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Preface

The study of nonlocal operators is an active field of research in pure and applied
mathematics and has being gaining an increasing attention over the last few years.
Operators of nonlocal type are used to describe complex systems inwhich interactions
among components are not local, but extend to a neighborhood of each component
(space nonlocality). Analogously, they are applied in order tomodel systems inwhich
the reaction to an external excitation is not instantaneous but depends on the history
of the system (time nonlocality).

Due to the large extent of their applications, nonlocal operators are employed with
great success and interest in a variety of fields ranging from biology to engineering,
image processing, probability theory, physics and so on.

Fractional-order operators (i.e., integrals and derivatives of non-integer order) are
maybe the most famous and studied in the literature. Their origin goes back to the
end of seventeenth century, but their analysis and applications have flourished only
around the middle of the twentieth century.

In this bookwe have collected a number of invited and refereed contributions illus-
trating recent developments in theory and applications of Nonlocal and Fractional
Operators. The chapters of this book cover different research areas, thus offering an
overview of the most updated results and applications of Nonlocal and Fractional
Operators.

Most of the contributions are related to talks presented during the Workshop
“Nonlocal and Fractional Operators” held at La Sapienza University in Roma on
April 12–13, 2019. This meeting was an occasion to bring together researchers
working in different areas of mathematics and physics, and to discuss the most
recent advancements and applications of Nonlocal and Fractional Operators.

The workshop “Nonlocal and Fractional Operators” was dedicated to Professor
Renato Spigler (Department of Mathematics and Physics, Roma Tre University),
on the occasion of his retirement, and was an opportunity to celebrate his scien-
tific contributions in the field of applied mathematics and, in particular, of frac-
tional calculus. A transcription of the speech delivered by Professor Michele Caputo
and dedicated to the academic and research achievements of Professor Spigler is
included, as an introduction to this book.
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vi Preface

We wish to forward our special thanks to all authors and coauthors who have
contributed, with their articles, to the realization of this volume and to all the
anonymous referees, who allowed to select only valuable contributions, as well
as to improve their quality with useful and constructive criticisms. A final special
thank to the scientific and the organizing committees of the workshop “Nonlocal and
Fractional Operators”, which has prompted the realization of this book.

Finally, we are grateful to SIMAI, the Italian Society for Industrial and Applied
Mathematics, for hosting this volume in the SIMAI-SEMA series published by
Springer.

Rome, Italy
Bari, Italy
Bologna, Italy

Luisa Beghin
Roberto Garrappa

Francesco Mainardi



Presentation of the Workshop
“Nonlocal and Fractional Operators”
Dedicated to Prof. Renato Spigler
(Rome, April 12–13, 2019)

Introductory speech by Prof. Michele Caputo (Accademia Nazionale dei Lincei)
I first want to congratulate the organizers of the meeting for celebrating Professor

Renato Spigler and also for the selection of the title “Nonlocal and Fractional
Operators” which has attracted many excellent mathematicians.

From the program of the workshop, we expect the presentation ofmany very inter-
esting papers covering different branches of fractional calculus which also show the
vitality of nonlocal operators in many fields of mathematics. Indirectly and conse-
quently, they indicate the expansion of the applications of this branch of mathe-
matics in an ever increasing number of different fields of science. I have seen the list
of posters which, as sometime happens, seem not less interesting than the papers.
Finally I like to thank the organizing committee to have given me the pleasure to
open the works of the meeting and to celebrate Professor Renato Spigler.

vii



viii Presentation of the Workshop “Nonlocal and Fractional Operators” …

Professor Spigler was born in Venice in 1947, so say the papers, but certainly
his look does not qualify for retiring. The same seems true also when looking at
the increasing rate of his current scientific production. He had his first laurea in
electronic engineering at the University of Padua in 1972. He specialized in Theory
and Applications of Computing Machines at the University of Bologna then he and
returned to Padua where he was offered teaching positions but soon he began stages
in the US first with the University of Wisconsin in 1980, later at the Courant Institute
in New York as Fulbright scholar in 1983 and, after few stages at the same institute,
he was there as Associate Research Scientist in 1986.

After these important experiences abroad, at a young age, he became stable in
Italy where he had the chair of Analisi Matematica at the University of Roma 3
and at the Università Telematica Internazionale Uninettuno. That is not only for the
registrar’s office. Because his stages in different important institutions, particularly
those abroad, denote a dynamic stile of life, which is reflected in his varied scien-
tific production and collaborations with national and international Agencies. In fact
professor Spigler’s scientific production, besides the excellent quality, is impressive
for the variety of problems treated and for his capability to give essential contributions
in problems on the frontier of science.

He proved to be able also to produce first class mathematics in association
with eminent colleagues, for instance, in the case of solution of hybrid prob-
lems. From existence and uniqueness of classical solutions of certain nonlinear
integro-differential Fokker-Planck-type equations, professorSpigler goes to the prob-
abilistically induced domain decomposition methods for elliptic boundary-value
problems.

Concerning his recent scientific production and the variety of problems which
have been attacked by him, it is worth mentioning that, in 2001, he showed the
existence and uniqueness of solutions to the Kuramoto-Sakaguchi parabolic integro-
differential equation. The synchronization phenomena in large populations of inter-
acting elements are subject to intense research efforts in biological, chemical also for
the study of the evolutions of different competing economies in clubs of economies,
in particular of banks and also of social systems. Spigler gave, in 2005, a fundamental



Presentation of the Workshop “Nonlocal and Fractional Operators” … ix

contribution with a successful approach, consisting in modeling each member of the
population as coupled phase oscillators.

Renato’s papers generally received a large number of citations but this paper
had the peak number of 2250 citations. Then in 2007 he finds L1-estimates for the
higher order derivatives of solutions to parabolic equations subject to initial values
of bounded total variation. In 2012 he lands on fractional calculus with a paper
where he applies fractional operators for a numerical solution of two-dimensional
fractional diffusion equations, by a high-order ADI method (Alternating Direction
Implicit). In 2014, he studies existence, uniqueness and regularity for the Kuramoto-
Sakaguchi equation with unboundedly supported frequency distribution (which later
led to the Kuramoto-Sivashinsky equation) by introducing also nonlocal operators.
More recently, in 2016, again in a different field, he introduces an approximation
method by means of neural network operators. Finally, I like to mention that Renato
ventured to land also on Earth with the most important problem of our environment,
an excellent paper on mathematical models for fighting environmental pollution.

Professor Spigler had also important collaborations with NATO, CNR,
EURATOM, UNESCO. He is a Member of the Editorial Board of many interna-
tional scientific Journal, as well as many important scientific Societies. What at first
sight appears remarkable in his splendid scientific carrier and production is the variety
of different fields where he operated, not only in different topics, but also concep-
tually and using the modern fundamental tools of mathematics. He understood the
importance of interdisciplinarity and acted at high level, contributing constructively
with several eminent scientists in vanguard problems such as those concerning the
synchronization in clubs of entities of different kinds, basic in the structure of our
society.

As a person, I like his successful sailor behavior, in different seas at times stormy,
from an important successful harbor to the next, not the nearest.

Dear Renato, thanks for being with us and congratulations for what you are and
have done for all of us and, in all ways, please stay the course: continua così.

Rome, Italy
April 2019

Michele Caputo
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On the Transient Behaviour of Fractional
M/M/∞ Queues

Giacomo Ascione, Nikolai Leonenko, and Enrica Pirozzi

Abstract We study some features of the transient probability distribution of a frac-
tional M/M/∞ queueing system. Such model is constructed as a suitable time-
changed birth-death process. The fractional differential-difference problem is stud-
ied for the corresponding probability distribution and a fractional partial differential
equation is obtained for the generating function. Finally, the interpretation of the
system as an actual M/M/∞ queue and as a M/M/1 queue with responsive server
is given and some conditioned virtual waiting times are studied.

Keywords Inverse subordinator · Fractional immigration-death process · Virtual
waiting time.

1 Introduction

As the link between fractional calculus and time-changed processes has been widely
studied in the last years (see for instance [22, 23, 27] or also the book [25]), applica-
tions of such field to various sciences started to rise. Finance [16], biology [6, 26],
population dynamics [7], and social sciences [8] are just some of such fields.
A particular field of interest, that found application also in other sciences, such as
finance or information technology, is queueing theory (for the classical theory one
can see [17]). Fractional queueing theory saw its birth with [10], in which the tran-
sient behaviour of a fractional M/M/1 queue is described.
After that, we focused on extending such results to different kind of queues such as

G. Ascione (B) · E. Pirozzi
Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universitá degli Studi di
Napoli Federico II, 80126 Napoli, Italy
e-mail: giacomo.ascione@unina.it

E. Pirozzi
e-mail: enrica.pirozzi@unina.it

N. Leonenko
School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
e-mail: leonenkon@cardiff.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
L. Beghin et al. (eds.), Nonlocal and Fractional Operators, SEMA SIMAI Springer
Series 26, https://doi.org/10.1007/978-3-030-69236-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69236-0_1&domain=pdf
mailto:giacomo.ascione@unina.it
mailto:enrica.pirozzi@unina.it
mailto:leonenkon@cardiff.ac.uk
https://doi.org/10.1007/978-3-030-69236-0_1


2 G. Ascione et al.

the M/M/1 queue with catastrophes [3] and the M/Ek/1 queue [4]. For the latter,
we investigated also the behaviour of some conditioned virtual waiting time: the
differences between the fractional case and the standard one arise as consequence of
the lack of semigroup property of the Mittag-Leffler function [21]. In this contribu-
tion, we focus on the M/M/∞ queue and the M/M/1 queue with responsive server
(different queues with state dependent service rates are given for instance in [12] and
reference therein), trying first to deduce some information in the transient behaviour
and then to describe some conditioned virtual waiting times. The contribution is
structured as follows:

• In Sect. 2 we recall the main properties of the classical M/M/∞ queue, in par-
ticular some formulas for the state probabilities and the probability generating
function;

• In Sect. 3 we define the fractional M/M/∞ queue and we deduce some property
of its state probabilities and its probability generating function: to do this, we also
use some spectral properties that have been obtained in [5];

• In Sect. 4 we investigate the interpretation of the queueing system, studying in
particular inter-arrival and inter-exit times: concerning the virtual waiting times,
we underline the main differences between the M/M/∞ queue and the M/M/1
queue with responsive server.

2 The M/M/∞ Queue

An M/M/∞ queue is a service system with Poisson arrivals, exponential service
times and infinite servers. As it is stated in [17], it can be used to interpret both an
infinite servers system than a system with one responsive server whose service time
is linearly dependent of the number of customers in the service. In any case, we have
arrival and service rates given by (see [17])

λn = λ > 0, μn = nμ ≥ 0, n ∈ N0 .

Let us denote by N (t) the number of customers in the service at time t > 0 and the
state probabilities as

pn(t) = P(N (t) = n|N (0) = 0), n ∈ N0 .

It is well known that the state probabilities solve the following difference differential
equations (see [30, Section 3.11.3])

⎧
⎪⎨

⎪⎩

dp0
dt (t) = −λp0(t) + μp1(t)
dpn
dt (t) = λpn−1(t) − (λ + nμ)pn(t) + (n + 1)μpn+1(t) n ≥ 1

pn(0) = δn,0 n ≥ 0

(1)
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where δi, j is the Kronecker symbol. Let us denote ρ = λ/μ and observe that the
solution of such system is well known:

pn(t) = exp(−ρ(1 − e−μt ))

(
ρ(1 − e−μt )

)n

n! , t ≥ 0. (2)

Let us consider the probability generating function G(t, z) = ∑+∞
n=0 z

n pn(t), which
we know uniformly converges for z ∈ R. By multiplying the second equation of (1)
by zn and then summing over nwehave thatG solves the following partial differential
equation

∂G

∂t
(z, t) = −λ(1 − z)G(z, t) + μ(1 − z)

∂G

∂z
(z, t). (3)

Moreover, the generating function can be explicitly determined. Indeed we have that

+∞∑

n=0

zn
(
ρ(1 − e−μt )

)n

n! = exp(ρz(1 − e−μt ))

and then
G(z, t) = exp(−ρ(1 − z)(1 − e−μt )), t ≥ 0, z ∈ R . (4)

An important role will be played by the Laplace transform of the state probabilities
pn(t) and the generating functionG(z, t). Denoting by πn(s) and G(z, s) the Laplace
transforms respectively of pn(t) and G(z, t), we have, for s ≥ 0 and z ∈ R,

πn(s) = (−1)n

μ

+∞∑

k=n

(
k

n

) �
(
s
μ

)

�
(
s
μ + k + 1

) (−ρ)k , G(z, s) = 1

μ

+∞∑

k=0

�
(
s
μ

)

�
(
s
μ + k + 1

) (−ρ(1 − z))k .

Simple proofs of these formulas are given in Appendix 2. We are also interested in
some characteristics of such queue. For instance, differentiating Eq. (3) with respect
to z and then setting z = 1, we obtain an equation for the mean E[N (t)]. We have

⎧
⎨

⎩

d E[N (t)]
dt

= λ − μE[N (t)]
E[N (0)] = 0.

(5)

Another way to work withM/M/∞ queues is by using their spectral decomposition.
Indeed it is shown for instance in [1, 18] that considering the Charlier polynomials
Cn(m; ρ), defined by the generating function

+∞∑

n=0

Cn(m; ρ)
tn

n! = e−t

(

1 + t

ρ

)m

, t ∈ R, m ∈ N

and the Poisson distribution �(m; ρ) = e−ρ ρm

m! for m ∈ N, it holds
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pn(t) = �(n; ρ)

+∞∑

m=0

(−1)me−mμt ρ
m

m!Cm(n; ρ), t ≥ 0.

Moreover, for any function h ∈ 	2(�(·; ρ)) with h(n) = ∑+∞
m=0 hm

√
ρm

m!Cm(n; ρ),
defining u(t) = E[h(N (t))|N (0) = 0] it holds

u(t) =
+∞∑

m=0

(−1)mhm

√
ρm

m! e
−mμt , t ≥ 0.

If we use this formula choosing h(n) = n, we have h0 = ρ, h1 = √
ρ, hn = 0 for

any n ≥ 2 and then we obtain

E[N (t)] = ρ(1 − e−μt ), t ≥ 0.

If we want to use it with h(n) = n2, we have h0 = ρ + ρ2, h1 = √
ρ(1 + 2ρ), h2 =

ρ
√
2 and hn = 0 for any n ≥ 3. In such case we obtain

E[N (t)2] = ρ(1 − e−μt ) + ρ2(1 − e−μt )2, t ≥ 0.

From these two relations we finally obtain the Variance

Var(N (t)) = ρ(1 − e−μt ), t ≥ 0,

which is coherent with the fact that for any t > 0 the sequence (pn(t))n≥0 constitute
a Poisson distribution on N0.
In the next section we will introduce the fractional version of such queue.

3 The Fractional M/M/∞ Queue

In this section we will construct and exploit some characteristics of the fractional
M/M/∞ queue.

3.1 Definition of the Queue and the Main Quantities

Let us fix ν ∈ (0, 1) and consider a ν-stable subordinator σν(t) and its inverse process

Lν(t) = inf{y > 0 : σν(y) > t}, t ≥ 0
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whose probability density functionwill be denoted by fν(t, y) := P(Lν(t) ∈ dy)/dy
for t ≥ 0 and y ≥ 0. For other information concerning the inverse stable subordinator,
we refer to [24].

Let us then define the process Nν(t) := N (Lν(t)) where Lν(t) is an inverse
ν-stable subordinator independent of N (t). We will call such process fractional
M/M/∞ queue. Let us denote for n ∈ N

pν
n(t) := P(Nν(t) = n|Nν(0) = 0), n ∈ N0, t ≥ 0.

Let us first show an easy representation formula.

Proposition 1 For any t > 0 and n ∈ N0 it holds

pν
n(t) =

∫ +∞

0
pn(y) fν(t, y)dy =

∫ +∞

0
pn

((
t

w

)ν)

gν(w)dw, (6)

where gν(w) is the density of σν(1). Moreover, the functions pν
n(t) are continuous.

Proof Let us observe, by the independence of Lν by N , that

pν
n(t) = P(N (Lν(t)) = n|Nν(0) = 0) =

∫ +∞

0
P(N (y) = n|Nν(0) = 0) fν(t, y)dy

=
∫ +∞

0
pn(y) fν(t, y)dy.

Moreover, let us recall [24, Formula 8]

fν(t, y) = t

ν
y−1− 1

ν gν(t y
− 1

ν ),

where gν(y) is the density of σν(1). Hence Eq. (6) becomes

pν
n(t) =

∫ +∞

0
pn(y)

t

ν
y−1− 1

ν gν(t y
− 1

ν )dy =
∫ +∞

0
pn

((
t

w

)ν)

gν(w)dw,

where we used the change of variables w = t y− 1
ν . Since pn(t) ≤ 1, we can use

dominated convergence theorem to obtain continuity. ��
The same can be done for the probability generating function Gν(z, t) :=∑+∞
n=0 z

n pν
n(t) (recalling that it converges uniformly for any z ∈ R). We have

Proposition 2 For any t > 0 and z ∈ R it holds

Gν(z, t) =
∫ +∞

0
G(z, y) fν(t, y)dy. (7)

Moreover, for any fixed z ∈ R the function t 	→ Gν(z, t) is continuous.
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Let us also recall that, being probability masses, the functions pν
n(t) are bounded

by 1, hence in particular they are Laplace-transformable. We will denote by πν
n (s)

their Laplace transform. Moreover, let us observe that for fixed z we have G(z, t) ≤
exp(ρ|1 − z|), hence also Gν(z, t) ≤ exp(ρ|1 − z|) and then it is Laplace-
transformable in t for any z ∈ R. We will denote by Gν(z, s) its Laplace transform.

3.2 Fractional Equations for the State Probabilities and the
Generating Function

In this subsection we want to obtain a system of fractional difference-differential
equations whose unique global solution in 	2(�(·; ρ)) is given by the sequence
pν(t) = (pν

n(t))n≥0. In the following we will need some operators from fractional
calculus. Such operators are introduced in Appendix 1.

Let us first determine a fractional PDEwhose unique Laplace-transformable solu-
tion is given by the probability generating function. In the following we will use
Caputo fractional derivatives as defined in Eq. (19) of Appendix 1.

Proposition 3 The function Gν(z, t) solves the following fractional partial differ-
ential equation:

∂νGν

∂tν
(z, t) = −λ(1 − z)Gν(z, t) + μ(1 − z)

∂Gν

∂z
(z, t). (8)

Moreover, this equation admits a unique Laplace-transformable solution such that,
for any t ≥ 0, Gν(0, t) = pν

0(t) and, for any z ∈ R, Gν(z, 0) = 1.

Proof Let us recall (see [24]) that the Laplace transform of fν(t, y) is given by

L[ fν(·, y)](s) = sν−1e−ysν

, s > 0, y ≥ 0. (9)

Let us denote by Gν(z, s) the Laplace transform of Gν . We have

Gν(z, s) = 1

s

∫ +∞

0
G(z, y)sνe−ysν

dy = −1

s

∫ +∞

0
G(z, y)de−ysν

.

Let us integrate by parts the right-hand side to obtain

Gν(z, s) = 1

s
+ 1

s

∫ +∞

0

∂G

∂t
(z, y)e−ysν

dy.

Now, recalling that G is solution of (3) we have
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Gν(z, s) = 1

s
− λ(1 − z)

s

∫ +∞
0

G(z, y)e−ysν dy + μ(1 − z)

s

∫ +∞
0

∂G

∂z
(z, y)e−ysν dy

= 1

s
− λ(1 − z)

sν

∫ +∞
0

G(z, y)sν−1e−ysν dy

+ μ(1 − z)

sν

∫ +∞
0

∂G

∂z
(z, y)sν−1e−ysν dy

= 1

s
− λ(1 − z)

sν
Gν(z, s) + μ(1 − z)

sν
∂ Gν

∂z
(z, s).

Multiplying everything by sν−1 we achieve

sν−1

(

Gν(z, s) − 1

s

)

= −1

s
λ(1 − z)Gν(z, s) + 1

s
μ(1 − z)

∂ Gν

∂z
(z, s).

First of all, let us observe that being t 	→ Gν(z, t) continuous for fixed z ∈ R, we
have that it is fractionally integrable. Thus, taking the inverse Laplace transform, we
obtain

Iν
t (Gν(z, ·) − 1) =

∫ t

0

(

−λ(1 − z)Gν(z, s) + μ(1 − z)
∂Gν

∂z
(z, s)

)

ds.

Now let us observe that the integrand in the right-hand side is continuous in t (being,
for each z ∈ R, both Gν(z, s) and

∂Gν

∂z (z, s) sum of normally convergent series of
continuous functions in s) hence the left-hand side is in C1 and we can differentiate
both sides, obtaining

∂νG

∂tν
(z, t) = −λ(1 − z)Gν(z, t) + μ(1 − z)

∂Gν

∂z
(z, t).

Concerning the uniqueness, it follows from the invertibility of the Laplace transform
together with the uniqueness of the solution of the Cauchy problem (for fixed s > 0):

{
∂ Gν

∂z (z, s) = (sν+λ(1−z))
μ(1−z) Gν(z, s) + sν−1

μ(1−z)

Gν(0, s) = πν
0 (s)

where πν
0 (s) is the Laplace transform of pν

0(t). ��
With this in mind, we can actually show the following Proposition

Proposition 4 The sequence pν(t) = (pν
n(t))n≥0 is the unique global solution

belonging to 	2(�(·; ρ)) of the fractional difference-differential Cauchy problem

⎧
⎪⎨

⎪⎩

dν pν
0

dtν (t) = −λpν
0(t) + μpν

1(t)
dν pν

n
dtν (t) = λpν

n−1(t) − (λ + nμ)pν
n(t) + (n + 1)μpν

n+1(t) n ≥ 1

pν
n(0) = δn,0 n ≥ 0.

(10)
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Moreover, pν is locally Bochner integrable in 	2(�(·, ρ)), and dνpν

dtν is well defined
(as a strong 	2(�(·, ρ)) derivative) and locally Bochner integrable in 	2(�(·, ρ)).

Proof To show that pν(t) = (pν
n(t))n≥0 is solution of Eq. (10) is actually equivalent

to show that the probability generating functionGν(z, t) is solution of Eq. (8). Indeed
if pν(t) = (pν

n(t))n≥0 is solution of Eq. (10), we obtain Eq. (8) by multiplying the
second equation by zn and then summing over n. Viceversa, if Gν(z, t) is solution of
Eq. (8), we obtain Eq. (10) by differentiating both sides n times (for n ≥ 0) and taking
z = 0. Thus, since by Proposition 3 we know that Gν(z, t) is solution of Eq. (8) we
have that pν(t) is solution of (10). Now let us observe that�(·; ρ) is a finite measure
on N0, hence, since pν

n(t) ≤ 1, pν(t) ∈ 	2(�(·; ρ)). Moreover, one can easily show
that t 	→ ‖pν(t)‖	2(�(·;ρ)) is bounded in [0,+∞). In particular this implies that,
being t 	→ ‖pν(t)‖	2(�(·;ρ)) in L

1
loc, p

ν is locally Bochner integrable (see, for instance
[2, Theorem 3.14]) and, for any t > 0, τ ∈ [0,+∞) 	→ (t − τ)−νpν(τ )χ[0,t)(τ ) ∈
	2(�(·; ρ)) is Bochner integrable. Now let us rewrite Eq. (10) as

{
∂νpν

∂tν = G pν

pν(0) = (δn,0)n≥0,
(11)

where G is an infinite-dimensional matrix. By a simple application of Schur’s test
(see [14]), we know thatG : 	2(�(·, ρ)) → 	2(�(·, ρ)) is continuous and thenG pν

is Bochner integrable. Thus we can write the previous equation in integral form as

1

�(1 − ν)

∫ t

0

1

(t − τ)ν
pν(τ )dτ =

∫ t

0
G pν(τ )dτ. (12)

It is not difficult to show, integrating term by term in Eq. (10), that pν is solution of
(12). Moreover, let us fix t0 > 0 and ε > 0 and observe that

‖G(pν(t) − pν(t0))‖	2(�(·,ρ)) ≤ ‖G‖ ‖pν(t) − pν(t0)‖	2(�(·,ρ)) .

Being, for any n ∈ N, (pν
n(t) − pν

n(t0))
2 ≤ 4, the function

F : t 	→ ‖pν(t) − pν(t0)‖2	2(�(·,ρ)) is continuous since it is sum of a normally conver-
gent series of continuous functions. Moreover F(t0) = 0, thus, by continuity, there
exists a δ > 0 such that for any t ∈ (t0 − δ, t0 + δ) it holds |F(t)| < ε2

‖G‖2 and then

‖G(pν(t) − pν(t0))‖	2(�(·,ρ)) < ε,

concluding that Gpν is continuous. Thus we can differentiate both sides of (12) to
obtain (11). From this relation we also obtain that ∂νpν

∂tν is well defined and locally
Bochner integrable. Finally uniqueness follows from [3, Corollary 2]. ��
Remark 1 Such result can be also achieved by spectral decomposition. Indeed the
same proposition is also proved in [5], by also showing that the following spectral
decomposition holds:
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pν
n(t) = �(n; ρ)

+∞∑

m=0

(−1)mEν(−mμtν)
ρm

m!Cm(n; ρ), n ∈ N, t ≥ 0,

where Eν(t) is the Mittag-Leffler function defined in Eq. (21) of Appendix 1. In

particular, for any function h ∈ 	2(�(·, ρ)) with h(n) = ∑+∞
m=0 hm

√
ρm

m!Cm(n; ρ),
defining u(t) = E[h(N ν(t))|N ν(0) = 0] it holds

u(t) =
+∞∑

m=0

(−1)mhm

√
ρm

m! Eν(−mμtν), t ≥ 0. (13)

Moreover, we can also express the probability generating function as

Gν(z, t) =
+∞∑

m=0

(−1)mEν(−mμtν)
ρm

m!
+∞∑

n=0

Cm(n; ρ)�(n; ρ)zn, t ≥ 0, z ∈ R .

One could check that

Gν(1, t) =
+∞∑

m=0

(−1)mEν(−mμtν)
ρm

m! δm,0 = 1, t ≥ 0.

3.3 Laplace Transforms of pν
n(t) and Gν(z, t)

In this subsection we want to determine the Laplace transforms of the state proba-
bilities pν

n(t) and of the probability generating function Gν(z, t). To do this, let us
first show the following easy Lemma.

Lemma 1 Let h : R+ → R be a Laplace-transformable function with domain of the
Laplace transform D such that {s ∈ C : �(s) > 0} ⊆ D and define for t > 0

hν(t) =
∫ +∞

0
h(y) fν(t, y)dy.

Let us denote by ĥ(s) and ĥν(s) the Laplace transform respectively of h and hν for
s > 0. Then

ĥν(s) = sν−1ĥ(sν). (14)

Proof Equation (14) easily follows from Eq. (9). Indeed we have

ĥν(s) = sν−1
∫ +∞

0
e−sν yh(y)dy = sν−1ĥ(sν).
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��
By just applying this Lemma, we have the following result.

Proposition 5 Letπν
n (s) andGν(z, s) be the Laplace transform respectively of pν

n(t)
and Gν(z, t). Then we have, for any s > 0 and z ∈ R,

πν
n (s) = (−1)nsν−1

μ

+∞∑

k=n

(
k

n

) �
(
sν

μ

)

�
(
sν

μ
+ k + 1

) (−ρ)k,

Gν(z, s) = sν−1

μ

+∞∑

k=0

�
(
sν

μ

)

�
(
sν

μ
+ k + 1

) (−ρ(1 − z))k .

3.4 Mean and Variance of the Process

From Eq. (8) one can easily obtain the mean of our process.

Corollary 1 The process Nν(t) admits finite mean for any t > 0, given by

E[Nν(t)] = ρ (1 − Eν(−μtν)) , t ≥ 0. (15)

Proof Let us differentiate both sides of Eq. (8) with respect to z and then let us pose
z = 1. We have

∂

∂z

(
∂νG

∂tν

)

(1, t) = λGν(1, t) − μ
∂Gν

∂z
(1, s).

Now let us observe that since G is defined by a power series, it is easy to check that
we can exchange the order of derivatives in the left-hand side. Moreover, we have
Gν(1, t) = 1 and ∂Gν

∂z (1, s) = E[Nν(t)], thus we have

∂ν
E[Nν(t)]
∂tν

= λ − μE[Nν(t)]. (16)

Recalling thatE[Nν(0)] = 0,we can take theLaplace transformofEq. (16) to achieve

sν L[E[Nν(·)]](s) = λ

s
− μL[E[Nν(·)]](s)

from which we have

L[E[Nν(·)]](s) = λ

s(sν + μ)
.

Taking the inverse Laplace transform we obtain, by using Eq. (23),
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E[Nν(t)] = λtνEν,ν+1(−μtν),

where Eν,ν+1(t) is the two parameters Mittag-Leffler function defined in Eq. (22) in
Appendix 1. Now let us write explicitly Eν,ν+1(−μtν) to observe that we have

E[Nν(t)] = λtν
+∞∑

n=0

(−1)n
μntνn

�(ν(n + 1) + 1)
= −ρ

+∞∑

n=0

(−1)n+1 (μtν)n+1

�(ν(n + 1) + 1)

= −ρ

(+∞∑

n=1

(−1)n
(μtν)n

�(νn + 1)

)

= ρ

(

1 −
+∞∑

n=0

(−μtν)n

�(νn + 1)

)

= ρ (1 − Eν(−μtν)) .

Remark 2 One could obtain Eq. (16) starting directly from Eq. (5) and observing
that

E[Nν(t)] =
∫ +∞

0
E[N (y)] fν(t, y)dy.

Thus we obtain Eq. (16) by working with the Laplace transform of E[Nν(t)].
Moreover, by using relation (14), it is easy to determine directly Eq. (15) without
using any fractional differential equation.

One could also use the relation (13) to determine E[Nν(t)]. Indeed, by using again
h(n) = n, we obtain Eq. (15). Moreover, by using h(n) = n2, we have

E[N 2
ν (t)] = ρ(1 − Eν(−μtν)) + ρ2 (1 − 2Eν(−μtν) + Eν(−2μtν)) , t ≥ 0

from which we have the variance

Var[Nν(t)] = ρ(1 − Eν(−μtν)) + ρ2
(
Eν(−2μtν) − E2

ν (−μt)
)
, t ≥ 0.

Let us observe that the lack of semigroup property due to the presence of the Mittag-
Leffler function (see [21]) gives us Var[Nν(t)] �= E[Nν(t)] and then Nν(t) does not
admit Poisson distribution for any t > 0. However, it is shown in [5] that the invariant
(and then the limit) distribution of Nν(t) is still a Poisson one �(·; ρ). This is also
confirmed by the Laplace transform πν

n (t) as n ≥ 0. The lack of semigroup property
will be the main character of next section.

4 Interpretation of Nν(t) as a Queue

In this section we will focus on the interpretation of the process Nν(t) as a queue.
In contrast of what is stated in [17], in the fractional case we will see a difference in
the interpretation between the fractional M/M/∞ queue and the fractional M/M/1
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queue with responsive server. Let us first introduce some definitions, following the
lines of [29].

Definition 1 We define the following quantities:

• The inter-arrival times {In, n ≥ 1} are the time intervals between the arrival of the
(n − 1)-th and the n-th customers, where I1 is the arrival of the first customer;

• The arrival times {An, n ≥ 1} are the time instants in which the n-th customer joins
the system;

• The service times {Sn, n ≥ 1} are the time intervals of service dedicated to the n-th
customer;

• The inter-exit times {Fn, n ≥ 1} are the time intervals between the exit of two
customers;

• The exit times {En, n ≥ 1} are the ordered time instants in which each customer
exits the system;

• The inter-event times {Jn, n ≥ 1} are the time intervals between the n − 1-th and
the n-th events (arrival or service) in the system, while J1 is the instant of the first
event;

• The event times {Tn, n ≥ 1} are the time instants in which the n-th event happens;
• The virtual waiting time {W (t), t ≥ 0} is the time interval a customer has to wait
until it exits the system if it enters the system at time t .

Let us also give the following notation:

• We say a random variable T is Mittag-Leffler distributed of parameter α > 0 and
fractional order β ∈ (0, 1) if its distribution function FT (t) = P(T ≤ t) is given
by

FT (t) = (1 − Eβ(−αtβ))χ[0,+∞)(t),

whereχ[0,+∞)(t) is the indicator function of the interval [0,+∞). Itwill be denoted
by T ∼ ML(α, β);

• We say a random variable T is generalized Erlang distributed (see [22]) of shape
parameter n ∈ N, rate α > 0 and fractional order β ∈ (0, 1) if its probability den-
sity function fT (t) admits Laplace transform

f̂T (s) = αn

(α + sβ)n
, s > 0.

It will be denoted by T ∼ GEn(α, β);
• We say a random variable T is residual Mittag-Leffler distributed (see [4]) of
parameter α, fractional order β ∈ (0, 1) and lag interval �t ≥ 0 if its distribution
function FT (t) = P(T ≤ t) is given by

FT (t) =
(

1 − Eβ(−α(t + �t)β)

Eβ(−α�tβ)

)

χ[0,+∞)(t).

It will be denoted by T ∼ RML(α, β,�t).
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First of all, let us recall (see [22]) that if (Tn)n≥1 are independent ML(α, β) random
variables then

∑n
k=1 Tk ∼ GEn(α, β). Moreover (See [4]), if T ∼ ML(α, β) then

P(T ≤ t + �t |T ≥ �t) = 1 − Eβ(−α(t + �t)β)

Eβ(−α�tβ)
.

4.1 Inter-arrival, Inter-event and Inter-exit Times

Given a time t > 0 it will be useful to define the following process

T (t) = max{Tn : Tn ≤ t}

which is the time instant of the last event before t .
Let us prove the following Proposition, which is common in both the interpretations.

Proposition 6 It holds:

1. The inter-arrival times In are independent and distributed as I ∼ ML(λ, ν);
2. The arrival times An are distributed as GEn(λ, ν);
3. Let Jk+1 be a inter-event time for k ∈ N. Then

P(Jk+1 ≤ t |Nν((Tk + t)−) = n) = 1 − Eν(−(λ + nμ)tν);

4. The inter-event time J1 coincides with I1 and A1;
5. Let Fk+1 be a inter-exit time for some k ∈ N (see Fig. 1). Then

P(Fk+1 ≤ t |T (Ek + t) = Ek, Nν((Ek + t)−) = n) = 1 − Eν(−nμtν).

Proof Before proving the Proposition let us observe that the process Nν(t) is a Semi-
Markov process, then the set K (ω) = {t > 0 : Nν(t−, ω) �= Nν(t, ω)} is a semi-
regenerative set. Hence strong Markov property holds for any stopping time T such
that T (ω) ∈ K (ω) for any ω ∈ � (for other details see [11]).
Let us prove 1. To study arrival times, let us setμ = 0 (i.e. we consider the associated
pure birth process Ñν(t)). Now let Nn be the embedded Markov chain of the pure
birth process and let us consider the Markov renewal process (Nn, In) (see [9]).
Observe that P(Nn+1 = i + 1, In+1 ≤ t |Nn = i) is independent of n and P(Nn+1 =
i + 1|Nn = i) = 1, hence we have

P(In+1 ≤ t |Nn = i) = P(Nn+1 = i + 1, In+1 ≤ t |Nn = i) =
= P(N1 = i + 1, I1 ≤ t |N0 = i) = P(I1 ≤ t |N0 = i).

This means that to study the inter-arrival times between the i-th customer and the
i + 1-th customer, we can simply consider the associated pure birth process Ñν(t)
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Fig. 1 Illustration of an inter-exit time as in Proposition 6, statement 5

conditioned by Ñν(0) = i . Moreover, since we are not interested in what happens
after the i + 1-th customer entered the queue, we can set the state i + 1-th to be
absorbent. We obtain (denoting by p̃ν

k the state probabilities of Ñν(t))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dν p̃ν
i

dtν (t) = −λ p̃ν
i (t)

dν p̃ν
i+1

dtν (t) = λ p̃ν
i (t)

p̃ν
i (0) = 1

p̃ν
i+1(0) = 0.

Solving this equation we have P(I1 > t |Nn = i) = p̃ν
n(t) = Eν(−λtν). Indepen-

dence easily follows from the independence of the inter-arrival times in the non-
fractional model.
The proofs of 3 and 5 are analogous hence we omit them.
Statement 2 is consequence of the fact that An = ∑n

k=1 Ik . Finally in statement 4 we
have I1 = A1 by definition and I1 = J1 since we are assuming Nν(0) = 0. ��

Let us observe that, by the lack of semigroup property of the Mittag-Leffler func-
tion, for any inter-event time J , inter-arrival time I and service time S, given T the
time instant of the last event,
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P(J > t |N (T−) = N (T ) + 1, N ((T + t)−) = n)

= P(min{F, I } > t |N (T−) = N (T ) + 1, N ((T + t)−) = n)

�= P(F > t |N (T−) = N (T ) + 1, N ((T + t)−) = n)P(I > t),

in contrast with what happens in the non-fractional case.

Remark 3 Let us observe that the conditioning in Statement 5 of Proposition 6 is
indispensable to be sure that the process remains in the current state.

4.2 Virtual Waiting Times for the Fractional M/M/∞

Let us now focus our attention on virtual waiting times. Let us recall that a M/M/∞
system is a system with an infinite number of servers, hence whenever a customer
enters the service, it is served. Since the service times are random variables, here
we do not have a FIFO (First In First Out) service policy. Thus it will be useful to
identify the customers. Let us define for the i-th customer the process

ui (t) =
{
1 Ai ≤ t < Ai + Si
0 otherwise.

In particular ui (t) = 1 if and only if the i-th customer is in the service at time t > 0.
Moreover, we can also define the quantity U (t1, t2) ∈ N0 as the index of the first
customer that leaves the service in the time interval [t1, t2). Moreover, we will need
to identify each exit time of each customer. Thus let us denote by E (i) the exit time
of the i-th customer (recalling that Ei is the i-th exit time, which could not be the
exit time of the i-th customer).
In the M/M/∞ queue the virtual waiting timeW (t) coincides with the service time
S of a customer if its arrival time is t . In the classical case one could consider each
server to be independent of the others. This property lead to the fact that (by using
then the Markov property of the process N (t) and the semigroup property of the
exponential) each service time was exponentially distributed of parameter μ.
Here the lack of semigroup property in the Mittag-Leffler distributions gives us a
problem on determining the virtual waiting time of each customer. However, we can
still express something on the minimum of the virtual waiting times of the customers
that are actually in the system.

Proposition 7 Let A1, . . . , An+1 be the arrival times of the first n + 1 customers.
Let us consider t1 < · · · < tn+1 < s in [0,+∞) and let us denote by Wi (t) the virtual
waiting time of the i-th customer. Then, defining X = mini≤n+1

i �= j
{Wi (ti ) − (s − ti )},

we have
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P
(
X ≤ t |Ai = ti ∀i ≤ n + 1, E ( j) = T (E ( j) + t) = s, U (0, s + t) = j

) =
= 1 − Eν(−nμtν).

Proof Let us just understand what the random variable X is, under our conditioning.
Each user enters the system at time ti and leaves the system at time Wi (ti ) + ti .
Let us sum and subtract s from this relation to obtain that the exit time is given by
Wi (ti ) − (s − ti ) + s. The condition E ( j) = T (E ( j) + t) means that the last event
before t in the system was an exit hence there are no entrance in the system up to
time t . In particular the state of the system is N (t−) = n. MoreoverWi (ti ) − (s − ti )
is the time interval between the exit of the j-th customer (since E ( j) = T (E ( j)+t)
and U (0, s + t) = j) and the exit of the i-th customer. Thus the variable X is an
inter-exit time. Moreover, we are conditioning with the fact that the last event is an
exit and the state of the system is fixed at n, hence Statement 5 of Proposition 6
concludes the proof (see Fig. 2).

4.3 Virtual Waiting Times for the Fractional M/M/1 Queue
with Responsive Server

The case of the M/M/1 queue with responsive server is quite different. Indeed since
here we have only one server, each customer has to wait for the others to complete
their service before being served. Hence the queue exhibits a FIFO service policy.
For this reason we can observe that the service times Sn and the inter-exit times Fn

coincide and thus are independent, while the virtual waiting times W (t) are the sum
of the time the customer spends in the queue and its service time. Moreover, we have
Ei = E (i) for any i ∈ N.
We need to introduce some new quantities linked with the arrival and the exit times
of the customers. Let us define, for t > 0, A(t) = max{An : An ≤ t} the last instant
of arrival before t and E(t) = max{En : En ≤ t} the last instant of exit before t .
These quantities will play a major role in the following proposition.

Proposition 8 Let us define the function

FW (s; t, t0, n) = P(W (t) ≤ s|A(t + s) = t, E(t) = t0, N (t) = n + 1)

and let fW (s; t, t0, n)ds be its distributional derivative. Let us also denote
f̂W (z; t, t0, n) the Laplace transform of fW (s; t, t0, n)ds. Then we have

f̂W (z; t, t0, n) =
⎛

⎝1 − e�t z
∑+∞

k=0
(−(n+1)μ)k

�(kν+1) z−kν�(kν + 1, z�t)

Eν(−(n + 1)μ�tν)

⎞

⎠
n∏

i=1

iμ

zν + iμ
,

where
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Fig. 2 Illustration of the virtual waiting times as in Proposition 7



18 G. Ascione et al.

�(x, y) =
∫ +∞

y
t x−1e−t dt

is the upper incomplete Gamma function and �t = t − t0 (see Fig. 3).

Proof As we can see by the conditioning, no other customer entered the queue after
t . Let us denote by Sn+1 the service time of the customer that is being served at time
t and with Sn, . . . , S1 the successive service times. Thus we have

W (t) =
n∑

i=1

Si + (Sn+1 − �t), (17)

where �t = t − t0.
First of all, let us observe that, by Statement 5 of Proposition 6, Si ∼ ML(iμ, ν) for
any i ≤ n. Concerning Sn+1, we know that the customer started its service at time t0
hence we know that Sn+1 ≥ �t . Thus we have that

P(Sn+1 − �t ≤ s|Sn+1 ≥ �t) = 1 − Eν(−(n + 1)μ(s + �t)ν)

Eν(−(n + 1)μ�tν)

and in particular, under our conditioning, Sn+1 − �t ∼ RML((n + 1)μ, ν,�t).
Thus, taking the Laplace transform of W (t) as written in Eq. (17), recalling that
the random variable Si are independent, we have

f̂W (z; t, t0, n) = z

(
1

z
− Ls→z[Eν(−(n + 1)μ(s + �t)ν)]

Eν(−(n + 1)μ�tν)

) n∏

i=1

iμ

zν + iμ
.

To determine the remaining Laplace transform, let us observe that

∫ +∞
0

Eν(−(n + 1)μ(s + �t)ν)e−szds = e�t z
∫ +∞
�t

Eν(−(n + 1)μwν)e−wzdw

= e�t z
+∞∑

k=0

(−(n + 1)μ)k

�(kν + 1)

∫ +∞
�t

wkνe−wzdw

= e�t z
+∞∑

k=0

(−(n + 1)μ)k

�(kν + 1)
z−kν−1

∫ +∞
z�t

ukνe−udu

= e�t z
+∞∑

k=0

(−(n + 1)μ)k

�(kν + 1)
z−kν−1�(kν + 1, z�t),

concluding the proof.
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Fig. 3 Illustration of the virtual waiting times as in Proposition 8
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Appendix 1: Fractional Integrals and Derivatives

Let us recall the definition of fractional integral (see [19] for a survey). Let us fix
ν ∈ (0, 1) and consider a function f : R+ → R. We define the fractional integral of
f of order ν (if it exists) the function

Iν
t f = 1

�(ν)

∫ t

0
(t − τ)ν−1 f (τ )dτ.

For any suitable function f : R+ → R, we define the fractional Riemann-Liouville
derivative and the fractional Caputo derivative of order ν respectively the functions

Dν
t f = d

dt
I1−ν
t f,

dν f

dtν
= I1−ν

t

(
d f

dt

)

. (18)

In particular any Caputo-derivable function f is also Riemann-Liouville-derivable
and it holds
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dν f

dtν
= Dν

t ( f (t) − f (0)). (19)

Wecan thus define the regularizedCaputoderivative forRiemann-Liouville-derivable
functions by relation (19).
Concerning the Laplace transform of such functions, we have, for any Laplace-
transformable function f with Laplace transform f̂ :

Lt→s
[
Iν
t f

] = sν−1 f̂ (s), Lt→s

[
dν f

dtν

]

= sν f̂ (s) − sν−1 f (0). (20)

Let us also recall (see [28] for instance) that fractional Cauchy problems of the form

{
∂ν x
∂tν (t) = f (x(t), t) t ∈ (0, T ]
x(0) = x0

admit a unique solution under suitable assumptions. In particular the relaxation equa-
tion {

∂ν x
∂tν (t) = λx(t) t > 0

x(0) = x0

admits as unique solution the function

x(t) = x0Eν(λt
ν),

where Eν is the Mittag-Leffler function (see [15]), defined as

Eν(z) =
+∞∑

n=0

zn

�(νn + 1)
, ν > 0, z ∈ C. (21)

Other functions linked to the Mittag-Leffler ones are the two parameters Mittag-
Leffler functions, defined as

Eν,β(z) =
+∞∑

n=0

zn

�(νn + β)
, ν, β > 0, z ∈ C. (22)

These functions come into play when one tries to solve a fractional differential
equation via Laplace transform (see [20]). Thus, let us recall the following useful
Laplace transform formula:

Lt→s[tγ−1Eν,γ (λtν)] = sν−γ

sν − λ
, ν, γ > 0, s ∈ C, |λsν | < 1. (23)
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Appendix 2: Laplace Transforms of pn(t) and G(z, t)

In this Appendix we aim to determine the Laplace transform of the state probabilities
pn(t) of N (t) and of the probability generating function G(z, t). Let us start with
the Laplace transform of pn(t).

Proposition 9 The Laplace transform πn(s) of the state probabilities pn(t) of the
process N (t) are given by

πn(s) = (−1)n

μ

+∞∑

k=n

(
k

n

) �
(

s
μ

)

�
(

s
μ

+ k + 1
) (−ρ)k .

Proof Let us observe that

πn(s) =
∫ +∞

0
e−st pn(t)dt

and let us consider the change of variablesw = 1 − e−μt , recalling Eq. (2).We obtain

πn(s) = ρn

n!μ
∫ 1

0
(1 − w)

s
μ
−1e−ρwwndw.

By [13, Formula 3.383.1] we conclude the proof. ��
In an analogous way, one can calculate the Laplace transform of G(z, t).

Proposition 10 The Laplace transform G(z, s) of the probability generating func-
tion G(z, t) of the process N (t) is given by

G(z, s) = 1

μ

+∞∑

k=0

�
(

s
μ

)

�
(

s
μ

+ k + 1
) (−ρ(1 − z))k .
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Sinc Methods for Lévy–Schrödinger
Equations

Gerd Baumann

Abstract We shall examine the fractional generalization of the eigenvalue problem
of Schrödinger’s equation for one dimensional problems in connection with Lévy
stable probability distributions. The corresponding Sturm–Liouville (SL) problem
for the fractional Schrödinger equation is formulated and solved on R satisfying
natural Dirichlet boundary conditions. The eigenvalues and eigenfunctions are com-
puted in a numerical Sinc approximation applied to the Riesz–Feller representation
of Schrödinger’s generalized equation. We demonstrate that the eigenvalues for a
fractional operator approach deliver the well known eigenvalues of the integer order
Schrödinger equation and are consistent with analytic WKB estimations. We can
also confirm the conjecture that only for skewness parameters θ = 0 the eigenvalues
are real quantities and thus relevant in quantum mechanics. However, for skewness
parameters θ �= 0, the Sinc approach yields complex eigenvalues with related com-
plex eigenfunctions, and a fortiori, real probability densities.

Keywords Lévy–Schrödinger equation · Sturm–Liouville problem · Riesz–Feller
derivative · Fractional operator · Sinc approximation · Fractional Schrödinger
equation · Sinc collocation · Sinc convolution · Harmonic oscillator · Quarkonium
model · Finite quantum well

1 Introduction

Schrödinger’s equation is one of the central equations of quantum mechanics using
a probability approach for its interpretation [1]. Based on probability, Feynman
and Hibbs reformulated Schrödinger’s equation using the celebrated path integral
approach based on the Gaussian probability distribution. Kac in his 1951 lecture
pointed out that a Lévy path integral generates the functional measure in the space
of left (or right) continued functions having only discontinuities of the first kind, and
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thus may lead to a generalization of Feynman’s path integrals to Lévy path integrals
[2]. These ideaswere also examined byMontroll [3] at that time using only basic con-
cepts of quantum mechanics in order to generalize the Gaussian picture to the exotic
nature of the statistical processes of Paul Lévy and the incredibly complex physical
phenomena that these statistics promised to explain. A summary of the ideas was
given recently by Bruce West [4] leading to a differential free formulation of a gen-
eralized Schrödinger equation based on Lévy processes in short Lévy–Schrödinger
equation (LS) in the following. The assumption of scaling for the propagator directly
results in the Riesz representation of Schrödinger’s equation based on Lévy stable
processes [4].

Laskin took up these ideas, extended Feynman’s path integral to Lévy path inte-
grals, and developed a space-fractional Schrödinger equation (SFSE) containing the
Riesz–Feller fractional derivative [5, 6], as already conjectured by Kac andMontroll
[2, 3]. A practical application of the fractional Schrödinger equation was proposed
recently by Longhi [7]. In the framework of an optical application to the transverse
modes and resonance frequencies of a resonator correspond to the eigenfunctions
and energies of the stationary fractional Schrödinger equation with Lévy index α in
an external potential V (x).

No numerical verification has been given to date of Laskin’s eigenvalues and
eigenfunctions approach. The results we shall present are new in the sense that
we are able to verify numerically the suggested eigenvalue relations and also, to
give a general approach of eigenvalue approximations based on the Riesz–Feller
operator. We note that for a special Lévy index α = 1, Jeng et al. in [8] presented
an asymptotic approach for the harmonic oscillator which is in agreement with our
findings. However, we shall show numerically that the constraints introduced by
Laskin in [6] for the potential V (x) ∼ ∣

∣x |β with 1 ≤ β ≤ 2 are not real constraints. It
turned out that forβ > 0, as Laskin alsomentioned in [9],we are able to determine the
eigenvalues and eigenfunctions accurately and use the suggested formula given in [6]
for eigenvalues for the quarkonium potentials. This allows us to compute eigenvalues
for the quarkonium problem of QCD. Even more the proposed numerical approach
is able to deal with a large variety of potential functions V (x) to detect bound
states and free quantum states as well. The access to eigenvalues and analytically
defined eigenfunctions opens a broad field of applications in quantum mechanics
which is no longer restricted to Gaussian processes. Introducing Lévy processes
in the interpretation of quantum mechanics yields novel insights as well as novel
phenomena that may be accessible for future research, especially for the application
to the case of known eigenvalues and eigenfunctions for a given potential V (x); see
for example the recent discussion in [10, 11].

Although the 1 + 1 dimensional formulation has in the past been applied to higher
dimensional problems [12], we shall constrain our discussion to the one dimensional
case

i∂t u(x, t) = −1

2
∂x,xu(x, t) + V (x)u(x, t) with − ∞ < x < ∞ and t ≥ 0, (1)
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where V (x) is the potential of the quantum mechanical problem.
There is an ongoing discussion in the literature regarding the existence of a frac-

tional generalization of (1) to the case of a potential with finite support [6, 8, 13,
14]. This discussion is motivated, in part, due to the lack of known methods for
dealing with problems that have a potential with infinite support. Our approach does
not suffer from such a restriction, and we shall thus take the classical route in this
paper by assuming that the Sturm–Liouville problem satisfies Dirichlet conditions
at x = ±∞. This assumption is due to the classical quantum mechanical properties
that a wave function has to satisfy based on a probability interpretation.

In addition let us assume that the solution of (1) is separable as u(x, t) =
v(x) exp(−iλt), which allows to rewrite (1) as

− 1

2
∂x,xv(x) + V (x)v(x) = λv(x) with − ∞ < x < ∞, (2)

with λ = E/(�ω), the eigenvalues measured in terms of �ω and the boundary con-
ditions for the eigenfunctions v(±∞) = 0. The potential V (x) is assumed to satisfy
the minimal requirements for Sturm–Liouville boundary value problems (for details
see [15, 16]). Note, we have used scaled units x = √

�/(mω)ξ in the representation
of (1) and (2) and we have adopted the original symbol for the spatial coordinate.
Laskin in 2000 introduced the fractional representation of (2) using the Riesz–Feller
potential to replace the Laplacian in Schrödinger’s equation [5]. The corresponding
Sturm–Liouville problem on R is given as

− Dα

∞
D−∞

α

x;θ
v(x) + V (x)v(x) = λv(x) with − ∞ < x < ∞ and v(±∞) = 0,

(3)
where Dα is an appropriate constant and Dα

x;θ represents the Riesz–Feller pseudo-

differential operator (see Appendix 5). The notation
d
D
c

α

x;θ
takes into account the

actual interval of integration where (c, d) is either a finite, semi-infinite or infinite
interval. The problems discussed in connectionwith (3) are how are the eigenvalues λ

related to the fractional order α and how the eigenvalues are separated in terms of the
quantum number n. There are only a few analytic results available, based on WKB
approximations for testing these results [6, 8]. The analytic results are mainly related
to the classical model of an harmonic oscillator and we extend these numerically to
other types of oscillators. Another important question discussed in connection with
(3) is the behavior of the eigenvalues and eigenfunctions if the potential V (x) is
defined on a finite support of R. This question touches the open problem of how
to define the boundary conditions for this infinite integral eigenvalue problem. The
core problem is that the Riesz–Feller potential is incorporating all influences on the
entire real line and that the introduction of finite boundaries will dismiss a large
contribution of these interactions. We shall introduce finite boundaries and at the
same time keep the influences of the Riesz–Feller potential for the rest of the space.
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The separation of the finite and infinite contributions can be formally achieved by
using the integral properties of the Riesz–Feller potential as follows

− Dα

(
a
D−∞

α

x;θ
v(x) + b

D
a

α

x;θ
v(x) + ∞

D
b

α

x;θ
v(x)

)

+ V (x)v(x) = λv(x), (4)

with −∞ < x < ∞ and v(a) = v(b) = v(±∞) = 0, where a and b are finite real

values and the notation
d
D
c

α

x;θ
takes into account the actual interval of integration. If

we rearrange in equation (4) terms as follows we are able to write

− Dα

b
D
a

α

x;θ
v(x) + V (x)v(x) − Dα

(
a
D−∞

α

x;θ
v(x) + ∞

D
b

α

x;θ
v(x)

)

= λv(x), (5)

which can be written as,

− Dα

b
D
a

α

x;θ
v(x) + V eff (x)v(x) = λv(x), (6)

with −∞ < x < ∞ and v(a) = v(b) = v(±∞) = 0. Here V eff (x) is an effective
potential consisting of the “stripped” potential V (x) defined on a finite support and

the confining potential W (x) = − Dα

(
a
D−∞

α

x;θ
· + ∞

D
b

α

x;θ
·
)

taking into account all

influences outside the support [a, b]. So that the effective potentialV eff (x) = V (x) +
W (x) keeping the interactions of the Riesz–Feller potential on R with the stripped
potential V (x). This separation of the potentials allows also the interpretation that
the Riesz–Feller derivative of the wave function evaluated at x outside the interval
[a, b] is determined by the values of the wave function inside the support where the
stripped potential is governing the equation embedded in the confinement potential
W . This fact is due to the nonlocal nature of the Riesz–Feller potential which is
different from the behavior of a local Laplacian. In other words if we confine the
stripped potential into the left and right sided parts of the Riesz–Feller potential, we
will not loose any nonlocal information but are able to deal with the problem on a
finite support. In addition such kind of division of the integral domain allows us to
introduce local properties for the function which also divides the solution structure
inside and outside the finite support. However, for practical applications we are only
considering the finite part of the solution.

The paper is organized as follows: in Sect. 2 we present the approximationmethod
shortly. Section3 discusses numerical examples and in Sect. 4 we give some conclud-
ing remarks.
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2 Approximation Method

The current section introduces and summarizes ideas for fractional operator approx-
imations already available in literature [17–20]. We use the properties of Sinc func-
tions allowing a stable and accurate approximation based on Sinc points [21]. The
following subsections introduce the basic ideas and concepts for a detailed represen-
tation we refer to [22, 23].

2.1 Sinc Methods

This section introduces the basic ideas of Sincmethods [24].Wewill discuss only the
main ideas as a collection of recipes to set up a Sinc approximation. We omit most of
the proofs of the different important theorems because these proofs are available in
literature [22, 23, 25, 26]. The following subsections collect information on the basic
mathematical functions used in Sinc approximation. We introduce Sinc methods to
represent indefinite integrations and convolution integrals. These types of integrals
are essential for representing the fractional operators of differentiation and integration
[23].

To start with we first introduce some definitions and theorems allowing us to
specify the space of functions, domains, and arcs for a Sinc approximation.

Definition 1 (Domain and Conditions.) Let D be a simply connected domain in
the complex plane and z ∈ C having a boundary ∂D . Let a and b denote two distinct
points of ∂D and φ denote a conformal map of D onto Dd , where Dd = {z ∈ C :
|I (z)| < d}, such that φ(a) = −∞ and φ(b) = ∞. Letψ = φ−1 denote the inverse
conformal map, and let Γ be an arc defined by Γ = {z ∈ C : z = ψ(x), x ∈ R}.
Given φ, ψ , and a positive number h, let us set zk = ψ(kh), k ∈ Z to be the Sinc
points, let us also define ρ(z) = eφ(z).

Note the Sinc points are an optimal choice of approximation points in the sense
of Lebesgue measures for Sinc approximations [21].

Definition 2 (Function Space.) Let d ∈ (0, π), and let the domains D and Dd be
given as in Definition 1. If d ′ is a number such that d ′ > d, and if the function φ

provides a conformal map ofD ′ ontoDd ′ , thenD ⊂ D ′. Letμ and γ denote positive
numbers, and let LLLμ,γ (D) denote the family of analytic functions u ∈ HolHolHol (D), for
which there exists a positive constant c1, such that, for all z ∈ D

|u(z)| ≤ c1
|ρ(z)|μ

(1 + |ρ(z)|)μ+γ
. (7)

Now let the positive numbers μ and γ belong to (0, 1], and let MMMμ,γ (D) denote
the family of all functions g ∈ HolHolHol (D), such that g(a) and g(b) are finite num-
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bers,where g(a) = limz→a g(z) and g(b) = limz→b g(z), and such that u ∈ LLLμ,γ (D)

where

u(z) = g(z) − g(a) + ρ(z)g(b)

1 + ρ(z)
. (8)

The two definitions allow us to formulate the following algorithmic steps for a
Sinc approximation.

The basis of a Sinc approximation is defined as:

Sinc (z) = sin(π z)

π z
. (9)

The shifted Sinc is derived from relation (9) by translating the argument by integer
steps of length h and applying the conformal map to the independent variable.

S( j, h) ◦ φ(z) = Sinc ([φ(z) − jh]/h), j = −M, . . . , N . (10)

The discrete shifting allows us to cover the approximation interval (a, b) in a
dense way while the conformal map is used to map the interval of approximation
from an infinite range of values to a finite one. Using the Sinc basis we are able to
represent the basis functions as a piecewise defined function wj (z) by

wj =

⎧

⎪⎨

⎪⎩

1
1+ρ(z) − ∑N

k=−M+1
1

1+ekh S(k, h) ◦ φ(z) j = −M
S( j, h) ◦ φ(z) j = −M + 1, . . . , N − 1 .

ρ(z)
1+ρ(z) − ∑N−1

k=−M
ekh

1+ekh S(k, h) ◦ φ(z) j = N
(11)

This form of the Sinc basis is chosen as to satisfy the interpolation at the boundaries.
The basis functions defined in (11) suffice for purposes of uniform−norm approxi-
mation over (a, b). The error of this approximation follows from the theorem:

Theorem 1 (Sinc Approximation [25].) Let u ∈ LLLμ,γ (D) for μ > 0 and γ > 0,
take M = [γ N/μ], where [x] denotes the greatest integer in x, and then set m =
M + N + 1. If u ∈ MMMμ,γ (D), and if h = (πd/(γ N ))1/2 then there exists a positive
constant c2 independent of N ,such that

∥
∥
∥
∥
∥
u(z) −

N
∑

k=−M

u (zk)wk

∥
∥
∥
∥
∥

≤ c2N
1/2e−(πdγ N )1/2 . (12)

with wk the base function (see Eq. (11)).

The proof of this theorem is given in [25]. Note the choice h = (πd/(γ N ))1/2

is close to optimal for an approximation in the space MMMμ,γ (D) in the sense that the
error bound in Theorem 1 cannot be appreciably improved regardless of the basis
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[25]. It is also optimal in the sense of the Lebesgue measure achieving an optimal
value less than Chebyshev approximations [21].

The above notation allows us to define a row vector VVVm(S) of basis functions

VVVm(S) = (w−M , . . . ,wN ) , (13)

with wj defined as in (11). For a given vector VVVm(u) = (u−M , . . . , uN ) T we now
introduce the dot product as an approximation of the function u(z) by

u(z) ≈ VVVm(S).VVVm(u) =
N

∑

k=−M

ukwk . (14)

Based on this notation, we will introduce in the next few subsections the different
integrals we need [23].

2.2 Discretization Formula

The errors of approximating the eigenvalues of the SL problem were introduced in
[27, 28] based on conformal mappings which are also used to symmetrize the SL
problem. The authors in [27, 28] derive an error estimation resulting from a Sinc
collocation method delivering a dependency of order O

(

N 3/2 exp
(−cN 1/2

))

for
some c and N → ∞ where m = 2N + 1 is the dimension of the resulting discrete
eigenvalue system. The basis of this relation is the corresponding Sturm–Liouville
problem given by

L u(x) = −v′′(x) + q(x)v(x) = λp(x)v(x) , (15)

with a < x < b and v(a) = v(b) = 0. Here, q(x) and p(x) are known functions and
λ is representing the eigenvalues of the problem. The bounds (a, b) define either a
finite, semi-infinite or infinite interval. Thus our aim is not only related to regular SL
problems but also includes singular one, where one of the boundaries is infinity or
both [29].

The SL equation can be transformed to an equivalent Schrödinger equation (SE)
with a potential function defined with the functions q(x), and p(x) of Eq. (15). Thus
a very special − but anyhow very important practical − case is q(x) = V (x) and
p(x) = 1, here (15) reduces to the Schrödinger equation (1)

− d2v(x)

dx2
+ V (x)v(x) = λv(x), (16)

with vanishing boundary conditions at x = a and x = b. If a and/or b are infinite
we call the SL problem singular. An eigenvalue of the problem is a value λn for
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which a nontrivial solution vn , the eigenfunction, exists which satisfies the boundary
conditions. For a SE problem it is easy to show that the operator on the left-hand
side of Eq. (16) is self-adjoint and hence the eigenvalues are real.

