
Computational Intelligence for Analysis
of Traffic Data

Hernán Winter1(B) , Juan Serra1(B) , Sergio Nesmachnow1(B) ,
Andrei Tchernykh2,3 , and Vladimir Shepelev3

1 Universidad de la República, Montevideo, Uruguay
{hernan.winter,juan.serra,sergion}@fing.edu.uy

2 CICESE, Ensenada, Mexico
chernykh@cicese.mx

3 South Ural State University, Chelyabinsk, Russia
shepelevvd@susu.ru

Abstract. This article presents a system developed for the collection
and analysis of traffic data obtained from traffic camera videos using
computational intelligence. The proposed system is developed using the
modern object detection library Detectron2. A pipeline-type architecture
is used for frame processing, where each step is an independent, config-
urable functional module, loosely coupled to the others. The validation
of the proposed system is performed on real scenarios in Montevideo,
Uruguay, under different conditions (daylight, nightlight, and different
video qualities). Results demonstrate the effectiveness of the system in
the considered scenarios.

Keywords: Computational intelligence · Neural networks · Traffic
data · Smart cities

1 Introduction

The growth of cities and traffic density have led to an increased demand for
surveillance systems capable of automating traffic monitoring and analysis. The
main goal of these automatic systems is to aid or even remove the human labor for
vision based tasks that can be performed by a computer, providing regulators and
authorities the ability to respond quickly to diverse traffic issues and situations.

Tasks such as vehicle counting and infraction detection are of great impor-
tance for Intelligent Transportation Systems [23]. Recently, computer vision
based detection and counting algorithms [22] have shown to be more effective
and outperform traditional traffic surveillance methods, such as methods using
different kinds of sensors [12]. However, there are still many challenges and open
issues in computer vision based vehicle detection and counting processes, caused
by illumination variation, shadows, occlusion, and other phenomena.

In this line of work, this article presents a system applying computational
intelligence (based on Artificial Neural Networks, ANN) to solve traffic analysis
c© Springer Nature Switzerland AG 2021
S. Nesmachnow and L. Hernández Callejo (Eds.): ICSC-CITIES 2020, CCIS 1359, pp. 167–182, 2021.
https://doi.org/10.1007/978-3-030-69136-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69136-3_12&domain=pdf
http://orcid.org/0000-0002-4075-3694
http://orcid.org/0000-0002-4286-9316
http://orcid.org/0000-0002-8146-4012
http://orcid.org/0000-0001-5029-5212
https://doi.org/10.1007/978-3-030-69136-3_12


168 H. Winter et al.

problems using video recordings provided by surveillance cameras. The problems
solved include vehicle detection, counting, classification, tracking, and detection
of different types of traffic offenses, such as red light intersection crossing and
parking vehicles in not allowed zones. The validation of the proposed system is
developed using real traffic videos from the city of Montevideo, Uruguay.

The main contributions of the reserch reported in this article include: i) a
methodology for the design of traffic analysis software systems using videos; ii)
specific implementations of vehicle detection, counting, classification and track-
ing methods, and iii) the validation of the proposed methods on real scenarios.

The article is structured as follows. Section 2 presents a background on com-
putational intelligence for image analysis. A review of the main related work
is presented in Sect. 3. The technical aspects of the solution, including the pro-
posed architecture, modules, and supporting libraries are described in Sect. 4.
The experimental validation is reported and results are discussed in Sect. 5.
Finally, Sect. 6 presents the conclusions and the main lines of future work.

2 Computational Intelligence for Image Analysis

This section describes the main concepts about the analysis of traffic data using
computational intelligence.

2.1 Detection

One of the fundamental problems in computer vision is the task of assigning a
label from a fixed set of categories to an input image. This task is known as
image classification and is divided into tree subtasks: segmentation, location,
and detection.

The goal of semantic segmentation is to obtain a category for each pixel given
an input image. It does not differentiate instances of the same object because
each pixel in the image is classified independently. The classification and location
task consists of classifying an image with a label that describes an object and
drawing the box within the image around the object. The output in this task
are a label that identifies an object and a box that indicates where that object
is located. Object detection takes as input a set of categories of interest and
an image. The goal of this task is to draw a box around each one of these
categories, each time they appear in the image, and also predict the category.
This problem is different from classification and localization since there can be
a variable number of outputs for each input image.

