-
erty. Fuchsbauer et al. [11] proposed ACS with addtional anonymity at issuing
phase. Both [5] and [11] are capable of proving satisfiability of all-and formulas.
Okishima-Nakanishi [16] proposed ACS with expressiveness; that is, it is capable
of proving satisfiability of CNF formulas in which each clause may have nega-
tions. Note that all the three ACSs [5,10,16] are single-authority systems and
attain the property of constant-size proof. However, they do not have collusion
resistance. In contrast, our DMA-ACS is multi-authority system, and it attains
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Table 1. Feature comparison of aonymous cedential sstems

Scheme Decentra. Collus. Formula Ano. Ano. Unlink Unforge. Length of

Auth. Resist. of Proof Iss. Proof Proof Assump. Proof

CDHK [5] No - All-and - � � SXDH, O(1)

J-RootDH,

q-SFP

FHS [11] No - All-and � � � t-co-DL, O(1)

GGM

ON [16] No - cnf w.¬ - � � DLIN, O(1)

q-SFP,

n-DHE

Our dACS1 � � All-and No � � SXDH, O(|A′|)
q-SFP

Our dACS2 � � All-and No � � SXDH O(|A′|)
Note. “Formula of Proof” means the type of boolean formulas attached to the proofs.
“all-and” means a formula in which all the boolean connectives are and. “cnf w.¬”
means a CNF formula in which each clause may have negations. “Anonym. Iss.”
means whether anonymity at the issuing phase is attained or not. “Unforge. Assump.”
means the assumptions needed for unforgeability. ‘�’ means “attained” and “no”
means “not attained”. |A′| is the number of attribute credentials involved. For each
“Unforgeability Assumption”, see the cited references.

collusion resistance. Its proof-size is linear to the number of proven attribute cre-
dentials. We must say that it is a drawback of our proposed DMA-ACS. Instead,
in our DMA-ACS, an individual can be registered by independent decentral-
ized authorities the number of which dynamically increases or decreases. As for
non-transferability [6], our DMA-ACS suppresses transferring one’s credentials
to another. This is because, in the proving phase, the prover must use her global
identifier which is better to be kept secret within her. Finally, the anonymous
credential systems including our DMA-ACS have universal composability when
their proofs are generated by the Groth-Sahai proof system [9,13].

2 Preliminaries

The set of natural numbers is denoted by N. The residue class ring of integers
modulo a prime number p is denoted by Zp. The security parameter is denoted
by λ, where λ ∈ N. A probability P is said to be negligible in λ if for any
given positive polynomial poly(·) P < 1/poly(λ) for sufficiently large λ ∈ N.
Two probabilities P and Q are said to be computationally indistinguishable
if |P − Q| is negligible in λ, which is denoted as P ≈c Q. A uniform random
sampling of an element a from a set S is denoted as a ∈R S. When a probabilistic
algorithm A with an input a and a randomness r on a random tape returns z,
we denote it as z ← A(a; r). We denote the inner state of an algorithm by St.
A vector c = (ci)i∈I whose components are with subscripts is abbreviated as
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(ci)i. Simmilarly, a vector c = (ca)a∈A is abbreviated as (ca)a, and a vector
c = (ca

i )a∈A
i∈I is abbreviated as (ca

i )a
i .

2.1 Bilinear Groups [9,12]

Let BG be a bilinear group generator algorithm [12]: BG(1λ) →
(p, Ĝ, Ȟ, T, e, Ĝ, Ȟ). Here p is a prime number of bit-length λ, Ĝ, Ȟ and T are
cyclic groups of order p, and Ĝ and Ȟ are generators of Ĝ and Ȟ, respectively. We
denote operations in Ĝ, Ȟ and T multiplicatively. e is the bilinear map of Ĝ×Ȟ to
T. e should have the following two properties: Non-degeneracy : e(Ĝ, Ȟ) �= 1T,
and Bilinearity : ∀a ∈ Zp,∀b ∈ Zp,∀X̂ ∈ Ĝ,∀Y̌ ∈ Ȟ, e(X̂a, Y̌ b) = e(X̂, Y̌ )ab.
Hereafter we denote an element in Ĝ and Ȟ with hat ‘ ˆ ’ and check ‘ ˇ ’ ,
respectively.

2.2 Structure-Preserving Signature Scheme [1,3]

The structure-preserving signature scheme Sig consists of four ppt algorithms:
Sig = (Sig.Setup, Sig.KGpp, Sig.Signpp, Sig.Vrfpp).
Sig.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm
executes the bilinear-group generator algorithm, and it puts the output as a set
of public parameters: BG(1λ) → (p, Ĝ, Ȟ, T, e, Ĝ, Ȟ) =: pp. It returns pp.
Sig.KGpp() → (PK,SK). Based on the set of public parameters pp, this ppt
algorithm generates a signing key SK and the corresponding public key PK. It
returns (PK,SK).
Sig.Signpp(PK,SK,m) → σ. On input the public key PK, the secret key SK and
a message m ∈ Ĝ or Ȟ, this ppt algorithm generates a signature σ. In the case
of SPS, σ consists of elements (Vi)i where Vi is in either Ĝ or Ȟ. It returns
σ := (Vi)i.
Sig.Vrfpp(PK,m, σ) → d. On input the public key PK, a message m ∈ Ĝ or Ȟ and
a signature σ = (Vi)i, this deterministic algorithm returns a boolean decision d.

The correctness should hold for the scheme Sig: For any security param-
eter 1λ, any set of public parameters pp ← Sig.Setup(1λ) and any message
m, Pr[d = 1 | (PK,SK) ← Sig.KGpp(), σ ← Sig.Signpp(PK,SK,m), d ←
Sig.Vrfpp(PK,m, σ)] = 1.

Adaptive chosen-message attack of an existential forgery on the scheme Sig
by a forger algorithm F is defined by the following algorithm of experiment.

Expeuf-cma
Sig,F (1λ) :

pp ← Sig.Setup(1λ), (PK,SK) ← Sig.KGpp()

(m∗, σ∗) ← FSignOpp(PK,SK,·)(pp,PK)
If m∗ /∈ {mj}1≤j≤qs and Sig.Vrfpp(PK,m∗, σ∗) = 1,

then Return Win else Return Lose
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In the experiment, F issues a signing query to its signing oracle
SignOpp(PK,SK, ·) by sending a message mj at most qs times (1 ≤ j ≤ qs).
As a reply, F receives a valid signature σj . Here qs is bounded by a poly-
nomial in λ. Then F returns a pair of a message and a signature (m∗, σ∗).
A restriction on F is that the set of queried messages {mj}1≤j≤qs should
not contain the message m∗. The advantage of F over Sig is defined as
Adveuf-cma

Sig,F (λ) := Pr[Expeuf-cma
Sig,F (1λ) returns Win]. The scheme Sig is said to be

existentially unforgeable against adaptive chosen-message attacks (EUF-CMA)
if for any ppt algorithm F the advantage Adveuf-cma

Sig,F (λ) is negligible in λ.

2.3 Non-interactive Commit-and-Prove Scheme
for Structure-Preserving Signatures

According to the fine-tuned Groth-Sahai proof system [9], we survey
here the non-interactive commit-and-prove scheme on pairing-product equa-
tions. A commit-and-prove scheme CmtPrv consists of six ppt algorithms:
CmtPrv = (CmtPrv.Setup,Cmt.KGpp,Cmtpp = (Cmt.Compp,Cmt.Vrfpp),Prvpp =
(Ppp,Vpp)).

Language. We first describe the language for which our scheme will work. The
language is dependent on the type of verification equations of the Groth-Sahai
proofs (group-dependent languages [13]). For this purpose, we first fix the set of
public parameters and the commitment key, which are common reference string
in the term of non-interactive proof systems [9,13].

• CmtPrv.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algo-
rithm executes a bilinear-group generator algorithm BG, and it puts the out-
put as the public parameters pp: BG(1λ) → (p, Ĝ, Ȟ, T, e, Ĝ, Ȟ) =: pp. It
returns pp.

• Cmt.KGpp(mode) → key. On input a string mode, this ppt algorithm generates
a key. If mode = nor, then key = ck which is a commitment key. If mode =
ext, then key = (ck, xk) which is a pair of ck and an extraction key xk. If
mode = sim, then key = (ck, tk) which is a pair of ck and a trapdoor key tk.
It returns key.
We put pp := (pp, ck). Note here that the commitment key ck is treated as

one of the public parameters.
Let n ∈ N be a constant. Suppose that we are given a pairing-product equa-

tion system with n equations and with variables (X̂i)i and (Y̌j)j :
⎧
⎪⎨

⎪⎩

∏
i e(X̂i, B̌1i)

∏
j e(Â1j , Y̌j)

∏
i

∏
j e(X̂i, Y̌j)γ1ij = tT1,

· · ·
∏

i e(X̂i, B̌ni)
∏

j e(Ânj , Y̌j)
∏

i

∏
j e(X̂i, Y̌j)γnij = tTn.

(1)
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Let Lpp denote the set of coefficients of the pairing-product equation system (1)
and Wpp(x) denote the set of solutions for x ∈ Lpp:

Lpp := {x ∈ (
∏

i

Ĝ ×
∏

j

Ȟ ×
∏

i

∏

j

Zp)n | x = ((B̌ki)i, (Âkj)j , (γkij)i,j)n
k=1},

(2)

Wpp(x) := {w ∈
∏

i

Ĝ ×
∏

j

Ȟ | w = ((Ŵi)i, (W̌j)j) satisfies (1) for x}, (3)

Rpp := {(x,w) ∈ (
∏

i

Ĝ ×
∏

j

Ȟ ×
∏

i

∏

j

Zp)n ×
∏

i

Ĝ ×
∏

j

Ȟ

| (x,w) = (((B̌ki)i, (Âkj)j , (γkij)i,j)n
k=1, ((Ŵi)i, (W̌j)j)) satisfies (1)}.

(4)

For a fixed parameter set pp, we call Lpp, Wpp(x) and Rpp the group-dependent
language with pp, the witness space of x with pp and the relation with pp,
respectively.
Commitment Part [9,13]. The commitment part Cmtpp = (Cmt.Compp,
Cmt.Vrfpp) is described as follows.

• Cmt.Compp(w; r) → (c, r). On input a message w (which will be a witness in
the proof part), this ppt algorithm generates a commitment c with a ran-
domness r. r will also be a verification key. It returns (c, r). When w is a
vector w = (wi)i, c and r are also vectors of the same number of compo-
nents: c = (ci)i and r = (ri)i. Note that computation is executed in the
componentwise way ; Cmt.Compp(wi; ri) → (ci, ri).

• Cmt.Vrfpp(c, w, r) → d. On input a commitment c, a message w and a verifi-
cation key r, this deterministic algorithm generates a boolean decision d. It
returns d.

The commitment part Cmtpp of the Groth-Sahai proof system has the four
properties [9]: (1) perfect correctness, (2) dual mode, (3) perfectly binding and
(4) perfectly hiding. The detailed definitions are given in Appendix A.

Proof Part [9,13]. The proof part Prvpp = (Ppp,Vpp) is described as follows.

• Ppp(x, c, w, r) → π. On input a statement x, a commitment c, a witness w
and a randomness r which was used to generate a commitment c, this ppt
algorithm executes the proof-generation algorithm of the Groth-Sahai proof
system to obtain a proof π (see [9] for the details and [2,3] for instantiations).
It returns π.

• Vpp(x, c, π) → d. On input a statement x, a commitment c and a proof π,
this deterministic algorithm executes the verification algorithm of the Groth-
Sahai proof system to obtain a boolean decision d (see [9] for the details). It
returns d.

The proof part (CmtPrv.Setup,Prvpp) of the Groth-Sahai proof system has
the four properties [9]: (1) perfect correctness, (2) perfect soundness, (3) per-
fect F -knowledge and (4) composable witness-indistinguishability (especially (4)
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means perfect witness-indistinguishability). The detailed definitions are given in
Appendix B.

3 Our Bundled Language

In this section, we describe bundled languages [4] in the case of our group-
dependent languages. Intuitively, the notion determines a subset of a Cartesian
product of a language when the pairing-product equations are a simultaneous
equation system.

For a polynomially bounded integer q, we prepare q copies of the equation
system as (5). Then the equation systems are with variables (X̂a

i )i and (Y̌ a
j )j

(We remark that a is not an exponent but an index.):

For a ∈ {1, . . . , q},
⎧
⎪⎨

⎪⎩

∏
i e(X̂a

i , B̌a
1i)

∏
j e(Âa

1j , Y̌
a
j )

∏
i

∏
j e(X̂a

i , Y̌ a
j )γa

1ij = ta
T1,

· · ·
∏

i e(X̂a
i , B̌a

ni)
∏

j e(Âa
nj , Y̌

a
j )

∏
i

∏
j e(X̂a

i , Y̌ a
j )γa

nij = ta
Tn.

(5)

Now we impose a constraint that the above q equation systems have a common
variable. For simplicity, we enforce that

X̂1
1 = · · · = X̂q

1 = X̂1. (6)

Definition 1 (Bundled language (Group-Dependent)). Let Lpp be the
language (2). For a polynomially bounded integer q, put A := {1, . . . , q}. The q-
bundled language

∏bnd
a∈A Lpp of the languages Lpp is the subset of the q-Cartesian

product of Lpp with the constraint (6):

bnd∏

a∈A

Lpp
def
= {(xa)a∈A ∈

∏

a∈A

Lpp | X̂1
1 = · · · = X̂q

1 = X̂1}. (7)

The bundled language is a special case of simultaneous equation system (5) for
all a ∈ A with the constraint (6). It would be natural to consider a generalization
into the case of more than one common variable. The study of this direction is
of independent interest.

4 Our Decentralized Multi-authority Anonymous
Credential System

In this section, we give syntax and security definitions of our decentralized multi-
authority anonymous credential system dACS. We introduce three security def-
initions. One is existential unforgeability (EUF) against collusion attacks that
cause mis-authorization. The other two is anonymity and unlinkability of proofs.
For convenience, we hereafter denote i ∈ G, where G is either Ĝ or Ȟ depending
on an instantiation of the structure-preserving signature scheme.
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4.1 Syntax

Our dACS consists of five ppt algorithms, (Setup, AuthKGpp, PrivKGpp, Proverpp,
Verifierpp).

• Setup(1λ) → pp. This ppt algorithm is needed to generate a set of public
parameters pp. On input the security parameter 1λ, it generates the set pp.
It returns pp.

• AuthKGpp(a) → (PKa,MSKa). This ppt algorithm is executed by a key-
issuing authority indexed by a. On input the authority index a, it generates
the a-th public key PKa of the authority and the corresponding a-th master
secret key MSKa. It returns (PKa,MSKa).

• PrivKGpp(PKa,MSKa, i) → ska
i . This ppt algorithm is executed by the a-

th key-issuing authority. On input the a-th public and master secret keys
(PKa,MSKa) and an element i ∈ G (that is an identifier of a prover), it
generates a private secret key ska

i of a prover. It returns ska
i .

• Proverpp((PKa, ska
i)

a∈A′
) → π. This ppt algorithm is executed by a prover

who is to be authenticated, where A′ denotes a subset of the set A of all the
authority indices. On input the public keys (PKa)a∈A′

and the corresponding
private secret keys (ska

i)
a∈A′

, it returns a proof π.
• Verifierpp((PKa)a∈A′

, π) → d. This deterministic polynomial-time algorithm
is executed by a verifier who confirms that the prover certainly knows the
secret keys for indices a ∈ A′. On input the public keys (PKa)a∈A′

and the
proof π, it returns d := 1 (“accept”) or d := 0 (“reject”).

4.2 Security Definitions

We define three security notions for our anonymous credential system dACS;
EUF against collusion attacks, anonymity and unlinkability of proofs.

EUF Against Collusion Attack. Formally we define the following experiment
on dACS and an adversary algorithm A.

Expeuf-colldACS,A(1λ, 1μ) :

pp ← Setup(1λ), A := {1, . . . , μ},For a ∈ A : (PKa,MSKa) ← AuthKGpp(a)

(Ã, St) ← A(pp, (PKa)a∈A), ¯̃A := A\Ã
(π∗, A∗) ← APrivKOpp(PK·,MSK·,·)(St, (MSKa)a∈Ã)

Verifierpp((PKa)a∈A∗
, π∗) → d

If d = 1 then return Win else return Lose

Intuitively, the above experiment describes the attack as follows. On input the
public keys (PKa)a∈A, A outputs a set of indices of corrupted authorities Ã. A
collects at most qsk private secret keys by issuing queries to the private secret
key oracle PrivKOpp(PK·,MSK·, ·) with an authority index a ∈ ¯̃A := A\Ã and
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an identifier element ij ∈ G for j = 1, . . . , qsk. We denote by Aj the set of
authority indices for which the private secret key queries were issued with ij .
That is, Aj := {a ∈ A | A is given ska

ij
} ⊂ ¯̃A. Note that the maximum number

of private secret key queries is μ · qsk. We require that the numbers μ and qsk are
bounded by a polynomial in λ. At the end A returns a forgery proof π∗ together
with the target set of authority indices A∗ that is a subset of ¯̃A: A∗ ⊂ ¯̃A. If the
decision d on π∗ by Verifierpp is 1 under (PKa)a∈A∗

, then the experiment returns
Win; otherwise it returns Lose.

A restriction is imposed on the adversary A: The queried ijs are pairwise
different, and any Aj is a proper subset of the target set A∗:

ij1 �= ij2 for j1, j2 ∈ {1, . . . , qsk}, j1 �= j2, (8)
Aj � A∗, j = 1, . . . , qsk. (9)

These restrictions are because, otherwise, the adversary A can trivially succeed
in causing forgery.

The advantage of an adversary A over an anonymous credential system dACS

in the experiment is defined as: Adveuf-coll
dACS,A(λ, μ) def= Pr[Expeuf-colldACS,A(1λ, 1μ) =

Win]. A scheme dACS is called existentially unforgeable against collusion attacks
that cause mis-authorization. if, for any ppt algorithm A, the advantage
Adveuf-coll

dACS,A(λ, μ) is negligible in λ.

Anonymity of Proofs. Formally we define the following experiment on dACS
and an adversary algorithm A.

Expano-prfdACS,A(1λ, 1μ) :

pp ← Setup(1λ), A := {1, . . . , μ},For a ∈ A : (PKa,MSKa) ← AuthKGpp(a)

(i0, i1, St) ← A(pp, (PKa)a∈A)
For a ∈ A : For i = 0, 1 : ska

ii
← PrivKGpp(PKa,MSKa, ii)

b ∈R {0, 1}, b′ ← AProverpp((PKa,ska
ib
)a∈A)(St, (MSKa, ska

i0
, ska

i1
)a∈A)

If b = b′ then return Win, else return Lose

Intuitively, the above experiment describes the attack as follows. On input the
set of public parameters pp and the issued public keys (PKa)a∈A, A designates
two identity elements i0 and i1, and A is given two kinds of private secret keys
(ska

i0
, ska

i1
) for all a ∈ A. Next, for randomly chosen b ∈ {0, 1}, which is hidden

from A, A does oracle-access to a prover Proverpp that is on input the private
secret keys (ska

ib
)a∈A. If the decision b′ of A is equal to b, then the experiment

returns Win; otherwise it returns Lose.
The advantage of an adversary A over an anonymous credential system dACS

in the experiment is defined as: Advano-prf
dACS,A(λ, μ) def=

∣
∣Pr[Expano-prfdACS,A(1λ, 1μ) =

Win]−(1/2)
∣
∣. An anonymous credential system dACS is called to have anonymity

of proofs if, for any ppt algorithm A, the advantage Advano-prf
dACS,A(λ, μ) is negligible

in λ.
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Unlinkability of Proofs. Formally we define the following experiment on dACS
and an adversary algorithm A.

Expunlink-prfdACS,A (1λ, 1μ) :

pp ← Setup(1λ), A := {1, . . . , μ},For a ∈ A : (PKa,MSKa) ← AuthKGpp(a)

(i0, i1, St) ← A(pp, (PKa)a∈A)
For a ∈ A : For i = 0, 1 : ska

ii
← PrivKGpp(PKa,MSKa, ii)

b ∈R {0, 1}
If b = 0 then St ← AProverpp((PKa,ska

i0
)a∈A)(St, (MSKa, ska

i0
, ska

i1
)a∈A)

d ← AProverpp((PKa,ska
i1

)a∈A)(St)

else St ← AProverpp((PKa,ska
i0

)a∈A)(St, (MSKa, ska
i0

, ska
i1

)a∈A)

d ← AProverpp((PKa,ska
i0

)a∈A)(St)
If b = d then return Win, else return Lose

Intuitively, the above experiment resembles the experiment of anonymity
Expano-prfdACS,A(1λ, 1μ). The difference is that, in the above experiment, the adver-
sary A has to distinguish whether the proofs (π) are of the same user or of the
other user.

The advantage of an adversary A over an anonymous credential system dACS

in the experiment is defined as: Advunlink-prf
dACS,A (λ, μ) def=

∣
∣Pr[Expunlink-prfdACS,A (1λ, 1μ) =

Win] − (1/2)
∣
∣. An anonymous credential system dACS is called to have unlink-

ability of proofs if, for any ppt algorithm A, the advantage Advunlink-prf
dACS,A (λ, μ)

is negligible in λ.

Proposition 1 ( Unlinkability Implies Anonymity). For any ppt algo-
rithm A that is in accordance with the experiment Expano-prfdACS,A(1λ, 1μ), there exists
a ppt algorithm B that is in accordance with the experiment Expunlink-prfdACS,B (1λ, 1μ)
and the following inequality holds.

Advano-prf
dACS,A(λ, μ) ≤ Advunlink-prf

dACS,B (λ, μ).

(For a proof, see Appendix D.)

5 Construction and Security Proofs

In this section, we give a generic construction of our scheme of dACS. We employ
two building blocks. One is the structure-preserving signature scheme [1,3]. Each
decentralized authority indexed by ‘a’ issues a private secret key ska

i for an
identifier element i. The other building block is the commit-and-prove scheme
of the fine-tuned Groth-Sahai proof system [9,13] on pairing-product equations.
In the commit-phase a prover generates commitments to the identifier element
i and all the components of the structure-preserving signatures (σa

k)a
k. In the
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proof phase the prover generates a proof π by putting w0 := i as the common
component and (wa

k)k := (σa
k)k for each authority index a. Then w0 is the value

which satisfies equation (6) in Sect. 3, and (w0, (wa
k)k) are the values which satisfy

5. That is, the proof π will be a proof for our bundled language.

5.1 Construction

According to the syntax in Sect. 4, the scheme dACS consists of five ppt algo-
rithms: dACS = (Setup, AuthKGpp, PrivKGpp, Proverpp, Verifierpp).

• Setup(1λ) → pp. On input the security parameter 1λ, it runs the bilinear
group generator algorithm, and it puts the output as a set of public param-
eters: BG(1λ) → (p, Ĝ, Ȟ, T, e, Ĝ, Ȟ) =: pp. Note that pp is a common for
both the structure-preserving signature scheme Sig and the commit-and-prove
scheme CmtPrv. Besides, it runs the generation algorithm of commitment key:
Cmt.KGpp(nor) → ck. It returns pp := (pp, ck).

• AuthKGpp(a) → (PKa,MSKa). On input an authority index a, it executes the
key-generation algorithm Sig.KGpp() to obtain (PK,SK). It puts PKa := PK
and MSKa := SK. It returns (PKa,MSKa).

• PrivKGpp(PKa,MSKa, i) → ska
i . On input PKa, MSKa and an element i ∈ G,

it puts PKa := PKa and SKa := MSKa and m := M̌ := i. It executes the
signing algorithm Sig.Signpp(PKa,SKa,m) to obtain a signature σa. It puts
ska

i := (i, σa). It returns ska
i .

• Proverpp((PKa, ska
i)

a∈A′
) → π. On input (PKa, ska

i)
a∈A′

, first, it commits to
i:

c0 ← Cmt.Compp(i; r0).

Second, for each a ∈ A′, it commits to the components (σa
k)k of the signature

σa in the componentwise way.

(ca
k)k ← Cmt.Compp((σa

k)k; (ra
k)k).

Then, for each authority index a it puts xa := PKa. It also puts ca := (c0, (ca
k)k),

wa := (w0, (wa
k)k) := (i, (σa

k)k) and ra := (r0, (ra
k)k). It executes the prove-

algorithm to obtain a proof:

πa ← Ppp(xa, ca, wa, ra), a ∈ A′.

It puts π̄a := ((ca
k)k, πa) for each a ∈ A′, and it merges all the π̄as and the

commitment c0 as π := (c0, (π̄a)a∈A′
). It returns π.

• Verifierpp((PKa)a∈A′
, π) → d. On input ((PKa)a∈A′

, π), it puts xa := PKa and
it puts ca := (c0, (ca

k)) for each a ∈ A′. Then it executes the verify-algorithm
for each a ∈ A′ to obtain the decisions:

da ← Vpp(xa, ca, πa), a ∈ A′.

If all the decisions das are 1, then it returns d := 1; otherwise it returns d := 0.
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5.2 Security Proofs

Theorem 1 (EUF against Collusion Attacks). For any ppt algorithm A
that is in accordance with the experiment Expeuf-colldACS,A(1λ, 1μ), there exists a ppt

algorithm F that is in accordance with the experiment Expeuf-cma
Sig,F (1λ) and the

following inequality holds.

Adveuf-coll
dACS,A(λ, μ) = μ · Adveuf-cma

Sig,F (λ).

(For a proof, see Appendix E).
This theorem means that, if the structure-preserving signature scheme Sig

is existentially unforgeable against adaptive chosen-message attacks, then our
dACS is EUF against collusion attacks.

To state the theorem of anonymity and unlinkability below, we need to see
Definition 3 in Appendix.

Theorem 2 (Unlinkability of Proofs). For any ppt algorithm A that is in
accordance with the experiment Expunlink-prfdACS,A (1λ, 1μ), there exists a ppt algorithm
D and the following inequality holds.

Advunlink-prf
dACS,A (λ, μ) ≤ Advind-dual

Cmtpp,D(λ).

(For the definition of Advind-dual
Cmtpp,D(λ), see Definition 3 in Appendix A).

(For a proof, see Appendix F).
This theorem means that, if the dual-mode commitment keys are indistin-

guishable, then our dACS has unlinkability.

6 Conclusion

We proposed DMA-ACS, a decentralized multi-authority anonymous credential
system. In our generic construction that is based on bilinear groups, an authority
only has to sign identifiers. In the proving phase, a prover generates a unified
proof under a principle of “commit-to-id”. In the term of the Groth-Sahai proof
system, The principle corresponds to simultaneous pairing-product equations
which include an identifier as a variable. Due to the principle, collusion resistance
is attained. A drawback is that the proof-size is linear to the number of proven
attribute credentials. Hence, to attain a constant-size proof should be our future
work.

Appendix

A Four Properties of Commitment Part

Definition 2 (Correctness [9,13]). A commitment scheme Cmtpp is said to
be correct if it satisfies the following condition: For any security parameter 1λ,
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any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment key ck ←
Cmt.KGpp(mode) where mode = nor or ext or sim, and any message w,

Pr[d = 1 | (c, r) ← Cmt.Compp(w), d ← Cmt.Vrfpp(c, w, r)] = 1.

Definition 3 (Dual Mode [13]). A commitment scheme Cmtpp is said to be
dual mode if it satisfies the following condition: For any security parameter 1λ,
any set of public parameters pp ← CmtPrv.Setup(1λ) and any ppt algorithm A,

Pr[A(pp, ck) = 1 | ck ← Cmt.KGpp(nor)]
= Pr[A(pp, ck) = 1 | (ck, xk) ← Cmt.KGpp(ext)], (10)

Pr[A(pp, ck) = 1 | ck ← Cmt.KGpp(nor)]
≈c Pr[A(pp, ck) = 1 | (ck, tk) ← Cmt.KGpp(sim)]. (11)

The computational indistinguishability (11) is equivalent to the following:
For any security parameter 1λ, for any set of public parameters pp ←
CmtPrv.Setup(1λ) and any ppt algorithm A, the advantage Advind-dual

Cmtpp,A(λ) of A
over Cmtpp defined by the difference below is negligible in λ:

Advind-dual
Cmtpp,A(λ) def= |Pr[A(pp, ck) = 1 | ck ← Cmt.KGpp(nor)]

−Pr[A(pp, ck) = 1 | (ck, tk) ← Cmt.KGpp(sim)]|. (12)

The indistinguishability holds, for example, for an instance of the Groth-Sahai
proof system under the SXDH assumption [9,13].

Definition 4 ( Perfectly Binding [13]). A commitment scheme Cmtpp is said
to be perfectly binding if it satisfies the following condition for some unbounded
algorithm Cmt.Openpp: For any security parameter 1λ, any set of public param-
eters pp ← CmtPrv.Setup(1λ), any commitment key ck ← Cmt.KGpp(nor) and
any message w,

Pr[w = w′ | (c, r) ← Cmt.Compp(w; r), w′ ← Cmt.Openpp(c)] = 1.

Definition 5 (Perfectly Hiding [13]). A commitment scheme Cmtpp is said to
be perfectly hiding if it satisfies the following condition: For any security param-
eter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment
key ck s.t. (ck, tk) ← Cmt.KGpp(sim) and any ppt algorithm A,

Pr[A(St, c) = 1 | (w,w′, St) ← A(pp, ck, tk), (c, r) ← Cmt.Compp(w)]
= Pr[A(St, c′) = 1 | (w,w′, St) ← A(pp, ck, tk), (c′, r′) ← Cmt.Compp(w′)].

(13)

B Four Properties of Proof Part

Definition 6 (Perfect Correctness [13]). A commit-and-prove scheme
CmtPrv is said to be perfectly correct if it satisfies the following condition: For
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any security parameter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ),
any commitment key ck ← Cmt.KGpp(mode) where mode = nor or ext or sim

with pp := (pp, ck), and any ppt algorithm A,

Pr[Vpp(x, c, π) = 1 if (ck, x, w) ∈ Rpp |
(x,w) ← A(pp), (c, r) ← Cmt.Compp(w),
π ← Ppp(x, c, w, r)] = 1.

Definition 7 (Perfect Soundness [13]). A commit-and-prove scheme CmtPrv
is said to be perfectly sound if it satisfies the following condition for some
unbounded algorithm Cmt.Openpp: For any security parameter 1λ, any set
of public parameters pp ← CmtPrv.Setup(1λ), any commitment key ck ←
Cmt.KGpp(nor) and any ppt algorithm A,

Pr[Vpp(x, c, π) = 0 or (ck, x, w) ∈ Rpp |
(x, c, π) ← A(pp), w ← Cmt.Openpp(c)] = 1.

Let Cck be the set of commitments under ck to some message w.

Definition 8 (Perfect Knowledge Extraction[13]). A commit-and-prove
scheme CmtPrv is said to be perfectly knowledge extractable if it satisfies the
following condition for some ppt algorithm Cmt.Extpp: For any security param-
eter 1λ, any set of public parameters pp ← CmtPrv.Setup(1λ), any commitment
key (ck, xk) ← Cmt.KGpp(ext) and any ppt algorithm A,

Pr[c /∈ Cck or Cmt.Extpp(xk, c) = Cmt.Openpp(c) | c ← A(pp, ck, xk)] = 1.

Definition 9 (ComposableWitness-Indistinguishability [13]). A commit-
and-prove scheme CmtPrv is said to be composably witness-indistinguishable if it
satisfies the following condition: For any security parameter 1λ, any set of public
parameters pp ← CmtPrv.Setup(1λ) and any ppt algorithm A,

Pr[A(pp, ck) = 1 | ck ← Cmt.KGpp(nor)]

≈c Pr[A(pp, ck) = 1 | (ck, tk) ← Cmt.KGpp(sim)], and

Pr[(ck, x, w), (ck, x, w
′
) ∈ Rpp and A(St, π) = 1 | (ck, tk) ← Cmt.KGpp(sim), pp := (pp, ck),

(x, w, w
′
, St) ← A

Cmt.Compp(·)
(pp, ck, tk), (c, r) ← Cmt.Compp(w), π ← Ppp(x, c, w, r)]

= Pr[(ck, x, w), (ck, x, w
′
) ∈ Rpp and A(St, π

′
) = 1 | (ck, tk) ← Cmt.KGpp(sim), pp := (pp, ck),

(x, w, w
′
, St) ← A

Cmt.Compp(·)
(pp, ck, tk), (c

′
, r

′
) ← Cmt.Compp(w

′
), π

′ ← Ppp(x, c
′
, w

′
, r

′
)].

(14)

Especially, perfect witness-indistinguishability holds from (14).

C Instantiation of Structure-Preserving Signature
Scheme [1,2]

We concretely describe an instantiation of the SPS scheme [1,2], which is known
to be EUF-CMA under the q-SFP assumption.
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Sig.Setup(1λ) → pp. On input the security parameter 1λ, this ppt algorithm
executes the bilinear group generator algorithm, and it puts the output as a set
of public parameters: BG(1λ) → (p, Ĝ, Ȟ, T, e, Ĝ, Ȟ) =: pp. It returns pp.
Sig.KGpp() → (PK,SK). Based on the set of public parameters pp, this ppt
algorithm generates a signing key SK and the corresponding public key PK
as follows: Ĝu ∈R Ĝ, γ1, δ1 ∈R Z

∗
p, Ĝ1 := Ĝγ1 , Ĝu,1 := Ĝδ1

u . γz, δz ∈R

Z
∗
p, Ĝz := Ĝγz , Ĝu,z := Ĝδz

u . α, β ∈R Z
∗
p, (Âi, Ǎi)1i=0 ← Extend(Ĝ, Ȟα),

(B̂i, B̌i)1i=0 ← Extend(Ĝu, Ȟβ) (for Extend, see [1,2]). It puts PK :=
(Ĝz, Ĝu,z, Ĝu, Ĝ1, Ĝu,1, (Âi, Ǎi, B̂i, B̌i)1i=0) and SK := (α, β, γz, δz, γ1, δ1). It
returns (PK,SK).
Sig.Signpp(PK,SK,m) → σ. On input the public key PK, the secret key SK and
a message m = M̌ ∈ Ȟ, this ppt algorithm generates a signature σ as follows.

ζ, ρ, τ, φ, ω ∈R Zp, Ž := Ȟζ , Ř := Ȟα−ρτ−γzζM̌−γ1 , Ŝ := Ĝρ, Ť := Ȟτ ,

Ǔ := Ȟβ−φω−δzζM̌−δ1 , V̂ := Ĝφ
u, W̌ := Ȟω.

It returns σ := (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ).
Sig.Vrfpp(PK,m, σ) → d. On input the public key PK, a message m = M̌ ∈ Ȟ

and a signature σ = (Ž, Ř, Ŝ, Ť , Ǔ , V̂ , W̌ ), this deterministic algorithm checks
whether the following verification equation system holds or not.

e(Ĝz, Ž)e(Ĝ, Ř)e(Ŝ, Ť )e(Ĝ1, M̌)e(Â0, Ǎ0)−1e(Â1, Ǎ1)−1 = 1T, and (15)

e(Ĝu,z, Ž)e(Ĝu, Ǔ)e(V̂ , W̌ )e(Ĝu,1, M̌)e(B̂0, B̌0)−1e(B̂1, B̌1)−1 = 1T. (16)

It returns a boolean decision d.

D Proof of Proposition 1

Proof (Sketc.h). Suppose that any ppt algorithm A that is in accordance with
the experiment Expano-prfdACS,A(1λ, 1μ) is given. Then we construct a ppt algorithm
A that is in accordance with the experiment Expunlink-prfdACS,B (1λ, 1μ) as follows. B
employs A as a subroutine. B is able to generate A’s input by using B’s input
and A’s output. Also, B is able to answer to A’s queries by issuing queries to
B’s oracle and using the answers. Finally, when A outputs b′, B puts d := b′. 
�

E Proof of Theorem 1

Proof. Given any ppt algorithm A that is in accordance with the experiment
Expeuf-colldACS,A(1λ, 1μ), we construct a ppt algorithm F that generates an existential
forgery of Sig according to the experiment Expeuf-cma

Sig,F (1λ). F is given as input
the set of public parameters pp and a public key PKSig. F is also given an
auxiliary input μ. F executes Cmt.KGpp(ext) to obtain a pair (ck, xk). F puts
pp := (pp, ck). F invokes the algorithm A with 1λ to obtain the number μ and St.
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F chooses a target index a† from the set A := {1, . . . , μ} uniformly at random.
F executes the authority key generation algorithm honestly for a ∈ A except the
target index a†. As for a†, F uses the input public key:

For a ∈ A, a �= a† : (PKa,MSKa) ← AuthKGpp(a),

For a = a† : PKa†
:= PKSig.

F inputs St and the public keys (PKa)a∈A into A. Then F obtains a set of
corrupted authority indices Ã from A. F puts ¯̃A := A\Ã. If a† ∈ ¯̃A (the case
TgtIdx1), then a† is not in Ã and F is able to input (St, (MSKa)a∈Ã) into A.
Otherwise F aborts.

Simulation of Private Secret Key Oracle. When A issues a private secret key
query with a ∈ Aj �

¯̃A and ij ∈ Zp(j = 1, . . . , qsk), F executes the private
secret key generation algorithm with ij honestly for a ∈ ¯̃A such that a �= a†. As
for a = a†, F issues a signing query to its oracle with ij :

For a ∈ ¯̃A s.t. a �= a† : ska
ij

← PrivKGpp(PKa,MSKa, ij),

For a = a†, ska†
ij

← SignOpp(PK,SK, ij).

F replies to A with the secret key ska
ij

. This is a perfect simulation.
At the end A returns a forgery proof and the target set of authority indices

(π∗, A∗). Note here that A∗ ⊂ ¯̃A as in the definition.

Generating Existential Forgery. Next, F runs a Verifierpp with an input
((PKa)a∈A∗

, π∗). If the decision d of Verifierpp is 1, then F executes for each
a ∈ A∗ the extraction algorithm Cmt.Extpp(xk, ca) to obtain a committed mes-
sage (wa)∗ = ((wa

0)∗, ((wa
k)∗)k) (see Definition 8 in Appendix). Note here that,

for all a ∈ A∗, (wa
0)∗ is equal to a single element (w0)∗ in G. This is because of the

perfectly binding property of Cmtpp. Then F puts i∗ := (w0)∗. Here the restric-
tion (8)(9) assures that, if qsk > 0, then there exists at least one â ∈ (A∗\Aj)
for some j ∈ {1, . . . , qsk}. If qsk = 0, then there exists at least one â ∈ A∗. F
chooses one such â and puts σ∗ := (σâ)∗ := ((wâ

k)∗)k. F returns a forgery pair
of a message and a signature (i∗, σ∗). This completes the description of F.

Probability Evaluation. The probability that the returned value (i∗, σ∗) is actu-
ally an existential forgery is evaluated as follows. We name the events in the
above F as:

Acc : d = 1,

Ext : Cmt.Extpp returns a witness (wa)∗

TgtIdx : â = a†,
Forge : (i∗, σ∗) is an existential forgery on Sig.
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We have the following equalities.

Adveuf-coll
dACS,A(λ, μ) = Pr[Acc], (17)

Pr[Acc,Ext,TgtIdx] = Pr[Forge], (18)

Pr[Forge] = Adveuf-cma
Sig,F (λ). (19)

The left-hand side of the equality (18) is expanded as follows.

Pr[Acc,Ext,TgtIdx] = Pr[TgtIdx] · Pr[Acc,Ext]
= Pr[TgtIdx] · Pr[Acc] · Pr[Ext | Acc]. (20)

Claim 1

Pr[TgtIdx] = 1/|A| = 1/μ. (21)

Proof. â coincides with a† with probability 1/|A| because a† is chosen uniformly
at random from A by F and no information of a† is leaked to A. 
�
Claim 2. If TgtIdx occurs, then i∗ is not queried by F to its oracle SignOpp.

Proof. This is because of the restriction (8)(9). 
�
Claim 3

Pr[Ext | Acc] = 1. (22)

Proof. This is because of the perfect knowledge extraction of Prvpp (see Defini-
tion 8 in Appendix). 
�
Combining (17), (18), (19), (20), (21) and (22) we have:

Adveuf-coll
dACS,A(λ, μ) = μ · Adveuf-cma

Sig,F (λ). (23)


�

F Proof of Theorem 2

Proof. Suppose that any ppt algorithm A that is in accordance with the experi-
ment Expunlink-prfdACS,A (1λ, 1μ) is given. We set a sequence of games, Game0 and Game1,
as follows. Game0 is exactly the same as Expunlink-prfdACS,A (1λ, 1μ). Note that when a
set of public parameters pp = (pp′, ck) is given to A where pp′ is for bilinear
groups, the commitment key ck is chosen as a commitment key ck of the mode
nor. We denote the probability that Game0 returns Win as Pr[Win0].

Game1 is the same as Game0 except that, when a set of public parameters
pp = (pp′, ck) is given to A, the commitment key ck is chosen as a commitment
key ck of the mode sim. We denote the probability that Game1 returns Win as
Pr[Win1]. The values in Game1 distribute identically for both i0 and i1 due to
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the perfectly hiding property (13) and the perfect witness-indistinguishability
(14). Therefore, Pr[Win1] = 1/2.

Employing A as a subroutine, we construct a ppt distinguisher algorithm
D as follows. Given an input pp, ck, D reads out the security parameter. D
simulates the environment of A in Game0 or Game1 honestly except that D
puts pp := (pp, ck) instead of executing Setup(1λ). If b = b′, then D returns
1, and otherwise, 0. By the definition of (12) (see Definition 3 in Appendix),
Pr[D(pp, ck) = 1 | ck ← Cmt.KGpp(nor)] = Pr[Win0] and Pr[D(pp, ck) = 1 |
(ck, tk) ← Cmt.KGpp(sim)] = Pr[Win1], and

Advind-dual
Cmtpp,D(λ) = |Pr[Win0] − Pr[Win1]|. (24)

Therefore,

Advunlink-prf
dACS,A (λ, μ) = |Pr[Win0] − (1/2)|

≤ |Pr[Win0] − Pr[Win1]| + |Pr[Win1] − (1/2)|
= Advind-dual

Cmtpp,D(λ) + 0 = Advind-dual
Cmtpp,D(λ). (25)


�
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Abstract. In this article we present the BB84 quantum key distribution
scheme from two perspectives. First, we provide a theoretical discussion
of the steps Alice and Bob take to reach a shared secret using this pro-
tocol, while an eavesdropper Eve is either involved or not. Then, we
offer and discuss two distinct implementations that simulate BB84 using
IBM’s Qiskit framework, the first being an exercise solved during the
“IBM Quantum Challenge” event in early May 2020, while the other
was developed independently to showcase the intercept-resend attack
strategy in detail. We note the latter’s scalability and increased output
verbosity, which allow for a statistical analysis to determine the proba-
bility of detecting the act of eavesdropping.

Keywords: Quantum key distribution · BB84 · Intercept-resend
attack · Qiskit · Simulation

1 Introduction

The process of establishing a shared key for secure communication between par-
ties is an essential operation in modern cryptographic tasks and it can be ensured
by using the Diffie-Hellman protocol or RSA. However, the underlying security of
these schemes is conditioned by the intractability of certain mathematical prob-
lems, an aspect that advanced quantum computers can overcome. We would
need another approach to the key sharing problem, one that is provably secure.
Fortunately, quantum theory offers a solution that fits this criterion, quantum
key distribution (QKD). The inherent features of quantum information make
quantum key distribution secure from an information-theoretic perspective [1–
3]. However, flaws in practical implementations could actually be exploited by
attackers. The downside of quantum key distribution is represented precisely by
such challenges in its practical deployment. The first QKD protocol is BB84 [4],
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devised in 1984 and first implemented in 1989 over 32 cm [5], a modest achieve-
ment in terms of distribution distance that has been impressively exceeded ever
since [6–8].

We take a closer look at the core idea behind this scheme by discussing the
operations performed by parties when an eavesdropper is absent and then when
tampering indeed occurs, which is of practical interest. For the second case,
we analyze the intercept-resend attack to which the intruder Eve resorts in her
attempt to acquire information. We give two examples to illustrate those cases
and emphasize the statistical aspect regarding Alice and Bob’s chances to detect
Eve. We then present two Qiskit simulations of the protocol, an exercise from
the “IBM Quantum Challenge” and a separate program demonstrating how the
scheme is executed in a scenario featuring Eve. We refer to the second imple-
mentation as being “scalable”, in that the program can be run for an arbitrary
number of qubits, this aspect being limited only by the capability of Qiskit’s
built-in simulator. The program we designed details relevant information about
each party’s actions and the factors that lead to the conclusion. Furthermore, we
explored the end result of the simulation from a statistical perspective by running
multiple instances of the program, observing how many times eavesdropping is
detected and correlating the associated probability with the analytical one.

2 BB84 Protocol

Charles Bennett and Gilles Brassard pioneered the first quantum key distribu-
tion protocol in 1984, which relies on the uncertainty principle, a central aspect
of quantum theory. This phenomenon essentially shows that extracting informa-
tion about one property from a quantum state will introduce an indeterminacy
in the information we can access about another property. Using BB84, Alice and
Bob can arrive at a shared key, which they can use afterwards with a symmet-
ric encryption scheme, such as a one-time pad. The original formulation of the
protocol uses photons as qubits, the information being encoded in their polar-
ization. We will start our discussion of the protocol with the case that does not
involve any eavesdropping.

2.1 No Eavesdropping

Initially, Alice randomly generates an n-bit string k, from which the shared key
will be eventually derived. The protocol requires that she and Bob agree on two
distinct encodings of a classical bit using a qubit. For example, 0 can be encoded
by a photon that is polarized horizontally (→) and at an angle of 45◦ (↗), while
1 is then encoded by photon polarized vertically (↑) and at an angle of 135◦

(↖). Thus, we have two bases in which a photon can be prepared in order to
represent one bit of information. The rectilinear basis is given by {|→〉 , |↑〉},
while the diagonal basis is {|↗〉 , |↖〉}. They are conjugate bases, because a
measurement of a state from one of the bases performed in the other basis is
equally likely to return either state. In other words, an element from one basis
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is a uniform superposition of the elements from the other basis. These bases are
in fact “practical” representations of the computational and Hadamard basis.
Thus, the encodings for the protocol are the following.

R : 0 �→ |→〉 , 1 �→ |↑〉 , D : 0 �→ |↗〉 , 1 �→ |↖〉 (1)

After agreeing on the bases that are to be used, Alice generates again a
random sequence of n bits a, where each bit ai in turn indicates the encoding
(R or D) she will choose for the i-th bit of k. Both parties must again establish
a convention here, for example ai = 0 means that the corresponding qubit will
be prepared in the rectilinear basis. After encoding each bit ki into a qubit,
Alice sends the photon to Bob, who then measures it in his own basis. Since he
does not know what basis was chosen by Alice, Bob randomly picks a basis for
measuring the i-th qubit. According to the previous convention for denoting the
basis, his choice is given by a bit bi. Therefore, the bases he chooses for the total
n qubits that are transmitted constitute another bit sequence b.

Given the uncertainty revolving around Bob’s measurements, the next step
for the parties is to publicly announce the bases each of them picked, information
stored in bitstrings a and b. Following this phase, bit ki will be kept as valid
only if Alice’s and Bob’s choices coincided, i.e. ai = bi, a process referred to as
sifting [3]. The new bitstring k̃ composed of all these ki is the shared key. Of
course, Bob could obtain the correct state even though he chose the wrong basis,
but this only happens probabilistically. On average, he chooses right 50% of the
time, making the length of k̃ half the length of the initial k.

To illustrate an example, we consider the following sequences and then exam-
ine Table 1.

k = 11000100, a = 11010011, b = 01011001 (2)

Table 1. Example of BB84 protocol without eavesdropping

Initial bit sequence k 1 1 0 0 0 1 0 0

Alice encodes: ↖ ↖ → ↗ → ↑ ↗ ↗
Bob measures: ↑ ↖ → ↗ ↖ ↑ → ↗

Bases comparison: ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Shared key k̃ 1 0 0 1 0

When Bob performs his measurement, the result is colored blue to indicate that
it is probabilistic. As it can be noticed, out of all three wrong guesses he took,
the first and last states he observes are indeed the correct encodings of the bits
in the rectangular basis, but he only owes this to chance. In the end, they arrive
at a 5-bit shared key.
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2.2 Intercept-Resend Attack

It is natural to ask how the derivation of the key is impacted by the presence
of an eavesdropper Eve. The type of attack we consider for this case is called
“intercept-resend”, a strategy that implies capturing the photons, measuring
them and then sending them to Bob, their intended recipient. Once she intercepts
a photon, Eve cannot do anything more than just pick a random basis ei in which
to measure it, as Bob does. Inevitably, her action will alter the state of the qubit.
It is noteworthy that she has to resort to this kind of technique because she has to
send the photons to Bob, otherwise she would compromise her presence. Ideally,
she would copy each qubit and wait for the transmission to end in order to
find out the bases used by Alice and Bob, so she could know the correct ones.
Unfortunately for her, copying arbitrary qubits is forbidden by the no-cloning
theorem [9,10], a fundamental result that sets quantum information apart from
classical information, where we take this operation for granted.

Before looking at another example that involves Eve this time, it is important
to identify several scenarios that are possible when she is present. Specifically,
we analyze how the correlation between Alice’s basis and Eve’s basis determines
what Bob will measure on his side.

Eve Chooses the Wrong Basis: ei = ai −→ qubit is altered.

Bob chooses correctly: bi = ai −→ an error is introduced with 50% probability.

Bob chooses incorrectly: bi = ai −→ random outcome, Eve is undetected.

Eve Chooses the Correct Basis: ei = ai −→ qubit is unaltered.

Bob chooses correctly: bi = ai −→ Eve is undetected, has one bit of information.

Bob chooses incorrectly: bi = ai −→ random outcome, Eve is undetected.

These possibilities reveal that for each transmitted qubit, there is 75% prob-
ability that Eve’s action goes undetected. The remaining 25% probability is due
to Bob’s correct choice when Eve chooses incorrectly: he obtains the wrong state
after his measurement and therefore decodes the wrong bit. Considering that
Alice’s and Bob’s sequences of bits do not match exactly in such situation, they
take an additional step to test against eavesdropping. They decide to select a
subset of the remaining bits and compare them. If they do not match, they
know for sure that Eve interfered. Of course, there is a compromise between the
number of bits they want to “sacrifice” to discover Eve with a high probability
and the length of the shared key, which decreases as they discard those bits that
were compared.
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Table 2 shows an example. Sequences kA and kB represent Alice’s original
k and the bits decoded by Bob, respectively, both after the sifting phase. Eve’s
bases are represented by e.

kA = 11000100, a = 11010011, b = 01011001, e = 10001001 (3)

Table 2. Example of BB84 protocol with eavesdropping

Initial bit sequence k 1 1 0 0 0 1 0 0

Alice encodes: ↖ ↖ → ↗ → ↑ ↗ ↗
Eve measures: ↖ ↑ → → ↗ ↑ → ↗

Bob measures: ↑ ↗ → ↗ ↗ ↑ → ↗
Bases comparison: ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Alice’s bit sequence kA 1 0 0 1 0

Eve’s information: 0 1 0

Eve introduces error? N Y N N N N N N

Bob’s bit sequence kB 0 0 0 1 0

From Eve’s choices, we notice that her correct bases agreed with Bob’s bases
three out of eight times, thus allowing her to gain information about three bits
from the initial bit sequence. She introduces an error in the second bit, making
Bob decode 0 instead of 1. The example illustrates the idea of this attack, but it
is rather impractical because the length of k is short. In a real scenario, Alice and
Bob would need to compare many bits from kA and kB , which have a length of
ns ≈ n/2 bits on average. If they choose to compare one bit from their respective
strings, the probability of them being the same is 0.75. For a selection of ñ bits,
the probability of having all of them match represents Eve’s chance of evading
detection, which decreases exponentially with ñ. Therefore, the probability of
detection pd that Alice and Bob wish to have above a confident threshold is
given by

pd = 1 − pe = 1 −
(

3
4

)ñ

, ñ < ns, ns = |kA| = |kB | ≈ n

2
. (4)

For example, ñ = 20 determines pe ≈ 32 × 10−4, making the probability of
finding the eavesdropper pd ≈ 0.997. The dependence of this probability on the
number of compared bits is depicted in Fig. 1.
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Fig. 1. Probability of detecting Eve increases with ñ

In a scenario involving such an attack, establishing a shared key becomes a
lengthier process. Alice and Bob may agree on a certain acceptable number of
bit errors that makes them continue the protocol, otherwise they abort and try
again. When they decide to continue, additional measures are taken in order to
correct the unmatched bits due to Eve’s interference and also ensure that the
information she gains following their actions is kept to a minimum. These steps
are called information reconciliation and privacy amplification, respectively [11].
Even in the unlikely event when all of their compared bits are equal, Alice and
Bob cannot conclude that the transmission was free of any eavesdropping and
they must still perform these actions. Hypothetically, when no eavesdropping
occurs, Alice and Bob would possess a shared key after comparing their selections
and discarding those bits, since the remaining ones are sure to match.

2.3 “IBM Quantum Challenge”

In May 2020, IBM celebrated the fourth anniversary of their Quantum Experi-
ence cloud platform by organizing an event called “IBM Quantum Challenge”
[12]. It lasted from May 4 to May 8, inviting users of the platform to solve four
exercises using the Qiskit framework [13]. Among the topics of the exercises was
a simulation of the BB84 protocol [14], whose co-designer Charles H. Bennett is
an IBM Fellow. The implementation considers n = 100 bits and the goal sought
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by Alice and Bob is to obtain a shared key that is later used to encrypt a message
using a one-time pad scheme. There is no eavesdropping and the user is given
Bob’s role of performing the following operations:

– measure each qubit sent by Alice;
– compare bases with Alice and extract the 50-bit key;
– decrypt Alice’s 200-bit message by concatenating the key with itself;
– decode Alice’s binary message that “disguises” a message in Morse code:

0 character separator

1 .