The generalization of Eq. (16) to its fractional form is discussed in literature [6,
14, 30] and stated as

− Dα

∞
D−∞

α

x;θ
v(x) + V (x)v(x) = λv(x), (17)

with
∞
D−∞

α

x;θ
= Dα

x;θ the Riesz–Feller operator and V (x) a potential function. For the

potentials of the form V (x) ∼ ∣
∣x |β and 1 < β < 2, Laskin [6] derived the eigenval-

ues in the representation

λn =
(

2π� D1/α
α

4B(1/β, 1/α + 1)

)βα/(α+β) (

n + 1

2

)βα/(α+β)

= A (β, α)

(

n + 1

2

)βα/(α+β)

, (18)

where n denotes the eigenvalue order. Since (17) includes a non-local operator in
the form of a convolution integral, we first have to discuss how such integrals can be
represented in terms of Sinc approximations. There is a special approach to evaluate
the convolution integrals by using a Laplace transform introduced by Lubich [31,
32].

For collocating an indefinite integral which is the basis to represent convolution
integrals let us define the explicit approximations of the functions (J u)(x) defined
by

(J u)(x) =
∫ x

a
u(t)dt with x ∈ (a, b) , (19)

we use the following basic relations [25]. Let Sinc (x) be given by (9) and let ek be
defined next using the integral σk :

σk =
∫ k

0
Sinc (x) dx = 1

π
Si (πk) , (20)

with Si (x) the sine integral. This sets us into position to write ek as

ek = 1

2
+ σk, k ∈ Z. (21)

Let M and N be positive integers, set m = M + N + 1, and for a given function
u defined on (a, b), define a diagonal matrix D(u) by D(u) = diag

[

u (z−M) , . . . ,

u (zN )]. Let I (−1) be a square Töplitz matrix of order m having ei− j , as its (i, j)th

entry, i, j = −M, . . . , N .
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(

I (−1)
)

i, j = ei− j with i, j = −M, . . . , N . (22)

Define square matrices Am and Bm by

Am = hI (−1)D(1/φ′)

Bm = h
{

I (−1)}T D(1/φ′), (23)

where the superscript “T” denotes the transpose. The collocated representation of
the indefinite integrals are thus given by

Jmu = VVVm(S).Am .VVVm(u) = hVVVm(S).I (−1).D(1/φ′).VVVm(u) . (24)

These are collocated representations of the indefinite integrals defined in (19) (see
details in [22]). The eigenvalues of Am and Bm are all positive which was a 20 year
old conjecture by Stenger. This conjecture was recently proved by Han and Xu [33].

In the notation introduced above we get for p

p =
∫ x

a
f (x − t)g(t)dt = F+(J )g ≈ F+

(

Jm
)

g , (25)

and

q =
∫ b

x
f (x − t)g(t)dt = F+(J ′)g ≈ F+

(

J ′
m

)

g , (26)

are accurate approximations, at least for g in a certain space [22]. Note p + q is an
accurate representation of a convolution integral and F+ is the Laplace transform
of J and J ′. The procedure to calculate the convolution integrals is now as fol-
lows. The collocated integralJm = VVVm(S).AmVVVm andJ ′

m = VVVm(S).BmVVVm , upon
diagonalization of Am and Bm in the form

Am = Xm .diag
[

sm,−M , . . . , sm,N
]

.X−1
m , (27)

Bm = Ym .diag
[

sm,−M , . . . , sm,N
]

.Y−1
m , (28)

with Σ = diag
[

s−M , . . . , sN
]

as the eigenvalues arranged in a diagonal matrix for
each of the matrices Am and Bm . Then the Laplace transform delivers the square
matrices F+ (Am) and F+ (Bm) defined via the equations

F+ (Am) = Xm .diag
[

F+
(

sm,−M
)

, . . . , F+
(

sm,N
)]

.X−1
m = XmF+(Σ).X−1

m ,

(29)
F+ (Bm) = Ym .diag

[

F+
(

sm,−M
)

, . . . , F+
(

sm,N
)]

.Y−1
m = YmF+(Σ).Y−1

m . (30)

We can get the approximation of (25) and (26) by
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F+(J )g ≈ F+
(

Jm
)

g = VVVm(S).F+ (Am)VVVm(g) = VVVm(S).XmF+(Σ).X−1
m .VVVm(g). (31)

F+(J ′)g ≈ F+
(

J ′
m

)

g = VVVm(S).F+ (Bm)VVVm(g) = VVVm(S).YmF+(Σ).Y−1
m .VVVm(g). (32)

These two formulas deliver a finite approximation of the convolution integrals p
and q. The convergence of the method is exponential as was proved in [25].

2.3 Sinc Collocation of Fractional Sturm–Liouville Problems

Using the notation and expressions introduced in the previous section we are now in
position to discretize equation (17). Setting the prefactor Dα = 1, we get

− (

F+(J ) + F+(J ′)
)

v + V (x)v = λv ≈
−c+F+ (Am)VVVm(v) − c−F+ (Bm)VVVm(v) + D (VVVm(V ))VVVm(v) = λ I VVVm(v).

(33)

Thus the discrete version of (17) becomes

− c+F+ (Am)VVVm(v) − c−F+ (Bm)VVVm(v) + D (VVVm(V ))VVVm(v) = λ I VVVm(v) ,

(34)
with F+ (Am, Bm) = c+F+ (Am) − c−F+ (Bm) = F+ (Am, Bm)∞−∞ we write the
discrete eigenvalue problem as

− F+ (Am, Bm)∞−∞ + D (VVVm(V )) = λ I. (35)

Note, (., .)ba denotes the interval of the fractional operator, D (VVVm(V )) represents
a diagonal matrix and I a unit matrix of dimension m × m.

For the finite support problems we apply the same collocation procedure by sep-
arating the different parts of the convolution integral. This results to the following
representation

−c+F+ (Am)ba VVVm(v) − c−F+ (Bm)ba VVVm(v) + D(V (x))VVVm(v)

−c+F+ (Am)a−∞ VVVm(v) − c−F+ (Bm)a−∞ VVVm(v)

−c+F+ (Am)∞b VVVm(v) − c−F+ (Bm)∞b VVVm(v) = λVVVm(v). (36)

Separation of the confining part from the stripped part we get
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−c+F+ (Am)ba − c−F+ (Bm)ba + D(V (x))

−c+F+ (Am)a−∞ − c−F+ (Bm)a−∞
−c+F+ (Am)∞b − c−F+ (Bm)∞b = λ I , (37)

which finally can be written as

− F+ (Am, Bm)ba + D(V (x)) − F+ (Am, Bm)a−∞ − F+ (Am, Bm)∞b = λ I ,

(38)
− F+ (Am, Bm)ba + D

(

V eff (x)
) = λ I , (39)

withD
(

V eff (x)
) = D(V (x)) − F+ (Am, Bm)a−∞ − F+ (Am, Bm)∞b . The condition

det
(−F+ (Am, Bm)ba + D

(

V eff (x)
) − λ I

) = 0 , (40)

will deliver the needed eigenvalues λn . To each λn there exists an eigenfunction vn
used in the approximations. Here, c+ and c− are factors independent of x related to
the Riesz–Feller operators (see Appendix 5). Solving for the different eigenvalues λn

using (40), we will also find the expansion coefficients of the eigenfunctions VVV n
m(v)

for each eigenvalue n allowing us to approximate the eigenfunction using the Sinc
basis VVVm(S) by

vn(x) ≈ VVVm(S).VVV n
m(v). (41)

These basis functions finally can be used to approximate any function u(x) ∈ L2

as follows

u(x) ≈
n

∑

k=0

akvk(x) , (42)

with the expansion coefficients given as

ak =
∫ b

a
u(x)vk(x)dx . (43)

3 Numerical Results

In this section we examine central models in quantum mechanics like the harmonic
oscillator, some sort of potentials in relative coordinates useful for quarkoniummod-
els in QCD, and quantum mechanical models on a finite support. The collection of
models is a selection of standardmodel systemswith a variety of applications in quan-
tum mechanics. We will demonstrate that for these models the eigenvalues and the
eigenfunctions are accessible for Lévy governed processes and we guess that much
more of the standard models can be solved with our approach of approximation.
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Table 1 First four normalized eigenvalues λn = (n + 1/2) for α = 1.98. The number of Sinc
points N = 92. Numbers are truncated to 7 digits

n λn

0 0.496556

1 1.484733

2 2.467141

3 3.451038

3.1 Harmonic Oscillator

The first experiment we performed is related to the examination of the harmonic
oscillator with the standard potential V (x) = x2/2. We chose this classical model
due to its importance in the development of quantummechanics.Wewill demonstrate
that the harmonic oscillator also plays a prominent role in generalized Lévy quantum
mechanics. The wave function v(x) is determined on R satisfying the boundary
conditions v(±∞) = 0. Note, in our approximation there is no need to approximate
±∞ by a large numeric value. Thus the computed eigenvalues and eigenfunctions are
based on the whole real lineR. The computations were carried out for a fixed number
of Sinc points N = 96 to reach an accurate eigenvalue for α → 2 (see Table1).

We first checked the convergence of the lower eigenvalues to a stable value and
observed thatweneed at least N = 60Sinc points to get convergence to an asymptotic
eigenvalue which is always positive and real if the skewness parameter θ = 0. The
results of these computations are collected in Fig. 1. The Figure displays the four
lowest eigenvalues of these computations for different fractional ordersα (α-value on
top of the plots). Our observation for the first six eigenvalues (four of them are shown
in the graph) is that they are reproducible and converge to a fixed value if the number
of Sinc points is sufficiently large. Even more if we approach with the Lévy index
α → 2, we are able to reproduce the classical eigenvalues λn = En/�ω = n + 1/2
for a harmonic oscillator (see Table1).

Knowing that the eigenvalues converge to a fixed value allowed us to vary the
fractional order in the LS problem to get the first six smallest real eigenvalues for the
harmonic oscillator. The variation of the six smallest eigenvalues with α are shown
in Fig. 3. The dependence of the eigenvalues λn follows a relation derived by Laskin
in 2002 [6], given by the relation

λn =
(

2π� D1/α
α

4B(1/2, 1/α + 1)

)2α/(α+2) (

n + 1

2

)2α/(α+2)

= A (α)

(

n + 1

2

)2α/(α+2)

(44)
where B(a, b) = ∫ 1

0 xa−1(1 − x)b−1 dx is Euler’s Beta integral and A (α) is the
shape function of the eigenvalues depending essentially on the fractional order α.
The shape function is also depending parametrically on fundamental quantities like
the Bohr radius a0, the elementary charge e, the atom number Z , and the reduced
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Fig. 1 Convergence to a stable value of the first four eigenvalues λn as function of the number of
Sinc points N . The fractional orders α are given on top of the graphs. For Sinc points larger than
N = 60 the eigenvalues are stable

Planck number � in the frame of the used WKB approximation. The functional
relation between the fractional order α is represented as a power relation which can
be derived from [6] in detail as follows

A (α) =
( (

a0−1+αe2Z�
−α

)1/α

α1/α B(1/2, 1/α + 1)

) 2α
2+α

. (45)

However, for practical applications we used the distribution of eigenvalues and
determined a Hermite interpolation to get the shape structure in a simplified numeric
way. This allows us to predict the eigenvalues as a continuous function of α at least
for the first six eigenvalues. The shape functions for the different eigenvalue orders
is shown in Fig. 2. The function is unique for eigenvalue orders n ≥ 1 while for
n = 0 there is a deviation from this universality. This behavior is expected because
the eigenvalue function for the ground state is a continuously decaying function in
α while for the higher states the function is a continuously increasing function (see
Fig. 2). Thus for the ground state we expect a different shape functionA (α) than for
higher quantum states (see Fig. 2).
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Fig. 2 Universal shape function A (α) of the eigenvalues extracted from the numerical values of
λn . For n ≥ 1 the shape function is unique while for n = 0 the shape function is smaller than the
function for higher quantum numbers. Right panel: Eigenvalue part (n + 1/2)2α/(2+α) as a function
of α. The quantum number n = 0, 1, 2 are shown from bottom to top

Fig. 3 Variation of eigenvalues λn for different fractional orders α for a harmonic oscillator. The
quantum number n starts at n = 0 and ends at n = 5 from bottom to top. The small dots are the
computed eigenvalues for a specific fractional order α. The solid lines are Hermite interpolation
functions. The larger dots represent the maxima of the eigenvalues (see Table2 for numeric values)

In Fig. 3 the first six eigenvalues are shown as a function of α. The numerically
determined values show a maximum at a certain value of α which is moving from
left to right if the eigenvalue order is increased (bottom to top in Fig. 3). For each
quantum order n an α exists where the energies (eigenvalues λn) become maximal
so that a maximal exchange in a quantum transition can be reached. The maxima of
the eigenvalues are listed in Table2 and are depicted in Fig. 3 as large dots.
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Table 2 Maxima of eigenvalues. The number of Sinc points N = 92. Numbers are truncated to 6
digits

n α λn

0 0.6769 3.47105

1 1.0213 7.42513

2 1.1912 10.5797

3 1.2746 13.7338

4 1.3325 16.7244

5 1.3716 19.6713

To each eigenvalue λn,α there corresponds a wave function which depends beside
on the quantum number also on the fractional order α. Thus the wave function
depends on the quantum number n and on the fractional order α and can be written as
v(x) = vn,α(x). Samples of eigenfunctions are shown in Fig. 4 for different fractional
orders. Note that the amplitude of the probability distribution decreases up to a value
α ≈ 1.24 and then increases again with α → 2. The change of the amplitude for
the ground state is shown in Fig. 5. In addition to the amplitude the width or lateral
extension of the wave functions are affected by the fractional order (see Figs. 4 and
5). For small values of α the wave functions are centered around the origin with a
small lateral extension; i.e. they are localized. The decay of the probability density
∣
∣un|2 is very rapidly for such smallα values. Ifα increases in the direction toα ≈ 3/2
the extension of the wave function nearly becomes six times larger and shrinks by a
factor two if we approach α → 2. This behavior is observed for all eigenfunctions
of the harmonic oscillator. We note that the broadening of the wavefunction is also
observed for other potentials of the type V (x) ∼ ∣

∣x |β .
Thevariationof themaximal amplitude canbe easily examined for the ground state

displayed in Fig. 5. The minimum of the maximal amplitude occurs at α = 1.2449
for the ground state. This decrease and increase of the amplitude means that the
probability density necessarily must broaden because the total amount is a conserved
quantity. The spreading and afterwards the re-localization is a characteristic behavior
of the density occurring in each state and for different versions of potentials.

In the two papers by Luchko et al. [13, 14] doubts about the validity of the
eigenvalue relation by Laskin [6] and Jeng [8] are acknowledged. The following
Figs. 6 and 7 collect a comparison of these eigenvalue relations compared with our
numerical results. Figure6 examines the special casewithα = 1whichwas solved by
Jeng [8] using a WKB approximation and the asymptotic representation of the Airy
function delivering the root distribution as eigenvalues for the harmonic oscillator
(dashed line in Fig. 6). The solid line in Fig. 6 was gained as a least square fit to
Laskin’s formula (18) keeping the amplitude and the exponent factor variable. The
least square fit to the eigenvalues using λn = a(n + 1/2)b with a = 5.519 and b =
0.6794 delivers numerical agreement with Jeng’s result who estimated the exponent
by his asymptotic approach as b = 2/3 in agreement with the results derived by
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Fig. 4 Samples of probability distributions for the first four eigenvalues at different fractional orders
α. The probability distributions are localized and symmetric with respect to the origin. The ground
state is a single humped distribution while the higher order states show characteristic variations
with minima and maxima. Note the overall amplitude decreases with increasing fractional order α

in the interval 0 < α � 1.24 and increase again in the interval 1.24 � α < 2

Laskin. The absolute error of our estimation is ε = 0.012733 corresponding to a
2% relative error which is acceptable. In Fig. 7 we show some results of the same
approach for different α-values using the same dependence of the eigenvalues as
given by Laskin [6] but now using instead directly λn = a(n + 1/2)2α/(2+α) which
uses only one parameter the shape parameter a for a fitting. It turns out that the least
square fits deliver nearly for all α-values excellent fits except for very small values
α < 0.1. The reason for this is that we did not use a sufficiently large number of
Sinc points N to resolve the stable distribution of eigenvalues for this range of α. For
α-values less than 1/10 the eigenvalues of the different quantum numbers are very
close to each other and cannot be resolved in a reliable way with the used number of
Sinc points. This refinement remains to be resolve in an additional approach using
high precession computing with a large number of Sinc points. The conclusion from
these numerical examination is that the WKB approximation used by Laskin as well
as by Jeng et al. [6, 8] are highly accurate in their description of the eigenvalues and
are reproducible by Sinc approximations.

In another computationwe examined the structural changes of the density function
and the wave functions if the fractional parameter α is varied. The results are shown
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Fig. 5 Ground state of the harmonic oscillator as a function of α (top left panel). The overall
amplitude decreases with increasing fractional order in the interval 0 < α � 1.24 and increase
again for 1.24 � α ≤ 2. Maximum value of the probability density of the ground state as a function
of α (bottom panel). The minimum of the maximum value for the ground state occurs at α = 1.2449

in Figs. 8 and 9. Our observation is that the density
∣
∣un|2 is originally localized for

α ≈ 0 changing its width up to a certain value for α and again becomes narrower if
α approaches the value α = 2. The eigenfunctions on the other side show a pattern
like a tiger fur. There exists a non equidistant pattern of positive and negative values
occurring in a banded pattern if maxima and minima are plotted as magnitude values
in a contour plot. The pattern is shown in Fig. 9 for two resolutionsΔα. For a physical
application the sign change of the eigenfunctions does not have any impact because
physically important quantities are based on the densities of the eigenfunctions. From
a mathematical point of view the pattern is quite interesting due to this tiger strip
pattern which shows up in an irregular way. The cumulative counting of positive
and negative maxima for n = 0 and n = 1 are shown in Fig. 10. The structure of the
increase of the counts resembles to a devil’s staircase.

Concerning the behavior of eigenvalues λn with a finite skewness parameter θ , we
found numerical evidence that all the eigenvalues become complex for 0 < α < 2.
The real and imaginary parts of the eigenvalues are shown in Fig. 11 where on the top
panel the real part and on the bottompanel the imaginary part ofλn for different values
α are shown. Although the imaginary parts are small for the first few quantum num-
bers this indicates that the eigenvalue problem for θ �= 0 becomes non-Hermitian and
thus not in the framework of standard quantum mechanics. This behavior was con-
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Fig. 6 The dots represent the computed eigenvalues for α = 1. The solid line represents the least
square fit to the computed eigenvalues with λn = a(n + 1/2)b with a = 5.519 and b = 0.6794.
The value for b is close to the predicted WKB value by Laskin [6] and Jeng [8]. The dashed line
uses λn = a(n + 1/2)2/3 representing the root distribution of the asymptotic expansion of Airy’s
function [8]

jectured in [14]. However, if we examine the behavior for α →2 the imaginary parts
of the eigenvalues vanish. Thus it is apparent that the standard quantummechanics is
consistently incorporated in the Lévy based quantum mechanics. The conclusion at
this point is that a more detailed examination is needed for nonvanishing skewness
parameters to get a physical interpretation of the spectral properties.

3.2 Quarkonium Models

Following Laskin in his proposal for a quarkonium model [9], we assume that a
quark-antiquark qqqqqq bound system in a non-relativistic potential can be modeled by
a relation of the form

V
(∣
∣rrr i − rrr j

∣
∣
) = qiq j |rrr i − rrr j |β, (46)

where qi and q j are the color charges of i and j quarks respectively and the power
β > 0. Using a single relative coordinate this potential reduces to the simple model
V (x) = q2|x |β where x denotes the distance between two quarks. To keep the system
thermodynamically stable the power β should be taken from 0 < β < 2 [9]. How-
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Fig. 7 Increase of the eigenvalues as a function of the quantum number n. The eigenvalues follow a
relation λn = a(n + 1/2)2α/(2+α) shown as dots. The prefactor a depends on α and is shown on top
of each graph. The solid line represents a least square fit where only a was estimated. The fractional
eigenvalue relation for λn follows from a WKB approximation [6, 8]

ever, we will examine also a case where β exceeds this physical reasonable bounds.
Examples of different potential versions are shown in Fig. 12, the case of panel (c) is
already examine in the previous section. In Fig. 12 the horizontal lines in the graphs
represent the first four energy levels (eigenvalues) of the model, respectively. Specif-
ically we examine models with β = {1/2, 1, 2, 5} denoted in the following by (a),
(b), (c), and (d), respectively. The potentials for each case form a cusp, a triangular
well, a parabolic one, and a deep well model (see Fig. 12). The type of potential (46)
coincides with the QCD requirements: that at short distances the quarks and gluons
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Fig. 8 Structural change of the density functions
∣
∣un |2 of the first four eigenstates varying α

appear to be weakly coupled and at large distances the effective coupling becomes
strong, resulting in the phenomena of quark confinement.

The first four eigenfunctions for a specific Lévy index α = 1.499 are shown in
Fig. 13 for each of the sample models from above. The color used in the graphs for
probability densities corresponds to the magnitude of the eigenvalues indicated as
eigenvalue levels in Fig. 12 using the same color, respectively. The panels (a), (b),
(c), and (d) of Fig. 13 are related to the eigenvalues given in Fig. 12 for each panel,
respectively. We observe taking into account the scales on the x-axis that the four
ground states are localized in the center of the potential. However, the localization is
quite different for the different models. The largest extension is observed in model
(a) while the smallest width of the density is observed in model (d). The amplitudes
and the structure of the different states are similar to each other with some small
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Fig. 9 Structural change of the eigenfunctions un of the first four eigenstates varying α. The top
four graphs use a resolution Δα = 0.05 while the bottom four were generated with an α step of
length Δα = 0.01. The increase of the resolution in α uncovers a detailed structure of amplitude
switching from positive (bright) to negative (dark) values. The flipping of amplitudes seems to
generate a banded self-similar pattern
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Fig. 10 Cumulative counts of positive C+
i and negative C−

i maxima and minima for the first two
eigenfunctions n = 0, 1. The steps of increase are irregular and resemble to a devil’s staircase
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Fig. 11 Real and imaginary parts of the first six eigenvalues for the harmonic oscillator with
θ = 0.8min(α, 2 − α) in the Riesz–Feller potential

variations in the amplitude. The width of the localization is the most prominent
property to distinguish the models from each other. The models (b) and (c) show
nearly the same width but due to the potential structure triangular (b) and parabolic
(c) the ground state in (c) is smaller in width than in (b). This behavior is also true
for the higher states. This property is shown for a fixed Lévy index α in Fig. 13.

We also examined the variation of the energy (eigenvalues) if the Lévy index is
varied. The results are shown for eachmodel in Fig. 14, respectively. The observation
is that there exists for each of the six eigenstates a Lévy index α where the energies
become maximal (dots in the graph). This is the case for all eigenstates and for all
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Fig. 12 Different potential versions V (x) ∼ ∣
∣x |β for QCD quarkonium models. The horizontal

lines represent the energy levels for α = 1.499

models. We observe that these maxima are located to the left side of the interval
0 < α < 2 if β < 1 and move to the right side if β increases (β > 1). It is also clear
that the magnitude of eigenvalues in general increases if β is increased. Since the
eigenvalue of a specific state increases or decreases if α is varied we expect that the
width of the corresponding density also varies. Such a variation of the width of the
density function is shown in Fig. 15 for model (b) where α is varied. The originally
tightly localized density functions (α ≈ 0) broadens if α is increased up to a critical
value for α. If this critical α is exceeded the width of the density functions start to
shrink to the final level at α = 2. This behavior is shown for model (b) in Fig. 15.
However, it is a general observation in all potentials examined that such kind of
critical α exists and that a broadening followed by a shrinking when α is varied from
a lower to a higher value.

We also examined properties of the eigenvalues for all the models (a)–(d) and
found some common behavior. Thus we select only model (b) to discuss these prop-
erties in detail. According to formula (18) the eigenvalues should satisfy a certain
relation depending on the Lévy index α and the exponent β of the potentials under
discussion.We examined the computed eigenvalue by using relation (18) for all mod-
els. The outcome of the calculations is that the derived formula is very accurate for
all models examined and for nearly all values of α. Deviations exist for small values
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Fig. 13 The four first density functions for: a the potential V (x) = ∣
∣x |1/2 , b the potential V (x) =

|x |, c the potential V (x) = x2/2, and d the potential V (x) = ∣
∣x |5 . Th Lévy parameter was α =

1.499. Note the x scale are different for each potential model; i.e. the localisation of the density
varies from model to model. We observe again a stronger localization of the densities for smaller
values of α where for α → 2 an concentration of the densities sets in again. While for α values
approaching α ≈ 1.2 a spreading is observed

of α < 1/10 which is a numerical problem already mentioned above. An example
of the examination is the one parameter fitting of the computed eigenvalues using
(18) in the determination of the screening coefficient a in the eigenvalue relation
λn = a(n + 1/2)βα/(β+α). Results are shown in Fig. 16 for β = 1 demonstrating the
agreement between the theoretical prediction and the numerical approximation. It is
quite interesting that a single parameter least square fit for the screening parameter a
delivers an accurate agreement. We note that similar results with the same accuracy
were found for the three other models (not shown).

Since the screening parameter a is varying under the change of α we examined
the behavior of the shape function A (β, α) in (18) for the different models. The
result is that for higher states there exists a unique function A (α) for each of the
models. An example for β = 1 is shown in Fig. 17 left panel. Since the function
(n + 1/2)βα/(β+α) is an increasing function for β > 1 and n ≥ 1 while for n = 0
the function is decreasing in α (see Fig. 17 right panel), we will find two different
shape functions for the ground state and the higher quantum states, respectively. This
structure is also observed in the other models.

Another common property of the models is the reduction of the amplitude of
the density function in the ground state and an increase if α is increased further.
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Fig. 14 Distribution of eigenvalues as a function ofα for fourQCDquarkoniummodels. a β = 1/2,
b β = 1, c β = 2, and d β = 5. Shown are the first six eigenvalues depending on α

The behavior is shown for β = 1 in Fig. 18 as an example. The location where the
minimum value is reached varies from model to model and is located in the interval
1 < α < 3/2. This range is a rough estimation over the four examined models. The
value seems to be related to the maximal width of the ground state which occurs for
the different models at different α values.

3.3 Finite Quantum Well

As a finite interval example, we examined numerically the problem where in the
interval x ∈ [−4, 4] the potential is given by

V (x) =
{

x2/200 if |x | < 4
0 if |x | ≥ 4

. (47)

The potential was chosen as a flat parabola at the bottom to avoid numerical
problems in the determination of eigenvalues. The eigenfunctions for the first three
quantum states are shown in Fig. 19. The graphs show that the boundary values are
satisfied and the structure of the density distribution delivers the expected behavior;
i.e. single peak for the ground state, double peak for the first quantum state etc. In
Fig. 20 we show the dependence of the real eigenvalues on α. For the eigenvalue
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Fig. 15 The four first density functions for the potential V (x) = |x | for different values of α (see
top of figures). We observe again a delocalization if α is increasing but a small localization when
α → 2

distribution as a function of α, we observe that the ground state is a single valued
state while the first and second state is degenerate which separates on the α-interval.
Compared with the infinite problems the distribution shows a steep increase on the
right end of the interval. As for the infinite examples the distribution also shows a
maximumwhich decreases to small values if α → 0. The graphs in Fig. 19 show that
the boundary conditions for the wave functions at the potential limits are satisfied.
It becomes also apparent that the ground state is nearly stable above a value α > 1
while the other two states vary in their amplitude if α varies (see also Fig. 21).
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Fig. 16 Eigenvalue relation for different values of α (see top of graph). The eigenvalues are fol-
lowing a relation derived by Laskin [6] of the following form λn = a(n + 1/2)α/(1+α) . Here a a
single parameter was estimated from the numerical data using a least square fit (values are given
on top of plots)

Fig. 17 The graphs (left panel) shows the shape function A (α) of the eigenvalues extracted from
the numerical values of λn . For n ≥ 1 the shape function is nearly unique while for n = 0 the shape
function is smaller than the function for higher quantum numbers. The reason is that eigenvalues
according to λn = (n + 1/2)α/(1+α) is an increasing function for n ≥ 1 and a decreasing function
for n = 0 (right panel). This difference causes a change in the shape function
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Fig. 18 Change of themaximal amplitude of the ground state density as a function of α.We observe
that the maximum takes a minimum value at α = 1.23

Fig. 19 Probability densities for eigenstates of the potential (47) on a finite interval x ∈ [−4, 4]

In Fig. 21 we plot the probability density as a function of α for the first three
quantum states. It is apparent from the figures that for α < 1 there is a wavy struc-
ture in the density. However, for 1 < α < 2 the probability density shows a smooth
behavior. The wavy structure may indicate that the first moments of the Lévy pro-
cess may not exist [9]. It is also obvious from the Figure that the even states grow
in their amplitudes if α > 1/2 while the odd state is completely present but varies in
its amplitude. What is also remarkable for the finite support spectrum is that there is
no broadening of the wave function on the support interval if α is changed (compare
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Fig. 20 The first three eigenvalues as function of α on the interval x ∈ [−4, 4] using N = 72 Sinc
points (colors correspond to the eigenstates in Fig. 19, respectively)

with Fig. 8). We only observe a change in the amplitude but not in the width of the
probability density.

4 Conclusions

We demonstrated for the first time numerically that the conjecture by Laskin on a
Lévy based quantummechanics; i.e. a Lévy–Schrödinger description, can be numer-
ically realized. The analytic results derived by Laskin for the harmonic potential and
the quarkoniummodels were verified and confirmed by our Sinc approximation. The
approach of approximation delivered new results and effects which are applicable
to other quantum mechanical systems with known analytic potentials, too. We also
demonstrated that the Riesz–Feller representation delivers real valued eigenvalues if
the skewness parameter equals to zero. If the skewness parameter is different from
zero the eigenvalues are complex but become real for α → 2, consistent with the
standard quantum interpretation. At the moment it is not clear if the complex eigen-
values have any physical meaning at all. The related probability densities are real
valued functionswhich is the basis of a quantummechanical interpretation. However,
we recall that Gamov’s theory for the α-decay of atomic nuclei used complex eigen-
values which finally turned out to have a real physical meaning. We did not examine
in detail so far where such kind of results may have meaningful applications. How-
ever, we definitely can state for the real valued eigenvalues, that the well known
models of quantum mechanics are now accessible in a quantum mechanics based
on Lévy stable probability distributions. We also presented a solution approach for
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Fig. 21 Density plots for the first three probability densities
∣
∣un |2

finite boundary value problems in an environmentwith infinite range interactions.We
approximated some eigenvalues for this finite support problem by a reinterpretation
of the Riesz–Feller potential in connection with the potential term. The new results
presented may open a gate of interpretation and applications in quantum mechanics
which will be seen in future works.
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5 Appendix

This appendix collects additional relations and definitions used in the formulation
and computation of fractional derivatives.

The Riesz–Feller fractional derivative is defined as follows [34, 35]

Dα
x;θ f (x) = −I −α

x;θ f (x) = c−(α, θ)I −α
+;x;θ f (x) + c+(α, θ)I −α

−;x;θ f (x) (48)

with 0 < α ≤ 2, |θ | ≤ min(α, 2 − α), and the following relations

c+(α, θ) = sin((α − θ)π/2)

sin(απ)
and c−(α, θ) = sin((α + θ)π/2)

sin(απ)
(49)

and the corresponding fractional integral operatorsI α
x;θ (Weyl integrals see e.g. [35])

are given as

I α
+;x;θ f (x) = 1

Γ (α)

∫ x

−∞
(x − ξ)α−1 f (ξ)dξ (50)

and

I α
−;x;θ f (x) = 1

Γ (α)

∫ ∞

x
(ξ − x)α−1 f (ξ)dξ. (51)

Note the negative sign in the Riesz–Feller operator means that we are dealing with
fractional derivatives which are defined in terms of integral operators as follows:

I −α
+;x;θ f (x) = 1

Γ (n − α)

∫ x

−∞
(x − ξ)n−α−1 f (ξ)dξ (52)

and

I −α
−;x;θ f (x) = 1

Γ (n − α)

∫ ∞

x
(ξ − x)n−α−1 f (ξ)dξ. (53)

with n = [Re(α)] + 1 and Re(α) > 0; here [α] represents the integer part of α.
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Stochastic Properties of Colliding Hard
Spheres in a Non-equilibrium Thermal
Bath
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Sandro Rambaldi, and Gastone Castellani

Abstract We consider the problem of describing the dynamics of a test particle
moving in a thermal bath using the stochastic differential equations. We briefly
recall the stochastic approach to the Brownian based on the statistical properties of
collision theory for a gas of elastic particles and the molecular chaos hypothesis. The
mathematical formulation of the Brownian motion leads to the formulation of the
Ornstein-Uhlenbeck equation that provides a stationary solution consistent with the
Maxwell-Boltzmann distribution. According to the stochastic thermodynamics, we
assume that the stochastic differential equations allow to describe the transient states
of the test particle dynamics in a thermal bath and it extends their application to the
study of the non-equilibrium statistical physics. Then we consider the problem of
the dynamics of a test massive particle in a non homogeneous thermal bath where a
gradient of temperature is present. We discuss as the existence of a local thermody-
namics equilibrium is consistent with a Stratonovich interpretation of the stochastic
differential equations with a multiplicative noise. The stochastic model applied to the
test particle dynamics implies the existence of a long transient state during which the
particle shows a net drift toward the cold region of the system. This effect recalls the
thermophoresis phenomenon performed by large molecule in a solution in response
to a macroscopic temperature gradient and it can be explained as an effect of the
non-locality character of the collision interactions between the test particle and the
thermal bath particles. To validate the stochastic model assumptions we analyze
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the simulation results of the 2-dimensional hard sphere gas obtained by using an
event-based computer code, that solves exactly the sphere dynamics. The tempera-
ture gradient is simulated by the presence of two reflecting boundary conditions at
different temperature. The simulations suggest that existence of a local thermody-
namic equilibrium is justified and highlight the presence of a drift in the average
dynamics of an ensemble of massive particles. The results of the paper could be
relevant for the applications of stochastic dynamical systems to the non-equilibrium
statistical physics that is a key issue for the Complex Systems Physics.

Keywords Collisional theory · Stochastic differential equations ·
Non-equilibrium stationary states

1 Introduction

The understanding of the non-equilibrium statistical systems is one of the main issue
ofComplex Systems Physics.Modeling biological, biochemical or socio-economical
complex systems usually copes with the problem of describing the evolution of
a system out of equilibrium [1]. Even if one restricts the study to consider non-
equilibrium stationary states (NESS) [2], the existence of universal laws cope with
the peculiarities of each statistical system out of equilibrium, where some details of
the interactions among elementary components play a relevant role. Despite of a great
effort to find a general theoretical approach to non-equilibrium thermodynamics, the
scientific community is still discussing if there exists an analogous of the Entropy
Principle [3] that governs the relaxation process toward the equilibrium state. In this
framework the stochastic differential equations have been recognized a powerful tool
to study the dynamics of statistical systems [4]. Even if these equations cannot be
derived from the fundamental physical laws, the universality of the Central Limit
Theorems (CTL) and the chaotic properties of many degrees of freedom dynamical
systems pointed out by Ergodic Theory, justify the applications to real systems. Some
relations or assumptions that are at the base of the stochastic model approach, as the
fluctuation-dissipation relations [5] or the reversibility properties of the stationary
solution (Onsager relations [6]) could be extended to the NESS states. In this work
we consider the problem of explaining the statistical properties of a gas of colliding
elastic particles by means of the stochastic differential equations. The assumption
of the molecular chaos allows to describe the dynamics of a massive particle in
the gas as a Brownian motion in the vanishing mass limit for the gas particles and
infinitely frequent collisions. We discuss the possible extension of this approach
to consider a NESS state of a hard sphere gas between two reflecting boundary
conditions at different temperatures. Assuming that the gas realizes a local pressure
equilibrium, we derive some scaling laws for the relevant parameters that define
the collision theory. The particle dynamics is described by a stochastic differential
equation with a multiplicative noise, due to the dependence of the temperature from
the position. Our result is that for a finite particlemass and a finite collision frequency,
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one has to interpret the stochastic differential equation according to Stratonovich
[7] to take into account the correlation among successive collisions in order to get
the local equilibrium of pressure in the NESS state. Under this point of view, the
collision dynamics is non-local and one has to introduce an effective force to take
into account the effect of temperature gradient. We extend this result to describe
the dynamics of a massive test particle in the non-uniform thermal bath and we
show that the model implies a long correlation time in the evolution, that induce an
average net drift of the particle toward the colder regions of the thermal bath. The
effect increases as one increases the mass of the test particle and it may recall the
thermophoresis phenomenon observed when real particles fluctuate in presence of
a temperature gradient [8]. In order to get a validation of the proposed approach,
we have performed numerical simulations for a 2-dimensional hard sphere gas. The
simulation code [9] uses an event based algorithm, that allows an exact (with the
round-off errors of the double precision) integration of the collision dynamics of
104 ÷ 105 elastic particles. Such numbers are suitable to simulate a condition of
moderate density where the particles may explore all the available space (i.e. we are
simulating a gaseous state), but they relax to a local equilibrium state justified by
the application of a Central Limit Theorem (CLT). The simulation results suggest
that the stochastic differential equations are indeed able to explain some statistical
features of the collision dynamics in presence of a temperature gradient. Our results
are consistent with the Stochastic Thermodynamics approach to non-equilibrium
statistical physics [10]. However a quantitative relation among the thermophoresis
phenomenon in chemistry, the relaxation process we observe in the simulation of
an ensemble of massive test particles and the solution of the stochastic differential
equation, requires further studies.

The paper is organized as follows: in the second section we briefly present the
fundamental concepts of collision theory that justify a stochastic model for the Brow-
nianmotion and its possible extension to consider the effect of a temperature gradient
in the thermal bath; in the third section we discuss the results of molecular dynamics
simulations and the possible validation of the stochastic model description both in
a equilibrium and in a NESS state; finally some conclusions and perspective are
outlined.

2 Collision Theory and Stochastic Differential Equation

To understand the mesoscopic description of statistical systems using the stochastic
dynamical systems theory, we study the collisions among particles in the limit of
local, instantaneous and binary interactions. When it is possible to neglect the details
of the microscopic dynamics using the CLT, the statistical properties are reproduced
by mesoscopic models, where one only considers the statistical effects of fluctua-
tions. A formal approach starts from some physical assumptions on the microscopic
dynamics:
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1. we distinguish three different time scales: the interaction time scale Δτ (i.e. the
time duration of a collision that we assume very small), the collision scale time τ
that measures the elapsed time between successive collisions (i.e. τ is the average
correlation time of microscopic dynamics and τ−1 the collisions frequency) and
Δt � τ the evolution time scale of the dynamical variables;

2. we assume the molecular chaos: i.e. the collisions are instantaneous and succes-
sive collisions can be considered independent events (we have a discontinuous
dynamics in the momentum space of a test particle);

3. the collisions are binary: we do not consider multiple collisions or collectivemean
field effects;

4. wehave conservation laws in the collision dynamics:we consider elastic collisions
where kinetic energy and momentum are preserved.

The application of theCLT to themomentumdynamics justifies a stochastic approach
to model the elastic collisions effect on a test particle of mass M in a thermal bath
simulated by an ensemble of particles with a mass m � M . If τ−1 is the collision
frequency (i.e. τ is the average time interval between successive collisions), in the
limit m → 0 and τ → 0 with the ratio m/τ kept constant (the Brownian motion
limit), the evolution of the momentum P(t) is described by the stochastic dynamical
system

P (t + Δt) = P(t) − γ

M
P(t)Δt + √

2γΔtTξ(t) (1)

where T is the temperature of the thermal bath according to the expectation value
over the gas particles

E

(
p2

2m

)
= 3

2
T

and the parameter γ

γ = 2m

τ
E

(
sin2

θ

2

)
(2)

contains the statistical information of the collision dynamics through the expectation
value E(sin2 θ/2) (θ is the deflection angle due to an elastic collision and the average
value is computed over all the possible collisions of the test particle with the gas
particles). We observe that the Einstein fluctuation-dissipation relation is satisfied.
The time step Δt is the evolution time scale for the momentum P(t) (i.e. P(t) can be
considered constant during Δt with an error that vanishes in the Brownian motion
limit) and ξ(kΔt) k ∈ N

0 are independent standard Gaussian variables. The justifi-
cation of the stochastic dynamics (1) requires that the collision dynamics could be
described as the sum of independent events and that the gas particles colliding with
the test particle are ‘thermalized’ so that the expectation value of the kinetic energy is
3/2T (the Boltzmann constant is set to one). The last requirement is a key point since
it means that the test particle can be considered in a local thermal equilibrium at each
time interval Δt. In the limit Δt → 0 the random walk (1) realizes the Brownian
motion for the test particle
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dP = − γ

M
Pdt + √

2γTdw(t)

(3)

dX = P
M

dt

where w(t) is a vector Wiener process. To compare the analytical approach with
numerical results, we consider a 2-dimensional hard spheres gas in the sequel: in
such a case one explicitly evaluates E(sin2 θ/2) = 1/3 [11]. The Brownian motion
limit requires that the time interval τ → 0, which is a unphysical limit when we
consider an ensemble of spheres with finite dimension at a fixed average density ρ.
Indeed using statistical physics results, one can estimate

τ ∝ m

d‖p‖ρ ∝ m

d
√
Tρ

(4)

where d is the particle diameter; it follows that τ is finite for finite temperatures. The
solution P(t) of the stochastic equation is a Gaussian Ornstein-Uhlenbeck process
with parameter α = γ/M and the covariance matrix of the observables reads

< ΔPi(t)ΔPj(t + Δt) > = δije
−αΔtTM

(
1 − e−2αt

)

< ΔXi(t)ΔPj(t + Δt) > = δij
T

α
e−αΔt

(
1 − e−αt

)2
(5)

< ΔXi(t)ΔXj(t) > = δij

[
2T

γ

(
t − 2

α
(1 − e−αt)

)
+ 1

2α
(1 − e−2αt)

]

so that for tα � 1 we get

< ΔX 2
i (t) >	 2T

γ
t

whereas we have a ballistic behavior for tα � 1. We remark as the correlation-
relaxation time scaleα−1 changes proportionally to themass, so that for a test particle
forM � mwe estimate a correlation time and a relaxation timemuch longer than for
the gas particles. The stationary distribution for the momentum is Gaussian whereas
for a gas confined in a finite volume, the spatial density is constant. The kinetic energy
E of the particles is distributed according to the Maxwell-Boltzmann distribution
p(E) ∝ exp(−E/T ). The equilibrium condition is consistent with the state law of
gas P = ρT if one computes the pressure P on a boundary surface. The finite size
effects (a finite mass and dimension for the gas particles) introduce a finite collision
time scale τ so that the parameter γ (cfr. Eq. (2)) scales as τ−1 for a fixed mass m,
which depends on the local density. Assuming a finite dimension for gas particles
the average collision frequency is estimated by

τ−1 ∝ a < Δv >+ ρ
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where the symbol< Δv >+ means thatwe take the average value only for the positive
values of the relative velocity along a given direction and a is an effective surface
for collisions. < Δv >+ is estimated by T 1/2 so that, in the equilibrium condition,
we expect that τ scales by T 1/2. A finite τ could prevent the application of the CLT
to justify the stochastic equation for the test particle, when the condition Δt � τ is
not satisfied. But, for the equilibrium state, the homogeneity of particle distribution
implies that the distribution of the collision events does not depend from the position
and the momentum dynamics is still described by a Gaussian process. This result is
also true if the test particle is a gas particle with a finite mass, so that the probability
distribution for the coordinates and momentum are representative for the density
distribution of the same quantities for the whole gas.

We now consider the problem if a stochastic model could be justified in the case
of a non-equilibrium stationary state (NESS): more precisely we assume that the gas
particle are in contact with two thermal reservoirs at different temperature so that
we have a temperature gradient along the x-direction in the system and we focus our
analysis of the dynamics along this direction. We simulate the thermal reservoir T
by using a reflecting boundary such that, each time a gas particle hits a barrier, it is
reflected in a elastic way and the reflected velocity is distributed according to

ρ(v) ∝ v exp

(
−mv2

2T

)
v ≥ 0 (6)

which is the distribution of the particles velocity of a 2-dimensional gas at equilibrium
temperature T . As amatter of fact the particle distribution relaxes to a stationary state
after a certain time and the pressure equilibrium at any cross section of the system
gives P = ρ(x)T (x) so that

ρ(x) ∝ T−1(x) (7)

Assuming a temperature gradient of the form

T (x) = T0 + β(x − x0) x ∈ [x0, x1]

where the parameter β = (T1 − T0)/(x1 − x0) defines the gradient, the stationary
condition implies

ρ(x) ∝ 1

T0 + β(x − x0)
(8)

so that the particle density increases near the cold barrier T0. In the 2-dimensional
case one can estimate themean free path of the particles λ as the probability to collide
with a particle in a given volume

λ(x) ∝ ρ−1(x)

Then if the density is small, two successive collisions of the gas particle may involve
particles with different temperatures. In such a case the local thermalization of a
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particle is not justified (i.e. the position x and the momentum p cannot be considered
constant when one considers successive collisions) and we have to take into account
a correlation effect in the collision dynamics. In such a case the stochastic differential
equation (3) has to be modified and the Stratonovich interpretation has to be applied
since the effect of a successive collision depends on the previous one. For a test gas
particle in a NESS state we apply the following stochastic equation

dpx = −γ(x)

m
pxdt +

√

2γ(x)T

(
x + px

γ(x)

)
dw∗(t)

(9)

dx = px
m
dt

where dw∗ is the Wiener differential in the Stratonovich interpretation. We remark
thatm/γ is a characteristic correlation time for the collision dynamics of the ensemble
particles and that we preserve the Einstein condition. However, the temperature of
the colliding particles is not constant when one considers successive collisions since
the mean free path is not small. Recalling the definition (2) and the scaling law for
the collision time τ ∝ √

T , we derive the functional form for the drift coefficient

γ(x) = γ̂m√
T (x)

If one estimates the average momentum evolution in Eq. (9) we have two contribu-
tions: the x-dependence of the drift term gives

−
〈
γ(x)

m
px

〉
	 1

2

γ̂

T 3/2

dT

dx

Tm

γ(x)
	 1

2

dT

dx

where we compute < pxx > using the relations (5), whereas the fluctuating term
according to the Stratonovich interpretation gives

−γ

2

∂

∂p
T

(
x + p

γ(x)

)
= −1

2

dT

dx

We remark as the two terms cancel so that no effective drift can be observed for
a gas test particle in the NESS state as expected from the equilibrium condition
of pressure. Therefore the Stratonovich interpretation of the stochastic differential
equation (9) seems physically justified to describe the evolution of the gas particle in
a NESS state. This effect is the consequence of the non local character of the collision
interactionswhenwe have finite dimension gas particles and the temperature gradient
introduces an effective force that is considered by the Stratonovich interpretation of
the equation (9).
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Fig. 1 Numerical solutions ofEq. (9) using the parameters γ̂ = 1,β = .1,T0 = .5 andT1 = 2.5.We
have simulated 105 particles withm = 1 in a box x ∈ [−10, 10]with initial condition x = 0, p = 0.
The units are arbitrary. The left picture shows the evolution of the average velocity and the right
picture shows the evolution of the average position

Fig. 2 Numerical solutions of Eq. (9) using the same parameters as in Fig. 1. The left picture shows
the evolution of the velocity variance and the right picture shows the evolution of the position
variance. We observe a normal diffusion behavior after a short transition time

In Fig. 1 we show the results of a direct integration of Eq. (9) in the Stratonovich
interpretation for an ensemble of 105 particles (the parameters of the simulation are
reported in the caption). We remark the presence of an initial transient regime where
we have a drift toward the cold barrier, but then at the stationary state, we get a
diffusion regime without drift as it is shown in Fig. 2, where we plot the velocity and
position variances. In the case of velocity we reach a stationary value, whereas for the
position we get the typical behavior of a local diffusion process: the momentum vari-
ance relaxes to the local thermal equilibrium < Δv2

x >→ T/m = 1.05 (according
to the parameters values used in the simulations) and the position variance increases
linearly with time after a short ballistic regime.

We study as the evolution changes if we consider a test particle of a larger mass
M ≥ m. From a formal point of view equation (9) is modified according to
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Fig. 3 Numerical solutions of Eq. (10) withM = 25m, whereas the other parameters are the same
as in Fig. 1. The left picture shows the evolution of the average velocity and the right picture shows
the evolution of the average position. We observe as the long time correlation induces a drift of the
average position toward the negative cold region

dPx = −γ(x)

M
Pxdt +

√

2γ(x)T

(
x + Px

γ(x)

)
dw∗(t)

(10)

dX = Px

M
dt

where the correlation time 	 M /γ is longer than for the gas particles. In such a case
the transient regime to reach a stationary condition for the test particle M requires
a much longer time and, in the Stratonovich interpretation, we expect a net average
displacement toward the cold barrier in the transient regime. We have performed
numerical integration of the stochastic equation (10) with M = 25m whereas the
other parameters are left constant. In Fig. 3 we report the numerical results for the
average value of the velocity and the position for an ensemble of test particles. We
observe that during long transition time the average velocity takes negative values and
we have a net average displacement of the position toward the negative values (i.e.
the colder region of the space). We have also checked the variance evolution of the
velocity and the position (see Fig. 3). The velocity variance of the massive particles
reaches a thermal equilibrium that corresponds to a local temperature associated to
the stationary value of the average position, whereas the position variance shows a
ballistic behavior for a long time. According to the previous interpretation of the
collision dynamics in a thermal bath with a temperature gradient, the existence of a
long relaxation time scale implies that a massive particle tends to drift in the colder
region simulating the effect of a drift force, until a local equilibrium is reach and
the evolution of the particle distribution recall the thermophoresis phenomenon. The
overall effect of an ensemble of massive particles starting at a given position is that
the distribution moves towards the cold region as shown in Figs. 3 and 4.



66 A. Bazzani et al.

Fig. 4 Empirical
distribution function
computed using the
numerical solution
of Eq. (10) after t = 50 time
units. We have used the same
parameters as in Fig. 2. We
remark that the distribution
mode is shifted toward the
negative values

3 Molecular Dynamics Simulations

To check the applicability of a stochastic dynamics approach to describe the colli-
sion dynamics of a test particle in a thermal bath, we developed a simulation code
[9] to perform the molecular dynamics of a 2-dimensional gas composed by elastic
spheres that collides between two reflecting horizontal boundary conditions, whereas
we have a periodic boundary condition on the vertical axis. The numerical integration
performs a event based code algorithm that computes exactly the elastic collision
between two rigid spheres and moves the spheres according to a uniform rectilinear
motion between two collisions. The event based algorithm [9] is quite efficient and
it allows to simulate a great number of particles. The model considers an a fixed
dimensional area in the simulations (i.e. a unit square) so that by varying the dimen-
sion of the spheres we change the gas particles density. In the sequel we show the
simulations using 104 rigid spheres of radius 10−2 that corresponds to an average
density ρ 	 3% defining the mean path length between successive collisions. The
gas particle mass is fixed atm = 1 and the temperature (i.e. the kinetic energy) can be
directly related to the evolution time scale so that only the ratio between the chosen
values is relevant. We have first checked that in a uniform thermal bath the stochastic
differential equation is suitable to describe the statistical properties of the collision
dynamics: for a fixed temperature we have checked that the velocity distribution of
the gas particle follows a Gaussian distribution (i.e. we get a Maxwell-Boltzmann
distribution for the energy) and that the collision time scale τ , which enters in the
definition of the drift parameter (see Eq. (2)) scales∝ √

T . The simulation results are
reported in Fig. 5 where we show as in stationary condition the gas particles relax
to a thermodynamics equilibrium characterized by the Gaussian distribution: this
result is consistent with the results on the dynamical properties of the hard sphere
gas studied by the Ergodic Theory [12]. The probability distribution of the collision
time τ is well approximated by an exponential distribution and we observe that the
scaling law τ ∝ √

T is confirmed by the simulation results. The homogeneity of the
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Fig. 5 Molecular dynamics simulations of a 2-dimensional hard sphere gas in the unit square
(x, y) ∈ [0, 1] × [0, 1] using 104 particles with m = 1 and radius r = .001 in a thermal bath with
temperature T = 1 (arbitrary unit). In the left picture we show the comparison of the kinetic energy
distribution and the Maxwell-Boltzmann distribution (squares) in semilog scale. In the right picture
we plot the distribution of the time of flight between successive collisions: the distribution is
exponential with a characteristic collision time scale proportional to T 1/2 (see inset in the figure)

Fig. 6 Time correlation among the trajectories of the hard spheres in the molecular dynamic
simulations. The left picture refers to the trajectories of the gas particles (m = 1), whereas the right
picture refers to the trajectories of the 100 massive test particle (M = 25). The time unit is arbitrary

equilibrium state allows to apply the CLT even if the collision time is not negligible
with respect to the evolution time scale.

We also checked that the correlation time scale depends from the inverse of the
particlemass and the particles diffusion in the system iswell described by the stochas-
tic dynamics (3). In Fig. 6 we show the linear correlation in the velocity of the gas
particle (m = 1) and an ensemble of 100 massive test particles (M = 25) in the ther-
mal bath and the increase of the correlation time with the mass is observed. The
computation of the time dependence of the position variance both for the gas and the
test particles confirms that all the particles perform a normal diffusion with a ballistic
transition time and the diffusion coefficient in the stationary regime is independent
from the mass as implied by the Einstein relation (see Eq. (5)).

Thenwe introduced a temperature gradient in the systembymean of two reflecting
boundary conditions at x = 0 and x = 1 that reproduce the velocity distribution (6)
at a temperature T0 = .01 and T1 = .1 (the unit is arbitrary). We have checked that
the density distribution of the gas particles in the NESS state is consistent with the
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Fig. 7 Molecular dynamics simulations of a 2-dimensional hard spheres gas in the presence of
a temperature gradient T ∈ [.1, 1]. The left picture shows the local temperature (i.e. the kinetic
energy) computed dividing the system into 50 slices as a function of the position; the continuous
line defines the linear dependence provided by the Statistical Mechanics Theory. The right picture
is a snapshot of the molecular dynamic simulations that shows the particle distribution in presence
of the temperature gradient

Fig. 8 (Left picture) Empirical dependence of the collision time scale from the local temperature in
the hard sphere gas simulations; the continuous curve refers to the interpolation result with τ ∝ √

T .
(Right picture) Mean free path dependence from the inverse of the density; the continuous line is a
linear interpolation as provided by the Statistical Mechanics Theory

thermodynamic equilibriumof pressure (7): this is illustrated by the numerical results
shown in Fig. 7, where we have divided the system into 50 slices and computed both
the local density and temperature of the gas particles. The stochastic differential
equation (9) assumes a dependence of the collision time τ ∝ √

T that introduces a
position dependence of the drift coefficient when a temperature gradient is present
(see Fig. 8 left). We have also checked that the mean free path is proportional to the
inverse of the local density so that it scales proportionally to the local temperature
(see Figs. 7 and 8 right). Finally we introduced 100 test massive particles in the
central position x = .5 and we have computed the evolution of the average position
to check if there can be observed a drift toward the cold barrier during the relaxation
process in the NESS state. The numerical results shown in Fig. 9 do not allow to
conclude that the test particle dynamics is described by the stochastic differential
equation (9) but there is a local negative drift that seems to be statistically relevant.
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Fig. 9 Evolution of the average position for the ensemble of 100 massive test particles introduced
in the hard sphere gas with a temperature gradient T ∈ [.1, 1]. The initial position is at x = .5. The
simulations suggest the existence of an average drift toward the cold barrier

4 Conclusions

The aim of this work is to study how the stochastic dynamical systems can contribute
to understand some aspects of the non-equilibrium statistical physics.We have briefly
introduced simple concepts of collision theory that justify the use of stochastic dif-
ferential equations in the simulation of the Brownian motion of a test particle in a
thermal bath produced by a gas of elastic particles. We have proposed to extend this
approach to study the dynamics of a massive test particle in the thermal bath where a
temperature gradient is present. This extension is consistent with a thermodynamics
description of the system assuming a local equilibrium condition, only if we inter-
pret the stochastic differential equations according to Stratonovich. The theoretical
approach points out as a massive particle has a long transient regime in which a
average drift effect toward the colder region is observed. This is interpreted as the
consequence of the non-local character of the collisions dynamics when one consid-
ers finite dimensional particles. In such a way, we prove that the stochastic model is
able to describe a thermophoresis phenomenon. due to the long time correlation in
the dynamics without the intervention of an external force. We take advantage from
a simulation code able to integrate exactly the hard sphere dynamics of ensemble of
2d-particles and we have performed a first validation of the assumptions that justify
the stochastic model. The simulations show that a thermodynamics approach related
to the existence of a local equilibrium is realized even in presence of a temperature
gradient. These results could be interesting to understand the problem connected to
the NESS formation and the local Entropy production [2]. Moreover the simulations
point out the existence an average drift toward the colder barrier for an ensemble of
massive particles. Such a phenomenon could be interesting in biochemical reactions
where large molecules move in a thermal bath (usually defined by water molecules)
and the particles dimension is not negligible when a temperature gradient is present.
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Electromagnetic Waves in Non-local
Dielectric Media: Derivation
of a Fractional Differential Equation
Describing the Wave Dynamics

Alessandro Cardinali

Abstract The dielectric susceptibility of a wide class of dielectric materials like
magnetized laboratory and astrophysical plasmas, which are non local in space,
characterizes an integral relation between the polarization P and the electric field
E of the propagating electromagnetic perturbation. The electromagnetic fields in
such dielectric media are described by fractional differential equations with space
derivatives of non-integer order. In this paper an attempt to derive the fractional
differential equation from the Maxwell equation system for the quasi-longitudinal
waves propagating in an unmagnetized plasma like the Lower Hybrid (LH) waves
(also useful in the Thermonuclear Fusion Research domain) or the Langmuir waves
is outlined. Extrapolation of the method can also been considered for magnetized
plasma. A one-dimensional example of fractional wave equation is given and new
family of analytical solutions has been found.

Keywords Fractional wave equation · Wave propagation in non-local media ·
Electromagnetic wave in anisotropic media · Plasma dielectric tensor

1 Introduction

The propagation of electromagnetic waves in laboratory, astrophysical and iono-
sphere plasmas has captured the attention of scientists since the fifty years of the
past century (Budden [1], Stix[2]). The starting point was the differential system
of equations (Maxwell equation) coupled to the Vlasov equation solved for the
perturbative electric field when produce some perturbation on the plasma charac-
terized by a Maxwellian distribution function at the equilibrium. The solution of
the Maxwell-Vlasov equation system for unbounded, homogeneous and stationary
plasma immersed in a static magnetic field can be obtained by Fourier analysis of
the electromagnetic perturbative field, and a constitutive relation between the current
density �J = σ · �E (or alternatively the polarization �P = χ · �E or the displacement
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�D = �E + �P = �E + χ · �E = ε · �E), can be found in the form of a tensor of rank 2.

In the case of homogeneous plasma the properties of the tensors does not depend on
the relative position in space and time, and space and time locality is preserved. The
problem arises when the plasma must be considered inhomogeneous; in this case
the tensor above is depending on the space at position r and r’ (and time t, and t’)
separately and the non-locality of space and timemust be accounted. In this paper we
propose a derivation of a properwave equation both by following the classicalmethod
i.e. by preserving the integer order of the derivatives of the wave differential operator
or, alternatively, by deriving a fractional wave operator. An example based on a suit-
able simplification of the model is given to clarify and compare both approaches. In
Sec. II the context of the physical problem and the consequent mathematical model is
proposed and the solution in the “classical approach” is given and discussed. In Sec
III the “fractional operator approach” is proposed for the same physical problem and
a general wave equation with a “fractional Laplacian” is obtained. In Sec. IV simple
1D example is given togheter with its solution. In sec. V there are some remarks and
we draw conclusions.

2 The Model “Classical Approach”

Thepropagation of an electromagnetic perturbation in bounded andnon-homogenous

plasma is described in longitudinal approximation
( �E ||�k

)
by the Poisson equation,

∇ · �E(�r) = 4πρpol(�r) (1)

where �E(�r , ω) = �E(�r)e−iωt is the electric field of a time-harmonic perturbation, the
charge polarization can be written as ρpol = −∇ · �P , in terms of the polarization
vector. If we define the displacement �D = �E + 4π �P , it is possible to write the
Poisson’s equation like ∇ · �D(�r) = 0 where an integral relation relates D and E.

