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Preface

System-on-Chip (SoC) integrates a wide variety of hardware components into a
single integrated circuit to provide the backbone of modern computing systems
ranging from complex navigation systems in airplanes to simple Internet-of-Things
(IoT) devices in smart homes. Cars are full of them, as are airplanes, satellites, and
advanced military and medical devices. As applications grow increasingly complex,
so do the complexities of the SoCs. For example, a typical automotive SoC may
include 100–200 diverse components (e.g., processor, memory, controllers, and
converters) from multiple third-party vendors. Network-on-Chip (NoC) is a widely
used solution for on-chip communication between various components in complex
SoCs.

SoCs are designed today using Intellectual Property (IP) components to reduce
cost while meeting aggressive time-to-market constraints. Growing reliance on
these pre-verified components, often gathered from untrusted third-party vendors,
severely affects the security and trustworthiness of SoC computing platforms. These
third-party components may come with deliberate malicious implants to incorporate
undesired functionality, undocumented test/debug interfaces working as a hidden
backdoor, or other integrity issues. Since NoC facilitates communication between
various components in an SoC, NoC is the ideal place for any malicious implants
(such as hardware Trojans) to hide and launch a wide variety of security attacks. Due
to the resource-constrained nature of many embedded and IoT devices, it may not be
possible to employ traditional security solutions to protect NoC against malicious
attacks. Specifically, there is a need for lightweight countermeasures that can secure
NoC without violating any design constraints such as area, power, energy, and
performance.

This book provides a comprehensive overview of NoC security attacks and
effective countermeasures for designing secure and trustworthy on-chip communi-
cation architectures. These techniques are applicable across on-chip communication
technologies (e.g., electrical, optical, and wireless) supporting a wide variety of
on-chip network topologies (e.g., point-to-point, bus, crossbar, ring, and mesh).
Specifically, this book describes state-of-the-art security solutions that satisfy a
wide variety of communication (often conflicting) requirements such as securing
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vi Preface

packets, ensuring route privacy, meeting energy budget and real-time constraints,
finding trusted routes in the presence of malicious components, and providing real-
time attack detection and mitigation techniques. The presentation of topics has been
divided into five categories with each category focusing on a specific aspect of the
big picture. A brief outline of the book is provided as follows:

1. Introduction to NoC Security: The first part of the book includes three introduc-
tory chapters on NoC design and security challenges.

• Chapter 1 provides an overview of NoC-based SoC design methodology with
an emphasis on NoC architectures and security vulnerabilities.

• Chapter 2 describes accurate modeling and design space exploration of on-
chip communication architectures.

• Chapter 3 presents popular optimization techniques for designing energy-
efficient NoC architectures.

2. Design-for-Security Solutions: The second part of the book focuses on design-
time solutions for securing NoC architectures against attacks.

• Chapter 4 presents a lightweight encryption scheme using incremental cryp-
tography.

• Chapter 5 describes a trust-aware routing algorithm that can bypass malicious
components.

• Chapter 6 outlines a lightweight anonymous routing technique.
• Chapter 7 describes how to efficiently integrate secure cryptography to

overcome NoC-based attacks.

3. Runtime Security Monitoring: The third part of the book deals with security
solutions for runtime detection and mitigation of vulnerabilities.

• Chapter 8 describes a mechanism for real-time detection and localization of
denial-of-service attacks.

• Chapter 9 utilizes digital watermarking for providing lightweight defense
against eavesdropping attacks.

• Chapter 10 outlines a machine learning framework for detecting attacks on
NoC-based SoCs.

• Chapter 11 presents a routing technique that can provide trusted communica-
tion in the presence of hardware Trojans.

4. NoC Validation and Verification: The fourth part of the book explores methods
for verifying both functional correctness and security guarantees.

• Chapter 12 describes NoC security and trust validation techniques.
• Chapter 13 presents post-silicon validation and debug of NoCs.
• Chapter 14 describes challenges in designing reliable NoC architectures.

5. Emerging NoC Technologies: The fifth part of the book surveys security impli-
cations in emerging NoC technologies.

• Chapter 15 describes security solutions for photonic (optical) NoCs.
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Preface vii

• Chapter 16 presents security solutions for on-chip wireless networks.
• Chapter 17 provides an overview of securing 3D NoCs from hardware Trojan

attacks.

6. Conclusion and Future Directions: The last chapter concludes the book with a
summary and discussion on future directions.

We hope you enjoy reading this book and find the information on attacks and
countermeasures useful in designing secure and trustworthy systems.

Gainesville, FL, USA Prabhat Mishra
Colombo, Sri Lanka Subodha Charles
January 1, 2021
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Chapter 1
Trustworthy System-on-Chip Design
Using Secure on-Chip Communication
Architectures

Prabhat Mishra and Subodha Charles

1.1 Introduction

We are living in the era of Internet-of-Things (IoT), an era in which the number of
connected smart computing devices exceeds the human population. Various reports
suggest that we can expect over 50 billion devices to be deployed and mutually
connected by 2025 [66], compared to about 500 million in 2003 [45]. In the past,
computing devices like phones with a few custom applications represented the
boundary of our imagination. Today, we are developing solutions ranging from
smartwatches, smart cars, smart homes, all the way to smart cities. System-on-
Chip (SoC) designs are at the heart of these computing devices, which range from
simple IoT devices in smart homes to complex navigation systems in airplanes.
As applications grow increasingly complex, so do the complexities of the SoCs.
For example, a typical automotive SoC may include 100–200 diverse Intellectual
Property (IP) blocks designed by multiple vendors. The ITRS (International Tech-
nology Roadmap for Semiconductors) 2015 roadmap projected that the increased
demand for information processing will drive a 30-fold increase in the number
of cores by 2029 [1]. Indeed, one of the most recent many-core processor
architectures, Intel “Knights Landing” (KNL), features 64–72 Atom cores and
144 vector processing units [119]. The Intel Xeon Phi processor family, which
implements the KNL architecture, is often integrated into workstations to serve
machine learning applications. The 256-core CPU—MPPA2, launched by Kalray
Corporation [107], is used in many data centers to speed up data processing.
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4 P. Mishra and S. Charles

The increasing number of cores demands the use of a scalable on-chip inter-
connection architecture, which is also known as Network-on-Chip (NoC). As
shown in Fig. 1.1, a typical SoC utilizes NoC to communicate between multiple
IP cores including processor, memory, controllers, converters, input/output devices,
peripherals, etc. NoC IPs are used in a wide variety of market segments such as
mobile phones, tablets, automotive and general purpose processing leading to an
exponential growth in NoC IP usage. A survey done by Gartner Inc. has revealed that
NoC IP sales of Sonics, a privately-held Silicon Valley IP provider that specializes in
NoC and power-management technologies, is ranked number 7 in terms of design
IP revenue with a profit growth of 44.8% compared to 2013 [54]. Therefore, it is
evident that the NoC has become an increasingly important component in modern
SoC designs.

The drastic increase in SoC complexity has led to a significant increase in
SoC design and validation complexity [4, 35, 48, 50, 81, 84, 88, 89, 92]. Reusable
hardware IP based SoC design has emerged as a pervasive design practice in
the industry to dramatically reduce design and verification cost while meeting
aggressive time-to-market constraints. Figure 1.2 shows the supply chain of a
specific commercial SoC [91]. Growing reliance on these pre-verified hardware IPs,
often gathered from untrusted third-party vendors, severely affects the security and
trustworthiness of SoC computing platforms. These third-party IPs may come with
deliberate malicious implants to incorporate undesired functionality (e.g., hardware
Trojan), undocumented test/debug interfaces working as hidden backdoors, or other
integrity issues. Based on Common Vulnerability Exposure estimates, if hardware-
level vulnerabilities are removed, the overall system vulnerability will reduce by
43% [41, 90].

The security of emerging SoCs is becoming an increasingly important design
concern. Beyond the traditional attacks from software on connected devices, attacks
originating from or assisted by malicious components in hardware are becoming
more common. For example, Quo Vadis Labs has reported backdoors in electronic
chips that are used in weapon control systems and nuclear power plants [118],
which can allow these chips to be compromised remotely. The well-publicized
“Spectre” [73] and “Meltdown” [78] attacks highlight how sensitive data can be
stolen from threads executing on multicore processors. It is widely acknowledged
that all algorithmically secure cryptographic primitives and protocols rely on a
hardware root-of-trust that is resilient to attacks to deliver the expected protections

Fig. 1.1 An example System-on-Chip (SoC) with Network-on-Chip (NoC) based communication
fabric to interact with a wide variety of third-party Intellectual Property (IP) cores
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Fig. 1.2 Supply chain of a commercial router SoC with components from multiple third-party
companies across the globe [91]

when implemented in software. Clearly, hardware platforms are at an elevated risk
for security compromises in today’s world.

In order to enable hardware-root-of-trust, we have to ensure that an SoC is
trustworthy by ensuring security of computation, communication as well as storage.
While the existing efforts have shown promising results in providing computation
and storage related security solutions [91], there is limited effort in ensuring on-
chip communication security. The ubiquity of devices using NoC-based SoCs has
made NoC a focal point for security attacks as well as countermeasures [27–33].
Therefore, in order to secure the cyberspace, it is vital to protect the NoC from
potential security threats as well as leverage the advantages given by NoC to
minimize security vulnerabilities of other system components.

A fundamental problem of NoC-based SoCs is ensuring security while preserv-
ing non-functional requirements such as performance, power, and area. Due to the
resource constrained nature of embedded and IoT devices, it may not be possible
to implement traditional security measures such as encrypting communication with
the AES cipher and using SHA hash functions. Thus, it is evident that considering
security alone will not provide conclusive results. A more holistic approach is
required that considers security among other non-functional requirements.

This chapter is organized as follows. Section 1.2 provides an overview of NoC
architectures. Section 1.3 describes the NoC security landscape. Finally, Sect. 1.4
concludes the chapter.
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1.2 Overview of Network-on-Chip (NoC) Architectures

Consider a designer who is responsible for designing the road network of a large
city. Roads should be laid out giving easy access to all the offices, schools, houses,
parks, etc. If all of the most common places are situated close to each other, it
is inevitable that the roads in that area will get congested and other areas will
be relatively empty. The designer should make sure that such instances do not
occur and the traffic is uniformly distributed as much as possible. Alternatively,
the roads should have more lanes and parking lots in such congested areas to cater
to the requirement. In addition to accessibility and traffic distribution, the architect
should also consider intersections, traffic lights, priority lanes, and potential detours
due to occasional road maintenance. Moreover, self-driving cars and drones that
deliver various items might come into picture in the future as well. Analogous to
this, the designer of an SoC faces a similar set of challenges when designing the
communication infrastructure connecting all the cores.

The early SoCs employed bus and crossbar based architectures. Traditional bus
architecture has dedicated point-to-point connections, with one wire dedicated to
each component. When the number of cores in an SoC is low, buses are cost
effective and simple to implement. Buses have been successfully implemented
in many complex architectures. ARM’s AMBA (Advanced Micro-controller Bus
Architecture) bus [8] and IBM’s CoreConnect [65] are two popular examples.
Figure 1.3 shows an overview of the ARM AMBA bus architecture [8]. Buses
do not classify activities depending on their characteristics. For example, the
general classification as transaction, transport, and physical layer behavior are not
distinguished by buses. This is one of the main reasons why they cannot adapt
to changes in architecture or make use of advances in silicon process technology.
Due to increasing SoC complexity coupled with increasing number of cores, buses
often become the performance bottleneck in complex SoCs. This coupled with other
drawbacks, such as non-scalability, increased power consumption, non-reusability,
variable wire delay, and increased verification cost, motivated researchers to search
for alternative solutions.

The inspiration for network-on-chip (NoC) came from traditional networking
solutions, more specifically, the Internet. The NoC, a miniature version of the wide
area network with routers, packets, and links, was proposed as the solution for on-

Fig. 1.3 Overview of the ARM AMBA bus architecture
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chip communication [12, 40]. The new paradigm described a way of communicating
between IPs including features such as routing protocols, flow control, switching,
arbitration, and buffering. With increased scalability, resource reuse, improved
performance, and reduced costs, NoC became the solution for the complex SoCs
that required a scalable interconnection architecture. The remainder of this section
covers various aspects of NoC architectures.

1.2.1 Network-on-Chip Architecture and Communication
Protocol

Figure 1.4 shows an example NoC interconnection architecture consisting of
several processing elements connected together via routers and regular sized wires
(links). A processing element can be any component such as a microprocessor, an
ASIC (application specific integrated circuit), or an intellectual property block that
performs a dedicated task as shown in Fig. 1.1. We refer these processing elements
as IPs. IPs are connected to the routers via a network interface (NI). We call the
combination of an IP, an NI and a router as a “node” in the NoC. It can be observed
that words node and “tile” are used interchangeably in existing literature to refer to
NoC components connected to one router [119, 129].

NoC interconnection architecture uses a packet-based communication approach.
A request or response that goes to a cache or to off-chip memory is divided into
packets, and subsequently to “flits”, and injected to the network. A flit is the smallest
unit of flow control in an NoC. A packet may consist of one or more flits. For
example, assume S is a processor IP, whereas node D is connected to an off-chip
memory interface (memory controller). When a load instruction is executed at S,
it first checks the private cache located in the same node and if it is a cache miss,
the required data has to be fetched from the memory. Therefore, a memory fetch
request message is created and sent on the appropriate virtual network to the NI.
The network interface then converts it into network packets according to the packet
format, divides each packet into flits, and sends the flits into the network via the

Fig. 1.4 Example of an NoC connecting 16 IPs
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Fig. 1.5 NoC control (memory request) and data (response data) packet formats used in the gem5
simulator. (a) Memory request packet. (b) Response data packet from memory

local router. The network is then responsible to route the flits to the destination,
D. Flits are routed either along the same path or different paths depending on the
routing protocol. The NI at D creates the packet from the received flits and forwards
the request to D, which then initiates the memory fetch request. The response
message from the memory that contains the data block follows a similar process.
Similarly, all IPs integrated in the SoC leverage the resources provided by the NoC
to communicate with each other. Figure 1.5 shows the format of a memory request
packet and a response data packet used in the gem5 architectural simulator [15].

Previous works have proposed several NoC architectures such as Nostrum [76],
SOCBUS [130], Proteo [117], Xpipes [39], Æthereal [57], etc. based on different
requirements. The choice of the parameters in the architecture depends on the
design requirements such as performance/power/area budgets, reliability, quality-
of-service guarantees, scalability, and implementation cost. Some of the existing
NoC architectures have been surveyed in literature [2, 17]. NoC architecture design
needs to consider two important factors—network topology and routing protocol.
The next two subsections describe these aspects in detail.

1.2.1.1 Network Topology

The topology defines the physical organization of IPs, routers, and links of an
interconnect. The organization in Fig. 1.4 shows a mesh topology. Crossbar, point-
to-point, tree, 3-D mesh are few other commonly used topologies. Figure 1.6
shows some examples of them. The topology is chosen depending on the cost
and performance requirements of an SoC. The topology directly impacts the
communication latency when two IPs are communicating, since it affects the
number of links and routers a flit has to traverse through to reach a given destination.
A major trade-off when deciding the topology for a given requirement is between
connectivity and cost. Higher connectivity (e.g., point-to-point) allows increased
performance, but has higher area and power overhead. The 2-D mesh is the most
common topology in NoC designs [119, 129]. Each link in a mesh has the same
length leading to ease of design, and the area occupied by the mesh grows linearly
with the number of nodes.
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Fig. 1.6 NoC topologies and an example of X-Y routing in a mesh NoC

1.2.1.2 Router and Routing Protocol

The routers comprise input buffers that accept packets from the local IP via the NI
or from other routers connected to it. For example, in the mesh topology, except
for the routers in the border, each router is connected to the local IP and four other
routers. Based on the addresses in the packet header and the routing protocol, the
crossbar switch routes data from the input buffers to the appropriate output port.
Buffers are allocated for virtual channels which helps avoid deadlock. The switch
allocator handles input port arbitration for output ports [37].

The routing protocol defines the path a flit should take in a given topology.
Routing protocols can be broadly classified as deterministic and adaptive. In
deterministic routing, each packet traversing from S to D follows the same path. X-
Y routing is one common example of deterministic routing. In X-Y routing, packets
use X-directional links first, before using Y-directional links [42]. An example
including three paths taken by X-Y routing in a mesh NoC is shown in Fig. 1.6.
Adaptive routing takes network states such as congestion, security, and reliability
into account, and sends the flits through different paths based on the current state of
the network [136].

1.2.2 Emerging NoC Technologies

When NoC was first introduced, the focus was on electrical (copper) wires con-
necting NoC components together, referred to as “electrical NoC.” However, recent
advancements have demanded exploration of alternatives. With the advancement
of manufacturing technologies, the computational power of IPs have increased
significantly. As a result, the communication between SoC components have
become the bottleneck. Irrespective of the architectural optimizations, electrical
NoC exhibits inherent limitations due to the physical characteristics of electrical
wires [97].
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• The resistance of wires, and as a result, the resistance of NoC, is increasing
significantly under combined effects of enhanced grain boundary scattering,
surface scattering, and the presence of a highly resistive diffusion barrier
layer [122, 123].

• Electrical NoC can contribute to a significant portion of the on-chip capacitance.
In some cases, about 70% of the total capacitance [93].

• The electrical NoC is a major source of power dissipation due to the above two
factors.

Therefore, it is becoming increasingly difficult for electrical NoC to keep up
with the delay, power, bandwidth, reliability, and delay uncertainty requirements
of state-of-the-art SoC architectures [34, 121]. These challenges can only intensify
in future giga and tera-scale architectures. In fact, the International Technology
Roadmap for Semiconductors (ITRS) has mentioned optical and wireless based on-
chip interconnect innovation to be key to addressing these challenges [109].

There are various emerging NoC technologies such as “wireless NoC” [43]
and “optical NoC” [96]. While the focus of this book is on security attacks and
countermeasures in electrical NoCs, a majority of these security solutions are also
applicable for wireless and optical NoCs. This is primarily due to the fact that they
have inherent similarities in terms of network topology and routing protocols. For
example, both electrical and optical NoCs represent similar topologies using wired
connectivity. Similarly, wireless NoC always use one-hop routing, while optical
and electrical NoCs utilize one-hop or multi-hop communication depending on
the source and destination. Figure 1.7 shows an overview of how different NoC
technologies can be used to connect heterogeneous SoC components.

1.2.2.1 Wireless NoC

Wireless NoC was proposed as a solution to the latency experienced by electrical
NoCs, which are based on metal interconnects and multi-hop communication.
Wireless NoC integrates on-chip antennas and suitable transceivers that enable
communication between two IPs without a wired medium. Silicon integrated

Fig. 1.7 NoC enables communication between IPs. The network interface (NI), router (R), and
links can be implemented using optical, wireless, or electrical communication technologies
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antennas communicating using the millimeter wave range is shown to be a viable
technology for on-chip communication [43].

1.2.2.2 Optical NoC

On the other hand, optical NoC, also known as photonic NoC, uses photo emitters,
optical wave guides, and transceivers for communication [135]. The major advan-
tage over electrical NoC is that it is possible to physically intersect light beams
with minimal crosstalk. This enables simplified routing and together with other
properties, optical NoC can achieve bandwidths in the range of Gbps.

1.3 Security Landscape in NoC-Based System-on-Chip

The widespread adaptation of NoCs has made it a focal point for security attacks as
well as countermeasures. There is a growing interest in the industry to use the NoC
to secure the SoC as evident from NoC-Lock [120] and FlexNoC resilience package
[7]. On the other hand, the NoC itself can be a threat when different IP blocks
come from different vendors. A compromised NoC IP can corrupt data, degrade
performance, or even steal sensitive information. NoC security is crucial for three
related reasons: (1) NoC has access to all system data, (2) NoC spans across the
entire SoC, and (3) NoC elements are repetitive in a way that any modification
can be easily replicated. In the following subsections, we discuss how SoCs can
become vulnerable to security threats (Sect. 1.3.1), why securing NoC-based SoCs
has become a hard problem (Sect. 1.3.2) and different threat models in existing
literature related to NoC security (Sect. 1.3.3).

1.3.1 Security Vulnerabilities in SoCs

SoC complexity and tight time-to-market deadlines have shifted the in-house SoC
manufacturing process to a global supply chain. SoC manufacturers outsource parts
of the manufacturing process to third-party IP vendors. This globally distributed
mechanism of design, validation, and fabrication of IPs can lead to security
vulnerabilities. Adversaries have the ability to implant malicious hardware/software
components in the IPs. Existing literature has discussed three forms of vulnera-
bilities: (1) malicious implants, (2) backdoor using test/debug interfaces, and (3)
unintentional vulnerabilities [47]. An adversary can utilize the malicious implants
(hardware Trojans) to cause malfunction or facilitate information leakage [91]. An
adversary can also exploit legitimate test and debug interfaces as a backdoor for
information leakage [118]. Many security vulnerabilities can be created uninten-
tionally by design automation/computer-aided design (CAD) tools or by designers’
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mistakes [131]. These vulnerabilities can lead to untrusted (potentially malicious)
IPs.

Attacks based on malicious implants, such as hardware Trojans, rely on Trojans
being integrated in the SoC without being detected at the post-silicon verification
stage or during runtime [91]. Hardware Trojans can be inserted into the design
in several places such as by an untrusted CAD tool or designer or at the foundry
via reverse engineering [13]. Even if all the IPs are tested before integration,
hardware Trojans can still go undetected because of the complexity of designs
with billions of transistors which make physical inspection or 100% coverage in
design verification/validation a costly or even impossible target [124]. Furthermore,
Trojans can mask their behavior as transient errors and can be activated only when a
specific condition or a combination of conditions are satisfied [14]. A smart attacker
can carefully craft the Trojan activation method so that it becomes difficult to
detect. Previous work has discussed external/internal Trojan activation modes [124],
software-hardware coalition [10], and triggers based on time, input sequence, traffic
pattern, and even thermal conditions [14].

The usage of third-party NoC IPs has grown rapidly over the years. Due to
the widespread use of NoC IPs, outsourcing NoC IP fabrication has become a
common practise. iSuppli, an independent market research firm, has concluded from
their research that the FlexNoC on-chip interconnection architecture [7] is used by
four out of the top five Chinese fabless semiconductor OEM (original equipment
manufacturer) companies [116]. This has led to Arteris, the company that developed
FlexNoC, achieve a sales growth of 1002% over a 3 year time period through IP
licensing [9]. Therefore, there is ample opportunity for adversaries to attack the
SoC through malicious implants in NoC IPs. Furthermore, due to the complexity of
the design, NoC IPs are ideal candidates to insert hardware Trojans [101].

1.3.2 Unique Challenges in Securing NoC-Based SoCs

The general problem of securing the interconnect has been well studied in the com-
puter networks domain and other related areas [24, 72, 134]. However, implementa-
tion of security features introduces area, power, and performance overhead. While
complex security countermeasures are practical in computer networks domain, the
resource constrained nature of embedded and IoT devices pose additional unique
challenges as outlined below.

1.3.2.1 Conflicting Requirements

While enabling communication between IPs, NoCs need to satisfy a wide variety
of requirements including security, privacy, energy efficiency, domain-specific
requirements, and real-time constraints. While security is the primary focus of
this book, we cannot ignore other NoC design constraints. Designers employ
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a wide variety of techniques to improve energy efficiency in NoC-based SoCs
[5, 25, 26, 59, 62, 126]. It is difficult to satisfy conflicting requirements such as
security and energy efficiency. For example, it may not be possible to implement
traditional security measures such as encrypting text with the AES cipher and
using SHA hash functions in resource-constrained IoT devices. Similarly, security
and domain-specific requirements may not be compatible. For example, in an
automotive network, when a potential security breach is detected, pausing all
systems to check the malfunction is not an option since the car is moving, and
stopping it abruptly can lead to catastrophic consequences. Thus, there is a need
for innovative solutions to secure NoCs with lightweight security mechanisms
customized for application domains.

1.3.2.2 Increased Complexity

The complexity of SoC designs have made exhaustive security validation an
impossible task. Most IPs come as black boxes from vendors that do not reveal
design details in order to maintain the competitive advantage in a niche market.
As a result, the complete design is not visible to verification engineers. Modern
verification tools often try to detect missing or erroneous functionality, whereas
security vulnerabilities can be hidden in dormant functions in large and complex
designs that get triggered only by a specific set of inputs as discussed in Sect. 1.3.1.
Therefore, it is not feasible to capture all security vulnerabilities using security
validation tools during design time [3, 46, 47, 49, 86, 87, 91, 94].

1.3.2.3 Diverse Technologies

While electrical communication is widely used in designing NoC-based SoCs,
emerging NoCs can also support chip-scale photonics (optical NoC) as well as
wireless communication (wireless NoC) as shown in Fig. 1.7. Security solutions for
NoCs thus need to not only address security over electrical wires but also consider
the emerging challenges from data transfers over photonic waveguides and wireless
channels. While broadcast may be preferred for wireless NoCs, optical and electrical
NoCs need to consider a wide variety of network topologies as well.

1.3.3 Threat Models

The intention of a hardware Trojan can vary from design to design. Commonly
discussed threats include information leakage, denial-of-service, and data corrup-
tion. A recent occurrence of a hardware Trojan (spying on data) raised concerns
across top US companies and authorities including Apple, Amazon and CIA [18].
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Fig. 1.8 Five classes of security attacks discussed in existing literature

Fig. 1.9 An example of eavesdropping attack

In this section, we provide an overview of five classes of attacks on NoC-based SoCs
(Fig. 1.8).

These classes of attacks have been well studied in the computer networks domain
and other related areas. However, implementation of security features introduces
area, power, and performance overhead. To address this issue, we need lightweight
security countermeasures that can provide the desired security with tolerable impact
on area, power, and performance. In the remainder of this section, we provide an
overview of attacks explored in NoC-based SoCs.

1.3.3.1 Eavesdropping Attacks

Eavesdropping attack, also known as snooping/sniffing, refers to an attacker pas-
sively listening to on-chip communication in an attempt to steal sensitive infor-
mation as shown in Fig. 1.9. The intention of the attacker is to leak information
over long time periods without being detected. Recent occurrences of hardware
security breaches where hard-to-detect hardware components, that were not a part
of the original design, integrated into the original design leaking information have
attracted more attention to eavesdropping attacks [18].

As discussed in Chap. 1.1, IPs integrated on the same SoC use the NoC to
communicate between each other using message passing as well as shared memory.
Therefore, eavesdropping on the NoC allows an attacker to extract secret informa-
tion without relying on memory access (either through on-chip cache or off-chip
memory) or hacking into individual IPs. Bus-based communication (e.g., broadcast
in wireless NoCs) is inherently vulnerable to eavesdropping attacks. Existing
literature on NoC security has explored several variations of the eavesdropping
attack.
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One commonly explored threat model is where the malicious NoC IP colludes
with an accompanying malicious application running on another IP to launch an
eavesdropping attack. It includes a Trojan infected router copying packets passing
through it and sending the duplicated packets to another IP running a malicious
application in an attempt to steal confidential information. This threat model has
been extensively used to study eavesdropping attacks specially since the attack is
hard to detect [10, 21, 64, 70, 114]. Trojans can also directly eavesdrop on the NoC
communication without relying on re-routing duplicated packets to an accomplice
application. This can be facilitated by external I/O pins attached to the NoC [55].
However, NoCs are generally more resistant against bus-probing attacks compared
to the traditional bus-based architectures.

Similar to the malicious router and application colluding to launch the attack, a
Trojan infected network interface and an application can work together to launch
an eavesdropping attack [101]. In the threat model presented in [101], the hardware
Trojan embedded in the NI can tamper with the flits in the circular flit queue, which
is used to store flits before sending them to the corresponding router. When a flit is
sent to the router, it waits in the queue until the next flit overwrites it. The Trojan
keeps track of such outstanding flits, modifies the header flit with a new destination
address, and updates the header pointer so that it gets re-sent to the router. The
duplicated flits are received by the malicious application. The area overhead of the
Trojan is shown to be 1.3% [101].

Common countermeasures against eavesdropping attacks include packet encryp-
tion, authentication, additional validation checks during NoC traversal and infor-
mation obfuscation. Encryption ensures that the plaintext of the secure information
is not leaked and authentication detects any tampering with the packet including
header information. Several prior studies have tried to develop lightweight encryp-
tion and authentication schemes for on-chip data communication. Ancajas et al. [10]
proposed a simple XoR cipher together with a packet certification technique that
calculates a tag and validates at the receiver. A configurable packet validation
and authentication scheme was proposed by merging two robust error detection
schemes, namely algebraic manipulation detection and cyclic redundancy check,
in [21]. Intel’s TinyCrypt—a cryptographic library with a small footprint is built
for constrained IoT devices [125]. It provides basic functionality to build a secure
system with very little overhead. It gives SHA-256 hash functions, message authen-
tication, a pseudo-random number generator which can run using minimal memory,
digital signatures, and encryption. It also has the basic cryptographic building
blocks such as entropy sources, key exchange, and the ability to create nonces and
challenges. The duplicated packets in router-application combination as well as NI-
application combination can be detected by additional validation checks. In [101],
the authors implemented a snooping invalidator module (SIM) at the NI output
queue to discard duplicate packets. On the other hand, information obfuscation can
make the attack harder to initiate. For example, hiding the source and destination
information of NoC packets can ensure that the malicious agents in the NoC are
unable to select the target application to eavesdrop. Onion routing, a well-known
mechanism in the computer networks domain, can hide the origin and target of a
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network packet [56]. However, implementing such complex security mechanisms is
not feasible in resource-constrained SoCs. Several previous studies tried to propose
lightweight solutions that are compatible with the NoC context [10, 27].

1.3.3.2 Spoofing and Data Integrity Attacks

SoC relies on the integrity of data communicated through the NoC for correct
execution of tasks. If a malicious agent corrupts data intentionally, it can lead to
erroneous execution of programs as well as system failures. On the other hand,
spoofing is the act of disguising a communication from an unknown source as being
from a known (trusted) source. Therefore, a malicious agent pretending to be a
trusted source can inject new packets to the network causing system to malfunction
as shown in Fig. 1.10. Spoofing can be used to bypass memory access protection
by impersonating a core that has permission to read from (or write in) prohibited
regions to steal sensitive information or disrupt execution. Spoofing may also be
leveraged to respond to legitimate requests with wrong information to cause system
failure. Spoofing can be achieved by an attacker replacing the source address of a
packet by an address of a trusted IP.

Spoofing and data integrity attacks intentionally corrupt data transferred on the
NoC to cause malfunction. Sepúlveda et al. presented “MalNoC,” a Trojan infected
NoC that can perform multiple attacks on NoC packets [114]. The infected MalNoC
router copies packets arriving at a router, replaces the packet data with the content
in a malicious register, modifies source and/or destination address in the header to
the desired IP, and injects it back into the NoC. A control register within the router
controls the Trojan operation. A similar threat model that discussed eavesdropping,
DoS, and illegal packet forwarding, all of which utilized packet corruption at a
router was presented in Sect. [64]. Kumar et al. [70] discussed a Trojan that corrupts
flits arriving at the input buffers of a router.

Trojans can also be inserted in links to corrupt NoC packets. To avoid being
detected, the Trojans change only the header flits causing deadlock, livelock, and
packet loss situations [132]. Even if hardware Trojans are not present, bit flipping
can happen when packets are transferred through the links due to other reasons.

Fig. 1.10 An example of data integrity attack
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Error correction codes are used to correct such bit flips. The Trojan in the link
attempts to mask its malicious behavior as an error rather than a security attack
to avoid being detected. The authors have explored the impact of Trojans embedded
in different links (boundary links versus center links) in a 5 × 5 Mesh NoC [132].

Authenticated encryption schemes provide data confidentiality through encryp-
tion and data integrity through authentication [71, 108, 114]. If the authentication
tag is calculated using the entire packet (header as well as payload), any packet
corruption can be detected at the receiver’s side when the packet is validated using
authentication. Hussain et al. [64] argued that since the Trojan is rarely activated
to avoid detection, authenticating each packet can lead to reduction in energy
efficiency. In their work, they proposed an efficient Trojan detection design where
the authentication gets activated only when the hardware Trojan has been triggered
in the system. A combination of security modules placed at the IPs as well as at the
routers provided attack detection as well as Trojan localization capabilities [64].

Error correcting codes (ECC) are widely used in the telecommunications
domain [63]. ECCs have been used in NoCs to correct bit errors due to particle
strikes, crosstalk, and spurious voltage fluctuation in NoCs. Yu et al. introduced a
method to detect Trojan induced errors using ECCs in [132]. Their method consisted
of two main components. (1) Link reshuffling: to avoid the Trojan from affecting
the same bit in an attempt to create deadlocks/livelocks, the odd and even bits are
switched in the retransmitted flit in case of an error detected by the ECC. This is
effective for scenarios where the Trojan is triggered by specific flits. If the Trojan
gets activated by a certain input, reshuffling the bits during the retransmission can
make the Trojan inactive again. (2) Link isolation: an algorithm to isolate links that
are suspected to have Trojans. Trojans that are triggered by external signals can
remain active for a long time. In such cases, wire isolation is used to reduce the
number of retransmissions.

1.3.3.3 Denial-of-Service Attacks

Denial-of-service (DoS) in a network is an attack that prevents legitimate users
from accessing services and information. The most common example is an attacker
flooding a network with information as shown in Fig. 1.11. When a user is trying
to access a website, the request is sent to that web server to view the page. The
server has a certain bandwidth and can only serve a limited number of requests at a
time. If the attacker overloads the server with requests, it will not be able to process
the user’s legitimate request. This is “denial-of-service.” In the context of an NoC,
several threat models have been explored. In general, DoS in NoC-based SoCs are
attacks that overwhelm the network resources in an attempt to cause performance
degradation, real-time guarantee violations, and reduction of battery lifetime.

Several threat models related to DoS attacks have been studied in prior work. One
common threat model is where malicious IPs manipulate the availability of on-chip
resources by flooding the NoC with packets. The performance of an SoC can heavily
depend on few components. For example, a memory intensive application is likely
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Fig. 1.11 An example of denial-of-service attack

to send many requests to memory controllers, and as a result, routers connected to
them will experience heavy traffic. If a malicious IP targets the same node, the SoC
performance will suffer significant degradation [28, 29, 52, 99]. This is known as a
flooding-type DoS attack.

Continuous corruption of packets can also lead to a DoS attack [53, 70].
In [70], hardware Trojans tamper flits arriving at the input buffer of a router
causing performance degradation. Performance degradation is caused by dropped
packets, wastage of NoC resources such as buffer space, response delays, and
retransmissions. Boraten et al. [20] discussed a similar threat model where hardware
Trojans influenced resource allocations and corrupted data to degrade performance.
The same authors further explored possible DoS attacks in [22]. Compared to
router-based packet corruption, they discussed a Trojan that performs deep packet
inspection on links and inject faults when the target is identified. The injected faults
trigger retransmissions from the error correcting mechanism. Therefore, repeated
injection of faults causes repeated retransmission to starve network resources and
create deadlocks capable of rendering single application to full chip failures.

Rajesh et al. [100] discussed a threat model where the packets are unfairly treated
at the router to cause a DoS attack. The malicious NoC IP, once integrated on the
SoC, picks a victim IP that is an important SoC component and manipulates the
traffic flow to/from the victim IP. The traffic flow is manipulated by denying fair
access to the allocator and arbiter units in the router. The allocator is responsible
for granting flits access to the crossbar. DoS is achieved by the allocator delaying
packets to/from the victim IP. At the arbiter, the Trojan infected router gives least
priority to the flits that have the victim IP as the source/destination. Both these
scenarios lead to flits to/from one IP getting significantly delayed.

To address these different threat models, researchers proposed several solutions.
As a countermeasure to denial-of-service through packet corruption, Kumar et al.
proposed a bit shuffling method that makes flits less sensitive to the attack [70].
The authors proposed to shuffle the critical bit fields of the flits among themselves
and others so that the Trojan is attacking on randomly shuffled data and not on the
critical fields within the packets such as flit indication bits, source and destination
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addresses. While fuzzing can make the attack difficult, it does not guarantee
prevention. Furthermore, the attack is not detected, and as a result, future attacks
are not prevented either. Boraten et al.’s work was motivated by this, where they
coupled switch-to-switch scrambling, inverting, shuffling, and flit reordering with a
heuristic-based fault detection model [22]. Their solution addresses the challenge
of differentiating fault injections from transient and permanent faults. Another
technique that exhibits similar defense characteristics as fuzzing—partitioning,
tries to reduce interference of communication between different applications/packet
types. As a result, overwhelming the NoC with DoS attacks becomes difficult [128].

Monitoring the traffic flow to detect abnormalities is another common defense
against DoS attacks. Rajesh et al. [100] proposed a defense against their traffic
flow manipulation threat model that is based on identifying the latency elongation
of packets caused by the DoS attack. Their method relied on injecting additional
packets to the network and observing their latencies. SoC firmware then examines
the latencies of the injected packets. If two packets are injected at the same time
and traverse paths with significant overlap, they are expected to exhibit comparable
latencies. If not, it will be flagged as a potential threat. Similar methods that
profiled normal behavior of traffic during design time and monitored NoC traffic
to detect deviations from normal behavior were proposed in [16, 52]. Exploring
another orthogonal direction, work in [20, 53, 99, 110] proposed additional formal
verification and runtime checks integrated in to the NoC to prevent and detect DoS
attacks.

1.3.3.4 Buffer Overflow and Memory Extraction Attacks

The goal of a buffer overflow attack is to alter the function of a privileged program
so that the attacker can gain access and execute his own code. A program with high
privileges (root programs) typically becomes the target of buffer overflow attacks.
To accomplish this, the adversary has to insert malicious code and make the program
execute it. “Code injection” is the first step to accomplish this where the malicious
code is inserted into the privileged program’s address space. This can be achieved by
providing a string as input to the program which will be stored in the program buffer.
The string will contain some root level instructions which the adversary wants the
program to execute [38]. Then, the adversary creates an overflow in the program
buffer to alter states of the program. For example, it can alter a return address
of a function so that the program will jump to that location and start executing
the malicious code [79]. This can be accomplished when buffers have weak or no
bound checking. Buffer overflow attacks can also be used to read privileged memory
locations from the address space. In an NoC context, the threat gets aggravated due
to memory spaces being shared between multiple cores.

Similar to the buffer overflow attacks in the computer networks domain, execu-
tion of malicious code can launch a buffer overflow attack in NoC-based SoCs. If
a malicious IP writes on the stack and modifies the return address of a function to
point at the malicious code, the malicious code will be executed. Return address
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modification in the stack is done by writing more data to a buffer located on the
stack than what is actually allocated for that buffer. This is known as “smashing the
stack” [77]. Even if the stack memory is made non-executable, or kept separate, it
is possible to overwrite both the return address as well as the saved registers. Work
done in [79] explored this threat model. Buffer overflow attacks pose a significant
threat in NoC-based SoCs where the memory is shared among multiple cores.

Kapoor et al. in their work considered some IPs on the SoC to contain
confidential information (secure/trusted IP cores) and some untrusted IPs which
can potentially carry hardware Trojans (non-secure/untrusted IP cores) [71]. The
information inside secure IP cores should be protected from non-secure IP cores.
Since all IPs are integrated on the same NoC, non-secure cores can communicate
with secure cores. Non-secure cores can try to install Trojans in the secure cores and
try to extract information. The confidential information in registers in the secure
cores such as cryptographic keys, configuration register information, and other
secure data can be compromised in such an attack [71]. This threat model of non-
secure IP cores trying to access secure IP cores has been used in several other work
as well [44, 51, 52, 106, 108].

Lukovic et al. proposed two methods to counter buffer overflow attacks. The first
method focused on protecting the processing cores by embedding additional security
in the network interface (NI) [79]. In their work, a data protection unit, which is
similar to a firewall sits on the NI attached to the shared memory block. It secures
the memory by filtering unauthorized memory access requests. A stack protection
unit (SPU) is developed which protects the stack from attacks that targets the
return addresses. The SPU is developed as a part of the processor protection system
which combines software and hardware units that replicate return addresses stored
in the stack and protects it against code injection attacks. These countermeasures
also stopped the attack from getting propagated to other parts of the NoC. Their
second method extends the solutions proposed in [79] to a hierarchical security
architecture [80]. The authors introduced four levels of security working at system
level, NoC cluster level, per core, and in a layer specific to the attack (e.g., code
injection). Similar to software protection mechanisms and the data protection unit
in [79], many existing works provide access control by monitoring the incoming
requests [51, 52, 106]. For example, Saeed et al. introduced a method to mitigate
buffer overflow attacks in an NoC-based shared memory architecture by deploying
an ID and address verification unit (IAV) [106]. This minimizes the threats caused
by malicious IPs in the NoC because the IAV verifies each incoming packet by its
ID and address.