Another task to consider is instance segmentation. Given an input image, this
task seeks to predict the locations and identities of the objects in that image.
Additionally, instead of simply predicting a region for each of those objects,
this task seeks to predict a segmentation mask for each of those objects and to
predict which pixels in the image correspond to each object instance.

In the last few years, computational intelligence and deep learning have led
to successful results on a variety of problems, including image classification.



Computational Intelligence for Analysis of Traffic Data 169

Among different types of deep ANNs, Convolutional neural networks (CNN)
have been extensively studied [8]. CNNs assume that the input to be classified is
an image. This assumption allows the network to be more efficient and to design
architectures that greatly reduce the number of network parameters.

Solving the object detection problem involves determining all the regions
where objects to be classified can be located. Given an input image, a Region
Proposal Network (RPN) uses signal processing techniques to create a list of
proposed regions in which an object can exist. This architecture class is named
R-CNN. Given an input image, an RPN is executed to obtain the proposals,
also called Regions of Interest (RoI). The main drawback of this approach is its
very high computational demands. In practice, the network training is slow and
needs significant memory. Fast R-CNN was proposed to mitigate these problems,
working in a similar way to R-CNN. In terms of speed, Fast R-CNN has proven
to be nine times faster than CNN in training time [7]. However, the computa-
tion time is dominated by the calculation of the RoI, which turns out to be a
bottleneck. This last problem is solved in Faster R-CNN [17].

Finally, one of the most recent methods to solve the instance segmentation
task is the Mask R-CNN architecture. Similarly to Faster R-CNN, this method
follows a multi-stage processing approach. It receives the complete image, which
is executed through a convolutional network and a learned RPN. Once the RoIs
are learned, they are projected onto the convolutional vector. Then, instead of
simply performing the classification and the regression of the regions of each RoI,
the method additionally predicts a segmentation mask for each region, solving
a semantic segmentation problem within each of the regions proposed by the
RPN. The RoI is finally wrapped to the proper shape.

2.2 Tracking

Object tracking consists in the process of accurately estimating the state of
an object -position,identity,configuration- over time from observations [14], thus
generating a trajectory given by the position of the object in each frame. When
several objects are located at the same time, the problem is called Multiple
Object Tracking. In this scenario, the difficulty of the task increases considerably
due to the occlusion generated by the interaction of the objects, which in turn
may have similar appearances. On the other hand, conditions such as the speed
at which the objects move, the lighting or that these change their appearance
depending on the position, require that the tracking system must be robust,
maintaining the object identifier in such situations.

In classical tracking methods, object features are extracted in each frame and
used to search for the same object in subsequent frames [25]. This causes errors
to accumulate in the process and if occlusion or frame skipping occurs, tracking
fails because of the rapid change of appearance features in local windows. Thus,
modern tracking methods apply two steps: object detection and data associa-
tion. First, objects are detected in each frame of the sequence and then, detected
objects are matched across frames. This paradigm is called tracking by detec-
tion [10] and it relies on the performance of the detection algorithm. Detected



170 H. Winter et al.

objects are matched across frames using different approaches, including optical
flow with mean shift of color signature, Earth mover’s distance to compare color
distributions, fragment-based features, and computational intelligence.

Another simple but effective method based on the tracking by detection
approach is Intersection Over Union (IOU) [2]. This method requires a detection
algorithm with a high rate of true positive results, as a detection is expected in
each frame for each object to be tracked. It is also assumed that the detection
of the same object in two consecutive frames present a great overlap of the
intersection over the union (defined in Eq. 1), which is common for videos that
present a high refresh rate.

IOU(a, b) =
Area(a) ∩ Area(b)
Area(a) ∪ Area(b)

(1)

The advantage of the IoU method, in addition to its simplicity, is that it has
lower computational cost than other methods. IoU can be integrated on other
methods to achieve a more robust and accurate monitoring

3 Related Work

Several articles have proposed automated systems for the analysis of traffic data
applying image processing and computational intelligence techniques. The most
related to the research reported in this article are reviewed next.

Zhou et al. [28] studied the vehicle detection and classification problem
applying deep neural networks. The You Only Look Once (YOLO) architecture
was used for vehicles detection and post-processing was performed to eliminate
invalid results. The Alexnet architecture was applied for classification, feature
extraction, and fine-tuning. The YOLO network obtained similar precision than
a Deformable Parts Model, while the Alexnet network using Support Vector
Machines (SVM) outperformed other methods such as Principal Component
Analysis and Absolute Difference in a public dataset.