�D(�r) =
∫

d�r ′ε
(�r , �r ′, ω

) �E(�r ′) (2)

where ε
(�r , �r ′, ω

)
is the electric permittivity that in an inhomogeneous medium

like the plasma contains information on the non-locality of the space. Note that
D depends on the condition away from the point r, i.e. r’ (non-locality). When the
plasma perturbed by the field under consideration is infinite and homogeneous the
permittivity is independent on r and r’ separately, This means that we can write the
permittivity ε

(�r − �r ′) depending only on (�r − �r ′), and therefore the relation Eq. (2)
becomes
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�D(�r) =
∫

d�r ′ε
(�r − �r ′, ω

) �E(�r ′) (3)

By analyzing in Fourier �E(�r) = ∫
d�k �E�kei

�k·�r , �D(�r) = ∫
d�k �D�kei

�k·�r we got the
following relation �D�k = ε�k �E�k , where

ε�k = ε
(�k, ω

)
=

∫
d �Rε

( �R, ω
)
e−i �k· �R (4a)

and �R = �r ′ − �r . The Poisson Equation in this case reduces to an algebraic equation
(the dispersion relation)

ε
(�k, ω

)
= 0. (4b)

The electric permittivity or dielectric function can be calculated by the Poisson-
Vlasov system of equations for homogeneous, stationary and unbounded plasma (see
for the details Ref. [3]), and it reads

ε(k, ω) = 1 + 2ω2
pα

k2v2
thα

[
1 + ω

kvthα

Z

(
ω

kvthα

)]
(5)

where ω is the frequency of the electromagnetic perturbation, ωpα =
√

4πnα Z2
αe

2

mα

the plasma frequency, α is the species under consideration (electrons, ions) nα the

density, Zα the charge and mα the mass; vthα =
√

κTα

mαc
is the thermal velocity, Tα is

the temperature of the species; Z
(

ω
kvthα

)
is the plasma dispersion complex function:

Z(ζ ) = 1√
π

+∞∫
−∞

dt
exp(−t2)

t−ζ
[4]. In the case of weak inhomogeneity the situation is

much more complicated. As suggested in Refs. [5, 6] to keep into account the space
non-locality we can write

�D(�r) =
∫

d�r ′ε
(�r , �r ′, ω

) �E(�r ′) =
∫

d�r ′ε
(

�r − �r ′,
�r + �r ′

2
, ω

)
�E(�r ′) (6)

where we have considered a weak variation of the permittivity with respect
to the space. If we use the Ansatz �D(�r) = ∫

d�k �D�k(�r)ei �k(�r)·�r , and �E(�r ′) =∫
d�k �E�k

(�r ′)ei �k(�r ′)·�r ′
, where �k(�r) varies on much faster radial scale with respect to

the amplitude �E�k(�r), and use it in Eq. (6) we have

�D�k(�r) =
∫

d�r ′ε
(

�r − �r ′,
�r + �r ′

2

)
�E�k

(�r ′)ei �k·[�r ′−�r] (7)
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This is a constitutive relation between the displacement and the electric field in the
case of weekly inhomogeneous plasma in which the space non-locality is negligible.
Omitting the dependence on ω in both permittivity and electric field, and putting
�R = �r − �r ′, and �r+�r ′

2 = �r − �R
2 we can expand the electric field and the permittivity

as

�E
(
�r ′, �k

)
≈ �E�k(�r) − �R · ∇ �E�k(�r) + .... (8a)

and

ε

(
�r − �r ′,

�r + �r ′

2

)
= ε

(
�R, �r − �R

2

)
≈ ε

( �R, �r
)

− �R
2

· ∇ε
( �R, �r

)
+ .... (8b)

substituting Eqs. (8a) and (8b) in the previous Eq. (7) and considering the following
identities and definitions:

�R
2

· ∇ε
( �R, �r

)
= 1

2
∇ ·

[ �Rε
( �R, �r

)]
(9a)

ε�k(�r) =
∫

d �Rε
( �R, �r

)
e−i �k· �R (9b)

∂ε�k(�r)
∂ �k = ∂

∂ �k
∫

d �Rε
( �R, �r

)
e−i �k· �R = −i

∫
d �R �Rε

( �R, �r
)
e−i �k· �R (9c)

where in points arbitrarily close to �r , �k(�r) ∼ const ; neglecting the second order
terms in the expansion we have at the lowest and first order:

�D�k(�r) = ε�k(�r) �E�k(�r) − i
∂ε�k(�r)

∂ �k · ∇ �E�k(�r) − i

2

[
∇ · ∂ε�k(�r)

∂ �k
]

�E�k(�r) (10)

Inserting now �D(�r) = ∫
d�k �D�k(�r)ei �k·�r in the Poisson’s equation and using the elec-

trostatic potential �E(�r) = −∇�(�r) instead of the electric field we have at the lowest
and first order in R

ε�k(�r)k2��k(�r) = 0 (11)

and at the first order
(

∂ε�k(�r)
∂ �k · ∇��k(�r)

)
+ 1

2

(
∇ · ∂ε�k(�r)

∂ �k
)

��k(�r) = 0 (12)
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As it is possible to see at the lowest order the wave equation reduces to a simple
algebraic equation ε�k(�r) = 0 which, at constant ω, correlates the wavevector �k to the
space �r , like in the homogeneous caseEq. (4b) this is the so-called local homogeneous
dispersion relation. At the next order a partial differential equation Eq. (12) for the
scalar potential is derived which takes into account the slow variation of the potential
with space.

In order to illustrate the feature of these equationswe can distinguish several cases.
As first step the dielectric function (permittivity) of Eq. 5 can be expanded for small
temperature ζ = ω

kvthα
>> 1. The asymptotic expression reads like a polynomial

function in ζ−1 = kvthα

ω
<< 1:

ε(ω, k) ≈1 − ω2
pα

ω2

[
1 + 3

2

(
kvthα

ω

)2

+ 15

4

(
kvthα

ω

)4

+ ....

]

+i
ω

kvthα

ω2
pα

(kvthα)2

√
πe

−
(

ω
kvthα

)2

(13)

In this limit the complex susceptibility function results split in a real part which
accounts for the propagation of the wave and an imaginary part for the plasma
absorption of the wave (e.g. Landau damping, etc.). First of all in the case of non-
dispersive plasma (ε�k(�r) not depending on �k e.g. cold plasma limit T → 0), the
Eq. (11) reduces to

ε(ω, �r) = 1 − ω2
pα(�r)
ω2

= 0 (14)

which is the condition to have non-trivial solutions of Eq. (11); where the dielectric

function in this limit reads: ε(ω) = 1− ω2
pα

ω2 (cfr Eq. 13). Solution of Eq. (11) are the
so-called plasma oscillations (or Langmuir waves) ω2 = ω2

pα . At the lowest order in
temperature we have:

ε(ω, k, �r) ≈ 1 − ω2
pα

ω2
− 3

2

ω2
pαk

2v2
thα

ω4
= 0 (15)

whose solution is

ω2 = ω2
pα(�r) + 3

2
k2v2

thα(�r) (16)

In the case of dielectric function given by Eq. (15) it is possible to solve Eq. (12) for
the slow variationof the scalar potential in one-dimensional space (1D). In this case
Eq. (12) can be written as
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dε�k(r, k)
dk

d��k(r)
dr

+ 1

2

d

dr

(
dε�k(r, k)

dk

)
��k(r) = 0 (16bis)

It easy to find the solution of Eq. (16bis) by a simple analytical quadrature

��k(r) = ��k(0)

√(
dε�k(r, k)

/
dk

)
0

dε�k(r, k)
/
dk

= ��k(0)
Tα0

Tα(r)

√
nα0

nα(r)

k0
k(r)

(17)

where we have used Eq. (15) and the definiton of plasma frequency and thermal
velocity. Equation (17) shows that a slow variation of the potential can be accounted
by the theory developed before, depending on the space through density and
temperature as well as the wavevector.

It is clear that when the dispersion is not included in the electric permittivity (cold
plasma) the equation in both local and non-local aproach reduces to an algebraic
equation which correlates the frequency to to the plasma frequency (cold Langmuir
waves).When the temperature effects are included in the electric permittivity (disper-
sion) the effect of non-locality becomes important. At the lowest order we obtain an
algebraic equation that correlates the frequency to the plasma frequency with some
correction due to the temperature effect which is responible of the appearance of the
wavevector. At the next order the behaviour of the scalar potential with the space can
be established by solving Eq. (17).

3 Fractional Operator Approach

In this Section we try to outline a fractional differential equation approach to the
problem of the propagation of the Langmuir wave in an inhomogeneous plasma
by overcoming the weak inhomogeneous formulation outlined in Sec. II. To this
end, combining the Poisson equation and the expression of the dielectric function
Eq. (13) it is possible to obtain a wave equation by an inverse Fourier transform
(which holds only in the case of homogeneous infinite plasma). It is also possible
to deduce a dielectric function such that it admits solutions of type Eq. (16). The
dielectric function can be written in terms of the Debye length λDeα , the plasma
frequency and the frequency, and is written in a power-law form which results very
similar to the electric permittivity studied in the paper in Ref. [7]

ε(ω, k) = 1 − ω4

3ω4
pα(λ0k0)

2λ
2
Deαk

2

(
1 − ω2

pα

ω2

)
= 1 − f

(
ω,ωpα

)

λ
2
Deαk

2 (18)

with



Electromagnetic Waves in Non-local Dielectric Media … 77

f = ω4

3ω4
pα(λ0k0)

2

(
1 − ω2

pα

ω2

)
(19)

where λ0 and k0 = ω
c are normalization constants. As suggested in Ref. [7] this

simple form of the permittivity allows us to consider non-locality by introducing
a generalization of the permittivity which has a power law form. Hence we can
generalize the equation by deforming the two terms in the permittivity above such
as

ε(ω, k) = ∣∣k∣∣α−2 − f
(
ω,ωpα

)

λ
2
Deα

∣∣k∣∣2−β
(20)

The parameter α characterizes the deviation from Coulomb law due to non-local
property of themediumand theparameterβ the deviation from theDebye’s screening.
Note that in this case the plasma is characterized by zero free charge ρ f ree = 0
(neutrality). And the only charge present in the Poisson’s equation is the polarization
charge. Using the inverse Fourier transform we have:

(
(−�)α/2�

)
(�r) − f

(
ω,ωpα

)

λ
2
Deα

(
(−�)β/2�

)
(�r) = 0 (21)

If β = 0 we have to solve the fractional equation:

(
(−�)α/2�

)
(�r) − f

(
ω,ωpα

)

λ
2
Deα

�(�r) = 0 (22)

where (−�)α/2 is the Riesz fractional Laplacian Ref. [7] defined as:

(−�)α/2�(�r) = 
−1
(∣∣∣�k

∣∣∣
α

(
�)
(�k

))
(23)

written in terms of the Fourier transform 
. For α = 2 the classical result is obtained:

��(�r) + f
(
ω,ωpα

)

λ
2
Deα

�(�r) = 0 (24)

which is the classical Laplace equation for the scalar potential which describes the
propagation of the Langmuir waves.
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4 The 1D Fractional Wave Equation

In the 1D case where the variation of the potential depends on the one single coor-
dinate x , a fractional 1D wave equation is obtained. This is similar to the fractional

linear oscillator, where the constant term κ ≡
√

f (ω,ωpα)
λ
2
Deα

, is the inverse of an a dimen-

sional wavelength, or more generally the normalized frequency of the mechanical
oscillator. The fractional stationary wave equation can be written as

C
a D

α
x �(x) + κ2�(x) = 0 (25)

where 0 < α ≤ 2 and

C
a D

α
x �(x) ≡ dα�(x)

dxα
= 1

�(n − α)

x∫

a

�n(ξ)

(x − ξ)α+1−n dξ (26)

which is the “Caputo” formula Ref. [8] to calculate the derivative. The initial-value
for Eq. (25) can be viewed as a linear initial value problem where x > a, n − 1 <

α < n, and �(k)(a) = bk ∈ �, k = 0, ...., n − 1. In contrast for example to the
Riemann–Liouville fractional derivative, when solving differential equations, it is
not necessary to define the fractional order initial conditions. This kind of equation
has been extensively studied in literature [9–11], the solution of the problem Eq. (25)
is given by

�(x) =
n−1∑
k=0

bkx
k Eα,k+1

(−κ2xα
)

(27)

where Eα,β is the two parameter function Mittag–Leffler function. During the recent
years the Mittag–Leffler function has caused extensive interest among physicist due
to its role played in describing realistic physical systems with memory and delay.
The Mittag–Leffler function is defined by the series

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)
(28)

Therefore the Mittag–Leffler function is a generalization of the exponential when
a = 1 and b = 1. The solution of the classical second order equation coincides with
the solution of the fractional IVP equation for value of α → 2. In the classical case
the equation is



Electromagnetic Waves in Non-local Dielectric Media … 79

d2�(x)

dx2
+ κ2�(x) = 0 (29)

whose general solution can be written as

�(x) = b0E2,1
(
−κ2x2

)
+ b1E2,2

(
−κ2x2

)
= b0cosh

(√
−κ2x2

)
+ b1

sinh
(√

−κ2x2
)

√
−κ2x2

(30)

where b0 and b1 are constants fixed with the initial conditions. Coming back to the
solution of the fractional equation Eq. (27) being 0 < α ≤ 2, we can deduce that n
at most can reach the value 2. In this case

�(x) = b0Eα,1
(−κ2xα

) + b1xEα,2
(−κ2xα

)
(31)

Equation (31) represents the solution of the potential induced by an electromag-
netic perturbation which propagates in a plasma medium.

5 Conclusions

In this paper a derivation of a fractional wave equation has been obtained, which is
valid in an isotropic plasma when the space non-locality is taken into account. In
the first part the classical approach to take into account the non-locality based on
a WKB expansion of the electric field is illustrated. The second part is related to
a generalization of the Laplace operator to a “fractional” one and a 1D fractional
wave equation is derived which describes the propagating plasma wave valid in the
non-locality case. The wave is similar in structure to the one-dimensional fractional
mechanical oscillator and an analytical solution can be given in terms of the Mittag–
Leffler functions.

Appendix 1. Derivation of the Integral Wave Equation
for Wave Propagation in Non-Homogeneous Plasma

A valid equation describing the propagation of an electromagnetic wave in longitu-
dinal approximation, in an isotropic and non-homogeneous plasma can be derived
from the Poisson-Vlasovmodel, showing the non-locality of the process. The electro-
magnetic wave can be considered a perturbation which propagates in a Maxwellian
background plasma, and for this reason the model results to be linear. The equation
system under consideration is



80 A. Cardinali

∇ · �E(�r) = 4πq
∫ +∞

−∞
f 1(�v, �r , t)d �v (1A)

The Poisson’s equation, and f 1 is the perturbed distribution function of the particle
species. The linearized distribution function satisfies the Vlasov statistical equation

d f 1(�r , �v, t)

dt
≡ ∂ f 1

∂t
+ �v · ∂ f 1

∂�r = − q

m
�E(�r) · ∂ f 0(v)

∂ �v (2A)

Combining Eqs. (1A) and (2A) we have the following single integral–differential
equation for the electric field

∇ · �E(�r) = −4πq2

m

∫ +∞

−∞
d �v

t∫

−∞

�E(�r ′) · ∂ f0(�v)

∂ �v′ e−iω(t ′−t)dt ′ (3A)

where we have considered a harmonic perturbation in time. This equation must be
integrated along the characteristics lines, that in this case have a simple analytical
solution

�r − �r ′ = �v(
t − t ′

)

�v′ = �v = const
(4A)

where �v is a constant vector. Introducing the variable T = t ′ − t , and for weak
non-locality we can expand the field around the position �r ′ = �r + δ�r with δ�r = �vT .
We have

Ei
(�r ′) ≈ Ei (�r) + gT

i
· δ�r + 1

2
δ�r T H

i
· δ�r + ε

(
‖δ�r‖3

)
+ ...... (5A)

where gT
i
is the transpose of the Jacobian Matrix defined over the vector field E:

gT =
⎡
⎢⎣

∂E1
∂x1

∂E1
∂x2

∂E1
∂x3

∂E2
∂x1

∂E2
∂x2

∂E2
∂x3

∂E3
∂x1

∂E3
∂x2

∂E3
∂x3

⎤
⎥⎦ (6A)

and H is the Hessian which is a tensor of rank 3. Note that the Hessian matrix of
a single component of the field H

i
can be obtained as the Jacobian matrix of the

gradient vector of Ei (�r).
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H
i
=

⎡
⎢⎢⎣

∂2Ei

∂x21

∂2Ei
∂x1∂x2

∂2Ei
∂x1∂x3

∂2Ei
∂x2∂x1

∂2Ei

∂x22

∂2Ei
∂x2∂x3

∂2Ei
∂x3∂x1

∂2Ei
∂x3∂x2

∂2Ei

∂x23

⎤
⎥⎥⎦ (7A)

The third order term in Eq. (5A) involves a tensor of rank 4 and so on! Eq. (3A)
at the lowest order becomes

∇ · �E(�r) = −4πq2

m

∫ +∞

−∞
d �v

[
�E(�r) · ∂ f0(�v)

∂ �v
]
i

ω
(8A)

Assuming a spherical coordinate system (isotropy) for the integral over the
velocity and assuming a Maxwellian distribution function

f0(�v) = n0
π3/2v3

the

e
− v2

v2the (9A)

it is easy to show that the rhs of Eq. (8A) is zero after performing the integral over
the velocity space. At the next order we have

∇ · �E(�r) = −4πq2

m

∫ +∞

−∞
d �vgT

i
· �v · ∂ f0(�v)

∂ �v
0∫

−∞
T e−iωT dT (10A)

Evaluating the various integrals on time and velocity space (after choosing a
spherical coordinate systemwhich is coherentwith isotropy), we obtain the following
wave equation

(
1 − ω2

pα

ω2

)
∇ · �E(�r) = 0 (11A)

This is the same result we have obtained in Section II Eqs. (11) and (14). Note that the

integral on time can be easily evaluated to give
0∫

−∞
T e−iωT dT = 1

ω2 , for imaginary

ωI > 0. To the next order it is possible to show (by a heavy algebra) that there is no
contribution to the wave equation. To find a further contribution to the wave equation
is necessary to go to the third order in the field expansion, we obtain

∇ · �E(�r) = ω2
pα

ω2
∇ · �E(�r) + 3

2

ω2
pαv2

thα

ω4
∇2

(
∇ · �E(�r)

)
(12A)

The exact solution of Eq. (12A) involves a heavy algebra when performing the
integral on the velocity volume. The surviving non zero terms can be collected to give



82 A. Cardinali

the operator ∇2
(
∇ · �E(�r)

)
. Introducing the scalar potential we have the following

equation to be solved:

∇2�(�r) = ω2
pα

ω2
∇2�(�r) + 3

2

ω2
pαv2

thα

ω4
∇4�(�r) (13A)

This equation in principle can be solved by setting f := ∇2�(�r), and obtaining the
system

a∇2 f + b f = 0

∇2� = f
(14A)

where in our case a = 3
2

ω2
pαv2thα

ω4 , and b = 1 − ω2
pα

ω2 , and under prescribed boundary
conditions one can solve successively for f and then for �. It is easy from this
equation to deduce the dispersion relationwhen considering an infinite homogeneous
plasma. In this case the scalar potential can be written as �(�r) = ��kei

�k·�r , and the
dispersion relationion is

ε(ω, k) ≈ 1 − ω2
pα

ω2
− 3

2

ω2
pαk

2v2
thα

ω4
= 0 (15A)

which is similar to the Eq. (15) of Sec. II.
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Some New Exact Results for Non-linear
Space-Fractional Diffusivity Equations

Arrigo Caserta, Roberto Garra, and Ettore Salusti

Abstract In this paper we reconsider the classical nonlinear diffusivity equation
of real gas in an heterogenous porous medium in light of the recent studies about
nonlocal space-fractional generalizations of diffusionmodels. The obtained equation
can be simply linearized into a classical space-fractional diffusion equation, widely
studied in the literature.We consider the case of a power-law pressure-dependence of
the permeability coefficient. In this case we provide some useful new exact analytical
results. In particular, we are able to find a Barenblatt-type solution for a space-
fractional Boussinesq equation, arising in this context.

Keywords Nonlinear space-fractional diffusivity equations · Fluid flow in porous
medium

1 Introduction

Mathematical modelling of gas flow propagating in porous media involves a remark-
able number of difficulties, due to the possible variability of permeability and the
interaction of the fluid with the medium. Moreover in some cases, the heterogeneous
shape of the porous medium should be taken into account. In recent papers some
discussions about the limit of validity of classical conservation of mass and Darcy
law have been proposed by several authors (see for example [3, 4, 20] and refer-
ences therein). In particular, in various linear models of the physics of solid earth,
fractional derivative operators have been considered as useful mathematical tools to
consider memory effects and trapping (by means of fractional derivatives in time)
and nonlocal behavior and jumps with long tails (fractional derivatives in space).
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In particular fractional advection-dispersion equations have been widely studied for
modeling transport processes at the Earth surface, we refer to the relevant paper by
Schumer et al. [17] about this topic.

From the macroscopic point of view, time-fractional models in the physics of
porous media can be heuristically based on a modified Darcy law with memory that
takes into account the change in time of porosity of the medium in the interaction
with the fluid (see e.g. [3] and [6]). Space-fractional models can be derived by using
a generalized fractional conservation of mass, according to the approach developed
by Wheatcraft and Meerschaert in [20], where fractionality results from the hetero-
geneity of the control volume. The most of the studies on this topic regards linear
models, where nonlinear terms are completely neglected, even if they play a rele-
vant role in many realistic problems. On the other hand linear space-time fractional
models are completely motivated from the probabilistic and microscopic point of
view (see e.g. [17]), while physical discussions about nonlinear models involving
fractional derivatives are almost missing. We observe that in the recent mathematical
literature many papers have been devoted to the study of different versions of the
space-fractional porous medium equation (for example [5] and many others) and rel-
evant results have been raised out. A derivation of nonlinear fractional models from
modified physically based constitutive laws can help to better understand their utility
for applications. Moreover the investigation about exact solutions in this framework
can play a key-role to understand some relevant features, such as finite velocity of
propagation or blow-up in finite time and so on.

The main purpose of this paper is to reconsider the classical diffusivity equa-
tion of real gas in an heterogeneous porous medium in light of the recent studies
on space-fractional generalizations of diffusion models. We will firstly suggest an
heuristic generalization of the diffusivity equation and then show that, under suitable
assumption, this equation is simply linearizable to a linear space-fractional diffusion
equation, widely studied in the literature.

Then we will consider the fractional diffusivity equation in the case of pressure-
dependent permeability. In particular we analyze the high pressure regimes when
the permeability growth with pressure according to a power law relation. In this
way an higher order nonlinear term appears and we obtain by change of variable a
fractional porous-medium type equation. In this case we provide several new explicit
results by using a generalized separating variable method and the invariant subspace
method. In this context, we are able to find a Barenblatt’s type solution for the space-
fractional Boussinesq-like equation.While in the linear fractional diffusion equation,
the real order of the space-fractional derivative has a clear physical meaning in the
framework of CTRW models (and therefore space-fractional diffusion models have
been experimentally validated in various contexts [14]), in the nonlinear case an
experimental validation is still missing.We discuss, bymeans of theBarenblatt’s type
solution, the role played by the real order of the space-fractional derivative on the
velocity propagation of the pressure front. Thuswe suggest theway to experimentally
evaluate the order of the fractional derivative starting from the measurement of the
front propagation velocity.
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This result for the space-fractional porous medium type equation can have rel-
evant applications for example in the context of the studies about fluid-induced
microseismicity [18, 19]. Moreover, in Appendix C, we show that the real gas space-
fractional diffusivity equation can be reduced to the porous medium-type equation
in the more general case of pressure dependent coefficients, under suitable math-
ematical assumptions. This observation stresses the utility of the obtained results
in a really general unitary theory, where both pressure-dependence of the physical
coefficients and nonlocality due to heterogenity are taken into account.

The main aim of this paper is finally to provide a critical revisitation of classical
diffusivity models, in light of recent studies appeared in the literature about the rela-
tion between fractional derivative and mass flux in heterogeneous media. A second
concrete outcome is given by the discussion of some new explicit analytical results
that are related to interesting features of the generalized diffusivity equation. This
study represents in our view a first step in the analysis of non-linear non-local models
in physics of solid earth.

The paper is organized as follows: in Sect. 2 we briefly recall the meaning and
derivation of the real gas diffusivity model and its generalization. In Sect. 3 we study
the case of space-fractional diffusivity equation with pressure-dependent permeabil-
ity and we show some exact analytical results, including a Barenblatt’s type solution
that can help to experimentally evaluate the real order of the fractional derivative.
Three Appendices are also presented, about fractional derivatives, the invariant sub-
space method and the mathematical treatment of a more general space-fractional
diffusivity equation.

2 The Real Gas Diffusivity Equation: Classical Models and
Fractional Generalization

The main aim of this note is to reconsider classical models of real gas propagation
through heterogeneous porous media in light of the recent studies about the appli-
cations of space-fractional operators for considering nonlocal effects in diffusion
processes. We first give a simple derivation of the real gas diffusivity equation (see
e.g. [2] and [21] for details).Wewill assume that the fluid flow is for simplicity in one
dimension and in isothermal condition. Moreover the permeability of the medium
is assumed to be constant. Let us consider the conservation of mass equation in the
one-dimensional case, we have that

− ∂

∂t
ρφ = ∂

∂x
(vρ). (2.1)

The velocity flux is given by the classical Darcy law

v = − k

μ

∂ p

∂x
, (2.2)
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where μ is the fluid viscosity coefficient and k the permeability.
It is well-known that the Darcy law is a purely empirically-based law and it works

well inmany realisticmodels of fluidflow inporousmedia.Despite this, inmanyother
physical cases, some modifications of the Darcy law have been successfully applied,
such as the Forchheimer Law. Moreover space or time-fractional generalizations of
the Darcy law have been recently studied, for example in [3] and [8]. The role of
these more general forms of the Darcy law in the context here considered, should be
object of further research.

In order to obtain a single equation governing the pressure field evolution, we
should consider the relation between density and pressure field that is given by the
following equation of state for real gas

ρ = M

RT

p

z
, (2.3)

where M is the molecular weight of the gas, R is the universal gas constant, T the
absolute temperature and z the so-called gas deviation factor. We recall that the gas
deviation factor z is by definition the ratio of the volume actually occupied by the
gas at a given pressure and temperature, to the volume occupied if it behaved ideally.
In the more general case the gas deviation factor might depend by temperature and
pressure. Typically the gas deviation factor is close to 1 (i.e. the gas behaves as an
ideal gas) at low pressures and high temperatures, while for high pressure the gas is
said to be super-compressible.

Substituting equations (2.2) and (2.3) in (2.1), we obtain

∂

∂t

(
φ
p

z

)
= ∂

∂x

(
k

2μz

∂ p2

∂x

)
. (2.4)

Since both the porosity and the gas deviation factor are pressure-dependent, we
observe that

∂

∂t

(
φ
p

z

)
=

{ (
∂φ

∂ p

)
p

z
+ φ

∂

∂ p

(
p

z

)}
∂ p

∂t

= φp

z
(c f + cg)

∂ p

∂t
, (2.5)

where

cg = z

p

d

dp

(
p

z

)
(2.6)

is the real gas compressibility and

c f = 1

φ

dφ

dp
(2.7)
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is the porous medium compressibility. Clearly these coefficients are constant only
under specific assumptions on the pressure dependence of the porosity and gas devi-
ation factor, in the general case they are pressure-dependent.

Therefore, according to the conservation of mass Eq. (2.1), we finally arrive to
the diffusivity equation for real gas flow in porous medium

φ

z
(c f + cg)

∂ p2

∂t
= ∂

∂x

(
k

μz

∂ p2

∂x

)
. (2.8)

This is a nonlinear partial differential equation because to the general pressure depen-
dence of the porosity φ and of the compressibility coefficients. Since in the general
case it is not possible to find exact analytical solutions to (2.8), in the literature it
is frequently assumed that the gas deviation factor z and the diffusivity coefficient
α = k/(μφ(c f + cg)) are approximately constant. This is a strong physical assump-
tion, that is generally valid only for short times, considering the physical parameters
appearing in the diffusivity coefficient evaluated for the mean pressure over a time
interval. In practice this diffusivity coefficient is frequently considered in correspon-
dence to the initial reservoir pressure pi .

Under this assumption, the non-linear Eq. (2.8) is linearizable by means of the
simple change of variable u(x, t) := p2(x, t). In this case we therefore arrive to the
linear diffusion equation

φ(c f + cg)
∂u

∂t
= k

μ

∂2u

∂x2
. (2.9)

In this paper, we consider the following space-fractional counterpart of the nonlinear
Eq. (2.8), that is

φ

z
(c f + cg)

∂ p2

∂t
= ∂γ

∂xγ

(
k

μz

∂ p2

∂x

)
, x ≥ 0, γ ∈ (0, 1). (2.10)

involving fractional derivatives in the sense of Caputo (see Appendix A). Observe
that, according to Eq. (2.10), we are considering in particular the space-fractional
nonlinear nonlocal diffusion equation for a semi-infinite domain x ≥ 0. Indeed, we
replace the ordinary space derivativewith a left-handedCaputo derivative, defined for
x ≥ 0. The corresponding initial and boundary conditions will be discussed when
it is useful. We underline that in this paper we show that the model Eq. (2.10)
admits some particular interesting exact solutions, but, in general, we don’t start
our analysis from an initial-boundary value problem. The choice to consider the
evolution on the semi-infinite domain is motivated by the physical setting of the
problem considered. Moreover this choice permits us to find simply meaningful
exact mathematical results. This generalization is heuristically based on the idea that
nonlocal effects, modelized by means of fractional derivatives, are not negligible
in diffusivity models in porous media. A detailed physical derivation based on the
application of the space-fractional conservation of mass will be object of further
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investigations. The main aim of this note is to provide some new mathematical
useful results on this equation.

First of all, we observe that this is one of the few cases of nonlinear fractional equa-
tions arising from physical models that are C-integrable, i.e. integrable by change of
variable (see [9] and the references therein). Indeed, by means of the simple change
of variable u(x, t) := p2(x, t) we obtain

φ(c f + cg)
∂u

∂t
= k

μ

∂1+γu

∂x1+γ
. (2.11)

Equation (2.11) is widely studied in themathematical literature, we refer for example
to [12] for a complete treatment.

It is well-known in the physical literature that this equation arises in the context
of anomalous diffusion processes in models of particles dynamics where long jump
distributions are considered (see for example [14]). Anomalous diffusions include a
wide class of processes whose variance does not grow linearly in time, in contrast to
normal diffusion.

Anomalous diffusion processes related to space-fractional diffusion equations,
have found relevant applications in different fields of applied sciences, including
particle advection-diffusion on Earth surface [17].

As already seen, in Eq. (2.10) we assume all the physical coefficients appearing
in the diffusivity α as constant. In the next section we evaluate the role played by a
power-law pressure dependent permeability in the pressure field diffusivity equation.
In this case we are able to find exact solutions, even if the obtained equations have the
form of space-fractional porous medium-type equations. In Appendix C we provide
a simple mathematical scheme to reduce a more general case to the space-fractional
porous-medium type equation.

3 Diffusivity Models with Permeability Variations Induced
by Variations of Pressure

In realistic models of gas flow through porous media, the permeability coefficient
depends by variations of pressure, and for high pressure cases an empirical power-law
dependence is observed (see for example [18] and the references therein)

k(p) ∼ k0 pβ, β > 0. (3.1)

Taking into account this dependence implies that higher order nonlinearities appear
in the diffusivity equation governing the fluid flow in heterogeneousmedium. Indeed,
considering the governing Eq. (2.10) and the pressure-dependence of the porosity
(3.1) we obtain the equation
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φ(c f + cg)
∂ p2

∂t
= k0

μ

∂γ

∂xγ

(
pβ ∂ p2

∂x

)
. (3.2)

In this case the substitution p2(x, t) := u(x, t) leads to a space-fractional porous-
medium-type nonlinear equation

φ(c f + cg)
∂u

∂t
= k0

μ

∂γ

∂xγ

(
uβ/2 ∂u

∂x

)
. (3.3)

Fractional porous medium type equations have been widely studied in the recent
mathematical literature, even if with a quite different formulation and starting from
different assumptions (see e.g. [5] and references therein). As an outcome of our
analysis, we have found that a fractional porous-medium type equation arises also
in the treatment of diffusivity equation of gas flow in higly heterogeneous media,
where the permeability variations are induced by changes of pressure. As far as
we know the space-fractional Eq. (3.2) was not studied before. The second part of
this paper is devoted to the analysis of some classes of explicit solutions by using
generalized separating variable and invariant subspacemethods. It is well known that
exact solutions of nonlinear evolution equations play an important role for the study
of relevant features like the aysmptotic behavior, finite velocity of propagation or
blow up in finite time. Few exact results for nonlinear evolution equations involving
fractional derivatives in space or time are present in the literature. In this field of
research the applications of Lie symmetry methods and invariant subspace method
play a central role as it is proved by many recent publications such as [1, 10, 16].
The full mathematical discussion about the properties of the Eq. (3.3) is beyond
the aims of this paper. However we will show that in an interesting particular case
Barenblatt–type solutions can be obtained.

3.1 Exact Analytical Results

3.1.1 Stationary Solutions

As a first simple solution that can be analitycally investigated, we study the stationary
solutions of Eq. (3.3). This means that we should solve the following fractional
nonlinear ordinary differential equation

k0
μ

dγ

dxγ

(
uβ/2 du

dx

)
= 0. (3.4)

We can prove that an exact solution of Eq. (3.4) is given by

u(x) = (c1 + c2x)
2

β+2 , (3.5)
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where the real constants c1 and c2 depends by the boundary conditions. For the phys-
ical non-negativity constraint, wemust consider suitable constants and the restriction
x > 0.

We briefly show that (3.5) satisfies Eq. (3.4) by direct substituction. First of all,
we observe that by using (3.5)

(
uβ/2 du

dx

)
= (c1 + c2x)

2
β+2 · β

2 · 2c2
β + 2

· (c1 + c2x)
2

β+2 −1 = 2c2
β + 2

.

On the other hand, we know that the Caputo fractional derivative of a constant is null
and therefore, we obtain that (3.4) admits as a solution (3.5) by direct substituction.

The boundary condition, in this case, a posteriori is given by u(x = 0) = c
2

β+2

1 .

The corresponding pressure profile will be given by

p(x) =
√

(c1 + c2x)2/(β+2). (3.6)

For example, considering the steady propagation in the bounded domain x ∈ [0, L],
with L > 0 and taking the boundary conditions p(0) = p0 > 0 and p(L) = pL , we
have that the constants appearing in (3.6) are given by

c1 = pβ+2
0 ,

c2 = pβ+2
L − pβ+2

0

L
.

and therefore the pressure field evolves according to the following equation

p(x) =
√√√√

(
pβ+2
0 + pβ+2

L − pβ+2
0

L
x

)2/(β+2)

. (3.7)

3.1.2 Translating Front Solution

It is simple to prove that Eq. (3.3) admits a separating variable solution (see [15]) of
the form

u(x, t) = X (x) + T (t). (3.8)

Indeed by substituting (3.8) in (3.3), we should solve the following ordinary
differential equations



Some New Exact Results for Non-linear Space-Fractional Diffusivity Equations 91

⎧⎪⎨
⎪⎩

dT
dt

= λ, λ ∈ R,

α
dγ

dxγ
χβ/2 dχ

dx
= λ, α = k0

μφ(c f + cg)

(3.9)

whose trivial solutions are given by

X (x) = C1 x
2(γ+1)
β+2

T (t) = λt + C2,

where

C1 =
[

β + 2

2(γ + 1)

λ

α�(γ + 1)

] 2
β+2

(3.10)

and the real constant C2 depends by the initial condition. This solution corresponds

to a rigid translation of the initial profile u(x, 0) ∝ C2 + x
2(γ+1)
β+2 .

Therefore, going back to the equation governing the evolution of the pressure
field, assuming as initial condition

p(x, 0) =
√
p0 + C1 x

2(γ+1)
β+2 , (3.11)

a solution to (3.3) is given by

p(x, t) =
√
p0 + C1 x

2(γ+1)
β+2 + λt . (3.12)

This is a rigid translation without changing of shape.
Wehere observe again that themain aimof this paper is to consider someparticular

classes of exact explicit solutions admitted by the model nonlinear fractional Eq.
(3.3). In the most of the cases, the corresponding initial conditions are derived a
posteriori, we don’t start froma physically based initial-boundary condition problem.
Thismeans that some of these results aremainlymathematically oriented and canfind
a possible physical interpretation by considering the corresponding initial conditions.

3.1.3 Separating Variable Solutions

A second interesting class of analytical solutions of porous-medium-type equations
is given by separating variable solutions, i.e. (see the encyclopedic Handbook of
Polyanin and Zaitsev [15])

u(x, t) = X (x)T (t), (3.13)

where the functions X (x) and T (t) should solve the following nonlinear ordinary
equations
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φ(c f + cg)
dT

dt
= λT

β
2 +1, (3.14)

k0
μ

dγ

dxγ
Xβ/2 dX

dx
= λX. (3.15)

This is a nonlinear eigenvalue probem and, as usual, this kind of solutions strongly
depends by the value of λ. We consider the nonlinear eigenvalue problem (3.14) for
λ > 0 that can be reduced to the more simple case λ = 1 by simple scaling of X (x).
The solution of the ordinary equation in T (t) is rather trivial and it is given by

T (t) =
[

β

2φ(c f + cg)
(t0 − t)

]−2/β

, (3.16)

with t0 > 0. The solution of (3.15) clearly depends by the boundary conditions and
in general is not trivial to find an explicit form. However it is simple to prove that
Eq. (3.15) admits as a solution the following function

X (x) =
(

μ

k0

β

2γ + 2

�(
2γ+2

β
+ 1)

�(
2γ+2

β
+ γ + 1)

)2/β

x
2γ+2

β . (3.17)

Indeed, we first recall that

dγ

dxγ
xν = �(ν + 1)

�(ν + 1 − γ)
xν−γ, (3.18)

for ν > 0 and γ ∈ (0, 1). Therefore, if we search a solution to (3.15) by taking the
ansatz

X (x) = c0 · xν, (3.19)

where c0 and ν are two parameters that will be specified in the next. By substitution
in (3.15) we have (recalling that we are considering for simplicity the case λ = 1)

k0
μ

dγ

dxγ
Xβ/2 dX

dx
= k0

μ
c

β
2 +1
0 ν

�(
βν
2 + ν)

�(
βν
2 + ν − γ)

x
βν
2 +ν−γ−1 = c0x

ν . (3.20)

The last equation is clearly satisfied only in the case in which we take in (3.19)

⎧⎪⎨
⎪⎩

ν = 2γ+2
β

,

c0 =
(

μ
k0

β
2γ+2

�(
2γ+2

β +1)

�(
2γ+2

β +γ+1)

)2/β

,
(3.21)

as claimed.
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Therefore, substituting (3.17) and (3.16) in (3.13), we obtain a simple solution by
separating variables of the form

u(x, t) =
(

μ

k0

2φ(c f + cg)

2γ + 2

�(
2γ+2

β
+ 1)

�(
2γ+2

β
+ γ + 1)

)2/β (
x2γ+2

(t0 − t)2

)1/β

. (3.22)

This solution clearly leads to a blow-up infinite time for t = t0 and should be carefully
considered. This kind of solutions leading to an explosive behavior in finite time are
interesting for the mathematical theory behind the space-fractional porous-medium
Eq. (3.3).

3.1.4 Barenblatt-Type Solutions

A relevant role in the theory of porous-medium equations is played by the so-called
Barenblatt solution, corresponding to the fundamental solution of the porousmedium
equation, leading to a pressure profile propagating with finite velocity. We refer to
the classical book of Vázquez [22] for a complete analysis about this topic.

Here we start our analysis, by considering self-similar solutions of (3.3) of the
form

U(x, t) = t−k f (xt−s) = t−k f (η), η = xt−s, (3.23)

where k and s are similarity exponents and f (·) the self-similar profile. Since, by
simple calculations we have that

∂U
∂t

= −t−k−1

(
k U(η) + sη

∂U
∂η

)

∂γ

∂xγ
Uβ/2 ∂U

∂x
= t−s(γ+1)− kβ

2
∂γ

∂ηγ
Uβ/2 ∂U

∂η
.

We have therefore

− t−k−1

(
k U(η) + sη

∂U
∂η

)
= t−s(γ+1)− kβ

2
∂γ

∂ηγ
Uβ/2 ∂U

∂η
. (3.24)

In order to eliminate the time dependencewe have the first relation between similarity
coefficients

k

(
β

2
− 1

)
+ (γ + 1)s = 1. (3.25)

We therefore should solve the nonlinear fractional ’eigenvalue’ problem

(
k f (η) + sη

∂ f

∂η

)
+ ∂γ

∂ηγ
f β/2 ∂ f

∂η
= 0. (3.26)
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The free parameter β is then fixed on the basis of the physical constraints of the
conservation of mass ∫

U(x, t)dx = const. (3.27)

which implies α = s and, by substitution in (3.25), we have the explicit form of the
similarity exponents

k = s = 1

γ + β
2 + 1

. (3.28)

In the general case, unfortunately, we are not able to solve the nonlinear fractional
differential Eq. (3.26).

We now show that, for a specific case of the model Eq. (3.3), we are able to find
in explicit form a Barenblatt-type profile. For the more general case, this kind of
solutions cannot be found by using the method here employed. A general analysis
of the problem of finite velocity of propagation for this formulation of the fractional
porousmedium equation should be studied, but this is beyond the aim of this paper. In
our view this is an interesting example that canbeuseful both for the physicalmeaning
and the future mathematical analysis of the nonlocal porous medium Eq. (3.3). In
this case we adopt the invariant subspace method [7] as a useful mathematical tool to
find a Barenblatt-type solution. We refer to the monograph [7] and to the Appendix
B for details about this method.

Let us consider Eq. (3.3) for β = 2, corresponding to the space-fractional Boussi-
nesq equation. The resulting equation can be written as

∂u

∂t
= α

∂γ

∂xγ

(
u

∂u

∂x

)
, (3.29)

with (x, t) ∈ R
+ × R

+ and the diffusion coefficient α = k0/(μφ(c f + cg)). This is
a non-local generalization of the classical Boussinesq equation that plays a key-role
in hydrology. We observe that in the recent paper [13], the authors have discussed a
physical derivation of the space-fractional Boussinesq equation formodelling uncon-
fined underground flow. Let us define

F

[
t, u(x, t),

∂γu

∂xγ
,
∂u

∂x

]
:= ∂γ

∂xγ

(
u

∂u

∂x

)
, x ≥ 0. (3.30)

It is simple to prove that the nonlinear operator F[·] defined in (3.30) admits as
invariant subspace W 2 = 〈1, xγ+1〉.

Indeed by simple calculations (see Appendix A and B for more details), we have
that

F(c1 + c2x
γ+1) = (γ + 1)

∂γ

∂xγ

(
c1c2x

γ + c22x
2γ+1) = (γ + 1)

[
c1c2�(γ + 1) + �(2γ + 2)

�(γ + 2)
c22x

γ+1
]

(3.31)
and therefore the subspace W 2 = 〈1, xγ+1〉 is invariant under the operator F[·].
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This means that we can search a solution of (3.29) in the form

u(x, t) = a(t)xγ+1 + b(t), (3.32)

By substituting (3.32) into (3.29), we obtain

xγ+1 da

dt
+ db

dt
= α

(
(γ + 1)�(2γ + 2)

�(γ + 2)
a2xγ+1 + �(γ + 2)ab

)

and therefore the functions a(t) and b(t) must solve the coupled system of nonlinear
differential equations

⎧⎨
⎩

ȧ = α(γ + 1)�(2γ + 2)

�(γ + 2)
a2,

ḃ = α�(γ + 2)ab.
(3.33)

By simple calculations we finally find the following solution

u(x, t) = 1

t c2

[
1 − c1xγ+1

t1−c2

]
+

, x ≥ 0 (3.34)

where (·)+ = max{·, 0} (for the positivity physical constraint u ≥ 0) and

⎧⎪⎪⎨
⎪⎪⎩
c1 = �(γ + 2)

α(γ + 1)�(2γ + 2)
,

c2 = �2(γ + 2)

(γ + 1)�(2γ + 2)
.

(3.35)

This solution corresponds in the classical theory, to the source solution that is related
to a Dirac’s delta function as an initial condition. In this case the pressure propagates
with finite velocity, starting from a strong pulse and at fixed time the solution is
always with compact support. The rigorous way to obtain this solution requests more
sophisticated limit arguments and the development of the mathematical analysis of
weak solutions for this kind of problems. This is beyond the aims of this paper that is
devoted to find some special solutions that can have a clear motivation in our physical
framework. In our case, following the seminal investigations about the fundamental
solutions of the porous medium equation, we have roughly cutted off the part of the
profile that is physically meaningless (corresponding to negative values of pressure).
This corresponds to find a pressure front propagating at finite velocity (Fig. 1).

This solution describes a front evolving as x(t) ∼ t
1−c2
1+γ , therefore with a strong

dependence of the velocity propagation by the parameter γ, parametrizing nonlocal
effects in the nonlinear evolution.

We can also observe that for γ = 1, the classical Barenblatt solution for the porous
medium equation is recovered (by choosing a suitable initial intensity of the source
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Fig. 1 We represent the
solution (3.34) for x ≥ 0,
and (for simplicity)
t = α = 1. The continuous
line corresponds to γ = 1/2,
the dashed to γ = 1/5, the
dotted to γ = 1/7 and the
bold line to γ = 1. The
function is zero outside the
set where the pressure is
positive and therefore the
support is compact

pulse). Indeed in this case we obtain that

u(x, t) = 1

t1/3

[
1 − 1

6

|x |2
t2/3

]
+

, (3.36)

that coincides with equation (1.8) of [22] up to a multiplicative constant. Observe
that in our case the modulus is missing because we are considering the problem in the
semiline x ≥ 0. It is therefore clear the role played by the nonlocality that changes
the shape and amplitude of the support of the evolving front, as can be seen in Fig.1.
A relevant outcome of this result is related to the experimental evaluation of the
fractional order of derivative and its physical meaning. Indeed, it can be found from
the measured velocity of the front.

This kind of solutions can play an interesting role also in the context of the studies
about fluid-induced micoseismicity [18], this will be object of further studies. We
conclude this section, observing that the relevant feature of the finite velocity of
propagation is therefore preserved in the space-fractional Boussinesq equation.

4 Conclusions

In this paper we have reconsidered the model of nonlinear diffusivity of real gas
through a strongly heterogenous porous medium, considering nonlocal effects by
means of space-fractional derivatives. A part of this paper has been devoted to the
derivation of rigorous exact analytic results for the obtained equations of space-
fractional diffusion and porous-medium type.

Nonlinear models involving space or time fractional derivatives should be still
object of research in the physics of solid earth. This topic of research is motivated by
recent discussions about the generalized Darcy law and the space-fractional conser-
vation of mass in heterogeneous media. This paper is the first step in this direction,
with themain aim to present the advantages of fractional calculusmodels for possible
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future experimental validation and investigations. From a theoretical mathematical
point of view,we suggest some issues that should be investigated, in particular regard-
ing the existence of finite velocity propagating solutions and the more complicated
multidimensional cases.

5 Appendix A: Some Details on Fractional Caputo
Derivatives

Here we give some details about the fractional Caputo derivatives and some simple
mathematical rules that we have applied in the text. Let 0 < γ ≤ 1, the Caputo
fractional derivative is defined by

Dγ
C f (x) =

{∫ x
0

(x−x ′)−γ

�(1−γ)
f

′
(x ′) dx ′, γ ∈ (0, 1)

f
′
(x), γ = 1,

(5.1)

where f
′
(x) is the ordinary first order derivative with respect to x . We can observe

that Dγ
C f (x) = J 1−γ

x

(
d f
dx

)
, where

J γ
x f (x) = 1

�(γ)

∫ x

0
(x − x ′)γ−1 f (x ′)dx ′, (5.2)

is the Riemann-Liouville integral of order γ ∈ (0, 1).
It is simple to prove the following properties of Caputo fractional derivative of

order γ ∈ (0, 1) (see e.g. [11]):

Dγ
C J

γ
x f (x) = f (x),

Dγ
C x

δ = �(δ + 1)

�(δ − γ + 1)
xδ−γ δ ∈ (−1, 0)

⋃
(0,∞),

Dγ
Cconst. = 0.

6 Appendix B: The Invariant Subspace Method

The Invariant Subspace Method, introduced in the literature by Galaktionov (see the
monograph [7] and [16] for details), allows to solve exactly nonlinear equations by
separating variables.
We recall the main idea of this method: consider a scalar evolution equation

∂u

∂t
= F

[
u,

∂u

∂x
, . . .

]
, (6.1)
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where u = u(x, t) and F[·] is a nonlinear differential operator. Given n linearly
independent functions

f1(x), f2(x), ...., fn(x),

we call Wn the n-dimensional linear space

Wn = 〈 f1(x), ...., fn(x)〉.

This space is called invariant under the given operator F[u], if F[y] ∈ Wn for any
y ∈ Wn . This means that there exist n functions �1,�2, ..., �n such that

F[C1 f1(x) + ......Cn fn(x)] = �1(C1, ....,Cn) f1(x) + ......

+ �n(C1, ....,Cn) fn(x),

where C1,C2, .....,Cn are arbitrary constants.
Once the set of functions fi (x) that form the invariant subspace has been deter-

mined, we can search an exact solution of (6.1) in the invariant subspace in the
form

u(x, t) =
n∑

i=1

gi (t) fi (x). (6.2)

where fi (x) ∈ Wn . In this way, we arrive to a system of ODEs. In many cases,
this problem is simpler than the original one and allows to find exact solutions by
just separating variables [7]. We refer to the monograph [7] for further details and
applications of this method. The first applications of the invariant subspace method
to fractional equations is due to Gazizov and Kasatkin [10].

7 Appendix C: A Mathematical Analysis of the More
General Case

A strong limitation in the analysis developed in this paper is given by the assumption
that the diffusivity coefficient (involving compressibility coefficients, porosity, per-
meability and viscosity) is constant and pressure-independent. Here we show that,
under some mathematical assumptions, we are able to reduce a more general case
to a fractional porous medium-type equation, similar to the one considered in the
previous section. Here we provide a syntetic scheme to obtain this result:

• Assume that the coefficients appearing in (2.8) are pressure-dependent according
to the following equalities

φ(c f + cg)

z
∼ C1 p

n1
k

μz
∼ C2 p

n2 , (7.1)
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with n1, n2,C1,C2 arbitrary real positive constants. Therefore Eq. (2.8) becomes

C1 p
n1

∂ p2

∂t
= C2

∂γ

∂xγ
pn2

∂ p2

∂x
. (7.2)

• Define u = p2, such that (7.2) becomes

2C1

n1 + 2

∂

∂t
u

n1
2 +1 = C2

∂γ

∂xγ
u

n2
2

∂u

∂x
. (7.3)

• Define s = u
n1
2 +1 and therefore we finally obtain a space-fractional porous-

medium-type equation

C1
∂s

∂t
= C2

∂γ

∂xγ
s

n2+2
n1+2 −1 ∂s

∂x
(7.4)

Thus we can apply the methods used before to solve (3.3) also in this more general
case.
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A Note on Hermite-Bernoulli
Polynomials

Clemente Cesarano and Alexandra Parmentier

Abstract Using the concepts and formalism of different families of Hermite poly-
nomials, we discuss here some generalizations of polynomials belonging to the
Bernoulli class, and we also show how to represent the action of the operators
involving fractional derivatives. In particular, by using the method of generating
function, we introduce generalized Bernoulli polynomials by operating in their gen-
erating function with the formalism of the two-variable Hermite polynomials. In
addition, we extend some operational techniques in order to derive different forms of
Bernoulli numbers and polynomials. Finally, we explore some general properties of
generalized Bernoulli polynomials, focusing on their extension to the 2D case, and
we introduce a family of polynomials strictly related to the Hermite polynomials in
order to compute the effect of fractional operators on a given function.

Keywords Hermite polynomials · Bernoulli polynomials · Generating functions ·
Fractional calculus.

1 Introduction

Bernoulli numbers and polynomials can be introduced through their generating func-
tions [1]:

t

et − 1
=

+∞∑

n=0

tn

n! Bn, (1)
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text

et − 1
=

+∞∑

n=0

tn

n! Bn(x), (2)

where t is real and nonzero.
It is also known that Bernoulli polynomials can be expressed in terms of Bernoulli

numbers; indeed, exploiting the generating function of Bernoulli polynomials, we
retrieve:

text

et − 1
= ext

t

et − 1
=

+∞∑

s=0

xst s

s!
+∞∑

m=0

tm

m! Bm, (3)

and then

text

et − 1
=

+∞∑

s=0

+∞∑

m=0

xst s+m

s!m! Bm . (4)

If we set s + m = n, and equate coefficients of corresponding powers in Eq.4,
we get:

Bn(x) =
n∑

s=0

(
n

s

)
Bn−s x

s (5)

that is valid ∀n ∈ N. A significant recurrence relation, which is satisfied by Bernoulli
polynomials, can be easily derived from their generating functions. Indeed, differ-
entiating Eq.2 with respect to x , we obtain

t2ext

et − 1
=

+∞∑

n=0

tn

n!
d

dx
Bn(x), (6)

that is,

+∞∑

n=0

tn+1

n! Bn(x) =
+∞∑

n=0

tn

n!
d

dx
Bn(x), (7)

and, after rearranging indices and equating coefficients of corresponding powers, the
following relation

d

dx
Bn(x) = nBn−1(x) (8)

that holds for all value of n is straightforwardly recovered.
Equation8 suggests us to look at Bernoulli polynomials as a particular class of

orthogonal polynomials. The theory of hybrid polynomials and special functions can



A Note on Hermite-Bernoulli Polynomials 103

be found in literature only in very particular cases [2], the only exception in this field,
is the class of Hermite polynomials, which was introduced from the beginning in
the general case and can be found in a classical book of P. Appell and J. Kampé
de Fériet [3]. It has also been shown [4–8] that the Hermite polynomials play a
fundamental role in the extension of the classical special functions. Starting from
the Hermite polynomials it has already been possible to obtain some extensions of
some classical special sets of functions, including the Bessel functions [9], Dickson
polynomials [10], Laguerre polynomials [11], Chebyshev polynomials [12–14]. In
this paperwe show that, starting from two-variableHermite polynomials, it is possible
to introduce generalizations of Bernoulli polynomials.

We note, indeed, Kampé de Fériet Hermite polynomials [3]

Hen(x) = n!
[ n
2 ]∑

s=0

(−1)s

(n − 2s)!s!2s x
n−2s (9)

are defined by means of the following generating function:

ext−
t2

2 =
+∞∑

n=0

tn

n!Hen(x); (10)

and, since the Hen(x) polynomials solve the differential-difference equation

d

dx
Hen(x) = nHen−1(x), (11)

that holds for all value of n, we are allowed, in some specific cases, to treat Bernoulli
polynomials as a particular case of Hermite polynomials. Moreover, the class of
polynomials recognized as part of Hermite family could be used to derive interesting
generalizations involving Bernoulli polynomials.

The readermust be reminded here that Bernoulli polynomials satisfy the following
recurrence relation

Bn(x + 1) − Bn(x) = nxn−1, (12)

which stems from the partial sum

m∑

k=0

kn = Bn+1(m + 1) − Bn+1

n + 1
(13)

for n,m ∈ N, after noticing that

Bn = Bn(0). (14)
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2 Generalized Hermite Polynomials and Bernoulli
Polynomials

In the previous section we have introduced Kampé de Fériet Hermite polynomials
of one variable (Eq.9), together with their related generating function (Eq. 10).

In order to introduce a first two-variable generalization, we can draw on the
formalism and techniques of exponential operators. For an analytic function f (x),
the Taylor expansion, after addition of a real parameter λ, looks like

f (x + λ) =
+∞∑

n=0

λn

n! f
(n)(x), (15)

provided the analyticity of f at x + λ as well.
Since the action of exponential operators on an analytic function corresponds to

a translation [4]

eλ d
dx f (x) =

+∞∑

n=0

λn

n! f
(n)(x), (16)

we can utilize Eq.16 to introduce two-variable Hermite polynomials. Indeed, if we
take into account the second derivative, we can write:

eλ d2

dx2 f (x) =
+∞∑

n=0

λn

n! f
(2n)(x). (17)

It must be noticed that

d2n

dx2n
(xm) = m!

(m − 2n)! x
m−2n, (18)

and

eλ d
dx (xm) = (x + λ)m, (19)

from which we can infer

eλ d2

dx2 (xm) =
[ m

2 ]∑

n=0

λn

n!
m!

(m − 2n)! x
m−2n . (20)

Finally, since λ is real by definition, we can state that two-variable Hermite poly-
nomials Hn(x, y) of Kampé de Fériet form are defined by the following formula
[15]:
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Hn(x, y) =
[ n
2 ]∑

s=0

n!
s!(n − 2s)! y

sxn−2s . (21)

Two-variable Hermite polynomials are linked to ordinary Hermite polynomials
Hen(x) by the relation:

Hn

(
x,−1

2

)
= Hen(x). (22)

It is also important to notice that Hermite polynomials Hn(x, y) satisfy the equa-
tion [16, 17]

Hn(x, 0) = xn . (23)

The definition of a family of polynomials belonging to the Appell class [18] and,
in particular, to the large class of Hermite polynomials, can be carried out in many
ways [17]; we have introduced the polynomials Hn(x, y) bymeans of the operational
techniques of exponential operators, and we have outlined their nature in relation to
the differential-difference Eq.11 (see Introduction).

We can move on and state an important operational relation possibly useful to
reach our goal. First, we prove the following significant result:

Theorem 1 Hn(x, y) polynomials solve the following partial differential equation:

∂2

∂x2
Hn(x, y) = ∂

∂y
Hn(x, y). (24)

Proof By separate differentiation with respect to x and y, respectively, in Eq.21, we
obtain

∂

∂x
Hn(x, y) = nHn−1(x, y)

∂

∂y
Hn(x, y) = n(n − 1)Hn−2(x, y).

(25)

The proof of the theorem is straightforwardly derived from Eqs. 25, differentiating
the former relation with respect to x and then applying the latter one. �

The differential equation stated in Theorem 1 allows for inferring a remarkable
operational rule for this class of Hermite polynomials. Indeed, Eq.24 can be consid-
ered as ordinary in y and, thus, linear, so that we can immediately solve the following
Cauchy problem:

∂

∂y
Hn(x, y) = ∂2

∂x2
Hn(x, y)

Hn(x, 0) = xn,

(26)
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leading to

Hn(x, y) = ey
∂2

∂x2 xn. (27)

We have previously mentioned the natural link between Hermite polynomials and
the differential-difference Eq.11. In order to better investigate this issue, we prove
here the following theorem:

Theorem 2 The polynomials Hn(x, y) satisfy the following differential-difference
equation

d

dz
Yn(z) = anYn−1(z) + bn(n − 1)Yn−2(z)

Yn(0) = δn,0.

(28)

where z is a real variable, and a and b are real constants.

Proof Using the generating-function method [18], and setting

G(z; t) =
+∞∑

n=0

tn

n!Yn(z) (29)

with t a real variable, we can rewrite Eqs. 28 as

d

dz
G(z; t) = (at + bt2)G(z; t)
G(0; t) = 1,

(30)

that is, as a linear ordinary differential equation, whose solution reads

G(z; t) = ext+yt2 , (31)

where az = x and bz = y.
Finally, exploiting the r.h.s. of Eq.31, the initial thesis is immediately obtained

since:

ext+yt2 =
+∞∑

n=0

tn

n!Hn(x, y). (32)

Theorem 2 returns the connection between Hermite polynomials of type Hn(x, y)
and their generating function, that is,

ext+yt2 =
+∞∑

n=0

tn

n!Hn(x, y). (33)
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In this paper we want to explore the relations involving Bernoulli and Hermite
polynomials of type Hn(x, y). More precisely, we will show how Bernoulli poly-
nomials can be generalized, and how some significant relations, related to the wide
family of polynomials recognized as Hermite polynomials, appearing in the litera-
ture, can be derived for polynomials which involve Bernoulli in terms of Hermite.

We have defined a special class of functions by using families of polynomials that
belong to the Hermite family. In this context, we use Hermite polynomials of type
Hn(x, y) to introduce a generalization of Bernoulli polynomials.

Starting from the generating function of Hn(x, y) polynomials stated in Eq.32,
we can introduce here Hermite-Bernoulli polynomials by manipulation of Eq. 2:

text+yt2

et − 1
=

+∞∑

n=0

tn

n! H Bn(x, y). (34)

Equation34 can be considered as a sort of definition of this family of Bernoulli
polynomials H Bn(x, y), that is, Bernoulli polynomials in the Hermite basis. In order
to derive their explicit form, and, consequently, to elucidate their nature, we have to
further manipulate Eq.34. Indeed, from Eqs. 1 and 32:

t

et − 1
ext+yt2 =

+∞∑

m=0

tm

m! Bm

+∞∑

s=0

t s

s!Hs(x, y). (35)

If we set m + s = n, we get

t

et − 1
ext+yt2 =

+∞∑

n=0

+∞∑

s=0

tn

(n − s)!s! Bn−s Hs(x, y), (36)

and, equating coefficients of corresponding n-powers in Eq.36, while taking into
account the definition given in Eq.34, we end up with

H Bn(x, y) =
n∑

s=0

(
n

s

)
Bn−s Hs(x, y), (37)

which represents the explicit form of Hermite-Bernoulli polynomials.
A first identity that can be easily retrieved for this class of polynomials occurs

when y = 0. Indeed, from Eq.37:

H Bn(x, 0) =
n∑

s=0

(
n

s

)
Bn−s Hs(x, 0); (38)

and, applying the analogous identity reported in Eq.23:
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H Bn(x, 0) =
n∑

s=0

(
n

s

)
Bn−s x

s . (39)

The r.h.s. of Eq.39 represents the ordinary Bernoulli polynomial appearing in
Eq.5, so that

H Bn(x, 0) = Bn(x). (40)

The structure of Hermite-Bernoulli polynomials, as well as the relations they
satisfy, suggest that it is worth deriving differential operational relations similar to
those presented in the case of Hermite polynomials of type Hn(x, y). In particular,
starting from the partial differential equation stated in Eq.24, we can recover a
comparable result for polynomials H Bn(x, y).

We start from proving some significant properties.

Theorem 3 Hermite-Bernoulli polynomials satisfy the following recurrence rela-
tions:

∂

∂x
H Bn(x, y) = nH Bn−1(x, y) (41)

∂

∂y
H Bn(x, y) = n(n − 1)H Bn−2(x, y) (42)

Proof If we differentiate both sides of Eq.37 with respect to x , we get

∂

∂x
H Bn(x, y) =

n∑

s=0

(
n

s

)
Bn−s

∂

∂x
Hs(x, y), (43)

and, exploiting Eqs. 25, we find

∂

∂x
H Bn(x, y) =

n∑

s=1

(
n

s

)
Bn−ssHs−1(x, y), (44)

which gives Eq.41. After an analogous differentiation of Eq.37 with respect to y,
we find

∂

∂y
H Bn(x, y) =

n∑

s=0

(
n

s

)
Bn−s

∂

∂y
Hs(x, y), (45)

that is, using Eqs. 25 once again, we are left with Eq.42. �

Theorem 4 Hermite-Bernoulli polynomials satisfy the following Cauchy problem:
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∂

∂y
H Bn(x, y) = ∂2

∂x2
H Bn(x, y)

H Bn(x, 0) = Bn(x).

(46)

This amounts to reading the partial differential equation as ordinary (linear) in y.

Proof If Eq.41 is differentiated with respect to x , the relation

∂2

∂x2
H Bn(x, y) = n(n − 1) H Bn−2(x, y) (47)

is obtained. When compared to Eq.42, it returns Eq.46.
Since the partial differential equation in the Cauchy problem is intended as ordi-

nary (that is, linear) in y, the use of the initial condition

H Bn(x, 0) = Bn(x) (48)

returns the solution

H Bn(x, y) = ey
∂2

∂x2 Bn(x), (49)

which is the proof of the theorem.

It isworth noticinghere thatTheorem4 returns anoperational identity forHermite-
Bernoulli polynomials, which is similar to that satisfied by two-variable Hermite
polynomials (Eq.27). This feature is expected, since Hermite-Bernoulli polynomials
have been introduced by means of Hn(x, y) polynomials used as a basis.

An interesting point can be the exploration of different families of Hermite poly-
nomials in order to recover further generalizations of Bernoulli polynomials, as well
as a set of significant differential relations involving the latter.

