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Abstract. This article presents the application of mathematical pro-
gramming and evolutionary algorithms to solve a variant of the Bus
Timetabling Synchronization Problem. A new problem model is proposed
to include extended synchronization points, accounting for every pair of
bus stops in a city, the transfer demands for each pair of lines, and the
offset for lines in the considered scenario. Mixed Integer Programming
and evolutionary algorithm are proposed to efficiently solve the problem.
A relevant real case study is solved, for the public transportation system
of Montevideo, Uruguay. Several scenarios are solved and results are
compared with the no-synchronization solution and the current plan-
ning of such transportation system too. Experimental results indicate
that the proposed approaches are able to significantly improve the cur-
rent plannings. The Mixed Integer Programming algorithm computed
the optimum solution for all scenarios, accounting for an improvement
of up to 95% in successful synchronizations when compared with the
actual timetable in Montevideo. The evolutionary algorithm is efficient
too, improving up to 68% the synchronizations with respect to the cur-
rent planning and systematically outperforming the baseline solutions.
Waiting times for users are significantly improved too, up to 33% in tight
problem instances.

Keywords: Smart cities · Mobility · Public transportation ·
Timetabling · Synchronization

1 Introduction

Transportation systems are a crucial component of modern society, and they
are one of the most important services to improve efficiency of activities in
nowadays smart cities [6,10]. Transportation systems include a wide range of
logistic activities related to transporting passengers and goods. One of the main
goals of transportation systems is coordinating the movement of people, provid-
ing efficient mobility at reasonable fares. In this regard, public transportation
is the most efficient and environmental friendly mean for mobility of citizens.
However, the efficacy of public transportation systems in large cities requires
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a proper planning of several issues that affect the quality of service, including
routes design and management, timetabling, drivers assignment, and others [3].

A transportation system usually includes timetables accounting for reporting
the expected location of vehicles during a day. Timetables are closely related to
the transportation network design, and they are usually built to account for spe-
cific origin-destination demands. Synchronization of multi-leg trips or transfers
is usually a secondary goal of the timetabling problem, although it is impor-
tant for providing an adequate quality-of-service, allowing passengers to wait
reasonable times for transfers from one route to another.

The proposed problem is very relevant for the case study proposed: the trans-
portation system of Montevideo, Uruguay [13]. Montevideo has a rather uniform
public transportation system, operated by buses with similar capacities and ser-
vice provision. Many users of the system manage to complete their end-to-end
journey using only one line, but several other users rely on connections between
different lines to make their trips, using transfers. Transfers can be made between
different (geographically separated) bus stops. They are allowed without addi-
tional charge and are controlled by the intelligent Metropolitan Transportation
System (STM), which identifies users using personal smart cards.

The STM also maintains historical records of the mobility of users. From
these data, time periods in the day are identified during which the use of the
system is regular, that is, where the utilization numbers have little dispersion and
their average values are known. These numbers include: number of passengers
boarding or alighting, number of transfers between lines and combinations of
stops, bus circulation times at stops on their routes, and transfer times between
stops for passengers seeking to transfer. These data are the main inputs used by
the local administration to plan the frequency of each line within the uniform
periods. Even knowing the frequency of each line, that is, the number of buses
to use in the service period to satisfy the demand of the system (including direct
and transfer trips), and knowing the circulation times between stops, there is
room to adjust the departure time of each bus, which in turn determines the
arrival time of that bus at each stop on its route.

Considering the case study described above, the main goal of this article is
to optimize the number of successful transfers allowed by a timetable realiza-
tion. The types of transfer are identified, and for each one a maximum thresh-
old is established for the time that a passenger waits for their connection. If
the passenger manages to transfer within a waiting time below that threshold,
the transfer is successfully timed. The variant of the transfer synchronization
problem elaborated here studies how to coordinate the departure schedule of
buses–and therefore of arrivals at stops on their routes–, in order to maximize
the number of successful transfers during a uniform time period, for which all
previous data are known and fixed.
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The article is organized as follows. Section 2 introduces the bus synchro-
nization problem and the variant solved in this article. Section 3 reviews related
works. The proposed approaches for bus synchronization are described in Sect. 4.
The experimental evaluation of the proposed methods over realistic instances in
Montevideo is reported in Sect. 5. Finally, the conclusions and the main lines for
future work are formulated in Sect. 6.

2 Bus Timetable Synchronization to Maximize Transfers

This section describes the bus timetable synchronization problem to maximize
transfers.