Adding an extra layer of security to access authorization, commercial products
such as Sonic SMART Interconnect [120] and ARM TrustZone [6] divide memory
blocks into different protection regions and isolate secure and normal execution
environments from each other. If the non-secure cores access secure cores, requests
are validated by access authorization techniques [71, 108]. It is possible that security
zones have to be modified due to task migration, new applications starting and
ending. Therefore, security zones have to be created, modified and eliminated
during runtime. Sepúlveda et al. [111] achieved this by using a partitioning method
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that used a lightweight Diffie–Hellman key-exchange protocol. The same authors
proposed a method to create dynamic firewalls at the network interface to monitor
and filter the NoC traffic [113]. The dynamic firewalls create “elastic security zones”
by wrapping a desired set of components in a 3D NoC according to a trust policy.
Porquet et al. [98] presented a method to co-host several secure applications running
in parallel using the same shared memory space. Secure hardware implemented at
the NI of the NoC enables secure and flexible partitioning of the shared memory
space between multiple applications. Their approach is similar to the operation of a
virtualization hypervisor that protects code, data, exclusive peripheral device usage,
etc., when multiple virtual machines are running on the same host machine [23].

1.3.3.5 Side-Channel Attacks

Side-channel attacks exploit non-functional behavior such as time, power, electro-
magnetic radiation, heat and acoustic waveforms to attack a secure system [133].
The switching behavior of the CMOS (complementary metal oxide semiconductor)
transistors can be analyzed to infer the underlying circuit functionality. Therefore,
even a flawless implementation of a security mechanism can be vulnerable against
side-channel attacks as shown in Fig. 1.12. For example, Zhen et al. presented a
method to implement a timing attack on Nvidia Kepler K40 GPU and successfully
recovered the complete 128-bit AES encryption key [69]. In contrast, a paper
published in 2012 showed that a brute-force attack on AES using a super computer
can take 149 trillion years [11]. Even though computing resources have signifi-
cantly improved since then, a brute-force attack on AES-128 is still not possible.
Possibility of side-channel attacks escalated, since in a realistic scenario, more
constraints are imposed on the system such as performance and power. Even for
systems with theoretically proven security bounds, revealing the secrets through
these non-functional physical properties is a likely scenario.

Due to the difference in computation requirements, secure systems often take
different times to perform different operations. By carefully measuring these time

Fig. 1.12 An example of side-channel attack
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differences, it is possible to extract secret information from vulnerable systems.
Reinbrecht et al. demonstrated a practical “Prime+Probe” timing attack on an NoC-
based SoC [103]. The target of their attack was the communication between an
ARM Cortex-A9 core and a shared cache memory. Other studies carried out on
timing attacks also used similar concepts on timing analysis of network traffic for
attacks [67, 68, 102, 127]. The threat model in [67] included four cores. Two of
which are carrying out a secure communication and the other two, which lies on
the secure communication path will be infected by the adversary. The two infected
cores inject traffic to the network. Adversary is then able to observe latencies of
maliciously injected traffic to infer information about timing, frequency and volume
of the secure communication.

Wang et al. [127] in their work showed that the number of ones in the RSA [105]
key can be inferred with a timing side-channel attack on NoC, which can then be
used to infer the entire key. A major part of the RSA algorithm is to do the modulo
multiplication of two large (1024 or 2048-bit) numbers. The modulo multiplication
is shown to be vulnerable to timing side-channel attacks [75], mainly because the
algorithm examines each bit in the RSA key and multiplies only if it is one. Wang
et al.’s attack is based on observing the additional network traffic caused due to
multiplications [127]. Similar to recovering the RSA key through timing attacks,
existing work used the AES cipher as case studies as well. In 2010, Bogdanov et
al. [19] proposed a differential cache collision attack on embedded systems. While
their work did not consider an NoC-based setup, in 2018, Reinbrecht et al. [104]
showed that combining their previous work on NoC timing attacks [102] with
Bogdanov et al’s cache collision attack [19] can significantly enhance the AES key
recovery effort.

Measuring the power consumption will give information about the process that
is occurring inside the system. For example, if the processor is performing a
simple addition versus executing an encryption instruction (Intel chips come with
“AESENC” instruction that performs one round of AES encryption on a given
plaintext), observing their power consumption can give reasonable information to
differentiate the two operations. Similarly, many data encryption standard (DES)
implementations have visible differences within permutations and shifts which
can be utilized to break the security scheme [36]. Differential power analysis is
a powerful attack technique based not only on power observations, but also on
statistical analysis and noise filtering methods to gain more information about the
underlying security scheme [74].

In addition to timing and power, existing work has explored thermal side
channels. Similar to power, the SoC thermal characteristics are highly correlated
to the SoC operation. Guo et al. [58] discussed two main thermal characteristics:

1. Spatial distribution: by observing the heatmap, attackers can identify active cores
in the SoC.

2. Temporal variation: different instructions have different thermal profiles when
executed. The temperature trace over time allows attackers to infer the executed
instructions with a certain probability.
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As a countermeasure to the “Prime+Probe” attack, the authors proposed “Gossip
NoC” [102, 103]—a two stage security mechanism which first detects the attack
and then protects the SoC. The detection process monitors the bandwidth and sends
an alert message in case of a potential security breach. The protection mechanism
gets triggered by this alert message which then alters the routing protocols to route
packets avoiding the sensitive path that contains the malicious IP. The same route
randomization concept was used as a mitigation technique in [67, 68]. Sepúlveda
et al. combined random arbitration with adaptive routing to dynamically allocate
NoC resources, and as a result, minimized interference between secure packets and
packets injected by the attacker [115].

As a solution to the thermal side-channel attacks discussed in [58], the authors
presented a task mapping scheme that minimized the thermal information leakage.
In their work, a mathematical model was developed to quantify the security cost
corresponding to a certain application mapping. A greedy optimization algorithm
was then used to map application threads to cores such that the leakage is minimized.
The optimization algorithm is implemented in the operating system and it receives
SoC status from a hardware monitor. The security cost is then calculated according
to the model for each core and a new application mapping is generated if required.

To avoid timing side-channel attacks similar to the one introduced in [127],
the same authors proposed to partition network traffic based on its security level.
The basic idea is to make sure packets from applications running on secure IPs
do not interfere with the packets from applications running on non-secure IPs.
As a result, the communication latency and throughput of non-secure applications
become independent of the dynamic behavior of secure application traffic. An
obvious way to achieve this goal is to statically partition NoC resources (link
bandwidth, buffers, etc.) spatially or temporally. However, it can lead to sub-optimal
results causing performance degradation. Wang et al. introduced a priority-based
arbitration technique for resources such as the router crossbar along with static
allocation of virtual channels [127]. A similar principal was used in the “Secure
Enhanced Router” architecture proposed by Sepúlveda et al. [112]. In their work,
the router architecture included a shared buffer space and the number of virtual
channels per input port was decided during runtime according to communication
and security requirements. Similar to [127], the goal was to make the non-secure
traffic flow oblivious of the secure traffic flow. Recent efforts try to combine the
advantages of logic testing and side-channel analysis for effective Trojan detection
in integrated circuits [60, 61, 82, 83, 85, 95].

1.4 Summary

This chapter provided an overview of Network-on-Chip (NoC) based System-on-
Chip (SoC) design methodology. It also introduced the security vulnerabilities in
electrical, optical as well as wireless NoCs. We have considered existing literature
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covering state-of-the-art attacks and defense mechanisms in NoC-based SoCs. In
particular, we have discussed the research efforts under five classes of attacks
highlighting their threat models and respective countermeasures.
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Chapter 2
Interconnect Modeling for Homogeneous
and Heterogeneous Multiprocessors

Tushar Krishna and Srikant Bharadwaj

With the end of Dennard scaling and slowing of Moore’s law, computer systems
have become increasingly complex, with multiple processing units (multicore
CPUs, GPUs, and other accelerators) integrated with an interconnection system.
The high-demand for increase in the number of cores has led to a need for greater
integration of units across a chip. Thus, the need for a scalable and high-bandwidth
communication fabric to connect the units has become critically important.

Modeling of such complex interconnect systems is needed for design-space
explorations as well as for evaluating novel optimizations. Several interconnect
modeling tools have been developed over the past decades with various levels
of detailing. The interconnect models are often combined with different types
of traffic patterns originating from various IPs (such as CPU, GPU, FPGA, and
accelerators). In addition to application traffic, performance models allow stress
testing the network with a myriad of synthetic traffic patterns to characterize the
latency and throughput characteristics.

In this chapter, we discuss the various approaches to modeling interconnection
systems that have been adopted for modern systems. We start with describing
the type of traffic patterns that are experienced by these interconnection models.
This would include the cache coherence and memory traffic observed in modern
systems as well as the synthetic traffic patterns used for evaluating networks. We
then describe the typical modeling approaches taken by performance simulators and
power-area models.

T. Krishna (�)
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: tushar@ece.gatech.edu

S. Bharadwaj
AMD Research, Bellevue, WA, USA
e-mail: srikant.bharadwaj@amd.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
P. Mishra, S. Charles (eds.), Network-on-Chip Security and Privacy,
https://doi.org/10.1007/978-3-030-69131-8_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69131-8_2&domain=pdf
mailto:tushar@ece.gatech.edu
mailto:srikant.bharadwaj@amd.com
https://doi.org/10.1007/978-3-030-69131-8_2


32 T. Krishna and S. Bharadwaj

2.1 Interconnects in Modern Systems

Modern systems require the interconnect system (or data fabric) for several types
of communications across the system. In shared memory systems, the on-chip
network is a key component to connect the different units of the memory subsystem
hierarchy (L1, L2, directory, memory controller, and so on). In addition to the
memory traffic, modern processors also demand inter-core communication often
referred to as the cache coherence traffic. The recent advances to the systems in
the form of heterogeneous integration has further led to the demand for advanced
interconnection systems. These systems require heterogeneity in the form of
clock domain crossings, 2.5D and 3D topologies, and serialization-deserialization.
In this section, we describe some key characteristics of modern cache-coherent
heterogeneous systems.

2.1.1 Cache Coherence

One of the most important utilities of an interconnect system is to support cache
coherence protocols. In modern shared memory systems, communication occurs pri-
marily through loading and storing of data to the memory. Practically, these shared
memory systems utilize hierarchical cache structures to improve performance of the
systems. However, these cache structures create complexity to the unified shared
memory paradigm. The role of the cache coherence protocol in modern systems is
to maintain the semantics of one writer or many readers in parallel programs. Cache
coherence protocols are thus required to maintain coherency across the multiple
copies of data that could be present in a system. These coherence protocols thus
require strong communication semantics for efficient governance of coherency.

Cache coherency protocols often adopt one of two key types of mechanisms.
Directory-based protocols rely on a logical structure which houses the information
on the location of cache blocks across the system. Alternative to directory-based
protocols is the broadcast-based system, where requests are broadcasted to all
sharers over the communication fabric. We can classify cache coherence protocols
into four broad categories.

• Full-state Directory. In this design, the directory has a bit-vector to track all
sharers and the owner (if any) for any line. The storage requirement for this
design goes up as O(N) where N is the number of cores. Figure 2.1 shows a
transaction in a full-state directory protocol, and the corresponding messages in
the network. L2 #8 sends a write miss (WRITE A) to its home node L2 #6 which
houses a part of the distributed directory. L2 #6 forwards (FWD A) this request
to the sharer (S) of this data L2#0 and the owner (O) of this data1 L2# 14. L2

1If there is no owner on-chip, L2 #6 also forwards this request to the memory controller since
DRAM is the owner of the line.
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Fig. 2.1 Cache Coherence
transactions with full-state
directory. (1) The requester
(#8) sends a write miss to the
home node (#6). (2) The
home node forwards it to the
owner (#14) and the sharer
(#0). (3) The owner
invalidates its copy and sends
the data to the requester. The
sharer invalidates its copy and
sends an ACK to the
requester. (4) The requester
then unblocks the home node
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#14 responds with data (DATA A) to L2 #8, while L2#0 sends an invalidation
acknowledgement (ACK) to L2 #8. On receiving all ACKs and data, L2 #8 then
unblocks its home node (UNBLOCK A). At the end of the transaction, L2 #8
holds line A in modified (M) state, while L2# 14 and L2# 0 hold the line in
invalid (I) state.

• Partial-state Directory. In these designs, the directory only tracks the
owner [12] or a subset of sharers [22] or tracks lines at a coarser granularity [15],
to reduce the storage requirement. To provide coverage over the complete chip,
it resorts to occasional broadcasts.

• No-state Directory. In such protocols (e.g., AMD’s HyperTransport™ [19], used
in its early Opteron chips), the directory does not have any state, but simply acts
as an ordering point among different requests to the same line, to help maintain
memory consistency semantics [2].

• No Directory. In these designs, there is no home node for data. The requester
broadcasts all its requests, all other nodes snoop, and the owner (cache or
memory) responds. A key requirement for these snoopy protocols is global
ordering. On a bus-based design, where these protocols are highly prevalent,
the central bus arbiter serves as the ordering point. On a distributed mesh,
on the other hand, other techniques are required to guarantee race-free correct
functionality in case of competing requests. Token Coherence [25] and INSO [4]
are two techniques to run snoopy protocols on a mesh topology.

2.1.1.1 Message Classes and Virtual Networks (Vnets)

The series of messages sent by a coherence protocol as part of a coherence
transaction fall within different message classes. For instance, most directory
protocols (full-state, partial-state, and no-state) use 3–4 message classes: request,
forward, response, and unblock.
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A potential deadlock can occur in the protocol if a request for a line from a
L2 is unable to enter the network because the L2 is waiting for a response for a
previous request, while the response is unable to reach the L2 since all queues in the
network are full of such waiting requests. To avoid such deadlocks, protocols require
messages from different message classes to use different set of queues within the
network. This is implemented by using virtual networks (vnets) within the physical
network. Virtual Networks are identical to Virtual Channels(VC) in terms of their
implementation: all vnets have separate buffers but multiplex over the same physical
links. In fact many works on coherence protocols use the term virtual channels to
refer to virtual networks. However, in this chapter, we will strictly adhere to using
the term virtual networks or vnets to refer to protocol level message classes. The
number of vnets is thus fixed by the protocol. Each vnet, on the other hand, can
have one or more VCs within each router, to avoid head-of-line blocking or avoid
routing deadlocks.

2.1.1.2 Message Sizes

The size of messages generated by the cache coherency controllers vary depending
on the type of message and system requirements. These messages could include
control messages (requests/forwards/unblocks) which fit within one single flit, or
data responses which span multiple flits. For example, if a physical link or router
supports 128-bit flits, a 64B cache line would have to broken down into 5 flits
(including header flit) for transmission through the link or router. Thus VCs within
the request, forward or unblock vnets could be 1-flit deep, while VCs within the
response vnet could be more than 1-flit deep.

2.1.1.3 Point-to-Point Ordering

Certain message classes (and thus their vnets) require point-to-point ordering
in the network for functional correctness. This means that two messages injected
from the same source, for the same destination, should be delivered in the order of
their issue. Most interconnect systems implement point-to-point ordering for flits
within ordered vnets by (1) using deterministic routing, and (2) using FIFO/queuing
arbiters at each router. The first condition guarantees that two messages from the
same source do not use alternate paths to the same destination as that could result
in the older message getting delivered after the newer one if the former’s path has
more congestion. The second condition guarantees that flits at a router’s input port
leave in the order in which they came in.
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2.1.2 Heterogeneous Interconnect Systems

With the end of Dennard scaling and slowing of Moore’s law, computer systems
have become increasingly complex, with multiple processing units (multicore
CPUs, GPUs, and other accelerators) integrated with an interconnection system.
These multiprocessor architectures are typically composed of complex memory
hierarchy operating in multiple independently-clocked voltage/frequency islands
(VFIs) connected to each other. Modern architectures consisting of multi-chip
System-On-Chip (SoC) design, where multiple small chips are assembled to form a
large system, are being produced commercially.

Further, heterogeneous architectures that consist of CPUs, GPUs, and other
accelerators often involve tight integration through diverse connectivity. NoCs have
emerged as the scalable solution for these interconnections. NoCs have also been
extended to GPUs, heterogeneous architectures, and domain-specific architectures,
such as machine learning and FPGAs. NoCs have, thus, become an integral part
of modern architectures. This has led to a large amount of research in improving
various aspects of the NoC such as topology, flow control, deadlock prevention and
detection, and router microarchitecture.

Emerging systems are diverse in many dimensions. First, their traffic sources
can be diverse, where various computation and memory components with different
characteristics are integrated into the same system. Second, their physical inter-
connects can be diverse, where interconnect materials (e.g., on-chip wire, TSV,
micro bump) and widths can be different across the whole system. Finally, their
system structure can be diverse, where multiple small systems operating at different
voltages/frequencies are connected to form a larger system on a chip, package
(NoP) [32], or interposer (NoI) [8].

To support this diversity, modern commercial NoCs typically consist of a
comprehensive set of features. These features not only include functionalities such
as supporting the memory hierarchy and different message types through VCs, arbi-
tration at various memory levels to ensure performance and quality of service, but
also include supporting multiple voltage/frequency domains, transmitting messages
in irregular networks and more. The heterogeneous nature of the networks in modern
systems directly affects overall system performance and energy.

2.1.2.1 Multi-Domain Interconnect Systems

Modern systems are diverse, with multiple small systems operating at different
voltages/frequencies connected to form a larger system on a chip or package.
Such systems need multiple voltage-frequency domains to support the inherent
heterogeneity of the system. The interconnect system which connects these domains
in turn needs to support communication across these domains for functionality.
These requirements in modern heterogeneous systems lead to integration of units
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such as clock domain crossings (CDCs) within the system.The CDCs within the
interconnect system need to support packets and flits travelling across the system.

2.1.2.2 Serializer-Deserializer Units

Emerging technology of building larger systems using small chiplets embedded on
a substrate such as an interposer has introduced the idea of heterogeneously sized
interconnect system. Unlike classical systems where the data fabric was designed to
support flits and packets of a fixed size, modern system allows conversion of flits
from one size to another on the go. Modeling such complex interconnect systems
requires modeling links of different widths as well as units which can serialize
and deserialize different sized flits. These Serializer-Deserializer (SerDes) units are
introduced at domain boundaries and are used to allow long-distance low-latency
communication to other chiplets.

2.2 Traffic Models

2.2.1 Synthetic Traffic

Synthetic traffic patterns are used to stress the interconnect systems. Several types of
synthetic traffic patterns are generally used to evaluate interconnect topologies and
designs. Table 2.1 lists some common synthetic traffic patterns used for studying a
mesh network, along with their average hop-counts and theoretical throughput with
XY routing. The theoretical throughput or capacity is the injection rate at which
some link(s) in the mesh is (are) sending 1-flit every cycle.2 This is the best a
topology can do, with perfect routing, flow control, and microarchitecture.

2.2.2 Application Traffic

2.2.2.1 Trace-Based Simulation

Researchers often use traces of network injections from applications running on a
real system or a full-system simulator. Network traces provide a fairly realistic way
of exploring the effectiveness of proposed on-chip network designs, but clearly, it
should be noted that their characteristics depend heavily on the simulated many-

2Table 2.1 shows that uniform random traffic offers the highest throughput, since it saturates when
the bisection links of the mesh are fully occupied. For traffic patterns that saturate other links,
throughput is lower.
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Table 2.1 Synthetic Traffic Patterns for k × k Mesh Source (binary coordinates):
(yk−1, yk−2, . . . , y1, y0, xk−1, xk−2, . . . , x1, x0)

Destination Avg hops Throughput

Traffic pattern (binary coordinates) (for k = 8) (for k = 8) (flits/nodes/cycle)

Bit-complement (ȳk−1, ȳk−2, . . . , ȳ1, ȳ0, 8 0.25

x̄k−1, x̄k−2, . . . , x̄1, x̄0)

Bit-reverse (x0, x1, . . . , xk−2, xk−1, 5.25 0.14

y0, y1, . . . , yk−2, yk−1)

Shuffle (yk−2, yk−3, . . . , y0, xk−1, 4 0.25

xk−2, xk−3, . . . , x0, yk−1)

Tornado (yk−1, yk−2, . . . , y1, y0, 3.75 0.33

x
k−1+� k

2 �−1, . . . , x� k
2 �−1)

Transpose (xk−1, xk−2, . . . , x1, x0, 5.25 0.14

yk−1, yk−2, . . . , y1, y0)

Uniform random random() 5.25 0.5

core platform. The number of cores/IP blocks, the memory hierarchy, the number
of memory controllers, etc. significantly influence the network trace. The lack of
feedback effects when using network traces also impacts the accuracy. For instance,
faster on-chip networks than the ones on which traces were collected could lead
to pathological scenarios such as responses getting delivered before their requests
were injected. Tracking or inferring dependencies between packet is important to
being able to replay the trace correctly [29].

2.2.2.2 Full-System Simulation

In addition to the use trace-based simulation, researchers often integrate detailed
interconnect models to full-system simulation. A full-systems simulation involves
booting an OS on the detailed model of the hardware and launching the actual
software application. Full-system simulations guarantee functionality by offloading
the actual instructions from the simulator on the host CPU, while detailed timing for
the hardware being modeled is computed separately. The timing of different aspects
of hardware (e.g., compute, memory-system, NoC) can be modeled at various levels
of fidelity. In the context of NoCs, the timing for the various messages traversing the
NoC are computed as part of the delay incurred by the overall memory subsystem
that comprises the coherence protocol, cache hierarchy, NoC, memory controller,
and DRAM.

Simulators such as HeteroGarnet [8], BookSim2 [28], Garnet [3] have been
integrated with full-system simulators such as gem5 [9, 24] and GPGPU-sim [20]
for higher accuracy of evaluations. Such a tight integration is often done by
integrating the interconnect simulator to the memory subsystem of the simulator
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such that the coherency and memory traffic of the system is redirected to the network
system. We will describe this process in detail in later sections.

It is important to note though that detailed network simulation often comes at
the cost of wall-clock time for real workloads. In the next two sections, we describe
how NoCs can be modeled at increasing levels of fidelity.

2.3 Analytical Modeling

Modeling of interconnect topologies for performance, power, and area are key
for developing novel optimized designs and architectures. Analytical modeling
of interconnect topologies has provided quick insight as design-time metric for
comparing topologies. Figure 2.2 shows some of the common network-on-chip
topologies considered in this section.

Fig. 2.2 Common network-on-chip topologies. (a) Bus. (b) Ring. (c) Mesh (2D). (d) Flattened
Butterfly. (e) Torus (Folded). (f) Fully connected
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2.3.1 Latency

Hop Count The number of hops [16] a message takes from source to destination,
or the number of links it traverses, defines hop count. This is a very simple and
useful proxy for network latency, since every node and link incurs some propagation
delay, even when there is no contention. The maximum hop count is given by the
diameter of the network. In addition to the maximum hop count, average hop count
is very useful as a proxy for network latency. It is given by the average hops over all
possible source-destination pairs in the network.

For the same number of nodes, and assuming uniform random traffic where every
node has an equal probability of sending to every other node, a ring will lead to
higher hop count than a mesh or a torus [13]. For instance, assuming bidirectional
links and shortest-path routing, the maximum hop count of an 8-core ring is four,
that of a 3x3 mesh is also four, while a torus improves the hop count to two. Looking
at average hop count, we see that the torus again has the lowest average hop count
(1 1

3 ). The mesh has a higher average hop count of 1 7
9 . Finally, the ring has the worst

average hop count of the three topologies with an average of 2 2
9 .

Effective Hop Count The average hop count defined for homogeneous systems
cannot be accurately extended to heterogeneous interconnect systems. The catch
in average hop count is that the operating frequency f (time duration of each hop)
is often not taken into account. For example, a topology could use long express
links to provide single hop transmission, but could be restricted by the maximum
possible f. Hence the wire and router latencies would go up, making it worse than
a topology with higher average hop count but higher. This is often not an issue in
homogeneous NoCs since the (low) operating frequency of the NoC is limited by
CPU/GPU cores and caches, which have plateaued since Dennard’s scaling stopped.
However, heterogeneous interconnect systems such as NoP [32] or NoI [8] need not
be coupled to core frequencies, and could thus operate at a different and (multi-
GHz) operating frequency. This necessitates co-optimizing average hop latency and
the operating frequency. Recent work has defined a new metric called effective
hop count as the proxy and takes into account the frequency trade off involved in
heterogeneous systems. The effective hop count is defined as

Eff ectiveHopCount=Average Hop Count (Havg)/Operating Frequency (f )

Latency Estimation The latency of every packet in an on-chip network can be
described by the following equation:

TNetwork = Twire + Trouter + Tcontention

= H · twire + (H + 1) · trouter +
H+1∑

h=1

tcontention(h)
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where H is the average hop count through the topology, trouter is the pipeline
delay through a single router, twire is the wire delay between two routers, and
tcontention(h) is the delay due to contention between multiple messages competing
for the same network resources at a router h-hops from the start. A factor of H +1 is
considered for router power and contention since a packet traverses the input router
prior to the first hop through the network. trouter accounts for the time each packet
spends in various stages at each router as the router coordinates between multiple
packets; depending on the implementation, this can consist of one to several pipeline
stages as discussed later in Sect. 2.4.4. trouter and twire are design-time metrics.
They can be used to determine a lower-bound on the latency of any packet. H and
tcontention(h) are runtime metrics that depend on traffic.

2.3.2 Throughput

Bisection Bandwidth The bisection bandwidth is the bandwidth across a cut that
partitions the network into two equal parts.3 For example, in Fig. 2.2, two links cross
the bisection for the ring, three for the mesh, and six for the torus. This bandwidth
is often useful in defining worst-case performance of a particular network, since it
limits the total data that can be moved from one side of the system to the other. It
also serves as a proxy for cost since it represents the amount of global wiring that
will be necessary to implement the network. As a metric, bisection bandwidth is less
useful for on-chip networks as opposed to off-chip networks, since global on-chip
wiring is considered abundant relative to off-chip pin bandwidth.

Effective Bandwidth The concept of calculating the effective value of a metric
can also been extended to bandwidth for measuring the bisection bandwidth of a
heterogeneous interconnect system.

Eff ectiveBisectionBW = BisectionBW.Operating Frequency (f )

Throughput Estimation The bisection bandwidth is a design-time metric for the
throughput of any network. It is defined as the inverse of the maximum load across
the bisection channels of any topology. Ideal throughput assumes perfect flow
control and perfect load balancing from the routing algorithm. The actual throughput
at saturation, however, might vary heavily, depending on how routing and flow
control interact with runtime traffic. Throughput higher than the bisection bandwidth
can be achieved if traffic does not go from one end of the network to the other
over the bisection links. However, often times, the achieved saturation throughput
is lower than the bisection bandwidth. A deterministic routing algorithm, such as
XY, might be unable to balance traffic across all available links in the topology in
response to network load. Heavily used paths will saturate quickly, reducing the
rate of accepted traffic. On the other hand, an adaptive routing algorithm using local

3If there are multiple such cuts possible, it is the minimum among all the cuts.
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congestion metrics could lead to more congestion in downstream links. The inability
of the arbitration schemes inside the router to make perfect matching between
requests and available resources can also degrade throughput. Likewise, limited
number of buffers and buffer turnaround latency can drive down the throughput
of the network.

2.3.3 Energy

The energy consumed by each flit during its network traversal is given by

ENetwork = H · Ewire + (H + 1) · Erouter

= H · Ewire + (H + 1) · (EST + EBW + EBR + ERC)

+
H+1∑

h=1

tcontention(h) · (EV A + ESA)

where EBW , ERC , EV A, ESA, EBR , and EST are the energy consumption for
buffer write, route computation, VC arbitration, switch arbitration, buffer read, and
switch traversal, respectively. ERC and EV A are only consumed by the head-flit.
The relative contribution of these parameters is topology and flow control specific.
For instance, a high-radix router might have a larger EST and Ewire, but lower H .
Similarly, a wormhole router will not consume EV A. Contention at every router
determines the number of times a flit may need to perform VA and SA before
winning both and getting access to the switch. EV A and ESA depend on the specific
allocator implementation.

2.3.4 Area

The area footprint of an on-chip network depends on the area of routers.

ANetwork = N · (Arouter )

= N · (p · v · AV C + p · ARouteUnit + p · AArbiter inport

+ p · AArbiter outport + ACrossbar )

where N is the number of routers (assuming all of them are homogeneous input
buffered designs), p is the number of ports, and v is the number of VCs per input
port. AV C is the area consumed by the buffers and control for each VC, which in turn
depends on its implementation. This equation assumes a separable switch allocator
design; AArbiter inport represents the area of all the arbiters at each input port, and
AArbiter outport represents the area of all the arbiters at each output port.
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Wires do not directly contribute to the area footprint as they are often routed on
higher metal layers above logic; the link drivers are embedded within the crossbar
while the link receiver is within the input VC.

2.4 Cycle-Level Software Simulators

Software modeling of the various aspects of modern interconnect system is key to
unlocking the understandings of the micro-architectural behavior of traffic patterns.
Several modeling tools have been developed over the years to support varied levels
of interconnect modeling. Cycle-level simulators have been the most commonly
utilized performance simulators for both research and industrial explorations. Power
and area modeling tools have been developed for different types of interconnect
systems. These models generally utilize RTL and openly available process design
kits (PDK) to estimate power and area consumption of various units within the
interconnect system.

Cycle-level simulators are widely used in computer architecture research. Both
industry and academia heavily rely on cycle-level simulators that model the
processing units and memory systems in various levels of detail. Network-on-chip
simulators such as Garnet [3], BookSim2 [28], Topaz [1], HeteroGarnet [8] are used
to evaluate the different network metrics. These simulators have also been integrated
into larger simulators such as gem5 and GPGPU-sim for simulating real applica-
tions. In particular, many studies have used Garnet to evaluate both the execution
of real programs (combined with gem5) and isolated network performance (using
synthetic traffic patterns). Table 2.2 shows some of the widely used interconnect
modeling tools and their major features.

Most of these tools were designed mainly to support interconnection network
studies such as topology, flow control, and deadlock prevention. The increasingly
heterogeneous nature of interconnect systems has propelled the development of

Table 2.2 State of the Art NoC simulators

Simulator Language Environment Target interconnect

Garnet [3] C++ Standalone + full-system
(gem5 [9])

Silicon and optical
interconnects

Booksim2 [28] C++ Standalone + full-system
(gpgpusim [6])

Silicon interconnects

Topaz [1] C++ Standalone Silicon interconnects

SuperSim [26] C++ Standalone Silicon large networks

HeteroGarnet [8] C++ Standalone + full-system
(gem5 [9])

Chip and package-level
silicon, optical, and wireless
interconnects

PhoenixSim [11] C++ Standalone Photonic interconnect

NoxSim [10] C++ Standalone Wireless interconnect
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modern network simulators such as SuperSim [26] and HeteroGarnet [8]. These new
simulators enable detailed exploration of heterogeneous interconnects with support
for multi-clock domain and serializer-deserializer units in addition to the typical
features. HeteroGarnet, which was released as Garnet 3.0 in gem5 [24], extensively
builds over the Garnet and includes several other features.

We discuss the general software modeling approach taken by such cycle-level
simulators by taking Garnet 3.0 (which includes HeteroGarnet) as an example in
the upcoming sections.

2.4.1 Topology

Most simulators enable configuration of the entire network through a configuration
file. All kinds of end points (e.g., Cores, Caches, DMA nodes) connected to the
network can be configured to form a topology. This allows complete configuring
of complex and irregular network-topologies. A typical example of a topology is
shown in Fig. 2.3.

Garnet allows users to configure complex topologies using a python config-
uration file as the topology. The overall topology configuration could include
the complete interconnect definition of the system including any heterogeneous
components. The general flow of defining a topology involves the following steps:

Fig. 2.3 Typical form of a
network topology in modern
systems. The end points
connect to the network
through external links. The
internal links are then used to
connect routers and other
units within the system
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1. Determine the total number of routers in the system and instantiate them.

• Use the Router class to instantiate individual routers.
• Configure properties of each router, such as clock domain, supported flit

width, depending on the requirements.

routers = Router(id, latency, clock_domain,
flit_width, supported_vnets,
vcs_per_vnet)

2. Determine the total end points of the interconnect system and instantiate network
interface for each of them.

• Use the NetworkInterface class to instantiate individual network interfaces.

network_interfaces = NetworkInterface(id)

3. Connect the routers which connect to the end points (e.g., Cores, Caches,
Directories) using external physical interconnects.

• Use ExternalLink class to instantiate the links connecting the end points.
• Configure properties of each external link, such as clock domain, link width,

depending on the requirements.
• Enable clock domain crossings(CDC) and Serializer-Deserializer(SerDes)

units at either depending on the interconnect topology.

external_link = ExternalLink(id, latency, clock_domain,
flit_width, supported_vnets,
serdes_enable, cdc_enable)

4. Connect the individual routers within the network depending upon the topol-
ogy.

• Use InternalLink class to instantiate the links connecting the end points.
• Configure properties of each external link, such as clock domain, link width,

depending on the requirements.
• Enable clock domain crossings and Serializer-Deserializer units at either

depending on the interconnect topology.

internal_link = InternalLink(id, latency, clock_domain,
flit_width, supported_vnets,
serdes_enable, cdc_enable)

Garnet 3.0 also provides several pre-configuration scripts which automatically
do some of the steps, such as instantiating network interfaces, domain crossings,
and SerDes units. The several types of units used to configure the topologies are
discussed below.
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2.4.1.1 Physical Links

The physical link model in Garnet represents the interconnect wire itself. A link is
a single entity which has its own latency, width, and the types of flit it can transmit.
The links also support a credit-based backpressuring mechanism. Similar to the
upgraded Garnet 3.0 router, each Garnet 3.0 link can be configured to an operating
frequency and width using appropriate parameters. This allows links and routers
operating at different frequencies to be connected to each other.

2.4.1.2 Network Interface

The network interface controller (NIC) is an object which sits between the network
end points (e.g., Caches, DMA nodes) and the interconnection system. The NIC
receives messages from the controllers and converts them into fixed-length flits,
short for flow control units. These flits are sized appropriately according to the
outgoing physical links. The network interface also governs the flow control and
buffer management for the outgoing and incoming flits. Garnet 3.0 allows multiple
ports to be attached to a single end point. Thus, the NIC decides where a certain
message/flit must be scheduled.

2.4.1.3 Clock Domain Crossing Units

To support multiple clock domains, Garnet 3.0 introduces Clock Domain Crossing
(CDC) unit as shown in Fig. 2.4a, which consists of first-In-First-Out (FIFO) buffers
and can be instantiated anywhere within the network model. The CDC unit enables
architectures with different clock domains across the system. The delay of each
CDC unit is configurable. The latency can also be calculated dynamically depending
on the clock domains connected to it. This enables accurate modeling of DVFS
techniques as CDC latencies are generally a function of the operating frequency of
producer and consumer.

2.4.1.4 Serializer-Deserializer Units

Another critical feature necessary in modeling SoCs and heterogeneous architec-
tures is supporting various interconnect widths across the system. Consider a link
between two routers within a GPU and a link between a memory controller and
on-chip memory. These two links might be of different widths. To enable such
configuration, Garnet 3.0 introduces the Serializer-Deserializer unit (Fig. 2.4b),
which converts flits into appropriate widths at bit-width boundaries. These SerDes
units can be instantiated anywhere in the Garnet 3.0 topology similar to the CDC
unit described in the previous subsection.
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Fig. 2.4 Data and credit flow
through a pair of (a) Clock
Domain Crossing (CDC)
units between two different
clock domains, and (b)
Serializer-Deserializer
(SerDes) units instantiated
between a link width crossing

2.4.2 Routing

The routing algorithm decides how the flits travel through the topology. The
objective of a routing policy is to minimize contention while maximizing the
bandwidth offered by the interconnect. Garnet 3.0 provides several standard routing
policies that the user can select from.

Routing Policies There are several generic routing policies that have been pro-
posed for deadlock free routing of flits through the interconnect network.

Table Based Routing Garnet also features table based routing policy which users
can select to set custom routing policies using a weight-age based system. Lower
weighted links are preferred over links which are configured to have higher weights.

2.4.3 Flow Control and Buffer Management

Flow control mechanisms determine the buffer allocation in interconnect systems.
The aim of a good flow control system is minimizing the impact of buffer
allocation to the overall latency of a message in the system. Implementation of
these mechanisms often involve micro-management of physical packets within the
interconnect system.
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Coherence messages generated by cache controllers are often broken down into
fixed-length flits (flow control units). A set of flits carrying a message is often termed
as a packet. A packet could have a head-flit, body-flit, and a tail-flit to carry the
contents of the message along with any additional meta data of the packet itself.
Several flow control techniques have been proposed and implemented at various
granularities of resource allocation.

Garnet 3.0 implements a credit-based flit-level flow control mechanism with
support for virtual channels.

Virtual Channels Virtual Channels (VCs) in a network act as separate queues
which can share physical wires (physical links) between two routers or arbiters.
Virtual channels are mainly used to alleviate head-of-line blocking. However, they
are also used as a means for deadlock-avoidance.

Buffer Backpressure Most implementations of interconnection networks do not
tolerate dropping of packets or flits during traversal. Thus, there is a need to strictly
manage the flits using backpressuring mechanisms. Credit-based backpressuring
mechanism is often used for low-latency implementation of flit-stalling. Credits
track the number of buffers available at the next intermediate destination by
decrementing the overall buffers every time a flit is sent. A credit is then sent back
by the destination when it is vacated.

2.4.4 Router Microarchitecture

Routers in interconnect systems perform arbitration, allocation of buffers, and flow
control within the network. The objective of the router microarchitecture is to
minimize the contention within the router while offering minimal per-hop latency
for the flits. The complexity of the router microarchitecture also affects the overall
energy and area consumption of the interconnect system.

The microarchitecture of the router comprises the logic and state blocks that
implement the components described so far. The microarchitecture is similar to the
design of a traffic intersection, such as the different lanes (left-only, right-only, etc.),
the algorithm running inside the signal to decide when to switch from Red to Green,
and so on.

Figure 2.5 shows the microarchitecture of a state-of-the-art NoC router. Each
input port has buffers that are organized into separate VCs. Buffers are FIFO queues
that can be implemented using Flip Flops or register files or SRAM.

Each input port connects to a crossbar switch which provides cycle-by-cycle
non-blocking connectivity from any input port to any output port. A crossbar
is fundamentally a mux at every output port. Mux-based crossbars are actually
implemented by synthesizing muxes at every output port, while matrix crossbars
layout the crossbar as a grid with switching elements at cross-points.

Each input port also houses a route compute unit, an arbiter for the crossbar’s
input port, and a table tracking the state of each VC. Each output port has an
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Fig. 2.5 Microarchitecture of NoC router modeled in in Garnet 3.0

arbiter for the crossbar’s output port, and also tracks the free VCs and credits at
the neighboring router’s input port. A n : 1 arbiter allows up to n requests for a
resource, and grants it to one of them. Each flit that goes through a router needs to
perform the following actions on its control-path:

• Route Compute (RC). All head and head_tail flits need to compute their output
ports, before they can arbitrate for the crossbar. RC can be performed either by a
table lookup or simply by combinational logic. The former is used for complex
routing algorithms, while the latter is used for simpler routing schemes like XY
which we assume in most of this thesis. To remove RC from the critical path,
many NoC routers implement lookahead routing [16] where each flit computes
the output port at the next router, instead of the current one so that its output port
request is ready as soon as it arrives.

• Switch Allocation (SA). All flits arbitrate for access to the crossbar’s input and
output ports. For a n × n router with v VCs per input port, Switch Allocation is
fundamentally a matching problem between n resources (output links) and n × v
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contenders (total VCs in the router). To simplify the allocator design in order
for it to be realizable at a reasonable clock frequency, we often use a separable
allocator [31]. The idea is to first arbitrate among the input VCs at each input
port using a v : 1 arbiter at every input port, and then arbitrate among the input
ports using a n : 1 arbiter at every output port.4

• VC Allocation (VA). All flits need a guaranteed VC at the next router before
proceeding. VC Allocation is only performed by head_tail and head flits, while
body and tail flits use the same VC as their head. VC Allocation can also be
performed in a separable manner [31] like SA. Garnet uses a simpler VA scheme
proposed by Kumar et al. [21] which we refer to as VC Select (VS). Each output
port maintains a queue of VC ids corresponding to the free VCs at the neighbor’s
input port. The SA winner for that output port gets assigned the VCid at the head
of the queue, and the VCid is dequeued. When a VC becomes free at the next
router and it sends back a credit, the VCid is enqueued into the queue. If the free
VC queue is empty, then flits are not allowed to perform SA.

Once a flit completes RC, SA, and VA, it can proceed to its data-path:

• Switch Traversal (ST). Winners of SA traverse the crossbar in this stage. The
select lines of the crossbar are set by the grant signals of SA.