Uy et al. [20] studied methods for identifying traffic offenses using genetic
algorithms (GA) and the recognition of offenders through ANN. GA were applied
to detect vehicles obstructing pedestrian crossings and to identify the location
of license plates in images, while a ANN is used to recognize the license plate
number. The license plates recognition accuracy was high (91.6% on 47 test
images), but some license plates were not properly located due to the vehicle
position respect to the camera. Zhang et al. [26] applied a Fully CNN with Long
Short Term Memory for the vehicles counting problem. Compared to the state of
the art, the proposed ANN architecture reduced the mean absolute error (MAE)
from 2.74 to 1.53 on the WebCamT annotated dataset and from 5.31 to 4.21 on
the TRANCOS dataset. In addition, the training time was accelerated by up to
5 times. However, the proposed ANN was not capable of handling long periods
of information due to the large amount of memory required.

Dey et al. [5] applied CNN in a System-On-a-Programmable-Chip to analyze
and categorize traffic, including the quality-of-experience variable to improve



Computational Intelligence for Analysis of Traffic Data 171

predictions. A combination of transfer learning with re-training CNN models,
allowed improving the prediction accuracy. Arinaldi et al. [1] applied computer
vision techniques to automatically collect traffic statistics using Mixture of Gaus-
sian (MoG) and Faster Recurrent CNN. Training and validation were developed
on Indonesian road videos and a public dataset from MIT. Faster Recurrent
CNN was best suited for detecting and classifying moving vehicles in a dynamic
traffic scene, since MoG was weak for separating overlapping vehicles.

Chauhan et al. [3] studied CNN or real-time traffic analysis on Delhi, India.
A YOLO network was used, pre-trained on the MS-COCO dataset and fitted
with annotated datasets. The best trained model achieved a performance of 65–
75% mean average precision, depending on the camera position and the vehicle
class. This article provides the expected performance of YOLO models optimized
using annotated data. The recent article by Zheng et al. [27] proposed TASP-
CNN for predictinig the severity of traffic accidents, considering relationships
between accident features. The proposed method was successfully adapted to
the representation of traffic accident severity features and deeper correlations of
accident data. The performance of TASP-CNN was better than previous models
when evaluated using data from an eight years period.

Our research group has developed research on detection on pedestrian move-
ment patterns applying computational intelligence [4]. A flexible system was
developed to process multiple image and video sources in real time applying a
pipes and filters architecture to address different subproblems. The proposed
system has two main stages: extracting relevant features of the input images,
by applying image processing and object tracking, and patterns detection. The
experimental analysis of the system was performed over more than 1450 problem
instances, using PETS09-S2L1 videos and the results were compared with part
of the MOTChallenge benchmark results. Results indicate that the proposed
system is competitive, yet simpler, than other similar software methods.

4 The Proposed System for Traffic Data Analysis

This section presents the implemented system for traffic data analysis, describing
the function of each module and the input and output parameters.

4.1 Overall Description

The proposed approach is based on a modular architecture that implements an
image processing pipeline [6]. The pipeline executes a set of tasks over input
images (e.g., translation/rotation, resizing, etc.) to extract useful features. The
modular architecture allowed for a progressive development process, starting
from a few general modules and incorporating specific modules for relevant data.

Figure 1 shows the final architecture of the pipeline for traffic video anal-
ysis, consisting of twelve modules. The pipeline has 40 parameters that allow
controlling different aspects of the processing in each module.



172 H. Winter et al.

Fig. 1. The proposed pipeline for traffic video análisis (Color figure online)

Four main stages are identified: i) video capture, object detection and track-
ing (in green in Fig. 1), detection data analysis (in orange), results visualization
(in blue), results storage (in red). They are described in the following subsections.

4.2 Video Capture and Object Detection

The goal of video capture is producing the frames used in the pipeline. A video
stream (e.g., a local file or a webcam) is captured by a fast method using multi-
threading parallel computing to read the video frames, using OpenCV utilities.
Video capture initialize the cumulative data transfer object (DTO), used by all
modules to read and write data, and stores several fields in the DTO, including
frame number, image object, and annotations.