00 letter separator

11 -

000 word separator

– discover the original message.

The source code for the completed exercise is given in Listing 1. Considering
its dependence on several dedicated modules, the webpage of the repository [15]
should be visited for instructions on how to get the program running properly.
Variables alice bases and bob bases are binary strings that represent param-
eters a and b we used thus far, respectively. Their bits match exactly 50 times,
thus determining the 50-bit shared key

k̃ = 10000010001110010011101001010000110000110011100000. (5)

Alice then uses this key with a one-time pad to encrypt a 200-bit message p,
whose ciphertext can be found in the source code (variable m). Since the key
is much shorter than the plaintext, she pads the key with itself three more
times until it reaches 200 bits. Of course, the security of the scheme is weakened
because of this practice, but that is not the focus of the exercise.

m = p ⊕ 4k̃ (6)

Bob undoes the operation to find the plaintext, which is further decoded into a
Morse code sequence, according to the previous mappings.

pM = .-..-..-....-.-.-.--.-.------..-..-.-..-.--.--.--....---.-..-.--.-..--- (7)
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Based on a dictionary that maps the letters of the Latin alphabet, digits and
other characters to symbols of the Morse code, the intelligible message is found
to be a nice reward “key” to a dedicated webpage, as pictured in Fig. 2.

pL = reddit.com/r/may4quantum (8)

Fig. 2. A snapshot of the webpage to which users are taken after finding the solution

2.4 Simulation with Eavesdropping

The implementation of the protocol for the proposed exercise used a module
given by IBM specifically for the purpose of the event, providing already defined
functions for certain operations. We now present a distinct implementation that
was written from scratch, taking into account the intercept-resend attack we
discussed earlier. As mentioned in the source code found in Listing 2, we choose
the length of k by passing the value as argument to the script, which is stored
in variable n. For convenience and practical significance, this number should be
large enough. Several functions are defined, some representing subcircuits, while
others test the choices the parties made for their bases. One function actually
implements a simple quantum random number generator, which can be used
to substitute that functionality from the random module. Running the program
will output information about the bases that were chosen by Alice, Eve and
Bob, when their choices coincided (Y), the bits obtained after measurements and
whether some of them are correct by chance (R). The errors introduced by Eve
are also highlighted (!), while Alice and Bob choose a subset of their presumably
correct key bits to test for eavesdropping. In order to simulate their agreement,
the lists of bits are randomly sampled using the same seed. The size of this
selection can be specified and a conclusion message is displayed at the end. If
they discover that at least one error in the string of compared bits, they abort
and start the protocol over again, which is very likely to happen, based on the
previous analysis.

https://reddit.com/r/may4quantum
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The output of an execution for n = 100 is given in Listing 3, a case where
eavesdropping is detected. We notice that bases chosen by Bob and Eve agree
with those picked by Alice for roughly half the qubits. In 34 instances, Eve chose
the wrong basis, while Bob’s choice agreed with Alice’s, making him decode a
random bit, as the qubit state was changed by Eve’s measurement. Still, he
randomly got the right bit 14 times out of those 34, leaving 20 unmatched bits
that confirm Eve’s presence. She can only hope that the random subset of bits
Alice and Bob decide to compare will not contain any of those, otherwise her
tampering will be revealed. As per the authors’ suggestion in [4], the length of
the subset is the integer part of a third of the length of the bit sequences sifted by
Alice and Bob following the public disclosure of their bases. Since these sequences
have 53 bits in this example, our parties compare 17 randomly selected bits and
find 9 disagreements, which is the signal that makes them abort and restart the
procedure.

Choosing a smaller value for n makes it more likely to have a simulation
where the errors introduced by Eve are not found by Alice and Bob. An output
fragment for such a scenario with n = 30 is displayed in Listing 4.

Finally, we wish to validate the previous relation that determines the proba-
bility of detecting Eve based on the number of sacrificed bits. We keep the length
of the random selection at the same value

ñ =
⌊ns

3

⌋
≈

⌊n
6

⌋
(9)

and choose n = 40, such that pd ≈ 0.822. We use the script in Listing 5 to
simulate the protocol s = 100 times for n = 40, in order to find out how many
times Eve has evaded detection. As the results in Listing 6 indicate, eavesdrop-
ping goes unnoticed s - d = 18 times, such that Alice and Bob have a chance
of d/s = 0.82 to catch Eve, as expected. Certainly, given that the actions per-
formed by parties yield random outcomes, this probability varies between runs,
but it remains close to the analytical result. We can go further and test how this
probability increases indeed with the number of bits that Alice and Bob com-
pare. The plot we intend to observe is actually an indirect relation between those
two parameters, since the number of bits selected to be compared is exactly or
close to a sixth of the number of qubits n we are using as argument to run the
simulation. To acquire the necessary data, we ran 100 simulations for each even
value of n between 10 and 120. The graph that resulted following this experiment
is displayed in Fig. 3 and we notice that it resembles the one from Fig. 1.
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Fig. 3. The statistical chance d/s of detecting Eve increases with n, which is roughly
six times the number of bits they end up comparing

3 Conclusion

Quantum key distribution has emerged as a promising direction within the field
of quantum information science and it has repeatedly broken new ground as
quantum technologies continue to advance at a remarkable pace. Here we have
focused on the BB84 protocol, the early result that revealed the fundamental
implications of quantum information on cryptography. Throughout this article,
we presented the operational aspects of the protocol when a type of eavesdrop-
ping happens or not, with some examples alongside the theoretical discussion,
and we provided two implementations of it using Qiskit, the quantum computing
framework from IBM. The first program represents a solved exercise that was
part of the “IBM Quantum Challenge” held in May 2020, while the second one
is a simulation we developed to show how the intercept-resend attack impacts
Alice and Bob’s plan to establish a shared key. We exploited the capability of
the program to run for any number of qubits and we conducted experiments to
determine the probability of having Alice and Bob detect Eve. Our results indi-
cate that her presence is discovered with a high degree of certainty when enough
bits from their sequences are spared and the statistical analysis we performed
underlines that simulation data follows the theoretical model.

Acknowledgements. We acknowledge the use of IBM Quantum services for this
work. The views expressed are those of the authors, and do not reflect the official
policy or position of IBM or the IBM Quantum team.
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A Qiskit Source Code and Output

A.1 “IBM Quantum Challenge”

Listing 1: QKD exercise from “IBM Quantum Challenge”
1 %matplotlib inline
2

3 # Importing standard Qiskit libraries
4 import random
5 from qiskit import execute, Aer, IBMQ
6 from qiskit.tools.jupyter import *
7 from qiskit.visualization import *
8 from may4_challenge.ex3 import alice_prepare_qubit, check_bits, check_key,

check_decrypted, show_message↪→
9

10 # Configuring account
11 provider = IBMQ.load_account()
12 backend = provider.get_backend('ibmq_qasm_simulator') # with this simulator it wouldn't

work \↪→
13

14 # Initial setup
15 random.seed(84) # do not change this seed, otherwise you will get a different key
16

17 # This is your 'random' bit string that determines your bases
18 numqubits = 100
19 bob_bases = str('{0:0100b}'.format(random.getrandbits(numqubits)))
20

21 def bb84():
22 print('Bob\'s bases:', bob_bases)
23

24 # Now Alice will send her bits one by one...
25 all_qubit_circuits = []
26 for qubit_index in range(numqubits):
27

28 # This is Alice creating the qubit
29 thisqubit_circuit = alice_prepare_qubit(qubit_index)
30

31 # This is Bob finishing the protocol below
32 bob_measure_qubit(bob_bases, qubit_index, thisqubit_circuit)
33

34 # We collect all these circuits and put them in an array
35 all_qubit_circuits.append(thisqubit_circuit)
36

37 # Now execute all the circuits for each qubit
38 results = execute(all_qubit_circuits, backend=backend, shots=1).result()
39

40 # And combine the results
41 bits = ''
42 for qubit_index in range(numqubits):
43 bits += [measurement for measurement in results.get_counts(qubit_index)][0]
44

45 return bits
46

47 # Here is your task
48 def bob_measure_qubit(bob_bases, qubit_index, qubit_circuit):
49 if int(bob_bases[qubit_index]) == 1:
50 qubit_circuit.h(0)
51 qubit_circuit.measure(0,0)
52

53 bits = bb84()
54 print('Bob\'s bits: ', bits)
55 check_bits(bits)
56

57 #=== KEY EXTRACTION ===#
58

59 alice_bases = '10000000000100011111110011011001010001111101001101'\
60 '11111000110000011000001001100011100111010010000110' # Alice's bases bits
61

62 key = ''
63

64 for i in range(numqubits):
65 if alice_bases[i] == bob_bases[i]:
66 key += bits[i]
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67

68 check_key(key)
69

70 #=== MESSAGE DECRYPTION ===#
71

72 m = '00110110101000111010000011000100000010000110001011'\
73 '10110111100111111110001111100011100101011010111010'\
74 '11101000111010100101111111001010000110100110110110'\
75 '11101111010111000101111111001010101001100101111011' # encrypted message
76

77 key = 4*key
78 decrypted = ''
79

80 for i in range(len(m)):
81 s = int(m[i]) + int(key[i])
82 decrypted += str(s % 2)
83

84 check_decrypted(decrypted)
85

86 #=== MESSAGE DECODING ===#
87

88 symbols = []
89 i = 0
90 while i < len(decrypted)-1:
91 if decrypted[i] + decrypted[i+1] == "11":
92 symbols.append("11")
93 i = i+2
94 elif decrypted[i] + decrypted[i+1] == "00":
95 symbols.append("00")
96 i = i+2
97 else:
98 symbols.append(decrypted[i])
99 i = i+1

100

101 d = {'1':'.', '11':'-', '0':'', '00':2*' ', '000':3*' '}
102 morse_message = [d[i] for i in symbols]
103 morse_message = ''.join(morse_message).split(" ")
104

105 MORSE_CODE_DICT = { 'a':'.-', 'b':'-...',
106 'c':'-.-.', 'd':'-..', 'e':'.',
107 'f':'..-.', 'g':'--.', 'h':'....',
108 'i':'..', 'j':'.---', 'k':'-.-',
109 'l':'.-..', 'm':'--', 'n':'-.',
110 'o':'---', 'p':'.--.', 'q':'--.-',
111 'r':'.-.', 's':'...', 't':'-',
112 'u':'..-', 'v':'...-', 'w':'.--',
113 'x':'-..-', 'y':'-.--', 'z':'--..',
114 '1':'.----', '2':'..---', '3':'...--',
115 '4':'....-', '5':'.....', '6':'-....',
116 '7':'--...', '8':'---..', '9':'----.',
117 '0':'-----', ', ':'--..--', '.':'.-.-.-',
118 '?':'..--..', '/':'-..-.', '-':'-....-',
119 '(':'-.--.', ')':'-.--.-'}
120

121 keys = list(MORSE_CODE_DICT.keys())
122 values = list(MORSE_CODE_DICT.values())
123 solution = []
124

125 for c in morse_message:
126 if c in values:
127 index = values.index(c)
128 solution.append(keys[index])
129

130 solution = ''.join(solution)

131

132 show_message(solution)
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A.2 Simulation of Intercept-Resend Attack

Listing 2: BB84 protocol with eavesdropping
1 #!/usr/bin/python
2

3 #============================================
4 # BB84 PROTOCOL WITH EAVESDROPPING
5 # USAGE: ./bb84_eavesdropping.py <num_qubits>
6 #============================================
7

8 from sys import argv, exit
9 from qiskit import *

10 from random import randrange, seed, sample
11

12 # local simulation
13 backend = Aer.get_backend('qasm_simulator')
14

15 #============================================
16 #=== FUNCTION DEFINITIONS #==================
17

18 # n-bit binary representation of integer
19 def bst(n,s):
20 return str(bin(s)[2:].rjust(n,'0'))
21

22 # generate n-bit string from measurement on n qubits
23 def qrng(n):
24 qc = QuantumCircuit(n,n)
25 for i in range(n):
26 qc.h(i)
27 qc.measure(list(range(n)),list(range(n)))
28 result = execute(qc,backend,shots=1).result()
29 bits = list(result.get_counts().keys())[0]
30 bits = ''.join(list(reversed(bits)))
31 return bits
32

33 # qubit encodings in specified bases
34 def encode_qubits(n,k,a):
35 qc = QuantumCircuit(n,n)
36 for i in range(n):
37 if a[i] == '0':
38 if k[i] == '1':
39 qc.x(i)
40 else:
41 if k[i] == '0':
42 qc.h(i)
43 else:
44 qc.x(i)
45 qc.h(i)
46 qc.barrier()
47 return qc
48

49 # capture qubits, measure and send to Bob
50 def intercept_resend(qc,e):
51 backend = Aer.get_backend('qasm_simulator')
52 l = len(e)
53

54 for i in range(l):
55 if e[i] == '1':
56 qc.h(i)
57

58 qc.measure(list(range(l)),list(range(l)))
59 result = execute(qc,backend,shots=1).result()
60 bits = list(result.get_counts().keys())[0]
61 bits = ''.join(list(reversed(bits)))
62

63 qc.reset(list(range(l)))
64

65 for i in range(l):
66 if e[i] == '0':
67 if bits[i] == '1':
68 qc.x(i)
69 else:
70 if bits[i] == '0':
71 qc.h(i)
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72 else:
73 qc.x(i)
74 qc.h(i)
75

76 qc.barrier()
77 return [qc,bits]
78

79 # qubit measurements in specified bases
80 def bob_measurement(qc,b):
81 backend = Aer.get_backend('qasm_simulator')
82 l = len(b)
83

84

85 for i in range(l):
86 if b[i] == '1':
87 qc.h(i)
88

89 qc.measure(list(range(l)),list(range(l)))
90 result = execute(qc,backend,shots=1).result()
91 bits = list(result.get_counts().keys())[0]
92

93 bits = ''.join(list(reversed(bits)))
94

95

96 qc.barrier()
97 return [qc,bits]
98

99

100 # check where bases matched
101 def check_bases(b1,b2):
102 check = ''
103 matches = 0
104 for i in range(len(b1)):
105 if b1[i] == b2[i]:
106 check += "Y"
107 matches += 1
108 else:
109 check += "-"
110 return [check,matches]
111

112 # check where measurement bits matched
113 def check_bits(b1,b2,bck):
114 check = ''
115 for i in range(len(b1)):
116 if b1[i] == b2[i] and bck[i] == 'Y':
117 check += 'Y'
118 elif b1[i] == b2[i] and bck[i] != 'Y':
119 check += 'R'
120 elif b1[i] != b2[i] and bck[i] == 'Y':
121 check += '!'
122 elif b1[i] != b2[i] and bck[i] != 'Y':
123 check += '-'
124 return check
125

126

127 #============================================
128 #=== INITIAL PARAMETER #=====================
129

130 if len(argv) != 2:
131 print("USAGE: " + argv[0] + " <num_qubits>")
132 exit(1)
133 else:
134 try:
135 # size of quantum and classical registers
136 n = int(argv[1])
137

138 if n < 10:
139 print("[!] Number of qubits should be at least 10.")
140 exit(1)
141

142 except ValueError:
143 print("[!] Argument must be an integer.")
144 exit(1)
145
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146 print("\nAlice prepares " + str(n) + " qubits.\n")
147

148 N = 2**n
149

150 #============================================
151 #=== BIT SEQUENCE AND BASES #================
152

153 #seed(81)
154 #alice_bits = bst(n,randrange(N))
155 alice_bits = qrng(n)
156

157 #seed(147)
158 #a = bst(n,randrange(N))
159 a = qrng(n)
160

161 #seed(875)
162 #e = bst(n,randrange(N))
163 e = qrng(n)
164

165 #seed(316)
166 #b = bst(n,randrange(N))
167 b = qrng(n)
168

169 #============================================
170

171 bb84 = QuantumCircuit(n,n)
172 bb84 += encode_qubits(n,alice_bits,a)
173

174 bb84, eve_bits = intercept_resend(bb84,e)
175 ae_bases, ae_matches = check_bases(a,e)
176 ae_bits = check_bits(alice_bits,eve_bits,ae_bases)
177

178 bb84, bob_bits = bob_measurement(bb84,b)
179 eb_bases, eb_matches = check_bases(e,b)
180 eb_bits = check_bits(eve_bits,bob_bits,eb_bases)
181

182 ab_bases, ab_matches = check_bases(a,b)
183 ab_bits = check_bits(alice_bits,bob_bits,ab_bases)
184

185 altered_qubits = 0
186 err_num = 0
187 err_str = ''
188 key = ''
189 ka = ''
190 ke = ''
191 kb = ''
192

193 for i in range(n):
194 if ae_bases[i] != 'Y' and ab_bases[i] == 'Y':
195 altered_qubits += 1
196 if ab_bases[i] == 'Y':
197 ka += alice_bits[i]
198 kb += bob_bits[i]
199 else:
200 ka += '-'
201 kb += '-'
202 if ae_bases[i] == 'Y' and ab_bases[i] == 'Y':
203 ke += eve_bits[i]
204 else:
205 ke += '-'
206 if ab_bits[i] == '!':
207 err_num += 1
208

209 err_str = ''.join(['!' if ka[i] != kb[i] else ' ' for i in range(len(ka))])
210

211 print("Alice's bases: " + a)
212 print("Eve's bases: " + e)
213 print("Alice-Eve bases match: " + ae_bases)
214 print("")
215 print("Eve guessed correctly " + str(ae_matches) + " times.")
216 print("")
217 print("Alice's bits: " + alice_bits)
218 print("Eve's bits: " + eve_bits)
219 print("Alice-Eve bits match: " + ae_bits)



106 M.-Z. Mina and E. Simion

220 print("")
221

222 print("Eve's bases: " + e)
223 print("Bob's bases: " + b)
224 print("Eve-Bob bases match: " + eb_bases)
225 print("")
226 print("Eve and Bob chose the same basis " + str(eb_matches) + " times.")
227 print("")
228 print("Eve's bits: " + eve_bits)
229 print("Bob's bits: " + bob_bits)
230 print("Eve-Bob bits match: " + eb_bits)
231 print("")
232

233 print((len("Alice's remaining bits: ") + n)*'=')
234 print("")
235

236 print("Alice-Bob bases match: " + ab_bases)
237 print("Alice's bits: " + alice_bits)
238 print("Bob's bits: " + bob_bits)
239 print("Alice-Bob bits match: " + ab_bits)
240 print("")
241 print("Bob guessed correctly " + str(ab_matches) + " times.")
242 print("Eve altered " + str(altered_qubits) + " qubits (she chose wrong and Bob chose

right).")↪→
243 print("Eve got lucky " + str(altered_qubits - err_num) + " times (Bob measured the right

state by chance).")↪→
244 print("Alice and Bob keep only the bits for which their bases matched.")
245 print("Eve successfully gains information when her basis was also Bob's correct basis.")
246 print("")
247 print("Alice's remaining bits: " + ka)
248 print("Error positions: " + err_str)
249 print("Bob's remaining bits: " + kb)
250 print("Number of errors: " + str(err_num))
251 print("")
252 print("Eve's information: " + ke)
253 print("")
254

255 ka = ka.replace('-','')
256 kb = kb.replace('-','')
257

258 selection_size = int(ab_matches/3)
259

260 seed(63)
261 selection_alice = [list(pair) for pair in sample(list(enumerate(ka)),selection_size)]
262 indices_alice = [pair[0] for pair in selection_alice]
263 substring_alice = ''.join([pair[1] for pair in selection_alice])
264

265 seed(63)
266 selection_bob = [list(pair) for pair in sample(list(enumerate(kb)),selection_size)]
267 indices_bob = [pair[0] for pair in selection_bob]
268 substring_bob = ''.join([pair[1] for pair in selection_bob])
269

270 print("Alice and Bob compare " + str(selection_size) + " of the " + str(ab_matches) + "
bits (indices: " + ', '.join([str(i) for i in indices_alice]) + ').')↪→

271 print("Alice's substring: " + substring_alice)
272 print("Bob's substring: " + substring_bob)
273

274 err_found = 0
275

276 for i in range(len(substring_alice)):
277 if substring_alice[i] != substring_bob[i]:
278 err_found += 1
279

280 if err_found > 0:
281 conclusion = "They find " + str(err_found) + " error(s) and realize that Eve

interfered. "↪→
282 conclusion += "They abort and start over.\n"
283 else:
284 conclusion = "Their selections match and Eve is not detected.\n"
285 ka = list(ka)
286 kb = list(kb)
287 for pos in list(reversed(sorted(indices_alice))):
288 ka.pop(pos)
289 kb.pop(pos)

290 ka = ''.join(ka)
291 kb = ''.join(kb)
292 conclusion += "When no eavesdropping occurs, they would have a " +

str(ab_matches-len(substring_alice)) + "-bit shared key at this point, " + ka +
".\n"

↪→
↪→

293 conclusion += "Here, they must correct the erroneous bits and make sure Eve gains
minimal information during the process.\n"↪→

294

295 print(conclusion)
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$ ./bb84_eavesdropping.py 100

Alice prepares 100 qubits.

Alice's bases: 0101110011111100001010100110111101001001011011000011100110111000001011000011000001001011111111010110

Eve's bases: 1000100110110011010010101011001001111010110101011011001111000111110011110010100111101110111000010001

Alice-Eve bases match: --Y-Y-Y-Y-YY----Y--YYYYY--Y---Y-YY--YY---Y---YY--YYY-Y-YY----------YYY--YYY--YY--Y-YY-Y-YYY---YYY---

Eve guessed correctly 45 times.

Alice's bits: 1001100000111010011011001111011110100011011001111011110011111011011111000011101011010010100100100100

Eve's bits: 1100100000111110011011000111101110010000110001111011110010111110110111000010001111110110100101100000

Alice-Eve bits match: R-Y-YRYRYRYYR-RRYRRYYYYY-RYR--YRYY--YY---Y-RRYYRRYYYRYRYY-RRR-R--R-YYYRRYYY--YY-RY-YY-YRYYYRR-YYY-RR

Eve's bases: 1000100110110011010010101011001001111010110101011011001111000111110011110010100111101110111000010001

Bob's bases: 0110101001001010111100010011011000100101000111100111000100110101011111001001100100001101001110100110

Eve-Bob bases match: ---YYY-------YY--Y---Y---YYYY-YYY-Y-------YY-Y----YYYY-Y----YY-Y-Y--YY---Y--YYYY---YYY----Y--Y--Y---

Eve and Bob chose the same basis 40 times.

Eve's bits: 1100100000111110011011000111101110010000110001111011110010111110110111000010001111110110100101100000

Bob's bits: 0000100111100111011111110111101111011100100011101011111011011110011011010001001111110100010111100111

Eve-Bob bits match: --RYYYR---R--YY-RYR-RY--RYYYYRYYY-YR--RRR-YY-YR-RRYYYY-YR--RYYRY-Y--YYR-RY--YYYYRRRYYY-R--YR-YRRY---

============================================================================================================================

Alice-Bob bases match: YY--Y--Y-Y--Y--Y--Y--Y--Y-Y--YY-Y--Y--YYY---YY-YY-YY-YYY-YYY--Y-Y-Y-YYYY-Y-Y-YY-Y-YYY--Y--YYY---YYYY

Alice's bits: 1001100000111010011011001111011110100011011001111011110011111011011111000011101011010010100100100100

Bob's bits: 0000100111100111011111110111101111011100100011101011111011011110011011010001001111110100010111100111

Alice-Bob bits match: !YR-YRR!-!R-!-R!RRY-RY--!RYR-!YRY--!--!!!--R!YR!YRYYRY!YRY!YR-Y-YRY-YYY!RY-Y-YY-YR!YY--Y--YY!-RRYY!!

Bob guessed correctly 53 times.

Eve altered 34 qubits (she chose wrong and Bob chose right).

Eve got lucky 14 times (Bob measured the right state by chance).

Alice and Bob keep only the bits for which their bases matched.

Eve successfully gains information when her basis was also Bob's correct basis.

Alice's remaining bits: 10--1--0-0--1--0--1--1--1-1--11-1--0--110---01-11-11-100-111--1-0-1-1100-0-1-01-1-010--0--010---0100

Error positions: ! ! ! ! ! ! ! ! !!! ! ! ! ! ! ! ! !!

Bob's remaining bits: 00--1--1-1--0--1--1--1--0-1--01-1--1--001---11-01-11-110-101--1-0-1-1101-0-1-01-1-110--0--011---0111

Number of errors: 20

Eve's information: ----1----------------1----1---1-1------------1----11-1-0------------11---0---01----10-----0-----0---

Alice and Bob compare 17 of the 53 bits (indices: 28, 52, 18, 16, 30, 42, 5, 24, 46, 4, 47, 12, 50, 43, 19, 3, 14).

Alice's substring: 10011011001111100

Bob's substring: 01101101011111111

They find 9 error(s) and realize that Eve interfered. They abort and start over.

Listing 3: A complete output example for n = 100

$ ./bb84_eavesdropping.py 30

Alice prepares 30 qubits.
.
.
.
Alice's remaining bits: -10-0-----10--11100--1011--0--

Error positions: !

Bob's remaining bits: -10-0-----00--11100--1011--0--

Number of errors: 1

Eve's information: ----0------0--1-1-0---0-1--0--

Alice and Bob compare 5 of the 15 bits (indices 7, 14, 4, 12, 13).

Alice's substring: 10011

Bob's substring: 10011

Their selections match and Eve is not detected.

When no eavesdropping occurs, they would have a 10-bit shared key at this point, 1001110010.

Here, they must correct the erroneous bits and make sure Eve gains minimal information during the process.

Listing 4: A partial output example for n = 30
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1 #!/bin/bash
2

3 #====================================================================
4 # BB84 PROTOCOL WITH EAVESDROPPING - determine chance of catching Eve
5 # USAGE: ./bb84_detections.sh <num_qubits> <num_executions>
6 #====================================================================
7

8 [ $# -ne 2 ] && { echo "[!] USAGE: $0 <num_qubits> <num_executions>"; exit 1; }
9

10 [ $1 -ge 10 ] 2> /dev/null && n=$1 || { echo "[!] Number of qubits should be at least 10";
exit 1; }↪→

11 [ $2 -ge 1 ] 2> /dev/null && s=$2 || { echo "[!] Number of executions should be at least
1"; exit 1; }↪→

12

13 echo -e "\nRunning $s simulation(s) with $n qubits to find out the number of undetected
interferences..."↪→

14

15 d=$(for i in $(seq 1 $s); do ./bb84_eavesdropping.py $n; done | grep 'abort' | wc -l)
16 p=$(echo "$d/$s" | bc -l)
17

18 printf "Eve managed to get away with her tampering in $[$s-$d] instance(s), leaving Alice
and Bob with a %.2f chance of catching her.\n\n" "$p"↪→

Listing 5: Multiple executions of the protocol to find the probability of catching Eve

Listing 6: Finding the probability of detecting Eve after 100 runs for n = 40

$ ./bb84_detections.sh 40 100

Running 100 simulation(s) with 40 qubits to find out the number of undetected interferences...

Eve managed to get away with her tampering in 18 instance(s), leaving Alice and Bob with a 0.82 chance of catching her.
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Abstract. We propose a public-key encryption scheme that arise from
a kind of differential geometry called Finsler geometry. Our approach is
first to observe a map of a tangent space to another tangent space, and
find asymmetricity of linear parallel displacement, which is easy to com-
pute but hard to invert. Then we construct an example of the map over
the real numbers. By quantization, we propose a public-key encryption
scheme. The scheme is proved to be IND-CCA2 secure under the new
assumption of the decisional linear parallel displacement problem.

Keywords: Public-key encryption · IND-CCA2 · Finsler space ·
Linear parallel displacement · Differential geometry

1 Introduction

Mathematical structures that provides computationally hard problems form
security basis in public-key cryptography. The integer-factoring and the discrete-
logarithm are the representative two of them. In addition, post-quantum math-
ematical structures and their hard problems, such as the lattice structure and
the shortest vector problem, have been discussed in the research community of
cryptography for a decade. These structures are mainly based on algebra over
finite fields and combinatorics; that is, in discrete mathematics.

1.1 Our Contribution and Related Work

We propose in this paper a geometric approach to public-key cryptography. The
feature is that we start with a kind of differential geometry called Finsler geom-
etry, which is in continuous mathematics. Then we proceed into the discrete
treatise by quantization. Our key observation is that there is asymmetricity in
the space of Finsler geometry. Then, by quantization, we are able to propose a
problem for linear parallel displacement, which we abbreviate as LPD. Assum-
ing that any instance of the LPD problem is computationally hard (the LPD
assumption), we can prove that our proposed public-key encryption scheme is
secure. Actually we prove that our proposed public-key encryption is secure in
the meaning of indistinguishability against adaptive chosen-ciphertext attacks
(IND-CCA2 secure).
c© Springer Nature Switzerland AG 2021
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The base idea of our public-key encryption was first stated at Computer Secu-
rity Symposium 2019 (CSS2019) by T. Nagano and H. Anada [29]. Further, at
2020 Symposium on Cryptography and Information Security (SCIS2020) [28], a
new problem for linear parallel displacement are proposed. They proved oneway-
ness security of their scheme under the assumption of computational difficulty of
a variant of the LPD problem. In this paper, we prove a stronger security; that
is, IND-CCA2 security, under the LPD assumption. The most factor leading this
work successfully is to find out asymmetricity which Finsler spaces involve and
computational difficulty of a problem for linear parallel displacement (the LPD
assumption). This paper is the first work which applies Differential Geometry
to Cryptography in earnest.

1.2 Overview of Our Strategy

Intuitively, the asymmetricity in the space of Finsler geometry means that a
linear parallel displacement of any vector in a tangent space into another tangent
space can be calculated by multiplying a square matrix, but the inverse linear
parallel displacement of the image vector cannot be calculated by multiplying
the inverse matrix. Actually it is mathematically (and hence computationally)
impossible to find the matrix of the inverse direction. Quantizing the whole
treatment from the set of real numbers to a discrete set, we obtain a map that is
easy to compute but hard to invert. Assuming the computational hardness of a
problem that is related to the onewayness of the map, we obtain a scheme that
is prove to be IND-CCA2 secure.

2 Preliminaries

2.1 Finsler Geometry

Firstly we introduce Finsler geometry and Finsler space in roughly. Finsler geom-
etry is one field of the differential geometry [11–16,18–20]. It is an extension of
Riemannian geometry which has been already known to many mathematicians.
Many objects in Riemannian geometry have the coordinate x of a point p(x) on
M which is the base manifold with a local coordinate system {Up, (x)}. Finsler
geometry, however, many objects have not only a position x but a direction y at
a point p(x). Further tensorial calculus are extended to the tangent bundle TM
of M [21–26]. In the following we put the definition of (real) Finsler space.

Definition 21. Let R be the set of real numbers. For an n-dimensional real
base manifold M and its tangent bundle TM , when a real continuous function
F (x, y) : TM −→ R on TM satisfying the following conditions (1) − (4) is
given to TM , (M,F (x, y)) is called an n-dimensional real Finsler space and F
is called a fundamental function or Finsler metric, where x = (x1, · · · , xn) =
(xi) ∈ M,y = (y1, · · · , yn) = (yi) ∈ TxM, (x, y) ∈ TM .

(1) (Positive value) ∀(x, y) ∈ TM, F (x, y) ≥ 0 and F (x, y) = 0 ⇔ y = 0
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(2) (Positively homogeneous) ∀(x, y) ∈ TM \ {0},∀λ > 0, F (x, λy) =
λF (x, y)
(3) (Differentiability) F : TM \ {0} −→ R
(4) (Strongly convex)

Symmetric matrix(gij(x, y)) defined by (metric tensor field)

gij(x, y) :=
1
2

∂2 F 2

∂yi∂yj
(i, j = 1, · · · , n)

is positive definite.
Hereafter, we call (M,F (x, y)) Finsler space, shortly.

Remark 21. All objects on Finsler space depend on a position x and a direction
y. In particular, if F (x, y) �= F (x,−y) is satisfied, in general,

(1) Curves c on M have different length, namely, when a point p is a start
point and a point q is an end point, the length from q to p along c is different
from the length from p to q.
(2) Geodesics on M have different image, namely, the image of geodesic from
p to q is different from the image of it from q to p.
(3) From (2), if the distance of two points p and q is defined by the arc-length
of the geodesic of p and q, there are two distances.
(4) There are also different phases on parallel displacement. Move a tangent
vector v from p to q on a curve c, and further, move back from q to p then
we have a vector unlike v at p(asymmetric property of linear parallel
displacement) [27].

Hereafter we consider the only case that Finsler space (M,F (x, y)) satisfies
F (x, y) �= F (x,−y).

We use the asymmetric property of linear parallel displacement of tangent
vectors to construct a new public key encryption. So in the following the notion
of it is shown in detail.

Necessary objects

(1) Metric tensor field gij(x, y) (in (4) of Definition 21),
(2) Nonlinear connection N i

j(x, y) (i, j = 1, 2, · · · , n = dimM),
(3) Horizontal connection F i

rj(x, y) (i, j, r = 1, 2, · · · , n = dimM),
(4) Geodesic
(5) Linear parallel displacement Πc

Calculation of (2) and Calculation of (3) (See (1) in §6 Appendix)

Calculation of (4)
Geodesic is the curve which is minimizing of the distance between two points
locally. Then, a geodesic c(t) = (ci(t)) satisfies the following equation

d2ci

dt2
+

∑

j,r

F i
jr(c, ċ)ċ

j ċr = 0 (ċ = (ċi), ċi =
dci

dt
), (1)
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where t is an affine parameter.

Calculation of (5)
Let c(t) = (ci(t)) be a curve with a start point p(t0) and an end point q(t1).
Then, for a curve c(t) = (ci(t)) and a tangent vector field v(t) = (vi(t)) along
c(t), v(t) is called a parallel vector field along c(t) if v(t) satisfies the following
equation

dvi

dt
+

∑

j,r

F i
jr(c, ċ)v

j ċr = 0 (ċr =
dcr

dt
), (2)

and we call the linear map Πc : v(t0) ∈ TpM −→ v(t1) ∈ TqM a linear
parallel displacement along c [27,30–33].

Asymmetric Property of Linear Parallel Displacement
For a curve c(t) = (ci(t))(t0 ≤ t ≤ t1), the reverse curve c−1(τ) is defined by
c−1(τ) := c(t0 + t1 − τ)(t0 ≤ τ ≤ t1),where p = c(t0), q = c(t1), q = c−1(t0), p =
c−1(t1). If the linear parallel displacement Πc : TpM −→ TqM and the reverse
displacement Πc−1 : TqM −→ TpM satisfy

Πc−1 ◦ Πc = Identity (3)

then the linear parallel displacement Πc is called symmetric on c. If (3) is not
satisfied, namely, Πc−1 ◦ Πc �= Identity, then Πc is called which has
asymmetric property.

Remark 22. Our new public-key encryption depends on asymmetric property
of linear parallel displacement.

(1) We put the following Finsler tensor field

Hi
j(x, y) :=

∑

r

F i
rj(x, y)yr +

∑

r

F i
rj(x,−y)(−yr). (4)

Then, for a curve c, Πc is symmetric if and only if

Hi
j(c, ċ) = 0 (5)

is satisfies. Therefore we have to use the curve c satisfying Hi
j(c, ċ) �= 0.

(2) We use a geodesic as a curve playing linear parallel displacement role.
The following quantity E(v)

E(v) :=
∑

i,j

gij(c, ċ)vivj (6)

is called energy of a vector v on c. Then it is known energy of parallel
vector field is preserved on a geodesic by linear parallel displacement
[27,30–33].
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3 Our Proposed Public-Key Encryption

In this section, we introduce the plan of new public-key encryption applying
Finsler space and asymmetric linear parallel displacement. Follow the recipe
(Step1-Step13) , then we can obtain a public-key encryption. Note that, though
we describe our scheme using the technical terms over R, we assume λ-bit uni-
form quantization for each variable, where λ is the security parameter.

Recipe

Step1. From Finsler metric F (x, y), calculate gij , N i
j , F i

rj .
Step2. Put the start point p(t0) and the end point q(t1).
Step3. From (1), get the geodesic c(t) between p and q.
Step4. Check Hi

j(c, ċ) �= 0. If Hi
j(c, ċ) = 0, then return to Step2.

Step5. From (2), get the linear parallel displacement Πc.
Step6. Give a regular matrix C(τ)(τ ∈R R) as a linear transformation on
TpM .
Step7. Put n-dimensional vectors v0 := (v1

0 , · · · , vn
0 )(vi

0 �= 0; i = 1.2. · · · , n)
and v1 := C(τ)v0.
Step8. Put a point r(t2)(t0 < t2 < t1) on c.
Step9. Move v1 to r(t2) by Πc and put the value by v2(:= Πc(t2)v1).
Step10. Give n + 1 pieces non-zero forms f0, f1 · · · , fn defined by parameters
of Finsler metric F (x, y), the geodesic c and t0, t1.
Step11. Calculate the energy E(v1) at the point r in the following splitting
form E0 + E1 + · · · + En

E(v1) =
∑

i,j

gij(p, ċ)vi
1vj

1 = tv1G(p, ċ)v1

=
∑

i,j

gij(r, ċ)v
i
2vj

2 = tv2G(r, ċ)v2 = tv0
tC(τ) tΠc(t2)G(r, ċ)Πc(t2)C(τ)v0

= E0 + E1 + · · ·+ En

=
E0

f0
f0 +

E1

f1v1
0

f1v1
0 + · · ·+ En

fnvn
0

fnvn
0

where G(r, ċ) = (gij(r, ċ)) and E0, · · · , En have parameters v1
0 , · · · , vn

0 , t2 and
τ .
Step12. Let consider a vector V = (

E1

f1v1
0

, · · · ,
En

fnvn
0

), and move V to a point

s(τ) on c by Πc(τ).
Step13. Put the value by V3 = Πc(τ)V = t(V 1

3 , · · · , V n
3 ).

Finally, we obtain “Public-key encryption” in the following
Secret key SK = {f0, f1, · · · , fn,Πc(τ), E(v1)}
Public key PK = {E0

f0
, V 1

3 , · · · , V n
3 }.
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Encryption
1. Given a constant vector: dv = (dv1, · · · , dvn), where dvi > 0(i = 1, 2, · · · , n).
2. Plaintext: n-dimensional vector v = (v1, · · · , vn)(vi ≥ 0; i = 1, 2, · · · , n).
3. Put v0 := v + dv.
4. Given random values α, β0, β1, · · · , βn, where α, βi > 0 and βi �= βj(i �=
j) (i, j = 0, 1, · · · , n).
5. (1) Set τ := α, t2 := β0 and calculate PK

ct0 := {E0(v0, α, β0)
f0

, V 1
3 (v0, α, β0), · · · , V n

3 (v0, α, β0)}.

(2) Set τ := α, t2 := β1 and calculate PK

ct1 := {E0(v0, α, β1)
f0

, V 1
3 (v0, α, β1), · · · , V n

3 (v0, α, β1)}.

...
...

...
(n + 1) Set τ := α, t2 := βn and calculate PK

ctn := {E0(v0, α, βn)
f0

, V 1
3 (v0, α, βn), · · · , V n

3 (v0, α, βn)}.

Then a ciphertext ct of v is given by

ct = {ct0, ct1 · · · , ctn}.

Decryption

1. For X1,X2, · · · ,Xn, put SKX := {f0, f1X
1, · · · , fnXn}.

2. For a ciphertext ct = {ct0, ct1 · · · , ctn}, firstly calculate V , namely,

(ct0) V := Π−1
c (τ)V3 = (

Ē1(v0, α, β0)
f1v1

0

, · · · ,
Ēn(v0, α, β0)

fnvn
0

),

(ct1) V := Π−1
c (τ)V3 = (

Ē1(v0, α, β1)
f1v1

0

, · · · ,
Ēn(v0, α, β1)

fnvn
0

),

...
...

...

(ctn) V := Π−1
c (τ)V3 = (

Ē1(v0, α, βn)
f1v1

0

, · · · ,
Ēn(v0, α, βn)

fnvn
0

)

and construct the following n + 1 pieces linear forms of X1,X2, · · · ,Xn

ct0 · SKX :=
E0(v0, α, β0)

f0
f0 +

Ē1(v0, α, β0)

f1v1
0

f1X
1 + · · · + Ēn(v0, α, β0)

fnvn
0

fnXn

ct1 · SKX :=
E0(v0, α, β1)

f0
f0 +

Ē1(v0, α, β1)

f1v1
0

f1X
1 + · · · + Ēn(v0, α, β1)

fnvn
0

fnXn

...
...

...

ctn · SKX :=
E0(v0, α, βn)

f0
f0 +

Ē1(v0, α, βn)

f1v1
0

f1X
1 + · · · + Ēn(v0, α, βn)

fnvn
0

fnXn,

where each component Ēi(v0, α, βj) (i, j = 1, · · · , n) has unknown value τ .
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3. For X1,X2, · · · ,Xn, solve the following simultaneous system of linear
equations ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ct1 · SKX = ct0 · SKX
ct2 · SKX = ct0 · SKX

...
...

...
ctn · SKX = ct0 · SKX

(7)

Then obtained answers X1, X2, · · · , Xn have unknown value τ . Next, input
X1, X2, · · · , Xn to the following energy equation

ct0 · SKX = E(v1)|v1
0=X1,v2

0=X2 . (8)

Then we have an algebraic equation of τ . By solving the above equation, we can
obtain the value τ = α. Then by using the value α to the X1, X2, · · · , Xn, we
have the initial vector v0 = (v1

0 , · · · , vn
0 ) as follows

v1
0 = X1, v2

0 = X2, · · · , vn
0 = Xn.

Finally, we get the plaintext v = (v1, · · · , vn) as follows

v1 = X1 − dv1, v2 = X2 − dv2, · · · , vn = Xn − dvn.

Remark 31. (1) The solution c of (1) is obtained in the continuous real number
field R.
(2) The solution Πc of (2) is also obtained in the continuous real number field
R.
(3) The components of the matrix C(τ) depend on a real parameter τ .
(4) The energy E(v1) depends on only p(t0) and v1 on c. Even if at other point
r(t2) the energy is calculated, the value E(v1) is independent of t2. We must take
the form E(v1) apart by E0, E1, · · · , En involving t2. It is very important.
(5) The regularity of system of linear Equations (7) is shown in a special case
in Sect. 4.

4 Example

In this section, we show an example of public-key encryption using 2-dimensional
Finsler space [27]. Let (x, y) be the coordinate of the base manifold M = R2

and (ẋ, ẏ) the coordinate of T(x,y)M , namely, x = x1, y = x2, ẋ = y1, ẏ = y2.
The Finsler metric F (x, y, ẋ, ẏ) is as follows

F (x, y, ẋ, ẏ) =
√

a2ẋ2 + b2ẏ2 − h1xẋ − h2yẏ, (9)

where all a, b, h1, h2 are positive numbers.
According to Recipe in Sect. 3, various objects are obtained. However, in the

following representation of them are on the geodesic c only.
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Geodesic: straight line

cm(t) = (c1(t), c2(t)) =
(

1
a
√

1 + m2
t,

m

b
√

1 + m2
t

)
(10)

p = cm(t0), q = cm(t1), r = cm(t),

where the equation of the above straight line is y = a
b mx on M .

Metric tensor field: gij(c, ċ) (See (2) in §6 Appendix)

Nonlinear connection: N i
j(c, ċ) =

∑
r F i

jr ċ
r (See (3) in §6 Appendix)

Linear parallel displacement: Πcm
(t) (See (4) in §6 Appendix))

Πcm
(t) =

(
B1

1 B1
2

B2
1 B2

2

)
(11)

Hereafter we treat a special case which have a parameters set FNA of the
Finsler metric F (x, y, ẋ, ẏ), the geodesic c(t) and t0, t1 as follows:

FNA = {a, b, h1, h2,m, t0, t1} = {10, 6, 4, 7,
1
3
,
351
499

, 13} (12)

and Transformation of TpM : C(τ) and Πc(τ)

C(τ) =

(
τ 1

τ − 1 1

)
and Πc(τ) =

⎛
⎜⎝

3
(
5425τ2+1309392τ−34902900

)
499τ3 − 135

(
217τ2−5169τ−1396116

)
499τ3

− 180
(
93τ2−12124τ+323175

)
499τ3

9
(
3348τ2+43075τ+11634300

)
499τ3

⎞
⎟⎠

(13)

In Step10, we put the secret key SK, the constant vector dv and the energy
E(v1):

SK = {f0, f1, f2} = {mh1, at0h2, bt1h
2
2} = {4

3
,
24570
499

, 3822} (14)

dv = (1234, 5432) (15)

E(v1) =
1

1245005000
((154432263197τ2 − 78738768234τ + 42104793807)(v1

0)
2

+ 2(154432263197τ − 39369384117)v1
0v

2
0 + 154432263197(v2

0)
2)

(16)
In Remark 22, it is stated that the energy of a vector v is preserving on

geodesics. Namely, if a vector field v on a geodesic c is parallel, the energy of
the parallel vector v is constant value on every point on c. On the other hand,
at every point of c, the values of metric tensor gij(c, ċ) and the components vi

of the vector v are different. However the value of (6) is constant. Namely, the
components gij(c, ċ) and vi depend on the parameter t2, however, the form (6)
is independent of t2.
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In Step11, understanding above, we must split the energy E(v1) as E0 +
E1 · · · + En which each Ei(i = 0, 1, · · · , n) involves t2. Another important point
is that each Ei(i = 0, 1, · · · , n) is a rational expression with respect to all param-
eters. It is better than a real expression because that every plaintext is regarded
as a positive integer with the finite number of digits. This is very important
for encryption. The method of transport to the rational expression is different
case by case. In this case, from coefficients of Πcm

, choose a rational number
k(> 0) as a2b2 + a2b2m2 − (b2h1 + a2h2m

2)t0 is equal to k2, then you have a
rational expression. We show an example of splitting E(v1) = E0 + E1 · · · + En

in Appendix.
Last we calculate V3 = Πc(τ)V = t(V 1

3 , V 2
3 ), where V = t( E1

f1v1
0
, E2

f2v2
0
) (See

Appendix).

Then we have the public key PK = {E0

f0
, V 1

3 , V 2
3 }.

Next we consider about solutions of the linear system (7). It is to be desirable
that the system (7) has a unique solution. It owes the regularity of the following
matrix MLS because of t( E1

f1v1
0
, E2

f2v2
0
) = Π−1

c (τ)V3:

MLS =

⎛

⎜⎜⎝

E1(v0, α, β1) − E1(v0, α, β0)
v1
0

E2(v0, α, β1) − E2(v0, α, β0)
v2
0

E1(v0, α, β2) − E1(v0, α, β0)
v1
0

E2(v0, α, β2) − E2(v0, α, β0)
v2
0

⎞

⎟⎟⎠ .

MLS is the main part of coefficient matrix of (7). Under considering the positiv-
ity of v1

0 , v
2
0 , β0, β1, β2((β0 −β1)(β1 −β2)(β2 −β0) �= 0) we calculate the determi-

nant of MLS. For example, we have v1
0 = 8040, v2

0 = 7778, β0 = 1, β1 = 2, β2 = 3,
then the regularity of MLS is equivalent to that the following polynomial f(τ)
of degree four is not zero.

f(τ) = 3.60310×1039τ4−1.12581×1040τ3+6.96943×1039τ2+7.27339×1039τ−6.79067×1039

Fig. 1. y = f(τ)
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The number of zero points τ is four at most. If τ = α > 3(or α < −1), then
f(α) �= 0 is satisfied (cf. Fig. 1). Thus we have enough α satisfying f(α) �= 0.
In general, for given v1

0 , v
2
0 , β0, β1, β2, the determinant of MLS is polynomial of

degree four with respect to τ . We have enough τ = α satisfying f(α) �= 0 at any
time.

(We explain the concrete example in (7) of §6 Appendix.)

5 IND-CCA2 Security

In this section, we prove that our proposed public-key encryption is secure in
the meaning of indistinguishability against adaptive chosen-ciphertext attacks
(IND-CCA2 secure). On the line of recent work [28,29], we state a computational
problem and assumption for linear parallel displacement in a refined forms, as
follows.

Computational Problem for Linear Parallel Displacement (LPD)
Suppose that each variable is quantized with λ-bit, uniformly. Let (M,F ) be a
Finsler space and p, q be points on M . For a geodesic c from p to q, the problem
is stated as the computational problem to find values of the parameters of linear
parallel displacement along c from TpM to TqM , where TpM,TqM are tangent
spaces at p, q respectively.

LPD Assumption
For a fixed Finsler space with Hi

j �= 0, there exists no polynomial time algo-
rithm to solve a random instance of LPD. As for the example in Sect. 4, the
LPD assumption means that seven parameters a, b, h1, h2,m, t0, t1(or t2) is not
determined by any polynomial time algorithm in λ.

First of all, we state that asymmetric property of linear parallel displacement
is necessary condition to keep LPD assumption.

Remark 51. If Finsler space (M,F (x, y)) satisfies Hi
j = 0, then the linear

parallel displacement is symmetric. Then, (3) is true. The geodesics of Finsler
space with its metric (3) are straight lines. The inverse curve c−1

m of a geodesic
(10) is also geodesic as follows

c−1
m (t) =

(
1

a
√

1 + m2
(t0 + t1 − t),

m

b
√

1 + m2
(t0 + t1 − t)

)
.

Further, since the linear parallel displacement is symmetric, the inverse vector
field v−1(t) = (v1(t0 + t1 − t), v2(t0 + t1 − t)) of a parallel vector field v(t) is
also parallel along c−1

m . Then we can calculate the matrix Πc−1
m

of the inverse
linear parallel displacement by the same way as Πcm

. In this time we note Πc−1
m

having the same parameters to Πcm
. Therefore, from (3), we can recognize all

parameters a, b, h1, h2, t0, t1(or t2) are not independent. This fact show to us
that the attacker already knows some informations of Πc−1 for Πc. Namely,
LPD assumption is broken.
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According to above argument, we have

Proposition 51. For Finsler space (M,F (x, y)) with the metric (9), included
parameters in Πc are independent.

(∵) The Matrix Πc−1 ◦ Πc has the parameter t1 or t2. Namely, Πc−1 ◦ Πc is not
constant. �

Proposition 52. In general, there is no Riemannian space where the LPD
assumption holds.

(∵) All Riemannian spaces are symmetric. �

From now, we study IND-CCA2 for this public-key encryption(PKE) in
Sect. 4.

For any given PPT attacker A on PKE, we construct a PPT solver B of
a random instance of the LPD problem as below, where PPT is probabilistic
polynomial-time.

First, it is assumed that A knows that each term of the inverse matrix Π−1
c (τ)

is a polynomial of degree m at most, namely, the form of the inverse matrix
Π−1

c (τ) is as follows

Π−1
c (τ) =

(
a0 + a1τ + · · · + amτm b0 + b1τ + · · · + bmτm

c0 + c1τ + · · · + cmτm d0 + d1τ + · · · + dmτm

)
,

where unknown ai, bi, ci, di (i = 0, 1, · · · m) are all rational numbers and m is
unknown. Next, after A is given the public key PK,
(1) A assume m = 1 and by using a plaintext v0 and parameters
α1, α2, · · · , αj (j ≥ 4), A can obtain triples (v0, ct1, α1), · · · , (v0, ctj , αj), where
cti = {E0(αi)

f0
, V 1

3 , V 2
3 }.

From ct1 = {E0(α1)
f0

, V 1
3 , V 2

3 }, A can, formally, make the form V̄ =
Π−1

c (α1)V3, V3 = (V 1
3 , V 2

3 ) as follows

V̄ =
(
Ē1(α1), Ē2(α1)

)
,

where Ē1(α1), Ē2(α1) have eight unknown ai, bi, ci, di (i = 0, 1) . Then using the
formal SKX = (Y0, v

1
0Y1, v

2
0Y2) (v0 = (v1

0 , v
2
0)), A has the form

E0(α1)
f0

Y0 + Ē1(α1)v1
0Y1 + Ē2(α1)v2

0Y2.

From others ct2 = {E0(α2)
f0

, V 1
3 , V 2

3 }, ct3 = {E0(α3)
f0

, V 1
3 , V 2

3 }, he has the following
system

⎧
⎪⎪⎨

⎪⎪⎩

E0(α2)

f0
Y0 + Ē1(α2)v1

0Y1 + Ē2(α2)v2
0Y2 =

E0(α1)

f0
Y0 + Ē1(α1)v1

0Y1 + Ē2(α1)v2
0Y2

E0(α3)

f0
Y0 + Ē1(α3)v1

0Y1 + Ē2(α3)v2
0Y2 =

E0(α1)

f0
Y0 + Ē1(α1)v1

0Y1 + Ē2(α1)v2
0Y2
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If A solve this system for (Y1, Y2), Y1 and Y2 can be expressed as forms with
ai, bi, ci, di (i = 0, 1) and Y0. From other three triples (v0, ctk, αk), (v0, ctk′ , αk′),
(v0, ctk′′ , αk′′) A also has a pair (Y1, Y2). Then, from the former Y1 and the lat-
ter Y1, A has one equation with respect to ai, bi, ci, di (i = 0, 1). Further, from
the former Y2 and the latter Y2, A also has one more equation with respect
to ai, bi, ci, di (i = 0, 1). According to the same manner, A can have eight
independent equations for ai, bi, ci, di (i = 0, 1) from j � 4. If A solve them
with respect to ai, bi, ci, di (i = 0, 1), then A can obtain the eight values of
ai, bi, ci, di (i = 0, 1). Further, when A issues a decryption query with ciphertext
ct, A has a pair (v, ct) of the plaintext v and a cipher ct. By using (v, ct) and
Π−1

c (τ), A can obtain τ = α. Finally, A tries encryption with (v, α) and if A
can obtain the cipher ct, then Π−1

c (τ) is correct, else (2) assume m = 2 and
A does the same calculations till obtaining the correct inverse matrix Π−1

c (τ).
This trial go to the end with a polynomial time because m is finite.