• Link Traversal (LT). Flits coming out of the crossbar traverse the link to the
next router.

• Buffer Write (BW). Incoming flits are buffered in their VC. While the flit
remains buffered, its control-path (RC, SA and VA) is active.

• Buffer Read (BR). Winners of SA are read out of their buffers and sent to the
crossbar.

The input and output units of the router model are equipped with a credit
system which enables back pressure on their respective producer and consumer
routers/NICs as shown in Fig. 2.5. Although the Garnet3.0 router still uses the same
four logical stages described above to accurately model contention for buffers and
links, it allows configuring the minimum number of cycles spent by a flit inside
the router to any value >= 1 by setting the router latency parameter. This allows
Garnet3.0 to easily simulate simple 1-cycle routers to multi-cycle high-radix routers
in the same framework. Moreover, unlike earlier simulators, different routers in
a heterogeneous network can be given different latencies by individually setting
each router latency in the topology file. This flexibility allows modeling modern
router designs and reach higher accuracy. The router can be configured using the
parameters in the configuration file.

4If u-turns are disallowed, for instance, in minimal routing schemes, the arbiter at the output ports
can be n − 1 : 1.
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Fig. 2.6 Life of coherency message in Garnet 3.0 simulations

2.4.5 Life of a Message in Garnet 3.0

In this section we describe the life of a message in the NoC after it is generated
by a cache controller unit. We take the case of Garnet 3.0 for describing the
process, but the general modeling principles can be extended to other software
simulation/modeling tools as well.

The overall flow of the system is shown in detail in Fig. 2.6. We take a simple
example scenario where a message is generated by a cache controller destined for
another cache controller which is connected through routers via physical links,
serializer-deserializer units, and clock domain crossings.

Injection of Message The source cache controller creates a message and assigns
one or more cache controllers as the destination. This message is then injected
into message queues. A cache controller often has several outgoing and incoming
message buffers for different kinds of messages.

Conversion to Flits A network interface controller unit (NIC) is attached to each
cache controller. This NIC wakes up and consumes the messages from the message
queues. Each message is then converted to unicast messages before being broken
down into fixed-length flits according to the size supported by the outgoing physical
links. These flits are then scheduled for transmission depending on the availability of
buffers at the next hop through one of the output links. The outgoing link is chosen
depending on the destination, routing policy, and the type of message.
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Transmission to Local Router Each network interface is connected to one or more
“local” routers which is could be connected through an “External” link. Once a flit
is scheduled, it is transmitted over these external links which deliver the flit to the
router after a period of defined latency.

Router Arbitration The flit wakes up the router which is a multi-stage unit. The
router houses the input buffers, VC allocation, switch arbitration, and crossbar units.
On arrival the flit is first placed in an input buffer queue. There are several input
buffer queues in a router which contend for an output link and a VC for the next
hop. This is done using the VC allocation and switch arbitration stages. Once a flit
is selected for transmission, the crossbar stage directs the flit to the output link. A
credit is then sent back to the NIC as the input buffer space is vacated for the next
flit to arrive.

Serialization-Deserialization The serialization-deserialization (SerDes) is an
optional unit that can be enabled depending on the design requirements. The
SerDes units consumes the flits and appropriately converts it into outgoing flit size.
In addition to manipulating the data packets, the SerDes also handles the credit
system, by serializing or deserializing the credit units.

The flit eventually reaches the destination router where a similar router arbitra-
tion is performed before being transmitted to the destination network interface. The
destination network interface finally forms the message from the flits before queuing
it to the destination cache controller.

2.4.6 Area, Power and Energy Model

Frameworks like Orion2.0 [18] and DSENT [27, 33] provide models for the area and
power for the various building blocks of a NoC router and links. Garnet integrates
DSENT as an external tool to report area, power and energy (which depends on
activity) at the end of the simulation.

2.5 NoC RTL Generators

In addition to C++ simulators like Garnet, described above, there also exist various
NoC RTL generators provided by commercial vendors and academic researchers
for plug-and-play into CMPs and/or MPSoCs. These generators use a library
of modularized components to build routers with varying number of ports, data
widths, and buffer depths. Some of these provide application-specific synthesis
for heterogeneous SoCs, while some generate homogeneous NoCs for multicores
with different topology and routing algorithms. Modeling NoC details in RTL and
using Cadence/Synopsys/MentorGraphics tools for RTL simulation gives the most
accurate network implementation, and the most cycle-accurate timing information,
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Table 2.3 State of the art
network-on-chip RTL
generators

Generator Language Target

FlexNoC [5] Verilog ASIC

Basejump [36] Verilog ASIC

OpenPiton [7] Verilog ASIC

PyOCN [34] PyMTL ASIC

OpenSMART [23] BSV ASIC

CONNECT [30] BSV FPGA

OpenSoC [14] Chisel ASIC

Ratatoskr [17] VHDL ASIC

NoCTegra [35] VHDL FPGA

and area/power estimate. The NoC RTL serves as both a model as well as the
final design and is a common design-space exploration methodology in industry.
Table 2.3 lists some of the state-of-the-art NoC RTL generators in use today.

2.6 Conclusion

In this chapter, we presented details on modeling and simulating modern networks-
on-chip—both analytically and in a cycle-accurate manner. Specifically, we
described details of the NoC modeling within Garnet, the NoC simulator within
gem5, that can model both homogeneous and heterogeneous systems. While the
focus of this chapter was on electrical interconnects, the simulation can be extended
to also model emerging interconnect technologies like photonics and wireless by
changing the link latencies, bandwidths, and arbitration policies.
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Chapter 3
Energy-Efficient Networks-on-Chip
Architectures: Design and Run-Time
Optimization

Sumit K. Mandal, Anish Krishnakumar, and Umit Y. Ogras

3.1 Introduction

Diminishing instruction-level parallelism (ILP) and power wall led to the introduc-
tion of multicore NoC architectures more than a decade ago and fueled their growth
to date [20, 44]. In turn, the growing number of cores has continuously increased
the importance of efficient data movement between cores and memory. One can
view the communication cost as a “necessary overhead” incurred to move data
both within a chip or across multiple chips. Thus, we can evaluate the efficiency
of communication architectures as a function of their performance, measured in
terms of latency and throughput, versus their cost, measured by their contribution
to power and energy consumption. Besides facilitating the design process through
reuse and regularity, networks-on-chip architectures have proven their effectiveness
with respect to this efficiency metric and become the mainstream communication
fabric choice for multicore architectures [81, 93].

The transition from single core to multicore architectures played a pivotal role in
satisfying the continuous demand for higher processing power. However, homo-
geneous multicore architectures have also reached their limits to exploit thread-
and data-level parallelism. General-purpose cores facilitate programmability, but
their flexibility comes at the expense of energy-efficiency, which is orders of
magnitude lower than special-purpose processors, such as video processors and
hardware accelerators. Therefore, the heterogeneity of cores increases together
with their number to drive the processing power and energy-efficiency [52]. In
turn, the growing heterogeneity continues to increase the requirements on the
communication architectures. On the one hand, communication latency should be
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in the same order as, or ideally lower than, the processing times of special-purpose
processors, which could be in the order of nanoseconds. On the other hand, the
power consumption overhead should scale down to match those of the special-
purpose processors. Otherwise, the communication cost can undermine the benefits
of heterogeneous architectures. Hence, the NoCs continue to play a pivotal role in
developing processing systems with higher performance and energy-efficiency.

NoC architectures are designed to meet the performance requirements, such
as latency, throughput, and quality-of-service (QoS), while minimizing their area,
power, and energy overhead. NoCs achieve a higher energy-efficiency than bus and
point-to-point communication architectures [56]. The exact contribution of the NoC
architecture to the total power consumption is a function of many design parameters,
such as the number and types of processing cores, communication bandwidth,
and technology. While there is no public data for commercial designs, published
academic work shows that NoC power consumption amounts to 18%–36% of the
total chip power, as shown in Fig. 3.1. Ghosh et al. [34], Huang et al. [43], and Li
et al. [58] report absolute values, while Taylor et al. [94], Kim et al. [49], Mukherjee
et al. [69], Hoskote et al. [39], Salihundam et al. [89], Fallin et al. [29], Sodani
et al. [93], and Adhinaryanan et al. [3] report the percentage power consumption,
which can be useful references for future work.

This chapter focuses on the design and run-time approaches developed to
optimize the energy-efficiency of NoC architectures. Design-time approaches of
NoCs include optimization in router architecture, routing technique, switching
technique, and NoC architecture optimization, as detailed in Sect. 3.2. For example,
three-dimensional integrated circuits (3D ICs) have proved several advantages over
planar ICs in terms of flexibility in floorplanning, improved packaging density, and
reduced power consumption [30]. 3D NoCs were proposed to provide a scalable
interconnect solution to 3D ICs. Several energy-efficient design methodologies
for 3D NoCs have been proposed. Long-range communications are usually a
bottleneck for electrical NoCs. Wireless NoCs address the issue by providing
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energy-efficient long-range communications. Multiple researchers explored various
energy-efficient design techniques for wireless NoCs. Some of the techniques utilize
the advantages of both wired and wireless communication [1, 25]. Optical NoCs
provide high bandwidth density and the power consumption of these NoCs do
not depend on the distance between the source and destination [38]. Therefore,
optical NoCs have emerged as a promising alternative to electrical NoCs. Recently,
researchers also proposed optical NoCs for systems with GPUs [6, 111]. Unlike
design-time approaches, run-time techniques are applied dynamically in real-time,
as discussed in Sect. 3.3. Traditionally, these techniques were limited to congestion-
and workload-aware routing as opposed to static routing choices. With the advances
in dynamic voltage and frequency scaling, researchers proposed techniques to
manage the power states of the NoCs components. For example, the voltage of
the whole NoC, as well as last-level cache, can be controlled to save power when
performance targets are relaxed [15].

Both academic and industrial work demonstrated the effectiveness of NoCs in
chip multiprocessors, embedded systems, and high-performance computing. Thriv-
ing deep neural network (DNN) and heterogeneous computing domains indicate that
the need for faster and more energy-efficient on-chip communication will continue
to grow. Therefore, we conclude this chapter by reviewing the recent use of NoCs
in DNN hardware implementations. We note that a complete review of energy-
efficient NoC design is beyond the scope of a single chapter. For example, a class
of techniques also considered the mapping of tasks to resources to design NoC,
both using static and dynamic techniques [41, 87]. This chapter focuses only on
NoC architecture design and run-time management techniques. Interested readers
can refer to NoC books and comprehensive surveys for other aspects [21, 27, 45, 64],
and the remaining chapters of this book for NoC security review.

The rest of this chapter is organized as follows. Section 3.2 reviews the design
techniques proposed for energy-efficient NoCs. This section discusses traditional
NoCs with wired interconnects, as well as more recent developments on 3D,
wireless, and optical NoCs. Section 3.3 presents the run-time techniques that
manage the routing decisions and power states of the major NoC components.
Section 3.4 analyzes the emerging workload trends and their implications to NoC
design. Finally, Sect. 3.5 concludes this chapter and discusses new directions.

3.2 Design Strategies for Energy-Efficient NoCs

The most direct and effective approach towards energy-efficient NoCs is designing
an energy-aware architecture that can enable further savings through dynamic
management. This section presents static design-time techniques, while Sect. 3.3
discusses run-time techniques that work on top of the static architecture. Energy-
aware design starts with the fundamental building blocks, i.e., router architecture,
reviewed in Sect. 3.2.1. Section 3.2.2 presents energy-efficient NoC architectures
and routing techniques that are built by these routers. As the NoC sizes continue to
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increase, the performance of traditional 2D designs scale poorly. Therefore, 3D NoC
designs have emerged to enable continued scaling, as detailed in Sect. 3.2.3. Another
promising and complementary approach to energy-efficient long-range communica-
tion is wireless NoCs. Section 3.2.4 reviews recent techniques that combine wired
and on-chip wireless communication. Similarly, Sect. 3.2.5 discusses the feasibility
and potential of optical on-chip communication to provide throughput and latency
significantly larger than electrical networks. Finally, researchers recognized the
critical impact of application mapping and scheduling on the system performance
and energy-efficiency in both homogeneous and heterogeneous SoCs.

3.2.1 NoC Router Design

Router design has a crucial impact on power consumption and performance since
they are the fundamental building blocks of NoCs. On the one hand, fast and simple
router architectures are preferred to achieve low latency (in terms of clock cycles)
and small area overhead. On the other hand, deeper pipelines and more buffering
space are needed for higher clock frequencies and throughput [21, 27]. Similarly,
simpler crossbar and arbitration, such as round-robin, reduce the area-power over-
head, but they can also severely limit the performance. As a result, the optimal router
design must provide an intricate balance between power, performance, energy, and
area.

Many techniques have been proposed to improve the router energy-efficiency
since the introduction of NoCs [2, 64]. For example, Wang et al. explore the
bottlenecks that contribute to power dissipation in interconnection networks [98].
The analysis prompts the authors to devise power-efficient microarchitecture tech-
niques such as a cut-through crossbar, a segmented crossbar, and a write-through
buffer. These techniques achieve an NoC power reduction of up to 44.9% and
37.9% with no performance overheads for both synthetic and real application traces,
respectively. One of the early key design insights is exploiting application- or
domain-specific information to customize the router architecture [42]. Hu et al.
use this idea to allocate a given amount of buffer area non-uniformly across the
NoC to maximize the performance [42]. Similarly, router architecture with shared
buffers can improve both the area utilization and throughput in [84]. Decreasing the
router pipeline delay has been an important design consideration. The basic idea
is to bypass certain router pipeline stages or the whole router whenever possible,
i.e., when there is no contention and packets already waiting in the queue [51, 73].
Towards achieving a single-cycle router latency, Kumar et al. [54] present a
non-speculative single-cycle NoC router pipeline targeting 3.6 GHz frequency.
A customized mesh NoC that exploits application-specific behavior to introduce
single-cycle links between a source and destination is introduced in [14]. These
clockless repeater links traverse up to 8 mm in a single cycle at a clock frequency
of 2 GHz in a 45 nm process node. The application-specific link configuration intro-
duces complexities in reconfiguring the routers when applications are frequently
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preempted during execution by the system scheduler. A 2-dimensional mesh NoC
coprocessor is designed for data movement in an Epiphany 64-core superscalar
processor architecture [96]. Each router uses three communication channels for
read requests, on-chip writes, and off-chip write transactions to improve the NoC
throughput. Recently, Arm has introduced a scalable low latency, one cycle per-
hop, high bandwidth network-on-chip architecture that supports coherency [81].
The NoC can scale from 1×2 mesh to 8×8 mesh to support edge devices and high-
performance computing systems. More recent studies focus on non-conventional
technologies discussed in Sect. 3.2.3–3.2.5.

3.2.2 NoC Architecture and Packet Routing

The interconnection of the routers defines the NoC architecture. Most of the early
work and industrial solutions employ a 2D mesh topology due to its regular-
ity [67, 81, 93]. A regular layout simplifies the floorplan and wiring, while providing
predictable delays between the routers. Consequently, regular NoC topologies
facilitate energy-efficient design as well as simplified testing and validation [44, 64].
However, both the average and worst-case latency scale poorly with the network
size. Since the NoC plays a crucial role in determining the latency, energy, and
power, numerous studies evaluate other topologies with smaller diameter, such as
hypercube, folded-torus, and fat tree [2, 27]. For example, an extensive power-
performance evaluation of mesh and torus topologies on power and performance
is presented in [67]. NoC topology can be optimized for a given application domain
by either synthesizing a custom topology [72, 82] or altering a regular topology,
such as a 2D mesh [73]. Kilo-NoC, a heterogeneous NoC architecture in which
only a selected number of routers support QoS requirements is presented in [37].
The heterogeneity in router architecture enables 45% and 29% savings in area and
power when compared to a homogeneous NoC that supports QoS in all routers.

Switching, or flow control, techniques determine how the packets are transmitted
from their sources to destinations [21, 27, 44]. Due to the large buffer requirements
of the packet and virtual cut-through switching techniques, wormhole routing has
been a popular choice for NoCs [64]. Virtual channels have commonly been added to
address head-of-line blocking and handling multiple traffic classes while avoiding
deadlocks. Circuit switching have also been employed to take advantage of high-
volume data transfer over persistent connections [60]. While the early work focused
on buffered NoCs, bufferless solutions are later employed to minimize the buffer
requirements, hence the NoC area and static power [24, 65]. Bufferless NoCs do
not store the packets in the intermediate routers. Routers try to forward the packets
towards their destinations and then deflect them if their preferred direction is not
available [44]. Studies show that bufferless NoC can perform better at low traffic
loads, but they suffer from traffic congestion as the traffic load increases [65]. The
advantages of buffered and bufferless techniques are combined in [29] to achieve
as much as 16% higher energy-efficiency than the state-of-the-art buffered routers.
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Intel Xeon-Phi processors [93] use priority-aware bufferless NoCs, which can
provide predictable latency within the network [63]. The NoC uses fewer buffers,
which in turn helps to reduce energy consumption.

Routing strategies play a crucial role in determining the area, performance,
power, and energy of an NoC [21, 27]. For a given NoC topology and switching
technique, routing algorithms determine the path taken by each packet while
traveling to their destination. The choice of the routing algorithm is important
since the length of the path and traffic congestion have a significant impact
on both power and performance, while their complexity impacts the area [64].
Specifically, routing techniques influence: (1) end-to-end latency, (2) selection of
routing paths, (3) livelock and deadlock avoidance, (4) fault-tolerance, and (5)
starvation avoidance. Routing techniques are broadly classified into deterministic
and adaptive routing techniques. Deterministic algorithms require fewer resources
and are simpler than their adaptive counterpart. Therefore, dimension-ordered
routing, such as XY routing, and other deterministic algorithms are used more
commonly in industrial and academic designs [9, 93]. At the same time, run-time
adaptation to the workload can provide significant benefits [40], as discussed in
Sect. 3.3.1. Since the traditional routing techniques are covered in detail in the
literature, we refer the reader to existing surveys and books on this topic for a
complete taxonomy and review [2, 21, 27, 45, 75].

3.2.3 3D NoC Architectures

As the number of transistors on a single chip increases, three-dimensional integrated
circuits (3D ICs) provide more floorplanning flexibility than traditional planar
designs [30]. 3D ICs also provide more packaging density since they are not limited
to two dimensions [23]. Moreover, 3D ICs can reduce power consumption since
they use shorter wire lengths than planar ICs [83]. Since they have emerged as
a new technology paradigm due to these advantages, 3D NoCs are employed to
interconnect the cores in 3D IC.

Feero et al. [30] present a detailed performance evaluation of 3D NoCs and
compare them to traditional 2D NoCs. This work considers 3D mesh, 3D stacked
mesh, ciliated 3D mesh, 3D butterfly tree (BFT), and 3D fat-tree topologies. The
experimental evaluations show that 3D mesh, ciliated 3D mesh, and stacked mesh
consume 42%, 47%, 33% less energy per packet than 2D mesh, respectively,
Authors also show that both 3D fat-tree and 3D BFT consume 49% less energy
per packet than their 2D counterpart. Similar to the dimension-ordered routing
techniques in 2D NoCs, an X–Y–Z static routing can be applied to 3D NoC.
For example, Ahmed et al. [4] present a 3D NoC (OASIS-NoC) with wormhole
switching and 3-stage router pipeline: routing calculation, switch allocation, and
switch traversal. Evaluations using synthetic traffic show that a 2×2×4 3D OASIS-
NoC reduces 22% delay on average compared to a 4×4 2D OASIS-NOC. Since a
fixed design may not be suitable for different applications, authors in [70] propose
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a synthesis approach to construct a power-efficient 3D NoC for a given application.
Experiments on real applications show that the NoC topologies synthesized by the
proposed methodology reduce power by 38% on average. Similarly, a floorplan-
aware application-specific 3D NoC synthesis algorithm is proposed in [109]. The
authors construct an irregular 3D NoC architecture that meets specific objectives for
a given application in this work. The proposed algorithm’s input is a directed graph,
where each node represents a core, and the edges represent the traffic flow between
the cores. A multi-commodity flow (MCF) problem is formulated to optimize
multiple objectives. The objectives include network power, average network latency
and number of through silicon vias (TSV). Authors incorporate simulated allocation
(SAL) to solve the MCF problem. The proposed methodology enables 22% power
saving with respect to [70] for a set of synthetic benchmarks [101]. A summary
of different 3D NoC technologies, their advantages, and drawbacks can be found
in [83].

Several research teams have recently applied machine-learning techniques to
design 3D NoCs [22, 46]. For example, Das et al. [22] present a monolithic 3D-
enabled energy-efficient NoC. Smaller dimensions of monolithic inter-tier vias
provide the scope of high-density integration with reduced wire length compared
to TSVs. Experimental evaluations show that the proposed methodology enables
32% lower energy-delay-product (EDP) than mesh-based interconnect and 28%
lower EDP than TSV-based interconnect. TSV-based 3D NoCs are prone to failure.
Therefore, a Near Field Inductive Coupling (NFIC)-based 3D NoC is proposed
in [36]. In this work, convex optimization is used to co-optimize latency, power,
and area of the 3D NoC. Experimental evaluation on real benchmarks shows that
the proposed NFIC-based 3D NoC is 34.5% more energy-efficient than TSV-based
3D NoC.

Joardar et al. [46] propose a 3D NoC for heterogeneous many-core systems. The
authors employ a machine learning-based multi-objective optimization (MOO) to
construct 3D NoC, which jointly optimizes latency, throughput, temperature, and
energy. The proposed algorithm determines the optimal placement of the CPUs,
GPUs, LLCs, and planar links. The authors show that the proposed technique
enables 9.6% better EDP than a thermally-optimized 3D NoC design.

3.2.4 Wireless NoC Architectures

The delay and energy-consumption of global on-chip interconnects do not scale
down with the gate delay. Wireless NoCs (WiNoCs) emerged to provide energy-
efficient long-range communication and extra bandwidth [31]. WiNoCs consist
of small on-chip antennas and transceivers that enable efficient communication
between remote core within the same chip or package. For example, Ganguly
et al. present design methodologies and technology required for scalable WiNoC
architectures [32]. The authors perform an extensive evaluation of wireless NoC
for various traffic patterns to show the superiority of WiNoC over the existing
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alternatives. WiNoC consumes 133× less energy per packet than a wired mesh
architecture for a 512-core system. Moreover, the authors demonstrate that WiNoC
also significantly improves energy consumption compared to 3D NoCs.

A mix of wired links (for short-range) and wireless links (for long-range
communication) can combine the benefits of wired and wireless NoCs [1, 25].
Deb et al. [25] divide the target NoC into smaller networks (subnets) with a
relatively smaller number of cores connected through wired NoC architectures.
Each subnet is connected through wired or wireless links via a centrally located
hub. The authors optimize the placement of the wireless interface to maximize
performance. The proposed methodology provides up to 8× improvement in energy
per bandwidth for a system size of 512 compared to conventional wired mesh
NoC. A broadcast-oriented dual-plane wireless NoC architecture, OrthoNoC, is
proposed in [1]. Unlike existing hybrid NoCs, OrthoNoC uses two independent
network planes: wired and wireless. The wireless plane is customized to perform
efficient broadcast, whereas the wired plane is customized to achieve efficient
unicast communication. Communication between two planes is performed through
network interfaces instead of routers. Experimental evaluation with different traffic
patterns shows that OrthoNoC helps to reduce energy consumption significantly
compared to other alternatives.

Given the wide range of target applications, wireless NoC need to adapt their
performance as a function of the workload. DiTomaso et al. [26] propose an
adaptive wireless NoC for chip multiprocessors. The proposed design increases
the network throughput by dynamically reassigning the channels depending on
bandwidth requirements from different cores. The authors show that the proposed
methodology is scalable to a system with 256 cores and provides 21% energy
improvement compared to a state-of-the-art baseline. A more detailed discussion
about various wireless NoC design methodologies can be found in [97].

3.2.5 Optical NoC Architectures

Optical on-chip communication is a promising alternative to wired interconnects
since it can provide high bandwidth density using wavelength division multiplexing.
Furthermore, the power consumption of optical NoCs is distance independent [38].
Hence, optical NoCs based on nanophotonics have emerged as an energy-efficient
alternative to traditional NoCs.

Authors in [90] show that the integration of photonic NoC can decrease the power
consumption significantly compared to electrical NoCs. An optical ring bus NoC
architecture proposed in [79] provides 10× improvement in power consumption
than an electrical bus-based communication architecture. Vantrease et al. [95]
present a 3D many-core architecture, called Corona, which uses nanophotonic
communication for both inter-core and off-stack communication. Experimental
evaluations show that the power consumption of the proposed NoC can be signifi-
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cantly lower than that of electrical mesh NoC for applications with higher memory
demands.

It is important to note that static power contributes a significant portion of the
total power in nanophotonics communication [8]. To address this issue, a hybrid
NoC architecture with electrical and nanophotonics communication is proposed
in [78]. The authors use electrical NoCs for short, local communications and
nanophotonics for long communications. Experimental evaluation on synthetic
workload shows that the proposed NoC reduces energy consumption over 34%
over a purely optical NoC similar to Corona [95]. Another hybrid photonic NoC
is proposed in [5]. The authors use a photonic ring to communicate between
processor located far apart and memory cores in this work. Other communications
are performed through electrical links. The proposed technique results in 13×
reduction in power consumption with respect to electrical 2D mesh and torus NoC
architectures.

The aforementioned optical NoCs mainly focus on the topology and routing
algorithm of the NoC. A bufferless photonic NoC (BLOCON) is proposed in [47].
BLOCON incorporates wormhole routing and does not require virtual channels at
the output. The authors also present a scheduling algorithm to resolve contention
at the output. BLOCON consumes up to 4× less energy compared to 2D mesh for
synthetic traffic.

Recent work has also combined multiple novel technologies to design NoCs. A
3D mesh-based optical NoC proposed in [104] takes advantage of both 3D NoC
and optical NoC. In this NoC, optical routers are placed in a single layer. The
authors show that the proposed NoC reduces 52% energy consumption compared to
2D mesh-based electrical NoC. Sikder et al. proposed an NoC architecture named
Optical-Wireless Network-on-Chip (OWN) in [92]. This proposed architecture
combines the advantages of wireless and photonics technologies. Photonics NoC is
used within a cluster and one-hop wireless interconnect is used beyond a cluster. The
authors show that OWN scales up to 1024-core chip multiprocessors. It consumes
30.6% less energy than wireless architecture.

The techniques mentioned above mainly target an SoC consisting of only CPUs.
There exist few techniques which construct optical NoC targeting GPUs [6, 111].
Ziabari et al. proposed a hybrid photonic NoC to improve the performance of the
GPUs. The proposed approach replaces L1–to–L1 transaction into a L1–to–L2 and a
L2–to–L1 transaction. Photonic components are used to perform these transactions.
Authors show that the proposed optical NoC consumes 29% less power than a
2D electrical mesh. Recently, an optical NoC for GPUs has been proposed in
[6]. In this work, the authors proposed a laser modulation scheme which reduces
static power consumption of the optical NoC. The proposed optical NoC reduces
laser power consumption by 67% compared to [111]. Overall, the photonic-silicon
integration provides the ability to design high-speed optical NoCs, which are also
highly suitable for datacenters [105]. Interested readers can find more research on
optical NoC in [7, 80].
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3.3 Run-Time Power and Energy Management Techniques

The abundance of computing resources in multicore architectures enable executing
many complex applications in parallel. NoC traffic exhibits widely varying behavior
both as a function of these applications and nontrivial interactions among them.
For instance, motion tracking applications are characterized by periodic processing
of several pixels representing each image frame. As an essential shared resource
among all applications, NoCs can become the possible cause of their performance
degradation. Design-time approaches rely excessively on the expected behavior,
which can deviate significantly from the actual state observed during execution.
First, it is infeasible to predict the launch and exit times of different applications
in a concurrent system. Second, each application itself may exhibit time-varying
behavior and uncertainties in its inputs. Therefore, run-time techniques are crucial
to allow adaptive and dynamic management and improve the energy-efficiency of
the NoC. This section reviews run-time techniques that address adaptive routing,
congestion and flow control, and dynamic voltage-frequency scaling in electrical,
3D, wireless, and optical NoCs.

3.3.1 Adaptive Routing Approaches

Routing algorithms can be predominantly classified into oblivious and adaptive
techniques. In oblivious routing algorithms, the routing path does not depend on any
run-time condition, such as congestion. Deterministic algorithms lead to simpler
and faster logic, but they result in poor performance under heavy traffic load, as
discussed in Sect. 3.2.2. Adaptive algorithms address this limitation by routing
packets through different paths as a function of the dynamic traffic conditions. The
probability of congestion is alleviated by using performance counters to provide
alternate routing paths [21, 27, 75].

NoCs have traditionally employed partial adaptive routing techniques since fully
adaptive routing can cause deadlock and out-of-order packet delivery, besides
increasing the hardware cost significantly [21, 45, 64]. The seminal work by
Glass et al. [35] lay the foundation of partial adaptive routing by defining how
certain turns can be avoided to break cyclic dependencies and avoid deadlocks.
The degree of adaptivity is improved by reducing the locations at which turns
are restricted, thereby improving the average communication latency for the same
congestion scenarios [18]. This foundation enabled a myriad of deadlock-free partial
adaptive routing algorithms tailored for NoCs [2]. However, the complexity of
partial adaptive routing algorithms is still higher than widely used deterministic
algorithms, such as XY routing. Hence, they can have a lower performance at low
traffic loads than deterministic algorithms. Adaptive algorithms, such as DyAD [40],
combine the advantages of two approaches by using deterministic routing during
light loads and switching to adaptive routing when the NoC experiences congestion.
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Another class of hybrid approaches combines circuit switching and packet switching
techniques. While circuit switching offers lower latency, packet switching is much
more efficient in utilizing the resources in the NoC. Typically, NoC traffic is
generated by read/write requests from applications, which is harder to predict at
run-time. But a request is always followed by a response. This behavior is exploited
in [61], where the technique uses packet switching for the request traffic and
uses circuit switching by setting up the route path in anticipation of the response
traffic to provide lower latency. This technique improves the performance of a
64-core chip multiprocessor by 15% compared to conventional packet-switched
mesh NoCs. Similarly, Liu et al. [60] present an interesting analysis to determine
the cross-over point in the traffic flow below which packet switching offers lower
latency. The key challenges in hybrid architectures can be classified into design-time
and run-time challenges. Design-time challenges include identifying the optimal
distribution of NoC activity between the two techniques, and run-time challenges
include determining the best point to switch between the different techniques.

3D NoCs also benefit from run-time routing techniques to avoid degradation
under congestion. For example, DyXYZ [28] algorithm uses information from
input buffers of neighboring routers as a measure of congestion and performs
fully adaptive routing for 3D NoCs. This technique uses virtual channels for all
three dimensions, eliminates deadlocks, and achieves better latency under high
traffic injection. Considering routers beyond the neighbors can provide better
congestion estimation and higher performance, but it also increases the algorithm
and implementation complexity. Technological restrictions limit the bandwidth on
the vertical links of 3D NoCs, which are constructed by through silicon vias (TSVs).
TSVs involve a larger area overhead, higher design cost and are also prone to
defects and failures at run-time. By limiting non-minimal routing in the vertical
direction, a deadlock-aware routing strategy that achieves 50% higher throughputs
than adaptive-XYZ routing is presented in [110]. The area overhead of TSVs
inspired the design of partially connected 3D NoCs. To address the reliability
concerns, a resilient routing algorithm that guarantees packet delivery with at least
one healthy vertical link on the east-most column is presented in [88]. Rout3D
relaxes the above requirement by requiring at least one functional vertical link
anywhere in the network[13]. Adaptive routing techniques play a larger role in 3D
NoCs since they address the crucial reliability aspect, apart from improving latency
and throughput.

Wireless NoCs leverage wireless links to facilitate long-range communication in
the NoC. However, such architectures face congestion threats as several packets
can swamp the wireless router. Therefore, adaptive routing mechanisms play a
crucial role in wireless NoCs in alleviating congestion, which is more probable
due to wireless links. A routing technique that considers the input buffer utilization
to calculate the routing path is presented in [99]. The authors also ensure that
the routing algorithm is deadlock-free by including virtual channels in the archi-
tecture. The CPCA algorithm partitions the wireless NoC into sub-networks and
transmits congestion information of the wireless router along paths within the sub-
networks [77]. The traffic information enables a near-optimal selection of wired and
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wireless networks for packet routing. CPCA achieves up to 25% improvement in
throughput over existing routing techniques for different traffic patterns.

Silicon photonic technologies, hence Optical NoCs, are highly sensitive to
temperature since thermo-optic coupling causes shifts in optical wavelengths and
leads to signal loss. Hence, maintaining the temperature within the allowable limits
is of paramount importance in optical interconnection networks. Since adaptive
routing techniques can acclimatize to dynamic variations, they are highly suitable
for developing thermal-aware routing algorithms. Aurora enables a reliable optical
NoC by utilizing a cross-layer approach that spans across architecture, operating
system, and device [59]. Specifically, it routes packets through colder regions of
the chip towards the destination. The multi-layer approach improves the bit error
rate by 96% and achieves 37% better power efficiency over traditional optical
NoCs. A Q-learning technique that incorporates the temperature gradient of the
chip presents a thermal-aware adaptive routing algorithm for optical NoCs [106].
The approach leverages reinforcement learning to predict route paths that cause
minimal thermally-induced optical power loss. The authors report up to 36% and
19% reduction in optical power loss for synthetic and real applications, respectively.
Hybrid photonic-electric NoC is composed of both electrical and photonic intercon-
nect components. The availability of two modalities of packet routing and on-chip
thermal conditions are exploited by TAFT, a thermal-aware fault-tolerating adaptive
routing technique for hybrid NoCs [102]. TAFT achieves a bit error rate of 10−11

and an improved power efficiency of 30% compared to traditionally designed hybrid
NoCs. Adaptive routing plays a pivotal role in designing reliable and power-efficient
optical NoCs, as comprehensively discussed in this section.

3.3.2 Run-Time Flow Control and Source Throttling
Techniques

Adaptive routing techniques use non-minimal routes to alleviate congestion by
efficiently distributing the packets in the network. However, routing alone does not
address the root cause of the problem if the traffic sources can continue injecting
packets regardless of the congestion level. In fact, even a subset of active cores can
congest the entire network leading to increased latency and power consumption.
Therefore, congestion control mechanisms (a.k.a. flow control) manage the traffic
sources and traffic congestion by regulating packet injection into the network [74].
For example, all of a subset of the cores can be throttled until the congestion
clears. Even if the packets are delayed temporarily during this time, the overall
performance and energy-efficiency improves since the messages experience much
shorter queuing delays overall [11].

In the source throttling mechanism, a perennial challenge is to effectively
evaluate the congestion status (local congestion vs. global congestion) in the NoC
and communicate it to all routers with low latency and energy. A predictive closed-
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loop flow control technique for 2D mesh NoCs is presented in [74]. The proposed
approach uses router and traffic source models to control packet injection into the
network and avoid congestion. This source throttling mechanism incurs low over-
head since it utilizes information only from the neighboring routers and achieves
better average latency for synthetic and real benchmarks. However, excessive source
throttling leads to starvation in some sources and thereby, reduced throughput.
Additionally, throttling latency-sensitive applications can lead to adverse effects.
Chang et al. [11] present an application-aware throttling mechanism, called HAT,
that adjusts the throttling rate based on the load in the network. The energy-
efficiency improves by up to 14.7% as packets move through the NoC with
lower latency as a function of reduced congestion. In [100], the authors present
a throttling technique with bounded wait times for packets in the source queues for
the Hoplite NoC, making it highly suitable for real-time applications. Implementing
the proposed NoC on FPGA demonstrates that it conforms to the upper bounds for
synthetic and real applications. A reinforcement learning technique enables each
router to learn its throttling rate by using global starvation indicators and achieve
fairness across all sources [24].

The smaller footprint and diversified thermal conductance of components of 3D
NoCs exacerbate the need for run-time thermal management techniques. To this end,
Chen et al. [16] proposed a proactive thermal management technique that throttles
the sources using temperature sensing and prediction models. Aggressive throttling
adversely impacts the throughput of NoC architectures. The power density in 3D
NoCs is higher than their 2D counterparts due to the vertical stacking of dies,
making them more prone to temperature variations. Considering the heat transfer
characteristics in a 3D NoC, the throttling scheme proposed in [12] reduces average
throttling time by 70% and the throttling ratio by around 9–15% under network
congestion.

3.3.3 Voltage-Frequency Scaling

As the size and complexity of NoC architectures increase to handle large-sized
multicore architectures, they contribute to a substantial portion of the total chip
power and energy, as shown in Fig. 3.1. In some cases, the energy to move data
in the chip has even exceeded the energy spent for computations [15, 58]. Dynamic
voltage and frequency scaling (DVFS) is a popular and effective technique to reduce
the dynamic power consumption. DVFS has shown extensive benefits in improving
the scalability of NoC architectures, as we comprehensively discuss in this section.

The benefits of global DVFS diminish with growing NoC sizes, and hence
fine-grained power management becomes crucial and gains importance [33]. The
globally asynchronous locally synchronous (GALS) design paradigm enables local
clock generation for smaller logic in the design, making it highly suitable to be inte-
grated with fine-grained DVFS control [10]. A larger number of voltage-frequency
islands (VFI) enable a higher degree of freedom, but it also increases the design
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cost and area overhead. Therefore, it is essential to determine the optimal number
of voltage-frequency domains and minimize energy consumption [76]. The authors
show that optimal VFI design followed by a run-time energy management approach
can minimize energy consumption while meeting the performance goals. On the
contrary, a bottom-up approach is proposed in [103], where communicating threads
seek voltage and frequency requirements based on their run-time characteristics
by voting. The votes are sent to a local DVFS controller that controls the voltage
and frequency levels for a subset of routers in the network. As asserted in prior
sections, the NoC traffic is a function of the applications. The traffic also depends
on the type of computing resources. For instance, CPU traffic typically benefits from
low latency in the NoC, and GPU traffic prefers high bandwidth. An adaptive and
reconfigurable design for an integrated CPU-GPU system that optimizes for both
types of traffic is presented in BiNoCHS [66]. It provides a high-frequency, low
hop-count mode suitable for CPU traffic and a higher virtual channel count with
more routers and links suitable for GPU traffic. The CPU performance improves by
28% with predominantly CPU-type traffic, whereas the CPU and GPU performance
improve by 57% and 34% under congested conditions.

Growing NoC sizes also lead to an increased number of parameters to be
monitored for optimal DVFS performance. This challenge inspired the development
of a reinforcement learning (RL) based DVFS technique, in which a router learns
to choose the optimal voltage and frequency state based on interactions with system
parameters [107]. Compared to a baseline implementation, developing optimal
router control policies using RL achieve 26% lower power consumption along
with 7% improved performance for applications in the PARSEC benchmark suite.
Reinforcement learning suffers from excessive time overheads to learn the optimal
decisions [107], rendering the convergence time problem a key challenge for future
work.

The emergence of 3D NoCs has enabled smaller chip footprints compared to
conventional 2D mesh NoCs. Moreover, compact chips and newer technology
increase the power density and lead to thermal hotspots. A VFI technique that
uses performance and thermal profiles to alleviate thermal hotspots and reduce
performance degradation is presented in [57]. The worst-case temperature is reduced
by 15.2% with the deployment of VFI based partitioning. Aging in multicore circuits
leads to degradation in supply voltage, thereby causing gradual circuit slowdown.
ARTEMIS presents an aging-aware voltage scaling technique for 3D NoC based
multiprocessor systems to reduce the stress on the power delivery network [85].
Such techniques play a crucial role in improving circuit reliability and lifetime.

The DVFS strategies also extend to wireless NoCs in [71], in which link
utilization and bandwidth are estimated to scale up and down the voltage and
frequency levels. In [50], a machine learning-based technique exploits the variations
in the workloads to determine the optimal voltage-frequency clusters and levels.
This approach achieves 38.9% lower energy-delay product (EDP) than non-VFI
based wireless NoCs for the evaluated benchmarks. By utilizing a model to estimate
the router utilization, the technique presented in [68] scales the supply voltage of
routers and wireless interfaces to improve the power consumption. With negligible
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performance and area overheads, the voltage scaling approach reduces the power
consumption by 56% in the network and up to 62.5% in the wireless interfaces.

The study of energy-efficient algorithms for optical NoCs is in nascent
stages [80]. However, without loss of generality, the core ideas of the techniques
proposed for electrical, 3D, and wireless NoCs apply to optical NoCs. PROBE,
proposed in [108], reduces the power of lasers in an optical NoC by reducing the
voltage as a function of expected bandwidth. The proposed approach saves 68%
optical power with 12% performance overheads. While the power overhead of
voltage regulators is within 3%, the performance overheads are significant, opening
up opportunities for energy-efficient techniques.