Then, the object detection process each frame to produce a bounding box,
mask, score and class of the detected objects. This module is based on Detec-
tron2 framework by Facebook [21], whose modular design allows using different
state-of-the-art detection algorithms, such as Faster R-CNN, Mask R-CNN, or
RetinaNet. The implemented module uses both synchronous and asynchronous
detection, and adds different functionalities on top of the detection framework
such as the possibility of defining regions of interest for the detection or filtering
the classes of the detected objects. The output of the detection module is con-
verted to the standard format used by the rest of the pipeline, so it might be
replaced by other detection module without affecting the other modules in the
pipeline. The output can contain bounding boxes or instance segmentation. The
rest of the pipeline is compatible with both type of outputs and can take advan-
tage of instance segmentation when available to compute more precise results
when analyzing patterns.



Computational Intelligence for Analysis of Traffic Data 173

4.3 Detection Data Analysis

Detection analysis includes five modules to extract information from data gen-
erated by previous modules in the pipeline.

The speed calculation module computes an estimation of the average speed
of each detected object in recent frames, in pixels per frame (PPF) or pixels
per second (PPS). The system stores the position of the center of each detected
object in the last n frames (n is a parameter) and so the speed is given by the
Euclidean norm of the first and last stored positions.

Detection count requires defining one or more counting lines on the video
image. Based on a structure that keeps each detected vehicle as an object with
several identifying properties, the counting module analyzes the vehicles that
overlap with the counting lines. This analysis considers the intersection of the
polygon of the mask or box with respect to the defined lines as an input param-
eter. If an overlapping is found, the vehicle information is updated with the lines
it overlapped and the frame number in which it did so.

With control lines analysis it is possible to define a relationship between two
lines, meaning that a vehicle should not cross both as doing so would be consider
an infraction. This allows detecting different types of infractions that involves a
vehicle circulating in a no-driving zone, e.g., a wrong turn or lane change near
a corner. This module uses detected bounding boxes or masks to recognize if a
vehicle overlaps with both lines in the relationship through the video.

The red light runs analysis module detect driving offenses of failing to comply
with red light signal. The region where each semaphore is located is defined as
an input parameter and each traffic light is associated with a line. The defined
traffic lights are analyzed to determine their color frame by frame, applying
an algorithm that transforms the cropped frame of the traffic light to Hue,
Saturation, Value (HSV) color model.

The no-stop zones analysis considers zones, represented by polygons, in which
vehicles should not stop (or park). The module analyzes the bounding box or
mask of those vehicles that intersects with the defined non-stop zone. If an
intersection greater than a certain value is detected, then the average speed of
the vehicle in the last n frames (n is a parameter) is considered. When the average
speed reaches a value lower than one, the vehicle is considered in infraction and
labeled as stopped.

4.4 Annotation and Results Visualization

The annotation module is responsible of modifying frames to show information
generated by the previous modules. The modified frames will be part of the
output video. Additionally, this module is in charge of drawing the detected
objects, boxes, or masks as appropriate. Figure 2 presents an example of an
annotated frame in one of the scenarios studied in this article.

The video visualization module is in charge of displaying the output frames
as they are produced, using OpenCV to create a window and display the frames.



174 H. Winter et al.

Fig. 2. Frame annotated with object masks, labels, text, lines, and polygons

4.5 Storage

The video storage module saves the frames in a file in a given path, considering
the output format and FPS rate specified an parameters. Finally, the results stor-
age module shows the information generated in each frame and the cumulative
one, using a JSON-based logging system.

5 Validation Experiments

This section reports the validation experiments of the proposed system.

5.1 Case Studies in Montevideo, Uruguay

The experimental evaluation considered two case studies in Montevideo,
Uruguay. The first case study correspond to the intersection of 8 de Octubre
and Garibaldi avenues, representing a classic intersection between two avenues
in Montevideo. The second case study correspond to the intersection between
Rambla Wilson and Sarmiento Avenue. This case is relevant because it involves
the avenue considered as the main traffic lane during rush hour.

The test dataset used consists of four videos taken by video surveillance
cameras from the two studied locations. The cameras model is AXIS P1365 Mk
II and record up to 60 frames per second. Recordings were taken at two different
times of the day, in the morning (8:00 AM) and in the evening (7:00 PM) to
analyze the efficacy of the proposed system under different lighting conditions.
Figure 3 presents sample images of the considered scenarios. In turn, Table 1
summarizes the main properties of the analyzed videos.