Here we assume that there exists a polynomial time algorithm which can solve
the ciphertext. A gives two plaintexts m0,m1 to B and A have a ciphertext ct∗

from B. If B adapts the determined Πc(τ) to this pair (mb, ct
∗)(b = 0 or 1), B can

obtain the value τ = α. What is the mean of α(= τ)? It is clear that α expresses
the end point of the linear parallel displacement Πc(α). This fact means that if
there exists a polynomial time algorithm which can solve the ciphertext, then
LPD assumption is broken through by the polynomial time algorithm. Namely,
we get the PPT solver B of a random instance of the LPD problem.

Then we have

Theorem 51. If the LPD assumption holds, then our public-key encryption
scheme is IND-CCA2 secure.

Remark 52. (1) Let consider the inverse problem in the following

Inverse Problem: If the LPD assumption is broken, is any ciphertext solved ?
The answer is “Yes”.

Because. The attacker can obtain the linear parallel displacement Πc by the
broken LPD assumption, easily.

(2) We notice one more desirable situation. There is the case that a different
curve giving the inverse parallel displacement exists even if Finsler space is asym-
metric. That is, there is a curve c̄ such that Πc̄ ◦Πc = I. The Finsler space with
the following metric

F (x, y, ẋ, ẏ) =
√

ẋ2 + ẏ2 − yẋ

is asymmetric and its geodesics are circles with diameter 1 [27].

(3) Finally we notice about quantization. By transformation to rational expres-
sions of exact solutions Πc, E0, V

1
3 , · · · , we succeed the quantization of this public

key encryption, namely, any rational values plaintext corresponds to rational val-
ues ciphertext. If a plaintext is integer, then decrypted ciphertext is also integer.
In this paper, all calculation are done by “Mathematica 11.3” and components
value of a ciphertext have sixteen decimal places. In particular, all approximate
values of decrypted integers have five decimal places exactly.
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6 Appendix

(1) Calculation of (2) (in p.3)

N i
j(x, y) =

∑

r

γi
rj(x, y)yr −

∑

p,q,r

Ci
jr(x, y)γr

pq(x, y)ypyq,

where

γi
pq(x, y) =

∑

h

1
2
ghi

(
∂gph

∂xq
+

∂ghq

∂xp
− ∂gpq

∂xh

)
,

Ci
jr(x, y) =

∑

h

1
2
ghi ∂gjh

∂yr
.

Calculation of (3) (in p.3)

F i
jr(x, y) =

∑

h

1
2
ghi

(
δgjh

δxr
+

δghr

δxj
− δgjr

δxh

)
,

where
δ

δxi
=

∂

∂xi
−

∑

r

Nr
i

∂

∂yr
.

Here the indices h, i, j, · · · , p, q, r, · · · of
∑

run from 1 to n(= dimM).

(2) Metric tensor field: gij(c, ċ) ( in p.8.)

g11 =
1

a2b2 (m2 + 1)2
(b2m4a4 + b2a4 + 2b2m2a4 − (h2m

4a4 + 3b2h1m
2a2

+ 2b2h1a
2)t + (b2h2

1 + b2h2
1m

2)t2)

g12 =
−1

ab (m2 + 1)2
(
(
h2a

2m + b2h1m
3
)
t − (

h1h2m
3 + h1h2m

)
t2)

g21 = g12

g22 =
1

a2b2 (m2 + 1)2
(a2m4b4 + a2b4 + 2a2m2b4 − (h1b

4 + 2a2h2m
4b2

+ 3a2h2m
2b2)t + (a2h2

2m
4 + a2h2

2m
2)t2)
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(3) Nonlinear Connection: N i
j(c, ċ) =

∑
r F i

jr ċ
r ( in p.8)

N
1
1 =

1

2
(
a2

(
h2m2t − b2

(
m2 + 1

))
+ b2h1t

)2 (a
4
h2m

4
(

h2t − b
2
)
+ a

2
b
2
h1

(
3h2m

2
t

−b
2

(
3m

2
+ 2

))
+ 2b

4
h
2
1t)

N
1
2 =

1

2
(
a2

(
h2m2t − b2

(
m2 + 1

))
+ b2h1t

)2 (abm
(

b
2
h2

(
h1t − a

2
(

m
2
+ 2

))

+a
2
h
2
2m

2
t + b

4
h1

)
)

N
2
1 =

1

2
(
a2

(
h2m2t − b2

(
m2 + 1

))
+ b2h1t

)2 (abm
(

a
4
h2m

2
+ h1t

(
a
2
h2m

2
+ b

2
h1

)

−a
2
b
2
h1

(
2m

2
+ 1

))
)

N
2
2 =

1

2
(
a2

(
h2m2t − b2

(
m2 + 1

))
+ b2h1t

)2 (a
4
h2m

2
(
2h2m

2
t − b

2
(
2m

2
+ 3

))

− a
2
b
2
h1

(
b
2 − 3h2m

2
t
)
+ b

4
h
2
1t)

(4) The components B1
1 , B

2
1 , B

1
2 , B

2
2 of Πcm

(t) ( in p.8)

B
1
1 = − 1(

a2
(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)3/2

×
(

a
2

(
h2m

2
(t + t0)

√
a2

(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

− b
2

(√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0) + m

2
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

))

+b
2
h1t0

√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)

B
1
2 =

1(
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)3/2

×
(

abm

(
b
2

(√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

−
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

)
+ h2

(
t
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

+ t0

√
a2

(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0 −t0

√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)))

B
2
1 =

1(
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)3/2

×
(

abm

(
a
2

(√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

−
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

)
+ h1

(
t
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

+ t0

√
a2

(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0 −t0

√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)))

B
2
2 = − 1(

a2
(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)3/2

×
(

−a
2
b
2

(
m

2
√

a2
(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

+
√

a2
(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

)
+ b

2
h1(t + t0)

√
a2

(
b2

(
m2 + 1

) − h2m2t0
) − b2h1t0

+a
2
h2m

2
t0

√
a2

(
b2

(
m2 + 1

) − h2m2(t + t0)
) − b2h1(t + t0)

)
.
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(5) The components E0, E1, E2 of the energy E(v1) ( in p.9)

E0 =
108

19336717189061875t62

(
(v

1
0)

2
[
131250

(
549586599785242τ

2 − 260094969234444τ

+103758540202387) t
4
2 + 4468469250(9 − 4τ)

2
t
8
2 + 1350830425(4τ − 9)(14619τ − 2495)t

7
2

+ 6(τ(2341493221579117τ − 578018213009874) − 199546861202523)t
6
2

− 7463338098125(4τ − 9)(14619τ − 2495)t
5
2 − 42247221541875000(4τ − 9)(14619τ − 2495)t

3
2

+2239661022345468750000(9 − 4τ)
2
t
2
2 + 4370724277949531250000000(9 − 4τ)

2
]

+ v
1
0v

2
0

[
35747754000(4τ − 9)t

8
2 + 1350830425(116952τ − 141551)t

7
2

+ 12(2341493221579117τ − 289009106504937)t
6
2 − 7463338098125(116952τ − 141551)t

5
2

+ 525000(274793299892621τ − 65023742308611)t
4
2 − 42247221541875000(116952τ − 141551)t

3
2

+17917288178763750000000(4τ − 9)t
2
2 + 34965794223596250000000000(4τ − 9)

]

+ 6(v
2
0)

2
[
11915918000t

8
2 + 13165193322050t

7
2 + 2341493221579117t

6
2 − 72737693104326250t

5
2

+ 12022206870302168750t
4
2 − 411741421147113750000t

3
2 + 5972429392921250000000t

2
2

+11655264741198750000000000]) ,

E1 =
63

773468687562475t62

(
(v

1
0)

2
[
2

(
314843868178587τ

2 − 386844477123606τ

+367139769800999) t
6
2 − 617118390(9 − 4τ)

2
t
8
2 − 23157093(4τ − 9)(59841τ − 11345)t

7
2

+ 127942938825(4τ − 9)(59841τ − 11345)t
5
2 − 250(4τ(4845528878317753τ − 1143052319603196)

− 2680065490221693)t
4
2 + 724238083575000(4τ − 9)(59841τ − 11345)t

3
2

−309308608144856250000(9 − 4τ)
2
t
2
2 − 603619310917743750000000(9 − 4τ)

2
]

+ v
1
0v

2
0

[
−4936947120(4τ − 9)t

8
2 − 23157093(478728τ − 583949)t

7
2 + 12(104947956059529τ

− 64474079520601)t
6
2 + 127942938825(478728τ − 583949)t

5
2 − 2000(4845528878317753τ

− 571526159801598)t
4
2 + 724238083575000(478728τ − 583949)t

3
2

−2474468865158850000000(4τ − 9)t
2
2 − 4828954487341950000000000(4τ − 9)

]

− 2(v
2
0)

2
[
4936947120t

8
2 + 2771487204426t

7
2 − 314843868178587t

6
2 − 15312466804453650t

5
2

+ 2422764439158876500t
4
2 − 86678262318423150000t

3
2 + 2474468865158850000000t

2
2

+4828954487341950000000000]) ,
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E2 =
49

1237549900099960t62

(
(v

1
0)

2
[
639172944(9 − 4τ)

2
t
8
2 + 65025117144(τ − 1)(4τ − 9)t

7
2

+ ((483513021595098 − 144314472257429τ)τ − 487491840800919)t
6
2

− 359263772220600(τ − 1)(4τ − 9)t
5
2 − 1170000(4τ(44285942747τ − 526506550992)

+ 2819944148355)t
4
2 − 2033660538678600000(τ − 1)(4τ − 9)t

3
2 + 320362667643870000000(9 − 4τ)

2
t
2
2

+625191435333090000000000(9 − 4τ)
2
]

+ 2v
1
0v

2
0

[
2556691776(4τ − 9)t

8
2 + 32512558572(8τ − 13)t

7
2 + (241756510797549

− 144314472257429τ)t
6
2 − 179631886110300(8τ − 13)t

5
2 − 4680000(44285942747τ

− 263253275496)t
4
2 − 1016830269339300000(8τ − 13)t

3
2 + 1281450670575480000000(4τ − 9)t

2
2

+2500765741332360000000000(4τ − 9)]

+ (v
2
0)

2
[
10226767104t

8
2 + 260100468576t

7
2 − 144314472257429t

6
2

− 1437055088882400t
5
2 − 207258212055960000t

4
2 − 8134642154714400000t

3
2

+5125802682301920000000)t
2
2 + 10003062965329440000000000

])
.

(6) The components V 1
3 , V 2

3 of V3 = Πc(τ)V = (V 1
3 , V 2

3 ) ( in p.9)

V
1
3 = − 1

401399310097422026000τ3t62v1
0v2

0

×(7984(7τ(775τ + 187056) − 34902900)((t2(t2(9t2(t2(548549680t
2
2

+ 307943022714t2 − 34982652019843) − 1701385200494850) + 2422764439158876500)

− 86678262318423150000) + 2474468865158850000000)t
2
2 + 4828954487341950000000000)(v

2
0)

3

+ 1125(τ − 93)(217τ + 15012)(v
1
0)

3
(639172944(9 − 4τ)

2
t
8
2 + 65025117144(τ − 1)(4τ − 9)t

7
2

+ ((483513021595098 − 144314472257429τ)τ − 487491840800919)t
6
2

− 359263772220600(τ − 1)(4τ − 9)t
5
2 − 1170000(4τ(44285942747τ − 526506550992)

+ 2819944148355)t
4
2 − 2033660538678600000(τ − 1)(4τ − 9)t

3
2

+ 320362667643870000000(9 − 4τ)
2
t
2
2 + 625191435333090000000000(9 − 4τ)

2
)

+ 2(v
1
0)

2
v
2
0(360(4τ − 9)(τ(7τ(10606893749900τ + 2536489416683421) − 518055054639992712)

+ 1063652655897548100)t
8
2 + 92628372(τ(7τ(τ(92568042900τ + 22116731971591)

− 650025696188556) + 10232705506079115) − 1771149754674000)t
7
2

+ (50774746594745843899778700 − τ(τ(21τ(324687986456970820200τ

+ 77970268157033978307533) − 45882963706444037862649034)

+ 55593775253013585697856061))t
6
2 − 511771755300(τ(7τ(τ(92568042900τ

+ 22116731971591) − 650025696188556) + 10232705506079115) − 1771149754674000)t
5
2

+ 1000(τ(τ(28τ(1873887155467433028925τ + 451842385740605288104482)

− 340562697183706551541964847) + 78199341036596845695259056)

+ 44742430282526158909200300)t
4
2 − 2896952334300000(τ(7τ(τ(92568042900τ

+ 22116731971591) − 650025696188556) + 10232705506079115) − 1771149754674000)t
3
2

+ 180437175000000(4τ − 9)(τ(7τ(10606893749900τ + 2536489416683421)

− 518055054639992712) + 1063652655897548100)t
2
2

+ 352125225000000000(4τ − 9)(τ(7τ(10606893749900τ
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+ 2536489416683421) − 518055054639992712) + 1063652655897548100))

+ v
1
0(v

2
0)

2
(5760(τ(7τ(10606893749900τ + 2536303657046571) − 518024080718609562)

+ 1072018526902724700)t
8
2 + 185256744(τ(7τ(185136085800τ + 44459144726707)

− 8719341380879292) + 10168170097275900)t
7
2 − 3(τ(7τ(1298751945827883280800τ

+ 312673919289799276888957) − 59838920371770121540411731)

+ 35857752062483860298165700)t
6
2 − 1023543510600(τ(7τ(185136085800τ

+ 44459144726707) − 8719341380879292) + 10168170097275900)t
5
2

+ 8000(τ(7τ(3747774310934866057850τ + 904129528938313666533939)

− 169531468291083394182432393) + 19948715320787136254879100)t
4
2

− 5793904668600000(τ(7τ(185136085800τ + 44459144726707) − 8719341380879292)

+ 10168170097275900)t
3
2 + 2886994800000000(τ(7τ(10606893749900τ

+ 2536303657046571) − 518024080718609562) + 1072018526902724700)t
2
2

+ 5634003600000000000(τ(7τ(10606893749900τ + 2536303657046571)

− 518024080718609562) + 1072018526902724700)))

V
2
3 =

1

80279862019484405200τ3t62v1
0v2

0

×(3(v
1
0(v

2
0)

2
(11520(τ(2545654499976τ

2 − 337578616237966τ + 9593038531826103)

− 19852194942643050)t
8
2 + 5773989600000000(τ(2545654499976τ

2 − 337578616237966τ

+ 9593038531826103) − 19852194942643050)t
2
2 + 11268007200000000000(τ(2545654499976τ

2

− 337578616237966τ + 9593038531826103) − 19852194942643050)

+ 741026976(τ(3τ(7405443432τ − 974446161077) + 80734642415549) − 94149723122925)t
7
2

+ (τ(36(6804350698804124018299 − 51950077833115331232τ)τ

− 6648768930196680171156859) + 3984194673609317810907300)t
6
2

− 4094174042400(τ(3τ(7405443432τ − 974446161077) + 80734642415549)

− 94149723122925)t
5
2 + 8000(τ(4τ(449732917312183926942τ − 58682851787430995788103)

+ 6278943270040125710460459) − 738841308177301342773300)t
4
2

− 23175618674400000(τ(3τ(7405443432τ − 974446161077) + 80734642415549)

− 94149723122925)t
3
2) + 31936(τ − 93)(93τ − 3475)((t2(t2(9t2(t2(548549680t

2
2

+ 307943022714t2 − 34982652019843) − 1701385200494850) + 2422764439158876500)

− 86678262318423150000) + 2474468865158850000000)t
2
2 + 4828954487341950000000000)(v

2
0)

3

+ 5(τ(3348τ + 43075) + 11634300)(v
1
0)

3
(639172944(9 − 4τ)

2
t
8
2 + 65025117144(τ − 1)(4τ − 9)t

7
2

+ ((483513021595098 − 144314472257429τ)τ − 487491840800919)t
6
2

− 359263772220600(τ − 1)(4τ − 9)t
5
2 − 1170000(4τ(44285942747τ − 526506550992)

+ 2819944148355)t
4
2 − 2033660538678600000(τ − 1)(4τ − 9)t

3
2

+ 320362667643870000000(9 − 4τ)
2
t
2
2 + 625191435333090000000000(9 − 4τ)

2
)

+ 2(v
1
0)

2
v
2
0(1440(4τ − 9)(τ(τ(1272827249988τ − 168767016962561) + 4796806061481414)

− 9848635702755075)t
8
2 + 92628372(τ(4τ(3τ(3702721716τ − 491736696209) + 42138563413454)
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− 378989092817745) + 65598139062000)t
7
2 + (τ(τ(108(569672047105888213721

− 4329173152759610936τ)τ − 1700202486097907530951783) + 2059028713074577248068743)

− 1880546170175771996288100)t
6
2 − 511771755300(τ(4τ(3τ(3702721716τ − 491736696209)

+ 42138563413454) − 378989092817745) + 65598139062000)t
5
2

+ 4000(τ(τ(4τ(224866458656091963471τ − 29368111341141683313550)

+ 3153174697167568215615183) − 724067972561081904585732) − 414281761875242212122225)t
4
2

− 2896952334300000(τ(4τ(3τ(3702721716τ − 491736696209) + 42138563413454)

− 378989092817745) + 65598139062000)t
3
2 + 721748700000000(4τ − 9)(τ(τ(1272827249988τ

− 168767016962561) + 4796806061481414) − 9848635702755075)t
2
2

+ 1408500900000000000(4τ − 9)(τ(τ(1272827249988τ − 168767016962561)

+ 4796806061481414) − 9848635702755075))))

(7) We explain the concrete example as below
Let v = (6806, 2346) be a plaintext.

Encryption
v0 = d + dv = (8040, 7778),
τ = 3, β0 = 1 then ct0 = {5.58763 × 1019, 2.64606 × 1018, 1.47664 × 1018},
τ = 3, β1 = 2 then ct1 = {8.73996 × 1017, 4.13985 × 1016, 2.31025 × 1016},
τ = 3, β2 = 3 then ct2 = {7.68363 × 1016, 3.64162 × 1015, 2.03221 × 1015},
then we obtain the ciphertext = {ct0, ct1, ct2}.

Decryption
First, from ct0,

V = Π−1
c (τ)V3 = (−3.10237 × 1015 − 1.14863 × 1013τ + 3.06421 × 1014τ2,

− 1.72354 × 1015 + 6.4659 × 1013τ + 1.70234 × 1014τ2)

Further, from ct1 and ct2, we have others V . Next, from SKX =
{ 4
3 , 24570

499 X1, 3822X2}, we can construct cti · SKX as follows:

ct0 ·SKX = 7.45018×1019+(−1.52756×1017−5.65566×1014τ +1.50877×
1016τ2)X1 + (−6.58736 × 1018 + 2.47127 × 1017τ + 6.50633 × 1017τ2)X2,
ct1 · SKX = 1.16533 × 1018 + (−2.38991 × 1015 − 8.84846 × 1012τ + 2.36052 ×
1014τ2)X1 + (−1.03061 × 1017 + 3.86638 × 1015τ + 1.01794 × 1016τ2)X2,
ct2 · SKX = 1.02448 × 1017 + (−2.10229 × 1014 − 7.78354 × 1011τ + 2.07643 ×
1013τ2)X1 + (−9.06579 × 1015 + 3.40106 × 1014τ + 8.95428 × 1014τ2)X2,
then we have the following linear system from (7)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1.50366 × 1017 + 5.56717 × 1014τ − 1.48516 × 1016τ2)X1

+ (6.4843 × 1018 − 2.4326 × 1017τ − 6.40454 × 1017τ2)X2 = 7.33365 × 1019

(1.52546 × 1017 + (5.64787 × 1014τ − 1.50669 × 1016τ2)X1

+ (6.5783 × 1018 − 2.46787 × 1017τ − 6.49738 × 1017τ2)X2 = 7.43993 × 1019,

and this system is solved unique and the solution (X1,X2) is
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(X1,X2) = ((−7.49942 × 107 + 2.81343 × 106τ + 7.419 × 106τ2)/τ3,

(1.73906 × 106 + 6.43871 × 103τ − 1.72041 × 105τ2)/τ3))
(17)

Next, input the above (X1,X2) to the Equations (8) and (16), then we have the
equation of E(v1)

− 1.73632 × 1044 + 3.51579 × 1044τ − 5.99366 × 1044τ2 − 2.21611 × 1043τ3

+ 1.20382 × 1044τ4 − 1.20558 × 1042τ5 − 5.9622 × 1042τ6 = 0.

If we solve this equation, finally we have the integer α as the value of τ as follows

α = 3,

where τ = 3.00000, 2.98760. By using the solution α to (17), we can obtain the
value of v0 = (v1

0 , v
2
0) and the plaintext v = (v1, v2) as follows:

v1
0 = X1 = 8039.99999 ∼ 8040, v2

0 = X2 = 7778.00000 ∼ 7778,

v1 = v1
0 − dv1 = 8040 − 1234 = 6806, v2 = v2

0 − dv2 = 7778 − 5432 = 2346. �
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Abstract. One possible applicability of blockchain technology is in
identity management. Especially for public blockchains, the need to
reduce (ideally to zero) the exposure of sensitive identification data
is clear. Under these settings, zero-knowledge proofs, in particular in
the advanced forms of Zero-Knowledge Succinct Non-Interactive ARgu-
ments of Knowledge (zk-SNARK) and Zero-Knowledge Scalable Trans-
parent ARguments of Knowledge (zk-STARK), can be used as a poten-
tial privacy-preserving technique. The current work looks at the existing
libraries that implement zk-SNARKs and zk-STARKs and exemplifies
and discusses the use of zk-SNARKs in blockchain-based identity man-
agement solutions.

Keywords: Identity management · Blockchain · zk-SNARK ·
zk-STARK

1 Introduction

There is a high demand for secure, efficient, and interoperable digital identifica-
tion nowadays. This is a direct consequence of the increasing number of parties
(e.g., users, devices, services) that need to access and operate in the digital envi-
ronment. Identification is a prerequisite and a first-step for functionalities such
as access-control, permissions, confidential communication, etc.

Blockchain technology is a candidate for enhancing identity management by
introducing decentralization and other advantages (e.g., self-sovereignty, which
enables the user to own and control his identity). Nevertheless, for public
blockchains, the transaction details might contain sensitive data, and there-
fore it is important to minimize the exposure of such data within certain use
cases. Consequently, there has been a growing interest in using privacy-enhancing
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techniques for this type of blockchain [50]. Despite the added complexity, zero-
knowledge proofs, particularly Zero-Knowledge Succinct Non-Interac-tive ARgu-
ments of Knowledge (zk-SNARKs) [8] and Zero-Knowledge Scalable Transparent
ARguments of Knowledge (zk-STARKs) [4] seem promising.

We provide a comparison between zk-SNARKs and zk-STARKs and an
overview of the existent libraries that implement them. We refer to how zk-
SNARKs might be used for identity management on the blockchain and present
use-cases. We give practical examples of zk-SNARK programs for verification of
identity attributes compliance, for which we provide measurements in terms of
generation time and verification costs.

The remaining of the paper is organized as follows. Section 2 presents the
related work. Section 3 gives the necessary background. Section 4 presents avail-
able zk-SNARK and zk-STARK libraries. Section 5 exemplifies the applicability
of zk-SNARKs for blockchain identity management. Section 6 discusses the mea-
surements results, security aspects, and limitations. Section 7 concludes.

2 Related Work

The concept of zero-knowledge proof (zk-proof) was introduced in [27] by Gold-
wasser et al. Later, Blum et al. showed that non-interactive zk-proofs can exist
in the computational settings under the assumption of a Common Reference
String (CRS) [9]. Since then, several positive and negative results have been
given for zk-proofs in different models. Succinct zk-proofs were first presented in
[34], and succinct non-interactive zero-knowledge (NIZK) has been discussed in
[41]. SNARKs were first built in [8], together with some applicability (e.g., del-
egation of computation, two-party secure computation), under the assumption
that extractable collision-resistant hash functions exist. In [28], Groth presents
the NIZK arguments in sub-linear size and give a reduction to a constant num-
ber of group elements for a large CRS. Succinct arguments of NP-statements
that are fast to construct and verify, using Quadratic Span Programs instead of
Probabilistically Checkable Proofs (PCPs) were introduced in [25].

Various zero-knowledge proving systems were proposed during the years.
From these, we mention the Pinocchio system [49], SNARKs for C [5], Gep-
petto computation [18], and NIZK for a von Neumann Architecture [7]. Scalable
zero-knowledge was introduced in [6] and later used, for example, in the Coda
protocol [40]. Coda uses the recursive composition of zk-SNARKs to obtain a
succinct blockchain, removing the blockchain scalability issue. A pairing-based
(pre-processing) SNARK for arithmetic circuit satisfiability, which is an NP-
complete language, was presented in [29]. Based on this, various implementations
were given [10,30,56]. Bulletproofs, a more recent type of constraint zk-proofs
(i.e., the statement cannot be general), was introduced in [13]. zk-STARKs were
proposed in [4]. Valuable overviews on SNARKs, STARKs, and bulletproofs are
given in [13,50]. Recent proving systems include Sonic [39], Halo [11] and Libra
[57]. Distributed zk-proof generation was proposed in [56]. We recall a special
type of zk-proofs that was introduced in [24], somehow connected to our field of
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interest, the zero-knowledge proof-of-identity which proves a party’s identity by
demonstrating the knowledge of the private key that corresponds to the party’s
public key. Much subsequent work followed, which we deliberately omit here.

The usability of zk-proofs (in particular zk-SNARKs and zk-STARKs) in
blockchain-based solutions has been discussed in several scenarios [50]. To exem-
plify, in [54], the authors presented an interoperable healthcare blockchain-
based system that uses zk-proofs to authenticate the beneficiaries, Zcash uses
zk-SNARKs to create shielded transactions [59], and zero-knowledge proof-of-
identity has been proposed to overcome Sybil attacks [15]. A proposal of an
identity management system that claims to preserve privacy in the blockchain
by the usage of zk-SNARKs was described in [38]. Currently, not much litera-
ture exists on zk-SNARKs and zk-STARKs usage for identity management on
the blockchain. But a considerable number of proposals exist for identity man-
agement on blockchain in general. A brief survey of current work and existing
solutions can be found in [48]. However, despite the apparently large number of
such solutions, their maturity remains still questionable [47].

3 Background

3.1 Blockchain-Based Identity Management

A blockchain stores data in a descentralized and distributed manner, by using
nodes that agree on the stored data using a consensus protocol. The data
is stored in blocks, which are collections of transactions. A nice overview on
blockchain is given in [58]. From the various blockchain implementations, we
mention Ethereum [22], which we will refer to in the paper because of its ability
to implement smart contracts. Smart contracts allow execution via a function-
based interface stored in the blockchain and hence might be used for identity and
attributes verification of the parties. Every operation performed in the Ethereum
blockchain (e.g., simple transactions, smart contract executions) requires gas.

A blockchain-based identity management solution uses the blockchain capa-
bilities to implement identity management functionalities. The identities can be
attested either by recognized authorities or by other entities in the blockchain
(normally considered of trust and above a certain threshold number). Each entity
has an identifier and some attributes, which can be stored on- or off-chain [19]. A
more detailed look over the identity management on blockchain is given in [48].

3.2 Zero-Knowledge Protocols

In a zero-knowledge protocol, a prover assures a verifier about the validity of a
statement, without revealing any information other than its validity. It is guar-
anteed that a malicious prover cannot fool the verifier to accept a false state-
ment (soundness). A more relaxed notion, named zero-knowledge arguments,
computationally bounds the capabilities of the malicious prover to polynomial
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strategies (computational soundness) [12]. Throughout the paper, we will refer to
zero-knowledge proofs-of-knowledge for which a prover can also demonstrate that
he knows a witness that satisfies the statement. The zero-knowledge property
assures that the proof does not disclose or damage the secrecy of the witness.
They exist in both interactive (i.e., requires interaction between the prover and
the verifier) and non-interactive (i.e., does not require interaction between the
prover and the verifier) versions, with heuristics (e.g., Fiat-Shamir [24]) that can
transform the former in the latest under certain conditions or with some neces-
sary changes. For general statements, non-interactive zero-knowledge protocols
are only possible under the assumption of a Common Reference String (CRS)
that needs to be known by both the prover and the verifier [13].

A type of non-interactive argument of knowledge is the zk-SNARK [8].
Besides the zero-knowledge property, the zk-SNARKs provide the property of
succintness, meaning that the proofs are small, and the verification is cheap and
does not require expensive processing [14,50,56]. Nevertheless, they come with
some drawbacks: the necessity of a trusted setup (they work in the CRS model)
and (still quite) a significant overhead for the setup and on the prover side [56].

Another zero-knowledge non-interactive construction is the scalable and
transparent argument of knowledge, zk-STARK [3]. Here transparency means
that randomness used by the verifier is publicly available, so the necessity of
a trusted setup is eliminated [4]. On the drawbacks, the proof size is consid-
erably larger than for zk-SNARKs [4]. Similar to SNARKs, STARKs can be
executed with or without zero-knowledge and designed to be interactive or non-
interactive [3].

3.3 zk-SNARK and zk-STARK Program Representation

Quadratic Arithmetic Program (QAP)-based zk-SNARKs are used for imple-
menting practical use-cases. The predicate statement is internally codified in
terms of an arithmetic circuit and based on this codification, appropriate tools
can generate zk-SNARKs, by transforming the circuits into a QAP. QAPs
are based on pairings over elliptic curves, used to encode the computational
steps. Examples of elliptic curves include: the Barreto-Naehrig (BN) curves [2],
Edwards [21], MNT [42], BLS12-381 [61]. The arithmetic circuit used in a spe-
cific zk-SNARK corresponds to the finite field that underlines the elliptic curve
used, and a circuit wire corresponds to a single elliptic curve field element. After
assigning values to all of the circuit’s wires (the circuit represents a single com-
putation for specific public and private set of inputs), the next step for con-
structing a zk-SNARK is to provide a specific set of constraints that attest that
computation has been correctly performed. This set of constraints represents
the Rank-1 Constraint System (R1CS) and is used for preventing a malicious
prover to provide a verifier with an output that has not been created from
its inputs [50]. Other representing proof systems are considered to be Bilin-
ear Arithmetic Circuit Satisfiability (BACS), Unitary-Square Constraint Sys-
tems (USCS), and Two-input Boolean Circuit Satisfiability (TBCS) [36]. BACS
internally reduces to R1CS and TBCS internally reduces to USCS, being more
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efficient than using R1CS [36]. The tools that allow the proof predicate (i.e., the
statement) to be stated in a high-level language (so that is easier to learn and
use it) are called Domain-Specific Languages (DSL) tools. For zk-STARKs, the
predicate should be transformed in an Algebraic Intermediate Representation
(AIR) or a Permuted Algebraic Intermediate Representation (PAIR) [4].

4 zk-SNARK and zk-STARK Comparison and Available
Development Libraries

In this section, we compare zk-SNARKs and zk-STARKs and give an overview of
the main libraries that implement them. As already mentioned in Sect. 2, other
types of zk-proofs (e.g., bulletproofs) exist but are outside of the goal of this
paper. Nice comparisons between more types of zk-proofs are given in [13,50].

zk-SNARKs are defined in the CRS model, so they require an initial trusted
setup phase during which parties gain knowledge on a string (which can be fur-
ther thought of in terms of secret keys) [50,56]. The security of the zk-SNARKs is
based on the security of the trusted setup. Hence, if the trusted setup is compro-
mised, the whole system is damaged. On the contrary, zk-STARKs make use of
public randomness (they are transparent), thus eliminating the need for a secret
pre-shared value [4]. In many scenarios, this is a clear advantage of zk-STARKs
over zk-SNARKs because the setup might be a much too strong assumption and
transparency is necessary for public, distributed trust [4].

The proof size of the zk-SNARKs is small (they are succint), and the veri-
fication of such proof is fast [14,50,56]. They gain practicality due to the con-
stant proof size, regardless of the statement to be proved (e.g., Groth et al.
give a construction for which the proof consists of three group elements [29]).
In comparison, zk-STARKs generate much larger proofs (roughly 1000 times
larger [4]). In terms of verification, both systems have fast verification time,
with zk-SNARKs slightly outperforming zk-STARKs. zk-SNARKs are tradi-
tionally based on strong number-theoretical hardness assumptions that do not
hold against a quantum adversary [13]. Recently, post-quantum resistant zk-
SNARKs were introduced [16,26,45]. In comparison, zk-STARKs are normally
post-quantum secure [4] due to the quantum-resistant cryptographic primitives
they base on (e.g., collision-resistant hash functions, which are not known to be
broken by quantum computers [3]).

4.1 Development Libraries

Several libraries that implement zk-SNARKs and zk-STARKs have been devel-
oped. Table 1 lists some of the existing zk-SNARK libraries together with the
language in which they are implemented, their representing proof predicate lan-
guage, the underlying elliptic curves, SNARK constructions that can be used in
the library, and the available DSL tools. Table 2 looks into the zk-SNARK DSL
tools and lists them with the associated language and the corresponding back-end
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Table 1. zk-SNARKs and zk-STARTKs libraries [46,50]

Library LanguageRepresenting
proof
predicate
language

Eliptic curves zk-SNARK/
zk-STARKs

Types

DSL Tools

libsnark [36] C++ R1CS;
BACS;

USCS; TBCS

BN [2];
Edwards [21];

MNT [42]

BCTV14 [7];
Groth16 [29];
GM17 [30]

ZoKrates [62];
JSnark/xjSnark
[1,35]; Snarky

[37]

DIZK [52] Java R1CS BN254 [2] Groth16 [29] –

Snarkjs [33] Javascript R1CS BN254 [2] BCTV14 [7];
Groth16 [29]

Circom[32]

Bellman [60] Rust R1CS BLS12-381 [61] Groth16 [29] ZoKrates [62]

ZEXE [53] Rust R1CS Edwards [21];
MNT [42], BN

[2]

Groth16
[29],

GM17 [30]

ZEXE’s snark-
gadgets [53]

libSTARK [3] C++ – – BN18 [4] –

genSTARK [31] Javascript - - BN18 [4] –

Table 2. DSL tools [46,50]

DSL tool Language Back-end zk-SNARK Library

ZoKrates [62] Rust; C++ libsnark [36]; Bellman [60]

JSnark/xjSnark [1,35] Java libsnark [36]

Circom [32] Javascript Snarkjs [33]

Snarky [37] OCaml libsnark [36]

ZEXE’s snark-gadgets [53] Rust ZEXE [53]

libraries. Table 1 also lists the available development libraries for zk-STARKs.
To the best of our knowledge, there are no DSL tools available for zk-STARKs
at the moment. Notice the significantly less number of implementations for zk-
STARKs, which we assume to be a natural consequence of a later definition of
zk-STARKs than zk-SNARKs and a currently lower practical interest.

5 Blockchain-Based Identity Management Using
zk-SNARKs

Currently, zk-SNARKs are more suitable to be used in a blockchain due to
their better capabilities (e.g., small and constant proof size). In time, if zk-
STARKs become more efficient, they could dominate because they do not use a
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trusted setup [3]. Further, we looked into the applicability of zk-SNARKs into
blockchain-based identity management.

5.1 General Architecture

In [38], Lee et al. gave a blockchain-based identity management scheme that
makes use of zk-SNARKs and is compatible with the ZoKrates process [20]. We
do not claim their proposal is secure, nor discuss other aspects here (this is out
of our scope) but only consider the general architecture depicted in Fig. 1 for
further testing. Important security considerations are discussed in Sect. 6.

Step 1. A user Alice asks a Certified Authority (CA) to certify her identity
and attributes. For security reasons (to prevent disclosure and changes), the
certificate certA is issued on a modified version of the data that is both hidding
and binding. For simplicity, we further consider this to be a cryptographically
hashed value HA. Step 1 is executed off-chain and the method by which the
authority verifies the validity of the identity attributes is out of our interest.

Step 2. The certificate certA for HA is uploaded in the blockchain. The scope
of certA is to certify that HA indeed corresponds to the identity and attributes
of Alice. As the certificate is publicly verified, this step can be performed either
by the CA (step 2”) or directly by Alice (step 2’).

Step 3. A Third Party publishes on the blockchain a smart contract to verify
some attributes of the users. For this, a one-time setup phase takes place, during
which a zk-SNARK proving and a verification key are generated. The Third
Party securely transmits the proving key to Alice. Based on the verification key,
a Solidity smart contract is generated and deployed on the blockchain to further
verify the given proofs against the value HA stored in the blockchain. Note that
the setup is independent of the first steps (up to the usage of a standard hash
function), so the user might join the system after the smart contract is deployed.

Fig. 1. General architecture of a blockchain-based identity management system that
uses zk-SNARKs
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Step 4. Alice now wants to prove something about herself (that derives directly
from her attributes) to the Third Party without exposing anything else about
her attributes. In fact, she does not want to reveal anything else except that her
attributes do satisfy a statement (e.g., she is an adult). To do so, she generates
a proof that will be verified by the smart contract previously deployed on the
blockchain. The proof is generated based on a witness that corresponds to HA

(and to Alice’s attributes) and the proving key. Alice sends the generated proof
together with the publicly stored value HA as input to the smart contract.

Step 5. The Third Party checks the result of the smart contract execution by the
public address of Alice. If the proof is valid, then Alice proved that she satisfies
the statement without revealing anything else about her attributes (under the
assumptions of the zero-knowledge property of the proof and the one-way prop-
erty of HA). Otherwise, Alice is not able to prove that she satisfies the required
statement (this can mean that her attributes do not fulfill the requirements, or
that a malicious actor tried to use a fake identity). Note that HA needs to be
available in the public proof so that the validity of certA for HA can be publicly
checked (this prevents Alice to use different attributes than the certified ones).

5.2 Use-Cases

We looked into the European Union (EU) regulation on electronic identifica-
tion and trust services for electronic transactions in the European Single Mar-
ket (eiDAS) [55]. The eiDAS Security Assertion Markup Language (SAML)
Attribute Profile provides the list of attributes included in the eiDAS inter-
operability framework that supports cross-border identification and authentica-
tion processes [55]. The mandatory identity attributes required by the above-
mentioned regulation are FamilyName, FirstName, DateOfBirth, PersonIden-
tifier, whereas optional attributes are the BirthName (either First Names at
Birth or Family Name at Birth), PlaceOfBirth, CurrentAddress, and Gender.
The optional attributes may be supplied if available and acceptable by an EU
country’s national law [55]. We will refer to a simplified example, where we are
interested in letting a user prove that he/she is older than a certain age, while
not exposing his/her exact age or other information about the age (up to a neg-
ligible probability). This is an example that might be useful for online shopping,
access to different services, or voting, and it has been previously considered in
the literature [38].

5.3 zk-SNARK Implementation

We propose two simplified real-life examples of how zk-SNARKs can be used
in identity management. In Sect. 6, we provide measurements of the proposed
examples, in terms of proof generation time, amount of Ethereum gas used to
deploy the verifier smart contract on a blockchain testnet and the amount of
Ethereum gas used for making a verification transaction to the smart contract.
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Program 1. zk-SNARK for identity management
import ”hashes/sha256/512bitPacked.zok” as sha256packed
def main(field pub year1, field pub year2, field check year, field pub id, private field
year, private field rand) -> (field):
field[2] hash year = sha256packed([0, pub id, year, rand])
assert(pub year1 == hash year[0])
assert(pub year2 == hash year[1])
field rez = if year < check year then 1 else 0 fi
return rez

Program 2. zk-SNARK for identity management
import ”hashes/sha256/512bitPacked.zok” as sha256packed
def main(field hash ident1, field hash ident2, field check year, field pub id, private field
year, private field id, private field rand) -> (field):
field[2] result = sha256packed([pub id, year, id, rand])
assert(hash ident1 == result[0])
assert(hash ident2 == result[1])
field rez = if year < check year then 1 else 0 fi
return rez

Tools and Environments. For implementing the zk-SNARK program we used
the ZoKrates DSL tool [62]. ZoKrates provides a plugin for Remix IDE tool [51]
and enables compiling a proof, computing a witness for the proof, performing
the SNARK setup, as well as generating and offering the possibility of exporting
the verifier smart contract (that further should be deployed on the blockchain
public network). However, ZoKrates is also providing an API, in the zoktares-js
Javascript library, which can be installed as a Node package [62] and used to
perform the above-mentioned steps. Besides those reasons, we choose this tool
also because it supports integration with the blockchain network and is easier
and straightforward to implement and test such zk-proofs. The ZoKrates zk-
SNARK programs were written in Rust language. The default proving scheme
for the ZoKrates Remix plugin is the one from [29], and it uses the Bellman
library [60] as back-end. To compute the hash value, we used the sha256packing
function, a component of the standard ZoKrates library [62].

For conducting the tests we used an Intel(R) Core(TM) i7-3632QM CPU
@ 2.20 GHz with 8 GB of RAM, Windows 8.1 64-bit Operating System, and
Chrome 85 as web browser version. We note that better configurations of the
machine used for calculations could improve the results, but to what extent the
configuration matters, is not a subject of this research. We also note that by
using the Remix IDE tool, the time required for the generation of proof might
not be accurate because the calculations are made by calling methods from an
interface and not by calling them thought the command line.

zk-SNARK Usage Examples. Similar to [55], we exemplify how to use a
zk-SNARK to prove that the attributes committed in the blockchain (and cer-
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tified by the CA) correspond to a user who satisfies a certain statement. We
are interested if the user is born before a year of interest. In the first case, we
assumed that each identity attribute is separately hashed and certified in the
blockchain. For demonstrating purposes, in Program 1, we only used the year of
birth attribute, but adding more attributes to the scheme can be done similarly.
In the given example, pub id is the public identifier of the user (which, for our
example is just 128-bits long but can be easily expanded), (pub year1, pub year2)
is the value HA, certified and stored in the blockchain, which is further compared
to the hash hash year computed on the private inputs (the private random value
rand is added to eliminate immediate brute force attacks on the year of birth,
if pub id is small enough). Finally, the validity of the statement is checked. In
the second case, we assume that a single certificate is issued for all the user’s
attributes. For demonstrating purposes, we assume that the user has only two
attributes: the year of birth (year) and a personal identification number (id).

One can add more attributes, such as the ones from Sect. 5.2 [55]. The
ZoKrates code that acts as basics for the general proof is illustrated in Pro-
gram 2. The difference between the code in Program 1 and Program 2 is that in
the latter the sha256 is applied to all the attributes at once, whereas in the first
example, each attribute will require the storage of a hash and a certification in
the blockchain. We will discuss more about this in the next session.

Table 3 shows the measurements for the exemplified zk-SNARKs programs
given before. We used Remix environments for deploying and running blockchain
transactions: Javascript Ethereum Virtual Machine (VM) and Injected Web3
(with Metamask Ethereum wallet, a Google Chrome extension [17]). Remix
makes a distinction between execution and transaction costs: execution costs
are the costs used on the virtual machine without deployment costs or costs
related to function calling, whereas transaction costs include the execution costs
as well as the cost of sending contracts and data to the blockchain. When exe-
cuting transactions using a testnet on Remix, the transactions can be viewed
on Etherscan [23], and there are other gas-related measurement fields available,
such as the gas limit (i.e., the maximum gas amount that can be used in a
function execution) and the gas used (i.e., the actually used gas amount). Tak-
ing this into consideration, for organizing reasons, we choose to represent them
together in the last four lines of Table 3, with the mention that the significance
of the value depends on the used environment: execution or transaction cost if
the environment is Javascript Ethereum VM and gas used or gas limit if the
environment is Injected Web3 over Kovan public testnet network.

The setup and the proof generation time do not require Ethereum transac-
tions. They are performed by the ZoKrates plugin and, therefore, have the same
values irrespective of the Remix environments. We note that the setup genera-
tion time is indeed the highest computational step of the zk-SNARK generation
process, but the time for generating a proof is quite acceptable (in the settings
mentioned before, using an interface).

We deployed the verifier smart contracts on Kovan testnet, available at [43,44].
The cost of deploying the verifier depends on the environment, and not on the
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Table 3. ZoKrates Remix plugin generation and verification measurements

Program 1 Program 2

Setup (seconds) 187 237

Proof (seconds) 70 90

Environment Javascript
Ethereum VM

Injected Web3
(Kovan
network)

Javascript
Ethereum VM

Injected Web3
(Kovan
network)

Trans. Cost/Gas
Limit Deploy
Verifier

1299416 gas 1060320 gas 1299148 gas 1060104 gas

Exec. Cost/Gas
Used Deploy Ver-
ifier

933368 gas 1060320 gas 933168 gas 1060104 gas

Trans. Cost/Gas
Limit verifyTx

287032 gas – 286904 gas –

Exec. Cost/Gas
Used verifyTx

245280 gas – 245280 gas –

proposed example, which is expected as the syntax for the smart contract is the
same, and the internal parameters differ slightly. Also, it seems that the gas limit
for deploying the smart contract into a public testnet is less than the transaction
cost for deploying the verifier on the other environment.

6 Results and Discussion

The verifier smart contract provides a public function called verifyTx that can
be executed to verify the correctness of a proof. For the Ethereum VM environ-
ment, the execution cost for calling this function is the same, irrespective of the
program. For the Kovan network, at the moment of writing, we were not able
to determine the gas limit and the gas used for performing such transactions,
as there seemed to be a bug in the Remix IDE. For the testnet, the transaction
fees (calculated as gas price multiplied by the gas used, where the gas price, for
our case, equals 9 Gwei) at the exchange from October, 3rd 2020 are 0.00954288
Ether for the first program, respectively 0.009540936 Ether for the second one
(2.84 EUR). For smart contract deployments, these are rather acceptable fees
that can make more feasible the usage of zk-SNARKs on the blockchain.

Similar experiments were undertaken at the end of June 2020. Then we
obtained a significantly larger setup and proof generation time. However, we
were able to determine the cost for making verifyTx transactions on Kovan test-
net: the gas limit for making such transactions was smaller than the transaction
cost of making such transactions on the Ethereum VM environment. We noted
that the price for smart contract transactions has increased since our previ-
ous experiments, therefore, the costs for using such solutions should be taken
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into consideration. Consequently, we remark the continuous development of the
ZoKrates Remix plugin, but also its instability.

On the implementation side, the public user identifier used for the given
zk-SNARK programs is of type field and can store a maximum of 128 bits (a
ZoKrates library constraint). This limitation can cause problems, for example
when using an Ethereum public address as a public identifier. However, it can
be mitigated by using two parameters of type field (an Ethereum address has
256 bits), but one should pay attention to their concatenation.

The considered solution stores the certificates in the blockchain which might
be arguable by itself, as certification is by construction publicly verifiable.
Despite an overload, certification in blockchain might bring some benefits (e.g.,
transparency in the sense that anyone can see the certificates and their history).
However, the implication of such certification regarding the overall security must
be thought of. We assumed certification over a simple hashing on the data, so by
using a cryptographically weak hash function the system becomes vulnerable.
Brute force attacks caused by a possible small set of values for the attributes
(e.g.., possible years of birth) must be mitigated.

Moreover, mechanisms against malleable proof must be considered, prevent-
ing an adversary to generate a valid proof, different than, but computed from an
eavesdropped valid proof [62]. In the absence of other mechanisms (e.g., verifica-
tion of correspondence between the committed value on-chain and the executor
of the smart contract), the scheme is directly vulnerable to replay attacks: an
adversary can fake Alice’s identity by reusing a proof that Alice had previously
used. Another risk, introduced by construction, resides in the number of users
that need to share the proving key generated at setup and used as input together
with the witness to generate a valid proof for the deployed smart contract [50].

Depending on the application, the attributes can be individually hashed and
certificated or a single hash and one certificate can be used for all attributes. If
a single hash is used, the prover is obliged to use all the attributes to generate
the proof, regardless of the statement of interest. Adding more parameters to
the proof will increase its complexity and therefore the cost of the verifyTx
will increase. The advantage is in terms of storage space and computation of
certifications (constant, regardless of the number of attributes). Choosing what
to be stored on the blockchain and the exact form (e.g., the hash, or more general
the commitment scheme) remains open to specific application requirements. If
sensitive data are stored on-chain, the confidentiality is always at risk, being
computationally secured and thus, in time, predisposed to attacks.

Considering the above-mentioned aspects, we highlight that we do not claim
the general architecture in Fig. 1 is secure but only use it as an example for our
experiments. The motivation or feasibility of applying zk-SNARKs in off-chain
settings might be separately investigated. More in-depth implementation details
and security analysis of the approach [38] we have considered for our examples,
as well as finding better zk-SNARKs solutions or arguing about their utility are
outside of the goal of this paper. They remain of interest for future work.
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7 Conclusions

Blockchain-based identity management is a domain that might benefit from the
usage of zk-SNARKs and zk-STARKs. In this paper, we looked into the practical
side of using zk-SNARKs in identity management, by using the ZoKrates library
[62] and proposing programs for certain use cases. Although these privacy-
preserving technologies seem promising, they are not yet ready to be used in pro-
duction: the open-source libraries are under development, continuously improved
and tested, and still not fully analyzed in terms of security. Improvements in the
efficiency of SNARKs and STARKs are also topics for further research.
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Abstract. Nowadays, the number of discovered vulnerabilities increases
rapidly. In 2018, the 17, 308 vulnerabilities were discovered and during
the 2019 even more, so up to 20, 362. The serious problem is that a
substantial part of them is rated as critical or at least labeled as high
according the CVSS (Common Vulnerability Scoring System). This fact
causes a problem, the designers and/or developers do not know which
vulnerability should be eliminated at the first place. Time for removal
of the vulnerability is crucial from the practical point of cyber security.
The main contribution of the article is a proposal of a new method that
is used for prioritizing vulnerabilities. The aim of the proposed method
is to eliminate the disadvantages of approaches commonly used today.
Our method improves the prioritization of vulnerabilities utilizing the
parameters: the possibility of exploitation, availability of information
about them and knowledge obtained by Threat Intelligence. These three
parameters are highly important, especially for newly discovered vul-
nerabilities, where a priority can differ from day to day. We evaluate
the functionality of the proposed method utilizing the production envi-
ronment of a medium-sized company and we copare results with CVSS
method (30 servers, 200 end-stations).

Keywords: CVSS · Priority · Security · Vulnerability assessment

1 Introduction

Every year a significant number of vulnerabilities is discovered worldwide.
According to the information published by the Imperva organization 14 086
vulnerabilities were discovered in 2017. In 2018 the number has risen to 17, 308
and during 2019 even more, so up to 20, 362 [3]. When we take a more detailed
look at the vulnerability it may be observed that a substantial part of them is
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rated as critical or at least as high. In 2018, almost 59 % of them got more than
7 points according to the Common Vulnerability Scoring System (CVSS) and
15 % obtained a score of more than 9 points [5] on a 10-point scale.

Because of more than a tenth of all newly discovered vulnerabilities are cur-
rently assessed as critical, it is important to consider whether the currently
widely used CVSS vulnerability assessment methodology is still appropriate and
whether its prioritization function is sufficient for the rapidly growing number of
new vulnerabilities. It is important to define key terms and discuss their meaning
in the context of the study. These terms include prioritization [5], vulnerability
[14], vulnerability evaluation [8], vulnerability assessment [6] and risk [9].

1.1 State of the Art

Common Vulnerability Scoring System [1,13] is the most widely used method-
ology for vulnerability assessment. The CVSS methodology evaluates vulnera-
bilities on a scale from zero (the least severe) to ten points (the most severe).
In addition to the numerical assessment each vulnerability has a CVSS vec-
tor, which reflects the values of the individual metrics used to calculate the
final assessment. The CVSS methodology is based on three areas of vulnerabil-
ity severity assessment - Base Score, Temporal Score and Environmental Score.
Furthermore, each of these areas is evaluated based on several metrics depending
on the version of the CVSS.1

On the one hand the main advantage of the CVSS methodology is its com-
plexity, on the other hand it brings significant disadvantages. If the latest Envi-
ronmental Score is used to prioritize vulnerabilities, the resulting value accu-
rately reflects the severity for the environment. Unfortunately, a great amount
of information is needed to determine such score, which in most cases cannot be
processed automatically [11]. If we take a detailed look at the Temporal Score,
it is also designed well for its purpose. Unfortunately, its real usage is negligi-
ble. Most of the vulnerability detection tools or the “vulnerability finders” do
not take it into consideration. Another disadvantage of the CVSS is the most
tools used for vulnerability detection and risk assessment use only the Base Score
metric. They do so precisely because it is almost impossible to calculate the Envi-
ronmental Score automatically without providing a large amount of information.
The task of prioritization is therefore left up to the user’s tool. To properly pri-
oritize vulnerabilities, it is necessary to know which vulnerable system is being
analyzed. The CVSS base score does not take into consideration the information
about the importance of a system, whether it is a production server in DMZ
(DeMilitarized Zone) or a server in a closed testing environment.

Another methodology that is often used to assess the severity of vulnera-
bilities is the OWASP Risk Rating Methodology [18]. The basic idea of this
assessment is the connection between risk, the probability of exploitation and
the impact while it is exploited. The whole methodology is based on the fact

1 The currently used version of the CVSS is 3.1. This and elder versions are described
in detail in the methodology’s documentation on https://www.first.org/cvss/v3-1/.

https://www.first.org/cvss/v3-1/
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that the risk score is directly proportional to the probability of exploitation and
its impact. The first area for determining the final risk of analyzed vulnerability
is the probability of exploitation of such vulnerability. There are eight differ-
ent factors in this area which are evaluated. All mentioned factors are divided
into two groups - Threat Agent Factors and Vulnerability Factors. The second
area for determining the final risk is the impact of exploiting the vulnerability.
As well as in the previous area there are eight different factors being evaluated
and they are divided into two groups - Technical Impact Factors and Business
Impact Factors. The main advantage of this methodology is its simplicity, which
is ensured as a result of a smaller number of factors (parameters/metrics) than
in the CVSS methodology and also due to a simple principle of evaluation of
the overall level of risk. The second big advantage is the preference of busi-
ness factors over technical ones. For each system in different organizations, the
same vulnerability may reflect a different level of risk, so it is appropriate to
assess it differently. Furthermore, the OWASP methodology reflects parameters
that CVSS either does not have at all or does not take them into assessment of
the baseline score. These are exploitation factors and vulnerability information
included in the temporary CVSS score.