3.4 NoCs for Deep Neural Networks

Deep neural networks (DNNs) have recently shown strong potential in many fields
ranging from autonomous driving to edge computing [53, 62, 86]. Figure 3.2 shows
that different DNNs proposed in recent years consist of more than 50 million
trainable parameters. The training and inference processes of DNNs consist of
operations distributed across multiple layers. These operations involve a significant
amount of data communication between processing element and memory. Commu-
nication overhead itself contributes up to 90% of total latency and 20–40% of total
energy for DNN hardware for a wide range of DNNs [53]. Therefore, an energy-
efficient communication strategy is needed to ensure peak performance for the DNN
hardware.

Stringent performance and energy-efficiency requirements of target applica-
tions motivate hardware implementations for DNNs and CNNs [53, 91]. There-
fore, energy-efficient NoCs for DNN/CNN hardware have attracted attention. For
instance, Shafiee et al. [91] present an NoC with c-mesh topology for DNN
hardware. The authors consider in-memory computing (IMC)-based DNN, where
the computation is distributed in multiple tiles connected by an NoC with c-mesh
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topology. A recent work proposes a programmable NoC with fat-tree topology
to provide flexibility in NoC architecture [55]. The programmability helps to
incorporate variations in convolutions, recurrent layers, irregular filter sizes, and
sparsity of different DNNs. Chen et al. [17] also propose a flexible hierarchical NoC
with mesh topology for DNN hardware. The proposed architecture efficiently reuses
data for different data-flow patterns. However, these architectures do not target to
reduce NoC energy specifically. An energy-efficient mesh NoC for DNN hardware
is presented in [53]. The authors first propose a multi-objective optimization-based
technique to determine the size of the mesh NoC for a given DNN. Then, they
design a scheduling technique to optimally schedule the output activations for
different layers of a given DNN. These two optimizations together result in a 74%
reduction in NoC energy on average compared to other DNN hardware previously
proposed. A reconfigurable NoC architecture is proposed in [62] for DNN hardware
to minimize the communication energy. In this work, the links between the routers
are customized for different DNNs. As a result, the technique achieves minimum
possible communication latency and reduces power consumption by up to 47%
compared to a regular mesh interconnect.

While the studies discussed above target hardware accelerators for DNNs, a
different line of work considers efficient NoCs for manycore systems to facilitate
the computations related to DNNs [19]. In this work, the authors propose a hetero-
geneous system with hybrid NoC to accelerate the DNN training time. The hybrid
NoC is a combination of wired and wireless links which facilitates communication
between CPU and GPU. Authors show that the proposed architecture provides up to
30% improvement in EDP compared to mesh NoC with long-range links.

3.5 Conclusion

This chapter presented an overview of energy-efficient NoC architectures, as well
as design and run-time optimization techniques. As the computing systems and
applications become more complex, efficient data transfer between processing
elements and memory becomes extremely important. On-chip communication
architecture must provide low latency and high throughput while minimizing
the power and energy consumption overheads. We broadly analyzed the energy-
efficient techniques into three groups: design-time strategies, run-time techniques,
and techniques incorporated in modern workload trends. We discussed various
design-time and run-time energy-efficient techniques for electrical, wireless, 3D,
and optical NoCs. Finally, this chapter discussed the communication needs of
artificial intelligence (AI) applications. The trends in network and parameter sizes
indicate that NoC architectures will continue playing an essential role in energy-
efficient communication for AI hardware.
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Design-for-Security Solutions



Chapter 4
Lightweight Encryption Using
Incremental Cryptography

Subodha Charles and Prabhat Mishra

4.1 Introduction

With the growing demand for high-performance and low-power designs, multi-core
architectures are widely used in general purpose chip multiprocessors as well as
special purpose system-on-chip (SoC) designs [2, 12, 14, 25, 26, 44]. The desired
performance improvement of multi-core architectures cannot be fully achieved by
parallelizing the applications unless an efficient interconnect is used to connect all
the heterogeneous components on the chip. Network-on-chip (NoC) has become
the standard interconnect solution [13]. Due to increasing SoC complexity, it is
crucial to develop efficient NoC fabrics [14]. The importance of the information
passing through the NoC has made it one of the focal points of security attacks.
Diguet et al. have classified the major NoC security vulnerabilities as denial-of-
service attack, extraction of secret information, and hijacking [19]. Typically, SoCs
contain several assets (e.g., encryption and authentication keys, random numbers,
configuration keys, and sensitive data) that reside in different Intellectual Property
(IP) cores [7, 21, 37]. Protecting communications between IPs, which involve asset
propagation, is a major challenge and requires additional hardware implementing
security such as on-chip encryption and authentication units. However, implemen-
tation of security features introduces area, power, and performance overhead. While
designers employ a wide variety of techniques to improve energy efficiency in NoC-
based SoCs [2, 12, 14, 25, 26, 44], security engineers have to take into account these
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non-functional and real-time constraints while designing secure architectures to
address various threats [11, 16]. The threat model used in this chapter is as follows:

Threat Model Figure 4.1 shows a typical NoC-based many-core architecture
which encrypts packets transferred between IP cores. When packets are sent through
the NoC, a router infected by a hardware Trojan can copy or re-route packets
and send to a malicious IP sitting on the same NoC to leak sensitive information.
Therefore, the threat model assumes that some of the IPs, as well as the routers,
can be malicious. The IPs that can be trusted to be non-malicious are referred to as
secure IPs. The goal is to ensure secure communication between these secure IPs.
The network interfaces (NI) that connect IPs with routers are assumed to be secure.
This assumption is valid since the NIs are used to integrate components of an SoC
and are typically built in house. A similar threat model and assumptions have been
used in previous work on NoC security, proving the validity of the model [3, 41].

Prior research on security architectures have explored trust-zones [10, 45],
lightweight encryption [43], DoS attack detection [15, 17], and side-channel anal-
ysis [27, 28, 31–33, 39]. The method outlined in this chapter utilizes incremental
encryption to encrypt packets in NoC. The proposed solution takes advantage of the
unique characteristics of NoC traffic, and as a result, it has the ability to construct a
“lighter-weight” encryption scheme without compromising the security. Incremen-
tal cryptography has been explored in areas such as software virus protection [6]
and code obfuscation [23]. The goal of using incremental encryption is to design
cryptographic algorithms that can reduce the effort of encryption/decryption by
reusing the previously encrypted/decrypted memory fetch requests/responses rather
than re-computing them from the scratch. In this framework, data is encrypted at
the NI of each secure IP core. The NI is chosen to accommodate the encryption
framework so that each packet can be secured before injecting into the NoC. Prior
research on NoC security have proposed similar architectures where the security

Fig. 4.1 NoC-based many-core architecture connecting IPs on a single SoC using a 4 × 4
Mesh topology. Each node contains an IP that connects to a router via a network interface.
Communication between two IPs (in this case, a processor IP and a memory controller) is encrypted
so that an eavesdropper cannot extract the packet content
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framework was implemented at the NI [22, 41]. Major contributions of this chapter
are as follows:

• This chapter shows that consecutive NoC packets that contain memory fetch
requests/responses differ only by a few bits while communicating between IP
cores and memory controllers in an SoC.

• A lightweight encryption scheme based on incremental cryptography is proposed
that exploits the unique NoC traffic characteristics observed above.

• The proposed encryption scheme is shown to be resilient against existing NoC
attacks, and it significantly improves the performance compared to state-of-the-
art NoC encryption methods.

The rest of the chapter is organized as follows. Section 4.2 provides a background
on related concepts. Section 4.3 presents prior related research efforts. Section 4.4
motivates the need for this work. Section 4.5 describes the lightweight encryption
scheme. Section 4.6 presents the experimental results and finally, Sect. 4.7 con-
cludes the chapter.

4.2 Background

4.2.1 Symmetric Encryption Schemes

A symmetric encryption scheme S = (K,E,D) consists of three algorithms defined
as follows:

• The key generation algorithm is written as K ← K . This denotes the execution
of the randomized key generation algorithm K and storing the return string as K

where β is the length of the key.
• The encryption algorithm E produces the ciphertext C ∈ {0, 1}l by taking the key

K and a plaintext M ∈ {0, 1}l as inputs, where l is the length of the plaintext.
This is denoted by C ← EK(M).

• Similarly, the decryption algorithm D denoted by M ← DK(C) takes a key K

and a ciphertext C ∈ {0, 1}l and returns the corresponding M ∈ {0, 1}l .

4.2.2 Block Ciphers

A block cipher typically acts as the fundamental building block of the encryption
algorithm (E). Formally, it is a function (E) that takes a β-bit key (K) and an n-bit
plaintext (m) and outputs an n-bit long ciphertext (c). The values of β and n depend
on the design and are fixed for a given block cipher. For every c ∈ {0, 1}n, there
is exactly one m ∈ {0, 1}n such that EK(m) = c. Accordingly, EK has an inverse
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Fig. 4.2 A block
cipher-based encryption
scheme using counter mode.
Each block cipher (EK )
encrypts an n-bit block (mq )
and b block ciphers together
encrypt the entire message M

and outputs ciphertext C.
This constructs E of the
encryption scheme S

block cipher denoted by E−1
K such that E−1

K (EK(m)) = m and EK(E−1
K (c)) = c

for all m, c ∈ {0, 1}n.
When using block ciphers to encrypt long messages, the plaintext (M) of a given

length l is divided into b substrings (mq ) where each substring is n(= l
b
) bits long

and n is called the block size. Block ciphers are used in operation modes where
one or more block ciphers work together to encrypt n-bit blocks and concatenate
the outputs at the end to create the ciphertext of l bits. Figure 4.2 shows the counter
mode (CM) which is a popular operation mode. CM also uses an initialization vector
(IV) which is concatenated with a d-bit value counter (e.g., if d = 4, {1}d = 0001)
before inputting to the block cipher. This is done to create domain separation by
giving per message and per block variability. The decryption process is shown in
Algorithm 1. In fact, the decryption process is the inverse of the encryption scheme
shown in Fig. 4.2.

4.2.3 Incremental Cryptography

Consider a scenario that involves encrypting sensitive files/documents. Once a file
is encrypted initially, there may be minor changes in the original file. In such a
scenario, if typical encryption is used, the previous encrypted file will be discarded

Algorithm 1: Decryption process of Counter Mode
1: Inputs: ciphertext to decrypt C

2: Output: plaintext corresponding to the ciphertext M

3: procedureDK

4: for all q = 1, ..., b do
5: rq ← EK(IV ||{q}d )

6: mq ← rq ⊕ cq

7: end for
8: M ← m1 ‖ m2 ‖ ... ‖ mb

9: return M

10: end procedure



4 Encryption Using Incremental Cryptography 83

and a new encryption will be performed on the modified file. However, since these
changes are very small in comparison to the size of the file, encrypting the entire file
again is clearly inefficient. Incremental encryption can give significant advantages
in such a setup [5]. Updating an obfuscated code to accommodate patches and
video transmission of images when there are minor changes between frames are
two similar scenarios [23]. Incremental encryption allows to find the cryptographic
transformation of a modified input not from scratch, but as a function of the
encrypted version of the input from which the modified input was derived. When
the changes are small, the incremental method gives considerable improvements in
efficiency.

4.3 Related Work

4.3.1 Packet Security and Integrity

The most commonly proposed solution against eavesdropping attacks is to use an
authenticated encryption scheme [24, 41]. While encryptions ensure packet security,
authentication preserves data integrity. An overview of how an authenticated
encryption scheme can be integrated in the NoC is shown in Fig. 4.3. The block
diagram closely resembles the Galois Counter Mode (GCM) based encryption and
authentication [35]. Packets originating from each IP are encrypted (ciphertext
denoted by C) and an authentication tag (T ) is appended to each packet at the NI
before injecting it to the NoC. The entire packet, which consists of H ‖ C ‖ T ,
traverses the NoC and arrives at the destination. The header H is sent as plaintext

Fig. 4.3 Overview of an authenticated encryption scheme implemented to provide security to NoC
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so that intermediate routers can use the header information, such as source and
destination addresses, for routing. At the destination NI, the inverse process takes
place. The tag T is validated and if valid, the ciphertext C is decrypted to send
the plaintext to the desired IP. Encryption ensures that the plaintext of the secure
information is not leaked and authentication detects any tampering with the packet
including header information.

Several prior studies have tried to develop lightweight encryption and authenti-
cation schemes for on-chip data communication. Sepúlveda et al. [41] proposed a
variation of authenticated encryption where only the destination is sent as plaintext
and the source and data is encrypted using AES Counter mode [18]. The hash of the
entire packet is calculated using SipHash [4] to ensure data integrity. An overview
of the architecture is shown in Fig. 4.4. The authors introduce their solution as a
tunnel-based communication mechanism to isolate sensitive information transferred
between IPs. Tunnels are created by encapsulating packets in a way such that the
communication is isolated by the compromised NoC. AES Counter mode provides
high parallelizability at the expense of power and area. SipHash is chosen as the
hash function since it provides a fast and lightweight message authentication code.
SipHash is especially suited to provide a secure and fast MAC function for short
inputs, which is an ideal fit for NoC packets. AES Counter mode and SipHash also
provide reconfigurability, in terms of number of AES blocks and SipHash rounds,
depending on the performance requirement of the SoC.

Ancajas et al. [3] proposed a simple XoR cipher together with a packet
certification technique that calculates a tag and validates the tag at the receiver.
Boraten et al. proposed a configurable packet validation and authentication scheme
by merging two robust error detection schemes, namely algebraic manipulation
detection and cyclic redundancy check, in [9]. Intel’s TinyCrypt—a cryptographic
library with a small footprint is built for constrained IoT devices [43]. It provides
basic functionality to build a secure system with very little overhead. It gives SHA-
256 hash functions, message authentication, a pseudo-random number generator

Fig. 4.4 Overview of the tunnel-based communication mechanism proposed in [41]
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which can run using minimal memory, digital signatures, and encryption. It also has
the basic cryptographic building blocks such as entropy sources, key exchange, and
the ability to create nonces and challenges.

Several researchers have proposed other lightweight encryption solutions in the
IoT domain [38]. Exploiting the unique characteristics of RFID communication,
Engels et al. have proposed a low-cost encryption algorithm and a protocol [20].
The approach presented in this chapter utilizes incremental encryption to create a
lightweight NoC security framework that minimizes performance overhead with
minor impact on area and power.

4.3.2 Incremental Cryptography

Incremental encryption was first introduced by Bellare et al. [6]. In their work,
they encrypt documents undergoing minor changes. Rather than encrypting every
document from scratch after each change, they propose to encrypt only the change(s)
and send it together with the previous encryption such that the encryption of the
modified version can be constructed. Each document D is treated as a sequence
of symbols D = D[1]...D[l] where D[i] denotes the ith symbol. The encrypted
version contains two sequences of encrypted values, denoted E1 and E2. The
first sequence, E1, is obtained by encrypting the original document D block-by-
block. The other sequence, E2, encodes only the sequence of modifications, denoted
M = M[1]...M[t], which caused the current document to change from the original
document D. The algorithm appends the encryption of the modifications to E2.
In every l steps, the algorithm takes the modified un-encrypted document and re-
encrypts it using traditional block-by-block encryption and assigns the result to E1
while setting E2 to be empty. The amortized complexity of this algorithm amounts
to two block encryptions per each modification.

There are fundamental challenges when using incremental encryption to encrypt
packets in the NoC. In the file setup, when a file undergoes some number of
modifications, every previous modification becomes redundant. In other words,
intermediate steps lose their values as long as the latest version is available.
However, when encrypting packets in the NoC, we cannot drop certain packets and
encrypt after some modifications because each packet is important for the correct
functionality of the SoC. Ideas from incremental cryptography have been adopted
in other areas such as hashing and signing [5], program obfuscation [23], and cloud
computing [29]. This chapter presents a technique that is able to use incremental
encryption in the domain of NoC and can increase the efficiency of secure NoCs.
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4.4 Motivation

The IPs use the capabilities given by the NoC to communicate with each other and
to request/store data from/in memory. The packets injected into the network can be
classified into two main categories—(1) control packets and (2) data packets. For
example, a cache miss at an IP will cause a control packet to be injected into the
network requesting for that data from the memory. The memory controller upon
receiving the request will reply back with a data packet containing the cache block
corresponding to the requested address. The formats of these packets are shown in
Fig. 4.5. The NI divides the packet into flits (“fliticization”) before injecting into the
network. Flits are the basic building blocks of information transfer between routers.
Sensitive data of each flit is encrypted by the NI and injected into the network
through the local router. Encryption process of a packet consumes time as each block
has to be encrypted and concatenated to create the encrypted packet. Depending on
the parameters used for the block cipher (block size, key size, number of encryption
rounds, etc.), the time complexity of the process differs. If each packet is encrypted
independently, it takes z × T time to encrypt all of them, where z is the number of
packets and T is the average time needed to encrypt one packet.

As discussed in Sect. 4.2, the idea of incremental encryption is to develop a
scheme where the time taken to encrypt an incoming packet should not be dependent
on the packet size, but rather on the amount of modifications done compared to
the previous packet. To explore how to use this idea in the context of NoC, the
number of bit changes between consecutive packets generated by a particular IP was
profiled. Figure 4.6 shows the number of bit differences as a percentage of memory
fetch requests (control packets) when running five benchmarks (FFT, FMM, LU,
RADIX, OCEAN) from the SPLASH-2 benchmark suite on the gem5 full-system
simulator [8]. More details about the experimental setup are given in Sect. 4.6.1.
Out of the 64 bits of data to be encrypted, according to the default gem5 packet size,
the maximum number of bit difference between consecutive packets was 13 bits
in all benchmarks. On average, 30% of the packets differed by only one bit. This

Fig. 4.5 Packet formats for (a) control and (b) data packets. Blue shows header (H) which is sent
as plaintext. Red shows the payload (P) with sensitive data encrypted
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Fig. 4.6 Number of bit differences between consecutive memory fetch requests in SPLASH-2
benchmarks

is expected since an application running on a core most likely accesses memory
locations within the same memory page which differs by only a few bits.

Since encryption is done in blocks, the data was profiled assuming a block size
of 16 bits [20]. In this case, up to 16 consecutive bit differences can be considered
for each block, and the maximum number of blocks for 64 bits of secure data is 4.
The results showed that on average, 80% of the packets differ by only one block and
the other 20% differ by two blocks for the benchmarks that was used. This provides
a significant opportunity for optimizing the encryption process with incremental
encryption. Similar to memory fetch requests, the response memory data packets
were profiled as well. Since the response contains a whole cache block consisting of
data modified by calculations, the optimization opportunity was less compared to the
memory fetch requests. However, it still shows that 15% of consecutive packets are
identical. These observations show that the encryption process can be significantly
optimized using incremental encryption.

4.5 Incremental Encryption

This section describes the incremental encryption scheme in detail. First, an
illustrative example is given to demonstrate the merit of exploiting unique traffic
characteristics using incremental encryption. Then the major components in the
proposed framework are elaborated.

Illustrative Example Figure 4.7 shows an example on how incremental encryption
can improve the performance of an NoC. It shows the encryption process of three
consecutive NoC packets (each with 16 bits) using two methods (1) traditional
encryption, (2) incremental encryption. In traditional encryption, both packets are
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Fig. 4.7 Illustrative example of using incremental encryption. Assumptions: encryption takes 20
cycles for each block cipher, comparing two bit strings to identify different blocks take 1 cycle each

encrypted sequentially using the two 8-bit block ciphers. In incremental encryption,
each packet is compared with the previous packet and only the different blocks are
encrypted. Identical blocks are filled with zeros and header bits are added to indicate
the changed blocks. The decryption process uses previously received packets and
header information to reconstruct the new packets. Only the first packet has to be
fully encrypted since there is no prior packet for comparison. This example shows a
speedup of 1.43 times. However, when many packets are encrypted, the time spent to
encrypt the first packet becomes negligible and as a result, a significant performance
improvement can be achieved as shown in Sect. 4.6.2. A detailed description of the
methodology is given in the next four subsections.

4.5.1 Overview

Figure 4.8 shows an overview of the proposed NoC security framework. It consists
of two main components: (1) incremental crypto engine, and (2) encryption scheme
which includes the block ciphers. Each packet sent from an IP core has two
main parts: (1) packet header (H) which is sent as plaintext across the network,
and (2) payload (P) which should be encrypted before sending to the network.
Both header and payload are sent to the incremental crypto engine to start the
incremental encryption process. The payload is assumed to be divided into b blocks.
For example, the 64-bit payload of a control packet will contain four 16-bit blocks
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Fig. 4.8 Overview of the proposed security framework. The packet sent from source (IPs ) goes
through the encryption process implemented in the network interface (NIs ). It traverses the NoC,
and NIt of the target IP (IPt ) decrypts before forwarding the packet to IPt

(b = 4) numbered 1 through 4 starting from the least significant byte. The proposed
encryption scheme uses block ciphers arranged in counter mode [34]. A detailed
explanation of parameters used in the experiments is given in Sect. 4.6.1.

Algorithm 2 describes the incremental encryption process. When a packet is
sent from the IP core, the incremental crypto engine first identifies which blocks
are different compared to the previous packet (line 6). This is done by comparing
with the previous packet payload (Pi−1) which is stored in a register inside the
NI. In this model, only two packets are required to be stored for the two different
packet types (control and data) at the sender’s end. Similarly, the receiver’s side
also stores the most recent packet for each packet type. In addition to that, the
key (K) and initialization vector (IV ) for the encryption scheme are also stored
by both sender and receiver IPs. Once block differences are computed, it is then
sent to the encryption scheme which encrypts only the different blocks (line 7). The
final ciphertext is derived from the encrypted blocks and block comparison results
(line 8). Additional header bits are also computed in this step to be used by the
decryption process. Finally, the header and encrypted payload are concatenated to
create the final packet and injected into the network (line 9). At the destination
node, the inverse process takes place. It also stores the previous packet for each
packet type, and therefore, can construct the next packet using the stored packet and
the incoming packet data. Since the previous packets are stored in special registers,
there is no need to encrypt/decrypt the full packet. Only the changed blocks are sent
and the receiver replaces the changed blocks with its modifications to construct the
new packet.

The remainder of this section elaborates the major components of the NoC
security framework. Section 4.5.2 explains the compareBlocks function which is
implemented in the incremental crypto engine. Section 4.5.3 presents the encryption
scheme E and constructCipherT ext function in Algorithms 4 and 5, respectively.
Section 4.5.4 explains how keys and IV s are generated and managed throughout
the communication process.
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Algorithm 2: Encryption process
1: Inputs: current packet packeti , previous payload Pi−1, key K , initialization vector IV

2: Output: encrypted packet consisting of header Hi and encrypted payload Ci

3: procedure encryptPackets

4: Pi ← packeti .payload

5: Hi ← packeti .header

6: Mi, δi ← compareBlocks(Pi, Pi−1)

7: C′ ← E(IV ,K,Mi)

8: Ci ← constructCipherT ext (C′, δi )

9: return Hi ‖ Ci

10: end procedure

4.5.2 Incremental Crypto Engine

The operation of the incremental crypto engine is outlined in Algorithm 3. The
payload (Pi) sent from the IP core is compared with the previous payload of that
type (Pi−1) to identify the blocks that are different (Mi). This can be implemented
with a simple XOR operation in hardware (line 4). Once the bitwise differences are
obtained, the payload is split into blocks (line 5) to see which blocks are different
(lines 6–9). Only different blocks are sent for encryption. The incremental crypto
engine also sends the different block numbers (δi) to build the complete ciphertext
as well as to set the header bits indicating the different blocks to be used by the
decryption algorithm.

As discussed before, the performance improvement is gained by encrypting
multiple blocks in parallel. For example, if two consecutive control packets have
differences in two blocks each, this method can achieve twice the speedup by
encrypting both at the same time compared to the traditional (non-incremental)
approach where all four block ciphers will be used to encrypt each packet.

Algorithm 3: Finding block-wise packet differences
1: Inputs: current payload Pi , previous payload Pi−1
2: Output: different blocks Mi , different block indices δi

3: procedure compareBlocks

4: bitDiff ← Pi ⊕Pi−1
5: B[1], ..., B[k] ← split (bitDiff, blockSize)

6: for all x = 1, ..., size(B) do
7: if B[x] > 0 then
8: Mi.append(B[x])
9: δi [x] = 1

10: end if
11: end for
12: return Mi, δi

13: end procedure
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4.5.3 Encryption Scheme

The security architecture uses the counter mode for encryption which uses an
initialization vector (IV), a key and the message to be encrypted as inputs and
produces the ciphertext. The IV ‖ {q}d string, which is the standard format of the
input nonce to counter mode, is used to give per message and per block variability. In
this framework, it is calculated using the sequence number of the packet (let seqj be
the sequence number of packet Pj ), a counter, and the IV as IV ‖seqj ‖q to identify
different blocks. The block cipher ID (q ∈ {1, 2, 3, 4}) changes with each block
cipher and the sequence number seqj varies from packet to packet. Algorithm 4
shows the major steps of the encryption scheme. The structure of the encryption
scheme is the same as shown in Fig. 4.2 with the number of block ciphers (b) set to
four.

Algorithm 4: Encrypt selected blocks
1: Inputs: initialization vector IV , key K , different blocks Mi

2: Output: encrypted blocks C′
3: procedure E
4: for all q = 1, ..., 4 do
5: seqj ← getSequenceNumber(Pj )

6: rq ← EK(IV ‖ seqj ‖ q)

7: C′.append(rq ⊕ Mi [q])
8: end for
9: return C′

10: end procedure

C′ is stored in a buffer. The final ciphertext is constructed using δi and C′ as
shown in Algorithm 5. Algorithm 5 takes the encrypted value from the buffer for
the changed blocks (lines 5–6) and appends n (block size) zeros to identical blocks
compared to the previous packet (lines 7–8). It ensures the construction of the same
packet size, and as a result, every other functionality from fliticization to NoC
traversal remains the same.

4.5.4 Initialization and Parameter Refresh

The generation and management of keys and nonces have been addressed in several
ways [30, 42]. One possible method is to use a key distribution center (KDC). The
KDC is a specialized IP in the SoC. The KDC is also responsible for generating
the IV s. The keys and IV s are distributed among the cores and stored in special
registers. This architecture also provides the flexibility to refresh the parameters
depending on the application. For example, if the number of bits allocated for the
sequence number in a different packet format is small, the sequence number will be
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Algorithm 5: Construct the encrypted payload
1: Inputs: encrypted blocks C′, different block indices δi

2: Output: Encrypted payload Ci

3: procedure constructCipherT ext

4: for all x = 1, ..., size(δ) do
5: if δi [x] > 0 then
6: Ci.append(C′[x])
7: else
8: Ci.append({0}n)
9: end if

10: end for
11: return Ci

12: end procedure

re-initialized more often. In such a setup, using a different IV is mandatory to make
sure the counter string in CM is a nonce.

One way to generate an IV is to utilize hash functions, such as SHA-256. During
initialization, KDC picks a random number as salt S. When it receives a request for
an IV , KDC utilizes the hash function and the salt to generate a few random bytes,
i.e., SHA-256(S), then increments S. As SHA-256 is non-invertible and collision
resistant, the output of SHA-256 is a good source of nonce and randomness. Since it
is computationally impossible to compute the value of S by inspecting the plaintext
IV (output of SHA-256), malicious IPs cannot infer the next IV generated by KDC.
As the required bits of the IV is less than the output of SHA-256, an IV buffer is
used to store all the unused bits. After KDC performs SHA-256, it appends the 256
bits output to the end of the IV buffer. Since the IV used in this chapter is less than
16 bits, one SHA-256 operation can serve more than 16 IV requests.

4.6 Experiments

This section first describes the experimental setup used to evaluate the approach.
Then, results are presented to show the performance gain achieved through incre-
mental encryption by comparing it with traditional encryption. Next, the security of
the proposed framework and associated overhead are discussed.

4.6.1 Experimental Setup

The framework was validated using five benchmarks chosen from the SPLASH-2
benchmark suite. Traffic traces were generated by the cycle-accurate full-system
simulator—gem5 [8]. The 4 × 4 Mesh NoC was built on top of “GARNET2.0”
model that is integrated with gem5 [1]. The network interface (NI) was modified to
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simulate the proposed security framework. The following options were chosen to
simulate architectural choices in a resource-constrained NoC.

Packet Format For control and data packet formats, the experimental setup used
the default GARNET2.0 implementations which allocates 128 bits for a flit. This
value results in control messages fitting in 1 flit, and data packets, in 5 flits. Out
of the 128 bits, 64 bits are allocated for the payload (address) in a control packet
and data packets have a payload of 576 bits (64-bit address and 512-bit data). This
motivated the use of 16-bit blocks to evaluate the performance of the proposed
incremental encryption scheme.

Block Cipher This approach uses an ultra-lightweight block cipher—“Hummingbird-
2” as the block cipher of the encryption scheme [20]. Hummingbird-2 was chosen
in the experiments mainly because it is lightweight and also, with the block size
being 16, other encryption schemes can be broken using brute-force attacks in
such small block sizes. However, it has been shown in [20] that Hummingbird-
2 is resilient against attacks that try to recover the plaintext from ciphertext. It
uses a 128-bit key and a 128-bit internal state which provides adequate security
for on-chip communication. Considering the payload and block sizes, four block
ciphers were used in counter mode for the encryption scheme. Each block cipher
is assumed to take 20 cycles to encrypt a 16-bit block and each comparison of two
bit strings incurs a 1-cycle delay [20]. This framework is flexible to accommodate
different packet formats, packet sizes and block ciphers depending on the design
requirements. For example, if a certain architecture requires 128-bit blocks, AES
can be used while keeping the incremental encryption approach intact.

4.6.2 Performance Evaluation

The performance improvement achieved by this approach can be presented in
two main steps: (1) time taken for encryption (Fig. 4.9) and (2) execution time
(Fig. 4.10). The experiments that were carried out measured the cycles spent for
encryption alone (encryption time) and total cycles executed to run the benchmark
(execution time) including encryption time, using this approach (incremental

Fig. 4.9 Encryption time comparison using traditional encryption and incremental encryption
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Fig. 4.10 Execution time comparison using traditional encryption and incremental encryption

encryption) as well as traditional encryption. Figure 4.9 shows the encryption time
comparison. This approach improves the performance of encryption by 57% (30%
on average) compared to the traditional encryption schemes. The locality in data
and the differences in operand values affect the number of changed blocks between
consecutive packets. This is reflected in the encryption time. For example, if an
application is doing an image processing operation on an image stored in memory,
accessing pixel data stored in consecutive memory locations provides an opportunity
for performance gain using this approach.

The total execution time was also compared using traditional encryption as well
as incremental encryption. Figure 4.10 presents these results. When the overall
system including CPU cycles, memory load/store delays, and delays traversing the
NoC is considered, the total execution time improves up to 10% (5% on average).
Benchmarks that have significant NoC traversals such as RADIX and OCEAN show
higher performance improvement (10%).

4.6.3 Security Analysis

When discussing the security of this approach, three main components have to be
considered: (1) incremental encryption, (2) encryption scheme that uses counter
mode, and (3) block cipher.

Incremental Encryption Due to the inherent characteristics of incremental
encryption, this approach reveals the amount of differences between consecutive
packets. Studies on incremental encryption have shown that even though hiding the
amount of differences is not possible, it is possible to hide “everything else” by
using secure block ciphers and secure operation modes [6]. Attacks on incremental
encryption using this vulnerability relies on the adversary having many capabilities
in addition to the ones defined in the threat model. When using incremental
encryption to encrypt documents undergoing frequent, small modifications as
explained in Sect. 4.2, it is reasonable to assume that the adversary not only has
availability to the previously encrypted versions of documents but is also able to
modify documents and obtain encrypted versions of the modified ones. This attack
model allows the adversary to launch chosen plaintext attacks [6]. Discussing
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security of this approach for known plaintext, chosen plaintext and chosen
ciphertext attacks are irrelevant since the adversary does not have access to separate
hardware that implements the design, nor access to known plaintext/ciphertext
pairs. In other words, as long as the block cipher and operation mode are secure,
incremental encryption does not allow recovering of plaintext from the ciphertext.
The same argument has been proven to hold true in previous work on incremental
encryption [6, 36].

Counter Mode Encryption Using this approach, each block is treated indepen-
dently while encrypting, and blocks belonging to multiple packets can be encrypted
in parallel. In such a setup, using the same IV ‖{q}d string with the same key K can
cause the “two time pad” situation. This is solved by setting the string to IV ‖seqj ‖q

as shown in Algorithm 4. It gives per message and per block variability and ensures
that the value is a nonce. The proposed usage of counter mode adheres to the security
recommendations outlined in [34].

Block Cipher As discussed above, the security of the proposed framework depends
on the security of the block cipher. The security of the block cipher used in
this framework, Hummingbird-2, has been discussed extensively in [20]. The
first version of the Hummingbird scheme was shown to be insecure [40] and
Hummingbird-2 was developed to address the security flaws. After thousands
of hours of cryptanalysis, no significant flaws or sub-exhaustive attacks against
Hummingbird-2 have been found [20]. Hummingbird-2 approach has been shown to
be resilient against birthday attacks on the initialization, differential cryptanalysis,
linear cryptanalysis, and algebraic attacks. Zhang et al. presented a related-key
chosen-IV attack against Hummingbird-2 that recovered the 128-bit secret key [46].
However, the attack requires 228 pairs of plaintext to recover the first 4 bits of the
key adding up to a data complexity of O(232.6) [46]. As discussed before, launching
such chosen plaintext attacks is not possible in the NoC setting. A brute-force key
recovery takes 2128 attempts which is not computationally feasible according to
modern computing standards as well as for computing power in the foreseeable
future.

The proposed approach allows easy plug-and-play of security primitives. Any
block size/key size/block cipher can be combined with the proposed incremental
encryption approach. Note that stronger security comes at the expense of perfor-
mance. Therefore, security parameters can be decided depending on the desired
security and performance requirements.

4.6.4 Overhead Analysis

The proposed incremental encryption approach was implemented using Verilog to
show the area overhead in comparison with the original Hummingbird-2 imple-
mentation. Figure 4.11 provides an overview of the hardware implementation of
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Fig. 4.11 Verilog implementation of the proposed incremental encryption framework

Table 4.1 Area overhead of the proposed approach

Overhead
Incremental encryption Traditional encryption Overhead (encryption) (entire NoC)

Area 175,649 μm2 152,424 μ m2 15% 2%

incremental encryption. This implementation is capable of assigning blocks to
idle block ciphers and encrypting up to four payloads in parallel. Basically, if
an upcoming payload needs to be encrypted/decrypted for the number of blocks
which are less than or equal to the number of idle block ciphers, this method can
encrypt/decrypt it immediately. Merger and scheduler units were implemented to
ensure the correctness of final encrypted/decrypted payloads. The proposed frame-
work was compared with an implementation of traditional encryption, modeled as
four Hummingbird-2 block ciphers without the incremental crypto engine. The
experiments were conducted using the Synopsys Design Compiler with 90 nm
Synopsis library (saed90nm).

Based on the results shown in Table 4.1, the proposed approach introduces less
than 2% overall area overhead with respect to the entire NoC. When only the
encryption unit is considered, the overhead is 15%. This overhead is caused due
to components responsible for buffering and scheduling of modified blocks to idle
block cipher units as well as computations related to the construction of the final
result.

Therefore, the proposed encryption approach has a negligible area overhead and
it can be efficiently implemented as a lightweight security mechanism for NoCs.
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While there is a minor increase in power overhead due to the additional components,
there is no penalty on overall energy consumption due to the reduction in execution
time.

4.7 Summary

In this chapter, we presented a lightweight security mechanism that improves
the performance of traditional encryption schemes used in NoC while incurring
negligible area and power overhead. The security framework consists of an encryp-
tion/decryption scheme that provides secure communication on the NoC. The
proposed approach uses incremental encryption to improve performance by utilizing
the unique traffic characteristics of packets observed in an NoC. The framework was
validated in terms of security to prove that the performance gain is not achieved at
the expense of security. Experimental results show a performance improvement of
up to 57% (30% on average) in encryption time and up to 10% (5% on average) in
total execution time compared to traditional encryption while introducing less than
2% overall area overhead.
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Chapter 5
Trust-Aware Routing in NoC-Based SoCs

Subodha Charles and Prabhat Mishra

5.1 Introduction

Reusable hardware Intellectual Property (IP) based System-on-Chip (SoC) design
has emerged as a pervasive design practice in the industry to dramatically reduce
design/verification cost while meeting aggressive time-to-market constraints [3, 9,
18, 21, 23, 36, 40–42, 45]. Growing reliance on these pre-verified hardware IPs,
often gathered from untrusted third-party vendors, severely affects the security and
trustworthiness of SoC computing platforms [2, 22, 24, 25, 38, 39, 46, 49]. Since
the malicious third-party IPs share the same Network-on-Chip (NoC) with secure
IPs, malicious IPs can adversely affect the communication between the secure IPs.
Figure 5.1 shows an NoC-based SoC divided into secure and non-secure zones
similar to the architecture proposed in the ARM TrustZone architecture [52]. An
IP in one secure zone (top left) communicates secure information with a secure IP
in the other zones (bottom right). Since the packets traverse through the non-secure
zone, a malicious IP can tamper the packets.

Consider a scenario where the integrity of exchanged data is ensured using a
message authentication code (MAC) . The sender IP sends a packet together with an
authentication tag, and the receiver re-computes the tag to check for data integrity.
If it does not match, the packet has been tampered during communication, and a
re-transmission is required. This method of error correction is widely employed in
NoC-based SoCs [48]. However, re-transmissions due to corrupt packets can lead to
several problems:
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Fig. 5.1 Overview of a typical SoC architecture with secure and non-secure zones

• Increased latency because of re-transmission as well as additional stall cycles
introduced by the IP cores while waiting for the requested data.

• This can increase the number of packets traversing the network and, as a result,
increase energy consumption and performance penalty.

• In MAC-then-encrypt protocols [19],1 authentication tag is computed on the
plaintext, appended to the data, and then tag and plaintext are encrypted together.
When MAC is computed in this way, the receiver IP has no way of knowing
whether the message is indeed authentic or tampered until the message is
decrypted. Therefore, the resources spent to decrypt a tampered packet are
wasted.

Systematic exploitation of error correction protocols, such as the one explained
above, can lead to denial-of-service (DoS) attacks. For example, a malicious IP can
corrupt data on purpose and cause continuous re-transmissions leading to a DoS
attack [7]. Specifically, the threat model is as follows.

Threat Model Figure 5.1 shows a standard NoC-based many-core architecture
with IPs connected in a mesh topology. Each IP connects to a router via a network
interface. The network interface accommodates the authentication scheme that
implements MAC-based authentication [32]. A packet originating from a source
IP (src) in a secure zone has to traverse through the non-secure zone in order to
reach the destination IP (dest) in another secure zone. The IPs in the non-secure
zone are potentially malicious. In reality, out of all the potentially malicious IPs,
only a small fraction is actually malicious. We call them malicious IPs (MIP) in this
chapter. If the packet traverses through such an MIP, it can tamper with the packet
and, therefore, at dest, the authentication tag computation will not match and the
packet will be dropped. The src will re-transmit the packet since a response is not
received from the dest within the time-out period. The problem of minimizing this
impact gets aggravated due to two challenges. (1) The MIP will not always behave
maliciously. In other words, it will tamper packets only in sporadic intervals. (2).
Since the src depends on the response from the dest to know whether the packet was

1MAC-then-encrypt is the standard method used in TLS [19].
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received or not, the MIP can tamper the packet between src and dest or tamper the
response packet between dest and src, and both of these scenarios lead to the same
outcome from the src’s point of view. The security countermeasure outlined in this
chapter considers both of these challenges.

In this chapter, we discuss denial-of-service attacks caused by packet corruption
and highlight a trust-aware routing protocol that avoids MIPs when two secure IPs
are communicating with each other. This approach leads to less re-transmissions
and, as a result, improved performance and energy efficiency. Trust-aware routing
can complement the existing NoC attack detection and mitigation techniques by
allowing on-chip communication even in the presence of an adversary while min-
imizing the energy and performance overhead. Designers can employ orthogonal
techniques to improve energy efficiency in NoC-based SoCs [4, 12, 15, 26, 27, 55].

Major contributions of this chapter can be summarized as follows:

1. We discuss performance degradation type denial-of-service attacks in detail
together with the corresponding countermeasures proposed in the existing
literature.

2. We outline a mechanism to quantify trust and a routing protocol that uses the
trust values between routers to make routing decisions such that the MIPs are
avoided by packets when routing from source to destination.

3. The effectiveness of the approach is evaluated using both real benchmarks and
synthetic traffic patterns to demonstrate that it leads to significant improvement
in both performance and energy efficiency.