Computational Intelligence for Analysis of Traffic Data 175

Fig. 3. Testing video scenarios

Table 1. Properties of the test videos

Reference Format Resolution # Frames Rate Duration

G8 MP4 1280 × 720 pixels 2393 8 FPS 5min

G19 MP4 1280 × 720 pixels 2398 8 FPS 5min

R8 MP4 1280 × 720 pixels 5998 20 FPS 5min

R19 MP4 1280 × 720 pixels 5997 20 FPS 5min

5.2 Development and Execution Platform

The proposed system was developed using Python and Anaconda for project
environment management allowing to install and maintain the required libraries
easily. For the implementation, training, and execution of the presented ANN
models, the Detectron2 framework [21], based on pytorch, was used. The tracking
service was provided by a Node.js server [19] running an implementation of the
Node Moving Things Tracker [15] library. OpenCV [13] was used for image and
video manipulation and processing.

The experimental evaluation was performed on a virtual environment defined
on a high-end server with Xeon Gold 6138 processors (40 cores and 80 threads
per core), 8 GB RAM, a NVIDIA P100 GPU and a 300 GB SSD, from National
Supercomputing Center (ClusterUY) [16]. Using this high performance comput-
ing platform, it was possible to dynamically reserve the resources needed for the
batch jobs for the system execution and validation.



176 H. Winter et al.

5.3 Metrics for Evaluation

Statistical measures were considered for the evaluation of the developed system.
To account for the performance of stages that involve a binary classification, the
standard metrics were applied: True Positive (TP), which indicates the number
of occurrences where the model correctly predicts the positive class; True Nega-
tive (TN ) is the number of occurrences where the model correctly predicts the
negative class; False Positive (FP) the number of occurrences where the model
incorrectly predicts the positive class; and False Negative (FN ) indicates the
number of occurrences where the model incorrectly predicts the negative class.

Metrics proposed by Sokolova and Lapalme [18] were applied to evaluate the
performance of detection and classification algorithms, including:

– Avarage Accuracy : indicates the overall effectiveness of a classifier (Eq. 2).
– Error Rate: indicates the average per-class classification error (Eq. 3).
– Precision: reflects the percentage of the results which are relevant (Eq. 4).
– Recall : refers to the percentage of total relevant results correctly classified

(Eq. 5).

TP + TN

TP + TN + FP + FN
n

(2)

FP + FN

TP + TN + FP + FN
(3)

TP

TP + FP
(4)

TP

TP + FN
(5)

Metrics proposed by MOTChallenge [11] were used to evaluate the tracking
method. Special metrics are required for evaluating multiple object tracking:

– Identity Switches (IDSW ): indicates the number of occurrences where an
already identified object is assigned a new identificator.

– Multiple Object Tracking Accuracy (MOTA): is a global performance indica-
tor of the tracker combining three sources of error. (Eq. 6, where t represents
the frame and Gt the number of objects in frame t).

MOTA = 1 −

∑

t

(FNt + FPt + IDSw)

∑

t

Gt

(6)



Computational Intelligence for Analysis of Traffic Data 177

5.4 Results: Object Detection

For the evaluation of the object detection module, the configuration baseline of
Detectron2 and the detection confidence threshold were taken into consideration.

The Detectron2 configuration baseline is a set of parameters which deter-
mines the type of ANN to be executed and the weight model. These baselines
are part of the Model Zoo in Detectron2 [21]. The main properties of the selected
baselines are presented in Table 2.

Table 2. Details of the configuration baselines of Detectron2 used in the experimental
evaluation of object detection

R101-box X101-box R101-mask X101-mask

Backbone R101-FPN X101-FPN R101-FPN X101-FPN

Weights model R101 X-101-32x8d R101 X-101-32x8d

Using masks No No Yes Yes

The selected backbones used are ResNet-101+FPN (R101-FPN) which is a
Faster R-CNN and ResNeXt-101+FPN (X101-FPN) which is a Mask R-CNN.
The weight model R101 is an adaptation of the original ResNet-101 model [9]
and X-101-32x8d is a ResNeXt-101-32x8d model trained with Caffe2 [24]. In
turn, the detection confidence threshold allows discarding detected objects which
classification score value is lower than a given value.