Simplicity of the OWASP methodology is from another point of view also its
the disadvantage. Areas which are assessed in the CVSS score using four param-
eters (attack vector, attack complexity, authorization level, user interaction) are
in the OWASP approach evaluated only by two, which are a factor of difficulty of
vulnerability exploitation and the factor of the threat carrier group. Therefore,
it is impossible to specify all parameters in depth for vulnerability assessment,
while the CVSS methodology allow this in all its assessments.

Nowadays, while running security tests, most vulnerability databases work
with the assessment of vulnerabilities by CVSS or OWASP (in case of web appli-
cations). However, there are other methods that are mostly proprietary and
which are used by security organizations in their vulnerability scanning tools
(e.g. Nessus [12,15], Netsparker [2,4] or Rapid7 [10,16]). However, some of them
often do not publish in detail their core working principles and the resulting
prioritization of vulnerabilities. From a modern perspective it is clear that the
CVSS methodology, to some extent, is outdated and its algorithm for assess-
ing the severity of vulnerabilities does not reflect some important parameters of
them.

There are several CVSS enhancements that have already been proposed or
several new methodologies that have already been developed, which for example
take into the final assessment the availability of exploits or the context of a
vulnerable asset.

Ruyi Wang et al. [17] describe a method that removes the subjective and
obscure factors that have a place in the CVSS method. However, this method
does not pay enough attention to the priority of the asset, or to the requirements
for security of the CIA (Confidentiality Integrity Availability) triad, which may
be perceived as its disadvantage.



Manager Asks: Which Vulnerability Must be Eliminated First? 149

Christian Frühwirth and Tomi Männistö deal with the improvement of the
traditional CVSS method [7]. The authors use a distribution model used to esti-
mate the complexity of exploitation and the availability of the appropriate patch.
Nonetheless, even this improvement lacks the context of the asset’s vulnerability.

Further, Feutrill et al. [6] describe the dependence of the CVSS evaluation
on the amount of time it takes to create a functional exploit. The authors do not
suggest any improvements to the CVSS methodology but analyze the assessment
of vulnerability and the difficulty of their exploitation.

Lastly, Marjan Keramati [8] focuses on the complexity of vulnerability’s
exploitation. In addition, it improves the CVSS evaluation with the aim to
reflect the availability and quality of exploits more accurately. However, from
the assessment point of view, this provides only a partial improvement and does
not operate with the information about the vulnerable asset sufficiently.

1.2 Our Contribution

The main contribution of this work is a proposal of a new method which is used
for prioritizing vulnerabilities and eliminates the disadvantages of the methods
described above. The proposed method improves the prioritization of vulnerabil-
ities considering the parameters of the possibility of exploitation, availability of
information about them and knowledge obtained by Threat Intelligence. These
three parameters are highly important, especially for newly discovered vulnera-
bilities, where priority can differ from day to day. Using the proposed method of
the assessing a newly discovered vulnerability is going to have a lower final prior-
ity in case there is not any exploit publicly available, any technical information
about it and the vulnerability is not being actively exploited. In contradiction,
the final score of the vulnerability will be higher even if it has the same CVSS
score, but is actively exploited by attackers and its working principle is well
described and documented2.

In addition to the technical parameters, the method also operates with the
priority of the asset, or with the requirement to provide elements of the CIA
triad. From a vulnerable asset point of view, this context helps to prioritize
vulnerabilities which are important from a business point of view or exist in
critical and production systems. Another important property of the proposed
method takes the implemented countermeasures as a part of the assessment
evaluation, which may reduce the risk of exploiting a vulnerability or the final
impact on the protected system or data in case the exploitation has already
occurred.

2 For example there is an available exploit in Metasploit DB.
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2 New Method Proposal

The suggested method for prioritizing vulnerabilities is based on the principle
that the evaluation process does not contain only the vulnerability itself, but
includes the information about the vulnerable system and implemented coun-
termeasures (protections) which help ensure the confidentiality, integrity and
availability of the system. As a result, all these factors may reduce or increase
the priority of a vulnerability. The basis of proposed assessment method includes
three parts - vulnerability assessment, vulnerable system and countermeasures.

2.1 Basic Principle of Method

The following text describes the basic principle of the proposed method and
discuss the operations of individual blocks.

The first area used for prioritizing is Vulnerability evaluation, which con-
sists of nine different parameters. Each parameter has from two to six different
word descriptions, which are additionally converted to a number ranged from 0
to 1. The verbal description is used for determining the value of a parameter,
because it is almost impossible for a human to exactly choose the value from
0 to 1, for example, the difficulty of a vulnerability’s abuse. With the motiva-
tion to avoid the mentioned problem the verbal description is used, which gives
examples for individual values and it can help handle this determination process
much more accurately. All parameters in this area are divided into two groups -
permanent parameters and alterable parameters. The permanent parameters, as
the name implies, are left unchanged over time in terms of prioritization. They
are: impact on the CIA triad, difficulty of abuse, user interaction and required
permissions. Mentioned permanent parameters are similar to the ones CVSS
methodology uses.

On the contrary, the alterable parameters may change over time and thus sig-
nificantly affect the priority of assessed vulnerabilities. They are: availability of
information, possibility of exploitation and information about current vulnerabil-
ity’s exploitation from Threat Intelligence services. The first alterable parameter
is availability of information. It describes whether technical information about
the vulnerability is available, whether there exists a description of the vulnerabil-
ity’s exploitation principles etc. The second alterable parameter is exploitation.
For example, it includes the possibilities of automation, the quality of the exploit
etc. The last alterable parameter is obtained from Threat Intelligence services.
Such data contains information which describes the relation between analyzed
vulnerability and exploitation count.

Asset evaluation (vulnerable system’s asset evaluation) is determined
depending on the basis of three parameters - the requirement for confidentiality,
integrity and availability of the system or its data. A questionnaire was chosen as
a form for the suggested method of asset evaluation. There are several questions
in the evaluation process, which help to analyze a chosen asset from the CIA
triad’s point of view and help asset’s owner to determine the importance of the
data stored in a given system. The requirement for one of the three parameters
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of the CIA triad is used to prioritize the vulnerability, and the resulting vulner-
ability priority is assessed both in terms of this requirement and in terms of the
impact of vulnerability exploitation.

In order to properly assess the impact on the CIA triad, it is also advisable to
take into calculation the Countermeasure evaluation, which may affect these
values. As an example, it is possible to discuss a vulnerability that has a high
impact on system availability. In case we had the system in a high availability
mode, where backups are created regularly, the impact on its availability would
not be as high as if it were a normal server that would not be backed up and did
not have its redundant copy in operation. Countermeasures are evaluated in the
same way as the asset evaluation, it means using a sort of questionnaire. The
asset owner or infrastructure manager can determine which countermeasures are
used for a particular system.

2.2 Calculation of Vulnerability Priority

The following text sequentially introduces the definitions of parameters that are
leading to the final result of the vulnerability priority parameter.

The numerical evaluation of vulnerability parameters, except for the impact
on the CIA triad, is written in the set D.

Definition 1. The set of all parameters that describes a vulnerability is denoted
as D. This set has exactly 6 elements (excluding the impact on confidentiality,
integrity and availability) and the number of parameters is exactly given.

D = {d1, d2, . . . , d6} (1)

Each parameter has its own weight to take into consideration their respective
importance. Each of them is defined on a set of real numbers in the range of 0
to 1. The weight of individual elements is given in the Table 1.

Definition 2. The set of weight values corresponding to the elements of the set
of parameters D is known as DW .

DW = {dW 1, dW 2, . . . , dW 6} (2)

When evaluating parameters describing the vulnerability, there are predefined
options in order to determine mentioned parameters easier and more precisely.
Each parameter has a precisely defined word description. Followingly every def-
inition is converted to a numerical value ranged from 0 to 1. Numerical value
just like the word description is strictly defined and is unchangeable.
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In addition to the mentioned parameters, it is important to determine the
final impact on the confidentiality, integrity and availability of a vulnerable sys-
tem. In a similar way possible values of parameters are predetermined. The
method was made this way for easier choosing, because the description of each
vulnerability is chosen by the person, not by the algorithm. Additionally, it is
advisable to define these three parameters for calculations.

Definition 3. Confidentiality Impact C is the possible impact on the confi-
dentiality of a system in case of its exploitation. The parameter is defined by an
element from the set of values, Eq. 3. A higher numerical rating means a higher
impact on confidentiality (see Table 6 for word definition).

C ∈ {0, 22; 0, 67; 0, 78; 1} (3)

Definition 4. Integrity Impact I is a numerical expression of the possible
impact on the integrity of a vulnerable system in case of its exploitation. It is
defined by an element from the set of values, Eq. 4. A higher numerical rating
means a higher impact on integrity (see Table 6 for word definition).

I ∈ {0, 11; 0, 33; 0, 56; 0, 78; 1} (4)

Definition 5. Availability Impact A is a numerical expression of the possible
impact on the availability of a vulnerable system in case of its exploitation. It is
defined by an element from the set of values, Eq. 5. A higher numerical rating
means a higher impact on availability (see Table 6 for word definition).

A ∈ {0, 11; 0, 56; 0, 78; 1} (5)

Once all required parameters describing the vulnerability are defined, it is
necessary to characterize the requirements for confidentiality, integrity and avail-
ability. These requirements are based on the replies to the suggested question-
naire. It is advisable to define these requirements for following calculations.

Definition 6. Confidentiality Requirement CR is a numerical expression of
the required confidentiality measurement of the investigated asset. It is defined on
the interval 〈0, 1〉 above the set of real numbers (see Eq. 6). A higher numerical
rating means a higher confidentiality requirement.

CR = 〈0, 1〉 ⊂ R (6)

Definition 7. Integrity Requirement IR is a numerical expression of the
required integrity measurement of the investigated asset. It is defined on the
interval 〈0, 1〉 above the set of real numbers (see Eq. 7). A higher numerical
rating means a higher integrity requirement.

IR = 〈0, 1〉 ⊂ R (7)
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Definition 8. Availability Requirement AR is a numerical expression of the
required availability measurement of the investigated asset. It is defined on the
interval 〈0, 1〉 above the set of real numbers (see Eq. 8). A higher numerical
rating means a higher availability requirement.

AR = 〈0, 1〉 ⊂ R (8)

As was mentioned in the previous chapter, the questionnaire is divided into
four sections. Parts dealing with confidentiality, integrity and availability have
a maximum number of points which equals 15. The general part of questions
has a maximum number of points which equals 4. Each question has two or
more possible word answers, which correspond to a predetermined numerical
evaluation. It is defined on the interval 〈0, 1〉 above the set of real numbers. The
final score is calculated as the sum of the numerical evaluations of the individual
answers included in related area. The evaluation of all three requirements is
calculated as the ratio of the sum of the score given from a relevant area and
from general questions. The maximum number of points is 19.

CR =
Confidentiality Questions Score + General Questions Score

19

IR =
Integrity Questions Score + General Questions Score

19

AR =
Availability Questions Score + General Questions Score

19
(9)

However, there is one exception in case the obtained question score equals 0. In
this situation mentioned requirement is equal to 0 as well.

if (Confidentiality Questions Score == 0) then CR = 0
if (Integrity Questions Score == 0) then IR = 0

if (Availability Questions Score == 0) then AR = 0 (10)

The last task before final calculations of the vulnerability priority are made is
to determine the numerical evaluation of the countermeasures. It affects the CIA
triad or more precisely a modified version of the impact on the CIA triad, which
is also included into assessing the requirement to ensure all three parameters. As
a result, countermeasures are linked to both the vulnerability itself and the asset
containing a vulnerability. Firstly, it is important to define these three values for
the following calculations.

Definition 9. Confidentiality Protection CP is the protection of the asset’s
confidentiality using defined countermeasures. This value is defined on the inter-
val 〈0, 1〉 in real numbers. A higher numerical rating means less influence of
confidentiality protection, i.e. a higher priority of vulnerability.

CP = 〈0, 1〉 ⊂ R (11)



154 D. Pecl et al.

Definition 10. Integrity Protection IP is a numerical expression of the
asset’s integrity protection using defined countermeasures. This value is defined
on the interval 〈0, 1〉 above the set of real numbers. A higher numerical rating
means less integrity protection and as a result a higher priority of vulnerability.

IP = 〈0, 1〉 ⊂ R (12)

Definition 11. Availability Protection AP is a numerical expression of the
protection of asset’s availability using defined countermeasures. This value is
defined on the interval 〈0, 1〉 above the set of real numbers. A higher numerical
rating means less impact on accessibility protection and as a result a higher
priority of vulnerability.

AP = 〈0, 1〉 ⊂ R (13)

The questionnaire for the evaluation of countermeasures includes 13 items
divided into groups according to the parameter of the CIA triad. The evaluation
of confidentiality, integrity and availability of protection is calculated as the
product of all numerical values of individual items in a given group.

For example, a confidentiality assessment includes five items: encryption,
access control, firewall, microsegmentation and antivirus system. Next, it is nec-
essary to calculate a product from given parameters and the result identifies a
degree of asset’s confidentiality protection.

If the numerical value of the countermeasure from the confidentiality group is
denoted as PCi, where i is an iterator across all items in the group. Analogously
it is possible to express the value of the countermeasure from the integrity group
using PI i and the value of the countermeasure from the availability group using a
PAi notation. Then in order to calculate a protection score of individual elements
of the CIA triad, the following statements are used.

CP = PC1 · PC2 · PC3 · PC4 · PC5
IP = PI1 · PI2 · PI3 · PI4 · PI5
AP = PA1 · PA2 · PA3 · PA4 · PA5 (14)

Once the set of parameters describing the vulnerability and the requirements
for ensuring the CIA triad of the vulnerable system is described. It is possible to
pay attention to the final calculation of the priority. First, a vulnerability score
is calculated. The score does not include the impact on the CIA triad and is
calculated as the sum of all parameters multiplied by their weight.

Definition 12. Vulnerability Score S is a numerical expression of the vul-
nerability parameters that affect its priority. It is defined as the product of the
elements of the set D and the corresponding weights from the set DW , see the
Definitions 1 and 2.

S =
6∑

i=1

DiDW i (15)
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Once the vulnerability score is calculated, the modified impact on the indi-
vidual parameters of the CIA triad should be counted up. This means correlating
values representing the requirements of confidentiality, integrity and availability
with the impact coefficient and with the protection coefficient. The impact coef-
ficient is determined during vulnerability assessment. The protection coefficient
is defined by implemented measures. The modified impact is calculated as the
product of the impact, the parameter’s requirement and the degree of protection.

Definition 13. Modified Confidentiality Impact CM expresses the possible
impact on vulnerable system’s confidentiality in case of a vulnerability exploita-
tion, which already includes the confidentiality requirement CR and the confiden-
tiality protection CP . CM is defined as a real number on the interval 〈0, 1〉. A
higher numerical rating means a higher impact on confidentiality.

CM = 〈0, 1〉 ⊂ R

CM = C · CR · CP (16)

Definition 14. Modified Integrity Impact IM is a numerical expression of
the possible impact on vulnerable system’s integrity in case of a vulnerability
exploitation, which already includes the integrity requirement IR and integrity
protection IP . IM is defined on the interval 〈0, 1〉 above the set of real numbers.
A higher numerical rating means a higher impact on integrity.

IM = 〈0, 1〉 ⊂ R

IM = I · IR · IP (17)

Definition 15. Modified Availability Impact AM is a numerical expression
of the possible impact on vulnerable system’s availability in case of a vulnera-
bility exploitation, which already includes the availability requirement AR and
availability protection AP . AM is defined on the interval 〈0, 1〉 above the set of
real numbers. A higher numerical rating means a higher impact on availability.

AM = 〈0, 1〉 ⊂ R

AM = A · AR · AP (18)

Next, the modified vulnerability score should be calculated. The score already
covers the modified impacts on the elements of the CIA triad.

Definition 16. Modified Vulnerability Score SM is a numerical expression
of the vulnerability parameters that affect its priority. Instead of the parameters
of confidentiality, integrity and availability, their modified forms are taken into
calculation. Modified parameters take into account the information about asset
priority, the level of protection provided by the implemented countermeasures etc.
Modified score is defined as the product of the vulnerability score and the sum of
all modified parameters of the CIA triad.

SM = S · (CM + IM + AM ) (19)
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Definition 17. Vulnerability Priority P is the severity of a vulnerability in
terms of necessity of its remediation. It is defined as an integer number on the
interval 〈0, 1000〉. A higher numerical rating means a higher priority.

P = 〈0, 1000〉 ⊂ R (20)

Vulnerability priority is calculated as the ratio of the modified vulnerability
score to the maximum possible score. The maximum score equals 12.3 in this
methodology. The result is multiplied by 1000 for better prioritization without
decimal numbers. Finally, the result is rounded to an integer.

P =
SM

12.3
· 1000 (21)

For better understanding of the final priority of vulnerability and its calculations,
the raw statement is given below 22.

P =
∑6

i=1 DiDW i · (C · CR · CP + I · IR · IP + A · AR · AP )
12.3

· 1000 (22)

3 Evaluation of the Method Suitability

In order to evaluate the functionality of the suggested approach, the proposed
method was applied on the environment of a medium-sized company, whose basic
infrastructure includes approximately 30 servers and 200 endpoints.

Firstly, identified vulnerabilities were evaluated based on the CVSS score,
next using our method. In order to analyze the appropriateness of the method,
several vulnerabilities were selected on different company assets (in order to make
it more readable the comparison results). All end-stations in the company were
similar (installed applications, application version, operating system), therefore
only a representative sample of vulnerabilities end stations was included in the
comparison. Not all vulnerabilities of 30 servers were included in the comparison,
but a representative sample of different types of servers with different purposes
(database, web server and application server). Based on the above written facts,
a total of 56 vulnerabilities were selected for comparison, however this selection
is sufficient to present the strengths of the proposed method3.

The obtained vulnerability score are summarized in Table 3. Moreover, the
graphical representation of the comparison is depicted in Fig. 1. The x-axis in
the graph (Fig. 1) corresponds to the numerical label in the Table 3, for example,
the number 1 corresponds to vulnerability CVE-2014-3566. The values related to
the asset’s priority and countermeasures were determined using suggested ques-
tionnaires and were filled in by the owners of the monitored assets. It is evident,
many vulnerabilities are classified with the same CVSS score, which equals 5.5 or
5.6 points. For example vulnerabilities labeled with number 11 to 20 or 31 to 35.

3 Together 200 vulnerabilities were not selected for the comparisons, there were recur-
rent or not relevant for comparison due to low severity, no prioritization is required.
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Eight vulnerabilities were critical (CVSS score higher that 8.8, marked with blue
and orange color in the Table 3). All vulnerabilities were classified with CVSS
score 5.5 or higher, it means almost all take place in the upper half of the graph.
There was only one exception, CVE-2014-3566 with score 3.4 with wrong priori-
tisation. It means CVSS method does not reflect parameters such implemented
countermeasures, asset importance or current technical parameters.

On closer inspection (Table 3), we observe vulnerabilities that are repeated
on more company assets. In terms of the CVSS method, all occurrences of these
vulnerabilities have the same rating, for example vulnerabilities with number 11
to 13, 14 to 16 or 17 to 19. However, in terms of the priority based on the proposed
method, the score is different for each occurrence. This result is based on the
different priority of the asset, the implemented countermeasures and the related
complexity of exploitation. From this point of view, the proposed method can
prioritize differently the identical types of vulnerabilities, that occur on different
company assets. This eliminates the often criticized deficiency of CVSS score.

The proposed method takes advantage of the priority of the asset and the
implemented countermeasures during the calculation. Therefore, a lot of vul-
nerabilities are located at the bottom part of the graph (the priority of the
implementation of the measure is not critical). Furthermore, our method prior-
itizes more effectively the critical ones that have high security requirements for
CIA’s triad. On the other side, the method suppresses critical vulnerabilities on
non-priority assets. Based on the obtained results, it is clear that prioritizing of
vulnerabilities is more effectively and the results correspond to real requirements.

The selected specific examples of vulnerabilities are shown in the Table 2,
3, 4 and 5 in order to inspect the functionality of the method in more detailed.
Vulnerabilities in Table 3 marked with the dark blue color are examined in
detail in Table 2, vulnerabilities marked with light blue color are examined in
Table 3, vulnerabilities marked with yellow color are examined in Table 4 and red
vulnerabilities from Table 5. These tables provide examples of the vulnerabilities
with height CVSS score. Even though, the CVSS score is equal, the final score
based on the method proposed using our method is diametrically opposed.

A good example of method functionality is the prioritization of vulnerability
CVE-2020-1350 listed in Table 2. This vulnerability was found on two different
servers. The first one was placed in a test environment, so the requirements for
ensuring the CIA triad are naturally low. The second one was part of the pro-
duction environment which is critical for business processes of the company. For
this reason, the second server has high requirements to ensure the CIA triad.
This crucial difference that asset priority is not reflected with the CVSS score.
Moreover, CVSS score does not reflect the countermeasures, which was paradox-
ically more sophisticated on the test server, because the production server was
still under construction. Purposed method can take all these crucial parameters
into account and only the vulnerability on the production server is prioritized.
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4 Conclusion and Future Work

A motivation for proposing a new method for vulnerability assessment was the
occurrence of the large number of critical vulnerabilities in common networks.
Currently used methods (e.g. CVSS) fail while being applied on prioritization
problem. As a result, it complicates the implementation of countermeasures. Our
proposed method includes not only the technical parameters of the vulnerability,
but also takes into account asset’s level of implemented countermeasures. The
obtained results show the suitability of our method for real assessing of assets
and. The formal calculation of the final priority is based on basic mathematical
operations. It means that our method is computationally effective. Furthermore,
the obtained priority of vulnerability is very precise.

In the future, we focus on following practical improvement of the method.
It is necessary to test the method on a larger set of assets and vulnerabilities
in order to evaluate whether the weights of individual parameters are appropri-
ate for practical usage. For easier method’s integration into existing company
infrastructures, which already have own asset management, a mechanism will
be necessary to create that imports asset priorities from existing evaluation
databases. Finally, permanent parameters describing vulnerabilities with infor-
mation about patches and their availability should be added in a similar way as
in the temporary CVSS score.

5 Attachments

Table 1. Weight of individual parameters describing the vulnerability.

Parameter Weight

Threat intelligence 1

Exploitation 0,8

Information availability 0,4

User interaction 0,7

Privileges required 0,7

Difficulty of exploitation 0,5
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Table 2. Comparison of vulnerabilities with CVSSv3 10.0 according to the evaluation
of the new method.

Vulnerability CVE CVE-2020-1350 CVE-2020-1350

Asset CIA Requirements 0.24; 0.56; 0.24 1; 0.91; 0.96

Countermeasures 0.47; 0.47; 0.58 0.47; 0.9; 1

Threat Intelligence 1 1

Exploitation 0.33 0.33

Information Availability 1 1

User Interaction 1 1

Privileges Required 1 1

Difficulty of Exploitation 1 1

Confidentiality Impact 1 1

Integrity Impact 1 1

Availability Impact 1 1

CVSSv3 10 10

Method proposed 149 652

Fig. 1. Comparison of CVSSv3 and our method.
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Table 3. Labeled vulnerabilities depicted in Fig. 1 including the final score.

Table 4. Comparison of vulnerabilities with CVSSv3 8.8 according to the evaluation
of the new method.

Vulnerability CVE CVE-2019-1113 CVE-2020-0605 CVE-2020-6806

Asset CIA Requirements 1; 0.91; 0.96 0.81; 0.62; 0.44 1; 0.91; 0.96

Countermeasures 0.9; 0.9; 0.9 0.65; 0.8; 0.8 0.47; 0.9; 1

Threat Intelligence 1 0.75 1

Exploitation 0.11 0.56 0.11

Information Availability 1 0.44 1

User Interaction 0.4 0.4 0.4

(continued)
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Table 4. (continued)

Vulnerability CVE CVE-2019-1113 CVE-2020-0605 CVE-2020-6806

Privileges Required 1 1 1

Dificulty of Exploitation 1 1 1

Confidentiality Impact 1 1 1

Integrity Impact 1 1 1

Availability Impact 1 1 1

CVSSv3 8.8 8.8 8.8

Method proposed 623 319 543

Table 5. Comparison of vulnerabilities with CVSSv3 5.6 according to the evaluation
of the new method.

Vulnerability CVE CVE-2018-12126 CVE-2018-3620 CVE-2018-3646

Asset CIA Requirements 1; 0.91; 0.96 1; 0.91; 0.96 0.24; 0.56; 0.24

Countermeasures 0.47; 0.9; 1 0.47; 0.9; 1 0.47; 0.47; 0.58

Threat Intelligence 1 1 0.5

Exploitation 0.11 0.11 0.11

Information Availability 1 1 1

User Interaction 1 1 1

Privileges Required 0.8 0.8 0.8

Dificulty of Exploitation 0.44 0.44 0.78

Confidentiality Impact 1 1 1

Integrity Impact 0.11 0.11 0.11

Availability Impact 0.11 1 0.11

CVSSv3 5.6 5.6 5.6

Method proposed 161 367 34
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Table 6. Parameters used in the purposed method for calculations

Possible values of the Impact on Confidentiality

Verbal evaluation Numerical evaluation

Minimum amount of stolen insensitive data 0.22

Minimum amount of stolen critical data 0.67

Extensive amount of stolen insensitive data 0.67

Extensive amount of stolen critical data 0.78

Theft of all data 1

Possible values of the Impact on Integrity

Verbal evaluation Numerical evaluation

Minimum amount of slightly corrupted data 0.11

Minimum amount of severely corrupted data 0.33

Extensive amount of slightly corrupted data 0.56

Extensive amount of seriously corrupted data 0.78

Complete corruption of all data 1

Possible values of Difficulty of Exploitation

Verbal evaluation Numerical evaluation

Very High 0.00

High 0.44

Low 0.78

Very Low 1

Possible values of the Exploitation

Verbal evaluation Numerical evaluation

Not defined 0.50

Theoretical 0.11

Proof-of-Concept 0.33

Simple 0.56

Using automated tools 1

Possible values of Privileges Required

Verbal evaluation Numerical evaluation

None 1

Low 0.80

High 0.40

Possible values of User Interaction

Verbal evaluation Numerical evaluation

None 1

Required 0.40

Possible values of the Threat Intelligence

Verbal evaluation Numerical evaluation

Not defined 0.50

None 0.00

Low 0.25

Medium 0.50

High 0.75

Very High 1

(continued)
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Table 6. (continued)

Possible values of the Impact on Confidentiality

Possible values of the Information Availability

Verbal evaluation Numerical evaluation

Not defined 0.50

Unknown 0.11

Secret 0.44

Known 0.67

Publicly known 1

Possible values of the Impact on Availability

Verbal evaluation Numerical evaluation

Minimal unavailability of secondary service 0.11

Minimum unavailability of primary service 0.56

Extensive unavailability of secondary service 0.56

Extensive unavailability of primary service 0.78

Complete unavailability of all services 1
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Abstract. This paper presents an IND-CCA2 attack against the 1st-
and 2nd-round versions of NTS-KEM, i.e., the versions before the update
in December 2019. Our attack works against the 1st- and 2nd-round
specifications, with a number of decapsulation queries upper-bounded by
n−k and an advantage lower-bounded by roughly 0.5(n−k)t/n2, where
n, k, and t stand for the code length, code dimension, and the designed
decoding capacity, for all the three parameter sets of NTS-KEM. We
found that the non-reference implementations are also vulnerable to our
attack, even though there are bugs. There are also bugs in the reference
implementations, but in a way invulnerable to our attack.

Keywords: NIST PQC standardization · Post-quantum cryptogrphy ·
Code-based cryptography · IND-CCA2

1 Introduction

NTS-KEM [1] is a key encapsulation mechanism submitted to the NIST Post-
Quantum Cryptography Standardization Process. NTS-KEM is one of the 25 sub-
missions that entered the second round of the process.On3December, 2019, during
the second round of the process, Paterson, one of the principal submitters of NTS-
KEM, wrote the message in Appendix A (without the emphasis added) in an email
to NIST’s pqc-forum mailing list, to announce an update in their specification.

We call this new version the updated 2nd-round version of NTS-KEM, of
which the specification can be found in [3], while the 2nd-round version of NTS-
KEM refers to the version submitted in March 2019 [2]. NTS-KEM did not
advance to the 3rd round as NTS-KEM and Classic McEliece [5] have merged.
The merged submission is called Classic McEliece and equals the 2nd-round
version of Classic McEliece.

Maram’s recent paper [13] discusses more about this “subtle issue” caused by
omission of re-encryption. In particular, [13, Section 3.1] argues that it might be
possible for an IND-CCA2 adversary against the 1st- and 2nd-round NTS-KEM
to modify the last n−k bits of the challenge ciphertext (where n and k stand for
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the code length and code dimension), such that the decapsulation oracle returns
the encapsulated session key. If this happens with a sufficiently high probability,
clearly IND-CCA2 security of the 1st- and 2nd-round version of NTS-KEM is
broken. However, Maram did not present any concrete IND-CCA2 attack in the
paper.

1.1 Our Contribution

In this paper, we present a simple IND-CCA2 attack against the 1st- and 2nd-
round versions of NTS-KEM [1,2]. The attack takes only a few decapsulation
queries and bit flips, and it succeeds with a high probability. Our attack follows
Maram’s strategy: the adversary recovers the encapsulated session key by mod-
ifying the last n − k bits of the challenge ciphertext. Our attack does exploit
NTS-KEM’s Berlekamp-Massey algorithm, but in a way without forcing the
algorithm to “operate beyond its natural decoding capacity”: what we did is to
force the algorithm to operate below the designed decoding capacity t.

To be more precise, our attack works against the 1st- and 2nd-round spec-
ifications. The attack takes at most n − k decapsulation queries and at most
n − k bit flips, and has an advantage lower-bounded by roughly 0.5(n − k)t/n2,
for all the three parameter sets of NTS-KEM. We found that the non-reference
implementations are also vulnerable to our attack, even though there are bugs.
There are also bugs in the reference implementations, but in a way invulnerable
to our attack.

One might argue that since the NTS-KEM team has updated their specifica-
tion, it is not meaningful to study the security of the old specifications. However,
we think it is meaningful to study the security of the 1st- and 2nd-round versions
of NTS-KEM for the following reasons.

– In April 2018, Cheng from PQ Solutions Limited wrote the following message
in an email to the pqc-forum mailing list.

“We are particularly excited that one entity is already going to per-
form a substantial test on the performance and resilience of NTS-
KEM in the not too distant future.”

On the 22 May, 2019, Cho from ADVA gave a talk [7] in the 7th Code-Based
Cryptography Workshop. Cho presented experimental results of using code-
based KEMs, including NTS-KEM, for secure optical communication. This
shows that the source code of the 1st- and 2nd- round versions of NTS-KEM
has been used by some people, and clearly they need to be warned about the
attack.

– Maram wrote the following in [13, Section 3.1].
“At the same time, we stress that the above described attack is just
a possibility and is not a concrete attack. Because it is quite possible
that, by analyzing the decoding algorithm used in NTS-KEM decap-
sulation, one might show such invalid ciphertexts are computationally
hard to generate adversarially.”
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The sentences and Paterson’s message suggest that the 1st- and 2nd-round
versions of NTS-KEM are not nessarily insecure. Indeed, a scheme can be
IND-CCA2 secure even if people do not know how to prove that. However,
we show that there is a concrete IND-CCA2 attack against the 1st- and 2nd-
round versions of NTS-KEM.

To demonstrate that our attack works against the 1st- and 2nd-round
specifications and non-reference implementations, we have modified the files
nts kem.c, ntskem test.c, and berlekamp massey.c in the submission pack-
ages. The contents of the modified ntskem test.c and berlekamp massey.c are
available at Appendix E and F. More details about these modified files and how
to use them to demonstrate our attack are shown in Appedix D.

1.2 Related Works

We note that re-encryption is not a new countermeasure against attacks. For
example, re-encryption is required in the well-known Fujisaki-Okamoto trans-
form [10,11], which converts weakly secure public-key encryption schemes into
CCA-secure ones. Dent [9] also makes use of re-encryption to construct CCA-
secure key encapsulation mechanisms from weakly secure public-key encryption
schemes. For comparison, a re-encryption step is included in the decapsulation
algorithm of the 1st- and 2nd-round versions of Classic McEliece [5].

1.3 Organization

Section 2 gives some basic knowledge about key encapsulation mechanisms and
code-based cryptography. Section 3 introduces the 1st- and 2nd-round NTS-
KEM. Section 4 presents our attack and how it works against the 1st- and
2nd-round specifications and non-reference implementations. For completeness,
Appendix C explains why our attack does not work against the reference imple-
mentations.

2 Preliminaries

This section presents some basic knowledge on key encapsulation mechanisms
and code-based cryptography.

2.1 Key Encapsulation Mechanisms (KEMs)

The concept of KEM was first introduced by Shoup [18]. A KEM KEM consists
of the following three algorithms.

– The key generation algorithm KEM.KeyGen is a probabilistic, polynomial-time
algorithm that outputs a key pair (PK, SK), where PK is the public key and SK
is the secret key.
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– The encapsulation algorithm KEM.Enc is a probabilistic polynomial-time algo-
rithm that on input a public key PK, outputs (K,ψ), where K ∈ {0, 1}� is the
session key and ψ is the ciphertext encapsulating K.

– The decapsulation algorithm KEM.Dec is a deterministic polynomial-time
algorithm that on input a secret key SK and a ciphertext ψ, outputs either a
session key K or the special symbol ⊥.

A KEM is required to be sound. For the purpose of this paper, one may
simply assume that this means that the decapsulation algorithm always outputs
the encapsulated session key as long as the input ciphertext is valid.

2.2 IND-CCA2 Security of KEMs

In order to define IND-CCA2 security of a KEM KEM, we consider a game con-
sisting of the following steps played by an adversary and a challenger.

1. The challenger generates a key pair (PK, SK) by running KEM.KeyGen and sends
PK to the adversary.

2. The adversary runs until it is ready to move to the next step. During this
step, the adversary may make a sequence of queries to a decapsulation oracle.
In each of the queries, the adversary submits a ciphertext ψ, and the oracle
responds with KEM.Dec(SK, ψ).

3. The challenger prepares a pair (K∗, ψ∗) by carrying out the following steps
and sends the pair to the adversary.

(K0, ψ
∗) ← KEM.Enc(PK);

K1
$←− {0, 1}�;

τ
$←− {0, 1};

K∗ ← Kτ ;

4. The adversary runs until it is ready to move to the next step. During this step,
the adversary may make a sequence of queries to the decapsulation oracle,
under the condition that any ciphertext submitted by the adversary must be
different from ψ∗.

5. The adversary outputs τ ′ ∈ {0, 1}.

The advantage of an adversary is defined as |Pr[τ = τ ′] − 1/2|. Traditionally,
a KEM is said to be IND-CCA2 secure if for all probablistic, polynomial-time
adversary, the advantage grows negligible in the security parameter λ. However,
this definition requires that the KEM is defined as a family of systems. For KEMs
with specific parameter sets, such as NTS-KEM, we evaluate the efficiency of an
adversary by its actually running time and advantage.
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2.3 Linear Codes

A linear code of length n and dimension k over a field Fq is a dimension-k linear
subspace of Fn

q . The elements in a code are called codewords. A linear code C
can thus be represented by the row space of a matrix, in which case we call
such a matrix a generator matrix. A linear code can also be represented by the
right kernel space of a matrix, in which case we call such a matrix a parity-check
matrix. Note that a generator matrix has at least k rows, and a parity-check
matrix has at least n − k rows.

Given a generator matrix G ∈ F
k×n
q for a linear code, it is easy to compute

a parity-check matrix H of the code using simple linear algebra techniques. In
particular, if G has systematic form, which means G = (Ik|Q) where Q is a
k × (n − k) matrix, then H = (−QT |In−k) is a parity-check matrix for the same
code, and vice versa. The syndrome of v ∈ F

n
q with respect to a parity-check

matrix H is defined as vHT .
The Hamming weight of a vector in F

n
q is the number of non-zero coordinates

in it. We denote the Hamming weight of a vector v as |v|. The minimum distance
of a nonzero linear code is the smallest Hamming weight of any nonzero codeword
in C.

For a linear code C, a decoding algorithm takes r ∈ F
n
q and a positive integer

w as inputs and outputs e ∈ F
n
q such that |e| ≤ w and r − e ∈ C, if such e exists.

When the minimum distance is at least 2w +1, for any r, the vector e such that
|e| ≤ w and r − e ∈ C must be unique if it exists; In this case, we say that C
can correct w errors.

2.4 Binary Goppa Codes

Given a field F2m , a sequence α1, . . . , αn (called the support) of n distinct ele-
ments from F2m , and a degree-t polynomial g ∈ F2m [x] (called the Goppa polyno-
mial) such that g(α1) · · · g(αn) �= 0, the Goppa code Γ2(α1, . . . , αn, g) is defined
as the set of vectors c = (c1, . . . , cn) ∈ F

n
2 such that

n∑

i=1

ci

x − αi
≡ 0 mod g(x).

The dimension k of the code is at least n − mt. When g is square-free, the
minimum distance of Γ2(α1, . . . , αn, g) is known to be at least 2t + 1, and

Γ2(α1, . . . , αn, g) = Γ2(α1, . . . , αn, g2).

A specific parity-check matrix of Γ2(α1, . . . , αn, g), which we denote as
H(α1, . . . , αn, g), is given as follows.

⎛

⎜⎜⎜⎝

1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

α
Deg(g)−1
1 /g(α1) α

Deg(g)−1
2 /g(α2) · · · α

Deg(g)−1
n /g(αn)

⎞

⎟⎟⎟⎠ ,
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where each of the tn entries is actually a column vector in F
m
2 , formed by the

coordinates with respect to a chosen F2-basis of F2m .

2.5 The McEliece Cryptosystem

The McEliece cryptosystem [15] is a public-key encryption system: it allows a
sender to encrypt his/her messages as a ciphertext using the receiver’s public
key, such that the messages can only be decrypted from the ciphertexts using
the receiver’s secret key.

To generate the public key and secret key, the receiver first generates a code
C over Fq of length n and dimension k with a decoder which is able to correct
t errors. The receiver then computes a generator matrix G of C and generates a
uniform random permutation matrix P ∈ F

n×n
q and a uniform random invertible

matrix S ∈ F
k×k
q . The receiver then publishes Ĝ = SGP as its public key and

keeps (G,P, S) as its secret key.
To perform encryption, the sender computes the ciphertext y = mĜ+e where

m ∈ F
k
q is the message and e ∈ F

n
q is a uniform random vector of weight t. To

perform decryption, the receiver computes yP−1 = mSG + eP−1 and applies a
decoding algorithm to find mSG. From mSG the receiver then computes mS
and m using linear algebra.

3 The 1st- and 2nd-Round Versions of NTS-KEM

This section presents the specifications of the 1st- and 2nd-round versions of
NTS-KEM. The difference between the two versions is small: the 1st-round NTS-
KEM uses explicit rejection in the decapsulation algorithm, meaning that the
decapsulation algorithm returns ⊥ when the ciphertext is considered invalid.
The 2nd-round NTS-KEM uses implicit rejection in the decapsulation algorithm,
meaning that it returns an �-bit string when the ciphertext is considered invalid.

The reader might find that the key generation algorithm and the decoding
algorithm presented in this section look simpler than the ones shown in the 1st-
and 2nd-round specifications. We emphasize that this is because we decided to
omit irrelevant details in the specifications to simplify our discussions. It is easy
to see that the algorithms presented in this section are in fact equivalent to the
ones shown in the specifications.

3.1 Public Parameters and Parameter Sets

The public parameters of an instance of NTS-KEM are as follows.

– n = 2m, the length of the binary Goppa code.
– t, the number of errors that the code is designed to correct.
– f(x) ∈ F2[x], an irreducible polynomial of degree m, which is used to con-

struct F2m
∼= F2[x]/f(x).

– � = 256, which denotes the length of session keys.
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Table 1. The three parameter sets of NTS-KEM.

Parameter set m n t

ntskem1264 12 4096 64

ntskem1380 13 8192 80

ntskem13136 13 8192 136

NTS-KEM also makes use of a pseudorandom bit generator, denoted as H�(·),
which outputs �-bit strings. The three parameter sets of NTS-KEM are listed in
Table 1.

3.2 Key Generation

To generate a secret key, the user starts with generating a uniform random
square-free Goppa polynomial g(x) ∈ F2m [x] of degree t, and a uniform ran-
dom support α1, . . . , αn. Note that the support contains all elements of F2m .
The support and the Goppa polynomial then define the binary Goppa code
Γ2(α1, . . . , αn, g).

To compute the public key, the user first computes a “parity-check matrix”

H =

⎛

⎜⎜⎜⎝

1/g2(α1) 1/g2(α2) · · · 1/g2(αn)
α1/g2(α1) α2/g2(α2) · · · αn/g2(αn)

...
...

. . .
...

αt−1
1 /g2(α1) αt−1

2 /g2(α2) · · · αt−1
n /g2(αn)

⎞

⎟⎟⎟⎠

where each of the tn entries is again a column vector in F
m
2 and then computes its

“reduced row echelon form”. Let k = n−mt. Once the reduced row echelon form
is obtained, the user “reorders its columns if necessary” to get a parity-check
matrix of the form (QT |In−k) and the corresponding generator matrix (Ik|Q).
Note that elements in the support need to be reordered in the same way as the
columns. The public key is then (Q, t, �).

It is not clear why H is used instead of H(α1, . . . , αn, g). In fact, we have not
found any existing literature showing that H is guaranteed to be a parity-check
matrix of the binary Goppa code. Any H that has full rank are guaranteed to be
a parity-check matrix, though. Indeed, as Γ2(α1, . . . , αn, g) = Γ2(α1, . . . , αn, g2),
H(α1, . . . , αn, g2) is a parity-check matrix of the code; Observe that H consists
of the first mt rows of H(α1, . . . , αn, g2), and the dimension of the code is at
least n − mt; Therefore, if H has rank mt, it must have the same row space and
right kernel as H(α1, . . . , αn, g2).

A secret key of the 1st-round version of NTS-KEM consists of three pieces of
data which can be easily derived from (α1, . . . , αn, g). A secret key of the 2nd-
round version of NTS-KEM consists of four pieces of data where the first three
are the same as those in the 1st-round NTS-KEM, and the last one is simply a
uniform random bit string z ∈ F

�
2. To simplify our discussion, we consider that

the secret key is simply (α1, . . . , αn, g) or (α1, . . . , αn, g, z).
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The key generation algorithm above is not well-defined for the following
reasons.

– It is possible that H is not full-rank, in which case it will be impossible to
bring H to the form (QT |In−k), it is not written in the specifications how to
deal with this case.

– It is not written in the specifications what “reduced row echelon form” means
and how the columns should be re-ordered exactly. Even if one assumes the
most common definition of reduced row echelon form, there are still multiple
deterministic and non-deterministic ways to reorder the columns.

The implementations of NTS-KEM, however, show that H is reduced to a matrix
that satisfies the following criteria.

– There is a sequence cn−k−r+1 < cn−k−r+2 < · · · < cn−k such that for each
i ∈ {n − k − r + 1, . . . , n − k}, row i ends with a 1 in column ci, which is the
only non-zero entry in column ci.

– All rows before row n − k − r + 1 are zero rows.

Existence of zero rows means H is not full-rank. The implementations simply fail
to generate a key pair when H is not full-rank, which seems extremely unlikely to
happen for NTS-KEM’s parameter sets. After reducing H, the implementations
then swap column cn−k with column n − k, swap column cn−k−1 with column
n − k − 1, and so on to produce (QT |In−k).

As the key generation algorithm is not well-defined in the specifications, we
simply assume that the implemented key generation algorithm is what the NTS-
KEM team intended to specify, and we consider the implemented key generation
algorithm for our discussion.

3.3 Encapsulation

Given an NTS-KEM public key (Q, t, �), the encapsulation algorithm computes
a session key and a ciphertext encapsulating it by carrying out the following
steps.

– Generate a uniform random error vector e ∈ F
n
2 with |e| = t.

– Partition e into (ea | eb | ec), where ea ∈ F
k−�
2 , eb ∈ F

�
2, and ec ∈ F

n−k
2 .

– Compute ke = H�(e) ∈ F
�
2. Let m = (ea | ke) ∈ F

k
2 .

– Following McEliece encryption, compute c ∈ F
n
2 as follows.

c = m · (I | Q) + e

= (m | m · Q) + e

= (ea | ke | (ea | ke) · Q) + (ea | eb | ec)

= (0a | ke + eb | (ea | ke) · Q + ec)

= (0a | cb | cc),

where 0a is the zero vector of length k − �. Let the ciphertext be (cb | cc).
– Compute the session key kr = H�(ke | e) ∈ F

�
2.

– Return (kr, (cb | cc)).
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3.4 Decapsulation

Given a ciphertext (cb | cc), the decapsulation works as follows.

– Taking the vector (0a | cb | cc) ∈ F
n
2 and the secret key as inputs, compute

e ∈ F
n
2 using the decoding algorithm (see Sect. 3.5).

– Partition e into (ea | eb | ec), where ea ∈ F
k−�
2 , eb ∈ F

�
2, and ec ∈ F

n−k
2 , and

compute ke = cb − eb.
– Check if H�(e) = ke and |e| = t. If both are true, return kr = H�(ke | e) ∈ F

�
2;

Otherwise return ⊥ for the 1st-round NTS-KEM or H�(z | 1a | cb | cc) for
the 2nd-round NTS-KEM.

3.5 The Decoding Algorithm

A strategy for decoding is to consider Γ2(α1, . . . , αn, g) as an alternant code
and use an alternant decoder to decode. A well-known alternant decoder is the
Berlekamp decoder. To find the error positions, the Berlekamp decoder makes
use of the Berlekamp-Massey algorithm ([4,14]) to compute an error locator, of
which the roots are {α−1

i | ei = 1, αi �= 0}. In other words, by finding the roots
of the error locator, we can find the error positions {i | ei = 1, αi �= 0}. Some
more operations are required to figure out whether ei = 0 or not.

NTS-KEM’s decoding algorithm uses the strategy above but introduces some
modifications. NTS-KEM’s decoding algorithm makes use of NTSKEM BM, which
is a modified Berlekamp-Massey algorithm. In NTSKEM BM, the error locator is
computed and converted into a polynomial σ∗, of which the roots are simply
{αi | ei = 1, αi �= 0}. NTSKEM BM also computes a value ξ ∈ {0, 1}, to indi-
cate whether epos(0) = 1. Given an input vector r ∈ F

n
2 , NTS-KEM’s decoding

algorithm works as follows.

– Compute the syndrome s = r · H(α1, . . . , αn, g2)T ∈ F
2t
2m .

– Compute (σ∗(x), ξ) ← NTSKEM BM(s), where σ∗(x) ∈ F2m [x] and ξ ∈ {0, 1}.
– Set e = 0 ∈ F

n
2 .

– Set ei = 1 for all i such that σ∗(αi) = 0.
– Set epos(0) = 1 if ξ = 1.
– Return e.

3.6 NTS-KEM’s Berlekamp-Massey Algorithm

The Berlekamp-Massey algorithm in NTS-KEM’s specifications is shown in Algo-
rithm 1 (we put it in Appendix B due to the page limit). The algorithm is
the same as Algorithm 3 in the 1st- and 2nd-round supporting documentations,
except that we use t to indicate the designed decoding capacity. Without the lines
involving R, ξ, or σ∗, the algorithm is the same as Xu’s inversion-free Berlekamp-
Massey algorithm [20]. The following section presents an attack against NTS-
KEM. The attack makes use of the lines involving R, ξ, or σ∗, in particular line
16 to line 20, and the following theorem.
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Theorem 1. If the input to Algorithm 1 is in

(c + e) · H(α1, . . . , αn, g2)T ,

where g(x) ∈ F2m [x] is square-free and of degree-t, c ∈ Γ2(α1, . . . , αn, g), e ∈
F

n
2 , |e| ≤ t, then at the end of the algorithm we have

σ(x) = σ0

∏

ei=1

(1 − αix),

where σ0 ∈ F2m \ {0}.
Proof. As discussed in Sect. 3.2, H(α1, . . . , αn, g2)T is a parity-check matrix
of Γ2(α1, . . . , αn, g). Following the discussion in [12], the original Berlekamp-
Massey algorithm ([4,14]) then computes A(x) =

∏
ei=1(1 − αix) on input (c +

e)·H(α1, . . . , αn, g2)T . It is shown in [20] that the inversion-free version computes
a similar polynomial σ(x) = σ0 · A(x) with σ0 �= 0.

4 Our Attack

This section presents our IND-CCA2 attack and explains why it can be used to
attack the specifications and non-reference implementations. The reason why it
does not work for the reference implementations is shown in Appendix C.

4.1 The Adversary

We consider an adversary who does nothing before receiving (K∗, ψ∗) from the
challenger. After receiving (K∗, ψ∗) from the challenger, the adversary partitions
ψ∗ into (cb, cc) as in regular decapsulation and performs the following two simple
steps for each of the n − k bits of cc:

– Flip the bit of cc to obtain (cb, c
′
c).

– Send (cb, c
′
c) to the decapsulation oracle.

– If the decapsulation oracle returns K∗, return τ ′ = 0.

If the decapsulation oracle does not return K∗ in any of the n−k iterations, the
adversary returns τ ′ = 1.

Clearly, the adversary takes at most n − k queries, and it takes only one
bit flip for each query. The following discussion shows that Pr[τ ′ = τ ] is lower-
bounded by roughly 0.5(n − k)t/n2 + 0.5, so the advantage of the adversary is
lower-bounded by roughly 0.5(n − k)t/n2.
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4.2 Attacking the Specifications

To understand the success probability of our attack against the 1st- and 2nd-
round specifications, assume that in one of the n − k iterations, the adversary
sends (cb, c

′
c) to the decapsulation oracle, such that

(0a, cb, c
′
c) ∈ e′ + Γ2(α1, . . . , αn, g),

where |e′| = t − 1 and e′
pos(0) = 0. Let e ∈ F

n
2 be the unique vector such that

|e + e′| = 1 and epos(0) = 1. According to Theorem 1, on input (0a, cb, c
′
c),

Algorithm 1 computes
σ(x) = σ0

∏

e′
i=1

(1 − αix),

which is of degree t − 1. There are two cases for the return value of Algorithm 1,
one for ξ = 0 and one for ξ = 1. If ξ = 0, Algorithm 1 returns

(xtσ(x−1), 0) = (σ0x
∏

e′
i=1

(x − αi), 0),

and therefore the decoding algorithm will return e instead of e′. If ξ = 1,
Algorithm 1 returns

(xt−1σ(x−1), 1) = (σ0

∏

e′
i=1

(x − αi), 1),

and therefore the decoding algorithm will again return e instead of e′. In other
words, no matter what the value of ξ is, the decoding algorithm will return e.

Now consider the case when pos(0) > k and epos(0) = 1, where e is the error
vector used to generate ψ∗. In this case, in one of the n−k iterations carried out
by the adversary, the adversary will send to the decapsulation oracle (cb, c

′
c) of the

form discussed in the previous paragraph. Therefore, in the iteration, the error
vector e will be returned by the decoding algorithm. As H�(e) = ke = cb − eb

and |e| = t, the session key encapsulated by (cb, cc) will be returned by the
decapsulation oracle.

To compute Pr[τ = τ ′], it suffices to compute Pr[τ = 0 and τ = τ ′] and
Pr[τ = 1 and τ = τ ′]. Assuming τ = 0, there is a probability at least

Pr[epos(0) = 1] · Pr[pos(0) > k]
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Table 2. The number of decapsulation queries and advantage of our IND-CCA2 attack.

n k #queries Advantage

ntskem1264 4096 3328 ≤768 ≥0.00146

ntskem1380 8192 7152 ≤1040 ≥0.00061

ntskem13136 8192 6424 ≤1768 ≥0.00179

that our attack will recover the session key and thus return τ ′ = 0. In other
words, we have

Pr[τ = 0 and τ = τ ′] ≥ 0.5 · Pr[epos(0) = 1] · Pr[pos(0) > k]
= 0.5 · t/n · Pr[pos(0) > k].

Assuming τ = 1, the probability that one of n − k decapsulation queries returns
K∗ is upper bounded by (n − k)/2� as K∗ is a random string. Therefore,

Pr[τ = 1 and τ = τ ′] ≥ 0.5 · (2� − (n − k))/2�.

What is the actual value of Pr[pos(0) > k]? Intuitively, Pr[pos(0) > k] should
be (n−k)/n, and this seems to be true according to our experiments. Therefore,
under the assumption that Pr[pos(0) > k] = (n − k)/n, we may conclude that

Pr[τ = τ ′] ≥ 0.5 · (n − k)t/n2 + 0.5 · (2� − (n − k))/2�.

For real parameters, the term 0.5 · (2� − (n − k))/2� is usually extremely close
to 0.5, so one may also simply consider that the advantage is lower bounded by
roughly 0.5(n−k)t/n2. Based on the discussion above, it is easy to compute the
number of queries and advantage of our attack against the 3 parameter sets of
NTS-KEM; The numbers are shown in Table 2.

We note that if the challenger generates a key pair with pos(0) ≤ k, the
advantage of our attack will be close to 0. If the challenger generates a key pair
with pos(0) > k, the advantage of our attack will be lower-bounded by roughly
0.5 · t/n.

4.3 Attacking the Non-reference Implementations

In addition to the reference implementations, some other implementations
are also included in the 1st- and 2nd-round submission packages. These are
the implementations under the directories Additional Implementation and
Optimized Implementation. We found the following bugs in the code for
Algorithm 1 in these implementations.