The chapter outlines a routing protocol that avoids MIPs in the NoC rather
than detecting them. Therefore, this approach can be used together with any
MIP detection mechanism while increasing the overall performance and energy
efficiency. The remainder of this chapter is organized as follows. Section 5.2
demonstrates how the attack can lead to significant overhead. Section 5.3 discusses
other related research efforts in mitigating denial-of-service attacks caused by
packet corruption. Section 5.4 presents the NoC trust model. Section 5.5 describes
the trust-aware routing protocol that utilizes the NoC trust model. Section 5.6
presents the experimental results. Finally, Sect. 5.7 summarizes the chapter.

5.2 Motivation

Lightweight authentication schemes implemented on NoC-based SoCs try to pro-
vide desired security while consuming minimum number of cycles. However, if
the MAC fails to match at the receiver’s end, the src has to re-transmit again,
leading to wasted effort in repeated NoC traversal and MAC calculation [48]. This
is the goal of packet corruption by the attacker. The challenge is aggravated in
MAC-then-encrypt protocols because MAC can only be calculated and matched
after decryption is done. If the packet is tampered, time and energy spent on
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decryption are wasted. To analyze these overheads, FFT, RADIX (RDX), FMM,
and LU benchmarks from the SPLASH-2 benchmark suite were run on an 8 × 8
Mesh NoC-based SoC with 64 cores that implements a MAC-then-encrypt security
protocol and a XY routing protocol. The behavior of an MIP was simulated by
one of the IPs along the routing path dropping n consecutive packets after every
p (period) packets. NoC delay (total NoC traversal delay for all packets) including
encryption/decryption and MAC calculation time, execution time, and number of
packets injected were recorded with and without the presence of an MIP. The
encryption/decryption and authentication process is assumed to take 20 cycles per
transmission [20]. Results are shown in Fig. 5.2a, b, and c, respectively. The results
show 67.2% increase in NoC delay and a 4.7% increase in execution time on average
across all benchmarks. The number of packets injected increased by 60.1%. The
combination of execution time and number of injected packets directly affects the
energy consumption since both time spent to execute the task and dynamic power
are increased [15].

Therefore, it is evident that in addition to checking data integrity, a mechanism
to avoid MIPs when routing through the non-secure zone can lead to less re-
transmissions and, as a result, increased performance and energy efficiency.

Fig. 5.2 NoC delay, execution time, and number of packets injected in comparison with and
without the presence of an MIP when p = 20 and n = 14. (a) NoC delay. (b) Execution time. (c)
No. of packets injected
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5.3 Related Work

Previous research on securing the NoC has proposed lightweight security
schemes [11, 16], DoS attack mitigation techniques [14, 17, 51], and methods
to prevent side-channel attacks [28, 29, 31, 34, 35, 37, 50]. Most of the methods try
to exploit the unique characteristics offered by the structure of the NoC and traffic
transferred through the NoC when developing security schemes. In this chapter, we
discuss denial-of-service attacks caused by packet corruption [10].

In [44], the authors introduced a threat model where hardware Trojans tamper
flits arriving at the input buffer of a router causing performance degradation.
Performance degradation is caused by dropped packets, wastage of NoC resources
such as buffer space, response delays, and re-transmissions. In their work, four
Trojans were introduced that differ based on the field in the flit they tamper with.
The format of the flits considered is shown in Fig. 5.3.

1. Quan Trojan: Modifies the flit quantity indication field. The destination detects
that more or less flits are there than that indicated by the flit quantity in head flit
and drops the flits.

2. Address Trojan: Modifies the destination address field. This can lead to both
information leakage and performance degradation since legitimate packets sent
to the destination can be blocked.

3. Head hardware Trojan: Modifies the head bit of the head flit. As a result, the
route computation module will not access the address field and the entire packet
will be dropped requesting a re-transmission.

4. Tail hardware Trojan: Modifies the tail indication bit of the tail flit. The
destination waits for the tail to arrive causing packet mixing and packet loss.

As a countermeasure for this attack, the same paper proposed a bit shuffling
method that makes flits less sensitive to the attack [44]. The attacker can target
the critical fields since the attacker is aware of the packet structure. An example
of the attack scenario is shown in Fig. 5.4. The defense mechanism is proposed to
shuffle the critical bit fields of the flits among themselves and others so that the
Trojan is attacking on randomly shuffled data and not on the critical fields within
the packets. The shuffling patterns are changed frequently. Therefore, the Trojan,

Fig. 5.3 Flit format. H: Head
bit (1 for head flit), T: Tail bit
(1 for Tail flit), SEQ: Packet
sequence number, Quan: Flit
quantity of packets, SRC:
Source tile’s x − y positions,
DST: Destination tile’s x − y

positions
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Fig. 5.4 Trojan design and attack scenario

which is unaware of the shuffling patterns, cannot target particular fields to launch
a meaningful attack. Since the flit indication fields are typically one bit long, an
error correcting code based on a 1-bit Hamming code was also proposed that can
complement the bit shuffling mechanism.

Boraten et al. [7] discussed a similar threat model where hardware Trojans
influenced resource allocations and corrupted data to degrade performance. The
same authors further explored possible DoS attacks in [6]. Compared to router-based
packet corruption, they discussed a Trojan that performs deep packet inspection on
links and inject faults when the target is identified. The injected faults trigger re-
transmissions from the error correcting mechanism. Therefore, repeated injection
of faults causes repeated re-transmission to starve network resources and create
deadlocks capable of rendering single application to full chip failures. The Trojan
tries to prevent infected links from being detected by altering the locations of
faults to disguise them as transient faults. While fuzzing can make the attack
difficult, it does not guarantee prevention. Furthermore, the attack is not detected,
and as a result, future attacks are not prevented either. The security countermeasure
proposed in [6] was motivated by this, where the method coupled switch-to-switch
scrambling, inverting, shuffling, and flit reordering with a heuristic-based fault
detection model [6]. Their solution addressed the challenge of differentiating fault
injections from transient and permanent faults.

Sepúlveda et al. presented MalNoC, a Trojan infected NoC that can perform
multiple attacks on NoC packets [53]. MalNoC launches data integrity attacks by
replacing the packet content with content in a malicious register. A similar threat
model that discussed eavesdropping, DoS, and illegal packet forwarding, all of
which utilized packet corruption at a router, was presented in [30].

The concept of “trust” between inter-connected entities has been studied before
in the networking domain [54]. It tries to enhance the security of distributed
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networks such as ad-hoc networks by identifying attacks against trust evaluation
systems and building defense techniques based on trust models. Concepts such
as “web-of-trust” and “pretty-good-privacy” (PGP), which are widely used in
internet communication, establish a similar notion that discusses the authenticity
of binding a public key to the owner [56]. The OpenPGP email protocol is one such
example [8].

5.4 NoC Trust Model

This section describes the trust model to quantitatively measure the trust between
two nodes. Trust is established between two nodes to handle packets without
tampering with the data. In particular, one node trusts the other node to perform the
intended action on the received packet (in the case of routing, forward the packet to
the next hop). In this chapter, the first node is referred to as the “producer” (α) and
the second node as the “consumer” (β). The notation {producer → consumer}
(α → β) is used to denote a trust relationship.2 Trust can be established in two
ways—(1) delegated trust and (2) direct trust. Direct trust is established when
a node calculates trust about one of its neighbors. Trust is said to be delegated
when one node recommends a consumer node to another producer node that is
not directly connected to the consumer. The recommending node is referred to as
“recommender.” Figure 5.5a shows such an example. In this three node setup, direct
trust can be established between B and C, and A and B. But, trust between A and C
can only be established via B’s recommendation. Therefore, A → C has a delegated
trust relationship.

To quantify trust between two entities, a measure of trust is required. Keeping a
binary value per node (either trusted or not) does not capture the entire trust model
due to several reasons: (i) trust can be delegated (in the example in Fig. 5.5a, the

Fig. 5.5 Trust delegation
across NoC. The values on
the arrows represent the trust.
For example, T 1 in (a)
denotes T

(a)
A→B , where the

superscript (a) corresponds to
(a)

2The producer and consumer notations are different from src and dest since any two routers along
the routing path can be producer/consumer, whereas src and dest refer to the origin of the packet
and its destination, respectively.
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amount of trust A places on C depends on how much A trusts B) and (ii) a malicious
node might not launch an attack at first but do so after a while or periodically.
Therefore, a value (denoted as Tα→β ) between −1 and 1 is assigned for each
trust relationship (−1 ≤ Tα→β ≤ 1) to indicate a trust value in the “potentially
malicious” spectrum. The two bounds are defined as follows:

• when the producer is confident that the consumer will always function correctly:
Tα→β = 1;

• when the producer is confident that the consumer is definitely malicious: Tα→β =
−1.

In addition to the two bounds, Tα→β = 0 implies that the producer has no idea
whether the consumer is malicious or not. Therefore, at the beginning of network
packet transmission, all trust relationships are initialized to the value of zero. During
operation, with information received from nodes, trust values are calculated. It is
important to note that when B recommends C to A (delegated trust), T

(a)
A→C can

be established only if T
(a)
A→B ≥ 0. In other words, A should not trust its enemy to

recommend someone as trustworthy. Once this condition is met, three axioms are
presented such that the trust delegation calculation adheres to those. The remainder
of this section describes these axioms (Sect. 5.4.1) and elaborates how delegated
trust (Sect. 5.4.2) and direct trust (Sect. 5.4.3) are calculated.

5.4.1 Axioms for Trust Delegation

Axiom 1 In delegated trust, trust value between producer and consumer should not
be higher than the trust between producer and recommender as well as the trust
between recommender and consumer. This can be formalized using Fig. 5.5a

∣∣∣T (a)
A→C

∣∣∣ ≤ min(T
(a)
A→B, T

(a)
B→C). (5.1)

Axiom 2 Producer receiving the same recommendation about the same consumer
via multiple different recommenders should not reduce the trust between producer
and consumer. In other words, the producer will be more certain about the consumer
or at least maintain the same level of certainty if the producer obtains an extra
recommendation that agrees with the producer’s current opinion. For example,
Fig. 5.5a and b shows two scenarios where A in first figure establishes trust with
C via only one path and in the second scenario, trust with C is established through
two same-trust paths.

T
(b)
A→C ≥ T

(a)
A→C ≥ 0, for T 1 > 0 and T 2 ≥ 0, (5.2)

T
(b)
A→C ≤ T

(a)
A→C ≤ 0, for T 1 > 0 and T 2 < 0. (5.3)
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This holds only if the multiple paths give the same recommendations.

Axiom 3 In a setup similar to Fig. 5.5c, it is possible to receive multiple
recommendations from a single node (B). Compared to that, recommendations
from independent nodes such as the ones shown in Fig. 5.5d (B and E) should
always be trusted more. In other words, recommendations from independent nodes
can reduce uncertainty more effectively than the recommendations from correlated
nodes. Formally,

T
(d)
A→C ≥ T

(c)
A→C ≥ 0, if T

(c)
A→C ≥ 0, (5.4)

T
(d)
A→C ≤ T

(c)
A→C ≤ 0, if T

(c)
A→C < 0. (5.5)

5.4.2 Delegated Trust Calculation

The calculation of trust from the point of view of any given node should adhere
to the above axioms. For the example shown in Fig. 5.5a, the necessary condition
is to satisfy Axiom 1. To achieve this, trust can be calculated by concatenation as
T

(a)
A→C = T

(a)
A→B · T

(a)
B→C . In general,

Tα→β = Tα→γ · Tγ→β, (5.6)

where γ is the recommender. As mentioned before, this can only be calculated if
Tα→γ ≥ 0. It can be noticed that if α has no idea about the trustworthiness of γ

(Tα→γ = 0), no matter how much γ trusts β, α will not trust β (Tα→β = 0).
In case of multi-path trust delegation such as the example in Fig. 5.5b, Axioms 2

and 3 have to be satisfied in addition to Axiom 1. When α can establish trust with β

via two paths, one via δ and another via ε (α − δ − β and α − ε − β), the ratios of
trust concatenation can be combined.

Tα→β = z1 · (Tα→δ · Tδ→β) + z2 · (Tα→ε · Tε→β), (5.7)

where

z1 = Tα→δ

Tα→δ + Tα→ε

, and z2 = Tα→ε

Tα→δ + Tα→ε

. (5.8)

5.4.3 Direct Trust Calculation

The direct trust is calculated based on the “sigmoid function” ( 1
1+e−x ), where x

keeps track of the number of successful transmissions at a given router. Since the
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Fig. 5.6 Sigmoid function S(x) variation with input x

sigmoid function ranges between 0 and 1, it is scaled to range between −1 and 1
(Fig. 5.6).

S(x) = 2 · 1

1 + e−x
− 1. (5.9)

Assume that α and β are neighbors. Initially, α has no trust information about
β. Therefore, x = 0, and as a result, S(x) = 0. When α learns about β’s behavior,
it changes the value x and re-calculates S(x). For example, if α gets a positive
feedback about β’s trust, direct trust is calculated as Tα→β = S(x + δ), where δ is
a small positive number. Since S(x) is an increasing function as shown in Fig. 5.6,
α’s trust about β is now increased. Similarly, to reduce trust, Tα→β = S(x − δ).
Therefore, direct trust is calculated as

x = x ± δ, Tα→β = S(x). (5.10)

5.5 Trust-Aware Routing

Once the trust values are established, they are used by the routing protocol. The
basic idea is to route packets through highly trusted nodes so that MIPs are avoided.
It is important to note that trust values have to be dynamically updated during
SoC execution since MIPs shift between malicious and non-malicious behaviors
according to the threat model. The following subsections explain in detail how
direct trust and delegated trust are updated at each router (Sects. 5.5.1 and 5.5.2,
respectively) and how those trust values are used in routing (Sect. 5.5.3).

5.5.1 Updating Trust

According to the threat model used in this chapter, if a src IP does not receive a
response to the packet sent, it can be because of two reasons:
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• Message was lost between src and dest: In this case, a response is never
received. The src times out after a while and re-transmits the packet. The routers
along the routing path observe that this is a re-transmission and reduces the direct
trust of their next hop neighbors. Direct trust is reduced since a packet took that
path before and it was tampered. Direct trust re-calculation is done every time a
re-transmission is observed. Once the trust values go down compared to the other
possible paths, the packet takes an alternate path avoiding the MIP according to
the routing protocol and is received at the dest.

• Response was lost between dest and src: This means that the packet was
received at dest, but the response was not received by src. Again, src sends a
re-transmission that is received by dest. The dest observes that this is an address
that was previously served and sends the response again. Again, routers along
the path observe that this is a re-transmission and reduces direct trust. This
process is repeated until the response is received by src. This causes the routers
between src and dest to reduce trust unnecessarily (false negative). However, this
is not corrected because to do that, src has to keep track of all the paths the re-
transmitted packets took to reset trust values. Furthermore, the routers should
also maintain previous trust values. Therefore, false negatives are allowed to
happen. With several ongoing communications overlapped between routers, the
false negatives will regain trust over time.

Considering these scenarios, this method uses an event-driven approach to update
trust. The overview of the algorithm is shown in Algorithm 1. To keep track of the
re-transmissions and to increase/decrease direct trust according to that, a separate
data structure is implemented at each router “Communication Table” (ComTable).
It stores each pending communication using src, dest, address of corresponding
memory location (addr), timestamp to indicate when the entry was added to the
table, and a re-transmission flag (rtx flag). When a new packet arrives at a router, it
checks to see if there is a pending communication between the same src and dest by
matching src and dest fields in the packet header to entries in the ComTable (line 1).
If yes, it can either be for the same address (line 3) or for a different address. If it
is for a different address, it means that the previous communication has completed
successfully. If it is for the same address, then it is identified as a re-transmission.
The rtx flag is set to indicate this (line 4), and direct trust with the next hop
(getNextHop routine elaborated in Section 5.5.3) is reduced (line 6). If it is a new
communication, the rtx flag is checked to see whether the previous communication
between the same src and dest has not been flagged as a re-transmission before (line
8). If it has not been flagged before, the path can be trusted. Then, the direct trust
with next hop router is increased (line 10) and the trust is delegated (line 11) to
other neighbors as explained in Sect. 5.5.2. If it has already been flagged as a re-
transmission, no further action is taken since it has already been penalized and as
a result, direct trust has been reduced in a previous iteration (lines 4–6). In both
cases, when it is a new communication, the ComTable is updated by removing the
old entry and adding the new one (line 13). If it is the first communication that is
passing through that router for that src and dest pair, a new entry is added in the
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ComTable (line 16). The ComTable also records a timestamp for each entry. The
timestamp is used to stop the exponential growth of the ComTable by removing old
entries after a certain time threshold.

One limitation of this model is that it assumes that an IP will only send a second
request to the same destination once the first one is served. For architectures that
support multiple pending requests, this scheme can be easily extended. The sender
maintains a list of pending requests and adds a header bit in the next packet to
indicate that this is another request with the same src and dest but has a different
address. Then, the routers check this bit before removing the previous entry, and
trust is increased only if this bit is not set. The rest of the methodology remains the
same.

5.5.2 Delegating Trust in the NoC

Once a communication is successfully completed, trust about the next hop (Tα→β ) is
delegated to nearby routers by each router (delegateT rust routine in Algorithm 1).
This is done by broadcasting a packet that contains Tα→β with a pre-defined time-
to-live (τ ) value in the header in all directions except for the direction of the next hop
router. During experiments, τ = 1 is used. This causes the trust about the next hop
router to be delegated to all other neighboring routers. An illustrative example of this
mechanism is shown in Fig. 5.7. Once router α completes a communication where
according to the routing protocol, the next hop router is β, it sends the direct trust
value (Tα→β ) to B,D, and E. These three routers now calculate TB→β , TD→β and
TE→β , which are delegated trust values, according to the trust model in Sect. 5.4.2
(Eq. (5.6)). As a result, B,D, and E learn about the trustworthiness of a router (β)
two hops away from them.

It is possible that this delegated trust packet itself is tampered, and in that case,
delegated trust will not be updated. This has no impact since a delegated trust packet
being dropped means an MIP is on that path and its trust value will be negative.
Delegated trust is updated only when it comes from a trusted source with a positive
trust value according to Eq. (5.6).

5.5.3 Routing Protocol

The goal of the routing protocol is to avoid MIPs in the non-secure zone while
routing through the most trusted routers. Each router stores the trust values of routers
that are one (direct trust) and two hops away from it (delegated trust). When a router
receives a packet, it first updates the trust values according to Algorithm 1. Next,
the packet is forwarded to the next hop. Both forwarding and Algorithm 1 use the
getNextHop routine, which works as follows:
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Algorithm 1: Updating direct and delegated trust
This routine is called by each router every time a packet arrives.
Input: packet
Current node is assumed to be α

1: entry ← checkComT able(packet)

2: if entry �= NULL then
3: if entry.addr = packet.addr then
4: entry.rtxF lag ← 1
5: β ← getNextHop(packet)

6: Tα→β ← S(x − δ)

7: else
8: if entry.rtxFlag �= 1 then
9: β ← getNextHop(packet)

10: Tα→β ← S(x + δ)

11: delegateT rust ()

12: end if
13: updateComT able(packet)

14: end if
15: else
16: updateComT able(packet)

17: end if

Routine:checkComTable
Input: packet

18: for entry ∈ comT able do
19: if entry.src = packet.src & entry.dest = packet.dest then
20: return entry

21: end if
22: end for
23: return NULL

Routine:updateComTable
Input: packet

24: for entry ∈ comT able do
25: if entry.src = packet.src & entry.dest = packet.dest then
26: comT able.delete(entry)

27: end if
28: end for
29: newEntry.src ← packet.src, newEntry.dest ← packet.dest

30: newEntry.addr ← packet.addr, newEntry.rtxF lag ← 0
31: newEntry.timestamp ← 0
32: comT able.add(newEntry)

• Read the dest ID of the packet.
• Compare dest and current router IDs.

– If dest is located in the same row or column as the current router, the next hop
is the neighboring router along that row or column toward dest.

– Else, check the sum of trust values of routers one and two hops toward the
dest, and select the neighbor along the path that has the largest trust value as
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Fig. 5.7 Illustrative example showing that once a communication completes, the direct trust
between α and β (Tα→β ) is delegated to nodes one hop away from α

the next hop. If two paths have the same largest trust value, randomly pick
one.

For example, in Fig. 5.7, assume a packet arrives at router B with the destination
G. Since B is not in the same row or column as G, next hop is selected based on
trust values. When considering routers that are one and two hops away from B in the
direction of G, there are three possible paths: B −α−β, B −α−E, and B −C −E.
Therefore, B calculates max(TB→α +TB→β, TB→α +TB→E, TB→C +TB→E), and
if TB→C + TB→E gives the maximum trust value, next hop is C. Considering nodes
that are always toward the destination (in the example, B only considers α and
C as next hops) ensures that the packet traverses the network following only one
of the shortest paths. This together with the use of bi-directional links ensures the
deadlock- and livelock-free nature of the routing algorithm. This routing protocol
is identical to the congestion-aware routing protocol presented in [43] except that
this method uses trust values instead of congestion values. Therefore, it can be
shown that the routing protocol is also deadlock-free and livelock-free using the
same arguments from [43].

It is important to note that this trust-aware routing protocol works even if all the
IPs in the non-secure zone are malicious or, MIPs isolate the untrusted zone into
several disconnected subzones of secure IPs. If all the neighbors of a router have
a trust value of −1 (all routers are malicious), it will still be routed through that
path since −1 is the largest value. Therefore, the packet is guaranteed to reach the
destination but might be corrupted. If there is a path from source to destination that
does not contain an MIP, this approach is guaranteed to find that path and deliver
the packets without being corrupted.

5.6 Experiments

This section explores the feasibility and effectiveness of the approach by presenting
experimental results and discussing the overheads associated with it.
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5.6.1 Experimental Setup

An 8 × 8 Mesh NoC-based SoC was modeled with 64 cores using the gem5 cycle-
accurate full-system simulator [5, 13]. The interconnection network was built on
top of “GARNET2.0” model that is integrated with gem5 [1]. Each router in the
mesh topology connects to four neighbors and a local IP via bi-directional links.
Each IP connects to the local router through a network interface, which implements
the MAC-then-encrypt protocol. The default XY routing protocol was modified
to implement the trust-aware routing protocol. During experiments, δ = 0.5
(Eq. (5.10)) was used when increasing/reducing direct trust. The value 0.5 was
chosen experimentally such that the algorithm chooses alternative paths as quickly
as possible while minimizing the impact of false negatives.

The system was tested using 4 real benchmarks (FFT, RADIX, FMM, LU) from
the SPLASH-2 benchmark suite and 7 synthetic traffic patterns (uniform random
(URD), tornado (TRD), bit complement (BCT), bit reverse (BRS), bit rotation
(BRT), shuffle (SHF), transpose (TPS)). When running both real benchmarks and
synthetic traffic patterns, each IP in the top (first) row of the Mesh NoC instantiated
an instance of the task. Real benchmarks used 8 memory controllers that provide
the interface to off-chip memory, which were connected to the bottom eight IPs. As
synthetic traffic patterns do not use memory controllers, the destination of injected
packets was selected based on the traffic pattern. For example, uniform random
selected the destination from the IPs at the bottom row with equal probability.
Source and destination modelling was done this way to mimic the secure and
non-secure zones. Four MIPs were modeled and assigned at random to IPs in the
other six rows. To simulate the sporadic behavior of the MIPs as discussed in the
threat model, each MIP corrupted n consecutive packets after every p (period)
packets. According to the architecture model, the IPs in the top row (secure zone)
communicate with the IPs in the bottom row (secure zone) through the other 6 rows
(non-secure zone) of IPs out of which 4 are malicious. This approach will work
the same for any other secure, non-secure zone selection and MIP placement. The
output of the gem5 simulation statistics was fed to the McPAT power modelling
framework to obtain power consumption [33].

5.6.2 Performance Improvement

Figure 5.8 shows results related to the performance improvement when running
real benchmarks. The figure compares performance results without the presence of
MIPs (without MIP), with the presence of MIPs when default XY routing is used
(with MIP-default), and when this approach is used with the presence of MIPs (with
MIP-trust routing). We can observe that this approach reduces NoC delay by 53%
(43.6% on average) compared to the default XY routing protocol. Execution time
and number of packets injected are reduced by 9% (4.7% on average) and 71.8%
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Fig. 5.8 NoC delay, execution time, and number of packets injected with and without the trust-
aware routing model when running real benchmarks. p = 20 and n = 14. This figure is an
extension of Fig. 5.2. (a) NoC delay. (b) Execution time. (c) No. of packets injected

Fig. 5.9 Execution time and number of packets injected with and without the trust-aware routing
model when running synthetic traffic patterns. p = 20, n = 14. (a) NoC delay. (b) No. of packets
injected

(66% on average), respectively. When the MIPs corrupt packets, re-transmissions
are caused and its trust is reduced. As a result, alternative paths are chosen.
The performance improvement depends on how quickly the algorithm chooses an
alternative path once an attack is initiated.

In addition to real benchmarks, experiments were conducted with synthetic traffic
traces as well. Results related to synthetic traffic patterns are shown in Fig. 5.9. The
comparison is the same as that of Fig. 5.8. It shows that NoC delay and number of
packets injected on the NoC are reduced by 57.1% (51.2% on average) and 56.7%
(50.1% on average), respectively.
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Fig. 5.10 Energy consumption with and without the trust-aware routing model when running real
benchmarks and synthetic traffic patterns. p = 20, n = 14

5.6.3 Energy Efficiency Improvement

As a result of reduced execution time and reduced number of re-transmissions,
the energy consumption of the SoC also reduces. Figure 5.10 shows the energy
consumption comparison. Note that 47.4% (28.3% on average) of less energy is
consumed by real benchmarks when routing using the approach presented in this
chapter compared to the default XY routing in the presence of MIPs. Synthetic
traffic demonstrates energy savings of up to 75.6% (67.6% on average). Compared
to real benchmarks, synthetic traffic patterns show more energy reduction since
synthetic traffic focuses only on network traversals unlike real benchmarks that go
through the entire processor pipeline including instruction execution, NoC traversal,
and memory operations.

5.6.4 Overhead Analysis

To implement this routing protocol, additional hardware is required at each router.
This includes extra memory to store trust values and hardware to calculate, update,
and propagate trust. To accommodate a row in the ComTable, 10 bytes of memory
is required (6-bit src, 6-bit dest, 32-bit addr, 1-bit rtx flag, 32-bit timestamp). The
maximum size of the ComTable during the experiments was 24. This leads to 240
bytes of extra memory requirement per router.

The default 5-stage router pipeline (buffer write, virtual channel allocation,
switch allocation, switch traversal, and link traversal) was implemented in gem5.
Once separate hardware is implemented, computations related to trust can be carried
out in a pipelined fashion in parallel to the computations in the router pipeline. To
evaluate the area overhead, the RTL design of an open source NoC router [47] was
modified and synthesized the design with 180nm GSCLib library from Cadence
using Synopsis Design Compiler. This resulted in an area overhead of 6% compared
to the default router. This shows that the trust-aware routing protocol is lightweight
and can be effectively implemented at routers in an NoC-based SoC.



118 S. Charles and P. Mishra

5.7 Summary

In this chapter, we discussed denial-of-service attacks caused by packet corruption
in NoC-based SoCs. We outlined several work in the existing literature that
addressed the challenge and outlined a trust-aware routing protocol that is capable
of routing packets by avoiding malicious IPs. The routing protocol is implemented
based on a trust model that calculates how much a neighboring node can be trusted
to route packets through that router. The experiments conducted by using both
real benchmarks and synthetic traffic patterns demonstrated significant performance
and energy efficiency improvements compared to traditional XY routing in the
presence of a MAC-then-encrypt security protocol. Overhead analysis has revealed
that the area overhead to implement the routing protocol is only 6%. This approach
can be integrated with any existing authentication scheme as well as other threat
mitigation techniques, to secure the SoC while minimizing the performance and
energy efficiency degradation caused by malicious IP tampering packets.
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Chapter 6
Lightweight Anonymous Routing
for On-chip Interconnects

Subodha Charles and Prabhat Mishra

6.1 Introduction

The growth of general purpose as well as embedded computing devices has been
remarkable over the past decade. This was mainly enabled by the advances in
manufacturing technologies that allowed the integration of many heterogeneous
components on a single System-on-Chip (SoC). The drastic increase in SoC
complexity has led to a significant increase in SoC design and validation complexity
[3, 17, 21, 23, 39, 43–46]. The tight time-to-market deadlines and increasing com-
plexity of modern SoCs have led manufacturers to outsource intellectual property
(IP) cores from potentially untrusted third-party vendors [25, 30]. Therefore, the
trusted computing base of the SoC should exclude the third-party IPs. In fact,
measures should be taken since malicious third-party IPs (M3PIP) can launch
passive as well as active attacks on the SoC [2, 22, 24, 25, 41, 42, 47, 49]. Such
attacks are possible primarily because the on-chip interconnection network that
connects SoC components together, popularly known as Network-on-Chip (NoC),
has visibility of the entire SoC and the communications between IP cores. Previous
efforts have developed countermeasures against stealing information [9], snooping
attacks [53], and even causing performance degradation by launching denial-of-
service (DoS) attacks [13]. In this chapter, we discuss countermeasures for M3PIPs
operating under the following architecture and threat models.
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Fig. 6.1 Overview of a typical SoC architecture with IPs integrated on a Mesh NoC

Threat Model Figure 6.1 shows an SoC with heterogeneous IPs integrated on a
Mesh NoC. The two nodes marked as S (source) and D (destination) are trusted
IPs communicating with each other. M3PIPs integrated on the SoC (nodes shown in
red) have the following capabilities when packets pass through their routers:

• They can steal information if data is sent as plaintext.
• If data is encrypted and header information is kept as plaintext, they can gather

packets generated from the same source and intended to the same destination and
launch complex attacks such as linear/differential cryptanalysis since they belong
to the same communication session.

• When multiple M3PIPs are present on the same NoC, they can share information
and trace messages.

• An M3PIP can compromise the router attached to it and gather information stored
in the router. This can leak routing information. Assuming only some of the
IPs are acquired from untrusted third-party vendors, all routers will never be
compromised at the same time.

It is not feasible to utilize traditional security methods (encryption, authenti-
cation, etc.) in resource-constrained embedded devices. Previous studies explored
lightweight security architectures to mitigate threats. Previous work on lightweight
encryption proposed smaller block and key sizes, less rounds of encryption, and
other hardware optimizations [31]. This chapter proposes a Lightweight Encryption
and Anonymous Routing protocol for NoCs (LEARN) that requires only few
addition and multiplication operations for encryption. The proposed approach is
capable of eliminating the traditional encryption methods consisting of ciphers and
keys entirely by using the secret sharing approach proposed by Shamir [57] with-
out compromising the security guarantees. Furthermore, the framework supports
anonymous routing such that an intermediate node can neither detect the origin nor
the destination of a packet. Major contributions of this chapter can be summarized
as follows:
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• An anonymous routing scheme is proposed that hides both source and destination
information making the packets untraceable. Launching attacks on encrypted
data passing through a given router becomes more difficult when the packets
are untraceable and origins are unknown.

• A lightweight encryption scheme is developed that is based on secret sharing.
• The efficiency of the solution is discussed in detail compared to other existing

solutions.

The remainder of this chapter is organized as follows. Section 6.2 introduces
some key concepts used in this chapter. Section 6.3 discusses other related research
efforts in lightweight encryption and anonymous routing. Section 6.4 motivates the
need for this work. Section 6.5 describes the lightweight encryption and anonymous
routing protocol. Section 6.6 presents the experimental results. Section 6.7 discusses
possible further enhancements to the approach. Finally, Sect. 6.8 summarizes the
chapter.

6.2 Background

This section introduces some of the key concepts used in the proposed framework.

6.2.1 Symmetric and Asymmetric Encryption

Symmetric Encryption A symmetric encryption scheme takes the same key K for
both decryption and encryption. The encryption algorithm E produces the ciphertext
C by taking the key K and a plaintext M as inputs. This is denoted by C ← EK(M).
Similarly, the decryption algorithm D denoted by M ← DK(C) takes a key K and
a ciphertext C and returns the corresponding M . The correctness of the scheme is
confirmed when any sequence of messages M1, ...,Mu encrypted under a given key
K produces C1 ← EK(M1), C2 ← EK(M2),..., Cu ← EK(Mu), and is related as
DK(Ci) = Mi for each Ci .

Asymmetric Encryption In asymmetric encryption, also known as public key
encryption, different keys are used for encryption and decryption. Encryption
is done using the public key that is publicly known by all the entities in the
environment. An entity B that wants to send a message M to another entity A

will encrypt the message using A’s public key (with public key PKA) to produce
ciphertext C denoted by C ← EPKA

(M). The ciphertext can only be decrypted by
A’s secret key (private key) SKA corresponding to PKA. SKA is known by only A,
and therefore, only A can decrypt C to produce M denoted by M ← DSKA

(C).
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6.2.2 Authenticated Encryption with Associated Data

To encrypt packets in real-time embedded systems, the encryption scheme should
support high-speed encryption with low performance and power overhead. To
achieve this, the operation mode of the encryption scheme must support pipelined
and parallelized implementations. Furthermore, due to the nature of packets trans-
ferred and routing protocols used in the NoC, some of the packet fields such
as addresses, sequence numbers, and ports need to be transferred in plaintext.
These fields are mainly the header fields of the packet. This has motivated the
development of AEAD (Authenticated Encryption with Associated Data) schemes
where the packet payload is encrypted and header information is sent as plaintext.
The “Counter Mode” is a commonly used operation mode for encryption which
supports AEAD. Figure 6.2 shows an overview of counter mode including both
encryption and authentication components.

AEAD schemes can protect sensitive data from eavesdroppers while ensuring the
integrity of packets. However, since the header fields are sent as plaintext, attackers
can use this header information to identify packets from the same information flow
and launch more complex attacks as discussed under the threat model. If the header
field is encrypted as a solution to this vulnerability, the intermediate routers have to
decrypt headers to learn the next hop of the packet, which can lead to unacceptable
performance and energy overhead.

6.2.3 Secret Sharing with Polynomial Interpolation

Shamir’s secret sharing [57] is based on a property of Lagrange polynomials known
as the (k, n) threshold. It specifies that a certain secret M can be broken into n parts
and M can only be recovered if at least k (k ≤ n) parts are retrieved. The knowledge

Fig. 6.2 Encryption and authentication in counter mode
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of less than k parts leave M completely unknown. Lagrange polynomials meet this
property with k = n. A Lagrange polynomial is comprised of some k points (x0, y0),
..., (xk−1, yk−1) where xi �= xj (0 ≤ i, j ≤ k − 1). A unique polynomial of degree
k − 1 can be calculated from these points:

L(x) =
k−1∑

j=0

lj (x) · yj , (6.1)

where

lj (x) =
k−1∏

i=0,i �=j

x − xi

xj − xi

(6.2)

Any attempt to reconstruct the polynomial with less than k or incorrect points will
give the incorrect polynomial with the wrong coefficients and/or wrong degree.

L(x) forms the interpolated Lagrange polynomial, and lj (x) is the Lagrange
basis polynomial. In order to share a secret using this method, a random polynomial
of degree k − 1 is chosen. It takes the form of L(x) = a0 + a1x + a2x

2 +
. . . + ak−1x

k−1. The shared secret M should be set as a0 = M , and all the other
coefficients are chosen randomly. Then a simple calculation at x = 0 would yield
the secret (M = L(0)). In this case, k points on the curve are chosen at random and
distributed together with their respective lj (0) values—the Lagrangian coefficients.
To retrieve M , all the parties should share their portions of the secrets. Once all of
the k points and lj (0) coefficients are combined, then the secret can be computed as:

M =
k−1∑

j=0

lj (0) · yj (6.3)

This method makes it easier to compute M without having to recalculate each lj (x).

6.2.4 Router and Routing Protocol

The routers in an NoC comprise input buffers that accept packets from the local IP
via the NI or from other routers connected to it (in the Mesh topology, except for the
routers in the border, each router is connected to the local IP and four other routers).
Figure 6.3 shows an overview of the NoC packet traversal process. Based on the
addresses in the packet header and the routing protocol, the crossbar switch routes
data from the input buffers to the appropriate output port. Buffers are allocated for
virtual channels which help avoid deadlock. The switch allocator handles input port
arbitration for output ports [18].
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Fig. 6.3 Overview of an NoC traversal

The routing protocol defines the path a flit should take in a given topology.
Routing protocols are broadly classified as (1) deterministic routing protocols and
(2) adaptive routing protocols. In deterministic routing, each packet traversing from
S to D follows the same path. X-Y routing is one common example for deterministic
routing. In X-Y routing, packets use X-directional links first, before using Y-
directional links [19]. Adaptive routing takes network states such as congestion,
security, reliability into account and takes the flits through different paths based on
the current state of the network [65].

6.2.5 Anonymous Communication using Onion Routing

Onion routing is widely used in the domain of computer networks when routing has
to be done while keeping the sender anonymous. Each message is encrypted several
times (layers of encryption) analogous to layers of an onion. Each intermediate
router from source to destination (called onion routers) “peels” a single layer of
encryption revealing the next hop. The final layer is decrypted and message is read
at the destination. The identity of the sender is preserved since each intermediate
router only knows the preceding and the following routers. The overhead of
onion routing comes from the fact that the sender has to do several rounds of
encryption before sending the packet to the network and each intermediate router
has to do a decryption before forwarding it to the next hop. While this can be
done in computer networks, adopting this in resource-constrained NoCs leads to
unacceptable performance overhead as illustrated in Sect. 6.4.

6.3 Related Work

The current state of the art in NoC security revolves around protecting information
traveling in the network against side channel [54], physical [52], and software
attacks [5]. Other attacks such as denial-of-service [8, 13, 16] and buffer over-
flow [26, 36] have also been explored. Recent efforts try to combine the advantages
of logic testing and side-channel analysis for effective Trojan detection in integrated
circuits [29, 30, 37, 38, 40, 50]. However, developing efficient and flexible solutions
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Fig. 6.4 NoC-based many-core architecture connecting IPs on a single SoC using a 4 × 4 Mesh
topology. Communication between two IPs (in this case, a processor IP and a memory controller)
is encrypted so that an eavesdropper cannot extract the packet content

at lower costs and minimal impact on performance as well as how to certify
these solutions remain as challenges to the industry. It is not feasible to adopt the
security mechanisms used in the computer networks domain in NoC-based SoCs
due to the resource-constrained nature of embedded devices [10, 12, 14]. Security
has to be considered in the context of other non-functional requirements such as
performance, power, and area. Designers explore complementary directions. They
try to employ various techniques to improve energy efficiency in NoC-based SoCs
[4, 11, 14, 27, 28, 60]. They also try to optimize these security mechanisms to fit
the performance and power budgets of embedded systems. This thought process
has led to prior efforts on securing NoC-based SoC [5, 8, 15, 55, 56], which tried
to eliminate complex encryption schemes such as AES and replace them with
lightweight encryption schemes. Figure 6.4 shows a typical NoC-based many-core
architecture which encrypts packets transferred between IP cores. The packets are
encrypted at the network interface before being injected into the network and at the
destination, decryption is done before passing to the destination IP.

Intel’s TinyCrypt, a cryptographic library with a small footprint, is built for
resource-constrained devices [59]. It provides basic functionality to build a secure
system with minor overhead. It provides SHA-256 hash functions, message authen-
tication, a pseudo-random number generator which can run using minimal memory,
encryption, and the ability to create nonces1and challenges. Apart from Intel
TinyCrypt, several researches have proposed other lightweight encryption solutions
in the Internet-of-Things (IoT) domain [6, 48]. All of these solutions follow the
traditional encryption method which takes a key and a plaintext as inputs to produce
the ciphertext. In contrast, this chapter outlines a method where each router along
the routing path contributes a portion of the message such that the message changes
at each router and only the destination receives the entire message. This can be

1A nonce is a random number that is used only once during the lifetime of a cryptographic
operation.
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Fig. 6.5 Illustrative example for Onion routing

implemented using very few addition and multiplication operations leading to a
lightweight solution for secure communication.

Even if the data in a packet are encrypted, typically, source and destination
addresses are sent as plaintext for faster routing (e.g., AEAD schemes). Therefore,
eavesdroppers can easily extract this information. To prevent such attacks, the
route has to be anonymized. Hiding the source and destination information of NoC
packets can ensure that the malicious agents in the NoC are unable to select the
target application to eavesdrop. Existing work on anonymous routing (e.g., onion
routing, mix-nets, dining cryptographers, etc.) considers mobile ad-hoc networks
(MANETS) [33, 35, 51] as well as computer and vehicular networks [64]. The idea
behind the widely used onion routing is explained in Sect. 6.2.5. An illustrative
example is shown in Fig. 6.5. The main challenge in using these anonymous
routing protocols in resource-constrained SoCs is that the protocol uses decryption
(“peeling the onion”) at each hop leading to unacceptable performance overhead.
Optimized anonymous routing protocols in MANETS (e.g., [51]) use an on-demand
lightweight anonymous routing protocol that eliminates per-hop decryption. How-
ever, the MANETS environment is fundamentally different from an NoC. Their
work cannot address the unique communication requirements of an NoC as well as
not designed for task migration and context switching.