2.1 Problem Model

The problem accounts for the main goals of a modern transportation system:
providing a fast and reliable way for the movement of citizens, while maintaining
reasonable fares. The problem model mainly focuses on the quality of service
provided to the users, i.e., a better traveling experience with reduced waiting
times when using more than one bus for consecutive trips.

In the proposed model, the events of favoring passenger transfers with limited
waiting times are called synchronization events. The study is aimed at solving
real scenarios, based on real data from urban transit systems that accounts for
the number of passengers that perform transfers between lines on each bus stop.

The main idea of the problem model is to divide any day into several planning
periods on the basis of demand and travel time behavior of passengers. This
way, the analysis of historical data allows obtaining similar accurate and almost
deterministic information to build the problem scenarios.

2.2 Problem Formulation

The mathematical formulation of the bus timetable synchronization problem to
maximize transfers is presented next.

Problem Data. The set of data that defines an instance of the bus synchro-
nization problem includes the following elements:

– A planning period [0, T ].
– A set of lines of the bus network I = {i1, i2, . . . , in}, with predefined routes,

and the number of trips fi needed to fulfill the demand for each line i within
the planning period [0, T ], accounting for both directs trips and transfers.
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– A set of synchronization nodes, or transfer zones, B = {b1, b2, . . . , bm}. Each
synchronization node b ∈ B is a triplet <i, j, dijb > indicating that lines i and
j may synchronize in b, and that the bus stops for lines i and j are separated
by a distance dijb . Each synchronization node represents a pair of bus stops
for which regular transfers between lines i and j are registered. The value of
dijb defines the time needed for a passenger that transfers from line i to line
j to walk from one stop to another in the transfer zone (see next item).

– A traveling time function TT : I ×B → Z. TT i
b = TT (i, b) indicates the time

needed to reach the synchronization node b for buses in line i (from the origin
of the line). Generally, this value depends on several features, including the
bus type, bus velocity, traffic in roads, passengers’ demand, etc.

– A demand function P : I × I × B → Z. P ij
b = P (i, j, b) indicates the number

of passengers that transfer from line i to line j in synchronization node b, in
the planning period. Assuming a uniform demand hypothesis in the planning
period, the number of passengers that transfer from a given trip of line i to
a given trip of line j is P ij

b /fi. This is a realistic assumption for planning
periods where demand does not vary significantly, such as in the case study
presented in this article.

– A maximum waiting time W ij
b for each transfer zone, indicating the maximum

time that passengers are willing to wait for line j, after alighting from line i
and walking to the stop of line j, in a synchronization node b. Trips of line i
and j are considered synchronized for transfers if and only if the waiting time
of passengers that transfers is lower or equal to W ij

b .
– The departing time of the first trip of each line i (the offset of the line) must

be lower than a maximum headway time Hi, which is defined by the bus
system operator. Subsequent trips depart at a fixed frequency ΔXi. All trips
of each line must start within the planning period [0, T ].

Mathematical Model. The bus synchronization problem proposes finding
appropriate values for the departure time of the first trip of each line to guaran-
tee the maximum number of synchronizations for all lines with transfer demands
in the planning period T .

The control variables of the problem are the offset of each line (Xi
1), which

define the whole set of departing times for all trips of each line. Auxiliary vari-
ables are needed to capture the synchronization events in each transfer zone.
Binary variables Zij

rsb takes value 1 when trip r of line i and trip s of line j are
synchronized in node b (i.e., trip r of line i arrives before trip s of line j and
allows passengers to complete the transfer, i.e., walk between the corresponding
bus stops and wait less than the waiting threshold for that transfer, W ij

b ).
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The mathematical model of the bus synchronization problem as Mixed Inte-
ger Programming (MIP) problem is formulated in Eq. 1.

maximize
∑

b∈B

(
fi∑

r=1

fj∑

s=1

Zij
rsb) · P ij

b

fi
(1a)

subject to Zij
rsb ≤ 1 +

(Ai
rb + dijb + W ij

b ) − Aj
sb

M
∀b ∈ B (1b)

Zij
rsb ≤ 1 +

Aj
sb − (Ai

rb + dijb )
M

∀b ∈ B (1c)

with Aj
sb = Xj

1+(s−1)ΔXj+TT j
b

Ai
rb = Xi

1+(r−1)ΔXi+TT i
b

Zij
rsb ∈ {0, 1}, 0 ≤ Xi

1 ≤ Hi, ∀i ∈ I (1d)

The objective function of the optimization problem (Eq. 1a) proposes max-
imizing the number of passengers that successfully complete a transfer in the
planning period in every synchronization point. The value

∑fi
r=1

∑fj
s=1 Zij

rsb is
the total number of successful connections between trips of each pair of lines i
and j involved in each synchronization point b, while P ij

b /fi is the demand for
each transfer.