3 Further Generalizations of Hermite-Bernoulli
Polynomials

A different class of generalized two-variable Hermite polynomials could be directly
introduced by replacing (x, y) by (2x,−y) in Eq.21, but, in order to emphasize the
link between Hermite polynomials and the differential difference equation, we prefer
to follow the same procedure, so as to outline differences and analogies.

Starting from differential-difference Eqs. 28, we consider a slight modification:

d

dz
Yn(z) = 2anYn−1(z) − bn(n − 1)Yn−2(z)

Yn(0) = δn,0,

(50)
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with z a real variable, and a, b real constants again. When implementing the usual
generating-function method, the following relations are derived:

d

dz
G(z; t) = (2at − bt2)G(z; t)
G(0; t) = 1,

(51)

which represents a linear differential equation, whose solution reads

G(z; t) = e2xt−yt2 , (52)

where az = x , bz = y.
Using the r.h.s. of Eq.52, the following generalized two-variable Hermite poly-

nomials can be introduced [16]:

e2xt−yt2 =
+∞∑

n=0

tn

n! H̄n(x, y); (53)

and, making use of the Cauchy problem stated in Eqs. 50, we get a chance to recover
the explicit form of H̄n(x, y) polynomials:

H̄n(x, y) =
[ n
2 ]∑

s=0

n!
s!(n − 2s)! (−y)s(2x)n−s . (54)

Let us take a look now at a set of differential relations satisfied by Hermite poly-
nomials of type H̄n(x, y), in complete analogy to Hn(x, y) polynomials.

Theorem 5 Hermite polynomials of type H̄n(x, y) satisfy the following recurrence
relations:

∂

∂x
H̄n(x, y) = 2nH̄(n−1)(x, y), (55)

∂

∂y
H̄n(x, y) = −n(n − 1)H̄(n−2)(x, y), (56)

Proof If Eq.53 is differentiated with respect to x , we recover

2te2xt−yt2 =
+∞∑

n=0

tn

n!
∂

∂x
H̄n(x, y), (57)

and, applying Eq.53 once again:
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2
+∞∑

n=0

tn+1

n! H̄n(x, y) =
+∞∑

n=0

tn

n!
∂

∂x
H̄n(x, y), (58)

which proves Eq.55.
Then, differentiating Eq.53 with respect to y, the following relation is retrieved:

− t2e2xt−yt2 =
+∞∑

n=0

tn

n!
∂

∂y
H̄n(x, y), (59)

which is a proof of Eq.56. �

As for the case of Hn(x, y) polynomials presented in Sect. 2 (Eq. 26), Theorem 5
helps us recover a differential relation for H̄n(x, y) polynomials.

Theorem 6 Hermite polynomials of type H̄n(x, y) solve the following partial dif-
ferential equation:

− 1

4

∂2

∂x2
H̄n(x, y) = ∂

∂y
H̄n(x, y), (60)

Proof If Eq.55 is differentiated with respect to x , the following equation is obtained:

∂2

∂x2
H̄n(x, y) = 2n

∂

∂x
H̄n−1(x, y), (61)

from which:
∂2

∂x2
H̄n(x, y) = 2n[2(n − 1)]H̄n−2(x, y). (62)

Then, applying Eq.56, we get

− 1

4

∂2

∂x2
H̄n(x, y) = ∂

∂y
H̄n(x, y), (63)

which is the proof of the theorem.

Following the same line of reasoning as the one employed for polynomials of type
Hn(x, y), we can recover an interesting operational identity.

Let us notice that

H̄n(x, 0) =
[ n
2 ]∑

s=0

n!
s!(n − 2s)! (0)

s(2x)n−2s, (64)

which is not trivial for s = 0 alone; this gives
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H̄n(x, 0) = (2x)n. (65)

Equation60 can be considered as an ordinary linear differential equation in y; then,
Eq.65 being the initial condition for y = 0, we can straightforwardly write its
solution:

H̄n(x, y) = e− 1
4 y

∂2

∂x2 (2x)n, (66)

which is just a useful operational relation for H̄n(x, y) polynomials.
A further interesting relation stems from Eq.66; indeed, since

e− y
4

∂2

∂x2 =
+∞∑

n=0

(−1)n
( y

4

)n ∂2n

∂x2n
, (67)

after noticing that the effect of the derivative of (2x)n is trivial for 2s > n, we obtain

H̄n(x, y) =
⎡

⎣
[ n
2 ]∑

s=0

(−1)s
( y

4

)s ∂2s

∂x2s

⎤

⎦ (2x)n. (68)

This further class of Hermite polynomials can be utilized to generalize Bernoulli
polynomials according to the same approach exposed in Sect. 2. We introduce here
Hermite-Bernoulli polynomials of type H B̄n(x, y) bymeans of their generating func-
tion. Indeed, combining generating functions of Bernoulli numbers (Eq.1) and Her-
mite polynomials of type H̄n(x, y) (Eq. 53), we retrieve here

te2xt−yt2

et − 1
=

+∞∑

n=0

tn

n! H B̄n(x, y). (69)

Similarly to what seen in the previous section, Eq.69 represents the definition of
this class of Hermite-Bernoulli polynomials, for which the basis is now the set of
Hermite polynomials of type H̄n(x, y). We can explicit Eq. 69 as

t

et − 1
e2xt−yt2 =

+∞∑

m=0

tm

m! Bm

+∞∑

s=0

t s

s! H̄s(x, y), (70)

and, setting m + s = n, it follows:

+∞∑

n=0

tn

n! H B̄n(x, y) =
+∞∑

n=0

+∞∑

s=0

tn

s!(n − s)! Bn−s H̄s(x, y), (71)

which returns the explicit form of Hermite-Bernoulli polynomials of type H B̄n(x, y),
that is,
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H B̄n(x, y) =
+∞∑

s=0

(
n

s

)
Bn−s H̄s(x, y). (72)

When y = 0, it is found:

H B̄n(x, 0) =
+∞∑

s=0

(
n

s

)
Bn−s(2x)

s, (73)

or, applying in cascade the identity reported in Eq.65 and Eq.5:

H B̄n(x, 0) = Bn(2x), (74)

which represents the link between ordinary Bernoulli polynomials and their gener-
alization in the basis of Hermite polynomials of type H̄n(x, y).

Using properties, and related formalism, ofHermite polynomials of type H̄n(x, y),
we can derive useful differential relations for polynomials of type H B̄n(x, y).

Theorem 7 Hermite-Bernoulli polynomials of type H B̄n(x, y) satisfy the following
relations:

∂

∂x
H B̄n(x, y) = 2n H B̄n−1(x, y), (75)

∂

∂y
H B̄n(x, y) = −n(n − 1) H B̄n−2(x, y), (76)

Proof When differentiating Eq.72 with respect to x , we obtain

∂

∂x
H B̄n(x, y) =

n∑

s=0

(
n

s

)
Bn−s

∂

∂x
H̄s(x, y), (77)

after which, applying Eq.55, it is found:

∂

∂x
H B̄n(x, y) =

n∑

s=1

(
n

s

)
Bn−s2s H̄s−1(x, y), (78)

returning Eq.75.
Similarly, after a differentiation with respect to y

∂

∂y
H B̄n(x, y) =

n∑

s=0

(
n

s

)
Bn−s

∂

∂y
H̄s(x, y), (79)
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which complete the proof by direct application of Eq.56. �

Theorem 7 allows for deriving a significant result for polynomials of type
H B̄n(x, y).

Theorem 8 Hermite-Bernoulli polynomials of type H B̄n(x, y) satisfy the following
differential equation:

∂

∂y
H B̄n(x, y) = −1

4

∂2

∂x2
H B̄n(x, y), (80)

Proof Let us differentiate Eq.75 with respect to x , so as to retrieve

∂2

∂x2
H B̄n(x, y) = 2n[2(n − 1)] H B̄n−2(x, y), (81)

i.e.,
1

4

∂2

∂x2
H B̄n(x, y) = n(n − 1) H B̄n−2(x, y). (82)

The r.s.h of Eq.82 is similar to the r.h.s of Eq. 76, from which:

1

4

∂2

∂x2
H B̄n(x, y) = − ∂

∂y
H B̄n(x, y), (83)

which is the thesis of the theorem.

Theorem 8 can be exploited to state an important operational identity for poly-
nomials of type H B̄n(x, y). Indeed, the partial differential equation appearing in the
statement of Theorem 8 (Eq.80) can be read as ordinary linear in y, and, Eq.74
holding true, this means that

H B̄n(x, y) = e− y
4

∂2

∂x2 Bn(2x). (84)

Equation84 plays the role of operational exponential definition for polynomials
H B̄n(x, y).

4 Application to Fractional-Order Operators
and Concluding Remarks

In concluding this discussion on the properties satisfied by this special class of
Bernoulli polynomials, we want to offer here a few further considerations on the
topic, and present some applications for the fractional calculus using a generalized
form of the Hermite polynomials.
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In primis, a further extension of Bernoulli polynomials can be obtained by means
of two-variable generalized Laguerre polynomials [11, 19] of the form

+∞∑

n=0

tn

n! Ln(x, y) = eytC0(xt), (85)

where C0(x) is the 0th-order Tricomi function [1]

C0(x) =
+∞∑

n=0

(−1)nxn

(n!)2 . (86)

The explicit form of Laguerre polynomials of type Ln(x, y) is easily obtained:

Ln(x, y) =
+∞∑

s=0

n!(−1)s yn−s xs

(n − s)!(s!)2 . (87)

Exploiting concepts and formalism presented in the case of Hermite-Bernoulli
polynomials, it is possible to introduce the following discrete convolution:

L Bn(x, y) =
n∑

n=0

(
n

s

)
Bn−s Ls(x, y), (88)

which defines Laguerre-Bernoulli polynomials, to be discussed in a forthcoming
paper.

In addition, according to the same procedure implemented in this study, the pre-
viously mentioned Appell polynomials Pn(x, y), which satisfy the generating func-
tion [18]

n∑

n=0

tn

n! Pn(x, y) = A(yt)ext (89)

with A(0) �= 0, can be employed to introduce further forms of polynomials stemming
from the properties of the Bernoulli class [20]. Indeed, we can set:

P Bn(x, y) =
n∑

s=0

(
n

s

)
Bn−s Ps(x, y). (90)

The above generalizations are planned to be discussed in a forthcoming paper in
order to emphasize the simplification of finite sums of the type

N−1∑

n=1

nr = 1

r + 1

[
Br+1(N ) − Br+1

]
. (91)
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Finally, the same procedure could be exploited in the case of orthonormal
Bernoulli polynomials of order n:

bn(x) = √
2n + 1

n∑

s=0

(−1)s
(
n

s

)(
2n − s

n − s

)
xn−s, (92)

which can be easily generalized to the 2D case:

bnm(x, y) = bn(x)bm(x) (93)

defined over [0, 1] × [0, 1].
As we have seen above, the Hermite polynomials represent a powerful tool for

investigating the properties of other families of polynomials and special functions,
but they also allow to simplify numerous computational aspects, such as the repre-
sentation of fractional derivatives. We note that, from relations presented in Sect. 2
(Eqs. (15)–(21)), it is possible to deduce the following integral representations [21]:

eb
2 = 1√

π

∫ +∞

−∞
e−u2+2budu, b constant

eλ d2

dx2 = 1√
π

∫ +∞

−∞
e−u2+2

√
2 d
dx du, λ ∈ R

(94)

with integral transform

eλ d2

dx2 f (x) = 1√
π

∫ +∞

−∞
e−u2 f (x + 2

√
2u)du. (95)

Taking advantage of the definition of the Euler gamma function �(x) =∫ +∞
0 e−t t x−1dt , it is possible to exploit the integral transform in the following way:

(
d

dx

)
! f (x) =

∫ +∞

0
e−t t

d
dx f (x)dt, (96)

i.e.,
(

d

dx

)
! f (x) =

∫ +∞

0
e−t f (x + log(t))dt . (97)

The above result allows for deducing further integral transforms for more com-
plicated operators [22]:

(
x
d

dx

)
! f (x) =

∫ +∞

0
e−t f (xt)dt

(
d

dx

)−ν

f (x) = 1

�(ν)

∫ +∞

0
tν−1 f (x − t)dt .

(98)
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Furthermore, if one notes that:

a−ν = 1

�(ν)

∫ +∞

0
tν−1e−atdt, (99)

the expression

(
x
d

dx

)−ν

f (x) = 1

�(ν)

∫ +∞

0
tν−1 f (e−t x)dt (100)

becomes more interesting, after noting that:

(
x
d

dx

)−ν [
1

1 − x
− 1

]
= 1

�(ν)

∫ +∞

0

tν−1x

et − 1
dt =

+∞∑

n=1

xn

nν
. (101)

Similarly, for the second-order derivative:

(
α − x

d2

dx2

)−ν

f (x) = 1

�(ν)

∫ +∞

0
e−αt tν−1et

d2

dx2 f (x)dt, (102)

since

et
d2

dx2 f (x) = 1

2
√

π t

∫ +∞

−∞
e− (x−ξ)2

4t f (ξ)dξ, (103)

the following expression is recovered:

(
α − x

d2

dx2

)−ν

f (x) = 1

2�(ν)

∫ +∞

0

e−αt tν−1

√
π t

dt

[∫ +∞

−∞
e− (x−ξ)2

4t f (ξ)dξ

]
.

(104)
For example, when f (x) = e−x2 , the Gauss transform can be explicitly worked

out, thus returning:

(
α − x

d2

dx2

)−ν

e−x2 = 1

�(ν)

∫ +∞

0

e−αt tν−1

√
1 + 4t

e− x2

1+4t dt . (105)

By using the Hermite polynomials in their explicit form (see Eq.21), we can write
the above Gauss transform in the form:

Hn(x, y) = 1

2
√

πy

∫ +∞

−∞
e− (x−ξ)2

4y ξ ndξ, (106)

and the fractional derivative acting on the monomial turns out as:
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(
α − x

∂2

∂x2

)−ν

xn = 1

�(ν)

∫ +∞

0
e−αt tν−1Hn(x, yt)dt . (107)

The integral transform appearing in Eq.107 defines a new family of polynomials,
strictly related to Hermite polynomials and denoted by

νHn(x, y;α). (108)

There are many interesting relations satisfied by this family of Hermite-like poly-
nomials, which can be derived by analogous properties of ordinary Hermite polyno-
mials [23]. Furthermore, these polynomials allow us to state interesting operational
rules involving the fractional derivative, such as the following relevant relation:

(
α − y

∂2

∂x2

)ν

νHn(x, y;α) = xn . (109)

The formalism and the polynomials proposed here may offer significant advan-
tages in computing the effect of fractional operators on a given function: the combined
use of integral transforms and special polynomials provides a powerful tool to deal
with fractional derivatives and integrals, which will be investigated in a forthcoming
article.
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A Fractional Hawkes Process

J. Chen, A. G. Hawkes, and E. Scalas

Abstract We modify ETAS models by replacing the Pareto-like kernel proposed
by Ogata with a Mittag-Leffler type kernel. Provided that the kernel decays as a
power law with exponent β + 1 ∈ (1, 2], this replacement has the advantage that
the Laplace transform of the Mittag-Leffler function is known explicitly, leading to
simpler calculation of relevant quantities.

Keywords Point processes · Stochastic processes · Hawkes processes
Mathematics Subject Classification (2000) 60G55 · 26A33

1 Introduction

In 1971, Hawkes [7, 8] introduced a class of self-exciting processes to model conta-
gious processes. In their simpler version, these are point processes with the following
conditional intensity

λ(t |Ht) = lim
h→0

E(N (t, t + h)|Ht )

h
= λ + α

∫ t

−∞
f (t − u) dN (u),
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where λ > 0, N (t) is a Hawkes self-exciting counting process, Ht represents the
history of the process, α is a branching ratio that must be smaller than 1 for stability,
and f (t) is a suitable kernel ( f (t)must be a probability density function for a positive
random variable).

In 1988, Ogata [11] proposed the use of a power-law kernel for self-exciting pro-
cesses ofHawkes type in order to reproduce the empirical Omori law for earthquakes.
Ogata’s models are also known as Epidemic Type Aftershock Sequence models or
ETASmodels. Within this framework, it is natural to replace Ogata’s power-law ker-
nel with aMittag-Leffler kernel and this will be the main contribution of this chapter.
We will first introduce the Mittag-Leffler distribution for positive random variables,
then we will define a “fractional” version of Hawkes processes. Spectral properties
and intensity expectationwill be discussed using the fact that theLaplace transformof
the one-parameterMittag-Leffler function of argument−tβ with β ∈ (0, 1] is known
analytically. Finally, wewill present a simple algorithm based on the thinningmethod
by Ogata [10] that simulates the conditional intensity process.

2 Mittag-Leffler Distributed Positive Random Variables

Consider the one-parameter Mittag-Leffler function

Eβ(z) :=
∞∑
n=0

zn

�(nβ + 1)
, (1)

with β ∈ (0, 1]. If computed on z = −tβ for t ≥ 0, the Mittag-Leffler function
Eβ(−tβ) has the meaning of survival function for a positive random variable T
with infinite mean. This function interpolates between a stretched exponential for
small times and a power-law with index β for large times. Its sign-changed first
derivative

fβ(t) := −dEβ(−tβ)

dt
= tβ−1Eβ,β(−tβ) (2)

is the probability density function of T , where Eα,β(z) is the two-parameter Mittag-
Leffler function defined as

Eγ,δ(z) :=
∞∑
n=0

zn

�(nγ + δ)
. (3)

Notice that the one-parameter Mittag-Leffler function coincides with the two param-
eter one with γ = β and δ = 1. For a suitable function f (t) defined for positive t ,
let us define its Laplace transform as
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f̃ (s) = L( f (t), s) =
∫ ∞

0
f (t) e−st dt.

The functions Eβ(−tβ) and fβ(t) have explicit Laplace transforms. The survival
function has the following Laplace transform

L(Eβ(−tβ); s) = sβ−1

1 + sβ
, (4)

and the probability density function has the following Laplace transform

L( fβ(t); s) = 1

1 + sβ
. (5)

Moreover, they have an explicit representation as an infinite (actually continuous)
sum of exponential functions [5];

Eβ(−tβ) =
∫ ∞

0
e−θ t Kβ(θ) dθ, (6)

with

Kβ(θ) = 1

π

θβ−1 sin(βπ)

θ2β + 2θβ cos(βπ) + 1
, (7)

leading to

fβ(t) =
∫ ∞

0
θe−θ t Kβ(θ) dθ. (8)

These functions play an important role in fractional calculus. For instance Eβ(−tβ)

is the solution of the following anomalous relaxation problem

dβg(t)

dtβ
= −g(t), (9)

where dβ/dtβ is the Caputo derivative defined as

dβg(t)

dtβ
= 1

�(1 − β)

d

dt

∫ t

0

g(τ )

(t − τ)β
dt − t−β

�(1 − β)
g(0+), (10)

with initial condition g(0+) = 1.
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3 The Fractional Hawkes Processes

It becomes natural to use fβ(t) as kernel for a version of Hawkes processes that
we can call fractional Hawkes processes. The conditional intensity of the process is
given by

λ(t |Ht) = lim
h→0

E(N (t, t + h)|Ht)

h
= λ + α

∫ t

−∞
fβ(t − u) dN (u), (11)

where λ > 0 and N (t) is a Hawkes self-exciting point process, leading to

λ(t |Ht) = λ + α
∑
ti<t

fβ(t − ti ). (12)

with the branching ratio α < 1 for stability. Hainaut [6] gives a different definition
of fractional Hawkes process. Let us use his notation in the following remark. In
his paper, he considers the time-changed intensity process λSt where, in his case, the
conditional intensity λt of the self-exciting process is the solution of amean-reverting
stochastic differential equation

dλt = κ(θ − λt ) dt + ηdPt ,

where κ , θ and η are suitable parameters and the driving process Pt is given by

Pt :=
Nt∑
k=1

ξk,

where Nt is a counting process and ξi s are independent and identically distributed
marks with finite positive mean and finite variance. The time-change St is the inverse
of a β-stable subordinator. Our definition (11) is much simpler and it is directly
connected with ETAS processes given that the kernel fβ(t) has power-law tail with
index β + 1. [9]. In particular, given the explicit Laplace transform of fβ(t) and its
representation in terms of infinite sum of exponentials, we can derive some explicit
formulas.

3.1 Spectral Properties

From Eq. (11) in [7], we get the following equation for the covariance density μ(τ)

for τ > 0.

μ(τ) = α

[
� fβ(τ ) +

∫ τ

0
fβ(τ − v) μ(v) dv +

∫ ∞

0
fβ(τ + v) μ(v) dv

]
, (13)
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where � represents the asymptotic stationary value of the conditional intensity as
derived in Eq. (19) below. If we now take the Laplace transform of (13), we get

μ̃(s) = α

[
� f̃β(s) + f̃β(s)μ̃(s) + L

(∫ ∞

0
fβ(τ + v) μ(v) dv; s

)]
. (14)

Now, using (8) and setting

h(θ) = θKβ(θ) = 1

π

θβ sin(βπ)

θ2β + 2θβ cos(βπ) + 1
,

we can write

fβ(τ ) =
∫ ∞

0
h(θ)e−θτ dθ,

so that the last summand in (14) becomes

L
(∫ ∞

0
fβ(τ + v) μ(v) dv; s

)
=

∫ ∞

0
e−sτ

[∫ ∞

0

[∫ ∞

0
h(θ)e−θ(τ+v) dθ

]
μ(v) dv

]
dτ

=
∫ ∞

0
h(θ)

1

θ + s
μ̃(θ) dθ. (15)

In principle, a numerical approximation of the integral in Eq. (15) plugged into (14)
and coupled with Eq. (5) can lead to an explicit approximate expression for the
Laplace transform μ̃(s). This will be the subject of a further paper. An alternative
approach is given in [8] where the Bartlett spectrum is defined for real ω as

f (ω) = 1

2π

∫
e−iωτμ(c)(τ ) dτ, (16)

where, because E[(dN (t))2] = E[dN (t)] if events cannot occur multiply, the com-
plete covariance density contains a delta function

μ(c)(τ ) = �δ(t) + μ(t).

Then it is shown in [8] p. 441 that

f (ω) = �

2π(1 − G(ω))(1 − G(−ω))
, (17)

where, in our case, we would have

G(ω) =
∫ ∞

0
e−iωτα fβ(τ ) dτ = α

1 + (iω)β
.
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The proof of this result depended on the assumption that the exciting kernel decays
exponentially asymptotically. However, this is not true for the Mittag-Leffler distri-
bution, which decays as a power law. Bacry andMuzy [2] prove amore general result
using Laplace transforms in the complex plane, more easily digested from section
2.3.1 in [1]. Then the Laplace transform of the covariance density is given by

μ̃(c)(s) = �

(1 − �̃(s))(1 − �̃(−s))
, (18)

where

�̃(s) =
∫ ∞

0
e−sτ�(τ) dτ

is the Laplace transform of the exciting kernel. In our case for τ > 0, we have

�(τ) = α fβ(τ )

and
�̃(s) = α

1 + sβ
.

Equations (17) and (18) look much the same, apart from a change of notation and a
factor 2π . The difference, however, is that in (17) we are dealing with real ω while,
in (18), s is a general complex variable and we can choose its domain to obtain
well-behaved functions.

3.2 Intensity Expectation

Let us consider the expectation �(t) = E[λ(t |Ht)] for both a stationary and non-
stationary fractional Hawkes process. In the stationary case (process from t = −∞),
from Eq. (11), we get � = λ + α�, leading to

� = λ

1 − α
. (19)

On the contrary in the non-stationary case (process from t = 0), we can modify
Eq. (11) as follows

λ(t |Ht) = λ + α

∫ t

0
fβ(t − u) dN (u), (20)

so that the time-dependent expectation obeys the equation

�(t) = λ + α

∫ t

0
fβ(t − u)�(u) du. (21)
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Taking Laplace transforms, we get

�̃(s) = λ

s
+ α f̃β(s)�̃(s),

so that

�̃(s) = λ

s

1

1 − α f̃β(s)
.

Using Eq. (5) yields

�̃(s) = λ

s

1 + sβ

(1 − α) + sβ
. (22)

Equation (22) can be inverted numerically (or analytically for β = 1/2) to give �(t)
as well as the expected number of events from 0 to t as

E[N (t)] =
∫ t

0
�(τ) dτ.

Also, based on a continuous version of Hardy-Littlewood Tauberian theorem [3] we
get

lim
t→∞ �(t) = λ

1 − α

as given by Eq. (19). This result is exemplified in Fig. 1 for β = 1/2, λ = 1 and
α = 1/2. In that case, we get, for t > 0

�(t) = 2 − et/4erfc(
√
t/2).

From Fig. 1, one can see that �(t) goes up very fast at first and, then, slowly
converges to its asymptotic value 2. This is presumably due to the long tail of the
Mittag-Leffler kernel.

4 Simulation

In order to simulate the intensity process introduced in Eq. (11), we use the thinning
algorithm introduced by Ogata [10] (see also [12] report [12]). The function ml.m
described in [4] is needed to compute the Mittag-Leffler functions described above
and can be retrieved from the Matlab file exchange. The algorithm is as follows

1. Set the initial time t = 0, a counter i = 0 and a final time T .
2. Compute M = λ + α

∑
ti<t+ε fβ(t + ε − ti ), for some small value of ε.

3. Generate a positive exponentially distributed random variable E with themeaning
of a waiting time, with rate 1/M .
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Fig. 1 �(t) as a function of t for β = 1/2, λ = 1 and α = 1/2

4. Set τ = t + E .
5. Generate a uniform random variate U between 0 and 1.
6. IfU < [λ + α

∑
ti<τ fβ(τ − ti )]/M , set ti+1 = τ and update time to t = τ , else,

just set t = τ .
7. Return to step 2 until t exceeds T .
8. Return the set of event times (or epochs) ti .

An implementation of this algorithm in Matlab is presented below.

T=5;
t=0;
n=0;
alpha=0.9; % For stability
mu=1;
epsilon=1e-10;
beta=0.7;

SimPoints=[];

while t<T

t

M=mu+sum(alpha*ml(-(t+epsilon-SimPoints).∧beta,beta,beta,1). …

*(t+epsilon-SimPoints).∧(beta-1));
E=exprnd(1/M,1,1);

t=t+E;
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Fig. 2 λ(t |Ht ) as a function of time t for β = 0.9, λ = 1 and α = 0.9

U=rand;

if (U<(((mu+sum(alpha*ml(-(t-SimPoints).∧beta,beta,beta,1). …

*(t-SimPoints).∧(beta-1))))/M))
n=n+1;

SimPoints = [SimPoints, t];

end

end

index=find(SimPoints<10);

SimPoints=SimPoints(index);

Two examples of intensity process simulated up to t = 5 are presented in Figs. 2
and 3 for β = 0.9 and β = 0.7, respectively.

5 Outlook

In this paper, we defined a “fractional” Hawkes process and we studied its spec-
tral properties and the expectation of its intensity. Thanks to explicit expressions
for Laplace transforms, we could derive some analytical expressions that are only
asymptotically available for power-law kernels of Pareto type as originally suggested
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Fig. 3 λ(t |Ht ) as a function of t for β = 0.7, λ = 1 and α = 0.9

by Ogata. We also presented an explicit simulation of the intensity process based on
the so-called thinning method.

Further work is needed to better characterize our process. In particular, we did not
deal with parameter estimation, the multivariate version of the process, and we did
not use the model to fit earthquake data (or any other data for what matters including
financial data). We do hope that all this and more can become the subject of an
extensive future paper on this process.
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Fractional Diffusive Waves in the Cauchy
and Signalling Problems

Armando Consiglio and Francesco Mainardi

Abstract This work deals with the results and the simulations obtained for the time-
fractional diffusion-wave equation, i.e. a diffusion-like linear integro partial differ-
ential equation containing a pseudo-differential operator interpreted as a fractional
derivative in time. The data function (initial signal) is provided by a box-function
and the solutions are so obtained by a convolution of the Green function with the
initial data function. The relevance of the topic lies in the possibility of describing
physical processes that interpolates between the different responses of the diffusion
and waves equations, equipped with a physically realistic initial signal. Here two
problems are considered where the use of the Laplace transform in the analysis of
the problems has lead since 1990s to special functions of the Wright type.

Keywords Laplace transform · Wright functions · Fractional calculus

1 Introduction

Fundamental processes that find applications in different fields, spanning from
physics to economy, are the diffusion and the wave propagation ones. The PDEs
describing them only differ for the order of the time-derivative of the field variable,
at least in the most simple formulation, and indeed we have:

∂u(r, t)
∂t

= D∇2u(r, t) (Diffusion Equation) (1)
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∂2u(r, t)
∂2t

= c2∇2u(r, t) (Wave Equation) (2)

This difference in the time-derivative results in very different processes, as respec-
tively the disturbance spreads infinitely fast or the propagation velocity of the dis-
turbance is a constant.

The time-fractional diffusion-wave equation is obtained from the standard diffu-
sion (or wave) equation by replacing the first order (or second order) derivative in
time with a fractional derivative in the Caputo sense. For readers convenience we
refer to the Appendix A the essentials of this fractional derivative in the framework
of the so-called Riemann-Liouville Fractional Calculus. As a consequence the time-
fractional diffusion-wave equation, which includes Eqs. 1 and 2 as particular cases,
reads as:

∂αu(r, t)
∂tα

= D∇2u(r, t), D > 0, 0 < α ≤ 2 (3)

where the time fractional derivative is intended in the Caputo sense, as introduced in
Appendix A for readers’ convenience

In this paper we limit ourselves to the one-dimensional case characterized by
the space variable x . Following the analysis by Mainardi carried out in the 1990s,
we must distinguish the cases 0 < α ≤ 1 and 1 < α ≤ 2 that correspond to time-
fractional diffusion processes and to fractional transition from diffusion to to waves,
respectively

1

�(1 − α)

∫ t

0
(t − τ)−α

(
∂u

∂τ

)
dτ = D

∂2u

∂x2
, 0 < α ≤ 1; (4)

1

�(2 − α)

∫ t

0
(t − τ)1−α

(
∂2u

∂τ 2

)
dτ = D

∂2u

∂x2
, 1 < α ≤ 2; (5)

In this paper we devote our attention to the second case, that is the evolution of the
so-called fractional diffusive waves.

This work is organized as follows. In Sect. 2 we introduce the Wright functions,
entire in the complex plane that we distinguish in two kinds in relation on the value-
range of the two parameters on which they depend. In particular we devote our
attention on twoWright functions of the second kind introduced byMainardi with the
term of auxiliary functions. One of them, known as M-Wright function generalizes
the Gaussian function. It was shown to play a fundamental not only in fractional
diffusion processes but also in the transition from diffusion to wave, namely to the
so called fractional diffusive waves on which this work is based [19].

It is a relevant matter in dealing with fractional diffusive waves to distinguish the
related space-time boundary conditions with which their equation must be equipped.
For this purpose in Sect. 3 we introduce the two simplest boundary value problems
referred by us to as Cauchy and Signalling problems, respectively. For both of them
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we express the solutions in terms of two Green functions (depending of the order-
derivative) properly convoluted with the initial data. In this Section we show the plots
of the two Green function, both versus space x at fixed time t and versus t at fixed
x in order to have a detailed visualization of the related processes. In Sect. 4 we plot
the evolution of particular fractional diffusive waves; for the Cauchy problem we
consider the evolution in space of the response to a space initial box whereas for the
Signalling problem the evolution in time of the response to a time initial box. Surely
the choice of a initial box is quite simple, but it corresponds to an input signal with
finite energy at variance with what it occurs for the Green functions corresponding
to delta-type input data. Sections5 and 6 are focused on some basic results regarding
diffusive waves and the multi-dimensional time-fractional diffusion-wave equation.
In Sect. 7, finally, some concluding remarks are given.

2 The Wright Function and the Mainardi Auxiliary
Functions

TheWright function, thatwedenote byWλ,μ(z), is definedby the series representation
convergent on the whole complex plane C,

Wλ,μ(z) =
∞∑
n=0

zn

n!�(λn + μ)
, λ > −1, μ ∈ C. (6)

One of its integral representations reads as:

Wλ,μ(z)= 1

2π i

∫
Ha
eσ+zσ−λ dσ

σμ
, λ > −1, μ ∈ C, (7)

where Ha denotes the Hankel path. It is a loop, which starts from −∞ along the
lower side of negative real axis, encircles the axes origin and ends at −∞ along the
upper side of the negative real axis.

Wλ,μ(z) is then an entire function for all λ ∈ (−1,+∞). Originally, in 1930s
Wright assumed λ ≥ 0 in connectionwith his investigations on the asymptotic theory
of partitions [21, 22], and only in 1940 [23] he considered −1 < λ < 0.

We note that in the Vol 3, Chap. 18 of the handbook of the Bateman Project [4],
presumably for a misprint, the parameter λ is restricted to be non-negative, whereas
the Wright functions remained practically ignored in other handbooks. In 1990s
Mainardi, being aware only of the Bateman handbook, proved that the Wright func-
tion is entire also for −1 < λ < 0 in his approaches to the time fractional diffusion
equation, see [15–17].

In view of the asymptotic representation in the complex domain and of the Laplace
transform for positive argument z = r > 0 (r can denote the time variable t or the
positive space variable x) theWright functions are distinguished in first kind (λ ≥ 0)
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and second kind (−1 < λ < 0) as outlined more recently in the Appendix F of the
2010 book by Mainardi [18]. As a matter of fact two particular Wright functions
of the second kind, were introduced by Mainardi named Fν(z) and Mν(z) (0 < ν <

1), called auxiliary functions in virtue of their role in the time fractional diffusion
equations. These functions are indeed special cases of the Wright function of the
second kind by setting, respectively, λ = −ν and μ = 0 or μ = 1 − ν. Hence we
have:

Fν(z) := W−ν,0(−z), 0 < ν < 1, (8)

and
Mν(z) := W−ν,1−ν(−z), 0 < ν < 1, (9)

These functions are interrelated through the following relation:

Fν(z) = νzMν(z). (10)

The series and integral representations of the auxiliary functions are derived from
those of the general Wright functions. Then for z ∈ C and 0 < ν < 1 we have:

Fν(z)=
∞∑
n=1

(−z)n

n!�(−νn)
= − 1

π

∞∑
n=1

(−z)n

n! �(νn + 1) sin (πνn), (11)

Mν(z)=
∞∑
n=0

(−z)n

n!�[−νn + (1 − ν)] = 1

π

∞∑
n=1

(−z)n−1

(n − 1)!�(νn) sin (πνn), (12)

and

Fν(z) := 1

2π i

∫
Ha

eσ−zσν

dσ , (13)

Mν(z) := 1

2π i

∫
Ha

eσ−zσν dσ

σ 1−ν
. (14)

Explicit expressions of Fν(z) and Mν(z) in terms of known functions are expected
for some particular values of ν as shown and recalled in the cited papers byMainardi,
see [15–17], that is

M1/2(z) = 1√
π
e−z2/4, (15)

M1/3(z) = 32/3Ai(z/31/3). (16)

More recently Liemert and Klenie [9] have added the following expression for ν =
2/3
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Fig. 1 Plots of the M-Wright function as a function of the x variable, for 0 ≤ ν ≤ 1/2

M2/3(z) = 3−2/3 e−2z3/27
[
31/3 zAi

(
z2/34/3

) − 3Ai′
(
z2/34/3

)]
, (17)

where Ai and Ai′ denote the Airy function and its first derivative. Furthermore they
have suggested in the positive real field IR+ and ν ∈ (0, 1) the following remarkably
integral representation

Mν(x) = 1

π

xν/(1−ν)

1 − ν
·
∫ π

0
Cν(φ) exp (−Cν(φ)) x1/(1−ν) dφ, (18)

where

Cν(φ) = sin(1 − ν)

sin φ

(
sin νφ

sin φ

)ν/(1−ν)

, (19)

corresponding to equation (7) of the article written by Saa and Venegeroles [20].
We find it convenient to show the plots of the M-Wright functions on a space

symmetric interval of IR in Figs. 1, 2, corresponding to the cases 0 ≤ ν ≤ 1/2 and
1/2 ≤ ν ≤ 1, respectively. We recognize the non-negativity of the M-Wright func-
tion on IR for 1/2 ≤ ν ≤ 1 consistently with the analysis on distribution of zeros and
asymptotics of Wright functions carried out by Luchko, see [10, 14].
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Fig. 2 Plots of the M-Wright function as a function of the x variable, for 1/2 ≤ ν ≤ 1

3 Cauchy and Signaling Problems: Green Functions
for Fractional Diffusive Waves

Cauchy and Signaling problems are well-know boundary value problems (BVP)
for Partial Differential Equations (PDE’s) of evolution type. In this section we will
extend these BVP’s to the time-fractional PDE’s described in Eqs. (4) and (5).

In theCauchy problem themedium is supposed to be unlimited (−∞ < x < +∞)
and to be subjected at t = 0 to a known disturbance provided by the data function
f (x), that must admit the Fourier transform or the Fourier series expansion if the
support is finite. Formally:

lim
t→0+

u(x, t) = f (x), − ∞ < x < +∞; (20)

lim
x→±∞ u(x, t) = 0, t > 0. (21)

In the Signalling problem the medium is supposed to be semi-infinite (0 ≤ x < +∞)
and initially undisturbed. At x = 0+ (the accessible end) and for t > 0 the medium
is then subjected to a known disturbance provided by the causal function g(t), that
must admit the Laplace Transform. Formally:

lim
t→0+

u(x, t) = 0, 0 ≤ x < +∞; (22)

lim
x→0+

u(x, t) = g(t), lim
x→+∞ u(x, t) = 0 t > 0. (23)

For each problem can be defined theGreen Function G, i.e. the fundamental solution
obtained by considering respectively initial inputs of Dirac delta type, that is of
f (x) = δ(x) and g(t) = δ+(t). As a consequence, because of the linearity of the
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problems the solutions to the generic input data f (x) and g(t) are then expressed by
a proper convolution integral between the data functions and the Green Functions,
For the Cauchy problem we have:

u(x, t) =
∫ +∞

−∞
GC(ξ, t;α) f (x − ξ) dξ = GC(x, t;α) ∗ f (x) . (24)

For the Signaling problem we have:

u(x, t) =
∫ t

0
GS(x, τ ;α)g(t − τ) dτ = GS(x, t;α) ∗ g(t) . (25)

In above equationswe note the different nature of the convolution integrals: for the
Cauchy problem a space or Fourier convolution whereas for the Signalling problem
a time or Laplace convolution.

If 1 < α ≤ 2, because the presence of the first derivative in the definition of the
corresponding time fractional derivative, we must consider also the initial value
of the first-order derivative of the field variable ut (x, 0+;α). Here we assume
ut (x, 0+;α) = 0 in order to ensure the continuous dependence of the solutions on
the parameter α in the transition from α = 1− to α = 1+. This in practice means to
neglect the effect of a second Green function.

Through the Laplace Transform technique as show by Mainardi in his 1990s
papers and the introduction of the parameter ν with the related similarity variable

ν = α

2
, z = x√

Dtν
, (26)

the following reciprocity relation can be obtained for the Green Functions for x ≥ 0
and t ≥ 0:

2νxGC (x, t; ν) = tGS(x, t; ν) = Fν(z) = νzMν(z) . (27)

The explicit expression for the Cauchy and Signaling Green function are, respec-
tively:

GC(x, t; ν) = t−ν

2
√
D
Mν

( |x |√
Dtν

)
, − ∞ < x < +∞, t ≥ 0, (28)

and

GS(x, t; ν) = νxt−ν−1

√
D

Mν

(
x√
Dtν

)
, x ≥ 0, t ≥ 0. (29)

The Green functions are so expressed in terms of only the M-Wright function the
most relevant Mainardi auxiliary function.
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Fig. 3 Green functions for the Cauchy problem versus x and t for ν = 1/2, ν = 2/3, ν = 3/4 and
ν = 1

Fig. 4 Green functions for the Signaling problem versus x and t for ν = 1/2, ν = 2/3, ν = 3/4
and ν = 1

The interested reader can find onYouTube (title: Simulation ofM-Wright function)
the simulation of the fundamental solution Mν(|x |, t), at t = 1 and −5 ≤ x ≤ 5, for
varying values of the parameter ν ( 0 ≤ ν ≤ 0.85).

In the following we exhibit at selected values ν (ν = 1/2, 2/3, 3/4, 1) the spatial
and temporal evolution the Cauchy and Signaling Green functions in their temporal
and spatial domains. For the Cauchy Green function we will show the plots versus
x ∈ [−3.5,+3.5] at fixed time t = 1 and versus t ∈ [0, 3.5] at fixed space x = 1. For
the Signaling Green function we will show the plots versus time t ∈ [0, 3.5] at fixed
space x = 1 and versus x ∈ [0, 3.5] at fixed time t = 1. In all computations we agree
to take D = 1. These 2-D plots are expected to give an idea of the spatial-temporal
evolution the two Green functions. Furthermore the selected values of ν are the most
relevant in understanding the passage fromstandard diffusion to standard propagation
because ν = 1/2 (standard diffusion), ν = 2/3 (diffusion-wave), ν = 3/4 (diffusion-
wave) and ν = 1 (standard propagation) (Figs. 3, 4).
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4 Cauchy and Signaling Problems: Box Evolution
for Fractional Diffusive Waves

4.1 Solutions for the Cauchy Problem

The first graphical results that are shown regards the Cauchy problemwhere the time-
evolution of the general solution is based on Eq.24 with the Green function given
by Eq.28; different values of the parameter ν are considered in order to observe how
the evolution changes when the process is more diffusion-like or wave-like.

In particular the initial data is given by an initially centered box-signal f (x), such
that f (x) = 1 for x ∈ [−1, 1] and f (x) = 0 otherwise, represented as a blue dashed
line in next Figs. 5, 6, 7 and 8.

Fig. 5 Time evolution of an initial box-signal for ν = 0.50, seen at t = 0.50 (left) and t = 1.00
(right). The figures are symmetric on the negative axis

Fig. 6 Time evolution of an initial box-signal for ν = 2/3, seen at t = 0.50 (left) and t = 1.00
(right). The figures are symmetric on the negative axis
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Fig. 7 Time evolution of an initial box-signal for ν = 0.75, seen at t = 0.50 (left) and t = 1.00
(right). The figures are symmetric on the negative axis

Fig. 8 Time evolution of an initial box-signal for ν = 1.00, seen at t = 0.50 (left) and t = 1.00
(right). The figures are symmetric on the negative axis

4.2 Solutions for the Signaling Problem

In this subsection we show the graphical results regarding the Signaling problem;
the time-evolution of the general solution is based on Eq.25 with the Green function
given by Eq.29.

The initial data is given by a box-signal in time g(t), such that g(t) = 1 for
t ∈ [0, 1] and g(t) = 0 otherwise.

Note that the initial box is represented in the following Figs. 9, 10, 11 and 12 by
the dashed blue line, located in the accessible end.

Also in this case we consider the same values of the parameter ν.
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Fig. 9 Solution of the Signaling problem for ν = 1/2 as a function of time (x = 1, x = 2)

Fig. 10 Solution of the Signaling problem for ν = 2/3 as a function of time (x = 1, x = 2)

Fig. 11 Solution of the Signaling problem for ν = 3/4 as a function of time (x = 1, x = 2)
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Fig. 12 Solution of the Signaling problem for ν = 1 as a function of time (x = 1, x = 2)

5 Interpretation of the Green Functions as Diffusive Waves

In Sect. 3 we introduced the Green Functions (i.e. the fundamental solutions) for the
Cauchy and Signaling problems, and we used them in Sect. 4 inside convolution
integrals to find the general solutions of the time-fractional diffusion-wave equation;
in particular we introduced the concept of diffusive waves when 1/2 < ν < 1. Here
we recall somebasic results concerning theGreen functions and their interpretation as
diffusive waves, in order to gain a deeper physical and mathematical understanding.
The focus will be on the maximum locations, maximum values and propagation
velocities of the maximum points of GC and GS , and some results concerning the
center of gravity and the medians of the Green functions will be given.

5.1 Cauchy Problem

It can demonstrated in a probabilisticway [5] that themaximumof theGreen function
G(x, t, ν) for the Cauchy problem is given by the points:

x∗(t) = ±cν t
ν, ν = β/2 (30)

where t ∈ R
+, 1/2 < ν < 1 and cν is a constant determined by ν.

The analytical proof of the previous relation is given in [13].

It is straightforward to obtain the finite velocity of propagation vC(t, ν) of the max-
imum point of the Green function for t > 0 as the first order derivative of Eq.30:

vC(t, ν) := x ′
∗(t) = νcν t

ν−1 (31)

For ν = 1/2 and ν = 1 we must respectively recover the well know results for the
diffusion and propagation processes. In particular the propagation velocity is zero
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when ν = 1/2 (c1/2 = 0) and it is a constant when ν = 1 (c1 = 1). For all the other
cases in between, Eq.31 tell us that the propagation velocity of the maximum point
of the Green function is a decreasing function of the t variable, ranging from +∞
when t = 0+ to 0 when t → +∞.

The maximum value G∗
C(t, ν) of GC(x, t, ν) is given by:

G∗
C(t, ν) = mν t

−ν, mν = 1

2
Mν(cν) = 1

π

∫ ∞

0
E2ν(−τ 2) cos (cντ )dτ (32)

where Eα is the Mittag-Leffler function.

From the reciprocity relation (27) we also have that

G∗
C(t, ν) · x∗(t) = cνmν, 0 < t < ∞ (33)

is a constant that depends only on ν, leading to certain hyperbola for fixed values of ν.

We also briefly recall that the location of the center of gravity of theGreen function
for the Cauchy problem is:

rCν (t) =
∫ ∞
0 rGC(x, t; ν)dr∫ ∞
0 GC(x, t; ν)dr

= gC(ν)tν, gC(ν) = 1

�(1 + ν)
(34)

The velocity of the center of gravity is given by:

v
g
C(t, ν) = d

dt
rCν (t) = tν−1

�(ν)
, (35)

Finally we report the location of the median

xCm = mC(ν)tν (36)

that shows a power function in the t variable with ν as exponent, and where the
coefficient mC(ν) represents the location of the median at t = 1.

The interested reader can find more details in [11].

5.2 Signaling Problem

The same concepts introduced in the previous subsection can be introduced also for
the Signaling problem.
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Again the reciprocity relation (27) is used to get the representation for the maxi-
mum location x∗ = x∗(t, ν) of GS(x, t; ν):

x∗(t, ν) = Dtν, D = x∗(1, ν) = dν (37)

Hence the propagation velocity of the maximum point is:

vS(t, ν) = d

dt
x∗ = νdν t

ν−1. (38)

which reminds us what we have seen for the Cauchy problem. The only difference
with the Cauchy case is that, when ν = 1/2 (diffusion equation), is that the velocity
of the maximum location of the Green function is equal to

√
2
2

1√
t
.

The maximum value G∗
S(t; ν) of GS(x, t; ν) is given by:

G∗
S(t; ν) = nν

t
, nν = Fν(dν) = 2

π

∫ ∞

0
τ E2ν,2ν(−τ 2) sin (dντ )dτ (39)

where Eα,β is the generalized Mittag-Leffler function.

Regarding the center of gravity of the Green function, its location is considered
with respect to the spatial variable because the location with respect to the variable
t is infinite for all x > 0.
We obtain the following formula:

r Sν (t) =
∫ ∞
0 rGS(x, t; ν)dr∫ ∞
0 GS(x, t; ν)dr

=
√

π21−2ν

�(ν + 1/2)
tν (40)

Consequently the velocity of the center of gravity of GS can be calculated:

v
g
S(t; ν) = d

dt
r Sν (t) =

√
π21−2νν

�(ν + 1/2)
tν−1 (41)

Finally we recall that the location t = t Sm of the median of the Green function for
fixed x > 0 and 1/2 ≤ ν ≤ 1 is:

t Sm = mS(ν)x1/ν, mS(ν) = 1

(mC(ν))1/ν
(42)

More details can be found in [11].
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6 Multi-dimensional Fractional Diffusion-Wave Equation

Due to its importance in applications, we find useful to introduce some concepts
regarding the multidimensional fractional diffusion-wave equation, which reads:

Dβ
t u(x, t) = −(−�)α/2u(x, t), x ∈ R

n, t > 0, 1 < α ≤ 2, 0 < β ≤ 2. (43)

(−�)α/2 is the fractional Laplacian, defined as a pseudo-differential operator with
the symbol |κ|α:

(F(−�)α/2 f )(κ) = |κ|α(F f )(κ) (44)

where (F f )(κ) is the Fourier transform of a function f at the point κ ∈ R
n .

Dβ
t instead is the Caputo time-fractional derivative of order β.

Referring to the Cauchy problem and limiting ourselves to 1 < β ≤ 2, we pose
two initial conditions in the form:

u(x, 0) = φ(x),
∂u(x, 0)

∂t
= 0, x ∈ R

n (45)

Because of linearity, the solution is:

u(x, t) =
∫
Rn

Gα,β,n(x − ξ, t)φ(ξ)dξ, (46)

with Gα,β,n being the fundamental solutions to the problem with initial conditions:

u(x, 0) =
n∏

i=1

δ(xi ), x = (x1, x2, ..., xn) ∈ R
n (47)

and
∂u

∂t
(x, 0) = 0, x ∈ R

n (48)

with δ being the Dirac delta function.

The following integral representation for the fundamental solution can be obtained
applying the Fourier transform and its inverse [12]:

Gα,β,n(x, t) = |x|1− n
2

(2π)
n
2

∫ ∞

0
Eβ(−ταtβ)τ

n
2 Jn

2 −1(τ |x|)dτ, (49)

where Jν denotes the Bessel function.
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Via the Mellin integral Transform, the previous equation can be transformed to the
following Mellin-Barnes representation:

Gα,β,n(x, t) = 1

α

t−
βn
α

(4π)
n
2

1

2π i

∫ γ+i∞

γ−i∞

�( s2 )�( n
α

− s
α
)�(1 − n

α
+ s

α
)

�(1 − β

α
n + β

α
s)�( n2 − s

2 )

( |x|
2t

β

α

)−s
ds

(50)
that is valid for |x| �= 0, under the condition max(n − α, 0) < γ < n.

Equation50 is particularly useful because can be used to determine particular (and
simpler) cases compared to the general one. Simpler cases corresponds to a simpler
form of the quotient:

Kα,β,n(s) = �( s2 )�( n
α

− s
α
)�(1 − n

α
+ s

α
)

�(1 − β

α
n + β

α
s)�( n2 − s

2 )
(51)

resulting from some canceled Gamma functions in theMellin-Barnes representation.
Some of these cases e.g. are:

Diffusion equation (β = 1, α = 2):
This case results in the most simpleMellin-Barnes representation, that via the Jordan
lemma and the Cauchy residue theorem leads to the well-known formula:

G2,1,n(x, t) = 1

(
√
4π t)n

exp
(
−|x|2

4t

)
. (52)

Space-fractional diffusion equation (β = 1, 1 < α ≤ 2)

With the same procedure of the previous case, we can define the fundamental solution
via the generalized Wright function, defined by:

p�q

[ (a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bp, Bp)
; z

]
=

∞∑
k=0

∏p
i=1 �(ai + Aik)∏q
i=1 �(bi + Bik)

zk

k! . (53)

In particular:

Gα,1,n(x, t) = 2t−
n
a

(4π)
n
2
1�1

[ ( n
α
, 2

α
)

( n2 , 1)
;−|x |2

4t
2
α

]
(54)

Two-dimensional α-fractional diffusion equation (β = α
2 , n = 2)

In this case:

Gα, α
2 ,2(x, t) = 1

4π t

( |x |
2
√
t

)α−2
E α

2 , α
2

(
−

( |x |
2
√
t

)α)
(55)
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Note that this fundamental solution can be interpreted as a spatial probability density
function evolving in time.

One-dimensional α-fractional wave equation (α = β, n = 1)
Finally, for this particular case, we have:

Gα,α,1(x, t) = 1

π

|x |α−1tα sin (πα/2)

t2α + 2|x |αtα cos (πα/2) + |x |2α (56)

This case is usually known as neutral-fractional diffusion-wave equation.

We end this section recalling the the following subordination formula, valid for the
fundamental solution of the multidimensional space-time-fractional diffusion-wave
equation (with 0 < β ≤ 1, 0 < α ≤ 2, 2β + α < 4):

Gα,β,n(x, t) =
∫ ∞

0
t−

2β
α �α,β(st−

2β
α )G2,1,n(x, s)ds (57)

where the kernel function �α,β(τ ) is a pd f whose definition depends on the values
of β/α and τ .

More details can be found in [12].

7 Conclusions

Wehave studied the fractional diffusivewaves in the framework of fractional calculus
through the so-called time-fractional diffusion-wave equation, and we observed how
this equation interpolates the standard processes of diffusion and wave propagation.
We have continued the work began in [3]. by considering both the Cauchy and
Signaling problems. In particular, after recalling the form of the Green Functions for
both problems, we analyzed and simulated the time evolution of the system for an
initial data given by a box-function (in space for the Cauchy problem, and in time for
the Signaling problem); the solutions are obtained by the well-known space or time
convolution (depending on the chosen problem) of the Green functions with the input
functions (initial data). Also already known results regarding the interpretation of
the fundamental solutions as diffusive waves and concepts on the multi-dimensional
time-fractional diffusion-wave equation have been added to the manuscript for a
more complete and useful treatment.

In the next future we plan to study both the Cauchy and Signaling problems taking
into account also the effects of the second Green function that may arise in more
general fractional diffusion-wave processes.
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8 Appendix A: Fractional Calculus: An Introduction

The standard notions of integral and derivative can be generalized in the framework
of Fractional Calculus to non-integer orders.
The history goes back to September 30th 1695, when L’Hopital asked to Leibniz
what would be if n = 1/2 in his notation for the nth-order derivative dn

dxn ; Leibniz
answered: “An apparent paradox, from which one day useful consequences will be
drawn.”.

Herewith we describe the essentials of fractional calculus necessary to understand
the time fractional derivative in the Caputo sense used in the text. For this we follow
the introduction notes in the 1997 Survey by Gorenflo andMainardi [7]. More details
on Fractional Calculus ma be found in more recent treatises, see e.g. the 2006 book
by Kilbas et al. [8] and the 2014 book by Gorenflo et al. [6].

The usual starting point for the topic of Fractional Calculus is theCauchy formula
for repeated integrals:

a I
n
t f (t) :=

∫ t

a

∫ τn−1

a
...

∫ τ1

a
f (τ ) dτ dτ1.. .dτn−1 = 1

(n − 1)!
∫ t

a
(t − τ)n−1 f (τ dτ ,

(58)
where the time t is the independent variable (t > 0) and f (t) is a sufficiently well-
behaved function. In this way the n-fold primitive (n ∈ N) of a function can be
calculated in terms of a single integral of convolution type.

One step forward is done by replacing the factorial term (n − 1)! that appears
in Eq. (60) with the corresponding representation given by the Gamma Function,
defined by

�(z) :=
∫ ∞

0
uz−1e−u du, Re(z) > 0 ,

and then replacing n with a positive real number α.
Writing �(n) = (n − 1)! in Eq. (60) hence it follows the definition of fractional

integral a I α
t f (t) of order α (α > 0)

a I
α
t f (t) := 1

�(α)

∫ t

a
(t − τ)α−1 f (τ ) dτ . (59)
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The order α of the primitive so is no longer restricted to positive, integer values.
Follows the definition of the fractional derivative of order α defined in the Riemann-
Liouville sense as the left-inverse operator of the corresponding fractional integral,
and it reads:

aD
α
t f (t) = dn

dtn
a I

n−α
t f (t) (n = [Re(α)] + 1) , (60)

The standard notion of derivative is obtained back when α = n.
By taking from now on a ≡ 0 we agree to delete the starting point in the notations
for fractional integrals and derivatives.

Let us note that with the definition given by Eq. (61) unlike the standard case
α = n, the fractional derivative of a constant function is different from zero. If for
example f (t) ≡ 1, then we have:

Dα
t 1 = t−α

�(1 − α)
, α ≥ 0, t > 0. (61)

If α = n ∈ N in Eq. (62), then the result is equal to zero due to the poles of the
Gamma function in the points 0,−1,−2, ...
The fractional derivative can be also alternatively defined in the Caputo sense [1, 2]
by swapping the order of the fractional integral and the nth-order derivative:

Dα
C f (t) := I n−α

t

dn

dtn
f (t) = 1

�(n − α)

∫ t

0

f (n)(τ )

(t − τ)α+1−n
dτ , n − 1 < α ≤ n,

(62)
In general we have that:

Dα
t f (t) := dn

dtn
a I

n−α
t f (t) �= I n−α

t

dn

dtn
f (t) := Dα

C f (t), (63)

unless the function f (t) along with its first n − 1 derivatives vanishes at t = 0+.
Indeed we have:

Dα
t f (t) = Dα

C f (t) +
n−1∑
k=0

t k−α

�(k − α + 1)
f (k)(0+). (64)

Having in mind the following result regarding the fractional derivative of the power
function,

Dα
t t

γ = �(γ + 1)

�(γ + 1 − α)
tγ−α, α > 0, γ > −1, t > 0, (65)

we finally have:

Dα
t

(
f (t) −

n−1∑
k=0

t k

k! f
(k)(0+)

)
= Dα

C f (t) . (66)
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The Caputo definition requires the absolute integrability of the nth-order derivative
but provides a regularization of theRiemann-Liouville fractional derivative at t = 0+.

It comes out also that the Caputo derivative appears suitable to be treated by
the Laplace Transform technique for causal systems, i.e. systems that are quiescent
for t < 0, as the result is a natural generalization of a well-known relation of stan-
dard analysis (obtained when α = n). Indeed we have, using the symbol ÷ for the
juxtaposition of a function with its Laplace Transform:

Dα
C f (t) ÷ sα f̃ (s) −

n−1∑
k=0

f (k)(0+)sα−1−k, n − 1 < α ≤ n . (67)

In Eq. (68) it is required to know the initial values of the function and of its integer
derivatives, and this fact is useful in particular in physical problems.
Moreover we find another result known from standard analysis, i.e. that the derivative
of a constant vanishes:

Dα
C1 = 0, α > 0 . (68)
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Some Extension Results for Nonlocal
Operators and Applications

Fausto Ferrari

Abstract In this paper, we deal with some recent and old results, concerning frac-
tional operators, obtained via the extension technique. This approach is particularly
fruitful for exploiting some of those well known properties, true for the local oper-
ators obtained via the extension approach, for deducing some parallel results about
the underlaying nonlocal operators.

Keywords Fractional laplacian · Marchaud derivative · Weyl derivative ·
Extension techniques · Carnot groups · Harnack inequality.

1 Some Nonlocal Operators

We start this note by reviewing some recent and old results concerning fractional
operators, putting in evidence the extension technique used in [12] for the fractional
Laplace operator and successively applied to other operators, see e.g. [7, 10, 52].
This approach results particularly fruitful for exploiting some, perhaps, well known
properties of the local operators obtained from the nonlocal ones, for which we
would like to prove some results. The typical easier example is given in [12] where,
for proving the Harnack inequality for the fractional Laplace operator, the authors
reduce themselves to apply the Harnack inequality associated with a degenerate
local operator in divergence form and for which there exist in literature many results,
see [17]. We point out that Harnack inequality for the fractional Laplace operator
was already known in literature for s−harmonic functions being s ∈ (0, 1). Namely,
there exists a positive constant C such that for every sufficiently smooth function
u : Rn → R, u ≥ 0 in R

n, such that (−�)su = 0 in � ⊂ R
n, then for every ball

B2R ⊂ � of radius 2R we have:
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sup
BR

u ≤ C inf
BR

u.

The classical proof can be found, for instance, in [40, 48] using potential theory
techniques and, via probabilistic approach, in [6]. In the Harnack inequality, the
different hypotheses that have to be done between the local and the nonlocal case are
explicit. In fact, without extra assumptions on the positivity of u in all ofRn, instead
of the required positivity of u only on the set � as well as in the local setting, the
result is false, see e.g. [38].

This approach can be adapted to different operators. In particular the case of
Weyl-Marchaud derivative has been faced in [10], while the case of degenerate oper-
ators in [23]. Recently, some further generalizations and applications to Kolmogorov
operators type have been obtained in [31], see also [29, 30] and [54] for a recent
review of these results.

We continue this section introducing some basic nonlocal operators, while in
Sect. 2 we deal with the extension technique. More precisely: In Sect. 2.1 we deal
with the extension approach adapted to the case of the Marchaud derivative, in
Sect. 2.2 we introduce the main tools for working in a non-commutative frame-
work and successively, in Sect. 2.3, we describe the extension approach technique
in Carnot groups. The applications are collected in Sect. 3. We conclude with Sect. 4
discussing the construction of the solutions of the extended problem associated with
a periodic function, via the Fourier series approach.

The following notation concerns the difference of fractional order α ∈ R for a
function f. Let

(�α
h f )(x) :=

∞∑

k=0

(−1)k
(

α

k

)
f (x − kh), (1)

where (
α

n

)
= �(α + 1)

n!�(α + n − 1)
.

The Grünwald-Letnikov derivative, [33, 41], is:

D
α f (x) = lim

h→0+

(�α
h f )(x)

hα
,

whenever the pointwise limit exists.
In addition, see Theorem 20.4, [51], for L p(R) functions, we know that Grüwald-

Letnikov-derivative exists if and only if Marchaud-derivative exists in the following
sense:

lim
h→0+,L p(R)

(�α
h f )(x)

hα
= lim

ε→0+,L p(R)

α

�(1 − α)

∫ ∞

ε

f (x) − f (x − τ)

τ 1+α
dτ,

being α ∈ (0, 1) and
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Dα
+ f (x) := α

�(1 − α)

∫ ∞

0

f (x) − f (x − τ)

τ 1+α
dτ

the Marchaud-derivative, see [45] and [10, 22, 50]. For further information about
these relationships, we recall the classical handbooks [39, 46, 50] as well. We have
to say that, for function defined in [a, t], sometime the Caputo derivative

aD
α
t f (t) := 1

�(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds (2)

is used, see e.g. [14], instead of the Riemann-Lioville one, defined as:

aD
α
+ f (t) := 1

�(1 − α)

d

dt

∫ t

a

f ′(s)
(t − s)α

ds,

see [51].
The Riemann-Liouville derivative is closely related to Marchaud derivative. In

fact, the interested reader may check this fact one more time in [51] or e.g. in [22],
but, in any case, also Caputo derivative is strictly linked to Marchaud derivative. In
fact, integrating by parts (2), we obtain:

�(1 − α)aD
α
t f (t) = f (t) − f (a)

(t − a)α
+ α

∫ t

a

f (t) − f (s)

(t − s)1+α
ds.

Thus for functions f defined in (−∞, t], letting a = −∞, we obtain, after a change
of variable:

−∞Dα
t f (t) := 1

�(1 − α)

∫ t

−∞
f (t) − f (s)

(t − s)1+α
ds = Dα

+ f (t)

that is exactly the Marchaud derivative.
Keeping in mind the subject contained in Sect. 4, as well as the Weyl definition

of derivative, see [55], we wish to remark how the Weyl derivative can be justified
for pointing out its relationship with Marchaud derivative.