Tables 3 and 4 reports the results of the considered detection metrics for the
G8 and G19 videos, respectively. These videos were selected as they account for
a representative traffic flow of the city in rush hours in the morning (G8) and

Table 3. Classification metrics obtained with different settings in video G8

Configuration Average accuracy Error rate Precision Recall

R101-box-t03 0.93 0.07 0.91 0.73

R101-box-t05 0.87 0.13 1.00 0.48

R101-box-t07 0.78 0.22 0.93 0.23

X101-box-t03 0.93 0.07 0.89 0.75

X101-box-t05 0.88 0.12 1.00 0.49

X101-box-t07 0.79 0.21 1.00 0.24

R101-mask-t03 0.94 0.06 0.90 0.80

R101-mask-t05 0.93 0.07 0.97 0.72

R101-mask-t07 0.90 0.10 0.96 0.58

X101-mask-t03 0.93 0.07 0.89 0.79

X101-mask-t05 0.91 0.09 0.96 0.66

X101-mask-t07 0.91 0.09 1.00 0.61



178 H. Winter et al.

in the night (G19). In these videos the camera angle is such that the North to
South flow of vehicles occasionally occludes the vehicles in the West to East flow.
Additionally, this scenario has a crossing with multiple traffic lights which makes
the vehicles stop and accumulate producing interesting detection situations.

Table 4. Classification metrics obtained with the different settings in video G19

Configuration Average accuracy Error rate Precision Recall

R101-box-03 0.89 0.11 0.78 0.67

R101-box-05 0.82 0.18 0.89 0.40

R101-box-07 0.75 0.25 1.00 0.23

X101-box-03 0.84 0.16 0.70 0.53

X101-box-05 0.83 0.17 0.90 0.42

X101-box-07 0.73 0.27 1.00 0.21

R101-mask-03 0.87 0.13 0.67 0.67

R101-mask-05 0.85 0.15 0.67 0.60

R101-mask-07 0.86 0.14 1.00 0.49

X101-mask-03 0.89 0.11 0.77 0.70

X101-mask-05 0.87 0.13 0.92 0.56

X101-mask-07 0.87 0.13 0.96 0.53

Results in Tables 3 and 4 indicate that the proposed system had an overall
average accuracy of 85% and indicate that the mask configurations computed
better results than the box configurations in most cases (10 out of 12 instances).
No significant performance differences between R101 and X101 models on box
nor segmentation mask prediction were detected, but X101 had slightly better
results in the night cases for segmentation.

5.5 Object Tracking

The main parameter to consider is the tolerance, i.e. the number of frames before
the algorithm concludes that a tracked object is no longer in the sequence. The
tolerance value depends on the frame rate of the recording. Values corresponding
to half, one, and two seconds were considered in the study, as they represent time
windows in which the probability of a identity switch among detections is low.
That is, 4, 8, and 16 frames for G8 and G19 videos, and 10, 20, and 40 frames
for R8 and R19. The performance of the object tracking module depends on
the detection module. The X101-mask-05 detection setting was defined as basis
for all tracking tests as it was the best performing detection configuration.



Computational Intelligence for Analysis of Traffic Data 179

Table 5. Tracking tests results

Configuration MOTA

G8-t04 0.81

G8-t08 0.83

G8-t16 0.82

G19-t04 0.47

G19-t08 0.49

G19-t16 0.46

Configuration MOTA

R8-t10 0.86

R8-t20 0.87

R8-t40 0.89

R19-t10 0.10

R19-t20 0.14

R19-t40 0.13

Results in Table 5 show average MOTA scores of 85% for the daylight cases
and significantly lower (30%) for the cases in the night. This indicate that the
module performs significantly better in daytime scenarios. In 3 out of 4 cases,
the configurations with one second of tolerance (8 frames in G8 and G19, and 20
frames in R8 and R19) had slightly better results than for nighttime scenarios.
MOTA was mainly affected by FN values. In the tracking evaluation this occurs
when an existing vehicle is not detected in a given number of frames, therefore
it is not tracked. Based on this observation, improving the detection module in
bad lighting conditions would also improve the tracker performance.