Equations 1b–1d specify the constraints of the problem. According to Eq. 1a,
the optimization will seek to activate as many variables Zij

rsb as possible. Con-
straints for variables Zij

rsb prevent them from taking the value 1 if the corre-
sponding transfer is not synchronized. In both, Eqs. 1b and 1c, Ai

rb denotes the
arrival time of trip r of line i to transfer zone b and Aj

sb denotes the arrival time
of trip s of line j to transfer zone b. For an interpretation of constraint 1b, con-
sider the maximum time passengers from trip r of line i are willing to wait for a
transfer with trip s of line j at transfer zone b. This value defines the limit time
Ai

r+dijb +W ij
b . Whenever the arrival time of trip s of line j does not surpass that

limit, the right-hand side of Eq. 1b is greater or equal to 1, so the synchronization
variable Zij

rsb is allowed to be 1. In addition, it is also necessary for passengers
alighting from trip r of line i to walk to the transfer point (arriving at time
Ai

rb+dijb ) before the arrival time of the corresponding trip s of line j (Aj
sb). Other-

wise, those passengers would lose the connection. Whenever this second condition
is met, the right-hand side of constraints Eq. 1c also allow Zij

rsb to take the value
1. So far, there is a potential issue when non-synchronized trips lead to values
lower than 0 on the right-hand side of Eq. 1c, which derives into unfeasible con-
straints sets. The proposed model only needs that either (Ai

rb +dijb +W ij
b )−Aj

sb

or Aj
sb − (Ai

rb + dijb ) to be negative to deactivate synchronization variables Zij
rsb.

Hence, suffices to get a constant value M , large enough to guarantee that both
Eqs. 1b and 1c are always feasible. However, using extremely large values for
M might cause numerical stability problems when the model is implemented
in a solver. The procedure applied in this article to find compliant and rela-
tively low values for M consisted in computing the maximum value within the
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union of sets {(Hi(j) + (fi(j) − 1) × ΔXj + TT j
b ) − (TT i

b + dijb + W ij
b )} and

{(Hi(i) + (fi(i) − 1) × ΔXi + TT i
b + dijb ) − TT j

b }, for all synchronization points
b inB. These values of M can be easily calculated during the process of crafting
the MIP formulation before using a specific solver, so the problem of finding
M is of polynomial complexity. Finally, Eq. 1d defines the domain for decision
variables Zij

rsb (binary variables).
The problem formulation assumes, without loss of generality, that ΔXj >

W ij
b , ∀j ∈ I, i.e., headways of bus lines are larger than the waiting time thresh-

olds for users. The case where ΔXj ≤ W ij
b correspond to a scenario in which

the headway of line j is lower than the time users are willing to wait, thus all
transfer with line j would be synchronized and they would not be part of the
problem to solve.

3 Related Work

The bus timetable synchronization problem was recognized as a relevant issue
for modern public transportation systems in early works by Ceder [3]. One of
the first approaches for schedule synchronization on bus network systems was
presented by Daduna and Voß [4], studying several objective functions (e.g.,
weighted sum considering transfers and the maximum waiting time at a transfer
zone). Metaheuristic algorithms were evaluated for simple versions of the prob-
lem with uniform frequencies, using data from the Berlin Underground network
and other German cities. Tabu Search computed better solutions than Simu-
lated Annealing over randomly generated examples, and a trade-off between
operational costs and user efficiency was concluded.

Ceder et al. [2] studied the Transit Network Timetabling problem to optimize
the number of synchronization events between bus lines at shared stops, by max-
imizing the number of simultaneous arrivals. A greedy algorithm was proposed
to solve the problem, based on selecting specific nodes from the bus network to
define custom timetables. The article focused on simultaneous bus arrivals, and
just some examples to illustrate synchronizations on small instances with few
nodes and few lines were reported.

Fleurent et al. [5] proposed a subjective metric to evaluate synchronizations,
using weights defined by experts and public transport authorities. The authors
solved an optimization problem to minimize variable (vehicle) operation costs. A
heuristic method was proposed for optimization, using the defined synchroniza-
tion metric. Several timetables were computed for small scenarios from Montréal,
Canada, using different weights for costs.