Let us consider a periodic function, let us say for simplicity a 2π -periodic function
having zero average.We can associate to this function its own Fourier series, see [22]:

+∞∑

k=−∞
cke

ikx ,

where of course {ck}k∈Z is the sequence of the Fourier coefficients. Thus, formally,
the derivative may be written as:
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+∞∑

k=−∞
ck(ik)e

ikx .

Then, defining a new function for each fixed α < 1 :
+∞∑

k=−∞

ck
(ik)α

eikx ,

(morally the integral), we formally obtain, by taking its derivative:

D

( +∞∑

k=−∞

ck
(ik)α

eikx
)

=
+∞∑

k=−∞

ck
(ik)α−1

eikx . (3)

Following this path, Weyl analogously introduces the parallel fractional integral, see
[55]. Thus, it is natural to define the fractional derivative of f as:

+∞∑

k=−∞,

ck(ik)
αeikx .

We recall that, given two periodic functions f, g, the new function

1

2π

∫ 2π

0
g(t) f (x − t)dt

is represented by the Fourier series

∞∑

k=−∞
gkcke

ikx ,

where {gk}k∈Z and {ck}k∈Z are the respective Fourier coefficients. As a consequence,
considering

+∞∑

k=−∞

ck
(ik)α

eikx

as representing the Fourier series of an integral like the following one:

1

2π

∫ 2π

0
g(t) f (x − t)dt,

we deduce that previous integral has to be written in the following form:
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1

2π

∫ 2π

0
f (x − t)

⎛

⎝
+∞∑

k=−∞,k 	=0

eikt

(ik)α

⎞

⎠ dt.

It can be proved that (see [51])

+∞∑

k=−∞,k 	=0

eikt

(ik)α
= 2

∞∑

k=1

cos(kt − α π
2 )

kα
.

Then, denoting the kernel

ψα
+(t) :=

+∞∑

k=−∞,k 	=0

eikt

(ik)α
,

Weyl obtains the fractional integral

I (α)
+ f (x) = 1

2π

∫ 2π

0
f (x − t)ψα

+(t)dt.

At this point, see [51], Weyl defines the fractional derivative as

D (α)
+ (x) := D

(
I (1−α)
+ f

)
(x).

This definition corresponds to the Weyl-Riemann-Lioville version of this deriva-
tive, see one more time [51] for the details. Then taking formally the derivative, Weyl
obtains the Weyl-Marchaud derivative that is:

D(α)
+ f (x) := 1

2π

∫ 2π

0
( f (x) − f (x − t))

d

dt
ψ1−α

+ (t)dt.

Of course, the case concerning D(α)
− f is analogous.

The Weyl derivative and the Marchaud derivative of 2π periodic functions in
L p(0, 2π) coincide a.e., whenever they exist, see Lemma 19.4 in [50]. It is worth to
point out that the numerical evaluation of these derivatives is particularly important,
see e.g. [32] or [19], so that it is useful to understand their properties considering
their different representations.

Concerning the applications of these nonlocal operators, it would be very dif-
ficult to list all the papers published on this subject, nevertheless we like to cite
[3], where Riemann-Liouville-Marchaud-Weyl-Caputo derivative as well as the frac-
tional Laplace operator appeared in the description of a porousmediumflowproblem,
and [43] for a description of many other problems.

We have just quoted the fractional operator, so that we formally introduce it. Let
α ∈ (0, 1), we recall that the fractional Laplace operator is defined, let us say for
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every f ∈ S (Rn), the set of rapidly decreasing set functions on R
n, as:

(−�)α f (x) = Cα,n

∫

Rn

f (x) − f (y)

|x − y|n+2α
dy

:= lim
r→0+

Cα,n

∫

Rn\Br (x)

f (x) − f (y)

|x − y|n+2α
dy,

(4)

where Br (x) denotes the ball centered at x pf radius r and the constant Cα,n depends
only on α, n and represents a normalizing constant determined by the following
condition

F−1(|ξ |2αF ( f ))(x) = (−�)α f (x).

Here we denote, as usual, by F the Fourier transform. We remark indeed that
F−1(|ξ |2αF ( f )) is often taken as the definition of the fractional Laplace opera-
tor itself (−�)α f, see e.g. [51] and [20].

There exists a relationship between the Marchaud derivative and the fractional
Laplace operator that is given for α ∈ (0, 1) by:

∫

∂B1(0)
Dα

h f (x)dH
n−1(h) = (−�)α/2 f (x),

where

Dα
h f (x) = cα

∫ ∞

0

f (x) − f (x − th)

t1+α
dt,

h ∈ ∂B1(0), h ∈ R
n and cα is the suitable normalizing constant, see Lemma 26.2 in

[50] and also [22] for an equivalent statement. In addition, we remark that in [50]
further relationships between Marchaud derivative and hypergeometric integrals are
studied.

2 Extension Approach to Nonlocal Operators

In this section we discuss few cases in which we adapt the extension approach to the
Marchaud derivative and to Carnot groups, respectively introduced in Sect. 2.1 and
Sect. 2.3. Moreover, for dealing with Carnot groups, we arranged the preparatory
Sect. 2.2, where we introduce the main notations and definitions useful in that non-
commutative field.
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2.1 The Marchaud Case

In [12], the authors observed that the fractional Laplace operator can be represented
as well as:

(−�)α f (x) = C lim
y→0

y1−2α ∂V (x, y)

∂y
,

where 0 < α < 1 and V is the solution to the following problem:

{
div(y1−2α∇x,yV ) = 0, Rn × R

+,

V (x, 0) = f, x ∈ R
n,

and C a suitable constant. We will come back to this point in Sect. 2.2 discussing the
fractional Laplace case.

This extension approach, in defining the Weyl-Marchaud derivative, has been
faced in [10]. We describe below the rough idea in case α = 1

2 for obtaining D
1
2 .

Let ϕ : R → R be a given function, sufficiently smooth. Let U be a solution to the
problem {

∂U
∂t = ∂2U

∂x2 , (x, t) ∈ (0,∞) × R

U (0, t) = ϕ(t), t ∈ R.
(5)

We point out that (5) is not the usual Cauchy problem associated with the heat
operator, but a heat conduction problem.

It is known that, without extra assumptions, we can not expect to have a unique
solution of the problem (5), see e.g. [53]. Nevertheless, if we denote by T1/2 the
operator that associates to ϕ the partial derivative ∂U

∂x , whenever U is sufficiently
regular, we have that

T1/2T1/2ϕ = dϕ

dt
.

That is the operator T1/2 acts like an half derivative, that is a fractional derivative
of order 1/2, indeed

∂

∂x

∂U

∂x
(x, t) = ∂U

∂t
(x, t) −→

x→0

dϕ(t)

dt
.

The solution of problem (5) under the reasonable assumptions that ϕ is bounded
and Hölder continuous, is explicitly known (check e.g. [53]) to be

U (x, t) = cx
∫ t

−∞
e− x2

4(t−τ) (t − τ)−
3
2 ϕ(τ) dτ

= cx
∫ ∞

0
e− x2

4τ τ− 3
2 ϕ(t − τ) dτ,

(6)
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where (6) is obtained performing a change of variable.
We get moreover that

∫ ∞

0
xe− x2

4τ τ− 3
2 dτ = 2

∫ ∞

0
e−t t−

1
2 dt = 2�(

1

2
).

Hence,

U (x, t) −U (0, t)

x
= c

∫ ∞

0
e− x2

4τ τ− 3
2 (ϕ(t − τ) − ϕ(t)) dτ, (7)

choosing c that takes into account the right normalization. This yields, by passing to
the limit, that

− lim
x→0+

U (x, t) −U (0, t)

x
= c

∫ ∞

0

ϕ(t) − ϕ(t − τ)

τ
3
2

dτ, (8)

that, possibly up to a multiplicative constant, is exactly D
1
2 ϕ.

The previous description enters as a particular case of the following results proved
in [10], see also [7],

Theorem 1 Let s ∈ (0, 1) and ϕ : R → R be a bounded, locally C γ̄ function for
s < γ̄ ≤ 1. Let U : [0,∞) × R → R be a solution to the problem

⎧
⎨

⎩

∂U (x,t)
∂t = 1−2s

x
∂U (x,t)

∂x + ∂2U (x,t)
∂x2 , (x, t) ∈ (0,∞) × R

U (0, t) = ϕ(t), t ∈ R

limx→∞ U (x, t) = 0, t ∈ R.

(9)

Then U defines the extension operator for φ, such that

Dsϕ(t) = − lim
x→0+

csx
−2s(U (x, t) − ϕ(t)), (10)

where
cs = 4s�(s).

Adapting the constant cs given in Theorem 1 by fixing cs = 4s�(s)s
�(1−s) , in

Dsϕ(t) = − lim
x→0+

csx
1−2s ∂U

∂x
(x, t), (11)

in analogy with formula (3.1) in [12] we straightforwardly obtain the definition

Ds
± f (t) = s

�(1 − s)

∫ ∞

0

f (t) − f (t ∓ τ)

τ 1+s
dτ. (12)
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The advantage of this choice is thatDs±ϕ → ϕ as s → 0+ andDs±ϕ → ϕ′ as s → 1−.

Eventually, for recent result about the regularity theory in this framework, see [2].

2.2 Carnot Setting

In this subsection, preparatory to the next one, we introduce the basic language for
dealingwithCarnot groups.We recall that fractional operatorsmaybedefined also for
degenerate PDEs associated with non-negative quadratic forms on non-commutative
structures. In fact, a stratified Carnot group of step m (G, ◦) is a set, in general
endowed with a non-commutative law and a Lie algebra g with m stratifications.
More precisely there exist {gi }1≤i≤m, m ∈ N, m ≤ N ∈ N, vector spaces such that:

g1
⊕

g2
⊕

. . .
⊕

gm = g ≡ R
N ≡ G,

[g1, g1] = g2, [g1, g2] = g3, . . . , [g1, gm−1] = gm 	= {0}

and
[g1, gm] = 0.

Moreover

x ∈ G ≡ R
N = R

k1 × . . .Rkm ,

m∑

j=1

k j = N

and
∑m

j=1 jk j = Q is called the homogeneous dimension. For every λ > 0 is defined
the anisotropic dilation:

δλ(x) = (λx (1), λ2x (2), . . . , λmx (m)), where x ( j) ∈ R
k j , j = 1, . . . ,m.

In addition if Z1, . . . , Zk1 ∈ g1 are left invariant vector fields such that Z j (0) =
∂

∂x j |x=0
, j = 1, . . . , k1 then

rank(Lie{Z1, . . . , Zk1})(x) = N , (Hörmander condition)

for every x ∈ R
N ≡ G. Let us consider the sublaplacian on the stratified Carnot

group G given by

LG ≡ −�G = −
k1∑

j=1

X2
j , (13)

where span{X1, . . . , Xk1} = g1.
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In particular there exists a N × k1 matrix σ such that σ · σ T is a N × N matrix
such that

div(σ · σ T∇·) = �G.

Moreover

σ T∇u =
k1∑

j=1

X juX j ≡ ∇g1u,

is the so called horizontal gradient of u.

Hence
A = σ · σ T

The simplest example is the Heisenberg group, that is

G = H
1 ≡ R

3, (H1, ◦)

where for every (x1, y1, t1), (x2, y2, t2) ∈ H
1

(x1, y1, t1) ◦ (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(x2y1 − x1y2)).

The opposite of ξ := (x, y, t) ∈ H
1 is usually denoted by ξ−1 and ξ−1 := (−x,

−y,−t) and the dilation by λ > 0 is: δλ(ξ) = (λx, λy, λ2t).
Moreover,

g1 = span{X,Y }, g2 = span{T }

where X = ∂
∂x + 2y ∂

∂t , Y = ∂
∂y − 2x ∂

∂t , and T = −4 ∂
∂t , and

[X,Y ] = T,

so that [g1, g1] = g2, [g1, g2] = {0},

g1
⊕

g2 = R
3.

Hence, Heisenberg group is a 2 step groups and g1 is the first layer, namely the
horizontal vector space. Moreover

�H1 = X2 + Y 2 = ∂2

∂x2
+ 4y

∂2

∂x∂t
+ ∂2

∂y2
− 4x

∂2

∂y∂t
+ 4(x2 + y2)

∂2

∂t2

Thus



Some Extension Results for Nonlocal Operators and Applications 165

�H1 = Tr

⎛

⎝

⎡

⎣
1, 0, 2y
0, 1, −2x
2y, −2x, 4(x2 + y2)

⎤

⎦

⎞

⎠ = div

⎛

⎝

⎡

⎣
1, 0, 2y
0, 1, −2x
2y, −2x, 4(x2 + y2)

⎤

⎦ ∇u

⎞

⎠

= div

⎛

⎝

⎡

⎣
1, 0
0, 1
2y, −2x

⎤

⎦
[
1, 0, 2y
0, 1, −2x

]
∇u

⎞

⎠ = X2u + Y 2u.

In our framework

L ≡ −�G := −
k1∑

j=1

X2
j ,

and considering the example givenby theHeisenberg group,wehave k1 = 2, X1 ≡ X
and X2 ≡ Y, so that L ≡ −�H1 .

We point out that with this presentation we include, as a very particular case,
the Laplace operator on R

n that is a commutative structure. The main difference
with the general elliptic case, usually given by the Laplace operator, for instance
considering the Kohn-Laplace operator on the Heisenberg groupHn is that �Hn rep-
resents a degenerate operator associated with a non-negative quadratic form having
the smallest eigenvalue always zero. This structure is in some way associated with
the quantum description of a system of moving particles with classical position and
momentum coordinates, see [26, 47]. The fundamental contribution about the ana-
lytic properties of sublaplacians (13) can be found in [36]. Thus, the properties of
fractional operators in this framework is particularly interesting.

Thus, following [25], Sect. 3, see also [5, 37, 57], it results:

Theorem 2 The operator L , see (13), is a positive self-adjoint operator with
domain W 2,2

G
(G). Denote now by {E(λ)} the spectral resolution of L in L2(G).

If α > 0 then

L α/2 =
∫ +∞

0
λα/2dE(λ)

with domain

W α,2
G

(G) := {u ∈ L2(G) :
∫ +∞

0
λαd〈E(λ)u, u〉 < ∞},

endowed with the graph norm.

Let us denote by h = h(t, x) the fundamental solution of L + ∂/∂t. Recall that
Q denotes the homogeneous dimension as well. Then:

Theorem 3 ([25], Proposition 3.3) Suppose Q ≥ 3 and 0 < β < Q. Then the
integral

Rβ(x) = 1

�(β/2)

∫ ∞

0
t

β

2 −1h(t, x) dt

converges absolutely for x 	= 0. In addition, Rβ is a kernel such that:
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(i) R2 is theL fundamental solution;
(ii) if α ∈ (0, 2) and u ∈ D(G), thenL α/2u = L u ∗ R2−α.

(iii) the kernels Rα admit the following convolution rule: ifα > 0, β > 0 and x 	= 0,
then Rα+β(x) = Rα(x) ∗ Rβ(x).

In this case we cannot apply straightforwardly the Fourier transform, because the
operator may have variable coefficients. We faced in [23] the problem, see also [12],
by considering the following result.

Lemma 1 If −∞ < α < 1, the boundary value problem

⎧
⎨

⎩

−tαφ′′ + φ = 0
φ(0) = 1
limt→+∞ φ(t) = 0

(14)

has a solution φ ∈ C2−α([0,∞)) of the form

φ(t) = cα t
1/2K1/2k(k

−1t k),

where cα := 21−1/2k�(1/2k)−1k−1/2k > 0 is a positive constant, k = 2−α
2 , and K1/2k

is the modified Bessel function of second kind (see [56]).

In addition:

(i) 0 < φ < 1. Moreover φ′(t) has a finite limit as t → 0 and, recursively,

tα+h−2φ(h)(t) has a finite limit as t → 0

for h = 2, 3, . . . ;
(ii) φ′ ∈ L2((0,∞));

(iii) φ(t) = c
√

πk
2 tα/2 e−t k/k

(
1 + O( 1t )

)
as t → ∞;

(iv) φ(h)(t) = ch tα(1−h)/2 e−t k/k
(
1 + o(1)

)
as t → ∞ for h = 1, 2, . . . .

The problem (14) in Lemma 1 takes the place of the problem that we obtain when
we apply the Fourier transform to the Laplace operator.

We explain now why in Carnot groups we need to a new tool that takes the place
of the Fourier transform and how the extension approach may be applied as it will
be clear reading the subsequent explanation.

Following [12], for studying problem (14), we consider the Euclidean case for the
Laplace operator � in R

n. Recalling the argument that we have already described
for the extension problem in the construction of the Marchaud derivative, we reduce,
supposing to deal with the fractional operator associated with �, to consider the
following PDE:

�xU + a

y

∂U

∂y
+ ∂2U

∂y2
= 0, in R

n × (0,+∞). (15)



Some Extension Results for Nonlocal Operators and Applications 167

Then applying the Fourier transform to (15) with respect to x , we obtain:

F�xU + F
a

y

∂U

∂y
+ F

∂2U

∂y2
= 0. (16)

Thus it results:

−|ξ |2FU (ξ, y) + a

y

∂FU (ξ, y)

∂y
+ ∂2FU (ξ, y)

∂y2
= 0.

If U (x, 0) = u, by considering the problem,

⎧
⎨

⎩

v′′ + a
y v

′ = |ξ |2v
v(0) = 1
limy→∞ v(y) = 0,

(17)

then it results, (knowing the solution v to (17)) via a scaling argument:

FU = Fuv(|ξ |y).

If a = 0 then v = e−|ξ |y and

U (x, y) = u ∗ F−1(e−|ξ |y).

In general:

F−1(v(|ξ |y)) ≡ Pa(x, y) = Cn,a
y1−a

(|x |2 + |y|2) n+1−a
2

.

and we obtain:
U (x, y) = u ∗ Pa(·, y).

Now: with a change of variable we transform problem (17) in problem (14).
Unfortunately, in our Carnot groups framework, we can not use the classical

Fourier transform having a dependence on the coefficients that is much compli-
cate with respect to the benchmark case represented by the Laplace operator in the
Euclidean setting. Thus, we start from Lemma 1 for applying the approach described
in [23] in Carnot groups.

2.3 The Extension Approach in Carnot Groups

Wehave already pointed out in the previous Sect. 2.2 that we cannot apply the Fourier
transform, so we use the solution φ of problem (1) to define a new operator via the
spectral resolution of L , see (13) for recalling the definition.
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Hence, for every u ∈ L2(G) and y > 0, we set, see [23]:

v(·, y) : = φ(θy1−a L (1−a)/2)u :=
∫ ∞

0
φ(θy1−a λ(1−a)/2) dE(λ)u, (18)

where θ := (1 − a)a−1, φ solves (14), and {E(λ)} is the spectral resolution ofL in
L2(G) and therefore v ∈ L2(G) for y > 0.

Moreover we proved in [23] the following result.

Theorem 4 (generalized subordination identity) Let h(t, ·) be the heat kernel asso-
ciated withL + ∂

∂t . We denote by PG(·, y) the “Poisson kernel”

PG(·, y) := Ca y
1−a

∫ ∞

0
t (a−3)/2e− y2

4t h(t, ·) dt, (19)

where

Ca = 2a−1

�((1 − a)/2)
.

Then
PG(·, y) ≥ 0,

and
v(·, y) = u ∗ PG(·, y). (20)

The last part is a consequence of some results contained in [25, 37], Theorem 3.1.
In addition, we recall that the existence of the heat kernel h is proved in [25]. As a
byproduct of Theorem 4, we obtain, see [23], that

L
1−a
2 u(x) = C̃a

∫

G

(u(ξ) − u(x))R̃a−1(ξ)dξ. (21)

In fact, whenever u is sufficiently smooth:

ya
v(x, y) − v(x, 0)

y
= ya

u ∗ PG(·, y) − u(x)

y

=
(
Ca

∫ ∞

0
t (a−3)/2e− y2

4t u ∗ h(t, ·) dt

−Cau(x)
∫

G

∫ ∞

0
t (a−3)/2e− y2

4t h(t, ξ−1x) dtdξ

)

= Ca

∫

G

∫ ∞

0
t (a−3)/2e− y2

4t h(t, ξ−1x) dt (u(ξ) − u(x))dξ.

(22)

On the other hand
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lim
y→0+

Ca

∫ ∞

0
t (a−3)/2e− y2

4t h(t, ξ−1x) dt = C̃a R̃a−1. (23)

Thus

lim
y→0+

ya
v(x, y) − v(x, 0)

y
= Ca

∫

G

(u(ξ) − u(x))R̃a−1(ξ)dξ = C̃aL
1−a
2 u(x),

where

R̃β(x) =
β

2

�(β/2)

∫ ∞

0
t

β

2 −1h(t, x) dt. (24)

It boils down:

L
1−a
2 u(x) = lim

y→0+
ya

v(x, y) − v(x, 0)

y
= C̃a

∫

G

(u(ξ) − u(x))R̃a−1(ξ)dξ.

This construction is very general, nevertheless it is not always easy towrite explic-
itly the kernel R̃a−1 even in the simplest non-commutative case like in the Heisenberg
group H

1. In fact, the heat kernel in the Heisenberg group H
1 is written via an inte-

gral. More precisely, if (z, s) ∈ C × R ≡ H
1, then the heat kernel h of −�H1 + ∂

∂t
in ]0,+∞[×H

1 is:

h(t, (z, s)) = (4π t)−2
∫

R

e− f (z,s,κ)

t V (κ)dκ,

where

f (z, s, κ) = 1

2
(−iκs + κ|z|2

2 tanh(2κ)
)

and

V (κ) = 2κ

sinh(2κ)
.

Thus, recalling (24), we obtain in the Heisenberg case H1 the following kernel:

R̃β(z, s) =
β

2

�(β/2)

∫ ∞

0
t

β

2 −1

(
(4π t)−2

∫

R

e− f (z,s,κ)

t V (κ)dκ

)
dt. (25)

It is clear that the double integration in the representation of R̃β produces some
technical difficulties that do not appear in dealing with the usual heat kernel in R3.

In fact, if (G, ◦) = (R3,+), then for every α > 0 it results

R̃α(x) = − α

2�(−α/2)

1

(4π)
3
2

∫ ∞

0
t−α/2−3/2−1e− |x |2

4t dt,
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being 1

(4π t)
3
2
e− |x |2

4t the heat kernel of−� + ∂
∂t in ]0,+∞[×R

3.Thus, after a changing

of variables, we obtain:

R̃α(x) = − α

2�(−α/2)

4
α
2 + 3

2

(4π)
3
2

|x |−α−3
∫ ∞

0
y

1+α
2 e−ydy

= − α

2�(−α/2)

4
α
2 + 3

2

(4π)
3
2

�
(α + 3

2

)
|x |−α−3.

(26)

Moreover, denoting c := − α
2�(−α/2)

4
α
2

π
3
2
�

(
α+3
2

)
, we get the usual kernel that appears

in the representation of (−�)
α
2 that is:

R̃α(x) = c
1

|x |3+α
,

see (4) when n = 3.
As far as we are concern, we don’t know if a simpler representation of the kernel

(25) exists when we are in a non-commutative group.
We conclude this section pointing out that some tentatives to define the fractional

operator, starting from the notion of the intrinsic translation, has been done in [21].
Moreover, it is known that in CR structures the extension can be done with a little
different approach, see [28].

3 Applications

In this section we discuss some applications of the extension method to solutions
of nonlocal operators. In particular in Sect. 3.1 we review the Harnack inequality
for positive solutions of the equation Dαu = 0 in I ⊂ R. In Sect. 3.2 we recall how
to prove Harnack inequality for α−harmonic function in Carnot groups, while in
Sect. 3.3we revisit an application of the extension approach to the notion of perimeter
in Carnot groups.

3.1 Weyl-Marchaud Derivative: The Harnack Inequality

Concerning the PDE of the problem (9), in this particular case, the conductivity
coefficient (i.e. the coefficient in front of the x derivative) and the specific heat (the
coefficient of the t derivative) coincide. In [16], this type of equation has been studied
in a more general framework. In fact a more general form of that equation is given
as follows:
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w(x)
∂u

∂t
= ∂

∂x
(a(x)

∂U

∂x
). (27)

We assume that:
λ−1w(x) ≤ a(x) ≤ λw(x)

and that the following integrability condition (known as aMuckehoupt, or A2 weight
condition) on the weight w holds as well:

sup
J

(
1

|J |
∫

J
w(x) dx) (

1

|J |
∫

J

1

w(x)
dx) = c0 < ∞, (28)

for every interval J ⊆ (−R, R). The constant c0 is indicated as the A2 constant of
w. In our case, of course, we are left with the condition (28). In [16] the authors also
proved the following Harnack inequality.

Theorem 5 (Chiarenza-Serapioni)LetU be a positive solution in (−R, R) × (0, T )

of the equation in (9) and assume that condition (28) holds, with constant c0. Then
there exists γ = γ (c0) > 0 such that

sup
(

ρ

2 ,
ρ

2 )×(t0− 3ρ2

4 ,t0− ρ2

4 )

U ≤ γ inf
(

ρ

2 ,
ρ

2 )×(t0+ 3ρ2

4 ,t0+ρ2)

U (29)

holds for t0 ∈ (0, T ) and any ρ such that 0 < ρ < R/2 and [t0 − ρ2, t0 + ρ2] ⊂
(0, T ).

As a consequence, in [10], has been proved the following Harnack inequality for the
Marchaud derivative:

Corollary 1 Let s ∈ (0, 1). There exists a positive constant γ such that, if Dsφ = 0
in J ⊆ R and φ ≥ 0 in R, then

sup
[t0− 3

4 δ,t0− 1
4 δ]

φ ≤ γ inf
[t0+ 3

4 δ,t0+δ]
φ (30)

for every t0 ∈ R and for every δ > 0 such that [t0 − δ, t0 + δ] ⊂ J .

3.2 Fractional Operators of Sublaplacians in Carnot Groups:
The Harnack Inequality

Having in hand the characterization of the fractional operator recalled in (21) and
(22), wemay reduce ourselves toworkwith local operator (aswell aswe have already
remarked for the Marchaud derivative), see also [23] for this part. In fact, if Y is the
following vector field ∂

∂y and Ĝ := G × R, then Ĝ is still a Carnot group and its Lie
algebra ĝ admits the stratification



172 F. Ferrari

ĝ = ĝ1
⊕

g2
⊕

. . .
⊕

gm,

where ĝ1 = span{Y, g1}.
Then the following result holds.

Theorem 6 ([23]) Let u ∈ W 1−a,2
G

(G) be given, u ≥ 0, and assumeL (1−a)/2u = 0
in an open set�. Denoting by v̂ the function on Ĝ obtained by continuing v by parity
across y = 0. Then

(i) v̂ ≥ 0;
(ii) v̂ ∈ W 1,2

Ĝ,loc
(�̂; yadx dy), where �̂ := � × (−1, 1);

(iii) v̂ is a weak solution of the equation

div
Ĝ

(|y|a∇
Ĝ
v̂
) = 0 in �̂. (31)

We recall the following well known definition in the study of operators with
weights.

Definition 1 (see [17])A functionω ∈ L1
loc(G) is said to be a A2-weightwith respect

to the cc-metric of G if

sup
x∈G, r>0

|Bc(x, r))|−1
∫

Bc(x,r)
ω(y) dy · |Bc(x, r))|−1

∫

Bc(x,r)
ω(y)−1 dy < ∞.

Remark. The function ω(x, y) = |y|a is a A2-weight with respect to the CC-metric
of G × R if and only if −1 < a < 1.

The following result is well known in literature, see: [34, 35, 42].

Theorem 7 Let G be a Carnot group, and let � ⊂ G be an open set. Let now
ω ∈ L1

loc(G) be a A2-weight with respect to the Carnot-Carathéodory metric dc of
G. If u ∈ W 1,2

G
(�,ωdx) is a weak solution to

divG (ω ∇Gu) = 0, (32)

then u is locallyHölder continuous in�.Moreover, if u ≥ 0, then there exist C, b > 0
(independent of u) such that the following invariant Harnack inequality holds:

sup
Bc(x,r)

u ≤ C inf
Bc(x,r)

u (33)

for any metric ball Bc(x, r) such that Bc(x, br) ⊂ �.

In addition, if � satisfies the following local condition: for any x0 ∈ ∂� there
exist r0 > 0 and α > 0 such that

|Bc(x0, r) ∩ �c| ≥ α|Bc(x0, r)| for r < r0.
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Then u is locally Hölder continuous in �. Thus, applying Theorem 7 we obtain the
Harnack inequality. In fact we get the following theorem.

Theorem 8 ([23]) Let −1 < a < 1 and let u ∈ W 1−a,2
G

(G) be given, u ≥ 0 on all
of G. Assume L (1−a)/2u = 0 in an open set � ⊂ G.

Then there exist C, b > 0 (independent of u) such that the following invariant
Harnack inequality holds:

sup
Bc(x,r)

u ≤ C inf
Bc(x,r)

u

for any metric ball Bc(x, r) such that Bc(x, br) ⊂ �.

In fact, the proof of Theorem 8 is consequence of the following argument. Since the
function (18), that may be written as (20) as well, after to be prolonged by parity
and denoted by v̂, is solution to the local problem (31) in an extended set obtained
by parity. Then, recalling that v̂ is positive, the Harnack inequality holds true for
v̂ applying the well known theory of the operators with weights, see Theorem 7.
In this way, we straightforwardly obtain the desired inequality from (33), because
u(x) = v̂(x, 0) = v(x, 0).

3.3 Carnot Groups: A Perimeter Notion

Having in mind the previous results described in Sect. 2.2, we would like to show
some applications of them to fractional perimeter in Carnot groups. This is a first
tentative of extending a research theme already explored in the Euclidean case, see
e.g. [11], to the non-commutative setting, see also [8].

We start as usual recalling some remarks Rn. Let hα(t, z) be the fundamental
solution of the fractional heat equation in R+ × R

n

ut + (−�)αu = 0. (34)

Setting h̃α(z) = hα(1, z), hα satisfies

∫

Rn

hα(t, z) dz = 1 ∀ t > 0, hα(t, z) = 1

tn/2α
h̃α(t−1/2αz) (35)

and

lim
t→0

hα(t, x)

t
= Cn,α

|x |n+2α
, (36)

see Theorem 2.1 in [9], where the exact value of the constant is given. The fractional
heat semigroup that gives the solution of (34) with initial datum f is given by

e−t (−�)α f (x) =
∫

Rn

hα(t, y) f (x − y) dy, f ∈ L1(Rn),
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and, since the kernel hα has integral one, we have

e−t (−�)α f (x) − f (x) =
∫

Rn

hα(t, y)
(
f (x − y) − f (x)

)
dy.

On the other hand:

‖(−�)α/2 f ‖2L2(Rn)

=
∫

Rn

f (−�)α f dx = C(n, α)

∫

Rn

f (x)
∫

Rn

f (x) − f (y)

|x − y|n+2α
dydx

= C(n, α)

2

∫

Rn

∫

Rn

| f (x) − f (y)|2
|x − y|n+2α

dydx = C(n, α)

2
[ f ]2W α,2 .

(37)

Thus we consider the following quantity

Qα
t ( f ) =

∫

Rn×Rn

hα(t, y)
(
f (x − y) − f (x)

)2
dx dy.

Using (36) we get

lim
t→0

Qα
t ( f )

t
= Cn,α[ f ]2W α,2(Rn).

Hence we have that f ∈ W α,2(Rn) if and only if

lim
t→0

Qα
t ( f )

t
< ∞,

see [4] and [18].
The following properties have been proved in [27].

Theorem 9 There exists a function h defined in Ĝ such that:

(i) h ∈ C∞(Ĝ \ {(0, 0)})
(ii) h(λ2t, δλ(x)) = λ−Qh(t, x) for every t > 0, x ∈ G and λ > 0;
(iii) h(t, x) = 0 for every t < 0 and

∫
G
h(t, x)dx = 1 for every t > 0;

(iv) h(t, x) = h(t, x−1) for every t > 0 and x ∈ G;
(v) there exists c > 0 such that for every x ∈ G and t > 0

c−1t−Q/2exp
(

− ‖x‖2)
c−1t

)
≤ h(x, t) ≤ ct−Q/2exp

(
− ‖x‖2

ct

)
. (38)

As well as in the Euclidean case, we introduce the heat semigroup

e−tL f (x) :=
∫

G

h(t, y−1 ◦ x) f (y)dy, f ∈ L1(G). (39)
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For every α > 0 let

R̃α(x) := − α

2�(−α/2)

∫ ∞

0
t−

α
2 −1h(t, x)dt, (40)

where

Rα(x) = 1

�(α/2)

∫ ∞

0
t

α
2 −1h(t, x)dt.

Then, see [23], R̃α and Rα are smooth functions in G \ {0} and L R2−α = R̃−α. In
addition, R̃α is positive and homogeneous of degree −α − Q.

Moreover, using (iv) and (v) of Theorem 9, we get

R̃α(x) = R̃α(x−1), (41)

and

c−1‖x‖−α−Q ≤ R̃α(x) ≤ c‖x‖−α−Q ∀x ∈ G. (42)

Thus, defining

‖x‖α :=
(
R̃α(x)

)− 1
α+Q

, (43)

we deduce that ‖x‖α is a homogeneous symmetric norm because from (42) follows
that there exists a constant c > 0, depending only on α, such that for every x ∈ G

c−1‖x‖ ≤ ‖x‖α ≤ c‖x‖.

After a straightforward calculation we obtain the following result.

Lemma 2 If u ∈ S (G) then

L αu(x) = −1

2

∫

G

u(x ◦ y) + u(x ◦ y−1) − 2u(x)

‖y‖Q+2α
α

dy. (44)

Moreover for any u ∈ S (G):

lim
α→1−

(1 − α)L αu(x) = L u(x), ∀x ∈ G.

For the proof see e.g. [24] and [23]. The notion of α-horizontal perimeter in Carnot
groups can be introduce as follow, see [24].

Definition 2 For a Borel set E ⊂ G and α ∈ (0, 1) the fractional α−horizontal
perimeter of E is
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Perα,G(E) :=
∫

E

∫

Ec

1

‖y−1 ◦ x‖Q+α
α

dxdy.

We say that E ⊂ G has finite fractional α−horizontal perimeter if Perα,G(E) < ∞.

We recall here, for permitting a quick comparison, that the fractional perimeter
in Rn of a Borel set E ⊂ R

n, in Rn, assuming that α ∈ (0, 1) is defined as follows:

Perα,Rn (E) :=
∫

E

∫

Ec

1

|x − y|n+α
dxdy.

The interested reader may easily compare this definition keeping in mind the role
of the kernel 1

|x−y|n+α in defining the fractional Laplace operator in R
n, see (4). For

further details about the notion of fractional perimeter of a set E in a set � that is
not necessarily all of Rn see [1] and [13].

Moreover, continuing our description in Carnot groups, we remark that

∫

G

∫

G

|χE (x) − χE (y)|
‖y−1 ◦ x‖Q+α

α

dxdy =
∫

E∪Ec

∫

E∪Ec

|χE (x) − χE (y)|
‖y−1 ◦ x‖Q+α

α

dxdy

=
∫

E

∫

Ec

2

‖y−1 ◦ x‖Q+α
α

dxdy.

So that, the function

Qα
t (χE ) =

∫

G×G

hα(t, y)|χE (y−1 ◦ x) − χE (x)|dxdy

establishes a relationship between the fractional heat semigroup and the fractional
perimeter. In fact, see the following result whose detailed proof is given in [24].

Theorem 10 There are constants c1(α), c2(α) > 0 such that for every Borel set E
there holds.

c1(α)Perα,G(E) ≤ lim inf
t→0

Qα/2
t (χE )

t
≤ lim sup

t→0

Qα/2
t (χE )

t

≤ c2(α)Perα,G(E).

(45)

More precisely, the upper estimates follow from [15] where it is proved that:

c−1
(
t−Q/2α ∧ t

‖z‖Q+2α

)
≤ hα(t, z) ≤ c

(
t−Q/2α ∧ t

‖z‖Q+2α

)
, (46)

and the following lemma that has been proved in [49], see Theorems 9 and 14.

Lemma 3 Let u ∈ W α/2,2(G); then there exists cα > 0 such that for all z ∈ G,
denoting by τzu(x) := u(z−1x), there holds
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‖τzu − u‖2L2(G) ≤ cα‖z‖α

∫

G×G

|u(x) − u(w−1 ◦ x)|2
‖w‖Q+α

dxdw.

We sketch the proof of Theorem 10 for helping the reader, recalling that the detail
can be found in [24]:

Qα/2
t (χE ) =

∫

G×G

hα/2(t, z)|χE (z−1 ◦ x) − χE (x)|dxdz

≤ c2t
−Q/α

∫

B(t1/α)

‖z‖α[χE ]2W α/2,2dz

+ c2t
∫

Bc(t1/α)×G

|χE (z−1 ◦ x) − χE (x)|
‖z‖Q+α

dxdz ≤ 2tc2|B(1)|Perα,G(E)

+ c2t
∫

Bc(t1/α)×G

|χE (z−1 ◦ x) − χE (x)|
‖z‖Q+α

dxdz ≤ c2(α)tPerα,G(E).

Concerning the lower bound, we start from (46), keeping in mind that on the
complement of the ball B(t

1
α ) we have the estimate

hα/2(t, y) ≥ c1
t

‖y‖Q+α
,

so that we deduce

Qα/2
t (χE ) =

∫

G×G

hα/2(t, y)|χE (y−1 ◦ x) − χE (x)|dxdy

≥c1(α)t
∫

G\B(t
1
α )

∫

G

|χ(y−1 ◦ x) − χE (x)|
‖y‖Q+α

α

dxdy.

It follows

c1(α)

∫

G×G

|χ(y−1 ◦ x) − χE (x)|
‖y‖Q+α

α

= lim
t→0

c1

∫

G\B(t
1
α )

∫

G

|χ(y−1 ◦ x) − χE (x)|
‖y‖Q+α

α

≤ lim inf
t→0

Qα/2
t (χE )

t
,

ending the proof. Of course Theorem 10 can be generalized to every function u ∈
L2(G), see [24] , Theorem 3.5. So that u ∈ W α,2(G) if and only if

lim sup
t→0+

Qα
t (u)

t
< +∞.
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4 Extension Approach: The Periodic Function Case via
Fourier Series Tool

In this section we test the extension approach considering a periodic function. To do
this we face the problem considering Fourier series. In particular, in the case s = 1

2 ,

we obtain as a byproduct a Poincaré inequality, see (63).
In fact let L ∈ (0,∞) be a fixed number and s ∈ (0, 1). Let ϕ ∈ C2π (R) be a 2π

periodic, continuous given function. We want to solve the following problem

⎧
⎨

⎩

∂U
∂t (x, t) = 1−2s

x
∂U
∂x (x, t) + ∂2U

∂x2 (x, t), (x, t) ∈ (0, L) × (−π, π)

U (0, t) = ϕ(t), t ∈ [−π, π ]
U (x,−π) = U (x, π), x ∈ [0, L],

(47)

compare with [10] and Sect. 2, Theorem 1.
We look for a solution of the previous problem in the following form:

U = a0
2

+
∞∑

k=1

(ak(x) cos(kt) + bk(x) sin(kt)),

where {ak}k∈N and {bk}k∈N are functions defined in [0, L] that have to be determined,
but assuming that

a0(0) = 1

π

∫ π

−π

ϕ(τ)dτ

and

ak(0) = 1

π

∫ π

−π

ϕ(τ) cos(kτ)dτ, bk(0) = 1

π

∫ π

−π

ϕ(τ) sin(kτ)dτ.

We can suppose without, any restriction, that a0(0) = 0 simply considering ϕ − ϕ0

2 ,

where ϕ0 := 1
π

∫ π

−π
ϕ(τ)dτ. Inserting formally our formal solutionU in the equation

of the problem (47), we get the following sequence of ODE systems

a′′
0 + a′

0
1 − 2

x
= 0, x ∈ (0, L) (48)

and for every k ∈ N, k ≥ 1

{
b′′
k + 1−2

x b′
k = −kak, x ∈ (0, L)

a′′
k + 1−2

x a′
k = kbk x ∈ (0, L)

(49)

with the initial conditions a0(0) = 0, and such that for every k ∈ N, k ≥ 1,

ak(0) = 1

π

∫ π

−π

ϕ(τ) cos(kτ)dτ, bk(0) = 1

π

∫ π

−π

ϕ(τ) sin(kτ)dτ.
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4.1 The Case s = 1
2

In case s = 1
2 , from (48) and (49) we get:

a′′
0 = 0, x ∈ (0, L)

and for every k ∈ N, k ≥ 1

{
b′′
k = −kak, x ∈ (0, L)

a′′
k = kbk x ∈ (0, L)

(50)

with the initial conditions a0(0) = 0, and for every k ∈ N, k ≥ 1,

ak(0) = ϕak (0), bk(0) = ϕbk (0),

where

ϕak (0) = 1

π

∫ π

−π

ϕ(τ) cos(kτ)dτ bk(0) = ϕbk (0) = 1

π

∫ π

−π

ϕ(τ) sin(kτ)dτ

In this special case we get, for every k ≥ 1, b(iv)
k + k2bk = 0 and b′′

k = −kak . As
a consequence the solution of b(iv)

k + k2bk = 0, bk(0) = ϕbk (0) takes the following
form:

bk = ϕbk (0) cosh(

√
2k

2
x) cos(

√
2k

2
x) + c2 cosh(

√
2k

2
x) sin(

√
2k

2
x)

+ c3 sinh(

√
2k

2
x) cos(

√
2k

2
x) + c4 sinh(

√
2k

2
) sin(

√
2k

2
x)

= cosh(

√
2k

2
x)

(
ϕbk (0) cos(

√
2k

2
x) + c2 sin(

√
2k

2
x)

)

+ sinh(

√
2k

2
x)

(
c3 cos(

√
2k

2
x) + c4 sin(

√
2k

2
x)

)
.

(51)

From b′′
k = −kak , ak(0) = ϕak (0) we get

bk = cosh(

√
2k

2
x)

(
ϕbk (0) cos(

√
2k

2
x) + c2 sin(

√
2k

2
x)

)

+ sinh(

√
2k

2
x)

(
c3 cos(

√
2k

2
x) − ϕak (0) sin(

√
2k

2
x)

) (52)

and
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ak = cosh(

√
2k

2
x)

(
ϕak (0) cos(

√
2k

2
x) + c2 sin(

√
2k

2
x)

)

+ sinh(

√
2k

2
x)

(
c3 cos(

√
2k

2
x) + ϕbk (0) sin(

√
2k

2
x)

)
.

(53)

While
a0(x) = c0x + ϕ0,

for some c0 ∈ R.

Then

a′
k(0) =

√
2k

2
(c2,k + c3,k), b′

k(0) =
√
2k

2
(c2,k + c3,k)

and

∂U

∂x
(0, t) = c0

2
+

∞∑

k=1

(a′
k(0) cos(kt) + b′

k(0) sin(kt))

= c0
2

+
√
2

2

∞∑

k=1

√
k(c2,k + c3,k) (cos(kt) + sin(kt))

= c0
2

+
√
2

2

∞∑

k=1

√
k(c2,k + c3,k)

(
cos(kt) + cos(kt − π

2
)
)

= c0
2

+ √
2

∞∑

k=1

√
k(c2,k + c3,k) cos(kt − π

4
) cos

π

4

= c0
2

+
∞∑

k=1

√
k(c2,k + c3,k) cos(kt − π

4
).

(54)

In this way we do not have the convergence of the Fourier solution, in general.
Thus from the fundamental system of solutions

{exp(
√
2k

2
x) cos(

√
2k

2
x), exp(

√
2k

2
x) sin(

√
2k

2
x),

exp(−
√
2k

2
x) cos(

√
2k

2
x), exp(−

√
2k

2
x) sin(

√
2k

2
x)}

(55)

we consider only the functions

{exp(−
√
2k

2
x) cos(

√
2k

2
x), exp(−

√
2k

2
x) sin(

√
2k

2
x)}.

Let us consider the following linear combination
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c1 exp(−
√
2k

2
x) cos(

√
2k

2
x) + c2 exp(−

√
2k

2
x) sin(

√
2k

2
x).

We impose that c1 = ϕbk , so that

bk = ϕbk exp(−
√
2k

2
x) cos(

√
2k

2
x) + c2 exp(−

√
2k

2
x) sin(

√
2k

2
x).

Moreover

b′
k =

√
2k

2
exp(−

√
2k

2
x)

(
(c2 − ϕbk ) cos(

√
2k

2
x) − (c2 + ϕbk ) sin(

√
2k

2
x)

)
.

and

b′′
k = −k exp(−

√
2k

2
x)

(
c2 cos(

√
2k

2
x) − ϕbk sin(

√
2k

2
x)

)
.

so that b′′
k = −ak if c2 = ϕak . Hence

ak = exp(−
√
2k

2
x)

(
ϕak cos(

√
2k

2
x) − ϕbk sin(

√
2k

2
x)

)

and

bk = exp(−
√
2k

2
x)

(
ϕbk cos(

√
2k

2
x) + ϕak sin(

√
2k

2
x)

)

satisfies the system.
In particular

a′
k = −

√
2k

2
exp(−

√
2k

2
x)

(
ϕak cos(

√
2k

2
x) − ϕbk sin(

√
2k

2
x)

)

+ exp(−
√
2k

2
x)

(
−

√
2k

2
ϕak sin(

√
2k

2
x) −

√
2k

2
ϕbk cos(

√
2k

2
x)

)

= −
√
2k

2
exp(−

√
2k

2
x)

(
(ϕak + ϕbk ) cos(

√
2k

2
x) + (ϕak − ϕbk ) sin(

√
2k

2
x)

)

(56)
and

b′
k =

√
2k

2
exp(−

√
2k

2
x)

(
(ϕak − ϕbk ) cos(

√
2k

2
x) − (ϕak + ϕbk ) sin(

√
2k

2
x)

)
.
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As a consequence

a′
k(0) = −

√
2k

2
(ϕak + ϕbk )

and

b′
k(0) =

√
2k

2
(ϕak − ϕbk ).

∂U

∂x
(0, t) = c0

2
+

∞∑

k=1

(a′
k(0) cos(kt) + b′

k(0) sin(kt))

= c0
2

−
√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk )) cos(kt) − (ϕak − ϕbk ) sin(kt)

)
.

(57)

Moreover now ψak (0) = −√
k

√
2
2 (ϕak + ϕbk ) and ψbk (0) = √

k
√
2
2 (ϕak − ϕbk )

∂

∂x

∂U

∂x
(0, t) = −

√
2

2

∞∑

k=1

√
k

(
(ψak + ψbk ) cos(kt) − (ψak − ψbk ) sin(kt)

)

= −1

2

∞∑

k=1

k
(
(−(ϕak + ϕbk ) + (ϕak − ϕbk )) cos(kt) − (ψak − ψbk ) sin(kt)

)

= −1

2

∞∑

k=1

k
(−2ϕbk cos(kt) − (−(ϕak + ϕbk ) − (ϕak − ϕbk )) sin(kt)

)

= −1

2

∞∑

k=1

k
(−2ϕbk cos(kt) + 2ϕak sin(kt)

)

=
∞∑

k=1

k
(
ϕbk cos(kt) − ϕak sin(kt)

) = ∂U

∂x
(0, t).

From (57) it follows that, fixing c0 = 0, we can define

d
1
2 ϕ

d
1
2 t

(t) = −
√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk )) cos(kt) − (ϕak − ϕbk ) sin(kt)

)
. (58)

as the representative of a class of functions [ d
1
2 ϕ

dt
1
2
] such that for every η ∈ [ d

1
2 ϕ

dt
1
2
] then

η − d
1
2 ϕ

dt
1
2

is constant.
Moreover for every c0 ∈ R, the operator Uc0 acts on ϕ as it follows
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c0x + ϕ0

2
+

∞∑

k=1

(ak(x) cos(kt) + bk(x) sin(kt)) (59)

that is

Uc0(ϕ) := Uc0 ≡ c0x + ϕ0

2
+

∞∑

k=1

(ak(x) cos(kt) + bk(x) sin(kt))

is a solution of the extension problem and since

∂Uc0

∂x
(0, t) = c0

2
−

√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk )) cos(kt) − (ϕak − ϕbk ) sin(kt)

)

we define

T1/2,c0(ϕ) = c0
2

−
√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk )) cos(kt) − (ϕak − ϕbk ) sin(kt)

)
.

In case c0 	= 0, then applying the operator T1/2,c1 to T1/2,c0(ϕ), after a further exten-
sion where we generate a new operator Uc1 associated with the constant c1 ∈ R , we
get

T1/2,c1T1/2,c0(ϕ) = c1
2

−
√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk )) cos(kt) − (ϕak − ϕbk ) sin(kt)

)

= c1
2

+
∞∑

k=1

k
(
ϕbk cos(kt) − ϕak sin(kt)

) = c1
2

+ dϕ

dt
(t),

(60)
because

−
√
2

2

√
k

(
−√

k

√
2

2
(ϕak + ϕbk ) + √

k

√
2

2
(ϕak − ϕbk )

)

= kϕbk

(61)

and √
2

2

√
k

(
−√

k

√
2

2
(ϕak + ϕbk ) − √

k

√
2

2
(ϕak − ϕbk )

)

= −kϕak

(62)

and

φ′(t) =
∞∑

k=1

(−kak(x) sin(kt) + kbk(x) cos(kt)) =
∞∑

k=1

(kbk(x) cos(kt) − kak(x) sin(kt))
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We remark that if

f = d
1
2 ϕ

dt
1
2

(t) = −
√
2

2

∞∑

k=1

√
k

(
(ϕak + ϕbk ) cos(kt) − (ϕak − ϕbk ) sin(kt)

)
,

then

|| f ||2L2 = π

2

∞∑

k=1

k
(
(ϕak + ϕbk )

2 + (ϕak − ϕbk )
2
) = π

∞∑

k=1

k
(
ϕ2
ak + ϕ2

bk

)
.

Thus if ϕ0 = 0, then

||ϕ||2L2(−π,π) ≤ π

∞∑

k=1

k
(
ϕ2
ak + ϕ2

bk

) = π ||d
1
2 ϕ

dt
1
2

||2L2(−π,π). (63)

That is we have proved the following Poincaré inequality:

||ϕ − ϕ0

2
||2L2(−π,π) ≤ π ||d

1
2 ϕ

dt
1
2

||2L2(−π,π). (64)

4.2 General Case with Bessel Functions: A Short Remark

Let

a′′
0 + a′

0
1 − 2s

x
= 0, x ∈ (0, L)

and for every k ∈ N, k ≥ 1

{
b′′
k + 1−2s

x b′
k = −kak, x ∈ (0, L)

a′′
k + 1−2s

x a′
k = kbk x ∈ (0, L)

(65)

It is convenient to consider the following differential equation in C

d2wk

dx2
+ 1 − 2s

x

dwk

dx
+ ikw = 0, (66)

where k ∈ N. Indeed �w and �w satisfy the following system

{�w′′
k + 1−2s

x �w′
k = −k�wk,

�w′′
k + 1−2s

x �w′
k = k�wk

(67)

Then, see [44] Sect. 3.5, p. 77, a solution of previous Eq. (66) is given by
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wk = xs Zs(

√
k

2
(1 + i)x),

or also

wk = xs Zs(−
√
k

2
(1 + i)x),

where Zν is an arbitrary solution of Bessel’s differential equation:

z2
d2wk

dz2
+ z

dwk

dz
+ (z2 − ν2)w = 0. (68)

Then solving the problem we get

Uk(x, t) = φak

(L − x)s Zs(

√
k
2 (1 + i)(L − x))

Ls Zs(

√
k
2 (1 + i)L)

e−ikt .

Using this functions we may expect to obtain inequalities for α ∈ (0, 1) analogous
to (64) obtained for α = 1

2 .
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The Pearcey Equation: From the Salpeter
Relativistic Equation to Quasiparticles

A. Lattanzi

Abstract This work presents the Pearcey equation, a quasi-relativistic wave equa-
tion for spinless particles with non-zero rest mass. This equation was introduced as
a mathematical tool to address the problem of nonlocality concerning the pseudo-
differential operator in the Hamiltonian of the Salpeter equation. The Pearcey equa-
tion can be considered as a way to relativity since it embeds the peculiar features of
the relativistic evolution even if it looks very similar to the Schrödinger equation.
In light of the catastrophe theory, the Pearcey equation acquires a deeper physical
meaning as a candidate for describing quasiparticles.

Keywords Pearcey equation · Quasiparticles · Relativistic equation · Catastrophe
theory

1 The Salpeter Equation: An Historical Review
from Classical to Quantum Mechanics

At the end of the 19th century, physicists believed that Newton’s laws of mechanics
and Maxwell’s electromagnetic theory provided the necessary foundations for the
understanding of almost all physical phenomena. It was well known that Newton’s
laws explained the dynamics of matter from heavenly bodies down to falling apples
while Maxwell’s four equations correctly described the character of radiation not
only by the unification of electrical and magnetic phenomena but also by laying the
foundations of the study of light [1–4].

Distinguished examples of the effectiveness of the “classical” interpretativemodel
based on Newton’s laws and Maxwell’s equations, were the discovery of the planet
Neptune, made in 1846 by the astronomer Galle using the calculations of Leverrier,
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and the discovery of electromagnetic waves by Hertz in 1886 supporting the theoret-
ical predictions by Maxwell in 1873. These outstanding experimental confirmations
led physicists to believe that they had reached the end of physics.

In the wake of this optimism, they began to erect Newton’s laws and Maxwell’s
equations as pillars of Hercules in order to mark the confines of Physics. In fact,
they thought that the few remaining unanswered questions could be solved in the
well-understood framework of that time.

The words of Albert A. Michelson [5] could summarize the optimistic spirit of
the physicists at the end of the XIX century:
“The more important fundamental laws and facts of physical science have all been
discovered, and these are now so firmly established that the possibility of their ever
being supplanted in consequence of new discoveries is exceedingly remote”.

The revolution, which upset Physics at the beginning of the XX century, was
carried by the theory of special relativity and by quantum wave mechanics.

In 1926, Schrödinger introduced a partial differential equation [6], the so-called
free-Schrödinger equation, which describes the de Broglie’s “matter waves” [7] inau-
gurating the quantum wave mechanics.

As Felix Bloch recollected, Erwin Schrödinger claimed with satisfaction: “My
colleague Debye suggested that one should have a wave equation; well I have found
one!” [8] whose expression in (1 + 1) dimensions reads

i�∂t�(x, t) = − �
2

2m
∂2
x�(x, t). (1)

In the above equation, the initial condition is denoted with�(x, 0) = �0(x), � = h
2π

is the reduced Planck constant and m is the (rest) mass of the particle.

The Schrödinger equation was very successful in describing the known energy
levels of the hydrogen atom. It has been highly successful in describing the absorption
or emission of radiation where an atom undergoes the transition from one energy
state to another. The frequency of the emitted radiation follows the Bohr radiation
condition �ν = E f − Ei . But contrary to what Bohr did, Schrödinger did not have
to impose quantization because this flowed naturally from the boundary conditions
imposed on the solutions of his equation.

In general, the solution to the Schrödinger equation describes the dynamical
behaviour of the particle in quantum mechanics, in a similar way as Newton’s equa-
tion describes the dynamics of a particle in classical physics. However, there is an
important difference: the wave function� does not give the trajectory of a particle as
Newton’s law does. Therefore physicists asked themselves what type of information
� gives. The answer was given by Max Born: the square-modulus of � gives the
probability to find the particle in a region of space at a given time. The probabilistic
statement replaces the deterministic statement of classical physics and from then on,
our concept of physical reality has changed.
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Einstein was among many who objected to this vision, suggesting that quantum
theory was incomplete. He explained his point of view in a letter to P. S. Epstein:
“I incline to the opinion that the wave function does not (completely) describe what
is real, but only a (to us) empirically accessible maximal knowledge regarding that
which really exists [...]. That is what I mean when I advance the view that quantum
mechanics gives an incomplete description of the real state of affairs...” [9].

Einstein’s opposition was overcome thanks to the great power of prediction that
the established theory of quantum mechanics had shown in explaining experiments
conducted during the last century.

These experimental confirmations pushed scientists to accept the principles and
postulates of quantum mechanics, although the question of what there is beyond the
experiments, remains an open question. Bohr offered consolation stating that: “There
is no quantum world. There is only an abstract quantum physical description. It is
wrong to think that the task of physics is to find out how Nature is. Physics concerns
what we can say about Nature” [10].

In the attempt to unify special relativity and quantum wave mechanics the spin-
less Salpeter equation was introduced to generalize the Schrödinger equation in the
context of relativistic quantum mechanics [11–13].

Without loss of generality, limiting ourselves to consider the initial value problem
in (1+1) dimensions, the spinless Salpeter equation is

i�∂t ψ(x, t) =
√
m2c4 − c2�2

∂2

∂x2
ψ(x, t),

ψ(x, 0) = ψ0(x),

(2)

whereψ(x, 0) = ψ0(x) denotes the initial condition, c is the speed of light in vacuum
and m the mass of the particle.
As shown in [14–19], the solution of the initial value problem of the spinless Salpeter
equation in coordinate space is given by

ψ(x, t) =
∫ +∞

−∞
S(x − x ′, t)ψ0(x

′)dx ′

= mc2t

π�

∫ +∞

−∞

K1

(
imc
�

√
c2t2 − (x − x ′)2

)
√
c2t2 − (x − x ′)2

ψ0(x
′)dx ′, (3)

where K1 is the modified Bessel function of the second kind of first order, also well
known as McDonald function [20].

The spinless Salpeter equation (2) is different from the Klein-Gordon [21] equa-
tion, since it is a first-order in the time derivative, whichwouldmake itmore similar to
the Dirac equation [22]. The difference between the two is that the spinless Salpeter
equation preserves the scalar nature of the wave function and it does not present
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problems of probabilistic interpretation at quantum level: it only possesses positive
energy solutions.
Moreover, the spinless Salpeter equation, differently from the Dirac equation, has a
well-defined classical relativistic counterpart.

Although the Salpeter equation is a relativistic version of the Schrödinger equa-
tion, it has only recently stimulated the interest of the scientific community [14–19,
23–28]. This is definitely because of the mathematical complexity concerning its non
local nature carried by the pseudo-differential Hamiltonian operator in (3).
However, the non locality does not disturb the light cone structure as it was analyti-
cally and numerically proven in [14–16] but makes it difficult to obtain rigorous ana-
lytical statements about the time-dependent and stationary solutions of the equation.
Another difficulty arises from the fact that the equation is not a covariant equation
as it should be according to the special relativity principles.

However, it has been proven that the Hilbert space of its solutions is invariant
under the Lorentz-group of transformations [29].
To conclude, the Salpeter equation makes it possible to have a quantum relativistic
description which does not conflict with the principles of the special relativity, even if
it is a non-local and non-covariant equation: it iswidely used in the phenomenological
description of the quark-antiquark-gluon systems as a hadron model [30, 31] and it
is as good as the Klein-Gordon equation in describing the experimental spectrum of
mesonic atoms [32].

From the analysis of the Salpeter equation, a new wave-like equation, the Pearcey
equation has been introduced in [14–19] in order to probe the onset of the relativistic
features. This equation was introduced as an alternative way to deal with the problem
of nonlocality in relativistic quantum mechanics.

It allowed to test the correctness of the results obtained for the Salpeter equation in
the analysis of its solutions and the Lie-point symmetries establishing a link between
two theories: the classical quantum wave mechanics and the relativistic quantum
wave mechanics.

The aim of this work is to present the Pearcey equation in the context of quasi-
relativistic physics. The parallelismwith optics and with the catastrophe theory gives
a deeper physical meaning to the Pearcey equation and its solutions. In particular,
the Pearcey equation can be a candidate to describe quasiparticles.

The rest of the paper is organized as follows. Section1 introduces the Pearcey
equation, a new partial evolution equation first order in time.
Section3 analyzes the behaviour of a Lorentzian wave-packet in order to add another
example of evolution ruled by the Pearcey equationwith respect to the ones presented
in the previous papers on the subject [14–19]. Section4 is devoted to the role of
catastrophe theory in the light-cone structure of the solution of the Pearcey equation
and of the Salpeter equation.
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2 The Pearcey Equation

In the Introduction, we emphasized the important role played by the Schrödinger
equation in non-relativistic quantummechanics [1–3] and the corresponding remark-
able role played by the Salpeter equation as a counterpart of the Schrödinger equation
within the framework of the relativistic quantum mechanics.
Since the specific features of the solutions of the Schrödinger equation are definitely
different from those of the Salpeter equation, as emerged from the numerical and
asymptotic analysis developed in [14–16], it is within reason to ponder about the
existence of a third theory that could bridge the two approaches, emerging as an
asymptotic limit between the classical and the relativistic quantum mechanics.
This third possibility can be named quasi-relativistic.

In order to define the dynamic evolution of a quasi-relativistic quantum system,
the first step to consider is the series expansion of the relativistic energy-momentum
relation for a freely moving particle

E =
√
m2c4 + p2c2, (4)

where m and p denote respectively the rest mass and the momentum of the particle
and c is the speed of light in vacuo.

The first correction of the Schrödinger equation is given by stopping the series
expansion of (4) with respect to p

mc at the fourth order, namely

E = mc2
[
1 + 1

2

( p

mc

)2 − 1

8

( p

mc

)4]
. (5)

By the standard quantization rules

E → i�
∂

∂t
x → x p → −i�

∂

∂x

consistent with the Newton-Wigner localization scheme, we get the (1+1)D Pearcey
equation

i�
∂ψ̃(p, t)

∂t
= mc2

[
1 + 1

2

( p

mc

)2 − 1

8

( p

mc

)4]
ψ̃(p, t), (6)

which in coordinate representation reads

i�
∂ψ(x, t)

∂t
= mc2

[
1 − �

2

2m2c2
∂2

∂x2
− �

4

8m4c4
∂4

∂x4

]
ψ(x, t). (7)

The Pearcey equation (7) is an evolution equation in time and thus, it requires the
knowledge of the initial conditionψ(x, 0) = ψ0(x) to fix the dynamics of the system.

In order to define the solution of the Pearcey equation (7), we resort to one of the
most applied techniques: the Fourier transform method.
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Following the Fourier-transformed procedure, the general solution of (7) is

ψ(x, t) = e− i t
�
mc2

√
2π�

∫ +∞

−∞
e

i
�
mc2

(
t
8 p

4− t
2 p

2+p·x
)
ψ̃0(p)dp. (8)

To simplify the analysis of the equation and to facilitate the parallelism between
optics and quantum mechanics, we introduce the dimensionless variables ξ and τ ,
expressed in term of the reduced Compton wavelength λC :

ξ = x

λC
, τ = ct

λC
, κ = p

mc
(9)

so that (6) becomes:

i
∂ψ̃(κ, τ )

∂τ
=

[
1 + 1

2
κ2 − 1

8
κ4

]
ψ̃(κ, τ ). (10)

Fixing the initial condition equals to a Dirac delta function, ψ0(ξ) = δ(ξ), the above
equation yields the response of the system to an impulse, i.e.