Ancajas et al. [5] presented a lightweight solution that is compatible with the
NoC context. Their work proposed to migrate applications periodically to another
node in the SoC. The SoC firmware maintains the relevant information and initiates
a seamless migration periodically. As a result, the source and destination addresses
are decoupled making it harder for a malicious agent to launch the attack. In
contrast, this chapter outlines a method which defines the routing path using a three-
way handshake that only exposes the preceding and following routers at each hop.
The entire routing path as well as the source and destination details are hidden.
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6.4 Motivation

Security and performance is always a trade-off in resource-constrained systems.
While computer networks with potentially unlimited resources can accommodate
very strong security techniques such as AES encryption and onion routing, utilizing
them in resource-constrained NoCs can lead to unacceptable overhead. To evaluate
this impact, FFT, RADIX (RDX), FMM, and LU benchmarks from the SPLASH-2
benchmark suite [62] were run on an 8 × 8 Mesh NoC-based SoC with 64 IPs using
the gem5 simulator [7] considering three scenarios:

• No-Security: NoC does not implement encryption or anonymous routing.
• Enc-only: NoC secures data by encrypting before sending into the network.

However, it does not support anonymous routing.
• Enc-and-AR: Data encryption as well as anonymous routing achieved by onion

routing.

A 12-cycle delay was assumed for encryption/decryption when simulating Enc-
only and Enc-and-AR according to the evaluations in [55]. More details about
the experimental setup is given in Sect. 6.6.1. Results are shown in Fig. 6.6. The
values are normalized to the scenario that consumes the most time. Enc-only shows
42% (40% on average) increase in NoC delay (total NoC traversal delay for all
packets) and 9% (7% on average) increase in execution time compared to the
No-Security implementation. Enc-and-AR gives worse results with 83% (81% on
average) increase in NoC delay leading to a 41% (33% on average) increase in
execution time when compared with No-Security. In other words, Enc-and-AR
leads to approximately 1.5X performance degradation. When security is considered,
No-Security leaves the data totally vulnerable to attackers, Enc-only secures the
data by encryption and Enc-and-AR provides an additional layer of security

Fig. 6.6 NoC delay and
execution time comparison
across different levels of
security. (a) NoC delay.
(b) Execution time
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with anonymous routing. The overhead of Enc-only is caused by the complex
mathematical operations, and the number of cycles required to encrypt each packet.
Onion routing used in Enc-and-AR aggravates this by requiring several rounds of
encryption before injecting the packet into the network as well as decryption at
each hop (router). Added security has less impact on execution time compared to
NoC delay since execution time also includes the time for instruction execution
and memory operations in addition to NoC delay. In many embedded systems, it
would be unacceptable to have security at the cost of 1.5X performance degradation.
It would be ideal if the security provided by Enc-and-AR can be achieved while
maintaining performance comparable to No-security. The approach outlined in
this chapter tries to achieve this goal by introducing a lightweight encryption and
anonymous routing protocol as described in the next section.

6.5 Lightweight Encryption and Anonymous Routing
Protocol

This section describes the proposed approach—Lightweight Encryption and Anony-
mous Routing protocol for NoCs (LEARN). By utilizing secret sharing based on
polynomial interpolation [57], LEARN negates the need for complex cryptographic
operations to encrypt messages. A forwarding node would only have to compute
the low overhead addition and multiplication operations to hide the contents of
the message. As the message passes through the forwarding path, its appearance
is changed at each node, which makes the message’s content and route safe from
eavesdropping attackers as well as internal ones. The following sections describe the
approach in detail. First, we provide an overview of the framework in Sect. 6.5.1.
Next, Sects. 6.5.2 and 6.5.3 describe the two major components of the proposed
routing protocol (route discovery and data transfer). Finally, Sect. 6.5.4 outlines how
to efficiently manage relevant parameters during anonymous routing.

6.5.1 Overview

LEARN has two main phases as shown in Fig. 6.7. When an IP wants to commu-
nicate with another IP, it first completes the “Route Discovery” phase. The route
discovery phase sends a packet and discovers the route, distributes the parameters
among participants. Then the “Data Transfer” phase transfers the message securely
and anonymously. The route discovery phase includes a three-way handshake
between the sender and the destination nodes. The handshake uses 3 out of the 4
main types of packets sent over the network with the fourth type being used in the
second phase. The four main packet types are:
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Fig. 6.7 Overview of the proposed framework (LEARN)

1. RI (Route Initiate)—flooded packet from sender S to destination D to initialize
the conversation.

2. RA (Route Accept)—packet sent from D to accept new connection with S.
3. RC (Route Confirmation)—sent from S to distribute configuration parameters

with intermediate nodes.
4. DT (Data)—the data packet from S to D that is routed anonymously through

the NoC.

Algorithm 1 outlines the major steps of LEARN. During the three-way hand-
shake, a route between S and D is discovered. Each router along the routing path
is assigned with few parameters that are used when transferring data—(i) random
nonces to represent preceding and following routers (line 2), and (ii) a point in a
random polynomial together with its Lagrangian coefficient (line 3). This marks the
end of the first phase which enables the second phase—“Data Transfer.” The second
phase uses the parameters assigned to each router to forward the original message
through the route anonymously while hiding its contents. Anonymous routing is
achieved by using the random nonces which act as virtual circuit numbers (VCN).
When transferring data packets, the intermediate routers will only see the VCNs
corresponding to the preceding router and the following router which reveals no
information about the source or the destination (line 7). Encryption is achieved
using the points in the random polynomial and their corresponding Lagrangian
coefficients. Each router along the path changes the contents of the message in
such a way that only the final destination will be able to retrieve the entire message
(line 6).

Algorithm 1: Major steps of LEARN
Phase I - Route Discovery

1: for all r ∈ routers do
2: r ← υi, υj  nonces to identify VCNs
3: r ← (xk, yk, bk)  a point in a random polynomial
4: end for

Phase II - Data Transfer
5: while r �= destination do
6: m ← F (m, (xk, yk, bk))  modify message
7: r ← getNextHop(υi, υj )  get next hop
8: end while
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Table 6.1 Notations used to illustrate LEARN

Notation Description

OPK
(i)
S One-time public key (OPK) used by the source to uniquely identify an RA packet

OSK
(i)
S Private key corresponding to OPK

(i)
S

ρ Random number generated by the source

PKD The global public key of the destination

SKD The private key corresponding to PKD

T PK
(i)
A Temporary public key of node A

T SK
(i)
A The private key corresponding to T PK

(i)
A

KS−A Symmetric key shared between S and A

υA Randomly generated nonce by node A

bi Lagrangian coefficient of a given point (xi , yi )

EK(M) A message M encrypted using the key K

LEARN improves performance by replacing complex cryptographic operations
with addition/multiplication operations that consume significantly less time during
the data transfer phase. The overhead occurs during the first phase (route discovery)
that requires cryptographic operations. However, this is performed only a constant
number of times (once per communication session). Since the route discovery
phase happens only once in the beginning of a communication session, the cost
for route discovery gets amortized over time. This leads to significant performance
improvement.

Note that the route discovered at the route discovery stage will remain the same
for the lifetime of the task. In case of context switching and/or task migration, the
first phase will be repeated before transferring data. Each IP in the SoC that uses
the NoC to communicate with other IPs follows the same procedure. The next two
sections describe these two phases in detail. A list of notations used to illustrate the
idea is listed in Table 6.1. The superscript “i” is used to indicate that the parameter
is changed for each packet of a given packet type.

6.5.2 Route Discovery

The route discovery phase performs a three-way handshake between the sender S

and destination D. This includes broadcasting the first packet—RI from S with the
destination D, getting a response (RA) from D acknowledging the reception of
RI, and finally, sending RC with the parameters required to implement polynomial
interpolation based secret sharing. Figure 6.8 shows an illustrative example of
parameters (using only four nodes) shared and stored during the handshake.
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Fig. 6.8 Steps of the three-way handshake and the status of parameters at the end of the process

The initial route initiate packet (RI ) takes the form:

{
RI ‖ OPK

(i)
S ‖ EPKD

(OPK
(i)
S ‖ ρ) ‖ T PK

(i)
S

}

The first part of the message indicates the type of packet being sent, RI in this
case. OPK

(i)
S refers to the one-time public key associated with the sender node.

This public key together with its corresponding private key OSK
(i)
S change with

each new conversation or RI . This change allows for a particular conversation to
be uniquely identified by these keys, which are saved in its route request table.
ρ is a randomly generated number by the sender that is concatenated with the
OPK

(i)
S and then encrypted with the destination node’s public key PKD as a global

trapdoor [32]. Since PKD is used to encrypt, only the destination is able to open
the trapdoor using SKD . Then the T PK

(i)
S is attached to show the temporary key

of the forwarding node, which is initially the sender. The temporary keys are also
implemented as one-time trapdoors to ensure security.

The next node, r1, to receive the RI messages goes through a few basic steps.
Firstly, it checks for the OPK

(i)
S in its key mapping table, which would indicate a

duplicated message. Any duplicates are discarded at this step. Next, r1 will attempt
to decrypt the message and retrieve ρ. Success would indicate that r1 was the
intended recipient D. If not, r1 replaces T PK

(i)
S with its own temporary public

key T PK
(i)
r1 and broadcasts:

{
RI ‖ OPK

(i)
S ‖ EPKD

(OPK
(i)
S ‖ ρ) ‖ T PK

(i)
r1

}
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r1 also logs OPK
(i)
S and T PK

(i)
S from the received message and T SK

(i)
r1 corre-

sponding to T PK
(i)
r1 in its key mapping table. This information is used later when

an RA message is received from D.
D will eventually receive the RI message and will decrypt using SKD . This will

allow D to retrieve OPK
(i)
S and ρ from EPKD

(OPK
(i)
S ‖ρ). Then to verify that the

RI has not been tampered with, D will compare the plaintext OPK
(i)
S and the now

decrypted OPK
(i)
S . If they are different, the RI is simply discarded. Otherwise, D

sends a RA (route accept) message:

{
RA ‖ E

T PK
(i)
r2

(E
OPK

(i)
S

(ρ ‖ υD ‖ KS−D))
}

(6.4)

RA, like RI in the previous message, is there to indicate message type. D generates
a random nonce, υD , to serve as a VCN and a randomly selected key KS−D to act as
a symmetric key between S and D. D stores υD and KS−D in its key mapping
table. It also makes an entry in its routing table indexed by υD , the VCN. The
concatenation of ρ, υD , and KS−D is then encrypted with the OPK

(i)
S , so that only

S can access that information. Then the message is encrypted again by T PK
(i)
r2 , r2’s

temporary public key, with r2 being the node that delivered RI to D.
Once r2 receives the RA, it decrypts it using its temporary private key, T SK

(i)
r2 ,

and follows the same steps as D. It generates its own nonce, υr2, and shared
symmetric key, KS−r2, to be shared with S. Both the nonce and symmetric key are
then concatenated to the RA message and encrypted by S’s public key, OPK

(i)
S , so

that only S can retrieve that data. This adds another layer of encrypted content to the
message for S to decrypt using OSK

(i)
S . Similar to D, r2 also stores υr2 and KS−r2

in its key mapping table and routing table. It then finds the temporary public key for
the previous node in the path from its key mapping table—T PK

(i)
r1 and encrypts the

message. The message sent out by r2 looks like:
{
RA ‖ E

T PK
(i)
r1

(
E

OPK
(i)
S

(
E

OPK
(i)
S

(ρ ‖ υD ‖ KS−D) ‖ υr2 ‖ KS−r2

))}

(6.5)

This process is repeated at each node along the path until the RA packet makes its
way back to S. The entire message at that point is encrypted with T PK

(i)
S , which is

stripped away using T SK
(i)
S . Then S can “peel” each layer of the encrypted message

by OSK
(i)
S to retrieve all the VCNs, shared symmetric keys, and also, ρ. ρ is used

to authenticate that the entire message came from the correct destination and was
not changed during the journey.

Once S completes authentication of the received RA packet, it randomly
generates k + 1 points (x0, y0), (x1, y1), ..., (xk, yk) on a k degree polynomial L(x)

as shown in Fig. 6.9. k + 1 is the number of nodes in the path from S to D. S then
uses these points to calculate the Lagrangian coefficients, b0, b1, ..., bk , using:
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Fig. 6.9 Lagrangian
polynomials L(x) and L′(x)

together with the selected
points

bj =
k∏

i=0,i �=j

xi

xi − xj

(6.6)

Using the generated data, S constructs a route confirmation (RC) packet:

{
RC ‖ υr1 ‖ EKS−r1(x1 ‖ y1 ‖ b1 (6.7)

‖ υr2 ‖ EKS−r2(x2 ‖ y2 ‖ b2 ‖ υD ‖ EKS−D
(x3 ‖ y3 ‖ b3)))

}

Similar to the case in RA and RI, RC in the packet refers to the packet type. The rest
of the message is layered much like the previous RA packet. Each layer contains
the υ∗ for each node concatenated with secret information that is encrypted with the
shared key KS−∗, where * corresponds to r1, r2, or D in the example (Fig. 6.8). The
(υ∗, KS−∗) pair was generated by each node during the RA packet transfer phase
and the values were stored in the key mapping tables as well as entries indexed
by the VCNs created in the routing table. Therefore, each node can decrypt one
layer, store incoming and outgoing VCNs together with the secret, and pass it on
to the next node to do the same. For example, r1 receiving the packet can observe
that the incoming VCN is υr1. It then decrypts the first layer using the symmetric
key KS−r1, that is already stored in the key mapping table, and recovers the secret
(x1, y1, b1) as well as the outgoing VCN υr2. It then updates the entry indexed by
υr1 in its routing table with the secret tuple and the outgoing VCN. Similarly, each
router from S to D can build its routing table.

6.5.3 Data Transfer

The path set up can now be used to transfer messages from S to D anonymously. For
each conversation, k + 1 points were generated on a random curve L(x) chosen by
S. During the last step of the route discovery phase (RC packet), S kept (x0, y0, b0)

for itself and distributed each node on the discovered path a different point, (xi, yi)

(where 1 ≤ i ≤ k), with the corresponding Lagrangian coefficient bi . If S wants
to send the message M to D, S has to generate a new k degree polynomial L′(x)
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which is defined by the k points distributed to nodes except for (x0, y0), i.e., points
(xi, yi) where (1 ≤ i ≤ k) and a new point (0,M). This makes L′(0) = M with M

as the secret message, according to the explanation in Sect. 6.2.3. S then changes its
own point (x0, y0) to (x0, y

′
0) where y′

0 = L′(x0), making sure the point retained by
S is also on the curve L’(x) as shown in Fig. 6.9. It is important to note that every
coefficient bi and every point distributed to nodes along the route remain unchanged.
For this scenario, considering Eq. (6.3), we can derive:

M = y′
0b0 +

k∑

i=1

bi · yi (6.8)

To transfer a secret message, M , from S to D anonymously, S constructs data
transfer (DT ) packet with the form:

{
DT ‖ υr1 ‖ y′

0b0
}

(6.9)

DT , like every other packet, has an indicator of packet type at the front of the
packet—DT . υr1 is the VCN of the next node. y′

0b0 is the portion of the message
M that is constructed by S. Once r1 receives the DT packet, it adds its own portion
of the message, y1b1, to y′

0b0. It also uses its routing table to find the VCN of the
next node and replaces the incoming VCN by the outgoing VCN in the DT packet.
Therefore, the message received by r2 has the form:

{
DT ‖ υr2 ‖ y′

0b0 + y1b1
}

(6.10)

Next, r2 repeats the same process and forwards the packet:

{
DT ‖ υD ‖ y′

0b0 + y1b1 + y2b2
}

(6.11)

to D. Eventually, D will be able to retrieve the secret message, M = y′
0b0 + y1b1 +

y2b2 + y3b3 by adding the last portion y3b3 constructed using the part of the secret
D shared. Using this method, neither an intermediate node nor an eavesdropper in
the middle will be able to see the full message since the message M is incomplete
at every intermediate node and is fully constructed only at the destination D.

6.5.4 Parameter Management

To ensure the efficient implementation of LEARN, an important aspect needs to
be addressed—the generation and management of keys and nonces. Many previous
studies have addressed this problem in several ways. One such example is the work
done by Lebiednik et al. [34]. In their work, a separate IP called the key distribution
center (KDC) handles the distribution of keys. Each node in the network negotiates
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a new key with the KDC using a pre-shared portion of memory that is known by
only the KDC and the corresponding node. The node then communicates with the
KDC using this unique key whenever it wants to obtain a new key. The KDC can
then allocate keys depending on whether it is symmetric/asymmetric encryption, and
inform other nodes as required. The key request can delay the communication. But
once keys are established, it can be used for many times depending on the length
of the encrypted packet before refreshing to prevent linear distinguishing attacks.
In this approach, the keys are only used during the route discovery phase, and the
discovered route will remain the same for the lifetime of the task unless context
switching or task migration happens. Therefore, key refreshing will rarely happen
and the cost for the initial key agreement as well as the route discovery phase will
be amortized.

6.6 Experiments

This section presents results to evaluate the efficiency of the approach (LEARN). We
first describe the experimental setup. Next, we compare the performance of LEARN
with traditional encryption and anonymous routing protocols introduced in Sect. 6.4.
Finally, we discuss the area overhead and security aspects of LEARN.

6.6.1 Experimental Setup

Extending the results presented in Fig. 6.6, LEARN was tested on an 8 × 8
Mesh NoC-based SoC with 64 IPs using the gem5 cycle-accurate full-system
simulator [7]. The NoC was built using the “GARNET2.0” model that is integrated
with gem5 [1, 12]. The route discovery phase of the approach relies on the RI,RA,
and RC packets traversing along the same path to distribute the keys and nonces.
Therefore, the topology requires bidirectional links connecting the routers. While
the experiment were conducted on a Mesh NoC, there are many other NoC
topologies that can adopt LEARN where all links are bidirectional as evidenced
by academic research [1] as well as commercial SoCs [58].

Each encryption/decryption is modeled with a 12-cycle delay [55]. Computations
related to generating the random polynomial and deciding the k points are assumed
to consume 200 cycles. To accurately capture congestion, the NoC was modeled
with 3-stage (buffer write, route compute + virtual channel allocation + switch
allocation, and link traversal) pipelined routers with wormhole switching and 4
virtual channel buffers at each input port. Each link was assumed to consume one
cycle to transmit packets between neighboring routers. The delays were chosen to
be consistent with the delays of components in the gem5 simulator.
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The default gem5 and Garnet2.0 configurations were used for packet sizes,
virtual channels, and flow control. In addition to the four main types of packets
described in Sect. 6.5.1, the DT packets can be further divided into two categories
as control and data packets. For example, in case of a cache miss, a memory request
packet (control packet) is injected into the NoC and the memory response packet
(data packet) consists of the data block from the memory. The address portion of
a control DT packet consists of 64 bits. In the data DT packet, in addition to
the 64-bit address, 512 bits are reserved for the data block. A credit-based, virtual
channel flow control was used in the architecture. Each data VC and control VC was
allocated buffer depths of 4 and 1, respectively.

LEARN was tested using 6 real benchmarks (FFT, RADIX, FMM, LU, OCEAN,
CHOLESKY) from the SPLASH-2 benchmark suite and 6 synthetic traffic patterns:
uniform random (URD), tornado (TRD), bit complement (BCT), bit reverse (BRS),
bit rotation (BRT), transpose (TPS). Out of the 64 cores, 16 IPs were chosen at
random and each one of them instantiated an instance of the task. The packets
injected into the NoC when running the real benchmarks were the memory request-
s/responses. 8 memory controllers were used that provided the interface to off-chip
memory which were placed on the boundary of the SoC. This memory controller
placement adheres to commercial SoC architectures such as Intel’s Knights Landing
(KNL) [58]. An example to illustrate the IP placement is shown in Fig. 6.10.

When running real benchmarks, the packets get injected to the NoC when there
are private cache misses and the frequency of that happening depends on the
characteristics of the benchmark. When running synthetic traffic patterns, packets
were injected into the NoC at the rate of 0.01 packets/node/cycle. For synthetic
traffic patterns, the destinations of injected packets were selected based on the
traffic pattern. For example, uniform random selected the destination from the
remaining IPs with equal probability whereas bit complement, complemented the

Fig. 6.10 8 × 8 Mesh NoC architecture used to generate results including trusted nodes running
the tasks and communicating with memory controllers while untrusted nodes can potentially have
malicious IPs
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Fig. 6.11 NoC delay and execution time comparison across different security levels using real
benchmarks. (a) NoC delay. (b) Execution time

bits of the source address to get the destination address, etc. The choices made
in the experimental setup were motivated by the architecture/threat model and the
behavior of the gem5 simulator. However, LEARN can be used with any other NoC
topology and task/memory controller placement.

6.6.2 Performance Evaluation

Figure 6.11 shows performance improvement LEARN can gain when running real
benchmarks. The results from LEARN were compared against the three scenarios
considered in Fig. 6.6. Compared to the No-Security scenario, LEARN consumes
30% more time (28% on average) for NoC traversals (NoC delay) and that results in
only 5% (4% on average) increase in total execution time. Compared to Enc-and-AR
which also implements encryption and anonymous routing, LEARN improves NoC
delay by 76% (74% on average) and total execution time by 37% (30% on average).
We can observe from the results that the performance of LEARN is even better than
Enc-Only, which provides encryption without anonymous routing. Overall, LEARN
can provide encryption and anonymous routing consuming only 4% performance
overhead compared to the NoC that does not implement any security features.

The same experiments were carried out using synthetic traffic traces, and results
are shown in Fig. 6.12. Since synthetic traffic patterns only simulate NoC traffic
and do not include instruction execution and memory operations, only NoC delay is
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Fig. 6.12 NoC delay comparison across different levels of security when running synthetic traffic
patterns

shown in the figure. Compared to Enc-and-AR, LEARN improves performance by
76% (72% on average).

The performance improvement of LEARN comes from the fact that once the
path has been set up for the communication between any two IPs, the overhead
caused to securely communicate between the two IPs (data transfer phase) while
preserving route anonymity is much less. The notable overhead occurs at the
route discovery phase due to complex cryptographic operations. The intermediate
nodes encrypt/decrypt packets to exchange parameters securely. Yet, these complex
cryptographic operations are performed only a constant number of times. Majority
of the work is done at the source which selects points to be distributed among
intermediate nodes after constructing a curve, calculates the Lagrangian coefficients
of the selected points, and performs several rounds of encryption/decryption during
the three-way handshake. Once the routing path is set up, packets can be forwarded
from one router to the other by a simple table look-up. No per-hop encryption
and decryption is required to preserve anonymity. The security of a message is
ensured by changing the original message at each node using a few addition and
multiplication operations which incur significantly fewer extra delays. Since the
route discovery phase happens only once during the lifetime of a task unless context
switching and/or task migration happens, and there is only a limited number of
communications going on between IPs in an SoC, the cost during the route discovery
phase gets amortized over time. When running real benchmarks, the packet ratio was
observed to be 1:1:1:6325 on average for RI : RA : RC : DT , respectively. For
synthetic traffic patterns, the same ratio was 1:1:1:1964. This leads to a significant
performance improvement compared to the traditional methods of encryption and
anonymous routing.

6.6.3 Area Overhead of the Key Mapping Table

The key mapping table is an extra table compared to No-Security approach used to
implement the anonymous routing protocol. The key mapping table adds a row for
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each session. Therefore, the size of the key mapping table is linearly proportional
to the number of sessions. If at design time, it is decided to have a fixed size for the
key mapping table, it is possible for the key mapping table at a router to be full after
adding sessions, and in that case, new sessions cannot be added through that router.
Therefore, the size has to be decided according to the communication requirements.

The maximum number of communication pairs in an 8 × 8 Mesh is
(64

2

) × 2 =
4032 (assuming two-way communication between any pair out of the 64 nodes).
Depending on the address mapping, only some node pairs (out of all the possible
node pairs) communicate. The simulations consisted of 256 unique node pairs. In
the worst case, if each communication session is assumed to have one common
router, the key mapping table should be 256 × rowsize big. If each entry in the
key mapping table is 128 bits, the total size becomes 20 kB. However, in reality, not
all communication sessions overlap. It is also important to note that except for the
Session ID in the key mapping table, the other entries can be overwritten once route
discovery phase is complete. Therefore, it is possible to allocate a fixed size key
mapping table during design time and yet keep the area overhead low.

6.6.4 Security Analysis

In this section, we discuss the security and privacy of messages transferred on the
NoC using LEARN.

Security ofMessages The security of messages is preserved by the (k, n) threshold
property of Lagrangian polynomials discussed in Sect. 6.2.3. Therefore, unless an
intermediate node can gather all points distributed among the routers in the routing
path together with their Lagrangian coefficients, the original message cannot be
recovered. The threat model states that the source and destination are trusted IPs, and
also, only some of the IPs are untrusted. Therefore, all routers along the routing path
will never be compromised at the same time. The threat comes from malicious IPs
sitting on the routing path and eavesdropping to extract security critical information.
LEARN ensures that intermediate nodes that can be malicious, cannot recover the
original message during the data transfer phase by changing the message at each
hop. The complete message can only be constructed at the destination. During route
discovery phase, each packet is encrypted such that only the intended recipient can
decrypt it. The key and nonce exchange is also secured according to the mechanism
proposed in Sect. 6.5.4. Therefore, LEARN ensures that no intermediate M3PIP can
gather enough data to recover the plaintext from messages.

Anonymity of Nodes in the Network LEARN preserves the anonymity of nodes
in the network during all of its operational phases. When the source sends the initial
RI packet to initiate the three-way handshake, it does not use the identity of the
destination. Instead, the source uses the global public key of the destination (PKD)
and sends a broadcast message on the network. When the RI packet propagates
through the network, each intermediate node saves a temporary public key of
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its predecessor. This temporary public key is then used to encrypt data when
propagating the RA packet so that unicast messages can be sent to preceding nodes
without using their identities. Random nonces and symmetric keys are assigned to
each node during the RA packet propagation which in turn is used by the RC packet
to distribute points and Lagrangian coefficients to each node. Data transfer is done
by looking up the routing table that consists of the nonces representing incoming
and outgoing VCNs. Therefore, the identities of the nodes are not revealed at any
point during communication.

Anonymity of Routes Taken by Packets In addition to preserving the anonymity
of nodes, LEARN also ensures that the path taken by each packet is anonymous.
Anonymity of the routing path is ensured by two main characteristics. (1) The
message is changed at each hop. Therefore, even if there are two M3PIPs on the
same routing path, information exchange among the two M3PIPs will not help in
identifying whether the same message was passed through both of them. The same
message appears as two completely different messages when passing through two
different nodes. (2) The routing table contains only the preceding and following
nodes along the routing path. An M3PIP compromising a router will only reveal
information about the next hop and the preceding hop. Therefore, the routing paths
of all packets remain anonymous.

6.7 Discussion

In this section, we discuss possible alternatives to the design choices from both
design overhead and security perspectives. Most importantly, we discuss security
solutions to defend against attacks when an attacker is aware that LEARN is
implemented a security mechanism.

6.7.1 Feasibility of a Separate Service NoC

Modern SoCs use multiple physical NoCs to carry different types of packets [58,
61]. The KNL architecture used in Intel Xeon-Phi processor family uses four
parallel NoCs [58]. The Tilera TILE64 architecture uses five Mesh NoCs, each
used to transfer packets belonging to a certain packet type such as main mem-
ory, communication with I/O devices, and user-level scalar operand and stream
communication between tiles [61]. The decision to implement separate physical
NoCs is dependent on the performance versus area trade-off. If only one physical
NoC is used to carry all types of packets, the packets must contain header fields
such as RI,RA,RC,DT to distinguish between different types. The buffer space
is shared between different packet types. The SoC performance can deteriorate
significantly due to these factors coupled with the increasing number of IPs in an
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SoC. On the other hand, contrary to intuition, due to the advancements in chip
fabrication processes, additional wiring between nodes incur minimal overhead
as long as the wires stay on-chip. Furthermore, when wiring bandwidth and on-
chip buffer capacity is compared, the more expensive and scarce commodity is
the on-chip buffer area. If different packet types are carried on NoC using virtual
channels and buffer space is shared [20], the increased buffer spaces and logic
complexity to implement virtual channels become comparable to another physical
NoC. A comprehensive analysis of having virtual channels versus several physical
NoCs is given in [63].

It is possible to use two physical NoCs—one for data (DT ) packet transfers
and the other to carry packets related to the handshake (RI,RA,RC). However,
in LEARN, the potential performance improvement from a separate service NoC
is not enough to justify the area and power overhead. LEARN is envisioned to be a
part of a suite of NoC security countermeasures that can address other threat models
such as denial-of-service, buffer overflow, etc. The service NoC will be effective in
such a scenario where more service type packets (e.g., DoS attack detection related
packets [13]) are transferred through the NoC.

6.7.2 Obfuscating the Added Secret

An attacker who is aware of the security mechanism can try to infer a communica-
tion path by observing the incoming and outgoing packets at a router.

Since each intermediate node adds a constant value (yibi) to the received DT
packet, the difference between incoming and outgoing DT packets at each node will
be the same for a given virtual circuit. For this attack to take place, two consecutive
routers have to be infected by attackers and they have to collaborate. Alternatively,
a Trojan in a router has to have the ability to observe both incoming and outgoing
packets at the router. While these are strong security assumptions, it is important to
address this loophole. In this Section, a countermeasure is presented against such an
attack. Even in the presence of such an attack, the secret message cannot be inferred
since the complete message is only constructed at the destination and according to
the threat model, it is assumed that the source and destination IPs are trustworthy.

This can be solved by changing the shared secret at each node for each message.
However, generating and distributing secrets for each node per message can incur
significant performance overhead. Therefore, a solution is proposed based on each
node updating its own secret. According to Eq. (6.6), to derive a new Lagrangian
coefficient bi , the x coordinates should be changed. The source can easily do it for
each message by changing both x0 and y0 when a new message needs to be sent. In
other words, rather than changing the point (x0,y0) to (x0,y′

0), it should be changed
to (x′

0,y′
0). However, the new x′

0 now has to be sent to each intermediate node for
them to be able to calculate the new secrets using:
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b′
j = bj · x′

0

x′
0 − xj

· x0 − xj

x0
(6.12)

Such communications should be avoided for performance as well as security
concerns. An alternative is to use a function F (x0, δ) that can derive the next x-
coordinate starting from the initial x0.

x′
0 = F (x0, δ) (6.13)

where F (x0, δ) can be a simple incremental function such as F (x0, δ) = x + δ. δ

can be a constant. To increase security, δ can be picked using a pseudo-random
number generator (PRNG) seeded with the same value at each iteration. Using
such a method will change the shared secrets at each iteration and that will remove
correlation between incoming and outgoing packets at a node.

6.7.3 Hiding the Number of Layers

Another potential vulnerability introduced by LEARN is that attackers who are
aware of the security mechanism, can infer how far they are from the source and
destination based on the size of the RA and RC packets. However, except for
the corner case where the source/destination is at the edge of a certain topology,
there can be more than one choice for potential source/destination candidates.
Experiments presented in this chapter used the Mesh topology in which from the
perspective of any node, there can be more than one node that is at distance
d away. However, the attacker can reduce the set of possible source/destination
candidates for a given communication stream. Therefore, depending on the security
requirements, this vulnerability can be addressed using the mechanism proposed in
this section.

After receiving the RI Packet, when the RA packet is initiated at D, D generates
m 〈nonce, key〉 pairs (〈υ1

D,K1
S−D〉, 〈υ2

D,K2
S−D〉, ..., 〈υm

D,Km
S−D〉) and adds m

layers to the packet. As a result, the RA packet sent from D to r2 takes the form:

{RA ‖ E
T PK

(i)
r2

(E
OPK

(i)
S

(...E
OPK

(i)
S

(E
OPK

(i)
S

(ρ ‖ υ1
D

‖ K1
S−D) ‖ υ2

D ‖ K2
S−D)... ‖ υm

D ‖ Km
S−D))}

D stores the 〈nonce, key〉 pairs in its key mapping table. When S receives the RA

packet, S cannot distinguish whether the m pairs were generated from multiple
nodes or one node. Therefore, when the RC packet is generated at S, instead of
generating k + 1 points (corresponding to the number of nodes in the path), the
number of generated points depends on the number of 〈nonce, key〉 pairs received.
During RC packet transfer, each intermediate node along the routing path stores
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Fig. 6.13 NoC delay and execution time comparison across different security levels using real
benchmarks considering the enhanced security features outlined in Sects. 6.7.2 and 6.7.3. (a) NoC
delay. (b) Execution time

points (VCNs and secrets) corresponding to the nonces stored in the key mapping
table. As a result, nodes can receive multiple secrets which can then be used during
the data transfer phase. Depending on the required level of security, m can vary and
also, each intermediate node can add multiple layers to the RA packet.

This method hides the correlation between the number of nodes and the length
of the routing path, and therefore, eliminates the said vulnerability. However, this
increases the performance penalty. Figure 6.13 shows an extension of Fig. 6.11
which considers the modification proposed in Sects. 6.7.2 and 6.7.3. LEARN
improves NoC delay by 69% (67% on average) and total execution time by 34%
(27% on average). Comparing with the results in Sect. 6.6.2, the average total
execution time improvement has been reduced by 3% (from 30% on average to
27% on average) to accommodate the added security. Even then, LEARN enables
significant performance improvement compared to traditional approaches.

6.8 Summary

Security and privacy are paramount considerations during electronic communi-
cation. Unfortunately, we cannot implement well-known security solutions from
computer networks on resource-constrained SoCs in embedded systems and IoT
devices. Specifically, these security solutions can lead to unacceptable performance
overhead. In this chapter, we outline a lightweight encryption and anonymous rout-
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ing protocol that addresses the classical trade-off between security and performance.
The approach uses a secret sharing based mechanism to securely transfer data in
an NoC-based SoC. Packets are changed at each hop and the complete packet is
constructed only at the destination. Therefore, an eavesdropper along the routing
path is unable to recover the plaintext of the intended message. Data is secured
using only a few addition and multiplication operations which allows us to eliminate
complex cryptographic operations that cause significant performance overhead. This
anonymous routing protocol achieves superior performance compared to traditional
anonymous routing methods such as onion routing by eliminating the need for
per-hop decryption. Experimental results demonstrated that implementation of
existing security solutions on NoC can introduce significant (1.5X) performance
degradation, whereas this approach can provide the desired security requirements
with minor (4%) impact on performance.

Acknowledgments This work was partially supported by the National Science Foundation (NSF)
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Chapter 7
Secure Cryptography Integration:
NoC-Based Microarchitectural Attacks
and Countermeasures

Johanna Sepúlveda

7.1 Introduction

High VLSI integration levels and demanding requirements of the current embedded
applications promote the development and widespread adoption of Multi-Processor
System-on-Chips (MPSoCs) in the Internet-of-Things (IoT) environments. Such
computation paradigm is transforming many domains, including the automation
industry, automotive, avionics, and healthcare [33]. It is expected that by 2021, 25
billion IoT devices are deployed [33]. In such a scenario, the MPSoCs, also known
as systems of systems, are pervading our lives by blending seamlessly with the
environment while processing and storing all kinds of applications and data. Such
a dynamic and multi-tenant platform provides all the means for high performance
and reliable operation. However, it brings security as a major requirement. Due to
the intrinsic complexity and heterogeneity of the MPSoC, it is very challenging to
guarantee the MPSoC security.

MPSoCs are complete computational systems that integrate hardware and soft-
ware into a single die. The hardware MPSoC components are comprised of
multiple Intellectual Property (IP) hardware cores for computation, storage, and
communication. For modern MPSoCs that integrate a large amount of hardware IP
cores, the Network-on-Chip (NoC) has become an attractive alternative for on-chip
interconnection.

In order to mitigate possible MPSoC attacks and meet the system security
requirements, many works have addressed the MPSoC security through a wide
number of software and hardware techniques. The goal is to deploy the MPSoC
security policy, a set of rules that establish the security characteristics of the system.
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These rules protect the MPSoC assets (e.g., passwords, bitstreams, applications)
against possible attacks. In order to determine the exposure to attacks, a threat
model must be used. It identifies the capabilities of the attacker and possible
vulnerabilities of the system. The threat model and the security policy will define
the type of security services and mechanisms that are required in order to protect
the MPSoC assets. A security mechanism is defined as a technique that provides
one or multiple of the following security services: (1) confidentiality, which ensures
the data secrecy; (2) integrity, which assures that data is kept unchanged without
authorization; (3) authentication, which validates the identity of the initiator of the
operation/communication; (4) access control, which allows or denies the use of a
particular resource; (5) availability, to ensure that system resources are ready to be
used; and (6) non-repudiation, which maintains evidence of system events.

One of the most preferred ways to support security services is through
cryptographic primitives. Symmetric Key Cryptography (e.g., Advanced Encryption
Standard—AES [21]) and Public Key Cryptography (e.g., Rivest–Shamir–
Adleman—RSA, or Elliptic Curve Cryptography—ECC) are the foundation for
many security transformations. Such cryptographic primitives can be integrated into
the MPSoC to: (1) protect the internal MPSoC information, such as bitstreams [24];
(2) secure the MPSoC operation, including the secure booting [90], dynamic
reconfiguration [87] and secure resources management [17, 62]; and (3) implement
the different secure communication protocols, required to integrate the MPSoC
to the different ubiquitous environment [95]. In many networked environments
(e.g., industrial, IoT, aerial, automotive-V2X), the communication follows the
guidelines established by the standardization bodies. Some of them are the Internet
Engineering Task Force (IETF) [40], European Telecommunications Standards
Institute (ETSI) [25], National Institute of Standards and Technology (NIST) [59],
International Organization for Standardization (ISO) [43], and IEEE Standards
Association [37].

A wide research and engineering work has been performed to provide the
required level of security and performance. Many standards advise the use of
the AES cipher, for example, to provide confidentiality in the protocols such as
Transport Layer Security (TLS) [39] and Internet Protocol Security (IPsec) [38].
On the other hand, the authentication process is usually supported by RSA or ECC
public key cryptography. Finally, the authentication process usually relies on a hash
operation, such as the Secure Hash Algorithm (SHA) [56].

These symmetric and public key encryption algorithms can be implemented
into the MPSoC through software and/or hardware techniques. However, empow-
ering MPSoCs to support Symmetric Key Cryptography (SkC) and Public Key
Cryptography (PKC) is a challenging task. MPSoCs design is usually pressed by
the limited on-chip resources, strict performance and flexibility requirements, and
short time-to-market. The integration of such cryptographic functionalities requires
mathematical elements and operations which are usually not easy to implement
on standard CPU architectures. To cope with the application performance and
costs (e.g., area and power) requirements, while providing crypto-agility, different
techniques are used to deploy on-chip cryptography. These techniques include
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the use of generic cryptography libraries, the use of pre-computed functions and
values stored in tables/memory regions, and the use of hardware/software co-design
strategies. In such a case, the goal is to find an optimal assignment of tasks between
software running on processors and custom hardware accelerators that act as co-
processors for performing computation intensive operations [8, 30, 52, 88].

However, the implementation of cryptographic primitives is prone to attacks.
During the execution of a cryptographic operation, the secret key may passively
be revealed through the so-called side-channels. One of the major threats appears
from the high MPSoC resource sharing, where many applications are using shared
computation, memory and communication structures. The behavior exhibited by
such components varies according to their microarchitectural organization and the
data that is being processed, stored, or exchanged. When malicious and sensitive
processes are executed together on the MPSoC, characteristics such as the time,
power, memory access pattern, and electromagnetic emanation of the MPSoC
during the sensitive process operation can leak information to the attacker regarding
the data used within the sensitive process.

While side-channel attacks through the exploitation of the MPSoC computation
and the memory structures have been widely discussed, communication side-
channels have been sidelined. Communication characteristics can be exploited to
retrieve sensitive information. By exploiting the communication pattern, defined
by the connectivity (i.e., the distribution of the source–destination communication
parties), packet sizes, injection rates, and throughput, an attacker can perform two
actions [83]: (1) reveal the sensitive information when the communication is data
dependent. In addition the NoC microarchitecture can be used to perform illegal
monitoring; and/or (2) identify vulnerable operation points to trigger powerful
attacks, such as cache-based attacks. The latter is known as communication-
enhanced attacks [80] and are very attractive for their capability of providing a
very refined information regarding the sensitive traffic to/from the shared caches,
improving for example the time measurement resolution capability of an attacker,
which is critical for performing successful attacks.