Ibarra and Ŕıos [8] studied a flexible variant of the synchronization problem,
considering time windows between travel times. A Multi-start Iterated Local
Search (MILS) algorithm was applied to solve eight instances modeling the bus
network in Monterrey, Mexico with between three and 40 synchronization points.
MILS was able to compute efficient solutions for medium-size instances in less
than one minute, when compared with a simple upper bound and a Branch &
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Bound exact method. Later, Ibarra et al. [7] applied MILS to solve the multi-
period bus synchronization problem, to optimize multiple trips of a given set of
lines. MILS was able to compute similar results than a Variable Neighborhood
Search and a simple population-based algorithm on synthetic instances with few
synchronization points. Results for a sample case study using data for a single
line of Monterrey demonstrated that maximizing synchronizations for a specific
node usually reduces the number of synchronizations for other nodes.

Our previous article [12] proposed an evolutionary approach for a specific
variant of the bus synchronization problem. Results for realistic case studies
in Montevideo demonstrated that the evolutionary approach outperformed real
timetables by the city administrator and other heuristic methods. This arti-
cle extends our previous research, accounting for a different variant of the bus
synchronization problem aimed at determining the optimal offset values while
keeping the headways and number of trips as indicated by the real timetable, in
order to not impact in the quality of service offered to direct passengers.

4 Proposed Resolution Approaches

This section describes the exact and metaheuristic approaches developed to solve
the bustimetable synchronization problem to maximize transfers.

4.1 Exact Mathematical Programming

The exact resolution of the proposed MIP model was developed using AMPL.
IBM ILOG CPLEX was used as the optimization tool, over the environment

defined by ptimization Studio 12.8. Optimal solutions are computed applying a
branch-and-cut heuristic, considering the following stop conditions for the exe-
cution:

– The time limit for the execution (parameter CPX PARAM TILIM) was set to ...
(explicar: not relevant)

– The GAP tolerance in CPLEX (parameter CPX PARAM EPGAP) was set to
the default value of 0.01% (0.0001). It is considered the default value
since, the main goal is to compare with previous solutions obtained with
that specific limit. The GAP represents, in percentage terms, the distance
between the solution found and the best achievable solution. It is defined as
(f(x)−bestBound)/f(x), where x is the solution found and bestBound is the
best value achievable by the objective function.

4.2 Evolutionary Algorithm

The proposed EA was implemented in C++, using the Malva library
(github.com/themalvaproject).
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Solution Encoding. Candidate solutions to the problem are represented using
integer vectors. In a solution representation, each integer value represents the
offset (in minutes) of each bus line, i.e., the time between the start of the planning
period and the depart of the first trip of each line. Formally, a candidate solution
to the problem is represented by X = X1

0 ,X2
0 , . . . Xn

0 , where n is the number of
bus lines in the problem instance, Xi

0 ∈ Z+, and 0 ≤ Xi
0 ≤ Hi.

Evolution Model. The (μ+λ) evolution model [1] is applied in the proposed EA:
μ parents generate λ offsprings, which compete between them and with their
parents, to determine the individuals that will be part of the new population on
the next generation. Preliminary experiments demonstrated that (μ + λ) evolu-
tion was able to provide better solutions and more diversity than a traditional
generational model.

Initialization Operator. A random initialization operator is applied. Randomly
generated solutions are included in the initial population, accounting for the
constraints defined for the offset of each line. This initialization procedure intends
to provide diversity to the evolutionary search.

Selection Operator. A tournament selection is applied. The tournament size is
three individuals, and one individual survives. Tournament selection computed
better results than proportional selection in preliminary calibration experiments,
mainly due to the appropriate level of selection pressure for the evolution.

Recombination Operator. The recombination operator is a specific variant of
two-point crossover. It defines two crossover points randomly in [1, n−1] and
exchanges the information encoded in both parents between the crossover points.
This operator was conceived to preserve specific features of lines already synchro-
nized in parent solutions, trying to keep useful information in the offspring gen-
eration process. The recombination operator is applied to individuals returned
by the selection operator, with a probability pR.

Mutation Operator. The mutation operator applied is a specific variant of Gaus-
sian mutation. Specific position(s) in a solution are modified according to a
Gaussian distribution, and taking into account the thresholds defined by the
minimum and maximum frequencies for each line. The mutation operator is
applied to every gene in the proposed representation with a probability pM .

5 Experimental Evaluation

This section reports the experimental evaluation of the proposed methods for
the bus synchronization problem.
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5.1 Methodology

Problem Instances. The experimental evaluation of the proposed methods for
bus synchronization is performed in problem instances built using real data from
the Metropolitan Transportation System in Montevideo, Uruguay.

Several sources of data from the National Open Catalog were considered to
gather information about bus lines description, routes, timetables, and bus stops
location in the city. The information about transfers was provided by Intendencia
de Montevideo and processed applying a urban data analysis approach [9].