S(ξ, τ ) = e−iτ

2π

∫ +∞

−∞
ei

(
τ
8 κ4− τ

2 κ2+κ·ξ
)
dκ. (11)

S(ξ, τ ) represents the fundamental solution of (10), and hence also the kernel of the
transformationwhich encodes also the reason behind the choice of the name: Pearcey
equation. The integral S(ξ, τ ) is known in optics and in particular in catastrophe
theory as the Pearcey function (see Sect. 4 and reference therein for further details).
The Pearcey function is defined in [33–35] by

P(x, y) =
∫ +∞

−∞
ei(s

4+xs2+ys)ds, (12)

where x , y may be in general complex numbers and s is the integration variable.

The analogy can be clearly appreciated by making a comparison between the
contourplots of the Pearcey function in Fig. 1a and the fundamental solution of the
Pearcey equation in Fig. 1b where the peculiar caustic-like structure conveyed by
“isolated spots” can be still recognized.
The “isolated spots” in Fig. 1 seem to resemble the uniformly distributed granularity,
which is also present in the contourplot of the fundamental solution of the Salpeter
equation [14, 15], the distinctive pattern of the relativistic behaviour.
The symmetric distribution of the spots positioned at the intersections of the parallels
to the edges of the light cone is due to the homogeneity of the spacetime and, when
the first and the second order coupling interactions are involved [15], it is resembling
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Fig. 1 A comparison between the (ξ, τ )-contourplots of the squared modulus of the Pearcey func-
tion |P(ξ, τ )|2 (a) and the squared modulus of the fundamental solution of the Pearcey equation
|ψ(ξ, τ )|2 (b)
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the discrete-like diffraction patterns arising from the impulse response (i.e. single
state excitation) in periodic photonic lattices.

3 Evolution of the Lorentzian Wave Packet

The wave function arising from an initial Lorentzian function manifests an interest-
ing behavior from the optical point of view, i.e. the Lorentz beams [36].
The Lorentz beam, based on experimental observations, is suitable to model the radi-
ation emitted by single-mode diode laser [37–39].

So, as a further example in the collection of results presented for the Pearcey
equation in [14–18], we can consider as initial wave function a Lorentzian defined
as

ψ L
0 (ξ) = 1

π

w

(ξ 2 + w2)
, w > 0, (13)

and normalized such that limξ→0 ψ L
0 (ξ) = δ(ξ).

The evolution of the Lorentzian initial input (13) ruled by the Peaecey equation reads

ψ L(ξ, τ ) = 1

2π

∫ +∞

−∞
e

iτ
8 κ4−i τ

2 κ2+iκξe−w|κ|dκ =

= 1

2π

{∫ +∞

0
ei

τ
8 κ4−i τ

2 κ2+iκ(ξ+iw)dκ +
∫ +∞

0
ei

τ
8 κ4−i τ

2 κ2−iκ(ξ−iw)dκ
}
.

Here, the parameter w determines the “height” of the curve, being ψ L
0 (0) = 1

wπ
, the

width at the half maximum is ψ L
0 (±w) = 1

2πw = 1
2ψ

L
0 (0), and the variances of the

function in both the spaces are σ 2
ξ = w2 and σ 2

κ = 1
2w2 , yielding σξσκ = 1√

2
.

Just like ψ L(ξ, τ ), the integrals entering the above expression can be put in relation
with the Pearcey function but with the integral extending from 0 to ∞, i.e. with what
is reported in the literature as the half-Pearcey function P1

2
(x, y) [40, 41].

The (ξ, τ )-contour plots of the squared modulus of ψ L are shown in the Fig. 2 for
some value of w which rules the width of the Lorentzian.

As for the Gaussian initial input, the isolated spots of the fundamental function,
roughly comprised within a V -like contour, dominates the evolution for small w-
values.
Thewave function behavesmuch like the fundamental solution S(ξ, τ ).With increas-
ingw, as it is evident from Fig. 2d, the spots tend to be “absorbed” in a more compact
structure, as observed in Fig. 3 for the Lorentzian input under the Salpeter evolution.
As w further increases, the solutions displays a hybrid relativistic-non relativistic
behaviour.
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Fig. 2 (ξ, τ )-contourplot of the squared modulus of the Pearcey function |ψ L (ξ, τ )|2 for a
Lorentzian initial input with w = 0.01, w = 0.5, w = 1 and w = 2 in a, b, c and d respectively

4 Quantum Caustics and Light-Cone Structure: The Onset
of Granularity in the Nature of the Light-Cone Structure

The catastrophe theory is a framework originated by the French mathematician René
Thom in the 1960s [42]; it deals with the modeling of the so-called catastrophes
which are discontinuous transitions and even sudden changes caused by smooth
variations of the control parameters (or variables) involved in the system. Among all
the catastrophes, there are seven types called elementary since they have a depen-
dency only on a few parameters.
This classification shows a hierarchical structure where the elementary catastrophes
of higher order contain the lower order ones. The lowest catastrophe is called fold
and it occurs when, given one control parameter and a single state variable, the gra-
dient of the mapping vanishes. The next higher order catastrophe is the cusp and it
is originated exactly in the point where two fold lines meet [43]. Other higher order
catastrophes can be generated in the same hierarchical way: the intersection of two
cusp lines results in a swallowtail, and so on.
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Fig. 3 (ξ, τ )-contourplot of the squared modulus of the fundamental solution of the Salpeter equa-
tion |ψ L

Salpeter (ξ, τ )|2 for a Lorentzian initial input with w = 0.01, w = 0.5, w = 1 and w = 2 in
a, b, c and d respectively

Table1 collects the descriptions and formulas of all the seven elementary catastrophes
as listed in [42].

In catastrophe theory, the wave function φ, also known as diffraction integral or
caustic beam, is an essential tool in the description of a variety of diffraction phenom-
ena. These seven catastrophes share the same general formula for their diffraction
integrals

φ(v) =
∫ +∞

−∞
ei F(s,v)ds, (14)

where the function F is one of the generating functions listed in Table1 depend-
ing on the state variable vector s = (s, t) and on the vector v = (x, y, z,w) whose
components are the control parameters. Each generating function defines a specific
diffraction integral.
Replacing the cusp generating function (see Table1) in (14), we get the Pearcey
function (12) as defined in Sect. 2, displayed below for the reader’s convenience:
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Table 1 Classification of the SevenElementaryCatastrophes. The co-rank is the number of the state
variables involved: s and t , whereas the control variables x , y, z and w are independent parameters
that influence the state of the system. The codimension is a measure of the function’s degeneracy
removed by the generating functions. The generating function gives the universal unfolding of the
corresponding singularity

Catastrophe Co-rank Control variables Codimension Potential
functions

Fold 1 1 1 s3 + xs

Cusp 1 2 2 s4 + xs2 + ys

Swallowtail 1 3 3 s5 + xs3 +
ys2 + zs

Butterfly 1 4 4 s6 + xs4 +
ys3 + zs2 + ws

Hyperbolic
umbilic

2 3 3 s3 + t3 + xst +
ys + zt

Elliptic umbilic 2 3 3 s3 − st2 +
x(s2 + t2) +
ys + zt

Parabolic umbilic 2 4 4 s2t + t4 + xs2 +
yt2 + zs + wt

P(x, y) =
∫ +∞

−∞
ei(s

4+xs2+ys)ds. (15)

Considering the similarity between Fig. 1a, b, there should be also a mathematical
correspondence between the Pearcey function and the fundamental solution of the
Pearcey equation. This correspondence can be unveiled by changing the variable in
the fundamental solution of the Pearcey equation (11) according to the following
formula

κ = s
(8
τ

) 1
4
. (16)

After changing the variable (16), the fundamental solution of the Pearcey equation
can be written in terms of the Pearcey function:

S(ξ, τ ) = 1

π(2τ)
1
4

∫ +∞

−∞
e
i

[
s4−√

2τ s2+
(

8
τ

) 1
4

ξs

]
ds

= e−iτ

π(2τ)
1
4

P
( − √

2τ , (
8

τ
)
1
4 ξ

)
,

(17)

allowing to interpret the fundamental solution as a caustic-like beam.
Equation (17) extends the analogy between optics and classical mechanics which
characterizes the solutions of the Schrödinger equation and the paraxial wave equa-
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tion to a quasi-relativistic framework [18].
The term quasi-relativistic denotes what happens in the gray region between the
classical and the relativistic quantum theories. It is an appropriate definition since
the solutions of the Pearcey equation recall the relativistic ones ruled by the Salpeter,
although the former contains only one more term compared to the Schrödinger equa-
tion, that is the first relativistic correction to the kinetic energy.
Among all the peculiar features, the most relevant one is the presence of a light-cone
structure. The more terms are considered in the series expansion of the relativistic
energy-momentum relation (4), the more the kernel of the corresponding evolution
equation tends to the Salpeter one and consequently the corresponding light-cone
structure starts to visibly emerge.
Addingmore terms in theHamiltonian of the Pearcey function—namely, considering
higher orders of the series expansion of the Salpeter Hamiltonian—other equations
can be introduced in quasi-relativistic physics as for example the butterfly equation
whose partial differential equation in the momentum space reads

i�
∂ψ̃(p, t)

∂t
= mc2

[
1 + 1

2

( p

mc

)2 − 1

8

( p

mc

)4 + 1

16

( p

mc

)6]
ψ̃(p, t), (18)

and in coordinate representation is

i�
∂ψ(x, t)

∂t
= mc2

[
1 − �

2

2m2c2
∂2

∂x2
− �

4

8m4c4
∂4

∂x4
− �

6

16m6c6
∂6

∂x6

]
ψ(x, t). (19)

This process for building up quasi-relativistic wave equations, based on the series
expansion of the square root operator in the Hamiltonian of the Salpeter equation,
allows to probe the relativistic onset in the solutions, overcoming the difficulties
related to the presence of the square root. The Hamiltonians in the evolution equa-
tions generated by the series expansion seem to show a hierarchical structure quite
similar to the one illustrated for the diffraction generating functions in the catastrophe
theory [44].

Each higher order Hamiltonian embeds the previous smaller order one as it can
be easily deduced comparing the Pearcey equation (7) with the butterfly equation
(19). This hierarchical organization can be extended asymptotically until it naturally
reaches the fundamental solution of the Salpeter equation which can be interpreted
as the highest order diffraction integral function or caustic beam embedding the
entire hierarchy of the light-cones structures, that can now be considered as caustics.
This mathematical consideration has a relevant physical consequence: the Pearcey
equation can be a candidate to describe quasiparticles.

Quasiparticle is a key concept that provides an intuitive understanding of complex
phenomena in many-body physics [45]: it is a collective state of many particles, an
elementary excitation or even a bound state of a pair of particles that has an energy-
momentum relationship like a particle. An example borrowed from superconductors
is the Cooper pair [46]. In a Cooper pair, the electrons can form a bound state with
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opposite momenta and opposite spin. So, they can be defined in terms of a standard
s-wave or a spin-0 object.

To support this idea, the light-cone structure should be related to an intrinsic
velocity limit. The observed light-cone hides the presence of such a limit on the
velocity of the particles and for this the Pearcey equation is a candidate for describing
particles in quasi-relativistic framework. It is important to verify the caustic nature
of the light-cone since this condition is a key notion for introducing the limit on the
velocity for the particles.

Previously, it has been shown that the fundamental solutionof thePearcey equation
is a caustic beam and all the probability density can be embedded by a couple of
caustics forming a first attempt of a light-cone. In order to have further confirmations,
let us consider the result shown in [44, 47] where the caustic nature of the light-cone
can be mathematically appreciated considering the following couple of equations

dF

ds
= 0

d2F

ds2
= 0,

(20)

defining the necessary condition to have caustics as the edges of the light-cone.
In [44], the conditions (20) can be replaced by the so-called Lieb-Robinson (LR)

maximal group velocity. The LR velocity [48] is a theoretical upper limit on the
speed at which information can propagate: information cannot travel instantaneously
in quantum theory, even when the relativity limits of the speed of light do not play a
central role.

This velocity is finally associated with quasiparticles that were previously excited
by a quench and then freely propagated in the sample [44, 49]:

vLR = maxk |dεk

dk
|, (21)

where εk is the dispersion relation for a quasiparticle in function of the quasimomen-
tum k.

This result confirms that the Pearcey equation can bridge the Schrödinger equation
and the relativistic spinless Salpeter equation, since it shows the rising of the light-
cone structure and therefore it unveils the intrinsic velocity limit. In this scenario, the
connection between optics and quantummechanics, remarked by the formal analogy
between the Schrödinger equation and the paraxial wave equation, is strengthened
and it is extended to the quasi-relativistic physics.

Another interesting feature emerged in the analysis of the fundamental solution
of the Pearcey equation (but also in the Salpeter equation) is the granularity of the
edges in the light-cone structure which is still present whereas the spot-like pattern
in the central part of the light-cone tends to disappear when higher order terms in the
Hamiltonian are considered.
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This nests the idea that spots along the edges have a different origin from the
spots inside the light-cone in the fundamental solution of the Pearcey equation. The
strategy consists into focusing our attention not on the “colored” spots, i.e. where the
probability to find the particle or the intensity is greater, but on the darkest regions
in Fig. 1, which are usually called vortices in the optical catastrophe theory [44].

An optical vortex corresponds to a zero in the optical field, so it explains why it
can be found in the darkest region between the spots in the contourplot of Fig. 1. The
appearance of these vortices in the fundamental solution of the Pearcey equation can
be explained considering the relation with the Pearcey caustic beam, whose complex
nature is at the origin of the vortices.

As observed in [44], it is possible to distinguish the darkest regions or vortices in
two “groups” forming a fine structure in the diffraction integrals. The reason behind
the vortices classification is their positions in the light-cone structure. In fact there
is a network of vortex-antivortex pair inside it and single rows of vortices lining the
outer edges.

The procedure to find these vortices in a continuum approach, consists in covering
the plane with loops around which we integrate the phase of the Pearcey function.
This interpretation is intriguing and it perfectly matches the result obtained in [14–
19] concerning the fundamental solution of the Pearcey and the Salpeter equations.
The singularity on the edges of the light-cone structure shows a discontinuity by eiπ

which generates the peculiar granularity in the relativistic behaviour.
In conclusion, the Pearcey equation, introduced from the series expansion of the

Hamiltonian in the spinless Salpeter equation, seems to be a perfect candidate for
describing spinless quasiparticles in the quasi-relativistic framework.
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Recent Developments on Fractional Point
Processes

Aditya Maheshwari and Reetendra Singh

Abstract In the last two decades, the theoretical advancement of the point processes
witnessed an important and deep interconnection with the fractional calculus. It was
also found that the stable subordinator plays a vital role in this connection. The survey
intends to present recent results on the fractional versions of point processes. We will
also discuss generalization attempted by several authors in this direction. Finally, we
present some plots and simulations of the well-known fractional Poisson process of
Laskin (2003).

Keywords Poisson process · Levy subordinator · Fractional point processes

1 Introduction

The classical integer-ordered calculus is the most famous tool to model physical phe-
nomena since last 400 years. Their applications, meaning, usefulness and simplicity
led to its widespread acceptability in the scientific and the technological domains.
Although the fractional order calculus, which have equally old origins, does not find
a place for acceptability of the scientific community at large. It is only from the
last four decades, the ideas of fractional calculus started to get some attention of
researchers. The usefulness and applications of the fractional calculus in the science
and technology are now started to gain attention. Sun et al. [70] presented an excellent
modern review of applications for the fractional calculus in science and engineering.
It provides a case for interested audience to ‘try out’ models based on non-integer
ordered calculus.

The fractional calculus has also found its way in connection to stochastic pro-
cesses. The stochastic models like fractional Brownian motion and anomalous dif-
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fusions are some important examples for the same. In this review, we will explore
the interconnection of fractional calculus and point processes. The interlinking of
the fractional calculus and the Poisson process was first established by Laskin [44].
Later on, a rich development in this field has taken place. We first try to collect a
(non-exhaustive) list of the advantages of fractional-ordered calculus based stochas-
tic models.

(a) Power-law decay: The classical stochastic models are based on exponential
decay of density functions, however in applications (see [31, 32, 64, 66]) power
law based distribution are useful.

(b) Long memory: The observations in nature, for example errors in astronomical
observations, water level of rivers, yearly tree ring measurements (see [12]),
exhibits dependence over long time scale. The popular assumption of indepen-
dencemay not be the best way to study the dependence ormemory in some cases.
The fractional calculus based stochastic process helps inmodelling phenomenon
with long memory (see [29, 76]).

(c) Heavy-tailed distributions: The standard diffusion models are light-tailed dis-
tribution while some application are more suited for heavy-tailed distributions
(see [13, 43, 45]). The fractional stochasticmodels allow us to study heavy tailed
distributions.

(d) Fractional-order controls: The classical models do not have flexibility to adjust
the order of differentiation or integration while fractional-order derivatives or
integrals allow great flexibility to adjust the model to tune it with the data (see
[23, 40, 53, 54]).

(e) Self-similarity: It is known that the fractional Brownian motion has the self
similar property. This property is widely applied for studying fractals and have a
connection with fractional calculus and special functions. The real-life applica-
tions self similarity are found in studying the properties of signal transmission
(see [59, 60]).

With these advantages and applications in real-life, the study of fractional calculus
inspired stochastic processes becomes an interesting exercise for both theoretical
and applied researchers. Last two decades witnessed considerable advancement in
theoretical research about fractional point processes.We here survey some important
result chalking out the journey of evolution of the fractional stochastic processes.
The article aims to provide a big picture of the field and authors tried to discuss the
developments to the best of their knowledge.

In this review,wewill survey results about the fractional point processes. InSect. 2,
we provide introduction to the fractional Poisson processes. In Sect. 3, we collect
the results which interconnect the fractional derivatives with the Lévy processes.
Section4 contains some more results about fractional point processes. In Sect. 5, we
provide plots and sample paths of the fractional Poisson process.
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2 Fractional Poisson Process

In this section, we focus our attention to the relation between the fractional calculus
and the Poisson process. The fractional Poisson process (FPP) was first introduced
and studied by Laskin [44], he defined it by generalizing the governing difference-
differential equation of the Poisson process. We summarize his approach below.

Define {N (t)}t≥0 to be the Poisson process with rate parameter λ > 0. It is known
that the probability mass function (pmf ) p(n, t) = P[N (t) = n] of the Poisson pro-
cess solves the following difference-differential equation

d

dt
p(n, t) = −λ [p(n, t) − p(n − 1, t)] ,

with p(n, 0) = 1 if n = 0 and is zero if n ≥ 1. Laskin [44] proposed a fractional
generalization of Poisson process by replacing the derivative on the left-hand side
with the fractional derivative and called it as the fractional Poisson process, denoted
by {Nβ(t)}t≥0. Its pmf

pβ(n, t) = P[Nβ(t) = n]

happens to solve the following difference-differential equation

Dβ
t pβ(n, t) = −λ

[
pβ(n, t) − pβ(n − 1, t)

]
, 0 < β ≤ 1,

with pβ(n, 0) = 0 if n = 0 and is zero if n ≥ 1. Here Dβ
t denotes the Dzhrbashyan-

Caputo fractional derivative which is defined below.
Let f (t) be absolutely continuous function on [0, T ], then the (left-hand)

Dzhrbashyan-Caputo fractional derivative of f (see [37, Theorem2.1]) is defined
by (with D0

t f = f )

Dβ
t f (t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

�(1 − β)

∫ t

0

f ′(s)
(t − s)β

ds, 0 < β < 1,

d

dt
f (t), β = 1.

(1)

Note that

Dβ
t u = ∂

β
t u − u(0+)

t−β

�(1 − β)

is the Dzhrbashyan-Caputo fractional derivative and

∂α
z u = ∂αu

∂zα
= 1

�(1 − α)

∂

∂z

∫ z

0

u(s) ds

(z − s)α

is the Riemann-Liouville fractional derivative.
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The idea of fractional Poisson distribution was first conceived by Repin and
Saichev [65]. In their work, they have considered a Poisson process with random
intensity for which the distribution of intervals between jumps was described by an
equation with fractional derivatives. Similar ideas can also be attributed to Jumarie
[33].

Mainardi et al. [52] used renewal process approach to define the fractional Poisson
process and it turns out the both this approach also leads to the same process defined
above. The renewal process approach is explained as follows.

It is known that the Poisson process is a renewal process with independent and
identically distributed (iid) inter-arrival times J1, J2, . . . , Jn with Ji ∼ Exp(λ), λ >

0, 1 ≤ i ≤ n. Then
N (t) = max{n ≥ 0 : Sn ≤ t}, t ≥ 0,

where Sn = J1 + J2 + · · · + Jn , is the Poisson process with rate parameter λ > 0.
Consider now θi , 1 ≤ i ≤ n, follows iid Mittag-Leffler distribution, that is, P[θi >

t] = Lβ(−λtβ), 0 < β < 1, where Lβ(z) is the Mittag-Leffler function defined as
(see [22])

Lα(z) =
∞∑

k=0

zk

�(1 + αk)
, α, z ∈ C and Re(α) > 0. (2)

Then the Mittag-Leffler renewal process (see[52])

Nβ(t) = max{n ≥ 0 : S̃n ≤ t}, t ≥ 0, 0 < β < 1,

where S̃n = θ1 + · · · + θn , is the FPP with fractional index β. The pmf pβ(n, t) =
P[Nβ(t) = n] of the FPP is given by (see [44])

pβ(n, t) = (λtβ)n

n!
∞∑

k=0

(n + k)!
k!

(−λtβ)k

�(β(k + n) + 1)
.

The mean and the variance of the FPP are given by (see [44])

E[Nβ(t)] = qtβ,

Var[Nβ(t)] = qtβ
[
1 + qtβ

(
βB(β, 1/2)

22β−1
− 1

)]
,

where q = λ/�(1 + β) and B(a, b) denotes the beta function. An alternative form
for Var[Nβ(t)] is given in [9, Eq. (2.8)] as

Var[Nβ(t)] = qtβ + (λtβ)2

β

(
1

�(2β)
− 1

β�2(β)

)
.



Recent Developments on Fractional Point Processes 209

The equivalence for above two forms of variances can be proved using the Legendre’s
duplication formula (see [3, p. 22])

�(2a)�(1/2) = 22a−1�(a)�(a + 1/2), a > 0.

The covariance function of the FPP is given by (see [47, p. 9])

Cov
[
Nβ(s), Nβ(t)

] = qsβ + q2 [
βs2βB(β, 1 + β) + F(β; s, t)] , (3)

where F(β; s, t) = βt2βB(β, 1 + β; s/t) − (st)β and B(a, b; x) = ∫ x
0 ua−1

(1 − u)b−1du for a > 0, b > 0, is the incomplete beta function. It was proved by
Vellaisamy and Maheshwari (2018) ([72]) that the one-dimensional distributions of
the FPP are not infinite divisible.

Long Memory

The importance, relevance and the applicability of the longmemory or the long-range
dependence (LRD) is known in the literature. Various applications to several areas
can be found in scientific literature such as on Internet data-traffic modelling [35],
finance [20], econometrics [63], hydrology [21], climate studies [71] and etc. The
definition of the LRD property differs from author to author, for example, Heyde (see
[27, 28]) defined long-range dependence for non-stationary stochastic processes. The
long-range dependence property of the FPPwas proved byLeonenko et al. [47]. Biard
and Saussereau [15] showed that the increments of the fractional Poisson process
{Z1

β(n − 1)}n≥1, defined by

Z δ
β(t) = Nβ(t + δ) − Nβ(t), 0 < β < 1, δ > 0, t ≥ 0, (4)

has the LRD property, using Heyde and Yang’s [28] definition of long-range depen-
dence for non-stationary processes. Later on, Maheshwari and Vellaisamy [49] also
proved the long-range dependence of the increments of the FPP {Z δ

β(t)}t≥0.

3 Interlinking the Fractional Operators, the Lévy Process
and the Poisson Process

The increasing Lévy process (also called as Lévy subordinator) have a special con-
nection with the fractional derivatives. We first have an introduction to the Lévy
subordinator.



210 A. Maheshwari and R. Singh

3.1 Lévy Subordinator

A Lévy subordinator (hereafter referred to as the subordinator) is a one-dimensional
Lévy process with non-decreasing sample paths (a.s.) with Laplace transform (see
[4, Sect. 1.3.2])

E[e−sD f (t)] = e−t f (s),

where

f (s) = bs +
∫ ∞

0
(1 − e−sx )ν(dx), b ≥ 0,

is the Bernstein function. Here b is the drift coefficient and ν is a non-negative
Lévy measure on positive half-line such that

∫ ∞
0 (x ∧ 1)ν(dx) < ∞. The assump-

tion ν(0,∞) = ∞ guarantees that the sample paths of D f (t) non-decreasing a.s.
Some well known examples of subordinators are such as gamma process, inverse
Gaussian process, stable process and tempered stable process. A subordinated pro-
cess is obtained by a random time-change with a subordinator, see e.g. [4, 18, 67].

The first-exit time of the subordinator {D f (t)}t≥0 is its right-continuous inverse,
defined by

E f (t) = inf{r ≥ 0 : D f (r) > t}, t ≥ 0,

and is called an inverse subordinator (see [14]). Note that for any ρ > 0,E[Eρ

f (t)] <

∞ (see [1, Sect. 2.1]).
We next present some details about the stable subordinator which is a special case

of a Lévy subordinator. We also discuss about the right-continuous inverse of stable
subordinator which is called as inverse stable subordinator.

Stable Subordinator

Let 0 < β < 1 be the β-stable subordinator (see [4, p. 53]) with LT

E[e−sDβ (t)] = e−tsβ

.

Here, the drift coefficient b is zero, the corresponding Lévy measure is

ν(dx) = βdx

�(1 − β)x1+β
,

and the associated Bernstein function f (s) = sβ . The density of Dβ(t) is (see [26,
Eq. (4.7)])

g
β
(x, t) = βt x−(β+1)Mβ(t x−β), x > 0,

where Mβ(z), 0 < β < 1 is the M-Wright function (see [26, 51]) is defined as
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Mβ(z) =
∞∑

n=0

(−z)n

n!�(−βn + (1 − β))
= 1

π

∞∑

n=1

(−z)n−1

(n − 1)!�(βn) sin(πβn), z ∈ C.

A stochastic process {X (t)}t≥0 is self-similar (see [4]) with Hurst index H > 0 if

X (ct)
d= cH X (t),

in the sense of all finite dimensional distributions for all c ≥ 0. It is well known that
the β-stable subordinator is self-similar with Hurst index 1/β, that is,

Dβ(ct)
d= c1/βDβ(t), c > 0.

Inverse Stable Subordinator

The inverse β-stable subordinator (see [16, 58]) is defined as the right-continuous
inverse of the β-stable subordinator

Eβ(t) = inf{r > 0 : Dβ(r) > t}, 0 < β < 1, t ≥ 0.

The density of Eβ(t) is (see [26, Eq. (5.7)])

h
β
(x, t) = t−βMβ(t−βx), x > 0.

It can be seen that (see e.g. [57, 72]) the inverse β-stable subordinator is self-similar
with Hurst index β, that is

Eβ(ct)
d= cβEβ(t), c > 0.

We now explore the connection between the fractional derivatives and the Poisson
process via a Lévy subordinator.

3.2 Fractional Poisson Process and Lévy Subordinator

The first connection between the FPP and the stochastic time-change (or subordi-
nation) was obtained by Beghin and Orsingher [9]. They obtained an interesting
probabilistic representation in terms of a composition of the Poisson process with a
random time-changewhich is related to the solution f (y, t) of the fractional diffusion
equation

∂2ν f

∂t2ν
= ∂2 f

∂y2
, t > 0, y ∈ R,
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with f (y, 0) = δ(y) and 0 < ν < 1. Some extensions on the FPP are also worked
out in [10]. It is proved in [56] that the FPP can be seen as the subordination of the
Poisson process by an independent inverse β-stable subordinator, that is,

Nβ(t) = N (Eβ(t)), t ≥ 0, 0 < β < 1, (5)

where N (t) is the Poisson process with rate λ > 0. This result unifies the two main
approaches towards the definition of the FPP, namely, the stochastic subordination
method and governing fractional difference-differential equation method. They also
studied the Poisson process time-changed by inverse subordinator {E f (t)}t≥0 and
proved that it is a renewal process with the iid inter-arrival times Tn with distribution

P[Tn > t] = E[e−λE f (t)].

Space Fractional Poisson Process

Orsingher and Polito [61] introduced the space fractional Poisson process whose
one-dimensional distributions are governed by difference-differential equationwhere
the fractional non-local operator acts on the “space” variable n. We elaborate their
approach below.

Define the backward shift operator as Bnx(n) = x(n − 1), then the governing equa-
tion of the Poisson process can be re-written as

d

dt
p(n, t) = −λ(1 − Bn)p(n, t).

Let 0 < α ≤ 1. The space fractional Poisson process (SFPP), which is a generaliza-
tion of the Poisson process {N (t)}t≥0, is defined to be a stochastic process for which
p̄

α
(n, t) = P[N̄α(t) = n] satisfies

d

dt
p̄

α
(n, t) = −λα(1 − Bn)

α p̄
α
(n, t), (6)

with p̄
α
(n, 0) = 1 if n = 0 and is zero if n ≥ 1 and (1 − B)α is the fractional differ-

ence operator. The pmf p̄
α
(n, t) of the SFPP is given by (see [61, Eq. (1.2)])

p̄
α
(n, t) = (−1)n

n!
∞∑

k=0

(−λαt)k

k!
�(αk + 1)

�(αk + 1 − n)
. (7)

An alternative characterization of the SFPP is to subordinate the Poisson process
{N (t)}t≥0 by an independent α-stable subordinator {Dα(t)}t≥0 (see [61, Remark
2.3]), that is,

N̄α(t) = N (Dα(t)), t ≥ 0. (8)
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The SFPP turns out be a Lévy process with infinite mean. After the above charac-
terisation of the SFPP, the authors have defined the space-time fractional Poisson
process where the one fractional index is over the time derivative and the other over
the difference operator. In [8], multivariate space-time fractional Poisson processes
are studied by considering common random time-changes of a (finite-dimensional)
vector of independent Poisson processes.

4 More Results on Fractional Point Processes

In the previous section, we have seen that the fractional derivative and stochastic
subordination are interconnected. Taking a cue from this interconnection, several
authors have studied new “fractional” versions of point processes by using the sub-
ordination approach. In this section, we will survey results related to the same. We
first begin with a brief survey about the negative binomial process.

Stochastic processes with marginal negative binomial distributions were studied
in [42, 55, 69] which is defined by stopping the Poisson process at gamma distributed
random variable. Hougaard et al. (see [30]) followed the subordination approach to
construct negative binomial process by using an independent gamma subordinator
to time-change the Poisson process. The equivalent representation of the negative
binomial process is also found in [24, pp. 155–157], [25, pp. 348–349] and [19,
77]. Kozubowski and Podgórski (see [38, 39]) presented a definitive study on neg-
ative binomial Lévy process. A fractional generalization of the negative binomial
process is given by Beghin and Claudio [7]. They have used the compound Poisson
representation of the negative binomial process to define the fractional negative bino-
mial process. Vellaisamy and Maheshwari [72] defined fractional negative binomial
process by time-changing the FPP {Nβ(t)}t≥0 by a gamma subordinator {Y (t)}t≥0 as

NBβ(t) = Nβ(Y (t)), t ≥ 0.

They have studied their distributional properties and long-range dependence of the
increments of the fractional negative binomial process in [49].

Several authors have studied other time-changed Poisson processes and we survey
some results on it. Kumar et al. [41] studied the Poisson process subordinated with
the inverse Gaussian, the first-exit time of the inverse Gaussian, the stable and the
tempered stable subordinator. They derived governing equation for various forms of
the time-changed Poisson process. For instance, the following governing equation

d2k

dt2k
p(n, t) = −λ[p(n, t) − p(n − 1, t)],

has the solution as the one-dimensional distribution of the Poisson process iteratively
time-changed by 1

2 -stable subordinator, that is,



214 A. Maheshwari and R. Singh

p(n, t) = P[N (D1
1
2

(D2
1
2

(. . . (Dk
1
2

)(t))) = n].

In [62], Orsingher and Toaldo (2015) studied the Poisson process subordinated
with independent Lévy subordinator {D f (t)}t≥0, that is

N f (t) = N (D f (t)), t ≥ 0.

They have shown that the probabilities p f (n, t) = P[N f (t) = n], n ≥ 0, are solu-
tions to the equation

d

dt
p f (n, t) = − f (λ)p f (n, t) +

n∑

m=1

λm

m! p f (n − m, t)
∫ ∞
0

e−sλsmν(ds), k ≥ 0, t > 0,

with initial condition

p f (n, 0) =
{
1, n = 0

0, n ≥ 1.

They have also studied the hitting-times

T f
k = inf

{
t ≥ 0 : N f (t) ≥ k

}
,

of the subordinated Poisson processes and obtained

Pr
{
T f
k ∈ ds

}
/ds =

k−1∑

l=0

(−λ)l

l!
(

dl

dλl
e−s f (λ)

) ∫ ∞

0

(

1 −
k−l−1∑

r=0

(λu)r

r ! e−λu

)

ν(du).

It is noteworthy that theLévy subordinator coversmost of the special subordinators
(see [4, Theorem 1.3.15]) considered in the literature. The following are some special
cases for the Lévy subordinators.

Example 1 (Gamma subordinator) The gamma subordinator {Y (t)}t≥0, Y (t) ∼
G(α, pt), has the one-dimensional density

f (x |α, pt) = α pt

�(pt)
e−αx x pt−1, x > 0,

where both α and p are positive. It is known that (see [4, p. 54])

E[e−sY (t)] =
(
1 + s

α

)−pt = exp (−pt log (1 + s/α)) .

Example 2 (Tempered α-stable subordinator) The tempered α-stable subordinator
{Dμ

α (t)}t≥0, μ > 0, 0 < α < 1 is defined by the Laplace transform as
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E[e−sDμ
α (t)] = e−t((μ+s)α−μα).

The pdf of the tempered α-stable subordinator is given by (see [2, Eq. (2.2)])

gμ(x, t) = e−μx+μβ t g(x, t), x > 0,

where g(x, t) is the pdf of the α-stable subordinator {Dα(t)}t≥0.

Example 3 (Inverse Gaussian subordinator) The inverse Gaussian subordinator
{G(t)}t≥0 is defined using the Laplace transform as (see [4, Example 1.3.21])

E[e−sG(t)] = e
−t

(
δ(
√

2s+γ 2−γ )
)

, δ, γ > 0.

Some extensions of the FPP are also considered in the literature by adding the drift
term to the FPP. For example, the FPP with the additive random drift component
defined below was studied in [6]. The drifted process

N (Dγ (Eβ(t))) + aDα(Eβ(t)), t > 0, a ≥ 0, α, γ, β ∈ (0, 1],
where Dγ (Eβ(t)) and Dα(Eβ(t)) are independent from N (t). It has probability law

P
[
N (Dγ (Eβ (t))) + aDα(Eβ (t)) ∈ dx

]
/dx =

∞∑

k=0

(−λ∂λ)k

k!
∫ ∞
0

e−sλγ
hα(x − k, aαs)lβ (s, t)ds

=
∞∑

k=0

(−λ∂λ)k

k! E
[
exp(−λγ Eβ (t)) hα(x − k, aαEβ (t))

]

which is the solution to the equation

(
Dβ

t + aα∂α
x + λγ (I − K )γ

)
u(x, t) = 0, x ∈ R

+
0 , t > 0

with initial condition u(x, 0) = δ(x), where

(I − K )γ =
∞∑

j=0

(−1) j
(

γ

j

)
K j

and

K j =
{
e− j∂x , if a > 0
B j , if a = 0.

Beghin [5] formulated the fractional gamma process and gamma-subordinated
processes. The fundamental aspects of the inverse stable subordinator is studied in
detail by Meerschaert and Straka in [58].
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Table 1 Examples for intensity and rate functions

Name Intensity function λ(s) Rate function (t)

Weibull
a

b

( s

b

)a−1
, a, b > 0

(
t

b

)a

Gompertz-Makeham’s aebs + μ, a, b, μ > 0 a
b

(
ebt − 1

) + μt

Musa-Okumoto
ab

1 + bs
, a, b, μ > 0 a ln(1 + bt)

Non-homogeneous Poisson Process

The non-homogeneous Poisson process (NPP) is defined as the Poisson process
where the timevariable is replaced by rate function(t) = ∫ t

0 λ(u)du is the rate func-
tionwith intensity function λ(u), u ≥ 0, that is, Ñ (t) = N ((t))with rate parameter
as one. A fractional version of the NPP was recently studied by Leonenko et al. [46]
defined by time-changing the NPP by an inverse β-stable subordinator. They also
pointed out an another way of defining the fractional version of the NPP (see [46,
Sect. 6]) which can be obtained by replacing the time variable of the FPP by the rate
function (t), t ≥ 0. Maheshwari and Vellaisamy [50] recently used an alternative
approach to define non-homogeneous space-time fractional Poisson process as

W α
β (t) = Nα

β ((t)), t ≥ 0,

where {Nα
β (t)}t≥0 is the space-time fractional Poisson process (space fractional index

= α and time fractional index = β) with rate parameter as one and (t) = ∫ t
0 λ(u)du

is the rate function with intensity function λ(u), u ≥ 0. The following table lists
some of the important intensity and rate function Table1.

They have also obtained the limit theorems and long-range dependence property
for the non-homogeneous space-time fractional Poisson process. An alternative non-
homogeneous extension of the FPP is studied by Beghin and Ricciuti (see [11]).

A different approach for fractional generalization of the Poisson process was dis-
cussed in [73–75]. They followed the integral representationmethod used for defining
the fractional Brownian motion and then replacing the Brownian motion by the Pois-
son process. Kataria and Vellaisamy [36] used Saigo fractional derivatives to define
another version of the fractional Poisson process using the difference-differential
equation approach. The time-changed Poisson process of order k is studied by Sen-
gar et al. [68] and its first hitting time probabilities are studied in [48].

5 Plots and Simulations of Fractional Poisson Process

In this section, we present plots of the pmf and simulation of the sample paths for
the FPP.
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Fig. 1 Plots for the pmf of the FPP

Plots for the FPP

For certain chosen values of β, t and λ, two plots of the pmf of the FPP process,
computed using Mathematica 10 to the order of 10−6, are given below (Fig. 1).

Cahoy et al. [17] proposed a formal estimation procedure for parameters of theFPP
to make the FPP model usable in applied situations. They established the asymptotic
normality of the estimators for the two parameters appearing in FPPmodel and tested
the estimators using simulated data. The following results are reproduced which is
used in simulating the sample paths of the FPP.

Lemma 1 ([17]) The inter arrival times Ti of the FPP {Nβ(t)}t≥0 has the represen-
tation

Ti
d= T

d= | ln(U )|1/β
λ1/β

Dβ(1), (9)

where U ∼ U [0, 1] and is independent of Dβ(t), 0 < β < 1, the β-stable subordi-
nator.

Remark 1 From (9),

T
d= | ln(U1)|1/β

λ1/β
Dβ(1), (10)

where U1 ∼ U (0, 1), and Dβ(1) are independent. From [34, Corollary 4.1],

Dβ(1)
d= (sin βU )(sin(1 − β)U )(1−β)/β

(sinU )1/βW (1−β)/β
, (11)

whereU⊥W,U ∼ (0, π),W ∼ Exp(1). Let nowU2 andU3 be independentU (0, 1)

variables so that U
d= πU2, and W = | lnU3|. Hence, from (11),

Dβ(1)
d= sin(βπU2)[sin(1 − β)πU2]1/β−1

[sin(πU2)]1/β | lnU3|1/β−1
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and from (10), we have

T
d= | lnU1|1/β

λ1/β

sin(βπU2)[sin(1 − β)πU2]1/β−1

[sin(πU2)]1/β | lnU3|1/β−1
. (12)

We now present the algorithm to generate the simulated sample paths of the FPP
using the above mentioned results. The simulated sample paths are shown in Fig. 2.

Algorithm (Simulation of fractional Poisson process)
This algorithm gives the number of events Nβ(t), 0 < β < 1 of the FPP upto a fixed
time T .

(a) Fix the parameters λ > 0 and 0 < β < 1 for the FPP. Set n = 0 and t = 0;
(b) Repeat while t < T

(i) Generate three independent uniform random variables Ui ∼ U (0, 1), i =
1, 2, 3.

(ii) Compute

Fig. 2 Simulations for the FPP
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dt = | lnU1|1/β
λ1/β

sin(βπU2)[sin(1 − β)πU2]1/β−1

[sin(πU2)]1/β | lnU3|1/β−1
.

(iii) t = t + dt and n = n + 1.

Next t ;
Then n denotes the number of events Nβ(t) occurred upto time T . �
Interpretation of Simulated Paths

It is clear from the graphs below that the sample paths of the FPP displays larger
variation in waiting time of occurrence of events as the fractional index β decreases
given the fixed value for the arrival rate λ. The fractional index β can be used to adjust
the model with the data where the waiting times of events have larger variation given
the same arrival rate.
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Some Results on Generalized Accelerated
Motions Driven by the Telegraph Process

Alessandra Meoli

Abstract We investigate a generalization of the randomly accelerated motion
obtained by iterated integration of the telegraph signal.We give the exact and explicit
expression for the cumulative distribution function, conditionally on the number n
of Poisson events, when n is sufficiently small. The unconditional mean value and
variance are also obtained.

Keyword Telegraph process · Riemann-Liouville fractional integral · Conditional
distributions

1 Introduction

Kelbert and Orsingher [9] introduced a model of a one-dimensional uniformly accel-
eratedmotionwhere the time intervals between changes in the sign of the acceleration
are Poisson-paced. Specifically, if N (t) is the number of events of a homogeneous
Poisson process (with rate λ > 0) occurred in the time interval [0, t], the two-fold
integration of a random telegraph signal is considered as follows:

A (t) = A0 (−1)N (t) ,

V (t) =
∫ t

0
A (s) ds = A0

∫ t

0
(−1)N (s) ds,

X (t) =
∫ t

0
V (s) ds = A0

∫ t

0
(t − s) (−1)N (s) ds,

where A0 is a randomvariable independent of N (t) taking values±awith equal prob-
ability. Therefore, X (t) represents the position of a particle with acceleration A (t)
and velocity V (t). A probabilistic derivation of the Euler-Poisson-Darboux equation
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based on a motion with random acceleration is given in Glushak and Orsingher [5].
We recall that some of the fundamental papers on the (integrated) telegrapher random
process are due to Goldstein [6], Kac [8], Orsingher [12], Foong and Kanno [4].

Although the partial differential equation governing the joint distribution of
(X (t) , V (t) , t > 0) has been derived in [9], it has not been possible to obtain
the equation for the marginal distribution of (X (t) , t > 0). Conti and Orsingher
[2] proved recurrence relationships for the conditional distribution of X (t) given
the number of Poisson events and the initial acceleration. The same authors in [3]
established suitable approximations both for the conditional and the unconditional
distribution of the displacement of the particle. Iterated integration of the telegraph
signal has been considered in [13] as a generalization of the randomly accelerated
telegraph process. This paper aims at further extending the outlined procedure into
a Riemann-Liouville fractional integral of the telegraph signal.

2 Explicit Conditional Distribution for Small n

We consider the conditional distributions

P (Xα (t) ≤ y | N (t) = n) , n ∈ N,

of the process

Xα (t) := [
Xα

(
t; τ1, . . . , τN (t)

)]

= 1

� (α)

∫ t

0
(t − s)α−1 (−1)N (s) ds, α > 0, t ≥ 0,

where N (t) is the number of events of a homogeneous Poisson process occurred
in the time interval [0, t] and τ j s are the random times of the Poisson events, j =
1, . . . , N (t). It is assumed that at time t = 0 the particle is at the origin and moves
with positive unitary acceleration. We recall here the definition of the Riemann-
Liouville fractional integral, so that the connectionwith fractional calculus is obvious.
Let � = [a, b] (−∞ < a < b < +∞) be a finite interval on the real axis R. The
Riemann-Liouville fractional integral I α

a+ f of order α > 0 is defined by

(
I α
a+ f

)
(x) := 1

� (α)

∫ x

a

f (t)

(x − t)1−α
dt, x > a,

where � (α) is the Gamma function. In view of the above, the considered process
can be regarded as the Riemann-Liouville fractional integral of the telegraph signal.
Moreover, if N (t) = n, and 0 = τ0 < τ1 < τ2 < · · · < τn < τn+1 = t are the ran-
dom instants at which the Poisson events occur, then the conditional fractional inte-
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grated telegraph process Xα
n (t) := [

Xα
(
t; τ1, . . . , τN (t)

) |N (t) = n
]
can be written

down as follows:

Xα
n (t) = 1

� (α)

(∫ τ1

0
(t − s)α−1 ds −

∫ τ2

τ1

(t − s)α−1 ds + . . .

+ (−1)n
∫ t

τn

(t − s)α−1 ds

)

= 1

� (α + 1)

n+1∑
j=1

(−1) j
[(
t − τ j

)α − (
t − τ j−1

)α]
. (1)

Figure1 shows simulated sample paths of Xα
n (t) stopped after 6 changes of velocity.

Proposition 1 For any fixed t > 0, α > 0 and n ∈ N, one has
∣∣Xα

n (t)
∣∣ < tα

�(α+1)
almost surely (a.s.).

Proof Fix t > 0, α > 0 and n ∈ N. When N (t) = n, the displacement at time t
given in (1) can be alternatively rewritten as

Xα
n (t) = 1

� (α + 1)

[
tα − 2 (t − τ1)

α + 2 (t − τ2)
α + · · · + (−1)n 2 (t − τn)

α
]
.

(2)
Since

−2 (t − τ1)
α + 2 (t − τ2)

α + · · · + (−1)n 2 (t − τn)
α < 0,

from (2) we have

Xα
n (t) <

tα

� (α + 1)
a.s.

Moreover, since

tα − (t − τ1)
α + (t − τ2)

α + · · · + (−1)n (t − τn)
α > 0,

Equation (2) implies

Xα
n (t) + tα

� (α + 1)
> 0 a.s.,

and this finishes the proof.
�
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Fig. 1 Sample paths of Xα
6 (t) with λ = 1 and a α = 0.5, b α = 1, c α = 1.5, d α = 2

We restrict the analysis of the probability distribution function of (1) to the cases
n = 1 and n = 2, because of an excessively large quantity of entangled calculations.
This is clearly of interest when the intensity λ of N (t) is sufficiently small.

Proposition 2 Let t > 0, α > 0 and n = 1. The conditional probability distribution
of Xα (t) is

P
(
Xα
1 (t) ≤ y

) =

⎧⎪⎪⎨
⎪⎪⎩

0 if y < − tα

�(α+1)

1 −
(
tα−�(α+1)y

2tα

) 1
α

if − tα

�(α+1) ≤ y < tα

�(α+1)

1 if y ≥ tα

�(α+1) .
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Proof Due to Proposition 1, we focus on the interval − tα

�(α+1) ≤ y < tα

�(α+1) . It is
well known that if N (t) = k, the joint distribution of the random times (τ1, ..., τk)

where the Poisson events occur is given by

P {τ1 ∈ ds1, . . . , τn ∈ dsn} = n!
tn

, 0 < s1 < s2 < · · · < sn < t.

Hence, taking into account (1), we get the following result:

P
(
Xα
1 (t) ≤ y

) = P

(
τ1 ≤ t −

(
tα − � (α + 1) y

2

)1/α
)

=
∫ t−

(
tα−�(α+1)y

2

)1/α

0
P {τ1 ∈ ds1}

=
∫ t−

(
tα−�(α+1)y

2

)1/α

0

1

t
ds1

= 1

t

[
t −

(
tα − � (α + 1) y

2

) 1
α

]

= 1 −
(
tα − � (α + 1) y

2tα

) 1
α

.

The claimed result is then obtained.
�

Before stating Proposition 3, we recall the Euler integral representation of the Gauss
hypergeometric function:

2F1 (a, b; c; z) = � (c)

� (b) � (c − b)

∫ 1

0
tb−1 (1 − t)c−b−1 (1 − zt)−a dt, (3)

for 0 < Re b < Re c and |arg (1 − z)| < π .

Proposition 3 Let t > 0, α > 0 and n = 2. The conditional probability distribution
of Xα (t) is

P
(
Xα
2 (t) ≤ y

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if y < − tα

�(α+1)

2!
t2

(
tα+�(α+1)y

2

) 1
α

[
t −

(
tα−�(α+1)y

2

) 1
α

×2F1

(
− 1

α
, 1

α
; 1

α
+ 1;− tα+�(α+1)y

tα−�(α+1)y

)]
if − tα

�(α+1) ≤ y < tα

�(α+1)

1 if y ≥ tα

�(α+1) .
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Proof Let y ∈
[
− tα

�(α+1) ,
tα

�(α+1)

)
. We evaluate the conditional probability distribu-

tion as follows:

P
(
Xα
2 (t) ≤ y

) = P

(
1

� (α + 1)
(tα − 2 (t − τ1)

α + 2 (t − τ2)
α) ≤ y

)

=
∫
D
P {τ1 ∈ ds1, τ2 ∈ ds2} ,

where the region of integration is

D =
{
(s1, s2) ∈ R

2 : 0 < s1 < s2 < t,
(tα − 2 (t − s1)

α + 2 (t − s2)
α)

� (α + 1)
≤ y

}
.

In the light of this, we have

P
(
Xα
2 (t) ≤ y

) =
∫ t

t−
(

tα+�(α+1)y
2

)1/α

∫ t−
(

tα−�(α+1)y+2(t−s2)
α

2

)1/α

0
P {τ1 ∈ ds1, τ2 ∈ ds2}

= 2!
t2

∫ t

t−
(

tα+�(α+1)y
2

)1/α
ds2

∫ t−
(

tα−�(α+1)y+2(t−s2)
α

2

)1/α

0
ds1

= 2!
t2

∫ t

t−
(

tα+�(α+1)y
2

)1/α
t −

(
tα − � (α + 1) y + 2 (t − s2)

α

2

)1/α

ds2

= 2!
t2

[
I1 − 1

21/α
I2

]
, (4)

where

I1 :=
∫ t

t−
(

tα+�(α+1)y
2

)1/α
t ds2,

I2 :=
∫ t

t−
(

tα+�(α+1)y
2

)1/α (tα − � (α + 1) y + 2 (t − s2)
α)

1/α ds2.

It turns out that

I1 = t

(
tα + � (α + 1) y

2

)1/α

, (5)

while the computation of I2 is more laborious. Indeed, by setting
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s2 =
(
tα + � (α + 1) y

2

)1/α

(u − 1) + t,

we get

I2 =
(
tα + � (α + 1) y

2

)1/α ∫ 1

0

(
tα − � (α + 1) y + (

tα + � (α + 1) y
)
(1 − u)α

)1/α du.

We perform the change of variable u = 1 − z1/α so to obtain

I2 =
(
tα + � (α + 1) y

2

)1/α 1

α

×
∫ 1

0
(tα − � (α + 1) y + (tα + � (α + 1) y) z)1/α z1/α−1dz

=
(
tα + � (α + 1) y

2

)1/α
(tα − � (α + 1) y)1/α

α

×
∫ 1

0

(
1 + tα + � (α + 1) y

tα − � (α + 1) y
z

)1/α

z1/α−1dz. (6)

If a = −1/α, b = 1/α, c = 1/α + 1 in Eq. (3), then Eq. (6) becomes

I2 =
(
tα + � (α + 1) y

2

)1/α
(tα − � (α + 1) y)1/α

α

�
(
1
α

)
� (1)

�
(
1
α

+ 1
)

× 2F1

(
− 1

α
, 1; 1

α
+ 1;− tα + � (α + 1) y

tα − � (α + 1) y

)

=
(
tα + � (α + 1) y

2

)1/α

(tα − � (α + 1) y)1/α

× 2F1

(
− 1

α
, 1; 1

α
+ 1;− tα + � (α + 1) y

tα − � (α + 1) y

)
. (7)

Finally, by putting together (5) and (7) in Equation (4), we get

P
(
Xα
2 (t) ≤ y

) = 2!
t2

(
tα + � (α + 1) y

2

)1/α
[
t −

(
tα − � (α + 1) y

2

)1/α

× 2F1

(
− 1

α
, 1; 1

α
+ 1;− tα + � (α + 1) y

tα − � (α + 1) y

)]
,

as desired.
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Fig. 2 Conditional probability distribution function of Xα
n (t) for n = 1, 2 and various choices of

α
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Plots of the conditional probability distribution of Xα (t) are given in Fig. 2. It is
straightforward to derive, from Proposition 1 and from Proposition 2, the analytical
expression of the probability density function of the conditional process. Indeed, if
t > 0,

t f
α
1 (y) := dP

(
Xα
1 (t) ≤ y

)
dy

=

⎧⎪⎪⎨
⎪⎪⎩

�(α+1)
α2tα

(
tα−�(α+1)y

2tα

) 1
α
−1

if − tα

�(α+1) ≤ y < tα

�(α+1)

0 otherwise

and

t f
α
2 (y) := dP

(
Xα
2 (t) ≤ y

)
dy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2!
t2

{
1
α

(
tα+�(α+1)y

2

) 1
α
−1

�(α+1)
2[

t −
(
tα−�(α+1)y

2

) 1
α

2F1

(
− 1

α
, 1

α
; 1

α
+ 1;− tα+�(α+1)y

tα−�(α+1)y

)]

+ 1
α

(
tα+�(α+1)y

2

) 1
α �(α+1)

2

(
tα−�(α+1)y

2

) 1
α
−1

×2F1

(
− 1

α
, 1

α
; 1

α
+ 1;− tα+�(α+1)y

tα−�(α+1)y

)

−
(
tα+�(α+1)y

2

) 1
α
(
tα−�(α+1)y

2

) 1
α 2tα�(α+1)

α(α+1)(tα−�(α+1)y)2

×2F1

(
− 1

α
+ 1, 1

α
+ 1; 1

α
+ 2;− tα+�(α+1)y

tα−�(α+1)y

)}
if − tα

�(α+1) ≤ y < tα

�(α+1)

0 otherwise.

Plots of the conditional probability density function are shown in Fig. 3.

3 Unconditional Mean and Variance

Hereafter, we shall obtain the explicit expressions of E [Xα (t)] and Var [Xα (t)].

Proposition 4 Let t > 0 and α > 0. Then the unconditional mean of Xα (t) is

E
[
Xα (t)

] = 1

� (α + 1)
tαe−2λt

1F1 (α; 1 + α; 2λt) . (8)
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Fig. 3 Conditional probability density function of Xα
n (t) for n = 1, 2 for various choices of α
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Proof Since

E
[
(−1)N (s)

] = e−2λs, s > 0,

it results

E
[
Xα (t)

] = E

[
1

� (α)

∫ t

0
(t − s)α−1 (−1)N (s) ds

]

= 1

� (α)

∫ t

0
(t − s)α−1 E

[
(−1)N (s)

]
ds

= 1

� (α)

∫ t

0
(t − s)α−1 e−2λsds

= 1

� (α)
e−2λt

∫ t

0
sα−1e2λsds.

A useful integration formula is Eq.3.383.1 of [7], valid for Re (μ) > 0, Re (ν) > 0:
∫ u

0
xν−1 (u − x)μ−1 eβxdx = B (μ, ν) uμ+ν−1

1F1 (ν;μ + ν;βu) . (9)

From this,

E
[
Xα (t)

] = B (1, α)

� (α)
tαe−2λt

1F1 (α; 1 + α; 2λt)

= 1

� (α + 1)
tαe−2λt

1F1 (α; 1 + α; 2λt) ,

so that formula (8) easily follows.

In Fig. 4 we show some plots of E [Xα (t)].
Due to the fact that (cf. Formula 7.6.(4) of Luke [10])

1F1 (a; c; z) ∼ � (c)

� (a)
ezza−c as Re (z) → +∞,

at large times the unconditional mean value (8) displays the following behaviour:

E
[
Xα (t)

] ∼ tα−1

2λ� (α)

t→+∞→

⎧⎪⎨
⎪⎩
0 if 0 < α < 1
1
2λ if α = 1

+∞ if α > 1.

Proposition 5 Let t > 0 and α > 0. Then the second-order unconditional moment
of Xα (t) is
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Fig. 4 Mean value of Xα (t) with λ = 1 and various choices of α

E
[
(Xα (t))2

] = 2 (2λ)−α

� (α)2

[
tα� (α) B (α, 1) 1F1 (α;α + 1; 2λt)

− t2α (2λ)α

α
B (1, 2α) 2F2 (2α, 1;α + 1, 2α + 1; 2λt)

− e2λt� (α; 2λt) B (α, 1) tα1F1 (1;α + 1;−2λt)
]
.

Proof It is well-known that

E
[
(−1)N (s)+N (t)

] = e−2λ(t−s), t > s.

Therefore,

E
[
(Xα (t))2

] = 1

� (α)2

∫ t

0

∫ t

0
(t − w)α−1 (t − s)α−1 E

[
(−1)N (w)+N (s)

]
dw ds

= 1

� (α)2

∫ t

0

∫ t

0
(t − w)α−1 (t − s)α−1 e−2λ|w−s|dw ds

= 2

� (α)2

∫ t

0

∫ s

0
(t − w)α−1 (t − s)α−1 e−2λ(s−w)dw ds.

Wefirst evaluate the inner integral by performing the change of variable 2λ (t − w) =
z

∫ s

0
(t − w)α−1 e2λwdw = e2λt (2λ)−α

∫ 2λt

2λ(t−s)
zα−1e−zdz

= e2λt (2λ)−α [� (α; 2λ (t − s)) − � (α; 2λt)] ,

where � (a, x) = ∫ +∞
x e−t t a−1dt is the incomplete gamma function. Then, we plug

this solution into the outer integral and get
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E
[
(Xα (t))2

] = 2 (2λ)−α

� (α)2
e2λt [J1 − � (α; 2λt) J2] . (10)

where

J1 : =
∫ t

0
(t − s)α−1 e−2λs� (α; 2λ (t − s)) ds

= e−2λt
∫ t

0
yα−1e2λy� (α; 2λy) dy

and

J2 :=
∫ t

0
(t − s)α−1 e−2λsds.

A useful integration formula is Eq.2.10.3.5 of [14], valid for a, Re(α), Re(β),

Re (α + ν) > 0, |arg c| < π :

∫ a

0
xα−1 (a − x)β−1 ecx� (ν, cx) dx = aα+β−1� (ν) B (α, β) 1F1 (α;α + β; ac)

− aα+β+ν−1cν

ν
B (β, α + ν) 2F2 (α + ν, 1; ν + 1, α + β + ν; ac) . (11)

A straightforward application of (11) yields

J1 = e−2λt
[
tα� (α) B (α, 1) 1F1 (α;α + 1; 2λt)

− t2α (2λ)α

α
B (1, 2α) 2F2 (2α, 1;α + 1, 2α + 1; 2λt)

]
, (12)

while to compute J2 we resort to (9) and get

J2 = B (α, 1) tα1F1 (1;α + 1;−2λt) . (13)

By substituting (12) and (13) in Eq. (10), the desired result is then proved.
�

In Fig. 5 we show some plots of the second-order unconditional moment of Xα (t).
It grows faster and faster as the order of fractionality increases.

We conclude this section by presenting the expression of the unconditional variance
of Xα (t), some plots of which are given in Fig. 6.



236 A. Meoli

Fig. 5 Moment of order two of Xα (t) with λ = 1 and various choices of α

Fig. 6 Variance of Xα (t) with λ = 1 and various choices of α

Corollary 1 Let t > 0 and α > 0. Then the unconditional variance of Xα (t) is

Var
[
Xα (t)

] = E
[
(Xα (t))2

] − (
E

[
Xα (t)

])2

= 2 (2λ)−α

� (α)2

[
tα� (α) B (α, 1) 1F1 (α;α + 1; 2λt)

− t2α (2λ)α

α
B (1, 2α) 2F2 (2α, 1;α + 1, 2α + 1; 2λt)

− e2λt� (α; 2λt) B (α, 1) tα1F1 (1;α + 1;−2λt)
]

−
(

1

� (α + 1)
tαe−2λt

1F1 (α; 1 + α; 2λt)
)2

.

Conclusions

In this paper, a stochastic process describing a motion on the real line has been intro-
duced, that generalizes a uniformly accelerated motion with Poisson-paced changes
of its acceleration. Various results on the conditional probability distribution and on
the unconditional mean and variance have been given. The case of random initial
acceleration is worthy of further investigation. The study of such process is motivated
by the recent interest in Monte Carlo methods based upon piecewise deterministic
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Markov processes, since they offer a non-reversible alternative to traditional MCMC
methods. See, for example,Monmarché [11] andBierkens et al. [1]. Therefore, future
work will also include the use of the proposed process as an alternative to standard
MCMC algorithms.
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The PDD Method for Solving Linear,
Nonlinear, and Fractional PDEs
Problems

Ángel Rodríguez-Rozas, Juan A. Acebrón, and Renato Spigler

Abstract We review the Probabilistic Domain Decomposition (PDD) method for
the numerical solution of linear and nonlinear Partial Differential Equation (PDE)
problems. This Domain Decomposition (DD) method is based on a suitable proba-
bilistic representation of the solution given in the form of an expectation which, in
turns, involves the solution of a Stochastic Differential Equation (SDE). While the
structure of the SDE depends only upon the corresponding PDE, the expectation also
depends upon the boundary data of the problem. The method consists of three stages:
(i) only few values of the sought solution are solved byMonte Carlo or Quasi-Monte
Carlo at some interfaces; (ii) a continuous approximation of the solution over these
interfaces is obtained via interpolation; and (iii) prescribing the previous (partial)
solutions as additional Dirichlet boundary conditions, a fully decoupled set of sub-
problems is finally solved in parallel. For linear parabolic problems, this is based
on the celebrated Feynman-Kac formula, while for semilinear parabolic equations
requires a suitable generalization based on branching diffusion processes. In case of
semilinear transport equations and the Vlasov-Poisson system, a generalization of
the probabilistic representation was also obtained in terms of the Method of Char-
acteristics (characteristic curves). Finally, we present the latest progress towards
the extension of the PDD method for nonlocal fractional operators. The algorithm
notably improves the scalability of classical algorithms and is suited to massively
parallel implementation, enjoying arbitrary scalability and fault tolerance properties.
Numerical examples conducted in 1D and 2D, including some for the KPP equation
and Plasma Physics, are given.
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Keywords Probabilistic domain decomposition · Domain decomposition
methods · Partial differential equations · Monte Carlo · Quasi-Monte Carlo ·
Elliptic operators · Transport equations · Vlasov-Poisson system · Nonlocal and
fractional operators

1 Introduction

Since its introduction in 2005 for numerically solving boundary-value elliptic prob-
lems [1], the PDD (Probabilistic Domain Decomposition) method has been success-
fully extended by the authors of this article for solving a wide range of problems
described through partial differential equations (PDEs) (see [2–8, 14]).