– In the last of the 2t iterations, R is not updated.
– In the first 2t − 1 of the 2t iterations, R is updated as follows.
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if d == 0 OR i < 2L then
if d == 0 then

R ← R + 1
end if

else
R ← 0

end if

These bugs can make R smaller and thus can change the value of ξ. However, as
discussed in Sect. 4.2, our attack is independent of the actual value of ξ, so the
numbers in Table 2 still apply.
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A Paterson’s Message

“We have added a re-encapsulation step during decapsulation, in order to
fix a subtle issue in the ROM security proof for NTS-KEM. This issue was
identified by Varun Maram from ETH Zurich. This change necessitates
the inclusion of the public key as part of the private key and increases
the running time of decapsulation. Fortuitously, this change facilitates a
QROM proof for NTS-KEM which we plan to make public soon.
[In more detail: our proof did not fully address the possibility that cer-
tain adversarially generated ciphertexts not output by encapsulation might
decapsulate correctly. This is due to possible behaviour of the decoder,
including the Berlekamp-Massey algorithm, when operating beyond its
natural decoding capacity. Adding the re-encapsulation step ensures that
only correctly generated ciphertexts lead to valid decapsulations; other
ciphertexts are implicitly rejected. Our new security proof still tightly
relates breaking IND-CCA security of (the new version of) NTS-KEM to
breaking one-wayness of the McEliece scheme with the same parameters.
We also stress that we are not aware of any concrete attack arising from the
issue identified in our proof. Since re-encapsulation makes use of the public
key, we now include the public key as part of the private key; an alterna-
tive whose cost can be amortised over many invocations of decapsulation
is to regenerate the public key from the private key when needed.]”
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B NTS-KEM’s Berlekamp-Massey Algorithm

Algorithm 1. NTS-KEM’s Berlekamp-Massey Algorithm
1: function BerlekampMassey(s)
Require: s = (s0, s1, . . . , s2t−1)
Require: σ(x) =

∑
σix

i = 1
Require: β(x) =

∑
βix

i = x
Require: δ = 1
Require: L = R = ξ = 0
2: for i = 0 to 2t − 1 step 1 do
3: d ← ∑min{i,t}

j=0 σjsi−j

4: ψ(x) ← δσ(x) − dβ(x)
5: if d == 0 OR i < 2L then
6: R ← R + 1
7: β(x) ← xβ(x)
8: else
9: R ← 0
10: β(x) ← xσ(x)
11: L ← i − L + 1
12: δ ← d
13: end if
14: σ(x) ← ψ(x)
15: end for
16: if Degree of σ(x) < t − R

2
then

17: ξ ← 1
18: end if
19: σ∗(x) ← xt−ξσ(x−1)
20: return (σ∗(x), ξ)
21: end function

C Attacking the Reference Implementations

We found the following bugs in the code for Algorithm 1 in the reference imple-
mentations.

– In each of the 2t iterations, R is updated in the same way as the pseudocode
in Sect. 4.3.

– σ∗(x) is computed as xDeg(σ(x))σ(x−1).

We also found that after obtaining (σ∗(x), ξ), the reference implementations
compute the error vector e as follows.

– Set e = 0 ∈ F
n
2 .

– Set ei = 1 for all i such that σ∗(αi) = 0 and αi �= 0.
– Set epos(0) = 1 if ξ = 1.
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Note that this is different from what is described in Sect. 3.5.
Our attack relies on forcing the decoding algorithm to take an input vector

which is the sum of a codeword and an error vector e′ with |e′| = t − 1 and
e′
pos(0) = 0. In this case, according to Theorem 1, Algorithm 1 computes

σ(x) = σ0

∏

e′
i=1

(1 − αix),

so the reference implementations compute

σ∗(x) = σ0

∏

e′
i=1

(x − αi).

How about the value of ξ? It turns out that Algorithm 1 computes σ(x) in the
first 2t−2 iteration; See [14] for discussions on the number of iterations required
to compute the linear feedback shift register. This forces d to be 0 in the last
2 iterations, so we have R ≥ 2. As Deg(σ) = t − 1 ≥ t − R/2, the reference
implementations computes ξ = 0. Therefore, the decoding algorithm returns the
weight-(t−1) vector e′, and the decapsulation oracle returns ⊥ or H�(z, 1a, cb, c

′
c)

instead of the session key.

D Implementations

To demonstrate that our attack works against the non-reference implemen-
tations, We modified ntskem test.c in the non-reference implementations
included in the 1st-round and 2nd-round submission packages. The content of
the modified file is available in Appendix F. The modified testkem nts function
keeps generating ciphertext-session-key pairs. For each ciphertext, it is checked
whether flipping any of the last n − k bits will result in a ciphertext that decap-
sulates to the same session key. If this happens, a message

Original session key returned!

will be printed. One can replace the original ntskem test.c by the modified one
and compile each non-reference implementation using make. Then by running
the executables ntskem-*-test, the user can see that the message usually shows
after trying a several hundreds of ciphertext-session-key pairs.

To demonstrate that our attack works against the specifications, we fixed the
bugs in berlekamp massey.c and nts kem.c in the reference implementations
included in the 1st-round and 2nd-round submission packages. The content of
the modified berlekamp massey.c is available in Appendix E. The modified
berlekamp massey function updates R and computes σ∗ in the correct way. For
nts kem.c, we only change the code segment

memset(e_prime, 0, sizeof(e_prime));
for (i=1; i<NTS_KEM_PARAM_N; i++) {

e_prime[i>>3] |= (CT_is_equal_zero(evals[i]) << (i & 7));
}
e_prime[0] |= ((uint8_t)extended_error);
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in the nts kem decapsulate function into the following.

memset(e_prime, 0, sizeof(e_prime));
for (i=0; i<NTS_KEM_PARAM_N; i++) {

e_prime[i>>3] |= (CT_is_equal_zero(evals[i]) << (i & 7));
}
e_prime[0] |= ((uint8_t)extended_error);

The modification changes the way the error vector e is computed from σ∗ and ξ
to the way specified in Sect. 3.5 (which is equivalent to what is specified in NTS-
KEM’s specifications). The user can replace ntskem test.c by the modified one
replace berlekamp massey.c by the modified one, apply the same change to
nts kem.c, do make and execute ntskem-*-test. Then the user will again see
that the message usually shows after trying a several hundreds of ciphertext-
session-key pairs.

E The modified berlekamp massey.c

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "berlekamp_massey.h"
#include "bits.h"

poly *berlekamp_massey(const FF2m *ff2m,
const ff_unit *S,
int slen,
int *extended_error)

{
poly *ex = NULL;
ff_unit *sigma = NULL, *beta = NULL, *varphi = NULL;
ff_unit *src0_ptr = NULL, *src1_ptr = NULL, *dst_ptr = NULL;
ff_unit d, delta = 1;
ff_unit inv = 0;
uint32_t control, d_eq_0;
int32_t i, j, v, t, L = 0, R = 0;

t = slen >> 1;
sigma = (ff_unit *)calloc(t+1, sizeof(ff_unit));
beta = (ff_unit *)calloc(t+1, sizeof(ff_unit));
varphi = (ff_unit *)calloc(t+1, sizeof(ff_unit));
if (!sigma || !beta || !varphi) {

goto BMA_fail;
}
sigma[0] = 1; /* sigma(x) = 1 */
beta[1] = 1; /* beta(x) = x */
*extended_error = 0;

/* Loop until we process all 2t syndromes */
for (i=0; i<slen; i++) {

/**
* d = \sum_{i}^{\min{i, t}} sigma_j * S_{i-j}
**/

v = CT_min(i, t);
for (d=0,j=0; j<=v; j++) {

d = ff2m->ff_add(ff2m, d,
ff2m->ff_mul(ff2m, sigma[j], S[i-j]));

}
/**
* varphi(x) = delta.sigma(x) - d.beta(x)
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**/
for (j=0; j<=t; j++) {

varphi[j] = ff2m->ff_add(ff2m,
ff2m->ff_mul(ff2m, delta, sigma[j]),
ff2m->ff_mul(ff2m, d, beta[j]));

}

d_eq_0 = CT_is_equal_zero((uint32_t)d); /* d == 0? */
control = d_eq_0 || CT_is_less_than(i, (L << 1)); /* (d == 0) OR (i < 2L) */

/**
* if control is 1 -> beta(x) = x.beta(x)
* otherwise -> beta(x) = x.sigma(x)
**/

v = t;
src0_ptr = (ff_unit *)&sigma[t-1];
src1_ptr = (ff_unit *)&beta[t-1];
dst_ptr = (ff_unit *)&beta[t];
while (v-- > 0) {

*dst_ptr = CT_mux(control, *src1_ptr, *src0_ptr);
--dst_ptr;
--src1_ptr;
--src0_ptr;

}
beta[0] = 0x00;

/**
* if control is 1 ->
* R = R + 1 if d == 0
* otherwise ->
* R = 0
* L = i - L + 1
* delta = d
**/

L = (int32_t)CT_mux(control, L, i-L+1);
R = (int32_t)CT_mux(control, R + 1, 0);
delta = (ff_unit)CT_mux(control, delta, d);

memcpy(sigma, varphi, (t+1)*sizeof(ff_unit));
}

ex = init_poly(t+1);
if (!ex) {

goto BMA_fail;
}
ex->degree = t;
while (ex->degree > 0 && !sigma[ex->degree]) --ex->degree;
inv = ff2m->ff_inv(ff2m, sigma[0]);

*extended_error = CT_is_less_than(ex->degree, t - (R>>1));

for (i=0; i <= t-*extended_error ; i++) {
if (t-*extended_error-i <= ex->degree)

ex->coeff[i] = ff2m->ff_mul(ff2m, sigma[t-*extended_error-i], inv);
}

ex->degree = t - *extended_error;

BMA_fail:
if (varphi) {

memset(varphi, 0, (t+1)*sizeof(ff_unit));
free(varphi);

}
if (beta) {

memset(beta, 0, (t+1)*sizeof(ff_unit));
free(beta);

}
if (sigma) {
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memset(sigma, 0, (t+1)*sizeof(ff_unit));
free(sigma);

}

return ex;
}

F The modified ntskem test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "api.h"
#include "ntskem_test.h"
#include "nts_kem_params.h"
#include "random.h"

int testkem_nts(int iterations)
{

int i, it = 0;
uint8_t *pk, *sk;
uint8_t *encap_key, *decap_key, *ciphertext, *flipped;
FILE *fp = NULL;
unsigned char entropy_input[] = {

0xaa, 0xe7, 0xd7, 0x4e, 0x3c, 0x3a, 0x52, 0xdd,
0x87, 0xc7, 0x2a, 0xa4, 0x38, 0x54, 0x7e, 0x37,
0x1e, 0x97, 0x29, 0x78, 0x22, 0xa2, 0xcd, 0x83,
0x43, 0x64, 0x84, 0xcf, 0x77, 0x6b, 0x9e, 0xa5,
0x53, 0xf3, 0x50, 0xc5, 0xc7, 0x8d, 0x46, 0xb3,
0xa5, 0xf2, 0xe3, 0x99, 0x63, 0x10, 0x1d, 0x10

};
unsigned char nonce[48];

fprintf(stdout, "NTS-KEM(%d, %d) Test\n", NTSKEM_M, NTSKEM_T);

do {
if ((fp = fopen("/dev/urandom", "r"))) {

if ((sizeof(entropy_input) !=
fread(entropy_input, 1, sizeof(entropy_input), fp)) ||
(sizeof(nonce) != fread(nonce, 1, sizeof(nonce), fp))) {
break;

}
}
fclose(fp);

memcpy(&entropy_input[48-sizeof(it)], &it, sizeof(it));

fprintf(stdout, "Iteration: %d, Seed: ", it);
for (i=0; i<sizeof(entropy_input); i++)

fprintf(stdout, "%02x", entropy_input[i]);
fprintf(stdout, "\n"); fflush(stdout);

randombytes_init(entropy_input, nonce, 256);

pk = (uint8_t *)calloc(CRYPTO_PUBLICKEYBYTES, sizeof(uint8_t));
sk = (uint8_t *)calloc(CRYPTO_SECRETKEYBYTES, sizeof(uint8_t));
crypto_kem_keypair(pk, sk);

ciphertext = (uint8_t *)calloc(CRYPTO_CIPHERTEXTBYTES, sizeof(uint8_t));
flipped = (uint8_t *)calloc(CRYPTO_CIPHERTEXTBYTES, sizeof(uint8_t));
encap_key = (uint8_t *)calloc(CRYPTO_BYTES, sizeof(uint8_t));
decap_key = (uint8_t *)calloc(CRYPTO_BYTES, sizeof(uint8_t));

crypto_kem_enc(ciphertext, encap_key, pk);

for (i = 0; i < NTS_KEM_PARAM_M*NTS_KEM_PARAM_T; i++)
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{
memcpy(flipped, ciphertext, CRYPTO_CIPHERTEXTBYTES);

flipped[CRYPTO_CIPHERTEXTBYTES-1 - i/8] ^= 1 << (i%8);

crypto_kem_dec(decap_key, flipped, sk);

if (0 == memcmp(encap_key, decap_key, CRYPTO_BYTES))
{

fprintf(stderr, "Original session key returned!\n");
getchar();

}
}

free(decap_key);
free(encap_key);
free(ciphertext);
free(flipped);
free(sk);
free(pk);

}
while (++it < iterations || 1);

return 0;
}
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Abstract. Collaborative robots (cobots) work in close proximity with
human co-workers to accomplish tasks. The proximity of working
arrangements and the power required of some cobots for particular
tasks means that there is significant potential for cobots to cause dam-
age to their surroundings and people nearby. Working with cobots
requires appropriate training and skill. We must ensure that co-workers
access appropriate levels of service and functionality from a cobot. We
would wish to stop intruders engaging with cobots but also to protect
against inappropriate informal working arrangements by colleagues. In
this paper, we consider the potential for users’ behaviours to be used
as a biometric approach to continuous user authentication. More specif-
ically, we consider how data from a cobot’s internal sensors can be used
to characterise a user’s physical interaction with it and serve as a refer-
ence template for authentication of that user. We seek to continuously
authenticate current user behaviours against these stored characteristic
templates while the cobot is being manipulated (as part of a collaborative
task). Our approach, based on machine learning and a recognised trust
model, can provide a sensible, practical solution to authenticate users
continuously as they physically interact with a cobot. Furthermore, it
makes use of data that are already maintained by the cobot as part of its
general operation. Our work is the first to exploit such data.

Keywords: Behavioural biometrics · Continuous authentication ·
Collaborative robots · User authentication

1 Introduction

The use of robots in manufacturing processes is rising, with around 1.7 million
industrial robots expected to be employed in industries worldwide in 2020 [7].
Traditionally, such robots have been segregated from humans by walls, fences
and other barriers to ensure safety, but recent advances in collaborative robotics
promise opportunities for robots to share spaces with human workers.

Collaborative robots (or cobots) [14] are designed with more sophisticated
sensing and control mechanisms than traditional industrial robots and, in the
c© Springer Nature Switzerland AG 2021
D. Maimut et al. (Eds.): SecITC 2020, LNCS 12596, pp. 185–197, 2021.
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main, they are designed to handle lighter payloads. They promise to combine
the benefits of automation (speed, precision, accuracy and repeatability) with
those of human workers (dexterity, perception, flexibility and cognitive ability).
Alongside advances in digital technologies, such as the Internet of things (IoT),
augmented reality and digital twins, cobots will enable more flexible, bespoke
processes. This makes them attractive to many manufacturers who have not been
able to benefit from large-scale automation. (The number of cobots is forecast
to increase from 8,950 in 2016 to 434,404 by 2025 [12], with the largest market
share being in Europe [6].)

However, reductions in physical safety barriers and increases in technical com-
plexity give rise to a number of challenging safety and security issues which must
be resolved before the benefits of human-robot collaboration can be fully realised.
One such issue is that of user authentication [10]. As cobot use becomes more
widespread, there will be an increased need to authenticate users to ensure they
have the appropriate skills, training and authorisation to access, re-program,
update and control different elements of cobotic systems. At present, discrete
authentication methods, such as passwords and identity cards, are used to lock-
out functionality, but they can easily be bypassed or abused by workers, leaving
safety and security risks unresolved.

Cobotic tasks in manufacturing often involve direct interaction between the
user and the cobot, e.g. when the user physically moves a manipulator or takes
part in some handover of items. Some users are more forceful or quicker in their
interactions, or they may otherwise exhibit an interactive modus operandi that
is distinguishably theirs. Consequently, a cobot able to sense how it is manipu-
lated can use that information to distinguish users. As cobots are compliant, we
propose to use this feature (combined with robots’ internal positions and force
sensors) to measure the actions of human operators (or co-workers) and form a
biometric for their continuous authentication.

We believe that this is the first continuous authentication approach to be
developed in the context of cobots. This is important since cobots will engage
with their co-workers on a continual basis, and this may severely compromise the
utility of traditional one-off password schemes. In practice, we envisage both will
be used: for example, one-off schemes for initial authentication and continuous
authentication for the duration of a work session. We believe that this is also the
first example of biometric authentication in the context of cobots (and indeed
robots).

A major benefit of our approach is that user-to-cobot authentication can be
implemented with no additional sensing. The source data are sensed and used
as part of the operational control system of the cobot. Also, if better performing
classification algorithms become available, they can be directly incorporated
through minor software changes.



Continuous User Authentication to Industrial Collaborative Robots 187

2 Related Work

There has not been much research in the field of robotics security. As far as
we know, no previous research has studied or implemented behaviour-based bio-
metrics authentication for robots in general, let alone for cobots. However, sev-
eral studies have used continuous authentication to secure computer systems
and smartphones. One such approach verifies users of computer systems based
on their continuing interactions with them [5]. Users’ behaviours in that study
were represented by patterns of both keystrokes and mouse usage. The authors
collected behaviour data from 30 users in an unconstrained environment via a
website. Classification was provided by support vector machines (SVMs), Bayes
classifiers and ensemble classifiers. They reported a false reject rate (FRR) of
0% and an Equal Error Rate (EER) of 2.04% with authentication times ranging
from 10 s to 60 s.

In [3], a continuous authentication mechanism was presented to authenticate
smartphone users based on the phones’ micro-movements in addition to users’
finger movements on the touchscreens. Four classification methods were used:
BayesNET, K-nearest neighbour (KNN), multilayer perceptron (MLP) and ran-
dom forest (RF). The researchers obtained a true accept rate (TAR) of 95%
with a 3.1% false accept rate (FAR) on a dataset of 30 users. In [4], to authen-
ticate smartphone users, the authors designed an interaction-based continuous
authentication system. This system considered users’ motion patterns during
interaction with smartphones. In real-world scenarios, the approach achieved an
EER as low as 2.2% by using a deep-learning autoencoder. [8] introduced a
continuous authentication approach for mobile devices based on users’ typing
behaviours. They collected the typing fingerprints of 300 participants. To iden-
tify authorised users, they used SVMs as machine-learning classifiers, achieving a
True Positive Rate (TPR) of 92% at a False positive Rate (FPR) of 1%. However,
some users could not be reliably distinguished.

3 Proposed User to Cobot Authentication

We propose to apply continuous biometric authentication to the use of an indus-
trial cobot (see Fig. 1). Most cobots have integrated sensors, including joint posi-
tion encoders, force and torque sensors, and even cameras. Thus, we consider
it valuable to employ those sensors to capture co-workers’ behaviours to imple-
ment continuous biometric authentication without the need for additional,
potentially intrusive hardware. We conducted two experiments where we
asked the subjects to guide a robot arm around a maze (see Fig. 2).

1. whole-task-authentication: Here, authentication occurs once at the end of the
task (one navigation of the maze). Each user performed 15 maze-navigation
tasks with a trust value calculated after each one. This value determined
whether the user was authorised to continue to the next task.

2. multiple-segment-authentication: Here, we authenticated each user three
times during each task as the user passed specific points in the maze. If
users were authenticated, they were allowed to continue performing the task.
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Fig. 1. Continuous biometric authentication block diagram of our system.

We divided each experiment into three phases: a training phase, a testing phase
and a continuous phase, as shown in Fig. 1. In the training phase, we obtained
readings from the robot’s sensors and extracted potential features for user
authentication. Features from force and torque sensors were the most informative
and were used to create the users’ profile templates. In the testing phase, these
templates were used for user authentication. Each time the robot’s co-worker
started interacting with the robot, our authentication system compared that
user’s profile template against all profile templates in the database to obtain a
probability value for each user in the database, with the highest probability value
taken to identify indicate the user. However, only the probability value of the
authorised user was used to update the current user’s trust value. In the contin-
uous phase, the trust value was used to determine whether the user was allowed
to continue to work with the robot or be locked out of the system, reverting to
the main authentication ‘log-in’ as shown in Fig.1.

3.1 Trust Model

We use the trust model first proposed by Bours [1] for continuous, behaviour-
based biometric authentication. It adjusts the trust score of the current user
by matching their dynamic profile template with the expected user’s template
[1]. As a default, the user starts with 100 as a trust score, and it is updated
(increased or decreased) according to the probability of the genuineness (clas-
sification probability score) of the user with Eq. (1). If the behaviours of the
authorised and current users are similar, the system’s trust in the current user
increases. Otherwise, if the behaviour is sufficiently different from the authorised
user, the trust score decreases.

C =

⎧
⎨

⎩

min
(
C + Z

2 , 100
)

if P ≥ 0.5
max

(
C − Z

2 , 0
)

if 0.3 ≤ P < 0.5
max(C − (2Z), 0) if P < 0.3

(1)
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where C is the trust score of the user, P is the probability score of the current
user against the legitimate user’s template, and Z is a constant governing the
rate of increase or decrease in the trust score. (In our experiments, Z = 15
in whole-task authentication and 7.5 in multiple-segment authentication). The
trust score can never exceed 100 or be less than 0. Equation (2) presents the
decision-making process after calculating the trust value.

Decision =
{

if C ≥ T Trusted user - continue to next task
if C < T Not trusted user - lock out (2)

where T represents the threshold between the trusted user and the untrusted
user. (In our experiments the value T = 80 was used.)

4 Methodology

4.1 Experimental Design

The experiment involved participants interacting with an industrial robot arm to
solve a maze. A two-dimensional maze was attached to the work surface within
the robot’s operating envelope. Start and end points were indicated by red and
green circles, and an additional authentication point was marked as a yellow
circle, as shown in Fig. 2. A handle and pointer were attached to the robot’s end-
effector to provide an intuitive mechanism for manipulating the robot through
the maze.

4.2 Selected Collaborative Robot

We used a KUKA iiwa R800 lightweight industrial robotic arm (see Fig. 2). The
KUKA iiwa R800 has seven joints, each of which has force, torque and position
sensing. Data from these sensors were logged during the experiment to capture
co-workers’ behaviours while manipulating the robot, although in this paper we
used only the end-effector data for classification purposes.

4.3 Subjects and Data Collection

The experiment took place in the Sheffield Robotics Lab on the Sheffield Univer-
sity campus. We obtained 30 volunteers (16 males and 14 females) from students
and faculty members at the University of Sheffield. Users were asked to guide
the robot’s attached pointer around the maze to trace a trajectory from the start
point (red circle) to the endpoint (green circle). They were asked to repeat the
same task 15 times. Participants were given a brief introduction to the purpose
of the study and then they performed three practice runs for which data was not
recorded. Our data collection controller was based on the ROS-integrated appli-
cation programming interface for the KUKA iiwa [11]. The robot was placed in
compliant mode, with each user instructed to trace a path from the start point
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Fig. 2. Experimental design. (Color figure online)

to the end point of the maze. Force and torque data at the end-effector were
continually logged (every 0.1 s) as each user traced this path. (We also recorded
position data.) When the user released the end-effector on completion of the
task, the robot autonomously returned to the start point to begin the next run.
In addition, we also calculated the magnitudes of the force and torque.

4.4 Feature Extraction

After recording data, the next step was to extract relevant features from the
stream sensor data. We sampled the components of the force and torque applied
to the end-effector along the X, Y and Z axes together with their overall mag-
nitudes. (Magnitudes can, of course, be derived from the components.) Figure
3 shows how these vary across example runs by four users. We used the first
four statistical moment features: mean, standard deviation (SD), skewness and
kurtosis. Table 1 shows the equations for calculating these statistical features. N
represents the number of samples so far in a run. The feature-extraction process
yielded a total of 32 = 2(force or torque) × 4(component measurements) ×
4(moment measures) features. To this we added a task number and time (the
time period to complete the task). This increased the number of features to 34.

4.5 Feature Selection

We selected the most suitable features to reduce the training time and increase
the performance of the machine-learning algorithm. We used the recursive fea-
ture elimination (RFE) [9] selection method to analyse and evaluate our feature
set. We applied RFE with 10-fold cross-validation using a random forest (RF)
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(a) Force sensor of X-axis. (b) Force sensor of Y-axis.

(c) Force sensor of Z-axis. (d) Magnitude of force.

(e) Torque sensor of X-axis. (f) Torque sensor of Y-axis.

(g) Torque sensor of Z-axis. (h) Magnitude of torque.

Fig. 3. Comparison of force and torque data of four users while performing a task.
Task duration has been normalised to 6 s.
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Table 1. The equations of the statistical moments used as features where Xi is the
sample of a data-stream and N is the total number of samples.

Features Equation Features Equation

Mean μ =
∑N

i=1 Xi

N
SD σ =

√∑N
i=1(Xi−μ)2

N

Skewness S =
1
N

∑N
i=1(Xi−μ)3

σ3 Kurtosis K =
1
N

∑N
i=1(Xi−μ)4

σ4

classifier. The feature selection was performed only with the training set to pre-
vent over-fitting. In our experiment, we used the top 19 features (all features
with an importance score more than 0.02) out of the total set of 34 features.

4.6 Considered Classifiers

Our approach uses the multi-class classification approach. Each user is profiled
as the ‘authorised user’ and the remaining users as ‘unauthorised users’ for val-
idation objectives. We implemented RF, SVMs, KNN and decision tree (DT)
classifiers.We trained these classifiers on the full set of extracted features with
three train-test splits (75%–25%, 70%–30% and 65%–35% of the dataset) from
the ‘split’ method. We also used a 60%–40% split with the first nine tasks as the
training set and the remaining six tasks as the test set. The basic performance
metrics were used to compare classifiers (i.e. precision, recall and f1-score). Pre-
cision indicates the number of true positive results divided by the number of all
positive results returned by the classifier. Recall denotes the number of true pos-
itive results returned divided by the total number of actual positive instances.
The f1-score represents the weighted average of precision and recall. Table 2
presents a summary of the classifier results for each training regime. Based on
the results in Table 2, we found that RF gave the highest f1-score. Consequently,
we chose RF as the classifier for our subsequent experiments. The scikit-learn
Python package [13] was used for training and evaluation.

5 Results and Discussion

In the whole-task experiments each of the 30 users performed 15 task runs, giving
rise to 450 = 30×15 profiles. In the multiple-segment authentication experiment,
each task had 3 segments and so gave rise to 1350 = 30 × 15 × 3 profiles.

5.1 Performance Evaluation of Single-Use Biometric Authentication
System

We first evaluated whether the user of a single witnessed task (or sub-task) could
be identified. We had multiple task templates from each user and could use them
to train a classifier. We could then see how additional templates from the set
(not used in training) are classified. The results are reported on the basis of
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Table 2. Result of different classifiers with different training–test splits

Classifier Metric Test set 25% Test set 30% Test set 35% Test set 6 tasks

RF Precision 91% 91% 89% 96%

Recall 89% 88% 85% 94%

f1-score 89% 88% 85% 94%

SVMs Precision 88% 86% 82% 62%

Recall 82% 79% 74% 60 %

f1-score 82% 79% 75% 57%

KNN Precision 81% 80% 75% 45%

Recall 75% 71% 68% 44%

f1-score 74% 70% 67% 41%

DT Precision 76% 70% 71% 69%

Recall 70% 65% 66% 68%

f1-score 72% 65% 65% 68%

Table 3. Evaluation of RF classifier on full sets of features and a subset of features
over each experiment, training–test split of (9–6 tasks).

Experiment No. Features ( FAR ) ( TAR ) ( EER ) f1-score

Whole-task 34 0.2% 94% 2.9% 94%

authentication 19 0.1% 96% 2.6% 96%

Multiple-segment 34 0.5% 87% 6.8% 86%

authentication 19 0.4% 87% 6.5% 87%

FAR, TAR, EER and f1-score. EER is the percentage at which FAR and FRR
are equal.

Table 3 shows the performance of the RF classifier on RFE-based feature
subsets over two experiments. According to Table 3, RF gave the best f1-score of
96% in the experiment on whole-task authentication on the subset of 19 features
obtained by the RFE feature-selection method. The corresponding confusion
matrix for all 30 subjects is shown as a heat map in Fig. 4. The heat map shows
how tasks from the test set are classified. The corresponding RF was developed
with a 9–6 tasks train–test split, so the heat map shows the results for classifying
180 = 30 × 6 test task templates.

5.2 Performance Evaluation of the Continuous Biometric
Authentication (CBA) System

Measuring the performance of the Continuous Biometric Authentication (CBA)
system [2] requires a more nuanced means of evaluation. Minimising the number
of tasks imposters can perform before being identified is critical. As with any
authentication process, it is also crucial that the system does not reject genuine
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Fig. 4. Confusion matrix for all 30 subjects in a whole-task authentication experiment,
training–test split of (9–6 tasks)

users. Hence, the number of tasks genuine users can perform before they are
rejected is important. For CBA, we used the average number of genuine actions
(ANGA) and the average number of imposter actions (ANIA) [1], with high
values of ANGA and low values of ANIA representing the best results. Equation
3 shows how to calculate the ANIA of imposter j [2].

ANIAj
g =

1
k

·
k∑

j=1

Tk (3)

where k is the number of times imposter j was locked out if they were classified
as a user other than the genuine user g after T1, T2...Tk tasks. If we assume that
N represents all participants, the ANIA of overall imposters (N −1) against one
genuine user can be calculated by (4) [2].

ANIA =
1

N − 1
·
N−1∑

j=1

ANIAj
g (4)

We used the trust model described in Sect. 3.1. Figure 5(b) and 6(b) show
how the trust value changes when test data for a genuine user and 29 imposters
are examined. For example, over 6 tasks, it can be seen that the genuine users
were never locked out because the trust scores of the legitimate users were higher
than the selected threshold (80%) for every task. In contrast, the imposters
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(a) Probability value.

(b) Trust score.

Fig. 5. Results of whole-task authentication with one example of a genuine user and
29 imposters. Results identical for all imposters attempts.

were locked out after the first task, as their trust score fell below the required
threshold.

In the whole-task authentication experiment, we tested 30 users (each user
is profiled as ‘genuine’ and the remaining users as ‘imposters’). This yields an
ANIA of 1, meaning that all the imposters managed only one task out of 6
before being identified. We also obtained an ANGA score of 5 when we tested 30
genuine users for 6 tasks. However, we obtained an ANIA of 2 in the multiple-
segment authentication experiments, meaning that all the imposters managed
only two sub-tasks out of 18 before being identified. The ANGA score for the
multiple-segment authentication experiment was 12 when we tested 30 genuine
users on 18 sub-tasks.
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(a) Probability value.

(b) Trust score.

Fig. 6. Results of multi-segment authentication with one example of a genuine user
and 29 imposters. Results identical for all imposters attempts.

6 Conclusions and Future Work

We have proposed a novel continuous, behavioural-biometric authentication sys-
tem for a cobot, using internal cobot sensor data to authenticate users who
engage physically with a cobot. This method increases security over existing
systems while avoiding additional worker processes and potentially intrusive
monitoring. In the future, we will examine the implementation of behavioural,
biometric-based continuous authentication using wearable sensor devices for
manufacturing situations in which co-workers are not directly manipulating
robots, e.g. where a user completes some dexterous task before placing a worked
artefact down to be subsequently picked up by a cobot for its (typically more
dangerous) work contribution (e.g. spot welding). Our current work focuses on
masquerading of one user by another, without the latter observing the former.
We will also investigate the mimicking of a user actually observed by another.
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Abstract. The ability to store and operate on cloud data provides flex-
ibility and reduced hardware needs, but it has the disadvantage of a
possible loss of data privacy. Homomorphic encryption solves this prob-
lem allowing operations on encrypted data to be performed, while main-
taining its confidentiality. In this paper we focus on the introduction of
homomorphic cryptosystems within neural networks. The main contribu-
tion is an implementation of a speaker recognition system whose security
is based on the principles of homomorphic encryption. The application
uses a convolutional neural network to classify encrypted spectral sam-
ples and it achieves an accuracy of over 99.5%. Moreover, we test dif-
ferent approximations for transfer functions analyzing time and memory
consumption along accuracy.

Keywords: Homomorphic encryption · Speaker recognition · Machine
learning · Convolutional neural networks.

1 Introduction

Outsourcing data processing in the cloud provides most entities with services
that cost a lot of personal deployment. Even if these services introduce flexibil-
ity and reduced hardware needs, they may have privacy losses. Homomorphic
encryption can help address this problem by computing on encrypted data while
maintaining its privacy.

The current application focuses on identifying speakers based on their
encrypted spectral samples. We consider that this way of using convolutional
neural networks, whose security is based on homomorphic cryptography, intro-
duces new possibilities in the field of artificial intelligence, especially in the field
of Machine Learning as a Service.

In order to successfully introduce fully homomorphic encryption into the
Computer Vision through different Deep Learning architectures, certain cus-
tomizations must be made, either to the networks we want to use or to the com-
munication protocols. At the level of the networks used, the transfer functions
must be changed, the non-linear functions must be approximated or changed
in their entirety with polynomial functions, thus making it possible to evaluate
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them. Also at this level, the max pooling layers must be replaced by average
pooling layers. Interest in this research area began to increase rapidly with the
achievement of very high accuracy in tasks such as image classification [1] or
speech recognition [2].

Given the current context, speaker recognition systems based on MFCC fea-
ture vectors are the most common, with uses in the encrypted domain, or are
based on GMMs [3], while maintaining speaker privacy. In [4] authors use the
Paillier cryptosystem to protect biometric data taken using identity vectors,
whilst in [5] they use vector quantization to extract features and create the
model that is encrypted using an LHE scheme and evaluated later. In [6] authors
describe a system implemented over TFHE [7] in which they use a VGGVox neu-
ral network [8] for time-efficient classification.

The main contribution of this paper is the introduction of a speaker recogni-
tion system that uses, for identification, a convolutional neural network, whose
input data is represented by homomorphically encrypted spectrograms, having a
fixed length over the speakers audio samples. Our starting point were some ideas
from [9] and [10], which we later adapted for the current needs of the system.

This paper is organized as follows. Section 2 presents an overview of homo-
morphic encryption and the speaker recognition domains. Section 3 contains the
general architecture and the proposed methods for approximating transfer func-
tions, whilst Sect. 4 briefly describes the obtained results. The paper closes with
a set of conclusions grouped in Sect. 5.

2 Related Work

2.1 Homomorphic Encryption

The field of homomorphic cryptography is not a recent concept and has been
proposed shortly after the publication of the asymmetric RSA algorithm [11],
which is, in fact, also homomorphic [12]. The idea from which they started is the
following: the problem with systems that use data encryption for maintaining
confidentiality of sensitive information is that they can only store or retrieve
data from the user, while any other operation require, first of all, the decryption
of that data, thus loosing its confidentiality.

The first 30 years after the emergence of the concept failed to produce the
essence expected by the researchers, namely the possibility of performing any
number of operations on encrypted data. It was not until 2009 that such a scheme
could be possible with the publication of Craig Gentry’s doctoral thesis [13]. The
first generation of fully homomorphic schemes [14–16] that began with Gentry’s
doctoral thesis followed a similar, rather complicated methodology, which often
was based on very strong computational assumptions. A second generation of
schemes began with the work presented in [17], where authors obtained FHE in
a less complicated way, based on the LWE (Learning With Errors) hypothesis.
The security of these schemes is based on the weight, even in the quantum field,
to approximate the problem of small vectors in the worst case scenario in lattices.
Their scheme was subsequently improved by [18].
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The security of most practical FHE schemes is based on the problem of
Ring-Learning With Errors (RLWE), which is considered to be a difficult math-
ematical problem in the area of large-scale lattices. Nowadays, attempts are
being made to standardize the field of homomorphic cryptography for a wide
range of reasons: more and more companies and individuals are moving to the
cloud storage and operation area, current deployments are not easy enough for
beginners in the field, and the security properties of RLWE-based schemas can
be difficult to understand.

The system we propose in this paper is implemented using the CKKS
encryption scheme [19]. This scheme supports the addition and multiplication
of encrypted messages, along with a new scaling procedure for managing the
magnitude of messages in the plain space.

2.2 Speaker Recognition

Traditionally, the task of identifying a speaker has been addressed using Gaussian
mixtures models (GMMs) on characteristic vectors containing Mel Frequency
Cepstral coefficients (MFCCs) [20]. Recently, frameworks have emerged that use
identity vectors and probabilistic linear discriminating analysis [21] to form com-
pact, fixed-length representations of a speech sample. Although this technique
is a standardised and functional approach in the industry, the use of MFCCs
feature vectors does not exploit features other than the gross spectral envelope
of short windows in an audio sample. In other words, the discriminatory char-
acteristics of a speaker are not sought or processed: a person’s characteristic
manner of speaking, accent, rhythm, intonation, pronunciation model [22].

There are 2 types of systems for speaker identification: text dependent and
text independent. In this work we will focus on the text independent one.

2.3 Convolutional Neural Networks

A convolutional neural network is a Deep Learning algorithm, which takes an
image at the entrance, assigns importance (variable parameters during learn-
ing) to certain aspects, or parts of the image to be able to differentiate them
from each other. The preprocessing used in CNN is much reduced compared to
other classification algorithms. While primitive filter-based methods are created
manually, CNNs have the ability to learn those filters automatically if they have
enough data for training. Another interesting feature is that CNN architecture
is analogous to the connectivity patterns of neurons within the human brain,
inspired by the Visual Cortex organization [23]. Such a network can successfully
capture the spatial-temporal dependencies of an image by applying the relevant
filters. These networks emerged as the development of 3 important concepts
in the Machine Learning, namely: reduced interaction, parameter sharing and
covariant representation [24].
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3 Speaker Recognition System

The proposed system is built using nGraph-HE [25] as a bridge for connecting
the homomorphic cryptography to neural networks.

As seen in Fig. 1, the system is built from 3 main components:

– HE – Speaker Identifier Client - the component responsible for taking audio
samples of speakers, extracting spectrograms, processing the result received
from components dealing with the cryptographic part and returning a specific
result to the user;

– pyHE Client - the cryptographic component at the client application level
is the module that handles the homomorphic encryption of the data, their
transmission using the TCP communication protocol and decryption of the
results obtained from the server;

– HE – Speaker Identifier Server - the component performing homomorphic
evaluations of the speaker’s characteristic data by going through a homomor-
phic circuit, which consists of the trained convolutional neural network.

Fig. 1. Sequence diagram for the speaker recognition system.

3.1 HE - Speaker Identifier Client

As mentioned earlier, this component is intended to extract spectrograms from
an audio sample, process them in a characteristic way so that they can be eval-
uated by the server application, and return a specific result to the user.

The process of generating spectrograms involves 2 steps: removing quiet por-
tions from the audio signal and creating spectrograms for each window in the sig-
nal. The first step is achieved by removing frames whose energy does not exceed
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a certain barrier over a short period of time, and then all new frames obtained
are concatenated. Step two generates the Mel-scale spectrogram, the scale of
which is transformed into the whole 8-bit (0–255) range and reversed so that the
low frequencies are at the bottom of the image obtained. Subsequently, a color
inversion is made so that black represents higher levels of energy. The image
obtained is saved according to the parameters sent earlier, in case additional
checks need to be carried out. Parameters used for generating the spectrograms
are as follows: 128 Mel filters, 16 kHz sampling rate, 1024 length points and 160
points for interframe length. The extraction of spectrograms from audio samples
is done in Python, using the Librosa library.

3.2 pyHE Client

This component, inspired from [26], deals with the homomorphic encryption
of the values received from the previous component, their transmission to the
server, and the decryption of the results received from the server. Encryption
and decryption operations are performed using the Microsoft SEAL library [27],
the CKKS scheme.

Fig. 2. Architectural design used for pyHE Client and its connection to the Server.

3.3 HE - Speaker Identifier Server

This component, had also a starting point in [26] and was modified accordingly
to the needs of the speaker recognition system. It is the module dealing with the
actual recognition of speakers through a neural network that classifies the input
data. In order to reach this goal, we developed a neural network for classifying
a number of speakers based on voice samples.

Figure 3 shows the structure of the neural network used to identify speakers.
It contains 4 convolutional layers for a smooth and accurate choice of voice
characteristics extracted from the spectrograms sent for identification, 2 average
pooling layers and 2 fully connected layers.
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Fig. 3. Network architecture used to identify speakers.

This model was too complex to be homomorphically evaluated, so we chose to
narrow it and we obtained the model depicted in Fig. 4.

The network training was carried out on a database containing 13 speakers.
The processing of the spectrograms that are sent for network training is carried
out by loading all the speakers samples together with the associated labels, whilst
25% of this data was used for testing. The network is trained with the following
characteristics:

– the Categorical Cross-entropy algorithm is used to calculate losses;
– the RMSProp method is used for optimizing the metric;
– the metric is based on the calculation of accuracy.



204 M.-C. Chindriş et al.

Fig. 4. The restricted model used in the speaker identification system.

Based on the network presented in Fig. 3, it can be observed that the layers
conv2d 2, average pooling2d 1, conv2d 3, conv2d 4, average pooling2d 2, flat-
ten 1 and fc 1 can be reduced to a single layer. This reduction consists in the
generation of 2 matrices that correspond to the operations that are performed
in those 7 layers:

– one for the coefficients corresponding to each transition from one neuron to
another;

– one for the values added to the above mentioned coefficients.

Once these matrices are obtained, the new model can be generated. To do so
and obtain the model presented in Fig. 4, we began with 2 convolutional layers,
an average pooling layer and 2 fully connected layers for classification, as also
proposed in [28]. But, for our case, given the limited number of training data,
the results were not good enough for the current state of speaker recognition
systems. Therefore, after a series of successive changes to the model, we were
able to reach its final form, for which we achieved 99.6% accuracy, with an
average evaluation duration of 340 s.

As mentioned in Sect. 1, securing the use of a neural network with homomor-
phic encryption means that we have to either create a special communication
protocol between client and server, or approximate the transfer functions with
different polynomials. Our approach tried to find a suitable approximation for
the non-linear transfer functions ReLU and Sigmoid.
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4 Experimental Results

In order to find a good approximation for the 2 transfer function mentioned
earlier, we tried 3 different methods: numerical analysis, Taylor expansion and
Bernstein polynomial approximation. An important thing to note is that the
polynomial used as a transfer function must be of a low degree so that the
evaluation of the entire network does not exceed critical memory thresholds or
very high execution times. Taking this into consideration, we limited our tries
to approximate polynomials with a maximum degree of 5.

Fig. 5. ReLU and its numerical approximation with a degree of 5.

The first step to approximate the two functions consisted of a numerical analysis
of their values and an interpolation of these data sets. The results obtained were
of very poor quality, the degree of polynomials obtained by interpolation far
exceeding 5, for a valid approximation over a reduced input area.

From the graphs depicted in Fig. 6 and Fig. 7, we can see the difference
obtained for classical interpolation and the functions themselves. These approxi-
mations were not used further in the code. The second step consisted in approx-
imating the 2 functions using Taylor expansion.

taylor(ReLU) = − x4

192
+

x2

8
+

x

2
+ ln2 (1)

taylor(Sigmoid) =
x5

480
− x3

48
+

x

4
+

1
2

(2)

Both approximations are valid over a range between [−3, 3]. Since the approxi-
mation obtained for ReLU in Eq. 1, contains a polynomial whose degree is lower,
we have carried out a series of tests using this polynomial as a transfer function.
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Fig. 6. Sigmoid and its numerical approximation with a degree of 5.

Fig. 7. Bernstein polynomials for ReLU.

Table 1 present the results obtained using this approximation for ReLU. We
observed that, for the first 2 models, the obtained accuracy is not as we have
expected, thus, we only carried further experiments on the third model.

Table 1. Results obtained using Taylor expansion for ReLU.

Model Accuracy Evaluation time Memory consumption

2 convolutional + 1 pooling
+ 2 activation

48.7% 290 s 65 GB

3 convolutional + 2 pooling
+ 2 activation

82.7% 420 s 95 GB

4 convolutional + 2 pooling
+ 2 activation

99.2% – –

Since by using this approximation we could not obtain results in encrypted
domain, we further tried to use Bernstein polynomials. We conducted a series of
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tests using a fifth, third and second-degree polynomials for the ReLU transfer
function and polynomials of degree 3 and 2 for Sigmoid.

Fig. 8. Bernstein polynomials for Sigmoid.

Although the fifth-degree polynomial for ReLU, or the third-degree polynomial
for Sigmoid, is a close approximation, we chose to check the third model to
maintain the high level of accuracy, using as transfer function the polynomials
in the Eq. 3, ReLU and respectively 4, Sigmoid. This decision was based on the
fact that there is a relatively small difference between the results obtained by
approximation using the big degree polynomial or a second-degree polynomial
for both functions.

(x− 1)2ln2 + x2ln(e + 1) − 2x(x− 1)ln(e
1
2 + 1) (3)

(x− 1)2

2
+

x2

e−1 + 1
− 2x(x− 1)

e− 1
2 + 1

(4)

During the research undertaken and in the view of obtained experimental results,
the choice of the x2 polynomial as a transfer function came through articles
[28,29], where the usefulness of this polynomial was demonstrated.

Table 2 shows the results obtained on the complex model in Fig. 4 using as
transfer functions the polynomial x2, the polynomial in the Eq. 3 and the poly-
nomial in the Eq. 4. Approximations of the ReLU and Sigmoid transfer functions
achieve slightly higher accuracy for data training than that obtained by using
the x2 polynomial. On the other hand, given the very high memory consumption
and the evaluation time of the model using the 2 approximations for the trans-
fer functions, the difference for the accuracy metric can be neglected, so, in our
view, the optimal choice of transfer function would be the polynomial x2. Due
to insufficient resources we were unable to complete the evaluation of the model
using one of the 2 polynomials in the Eqs. 3 and 4. As a result, we checked the
differences between the results of the functions in plain and the results obtained
using the CKKS cryptosystem and their polynomial approximations.
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Table 2. Results obtained on the complex model for different polynomials as transfer
functions.

Transfer function Accuracy Evaluation time Memory consumption

x2 99.62% 340 s 73 GB

Polynomial from Eq. 3 99.69% – –

Polynomial from Eq. 4 99.69% – –

Table 3 shows the differences, obtained by applying to a set of points in the range
[−3,3), between the RELU function and the evaluation of its polynomial approx-
imation and the differences between the Sigmoid function and the assessment of
its approximation using the CKKS on 2-level scheme. The evaluation time on
encrypted data is approximately 29 times longer, and the errors obtained are
significant, 0.1372 for the Sigmoid function and its approximation, respectively
0.2124 for the RELU function and its approximation.

Table 3. Results for ReLU, Sigmoid and their Bernstein polynomials of degree 2.

Function Data
Evaluation time

(seconds)
RMSE

ReLU
Range

[-3,3) sampled
in 48 points

0.004
0.2124

Polynomial from Eq. 3 0.118
Sigmoid 0.004

0.1372
Polynomial from Eq. 4 0.114

Because we are in the homomorphic domain, each multiplication brings with
it the question of the number of levels for the homomorphic scheme considered,
in this case, CKKS. As a network with fewer layers produces a result with lower
accuracy, the number of levels can be considered as a function given by the
polynomial degree used for the transfer function. For the model in Fig. 4, a 7-level
configuration is used, using the x2 polynomial as a transfer function. For various
changes to this polynomial, the configuration must be adapted consequently.

All the evaluations mentioned above were carried on a system having 100
GB of RAM, 20 cores and Ubuntu 18.04 LTS operating system. The database
consisted in 5242 spectral samples taken from 13 speakers. All approximations,
computations and graphs were created with MATLAB R2018b.

During evaluations conducted in the encrypted domain, the application has
an accuracy of 99.99%, following more than 30 evaluations with 1391 spectral
samples, different from one evaluation to another, the neural network miscalcu-
lated a maximum of 2 samples per evaluation. Using the client-server system,
we checked with samples that did not appear in the original database for some
of the speakers, and the results were correct for all the tests performed.
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5 Conclusions

In our view, looking at the rise and optimizations of FHE encryption schemes,
from Gentry’s 2009 schema [13] to the present day, the field is a continuous
research area. In the near future, schemes created and their implementations
will be able to provide full and easy access to the development of the cloud
computing, thus data security, alongside the speed and accuracy of results, will
be increased. In relation to the applications developed in this paper, in par-
ticular the speaker recognition system, it can easily be observed that, at the
moment, although the results obtained do not indicate excellent performance of
the system, one must take account of the existing and recognized complexity of
operations in homomorphic cryptography, as well as of the infrastructure used,
which is more than 5 times less than those often used in the literature. The per-
formance achieved in terms of speaker recognition also indicates that the method
is a good one, with a good projection of use in the future.

Another problem that arises on the use of neural networks in the homo-
morphic field is given by the transfer function, as it can be observed from the
experiments performed, that the usual transfer functions (Sigmoid, Hyperbolic
Tangent, ReLU) cannot be used directly in this context. Based on the exper-
iments carried out, we can say that the approximations made using Bernstein
polynomials achieve better results compared to the other methods. A direct con-
sequence involves altering the number of layers used within the model, or using
larger parameters for the encryption scheme. Therefore, homomorphic cryptog-
raphy has its limits in certain applications, but the applicability of these schemes
proves to be useful and good results can be achieved in most areas.

A possible disadvantage of the method used in the speaker identification sys-
tem is the need to retrain the network used for classification. At the same time,
from the point of view of the tests carried out by the method described in the
paper, it is possible that the number of users for whom the detection process is
carried out may also be necessary to modify the parameters of the neural net-
work. This change will be made by adding a larger number of layers, depending
on the granularity index required to uniquely identify each user. In this respect,
a research direction will be to identify an empirical method of assessing the
ratio between the number of parameters and the number of speakers, by con-
ducting tests using the current system on a large number of users (the increase
in the number of users will be carried out gradually, on the basis of fixed inter-
vals) or by modifying the parameters of spectral samples taken from the users’
voice samples. A second direction of research will be the comparative analysis of
the performance between the classical methods of voice signal analysis and the
method proposed in this paper, also taking into account the degree of influence
that the number of end-users can have on such a system.
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Abstract. The paper discusses a privacy definition for offline RFID
schemes, called privacy+. We analyse this notion and we describe an
attack that proves that it can not be achieved by the accompanying pro-
tocol. In order to achieve offline privacy we develop a novel approach
based on using PUFs on the reader together with encrypting the reader
database. Our approach contradicts the standard assumption that pri-
vacy must be lost when a reader is compromised and that privacy restor-
ing mechanisms must be developed. We design a protocol that imple-
ments this idea and prove it to be secure, destructive-private and immune
to reader corruption in a slightly modified version of Vaudenay’s model.

1 Introduction

The potential of RFID technology has become evident as more and more appli-
cations have employed the benefits of contactless communication. Domains such
as asset tracking, animal or object identification, public transportation or access
control have come to rely on this technology [1]. Typically, RFID involves two
main entities: a small device, called tag, that gets attached to an object that
it identifies and a powerful device, called reader or interrogator, that commu-
nicates wirelessly with the tag. Besides the above components one may also
introduce a backend server that stores a database with relevant information and
communicates through a secure channel with the reader.

The widespread adoption of RFID comes, however, with a potential for secu-
rity and privacy violations. The wireless nature of the communication between
reader and tag allows malicious scanning of tags and traffic interception. Track-
ing a person through her RFID possessions (access card, bus ticket) becomes a
reality. The lack of physical protection of the tag gives rise to another serious
threat: corruption. An attacker can gain access to a tag and extract its secrets,
allowing him to permanently violate the user’s privacy. The research community
has addressed these concerns by designing authentication protocols for RFID
[2–5] and formal privacy models [2,6–8] for analysing these protocols.

The connection type of the reader with the server (permanent or not) gives
rise to RFID schemes that are online or offline. In the first scenario, the reader
is considered to always be connected to the backend server through a secure con-
nection. Furthermore, the reader cannot function offline as it does not hold any
c© Springer Nature Switzerland AG 2021
D. Maimut et al. (Eds.): SecITC 2020, LNCS 12596, pp. 212–226, 2021.
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database information. This approach is the most common one and has received
more attention from the research community in terms of security and privacy
[2,4,6,7].

In contrast, offline RFID schemes assume that the reader is only sporadi-
cally connected to the central database. Since most or all of the reader’s activity
must be conducted without access to the server, the reader must accommodate a
partial (or full) database with tag information. Applications that fit this descrip-
tions are access control systems where many individual rooms are equipped with
electronic locks [1], sporting events or public transportation [9]. For example, bus
readers connect to the central database only at the end of the day. Thus, it is nat-
ural to consider the privacy implications of the attacker compromising a reader.
The common approach to this threat is to assume that privacy is inherently lost
after an adversary corrupts a reader [5,9–11]. Therefore, privacy-restoring mech-
anisms have to be defined in order to regain the privacy of the scheme after such
an event. In order to implement this view, special privacy experiments, such as
the one from [10] or privacy+ from [5], need to be created.