The key elements of the scenario and problem instances are described next:
the period is the interval of hours considered for the schedule; the demand func-
tion is computed from transfers information registered by smart cards used to sell
tickets; the synchronization points are chosen according to their demand, i.e., the
pairs of bus stops with the largest number of registered transfers for the period
are selected; the bus lines correspond to the lines passing by the synchronization
points; the time traveling function TT for each line is computed empirically by
using GPS data; the walking time function is the estimated walking speed of a
person (assumed constant at ws = 6 km/h) multiplied by the distance between
bus stops in each transfer zone computed using geospatial information about
stops. The maximum waiting time is equal to λH, with λ ∈ [0.3, 0.5, 0.7, 0.9], to
allow configuring instances with different levels of tolerance/quality of service.

Sixty problem instances were defined, accounting for three different dimen-
sions (including 30, 70, and 110 synchronization points), using real information
about bus operating in Montevideo, Uruguay. The synchronization points of each
instance were chosen randomly from the most demanded transfer zones for the
considered period in the city (a total number of 170 zones).

Each defined problem instance is identified by the following name convention:
[NP].[NL].[λ].[id], where NP= n is the number of synchronization points,
NL= m is the of bus lines, λ is the coefficient applied to Wb (percentage) and id is
a relative identifier for instances with the same values of NL, NP, and λ. Scenarios
are available at https://www.fing.edu.uy/inco/grupos/cecal/hpc/bus-sync/.

Execution Platform. The experimental evaluation was performed on a Quad-core
Xeon E5430 at 2.66 GHz, 8 GB RAM, from National Supercomputing Center
(Cluster-UY), Uruguay [11].

Baseline Solutions for the Comparison. Two main baseline solutions were con-
sidered for the comparison of the solutions computed by the proposed methods.
A relevant baseline for comparison is the current timetable applied in the trans-
portation system of Montevideo (the real timetable), which provides the actual
level of service regarding direct travels and transfers. In turn, another relevant
baseline for comparison is the solution without applying any explicit approach
for synchronization of transfers, i.e., a solution where the first trip of each line
departs at the beginning of the planning period (time 0, the zeros timetable).
This solution provides a number of synchronized transfers according to the pre-
defined headways for each line.

https://www.fing.edu.uy/inco/grupos/cecal/hpc/bus-sync/
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Metrics. The metrics applied for the evaluation include: i) the number of syn-
chronized trips for passengers, as proposed in the summatory that defines the
objective function of the problem; ii) the improvements over the baseline solu-
tions, iii) the average waiting time each passenger wait for the connection (bus
of line j) in a synchronization point.

Parameter Setting. EAs are stochastic methods, thus parameter setting analysis
are needed to determine the parameter configuration that allows computing
the best results. The values of stopping criterion (#gen), population size (ps),
recombination probability (pR), and mutation probability (pM ) were studied for
the proposed EA on three instances, different from the ones used in validation
experiments, in order to avoid bias. The best results were obtained with the
configuration #gen = 10000, ps = 20, pR = 0.9 and pM = 0.01.

5.2 Numerical Results

Table 1 reports the objective function values computed by EA and the exact
resolution approach for the considered problem instances. In turn, the relative
improvements over the baseline solutions are reported: Δr is the relative improve-
ment over the real timetable and Δz is the relative improvement over the zeros
solution.