To this end, in this chapter the NoC-based communication-enhanced attacks
for retrieving the secret information of cryptographic operations executed on the
MPSoC are discussed. This study further explores this vulnerability and highlights
the security implications of a shared communication channel. It includes discussions
and examples regarding the NoC-based exploitation for attacking symmetric and
public key cryptography that are already in standards as well as the future cryptog-
raphy that are in the process of standardization at NIST: lightweight cryptography
and post-quantum cryptography. In addition, countermeasures able to be integrated
into the NoC are presented. The present study provides a helpful input for the design
and use of modern MPSoCs. In addition, it calls the attention to the need of effective
hardware-based countermeasures against NoC-enhanced attack. This is critical for
the adoption of such NoC-based MPSoC in current and future critical applications.
Particularly, developers and users must be aware of the critical role of the inter-
connectivity of NoCs and their security implications.
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This chapter is divided in seven sections. Section 7.2 presents the basic concepts
regarding the MPSoC organization. Section 7.3 describes the present and future
cryptographic approaches. The considered threat model is described in Sect. 7.4.
Sections 7.5 and 7.6 describe the current microarchitectural attacks on MPSoCs and
the NoC-enhanced attacks, respectively. Finally, the conclusions are presented in
Sect. 7.7.

7.2 MPSoC Organization

7.2.1 General Description

Multi-Processors Systems-on-Chip (MPSoCs) are complete computational systems
which integrate software and multiple hardware Intellectual Property (IP) elements
in a single die. It includes, for example, the operating system, firmware, and drivers
(software components), as well as multiples processors, memories, co-processors,
and I/O controllers (hardware components). MPSoCs appeared as a natural evolu-
tion of the SoCs, shaped to meet the ever-increasing highly demanding applications
characterized by very high computation rates (e.g., video applications) [3], low-
power operation (e.g., IoT applications) [44], huge data rates handling, strict
real-time constraints (e.g., automotive and aerospace applications) [45, 101], strict
time-to-market, and a high need for adaptability [47]. MPSoCs are multi-tenant
systems, that is, multiple applications with different criticality and performance
requirements are spread through the MPSoC resources. Despite the different
applications sharing the MPSoC resources, they are not aware of each other. Multi-
tenancy is a crucial characteristic of the MPSoC, offering flexibility, cost, and area
efficiency. MPSoCs are comprised of three main structures:

• Computation: Includes all the components that perform the data transformation
and processing. Specifically processors, co-processors, and specific hardware
accelerators (e.g., cryptographic accelerators [29, 53], Convolution Neural Net-
work accelerators [85]) that are related to the domain of the application.

• Storage: Determines the data storing organization on the MPSoC. Usually it
comprises several levels of small cache memories (L1 to L4) and DRAM
distributed on the chip. This storage organization is widely adopted in current
state-of-the-art market MPSoCs such as Tile-Mx100 from Tilera [1], MPPA from
Kalray [48], or SCC from Intel[96]. Memory organization has a strong impact on
the overall MPSoC performance, cost (area), and power.

• Communication: Comprises all the components required for the data exchange
among the different IP cores. There are different alternatives (e.g., point-to-point
connection, buses, crossbars, and Network-on-Chip). The selection of one of
these alternatives is driven by the number of interconnected hardware IP cores
and communication requirements (e.g., volume, traffic pattern).
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MPSoC design is a process that is based on three premises [100]. First, the adop-
tion of different levels of abstraction, which allows to develop models that describe
the functional and non-functional system specifications with different levels of
detail. Where each model is a refinement of the previous one and demands different
design decisions. Second, the reuse of components, promoting the integration of pre-
designed and pre-tested IP components. Finally, the orthogonality, which allows the
splitting of the SoC design in the computation and communication structures, as
well as in hardware and software components.

MPSoC structures are defined by a discrete set of components and parameters
which may be configured in order to meet the application requirements and con-
straints. These components are usually supplied as IP core components (hardware or
software) from third-party vendors or developed in-house. MPSoCs are organized
in a tile-based construction, each constituted by a single or multiple computation
and storage IP cores. While the intra-tile communication (i.e., the communication
among the IP hardware cores encapsulated into a single tile) is usually performed
through a bus structure, inter-tile communication (i.e., the communication among IP
hardware cores mapped on different tiles) usually is implemented through crossbars
or Networks-on-Chip (NoCs). NoCs are structures that use routers and links to
communicate data between a pair of IPs, the IPsource (which injects the packet)
and IPdestination (which receives the packet).

7.2.2 Computation Structure

MPSoCs integrate a wide variety of IP hardware cores that are able to transform
data using different types of logic units. According to the usability, such elements
can be classified into two categories: (1) General purpose processors, which are
able to perform the operations (instructions) that are specified in the instruction set
architecture (ISA). It includes different registers, data types, and memory-related
information (control, consistency rules, addressing modes, virtual memory). The
realization of such operations defines the architecture of the processor. Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) are ruled by their own
set of instructions; and (2) Application-Specific processors, which integrate a set of
hardware accelerators (co-processor) that implement the entire/subset functionality
of an application. Two main models of hardware accelerators can be identified. First,
the Loosely coupled accelerators, which are implemented as a stand-alone hardware
component linked to a processor through a point-to-point connection or through a
bus. Second, the Tightly coupled accelerators, which are deeply embedded within
the processor architecture as application-specific functional units.

Processing Elements (PEs) present different characteristics. Besides from their
different ISAs, PEs are differentiated by their data width (e.g., from 8-bit to 64-bit),
number of cores (e.g., from 8-bit to 64-bit) allowing multiple execution contexts
simultaneously, type of cores (e.g., symmetrical or asymmetrical), and computation
capabilities (e.g., real-time, microcontroller profiles) [5]. Most processing elements
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have two modes of operation: kernel mode and user mode. The Operating System
(OS) is the most fundamental piece of software. It runs in kernel mode (also called
supervisor mode) and provides the user programs with a better and simpler model
of the computer resources [91]. This abstraction is the key to managing all the
computer complexity. Supervisor mode allows the complete access to the hardware
resources and can execute any instruction. The rest of the software is executed in
user mode and can only execute a subset of the machine instructions.

Some modern processors include a set of security-related instruction codes
(e.g., Intel Software Guard Extensions—SGX) that allow the definition of private
regions of memory (i.e., enclaves) by the software executed in supervisor and user
modes. Such isolation promises to avoid any memory accesses (read or write)
by processes outside the enclave, even when running at higher privilege levels.
Such isolation favors the multi-tenant environments, where multiple applications
are being executed in the same processor.

7.2.3 Memory Structure

Multi-level memory hierarchy, including different caches (e.g., L1–L4) and
DRAMs, is widely used to improve the performance of the MPSoCs. It exploits the
two attributes of the application software: (1) temporal locality, where the same set
of memory locations are likely to be repeatedly accessed; and (2) spatial locality, in
which adjacent memory blocks are likely to be accessed. Since accessing the main
memory requires a large number of clock cycles, to store the frequently accessed
data on smaller and faster cache memories closer to the processors reduces the
memory access bottleneck. Each time a process requests a memory access, every
memory hierarchy is queried in order, from the closest and smallest memory in the
processor, through the different cache memories, till the DRAM. If the requested
data is found in a memory, a cache hit takes place and the data can be delivered
to the initiator process. Otherwise, a cache miss occurs and the cache coherency
mechanism initiates an access to the next memory level and eventually till the
DRAM until the requested data is found.

For the tile-based MPSoC architecture, the queries to the memory hierarchy
require the data exchange through the different communication structures: through
bus transactions, when the memory is located inside the tile, or through NoC
transactions, otherwise.

7.2.4 Communication Structure: Network-on-Chip (NoC)

NoCs are an attractive communication alternative due to their scalability, pre-
dictability, interoperability, and electrical regularity [36]. Figure 7.1 shows a
MPSoC that integrates nine tiles T1 to T 9 and other IP cores (DDR controller, L3,
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Fig. 7.1 Multi-Processor System-on-Chip. The detailed architecture of the Tile 6 (T6) is presented

peripheral, accelerator) which are interconnected through a 3 × 3 mesh-based NoC
composed by 9 routers R1 to R9. Each tile is either composed of a single IP core or a
set of IP cores that communicate through a bus. The tile can include heterogeneous
processing units, storage components, peripherals, hardware accelerators, and other
IP hardware cores.

NoC architectures are comprised of routers and links that exchange information
wrapped as packets. Routers are switches that link input ports to any output
port according to some commutation or routing algorithm. The routers are linked
to the IP cores and tiles of the MPSoCs through network interfaces. While the
interfaces implement the communication protocol for injecting/ejecting packets
to/from the NoC, the NoC routers commute the packets from the communication
source (IPsource or T ilesource) to the destination (IPsink or T ilesink). The general
architecture of the router is shown in Fig. 7.2. Internally, routers integrate five main
components:

1. Input buffers, which store the complete or a part of a packet incoming to the
router through one of the input ports. Usually organized as a FIFO (First-In-
First-Out policy);

2. Arbitration logic, implementing the policy employed for granting the utilization
of the crossbar switch to one of the input buffers;

3. Routing algorithm, which selects the router output port to be employed for
redirecting the incoming data. Such selection is implemented using logic-based
distributed routing mechanism (removing the need for any routing tables);
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Fig. 7.2 Router architecture

4. Crossbar switch, which links input to output ports of the router and performs
the commutation of packets; and

5. Output buffers, to store the information before being commuted to the neighbor
router or network interface.

Messages injected from a IPsource/T ilesource are translated by the network
interface into packets compliant to the protocol used within the NoC. Packets are
usually composed by three main chunks: (1) header, which includes the information
required for driving the data from the source to the destination (e.g., source, desti-
nation) and for controlling the data exchange (e.g., size of the packet); (2) payload,
including the actual information to be exchanged (e.g., operation, memory address,
data type, data, role); and (3) terminator, to implement different communications
services (e.g., error-correction [32, 73, 92], security [4, 23, 26, 34, 75, 77, 81]).
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7.3 Cryptographic Implementation

Cryptography is the foundation for establishing secure communication between
multiple parties. At its simplest level, cryptography is defined as any method that
transforms information so that it can be kept secret and secure [21]. That is, such
information should be unintelligible, difficult to forge, and therefore useless to those
who are not meant to have access to it.1A cryptographic mechanism relies on two
aspects. The first is the algorithm, which specifies the transformation steps that
must be performed upon the original message (also called plaintext). Second, the
variable cryptographic key, determined by a random data string. Both aspects are
used together to secure data by means of encryption or digital signatures [31].
Cryptographic algorithms can be used for block cipher encryption, digital sig-
natures, asymmetric key-establishment algorithms, message authentication codes,
hash functions, or random data generators, for example.

7.3.1 Basic Concepts

According to the nature of the cryptographic key, cryptographic algorithms can be
classified into two categories: symmetric and public key cryptography.

• Symmetric Key Cryptography (SKC), also known as secret key algorithm. It
uses a single secret key which should be shared (i.e., identical) for all the
communication parties (sender and receivers). The value of the secret key may
change during the operation time. Thus, all the communication parties must
have the updated secret key. Symmetric algorithms are usually faster that the
public key cryptography, being able to handle thousands of keys with very little
computing overhead. However, a key must be kept secret, and yet has to be
transmitted to the receivers through a secure channel.

• Public Key Cryptography (PKC), also known as asymmetric key cryptography.
It uses a pair of keys: (1) a public key, known by everybody; and (2) a private
key, which should remain secret and only known by its owner. Both keys are
mathematically related. However, to know the public key does not allow to
retrieve the private key.

While symmetric key cryptography is most often used to protect the data
confidentiality or to authenticate the data integrity, public key cryptography is used
to protect the integrity and authenticity of information and to securely establish
symmetric keys.

1This section provides a wide overview of the cryptographic techniques that are currently
integrated on common MPSoCs and that will be integrated in the near future (less than 10
years). For a rigorous presentation and further details regarding the algorithm description and
implementations, the reader can consult the suggested references.
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Some of the main operations used in cryptography:

• Key Generation: It creates a random string called key (single key for SKC or
a pair public/private for PKC). According to the lifetime, cryptographic keys
may be divide into two groups: (1) static, which is used for long periods of time.
According to the application it varies from days to years; or (2) ephemeral, which
is used only for a single session or transaction. In general, long term keys increase
the vulnerability to attacks. It is critical to perform a re-keying process when
required.

• Encryption: It is a special form of computation that transforms a plaintext into a
ciphertext using a cryptographic algorithm and key.

• Decryption: It retrieves the original plaintext from a ciphertext by using a
decryption algorithm and key.

• Signature: It is a string of bits which are computed based on a set of rules
and parameters for allowing: (1) source/entity authentication; (2) data integrity
authentication; and/or (3) Support for signer non-repudiation. Stored and trans-
mitted data can be signed.

• Verification: It checks the validity and authenticity of the signatures (i.e.,
includes identity of the signatory and the integrity of the data) and other integrity
keying materials, such as certification authority and controls of completeness and
correctness.

Modern cryptography transforms data based on mathematical problems that are
very hard to solve with our current and most powerful computational capabilities.

7.3.2 Current and Future Cryptography

7.3.2.1 Symmetric Cryptography

In general, the SKC is more efficient than PKC. Therefore, it is the preferred
solution to ensure the data confidentiality and integrity for communicated and stored
information which is characterized by large volumes of information. The currently
used cryptographic algorithms and their integration for different applications are
standardized by different organizations, such as NIST, ETSI, IETF, ISO, IEEE. The
algorithms that have been standardized includes: Triple DES—TDES (NIST/FIPS
880-67), Advanced Encryption Standard—AES (NIST/FIPS 197), Secure Hash
Algorithms—SHA-1/SHA-2 (NIST FIPS 180), SHA-3 (NIST FIPS 202), Simon
(ISO/29167-21), Speck (ISO/29167-22), Trivium and Encoro (ISO/IEC 29192-3),
and PRESENT (ISO/IEC 29192-2).

The two most popular algorithms are TDES, which is still widely used in banking
applications, and its successor AES, which is massively distributed in a wide variety
of applications. AES encrypts 128 bits of data with key lengths of 128/192/256
bits using 10/12/14 rounds, respectively. In AES-128, the intermediate states are
represented as a 4 × 4 state matrix. This matrix is processed iteratively for 10



7 NoC-Based Secure Cryptography Integration 163

rounds, each composed of four round operations: (1) AddRoundKey, XORing the
state matrix with the current round key; (2) SubByte, performing a byte substitution
based on a non-linear function called Substitution box (S-Box). It is a multiplicative
inverse in the finite field GF(28) followed by an affine transformation over GF(2);
(3) ShiftRow, a byte transposition that moves the bytes to the neighboring positions;
and (4) MixColumn, which performs a column-wise matrix multiplication between
the current state and a fixed matrix. Each column is thereby treated as a polynomial
with coefficients being elements of GF(28).

In order to improve the performance of symmetric cryptography, look-up tables
are widely used [10]. The goal is that instead of computing everything just in time,
for some of the steps of the cryptographic transformations larger pre-computed
values are stored in memory. The access to such tables usually is driven by the
value of the secret key.

Performance optimized implementations of AES use transformation tables
(T-tables), where the SubByte, ShiftRow, and MixColumn operations are reduced
to four look-up tables (T0, T1, T2, and T3) whose entries are simply XOR’ed. In
this implementation, one round consists of 16 table look-ups. Rounds 1–9 can be
calculated as in Eq. (7.1). The last round of AES does not contain the MixColumn
operation and is sometimes implemented with a fifth table T4. The fundamental
mechanism exploited by the cache attack is that T-tables are accessed depending on
the secret key.
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(7.1)

In the AES T-Table implementation, the indexes used during the first round are
defined as in Eq. (7.2). Each byte i of the intermediate value x involves a plaintext
byte Pi , a table look-up Ti (which returns a 4-byte value), and the key Ki . The
simple relation of the plaintext to the secret key in this round is exploited in the
attack which is described later on in Sect. 7.5.

x0
i = Pi ⊕ Ki (7.2)

In order to perform the AES decryption, which retrieves the plaintext from a
ciphertext, these round transformations are inverted and applied in reverse order.

The cryptographic functionalities also must adapt to the needs of the modern
use cases. NIST has recently started a competition with the objective to stan-
dardize lightweight cryptography (LWC) [57, 58]. This process will select one
or more authenticated encryption and hashing schemes suitable for constrained
environments. The winning schemes will be deployed in Internet-of-Things (IoT)
devices. To this end, new block ciphers will emerge as a standard for lightweight
authenticated encryption in the upcoming years. Among the 32 candidates of the
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second competition round, 4 are based on AES as their underlying cipher[71] and 7
are based on the GIFT cipher [58]. GIFT is based on a substitution-permutation
network (SPN) and was proposed in [6] as an improvement to the well-known
PRESENT cipher [11]. LWC high performance implementations also use pre-
computed tables. Despite some of the LWC relying on S-Boxes smaller than 64
bytes [20, 22, 94], which fits entirely on one cache line, sub-cache-line timing
effects [104] are still possible. The authors in [68] showed for the first time the
feasibility of such an attack. As a result, it was possible to retrieve the full key in a
short time. Candidates with larger S-Box [19, 93] (256-byte S-Box) might still be
vulnerable to traditional cache attacks. Further research is required [80].

7.3.2.2 Public Key Cryptography

PKC is more commonly used for the establishment of an initial symmetric key
through key-agreement or key-encapsulation. Traditional PKC algorithms such
as the Rivest–Shamir–Adleman (RSA) cryptosystem [72], which is based on the
factorization of larger numbers, or Elliptic Curve Cryptography (ECC), which is
based on the discrete logarithm problem, are considered secure today.

RSA is simply based on the modular exponentiation, where the modulus n is the
product of two large prime’s p and q. These primes are random integer numbers and
have similar magnitude and length. In addition, d is an integer number, selected to
be random and relatively prime to (p − 1)× (q − 1). The public key and private key
are obtained as in Eq. (7.3).

e = d−1 mod 
(n) (7.3)

where the ciphertext C is obtained by transforming the plaintext M together with the
public key (n and e) as in Eq. (7.4).

C = M × e mod n (7.4)

where 0 < M < nand C can be decrypted to retrieve the plaintext by using the
private key d and n as in Eq. (7.5).

M = C × d mod n (7.5)

The implementation of PKC, e.g., RSA, requires the integration of different
arithmetic blocks, including modular multiplication and exponentiation. In order
to increase the performance of the RSA implementation, pre-computed tables are
used. The authors of [54] proposed algorithms for performing modular reduction
and modular multiplication to improve the speed of RSA software implementation.
Both algorithms deal with performing modular arithmetic operations on very large
numbers. They use look-up tables to perform the arithmetic computations on
a byte basis. In addition, OpenSSL 0.9.7c, as example, uses a sliding-window
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exponentiation algorithm proposed in [12], which pre-computes values used during
the exponentiation (known as multipliers). The access pattern to the multipliers
depends on the value of the exponent, which, in the case of decryption and digital
signature operations, should be kept secret [14, 103]. This vulnerability has been
exploited by [63].

However, the future PKC may look different since powerful quantum computers
will be able to solve the hard mathematical problems that PKC is based on. A new
set of algorithms, based on hard mathematical problems able to resist traditional
and quantum attacks, are required. Such algorithms are known as post-quantum
cryptography (PQC) and are described upon hard problems derived from five
fields (families): codes, hashes, multivariate, isogenies, and lattices. As soon as a
capable quantum computer becomes available, current cryptographic algorithms
will be threatened. All PKC algorithms can be attacked in polynomial time by
executing the Shor’s algorithm [86]. In addition, SKC is also affected by quantum
computers, in particular by executing the Grover’s quantum algorithm [51] the SKC
key space is halved. However, SKC can easily be adapted by choosing larger key
sizes [35]. Current pre-quantum 256-bit symmetric ciphers are enough to maintain
the symmetric cryptography security in the post-quantum era.

Therefore, the scenario of powerful quantum computers poses a significant
problem for applications with long life-cycles (cars, airplanes, satellites, industries,
smart cities, health care) where devices are hard to update. As a reaction, the
National Security Agency (NSA) announced in 2016 the intention to transition
towards post-quantum cryptography for governmental usage in the foreseeable
future [55]. NIST started in 2017 the process of post-quantum standardization. The
goal is to select a set of appropriate post-quantum solutions able to meet the security,
performance, cost, and adaptability that current and future applications demand.
The candidates are going to be under scrutiny from the academia, industrial, and
governmental communities in a round-like process that is expected to last up to 5
years. From the 82 PQC candidates submitted in the first round in 2017, in 2020, the
number of candidates was reduced to 7 (finalists) and 8 (alternates) [60]. From the
finalists a set of algorithms will be selected for the PQC standard, expected in 2022.
The most severe drawback of post-quantum secure systems, compared to classical
cryptography, is the significantly larger key size. Some schemes have been proposed
that achieve a comparable key size but their security levels are not yet analyzed
in full detail. In general, look-up tables are a valuable option for PQC software
implementations for the different cryptographic algorithms. The 32- and 64-bit wide
architectures tolerate the additional code size and gain run-time improvements, not
least due to the speed-up from cache hierarchies. However, most of the memory
accesses are driven by the value of the secret key, which can expose the system
vulnerable to attacks when cache-based or communication-enhanced cache-based
attacks are performed. This is especially effective in embedded devices. During the
operation of the different cryptographic algorithms, the data stored in the tables is
spread along the memory hierarchies. When caches are shared, an attacker can gain
information regarding the secret keys [82].
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7.4 Threat Model

The system considered in this work is the NoC-based MPSoC shown in Fig. 7.1.
A closer look of this system (Tile 1 to Tile 3) is provided in Fig. 7.3. It shows three
tiles (T1, T2, and T3) which are communicating through a NoC. Only three routers
(R1, R2, and R3) connected in a mesh-based topology are shown. Each one of the
tiles T1 and T2 is comprised of a processor IP (IPV ictim for T1 and IPAttacker for
T2) which is connected to a private L1 cache (Mem) through a bus. In contrast tile
T3 is composed only of a shared L2 data cache (Shared Memory). Router R3 also
communicates with a DDR memory.

In this scenario, both processors IPs (IPV ictim and IPAttacker ) are able to read
from and write to L2. Five (5) events can be identified as shown in Fig. 7.3.
The process target of the attack crypto/victim (i.e., cryptographic functionality) is
executed on IPV ictim at T1, as in (1). The cryptographic functionality crypto/victim
(e.g., AES transformation table implementation [66] lightweight GIFT [68], NTRU-
Encrypt post-quantum lattice-based [82]) is implemented using tables, a common
implementation technique to speed-up encryption [80].

During the execution of the crypto/victim, the tables are stored in the memory
hierarchy of the system (L1, L2, DRAM). That is, each time crypto/victim requests
a memory access, the memory hierarchy is queried (i.e., from L1, to L2 and finally
to DDR), as in (2) and (4b). Moreover, a spy process, a malware piece of code,
is executed in the IPAttacker at T2. Crypto/victim and spy processes are therefore
physically isolated on different IP cores (IPV ictim and IPAttacker ) and different tiles
(T1 and T2), respectively.

Fig. 7.3 Communication vulnerability
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The attack assumes that crypto/victim and spy processes are executed in parallel.
The goal of the spy is to detect whether the table entries stored on cache lines in
L2 have been evicted or not as a consequence of the crypto/victim requests. The
spy only uses legitimate memory read and write operations that affect the L2 data
cache. Moreover, the spy does not have elevated privileges (i.e., supervisor). The
spy is able to infer accesses to the L2 data cache by the crypto/victim, because both
processes use the same NoC (R2 and R3) to communicate with the cache. That is,
the spy and the crypto/victim are simultaneously generating NoC transactions and
communication collisions between both communication flows take place, as in (5a).
The router can only perform a single commutation at time. When a single transaction
is injected to the NoC, the router can immediately serve the communication request
and the time required to complete the transaction is low. However, when multiple
transactions are generated, a competition for the NoC communication resources
is created. Thus, an arbitration process must take place. The winner transaction
is allowed to use the router while the loser transaction must remain waiting
and, thus, the time required to complete this transaction is high. Therefore, any
reduction in the spy’s communication throughput (i.e., the spy transaction must
wait for the communication service) reveals a communication collision and thus
a possible access to L2 by the crypto/victim. In order to implement the NoC-based
communication attack, the following requirements must be fulfilled:

• There are trusted and non-trusted nodes in the system. The attacker can infect an
IP core within the SoC;

• Sensitive applications are only executed on trusted nodes. Any other applica-
tion/process is executed on the non-trusted nodes;

• The attacker can generate random plaintexts and trigger encryptions;
• The trusted and non-trusted nodes share a cache (i.e., L2 in the example);
• The L2 data cache is inclusive with respect to the L1 data cache.

The infection of a processor IP core is realistic, given the complexity of software
running on modern embedded application processors. They typically host full
scale operating systems and execute multiple tasks. Generating random plaintexts
is straightforward and triggering encryptions on a different IP core can be a
common use-case, e.g., if IPvictim provides security-related services for the rest
of the system. Inclusive cache hierarchies are also common, as they can reduce
maintenance and coherency efforts.

7.5 Microarchitectural Attacks

7.5.1 Computation Attacks

Common side-channel attacks are derived from the measurement of the execution
time to complete an operation, power consumption, and electromagnetic radiation
of the cryptographic function on the MPSoC. However, the advances of the under-
standing of the on-chip processing and storage capabilities have paved the way to
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new and more sophisticated side-channel attacks, also known as microarchitectural
side-channels. Such threats arise from the wide amount of sharing resources and
the multi-tenant characteristic of the MPSoC. By exploiting such characteristics of
the system organization, the attacks are able to break the in-use software-isolation
based security and to retrieve sensitive data [13, 46].

As shown in Sect. 7.2, MPSoCs shared a wide amount of resources, which
can be the target of attacks when the victim and spy processes are executed
(see Sect. 7.4). The first attacks that raise the awareness regarding the microar-
chitectural vulnerabilities of current embedded processing elements were the
powerful Spectre [49] and Meltdown [50] attacks. They show that by exploiting the
exception or branch misprediction it is possible to extract secret-dependent traces
in the microarchitectural state of the processing units. This observation led to a
proliferation of new microarchitectural attack variants [15, 16, 97].

7.5.2 Cache Attacks

Another common target of microarchitectural attacks is the cache hierarchies.
While caches allow to speed-up the execution of applications, including the
execution of cryptographic operations, caches also allow the mutual interference
of processes executed on the MPSoC. When malicious and sensitive (victim)
processes are executed together, this becomes a major threat. Microarchitectural
attacks aim to retrieve sensitive data or gain the control of the system through either
the exploitation of a wide variety of side-channels or by corrupting data using
hardware vulnerabilities.

Cache attacks that exploit side-channel information can be commonly cat-
egorized based on the available information to the adversary: execution time
(time-driven attacks [7, 10]), sequences of cache operations like hits and misses
(trace-driven attacks [2]), and cache access patterns (access-driven attacks [61]).
On the other side, microarchitectural attacks also can perform the data corruption
on caches through the exploitation of their physical implementation. A classical
example is the Rowhammer attack, which is able to modify data stored in victim
memory row by repeatedly and frequently accessing physically adjacent memory
rows. This controlled data modification can break the memory isolation between
processes, exposing sensitive data to unauthorized and imperceptible corruption.

The access-driven cache attack is one of the most powerful and efficient
techniques to retrieve the secret key of a cryptographic function, especially for those
high performance software implementations (see Sect. 7.3) using tables with pre-
computed values that are accessed during the encryption/decryption operations. As
discussed, for many of the SKC and PKC such accesses are secret-dependent. To
identify the accessed memory location allows an attacker to retrieve the secret key.
Two of the most successful cache attacks are the Prime+Probe (P+P) [61] and
Flush+Reload (P+R) [102].
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Fig. 7.4 Three steps of the Prime+Probe access-based cache attack. It includes: (i) Prime, to
prepare the cache; (ii) Trigger, to execute the victim algorithm; and (iii) Probe, to measure the
cache behavior

Note that the Attacker (which executes the spy process) and the Victim (which
executes the cryptographic operation) share a cache (e.g., L2). In addition (as speci-
fied in the threat model), the Attacker is able to request to the Victim to encrypt data.
Figure 7.4 shows the action of the victim and the attacker over the shared cache L2
for each one of the three steps required to perform the Prime+Probe attack. The
different colors represent the owner of the cache lines (victim is green and attacker
is orange). The Prime+Probe attack is executed in three steps:

• Prime: In order to ensure that the cryptographic tables are not in victim’s L1, the
attacker Primes the L2 cache by performing different requests that will result in
the eviction of the data. As shown in Fig. 7.4a, the L2 lines are all orange now.
Due to the cache inclusiveness property, priming L2 sets also causes the eviction
of cache lines from the victim’s L1 sets (i.e., the cryptographic tables are now
stored in a higher level in the memory hierarchy).

• Trigger Cryptographic Operation: After the memory priming, the attacker
requests the victim to encrypt a plaintext. The encryption process leads to the
retrieval of the cryptographic tables and thus the eviction of some cache lines
owned by the attacker. As shown in Fig. 7.4b, now, some of the lines are green.

• Probe: The attacker re-accesses (probes) the data previously brought into the
cache at the prime step. The goal is to detect the accessed cache sets during
encryption. If the victim accessed the cache line, the attacker’s data (or parts of
it) is removed from L2 cache, producing a cache miss. Figure 7.4c shows the
Probe step. As an effect, the attacker will experience a longer time to retrieve the
requested data. Otherwise, (i.e., the victim does accessed the line), a cache hit
will take place and the attacker’s access time is faster.

The key recovery analysis process is described in [61, 80]. In general, by
performing the Prime+Probe, the attacker becomes aware of the location of the
cache sets and the accessed sets. Based on this information, the spy is able to
discover which indexes have been used during the encryption by the victim. The
method of the exploitation of the knowledge of the used indexes depends on each
cryptographic algorithm. For the AES, an attacker exploits Eqs. (7.1) and (7.2) to
obtain a set of key candidates. This search is further refined when the attack is
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further executed using different random or crafted plaintexts. Prime+Probe also
was used to attack the lightweight cryptography [68], RSA [63], and Post-Quantum
Cryptography[82].

Among all the types of access-driven attacks, the Prime+Probe technique is
considered to be a generic variant. The Flush+Reload (F+R) is very similar to
Prime+Probe. The difference is that Flush+Reload exploits the clflush instruction,
which is able to evict a memory line from all the cache levels, including from the
Last-Level-Cache (LLC). Attacks to SKC and PKC based on Flush+Reload are
demonstrated in [42, 105].

7.5.3 NoC Attacks

MPSoC communication structure is based on NoCs. The goal of the NoC router
is to switch packets from an input to an output port. An incorrect NoC router
implementation might be exploited to perform different attacks. Figure 7.5 shows a
general classification of the NoC Attacks. The circles represent the attacks and the
blue labels represent the microarchitectural NoC features that can be exploited in
order to provoke the attack. Three types of attacks can be identified (Data alteration,
Denial-of-service, Timing attack). The formalization of such attacks is presented
in [74].

• Data Alteration attacks, which change the data embodied into the packets that
are traversing the router. As a consequence, the data path and control path are
modified. It includes: (1) Modification, which may result in deviation from their
original intended destination (destination field modified), memory corruption at
the destination (memory address modified), and violation of the access-control
security rules (e.g., by accessing forbidden memory areas); (2) Duplication,
which allows an attacker to capture the information and to perform replay attacks;
and (3) Drop, which results in loss of information that may cause the disruption
of sensitive traffic and data or control flow of an application. The data alteration
attacks can be performed through data overwrite, injection of false data, and by
exploiting buffer vulnerabilities (e.g., overflows, wrong control);

• Denial-of-Service (DoS) attack, in which the communication resources are
flooded by the intense router utilization. This prevents that authorized commu-
nications take place. By performing router DoS, the attacker is able to cause
deadlocks, blocking all the NoC communications [18].

• Timing Side-Channel Attack, which exploits the communication pattern of the
sensitive data. By observing the timing (throughput or latency) required to inject
traffic into the router, an attacker may gain such information (traffic pattern and
communication volume) regarding the sensitive traffic. The timing attack can
be effectively executed on a single NoC router. By detecting the optimal point
of attack (e.g., communication event between a cryptographic co-processor and
a shared memory), the NoC timing attack is able to optimize cache attacks as
in [69].
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Fig. 7.5 Communication attacks

7.6 NoC-Enhanced Cache Attacks

7.6.1 Description

The efficiency of the Prime+Probe and other cache attacks heavily depends on the
amount of noise in the attacker’s measurements. For each cryptographic primitive
there is a so-called sweet spot in which the cryptographic operation is on its most
vulnerable point, since it offers to the attacker almost noise free measurements.
Noisy measurements will demand a higher effort from the attacker (e.g., larger
amount of Prime+Probe attack rounds) to avoid the false-positives key candidates
and to be able to retrieve the complete key. The perfect moment of attack varies
according to the security primitive (Victim). For the AES the sweet spot is after the
first round, where the first 16 tables accesses to the shared cache L2 took place.
A Probe in such a stage will contain a clear information regarding the used indexes
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during the cryptographic operation. The cache sets accessed in the subsequent
rounds will just add additional noise to the attacker measurement.

The NoC, as the heart of the MPSoC and main shared MPSoC structure, is an
attractive structure for attackers. Previous works have demonstrated several types
of attacks, which have exploited the NoC communication and the implementation
weaknesses on the NoC routers [18, 83].

Communication leakage in SoCs has first been pointed out in the seminal works
of [83, 98, 99]. Years later, in [70] it was demonstrated for the first time the potential
of exploiting the NoC communication structure for magnifying cache-based attacks
(access-based). By using the NoC-enhanced cache attack, the efficiency of the
attack has been improved by up to 500%, when compared to a simple cache-
based attack. Therefore, NoC-enhanced attacks offer the attackers a practical mean
to easily retrieve the secret keys of the MPSoC. Later in [78, 80], this approach
was also used to exploit the bus-based on-chip communication structure. Other
types of cache attacks were also explored. In [65, 66] and [79], NoC-enhanced
cache timing and trace attacks were demonstrated, respectively. However, from all
the three alternatives, the access-based cache attack is one of the most preferred
techniques by attackers due to their high efficiency.

The NoC-enhanced attacks exploit collisions in the network communication
to detect the sweet spot of the cryptographic operation. The collisions appear
from the shared nature of the routers. Usually two facts are exploited in a NoC-
enhanced attack: (1) sensitive information (i.e., sensitive/victim flow) has a higher
communication priority; and (2) the table retrieval of the cryptographic operation
from the shared cache is characterized by the injection of long packets to the NoC.
As explained previously, the goal of the attack is to identify the sweet spot of the
sensitive/victim communication flow. The target characteristic of the sensitive flow
(e.g., source/destination pattern, communication volume) will vary according to the
cryptographic primitive. For instance, for AES it is the end of the first round of the
encryption process, which for the NoC point of view translates into the detection of
a large packet being injected from the shared cache L2 to the victim tile [70, 83].

The attacker may be physically located either directly on the sensitive path (e.g.,
as shown on the Fig. 7.5), where the router that links the attacker to the MPSoC is
used by the sensitive flow, or outside of the path. In the later case, higher NoC
detection noise is expected. During all the attack time, the attacker is injecting
small packets to the NoC and measuring the achieved throughput. In order to
detect the massive sensitive packets, the attacker should search for collisions with
the sensitive flow (intersection of flows). When the attacker is directly located on
the sensitive path, the attacker and the victim have a direct collision on the router
that links the attacker to the NoC. Otherwise, the effect can still be achieved but
other reinforcement techniques should be used to further clear the noise of the NoC
measurements.

As routers are shared, the communication collisions between attacker’s and
victim’s traffic may reveal the sensitive behavior (e.g., mapping, topology, routing,
transmission pattern, and volume of communication). The collisions are detected
by the reduction of throughput of the attacker. After its detection, the Probe step
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is performed immediately. The key analysis and retrieval is performed as discussed
in Sect. 7.5.2.

The seminal work in [28] has shown that by integrating communication services
and techniques to improve the safety and real-time characteristics of the applications
executed on the MPSoC, security backdoors may be opened. Preemptive NoCs,
which allow that high priority communication flows preempt low priority packets
on the NoC router, can be exploited. Further research on this area is required so as
to protect the MPSoC while guaranteeing the real-time capabilities.

7.6.2 Countermeasures

However, many MPSoC attacks can be avoided by modifying only the NoC router
architecture. Therefore, ensuring the correctness and security of the NoC routers
is critical and needs to be addressed already in the early stages of the MPSoC
design. Despite functional correctness has been widely explored, security has often
been neglected. NoC verification, testing, and simulation techniques may contribute
to ensure the router correctness, expanding the test patterns and coverage for
possible threat scenarios. While simulation based analysis cannot be considered
complete, some efforts have been conducted towards the formal verification of NoC
security [67, 74].

Current countermeasures against the NoC-enhanced cache attacks are based
on increasing the noise of the measurements performed by the NoC-based attack
technique. These countermeasures modify the configuration parameters of the
router. Figure 7.6 shows the different proposed countermeasures separated by the
modified router component. At the buffers, the dynamic buffer allocation [76] and
large buffer dimension [28] are used to avoid the direct correlation between the

Fig. 7.6 State of the art of countermeasures against NoC-enhanced cache attacks
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degradation of throughput and the communication collision between sensitive and
attacker flow. At the arbitration logic, different techniques are proposed in order to
isolate the traffic. It includes the mixed packet/switching data commutation [9, 64],
the integration of protocols that include traffic monitoring [70], and the integration
of hard Quality-of-Service (QoS) mechanisms to isolate the sensitive information
through arbitration management (high priority [98], bounded priority [99], random
priority [83]). At the routing, it includes the security-aware traffic management
guided by security zones [27, 84], the use of random/dynamic and distributed
routing [41, 70, 89]. At the crossbar, by blinding and masking the commutations
inside the router [28].

7.7 Summary and Conclusions

MPSoCs are a key technology for satisfying the needs of current and future
applications which have turned to be targets of attacks. In order to be able to use
such a technology, security must be guaranteed. While cryptography, as a mean to
ensure the security of the system is usually employed, their secure implementation
is critical for achieving the security goals of the system. Current MPSoCs are target
of microarchitectural attacks which exploit the shared computation, storage, and
communication structures. While cache attacks are already very powerful, the NoCs
can be further exploited to magnify those attacks, thus, giving to the attacker a
very attractive means for retrieving the secret information. In order to avoid such
a powerful attack, NoC security must be considered. A secure NoC by design will
be possible only when NoC designers understand the critical role of this structure
in the overall system security. This chapter calls the attention to such an issue and
points to the need to protect current and future cryptographic implementations on
the MPSoC. The NoC must be carefully crafted to not only meet the performance
requirements, but also the security needs of the system.
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Part III
Runtime Monitoring Techniques



Chapter 8
Real-Time Detection and Localization
of DoS Attacks

Subodha Charles and Prabhat Mishra

8.1 Introduction

The drastic increase in System-on-Chip (SoC) complexity has led to a significant
increase in SoC design and validation complexity [3, 20, 24, 26, 44, 48–51]. SoC
design using third-party intellectual property (IP) blocks is a common practice
today due to both design cost and time-to-market constraints. These third-party
IPs, gathered from different companies around the globe, may not be trustworthy.
Integrating these untrusted IPs can lead to security threats. A full-system diagnosis
for potential security breaches may not be possible due to lack of design details
shared by the vendors. Even if they do, any malicious modifications (e.g., hardware
Trojans) can still go undetected since it may be infeasible to detect stealthy
triggers [2, 25, 27, 28, 46, 47, 52, 55]. Recent efforts try to combine the advantages
of logic testing and side-channel analysis for effective Trojan detection in integrated
circuits [34, 35, 42, 43, 45, 56]. The problem gets aggravated due to the presence
of Network-on-Chip (NoC) in today’s complex and heterogeneous SoCs. Figure 8.1
shows a typical NoC-based many-core architecture with heterogeneous IPs. As NoC
has direct access to all the components in an SoC, malicious third-party IPs can
leverage the resources provided by the NoC to attack other legitimate components.
It can slow down traffic causing performance degradation, steal information, corrupt
data, or inject power viruses to physically damage the chip. The problem of NoC
security has been explored in two directions: (1) trusted NoC is used to secure the
SoC from other untrusted IPs [5, 13, 61], and (2) NoC is untrustworthy and security
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Fig. 8.1 NoC-based
many-core architecture
connecting heterogeneous IPs
on a single SoC. Each IP
connects to a router via a
network interface. Depending
on the selected topology,
routers will be arranged
across the NoC

countermeasures are required to secure the SoC [11, 12, 18]. This chapter is mainly
focused on the first scenario where the NoC is trustworthy.