In this article, we review the PDDmethod highlighting its main developments [8,
14] and its latest investigations regarding fractional operators. The class of equations
for which method has been applied include linear elliptic and parabolic equations,
the KPP-equation, general semilinear parabolic equations, linear purely advection-
dominated equations, the non-linear Vlasov-Poison system of equations governing
plasma physics, and the Telegraph equation. Applications include all kind of diffu-
sion and advection problems, finance (Black-Scholes and similar equations), plasma
physics, and electrical transmission lines (see [2–8]).

For linear parabolic and elliptic problems defined in� ⊆ R
d , this method is based

on the celebrated Feynman-Kac formula, that establishes a connection between the
solution of a PDE and a suitable expectation over a corresponding stochastic process
driven by Brownian motion, referred to as the stochastic solution. It exploits such
solution to be approximated by the Monte Carlo method only at a few points along
certain R

d−1 interfaces, such that the original domain problem � is decomposed
into as many independent subdomain problems as convenient. The result is a domain
decomposition technique based on a probabilistic method that is suited for massively
parallel computers, enjoying full scalability and fault tolerance.

For semilinear problems, the Feynman-Kac formula is generalized to solutions
by means of branching stochastic processes in the real space. For linear and semi-
linear hyperbolic problems, the extension of the Feynam-Kac formula is based on the
method of characteristics, where the characteristic curves play a similar role in the
corresponding solution as the stochastic process does for the parabolic problems. In
the case of the Vlasov-Poison system, the stochastic solution is found in the Fourier
domain after coupling the equations. Finally, for fractional PDEs, the method is
extended to deal with space-fractional diffusion equations.

The structure of the article is as follows: First, we give a general introduction of the
method when applied to linear parabolic problems; second, we describe an important
extension of the method for solving general semi-linear parabolic problems; then,
we present the extension of the method for transport problems and the Vlasov-
Poisson system of equations; subsequently, we present the latest progress towards the
extension of the PDDmethod for non-local fractional operators; finally, we conclude
the paper with some remarks and future work.
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2 Linear Parabolic Problems

2.1 Introduction

The purpose of this section is to introduce the PDD method (see [8]) to solve initial-
as well as initial-boundary value problems for linear parabolic differential equations.
The linear case ismerely considered here to illustrate in the simplestway the essencial
features of the PDDmethod. Rather unexpectedly, however, it turned out that even in
such case important computational advantages were observed with respect to some
existing more traditional parallel schemes. To assess the computational feasibility of
our algorithm, we compare our results with those obtained using competitive (freely
available) parallel numerical codes, which are widely used by the high-performance
scientific community.

The plan of the section is as follows. First, some necessary mathematical gener-
alities are provided. Then, the algorithm is described and different sources of par-
allelization are discussed. Later, numerical examples considering one-dimensional
problems are given, where the efficiency of the PDD algorithm is illustrated. In a
short final section, we summarize the salient points of the method.

2.2 Mathematical Preliminaries

A variety of phenomena pertaining to Engineering, Physics, and other Sciences, are
governed by diffusion equations. The relations between macroscopic diffusion and
themean statistical effect of themicroscopic random(Brownian)motionofmolecules
goes back, among the others, to A. Einstein and M. Smoluchowski. A connection
between “stochastic differential equations”, that can be thought of ordinary differ-
ential equations driven by a certain kind of random noise (Langevin equations), and
partial differential equations, was established.

Inspired by the work of R. Feynman on “path integrals” in quantum physics, M.
Kac realized that a similar formulation could be applied to obtain a representation
of the solution to the heat equation and to other diffusive (parabolic) linear partial
differential equations. This lead to the so-called Feynman-Kac formula. Let u(x, t)
be a bounded function satisfying the Cauchy problem for the linear parabolic partial
differential equation,

∂u

∂t
= Lu − c(x, t)u, u(x, 0) = f (x), (1)

where x ∈ Rn , L is a linear elliptic operator, say L := ai j (x, t)∂i∂ j + bi (x, t)∂i

(using the summation convention), with continuous bounded coefficients, c(x, t) ≥ 0
and continuous bounded initial condition, f (x). The probabilistic representation of
the solution u to Eq. (1) is given through the Feynman-Kac formula
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u(x, t) = E
[
f (β(t)) e− ∫ t

0 c(β(s),t−s)ds
]
, (2)

see [25, 29], e.g., where β(·) is the n-dimensional stochastic process starting at
(x, 0), associated to the operator L , and the expected values are taken with respect
to the corresponding measure. When L is the n-dimensional Laplace operator, β(·)
reduces to the standard n-dimensional Brownian motion, and the measure reduces
to the Gaussian measure. In general, the stochastic process β(·) is the solution of
a system of stochastic differential equations (SDEs) of the Itô type, related to the
elliptic operator in (1),

dβ = b(x, t) dt + σ(x, t) dW(t). (3)

HereW(t) represents the n-dimensional standard Brownian motion (or Wiener pro-
cess); see [10, 29], e.g., for generalities, and [32] for related numerical treatments. As
is known, the solution to (3) is a n-dimensional stochastic process, β(t,ω), where ω,
usually not indicated explicitly in probability theory, denotes the “chance variable”,
which ranges on an underlying abstract probability space. The drift vector, b, and
the diffusion matrix, σ, in (3), are related to the coefficients of the elliptic operator in
(1) by b = (b1, . . . , bn)T , and σσT = a, with σ = {σi j }i, j=1,...,n , a = {ai j }i, j=1,...,n .

The representation in Eq. (2) can be generalized to deal with problems on bounded
domains, say � ⊂ Rn , where given boundary data u(x, t)|x∈∂� = g(x, t) of the
Dirichlet type are prescribed. Thus, the following representation holds, for the solu-
tion of the problem, being now continuous and bounded on � × [0, T ],

u(x, t) = E
[
f (β(t)) e− ∫ t

0 c(β(s),t−s)ds 1[τ∂�>t]
]

+E
[
g(β(τ∂�), τ∂�) e− ∫ τ∂�

0 c(β(s),t−s)ds 1[τ∂�<t]
]
. (4)

Here τ∂� denotes the first exit (or hitting) time of the path β(·), started at (x, t), when
∂� is crossed, and 1[τ>t] is the characteristic function, which takes the value 1 or 0,
depending whether τ∂� is or is not greater than t .

The solution to the linear inhomogeneous problem

∂u

∂t
= Lu − c(x, t)u + F(x, t), (5)

where F(x, t) is a bounded continuous function of x and t , can also be represented
probabilistically, using the related Green function, which, in turn, can be represented
as above, being the solution to the associated homogeneous problem (e.g., see [3,
4]).
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Fig. 1 A sketchy diagram illustrating the main steps of the algorithm in 2D: The figure on the
left shows how the domain decomposition is done in practice. The figure on the right shows the
points where the solution is computed probabilistically; these are used afterwards as nodal points
for interpolation

2.3 The Numerical Method

The algorithm consists of three steps. To illustrate how it works, in Fig. 1 a sketchy
diagram is plotted where such steps are shown for a two-dimensional problem. The
first step consist in computing the solution at a few points by a probabilistic Monte
Carlo-type method, based on averaging over certain random paths. This is done on
some chosen interfaces, located inside the space-time domain D := � × [0, T ],
where � ⊂ Rn . In the following, such interfaces are obtained, for simplicity,
partitioning the domain into subdomains as Di := [xi−1, xi ] × �0 × [0, T ], being
�0 ⊂ Rn−1. For instance, in R2 this corresponds to divide the domain in slices
where the interfaces are parallel to y-axis. For complex domains, a proper parti-
tioning algorithm may be employed to define such interfaces. Once the solution has
been computed, the second step is interpolating on such points, considered as inter-
polation nodes, thus obtaining continuous approximations of interfacial values of
the solution. The third step, finally, consists in computing the solution inside each
subdomain, which task can be assigned to separate processors. This can be realized
resorting to local solvers, which may use classical numerical methods, such as finite
differences or finite elements methods.

2.3.1 Probabilistic Part

The purpose of this step is to compute the sought solution at a few single points, inside
the space-time domain. Computing the solution at a high number of points so as to
cover a full computational domain is also possible but is exceedingly expensive, even
though this approach could be pursued when the number of the available processors
is extremely high. This can be done assigning the task of computing the solution at
a set of points to different processors. The Monte Carlo method is, in fact, capable
of fully exploiting massively parallel architectures. Moreover, it is scalable to an
arbitrary number of processors as well as naturally fault tolerant.

When the parabolic equations are linear, a given number of random paths have to
be generated, which obey the SDE in (3), tracking them until they either touch the
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boundary for the first time or else reach a prescribed final time, t . The former case
occurs in initial-boundary value problems (e.g., with Dirichlet boundary conditions),
while the latter case occurs in both a purely initial value problem, and a initial-
boundary value problems. The solution to the equation at a given point, (x, t), can
then be obtained by means of the Feymann-Kac formula in (4) or (2). In practice, the
expected value is replaced by an arithmetic mean, since we must deal with a finite
sample size, N . An alternative strategy to evaluate the solution was proposed in [37]
for initial-boundary problems, which requires generating a random exponential time,
S, obeying the probability density P(S) = c exp (−cS) for every random path. Then,
depending on whether S < t or not, the given path β(t), contributes or not to the
solution. Therefore, the solution is computed as

u(x, t) = E[ f (β(t))]. (6)

In practice, the expected value abovemust be replaced necessarily by a finite sum, and
moreover the stochastic paths are actually simulated resorting to suitable numerical
schemes. Thus, approximately,

u(x, t) = 1

N

N∑
j=1

f (β∗
j (t)), (7)

where N is the sample size, and β∗ is the stochastic path with discretized time. Such
a discretization procedure unavoidably introduces two sources of numerical error.
The first one is the pureMonte Carlo statistical error, which it is known to be of order
O(1/

√
N ) when N goes to infinity. The second error is due to the fact that the ideal

stochastic path, β j (·), has to be approximated, discretizing time, by some numerical
scheme yielding the paths β∗

j (·). The truncation error made in solving numerically
the stochastic differential equation (3), obviously depends on the specific scheme
chosen, see [32], e.g. Among these are the Euler scheme, which was used here to
simulate numerically Eq. (3). Such scheme is well known to have a truncation error
of order O(�tα), where α = 1/2 or α = 1, understood in the “strong” or “weak”
sense, respectively [32].

For the case of a boundary-value problems, a new source of numerical error
should be taken into account. In fact, for the purpose of illustration let us consider
theDirichlet problem for the one-dimensional heat equation, in presence of a constant
sink term, c > 0,

∂u

∂t
= ∂2u

∂x2
− cu, a < x < b, t > 0

u(a, t) = 0, u(b, t) = 0

u(x, 0) = f (x). (8)

The solution can be computed as
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Fig. 2 The three possible
scenarios for a random path,
for the one-dimensional
problem in (8). In (1), the
random time is greater than
the final time, T ; in (2), the
random time turns out to be
smaller than T ; in (3), the
first exit time is smaller than
both the random and the final
time

u(x, t) = 1

N

N∑
j=1

f (β∗
j (t))1[Sj>τ�]. (9)

In Fig. 2, we sketched the three possible scenarios the random paths β∗
j (t) can

undergo. Note that for the random paths of the type labelled with (3) in Fig. 2, it is
required to evaluate precisely the first exit time out of the boundary. Such a task is
however by far nontrivial, since τ∂�, in general, will be estimated numerically, and
hence will be affected by numerical errors. Indeed, numerical experiments show that
the error in estimating it may dominate over the other sources of numerical errors,
and is therefore of paramount importance to assess accurately such a quantity.

In practice, the probability that a given approximate path exits the boundary
between two consecutive time steps, is nonzero, and then it is possible that the
true exit time might be systematically overestimated. This circumstance has been
pointed out in several occasions, see, e.g., [12, 36, 41].

In [26], it was estimated that, due to the presence of boundaries, the weak con-
vergence of the naive Euler scheme in evaluating (9) is reduced to O(�t1/2), being
�t the time step used in solving numerically the SDE (3). To reduce such an error
(ideally, to recover the convergence order achieved in the absence of boundaries), it
becomes crucial to evaluate accurately the first exit time, adopting suitable numerical
strategies.

Among the various possibilities considered in the literature, we chose to imple-
ment that proposed in [34] for one-dimensional problems, which is based on a the-
oretical approximation of the exit probability. To solve two-dimensional problems
on the square, the value of the exit probability on � has been taken as the maxi-
mum among the four hitting probabilities that a trajectory first exits the four possible
boundary-sides. This consists on an approximation of the true two-dimensional exit
probability, but it suffices in order to achieve a numerical error now well below the
statistical error.
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In fact, for general n−dimensional diffusion processes, there exist other inter-
esting alternatives to approximate the first exit time. In [16, 36], Buchmann and
Petersen presented an algorithm to simulate stopping diffusion processes to obtain
again weak order one using the Euler scheme. More recently, Gobet and Menozzi
proposed in [27] a new simpler and computationallymore efficient approach, of weak
order o(�t1/2). The idea consists of stopping the simulation of discrete paths gen-
erated by means of the Euler scheme, when such paths exit through a conveniently
modified domain, shrinking (or shifting) the boundary of � in the direction of the
inward normal. The amplitude of such shrinking (or shifting) depends on, among
other values, the diffusion coefficient of the process and the square root of the time
step used in the numerical scheme. Given the general applicability and simplicity of
this approach, it is specially convenient when dealingwithmore complex geometries.

As mentioned before, for the linear case, in order to evaluate the probabilistic rep-
resentation we resort to numerical simulations of the Monte Carlo type, considering
a finite size sample, N . In practice, we replace the expected value with an arithmetic
mean, which is known to provide the best unbiased estimator [28]. The error made
in doing so is statistical in nature and of the order of N−1/2.

Finally, a carefully analysis of the computational cost associated to this part of
the algorithm is provided in the next section, when dealing with general semilinear
problems.

2.3.2 Interpolation in Space-Time

Let assume that we have already computed the values of the sought solution at some
points on the interfaces x = xi , by the previous Monte Carlo approach. These are
the points (xi , y j , tk), where y j ∈ �0 ⊂ Rn−1, for every fixed i , and very few j’s
and k’s. A number of numerical schemes can be adopted to interpolate in the n − 1
dimensional space �0. The simplest method of obtaining multivariate interpolation
is to consider a univariate method and derive from it a multivariate method by tensor
product. In practice, given n − 1 set of points, the tensor product interpolation finds
the corresponding interpolation coefficients solving repeatedly univariate interpola-
tion problems as described in [20]. For the one-dimensional examples given in this
section we used the Chebyshev polynomials, while for two-dimensional examples, a
tensor product interpolation based on cubic splines was adopted [9]. Here the nodal
points are uniformly distributed on�0, and a not-a-knot condition has been imposed,
which means imposing continuity of the third derivative at the boundary. When the
number of nodal points, n, is the same along each dimension, interpolating at a single
point (y j , tk) requires n + 1 spline calculations to obtain the spline coefficients, and
then evaluating the spline value at n + 1 points. The computational cost for calcu-
lating the spline coefficients is known to be of order O(n), while for evaluating the
spline value it is O(log n). The interpolation error when the interpolating function
is sufficiently smooth (C8 at least) is of order of O(h4 + l4) [40], where h and l are
the widths of the interpolating grid in the y and t axes, respectively.
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2.3.3 Local Solver

Once that continuous interfacial approximations of the solution have been obtained
upon interpolation on the previously computed nodes (byMonte Carlo), we can solve
the original problem on each subdomain, Di , independently of each other, since a full
decoupling has been realized. Hence, the numerical treatment on each subdomain
can be accomplished by a local solver, which can also be different from all the others.
In the numerical examples below, we used a solver based on the LU factorization.

2.3.4 Sources of Parallelization

We stress that in practice there are three sources of parallelization, namely (1) the
Monte Carlo generation of internal node functional values (even each single sample
can be ran on independent processors), (2) the interpolation part (the interpolation on
each interface can be accomplished independently), and (3) the domain decomposi-
tion solution (that can be assigned to independent local solver). Moreover, each of
such three stages enjoyed a natural fault tolerant property: (1) if a number of proces-
sors fail in the Monte Carlo simulations, it will be enough to ignore the result from
them using the remaining samples. Hence, at a price of a small additional errors, the
algorithm will still provide meaningful results. (2) Failure of processors computing
interpolated values of the solution on some interfaces may only imply to neglect,
temporarily, the solution on those subdomains having such interfaces as part of their
boundary. (3) Failure of processors responsible for the numerical solution on some
sub-domains can also be temporarily neglected, while the solution computed by the
local solvers on the remaining sub-domains will be computed correctly. Note that on
the interfaces and on the sub-domains where the processors failed, the solution can
be computed restarting again the algorithm.

For numerical examples, see [3].

2.4 Summary

We have described the PDD algorithm for solving linear parabolic partial differential
equations in any space dimension, where a domain decomposition approach is used
to split the given space-time domain into as many subdomains as the number of
available processors. The solution at the interfaces that separates the subdomains are
computed after interpolating on the nodal points for which the solution is previously
obtained probabilistically via Monte Carlo. Such probabilistic computation consists
of evaluating averages on suitably generated random paths, without the need of
deploying a computational mesh. Moreover, every available processor is devoted to
compute the solution at one of such interfaces, without introducing communication
nor synchronization among other processors. This fact is of paramount importance,
because once the solution on the interfaces has been independently computed, fully
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in parallel, the remaining task of evaluating the solution inside each subdomain turns
out to be totally independent as well, resulting in a complete, communication- and
synchronization-free, fully scalable algorithm.

3 Semilinear Parabolic Problems

3.1 Introduction

Probabilistic representations do exist for some elementary semilinear parabolic equa-
tions. Indeed, in [33] H.P. McKean derived the representation formula

u(x, t) = E[
kt (ω)∏
i=1

f (xi (ω, t))] (10)

for the KPP equation

ut = uxx + u(u − 1), x ∈ R, t > 0, (11)

subject to the initial value u(x, 0) = f (x) (see also [25, 35, 38]), where kt (ω) rep-
resents a time-dependent random variable that accounts for the number of branches
of the underlying branching diffusion process. Later, we have found a similar rep-
resentation (see also [3, 4]) for the solution of a more general semilinear parabolic
problem, given by

∂u

∂t
= Lu − cu +

m∑
j=2

α j u
j , (12)

where L is a general linear elliptic operator, say L := ai j (x, t)∂i∂ j + bi (x, t)∂i ,
with continuous bounded coefficients, m ≥ 2 is an integer, α j ≥ 0,

∑m
j=2 α j = 1,

and c is a positive constant. Such a representation is based on generating branching
diffusion processes, associated with the elliptic operator in Eq. (12), and governed
by an exponential random time, S, with probability density p(S) = c exp(−cS).

In this section, we explain how the probabilistic representation was extended to
deal with a wider class of semilinear parabolic problems (see also [5]), whose general
form is given by

∂u

∂t
= Lu + f (u, x, t), x ∈ Rn, t > 0

u(x, 0) = g(x), (13)

where



The PDD Method for Solving Linear, Nonlinear, and Fractional PDEs Problems 249

f (u, x, t) =
m∑
j=2

c j (x, t)u
j ,

where the c j (x, t) are continuous given functions. It is worth to observe that this
generalizes further the previous representation in (12), explained in [3, 4], since
it accounts for the following aspects: A constant potential term such as −cu is
not required anymore; the coefficients multiplying the nonlinear terms, c j (x, t),
can be chosen arbitrarily, hence overcoming the constraint imposed in the previous
representation consisting in

∑m
j=2 c j (x, t) = 1, and finally the initial data g(x) may

now be chosen negative, or greater than 1.
Here it is the outline of the section. First, the generalized probabilistic re-

presentation is presented. Then, a qualitative study of the numerical errors is accom-
plished analyzing a few relevant test examples. Later, some numerical examples
are shown, where the high efficiency of the PDD method comparing with classical
methods is illustrated. Finally, we summarize the more relevant findings to close the
applicability of the PDD method to parabolic problems.

3.2 A Generalized Probabilistic Representation
for Semilinear Parabolic Problems

In order to generalize the class of parabolic problems amenable to a probabilistic
representation in terms of branching diffusion processes, it becomesmore convenient
to rewrite Eq. (13) in an integral form. This can be done readily resorting to the
Duhamel principle [21] for inhomogeneous initial-value parabolic problems, and
yields

u(x, t) =
∫

Rn

dy g(y) p(x, t, y, 0) +
∫ t

0

∫

Rn

ds dy f (u(y, s), y, s) p(x, t, y, s),

(14)
where p(x, t, y, τ ) is the associated Green’s function, satisfying the equation

∂ p

∂t
= Lp, x ∈ Rn, t > τ

p(x, τ , y, τ ) = δ(x − y). (15)

The main difference with the previous representation obtained in (12) rests on the
absence of the constant potential term −cu(x, t). Such a term was crucial, since it
allowed to obtain a probabilistic representation based on generating branching diffu-
sion processes governed by an exponential random time, S, with density probability
p(S) = c exp(−cS) (see previous sections, and [3, 4]). In the following we describe
the main strategy derived in [5] (referred to as Strategy B), capable to overcome such
a constraint generalizing further the aforementioned representation.
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3.2.1 Probabilistic Representation

A way to obtaining a probabilistic representation for the problem in Eq. (13)
consists in sampling both terms of the integral equation (14), by introducing a
two-point discrete random variable ξ taking the values 0, and 1 with probability
P(0) = q, P(1) = 1 − q. Therefore, the integral equation (14) can be rewritten as
follows,

u(x, t) = q
∫

�

dy g̃(y) p(x, t, y, 0)

+ (1 − q)

∫ t

0

∫

�

ds dy
m∑
j=2

c̃ j (y, t − s)u j (y, t − s) p(x, s, y, 0), (16)

where g̃(x) = g(x)/q, and c̃ j (x, t) = c j (x, t)/(1 − q). The probabilistic represen-
tation can be readily found and has the form

u(x, t) = E
[
g̃(β(t))δ(ξ)

]

+ E
[
η(t)c̃′

α(β(t S), t (1 − S)) uα(β(t S), t (1 − S))δ(ξ − 1)
]
, (17)

where the expectation is given by the measure generated by the following random
variables: the diffusion processes βi (·), the time S, a random time uniformly dis-
tributed; and α, a discrete random variable taking on the values between 2 and m
with equal probability p = 1/(m − 1), c̃′

α = (m − 1)c̃α, and η(t) = t . The equation
above is not in a closed-form but it can be recursively expanded, to yield

u(x, t) = E
[
g̃(x0(t)) δ(ξ0)

]

+E

[
η(t)c̃′

α1
(y1(t S0), t (1 − S0))

α1∏
i=1

g̃(xi (t (1 − S0)) δ(ξi )δ(ξ0 − 1)

]

+E
[
η(t)η(t (1 − S0))c̃

′
α1

(y1(t S0), t (1 − S0))

× c̃′
α2

(y2(t (1 − S0)S1), t (1 − S0)(1 − S1))
α1∏
i=2

g(xi (t (1 − S0)))) δ(ξi )

×
α1+α2+1∏
j=α1+1

g(x j (t (1 − S0)(1 − S1)))δ(ξ j )δ(ξ1 − 1)δ(ξ0 − 1)

⎤
⎦ + · · · , (18)

where xi and y j corresponds to the position of the i-th branch at the final time t and
the position of the j-th splitting event, respectively.

While in Eq. (17) the expectation is taken with respect to the measures generated
by β, ξ andα (which would be enough if consisted of a closed-form), the expectation
in Eq. (18) is rather taken from the underlying measure corresponding to β (i.e., by xi
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and yi ), again, and the infinite sequence of random variables ξ0, ξ1, ..., andα1,α2, ...,
that the determine the final configuration of every random tree generated.

Therefore, as we illustrate next, this solution can be obtained as the expectation
over suitable random trees of a givenmultiplicative functional of the initial condition,
being given now as follows:

u(x, t) = E

[
Ne(ω)∏
i=1

η(t S̄i (ω))cαi (ω)(yi (ω), t S̄i (ω))

k(ω)∏
l=1

g(xl)

]
. (19)

Here k(ω) and Ne(ω) are random variables that represents the number of branches at
final time t, and the number of splitting events obtained when generating a particular
random tree, respectively. Note that P{Ne(w) = i} = (1/2)i . In [4], it is shown
that P(k,m), the probability of finding a random tree with k branches, being m the
number of children, is given by

P(k,m) = qk(1 − q)Ne 1

m Ne + 1

(
m Ne + 1

Ne

)
. (20)

By S̄ we denote the corresponding global random time obtained by summing con-
veniently the random times Si according to the specific structure of the generated
random tree. It is worth to observe that such trees are used as a tool to construct the
structure representing a given partial contribution to the solution, allowing afterward
to follow easily how the arguments of the functions are exchanged when solving
recursively Eq. (17).

To illustrate how this representation can be implemented in practice for solving a
particular problem, let consider the following equation,

∂u

∂t
= ∂2u

∂x2
+ u2, x ∈ R, t > 0 (21)

u(x, 0) = f (x). (22)

From Eq. (17), the probabilistic representation is given by

u(x, t) = E
[
g̃(β(t))δ(ξ)

] + E
[
η(t) u2(β(t S), t (1 − S))δ(ξ − 1)

]
, (23)

or in a more compact format, using Eq. (19) for the expectation value over random
trees of a given multiplicative functional in Eq. (23), by

u(x, t) = E

[
Ne(ω)∏
i=1

η(t S̄i (ω))

k(ω)∏
l=1

g(xl)

]
. (24)

Every random tree is built generating a sequence of interconnected binary random
variables, ξi , branching off from the previous one as follows: Let ξ1 the random



252 Á. Rodríguez-Rozas et al.

variable associated to the root of the tree. Only when ξ1 takes value 1 with probability
P(1) = 1 − q, two new random variables denoted by ξ2,3 (child nodes of the root),
are created. These new variables proceed further creating other nodes governed by
the same rule, until no random number ξi takes anymore the value 1. At this point
the procedure is concluded, giving rise to a random tree characterized by k branches
or leaves, and Ne splitting events.

The nodes of the tree are labeled in binary format according to their ancestors as
follows: A given node with label [a0a1a2...aN ], where ai = 0, 1, is connected to the
set of nodes {[a0], [a0a1], [a0a1a2], . . . , [a0a1a2 · · · aN−1]}. The global time random
variable S̄ associated to a given tree with k branches is given by

S̄ =
2k−1−1∏
i=1

S
γ j

j , γl =
2k−1−1∑
j=l+1

ν j 〈 j |l〉, l = 1, . . . , 2k−1 − 1 (25)

where νl is 0, or 1 depending on whether the tree contains or not the node l. The
function 〈·|·〉 is defined as follows,

〈 j |l〉 :=
{
1 ifT [l]

j = l
0 otherwise.

, (26)

where both, j and l are numbers written in binary format, and T [l]
j is an operator that

truncates the number j to their most significant [l] digits, where [l] is the number of
digits of l. By example, let j = [a0a1a2...aN ], then T [l]

j = [a0a1...a[l]−1].
Figure3 shows the different random trees obtained with k = 4, and Ne = 3, and

their corresponding labels according to the rule defined above.
Finally, note that in practice, a series arises when evaluating the solution of Eq.

(18) byMonte Carlo, when attempting to summing up the partial contribution of trees
of different branches. This series is infinite but in practice, we always end up with
a finite series because the probability of obtaining trees with an increasing number
of branches is increasingly smaller and therefore, their contribution is negligible
up to defining a tolerance for the numerical error. In the case of asymptotic divergent
series that may appear, we resort to approximation techniques such as the Padé
approach [11, 13], to approximate conveniently the sum of the aymptotic series.
In this method, called Padé approximation, the idea is to replace the asymptotic
divergent power series by a sequence of rational functions converging towards the
solution u, as follows: Each rational function, PN

M , given as a ratio of two polynomials
of degree N and M, is constructed such that the first N + M + 1 terms of its series
expansion match the first M + N + 1 terms of the divergent power series. The hope
is that PN

M → u as N , M → ∞.
For the computational complexity and numerical results, we refer to the reader to

[4].
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Fig. 3 Configuration diagram for the case of 4 branches and 3 splitting events. Here Si is a ran-
dom time uniformly distributed between the previous generated time, and the final time, T . The
corresponding labels i of the random time Si are defined according to the rule explained in the text

3.3 Summary

The class of semilinear parabolic problems amenable to a probabilistic solution was
expanded by introducing suitable generalized random trees. The probabilistic com-
putation consists of evaluating averages on the generated random tree, which plays a
role similar to that of a randompath in linear problems. The new representation allows
treatment of semilinear problems without a potential term, with arbitrary coefficients
multiplying the nonlinear term, and arbitrary initial data, including negative definite
and greater than one. The implementation requires computing the solution through a
series where the coefficients represent the partial contribution to the solution coming
from generated random trees with any number of branches. Summation of divergent
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asymptotic series expansions cannot be summed simply by a sequence of partial
sums. Nevertheless, numerical experiments show that (see [4], in many cases, the
asymptotic series can be approximated quite accurately by the Padé approximant
[11, 13].

The new probabilistic representation has been used successfully as a crucial ele-
ment for implementing a suitable probabilistic domain decomposition method. In
fact, at the timewhen these simulations were conducted, numerical examples showed
the excellent scalability properties of the PDD algorithm in large-scale simulations,
where up to 512 processors were used on a high performance supercomputer.

4 The Vlasov-Poisson System for Plasma Physics

4.1 Introduction

To illustrate the potentiality behind these probabilistic techniques for solving numer-
ically transport equations, in this section the method is particularized to the Vlasov-
Poisson system of equations. We have considered merely periodic boundary condi-
tions in space.This has beendone for simplifying asmuch as possible the probabilistic
representation of the solution, and thus to help the reader to understand easily such
a representation. It is theoretically well-known [29, 35], that dealing with general
boundary conditions requires estimating various stochastic quantities, which in turn
introduces new sources of numerical errors, that we tried to avoid at this stage. The
ultimate goal of this section is to show the feasibility of this method as a comple-
mentary method capable to speed up the Vlasov-Poisson simulations in a parallel
environment, and this was done simplifying the nature of the boundary data as much
as possible. The generalization of the method to situations where more complicated
geometries and boundary conditions are imposed, is left for a future work.

Being the boundary conditions periodic in space, it becomes natural to solve
numerically the problem in Fourier space for the spatial coordinates. Moreover,
it turns out that for dealing accurately with the filamentation phenomenon, it is
convenient to analyze also the problem in Fourier space for velocities [23]. That
is why in practice the numerical method to be presented in this section is fully
analyzed in Fourier space. Apart from such a mathematical reason, in some practical
experimental situations one could be interested not to know the distribution function,
but rather the spectrum energy or any other related quantities, being therefore natural
to investigate the problem in Fourier space. Furthermore, while the probabilistic
representation introduced in this section was obtained in Fourier space, there already
exists representations in configuration space [43], which may potentially be used to
generalize further what has been done in this section.

This section is organized as follows. Section 4.2 concerns the probabilistic rep-
resentation for the Vlasov-Poisson system of equations. Here such a representation
is derived in the Fourier space for arbitrary dimensions, and the validation of the
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representation is done analyzing the classical linear Landau damping. In Sect. 4.3, it
is explained how the probabilistic representation can be used in practice, and which
are the associated numerical errors. First the algorithm is described, and analyzed
the numerical error, then the computational cost is estimated, and finally several
numerical tests consisting in typical problems considered often in the literature are
given, focusing in both, the accuracy and performance of the method. To conclude
we summarize the main results and discuss potential directions for future research.

4.2 Probabilistic Representation for the Vlasov-Poisson
System

The Vlasov-Poisson system describes the temporal evolution of charged particles
subject to the self-generated electric field created by the charged particles inside the
plasma. It is actually a system of equations, consisting of a kinetic equation, the
Vlasov equation which describes the transport of charged particles, along with the
classical Poisson equation for electrostatic potential. The solution of the equation
is the distribution function of particles in the phase space, where the independent
variables are space, x , velocity, v, and time t . Consider the two-species Vlasov-
Poisson equation in d dimensions conveniently adimensionalized,

∂ f (1)

∂t
+ v̄ · ∇x̄ f

(1) − ∇φ · ∇v̄ f
(1) = 0,

∂ f (2)

∂t
+ v̄ · ∇x̄ f

(2) + 1

m2
∇φ · ∇v̄ f

(2) = 0,

�x̄φ = −
[∫

f (1)d v̄ −
∫

f (2)d v̄

]
, (27)

along with a 2π-periodic boundary condition for the space variables, f (i)(x̄, v̄, t) =
f (i)(x̄ + 2π, v̄, t), decay to zero as |v̄| → ∞ with sufficiently high rate for velocity
variables, and suitable initial conditions for both, f (i), and the space average over
a period of the electric field Ē = −∇φ. In [31] it has been proved that in order
the Vlasov-Poisson equations provide a complete description of the plasma, such
a quantity should be kept fixed to zero for all time. Finally, being f (i) a density
probability, it holds that

∫ 2π
0

∫ ∞
−∞ dx̄ d v̄ f (i) = 1.

Since the prescribed boundary condition for space variables are periodic, it is
more natural to analyze the problem in Fourier space. Moreover, it turns out to be
more convenient to transform as well to the Fourier space for velocities, in order
to mitigate the well known filamentation effect in velocity space observed in the
solution for sufficiently long times [23]. Because of the periodicity in the space
variables, the transformation in space is discrete, while for velocities is continuous.
Then, transforming Eq. (27), yields
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∂F (1)
k̄

∂t
− k̄ · ∇ξ̄F

(1)
k̄

− k̄ · ξ̄ φ̂k̄ ∗ F (1)
k̄

= 0,

∂F (2)
k̄

∂t
− k̄ · ∇ξ̄F

(2)
k̄

+ 1

m2
k̄ · ξ̄φ̂k̄ ∗ F (2)

k̄
= 0,

−|k̄|2φ̂ = −
[
F (1)
k̄

(0, t) − F (2)
k̄

(0, t)
]
, |k̄| �= 0, (28)

where

F (i)
k̄

(ξ̄, t) =
∫

Rd

d v̄

∫ 2π

0
dx̄ e−i ξ̄·v̄e−i k̄·x̄ f (i)(x̄, v̄, t), i = 1, 2, (29)

φ̂k̄(t) =
∫ 2π

0
dx̄ e−i k̄·x̄φ(x̄, t). (30)

Here k̄, and ξ corresponds to the conjugate variables of x̄ , and v̄, respectively, being
k̄ a discrete variable, while ξ is continuous, and ∗ denotes the convolution operator
for k̄. Note that passing to the Fourier space becomes crucial to be able to reduce the
system of equations into a single one. Moreover, this is mandatory for the purpose of
finding a probabilistic representation for the solution of Eqs. (27), applying directly
the strategy described in [6] for the semilinear transport equation. The first step
towards the probabilistic representation requires rewriting the system of equations
(28) in integral form, and is given by

F (i)
k̄

(ξ̄, t) = F (i)
k̄

(ξ̄ + t k̄, 0) + ρi

∫ t

0
ds

∞∑

k̄ ′=−∞
k̄ ′ �=0

k̄ ′ · (ξ̄ + sk̄)

|k̄ ′|2

×[F (1)
k̄ ′ (0, t − s) − F (2)

k̄ ′ (0, t − s)]F (i)
k̄−k̄ ′(ξ̄ + sk̄, t − s), (31)

where ρ1 = 1, and ρ2 = −1/m2. Both, the static and dynamic probabilistic repre-
sentation can be derived similarly to the case of the semilinear transport equation.
Here we describe the dynamic representation, since the static one is straightforward.
Equation (31) can be written probabilistically as follows,

F (i)
k̄

(ξ̄, t) = E
[
F̃ (i)
k̄

(ξ̄ + t k̄, 0)δ(ζ)
]

+E
[
η(t) g(i)(k̄, k̄ ′, ξ̄, S) F (1)

k̄ ′ (0, t − S) F (i)
k̄−k̄ ′(ξ̄ + Sk̄, t − S)δ(ρ − 1)δ(ζ − 1)

]

+E
[
η(t)g(i)(k̄, k̄ ′, ξ̄, S) F (2)

k̄ ′ (0, t − S) F (i)
k̄−k̄ ′(ξ̄ + Sk̄, t − S)δ(ρ − 2)δ(ζ − 1)

]
,

(32)

where
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g(1)(k̄, k̄ ′, ξ̄, S) = 2ρ1
k̄ ′ · (ξ̄ + Sk̄)

(1 − q)p(k̄)|k̄ ′|2 ,

g(2)(k̄, k̄ ′, ξ̄, S) = −2ρ1
k̄ ′ · (ξ̄ + Sk̄)

(1 − q)p(k̄)|k̄ ′|2 , (33)

and F̃ (i)
k̄

= F (i)
k̄

/q. Here four random variables have been introduced, those are: ρ is
a two-point, ρ = 1, 2, discrete random variable equally distributed with probability
1/2; S a continuous random variable uniformly distributed between 0 and t , and
therefore η(t) = t ; k̄ ′ is a discrete random variable with density probability p(k̄ ′),
and finally ζ, which takes the values 0, and 1, with probability P(0) = q, P(1) =
1 − q, respectively. E denotes the expected value taken with respect to the density
probabilities corresponding to all those four random variables.

In [24], the authors proposed a probabilistic representation of the solution of
the system in (27). However, such a representation is rather stringent for practical
purposes, since it requires to fulfill strong constraints in terms of the allowed initial
data and time. Moreover, the density probability p(k̄ ′) should be carefully chosen,
hindering the task of finding a valid density for any dimension. This is related to
the problem of finding admissible majorizing kernels, see [15]. Indeed, it can be
readily proved that the majorizing kernel chosen in [24] is no longer valid in one
dimensional problems. However, this does not mean that no solution can be found
for the system of equations (27), but rather that the numerical method based on such
a probabilistic representation gives rise to a divergent series, which requires further
numerical treatment. In fact, in this section we show that relaxing the requirements
concerning the initial condition and time, the solution is still smooth, and as explained
in the previous section, we resort to Padé approximant [11, 13] for approximating
the asymptotic expansion of the solution given as divergent series. Since the density
probability p(k̄ ′) can now be chosen freely among a suitable class of functions, this
can be used to reduce the statistical error done computing numerically the solution.
Typically, this corresponds to the well known variance reduction techniques often
used in Monte Carlo simulations.

Note that Eq. (32) is indeed a probabilistic representation of the Vlasov-Poisson
system of equations (in the sense defined previously for the transport equations),
and therefore, it can be used for computing the solution at a single point (k̄, ξ̄, t),
without the need of any computational mesh. This can be done generating suitable
random trees governed by the densities probabilities mentioned above, and taking the
expected value of a correspondingmultiplicative functional. For a numerical purpose,
the associated numerical algorithm turns out to be specially costly for computing the
solution in the whole computational domain, since a large sample size is typically
required to avoid a large statistical error. However, an alternative does exist, and this
will be addressed in Sect. 4.3.
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4.2.1 Validation of the Representation for the Linear Theory

In order to validate analytically the probabilistic representation derived above, we
consider the classical linear Landau damping. This will be done linearizing con-
veniently the system (27) around the equilibrium solution. Let look for a density
function according to the Ansatz

f (i)(x̄, v̄, t) = f (i)
0 (v̄) + ε f (i)

1 (x̄, v̄, t) + O(ε2),

φ(x̄, t) = φ0 + ε φ1(x̄, t) + O(ε2), (34)

where ε � 1. Note that φ0 is intentionally set to be constant to satisfy the constraint
mentioned above concerning the space average over a period of the electric field.
Inserting (34) into (27), we obtain to order ε

∂ f (1)
1

∂t
+ v̄ · ∇x̄ f

(1)
1 − ∇φ1 · ∇v̄ f

(1)
0 = 0,

∂ f (2)
1

∂t
+ v̄ · ∇x̄ f

(2)
1 + 1

m2
∇φ1 · ∇v̄ f

(2)
0 = 0,

�x̄φ1 = −
[∫

f (1)
1 d v̄ −

∫
f (2)
1 d v̄

]
, (35)

with initial data f (i)
1 (x̄, v̄, 0) = A gi (v̄) cos(k1x), i = 1, 2, 2π-periodic boundary

conditions in x̄ , and gi (v) decaying to zero as |v̄| → ∞ with sufficiently high rate.
Applying identical mathematical treatment as done previously for the fully Vlasov-
Poisson systemof equations, the following integral equation for the Fourier transform
F (i)
k̄

(ξ̄, t) of f (i)
1 is obtained,

F (i)
k̄

(ξ̄, t) = F (i)
k̄

(ξ̄ − t k̄, 0)

+ρi

∫ t

0
ds

k̄ · (ξ̄ − sk̄)

|k̄|2 [F (1)
k̄

(0, t − s) − F (2)
k̄

(0, t − s)]ĝi (ξ̄2 − sk̄). (36)

Here ĝi is the corresponding Fourier transform of gi (v̄). In the following let
consider ξ̄ = 0, and for simplicity we assume k̄ = (k1, 0, 0). The Fourier transform
of the x-component of the electric field is given by, Êx (k1, t) = − i

k1
[F (1)

k1
(0, t) −

F (2)
k1

(0, t)]. A recursive solution can be obtained for Êx (k1, t) using Eq. (36), and
yields,

Êx (k1, t) = −i
1

k1
�(k1, t) +

∞∑
j=1

(−1) j η j (k̄, t). (37)

Here η j is given by
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η j (k1, t) = (−i) j

k j
1

∫ t

0
ds1 s1

∫ t−s1

0
ds2 s2 · · ·

∫ t−∑ j
l=1 sl

0
ds j s j

×�(k1, t −
j∑

l=1

sl)ĥ(−s1 k1)ĥ(−s2k̄) · · · ĥ(−s j k̄), (38)

where �(k1, t) = F (1)
k1

(−t k1, 0) − F (2)
k1

(−t k1, 0), and ĥ(−t k1) = [ĝ1(−t k1) +
1
m2
ĝ2(−t k1)]. Note that η j can be obtained recursively from η j−1 as follows

η j (k1, t) =
∫ t

0
ds s η j−1(k1, t − s)ĥ(−s k1) (39)

Multiplying Eq. (37) by ĥ(−s k1), and integrating with respect to s, it holds that

∫ t

0
ds s Êx (k1, t − s)ĥ(−s k1) = −Êx (k1, t) − i

1

k1
�(k1, t), (40)

The integral equation above turns out to be a Volterra equation of the second kind,
whose solution can be obtained readily by means of the Laplace transform. In fact,
Laplace transforming Eq. (40), we obtain

˜̂Ex (k1, p) = −i
1

k1

�̃(k1, p)

D(k1, p)
, (41)

where D(k1, p) is given by

D(k1, p) = 1 − 1

k1

d ˜̂h
dp

(42)

The solution can be obtained taking the inverse Laplace transform, and is given
formally by

Êx (k1, t) = 1

2πi

∫ σ+i∞

σ−i∞
˜̂Ex (k1, p)e

p t dp, (43)

where integration is taken along a line parallel to the imaginary p-axis and to the
right of all singularities of the integral. Then, it holds

Êx (k1, t) =
∑
j

R j e
p j t , (44)

where p j are simple poleswhere the function D(k1, p) vanishes, and R j is the residue

of ˜̂Ex at p j . Since the poles are in general complex, Eq. (44) can be rewritten as
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Êx (k1, t) =
∑
j

R j e
γ j t+iω j t , (45)

being p j = γ j + iω j . Note that if γ j < 0, all terms are exponentially damped, and
the electric field behaves as a damped oscillator, where γ j , andω j denote the damping
rate, and the frequency of the oscillation, respectively. In the following some specific
examples are given:

(a) Landau damping with homogeneous background. Let consider only electron
motion, assuming that the ions form a static, homogeneous, neutralizing back-
ground, that is m2 = ∞, and the initial condition f (2)

1 does not depend on x̄ .
Suppose that the initial condition for the electrons is the maxwellian distribution,
g1(v̄) = (α/π)d/2 exp (−αv̄2), that is

f (1)
1 (x̄, v̄, 0) = A g1(v̄) cos(k1x). (46)

Then, the function D(k1, p) takes the form

D(k1, p) = 1 − α

k21
Z ′(ζ), (47)

where ζ = i
√

αp/k1, and Z(ζ) the plasma dispersion function. Note that this repro-
duces exactly the classical result for the dispersion relation using the well-known
linear Landau theory [19].

(b) Landau damping with heterogeneous background. Now we take into account
also the ion dynamics. For simplicity, let assume that both initial conditions for ions
and electrons are maxwellian distributions for velocities, given by

f (i)
1 (x̄, v̄, 0) = A

(αi

π

)d/2
e−α1v̄

2
cos(k1x), i = 1, 2 (48)

The function D(k1, p) reduces to

D(k1, p) = 1 − α1

k21
Z ′(ζ1) − 1

m2

α2

k21
Z ′(ζ2), (49)

where ζi = i
√

αi p/k1 i = 1, 2.Again, this coincides exactlywith the results obtained
using the classical linear Landau theory [19].



The PDD Method for Solving Linear, Nonlinear, and Fractional PDEs Problems 261

4.3 Evaluating Numerically the Probabilistic Representation
of Vlasov-Poisson

Hereweexplain in detail how theprobabilistic representation (32) canbeused in prac-
tice to compute numerically the solution of the Fourier-transformed Vlasov-Poisson
system, andwhich are the numerical errors done. For simplicity, in the following only
the 1-dimensional case and one specie of charged particles (electrons) moving in a
neutralizing homogeneous background charge (ions), has been considered. Equation
(31) can then further simplified by setting i = 1 and P(ρ = 1) = 1. Note that the
probabilistic representation for the Vlasov-Poisson system in (32) is not given in a
closed-form. Following the same strategy as explained previously for the case of the
transport equations, such an implicit equation can be solved recursively resorting to
the aforementioned hybrid probabilistic representation approach, which in practice
requires generating prescribed random trees governed by two random variables S,
and k ′.

Regarding numerical errors, recall that in general the convergence of the Padé
approximant can be affected by artificial poles present in the denominator of the
approximant, but not being own by the function to be approximated, see e.g. [11,
13].

Concerning the apparent robustness of the Padé approximant against the statistical
error affecting the coefficients of the series expansion, amain reason could be that the
solution of the test examples seems to be apparently locally Lipschitz. Thus, the error
made in computing the coefficients of the Padé approximant should be bounded. In
fact, in [44] it has been proved the following related theorem

‖ Pf − Pf ′ ‖≤ K ‖ c − c′ ‖, (50)

provided that ‖ c − c′ ‖≤ d. Here Pf , and Pf ′ are the Padé approximants of order
(m, n) in [a, b] of a given power series f and f ′ with coefficients c j , and c′

j respec-
tively, being ‖ c ‖= maxi≤i≤n+m |ci |, f locally Lipschitz, and K and d constants
depending only on ci and [a, b].

In closing, it is worth to observe that all errors described above may be alleviated
in any case by increasing conveniently the sample size N , and considering more
coefficients in the expansion in order to compute the Padé approximant.

4.3.1 Numerical Test Examples

Before analyzing the performance of our algorithmwhen ran in parallel,wegive in the
following somenumerical examples. These are chosen from the classical repertoire of
possible initial conditions traditionally used for testing numericalmethods developed
for Vlasov-Poisson system, and which describe certain phenomena well known in
Plasma Physics. The ultimate goal is to characterize the accuracy of the algorithm in
realistic cases.
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Fig. 4 Weak Landau
damping: damping rate for
different values of β.
Parameters are: A = 0.01
and M = 103

0 0.5 1 1.5 2 2.5 3 3.5 4

β

-2

-1.5

-1

-0.5

0

γ

Numerical
Linear theory

Fig. 5 Weak Landau
damping: oscillation
frequency for different
values of β. Parameters are:
A = 0.01 and M = 103
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Landau damping. Let consider the following initial condition

f (x, v, 0) =
(α

π

)d/2
e−αv2 [1 + A cos (k1 x)] , (51)

which in Fourier space, reads,

Fk(ξ, 0) = e− ξ2

4α [A/2 δ(|k| − k1) + δ(k)] (52)

The first numerical test deals with the so-called weak Landau damping, being the
perturbation parameter A chosen sufficiently small. Here the damping rate and the
oscillation frequency obtained numerically with our algorithm has been compared
with the results obtained by the linear theory theoretically derived in Sect. 4.2.1. In
Figs. 4 and 5, the damping rate and the oscillation frequency are shown for different
values of α, which is related so far to different values of the plasma temperature
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β, being β = 1/4α. Here A has been kept fixed to 0.01. The remarkable agreement
between the analytical linear theory and the numerical results allows us to safely
analyze more complicated situations such as the strong Landau damping, where the
aforementioned filamentation phenomenon is significantly more severe. Let con-
sider the same initial condition, but now choosing larger values of A, that is A = 0.5
for exploring the strong Landau damping regime. The numerical solution obtained
by the PDD method has been compared with the solution obtained when using an
implicit upwind finite-difference scheme with a very fine mesh. The initial evolution
of the mode k = 1 is shown in Fig. 6, showing the well-known filamentation phe-
nomenon: an initial profile smooth in velocities, and peaked around ξ = 0 in Fourier
space, evolves in time along the corresponding characteristics at constant velocity
given by k, that is Fk(ξ, t) = Fk(ξ − kt, 0). Thus, the solution propagates toward
higher values of |ξ|, proportionally fast to the value of |k|, therefore faster for shorter
wavelengths. Eventually this give rise to the development of small structures in the
velocity distribution. So it is observed that the filamentation and mixing of modes
appears strongly for long times in the nonlinear regime, and in the Fourier space,
specifically for large values of ξ. Therefore, for this case, it has been considered a
computational domain large enough in the ξ−dimension, despite in the figure it is
only shown a part of it. To see more clearly that the solution is closely in agreement
with the results obtained using other classical methods, the time evolution of the first
harmonic of the electric field obtained by the PDD method is shown in Fig. 7, being
qualitatively similar to the typical plots found in the literature [17, 30]. The solution
obtained by the PDD method was satisfactorily compared in [6] with that obtained
with an upwind implicit scheme with a very fine mesh. Here, �ξ has been kept fixed
to 10−2 for the local solver. Note again the perfect agreement between the solution
obtained by an upwind implicit scheme with a very fine mesh and our PDD method.
The absolute numerical error has been numerically computed and it turns out to be
or order of 10−2 in all simulations done.

Two streaming instability. Let consider the following initial condition, chosen for
analyzing the two streaming instability phenomenon,

f (x, v, 0) =
(α

π

)d/2
2α v2e−αv2 [1 + A cos (k1 · x)] , (53)

which in Fourier space reads

Fk(ξ, 0) = (1 − ξ2

2α
)e− ξ2

4α [A/2 δ(|k| − k1) + δ(k)] (54)

In Fig. 8 it is shown the time evolution of the predominant modes, where an
initial, small perturbation leads to a final state characterized by a rapid modes grow
and saturation, approximately at the time t = 20. As already reported in literature by
other authors (e.g., see [30]), themode-one is the dominant due to its initial excitation
and reaches its maximum amplitude at t = 18. Once again, the numerical solution
has been compared with the solution obtained with an implicit upwind scheme with
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Fig. 6 Strong Landau damping: Time evolution of the numerical solution for k = 1. The contour
lines correspond to F1(ξ, t) = 0. Parameters are: A = 0.5, α = 2 and M = 103

0 10 20 30 40 50 60 70 80 90 100

t

-15

-10

-5

0

lo
g

 |E
|

Fig. 7 Strong Landau damping: Logarithm of the absolute value of the first harmonic of the electric
field. Parameters are: A = 0.5, and α = 2

a very fine mesh, and the numerical error computed as in the previous example,
obtaining a similar result.

For performance results of the PDD method for large scale simulations, see [6].
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Fig. 8 Two streaming instability: Logarithm of the absolute values of the first four Fourier modes

4.4 Summary

The PDD method presented shows that, when combined with classical methods, is
capable of accelerating the Vlasov-Poisson simulations, thus improving dramatically
the overall scalability of classical algorithms. Such method is based on the proba-
bilistic representation of the Vlasov-Poisson system of equations, obtained in Fourier
space and generalized to deal with any realistic initial condition. The probabilistic
representation allows to compute the solution at single points within the computa-
tional domain, and is obtained as the expected value of a multiplicative functional
over suitable random trees. Such a feature can be exploited to decouple the original
problem into independent subproblems, previously obtaining the required boundary
conditions at given interfaces dividing the domain. The probabilisticmethodwas used
to compute the solution at a few points, to be used as interpolation nodes to obtain
the sought boundary conditions at the interfaces. It consists therefore of a straight-
forward application of the Probabilistic Domain Decomposition(PDD) method for
the numerical solution of the Vlasov-Poisson system.

Moreover, the probabilistic representation was validated successfully in the lin-
ear regime comparing with the classical results of the linear Landau damping theory.
Regarding the numerical implementation of such representation, this requires eval-
uating in practice some series with terms including definite integrals, corresponding
to the partial contribution to the solution of random trees with a given number of
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branches. Typically, the higher terms are high dimensional, and were calculated by
quasi-Monte Carlo methods. Rather than classical Monte Carlo method, the quasi-
Monte Carlo offers a better convergence rate, of order of O(1/N ) compared with
O(N−1/2), speeding up notably the simulations. When dealing with arbitrary initial
conditions, such a series might be divergent, and was approximated by the Padé
approximant. To study the error made, several test problems were analyzed so far,
and it was shown that considering a few coefficients of the series suffices to obtain a
reasonable accuracy for sufficiently small times. Since the approximation degrades
fast when the time grows, and to avoid including higher terms in the series expan-
sion with the computational cost that this entails, a restarting procedure in time has
been proposed. The solution is computed globally in the full domain from time to
time, and it is reused as the new initial condition restarting the numerical proce-
dure again. Being now the new initial condition numerically obtained, a suitable
interpolation procedure was implemented, which in practice degrades the theoretical
expected performance of the algorithm. However, some theoretical considerations
were given and applied to the algorithm to improve its overall performance, reducing
the computational cost associated to such a global interpolation.

To conclude, several examples were run in parallel and the results compared
with those obtained with classical algorithms. The examples were chosen from the
typical repertoire of initial conditions traditionally used for testingnumericalmethods
developed for solving the Vlasov-Poisson system of equations. The results shows
the excellent scalability properties of the algorithm proposed when run in large-scale
simulations.

It is worth to remark that the method can be further generalized to deal with the
Vlasov-Poisson system in configuration space, since the needed probabilistic rep-
resentation does already exist [43]. Moreover, the probabilistic representation can
be combined with any classical existing numerical method according to the proce-
dure described in this section, improving notably the performance of the resulting
algorithm when run in parallel supercomputers.

5 Fractional Partial Differential Boundary-Value Problems

In these days, there is a renewed interest in Fractional partial differential equations
(fPDEs). Relevant aaplications in Science and Engineering include, for instance,
control, biological tissues, materials for civil engineering, neurosciences, complex
(heterogeneous and random) media, plasma physics, seismology and earthquakes
modeling.

While solving purely initial-value problems seems to be to some extent tractable,
the case of boundary-value problems on a smooth bounded domain � ⊂ R

n is quite
different, and it was observed that the results depends strongly on the definition
of the fractional derivative used so far [22, 42]. One of the most important differ-
ences among these variety of fractional derivatives are in the type of boundary data.
Essentially there are of two types: Those nonlocal boundary conditions (also called
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extended boundary conditions) which are imposed on the complement �c of the
domain, and the local boundary conditions which are given only on ∂�. The latter
coincides with the type of boundary conditions typically imposed for classical partial
differential equations, and moreover, under computational point of view, it has been
found to be the more advantageous for dealing with large scale problems. In fact,
note that the nonlocal boundary conditions require in practice to be able to tackle the
unbounded region �c, which can be computationally very costly for solving numer-
ically those large scale problems. Therefore, in the following we focus exclusively
on the case of local boundary conditions.

A promising numerical method for solving fPDEs in bounded domains was
recently proposed in [18] by using the so-called spectral fractional derivative. The
spectral fractional derivative is a nonlocal operator, which is defined mathematically
as the spectral decomposition of the standard Laplace operator, and is given by

(−�)β/2v(x) = − 1

�(−β/2)

∫ ∞

0
(et�v(x) − v(x))

dt

t1+β/2
. (55)

Here � denotes the classical Laplacian operator, and the exponential operator e� is
formally defined, as usual, through its expansion in Taylor series,

e� =
∞∑
k=1

(�)k

k! . (56)

Themain idea of the numerical method consists in exploiting the integral formulation
of the fractional operator using the classical heat-semigroup formalism. One of the
main advantage of this formalism rests on the fact that classical methods, such as
the well-known finite element method, could be adopted to solve as well fPDEs by
adapting it conveniently to this different mathematical framework. This in practice
will allow to potentially solve fPDEs in arbitrary complex geometries and boundary
conditions, which is of paramount importance in order to be able to analyze natural
phenomena modeled by fPDEs in realistic environments.

An important problem, however, remains open, which is the possibility of using
this numerical method for solving large scale problems. Since the numerical method
is based on the finite element method, and therefore it requires a computational mesh
to be solved, it inherits all of its disadvantages. In fact an important disadvantage of
the method is the strong intercommunication overhead of the algorithm for solving
large scale problems in distributedmemory parallel computers. Themajor problem is
the routine use of computational meshes when solving numerically a given problem.
Since the mesh is a numerical tool connecting globally the discretized domain, any
classical domain decomposition techniques induce an unavoidable communication
among the processors involved when the numerical method is parallelized. It is worth
pointing out that such a communication overhead acts always negatively degrading
the performance of the algorithms, being even worse when using a large number of
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cores. Note that for the case of fPDEs this may be even more dramatic since the
fractional operators are by definition nonlocal.

An alternative to the aforementioned domain decomposition method does exist,
and consists in probabilistic methods based on Monte Carlo simulations. The main
advantage of the probabilistic methods are mainly due to its special computational
features, such as simplicity to code and parallelization. This in practice allows to
develop parallel codes with extremely low communication overhead among pro-
cessors, having a positive impact in parallel features such as scalability and fault-
tolerance. Furthermore, there is also another distinguishing aspect of the method,
which is the capability of computing the solution of the problem at specific chosen
points, without the need of solving the entire problem. This remarkable feature has
been explored for efficiently solving continuous problems such as boundary-value
problems for classical PDEs offering important advantages in dealing with some
specific applications found in Science and Engineering.

A feasible alternative, therefore, consists in generalizing the PDD method for
solving now fPDE boundary-value problems. In principle, the PDDmethod could be
applied to any problem, provided a probabilistic representation of the solution can be
found. For the specific case of the spectral fractional Laplacian, it is known that the
spectral operator in Eq. (55) with Dirichlet boundary conditions is the generator of a
suitable subordinate stopped Brownian motion, i.e., stopped Brownian motion that is
then subordinated by the standard stable subordinator. Therefore, it can be derived
an analogous Feynman-Kac formula, where the corresponding Brownian motion is
replaced now by a subordinate stopped Brownian motion [42]. Thus, the solution of
the homogeneous Dirichlet boundary-value problem

∂u

∂t
= �β/2u, a < x < b, t > 0

u(x, 0) = f (x).

u(a, t) = f (a) = 0, u(b, t) = f (b) = 0, (57)

can be represented probabilistically as follows

u(x, t) = E
[
f (XSt ) 1[τ∂�>St ]

]
(58)

where St is the subordinate process, that is an increasing stable Lévy process with
index β, and Xt the corresponding Brownian motion. Here τ∂� denotes the first exit
time of the path Xt , started at X0 = x , when∂� is crossed, and 1[τ∂�>t] is the indicator
(or characteristic) function. Note that in practice the subordination process consists
merely of replacing the time t by the operational time given by the subordinator St .

Generating the stoppedBrownianmotion can be done simply by using the standard
numerical techniques already available for solving probabilistically classical partial
differential equations. A special care should be paid, however, when computing the
first exit time and point out of the domain, as it was already mentioned in previous
sections. Concerning the subordinated process, there are already several procedures
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Fig. 9 Comparison between
the probabilistic solution and
the analytical solution of a
Dirichlet fPDE boundary
value problem. The
fractional index has been
kept fixed to β = 1.5, the
sample size N = 104, and
the time step �t = 10−2
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available in the literature to generate numerically such a process, see [39] e.g. Since
the solution is computed through an expected value of a given finite sample N ,
whose elements are independent from each other, it becomes straightforward to be
parallelized.

In the following, to illustrate the probabilistic method we solved a simple example
consisting in a Dirichlet boundary value problem for a 1D space-fractional diffusion
equation in Eq. (57) using the probabilistic representation of the solution as described
above. For this simple example, there exists an analytical solution [22] and is given
by

u(x, t) = 2

π

∞∑
k=1

cos (2kπ/5) − cos (3kπ/5)

k
e−(kπ/2)βt sin (kπ/2(1 + x)). (59)

for the problem in the domain x ∈ [−1, 1], and initial condition

f (x) =
{
1 ifx ∈ (−0.2, 0.2)

0 otherwise
(60)

In Fig. 9 we compare the results corresponding to the numerical solution obtained
using the probabilistic representation at different spatial points inside the domain, and
the analytical solution plotted in solid line. The results correspond to two different
times, t = 1, and t = 2. Note the excellent agreement between both solutions.
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6 Conclusions

Wehave reviewed the PDD (probabilistic domain decomposition)method for numer-
ically solving a wide range of linear and nonlinear partial differential equations of
parabolic and hyperbolic type, as well as for fractional equations. This method was
originally introduced for solving linear elliptic problems. It is based on a novel hybrid
approach where an efficient Domain Decomposition is effectively accomplished by
means of the probabilistic representation of the solution of the problem.

After an introduction detailing how this method works for linear parabolic prob-
lems, we have first showed the probabilistic representation for certain nonlinear
parabolic problems, generalizing the results derived by McKean for the KPP equa-
tion. Later, a further extension of the method for dealing with semilinear parabolic
partial differential equations has been presented. It is important to emphasize the
major drawback faced in the attempt of such generalization, consisting in the numer-
ical evaluation of a truncated, alternating divergent series. This issue was sorted out
by relying on Padé-type approximants to obtain numerically asymptotic approxima-
tions, always proven to be robust and reliable.

On the other hand, for semilinear transport equations, a probabilistic represen-
tations has been proposed in terms of the characteristic curves. It is important to
remark that for hyperbolic problems in general, the characteristic curves play a sim-
ilar role in such a representation as the stochastic process does for the parabolic
problems. As an important application, the PDD method has been extended to deal
with the Vlasov-Poisson system of equations in Fourier Space, which represents a
very important and challenging problem in the field of PlasmaPhysics. Here, an exist-
ing probabilistic representation in Fourier space has been conveniently reformulated
for computational purposes, validated successfully in the linear regime comparing
with the classical results of the linear Landau damping theory. This theory has also
been used to validate the probabilistic method numerically, which has had particular
importance given the lack of exact analytical solutions.