Table 1. Objective function results of exact and EA

scenario real zeros EA exact

obj Δr Δz obj Δr Δz

30.37.90.0 276.08 286.89 302.09 0.09 0.05 302.09 0.09 0.05

30.37.70.0 224.62 232.79 271.75 0.21 0.17 271.75 0.21 0.17

30.37.50.0 162.41 151.99 208.65 0.28 0.37 208.99 0.29 0.38

30.37.30.0 111.58 107.85 154.49 0.38 0.43 154.62 0.39 0.43

30.40.90.0 218.61 229.78 237.05 0.08 0.03 243.02 0.11 0.06

30.40.70.0 163.64 175.85 199.40 0.22 0.13 219.97 0.34 0.25

30.40.50.0 126.11 127.07 146.39 0.16 0.15 173.24 0.37 0.36

30.40.30.0 92.28 90.97 101.18 0.10 0.11 127.08 0.38 0.40

30.40.90.1 227.36 248.57 252.45 0.11 0.02 262.36 0.15 0.06

30.40.70.1 178.07 193.32 219.92 0.24 0.14 238.19 0.34 0.23

30.40.50.1 129.80 140.22 163.30 0.26 0.16 190.16 0.47 0.36

30.40.30.1 80.24 108.97 117.42 0.46 0.08 156.44 0.95 0.44

30.41.90.0 246.99 260.32 279.49 0.13 0.07 279.49 0.13 0.07

30.41.70.0 197.16 201.00 248.29 0.26 0.24 248.42 0.26 0.24

30.41.50.0 141.93 136.07 186.27 0.31 0.37 186.36 0.31 0.37

30.41.30.0 93.79 98.26 141.87 0.51 0.44 142.63 0.52 0.45

30.42.90.0 241.44 241.45 255.78 0.06 0.06 255.78 0.06 0.06

30.42.70.0 195.96 191.28 228.08 0.16 0.19 228.08 0.16 0.19

30.42.50.0 145.01 140.28 172.52 0.19 0.23 172.52 0.19 0.23

30.42.30.0 95.81 93.08 124.88 0.30 0.34 125.74 0.31 0.35

70.60.90.0 568.51 579.73 609.29 0.07 0.05 609.68 0.07 0.05

70.60.70.0 463.02 454.24 545.02 0.18 0.20 546.03 0.18 0.20

70.60.50.0 339.70 296.11 414.29 0.22 0.40 415.80 0.22 0.40

(continued)
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Table 1. (continued)