5.6 Pattern Analysis

For the evaluation of the counting module, the vehicle count resulting from
the pipeline execution was compared to the number of vehicles obtained using
manual counting. The performance of the method to count vehicles was measured
using the detection and classification metrics presented above. To perform the
evaluation, 30-second video segments were extracted from the four videos in the
original test dataset. Four segments were considered for each video, thus having
a total dataset of 16 segments from the two studied scenarios, eight taking place
during the day and eight during the night.

Table 6 reports the results of the counting module evaluation, using the fol-
lowing configuration: the R101-mask-05 configuration was established for detec-
tion; the tracking module uses an IoU of 0.05, and a loss tolerance of eight frames
for G8/G19 videos and 20 frames for R8/R19 videos.

Table 6. Counting test results

Reference Average accuracy Error rate Precision Recall

G8 0.92 0.08 0.92 1.00

G19 0.52 0.48 0.62 0.76

R8 0.87 0.13 0.91 0.95

R19 0.19 0.81 0.27 0.33



180 H. Winter et al.

Results in Table 6 show an average accuracy of 89% for the daylight cases and
36% for the cases in the night. This indicate that the counting module performs
better under good lighting conditions. In this case there is still room to improve
the classification of the counted vehicles as the comparison of precision and
recall shows that the main source of error are the FP, This means that the
counting algorithm correctly counts a vehicle, but classifies it in the wrong class.
Under bad lighting conditions the performance is poor, this is also caused by the
large number of FP, which in this case happens because the counting algorithm
counts not existing vehicles. The performance of this module can be mainly
improved by using a more precise classification model in the detection module,
while a better detection under bad lighting conditions would also improve the
performance of the counting module. Improving the classification under poor
lightning conditions is one of the main lines for ongoing and future work.

6 Conclusions and Future Work

This article presented the design and implementation of a system for the analysis
of traffic data using computational intelligence techniques.

The proposed system was developed following a flexible pipeline-type archi-
tecture built over the modern object detection library Detectron2. The proposed
design provides an efficient frame processing, by using independent, configurable
functional modules, loosely coupled between them. This feature allows including
new methods, modifying existing ones, and evaluate different alternatives and
configurations.

The problems of object detection and tracking are solved using the Detec-
tron2 framework and the Node Moving Things Tracker library, respectively. The
information generated by these modules from the traffic videos allowed imple-
menting a set of modules for the collection and analysis of traffic data.

The validation of the proposed system is carried out using real videos from
two scenarios that include important streets of Montevideo, Uruguay, under
different conditions (daylight, nightlight, and different video qualities). These
recordings were taken in rush hours and show an interesting flow of vehicles.

Results demonstrate the effectiveness of the system in scenarios with proper
lightning conditions. The detection results shown a overall average accuracy
of 85%, and better performance using the mask models. In object tracking,
the average MOTA scores were 85% in daylight. Results dropped to 30% in
nighttime, indicating that improvements are required to deal with bad lightning
conditions. Similarly, the counting module performed an average accuracy of
89% in daylight and 36% in nighttime.

The main lines for future work are related to improve the object detection
module training the models with bad lightning conditions or bad weather anno-
tated examples. In turn, the experimental evaluation of the proposed system can
be extended to consider the analysis of red light runs and no-stop zones modules.
Another interesting line of work is related to developing more sophisticated pat-
tern detection methods to capture relevant events such as abrupt lane change or
even traffic accidents. We are working on these topics right now.



Computational Intelligence for Analysis of Traffic Data 181

References

1. Arinaldi, A., Pradana, J., Gurusinga, A.: Detection and classification of vehicles
for traffic video analytics. Procedia Comput. Sci. 144, 259–268 (2018)

2. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without
using image information. In: 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance, pp. 1–6 (2017)

3. Chauhan, M., Singh, A., Khemka, M., Prateek, A., Sen, R.: Embedded CNN based
vehicle classification and counting in non-laned road traffic. In: 10th International
Conference on Information and Communication Technologies and Development
(2019)

4. Chavat, J.P., Nesmachnow, S.: Computational intelligence for detecting pedes-
trian movement patterns. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-
CITIES 2018. CCIS, vol. 978, pp. 148–163. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12804-3 12

5. Dey, S., Kalliatakis, G., Saha, S., Kumar Singh, A., Ehsan, S., McDonald, K.: MAT-
CNN-SOPC: Motionless analysis of traffic using convolutional neural networks on
system-on-a-programmable-chip. In: NASA/ESA Conference on Adaptive Hard-
ware and Systems (2018)