In practice, for semi-linear problems a series with terms composed of definite
integrals have to be evaluated, corresponding to the partial contribution to the solu-
tion of random trees with a given number of branches. Typically, the higher terms
are of high dimensionality, and are calculated by the quasi-Monte Carlo method.
Rather than classical Monte Carlo method, the quasi-Monte Carlo offers a better
convergence rate, speeding up notably the simulations. When dealing with arbitrary
initial conditions, such a series might be divergent, and was again approximated by
the Padé approximant. The PDD method has shown theoretically and in practice to
accelerate the numerical simulations, improving dramatically the overall scalability
of classical algorithms.

Finally, we have shown the latest progress of the PDD method for dealing with
fractional PDEs. We have provided a case example for the 1D space-fractional diffu-
sion equation, showing promising results. As future work, the PDD method should
be generalize further to deal with different kind of fractional operators (in time as
well), an also for high dimensions.
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As a final remark, when applicable, the PDD method enables for sustained high
performance computing when solving challenging scientific problems formulated
via partial differential equations. As observed through several test examples when
compared with classical domain decomposition techniques, the method achieves
superior performance and scalability results on supercomputing environments. Based
on the fact that it is naturally fault-tolerant, the method also provides robustness and
reliability by construction. Given that the subproblems are fully decoupled, a system
failure is no longer dramatic, as it is simply required to run the simulation again,
possibly asynchronously, only for the set of subproblems that have not finished
successfully.
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Fractional Diffusion and Medium
Heterogeneity: The Case of the
Continuous Time RandomWalk
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Abstract In this contribution we show that fractional diffusion emerges from a
simple Markovian Gaussian random walk when the medium displays a power-law
heterogeneity. Within the framework of the continuous time random walk, the het-
erogeneity of the medium is represented by the selection, at any jump, of a different
time-scale for an exponential survival probability. The resulting process is a non-
Markovian non-Gaussian random walk. In particular, for a power-law distribution of
the time-scales, the resulting random walk corresponds to a time-fractional diffusion
process. We relates the power-law of the medium heterogeneity to the fractional
order of the diffusion. This relation provides an interpretation and an estimation of
the fractional order of derivation in terms of environment heterogeneity. The results
are supported by simulations.
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1 Introduction and Motivation

Fractional diffusion is characterized by non-Gaussian statistics and nonlinear scaling
in time of the mean-squared displacement [20–22, 28]. Many different approaches
have been implemented and extensively analyzed to reproduce this type of diffusion,
see, e.g., [2, 9, 10]. In particular, we recall the continuous time randomwalk (CTRW)
[11], where a power-law tailed distribution of the waiting times can be introduced
to generate fractional diffusion processes. This model was proposed to describe
dispersive transport of chargers in amorphous semiconductors [25]. In general, the
CTRW approach can be used to model diffusion in disordered media, which are
characterized by a complex trapping mechanism. Indeed, the main ingredient of
CTRW models is a power-law tailed distribution for the waiting times. A direct
connection between the CTRW and fractional diffusion is provided by a waiting
time probability stated accordingly to the Mittag–Leffler function (ML) [7], which
displays power-law tails.

Systems coming from very different fields have been studied within this frame-
work, from geophysics to biology [17], included neurosciences where the idea of a
distribution of sojourn times has been developed to describe anomalous ions diffusion
in spiny dendrites [16, 26].

From a physical point of view, each waiting time can be related to a different
probability of escaping from a trap. In this contribution, we show explicitly how
complex escaping probabilities that generate fractional diffusion emerge from the
combination of space heterogeneity andMarkovian exponential escaping probability.
The main mathematical hint behind this work is the interpretation of the ML as a
weighted superposition of exponential functions [19]. In particular, we can map
different trap depths into different time-scales of the exponential probability. In this
way, if classical diffusion is characterised by a homogeneous landscape of traps,
i.e., a constant value for the time-scale, anomalous diffusion emerges when a strong
heterogeneity appears in the trap landscape, that is when a population of time-scales
is introduced.

This interpretation is advantageous and more suitable for real applications,
because it does not introduce complex trapping mechanism, instead it considers
a large heterogeneity of simple and standard mechanisms of trapping [1]. Moreover,
with the approach presented in this work, medium properties can be inferred by the
statistics of the diffusing particles.

Hence, this contribution aims to provide a new andmore physical interpretation of
the heterogeneity described by CTRWwith power-law distributedwaiting times. The
work is structured as follows. First, we show how the memory kernel characteristic
of the CTRW model can be related to the space heterogeneity. Then we present the
emergence of fractional diffusion and finally we check our results against numerical
simulations.
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2 Markovian RandomWalk in a Heterogeneous Medium

The CTRW is a successful approach to study stochastic processes [3, 5, 7, 8, 11,
15, 18, 24]. The corresponding random walk goes on according to the following
iteration procedure

xn = xn−1 + δxn , tn = t0 +
n∑

j=1

τ j , (1)

where xn and xn−1 are the walker positions at the instants tn and tn−1, respectively,
such that the n-generated random jump δxn is driven by the pd f λ(δx), and the
corresponding random waiting-time τn = tn − tn−1 is generated by the pd f ψ(τ).
Since the probability that at least one jump is made in the temporal interval (0, τ ) is

given by the integral
∫ τ

0
ψ(ξ) dξ , then the probability that the duration of a given

waiting-interval between two successive steps is strictly greater than τ , i.e., the

survival probability, is �(τ) = 1 −
∫ τ

0
ψ(ξ) dξ and it holds [15, 23, 27]

ψ(τ) = −d�

dτ
. (2)

The simplest case of CTRW is the uncoupled one, i.e., the case when the jumps
and the waiting times are statistically independent, and the governing equation of
the process is [15]

∫ t

0
�(t − τ)

∂p

∂τ
dτ = −p(x, t) +

∑

x ′
λ(x − x ′)p(x ′, t) , (3)

with

�̃(s) = 1 − ψ̃(s)

s ψ̃(s)
= �̃(s)

ψ̃(s)
= �̃(s)

1 − s �̃(s)
, (4)

where the symbol ·̃ marks the Laplace transformed function and s is the corre-
sponding variable. As it follows from (3), the auxiliary function �(τ) is a memory
kernel. Hence, a Markovian model is obtained when �(τ) = δ(τ ), which implies
that �̃(s) = 1 and then from (4) it results �̃(s) = ψ̃(s) and also�(τ) = ψ(τ). Func-
tions�(τ) andψ(τ) are related by formula (2), then a CTRWmodel is Markovian if
�(τ) = e−τ . On the contrary, when �(τ) is different from an exponential function
the resulting CTRW model is non-Markovian.

For the following porpuses, let us write the survival probability and waiting-time
pd f in the Markovian case as

�M(τM) = e−τM/T 0
, ψM(τM) = 1

T 0
e−τM/T 0

, (5)
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where the index M reminds the Markovian setting and the time-scale T 0 is constant
if the medium is homogeneous.

Consider now a complex heterogeneous medium, such that in any position xn
the walkers stay for a waiting time τn characterized by the medium heterogeneity.
Hence, at any iteration n the waiting-time τn is characterized by a local time-scale
Tn . Since Tn is the time-scale locally experienced by the particle in position xn , the
distribution of Tn describes the spatial heterogeneity of the medium. However, if the
walker lands twice in the same point then the two values of Tn are different because
independently generated. This means that the partitioning of the heterogeneity of the
medium is not constant.

In this case the random walk still goes on according to the iteration procedure (1)
with the same meaning for the symbols, but the probability of the waiting-time τn at
the iteration n is affected by the local time-scale Tn . If the motion of the walker is
again assumed to be Markovian, the conditioned survival probability is

�(τn|Tn) = e−τn/Tn . (6)

Comparing (5) and (6) we observe that τM/T 0 and τn/Tn have the same proba-
bility. By setting

τM

T 0
= τn

Tn
= χ , (7)

then in formulae,

P
(

τM

T 0

)
= P

(
τn

Tn

)
= P(χ) = e−χ , (8)

and the waiting-time τn at the iteration n is given by the product

τn = τM

T 0
Tn . (9)

By remembering the formulae for computing the pd f of the quotient and product
of independent variables, i.e.,

∫ ∞

0
b pA(zb)pB(b) db , Z = A/B , (10)

∫ ∞

0
pA

( z

b

)
pB(b)

db

b
, Z = AB , (11)

and by reminding that T 0 is constant and then distributed as f (T0) = δ(T 0 − T∗),
the marginal pd f of τ is

ψ(τ) =
∫ ∞

0
e−τ/T f (T )

dT

T
, (12)
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and the corresponding survival probability is

�(τ) =
∫ ∞

0
e−τ/T f (T ) dT . (13)

The memory kernel �(t) in the governing equation (3) is determined by the
heterogeneity and, from formula (4), its Laplace transform is

�̃(s) =

∫ ∞

0

f (T )

1 + sT
dT

∫ ∞

0

f (T )

1 + sT
T dT

. (14)

For a proper choice of the memory kernel �(t), the governing equation (3) results
in a time-fractional diffusion equation.

3 The Emerging of Fractional Diffusion

In 1995Hilfer andAnton [7] showed that CTRW is driven by the following fractional
non-Markovian master equation

∂β p

∂tβ
= −p(x, t) +

∑

x ′
λ(x − x ′)p(x ′, t) , 0 < β < 1 , (15)

where
∂β

∂tβ
can be the fractional derivative both in the Riemann–Liouville and in

the Caputo sense [4], if the survival probability �(τ) is a Mittag–Leffler function
[6, 12, Appendix E], i.e.,

�(τ) = Eβ(−τβ) , Eβ(z) =
∞∑

n=0

zn

�(βn + 1)
, z ∈ C , 0 < β < 1 . (16)

It is well-known that a survival probability of the Mittag–Leffler type (16), when
0 < β < 1, decreases asymptotically for τ → ∞ with the power-law τ−β [13]. The
Markovian case is recovered from the special case E1(−z) = e−z . With reference to
formula (13), the survival probability of Mittag–Leffler type (16) is obtained when
it holds ∫ ∞

0
e−t y Kβ(y) dy = Eβ(−tβ) , 0 < β < 1 , (17)

with [4, 12]
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Kβ(y) = 1

π

yβ−1 sin(βπ)

1 + 2yβ cos(βπ) + y2β
. (18)

Hence, by comparing (13) and (17), the distribution of time-scales Tn is

f (T ) = 1

T 2
Kβ

(
1

T

)
. (19)

The asymptotic behaviour of f (T ) can be estimated by formula (18). Actually, it
results that when T → ∞ then f (T ) ∼ T−(1+β), and we have the following:

If the medium heterogeneity follows a distribution displaying a power-law
behaviour T−(1+β), for T → ∞ and 0 < β < 1, then the random walk results
in a time-fractional diffusion process of order β. This relation provides an
interpretation and an estimation of the fractional order of derivation.

In the limit β → 1, it holds Kβ(y) = sin π/[π (y − 1)2] → δ(y − 1) and a single
time-scale follows and theMarkovian case is recovered. When the distribution of the
time-scales is non-stationary, i.e., f (T ) = f (T, t), such distribution is non-unique
[19].

To conclude, when the fractional derivative in Eq. (15) is in the Caputo sense, the
initial condition is p(x, 0) = δ(x), and it holds λ̂(κ) ∼ 1 − κ2, where the symbol ·̂
marks the Fourier transformed function and κ the corresponding variable, then the
pd f of the particle displacement is

p(x, t) = 1

2tβ/2
Mβ/2

( |x |
tβ/2

)
, 0 < β < 1 , (20)

where Mν(y), 0 < ν < 1, is the M-Wright/Mainardi function defined as
[12, Appendix F]

Mν(y) =
∞∑

n=1

(−y)n

n!�[−νn + (1 − ν)] . (21)

For completeness, the asymptotic behaviour of the pd f of the particle displace-
ment (20) is here reported. In particular, the M-Wright/Mainardi function displays
stretched exponential tails in space [14]:

Mν(y) ∼ A0 Y
ν−1/2 e−Y , y → ∞ , (22)

with A0 =
[√

2π(1 − ν)νν2ν−1
]−1

and Y = (1 − ν)(νν y)1/(1−ν), and power-law

decay in time:
1

r ν
Mν

( c

r ν

)
∼ 1

r ν
, r → ∞ . (23)
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This last scaling law follows from the relation between theM-Wright/Mainardi func-
tion and the extremal Lévy density [14], i.e.,

1

r ν
Mν

( c

r ν

)
= r

νc(1+ν)/ν
L−ν

ν

( r

c1/ν

)
. (24)

4 Numerical Simulations and Discussion

Weprovide numerical results as additional proof of the result obtained in the previous
section. The numerical simulations are performed in C++ according to the scheme
in (1).

For numerical purposes the waiting times τn are not extracted directly from the
pdf defined in (12), instead we make use of the identity in (9), where it is shown that
each τn can be defined as a product of two random variables. Namely, we have

τn = ξ · Tn , (25)

where ξ is an exponentially distributed random variable and Tn is the random time-
scale drawn from (19). For the randomgeneration of ξ and Tn , we used the cumulative
functionmethod. That is, starting from Tn , we define F(T ) as the cumulative function
of (19) and we obtain

F(T ) =
∫ T

0
f (t) dt = 1

βπ
arctan

[
T β − 1

T β + 1
tan

(
βπ

2

)]
+ 1

2
. (26)

Then, we consider F(T ) to be a function of uniform random variable between 0 and

1, i.e., F(T ) = u, where u
d= U (0, 1). Finally, after substituting u in (26), we get

T =
[
1 + A(u)

1 − A(u)

]1/β

, A(u) = 1

tan(βπ/2)
tan

(
βπ

(
u − 1

2

))
. (27)

For exponentially distributed random variables, with the same procedure we can
obtain the well known result

ξ = − log(u) , u
d= U (0, 1). (28)

Concerning the jump length, we consider a walker that, after each waiting time
τn , performs a jump of fixed length j0 either to the left or to the right with equal
probability, namely the Binomial random walk. In terms of CTRW notations this
corresponds to a jump length pdf

λ(δx) = 1

2
[δ (δx − j0) + δ (δx + j0)] , (29)
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Fig. 1 Left: example of trajectories for each value of β. Right: variance for three values of β =
0.25, 0.5, 0.75. The black dashed lines represent the expected behaviour, the exponents obtained
from the best fit analysis are also reported for comparison

where δ(x) is the Dirac delta function, and it is straightforward to check that

λ̂(κ) = 1

2

(
eiκ j0 + e−iκ j0

) ∼ 1 − j20
2

κ2 , κ j0 	 1 . (30)

We simulated 104 trajectories with initial condition x0 = 0, jump length j0 = 1
and three different values of β = 0.25, 0.5, 0.75. Few trajectories were stored at 104

observation times, distributed linearly in the interval [0, 103]. In order to perform
histograms and study the pdfs, the positions of all trajectories were stored at 10
moments within the time interval [104, 105]. The variance was computed for 102

points, distributed linearly in the time interval [0, 105].
In Fig. 1we report single trajectories and the variance for three values ofβ. Starting

from the former, we can directly observe that when β gets closer to 1, the waiting
times become smaller and smaller. For the study of the variance we performed linear
fits using the logarithm of the data. The results reported in the figure show that the
subdiffussive trend of the variance is properly recovered:

〈x2〉 = σ 2(t) = j20
�(1 + β)

tβ . (31)

In Fig. 2 the particle displacement pdfs are shown. For the comparison with the
analytical results we refer to the asymptotic behaviour of the pdf in (20), that results
in a stretched exponential, i.e.,

p(x, t) ∼ 1√
4π tβ(2 − β)

(
2

β

)(1−β)/(2−β) ( |x |√
tβ

)−(1−β)/(2−β)

× exp

[
−2 − β

2

(
β

2

)β/(2−β) ( |x |√
tβ

)−1/(1−β/2)
]

, (32)
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Fig. 2 Numerical results for β = 0.25 (upper panel), β = 0.5 (central panel) and β = 0.75 (lower
panel). The dashed lines on the left panels indicate the analytical result in (32); each color refers
to the time in the legend, respectively. On the right panels the same quantities, rescaled by the
corresponding variance at each time, are shown. The analytical behaviour in (32) rescaled by the
variance is reported in black

for |x | � √
tβ .

We observe a good agreement between numerical and analytical results. Differ-
ences are due to the fact that the jumps are performed by using the Binomial random
walk, such that the convergence occurs in the diffusive limit.

Thus, we can claim that our analysis provides a simple and explicit interpretation
of the CTRW with power-law distributed waiting times as a model for diffusion
in heterogeneous media. Moreover, we introduced a general and operative way to
directly include the heterogeneity in the diffusive model, clarifying the emergence
of non-Markovian behaviour.
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5 Conclusions

In this contribution we show through a simple Markovian Gaussian random walk
how anomalous diffusion emerges from medium heterogeneity. In particular, within
the CTRW framework, the heterogeneity is represented by a random time-scale that
affects the waiting-time interval at any jump. Since in any position a different time-
scale is considered, the distribution of the time-scales is intended as a characterisation
of the spatial heterogeneity of the medium.

Actually, this time-scale is always independently generated, which means that in
the same position, but at different instants, different time-scales may be experienced
by the walkers. That is to say that the heterogeneity of the medium is not constant.

For a proper distribution of the time-scales with a power-law behaviour for large
values, the evolution equation of the density of the walkers’ displacement emerges
to be a time-fractional diffusion equation.

The present derivation of a time-fractional diffusion process, in terms of medium
heterogeneity through a population of time-scales (19), complements the results
derived in Ref. [19]. The study is supported by numerical simulations of the process.
In this respect it is reported that, unlike other algorithms for fractional processes
from the CTRW, the waiting-time distribution is not chosen a priori but generated
through the proposed mechanism based on random time-scales applied to a Marko-
vian Gaussian random walk. This mechanism defines a framework which is able to
reproduce a large class of diffusion processes, that comes from any possible medium
heterogeneity without changing the algorithm behind the single trap mechanisms,
which remains a Markovian process. The fractional process emerges as a particular
case in which strong heterogeneity, characterized by power law tail in the time scales
distribution, is considered.

To conclude, we report that through Eq. (17) we define a relation between the
medium heterogeneity and the fractional order of the diffusion equation, by the
introduction of a population of timescales. Within this approach, the power law tail
of the distribution of the timescales can be estimated from the fractional order of the
diffusion process. This relation establishes an interpretation of the fractional order
that goes beyond the one given in the standard CTRW, providing a physical interpre-
tation of the variability of the waiting times in terms of environment heterogeneity
without modifying the physical mechanism behind the single trapping event.
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On Time Fractional Derivatives
in Fractional Sobolev Spaces and
Applications to Fractional Ordinary
Differential Equations

Masahiro Yamamoto

Abstract In this article, we formulate two kinds of time fractional derivatives of
the Caputo type with order α in fractional Sobolev spaces and prove that they are
isomorphisms between the corresponding Sobolev space of orderα and the L2-space.
On the basis of such fractional derivatives, we formulate initial value problems for
time fractional ordinary differential equations and prove the well-posedness.

Keywords Time fractional ordinary differential equation · Fractional Sobolev
space · Initial value problem · Well-posedness

1 Introduction and Main Results

Let m ∈ N and m − 1 < α < m. We consider the Caputo derivative

C
0 D

α
t v(t) := 1

�(m − α)

∫ t

0
(t − s)m−α−1 d

mv

dsm
(s)ds, (1)

which can be defined for v ∈ W 1,1(0, T ) := {
v ∈ L1(0, T ); dv

dt ∈ L1(0, T )
}
. For

0 < α < 1, in Gorenflo, Luchko and Yamamoto [7], in Sobolev spaces we formu-
late C

0 D
α
t . See also Kubica, Ryszewska and Yamamoto [14]. On fractional calculus

and differential equations, we can refer for example, to Gorenflo and Mainardi [6],
Kilbas, Srivastava and Trujillo [10], Podlubny [20] as convenient and fundamental
literature.

M. Yamamoto (B)
Graduate School of Mathematical Scsiences, The University of Tokyo, Komaba, Meguro Tokyo
153-8914, Japan
e-mail: myama@ms.u-tokyo.ac.jp

Honorary Member of Academy of Romanian Scientists, Ilfov, nr. 3, Bucureşti, Romania
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In this article, we discuss two kinds of fractional derivatives in Sobolev spaces
within the framework by [7]. The first kind of fractional derivative is a generalized
fractional derivative of (1) defined by

∂α
t,kv(t) = 1

�(1 − α)

∫ t

0
(t − s)−αk(t − s)

dv

ds
(s)ds, 0 < α < 1 (2)

for v ∈ C1[0, T ] if k ∈ L1(0, T ) for example. Here k = k(η) satisfies the conditions
stated later, and we know ∂α

t,1 = C
0 D

α
t .

Similarly to [7], wemainly discuss a suitable extension of the operator ∂α
t,k because

the domain W 1,1(0, T ) or C1[0, T ] of the operator is not convenient for theoretical
researches on initial value problems for fractional ordinary differential equations
which we will discuss in this article. Such an adequate extension is justified in
Theorem 1 stated below.

The second kind of fractional derivative is the extension of C
0 D

α
t in the case of

1 < α < 2 within Sobolev spaces.
Moreover, based on our formulations of these fractional derivatives, we discuss

thewell-posedness for initial value problems for fractional ordinary differential equa-
tions.

Here we intend to provide introductory descriptions by taking into consideration
the limited page numbers, and we postpone the detailed comprehensive studies to
forthcoming works.

Wemake operator-theoretical treatments of the twokinds of time fractional deriva-
tives and formulate them in fractional Sobolev spaces (e.g., Adams [1]). It looks that
our formulation is indirect, but as is understood by our arguments on fractional dif-
ferential equations in Sects. 4 and 5, our approach greatly facilitates treatments of
fractional differential equations such as the unique existence of solution to initial
value problems.

For later descriptions, we introduce function spaces and operators. For α > 0, we
define the Riemann–Liouville fractional integral operator:

Jα f (t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s)ds, f ∈ L2(0, T ). (3)

By L2(0, T ), Hα(0, T ), W 1,κ (0, T ) with α > 0 and κ > 1, we mean the usual
L2-space and Sobolev space on the interval (0, T ) (see e.g., Adams [1], Chapter VII
and Lions and Magenes [15]) and we define the norm in Hα(0, T ) by

‖u‖Hα(0,T ) :=
(

‖u‖2L2(0,T ) +
∫ T

0

∫ T

0

|u(t) − u(s)|2
|t − s|1+2α

dtds

) 1
2

, 0 < α < 1. (4)

The L2-norm and the scalar product in L2 are denoted by ‖ · ‖L2(0,T ) and (·, ·),
respectively. Since Jα defined by (3), is injective in L2(0, T ), by J−α we denote the
algebraic inverse to Jα: J−α = (Jα)−1.



On Time Fractional Derivatives in Fractional Sobolev Spaces … 289

We set

0C
1[0, T ] = {v ∈ C1[0, T ]; v(0) = 0}. (5)

We further define the Banach spaces:

Hα(0, T ) :=

⎧⎪⎨
⎪⎩

0Hα(0, T ), 1
2 < α ≤ 1,{

v ∈ H
1
2 (0, T ); ∫ T

0
|v(t)|2

t dt < ∞
}

, α = 1
2 ,

Hα(0, T ), 0 < α < 1
2

(6)

with the following norm

‖v‖Hα(0,T ) =
⎧⎨
⎩

‖v‖Hα(0,T ), 0 < α ≤ 1, α �= 1
2 ,(

‖v‖2
H

1
2 (0,T )

+ ∫ T
0

|v(t)|2
t dt

) 1
2

, α = 1
2 .

(7)

Here ‖v‖Hα(0,T ) is defined by (4). Throughout this article,C > 0,C1 > 0. etc. denote
generic constants which are independent of solutions and functions u, etc. to be
estimated.

1.1 Generalized Time-Fractional Derivative

Let 0 < α < 1. We assume
{

k ∈ W 1,κ (0, T ) k(0) �= 0,

sup0<ξ<T

∣∣∣ξβ ∂k
∂ξ

(ξ)

∣∣∣ < ∞ with some κ > 1 and β ∈ (0, 1).
(8)

Under assumption (8), ∂α
t,kv is well-defined for example for v ∈ C1[0, T ] an ∂α

t,kv ∈
L2(0, T ). Indeed the Sobolev embedding yields k ∈ W 1,1(0, T ) ⊂ L2(0, T ) and so
k dv
dt ∈ L2(0, T ). Therefore the Young inequality on the convolution implies

‖∂α
t,kv‖L2(0,T ) =

∥∥∥∥
(

1

�(1 − α)
t−α ∗ k

dv

dt

)∥∥∥∥
L2(0,T )

≤
∥∥∥∥ 1

�(1 − α)
t−α

∥∥∥∥
L1(0,T )

∥∥∥∥k dvdt
∥∥∥∥
L2(0,T )

< ∞.

For the formulation and the applications of fractional differential equations in
Sect. 4, it is desirable and natural to extend the domain of ∂α

t,k larger than C
1[0, T ].

Now we are ready to state our first main result on the formulation of ∂α
t,k .
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Theorem 1 There exists a unique extended operator ∂α
t,k defined over Hα(0, T ) of

the operator ∂α
t,k such that

∂α
t,kv = ∂α

t,kv, v ∈ 0C
1[0, T ]

and there exists a constant C > 0 such that

C−1‖∂α
t,kv‖L2(0,T ) ≤ ‖v‖Hα(0,T ) ≤ C‖∂α

t,kv‖L2(0,T ) (9)

for each v ∈ Hα(0, T ).

Here 0C1[0, T ], Hα(0, T ) and ‖v‖Hα(0,T ) are defined by (5)–(7). In Sect. 2, we
prove Theorem 3 and gives a representation (27) of ∂α

t,k by means of the inversion

J−α of Jα . Henceforth, by ∂α
t,k we denote ∂α

t,k if not specified.
Concerning the generalized fractional derivatives, we refer to Kochubei [11],

Luchko and Yamamoto [18, 19], Zacher [23]. Also see related articles in the hand-
book Kochubei, Luchko and Machado [12]. In [11], it is assumed that the Laplace
transform

∫ ∞
0 e−ξsk(s)ds of k exists for all ξ > 0 and satisfies some properties

including the asymptotics as ξ → 0 and ξ → ∞. The article by [18] develops appli-
cations to initial-boundaryvalueproblems for time fractional partial differential equa-
tions. The article [23] assumes that k ∈ L1

loc[0,∞), ≥ 0, is nondecreasing and there
exists k−1 ∈ L1

loc[0,∞) satisfying
∫ t
0 k(t − s)k−1(s)ds = 1 for t > 0 and discusses

initial-boundary value problems for time fractional partial differential equations. In
these works the conditions on k(t) are concerned with 0 < t < ∞ even when we
consider the derivative in a finite interval (0, T ), and the derivatives are discussed
mainly pointwise. On the other hand, our condition (8) is localized to t ∈ (0, T ), and
falls within a different category.

Theorem 1 provides a convenient characterization of the general fractional deriva-
tive for applications to fractional differential equations.

1.2 Caputo Derivative of the Order 1 < α < 2 in Sobolev
Spaces

In [7, 14], we formulate the Caputo derivative C
0 D

α
t in fractional Sobolev spaces

for the case of 0 < α < 1 and apply to the fractional differential equations. The
formulation and the applications can be naturally extended to the case of α > 1.
Here we discuss only the case of 1 < α < 2.

Let
α = 1 + γ, 0 < γ < 1.

We define



On Time Fractional Derivatives in Fractional Sobolev Spaces … 291

Hα(0, T ) :=
{
v ∈ H1(0, T ); dv

dt
∈ Hγ (0, T )

}
(10)

and

‖v‖Hα(0,T ) =
⎧⎨
⎩

‖v‖Hα(0,T ), 1 ≤ α < 2, α �= 3
2 ,(

‖v‖2
H

3
2 (0,T )

+ ∫ T
0

∣∣ dv
dt

∣∣2 1
t dt

) 1
2

, α = 3
2 .

(11)

Here we set

‖v‖Hα(0,T ) :=
(

‖v‖2L2(0,T )
+

∥∥∥∥dvdt
∥∥∥∥
2

L2(0,T )

+
∫ T

0

∫ T

0
|t − s|−1−2γ

∣∣∣∣dvdt (t) − dv

dt
(s)

∣∣∣∣
2

dtds

) 1
2

(e.g., [1]). By (10) we have

Hα(0, T ) =

⎧⎪⎨
⎪⎩

Hα(0, T ) if 0 < α < 1
2 ,

{v ∈ Hα(0, T ); v(0) = 0} if 1
2 < α < 3

2 ,{
v ∈ Hα(0, T ); v(0) = dv

dt (0) = 0
}

if 3
2 < α < 2.

Since for 0 < γ < 1, it is proved in [7] that J γ is injective andwriting J−γ = (J γ )−1,
we define

∂
γ
t v = J−γ v, v ∈ Hγ (0, T ).

Then the following is proved in [7].

Theorem 2 Let 0 < γ ≤ 1.

(i) J γ : L2(0, T ) −→ Hγ (0, T ) is injective and surjective.
(ii) There exists a constant C > 0 such that

C−1‖J γ v‖Hγ (0,T ) ≤ ‖v‖L2(0,T ) ≤ C‖J γ v‖Hγ (0,T )

for all v ∈ L2(0, T ).
(iii) There exists a constant C > 0 such that

C−1‖∂γ
t u‖L2(0,T ) ≤ ‖u‖Hγ (0,T ) ≤ C‖∂γ

t u‖L2(0,T ) (12)

for all u ∈ Hγ (0, T ).
(iv) C

0 D
γ

t u = ∂
γ
t u for u ∈ 0C1[0, T ].

We remark that ∂α
t Hα(0, T ) = L2(0, T ) for 0 < α < 1. Moreover we know that

du
dt = J−1u for u ∈ H1(0, T ).

For α = 1 + γ with γ ∈ (0, 1), we define
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∂α
t u := ∂

γ
t
du

dt
= J−γ J−1u, u ∈ H 1+γ (0, T ).

As is directly verified by definition (3), we have Jα J β = Jα+β with α, β > 0,
and so

J−γ J−1 = J−1−γ = J−α.

Therefore

∂α
t u = J−αu, u ∈ Hα(0, T ), 1 < α < 2. (13)

The following theorem is directly derived from Theorem 2, and is important for
applications to fractional differential equations.

Theorem 3 Let α = 1 + γ with 0 < γ < 1.

(i) ∂α
t : Hα(0, T ) −→ L2(0, T ) is surjective and injective.

(ii) There exists a constant C > 0 such that

C−1‖u‖Hα(0,T ) ≤ ‖∂α
t u‖L2(0,T ) ≤ C‖u‖Hα(0,T ) (14)

for each u ∈ Hα(0, T ).

Theorem 3 asserts that ∂α
t is an isomorphism between Hα(0, T ) and L2(0, T )

also for 1 < α < 2, which has been established in [7] for 0 < α < 1. Similarly to
the case of 0 < α < 1, Theorem 3 is useful for discussions of fractional differential
equations and in Sect. 5, we apply it to initial value problems for fractional ordinary
differential equations.

The article is composed of six sections. In Sects. 2 and 3, we prove Theorems 1
and 3 respectively. In Sects. 4 and sec:5, we show how to apply Theorems 1 and 3
for proving the well-posedness of initial value problems for some fractional ordinary
differential equations. Section6 gives concluding remarks on future research topics.

2 Proof of Theorem 1

We set

p(t, ξ) :=
∫ t

ξ

(t − s)α−1(s − ξ)−αk(s − ξ)ds

and

q(ξ) :=
∫ 1

0
(1 − η)α−1η−αk(ηξ)dη, 0 < ξ < T .

Then the change of variables η := s−ξ

t−ξ
yields
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p(t, ξ) = q(t − ξ), 0 < ξ < t < T . (15)

Therefore

∂(q(t − ξ))

∂ξ
= −

∫ 1

0
(1 − η)α−1η1−α dk

ds
(η(t − ξ))dη, 0 < ξ < t < T . (16)

We set

(Ku)(t) :=
∫ t

0

∂(q(t − ξ))

∂ξ
u(ξ)dξ. (17)

Now we can prove

Lemma 1 Under assumption (8), the operators K : H1(0, T ) −→ H1(0, T ) and
K : L2(0, T ) −→ L2(0, T ) are both compact.

Proof By (8), we see

k0(ξ) := ξβ dk

dξ
(ξ) ∈ L∞(0, T ),

and so

∂(q(t − ξ))

∂ξ
= −

∫ 1

0
(1 − η)α−1η1−αk0(η(t − ξ))(η(t − ξ))−βdη

= − (t − ξ)−β

∫ 1

0
(1 − η)α−1η1−α−βk0(η(t − ξ))dη

by (16) and

∣∣∣∣∂(q(t − ξ))

∂ξ

∣∣∣∣ ≤ ‖k0‖L∞(0,T )(t − ξ)−β

∫ 1

0
(1 − η)α−1η1−α−βdη

≤ ‖k0‖L∞(0,T )

�(α)�(2 − α − β)

�(2 − β)
(t − ξ)−β ≤ C(t − ξ)−β, 0 < ξ < t < T .

(18)

Moreover we set

p1(t − ξ) =
{

∂(q(t−ξ))

∂ξ
, 0 < ξ < t < T,

0, 0 < t < ξ < T .

Therefore, by (18) we see that

|p1(t − ξ)| ≤ C

|t − ξ |β , 0 < ξ < t < T . (19)
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By (15), we notice that

∂(q(t − ξ))

∂ξ
= −∂p

∂ξ
(t, ξ), 0 < ξ < t < T . (20)

Here we show

Lemma 2 Let 
 satisfy

|
(ξ)| ≤ C

|ξ |β , 0 < ξ < T

with some β ∈ (0, 1). Then the operator

(Lu)(t) =
∫ t

0

(t − s)u(s)ds, 0 < t < T

is compact from L2(0, T ) to L2(0, T ).

For completeness, we prove the lemma in Appendix.

Therefore, by (19) and the compactness of integral operator with weakly singular
kernel p1 with 0 < β < 1 in Yosida [22], we see that K : L2(0, T ) −→ L2(0, T )

defined by (17) is compact.
Next we have to prove the compactness of K in H1(0, T ). We notice

(Ku)(t) =
∫ t

0

∂(q(t − ξ))

∂ξ
u(ξ)dξ

= −
∫ t

0

dq

dξ
(t − ξ)u(ξ)dξ = −

∫ t

0

dq

dη
(η)u(t − η)dη

by the change of the variables: η = t − ξ .
Let u ∈ H1(0, T ). Then u ∈ L∞(0, T ) by the Sobolev embedding. Since

dq
dξ

(·)u(t − ·) ∈ L1(0, T ) by (19) and (20), we obtain

(Ku)(0) = 0 (21)

and we can obtain that

d(Ku)

dt
(t) = −

∫ t

0

dq

dξ
(ξ)

du

dt
(t − ξ)dξ, 0 < t < T .

Again the same change of the variables yields

d(Ku)

dt
(t) = −

∫ t

0

dq

dθ
(t − ξ)

du

dξ
(ξ)dξ
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=
∫ t

0
p1(t − ξ)

du

dξ
(ξ)dξ, 0 < t < T . (22)

Therefore, by the Young inequality, dq
dt ∈ L1(0, T ) and du

dt ∈ L2(0, T ) yield d(Ku)

dt ∈
L2(0, T ) for each u ∈ H1(0, T ).

Hence K H1(0, T ) ⊂ H 1(0, T ). Moreover by (21) we see that K H1(0, T ) ⊂
H1(0, T ).

Finally we have to prove that K : H1(0, T ) −→ H1(0, T ) is compact. Let

supn∈N ‖un‖H1(0,T ) < ∞. Then supn∈N
∥∥∥ dun

dξ

∥∥∥
L2(0,T )

< ∞. Noting (19) and (22), we

again apply Lemma2, so that we can extract a subsequence, denoted again by n, such
that d(Kun)

dt converges in L2(0, T ). By (Kun)(0) = 0, we see that Kun converges in
H 1(0, T ). Hence K : H1(0, T ) −→ H1(0, T ) is compact. Thus the proof of Lemma
1 is completed.

By (8), we have

q(0) = k(0)
∫ 1

0
(1 − η)α−1η−αdη = �(α)�(1 − α)k(0) �= 0. (23)

Next we show

Lemma 3 If q(0)u + Ku = 0 for u ∈ L2(0, T ), then u = 0 in (0, T ).

Proof Let

q(0)u(t) = −
∫ t

0

∂(q(t − ξ))

∂ξ
u(ξ)dξ, 0 < t < T .

Then, by (23) and (19), we obtain

|u(t)| ≤ C
∫ t

0
(t − ξ)−β |u(ξ)|dξ, 0 < t < T .

Therefore a generalized Gronwall inequality (e.g., pp. 188–189 in Henry [8]) yields
u = 0 in (0, T ). Thus the proof of Lemma 3 is completed.

By Lemmata 1 and 3, applying the Fredholm alternative, we see that
(q(0) − K )−1 : H1(0, T ) −→ H1(0, T ) and (q(0) − K )−1 : L2(0, T ) −→ L2(0, T )

are bounded linear operators. We apply the interpolation result.
Since [H1(0, T ), L2(0, T )]1−α = Hα(0, T ), 0 < α < 1 (e.g., Sect. 11.5 (Theo-

rem11.6 andRemark 11.5) ofChap.1 inLions andMagenes [15]),we applyTheorem
5.1 in Sect. 5.1 of Chap.1 in [15]), so that by (23) we can conclude that

(
k(0) − 1

�(α)�(1 − α)
K

)−1

: Hα(0, T ) −→ Hα(0, T )

is surjective and isomorphism. Thus there exists a constant C > 0 such that
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C−1‖u‖Hα(0,T ) ≤
∥∥∥∥
(
k(0) − 1

�(α)�(1 − α)
K

)
u

∥∥∥∥
Hα(0,T )

≤ C‖u‖Hα(0,T ), u ∈ Hα(0, T ).

(24)

Now we prove

Lemma 4

Jα∂α
t,ku =

(
k(0) − 1

�(α)�(1 − α)
K

)
u in(0, T )

for u ∈ 0C1[0, T ].
Proof Exchanging the order of integration, we obtain

�(1 − α)�(α)Jα∂α
t,ku(t) =

∫ t

0
(t − s)α−1

(∫ s

0
(s − ξ)−αk(s − ξ)

du(ξ)

dξ
dξ

)
ds

=
∫ t

0

(∫ t

ξ

(t − s)α−1(s − ξ)−αk(s − ξ)ds

)
du(ξ)

dξ
dξ =

∫ t

0
q(t − ξ)

du(ξ)

dξ
dξ.

By (16), (17) and u(0) = 0, the integration by parts yields

�(1 − α)�(α)Jα∂α
t,ku(t)

=q(0)u(t) −
∫ t

0

∂(q(t − ξ))

∂ξ
u(ξ)dξ = (q(0) − K )u(t).

Thus, in view of (23), the proof of Lemma 4 is completed.

Definition of ∂α
t,k .

We define the extension of ∂α
t,k by

∂α
t,ku = J−α

(
k(0) − 1

�(α)�(1 − α)
K

)
u, u ∈ Hα(0, T ). (25)

By (25) and Theorem 2 shown in Sect. 1, we see that ∂α
t,ku ∈ L2(0, T ) is well-

defined for each u ∈ Hα(0, T ) and estimate (9) holds.
Finally we have to prove the uniqueness in determining the extension of ∂α

t,k in

0C1[0, T ]. Let D̃ : Hα(0, T ) −→ L2(0, T ) satisfy (9) and D̃u = ∂α
t,ku for all u ∈

0C1[0, T ].
Henceforth Y

X
denotes the closure of a subset Y of a Banach space X in the

topology of X . We can prove

0C1[0, T ]Hα(0,T ) = Hα(0, T ). (26)

Proof of (26).
For 1

2 < α ≤ 1, we see that Hα(0, T ) = {u ∈ Hα(0, T ); u(0) = 0}, so that the mol-
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lifier (e.g., [1]) yields the conclusion. Let 0 ≤ α ≤ 1
2 . By [15], we have

Hα(0, T ) = [H1(0, T ), L2(0, T )]1−α

which is the interpolation space. Applying Proposition 6.1 (p. 28) in [15], for
1
2 < γ < 1 we see that

Hγ (0, T )
Hα(0,T ) = Hα(0, T ).

As is already proved, we see that

0C1[0, T ]Hγ (0,T ) = Hγ (0, T ).

Both density properties yield

0C1[0, T ]Hα(0,T ) = Hα(0, T )

for 0 ≤ α ≤ 1
2 . Thus the proof of (26) is completed.

Let u ∈ Hα(0, T ) be arbitrarily given. By (26) we choose un ∈ 0C1[0, T ], n ∈ N,
such that un −→ u in Hα(0, T ). Then D̃un = ∂α

t,kun , n ∈ N. By (9) D̃un are conver-

gent in L2(0, T ) and ∂α
t,kun −→ ∂α

t,ku in L2(0, T ). Therefore ∂α
t,ku = D̃u. Thus the

uniqueness of the extension is seen and the proof of Theorem 1 is complete.

Henceforth we write ∂α
t,k simply by ∂α

t,k . Theorem 1 and Lemma 4 allow us to
represent

∂α
t,ku = J−α

(
k(0) − 1

�(α)�(1 − α)
K

)
u, u ∈ Hα(0, T ). (27)

In the case of the Caputo derivative, i.e., k ≡ 1, we see that k(0) = 1 and K = 0,
and so ∂α

t,k coincides with ∂α
t = J−α , which is justified by Theorem 2 in Sect. 1.

3 Proof of Theorem 3

Let α = 1 + γ with 0 < γ < 1.

(i) Proof of the injectivity.

We assume that u ∈ Hα(0, T ) satisfies ∂
γ
t

(
du
dt

) = 0 in (0, T ). By Theorem 2, ∂γ
t is

injective, and so du
dt = 0 in (0, T ). Sinc u ∈ H1(0, T ) by u ∈ Hα(0, T ) ⊂ H1(0, T ),

we have u(0) = 0. Hence u = 0 in (0, T ). Thus ∂α
t is injective in Hα(0, T ).
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(ii) Proof of the surjectivity.

First we see

J Hγ (0, T ) ⊂ H1+γ (0, T ). (28)

Indeed let v = J ṽ with ṽ ∈ Hγ (0, T ). Then dv
dt = d

dt (J ṽ) = ṽ ∈ Hγ (0, T ). By the
definition (10), we see that v ∈ H1+γ (0, T ), and (28) is verified.

Letw ∈ L2(0, T ) be arbitrarily given.We set u := J J γw. By Theorem 2, we have
J γw ∈ Hγ (0, T ) and definition (10) directly yields u = J (J γw) ∈ H1+γ (0, T ).
Moreover, since d

dt Jv = v for v ∈ L2(0, T ), we see that

∂α
t u = ∂

γ
t
d

dt
(J J γw) = ∂

γ
t

(
d

dt
J

)
(J γw) = ∂

γ
t J

γw.

Applying Theorem 2 again, we obtain ∂
γ
t J

γw = w. Therefore w = ∂α
t u with u ∈

Hα(0, T ). Thus the surjectivity is proved.

(iii) Proof of (14).

By Theorem 2, we have

C−1

∥∥∥∥dudt
∥∥∥∥
Hγ (0,T )

≤
∥∥∥∥∂

γ
t
du

dt

∥∥∥∥
L2(0,T )

≤ C

∥∥∥∥dudt
∥∥∥∥
Hγ (0,T )

. (29)

By definition (11), we easily verify

C−1‖u‖H1+γ (0,T ) ≤
∥∥∥∥dudt

∥∥∥∥
Hγ (0,T )

≤ C‖u‖H1+γ (0,T ), u ∈ H1+γ (0, T ), (30)

because ‖u‖L2(0,T ) ≤ C1

∥∥ du
dt

∥∥
L2(0,T )

by using u(0) = 0 which follows from u ∈
H1(0, T ). By (29) and (30), we reach (14). Thus the proof of Theorem 3 is complete.

4 Application to Generalized Caputo Fractional Ordinary
Differential Equations

We assume (8) and 0 < α < 1. On the basis of ∂α
t,k defined in Sect. 1, we discuss

initial value problems for fractional ordinary differential equations with generalized
Caputo derivative ∂α

t,k :

{
∂α
t,k(u − a) = G(u) + f, 0 < t < T,

u − a ∈ Hα(0, T ),
(31)
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where G is an operator acting a function u. We remark that G can be quite general
including nonlinear terms, but in this section, we consider only a linear case:

G(u) := r(t)u, r ∈ L∞(0, T ).

More precisely,

{
∂α
t,k(u − a) = r(t)u(t) + f (t), 0 < t < T,

u − a ∈ Hα(0, T ),
(32)

where f ∈ L2(0, T ) and a ∈ R. When we want to consider ∂α
t,ku in the pointwise

sense, we have to consider du
dt but this derivative may not exist for the solution u

to the initial value problem for not very smooth f , for example, f ∈ L2(0, T ). In
other words, by the naive understanding of ∂α

t,k , the initial condition u(0) = a cannot
be necessarily understood well if u is not continuous at t = 0. We see that u − a ∈
Hα(0, T )where 1

2 < α < 1 implies u − a ∈ C[0, T ] by the Sobolev embedding, and
so the condition u − a ∈ Hα(0, T ) can be a replacement for the initial condition.

We can prove

Theorem 4 Let r ∈ L∞(0, T ). For given f ∈ L2(0, T ) and a ∈ R, there exists a
unique solution u to (32) and there exists a constant C > 0 depending on r, such
that

‖u − a‖Hα(0,T ) ≤ C(|a| + ‖ f ‖L2(0,T )) (33)

and

‖u‖Hα(0,T ) ≤ C(|a| + ‖ f ‖L2(0,T )). (34)

for each f ∈ L2(0, T ) and a ∈ R.

Similarly to Chap.3 in [14], we can prove improved regularity according to
smoother f and r , but we omit the details.

Proof By the definition (27), we know that (32) is equivalent to

{
J−α

(
k(0) − 1

�(α)�(1−α)
K

)
(u − a) = r(t)u(t) + f (t), 0 < t < T,

u − a ∈ Hα(0, T ).
(35)

Here the operator K is defined by (17), and we set

K̃ = k(0) − 1

�(α)�(1 − α)
K .
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Then we recall that by (24) both K̃ : L2(0, T ) −→ L2(0, T ) and K̃ : Hα(0, T ) −→
Hα(0, T ) are surjective and injective, and

‖K̃−1v‖L2(0,T ) ≤ C‖v‖L2(0,T ), v ∈ L2(0, T ) (36)

and

‖K̃−1v‖Hα(0,T ) ≤ C‖v‖Hα(0,T ), v ∈ Hα(0, T ). (37)

Therefore (35) is equivalent to

{
u − a = K̃−1 Jα(r(u − a)) + K̃−1 Jα f + K̃−1 Jα(r(t)a), 0 < t < T,

u ∈ L2(0, T ).
(38)

We see that (38) implies that u − a ∈ K̃−1 JαL2(0, T ) if u ∈ L2(0, T ), and so (38)
and u ∈ L2(0, T ) yield u − a ∈ Hα(0, T ).

It is sufficient to prove that there exists a unique u ∈ L2(0, T ) to (38). First

K̃−1 Jα(r ·) : L2(0, T ) −→ L2(0, T )is a compact operator. (39)

Indeed by (37), r ∈ L∞(0, T ) and Theorem 2, we obtain

‖K̃−1 Jα(rv)‖Hα(0,T ) ≤ C‖Jα(rv)‖Hα(0,T ) ≤ C‖rv‖L2(0,T ) ≤ C‖v‖L2(0,T ).

Therefore K̃−1 Jα(r ·) : L2(0, T ) −→ Hα(0, T ) ⊂ Hα(0, T ) is bounded and by the
compactness of the embedding Hα(0, T ) −→ L2(0, T ), we see (39).

Next let v = K̃−1 Jα(rv) in (0, T ). Then

k(0)v = 1

�(α)�(1 − α)
Kv + Jα(rv),

that is, using (17) we have

v(t) = 1

k(0)�(α)�(1 − α)

∫ t

0

∂(q(t − ξ))

∂ξ
v(ξ)dξ + 1

k(0)�(α)

∫ t

0
(t − s)α−1(rv)(s)ds.

By (19) and r ∈ L∞(0, T ), we have

|v(t)| ≤ C
∫ t

0
(t − ξ)−β |v(ξ)|dξ + C

∫ t

0
(t − s)α−1|v(s)|ds, 0 < t < T .

Setting γ = max{β, 1 − α} < 1, we reach

|v(t)| ≤ C
∫ t

0
(t − s)−γ |v(s)|ds, 0 < t < T .
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The generalized Gronwall inequality (e.g., Henry [8], pp. 188–189) yields v = 0 in
(0, T ). In terms of (39), applying the Fredholm alternative, we conclude that (38)
possesses a unique solution u − a ∈ L2(0, T ).

Moreover (38) and (36) imply

‖u − a‖L2(0,T ) ≤ C‖K̃−1 Jα f ‖L2(0,T ) + C‖K̃−1 Jα(ra)‖L2(0,T )

≤C‖Jα f ‖L2(0,T ) + C‖Jα(ra)‖L2(0,T ) ≤ C(‖ f ‖L2(0,T ) + |a|).

Hence, by (35), we have

‖J−α K̃ (u − a)‖L2(0,T ) ≤ ‖ru + f ‖L2(0,T ) = ‖r(u − a) + (ra + f )‖L2(0,T )

≤C(‖ f ‖L2(0,T ) + |a|)

and
‖u − a‖Hα(0,T ) ≤ C‖K̃ (u − a)‖Hα(0,T ) ≤ C‖J−α K̃ (u − a)‖L2(0,T )

by Theorem 2 and (37). Therefore, since

‖u‖Hα(0,T ) − ‖a‖Hα(0,t) ≤ ‖u − a‖Hα(0,T ) ≤ ‖u − a‖Hα(0,T ),

we prove (33) and (34), so that the proof of Theorem 4 is complete.

5 Applications to Caputo Fractional Ordinary Differential
Equations of Order 1 < α < 2

Let α = 1 + γ with 0 < γ < 1. In view of our defined ∂α
t = ∂

γ
t

d
dt , we consider two

simple linear fractional ordinary differential equations. First we consider

⎧⎨
⎩

∂α
t (u − bt − a) = r(t)u + f (t),
u − bt − a ∈ H1(0, T ),
du
dt − b ∈ Hγ (0, T ),

(40)

We first show

Lemma 5 Let u ∈ C2[0, T ] satisfy du
dt − b ∈ 0C1[0, T ] and (40). Then u satisfies

{
C
0 D

α
t u(t) = r(t)u + f (t),

u(0) = a, du
dt (0) = b.

(41)

Here we recall that the Caputo derivative C
0 D

α
t for α = 1 + γ with 0 < γ < 1 is

defined by
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C
0 D

α
t u(t) = 1

�(1 − γ )

∫ t

0
(t − s)−γ d2

ds2
u(s)ds, u ∈ C2[0, T ].

Proof of Lemma 5
We readily see that limt→0

du
dt (t) = b and limt→0 u(t) = a by the assumption of the

smoothness of u. By Theorem 2 (iv), we have

∂
γ
t v(t) = 1

�(1 − γ )

∫ t

0
(t − s)−γ dv

ds
(s)ds, v ∈ 0C

1[0, T ].

Therefore du
dt − b ∈ 0C1[0, T ] yields

∂
γ
t

(
du

dt
− b

)
= 1

�(1 − γ )

∫ t

0
(t − s)−γ d

ds

(
du

ds
− b

)
ds

= 1

�(1 − γ )

∫ t

0
(t − s)−γ d

2u

ds2
(s)ds = C

0 D
α
t u(t).

Therefore the proof of Lemma 5 is complete.

Thus by Lemma 5, we can regard (40) as a natural formulation of an initial value
problem although it looks different from the conventional way (e.g., Diethelm [3],
Kilbas, Srivastava and Trujillo [10], Podlubny [20]). Since our definition of ∂α

t is
not restricted to smooth u, we can assert that (40) is more general formulation for
non-smooth f . Indeed we can easily prove

Theorem 5 Let 1 < α < 2 and r ∈ L∞(0, T ). For f ∈ L2(0, T ) and a, b ∈ R,
there exists a unique solution u ∈ Hα(0, T ) to (40). Moreover we can find a constant
C > 0 such that

‖u‖Hα(0,T ) ≤ C(|a| + |b| + ‖ f ‖L2(0,T ))

for each f ∈ L2(0, T ) and a, b ∈ R.

Proof We can prove similarly to Theorem 4. Setting v := u − bt − a, we see that
(40) is equivalent to

∂
γ
t
du

dt
= r(t)v + r(t)(bt + a) + f,

that is, since ∂
γ
t w = J−γw for w ∈ Hγ (0, T ), we obtain

dv

dt
= J γ (rv) + J γ (r(bt + a)) + J γ f.

By v ∈ H1(0, T ), we obtain

v(t) =
∫ t

0

dv

ds
(s)ds = J

dv

dt
(t)
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and so

v = J J γ (rv) + J J γ (r(bt + a) + f ) in(0, T ). (42)

As is directly proved, we see that J J γw = J 1+γw for w ∈ L2(0, T ).

Moreoverwe can readily prove that the operator K0 : L2(0, T ) −→ L2(0, T ) defined
by K0v := J 1+γ (rv), is compact. Indeed

K0v(t) = J 1+γ (rv)(t) = 1

�(1 + γ )

∫ t

0
(t − s)γ r(s)v(s)ds

is aHilbert-Schmidt integral operator (e.g.,Yosida [22]), and so is a compact operator.
Therefore, if we prove that v = K0v in (0, T ) yields v = 0, then the Fredholm

alternative implies the unique existence v to (42). Let v = K0v in (0, T ). Then

|v(t)| =
∣∣∣∣ 1

�(1 + γ )

∫ t

0
(t − s)γ r(s)v(s)ds

∣∣∣∣ ≤ C
∫ t

0
|v(s)|ds, 0 < t < T .

The Gronwall inequality implies v = 0 in (0, T )

Finally we have to estimate u and the proof is very similar to Theorem 4, so that
we omit the details. Thus the proof of Theorem 5 is complete.

We can prove a similar result for multi-term fractional ordinary differential
equation.

Theorem 6 Let 0 < α1 < · · · < αm ≤ 1 < αm+1 < · · · < αN−1 < αN < 2, pN =
1, pn, r ∈ L∞(0, T ) for 1 ≤ n ≤ N − 1. For f ∈ L2(0, T ) and a, b ∈ R, there exists
a unique solution u ∈ Hα(0, T ) to

m∑
n=1

pn(t)∂
αn
t (u − a) +

N∑
n=m+1

pn(t)∂
αn
t (u − bt − a)

= r(t)u(t) + f (t), 0 < t < T, (43)

and

u − bt − a ∈ H1(0, T ),
du

dt
− b ∈ HαN−1(0, T ). (44)

Moreover we can find a constant C > 0 such that

‖u‖HαN (0,T ) ≤ C(|a| + |b| + ‖ f ‖L2(0,T )) (45)
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for each f ∈ L2(0, T ) and a, b ∈ R.

Similarly to Lemma 5, for u ∈ C2[0, T ] satisfying du
dt − b ∈ 0C1[0, T ], the for-

mulation (43) and (44) is the same as

{ ∑N
n=1 pn(t)

C
0 D

αn

t u = r(t)u(t) + f (t), 0 < t < T,

u(0) = a, du
dt (0) = b,

and so our formulation (43) and (44) is reasonable.

Proof We set v = J−αN (u − bt − a) and r̃0(t) = −∑m
n=1 pn(t)∂

αn
t t ∈ L∞(0, T ).

Then we see that (43) is equivalent to

v +
N−1∑
n=1

pn(t)J
−αn JαN v = r JαN v + r(bt + a) + r̃0b + f in(0, T ).

Since αn, αN − αn ≥ 0, we can directly see JαN v = Jαn JαN−αn v for v ∈ L2(0, T )

and
J−αn JαN v = J−αn (Jαn JαN−αn v) = J−αn Jαn (JαN−αn v) = JαN−αn v.

Hence (43) is equivalent to

v = −
N−1∑
n=1

pn J
αN−αn v + r JαN v + (r(bt + a) + r̃0b + f ) in(0, T ). (46)

Similarly to Theorem 5, we can prove by Theorem 2 that the operator JαN−αn :
L2(0, T ) −→ L2(0, T ) is compact by αN − αn > 0 for 1 ≤ n ≤ N − 1, because
JαN−αn : L2(0, T ) −→ HαN−αn (0, T ) is a bounded operator.

Moreover by the generalized Gronwall inequality we know that if

v = −
N−1∑
n=1

pn J
αN−αn v + r JαN v in(0, T )

then v = 0 in (0, T ). Therefore the Fredholm alternative implies that (46) possesses
a unique solution v ∈ L2(0, T ) for each f ∈ L2(0, T ) and a, b ∈ R, and

‖v‖L2(0,T ) ≤ C(|a| + |b| + ‖ f ‖L2(0,T )).

Since v = J−αN (u − bt − a), we can see

‖u − bt − a‖HαN (0,T ) ≤ C(|a| + |b| + ‖ f ‖L2(0,T )).

Since
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‖u − bt − a‖HαN (0,T ) ≤ ‖u − bt − a‖HαN (0,T )

and

‖u − bt − a‖HαN (0,T ) ≥ ‖u‖HαN (0,T ) − ‖bt + a‖HαN (0,T )

≥‖u‖HαN (0,T ) − C(|a| + |b|),

we see estimate (45). Thus the proof of Theorem 6 is complete.

6 Concluding Remarks on Future Topics

In this article, we establish convenient formulations for two kinds of time fractional
derivatives. It is very natural to apply them to initial value problems of wide classes
of fractional differential equations. However we intend this article as introductory
accounts, and we do not provide comprehensive expositions. In this section, we list
up some of important future topics.

I. More properties of solutions:

We should study t-analyticity, asymptotics as t → ∞, improved regularity with
more smooth f , etc. for solutions to initial value problems. Moreover the backward
problem in time is an interesting topic, and as for ∂α

t , see Floridia, Li and Yamamoto
[4], Floridia and Yamamoto [5], Sakamoto and Yamamoto [21], and the references
therein.

II. Nonlinear theory:

Well-posedness and properties for solutions to

∂α
t,ku = G(u) + f (t), u − a ∈ Hα(0, T ),

where G(u) is a nonlinear term which can include other fractional terms of u: as just
one example, we can propose

G(u) = G(∂
α1
t,k1

u, . . . , ∂
αN
t,kN

u),

where G(η1, . . . , ηN ) is some function, 0 < α1 < · · · < αN < α < 1 and the func-
tions k, k1, . . . , kN satisfy certain conditions similar to (8).

III. Initial-boundary value problems for fractional partial differential equa-
tions:

For a bounded domain � ⊂ R
d , we should consider
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⎧⎨
⎩

∂α
t,k(u(x, t) − a(x)) + A(t)u(x, t) = F(x, t), x ∈ �, 0 < t ≤ T,

u(·, t) ∈ H 1
0 (�), 0 < t < T,

u(x, ·) − a(x) ∈ Hα(0, T ), x ∈ �,

and
⎧⎪⎪⎨
⎪⎪⎩

∂α
t (u(x, t) − b(x)t − a(x)) + A(t)u(x, t) = F(x, t),

x ∈ �, 0 < t ≤ T, 1 < α < 2,
u(·, t) ∈ H 1

0 (�), 0 < t < T,

u(x, ·) − a(x) ∈ Hα(0, T ), u(x, ·) − b(x)t − a(x) ∈ H1(0, T ), x ∈ �.

For the case of the fractional derivative ∂α
t with 0 < α < 1, we can refer to

Bazhlekova [2], Gorenflo, Luchko and Yamamoto [7], Kubica, Ryszewska and
Yamamoto [14],Kubica andYamamoto [13],Luchko [16, 17],LuchkoandYamamoto
[18], Sakamoto and Yamamoto [21], Zacher [23, 24], and Kian and Yamamoto [9].
It is natural to develop the well-posedness similarly to [13, 14] based on the frac-
tional derivatives in fractional Sobolev spaces, which we carry out in this article for
fractional ordinary differential equations.
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Appendix. Proof of Lemma 2

We set 
̃(η) =
{


(η), 0 < η < T,

0, −T < η ≤ 0.
. Then we have

(Lu)(t) =
∫ T

0

̃(t − s)u(s)ds, 0 < t < T .
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For 0 < β < 1
2 , we see

∫ T

0

∫ T

0
|
̃(t − s)|2dsdt < ∞

and L : L2(0, T ) −→ L2(0, T ) is a Hilbert-Schmidt integral operator and so is com-
pact (e.g., [22]). Let 1

2 ≤ β < 1. For ε > 0, we set


̃ε(η) =
{


̃(η), ε ≤ η < T,

0, η < ε

and

Lεu(t) =
∫ t−ε

0

(t − s)u(s)ds =

∫ T

0

̃ε(t − s)u(s)ds, u ∈ L2(0, T ).

Since ∫ T

0

∫ T

0
|
̃ε(t − s)|2dsdt < ∞,

we see that the operator Lε : L2(0, T ) −→ L2(0, T ) is a Hilbert-Schmidt operator
and so is compact.

Next we can estimate

|(Lεu − Lu)(t)|2 =
∣∣∣∣
∫ T

0
(
̃ε(t − s) − 
̃(t − s))u(s)ds

∣∣∣∣
2

=
∣∣∣∣
∫ t

max{0,t−ε}

̃(t − s)u(s)ds

∣∣∣∣
2

≤ C

∣∣∣∣
∫ t

max{0,t−ε}
|t − s|− β

2 (|t − s|− β

2 u(s))ds

∣∣∣∣
2

≤C
∫ t

max{0,t−ε}
1

|t − s|β ds
∫ t

max{0,t−ε}
|u(s)|2
|t − s|β ds ≤ Cε1−β

∫ T

0

|u(s)|2
|t − s|β ds

by 0 < β < 1. Therefore

∫ T

0
|(Lεu − Lu)(t)|2dt ≤ Cε1−ε

∫ T

0

∫ T

0

|u(s)|2
|t − s|β dsdt

=Cε1−ε

∫ T

0
|u(s)|2

(∫ T

0
|t − s|−βdt

)
ds ≤ Cε1−β‖u‖2L2(0,T ).

Therefore Lε −→ L as ε → 0 in the norm of the operators from L2(0, T ) to itself.
Since Lε is compact, the limit of the compact operators by the operator norms is still
compact. Thus the proof of Lemma 2 is complete.
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