scenario real zeros EA exact

obj Δr Δz obj Δr Δz

70.60.30.0 218.71 213.86 301.34 0.38 0.41 304.07 0.39 0.42

70.62.90.0 543.67 560.98 590.80 0.09 0.05 591.17 0.09 0.05

70.62.70.0 443.22 443.89 524.86 0.18 0.18 525.81 0.19 0.18

70.62.50.0 325.70 317.75 393.66 0.21 0.24 394.13 0.21 0.24

70.62.30.0 212.04 215.66 295.31 0.39 0.37 298.68 0.41 0.38

70.63.90.0 550.17 575.71 609.44 0.11 0.06 609.68 0.11 0.06

70.63.70.0 441.71 455.92 546.46 0.24 0.20 547.61 0.24 0.20

70.63.50.0 316.46 300.67 427.58 0.35 0.42 429.74 0.36 0.43

70.63.30.0 208.82 202.82 324.20 0.55 0.60 328.02 0.57 0.62

70.67.90.0 510.16 535.04 567.09 0.11 0.06 567.43 0.11 0.06

70.67.70.0 409.57 418.35 512.30 0.25 0.22 513.00 0.25 0.23

70.67.50.0 302.15 299.78 400.06 0.32 0.33 402.49 0.33 0.34

70.67.30.0 194.05 201.63 298.87 0.54 0.48 302.55 0.56 0.50

70.69.90.0 522.36 550.33 583.61 0.12 0.06 583.85 0.12 0.06

70.69.70.0 406.63 435.12 529.19 0.30 0.22 531.05 0.31 0.22

70.69.50.0 298.53 292.98 416.07 0.39 0.42 418.24 0.40 0.43

70.69.30.0 193.05 205.18 324.08 0.68 0.58 328.15 0.70 0.60

110.76.90.0 815.78 843.26 894.86 0.10 0.06 895.72 0.10 0.06

110.76.70.0 656.63 669.18 798.41 0.22 0.19 799.61 0.22 0.19

110.76.50.0 479.29 451.85 622.49 0.30 0.38 627.71 0.31 0.39

110.76.30.0 333.66 294.90 467.28 0.40 0.58 474.09 0.42 0.61

110.78.90.0 847.33 879.90 900.09 0.06 0.02 931.35 0.10 0.06

110.78.70.0 699.49 667.77 763.71 0.09 0.14 835.26 0.19 0.25

110.78.50.0 507.05 453.87 551.42 0.09 0.21 644.97 0.27 0.42

110.78.30.0 324.79 317.42 379.43 0.17 0.20 477.47 0.47 0.50

110.78.90.1 867.23 895.99 910.82 0.05 0.02 941.85 0.09 0.05

110.78.70.1 708.89 689.30 780.93 0.10 0.13 845.71 0.19 0.23

110.78.50.1 525.85 460.71 567.71 0.08 0.23 654.75 0.25 0.42

110.78.30.1 338.42 319.33 390.82 0.15 0.22 489.02 0.45 0.53

110.78.90.2 848.47 872.66 894.37 0.05 0.02 932.92 0.10 0.07

110.78.70.2 681.46 676.82 765.56 0.12 0.13 836.45 0.23 0.24

110.78.50.2 494.80 449.03 571.35 0.15 0.27 654.02 0.32 0.46

110.78.30.2 333.19 309.13 397.57 0.19 0.29 492.76 0.48 0.59

110.83.90.0 810.76 850.69 897.02 0.11 0.05 897.65 0.11 0.06

110.83.70.0 624.94 674.88 803.28 0.29 0.19 806.25 0.29 0.19

110.83.50.0 463.61 460.48 634.77 0.37 0.38 639.36 0.38 0.39

110.83.30.0 299.88 300.96 490.14 0.63 0.63 498.28 0.66 0.66

Results reported in Table 1 indicate that exact and EA methods significantly
outperform the baseline solutions in all studied scenarios. The improvements
of EA over the real solution were up to 68% in instance 70.69.30.0 and the
improvements of the exact method over the real solution were up to 95% in
instance 30.40.30.1. Regarding the comparison with the zeros solution, the
improvements of EA were up to 63% and the improvements of the exact method
were up to 66%, both in instance 110.83.30.0. Average improvements over the
real timetable were 20% for EA and 25% for the exact solution.
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In turn, the proposed EA was able to compute solutions close to the exact
method (i.e., the optimal value) in low dimension and high tolerance scenarios,
computing the optimal solution in six scenarios.

Table 2 reports the average improvements of exact and EA over the baseline
solutions, grouped by scenario size and tolerance. Improvements of the exact
method are up to 52% over the real timetable (in scenarios with NP= 70 and
λ = 30) and up to 52% over zeros (in scenarios with NP= 100 and λ = 30).
In turn, the EA improved up to 50% over the real timetable and up to 49%
over zeros, both in scenarios with NP= 70 and λ = 30. The values grouped
by tolerance allow concluding that for all sizes, the improvements increase as
user tolerance decreases. This result indicates that the proposed methods scale
with the complexity of the problem, effectively increasing the quality of service.
Improvements of the exact method also increase with the size of the scenario.
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Fig. 1. Objective function comparison grouped by tolerance
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Table 2. Improvements of exact and EA over baseline solutions, grouped by dimension
and tolerance

NP λ EA exact

Δr Δz Δr Δz

30 90 0.10 0.05 0.11 0.06

30 70 0.22 0.17 0.26 0.21

30 50 0.24 0.26 0.32 0.34

30 30 0.35 0.28 0.49 0.42

70 90 0.10 0.06 0.10 0.06

70 70 0.23 0.20 0.23 0.21

70 50 0.30 0.36 0.30 0.37

70 30 0.50 0.49 0.52 0.50

110 90 0.07 0.04 0.10 0.06

110 70 0.16 0.16 0.22 0.22

110 50 0.19 0.30 0.30 0.42

110 30 0.30 0.38 0.49 0.58

Figure 1 shows the average objective values (normalized by NP) for all sce-
narios, grouped by tolerance. The largest difference in objective values is 1.51
(4.53–3.02), between the exact approach and the real timetable in scenarios with
low user tolerance (λ = 30). The lowest difference is 0.37, between EA and zeros,
when λ=90. As for results in Table 2, the graphic clearly shows that improve-
ments of the proposed approaches increase for tight scenarios.

Table 3 reports three values (r – ls/ln) for the considered solutions, grouped
by NP and λ. The value r is the ratio of the average waiting time results over
the maximum waiting time for each synchronization point, which evaluates the
number of successful synchronized trips and the relative waiting time for each
synchronization point. Successful synchronization are represented by r ≤ 1.0,
and unsuccessful synchronization are represented by r > 1.0. In turn, ls is the
average number of lines successfully synchronized and ln is the average number
of lines not synchronized.

Table 3. Average waiting time results for the considered solutions

NP λ real zeros EA exact

30 90 0.47–22/0 0.48–22/0 0.46–22/0 0.47–22/0

30 70 0.59–22/0 0.61–21/1 0.54–22/0 0.53–22/0

30 50 0.85–16/6 0.87–16/6 0.76–19/3 0.75–19/3

(continued)
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Table 3. (continued)

NP λ real zeros EA exact

30 30 1.33–3/19 1.37–3/19 1.19–5/16 1.12–7/15

70 90 0.47–39/0 0.49–39/0 0.46–39/0 0.47–39/0

70 70 0.59–38/1 0.62–38/1 0.54–39/0 0.52–39/0

70 50 0.85–28/10 0.88–28/10 0.74–35/3 0.73–35/4

70 30 1.35–5/33 1.40–4/35 1.14–11/28 1.13–12/27

110 90 0.49–49/0 0.50–49/0 0.48–49/0 0.46–49/0

110 70 0.61–46/2 0.64–47/2 0.57–48/1 0.53–49/0

110 50 0.87–34/14 0.91–34/15 0.79–41/8 0.72–44/5

110 30 1.38–7/42 1.43–4/45 1.24–11/38 1.10–17/32

Results in Table 3 indicate that the proposed approaches significantly
improve the quality of service with respect to the baseline solutions, accounting
for lower values of the waiting time metric for all scenarios. Largest improvement
of EA over baseline solutions occur where NP= 70 and λ = 30 (0.26 over zeros
solution and 0.21 over real solution). Largest improvements of the exact method
occur where NP= 110 and λ = 30 (0.33 over zeros solution and 0.28 over real
solution). The proposed approaches achieve better waiting time values in lower
tolerance scenarios, with respect to baseline solutions.