6. Gilewski, J.: detectron2-pipeline: Modular image processing pipeline using
OpenCV and Python generators powered by Detectron2. https://github.com/
jagin/detectron2-pipeline (2019) 15 March 2020

7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision (December 2015)

8. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn.
77, 354–377 (2018)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)

10. Leal-Taixé, L.: Multiple object tracking with context awareness. CoRR
abs/1411.7935 (2014)

11. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015:
Towards a benchmark for multi-target tracking. arXiv:1504.01942 [cs] (2015)

12. Lou, L., Zhang, J., Jin, Y., Xiong, Y.: A novel vehicle detectionmethod based on
the fusion of radio received signal strength andgeomagnetism. Sensors 19(1), 58
(2019)

13. Mahamkali, N., Vadivel, A.: OpenCV for computer vision applications (2015)
14. Moussy, E., Mekonnen, A.A., Marion, G., Lerasle, F.: A comparative view on exem-

plar ‘tracking-by-detection’ approaches. In: 2015 12th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2015)

15. Move-lab: Tracking things in object dectection videos. https://www.move-lab.
com/blog/tracking-things-in-object-detection-videos (2018) 15 Mar 2020

16. Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high perfor-
mance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS,
vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
38043-4 16

17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 28, pp. 91–99 (2015)

https://doi.org/10.1007/978-3-030-12804-3_12
https://doi.org/10.1007/978-3-030-12804-3_12
https://github.com/jagin/detectron2-pipeline
https://github.com/jagin/detectron2-pipeline
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1504.01942
https://www.move-lab.com/blog/tracking-things-in-object-detection-videos
https://www.move-lab.com/blog/tracking-things-in-object-detection-videos
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1007/978-3-030-38043-4_16


182 H. Winter et al.

18. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)

19. Tilkov, S., Vinoski, S.: Node.js: Using javascript to build high-performance network
programs. IEEE Internet Comput. 14(6), 80–83 (2010)

20. Uy, A., et al.: Automated traffic violation apprehension system using genetic algo-
rithm and artificial neural network. In: IEEE Region 10 Technical Conference, pp.
2094–2099 (2016)

21. Wu, Y., Kirillov, A., Massa, F., Lo, W., Girshick, R.: Detectron2. https://github.
com/facebookresearch/detectron2 (2019)

22. Yang, H., Qu, S.: Real-time vehicle detection and counting in complex traffic
scenes using background subtraction model with low-rank decomposition. IET
Intel. Transport Syst. 12, 75–85 (2018)

23. Yang, Z., Pun-Cheng, L.: Vehicle detection in intelligent transportation systems
and its applications under varying environments: A review. Image Vis. Comput.
69, 143–154 (2018)

24. Yangqing, J., et al.: Caffe: Convolutional architecture for fast feature embedding
(2014)

25. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol.
7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33712-3 62

26. Zhang, S., Wu, G., Costeira, J., Moura, J.: Fcn-rlstm: Deep spatio-temporal neural
networks for vehicle counting in city cameras. In: International Conference on
Computer Vision, pp. 3687–3696 (10 2017)

27. Zheng, M., et al.: Traffic accident’s severity prediction: a deep-learning approach-
based CNN network. IEEE Access 7, 39897–39910 (2019)

28. Zhou, Y., Nejati, H., Do, T., Cheung, N., Cheah, L.: Image-based vehicle analysis
using deep neural network: a systematic study. In: IEEE International Conference
on Digital Signal Processing, pp. 276–280 (2016)

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1007/978-3-642-33712-3_62
https://doi.org/10.1007/978-3-642-33712-3_62

	Computational Intelligence for Analysis of Traffic Data
	1 Introduction
	2 Computational Intelligence for Image Analysis
	2.1 Detection
	2.2 Tracking

	3 Related Work
	4 The Proposed System for Traffic Data Analysis
	4.1 Overall Description
	4.2 Video Capture and Object Detection
	4.3 Detection Data Analysis
	4.4 Annotation and Results Visualization
	4.5 Storage

	5 Validation Experiments
	5.1 Case Studies in Montevideo, Uruguay
	5.2 Development and Execution Platform
	5.3 Metrics for Evaluation
	5.4 Results: Object Detection
	5.5 Object Tracking
	5.6 Pattern Analysis

	6 Conclusions and Future Work
	References