Contribution. First of all, in this paper we discuss the notion of privacy+ from
[5], that was proposed as a modification of Vaudenay’s privacy experiment [2,6]
for offline schemes with privacy-restoring mechanims. We show that privacy+ is
not adequately described and does not provide the intended privacy level. We
present an attack against the scheme from [5] that breaks privacy+. Secondly,
we suggest a general approach to construct RFID authentication protocols that
do not lose privacy when the reader is compromised. As far as we know, this is
the first proposal of its kind. Our idea is employing Physically Unclonable Func-
tion (PUF) [12] technology on the reader (secure key storage) and a symmetric
encryption scheme for protecting sensitive information stored in the reader’s
local database. PUFs are lightweight constructions that have been proposed as
a solution against corruption on tags [4] and have become a frequently used
building block for RFID protocols [3–5,13,14]. We propose a protocol that fol-
lows this idea and does not lose privacy when the reader is compromised. The
protocol is analysed in a slightly modified version of Vaudenay’s model. Proof
sketc.hes are provided for the protocol’s security and privacy properties.

Paper Structure. The paper is divided in six sections. The first section corre-
sponds to the introduction. In the second section we fix some notations and
present useful definitions. Section 3 represents a presentation of Vaudenay’s
RFID privacy model and the needed modifications for offline schemes. In Sect. 4
we present a state of the art of offline privacy and discuss the notion of pri-
vacy+. Section 5 represents the proposed protocol description and the security
and privacy proofs.

2 Notations, Definitions and Concepts

In this section we recall a few concepts from cryptography. For details, the reader
is referred to [15].
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We use probabilistic polynomial time (PPT) algorithms as defined in [16]
that can consult oracles. An oracle is a black box that can perform a particular
computation. When considering an oracle, we do not consider its implementation
or the way it works. Whenever a PPT algorithm A sends a value x to some oracle
O, the oracle returns to A a given value in O(1) time.

For a set A, a ← A means that a is uniformly at random chosen from A. If
A is a probabilistic algorithm, then a ← A means that a is an output of A for
some given input.

The asymptotic approach to security makes use of security parameters,
denoted by λ in our paper.
Definition 1. A positive function f(λ) is called negligible if for any positive
polynomial poly(λ) there exists n0 such that f(λ) < 1/poly(λ), for any λ ≥ n0.
f(λ) is called overwhelming if 1 − f(λ) is negligible.

We say that a function F is computationally indistinguishable from a random
function g if no PPT algorithm can decide with more than a negligible probability
whether a given value is an output of F or g.

Physically Unclonable Functions (PUFs) [12] are hardware constructions that
use variations in the manufacturing process of integrated circuits (ICs) to pro-
duce IC-specific outputs. The typical analogy for PUFs is that they can provide
device identification similar to human fingerprints. Thus, PUFs have a specific
challenge-response behaviour, i.e. when queried with a challenge they produce
a response that depends not just on the challenge but also on the IC on which
the PUF is implemented. Common requirements for PUFs are that they are
physically unclonable (it is infeasible to produce two PUFs that cannot be distin-
guished based on their challenge/response behavior), unpredictable (it is infeasi-
ble to predict the response to an unknown challenge), and tamper-evident (any
attempt to physically access the PUF irreversible changes the challenge/response
behaviour).

When considering PUFs for cryptographic usage one must alleviate the unsta-
ble nature of PUFs. This can be performed by using techniques such as Helper Data
Algorithms [17] or with PUF constructions that offer zero bit error rate [18].

Since provable security requires ideal primitives, we adopt the concept of ideal
PUF, that was used in several papers [3,4,14]. This concept treats PUFs from a
theoretical perspective and considers them to be tamper-evident constructions
that provide consistent responses (no noise) with good entropy. Our definition
is the same as the one from [3].
Definition 2. An ideal PUF is a physical object with a challenge/response
behaviour that implements a function P : {0, 1}p → {0, 1}k, where p and k
are of polynomial size in λ, such that (1) P is computationally indistinguishable
from a random function and (2) any attempt to physically tamper with the object
implementing P results in destruction of P (P cannot be evaluated any more).

A pseudo-random function (PRF) is a family of functions with the property
that if we randomly choose a function from this family then its input-output
behaviour is computationally indistinguishable from that of a random function.
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Definition 3. Let F : {0, 1}λ × {0, 1}�1(λ) → {0, 1}�2(λ) be an efficiently com-
putable, keyed function, where �1(λ), �2(λ) are two polynomials in λ. F is called
a pseudo-random function if FK is computationally indistinguishable from a ran-
dom function g, where K ← {0, 1}λ is chosen uniformly at random.

To prove that F is a PRF, we usually use a bit guessing game between a
challenger C and an adversary A (with a security parameter λ) where, based on
a random bit b, the challenger provides A with oracle access to either F (b = 1)
or a random function (b = 0). At the end, A outputs a guess b′. The probability
that A wins the game is denoted P (b′ = b). We can say that F is a PRF if it is
efficiently computable and Advprf

A,F (λ) = |P (b = b′) − 1/2| is negligible.

Definition 4. A symmetric-key encryption (SKE) scheme is a triple of PPT
algorithms S = (G, E ,D), where G outputs a secret key K and takes as input a
security parameter λ, E outputs a ciphertext y and takes as input a key K and
a plaintext x, and D is deterministic and outputs a plaintext and takes as input
a key K and a ciphertext, such that x = D(K, y), for any y ← E(K,x).

S is called IND-CPA secure if no PPT algorithm A that is allowed to query
the encryption algorithm E of S has a non-negligible advantage to distinguish
between two plaintexts of equal length, given a ciphertext of one of them.

3 RFID Systems

3.1 RFID Schemes

Let R be a reader identifier and T be a set of tag identifiers whose cardinal is
polynomial in some security parameter λ.

An RFID scheme over (R, T ) [2,6] is a triple S = (SetupR, SetupT, Ident)
of PPT algorithms, where SetupR initialises the reader and its database DB,
SetupT initialises a tag and stores a corresponding entry in DB and Ident is an
interactive protocol between the reader identified by R (with database DB) and
a tag identified by ID (with state S). At the end of Ident the reader outputs
either an ID or ⊥, while the tag outputs OK or ⊥ (mutual authentication).

For mutual authentication RFID schemes, correctness means that, regardless
of how the system is set up, after each complete execution of the interactive
protocol between the reader and a legitimate tag, the reader outputs the tag’s
identity and the tag outputs OK with overwhelming probability.

3.2 Adversarial Model

There have been several proposals for an adversarial model [2,6–8,19] for RFID
schemes. In this paper we follow Vaudenay’s model [2,6].

In Vaudenay’s model, a tag can be either drawn or free based on adversarial
access to the tag (proximity). An adversary can access a drawn tag only through
a temporary unique identifier vtag.
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Within this model, the adversary is given access to the following oracles:

1. CreateTagb(ID): Creates a free tag TID with the identifier ID by calling the
algorithm SetupT (pk, ID) to generate a pair (K,S). If b = 1, (ID, f(S),K)
is added to DB and the tag is considered legitimate; otherwise (b = 0), the
tag is considered illegitimate;

2. DrawTag(δ): This oracle chooses a number of free tags according to the
distribution δ, let us say n, and draws them. That is, n temporary identities
vtag1, . . . , vtagn are generated and then the oracle outputs (vtagi, bi), where
bi specifies whether the tag vtagi is legitimate or not;

3. Free(vtag): The tag identified by vtag becomes free and the identifier vtag
will no longer be used. It is assumed that the temporary state of the tag is
erased when the tag is freed. This is a natural assumption that corresponds
to the fact that the tag is no longer powered by the reader;

4. Launch(): Launches a new protocol instance and assigns a unique identifier
to it. The oracle outputs the identifier;

5. SendReader(m,π): Outputs the reader’s answer when the message m is sent
to it as part of the protocol instance π. When m is the empty message,
abusively but suggestively denoted by ∅, this oracle outputs the first message
of the protocol instance π, assuming that the reader does the first step in the
protocol;

6. SendTag(m, vtag): outputs the tag’s answer when the message m is sent to
the tag referred to by vtag. When m is the empty message, this oracle outputs
the first message of the protocol instance π, assuming that the tag does the
first step in the protocol;

7. Result(π): Outputs ⊥ if in session π the reader has not yet made a decision
on tag authentication (this also includes the case when the session π does not
exist), 1 if in session π the reader authenticated the tag, and 0 otherwise (this
oracle is both for unilateral and mutual authentication);

8. Corrupt(vtag): Outputs the current permanent (internal) state of the tag
referred to by vtag, when the tag is not involved in any computation of any
protocol step (that is, the permanent state before or after a protocol step).

There has been consistent debate on whether the Corrupt oracle returns only
the permanent state or the volatile state of a tag as well [3,20]. As stated in the ora-
cle description, we consider that Corrupt returns only the permanent state. Based
on access to the Corrupt oracle, adversaries are classified into: weak (no access to
Corrupt), forward (no other oracles can be used after Corrupt), destructive (after
corrupting a tag it is considered destroyed) and strong (no restrictions).

Another class of adversaries called narrow is created when the adversary is
denied access to the Result oracle. This class can be combined with the previous
categories and we obtain another four classes of adversaries, narrow weak, narrow
forward, narrow destructive, and narrow strong.

3.3 Security

Security for RFID schemes is composed of two complementary notions: tag
authentication and reader authentication.
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The tag authentication property is defined by means of an experiment
denoted RFIDt auth

A,S (λ) where a challenger sets up for a strong adversary A
an RFID scheme S in which A must impersonate a legitimate uncorrupted tag
to the reader. The adversary is compelled to compute at least one of the mes-
sages exchanged in the protocol. In the end A outputs a bit b. The advantage
of A in the experiment RFIDt auth

A,S (λ) is defined as the probability that the
adversary outputs 1. We say that S achieves tag authentication if Advt auth

A,S is
negligible, for any strong adversary A.

The experiment RFIDr auth
A,S (λ) for reader authentication is identical to the

RFIDt auth
A,S (λ) except that A has to impersonate the reader to a legitimate

uncorrupted tag. An RFID scheme S achieves reader authentication if the adver-
sarial advantage in this experiment, Advr auth

A,S , is negligible, for any strong adver-
sary A.

3.4 Privacy

The privacy notion that was defined in Vaundenay’s model basically means that
the communication between the reader and the tags does not leak any infor-
mation to an eavesdropping adversary. This is modelled through the use of a
blinder.

A blinder for an adversary A that belongs to some class V of adversaries is a
PPT algorithm B that: (1) simulates the Launch, SendReader, SendTag, and
Result oracles for A, without having access to the corresponding secrets and (2)
passively looks at the communication between A and the other oracles allowed
to it by the class V . When the adversary A interacts with the RFID scheme
by means of a blinder B, we say that A is blinded by B and denote this by AB.
We emphasize that AB is allowed to query the oracles Launch, SendReader,
SendTag, and Result only by means of B; all the other oracles are queried as a
standard adversary.

Given an adversary A and a blinder B for it, let us define two experiments (pri-
vacy games) RFIDprv−0

A,S (λ) and RFIDprv−1
A,S,B (λ) where the adversary interacts,

according to its class,with the realRFID schemeand, respectively,with theblinded
scheme. After an interaction phase, the adversary receives the hidden table of the
DrawTag oracle, enters an analysis phase and outputs a bit b.

The advantage of A blinded by B, denoted Advprv
A,S,B(λ), is

Advprv
A,S,B(λ) =| P (RFIDprv−0

A,S (λ) = 1) − P (RFIDprv−1
A,S,B (λ) = 1) |

An RFID scheme achieves privacy for a class V of adversaries if for any adversary
A ∈ V there exists a blinder B such that Advprv

A,S,B(λ) is negligible.

3.5 Vaudenay’s Model for Offline Schemes

Vaudenay’s model has been constructed for analysing online RFID schemes. Mod-
ifications for the offline setting have been proposed in [5]. In this paper we pro-
pose similar modifications, inspired from [5] and [8].
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In an offline RFID scheme, the reader and the server are distinct entities. To
accommodate this, the reader from Sect. 3.1 becomes the server of the offline
one. Thus, a new PPT algorithm SetupReader has to be incorporated in the
offline RFID scheme definition. SetupReader is responsible for creating a reader
with an identifier IDR, a state s and a database DBIDR

. The reader database
DBIDR

is constructed from the system database DB.
Two additional oracles have to be incorporated in the adversarial model:

– CreateReader(IDR) - creates the reader IDR and calls SetupReader;
– CorruptReader(IDR) - returns the internal state s of the reader IDR as well

as the reader database. The reader is considered destroyed and cannot be
used anymore.

Furthermore, the SendReader oracle needs to take into account the reader iden-
tity besides the session identifier and the message.

After a legitimate tag is created and added in the server database, we
require all reader databases to be updated with needed information regarding
the created tag. For tag authentication, reader authentication and privacy we use
the same security experiments as we do not allow the adversary to query the
CorruptReader oracle. This is consistent with the model from [8] and with the
modifications from [5].

We define a new privacy notion, offline privacy for which we use the same
privacy experiment as in Sect. 3.4, with the modification that the adversary is
given access to the CorruptReader oracle. The definition for the adversary’s
advantage remains unchanged.

We say that an RFID scheme achieves offline privacy if an adversary has
negligible advantage in distinguishing the real RFID scheme from the blinded
version, even in the presence of the CorruptReader oracle.

4 Offline Privacy in RFID Protocols

4.1 Related Work

Symmetric Encryption Protocol. In [9] an offline RFID protocol based on sym-
metric encryption is proposed. Each tag stores a unique secret key KT , an iden-
tifier IDT and a counter CT . The readers store an identifier IDR and for each
tag IDT a specific tag-reader secret KTR and a counter CR. The protocol debuts
with the reader sending IDR, CR and a nonce nR. The tag computes the tag-
reader key as KTR = EKT

(IDR, CR), generates a nonce nT and sends to the
reader EKT R(nR, nT ). The reader then searches in its database for a key KTR that
decrypts the message (n′

R, n′
T ) such that n′

R = nR. If so, the tag is authenticated
and the reader sends n′

T . If the equality nT = n′
T holds then the tag authenti-

cates the reader and decides if it updates its counter. The counters CT , CR are used
to restore privacy. After a reader is compromised, the backend server updates the
scheme counter CB and all other readers are updated with new keys based on the
new counter. Thus, the CB counter becomes CR. The scheme privacy is restored
after all tags have replaced their CT with the new CR.
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Indistinguishability and Hash Protocol. The subject of achieving offline privacy
using symmetric cryptography was also tackled in [10]. The paper describes
two versions of a protocol (simple and enhanced) that restore privacy after an
adversary has corrupted a reader. The proposed protocol is a variant of the OSK
protocol [21] and uses a hash function H as the cryptographic primitive. The
tag is required to store a system constant C0 and two keys K,K ′ (the first being
a shared secret with the reader and the latter being a shared secret with the
backend). The readers store for each tag the last known key KT which is used
to trigger the update procedure (that restores privacy), a communication key
K̃ and a MAC computed as H(K ′, C0). Note that the reader does not posses
key K ′. In the protocol, the tag answers to a reader’s challenge n with c =
H(K,n) and updates K = H(K). For every entry in its database, the reader
will iterate a number of times (N) for KT and K̃ in order to identify the tag,
that is find 0 < i < N such that c = H(Hi(KT )) or c = H(Hi(K̃)). If any of
the two conditions is met then the reader identifies and authenticates the tag.
However, if the first condition is met the reader will trigger an update of the tag’s
secrets, which happens during a privacy restore phase. The proposed protocol
offers only tag authentication and not mutual authentication. The paper also
describes a privacy model used for the offline setting. The model is a combination
between the models from [2] and [7]. The online privacy experiment is based
on indistinguishability: the adversary is required to distinguish between two
uncorrupted tags. In an initial step the adversary interacts with the system and
outputs two uncorrupted tags T0, T1. The challenger then chooses a bit b ← {0, 1}
and gives the adversary access to Tb. After a second session of interacting with the
system the adversary outputs a bit b′. The adversary wins if b = b′. For the offline
case, the authors modify this experiment by adding a system synchronisation and
successful protocol runs with T0, T1 after the challenger chooses b.

Hash and PUF Protocol. The first attempt at achieving offline privacy in Vaude-
nay’s model has been performed in [5], where a PUF-based RFID scheme and an
offline privacy experiment (privacy+) are proposed. We will present this scheme
with some simplification: the double PUF protection method, proposed by the
authors in order to thwart the cold boot attack, will be omitted.

The scheme is based on a hash function H and requires each tag to be
equipped with a PUF P and to store a seed G, a counter CT and an identifier
ID. The secret key of the tag S is protected by the PUF. The reader needs an
identifier IDR, a counter CR and a database DBR that contains entries (IDi,Ki)
for each tag, where the key Ki is computed from the tag’s secret key and from
the reader identifier and counter by means of H. After receiving IDR, CR and a
nonce r1 from the reader, the tag also generates a nonce r2. The tag then checks
if the reader is up to date (CR � CT ) and evaluates the PUF to obtain its key
S = P (G). Next, the reader specific key is obtained by K = H(S, IDR, CR) and
the tag computes v1, v2 = H(K, r1, r2). v1, r2 will be sent to the reader, while
v2 will be kept to perform the reader authentication. The reader searches its
database for an entry (IDi,Ki) such that for v′

1, v
′
2 = H(Ki, r1, r2) the equality

v1 = v′
1 holds. If it finds such a tag then the reader authenticates the tag and
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sends v′
2 to the tag (otherwise a random number will be sent). If v2 = v′

2 then
the tag will authenticate the reader and perform an update if necessary (a reader
was compromised and counters were increased). The protocol is depicted in
Appendix A.

4.2 Privacy+ Discussion

In [5] privacy+ is introduced as an adaptation of the privacy from Sect. 3.4
for offline schemes with privacy-restoring mechanisms, where the adversary is
allowed to query the CorruptReader oracle. The definition for privacy+ (defini-
tion 3.6 from [5]) states that an RFID scheme achieves this level of privacy if it
is still private after (1) an adversary has corrupted some of the readers, (2) the
remaining readers are updated with new information and (3) all existing tags
run at least one successful protocol instance with an updated reader. This falls in
line with the offline privacy experiment defined in [10] for the indistinguishability-
based privacy model.

Unfortunately the details for the privacy+ experiment are not adequately
adapted for Vaudenay’s model which uses a blinder-based approach. If we con-
sider the original privacy experiment from [2] and add the conditions from above
(i.e after a CorruptReader query, the system updates the readers and the tags)
then the result of Theorem 5.7 from [5], claiming destructive privacy+ (for the
proposed protocol) becomes invalid. Since in Vaudenay’s model the goal of the
privacy adversary is to distinguish with non-negligible probability between the
real RFID scheme and the blinded version, the adversary may simply perform a
complete session between a reader and a tag, corrupt the reader and obtain the
tag’s key (Ki). With this key the adversary may check if the messages from the
protocol run were exchanged correctly (the protocol is assumed to be correct).
Clearly, in the real RFID case the verification will be successful while in the
blinded version the result will be unsuccessful since the blinder simulates the
messages without knowing the key Ki. This gives the adversary a non-negligible
advantage of distinguishing between the two RFID schemes. The details of this
attack are presented below.

1. CreateTag1(ID) (A creates a legitimate tag);
2. CreateReader(IDR) (A creates a reader IDR);
3. vtag ← DrawTag(P (ID) = 1) (A draws ID);
4. π ← Launch();
5. (IDR, c1, r1) ← SendReader(IDR,⊥, π);
6. (r2, v1) ← SendTag(vtag, (IDR, c1, r1));
7. v2 ← SendReader(IDR, (r2, v1), π);
8. b = Result(π);
9. DBIDR

← CorruptReader(IDR);
10. The system gets updated as definition 3.6 requires;
11. Find (ID,K) in DBIDR

;
12. if (v1, v2) == H(K, r1, r2) and b == 1

then output 0 (A interacts with the real system)
else output 1 (A interacts with the blinder)
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We point out that the system wide update, of both readers and tags, is useless
against this attack as the adversary uses the secrets from the reader to verify
protocol runs that occurred before the CorruptReader query and not after.

Given the above, we consider that a different approach must be taken when
designing a blinder-based privacy experiment for offline schemes with privacy-
restoring mechanisms. We consider privacy+ to be more in line with the extended
soundness notion from [8], that defines tag and reader authentication when the
adversary is allowed access to the CorruptReader oracle.

5 Proposed Protocol

In this section we build upon the efforts of [3,5,10] and we propose an RFID
scheme that offers offline privacy, mutual authentication and destructive privacy.
For our scheme we use symmetric cryptography (a PRF F = (FK)K∈{0,1}k , FK :
{0, 1}2α+1 → {0, 1}k and an IND − CPA symmetric encryption scheme S =
(E ,D,G) with key length k and block length k) and endow both tags and readers
with PUFs (P : {0, 1}p → {0, 1}k) in order to make them resilient to invasive
adversaries. The parameters k, α, p are all polynomial in a security parameter λ.

5.1 Protocol Description

In the proposed scheme each tag is associated a unique secret key K. This key
is only known to the tag and the backend server. Each reader will communicate
with a tag based on a common key KTR derived with the tag’s secret key from
the reader’s identifier. Note that the reader does not need to know K because
the backend server will supply the reader with KTR when the reader is created,
or when a tag is added. In order to prevent the attack from Sect. 4.2, we require
the reader to store K̃TR, which is the encrypted form of KTR so as to prevent the
adversary from breaching privacy. We will achieve this by means of a symmetric
encryption scheme that is IND-CPA secure. The reader will encrypt or decrypt
using a reader specific key KR which in turn will be protected from corruption
by means of a PUF KR = P (SR).

Now let us describe the protocol. The reader starts by generating a random
number x and sending IDR, x to the tag. In turn, the tag will also generate
a nonce y and then prepare the reader’s answer. After extracting the tag key
from the PUF K = P (S), the tag will compute its shared key with the reader
KTR = FK(0, 0α, IDR) and then z = FKTR

(0, x, y). The tuple y, z will be sent
to the reader. Using its PUF, the reader will extract its key KR = P (SR) and
assign to w a random value. For each entry in the database (ID, K̃TR), the
reader will decrypt the tag key KTR = D(KR, K̃TR) and check if the tag answer
is valid z = FKTR

(0, x, y). If such an entry is found then the tag is authenticated
and w becomes the reader’s answer w = FKTR

(1, x, y). The tag will verify w and
decide if it outputs OK (reader is authenticated) or ⊥.
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Reader Tag
(IDR, SR, DB = [(ID, K̃TR)]) (ID, S)

1 x ← {0, 1}α IDR, x−−−−→
2 y ← {0, 1}α

K = P (S)
KTR = FK(0, 0α, IDR)

y, z←−−− z = FKTR(0, x, y)

3 KR = P (SR)
w ← {0, 1}2α+1

For (ID, K̃TR) ∈ DB

KTR = D(KR, K̃TR)
If z = FKTR(0, x, y)
then output ID (T. auth.)

w = FKTR(1, x, y)
else output ⊥ w−→

4 If w = FKTR(1,x,y)
then output OK (R. auth.)
else output ⊥

Fig. 1. Proposed RFID scheme

5.2 Security and Privacy Analysis

We will now perform a security and privacy analysis of our protocol in Vaudenay’s
model. Due to lack of space we will only give the main idea of the proofs. For
detailed security and privacy proofs the reader is referred to [3].

Theorem 1. The RFID scheme in Fig. 1 achieves tag authentication, provided
that F is a PRF and the tags are endowed with ideal PUFs.

Proof. Let us assume that there exists an adversary At−auth that breaks this
property with non-negligible probability. Then we will use At−auth to construct
a PPT algorithm APRF that wins the PRF experiment against F with non-
negligible probability. For simplicity we will assume there is only one reader
R in the RFID system. APRF will engage in the PRF security game against a
challenger C, which will provide it with oracle access to FKTR

for some randomly
chosen KTR (or a random function). APRF will simulate the RFID scheme and
play the role of challenger for At−auth in the tag authentication experiment.
APRF will guess which tag ID will be impersonated by At−auth (this probability
is polynomial) and associate this tag with the oracle from the PRF challenger
(i.e. all queries from At−auth related to ID will be answered with the help of the
oracle). Eventually At−auth will output a message (y, z). APRF will then submit
(0, x, y) to the PRF oracle and decide whether it is playing with F or a random
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function based on the equality between z and the PRF oracle output (z should be
the output of F for some key chosen by C, z = FKTR

(0, x, y)). The probability
that APRF wins is the probability that At−auth wins the tag authentication
game multiplied by the probability that APRF guesses the impersonated tag.
This clearly contradicts the fact that F is a PRF.

Theorem 2. The RFID scheme in Fig. 1 achieves reader authentication, pro-
vided that F is a PRF and the tags are endowed with ideal PUFs.

Proof. The proof is similar to the one presented above. We can construct an
adversary APRF that breaks the pseudo-randomness of F by using Ar−auth.
This contradicts the hypothesis.

Theorem 3. The RFID scheme in Fig. 1 achieves destructive privacy, provided
that F is a PRF and the tags are endowed with ideal PUFs.

Proof. We will use the sequences of games approach [22] to prove that for any
destructive-private adversary A there exists a blinder B such that A’s advantage
of distinguishing between the real RFID scheme and the blinder is negligible.
For simplicity we assume that there is a single reader in the RFID system. We
define a series of games G0, ..., G7 where G0 is the real RFID scheme and G7 is
the blinded version. In each game a probability distribution (the output of the
PUF and the blinder simulated oracles Launch, SendReader, SendTag, Result) is
replaced by another distribution indistinguishable from the replaced one. Since
the adversary has a negligible advantage in distinguishing between the transition
of two consecutive games, we conclude that A has a negligible advantage of
distinguishing between the real RFID scheme G0 and the blinded version G7,
i.e. the scheme achieve destructive privacy.

Theorem 4. The RFID scheme in Fig. 1 achieves offline privacy, provided that
S is IND − CPA secure and the readers are endowed with ideal PUFs.

Proof. We will use the sequences of games approach, same as above. We will
define two additional games G8, G9 and show that the advantage of the adversary
of distinguishing between the real RFID scheme and the blinder does not change
when the adversary is allowed access to CorruptReader. We replace in G8 the
output distribution of the PUF from the reader and in G9 the distribution of the
ciphertexts of the reader encryption scheme with indistinguishable probability
distributions. Since the PUFs are ideal and the encryption scheme is IND−CPA
secure we conclude that the scheme offers destructive privacy and offline privacy.

6 Conclusions

In this paper we have analysed the privacy+ security notion and have proven
that it is not an adequate modification of Vaudenay’s privacy experiment. There-
fore, RFID schemes relying on privacy-restoring mechanisms cannot use it. An
attack on the accompanying protocol has been provided in this sense. Designing
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a blinder-based privacy experiment that allows privacy-restoring mechanisms
remains an open problem.

This paper has also presented a novel approach for providing privacy in
offline RFID schemes without losing privacy when a reader is compromised. This
technique is based on using PUFs on the reader together with encrypting the
reader database. Following this idea, we have designed a protocol that provides
destructive privacy and is immune to reader corruption attacks. To the best of
our knowledge, this is the first protocol to achieve this. The protocol is proven
secure and private in a slightly modified version of Vaudenay’s model.

A Hash and PUF-Based RFID Scheme

Reader Tag
(IDR, cR, DB = [(IDi,Ki)]) (ID,G, cT )

1 r1 ← {0, 1}α IDR, r1, cR−−−−−−−→
2 r2 ← {0, 1}α

If cR cT then
S = P (G)
K = H(S, IDR, cR)
v1, v2 = H(K, r1, r2)

else v1 ← {0, 1}γ

r2, v1←−−−−
3 If ∃(IDi,Ki) ∈ DB
s.t. v1, v2 = H(Ki, r1, r2)
v1 = v1 then
output ID (T. auth.)
else output ⊥
v2 ← {0, 1}γ

v2−−→
4 If v2 = v2 && cR > cT

then output OK (R. auth.)
cT = cR

else output ⊥

Fig. 2. RFID scheme from [5]
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Abstract. In response to the increasing number and complexity of cyber
threats, universities, industry, and government agencies are widely employing
network emulation environments for cybersecurity training and experimentation.
These environments, known as “cyber ranges”, can model enterprise networks
and sophisticated attacks, providing a realistic experience for the users. Building
and deploying such environments is currently very time consuming, especially
for complex scenarios and a high number of participants to the training exer-
cises. This paper presents how virtualization and automation tools can be used to
address this issue, starting from the formal specification of the emulated network
environment to the automated deployment and replication of virtual machines.
Our approach is based on widely used technologies and allows building tailored
environments that fulfill organization needs for specific training, exercise,
research, and development.

Keywords: Cybersecurity � Cyber range � Automation

1 Introduction

The number and the complexity of cyber-attacks have increased considerably over the
last years, with attackers targeting all kinds of sectors and organizations. Cybersecurity
has become a hot topic, which requires a lot of effort in terms of acquiring the nec-
essary knowledge and developing adequate protection mechanisms to cope with these
attacks. In this context, more and more organizations are employing network emulation
environments for developing advanced cyber-security technologies, as well as for
hands-on training using state-of-the-art methodologies and techniques. These envi-
ronments, known as “cyber ranges”, are isolated environments used to model enterprise
networks and sophisticated attacks. The use cases of cyber ranges vary from security
testing, security research, competence building, and security education to the devel-
opment of cyber capabilities, the development of cyber resilience, and improving the
organization’s digital dexterity [1].

Cyber ranges mainly make use of virtualization technologies and automation tools.
Virtualization technologies enable running virtual machines and emulating complex
networks on one or more physical servers. Conversely, automation tools are used for
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the creation, configuration, modification, and deletion of virtual machines and net-
works. In addition to these technologies, when more realistic scenarios are required,
advanced tools for internet services, attack and user activity simulation are employed.

Building and deploying cyber ranges is currently very time-consuming, especially
for complex scenarios and a large number of participants to the training exercises.
Usually, cyber exercises last several hours or days but the preparation phase takes
several months due to the effort required to define the scenario, to install the virtual
machines and to replicate them for each participant [2]. To address this issue, new
kinds of specification languages and tools are being developed that automate the
definition and deployment of cyber ranges [3].

This paper presents a novel approach for automating the tasks required to build
cyber ranges. The approach is based on widely used technologies and enables creating
tailored environments that fulfill organization needs for specific training, exercise,
research and development. It uses YAML language to describe the target infrastructure
and a deployment system, consisting of Ansible playbooks and Python scripts, that
instantiate the target infrastructure, starting from a pool of virtual machine templates.
The advantages of the proposed approach are: flexibility, scalability, reproducibility,
and portability.

The paper is organized into six sections. Section 2 provides an overview of existing
approaches and solutions. Section 3 presents the main technologies used to build cyber
ranges. Section 4 describes the architecture and the workflows of the proposed solu-
tion. Section 5 presents the use cases and the advantages of our solution. Finally,
Sect. 6 concludes the paper and outlines future work.

2 Related Work

Various approaches and solutions have been proposed by researchers to build cyber
range infrastructures. In this section we review the most notable ones to identify the
underlying technologies, advantages and limitations.

CyRIS is the core component of the training support framework called CyTRONE,
which was developed by JAIST (Japan Advanced Institute of Science and Technology)
[4]. This project is implemented in Python and uses a description file, written under
YAML, which represents the cyber range training scenario. CyRIS is a dedicated
solution for deploying virtual cyber range environments using the KVM virtualization
platform and facilitates cybersecurity training by preparation, content installation and
cloning of the training environment. Our solution is different from CyRIS in the
following ways: we provide support for different types of guest operating systems
(CyRIS supports ContOS and Ubuntu only), the capability to deallocate resources at
the end of the exercise, the parse functions, and the folder structure which has a very
important role in resource management.

KYPO cyber range is a modular, distributed system, based on cloud platform
OpenStack and supports multiple use cases: research, education, and training [5]. It
provides an environment for performing complex cyber-attacks against simulated cyber
environments. Security scenarios are defined as structured JSON files, with predefined
templates based on attack types. The architecture of this platform is based on five main
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components: infrastructure management driver, sandbox management, sandbox datas-
tore, monitoring management, and the platform management portal. For the deployment
of a scenario, a sandbox is created by orchestrating the environment via an infrastructure
management driver. OpenNebula is used to provide and create virtual machines and
configure networking. All related details about the deployed sandbox are provided by the
sandbox data store component. For accessing a specific scenario, which is equivalent to a
sandbox, users and admins use a Web based application called platform management
portal. The main disadvantages of this solution are the lack of automation tools for the
preparation and execution of different training and exercises scenarios.

EduRange is a cloud-based framework with a web frontend based on Ruby and
infrastructure (virtual machines and network) hosted on Amazon Elastic Compute
Cloud [6]. This open-source project, sponsored by the National Science Foundation,
consists of a collection of cybersecurity exercises. The solution is easily scalable and
very flexible, using Chef as an automation tool for installing software in the virtual
environment. The disadvantage of EduRange is that it requires the installation of Chef
agents on the managed virtual machines. Also, according to the specifications,
automation tools are used for different purposes: to install software on existing envi-
ronments and to keep track of the process by which a student solves a cybersecurity
problem.

ADLES is an open-source project, consisting of a specification language and an
associated deployment system, developed with the purpose of offering formal declar-
ative specifications for educational exercises [7]. The virtual environment can be built
semi-automatically, by using ADLES specifications and the ADLES tool-set. This
solution currently supports only VMware vSphere as a virtualization platform by using
a custom-built wrapper over the pyVmomi library, which is the standard Python SDK
for the VMware vSphere API. For the deployment of a scenario, ADLES requires pre-
configured templates for the virtual machines and the configuration of multiple files
that should comply with the ADLES specification language. Further changes to the
scenario after deployment require manual interaction with the systems or using
automation tools like Ansible, Chef, Puppet, etc. Compared to ADLES, our solution is
based on a Python script orchestrator that uses multithreading, performs validation of
configurations, and supports additional changes to the deployed infrastructure by
leveraging Ansible playbooks. Additionally, for the deployment of multiple instances
of the same environment, the script automatically calculates the required parameters
(for example, the next valid subnet).

Clusus is a cyber range developed by students from the Delft University of
Technology, used to provide a safe isolated environment for learning [8]. This project
has a design consisting of three main components: a main server that handles the
communications between the learning management system and the virtual environ-
ment, a Docker container exercise which consists of all virtual machines required for
the scenario and a tracking program for monitoring the progress, in addition to another
program that deploys these containers. The configuration files are written in YAML
and the Moodle platform is used as a learning instantiation system. The solution
requires nested virtualization support, which means that only Microsoft Azure and
Google Cloud can be used as cloud providers.
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AIT Cyber Range is a solution with a flexible and scalable architecture used for
cybersecurity exercise, training, or research [9]. AIT uses OpenStack as a cloud com-
puting platform, Terraform as an infrastructure provisioning solution, Ansible for
software provisioning and in-house software to define and execute injects inside a
scenario. AIT Cyber Range was developed in parallel with our solution and tries to
overcome many of the limitations of previous solutions.

3 Underlying Technologies

The diagram below illustrates the main technical components of a cyber range.
Depending on the requirements, additional components may be added on top of this
foundation (for example, Learning Management Systems (LMS), Competency Man-
agement System, etc.) [10] (Fig. 1).

3.1 Hardware Infrastructure

The environments used for cybersecurity training and experimentation are on top of the
hardware infrastructure. The underlying hardware resources can be divided into two
types: traditional infrastructure and hyper-converged infrastructure.

In the traditional infrastructure, the compute, storage and networking components
have to be configured and managed separately. While this infrastructure provides the
greatest flexibility, it also requires more effort to ensure that all the components work
together.

The hyper-converged infrastructure puts the compute, storage and networking com-
ponents together. This architecture enables local storage frommultiple nodes to be used as
shared storage. All the resources are controlled by software and no component can be
managed separately, thus reducing the complexity of resource-management and
deployment time.

Fig. 1. Cyber range components
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Both types of infrastructures can be used a cyber range, the choice being made
according to the particularities presented above. For complex scenarios or a large
number of users, the number of CPUs, RAM, and the use of SSD drives have a great
impact on the performance of the environment.

3.2 Virtualization Technologies

Virtualization is an ideal solution for creating cyber ranges. It offers the advantage of
isolating the guest system (virtual machine) from the host system, the flexibility to define
the characteristics of the system (CPU, RAM, etc.) and the ability to restore the system to
an initial state. Compared to a non-virtualized environment, a virtualized one offers lower
costs, reduced downtime, efficient use of a physical server that can host multiple virtual
machines with different operating systems in which run different applications.

To emphasize how virtualization is used in the cyber range context, two compar-
isons are presented, as follows:

• Client-side virtualization vs server-side virtualization. Using client-side virtu-
alization, the users run one or several virtual machines on a host, using a virtual-
ization platform like VMware Workstation or VirtualBox. In the context of a cyber
range, depending on the complexity of implemented scenarios, the participant`s
machine may not have sufficient resources, which makes it impossible to solve the
scenario. Also, when using client-side virtualization, centralized control and mon-
itoring are difficult to implement. The solution to these problems is server-side
virtualization, which consists of a hypervisor that offers virtual machines access to
hardware resources. The main benefits of this approach are centralized control and
scalability. Although it involves much larger initial investments (purchasing the
hardware components), it is the optimal option when it comes to organizing a cyber
exercise because the organizers are responsible for managing the virtual machines,
instead of the participants, as it is the case for client-side virtualization. VMware
vSphere, XenServer, Microsoft Hyper-V are server-side virtualization platforms,
providing automated monitoring, security, business continuity, simplicity in the
virtual environment's configuration and migration.

• Virtualization vs Containerization. For infrastructure development, two approa-
ches may be taken into consideration: virtualization and containerization. Through
virtualization, the whole system can be emulated, including the hardware compo-
nents. A virtual machine is completely isolated from another one, each having
virtual hardware components and their own operating system. This offers a major
advantage for cyber exercises by providing high security. Notable examples of
virtualization solutions are: VMware vSphere, XenServer, Microsoft Hyper-V. By
using containers, the user profile can be emulated from the operating system level,
so one container is completely separated from another container in terms of pro-
cesses, memory, but they share the same operating system and hardware. The main
advantage of containers is the efficiency of the use of resources. However, from the
perspective of implementing a cyber-exercise, it is much more difficult to reach a
high level of isolation. Docker, Kubernetes and OpenShift are examples of con-
tainer technologies.
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For our solution we selected VMware vSphere 6.7, having ESXi as hypervisor and
vCSA for centralized management of virtual infrastructure. VMware is currently the
industry-leading compute virtualization platform and is ubiquitous in today’s data-
centers. VMware vSphere stands out for its compatibility with a wide variety of guest
operating systems, high scalability, stability, and last but not least, for the technical
support offered by the company.

3.3 Automation and Configuration Management Tools

The use of a modular system is a very effective way to create a virtual environment in
which cyber exercises can be implemented. A modular system consists of the
deployment of several components which can be combined to generate different sce-
narios. Thus, general templates (mail server, AD server, DNS server, workstations with
various operating systems, etc.) are built and employed to deploy the virtual machines
used in the implementation of the scenario. The process of deploying the virtual
environment can be automated by using automation and configuration management
tools. These considerably optimize the entire process of creating the exercise, both in
terms of time required for implementation and in terms of resources used. The main
automation and configuration management tools that can be used in the implementation
of a cyber range are described below.

Ansible is one of the most popular automation solutions that can be used for cloud
provisioning, configuration management, application development, etc. Ansible con-
nects to nodes using SSH, loads Ansible modules (playbooks) on these nodes and then
runs loaded playbooks.
Puppet is an automation tool used for infrastructure management. This tool has a
master server called Puppet Server that manages the agents. Puppet Agents are installed
on the managed virtual machines.
Chef is an infrastructure management tool. This solution has three main components:
Chef Clients (managed machines that periodically download cookbooks from the Chef-
Server and then run these cookbooks), Chef Server (the central node used to store data
like cookbooks, policies, and data about clients) and Chef Workstations (station used to
create cookbooks).
Saltstack is a solution that offers a distributed system used to execute commands and
perform queries on remote nodes. Salt architecture can be associated with the hub-and-
spoke model. Usually, Salt architecture consists of a single master component and
several slave components organized hierarchically that communicate with each other.

When selecting the automation and configuration management solution for cyber
range implementation, the following trade-offs and choices need to be made in terms of
having: mutable or immutable infrastructure, agent or agentless, procedural or
declarative style of coding and the complexity of implementation. Table 1 provides a
comparison of the above tools.

Ansible, Puppet, Chef, and SaltStack usually provide mutable infrastructure. This
means that changes can be done directly to the existing infrastructure without
deploying new servers.
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Puppet, Chef, and SaltStack require installing agent software on managed servers.
They also have support for agentless implementation but this limits the feature set of
these tools. Ansible is agentless which makes it more suitable for the implementation of
the scenarios considering both the security and the complexity of the implementation.

By using a procedural style of coding, the user can specify in the code, step by step,
how to achieve the desired state. A declarative style means that the user writes code
that specifies the desired end state, and other tools are responsible to achieve that state.
Ansible and Chef use procedural style, while Puppet and SaltStack use declarative style
of coding.

For our solution, we decided to use Ansible, which is simple to install and use and
does not require any agents on the managed systems. It creates a mutable infrastructure
and uses a portable language with simple syntax. In addition, Ansible is integrated with
the virtualization platform used in our implementation, providing various modules to
manage VMware infrastructure, which includes datacenter, cluster, host system and
virtual machine.

3.4 Target Infrastructure

The target infrastructure represents the virtual environment used for training and
experimentation. It can vary from a simple lab exercise to entire domains, the limit
being the hardware resources and the imagination of the architect designing the
scenario.

Its purpose is to offer a realistic environment for the users. Moreover, by using a
variety of available tools and systems such as networking devices, firewalls, simulated
Internet, simulated attacks, etc., it can be an important asset in teaching how to interact
with common applications and systems, and also in helping to explain the principles of
the underlying protocols.

3.5 Orchestration System

The orchestration system controls the entire flow when the required components have
to be deployed to create the training or experimentation environment according to a
scenario. The most important role of this layer is to supervise the automation and the
configuration tools which manage the components used to implement the scenario.

Table 1. Comparison of automation and configuration management tools

Language Architecture Communication Easy of setup

Ansible YAML Client only SSH Easy
Puppet PuppetDSL Client/Server SSL Not very easy
Chef Ruby Client/Server SSL Not very easy
SaltStack YAML Client/Server SSH Easy
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To properly understand the role of this layer, we make a comparison between the
automation and configuration tools and the orchestration system: the automation tools
are designed to manage the deployment and the configuration process for the envi-
ronment components, while the orchestration layer leverages these tools in order to
create the environment’s layout and structure.

4 Architecture and Workflows

This section presents the architecture and implementation details of the proposed
solution. The solution is designed to easily enable the specification of different sce-
narios for training and experimentation and to rapidly deploy the associated virtual
machines and networks in a multithreaded way. It has a simple and modular design,
using dedicated hardware with VMware virtualization software on top of it. An Ansible
server is used for the automation process and a Python script for orchestrating the entire
workflow, as illustrated in Fig. 2.

First, the orchestration process starts by validating the scenario and configuring the
components, which are used to build the required infrastructure. Then, it uses an
Ansible playbook to start deploying virtual machines based on predefined templates.
An example of such a template is presented in see Fig. 3. The next step involves
reading and configuring the settings for each virtual machine, while at the same time
configuring the network devices, to obtain a routable environment. The entire
deployment and configuration process is being run by using multiple threads, which
increases the speed and makes it efficient when deploying large networks. Besides this,

Fig. 2. The orchestration process
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every step done by the orchestration script is being logged for debugging purposes and
multiple Ansible hosts files are generated, which can be used for additional configu-
rations in the deployed environment.

The entire virtual environment is implemented in a datacenter that uses the vSphere
virtualization platform with a pool of templates used to configure different services for
web servers, mail servers, DNS servers, Linux/Windows workstations, etc., for dif-
ferent types of scenarios. Ansible is installed on a virtual machine in the datacenter and
its role is to deploy all the components needed when a scenario is created.

Each scenario has associated a main.yml file that defines all of the assets that the
exercise contain, such as:

• Metadata - contains data about the exercise, including the name, description, and the
relative path to other .yml files.

• Groups - defines which entities (student, team, etc.) are in the exercise, including
the number of instances and an associated configuration file for each entity.

• Services - contains a list of virtual machines, with the associated template, and
Ansible configuration files to be run after deployment.

Fig. 3. Ansible playbook for deploying a virtual machine
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• Networks - the list of subnets and the name of virtual switches related to each
network which is used in the virtual environment.

For example, as described in Fig. 4, we define three instances of a group with the
associated configuration file (Fig. 5), where we list the required services for our

Fig. 4. Configuration file defining the scenario’s assets
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scenario: a Kali machine, a Domain Controller, a firewall and a router as the default
gateway. We also configured several networks, which are used to define the network
segments for these virtual machines.

Fig. 5. Configuration file defining group’s assets
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After creating the main file, the next step is to create a configuration file for each
group, which defines the assets related to it. These files contain additional information,
such as:

• Metadata - some additional data about each group, used to create the folder
structure.

• Services - these are virtual machines associated with the group, which are related
and linked to the services and networks from the main.yml file.

One can think of this file structure as a shop, where first all of the assets are listed
and then each client can select only the products they desire to add to the cart.

In Fig. 5 we provide a simple demo, where the group has been assigned a Domain
Controller and a Kali machine in a LAN network, separated by a firewall with two
network controllers. One is in the same network as the host machines and can be used
to filter the traffic for a more realistic approach, while the another one can be used for
communications with the default gateway, which provides access to the Internet. Each
service contains some additional information, like the gateway, type, or suffix for static
addressing. Based on the configuration examples, the virtual environment will look
similar to Fig. 6.

The Python script parses the defined configuration files and encapsulates all the
information in predefined classes used for process management, where each group has

Fig. 6. Example of deployed infrastructure
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the defined list of assets. Each virtual machine has been associated with an IP address
and other information required for deployment and integration. The orchestrator starts
by creating the folder structure and the network environment (virtual switches, port
groups, etc.), and then begins the deployment of the virtual machines, which are of two
types: network devices (have predefined dynamic playbooks to be able to create a
routable environment despite the configuration you had to implement) and host devices
(servers and client virtual machines). Finally, the script runs the defined playbooks that
are required for the configuration of the virtual machines based on their role in the
virtual environment. For multiple instances of the same group, it automatically cal-
culates the next valid subnets.

Moving forward, when a participant wants to attend the exercise, the scenario is
automatically deployed and he can access the related virtual machines in an isolated
environment, using a secure VPN connection (see Fig. 7).

At the end of the exercise, all resources are deallocated by deleting the virtual
machines and all of the associated network configurations.

5 Use Cases

This section presents the main use cases of cyber ranges and emphasizes the advantages
of our solution in implementing the associated infrastructures.

5.1 Education and Awareness

Taking into consideration the evolution of technology and the increasing number and
complexity of cyber attacks, there is a continuous need for regular courses to enhance
the education and awareness of employees and decision-makers. Our solution allows
organizations to combine traditional learning modules with hands-on training to

Fig. 7. Secure remote access using VPN
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improve the skills and competencies of personnel. It can be used to quickly create
different lab environments that emulate networks and resources needed for training
purposes, offering a significant instructional advantage in delivering a cost effective and
flexible hands on learning experience.

5.2 Cyber Exercises

Cyber exercises allow participants to apply theoretical knowledge and practical skill in
real life scenarios. Also, cyber exercises can help organizations to evaluate the capa-
bility to detect, investigate and respond to cyber attacks. Our solution can be used to
create a virtual environment in which attack scenarios, similar to those in a real
environment, can be implemented. The simulation of a cyber attack is performed in
three stages: the stage preceding the occurrence of the security incident, in which the
isolated environment is created and the scenario is implemented; the stage corre-
sponding to the actual attack when the groups with the role of attack or defense act
accordingly, being followed by the final stage. This last stage is designed for data
analysis, resource deallocation, and reports generation.

5.3 Experimentation and Research

To mitigate the evolving cyber threats, researchers are developing new cyber defense
technologies and products. Before these products can be deployed in organization
networks, they must be tested and validated. Cyber ranges allow creating the envi-
ronments needed to test the products in complex situations, to measure performance or
to check the interoperability with the existing applications and systems. By using our
solution, testbeds can be created to validate, evaluate, and compare the capabilities of
different cyber defense products. Also, the solution can be used by researchers to study
new attack techniques or malware in safe and isolated environments.

6 Conclusions

Cyber ranges are evolving as efficient platforms for training and experimentation. They
allow users to learn practical skills by simulating complex scenarios that address
emerging cyber threats. They also provide a realistic environment to test and validate
new cyber defense techniques and technologies.

Virtualization and automation tools help create and operate the cyber range. Vir-
tualization technologies can emulate computational nodes and enterprise networks.
Automation tools allow the rapid instantiation of the cyber range according to the
required scenario.

The main advantage of our approach is that it provides a rich automation platform
and a centralized environment, which are very useful for the organizers of cyber
competitions. Moreover, the solution offers flexibility because new templates can be
created and playbooks can be parametrized. This solution can be used for several use
cases, deployment of custom laboratories for learning, or specific cyber exercises for
training.
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The solution has been built with a modular approach, thus, an exercise can be
created by combining predefined templates and Ansible modules that can generate
different configurations. By using this approach, the solution provides flexibility; the
virtual environment can simply be reconfigured by using Ansible scripts, the resources
at the datacenter level being used efficiently, with no need to start the entire deployment
process from the beginning. Besides this, the Ansible playbooks and the templates used
to build the virtual environment can be reused between the organisations, which save
time and allow to create different scenarios in a straightforward and effortless way.

Our future work includes the following directions: improve the performance of the
current solution, add support for more complex scenarios and simulate users’ activity
and Internet services to create more realistic environments. Another objective is to
integrate the solution with an eLearning platform like Moodle, to control training,
monitor learning objectives and assess users’ performance.
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Abstract. In this paper we present a long-term secure deniable group
key establishment protocol. Long-term security provides resistance again-
st an adversary, even if some underlying hardness assumptions become
invalid later, after completion of the protocol. Deniability feature of a
group key establishment protocol allows each participant to join a pro-
tocol session and authenticate a message for the other group members,
but the receiver(s) cannot convince a third party that such involvement
of the group members in the process ever took place.

The protocol presented here is a long-term secure deniable group key
establishment protocol in the random oracle model which remains secure
if either a Computational Bilinear Diffie Hellman problem is hard or a
server, who shares a symmetric key with each user, is uncorrupted. The
technical tools used for the protocol are ring signature, multiparty key
encapsulation, and message authentication code.

Keywords: Long-term security · Group key establishment ·
Deniability

1 Introduction

The task of key establishment is one of the most important parts of a security
system. It is a common practice to construct key establishment protocols based
on asymmetric building blocks. These protocols are secure as long as the under-
lying hardness assumptions are valid. However the protocols collapse, whenever
the underlying hardness assumptions break. To address such security concerns,
Bohli et al. [BMQR07] formalized a new concept, long-term security of key estab-
lishment protocols. This approach integrates symmetric building block as a fall-
back technique and provides security of the protocols whenever the underlying
asymmetric building blocks fail to provide the security. Moreover, Müller-Quade
and Unruh [MQU07] suggested an extension of the notion of long-term secu-
rity in Universally Composable framework. Based on Bohli et al. [BMQR07],
Neupane and Steinwandt [NS10] presented a server-assisted long-term secure
three-party key establishment protocol based on real-or-random indistinguisha-
bility and Bilinear Decisional Diffie-Hellman (BDDH) assumption. Later, Unruh
[Unr13] proposed a variant of the Universal Composability framework, everlast-
ing quantum-UC, and demonstrated that the concept of long-term security can
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be implemented on secure communication and general multi-party computation
using signature cards as trusted setup. Neupane [Neu16] presented a long-term
secure protocol using multilinear mappings along with a trusted server.

Deniability is one of the important key features of group key establishment
protocols and is becoming increasingly relevant. In a deniable group key estab-
lishment protocol, the transcript of the protocol can not be used later to prove
the involvement of the participant in the protocol session. Mao and Paterson
[MP] offered definitions of deniability in various degrees, and also presented some
deniable key establishment protocols using identity-based techniques. Bohli and
Steinwandt [BS06] formalized the notion of deniability based on the security
model introduced by Bresson et al. [BCPQ01]. Moreover, they presented a four-
round group key exchange protocol achieving deniability in the random oracle
model with the use of computational Diffie- Hellman Assumption and Schnorr’s
Signature.

Furthermore, Zhang et al. [ZWL10] extended the definition of deniable group
key establishment suggested by Bohli and Steinwandt, and proposed a deniable
group key establishment protocol in the standard model with the use of a variant
of Schnorr’s zero-knowledge identification scheme. Later, Neupane et al. [NSC12]
presented a compiler which adds authentication and deniablitlity, still maintains
the round complexity of the original protocol. As an application of their compiler,
they suggested a construction of a three-round group key exchange protocol.
Chen et al. [CHZL16] presented a two-round group key exchange protocol with
the use of zero-knowledge identification scheme which achieves authenticity with
the use of forking lemma and deniability with the construction of a simulator.

In this research, we propose a two-round long-term secure deniable group key
establishment protocol in the random oracle model. To establish a key agree-
ment, we will use local embeddings of Joux’s 3-party key agreement protocol,
a technique proposed by Dmeemdt and Lange [DL08] and used by Neupane
and Steinwandt [NS11]. In order to make it long-term secure by integrating
symmetric cryptosystem with asymmetric cryptosystem, we use the techniques
introduced by Bohli et al. [BMQR07]. Deniability of the protocol is achieved by
applying the techniques suggested by Bohli and Steinwandt [BS06] and used by
Neupane et al. [NSC12] for a compiler . The other technical tools we will use
are ring signature, multiparty key encapsulation, and message authentication
code. Our main contribution compared with the existing protocols is that the
proposed protocol requires only two rounds with additional security features,
and is constructed with more widely acceptable cryptographic tools.

2 Preliminaries

In this section, we review mathematical and cryptographic tools which are
used in the protocol. Following the formalization of Boneh and Franklin
[BF03], we quickly review the concept of Bilinear Computational Diffie-Hellman
assumption.—for more details we refer to [BF03]. We also briefly review the
standard definitions of ring signature, multiparty key encapsulation, message
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authentication code, symmetric encryption, and then the main idea of real-or-
random indistinguishability as discussed by Bellare et al. [BDJR00].