Figure 2 presents a histogram comparison of the waiting times (normalized
by Wb) for bus lines of a sample scenario (70.63.30.2) for a baseline solution
(left) and the exact solution (right). The graphic shows that the exact solution
manages to reduce the waiting time in a significant percentage of lines in the
scenario. The exact solution has more bus lines with a waiting time less than or
equal to 1 (16 vs. 6). Also, the exact solution has two lines with wait less than 0.5
while the baseline solution has none. Regarding higher waiting times, in the exact
solution only 6 lines are higher than 1.5 of the expected value, while the baseline
solution has 13 bus lines where users wait more than 1.5 of the expected value.
The histogram comparison clearly indicates that the proposed solution improves
the QoS, by synchronizing a larger number of lines of the system.
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Fig. 2. Histogram comparison of the waiting time metric for baseline (left) and exact
solutions (right) in scenario 70.63.30.2
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6 Conclusions and Future Work

This article presented exact and evolutionary approaches to solve a variant of the
Bus Timetabling Synchronization Problem considering extended synchronization
points for every pair of bus stops in a city, transfer demands, and the line offsets.

A Mixed Integer Programming approach and an evolutionary algorithm were
proposed to efficiently solve the problem. Results were compared with the no-
synchronization solution and also with real timetables for a real case study in
Montevideo, Uruguay.

Experimental results indicate that the proposed approaches significantly
improve over current timetable. The exact method computed the optimum solu-
tion for all scenarios, improving successful synchronizations up to 95% (25% in
average) over the real timetable in Montevideo. The EA is efficient too, improv-
ing up to 68% the synchronizations (20% in average) over the current timetable
and systematically outperforming other baseline solutions. The proposed EA
can be useful for addressing larger scenarios of the considered problem. Wait-
ing times for users are significantly improved too, up to 33% in tight problem
instances.

The main lines of future work include solving different variants of the bus
timetable synchronization problem, accounting for different headways in the
planning period, and modeling the real demand for direct trips too. Multiobjec-
tive version of the problem must be included too, by considering other relevant
functions: cost and quality of service.
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1. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computa-
tion. Oxford University Press, New York (1997)

2. Ceder, A., Golany, B., Tal, O.: Creating bus timetables with maximal synchroniza-
tion. Transp. Res. Part A: Policy Pract. 35(10), 913–928 (2001)

3. Ceder, A., Wilson, N.: Bus network design. Transp. Res. Part B Methodol. 20(4),
331–344 (1986)

4. Daduna, J., Voß, S.: Practical experiences in schedule synchronization. In: Daduna,
J.R., Branco, I., Paixão, J.M.P., (eds.) Computer-Aided Transit Scheduling. Lec-
ture Notes in Economics and Mathematical Systems, vol. 430, pp. 39–55. Springer,
Berlin (1995) https://doi.org/10.1007/978-3-642-57762-8 4
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12. Nesmachnow, S., Muraña, J., Goñi, G., Massobrio, R., Tchernykh, A.: Evolution-
ary approach for bus synchronization. In: Crespo-Mariño, J.L., Meneses-Rojas, E.
(eds.) CARLA 2019. CCIS, vol. 1087, pp. 320–336. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-41005-6 22

13. Risso, C., Nesmachnow, S.: Designing a backbone trunk for the public transporta-
tion network in Montevideo, Uruguay. In: Nesmachnow, S., Hernández Callejo, L.
(eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 228–243. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-38889-8 18

https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-41005-6_22
https://doi.org/10.1007/978-3-030-41005-6_22
https://doi.org/10.1007/978-3-030-38889-8_18

	Exact and Metaheuristic Approach for Bus Timetable Synchronization to Maximize Transfers
	1 Introduction
	2 Bus Timetable Synchronization to Maximize Transfers
	2.1 Problem Model
	2.2 Problem Formulation

	3 Related Work
	4 Proposed Resolution Approaches
	4.1 Exact Mathematical Programming
	4.2 Evolutionary Algorithm

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Numerical Results

	6 Conclusions and Future Work
	References