2.1 Bilinear Maps and the Bilinear Diffie Hellman Assumption

Let (G1,+), (G2, ·) be two groups of prime order q, such that q > 2k with the
security parameter being k. We denote by ê : G1 −→ G2 an admissible bilinear
map, i. e., ê has all of the following properties:

Bilinear: For all P,Q ∈ G1 and all a, b ∈ Z we have ê(aP, bQ) = ê(P,Q)ab.
Non-degenerate: For a generator P of G1, we have ê(P, P ) is a generator of

G2.
Efficiently computable: There is a polynomial time algorithm which computes

ê(Q,R) for all Q,R ∈ G1.

We use a probabilistic polynomial time (ppt) algorithm G to specify the Bilinear
Computational Diffie-Hellman (BCDH) problem. This BCDH parameter gener-
ator G takes the security parameter as its input, and returns q and a description
of G1, G2, and ê. We denote this by 〈q,G1, G2, ê〉 ← G(1k).

Next, for a ppt algorithm A we consider the following experiment:

1. The BCDH parameter generator is run which yields BCDH parameters

〈q,G1, G2, ê〉.
2. A obtains the output of G with the input uniformly at random chosen values

a, b, c ← {0, . . . , q − 1}, and aP , bP and cP .
3. Now A outputs a value g ∈ G2, and is successful whenever g = ê(P, P )abc.

To measure the advantage of A in solving the BCDH problem we use the function
Advbcdh

A = Advbcdh
G,A (k) :=

Pr

⎡
⎣A(q,G1, G2, ê, P, aP, bP, cP ) = ê(P, P )abc

∣∣∣∣∣∣
〈q,G1, G2, ê〉 ← G(1k),
P ← G1

a, b, c ← {0, . . . , q − 1}

⎤
⎦

Definition 1 (BCDH Assumption). A BCDH instance generator G satisfies
the BCDH assumption if for all ppt algorithms A, the advantage Advbcdh

A is negli-
gible (in k). In this case, we say that BCDH is hard in groups generated by G.

2.2 Multi Key Encapsulation and Symmetric Encryption

The notion of key encapsulation mechanism (KEM) was introduced by Shoup
[Sho00] and formalized by Cramer and Shoup [CS03]. The KEM enables sender
and receiver to agree on a common random session key. Later, Smart [Sma05]
introduced multi key encapsulation mechanism (mKEM) generalizing the notion
of key encapsulation to a setting of multiple recipients. We quickly review the
notion following [GBNM10].
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Definition 2 (Multi Key Encapsulation Mechanism). A multi key
encapsulation mechanism (mKEM) is a triple of polynomial time algorithms
(mKeyGen, mEncaps, mDecaps) as follows:

– A probabilistic key generation algorithm mKeyGen which takes the parameters
D as its input, and generates a pair of public and secret keys (pk, dk).

– A probabilistic key encapsulation algorithm mEncaps which takes a (polyno-
mial size) set {pk1, . . . , pkn} of public keys, and generates a pair (K,C) where
K ∈ {0, 1}k is a session key and C is an encapsulation of this session key
under the public keys {pk1, . . . , pkn}.

– A deterministic key decapsulation algorithm mDecaps which takes a secret key
dk and an encapsulation C, and returns the session key K or a special error
symbol ⊥.

For all key pairs (pki, dki) generated by mKeyGen, we require the implication
(K,C) = mEncaps({pk1, . . . , pkn}) =⇒ mDecapsdki

(C) = K holds (i = 1, . . . , n).

The protocol we propose in the next section assumes that the mKEM we employ
is IND-CCA secure, i. e. no probabilistic polynomial time adversary with access
to a decapsulation oracle, can distinguish with more than negligible probability
which of two keys is encapsulated in the challenge for a set of public keys of his
choice.

2.3 Message Authentication Codes and Ring Signatures

We use a message authentication code as well as a suitable ring signature to
solve the problem of authentication without jeopardizing deniability.

Definition 3 (Message Authentication Code). A message authentication
code (MAC) is a tuple (MKeyGen, Tag, Verify) of polynomial time algorithms as
follows:

– A probabilistic key generation algorithm MKeyGen which takes the domain
parameters D as its input, and returns a secret key K.

– A probabilistic tag generation algorithm Tag which takes a message m ∈
{0, 1}∗ and a secret key K as its input, and returns a message tag θ :=
TagK(m) ∈ {0, 1}∗ on m.

– A deterministic verification algorithm Verify which takes a message m, a
secret key K and a candidate tag θ as its input, and returns 1 if θ is a valid
tag for the message m and 0 otherwise.

We consider a MAC as strongly unforgeable under adaptive chosen message
attacks (SUF-CMA) if no probabilistic polynomial time adversary with access
to tagging and verifying oracles for key K can produce a valid (message, tag)-
pair with more than negligible probability—we refer to [BN00] for the formal
definition.
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Definition 4 (Ring Signature Scheme). A ring signature scheme is a tuple
of polynomial time algorithms (RKeyGen, RSign, RVerify) as follows:

– A probabilistic key generation algorithm RKeyGen which takes the security
parameter k as its input, and returns a pair of keys (vk, sk), where vk is a
public verification key and sk is its corresponding secret signing key.

– A probabilistic ring signature algorithm RSign which takes a message m, a
polynomial size set (a ring) of public verification keys R = {vk1, . . . , vkn}
and a secret key sks such that vks ∈ R, and produces a signature σ.

– A deterministic ring signature verification algorithm RVerify which takes a
message m, a signature σ and a ring of public keys R, and returns 1 if σ is a
valid signature for the message m with respect to the ring R, and 0 otherwise.

We require that for any ring R comprised of public verification keys produced by
RKeyGen and for any message m, with the secret key sk and the corresponding
public key vk ∈ R the following relation holds:
RVerify(m, RSignsk(m,R),R) = 1.

We consider a signature scheme as strongly unforgeable under adaptive cho-
sen message attacks (SUF-CMA) if no probabilistic polynomial time adver-
sary with access to signing and verifying oracles can produce a valid (message,
signature)-pair with more than negligible probability. For a ring signature, it is
usually expected that the adversary cannot know which user in the ring was
the actual signer of a message. A strong form of this design goal is known
as anonymity against full key exposure—we refer to [BKM06] for the formal
definition.

2.4 Real-or-Random Indistinguishability

We recall the security notion of real-or-random indistinguishability, and refer
Bellare et al. [BDJR00] for a more detailed discussion. Real-or-random secu-
rity measures the indistinguishability of the encryption of a plaintext with the
encryption of a randomized plaintext with access to decryption oracle except
for the challenged ciphertext. Let EK(RR(·, b)) represents an oracle that takes
b ∈ {0, 1} and a plaintext M ∈ {0, 1}∗ as its input and returns an encryption
C ← EncK(M) of M , if b = 1, and an encryption C ← EncK(r) of a uniformly at
random chosen bitstring r ← {0, 1}|M | of length M if b = 0. We define advantage
of A against real-or-random indistinguishability under chosen ciphertext attack
(ROR-CCA) as

Advror−cca
A := Pr

[
1 ← AEK (RR(·, 1))

] − Pr
[
1 ← AEK (RR(·, 0))

]

Definition 5 (Real-or-Random Indistinguishability). A symmetric encry-
ption scheme is secure in the sense of real-or-random indistinguishability (ROR-
CCA), if for all ppt algorithms A, the advantage Advror−cca

A is negligible (in k).
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3 Security Model

The security model used for security analysis of our protocol is based on the
model used by Bohli et al. [BVS07,BS06], which in turn builds on work by
Katz and Yung [KY03] and Bresson et al. [BCP01,BCPQ01]. In this section, we
quickly revisit the relevant terminology and definitions from the literature.

Protocol Participants. The model assumes a polynomial size set of users U =
{U0, ....., Un−1} modeled as ppt algorithms. Each user Ui ∈ U is considered as a
probabilistic polynomial time turing machine, which can execute a polynomial
number of protocol instances Πsi

Ui
concurrently (si ∈ N). Each such instance is

associated with the following variables:

accsii indicates if a session key has been accepted.
pidsii stores the identities of all participants that this instance tries to establish

a session key with. This includes Ui itself.
sidsii stores the session identifier for this protocol execution. This value is not

considered secret and can be published.
sksii initially stores a special symbol null. Once a session key is accepted, it is

stored here.

Initialization. A trusted initialization phase without adversarial interference is
allowed before actual protocol executions take place. In this phase, each user Ui

generates a (public key, secret key)-pair (pkUi
, dkUi

) for a multi key encapsula-
tion scheme, a set of (verification key, signing key)-pair (vkUi

, skUi
) for a ring

signature scheme. The public keys and the verification keys are made available
to all users including the adversary. Furthermore, a secret key KUi

← Gen(1k)
for the underlying symmetric encryption scheme is generated for each user Ui

and is given to Ui and the server S. Thus, the server shares a symmetric key
KUi

with each user Ui after this initialization phase.

Adversarial Capabilities and Communication Network. We assume that the net-
work is fully asynchronous, non-private, and allows arbitrary point-to-point con-
nections among users. The adversary A is modeled as ppt algorithm with full
control over the communication network. More specifically, We provide the fol-
lowing oracles to A to formalize the described capabilities:

Send(Ui, si,M): Such a query sends a message M to instance Πsi
Ui

of user U and
returns the protocol transcript. This query also enables a user to initialize a
protocol run.

Reveal(Ui, si): Such a query reveals the session key sksii .
Corrupt(Ui): Such a query reveals either long-term secrets skUi

for ring signature
or dkUi

for key encapsulation of Ui or both.
Test(Ui, si): If the session key sksii exists, then A can make this one-time query

at any time. The Test oracle chooses a random bit b ∈ {0, 1} uniformly at
random, and returns a session key if b = 0 and returns a uniformly at random
chosen element from the session key space if b = 1.
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We define an instance as fresh if the adversary does not know the session
key.

Definition 6 (Freshness). An instance
∏si

Ui
is said to be fresh if the adversary

queried neither Corrupt(Uj) for some Uj ∈ pidsiUi
before a query of the form

Send(Uk, sk, ∗) with Uk ∈ pidsiUi
has taken place, norReveal(Uj , sj) for an instance∏sj

Uj
that is partnered with

∏si
Ui
.

We write SuccA for the event when A queries a fresh instance and guesses
correctly the bit output by the Test oracle. We define the advantage of A by

Advke
A = Advke

A(k) :=
∣∣∣∣Pr[Succ] − 1

2

∣∣∣∣ .

Definition 7 (Semantic Security). A key establishment protocol is said to be
(semantically) secure, if Advke

A = Advke
A(k) is negligible for all ppt algorithms A.

In addition to our major security goal, semantic security, the protocol also pro-
vides the other two security features which are integrity and strong entity authen-
tication:

Definition 8 (Integrity). A key establishment protocol fulfills integrity if with
overwhelming probability for all instances

∏si
Ui
,

∏sj
Uj

of uncorrupted users the
following holds: if accsiUi

= acc
sj
Uj

=true and sidsiUi
= sid

sj
Uj
, then sksiUi

= sk
sj
Uj

and
pidsiUi

= pid
sj
Uj
.

Definition 9 (Strong entity authentication). We say that strong entity
authentication for an instance Πsi

Ui
is provided if accsiUi

=true implies that for
all uncorrupted Uj ∈ pidsiUi

there exists with overwhelming probability an instance
Π

sj
Uj

with sid
sj
Uj

= sidsiUi
and Ui ∈ pid

sj
Uj
.

4 Deniability

Deniability is a privacy goal, the protocol achieves, in addition to semantic secu-
rity and authentication. We consider the notion of deniability used by Neupane
et al. [NSC12] which in turn builds on the work by Bohli and Steinwandt [BS06].
Now we quickly revisit the notion of deniability from [NSC12] and [BS06].

Let Ad denotes a probabilistic polynomial time algorithm which takes secu-
rity parameter 1k and public information p from the initialization phase as its
input. In the first phase Ad is allowed to access only the Corrupt-oracle. In this
phase, Ad (adaptively) corrupts an arbitrary subset of the users (including the
case of no user or all users being corrupted). In the second phase, Ad is allowed to
access the Reveal- and Send-oracle, but not Corrupt and Test. Once all the inter-
actions in the second phase are done, Ad outputs a bitstring TAd

= TAd
(k, p) as

an evidence of involvement of a particular user in the group key establishment.
Let TAd

= TAd
(k) be the random variable describing TAd

(k, p) with the ran-
domness for Ad, for all protocol instances, and in the initialization phase being
chosen uniformly at random.



Long-Term Secure Deniable Group Key Establishment 249

On the other hand, the probabilistic polynomial time simulator Sd obtains
the same input as Ad, but is allowed to access only the Corrupt oracle, but
not the Reveal, Send, or Test. The output of Sd is a bitstring TSd

(k, p), and
analogously as for Ad we define a random variable TSd

(k) based on uniformly
at random chosen randomness. Now, we consider the following experiment for a
probabilistic polynomial time distinguisher X outputting 0 or 1: the challenger
flips a random coin b ∈ {0, 1} uniformly at random. If b = 1, the transcript
TAd

(k) is handed to X , whereas for b = 0 the transcript TSd
(k) is handed to X .

The distinguisher X wins whenever the guess b′ it outputs for b is correct; the
advantage of X is denoted by Advden

X :=
∣∣Pr[b = b′] − 1

2

∣∣ .

Definition 10 (Deniability Neupane et al.). A group key establishment pro-
tocol is deniable if for every polynomial time adversary Ad as specified above
there exists a probabilistic polynomial time simulator Sd such that the following
holds:

– With overwhelming probability, the number of Corrupt-queries of Sd is less
than or equal to the number of Corrupt-queries of Ad.

– For each probabilistic polynomial time distinguisher X , the advantage Advden
X

in the above experiment is negligible.

5 The Proposed Group Key Establishment Protocol

The proposed protocol completes in two rounds with the help of a trusted server,
and makes use of a message authentication code, a ring signature, a multi key
encapsulation scheme, and a random oracle H : {0, 1}∗ → {0, 1}k. We use the
notation from Sect. 2.1 with P being a generator of the additive group G1 of
prime order q, as used in the BCDH assumption. We denote an unforgeable ring
signature scheme by σ and ROR-CCA secure symmetric encryption algorithm by
Enc . We denote protocol participants who want to establish a common session
key by U0, . . . , Un−1. We assume the number n of these participants to be even
and at least four—if not even, then Un−1 can simulate an additional (virtual) user
Un. We assume that the participants U0, . . . , Un−1 are arranged in a circle such
that the participant U(i+j) mod n is j position away from Ui in clockwise direction
while the participant U(i−j) mod n is j positions away from Ui in counter-clockwise
direction. The proposed protocol establishes a long-term secure deniable common
group session key among the participants, with the help of a trusted server.

Round 1
Computation: The initiator U0 creates a key K0 ← MKeyGen(D) for a message

authentication code, produces a ring signature σ := RSigsk0
(K0, pid0), and

computes (K,C) ← mEncaps(pid0). Then the initiator produces a ciphertext
E := EncK(K0||pid0||σ) and computes a tag tag0 = TagK0

(C,E). Addition-
ally, each Ui chooses ui ∈ {0, . . . , q − 1} uniformly at random and computes
uiP .

Broadcast: The initiator broadcasts u0P ||(C,E)||tag0 and the other users
broadcast uiP .
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Round 2
Computation: First, each user recovers K := mDecapsdki

(C) and decrypts the
ciphertext E. Second, each user verifies the ring signature for the ring pidi
and the tag tag0; if the verification fails or if pid0 
= pidi, the protocol is
aborted. Third, each Ui sets e(P, P ) = g and computes

⎧
⎨
⎩

tLi := H(gui−2ui−1ui) and
tRi := H(guiui+1ui+2) , if i is odd
tMi := H(gui−1uiui+1) , if i is even

.

Moreover, each user sets mi := (pidi‖u0P‖u1P‖ . . . ‖un−1P ). If i is odd
then the user Ui computes Ti := tLi ⊕ tRi , and then computes a tag
tagi = TagK0

(mi||Ti). If i is even then the user Ui computes a tag tagi =
TagK0

(mi). The server S selects ksrv ← {0, 1}k uniformly at random and for
i = 0, . . . , n − 1 computes ci := EnckUi

(pid0, ksrv).
Broadcast: A user Ui broadcasts mi||Ti||tagi if i is odd and mi||tagi if i is even

while the server broadcasts (pid0, c0, . . . , cn−1).
Check: Each Ui verifies the tags and pidi, and checks if T1⊕T3⊕T5⊕· · ·⊕Tn−1 =

0 holds. If any of these checks fails, Ui aborts.
Key Derivation: Each user decrypts ci and recovers ksrv. Also, each Ui recovers

the values tRj for j = 1, 3, . . . , n − 1 as follows:

– Ui with 2 � i finds tRj = tLi ⊕
(i−j−2) mod n⊕

s=2
2|s

T(j+s) mod n

– Ui with 2 | i finds tRj = tMi ⊕
(i−j−1) mod n⊕

s=2
2|s

T(j+s) mod n

Each Ui computes the master key K := (ksrv, tR1 , tR3 , . . . , tRn−1, pidi), sets ses-
sion key skUi

:= H(K‖0) and session id sidUi
:= H(K‖1).

5.1 Security Analysis

The security of the protocol can be ensured “long-term” provided that the under-
lying cryptographic tools are secure. More specifically, we have the following.

Proposition 1. Suppose the message authentication code and the signature
scheme used in the protocol are secure in the sense of SUF-CMA, the multi key
encapsulation scheme is secure in the sense of IND-CCA, and the symmetric
encryption scheme is secure in the sense of ROR-CCA. Then the protocol is
semantically secure, fulfills integrity, and strong entity authentication holds to
all involved instances provided that at least one of the following conditions holds:

– The BCDH assumption for the underlying BCDH instance generator holds.
– The server S is uncorrupted.

Proof. We prove the proposition in two steps. First, we discuss the case where
the BCDH assumption holds and thereafter we discuss the situation of having
an uncorrupted server.
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Security if BCDH Assumption for the Underlying BCDH Instance Generator
Holds. We prove the security of the protocol in this case by “game hopping”,
letting the adversary A interact with a simulator S. The advantage of A in
Game i will be denoted by AdvGame

A i.

Game 0: This game is identical to the original attack game for the adversary,
with all oracles of the adversary being simulated faithfully. Consequently,

AdvA = AdvGame 0
A .

Game 1: This game is identical to the Game 0 except that at the beginning the
adversary randomly guesses which instance Π

si0
i0

will be queried to the Test

oracle as well as two instances of Π
si0
i0

with which Π
si0
i0

will establish a 3-
party key tRi0 in Round 1. We abort the simulation and consider the adversary
to be at loss whenever at least one of these guesses turns out to be wrong.
Otherwise the game is identical with the previous game. Consequently,

1
q3send

· AdvGame 0
A ≤ AdvGame 1

A ,

and as qsend is polynomial in k it will suffice to recognize AdvGame 1
A as neg-

ligible.
Game 2: Let ForgeRS be the event that, A is successful in forging a new ring

signature for the initiator U0 in Round 1 before querying Corrupt(Ui) for
some Ui ∈ pid0. We abort the simulation and consider A as successful when-
ever the event ForgeRS occurs. Otherwise, Game 2 is identical to Game 1.
Consequently |AdvGame 2

A − AdvGame 1
A | ≤ Advrsig-uf

Arsig
.

Game 3: We modify the previous game in such a way that the simulator S
produces the ciphertext E under an encryption of a freshly generated key
K ′ ← KeyGen(1k) instead of using the real key K. We abort the protocol
and consider A as successful whenever the adversary notices the difference.
Consequently

∣∣AdvGame 3
A − AdvGame 2

A
∣∣ ≤ AdvIND-CCA

Amkem
.

Game 4: This game is identical to the previous game except in Round 1 of
the protocol the simulator replaces the ciphertext E with an encryption of
a uniformly chosen random bitstring of the appropriate length. To bound
|AdvGame 4

A − AdvGame 3
A | we can derive the challenger C to attack the ROR-

CCA security of the underlying symmetric encryption scheme: whenever the
protocol requires to encrypt or decrypt a message using the symmetric key K,
C queries its encryption or decryption oracle, respectively, simulating Corrupt,
Reveal, Send and Test in the obvious way. Consequently, we obtain

|AdvGame 4
A − AdvGame 3

A | ≤ ∣∣Advror−cca
C

∣∣ .

Game 5: We modify the game in simulator’s response in Round 2. The simulator
replaces tRi0 respectively tMi0 with a uniformly at random chosen element in G2

instead of computing tRi0 resp. tMi0 as specified in previous game. An adversary
notices the difference only if she can compute tRi0 or tMi0 . However, success on
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computing one of these yields immediately a successful adversary B against
BCDH assumption. Consequently,

∣∣∣Pr[AdvGame 5
A ] − Pr[AdvGame 4

A ]
∣∣∣ ≤ Advbcdh

B .

Game 6: Let ForgeMAC denotes the event that A succeeds in forging a new
valid (message, tag)-pair for a user Ui before querying Corrupt(Uj) for user
some Uj ∈ pidj . Whenever the event ForgeMAC occurs in either round 1
or round 2, we abort the simulation and consider A as successful . As an
occurrence of this event yields immediately an adversary Amac against the
message authentication code, |AdvGame 6

A − AdvGame 5
A | ≤ Advsuf-cma

Amac
.

Game 7: At this point we modify the previous game by replacing the session
key skUi

(as well as skUj
for all the instances Π

sj
Uj

which are partnered with
the instance Π

si0
i0

) with a uniformly at random chosen bitstring in {0, 1}k.
This game is identical to the previous game as long as the adversary cannot
query the random oracle H with a bitstring of the form ∗ ‖ tRi0 ‖ ∗. With
no information about tRi0 ∈ {0, 1}k other than H(K‖0) and H(K‖1) being
available to A, we obtain

∣∣∣AdvGame 7
A − AdvGame 6

A
∣∣∣ ≤ qro

2k
.

By construction AdvGame 7
A = 0, and we recognize the protocol as a secure

one, provided that the BCDH assumption holds

Security if the Server is Uncorrupted. As we assume the uncorrupted server, the
adversary A must not query Corrupt(S). To prove the security in this case, we
use sequence of games to as in the previous case.

Game 0: This game is identical to the original attack game for the adversary,
with all oracles being simulated faithfully:

AdvA = AdvGame 0
A

Game 1: In this game we modify the adversary in such a way that at the
beginning she guesses (randomly) which instance Π

si0
i0

will be queried to the
Test oracle as well as (n−1) instances of Π

si0
i0

with which Π
si0
i0

will in Round 2
establish a session key. Whenever at least one of these guesses turns out to
be wrong, we abort the simulation and consider the adversary to be at loss.
Otherwise the game is identical with Game 0. Consequently,

1
qnsend

· AdvGame 0
A ≤ AdvGame 1

A ,

and as qsend is polynomial in k it will suffice to recognize AdvGame 1
A as

negligible.
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Game 2: This game is identical to the previous game except the simulator
in Round 2 of the protocol replaces the server’s message ci directed to Π

si0
i0

with an encryption of a uniformly chosen random bitstring of the appropriate
length. To bound |AdvGame 2

A − AdvGame 1
A | we can derive the challenger C to

attack the ROR-CCA security of the underlying symmetric encryption scheme:
whenever the protocol requires to encrypt or decrypt a message using the
symmetric key K, C queries its encryption or decryption oracle, respectively,
simulating Corrupt, Reveal, Send and Test in the obvious way. Consequently,
we obtain

|AdvGame 2
A − AdvGame 1

A | ≤ ∣∣Advror−cca
C

∣∣ .

Game 3: Furthermore, the simulator replaces the server’s messages cj ’s directed
to all the instances Π

sj
Uj

which are partnered with the instance Π
si0
i0

with
encryption of uniformly chosen random bitstrings of the appropriate length.
With the same argument for each replacement at a time as above, we recognize∣∣∣AdvGame 3

A − AdvGame 2
A

∣∣∣ as negligible.
Game 4: Lastly, we modify the previous game by replacing the session key

skUi
(as well as skUj

for all the instances Π
sj
Uj

which are partnered with the
instance Π

si0
i0

) with a uniformly at random chosen bitstring in {0, 1}k. For
an adversary, Game 4 and Game 3 are identical unless the adversary queries
the random oracle H with a bitstring of the form ksrv ‖ ∗. However, with no
information about ksrv ∈ {0, 1}k other than H(K ‖ 0) and H(K ‖ 1) being
available to A, we obtain

∣∣∣AdvGame 3
A − AdvGame 4

A
∣∣∣ ≤ qro

2k
.

By construction AdvGame 4
A = 0, and we recognize the protocol is secure

provided that the server S is uncorrupted.

Integrity. At the end of a fresh session, all the honest users obtain the same
“master key” K along with the same partner identifier. Consequently, all the
instances of honest users agree on a common session identifier H(K ‖ 1) and
a common session key H(K ‖ 0) unless the event Collision occurs. We see that
equality of session identifiers with overwhelming probability ensures identical
session keys.

Entity authentication. Since each user verifies all the tags on the second round
messages, the protocol ensures the existence of a user instance for each intended
communication partner and identical mi-values for each partnered instance. The
latter implies equality of both the pidi- and the sidi-values. ��
Proposition 2. The proposed protocol is deniable in the sense of Definition 10.

Proof. We prove the deniability of the protocol by using sequence of games. We
assume the simulator Sd and the adversary Ad interact with the challenger C.
We denote the advantage of the distinguisher X in Game i by AdvGame

X i.
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Game 0: This game is identical to the original deniability game, with all oracles
of the adversary and simulator being simulated faithfully by C. Consequently,
Advden

X = AdvGame 0
X .

Game 1: This game is identical to Game 0 except the challenger C produces
the Round 1 ciphertext E in simulation for U0 by encrypting a randomly
chosen bitstring of the appropriate length if no participant Ui ∈ pid0 has been
corrupted. We can argue that the advantage of the distinguisher X in Game 0
and Game 1 differs only negligibly by considering an adversary D against the
real-or-random indistinguishability of the symmetric encryption scheme and
derive

∣∣AdvGame 0
X − AdvGame 1

X
∣∣ ≤ |Advror−cca(k)|, which is negligible.

Game 2: We modify the previous game that C changes the simulation of the
Send-oracle for Round 1 messages for the initiator U0 if some participant
Uj ∈ pid0 has been corrupted. In this case, the adversary has a secret key
pair (skj , dkj) (if he has more than one secret key pair, he selects one at
random). The challenger faithfully simulates all computations of U0 using
skj to compute the required ring signature. If the distinguisher X notices the
difference between this simulation and the one in Game 1, he could be used
as blackbox to attack the anonymity of the ring signature. i.e.∣∣AdvGame 1

X − AdvGame 2
X

∣∣ ≤ 2 · Advrsig−ano
F (k), which is negligible. Notice

that the simulation provided now to Ad by the challenger C is the same Sd

would provide, thus the distinguisher’s advantage in this case is 0.
Collecting all advantages,
we get: Advden

X ≤ |Advror-cca
D (k)| + 2 · Advrsig-ano

F (k), which is negligible. ��
The keys for symmetric encryption are generated by the server. Since each
user shares a key with the server, both the server and the users can generate
the same ciphertext. Consequently, any user cannot convince the third party
that the messages was created by the sender, not by the server. ��

6 Conclusion

Long-term secure deniable group key establishment protocol we presented can
be seen as an improvement of the previous protocols in terms of required num-
ber of rounds and additional security features. The fundamental building block
used in the protocol is Computational Bilinear Computational Diffie-Hellman
key exchange with the use of Joux’s 3-party protocol. The security features
established in the protocol along with the denibality property are strong. The
protocol uses widely acceptable cryptographic tools such as ring signature, mes-
sage authentication code, and multiparty key encapsulation.
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Abstract. Before starting to play a two-player board game such as
Chess and Shogi (namely, Japanese chess), we have to determine who
makes the first move. Players’ strategies of Chess and Shogi often rely
on whether they will move first or not, and most players have their own
preferences. Therefore, it would be nice if we can take their individual
requests into account when determining who goes first. To this end, if
the two players simply tell their preferable moves to each other, they
will notice the other’s strategy. Thus, we want the players to determine
the first move according to their requests while hiding any information
about them. Note that this problem cannot be solved by a typical way
done in Chess, namely, a coin-flipping. In this paper, we formalize this
problem in a cryptographic perspective and propose a secure protocol
that solves this problem using a deck of physical cards. Moreover, we
extend this problem to the multi-player setting: Assume that there is a
single prize in a lottery drawing among more than two players, each of
who has an individual secret feeling ‘Yes’ or ‘No’ that indicates whether
he/she really wants to get the prize or not. If one or more players have
‘Yes,’ we want to randomly and covertly choose a winner among those
having ‘Yes.’ If all of them have ‘No,’ we want to randomly pick a winner
among all the players. We solve this extended problem, which we call the
“covert lottery” problem, by proposing a simple card-based protocol.

Keywords: Secure multiparty computations · Physical cryptography ·
Card-based protocols · Real-life hands-on cryptography · Deck of cards

1 Introduction

Consider a situation where two players are about to play Chess or Shogi (namely,
Japanese chess); then, they have to determine who makes the first move. In this
case, one typical way is to flip a coin, i.e., to randomly choose a player who
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goes first. Another way is to use Rock paper scissors to choose a player who
has a right to determine whether he/she makes the first move or not as he/she
likes. On the other hand, in Chess or Shogi, there are many players’ strategies
depending on whether they make the first move or the second move. Therefore,
they want to take their favorite turn, which implies that coin flipping is not an
ideal method (because their preferable choices are not taken into account at all).
In addition, since individual players tend to have their own preferences about
such first-move-oriented or second-move-oriented strategies, they do not want
to give out the information of the move they want to take, which implies that
Rock paper scissors is not an ideal method as well (because the choice of the
winner of Rock paper scissors results in possibly giving out his/her strategy to
the opponent). Thus, we need a more intellectual way to determine who goes
first while keeping their preferences secret and taking them into account as much
as possible.

More specifically, we want to have a protocol to perform the following: If two
players’ preferences are different, i.e., one wants to make the first move while
the other wants to make the second move, then the protocol is supposed to tell
the players that the former should go first; if their preferences coincide, then the
protocol randomly chooses one of the two players and tells the result. In this
paper, we will construct such a protocol to solve the “Chess player’s dilemma”
mentioned thus far.

1.1 Defining the Functionality for Two Players

Now we formally define the functionality that we wish to achieve.
Suppose that two players P1 and P2 have secret input bits x1, x2 ∈ {0, 1}

that represent their preferences, respectively. That is, for each player Pi, xi = 1
means that he/she wants to play the first move and xi = 0 means that he/she
wants to play the second move. For an input (x1, x2), the functionality F outputs
a single bit y ∈ {0, 1}. The output bit y is determined as follows. If x1 �= x2, i.e.,
they have different preferences, then y is equal to x1 which means that P1 (and
also P2) gets his/her preferred move. On the other hand, if x1 = x2, i.e., they
have the same preference, then y is chosen uniformly randomly. Thus, F = 1
means that P1 is going to make the first move, and F = 0 means that P2 is
going to make the first move.

The functionality F is also expressed as follows:

F(x1, x2) :=
{

x1 if x1 �= x2,

i
$←− {0, 1} if x1 = x2.

(1)

Here, $←− represents that the left element is randomly chosen from the right set.
We note that a player who fails to take the desired move will know that it is

the case of x1 = x2. For example, when both players wish to take the first move
but P1 fails to take the first move (by the outcome of the random choice of F), P1



Card-Based Covert Lottery 259

will know that P2 also wishes to take the first move while P2 cannot distinguish
whether x1 = x2 or not. At a first glance, it seems unfair. However, we believe
that this is unavoidable since when both players have the same preference, the
best way is to play a coin tossing.

1.2 Defining the Functionality for Multiple Players

We moreover consider the case where the number of players is further extended
to a general number of n (≥ 2). Specifically, consider the case where only one
person is drawn from n players. For example, assume that there is a single prize
in a lottery drawing among n players, each of who has an individual secret feeling
‘Yes’ or ‘No’ that indicates whether he/she really wants to get the prize or not.
If one or more players have ‘Yes,’ we want to randomly and covertly choose a
winner among those having ‘Yes.’ If all of them have ‘No,’ we want to randomly
pick a winner among all the players. We call this extended problem the “covert
lottery” problem.

Considering n players, each player Pi, 1 ≤ i ≤ n, has a secret input bit
xi ∈ {0, 1} that represents a wish. That is, xi = 0 means that Pi does not want
to be the winner, and xi = 1 means that he/she wants to be the winner. First,
the function True : {0, 1}n → 2{1,2,...,n} is defined as:

True(x1, x2, . . . , xn) := {i | xi = 1, 1 ≤ i ≤ n}, (2)

where 2{1,2,...,n} is the power set of {1, 2, . . . , n}. The functionality Gn for the
covert lottery protocol is defined as follows:

Gn(x1, . . . , xn) :=
{

i
$←− True(x1, . . . , xn) if True(x1, . . . , xn) �= ∅,

i
$←− {1, 2, . . . , n} otherwise.

(3)

Recall that, basically, we want to draw a lottery among players Pi with xi = 1,
and if there is no such a player, a winner is randomly chosen from all players.

This functionality leaks to a player Pi who has xi = 1 and Gn �= i the fact
that xGn

= 1. Also, if xi = 0 and Gn = i, this problem will leak to Pi the
fact that all players Pj with j �= i also have xj = 0. However, this property is
inherently owned by Gn, as well.

Let us show that Gn is a natural extension of F defined in Eq. (1). Con-
sider the case where n = 2 for Gn. In this case, it is obvious that G2(0, 0) $←−
{1, 2}, G2(1, 1) $←− True(1, 1) = {1, 2}, G2(1, 0) = 1, and G2(0, 1) = 2. Thus, G2
and F are essentially the same, although the formats of output are different.
Therefore, Gn is a generalization of F .

1.3 Contribution

In this paper, we propose a card-based protocol for realizing the above-mentioned
functionality F . In particular, we construct a secure protocol for deciding the



260 Y. Shinoda et al.

first move using a deck of physical cards. Our protocol uses only four cards and
one shuffle, and its procedure is very simple.

We moreover construct a covert lottery protocol to realize the functionality
Gn by applying the six-card AND protocol [21]. As will be explained in more
details later, the proposed protocol makes use of the extra card sequence that is
not used as output in the six-card AND protocol [21].

1.4 Related Work

Card-based cryptography provides ways for secure multi-party computations
using a deck of physical cards, and various protocols and their computation mod-
els have been proposed (e.g., [10–12,19,20,27,28,35]) since the seminal work of
Den Boer [2] in 1989. Some specific applications are three-input majority voting
protocols [23,25,38,39], which output a majority vote for or against three par-
ticipants while keeping their input secret, millionaire protocols [14,24,26], which
secretly compare who has the largest amount of money, ranking protocols [33,34],
which output the rich list without revealing each amount of money, a secret
grouping protocol [8], which classifies players into groups, and zero-knowledge
proof protocols (e.g., [3,5,7,13,15,16,29–31]), which prove the existence of a
solution to a puzzle instance without revealing the solution itself.

In addition to using a deck of cards, cryptographic protocols based on various
kinds of physical tools have been proposed (e.g., [1,4,6,18,22]).

2 Preliminary

In this section, we introduce basic primitives used in our protocols. In Sect. 2.1,
we define a deck of cards. In Sects. 2.2 and 2.3, we present two shuffles, the
random bisection cut and the pile-scramble shuffle. In Sect. 2.4, we introduce
the existing six-card AND protocol.

2.1 Deck of Cards

We assume that the face of cards is either ♣ or ♥ and that their back sides are
the same ? . All cards having the same face are assumed to be indistinguishable.
We call those cards of two suits binary cards. A deck of binary cards is used in
our protocol presented in Sect. 3.

Using two cards ♣ and ♥ , a single bit of information is encoded as follows:

♣ ♥ = 0, ♥ ♣ = 1.

A pair of face-down cards ? ? is called a commitment to x ∈ {0, 1} if it encodes
the value x according to the above encoding rule. It is denoted by

? ?︸ ︷︷ ︸
x

.
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We also use another type of cards called number cards. The face of each
number card has a positive integer like 1 2 · · · m and their back sides are the
same ? as binary cards. A deck having both binary cards and number cards is
used in our protocol presented in Sect. 4.

2.2 Random Bisection Cut

A random bisection cut [21] is a shuffle operation, which is applicable to a
sequence having an even number of cards. A random bisection cut for 2m cards
proceeds as follows. First, it bisects the sequence into the left m cards and the
right m cards. Then, it randomly swaps the left and right piles. As a result, a
sequence of 2m cards (indistinguishable to the original sequence) is obtained.

The following is an example of applying a random bisection cut to two com-
mitments a, b ∈ {0, 1}. First, it bisects a sequence of cards into two piles of cards
having the same number of cards. In this example, a sequence of four cards is
divided into commitments to a and b:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

Next, the left and right piles are swapped randomly. This results in two com-
mitments to (a, b) or (b, a) with a probability of 1/2. Hereinafter, we denote a
random bisection cut by [ · | · ] as follows:[

? ?
∣∣∣ ? ?

]
→ ? ? ? ? .

Ueda et al. [36,37] showed how to securely implement a random bisection cut.
According to their experiments, a random bisection cut can be implemented so
that nobody knows whether two piles are swapped or not.

2.3 Pile-Scramble Shuffle

A pile-scramble shuffle [9] is a shuffle operation, which is applicable to a sequence
of mk cards for some positive integers m and k. A pile-scramble shuffle for m
piles proceeds as follows. First, it splits a sequence of mk cards into m piles
(pile1, pile2, . . . , pilem) each having k cards. Then it randomly permutes the m
piles. As a result, a sequence of m piles (pileπ−1(1), pileπ−1(2), . . . , pileπ−1(m))
is obtained where π is a random permutation. A pile-scramble shuffle can be
securely implemented by the use of everyday objects such as envelopes.

2.4 Six-Card AND Protocol

Mizuki and Sone [21] designed a six-card AND protocol. It takes two commit-
ments to a, b ∈ {0, 1} along with two additional helping cards ♣ ♥ and outputs
a commitment to a ∧ b as follows:
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? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ → ? ?︸ ︷︷ ︸
a∧b

.

The protocol proceeds as follows.

1. Place two commitments to a, b ∈ {0, 1} and two binary cards ♣ ♥ as:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
b

.

2. Rearrange the sequence as:
? ? ? ? ? ?

������� ���
? ? ? ? ? ? .

3. Apply a random bisection cut to the sequence as:[
? ? ?

∣∣∣ ? ? ?
]

→ ? ? ? ? ? ? .

4. Rearrange the sequence as:
? ? ? ? ? ?

������
���	

? ? ? ? ? ? .

5. Turn over the leftmost two cards. If they are ♣ ♥ , the middle pair is a
commitment to a ∧ b. Otherwise, the right pair is a commitment to a ∧ b. The
other pair is a commitment to a ∧ b in both cases.

(i) ♣ ♥ ? ?︸ ︷︷ ︸
a∧b

? ?︸ ︷︷ ︸
a∧b

(ii) ♥ ♣ ? ?︸ ︷︷ ︸
a∧b

? ?︸ ︷︷ ︸
a∧b

.

3 A Secure Protocol for Deciding the First Turn

In this section, we design a secure protocol for deciding the first turn. That is,
our protocol should realize the functionality F defined in Eq. (1) in Sect. 1.1. The
protocol takes input commitments to x1, x2 ∈ {0, 1}, and outputs a commitment
to F(x1, x2) which designates whether the first player P1 takes the first move or
not, as follows:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

→ ? ?︸ ︷︷ ︸
F(x1,x2)

.

In Sect. 3.1, we explain the idea behind constructing our protocol. In Sect. 3.2,
we give the protocol construction.
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3.1 Idea

First, note that when x1 �= x2, we have x1 = x2; when x1 = x2, we have
{x1, x2} = {0, 1}. Then, using x2, Eq. (1) is rewritten as

F(x1, x2) =
{

x1 = x2 if x1 �= x2,

i
$←− {x1, x2} if x1 = x2.

(4)

If x1 = x2, r
$←− {x1, x2} always satisfies r = x1 = x2. Therefore, instead of

Eq. (4), we can simply write

F(x1, x2) = r
$←− {x1, x2}. (5)

Therefore, if we have the following two commitments, it suffices to randomly
choose one of them without knowing which is which:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

.

This can be done with a random bisection cut, as seen in the next subsection.

3.2 Description

Our protocol for performing the functionality F proceeds as follows.

1. Place two commitments to x1, x2 ∈ {0, 1} where xi is Pi’s preference:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

.

2. Apply the NOT computation to the commitment to x2 by swapping the two
cards:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

→ ? ?
�

? ? → ? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

.

3. Apply a random bisection cut:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

→
[

? ?
∣∣∣ ? ?

]
→ ? ?︸ ︷︷ ︸

x1

? ?︸ ︷︷ ︸
x2

or ? ?︸ ︷︷ ︸
x2

? ?︸ ︷︷ ︸
x1

.

4. The left commitment is a commitment to F :

? ?︸ ︷︷ ︸
F

? ? .

Thus, our protocol surely follows Eq. (5), implying that it realizes F . Our
protocol uses only four cards and one random bisection cut, and is very simple.

Instead of applying a random bisection cut to the four cards in Step 3, we
may apply it to the first and third cards; in this case, the result will be obtained
based on the encoding ♣ = 0 and ♥ = 1.
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4 Covert Lottery Protocol

In this section, we extend our protocol shown in the previous section: We propose
a card-based covert lottery protocol that realizes Gn. We first present the idea
behind this protocol and then show its description. Our proposed protocol takes
as input n commitments to x1, x2, . . . , xn (each of which represents player’s
preference) along with four binary cards and n number cards, and outputs a
single number card that represents a winner w = Gn(x1, x2, . . . , xn):

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

. . . ? ?︸ ︷︷ ︸
xn

♣ ♣ ♥ ♥ 1 2 . . . n → w .

In Sect. 4.1, we explain the idea behind this protocol. In Sect. 4.2, we show
the protocol construction completely.

4.1 Idea

Let us look back at Eq. (3). To realize Gn, it suffices to randomly choose a single
player from the set True(x1, x2, . . . , xn) if there are players who are positive to
get the prize; otherwise, it suffices to randomly choose a single player from the
set of all players {1, 2, . . . , n}. To accomplish this, we first apply a pile-scramble
shuffle to the n input commitments x1, x2, . . . , xn to make the order of the inputs
random. To keep track of correspondence between inputs and players, a number
card i is attached to each commitment xi, 1 ≤ i ≤ n, before applying a pile-
scramble shuffle:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

. . . ? ?︸ ︷︷ ︸
xn

→
1

? ?︸ ︷︷ ︸
x1

2
? ?︸ ︷︷ ︸

x2

. . .

n

? ?︸ ︷︷ ︸
xn

.

That is, the resulting sequence of cards after a pile-scramble shuffle is as follows:

1

1
? ?︸ ︷︷ ︸

x1

2

2
? ?︸ ︷︷ ︸

x2

. . .

n

n

? ?︸ ︷︷ ︸
xn

→

π−1(1)

?
? ?︸ ︷︷ ︸
X1

π−1(2)

?
? ?︸ ︷︷ ︸
X2

. . .

π−1(n)

?
? ?︸ ︷︷ ︸
Xn

,

where (X1, X2, . . . , Xn) is generated by permuting (x1, x2, . . . , xn) with a ran-
dom permutation π.

If we turn over the commitments to X1, X2, . . . , Xn one by one from left
to right, the first revealed commitment to 1 deserves a randomly chosen com-
mitment from the set True(x1, x2, . . . , xn) due to the pile-scramble shuffle.
Thus, it suffices to output the number card attached to it as the winner. If
X1 = · · · = Xn = 0, then it suffices to output the rightmost number card as
a randomly chosen winner from all players. We construct the protocol based
on this principle. However, of course, if we simply reveal the commitments to
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Table 1. The resulting yi and token t where (X1, X2, . . . , X5) = (0, 1, 0, 1, 1).

i Xi t yi = Xi ∧ t t := Xi ∧ t

1 ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣
2 ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥
3 ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥
4 ♥ ♣ ♣ ♥ ♣ ♥ ♣ ♥
5 ♥ ♣ ♣ ♥ ♣ ♥ (= t) -

X1, X2, . . . , Xn one by one, information about the input value of the winner and
the number of 0s among (a part of) the inputs would be leaked. For example,
let n = 5 and (X1, X2, X3, X4, X5) = (0, 0, 1, 0, 1). In this case, X1, X2, and X3
are revealed, and hence, all players learn that at least two players’ inputs are 0s
and the winner’s input is 1. Let the inputs be (0, 0, 0, 0, 0) for another example.
In this case, all players learn that all the inputs are 0s. To avoid this leakage,
we shall perform the above computation while keeping the input values secret.

For this, we introduce a “token” commitment. A token is used to rewrite
each input commitment. That is, the winner is determined by making all of the
commitments correspond to 0s except for the first revealed commitment to 1.
Specifically, we repeatedly perform an AND computation of an input commit-
ment (from left to right) and the token whose initial value is 1, and replace the
input commitment with the output of the AND computation (namely, it outputs
1 if and only if both the input and token are 1s). The token should remain 1
until the AND computation first outputs 1, and be 0 after it outputs 1. This
computation is accomplished by performing the AND computation of the token
and the negation of each input. To summarize, given an i-th input commitment
to Xi and the token commitment to t, we perform the following computation
and replace the i-th input commitment with a commitment to yi = Xi ∧ t and
the token commitment is updated by t := Xi ∧ t (1 ≤ i ≤ n − 1):

? ?︸ ︷︷ ︸
Xi

? ?︸ ︷︷ ︸
t

→ ? ?︸ ︷︷ ︸
Xi∧t

? ?︸ ︷︷ ︸
Xi∧t

, (6)

where the initial value of the token is t = 1. The n-th commitment is replaced
with the final token.

Let us take an example. Consider the case where (X1, X2, . . . , X5) =
(0, 1, 0, 1, 1). In this case, yi and t change depending on Xi and t, as shown
in Table 1. First, since X1 = 0, we have y1 = 0 ∧ 1 = 0 and t := 0 ∧ 1 = 1.
Since X2 = 1, y2 = 1 ∧ 1 = 1, we have t := 1 ∧ 1 = 0. Since yi = Xi ∧ t and
t := Xi ∧ t, once the token t becomes 0, all of the remaining AND computations
shall output 0s as shown in Table 1.
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To perform (6), it suffices to use the six-card AND protocol [21]; thus, we
can implement a card-based covert lottery protocol by using the six-card AND
protocol n−1 times. As mentioned above, we set the final commitment to yn = t.
If X1, . . . , Xn−1 are all 0s, we have t = 1, and hence, yn = 1. If there is at least
1 among X1, . . . , Xn−1, we have t = 0, and hence, yn = 0. Note that, aside from
n input commitments, we use four binary cards for the token and the helping
cards in the six-card AND protocol.

4.2 Description

The description of our proposed protocol is as follows.

1. Each player secretly creates an input commitment; we now have n input
commitments as follows:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

. . . ? ?︸ ︷︷ ︸
xn

.

2. Place a number card i above each commitment to xi and make n piles of
cards consisting of three cards:

1
? ?︸ ︷︷ ︸

x1

2
? ?︸ ︷︷ ︸

x2

. . .

n

? ?︸ ︷︷ ︸
xn

.

3. Turn over every number card and apply a pile-scramble shuffle to the sequence
of piles:

1
? ?︸ ︷︷ ︸

x1

2
? ?︸ ︷︷ ︸

x2

. . .

n

? ?︸ ︷︷ ︸
xn

→
?

? ?︸ ︷︷ ︸
X1

?
? ?︸ ︷︷ ︸
X2

. . .

?
? ?︸ ︷︷ ︸
Xn

.

Let X1, X2, . . . , Xn ∈ {0, 1} be the values of the resulting commitments after
the shuffle.

4. Using a pair of free binary cards, make a commitment to t = 1 by placing
♥ ♣ and turning them over.

5. Let j = 1. Perform the following computation n − 1 times.
(a) Taking as input the commitment to Xj and the token commitment to t,

perform the six-card AND protocol [21] along with the remaining pair of
free cards ♣ ♥ to obtain the following two commitments:

? ?︸ ︷︷ ︸
Xj

? ?︸ ︷︷ ︸
t

♣ ♥ → ? ?︸ ︷︷ ︸
Xj∧t

? ?︸ ︷︷ ︸
Xj∧t

♣ ♥ .

Place the former commitment to yi = Xj ∧ t below the number card
as the commitment to Xj was there. Let the latter commitment be the
next token t. Note that the two face-up cards ♣ ♥ that were revealed to
determine the output can be reused in the next AND computation.
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6. Let the commitment to t be a commitment to yn.
7. Apply a pile-scramble shuffle again to the sequence of n piles, each of which

consists of the commitment to yi and a number card:

?
? ?︸ ︷︷ ︸

y1

?
? ?︸ ︷︷ ︸

y2

. . .

?
? ?︸ ︷︷ ︸

yn

→
?

? ?︸ ︷︷ ︸
Y1

?
? ?︸ ︷︷ ︸

Y2

. . .

?
? ?︸ ︷︷ ︸

Yn

.

Let Y1, Y2, . . . , Yn ∈ {0, 1} be the values of the resulting commitments after
the shuffle.

8. Turn over the commitments to Y1, Y2, . . . , Yn; there should be exactly one
commitment to 1. Then, turn over the number card above it. We have the
winner represented by the revealed number card.

4.3 Security

We claim that all face-up symbols opened in an execution of the protocol are
uniformly randomly and independently distributed from the inputs and output.
Face-down cards are opened in Steps 5(a) and 8 only. In Step 5(a), two cards
are opened by the six-card AND protocol. From the security of the six-card
AND protocol, these symbols are distributed uniformly randomly and indepen-
dently from any other values. In Step 8, the commitments to Y1, Y2, . . . , Yn are
opened. We note that only a single Yi is a commitment to 1 and the others are
commitments to 0. From the property of the pile-scramble shuffle, the number i
is distributed uniformly randomly among {1, 2, . . . , n} and independently from
any other values. Therefore, all face-up symbols are uniformly randomly and
independently distributed from the inputs and output.

5 Conclusion

In this paper, we formalized a novel problem that determines who makes the
first move in a two-player board game such as Chess and Shogi, and designed
a card-based protocol to solve this problem. Instead of randomly deciding the
first move by a coin tossing, our protocol takes into account players’ preferences.
Moreover, we generalized the problem into a multi-player case, and designed a
“covert lottery protocol” to solve the problem.

We left to reduce the number of cards and the number of shuffles as an
open problem. In card-based cryptography, they are considered to be the most
important complexity measures. Our two-player protocol requires four cards and
one shuffle. Our multi-player protocol requires 3n+4 cards and n+1 shuffles1. We
note that it is possible to reduce the number of shuffles by applying the technique
1 If we make Xn be two free cards by a random bisection cut before Step 4, the number

of cards can be reduced to 3n + 2 while the number of shuffles becomes n + 2. If we
apply the AND protocol based on the encode ♣ = 0 and ♥ = 1 [17], we can have
a (3n + 1)-card n-shuffle protocol or a 3n-card (n + 1)-shuffle protocol.
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of the card-based garbled circuits [32]. However, in general, it is difficult to reduce
both the number of cards and the number of shuffles at the same time.

Another interesting problem is to consider a different problem similar to the
covert lottery protocol. For example, it is possible to generalize the covert lottery
protocol into a protocol with multiple winners although our protocol has a single
winner. As another example, since the covert lottery protocol can be viewed as
an election with candidacies, it would be worthwhile to consider a protocol for
an election that allows for nominations.
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Abstract. The paper presents a hardware-accelerated cryptographic
solution for Field Programmable Gate Array (FPGA) based network
cards that provide throughput up to 200 Gpbs. Our solution employs a
Software-Defined Network (SDN) concept based on the high-level Pro-
gramming Protocol-independent Packet Processors (P4) language that
offers flexibility for network-oriented data processing. In order to accel-
erate cryptographic operations, we implement main cryptographic func-
tions by VHSIC Hardware Description Language (VHDL) directly in
FPGA, i.e., a symmetric cipher (AES-GCM-256), a digital signature
scheme (EdDSA) and a hash function (SHA-3). Our solution then uses
these widely-used cryptographic primitives as basic external P4 functions
which can be applied in various customized security use cases. Thus, our
solution allows engineers to avoid hardware development (VHDL) and
offers rapid prototyping by using the high-level language (P4). Moreover,
we test these cryptographic components on the UltraScale+ FPGA card
and we present their hardware consumption and performance results.

Keywords: Cryptography · FPGA · Hardware acceleration · Digital
signing · High-speed encryption · P4 · Software defined networks

1 Introduction

Nowadays, many Information Communications Technology (ICT) solutions are
based on many-to-one communication or centralized architecture where cen-
tral servers receive the messages from many end-nodes. These servers manage
with simultaneous message processing and maintain parallel sessions that usually
require mutual authentication (a server and an end-node), key establishment and
data confidentiality and integrity. These security requirements can be managed
by various security protocols, such as IP Security (IPSec), Transport Layer Secu-
rity (TLS), Datagram Transport Layer Security (DTLS), Secure Shell (SSH), etc.
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On one hand, these security protocols are mostly realized as software libraries
such as OpenSSL, OpenSSH, Strongswan etc. that implement underlying secu-
rity primitives, and run on most server OS platforms. On the other hand, man-
aging numerous security sessions in parallel and computing heavy cryptographic
operations (for digital signing, key exchange) can burden servers’ Central Pro-
cessing Units (CPUs) and slow down services. In order to speed up the services,
security functions are more and more offloaded to cryptographic co-processors or
other entities such as FPGA network cards. Those dedicated accelerators with
the hardware implementation of algorithms could help servers with heavy oper-
ations and would allow better managing the queues of end node transactions.
Nevertheless, designing, creating and modifying cryptographic hardware imple-
mentations in Application-Specific Integrated Circuit (ASIC) or on FPGA cards
can be an obstacle, and skilled development exertion are usually required. Cur-
rent SDN methods can allow engineers to avoid hardware development and offer
rapid prototyping or modifications by using higher-level languages in order to
speed up creating and testing. For instance, the Netcope P4 framework provides
the high-level synthesis of a P4 description into an FPGA firmware bitstream
or an IP core1. P42 as the domain-specific high-level language can be used for
a simple definition of a hardware IP core functionality. Thus, there is no need
to develop in VHDL, and a firmware or IP core is automatically generated on-
demand from functions that are pre-implemented as VHDL templates.

In this paper, we introduce our hardware-accelerated cryptographic solution
that leverages the P4 language as an input interface for the flexible setting of
FPGA cryptographic external functions (externs) written in VHDL. This work
enhances a P4 workflow by adding a cryptographic support into P4-based packet
processing and SDN services. Our solution consists of the hardware implementa-
tion of widely used cryptographic schemes used for the acceleration of symmetric
encryption, hash function computing and digital signature creation and verifica-
tion. Further, our HW-based cryptographic accelerator is open to be extended by
more schemes that can be set into NIC firmware and customized for specific secu-
rity functions. The paper organization is as follows: In Sect. 2, the state of the
art is explored. Section 3 presents preliminaries with underlying cryptographic
schemes used as basic initial components in our solution. Section 4 introduces the
design of our FPGA-based cryptographic accelerator and describes P4 workload
with main benefits. Section 5 then describes our implementation details, mea-
sured hardware resources and possible extensions of our solution. The last section
concludes this work.

1.1 Contribution

The contribution of the paper is twofold:

– We present our solution that enhances the P4 workflow in order to provide a
secure, simple and reconfigurable interface for users who have no experience

1 https://www.xilinx.com/products/intellectual-property/1-pcz517.html.
2 https://p4.org.

https://www.xilinx.com/products/intellectual-property/1-pcz517.html
https://p4.org
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and skills with the VHDL language (Sect. 4). The users of the proposed
cryptographic accelerator can easily customize the setting of secure message
processing, and add or remove security functions (provided by cryptographic
blocks) by using the P4 language and without direct setting the hardware
implementation for the FPFA platform. These benefits are mainly discussed
in Subsect. 4.3.

– We implement cryptographic primitives such as AES-GCM-256, SHA-3,
EdDSA in VHDL and integrate them as hardware-accelerated blocks into
our solution as basic initial blocks. The details are presented in Sect. 5.
These primitives can be then called as externs in the P4 language, and users
or services can simply and fast reconfigure packet processing by calling these
functions. Moreover, our solution can be expanded by more VHDL implemen-
tations of various cryptographic primitives that are then used for creating the
firmware for the FPGA platform, more details in Subsect. 5.4.

2 Related Work

The related work dealing with hardware-accelerated cryptography has focused
mainly on particular cryptography schemes, e.g., AES, SHA-3, ECC schemes,
and their security and optimization on various FPGA platforms. Recently, Par-
rilla et al. [17] introduce a hardware-implemented co-processor for elliptic curve
cryptography (ECC) over a Zynq device. The co-processor enables the acceler-
ation of secure services using ECC. The solution can be implemented in various
FPGA platforms and enables users to create a secure web/database server. Their
design requires 9852 LUTs and provides 8930 scalar-point operations per second
when operating at 50 MHz. Turan and Verbauwhede [23] consider the Ed25519
algorithm, which is EdDSA using Edwards curve Ed25519, and X25519 schemes
implementation on 7-Series Xilinx FPGAs. Moreover, they combine the Ed25519
curve and the X25519 algorithm in a single module, and its implementation
requires around 11.1K LUTs, 2.6K registers, and 16 DSP slices. Islam et al. [13]
present a FPGA implementation of a high-speed, low-area, side-channel attacks
resistant ECC processor over a prime field. They consider the Ed25519 algo-
rithm and propose a novel hardware architectures for point addition and point
doubling operations on Ed25519. For a 256-bit key, a single point multiplication
runs at a maximum clock frequency of 177.7 MHz and uses only 8873 slices on
the Xilinx Virtex-7 FPGA platform. Moreover, several articles, e.g., [14,16,19],
focus on speeding up basic elliptic curve operations on Ed25519 and Curve25519
needed for the implementation of ECC. These works provide remarkable results
but focus only on the optimization of ECC operations.

Salman et al. [20] present a hardware accelerator for IPSec on Virtex-4
FPGA. Their solution employs hardware-software co-design and partial recon-
figuration techniques. The primitives Advanced Encryption Standard (AES),
Secure Hash Algorithm (SHA) and modular exponentiation are accelerated on
FPGA, and Hashed Message Authentication Code (HMAC) and ciphers modes
are calculated in a software part (C libraries). The Encapsulating Security Pay-
load (ESP) and Authentication Header (AH) protocols accelerate secure traffic
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flow up to 600 Mb/s. Martinasek et al. [15] introduce the architecture and imple-
mentation of the encryption system utilizing the IPsec protocol on FPGA net-
work cards. Their implementation is based on the AES encryption algorithm and
the Galois Counter Mode (GCM) mode of operation to provide both encryption
and authentication of transferred data. Their IPSec flow reaches up to 200 Gbps
on the NFB-200G2QL network cards based on the Xilinx Virtex UltraScale+.
Furthermore, there are only few works dealing with P4 adopting in FPGA that
allow designers to not be familiarised with HDL details and only focus on new
ideas in the area of network data processing, e.g., [1,24]. For example, Shen
et al. [22] introduce a programmable and FPGA-accelerated packet processing
engine that performs the encapsulation and decapsulation of GPRS Tunnel-
ing Protocol (GTP) packets. Recently, Cao et al. [9] present a complex frame-
work for converting P4 programs to VHDL and its implementation on FPGA
platforms. Yazdinejad et al. [25] also present the architecture for a network pro-
grammable packet processor using P4 and FPGA that operates at 320 MHz clock
speed. Some works already consider P4 and FPGA for security implementation
such as [12,21,26]. For example, Scholz et al. [21] propose an extension of the
P4 Portable Switch Architecture for hash functions and discuss the prototype
implementations for 3 different P4 target platforms: CPU, Network Process-
ing Unit (NPU), and FPGA. Further, Hauser et al. [12] propose P4-MACsec,
a concept to automatically protect links between switches with MACsec in P4-
based secure data network. Nevertheless, authors report on unsuccessful efforts
to implement P4-MACsec on the NetFPGA SUME platform. Yazdinejad et al.
[26] introduce a secure blockchain-enabled packet parser for software defined
networking. Their blockchain-enabled Packet Parser (BPP) is implemented and
tested on ZedBoard Zynq Evaluation and Development Kit (xc7z020clg484-1)
Xilinx in FPGA. Nonetheless, these solutions do not provide complex cryptog-
raphy accelerators based on FPGA and P4.

3 Preliminaries

This section discusses chosen cryptographic primitives that are implemented in
VHDL as initial cryptographic components.

– Symmetric Cipher AES-GCM-256 - the system uses the AES cipher in
Galois/Counter Mode (GCM) with 256 bit secret key for high-speed authenti-
cated encryption. Chosen symmetric cipher, keylength and cipher mode are in
line with current NIST recommendation. In August 2018, TLS 1.3 (RFC 8446)
pruned of all legacy symmetric algorithms. The remaining algorithms use
Authenticated Encryption with Associated Data (AEAD) algorithms, such
as AEAD AES 256 GCM. The AES-GCM-256 encryption is also suitable for
high-speed implementations in hardware and is recommended in IPsec Encap-
sulating Security Payload (ESP), see RFC 4106.

– Hash Function SHA-3 - the system employs the Secure Hash Algorithm
3 (SHA-3) as a hash function. SHA-3 is based on the Keccak algorithm [5,6]
that uses a sponge construction [4] and produces 224, 256, 384 and 512-bit
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outputs. SHA-3 can be used for computing HMAC authentication tags or as
part of authentication protocols. Moreover, SHA-3 is very widespread and
many security libraries support it, e.g., OpenSSH, OpenSSL, Botan, etc.

– Digital Signature EdDSA - for digital signing in the system, we implement
EdDSA (Edwards-curve Digital Signature Algorithm) [3], that is a version
of ECDSA employing a twisted Edwards curve bi-rationally equivalent to
the Montgomery curve, Curve25519 [2]. In fact, ECDSA involves curves in
classical Weierstrass form, while newer ECDSA versions consider curves in
twisted Edwards form, namely EdDSA. The main reason of this change is
the high performance, smaller keys requirements, and the better resiliency
to side-channel attacks of EdDSA with respect to ECDSA. Accordingly, we
decide to employ the Ed25519 version of EdDSA that uses SHA-512 (SHA-
2) and Curve25519. The nonce is chosen deterministically as the hash of a
part of the private key and the message. Thus, the private key is generated
only during the setup phase, and then the Ed25519 scheme does not need a
random number generator in order to create signatures. Ed25519 is supported
by OpenSSH, OpenSSL, wolfSSL or Botan.

Chosen AES-GCM-256, SHA-3 and EdDSA, as initial cryptographic blocks
in our accelerator (see Sect. 4), are often compliant with many current security
protocols.

4 Design of FPGA-Based Crypto Accelerator

In this section, we present the design of our FPGA-based cryptographic acceler-
ator system. Firstly, we introduce a top-level architecture of the system. Further,
we describe the P4 workflow and its main advantages.

4.1 System Architecture

The architecture of the FPGA-based cryptographic accelerator system is
depicted in Fig. 1. The system consists of these main blocks:

– NP4 Cloud - represents a Firmware as a Service (FaaS) solution which
first converts a user-defined P4 source code into VHDL code and after that
produces the firmware for FPGA accelerators. This block contains the library
of VHDL components, i.e., cryptographic functions described in Sect. 3 and
their VHDL codes in Sect. 5, which are deployed to High-speed Network
Interface Controller. The details about P4/VHDL compiler and P4 workflow
are provided in Subsect. 4.2.

– High-Speed Network Interface Controller (NIC) - provides high-speed
(200 Gbps) message processing with a FPGA board (the Netcope NFB-
200G2QL) where cryptographic primitives run and are wrapped as external
P4 objects in two NP4 Atom modules. Each NP4 Atom module processes 100
Gbps data flow. In our solution, we assume two 100 Gbps data flows that are
managed by two separated NP4 Atom modules. Further, the FPGA board
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Fig. 1. Top-level Architecture of FPGA-based Crypto Accelerator

contains memory controller for controlling on card memory, Direct Mem-
ory Access (DMA) modules that provide fast FIFO-based data transferring
between the FPGA board and the host computer, and Network modules that
are connected with Gigabit Ethernet network interfaces in order to transfer
ingress/egress communication.

– Server-SW Part - the software part is used for Network Interface Con-
troller (NIC) configuration and setup, and aggregates generic SW tools (e.g.
NP4 atom tool), handlers and Netcope Development Kit (NDK) that run on
Linux OS (CentOS). NDK is the customized product of Netcope Technolo-
gies company that enables users to develop applications in VHDL for FPGA
targets. NDK provides the set of components for a simple interaction with
FPGA parts. Other SW tools enable to set data flow and policy configuration.

4.2 P4 Workflow

The P43 is a high-level language designed for Programming Protocol-
independent Packet Processors. Three main goals of the P4 language are recon-
figurability, protocol independence and target (platform) independence [8].

The P4/VHDL compiler is a tool that compiles a P4 source code to VHDL
and maps it on an FPGA platform. This compiler provides an easy way how
3 https://p4.org.

https://p4.org
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Fig. 2. Compilation process steps
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Fig. 3. Extended P4 pipeline for cryptographic external objects usage

to build applications for FPGA accelerators. It is built on the reference p4c4

compiler with updated midend and proprietary backend for an FPGA platform.
The compiler is modular and uses HLS (High Level Synthesis) for generating of
actions. To be noted that HLS compiles a C++ description of circuit to VHDL
as an intermediate step. The other parts are compiled to VHDL directly.

The compilation process, which describes how the P4/VHDL compiler makes
bitstream for FPGA from a P4 source file, is depicted in Fig. 2. A basic pipeline,
which processes packets, consists of three main parts. The Parser block parses
headers and payload to separate fields used in subsequent stages. The Match and
Action block implements all the tables and performs the actions, specified in the
source code, on packets’ headers or metadata values. The last part is the Deparser
block, which joins all modified headers and payload back to a resulting packet.
For support of cryptographic external objects, in this case cryptographic VHDL
modules, we design an extended P4 pipeline, shown in Fig. 3. The extended P4
pipeline consists of basic P4 pipeline blocks and two additional control blocks
C1 and C2 for cryptographic external objects. The C1 control block is designed
for usage of external objects that do not need to use modified fields or data from
tables stored in the Match and Action block. The second one, the C2 control
block, is situated between the Match and Action block and the Deparser block.
The C2 control block is designed for external objects that need to use data
from the Match and Action block or should be used as the last element after all
processing in the Match and Action block has finished.

4 https://github.com/p4lang/p4c.

https://github.com/p4lang/p4c
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4.3 Main Advantages of P4 Workflow

We consider the fully automated translation process of a P4 code into the func-
tional bitstream (Fig. 2) as one of the primary benefits of our P4 workflow.
Any change a user does in P4 code can be simply applied to the final bitstream
by rerunning a translation process without the need for any knowledge of the
internal system design changes (Fig. 3). For instance, when a user adds a new
external cryptographic object or replaces existing one with another type in the
P4 code, the user only has to restart the translation without knowing anything
about their implementations (VHDL code in our case) and how they differ for the
particular platform (FPGA in our case). The support for cryptographic exter-
nal objects in P4 highlights its primary goal – platform independence – and
simplifies the application of cryptography in the form of external objects for
processing of network traffic in FPGA at the same time. No need for mastering
or even understanding of specialized platform-dependent language, like HDL for
FPGA, is another advantage of our P4 workflow. Users only describe a desired
behavior of the system including various supported cryptographic operations as
a P4 source code, which we assume the users are familiar with. The P4 workflow
hides the internal design and implementation of cryptographic operations in an
FPGA and only provides the user the final firmware. The P4 workflow and its
benefits can be compared to the common well-known software compilers. They
also hide the different internals of various processors from the user and only
provide the final executable file with the goal to simplify the process of pushing
the desired performance into the target platform.

5 Hardware Implementation and Results
of Cryptographic Blocks and P4 Core

This section presents our implementation details of chosen initial cryptographic
components in VHDL (Subsect. 5.1) and their results of synthesis utilized on the
FPGA platform (Subsect. 5.2). In Subsect. 5.3, we present hardware resources
required by P4 core, and the chosen example of the customized cryptographic
accelerator and possible extensions are described in Subsect. 5.4.

5.1 Hardware Implementation of Cryptographic External Blocks

We implement widely used 3 cryptography schemes, i.e., SHA-3, EdDSA and
AES-GCM-256, as atomic 3 VHDL-based modules (externs) for our accelerator.
The target FPGA platform of our implementation is a chip from Xilinx, namely
Virtex 7 UltraScale+ with the designation xcvu7p-flvb2104-2-i. To be noted
that our implementations are wrapped for the P4 pipeline requirements for one
100 Gbps throughput, i.e., 200 MHz as a minimal frequency and 512-bits data
bus. Hence, our implementations of cryptographic components in VHDL are not
focused on performance or hardware resources efficiency but are focused on the
trade-off of both performance, reasonable occupancy of hardware resources, and
compatibility with the frequency and data bus requirements.
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Hash Function SHA-3

The SHA-3 component consists of 2 subcomponents, namely Padding Block
which implements the alignment of the input message, and Hash Block which is
used to compute the hash (the Keccak core function). The Data input (64-bit) is
received by the Padding subcomponent that performs an alignment based on the
number of valid bytes (input BYTES VLD) in the message block. The alignment
is performed only if the received block is the last block of the message (input
LAST BLOCK). The output of the Padding subcomponent is aligned data that
is passed to the Hash subcomponent. Once the Hash subcomponent receives the
data and begins the compute, the Padding subcomponent is reset and additional
data can be received for the alignment. The output of the Hash subcomponent
is the final 512-bit hash. The data is marked as valid only if the last block of the
message was received. After processing the whole message, the subcomponent
must be reset, i.e., reset the subcomponent’s internal registers. In Appendix A,
Fig. 4 depicts the block diagram of the SHA-3 component, and Table 4 presents
all used input and output signals.

Digital Signature EdDSA

We implement all main EdDSA phases, i.e., public key generation, signature
creation and signature verification, in VHDL and their soundness is verified by
using general test vectors for the Ed25519 scheme. The implementation con-
sists of the following subcomponents (blocks): Modular multiplication, Modular
division, Addition of points on elliptic curve, Scalar multiplication on elliptic
curve, and Hash function SHA-512. The subcomponent for modular multipli-
cation employs the Montgomery algorithm for multiplying two inputs that are
firstly converted to Montgomery form. Modular division is implemented by using
a hardware algorithm which is based on an extended algorithm for finding the
largest common divisor. The addition of points uses extended homogeneous coor-
dinates instead of affine coordinates. Thus, fewer operations are required. Scalar
multiplication is implemented by using the Montgomery Ladder algorithm. The
hash function SHA-512 are based on the freely available component5 under the
MIT license. The key generation component generates a 32-byte public key from
a 32-byte private key. The Signature generation component generates a 64-byte
signature from the 32-byte private key, the 32-byte public key and the message
at the input. The Signature verification component uses a 32-byte public key, a
message, and 64-byte signature at the input, and returns an 1-byte output that
determines if the signature is valid or not. Signals of components are summarized
in Table 5 in Appendix A.

Symmetric Cipher AES-GCM-256

The implementation of the AES-GCM-256 consists of these components: Expan-
sion, Encryption, Decryption and GCM. The Expansion component expands
5 Component available from: https://github.com/dsaves/SHA-512.

https://github.com/dsaves/SHA-512
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the keys which are passed to the Encryption component as a single signal of
1920 bits. The input signal is the encryption key with the length of 256 bits. The
Encryption component contains configurable blocks that perform the operations
required for encryption according to the AES-256 standard. The internal blocks
of this component perform partial transformation operations, namely, SubBytes,
ShiftRows, MixColumns and AddRoundKey. The Decryption component has the
same input and output interface as the Encryption component, only perform-
ing inverse operations. The GCM component creates the AES-256 block cipher
mode. It uses auxiliary components providing computation such as the multipli-
cation of finite fields. Within the structure, the components described above are
used to perform encryption and decryption operations. In Appendix A, Table 6
summarizes the input and output signals required in the components.

5.2 Hardware Resources of Cryptographic External Blocks

The hardware resources of the cryptographic modules programmed in VHDL
are measured by the synthesis utilized on the Virtex UltraScale+ (XCVU7P).

Hash Function SHA-3

The throughput of one SHA-3 component is approximately 4.51 Gbps. The
throughput depends slightly on the length of input messages. The implementa-
tion of SHA-3 consumes 3 324 LUTs (Lookup Tables) and 2 715 FFs (Flip-Flops),
which are fundamental building blocks inside of an FPGA chip. On one hand,
we are able to increase the throughput by using a larger input data width or by
performing permutations at higher frequency. Nevertheless, these modifications
take a higher number of total hardware resources on FPGA. The results of the
synthesis utilized on the Virtex UltraScale+ are summarized in Table 1.

Table 1. Hardware resources on FPGA for SHA-3 component

Component LUTs Flip Flops Frequency [MHz]

SHA-3 3 324 2 715 410

PADDING block 146 584 410

HASH block 3 178 2 120 410

Digital Signature EdDSA

Table 2 shows the results of the synthesis of the subcomponents and main phases
employed in the EdDSA scheme. All these results were obtained by synthesis in
Vivado 2017.4.1 for Virtex UltraScale+. The first part of Table 2 shows the auxil-
iary components, i.e., components for calculations needed during the generation
and verification of signatures such as modular multiplication, modular division,
addition of points on the elliptic curve, scalar multiplication on the elliptic curve
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and hash function SHA-512. In the second part, three main components for the
implementation of the Ed25519 cryptographic scheme are shown, i.e., Public key
generation, Signature generation and Signature verification. The comparison of
scalar multiplication implementations can be found in Appendix B.

Table 2. Hardware resources on FPGA for EdDSA

Component LUTs Flip-Flops Frequency [MHz] Time [µs]

Montgomery mult. 1168 783 468,8 –

Modular division 4781 1833 351,1 –

SHA-512 3028 1094 308,5 –

Addition points 7608 3105 330,5 –

Multipl. points 17427 8546 307,7 1075

Public key gen. 25830 12317 307.3 1081

Signature 31024 16706 307.3 2164

Verification 45420 24762 207,2 4502

Symmetric Cipher AES-GCM-256

The results of AES-GCM-256 design from the synthesis utilized on the Virtex
UltraScale+ are summarized in Table 3. The maximum operating frequency of
the design is 205 MHz. Some sub-components can operate at a higher frequency,
but the operating frequency corresponds to the smallest value of all compo-
nents. The maximum throughput of one AES-GCM-256 core is 26.24 Gbps. The
throughput of the cryptography accelerator can be increased by using more
AES-GCM-256 cores in parallel.

Table 3. Hardware resources on FPGA for AES-GCM-256 component

Component LUTs Flip-Flops Frequency [MHz]

Expansion 3 123 800 250

Encryption 10 129 898 240

Decryption 15 137 898 222

GCM 8 973 1 238 205

AES-256 28 389 2 596 222

AES-GCM-256 37 362 3 834 205
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5.3 Implementation of P4 Core

The resource utilization of P4 Core highly depends on the specific structure of a
P4 input file. The increase of the number of P4 tables and their sizes as well as
the increase of the complexity and amount of action cryptographic blocks in the
P4 code leads to the increase of overall hardware resources consumed in the final
design. As an example, we use a simple P4 code with basic bit-wise operations,
namely or, xor, concat, left-shift and right-shift. In this example, the P4 envelope
with basic bit-wise operations, and without any cryptographic externs, takes 54k
LUTs, 51k FFs, 28 CARRY8, 2.7k F7 Muxes and 192 F8 Muxes.

5.4 Example of Customized Cryptographic Accelerator

Overall hardware resources of the customized cryptographic accelerator directly
depends on used security features, e.g., encryption, signing, verification, hash
function. For example, if a user chooses and configures the cryptography compo-
nents such as AES-GCM-256, SHA-3, EdDSA signing in a P4 source code then
one simple NP4 Atom (with P4 Core) takes approximately 125k LUTs and 74k
FFs from maximal 788k LUTs (15.8%), 1576k FFs (4.7%) on the UltraScale+
VU7P board. Thus, the FPGA-NIC device have available hardware resources
that can be used for more parallel and comprehensive configurations in P4. Fur-
thermore, the designed FPGA-based cryptographic accelerator can be extended
by more cryptographic functions for encryption, key establishment signing and
hash functions that have available implementations in VHDL. These VHDL
implementations have to be wrapped (for 512 bits data bus and 200 MHz min.
frequency) and then stored into the NP4 cloud, i.e., our library of VHDL compo-
nents. The solution could be extended also by perspective post-quantum crypto-
graphic (PQC) schemes such as CRYSTALS-Dilithium [10] for digital signatures
and Kyber [7] or SABER [11] for key establishment. All these PQC schemes
are now the third-round finalists of the NIST PQC Standardization Process.
In general, PQC schemes can be more memory and computationally expensive
than classic asymmetric cryptosystems (RSA, ECDSA). Nevertheless, the hard-
ware acceleration of PQC schemes may improve their performance. There are
already several studies dealing with hardware-based PQC implementations. For
instance, the implementation of SABER [18] requires 23.6k LUTs and 9.8k FFs
with using 250 MHz frequency on the UltraScale+ FPGA platform.

6 Conclusion

In this work, we introduced our design of the hardware-based cryptography accel-
erator for the programmable network card with the FPGA platform, namely,
the Netcope NFB-200G2QL card with the Xilinx Virtex UltraScale+ FPGA
chip. Our solution employs the P4 language for flexible setting of the cryptog-
raphy schemes on the programmable network card. Further, we implemented
main cryptography components such as AES-GCM-256 for high speed encryp-
tion (up to 26.24 Gbps per component), the SHA-3 hash function (up to 4.51
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Gbps per component) and EdDSA signing (up to 462 operations/s per com-
ponent) and verification (up to 222 operations/s per component). These com-
ponents can be combined and parallelized in order to increase performance in
our P4 based HW accelerator. In our future work, we will extend the system
by post-quantum digital signature scheme, optimize components, and test cho-
sen security use cases that combine more cryptography components, e.g., IPSec,
DNSSec.

A Input and Output signals in implemented
cryptographic components

Fig. 4. Block diagram of SHA-3 component with Input/Output signals

Table 4. Input and output signals in SHA-3 component

Signal Width Type Note

DATA IN 64 b Input Input data

DATA VLD 1 b Input Valid input data

LAST BLOCK 1 b Input Last block of msg

BYTES VLD 4 b Input Number of valid byte

BUFFER FULL 1 b Output Full buffer

HASH OUT 512 Output Final hash

HASH VLD 1 b Output Valid hash

CLK 1 b Input Clock

RESET 1 b Input Reset
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Table 5. Input and output signals in EdDSA component

Signal Width Type Note

SECRET 256 b Input Secret key

PUBLIC 256 b Input Public key

MESSAGE PART 256 b Input Part of message

MSG LEN 64 b Input Length of message

SIGNATURE 512 b Input Signature to verify

SIGNATURE GEN 512 b Output Gener. signature

SIGNATURE VLD 1 b Output Verification

DONE 1 b Output Final hash

ADDRESS 2 b Output Message address

CLK 1 b Input Clock

RESET 1 b Input Reset

Table 6. Input and output signals in AES-GCM-256 component

Signal Width Type Note

KEY 256 b Input Input encryption key

KEYS ALL 1920 b Output Block of encryption keys

RX 128 b Input Plaintext

KEYS 1920 b Input Block of encryption keys

TX 128 b Output Ciphertext

HASH OUT 512 b Output Final hash

IV 96 b Input Initialization vector

H 128 b Output Additional verified data

AUTH TAG 128 b Output Verification mark

OUT DATA 128 b Output Ciphertext in GCM mode

VLD 1 b Input Valid data

RDY 1 b Output Correct output ciphertext

CLK 1 b Input Clock

RESET 1 b Input Reset
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B Comparison of Scalar Point Multiplication
Implementations on FPGA

Table 7 and Fig. 5 show the comparison of the hardware implementations of
scalar point multiplication on EC 25519. The results of implementation cre-
ated within this work are compared with the hardware implementations in the
related works [14,16,19,23]. Regarding to the comparison of hardware sources,
the work [14] takes the highest number of resources, i.e., 26 483 look-up tables
and 21 107 flip-flops. On the other hand, the work [16] uses the smallest part of
the FPGA platform with 3 472 look-up tables and 8 680 flip-flops. Our imple-
mentation trades of performance and hardware resources, with 17 427 look-up
tables and 8 546 flip-flops.

Table 7. Comparison of scalar point multiplication on EC 25519 implementations

Work LUTs Flip-Flops Frequency [MHz] Cycles [-] Time [µs]

Our work 17 427 8 546 307.7 330 754 1 075

[14] 26 483 21 107 115 13 639 118

[19] 12 989 2 705 87 3 858 44

[23] 11 148 2 656 82 – 1 467

[16] 8 680 3 472 137.5 – 628

Our work [14] [19] [23] [16]
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Abstract. Subjective attack trees are an extension to traditional attack
trees, proposed so to take uncertainty about likelihoods of security events
into account during the modelling of security risk scenarios, using sub-
jective opinions. This paper extends the work of subjective attack trees
by allowing for the modelling of countermeasures, as well as conducting
a comprehensive security and security investment analysis, such as risk
measuring and analysis of profitable security investments. Our approach
is evaluated against traditional attack trees. The results demonstrate
the importance and advantage of taking uncertainty about probabilities
into account. In terms of security investment, our approach seems to be
more inclined to protect systems in presence of uncertainty (or lack of
knowledge) about security events evaluations.

Keywords: Attack trees · Risk analysis · Subjective logic

1 Introduction

In [1], we defined a new model of attack trees (ATs), called a Subjective Attack
Tree (SAT), that takes uncertainty about likelihoods of successful attacks (in lit-
erature, also referred to as security events) into account. The SAT model aims to
address the limitations of traditional probabilistic attack trees [6,14,15], which
use precise values for likelihoods of security events. In many situations, it is
difficult to elicit accurate probabilities due to lack of knowledge, or insufficient
historical data, making the evaluation of risk in existing approaches unreliable.
The SAT model allows for uncertainty modelling about likelihoods, via subjec-
tive opinions in the formalism of Subjective Logic [9]. We also discussed how
subjective opinions are propagated in the model, via the gates of AND and OR,
to compute a subjective opinion on the root node.

The work in [1], however, still lacks several important components for a use-
ful and effective risk and decision analysis. A comprehensive security analysis
requires, in addition to likelihoods of attacks, additional metrics such as cost
of attack, impact, cost of security investments, etc. Several works have consid-
ered the formalism of defense tress, models that add defense mechanisms (i.e.,
countermeasures) to ATs, e.g. [8,12,16]. These models make use of such met-
rics to conduct a complete security and risk analysis, and study the efficacy of
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proposed countermeasures using economic terms such as Return on Investment
(ROI) and Return on Attack (ROA) [2,17]. Any security or security investment
analysis makes use, as an essential component, of probabilistic values. Since like-
lihoods in the SAT model are subjective opinions, it is essential to discuss how
security or security investment analysis is conducted, showing at the same time
how to handle uncertainties in the model for an effective decision analysis.

In this paper, we extend the SAT model by allowing for the conducting of
a comprehensive analysis of security (e.g., risk measuring) and security invest-
ment with ROI index to determine which countermeasures are more profitable.
This paper thus makes the following contributions. (1) we discuss the adding
of countermeasures to the SAT model, and how these countermeasures reduce
risk in presence of uncertainty about probabilities. (2) we conduct security and
decision analysis, including risk computation, and security investment analysis
using ROI index. (3) we conduct an experimental evaluation that compares the
security and investment analysis in SATs with the one in traditional ATs.

In Sect. 2, we give an overview of subjective logic, followed by an overview of
the SAT model in Sect. 3. In Sect. 4, we discuss the adding of countermeasures
to SAT model. In Sect. 5, we discuss security and security investment analysis
in SATs. In Sect. 6, we demonstrate the usability of our approach in the context
of security analysis using the scenario of DDoS attack. In Sect. 7, we evaluate
our approach against traditional ATs. Finally, in Sect. 8, we conclude the paper,
discussing prospects for future work.

2 Subjective Logic

Subjective logic [9] is a formalism for reasoning under uncertainty that extends
probabilistic logic by allowing also for uncertainty degrees to be expressed about
probability values, via subjective opinions. In subjective logic [9], a subjective
opinion represents the probability distribution of a random variable comple-
mented by an uncertainty degree about the distribution. Let us assume a propo-
sition X such as the workstation is compromised. The validity of X is uncertain
in general, but we can assume there is a “ground truth” probability px that X
is true, and px̄ (i.e., 1 − px) that X is false. This makes X a binary random
variable over the domain X = {x, x̄}. Little amount of evidence supporting this
proposition, or a lack of relevant knowledge, will affect giving the exact proba-
bilities px and px̄. As such, the analyst needs to give a subjective opinion about
them, expressed in terms of beliefs and uncertainty.

A subjective opinion on a binary random variable X, called a binomial opin-
ion, is a tuple ωX =

〈
bx, dx, ux, ax

〉
, representing the belief, disbelief and uncer-

tainty that X is true at a given instance, and ax is the prior probability (also
called the base rate) that X is true in the absence of observations. A prior weight
W > 0 is defined indicating the strength of the prior assumption. An opinion’s
parameters must satisfy: a) bx, dx, ux, ax ∈ [0, 1], and b) bx + dx + ux = 1. For a
given binomial opinion ωX , the corresponding projected probability distribution
P(x) : x → [0, 1] is determined as P(x) = bx +ax ·ux, where P(x) represents the
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probability estimation of x which varies from the base rate value, in the case of
complete ignorance (ux = 1), to the actual probability in case that ux = 0.

A binomial opinion translates directly into a Beta distribution. The value
of a Beta-distributed random variable X is determined from Nins independent
observations. Let nx, nx̄ be the total number of observations supporting X = x
and X = x̄ respectively. Then the Beta parameters αX =

〈
nx+Wax, nx̄+W (1−

ax)
〉
, where ax is the prior assumption, and W is a prior weight indicating the

strength of the prior assumption. Unless specified otherwise, we assume ax = 0.5,
and W = 2, yielding a uniform distribution for the prior assumption.

Given a subjective opinion ωX =
〈
bx, dx, ux, ax

〉
, we compute the corre-

sponding Beta parameters αX =
〈
αx, αx̄

〉
as αX =

〈
W
ux

bx + Wax, W
ux

dx +

W (1 − ax)
〉
. Conversely, given Beta parameters αX =

〈
αx, αx̄

〉
, a transfor-

mation from the Beta distribution to a subjective opinion is given as ωX =〈
αx−Wax

SX
, αx̄−W (1−ax)

SX
, W

SX
, ax

〉
. where SX is the Dirichlet strength of the beta

distribution. Equations for computing the Dirichlet strength, mean, and variance
directly from a subjective opinion are discussed in [4].

3 An Overview of Subjective Attack Trees

A Subjective Attack Tree (SAT) [1] is an extension to traditional attack trees,
proposed so to take uncertainty about likelihoods of security events into account
during the modelling of security risk scenarios, via subjective opinions. Fig. 1
shows an example SAT with three possible paths (ways) an attacker can choose
to achieve their main goal (MG). These paths begin by the execution of the
following security events: (SE1 and SE2), SE3, and (SE4 and SE5). Taking
the first path with security events SE1 and SE2 as an example, the subjective
opinions on them, respectively, are denoted by ωSE1 and ωSE2 . The subjective
opinion on sub-goal 1 (ωSG1) is computed from the conjunction of ωSE1 and
ωSE2 , and the subjective opinion on the main goal (ωMG) is computed from
the disjunction of ωSG1 and ωSG2 . The subjective opinion on MG represents
the belief that an attacker can successfully achieve their main goal, the disbelief
that an attacker can successfully achieve their main goal, and the uncertainty
degree about the distribution of these belief and disbelief masses.

In SAT model, subjective opinions are propagated through AND gate using
the conjunction operator of subjective logic [9], and the disjunction operator
in case of OR gate. Figure 2(b) shows an example computation of a subjective
opinion on event Z via OR gate.

4 Adding Countermeasures to SATs

The SAT model does not take into account defense mechanisms that can be
implemented by the defending organization and the costs sustained for security
investments. We discuss the adding of countermeasures to the SAT model with
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Fig. 1. A Subjective Attack Tree (SAT) model.

Fig. 2. Computing an opinion on event Z via (a) AND gate, and (b) OR gate.

the aim to reduce risk (i.e., likelihood of successful attacks). Countermeasures in
our approach can be placed at any node in the tree as per the approach in [16].
Adding countermeasures to ATs models in general is aimed to minimise the
likelihood of attacks. In the SAT model, the likelihoods are subjective opinions,
so we discuss how these opinions are affected when adding countermeasures.

Each added countermeasure should be associated a value representing
the effectiveness of the countermeasures in reducing risk. In most existing
approaches, the effectiveness value of a countermeasure is expressed as a percent-
age, and the likelihood of an attack in presence of the countermeasure is then
calculated by multiplying the likelihood value with the given percentage for the
countermeasure’s effectiveness. However, when there is uncertainty about the
likelihood (as in SATs), the calculation would differ. In SATs, adding a counter-
measure does not reduce the uncertainty about the likelihood of an event, but the
belief mass and base rate. Therefore, the effectiveness value will affect only the
belief mass and base rate while maintaining the same uncertainty value. The dis-
belief mass is calculated by subtracting the total value of the resulting new belief
mass and uncertainty from one. Formally, assuming ωSE = 〈bse, dse, use, ase〉 is
the subjective opinion about a security event SE, C a potential countermeasure
to reduce risk, and CE the countermeasure effectiveness. We compute the opin-
ion about SE with countermeasure C, denoted by ω

′
SE = 〈b′

se, d
′
se, u

′
se, a

′
se〉, as

follows

1. b
′
se = bse × (1 − CE)
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2. a
′
se = ase × (1 − CE)

3. u
′
se = use

4. d
′
se = 1 − (b

′
se + u

′
se)

Figure 3 shows an example SAT model with two applied countermeasures
(ovals), and how they reduce risk according to the above discussion.

Fig. 3. A SAT model with two countermeasures (ovals), showing how they reduce
likelihoods (i.e., opinions) on the leaves, and subsequently on the root node.

5 Security Analysis in SATs

5.1 Risk Computation

In the context of risk analysis, risk is typically computed using the well-known
formula risk = probability × impact. In ATs, the computation of risk is often
done at the root node (i.e., risk caused by the successful achievement of the
attacker’s goal). In SATs, we deal with subjective opinions rather than proba-
bilities, and so the risk calculation is different. Risk calculation in SATs depends
basically on how the impact value was represented. In literature, most existing
approaches represent impact as single values within the interval [0, 1], and very
rare is represented as a beta distribution, e.g., [13] for characterizing earthquake
damage. In this paper, we demonstrate how risk is computed in case that the
impact is a single value and in case is given as a beta distribution.

In contrast to the traditional one, risk calculation in our approach results
in a distribution of risk (loss) values in the form of a beta distribution. This is
because that there is an uncertainty distribution about the likelihood, expressed
in subjective opinions, and these opinions, as discussed in Sect. 2, have one-to-
one correspondence to beta distributions. The loss distribution is therefore a
beta distribution, provided that the impact value belongs to the interval [0, 1].

Risk Computation with a Single Value of Impact: when the impact is
given as a single value within the interval [0, 1], risk is calculated as follows.
First, we multiply the projected probability of the subjective opinion (see Eq. 2)
with the impact value to obtain the mean of risk, Rμ. Second, we compute the
Dirichlet strength of the subjective opinion (see [4]), as this would represent also
the Dirichlet strength of risk SR. Having Rμ and SR, we can compute the Beta
parameters of risk as follows: α = 〈Rμ.SR, (1 − Rμ).SR〉.
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Example 1. Suppose the subjective opinion about security event SE is ωSE =
〈0.6, 0.2, 0.2, 0.5〉, and the impact is 0.4. The mean of risk Rμ = 0.7×0.4 = 0.28,
where 0.7 is the projected probability of ωSE . The Dirichlet strength of ωSE is
10, and so SR = 10. Accordingly, α = 〈0.28 × 10, (1 − 0.28) × 10〉 = 〈2.8, 7.2〉.
The beta distribution of risk in this example is shown in Fig. 4 (a).

Risk Computation with a Beta Distribution Representation of Impact:
when the impact is given as a beta distribution, we compute risk as follows:

1. we translate the given subjective opinion into the corresponding beta distri-
bution, and then compute its mean and variance.

2. we compute the mean and variance of the impact from the given beta param-
eters of the impact distribution.

3. we use the product operator of independent Beta-distributed random vari-
ables (see [4]) to compute the mean and variance of risk.

4. we use these mean and variance of risk to compute its beta parameters.

Example 2. Suppose an opinion about event SE is ωSE = 〈0.9, 0.0, 0.1, 0.5〉.
Suppose also the impact I is represented as a beta distribution with shape param-
eters α = 〈18, 4〉. The risk distribution is then obtained by first computing the
mean and variance of both the likelihood (ωSE) and impact distributions. This
yields μSE = 0.95, σ2

SE = 0.00226, μI = 0.75, and σ2
I = 0.0075. Using the

product operator [4], we obtain the mean and variance of risk R as μR = 0.7125
and σ2

R = 0.0.00805. Using these values, we obtain beta parameters for risk as
α = 〈17.41, 7.03〉. The risk distribution is shown in Fig. 4(b).
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Fig. 4. The beta distributions of loss (risk) in (a) Example 1 and (b) Example 2, where
“0” indicates no risk and “1” the risk is catastrophic.

Since both representation of impact (the single value and beta distribution
representation) yields a beta distribution for risk, for simplicity, in the rest of
the paper, we model impact as single values. Our approach of decision analysis
takes into account the uncertainty about a likelihood or about risk, so we discuss
in the next section, how we deal with uncertainty for risk and decision analysis.
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5.2 Dealing with Uncertainty for Decision Analysis

In our approach, metrics such as likelihood and risk are defined as beta distribu-
tions (given that subjective opinions, for likelihoods, can be translated into the
corresponding beta distributions) rather than single values. For decision analy-
sis, it is important to handle the uncertainty in such metrics, as we will see in the
next section. We discuss in this section two possible approaches to reason about
risk (or likelihood) in presence of uncertainty. These approaches are (1) reason-
ing with the most expected value, and (2) reasoning with best and worst-case
scenarios via confidence intervals.

Approach 1: Reasoning with the Most Expected Value: In this approach,
security managers use the most expected value about a likelihood (or risk) for
decision-making. In case of likelihood, the most expected value is the projected
probability of the subjective opinion, and it is the mean in case of the risk
distribution. This approach yields a single value of risk, and therefore the decision
analysis would be similar to the traditional approaches of risk assessment, except
that in our approach the uncertainty value is taken into account when computing
the most expected value.

Approach 2: Reasoning with Confidence Intervals for Best and Worst-
Case Scenarios: In this approach, risk is represented by a range of possi-
ble values, determined by lower and upper bounds with a given confidence
level, rather than single values, allowing for best- and worst-case scenarios to
be considered. In literature, several approaches exist to compute confidence
intervals of a beta distribution, e.g., [5,10]. A simple approach is the one dis-
cussed in [11], wherein the lower bound of the confidence interval is deter-
mined as 1 − BETAINV (1 − α/2, n − k + 1, k), and the upper bound as
BETAINV (1−α/2, k+1, n−k), where α is the level of statistical significance, k
the number of events observed, and n the sample size. BETAINV () is the cumu-
lative distribution function of a beta distribution. The lower and upper bounds
calculated from these two equations will determine the range of possible values
that the risk value is likely to be within.

5.3 Analysing Security Investment: ROI Analysis

Return on investment (ROI) [17] is an economic metric that is widely used to
measure the profit obtained by the implementation of a specific countermeasure
CMi (thereby evaluating the efficacy of an investment or comparing the efficacy
of a number of different investments). ROI directly measures the amount of
return on a particular investment, relative to the investment’s cost. According
to [17], ROI for a security investment is defined as

ROI =
(Risk exposure × %Risk mitigated) − Investment cost

Investment cost
(1)

In AT models, risk exposure represents risk at the root node. Since counter-
measures do not affect impact value directly (the impact value at the root node
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is the same apart from whether there were countermeasures applied or not), but
rather the likelihood of an event occurrence [16], we may consider risk expo-
sure as the likelihood (in SAT, the subjective opinion) about the goal (i.e., the
top event) when we come to compute ROI. % Risk mitigated is the amount of
the percentage risk mitigated as a result of applying a specific countermeasure.
Unlike traditional probabilistic values, it is difficult to calculate directly such a
percentage because the uncertainty value and base rate at the root node might
change when applying a countermeasure to the model. Therefore, we have first
to resolve uncertainty in the subjective opinions, using one of the approaches
discussed in Sect. 5.2, to be able to compute the percentage risk mitigated, and
use this percentage in the above ROI formula.

As an example, suppose the subjective opinion at the root node without
countermeasure CMi is ωgoal−without−CMi

= 〈0.65, 0.15, 0.20, 0.85〉 and with the
countermeasure is ωgoal−with−CMi

= 〈0.42, 0.25, 0.33, 0.72〉. Suppose also we want
to reason about risk using the most likely value, i.e., the projected probability of
each subjective opinion. The projected probability of ωgoal−without−CMi

is 0.82,
and it is 0.66 for ωgoal−with−CMi

. The percentage risk mitigated is then calculated
as 1 − 0.66

0.82 × 100 = %19.5. For abbreviation, we denote such a calculation for
risk mitigated by RM .

Investment cost is the cost of the applied countermeasure. Based on the above
discussion, we re-define ROI for a countermeasure CMi as

ROICMi
=

(Rsys × %RM) − CCMi

CCMi

(2)

where Rsys is the system risk, i.e., the opinion on the root node ωgoal, with an
uncertainty treated according to the approaches in Sect. 5.2. In other words, Rsys

can take any of the following values: the projected probability of ωgoal, the lower
bound of the desired confidence interval, or its upper bound. A countermeasure
CMi is only profitable if (Rsys × %RM) > CCMi

, and this is satisfied when the
risk value is withing the scale of [0, 100] rather than [0, 1] [3]. Therefore, we
calculate risk as Rsys × 100. If ROI is zero or a negative number, the investment
is not profitable. Otherwise, it is financially justified, and so the higher value of
ROI the higher desired an investment. Suppose in the given example above, the
cost for implementing CMi is $20. ROICMi

is then (82×0.195)−20)/20 = −0.2.
Since ROI is negative, the countermeasure is not profitable.

6 An Illustrative Example

To demonstrate the usability of our approach in security analysis, we use the
example of DDoS attack discussed in [7] as a case study. To simplify the example,
we show only portions of the complete scenario for implementing DDoS attack as
depicted in Fig. 5. The effectiveness of each countermeasure is shown in Fig. 5,
and their costs of implementation (in $) are given as follows: C(CM1) = 10,
C(CM2) = 20, C(CM3) = 15, and C(CM4) = 20.
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Further, the model shows the impact values (below the subjective opinions).
The propagation of impact values follows the approach in [15]. In case of OR gate,
we choose to propagate the maximum value of impact to consider the worst-case
scenario in calculating the impact at the root node. We do so because the analyst
has to be prepared for the worst possible consequence (i.e., the attack with
maximum impact) and because the attacker’s capabilities and preferences cannot
be known in advance. In case of AND gate, the impact values are propagated in
the model according to formula defined in [8]. However, since our impact scale
is [0, 1] and not [1, 10], we redefine the propagation rule of impact values as
follows 1 − ∏n

i=1(1 − IAi
), where n is the number of children nodes.

Fig. 5. The SAT model with countermeasures (ovals) for the DDoS attack scenario.
The values below the subjective opinions are the impact values.

Table 1. The subjective opinion on the root node, risk mitigated, and ROI for each
countermeasure in the DDoS attack scenario.

Applied countermeasure Subjective opinion on goal Risk mitigated ROI

CM1 〈0.56, 0.13, 0.31, 0.72〉 18% 0.70

CM2 〈0.67, 0.09, 0.24, 0.81〉 09% −0.57

CM3 〈0.61, 0.14, 0.25, 0.74〉 16% 0.01

CM4 〈0.68, 0.04, 0.28, 0.84〉 03% −0.85

The subjective opinion about DDoS attack is 〈0.75, 0.03, 0.22, 0.89〉, and the
impact is 0.952. Therefore, the risk is a beta distribution with parameters α =
〈8.19, 1〉. The mean of risk is 0.9, representing the most likely value of risk. The
95% confidence interval of the risk distribution is [0.833, 0.967], representing
the lowest and highest possible values. Security managers, unlike in traditional
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risk assessment approaches, can use these values to reason about risk and make
decisions as per their risk attitudes.

We now turn our attention to the analysis of security investment, using ROI
index. Applying each countermeasure would result in a reduction in the sub-
jective opinion about the top event, i.e., ωgoal. Table 1 shows the subjective
opinion about DDoS attack when applying each countermeasure, and the per-
centage risk mitigated after resolving uncertainty about the subjective opinions
using the most likely value approach. Using Eq. 2, we obtain ROI for each coun-
termeasure as shown in Table 1. As appear, two countermeasures, CM2 and
CM4, since their ROI are negative numbers, should be excluded. The only two
countermeasures that are profitable are CM1 and CM3, and CM1 is more prof-
itable than CM3. However, ROI for CM3 approaches from zero, and so it does
not seem to be significantly financially justified. As a result, the security manager
may think of applying CM1 (install anti-virus software) as a possible security
solution against the DDoS attack.

7 Experimental Evaluation

We use the SAT model in Fig. 6 as an example model to conduct an evalua-
tion of our approach against traditional ATs in terms of security and security
investment analysis. The model contains two countermeasures CM1 and CM2

applied to the security events SE1 and SE2, respectively. The subjective opin-
ions about the four security events were established so as to contain relatively
high uncertainty values. Propagating these opinions led to also a relatively high
uncertainty (0.38) about the likelihood on the root node. The uncertainty values
in the opinions lead to several different underlying probability values in contrast
to a 0 uncertainty. For example, the probabilities of 0.75, 0.6, and 0.55 might rep-
resent possible truth values for the opinion about SE4 (〈0.40, 0.25, 0.35, 0, 50〉).
In this example, the uncertainty value has affected only the belief mass of the

Fig. 6. A SAT model with two countermeasures. The values below the subjective opin-
ions are impact values.
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probability distribution of 0.75, affected only the disbelief mass of the proba-
bility distribution of 0.6, and affected both the belief and disbelief masses of
the probability distributions of 0.55. Based on such a discussion, we generated
probability values for the four security events (assuming they represent truth
values) as follows: Prob(SE1) = 0.3, Prob(SE2) = 0.25, Prob(SE3) = 0.4, and
Prob(SE4) = 0.45. Accordingly, the probability at the root node is 0.24.

First, we began by comparing the risk outcomes from the SAT model of Fig. 6
with the risk obtained from applying traditional risk analysis using the above set
of probabilities. In case of the SAT model, the risk obtained is a beta distribution
with parameters α = 〈4.6, 5.4〉 and mean 0.46. The 95% confidence interval of
the risk distribution is [0.39, 0.52]. In case of the AT approach, the risk obtained
is the single value 0.24. Suppose the security manager would only protect the
system against the attack if the risk is greater than 0.45. It is evident that in
case of the AT approach, the system would not be protected. In case of the SAT
model, there are cases in which the security manager would choose to protect the
system. If they rely on the most likely value (the mean of risk), or if the are too
pessimistic and wish to consider the worst case scenario (via the upper bound of
the confidence interval), they will go for protecting the system, since both values
are greater than the defined threshold value. However, the decision would be the
same as in the AT approach if they are optimistic and wish to consider the best
case scenario (via the lower bound of the confidence interval).

Table 2. The projected probability of each subjective opinion about the attack with
and without countermeasures and their 95% confidence interval.

Subjective opinion on attack Projected probability 95% Confidence interval

〈0.33, 0.09, 0.38, 0.44〉 0.5 [0.29, 0.71]

〈0.27, 0.32, 0.41, 0.26〉 0.37 [0.12, 0.61]

〈0.14, 0.44, 0.42, 0.27〉 0.25 [0.03, 0.47]

Next, we evaluated security investments (with ROI index) using the two
approaches. In the SAT model, the subjective opinion about the attack without
countermeasures is 〈0.33, 0.09, 0.38, 0.44〉. When applying each of CM1 and CM2

to the model, the resulting subjective opinions are 〈0.27, 0.32, 0.41, 0.26〉 and
〈0.14, 0.44, 0.42, 0.27〉, respectively. The projected probability of each subjective
opinion and their 95% confidence intervals are given in Table 2. Using these
information and cost of each countermeasure, we considered three scenarios to
compute ROI for each countermeasure: (1) the most likely scenario (based on
the projected probability), (2) the worst-case scenario (based on the lower bound
of the confidence interval), and (3) the best-case scenario (based on the upper
bound of the confidence interval). We denote the ROI calculated from the first
scenario by ROIμ, and by ROIlower and ROIupper for the other two scenarios,
respectively. The ROI values obtained for each countermeasure are all positives
(except in one case) as shown in Table 3.
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Table 3. ROI values for each countermeasure in case of SAT model (ROIµ, ROIlower,
and ROIupper) and in case of AT approach (ROIpro).

Countermeasure ROIµ ROIlower ROIupper ROIpro

CM1 0.3 0.6 0 −0.49

CM2 0.25 0.29 0.17 −0.24

In case of AT approach, the ROI obtained for each countermeasure, denoted
by ROIpro, is −0.49 for CM1 and −0.24 for CM2 (see Table 3). Clearly, none of
the countermeasures are profitable, unlike in the SAT model, wherein the two
countermeasures are financially justified in the three defined scenarios, except
with the worst-case scenario for CM1, in which ROI returned a 0 value.

Analysing the above results, our experiments clearly demonstrate the impor-
tance of taking uncertainty into account when conducting security analysis using
models such as ATs, as doing so can lead to completely different security deci-
sions. In terms of risk analysis, the SAT model offers a more flexible approach
to decision-making by allowing to consider different scenarios (e.g., the best and
worst-case scenarios), and so allowing security managers to take decisions based
on, for instance, their risk attitudes, or the organisation’ financial capabilities.
In terms of security investments analysis (with ROI index), it seems that taking
uncertainty into account results in higher ROI values for countermeasures (in
contrast to a 0 uncertainty). This means that the chance to apply a countermea-
sure in the SAT model is higher, which could be also interpreted as follows: our
approach seems to be more inclined to protect systems in case of uncertainty (or
lack of knowledge) about security events evaluations.

8 Conclusions and Future Work

We extended a previous work on subjective attack trees by allowing for the
modelling of countermeasures as well as conducting a comprehensive security
and security investment analysis with ROI index. We showed how to calculate
risk in SATs, and how to handle uncertainty for decision-making. Finally, we
evaluated our approach against traditional attack trees, showing that SATs lead
to different outcomes in contrast to ATs, and in terms of security investment,
they seem to be more inclined to protect systems in presence of uncertainty
about security events evaluations.

As future work, we will extend the analysis by allowing for additional metrics
to be considered, such as cost of attack, allowing us to study another financial
index, namely return on attack (ROA). With both ROA and ROI, we quan-
tify the nature of the competition between the attacker and the defender. We
will study how uncertainty might affect such a competition, and how the best
countermeasures can be selected under uncertainty about the two indexes.
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