Denial-of-Service (DoS) in a network is an attack preventing legitimate users
from accessing services and information. In an NoC setup, DoS attacks can happen
from malicious third-party IPs (MIP) manipulating the availability of on-chip
resources by flooding the NoC with packets. The performance of an SoC can heavily
depend on few components. For example, a memory intensive application will send
many requests to memory controllers, and as a result, routers connected to them
will experience heavy traffic [16, 19]. If an MIP targets the same node, the SoC
performance will suffer significant degradation [58]. Distributed DoS (DDoS) is a
type of DoS attack where multiple compromised IPs are used to target one or more
components in the SoC causing a DoS attack. We use “DoS attacks” to indicate both
DoS and DDoS attacks in the rest of this chapter. The main solution presented in this
chapter mitigates both DoS (single attacker) and DDoS (multiple attackers) attacks.

Unlike microcontroller based designs in the past, even resource constrained
embedded and IoT (Internet-of-Things) devices nowadays incorporate one or more
NoC-based SoCs. Many embedded and IoT systems have to deal with real-time
requirements with soft or hard deadlines, where variations in applications as well as
usage scenarios (inputs) are either well defined or predictable. In other words, if the
applications are not predictable, it is impossible to provide any real-time guarantees.
As expected, the communication patterns are known at design time for such systems.
In fact, these assumptions are observed in a wide variety of prior research efforts
involving soft [15, 66] as well as hard real-time systems [67]. These embedded and
IoT devices can be one of the main targets of DoS attacks due to their real-time
requirements with task deadlines. Early detection of DoS attacks in such systems is
crucial as increased latencies in packet transmission can lead to deadline violations.

Importance of NoC security has led to many prior efforts to mitigate DoS
attacks in an NoC such as traffic monitoring [30, 58] and formal verification-
based methods [8]. Other real-time traffic monitoring mechanisms have also been
discussed in non-NoC domains [67]. As outlined in Sect. 8.2.1, it is a major
challenge to detect and localize a malicious IP in real-time. The problem is more
challenging in the presence of multiple malicious IPs, and it gets further aggravated
when multiple attackers help each other to mount the DoS attack. In this chapter, we
present an efficient method that focuses on detecting changes in the communication
behavior in real-time to identify DoS attacks. It is a common practice to encrypt
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critical data in an NoC packet and leave only few fields as plain text [64].1Therefore,
this approach monitors communication patterns without analyzing the encrypted
contents of the packets.

Major contributions of this chapter can be summarized as follows:

1. We present a detailed discussion on “flooding-type” DoS attacks in NoC-based
SoCs and outline a real-time and lightweight DoS attack detection technique.
The routers store statically profiled traffic behavior and monitor packets in the
NoC to detect any violations in real-time.

2. A lightweight approach is developed to localize the MIP(s) in real-time once an
attack is detected.

3. The effectiveness of this approach is evaluated against different NoC topologies
using both real benchmarks and synthetic traffic patterns considering DoS attacks
originating from a single malicious IP as well as from multiple malicious IPs.

4. The applicability of this approach is further evaluated by using an architecture
model similar to one of the commercially available SoCs-Intel’s KNL architec-
ture [62].

The remainder of the chapter is organized as follows. Section 8.2 discusses
the threat model and communication model used in this framework. Section 8.3
discusses other related research efforts in flooding-type DoS attack mitigation.
Section 8.4 describes the real-time attack detection and localization methodology.
Section 8.5 presents the experimental results. Section 8.6 presents the case study
using KNL. Section 8.7 discusses the applicability and limitations of the proposed
approach. Finally, Sect. 8.8 summarizes the chapter.

8.2 System and Threat Models

8.2.1 Threat Model

Previous works have explored two main types of DoS attacks on NoCs [29]—(1)
MIPs flooding the network with useless packets frequently to waste bandwidth and
cause a higher communication latency causing saturation, and (2) draining attack
which makes the system execute high-power tasks and causes fast draining of
battery. An illustrative example is shown in Fig. 8.2 to demonstrate the first type
of DoS attack. As a result of the injected traffic from the malicious IPs to the victim
IP (this can be a critical NoC component such as a memory controller), routers in
that area of the NoC get congested and responses experience severe delays.

1On-chip encryption schemes introduce the notion of authenticated encryption with associated
data in which the data is encrypted and associated data (initialization vectors, routing details, etc.)
are sent as plain text [64].
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Fig. 8.2 Example DDoS attack from malicious IPs to a victim IP in a Mesh NoC setup. The
thermal map shows high traffic near the victim IP (MEM). P-processor, DSP-digital signal
processor, VPU-vector processing unit, GPU-graphics processing unit, ENC-encoder, MEM-
memory controller

A practical example of a draining attack was shown in [54]. A malware known as
a worm spread through Bluetooth and multimedia messaging services (MMS) and
infected the recipient’s mobile phone. The code is crafted in such a way that it sends
continuous requests to the Bluetooth module for paging and to scan for devices.
Power consumption in the infected phone was increased up to 500% compared to
the idle state causing significant degradation of battery lifetime. There are instances
of draining attacks where even though the computation overhead increases, the
communication traffic does not increase. Such attacks cannot be detected using
a security mechanism implemented at the NoC. Moreover, these attacks can be
successful even if there are energy-efficient design solutions [4, 15, 17, 31, 32, 66].

The threat model is generic, it does not make any assumption about the
placement or the number of malicious IPs or victim IPs. Figure 8.3 shows four
illustrative examples of malicious/victim IP placements that can lead to different
communication patterns. Figure 8.3a shows a scenario involving one malicious
IP and one victim IP. The other three examples represent scenarios where the
packets injected from the malicious IPs to victim IPs are routed through paths that
(b) partially overlap, (c) completely overlap, and (d) form a loop. The approach
proposed in this chapter is capable of both detecting and localizing all the malicious
IPs in all these scenarios.

8.2.2 Communication Model

Since each packet injected in the NoC goes through at least one router, the router
is identified to be an ideal NoC component for traffic monitoring. The router also
has visibility to the packet header information related to routing. Packet arrivals at a
router can be viewed as “events” and captured using arrival curves [9]. The set of all
packets passing through router r during a program execution is denoted as a “packet
stream” Pr . Figure 8.4 shows two packet streams within a specific time interval
[1, 17]. The stream Pr (blue) shows packet arrivals in normal operation and P̃r (red)
depicts a compromised stream with more arrivals within the same time interval. The
packet count Npr [ta, tb) gives the number of packets arriving at router r within the
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Fig. 8.3 Different scenarios of malicious and victim IP placement. Packet routing paths from
malicious IPs to victim IPs shown in blue. (a) only one attacker is present, (b) paths partially
overlap, (c) paths completely overlap, (d) paths form a loop

Fig. 8.4 Example of two event traces. Six blue event arrivals represent an excerpt of a regular
packet stream Pr and nine red event arrivals represent a compromised packet stream P̃r

half-closed interval [ta, tb). Equation (8.1) formally defines this using Npr (ta) and
Npr (tb)—maximum number of packet arrivals up to time ta and tb, respectively.
∀ta, tb ∈ R

+, ta < tb, n ∈ N :

Npr [ta, tb) = Npr (tb) − Npr (ta) (8.1)

8.3 Related Work

Several other research efforts discussed performance degradation by flooding the
network with additional packets [30, 57]. In [57], Trojans embedded in the router
inject additional packets to the network to cause congestion. Additional packets are
generated by sending illegal packet requests to the switch allocator when the cores
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are idling (core idle times during application execution). Fang et al. explored the
effects of a DoS attack in an NoC architecture with mesh topology. They showed
that with changes to the attack traffic rate (i.e., severity of attack), different routing
protocols will get affected differently [23].

Countermeasures for DoS attacks both in terms of bandwidth and connectivity
have been studied in an NoC context. One such method tries to stop the hardware
Trojan which causes the DoS attack from triggering by obfuscating flits through
shuffling, inverting, and scrambling [8]. If the Trojan gets triggered, there should
be a threat detection mechanism. Other studies explored latency monitoring [58],
centralized traffic analysis [30], security verification techniques [8], and design
guidelines to reduce performance impacts caused by DoS attacks [23]. In [30],
probes attached to the network interface gather NoC traffic data and send it to a
central unit for analysis. In contrast, the method in [58] relies on injecting additional
packets to the network and observing their latencies.

DoS attacks have been extensively studied in computer networks as well as
mobile ad-hoc networks. In the computer network field, DoS attacks can be cate-
gorized as brute force attacks and semantic attacks. Brute force attacks overwhelm
the system or the targeted resource with a flood of requests similar to the threat
model used in this chapter. This can be achieved by techniques such as the attacker
sending a large number of ICMP packets to the broadcast address of a network or
by launching a DNS amplification attack [37]. It is common to use botnets rather
than few sources to maximize the impact of the attacks. Semantic attacks on the
other hand exploit some artificial limit of the system to deny services. Two popular
examples are Ping-of-Death [22] and TCP SYN flooding [21]. Figure 8.5 shows
an overview of a DoS attack in computer networks domain. Techniques such as
botnet fluxing [69], back propagation neural networks [40], and TCP blocking [10]
have been used to mitigate these attacks. However, using these techniques in SoC
domain is not feasible due to the resource constrained nature and the architectural
differences.

Waszecki et al. [67] discussed network traffic monitoring in an automotive
architecture by monitoring message streams between electronic control units (ECU)
via the controller area network (CAN) bus. Since multiple ECUs are connected on
the same bus, it is difficult to localize the origin of attack, and therefore, the solution
is presented only as a detection mechanism. Moreover, this architecture is bus-based
and fundamentally different from an NoC. In this chapter, we outline a lightweight
and real-time mechanism to detect and localize DoS attacks in an NoC-based SoC.

8.4 Real-Time Attack Detection and Localization

Figure 8.6 shows the overview of the proposed security framework to detect and
localize DoS attacks originating from one or more MIPs. The first stage (upper
part of the figure) illustrates the DoS attack detection phase while the second stage
(lower part of the figure) represents the localization of MIPs. During the detection
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Fig. 8.5 Overview of a DoS attack in the computer networks domain

Fig. 8.6 Overview of the proposed framework: the system specification is analyzed to obtain the
necessary packet arrival curves and detection parameters. These are used to design the real-time
attack detection and localization framework

phase, the network traffic is statically analyzed and communication patterns are
parameterized during design time to obtain the upper bound of “packet arrival
curves” (PAC) at each router and “destination packet latency curves” (DLC) at
each IP. The PACs are then used to detect violations of communication bounds in
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real-time. Once a router flags a violation, the IP attached to that router (local IP)
takes responsibility of diagnosis. It looks at its corresponding DLC and identifies
packets with abnormal latencies. Using the source addresses of those delayed
packets, the local IP communicates with routers along that routing path to get
their congestion information to localize the MIPs. The remainder of this section
is organized as follows. The first two sections describe parameterization of PAC
and DLC. Section 8.4.3 elaborates the real-time DoS attack detection mechanism
implemented at each router. Section 8.4.4 describes the localization of MIPs.

8.4.1 Determination of Arrival Curve Bounds

To determine the PAC bounds, the packet arrivals are statically profiled and the
upper PAC bound (λu

pr
(�)) is constructed at each router. The maximum number of

packets arriving at a router within an arbitrary time interval �(= tb − ta) is captured
for this purpose. This is done by sliding a window of length � across the packet
stream Pr and recording the maximum number of packets as formally defined in
Eq. (8.2).

λu
pr

(�) = max
t≥0

{NPr (t + �) − NPr (t)} (8.2)

Repeating this for several fixed � constructs the upper PAC bound. These bounds
are represented as step functions. A lower PAC bound can also be constructed by
recording the minimum number of packets within the sliding window. However, it is
not required for this discussion since in a DoS attack, we are only concerned about
violating the upper bound. An example PAC bound and two PACs corresponding to
the packet streams in Fig. 8.4 are shown in Fig. 8.7. During normal execution, the
PACs should fall within the shaded area.

While NoCs in general-purpose SoCs may exhibit dynamic and unpredictable
packet transmissions, for vast majority of embedded and IoT systems, the variations

Fig. 8.7 Graph showing upper bound (λu
pr

(�)) of PACs (green line with green markers) and the
normal operational area shaded in green. The blue and red step functions show PACs corresponding
to Pr and P̃r , respectively
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in applications as well as usage scenarios (inputs) are either well defined or
predictable. Therefore, the network traffic is expected to follow a specific trend
for a given SoC. SoCs in such systems allow the reliable construction of PAC
bounds during design time. To get a more accurate model, it is necessary to consider
delays that can occur due to NoC congestion, task preemption, changes of execution
times, and other delays. To capture this, the packet streams are considered to be
periodic with jitter. The jitter corresponds to the variations of delays. Equation (8.3)
represents the upper PAC bound for a packet stream Pr with maximum possible
jitter jPr and period τPr [63].

∀τPr , jPr ∈ R
+,� > 0 : λu

pr
(�) =

⌈
� + jPr

τPr

⌉
(8.3)

The equation captures the shift of the upper PAC bound because of the maximum
possible jitter jPr relative to a nominal period τPr . This method of modeling upper
PAC bounds is validated by the studies in modular performance analysis (MPA)
that uses real-time calculus (RTC) as the mathematical basis. MPA is widely used
to analyze the best and worst case behavior of real-time systems. Capturing packet
arrivals as event streams allows the packet arrivals to be abstracted from the time
domain and represented in the interval domain (Fig. 8.7) with almost negligible loss
in accuracy [63]. The same model is used in the MATLAB RTC toolbox [65].

8.4.2 Determination of Destination Latency Curves

Similar to the PACs recorded at each router, each destination IP records a DLC.
An example DLC in normal operation is shown in Fig. 8.8a. The graph shows
the latency against hop count for each packet arriving at a destination IP Di .
The distribution of latencies for each hop count is stored as a normal distribution,
which can be represented by its mean and variance. Mean and variance of latency
distribution at destination Di for hop count k are denoted by μi,k and σi,k ,
respectively. In the example (Fig. 8.8a), μi,4 is 31 cycles and σi,4 is 2. During
the static profiling stage, upon reception of a packet, the recipient IP extracts the
timestamp and hop count from the packet header, and plots the travel time (from the
source to the recipient IP) against the number of hops. The mean and variance are
derived after all the packets have been received. The illustrative example considered
one malicious IP four hops away from the victim IP launching the DoS attack.
No other IP is communicating with the victim IP in a path that overlaps with the
congested path. Therefore, the increased delay is observed only at hop count 4
(Fig. 8.8b). In general, when multiple IPs send packets with destination Di , and
the paths overlap with the congested path, the increased delay will be reflected in
several hop counts in the DLC. This scenario is not shown for the ease of illustration.
However, such overlapping paths are considered in the experiments.
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Fig. 8.8 Destination packet latency curves at an IP. The large variation in latency at hop count 4 in
(b) compared to (a), contributes to identifying the malicious IP. (a) Normal operation. (b) Attack
scenario

8.4.3 Real-Time Detection of DoS Attacks

Detecting an attack in a real-time system requires monitoring of each message
stream continuously in order to react to malicious activity as soon as possible. For
example, each router should observe the packet arrivals and check whether the pre-
defined PAC bound is violated. The attack scenario can be formalized as follows:

∃t ∈ R
+ : λu

pr
(�) < max

t≥0
{NP̃r

(t + �) − NP̃r
(t)} (8.4)

An obvious way to detect violations with the upper bound would be to construct the
PAC and check if it violates the bound as shown in Fig. 8.7. However, to construct
the PAC, the entire packet stream should be observed. In other words, all packet
arrivals at a router during the application execution should be recorded to construct
the PAC. While it is feasible during upper PAC bound construction at design time,
it does not lead to a real-time solution. Therefore, an efficient method is needed to
detect PAC bound violations during runtime.

To facilitate runtime detection of PAC bound violations, the “leaky bucket”
algorithm is used. The algorithm considers packet arrivals and the history of
packet streams and gives a real-time solution [39]. Once λu

pr
(�) is parameterized,

the algorithm checks the number of packet arrivals within all time intervals for
violations. Algorithm 8.1 outlines the leaky bucket approach where θr,s denotes
the minimum time interval between consecutive packets in a staircase function s

at router r , and ωr,s represents the burst capacity or maximum number of packets
within interval length zero. λu

pr
(�), which is modeled as a staircase function can

be represented by n tuples—(θr,s , ωr,s), s ∈ {1, n} sorted in ascending order with
respect to ωr,s . This assumes that each PAC can be approximated by a minimum on
a set of periodic staircase functions [38].

Lines 2–5 initialize the timers (TIMERr,s) to θr,s and packet counters at
time zero (COUNTERr,s) to corresponding initial packet numbers ωr,s , for each
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Algorithm 8.1: Detecting compromised packet streams
1: Input: (θr,s ,ωr,s ) tuples containing parameterized PAC bound at router r .
2: for s ∈ {1, n} do
3: TIMERr,s = θr,s

4: COUNTERr,s = ωr,s

5: end for
6: if packetReceived = TRUE then
7: for s ∈ {1, n} do
8: if COUNTERr,s = ωr,s then
9: TIMERr,s = θr,s

10: end if
11: COUNTERr,s = COUNTERr,s − 1
12: if COUNTERr,s < 0 then
13: attacked(r) = TRUE
14: end if
15: end for
16: end if
17: for s ∈ {1, n} do
18: if timeoutOccured(TIMERr,s ) = TRUE then
19: COUNTERr,s = min(COUNTERr,s + 1, ωr,s )
20: TIMERr,s = θr,s

21: end if
22: end for

staircase function and packet stream Pr . The DoS attack detection process (lines
6–16) basically checks whether the initial packet limits (COUNTERr,s) have been
violated. Upon reception of a packet (line 6), the counters are decremented (line 11),
and if it falls below zero, a potential attack is flagged (line 13). If the received packet
is the first within that time interval (line 8), the corresponding timer is restarted (line
9). This is done to ensure that the violation of PAC upper bound can be captured
and visualized by aligning the first packet arrival to the beginning of the PAC
bound. When the timer expires, values are changed to match the next time interval
(lines 18–21). As demonstrated in Sect. 8.5, the algorithm allows real-time detection
of DoS attacks under the threat model. Another important observation described
in Sect. 8.5.4.1 drastically reduces the complexity of the algorithm allowing a
lightweight implementation. The leaky bucket algorithm is originally proposed to
check the runtime conformity of event arrivals in the context of network calculus.
Its correctness is proven by Huang et al. [33].

8.4.4 Real-Time Localization of Malicious IPs

Figure 8.8b shows an example DLC during an attack scenario, where all IPs are
injecting packets exactly the same way as shown in Fig. 8.8a except for one MIP,
which injects a lot of packets to a node attached to a memory controller. Those



194 S. Charles and P. Mishra

Fig. 8.9 Four scenarios of the relative positions of local IP (D), attacker IP (A), victim IP (V ),
and the candidate MIP (S) as found by D. The red line represents the congested path

two nodes are 4-hops apart in the Mesh topology. This makes the latency for 4-hop
packets drastically higher than usual. For every hop count, the traffic distribution is
maintained as a normal distribution using μi,k and σi,k . Once a potential threat is
detected at a router, it sends a signal to the local IP. The local IP then looks at its
DLC and checks if any of the curves have packets that took more than μi,k+1.96σi,k

time (95% confidence level). One simple solution is to examine source addresses of
those packets and conclude that the source with most number of packets violating
the threshold is the MIP. However, this simple solution may lead to many false
positives. As each IP is distributed and examines the latency curve independently,
the IP found using this method may or may not be a real MIP (attacker). Therefore,
it is called a “candidate MIP.”

To illustrate the difference between an attacker and a candidate MIP, we first
examine four scenarios with only one attacker as shown in Fig. 8.9. In these
scenarios, the attacker A is sending heavy traffic to a victim IP V , and as a result,
local IP D is experiencing large latency for packets from source S. The first three
examples in Fig. 8.9 show examples where candidate MIP S is not the real attacker
A. Since a large anomalous latency is triggered by the congestion in the network,
the only conclusion obtained by the local IP from its DLC is that at least part of
the path from candidate MIP to local IP is congested. The path from attacker A to
victim V is called the “congested path.”

In Fig. 8.9a, c, the false positives of the candidate MIP S can be removed with
global information of congested paths, by checking the congestion status of path
from S to its first hop. It is certain that S is not the attacker when this path is not
congested. However, we cannot tell whether S is the attacker when the path of S is
congested. For example, the routers of Fig. 8.9b, d are both congested, but S is not
the attacker in Fig. 8.9b.

Things get much worse when multiple attackers are present. If we look at the
example in Fig. 8.10, the path from candidate MIP S to local IP D is part of all
paths along which three different attackers are sending packets to different victims.
The “congested graph” is defined as the set of all congested paths and all the routers
in the paths. Since each hop connecting two routers consists of two separate uni-
directional links, a congested graph is a bi-directional graph as shown in Fig. 8.10.
In order to detect attackers and avoid false positives, one simple solution would be
building the entire congested graph by exchanging information from all the other
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Fig. 8.10 Congested graph
of three attackers

Algorithm 8.2: Event handler for router R

1: upon event RESET:
2: R.f lag[pi ] = 0 for all ports pi

3: upon event attacked == TRUE:
4: send a signal to local IP
5: upon receiving a diagnostic message 〈S,D〉 from port pi :
6: start TIMEOUT if all R.f lag == 0
7: if S is local IP then
8: if f lag[pi ] == 0 then
9: f lag[pi ] = 1  local IP is the MIP

10: end if
11: if f lag[pi ] == 2 then  false positive, do nothing
12: end if
13: else  S is not local IP
14: Let N be the neighbor of R that sits in the path from S to R

15: if path from N to R is congested then
16: sends a diagnostic message 〈S,D〉 to N indicating that S is a candidate attacker
17: f lag[pi ] = 2  other IP is the MIP
18: else  false positive, do nothing
19: end if
20: end if
21: upon event TIMEOUT:
22: if any flag in R.f lag is 1 then
23: broadcasting that its local IP is the attacker
24: RESET
25: end if

routers and analyzing the graph to detect the actual MIPs. However, it would add a
lot of burden on the already congested paths.

To overcome the bottlenecks, a distributed and lightweight protocol is imple-
mented on the routers to detect the attackers. The event handler for each router for
MIP localization is shown in Algorithm 8.2. The description of the steps of the
complete protocol is shown below:

1. The router R detects an ongoing attack and sends a signal to the local IP (line 4).
In Fig. 8.9, both D and V will send a signal to their local IPs.

2. The local IP D looks at its DLC and responds to its router with a diagnostic
message < S,D > indicating the address of the candidate MIP S and
destination D. The local router then forwards the packet towards S.
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3. Each port in each router maintains a three-state flag to identify the attacker.
The flag is 0, 1, and 2 to denote the attacker is undefined, local IP, or others,
respectively. When a diagnostic message < S,D > comes in, R checks if the
candidate MIP S is the local IP. If yes and its flag is not set yet, it will set the flag
to be 1 (line 9). If S is not the local IP, it first finds out its neighbor N which sits
in the path from S to R. If the one-hop path from N to R is congested, it sends
the message to N (line 16) and sets the flag to 2, to indicate other IP as a potential
attacker (line 17). Except for these two scenarios, the received message is a false
positive and no action is taken (line 11 and 18), which will be explained in the
examples. Note that the flag cannot decrease except for the reset signal which sets
it to undefined (line 2). Therefore, if a diagnostic message already mentioned that
other IPs may be the potential attackers, a new diagnostic message from the same
port claiming that the local IP is the attacker will be ignored.

4. Each router maintains a timer. The timer starts as soon as any one of the router
ports receives a diagnostic message. A pre-defined timeout period is used by
each router. If the flag of any port is 1 after timeout, it broadcasts a message
alerting that its local IP (line 23) is the attacker. Finally, a reset signal is triggered
(line 24).

First, we will show that this approach works when a DoS attack is originating
from only one MIP in the NoC. Later, we will describe how the proposed approach
works in the presence of multiple MIPs mounting a DoS attack.

8.4.4.1 DoS Attack by a Single MIP

We use Fig. 8.9b to illustrate how this approach will localize the attacker when a
DoS is caused by a single MIP. The router of S will receive two messages, one
from the router of D saying that its local IP is a candidate MIP, and the other from
the router of V saying that A is a candidate MIP, i.e., < S,D > and < A,V >.
Depending on the arrival time of these two messages, there are two scenarios. (a)
< S,D > comes first. It will change the flag of the corresponding port to 1 to denote
that the local IP is the potential attacker. Then, S will receive < A,V > through the
same port. In this example, A is also the neighbor N . As the one-hop path from A

to S is congested, the flag will be set to 2, denoting that the attacker is some other
IP. (b) < A,V > comes first. It will change the flag of the corresponding port to 2
to denote that the other IP is the potential attacker. Then, S will receive < S,D >

through the same port. As the flag is already set to 2, the received message is a
false positive (line 11). When timeout occurs, nothing happens at the router of S.
However, the router of A receives only the message from V indicating that its local
IP is the potential attacker and its flag remains 1 when timeout occurs. A broadcast
is sent indicating that A is the attacker.

For the case in Fig. 8.9a, A will receive a message from D indicating that S is a
candidate MIP. However, when A checks the congestion status of the one-hop path
from S to A, it will find out that the path is not congested. Therefore, the message is
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a false positive (line 18), and A will not change its flag. In other words, the flag of
A will be set to 1 after receiving the message from V , and will not be changed by
the message from D to S. After timeout, A will be identified as the attacker.

8.4.4.2 DoS Attack by Multiple MIPs

Before giving an illustrative example of how this approach will localize attacks by
multiple malicious IPs, we outline the proof of the correctness of this approach.

Theorem 8.1 If the congested graph contains no loops, Algorithm 8.2 can localize
at least one attacker.

Proof Merge multiple diagnostic messages with the same destination as one
message and ignore all false positive messages detected in line 11 and line 18 of
Algorithm 8.2. Define message ϕi as a diagnostic message which points out that Ai

is a candidate MIP. Consider the port of any attacker Ai that receives message ϕi .
Such a port always exists in a DoS attack scenario due to the fact that victim Vi will
send a message ϕi to Ai saying that Ai is a candidate MIP. If ϕi is the only message
received from this port, the algorithm can declare Ai as an attacker.

The algorithm fails only when all routers connected to the attackers have flags
set to either 0 or 2 in each of their ports as illustrated in Algorithm 8.2. This can
only happen when each port that receives a diagnostic message receives another
diagnostic message which causes the flag to be set to 2. Assume that a port in router
of Ai receives messages MSi = {ϕi, ϕj , . . .}. It will digest the message ϕi and send
out the remaining ones. Construct a diagnostic message path in the following way.
First, add Ai to the path. Then, select any message from MSi other than ϕi , e.g.,
ϕj . Next, follow the diagnostic message path from Ai to Aj , and add all routers to
the path. By the same process, select one message other than ϕj from MSj , e.g.,
ϕk . Next, follow the path from Aj to Ak . This can be done one by one since for
every message set MSu at attacker Au, there is at least one message other than
ϕu to select from. Therefore, the constructed diagnostic message path contains an
infinite number of attackers, as shown in Fig. 8.11. The infinite number of attackers
implies that this path contains repeated attackers. Without loss of generality, it can
be assumed that Ak = Ai . Since Ai cannot be sending out diagnostic messages MSi

through the same port that receives MSi , the diagnostic path must form a loop. It
is easy to see that diagnostic paths are the reverse of congested paths. As a result,
there exists a loop in the congested graph, which contradicts the assumption made.
Hence, Theorem 8.1 is proven. ��

Thus, there always exists a port of the router connected to attacker Ai which
receives only one diagnostic message ϕi given that there are no loops. This is
a sufficient condition to detect Ai using Algorithm 8.2. Using this approach for
localizing multiple malicious IPs gives rise to three cases that behave differently
depending on how the MIPs are placed.
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Fig. 8.11 An example of a diagnostic message path constructed by following the flow of a
diagnostic message in each attacker

Fig. 8.12 Illustrative example to show how the detection and localization framework works.
(a) Placement of attackers and victim that causes an overlap of congested paths of attackers A2
and A3. (b) Attacker(s) detected from first iteration. (c) Attacker(s) detected from second iteration

1. Case 1: If the congested paths do not overlap, all MIPs will be localized in one
iteration using the process outlined above. This is the best case scenario for the
approach and localizes MIPs in minimum time.

2. Case 2: If at least two paths overlap, it will need more than one iteration to
localize all MIPs. To explain this scenario, an illustrative example is shown in
Fig. 8.12. Figure 8.12a shows the placement of the four MIPs (A1, A2, A3, A4)
attacking the victim IP (V ). Once the attack is detected, in the first iteration,
A1, A3, and A4 are detected as shown in Fig. 8.12b. Due to the nature of this
approach, A2 is not marked as an attacker. This is caused by two diagnostic
messages going in the paths V → A2 and V → A3. The router of A2 will
receive a message from the router of V saying that its local IP is a candidate
MIP. It will change the flag of the corresponding port to 1 to denote that A2 is the
potential attacker. A2 will receive another message from the router of V through
the same port saying that A3 is a candidate MIP. In this example, A3 is also the
neighbor of A2. As the one-hop path from A3 to A2 is congested, the flag will
be set to 2, denoting that the attacker is some other IP. When timeout occurs,
nothing happens at the router of A2. However, the router of A3 receives only the
message from V indicating that its local IP is the potential attacker and its flag
remains 1 when timeout occurs. Therefore, A3 is detected as an attacker whereas
A2 is not. In the case of A1 and A4, there is no overlap of congested paths and the
two attackers are detected without any false negatives. Once the system resumes
with only A2 being malicious, the attacker will be detected and localized in the
second iteration (Fig. 8.12c). This case consumes more time since an additional
detection phase is required to localize all MIPs. The number of iterations will
depend on how many overlapped paths can be resolved at each iteration. In the
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Fig. 8.13 (a) Three attackers
cooperate and construct a
loop in the congested graph.
Algorithm 8.2 will fail to
detect any attacker in the
loop. (b) When a router
randomly “stops working,” an
attacker A2 is revealed after
breaking the loop

worst case (where all congested paths can overlap and each iteration will resolve
one path), the number of iterations will be equal to the number of MIPs. However,
this approach is guaranteed to localize all MIPs.

3. Case 3: The proof of Theorem 8.1 had the assumption that the congested
graph contains no loops. Therefore, using this approach as it is will not lead to
localizing all MIPs if the congested graph forms a loop as shown in Fig. 8.13. One
solution is that any router in the congested loop can randomly “stop working”
and resume after a short while. By breaking the loop, this approach will detect
attackers with the new congested graph. The router “stopping work” can be
triggered by the system observing that a DoS attack is going on (during the
detection phase), but no MIPs being localized.

In summary, this approach will detect one or more MIPs at each iteration
depending on whether congested paths overlap. After detecting attackers(s) in the
congested graph, their local router(s) can remove the attacker by dropping all its
packets. Then, the process will be repeated with a new congested graph if more
attackers exist. This approach continues to find more attackers until either all
attackers have been found, or the congested graph forms a loop, which can be
handled using the method outlined above (Case 3).

It is easy to see that the extra work for the router is minimal in this protocol
because all computations are localized. It only needs to check the congestion status
of connected paths (one hop away), and compute the flag which has two bits for
each port. This protocol relies on the victim to pinpoint the correct attackers and the
other routers to remove false positives. The timeout should be large enough for the
victim to send messages to all the routers in the path of the attack. In practice, it can
be the maximum communication latency between any two routers. The total time
from detection to localization is the latency for packet traversal from the victim to
attackers plus the timeout. Therefore, the time complexity for localization is linear
in the worst case with respect to the number of IPs. It is important to note that most
of the time, the diagnostic message path is the reverse of the congested path, and
therefore, it is not congested.
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8.5 Experiments

This chapter explores DoS attacks caused by a single MIP as well as multiple MIPs
using the architecture shown in Fig. 8.14. In Sect. 8.6, the efficiency of this approach
is evaluated using an architecture model similar to one of the commercially available
SoCs [62].

8.5.1 Experimental Setup

The DoS attack detection and localization approach was evaluated by modeling
an NoC-based SoC using the cycle-accurate full-system simulator—gem5 [7]. The
interconnection network (NoC) was built on top of the “GARNET2.0” model that
is integrated with gem5 [1]. The default gem5 source was modified to include the
detection and localization algorithms. Experiments were conducted using several
synthetic traffic patterns (uniform_random, tornado, bit_complement, bit_reverse,
bit_rotation, neighbor, shuffle, transpose), topologies (Point2Point (16 IPs), Ring
(8 IPs), Mesh4×4, Mesh8×8), and XY routing protocol to illustrate the efficiency
of the approach across different NoC parameters. A total of 40 traffic traces were
collected using the simulator by varying the traffic pattern and topology. Synthetic
traffic patterns were only tested using one MIP in the SoC launching the DoS attack
and an application instance running in 50% of the available IPs. These traffic traces
act as test cases for the algorithms. The placement of the MIP, victim IP, and IP(s)
running the traffic pattern was chosen at random for the 40 test cases.

The approach was also evaluated using real traffic patterns based on 5 bench-
marks (FFT, RADIX, OCEAN, LU, FMM) from the SPLASH-2 benchmark
suite [68] in Mesh 4×4 topology. Traffic traces from real traffic patterns were
used to test both single-source DoS attacks as well as multiple-source DoS attacks.

Fig. 8.14 MIP and victim IP placement when running tests with real benchmarks on a 4×4 Mesh
NoC
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The attack was launched at a node connected to a memory controller. Relative
placements of the MIP and victim IP used to test the single-source DoS attack were
the same as for the synthetic traces running on Mesh 4×4 topology (test case IDs
1 through 5 in Fig. 8.16). For the DoS attack involving multiple MIPs, experiments
were done using the same set of benchmarks and topology with the victim and MIP
placements as shown in Fig. 8.14. The placement captures both Case 1 and Case
2 discussed in Sect. 8.4.4.2. Each node with a non-malicious IP ran an instance of
the benchmark while the four nodes in the four corners were connected to memory
controllers. The jitter for all applications was calculated using the method proposed
in [41].

8.5.2 Efficiency of Real-Time DoS Attack Detection

Before showing the results of experimental evaluation, we will first give an
illustrative example to show how the parameters associated with the leaky bucket
algorithm (Algorithm 8.1) are calculated and used in attack detection.

An important observation allows the reduction of the number of parameters
required to model the PACs, and as a result, implement a lightweight scheme with
much less overhead. The model in Eq. (8.3) is derived using the fact that the packet
streams are periodic with jitter. As proposed in [67] and [6], for message streams
with such arrival characteristics, the PACs can be parameterized by using only worst
case jitter jPr , period τPr , and an additional parameter εr which denotes the packet
counter decrement amount. The relationship between these parameters is derived
in [38] as shown in Eq. (8.5).

θr = greatest_common_divisor(τPr , τPr − jPr ) (8.5a)

ωr = 2 × εr − τPr − jPr

θr

(8.5b)

εr = τPr

θr

(8.5c)

To use these parameters, the only changes to Algorithm 8.1 are at line 11
(COUNTERr,s = COUNTERr,s − εr ) and one tuple per packet stream instead of
n tuples (s ∈ {1}). The illustrative example is based on this observation.

Illustrative Example Consider the example packet streams shown in Fig. 8.4.
Assume that the packet steam Pr has a period τPr = 3 μs and jitter jPr = 1.5 μs.
During an attack scenario, this stream is changed to stream P̃r with τP̃r

= 2 μs
and no jitter. Using these values in Eq. (8.5) will give θr = 1.5 μs, ωr = 3, and
εr = 2, which are the parameters used in the leaky bucket algorithm. Therefore,
COUNT ERr,s is initialized with 3 (line 4, line 19) and decremented by 2 at each
message arrival (line 11). T IMERr,s is initialized to 1.5 μs (line 3, line 20). Using



202 S. Charles and P. Mishra

Fig. 8.15 Illustrative example of parameter changes in the leaky bucket algorithm with packet
arrivals and timeouts

these values and running the detection algorithm during the attack scenario will
lead to a detection time of 4 μs. Figure 8.15 shows the values of the parameters
changing with each packet arrival and timeout leading to the detection of the attack
at t = 4 μs.

The experimental evaluation follows the same process as the illustrative example
using the experimental setup described in Sect. 8.5.1. Figure 8.16 shows the
detection time across different topologies for synthetic traffic traces in the presence
of one MIP. The 40 test cases are divided into different topologies, 10 each. The
packet stream periods are selected at random to be between 2 and 6 μs. Attack
periods are set to a random value between 10 and 80% of the packet stream period.
The detection time is approximately twice the attack period in all topologies. This
is expected according to Algorithm 8.1 and consistent with the observations in [67].

In addition to the time taken by the leaky bucket approach, the detection time
also depends on the topology. For example, attack detection in Point2Point topology
(Fig. 8.16a), where every node is one hop away, requires less time to detect
compared to Mesh8×8 (Fig. 8.16d) where some nodes can be multiple hops away.
The topology mainly affects attack localization time due to the number of hops from
detector to attacker. But for detection, topology plays a relatively minor role since
the routers are connected to each IP and detection mechanism neither takes into
account the source nor the destination of packets. The routers only look at how many
packets arrived in a given time interval. It is also important to note that any router in
the congested path can detect the attack, not only the router connected to the victim
IP. A combination of these reasons have led to the topology playing a relatively
minor role in attack detection time. These results confirm that this approach can
detect DoS attacks in real-time.

Results for DoS attack detection in the presence of multiple attacking MIPs are
shown in Figs. 8.17 and 8.18. For all of these experiments, packet stream period is
fixed at 2.5 μs and attack period is set to 1.5 μs. Figure 8.17 shows detection time
variation in the presence of different number of IPs across benchmarks. The time to
detect an ongoing attack in the multiple MIP scenario is typically less than the single
MIP scenario. When more IPs are malicious, the detection time shows a decreasing
trend. This is expected since multiple attackers flood the NoC faster and cause PAC
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Fig. 8.16 Attack detection time for different topologies when running synthetic traffic patterns
with the presence of one MIP. Each graph shows time in microseconds (y-axis) against test case
ID (x-axis). (a) Point2Point. (b) Ring. (c) Mesh 4 × 4. (d) Mesh 8 × 8
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Fig. 8.17 Attack detection time when running real benchmarks with the presence of different
number of MIPs

Fig. 8.18 Attack detection time when running real benchmarks with the presence of four MIPs

bound violations quicker. To compare detection time with packet stream period and
attack period, the detection time variation is shown in the presence of four MIPs
across benchmarks in Fig. 8.18.

8.5.3 Efficiency of Real-Time DoS Attack Localization

The efficiency of attack localization is evaluated by measuring the time it takes
from detecting the attack to localizing the malicious IPs. According to this protocol,
the localization time is mainly dominated by the latency for packet traversal from
victim to attacker (V2AL) as well as the timeout (TOUT) described in Sect. 8.4.4.
Figure 8.19 shows these statistics using the same set of synthetic traffic patterns
for the single MIP scenario. The experimental setup for the localization results
corresponds to the experimental results for the detection results in Fig. 8.16. Unlike
the detection phase, since the localization time depends heavily on the time it takes
for the diagnostic packets to traverse from the IPs connected to the routers that
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Fig. 8.19 Attack localization time for synthetic traffic patterns in the presence of one MIP. Figure
shows time in microseconds (y-axis) against test case ID (x-axis) across different topologies. Test
cases correspond to the test cases in Fig. 8.16

flagged the attack to the potentially malicious IPs, the localization time varies for
each topology. For example, in a Point2Point topology, localization needs diagnostic
message to travel only one hop, whereas a Mesh8×8 topology may require multiple
hops. Therefore, localization is faster in Point2Point compared to Mesh8×8 as
shown in Fig. 8.19. The localization time is less compared to detection time because
the localization process completes once the small number of diagnostic packets
reach all the potentially malicious IPs, whereas detection requires many packets
before violating a PAC bound during runtime.

Results for DoS attack localization in the presence of multiple MIPs when
running real benchmarks is shown in Fig. 8.20. Similar to the experiments done
for DoS attack detection efficiency, localization results are shown for one, two,
three, and four MIPs attacking the victim IP at the same time. The time is measured
as the time it takes since launching the attack, until the localization of all MIPs.
Once the first iteration of localization and detection is complete, the attack has
to be detected again before starting the localization procedure. Therefore, the y-
axis shows detection as well as localization time. For clarity of the graph, unlike in
Fig. 8.19, total localization time is shown for each iteration rather than dividing the
localization time as V2AL and TOUT. For both one and two MIP scenarios, only one
iteration of detection and localization is required. When the third MIP is added, the
two congested paths from victim to second MIP and from victim third MIP overlap.
Therefore, only the first and third MIPs are localized during the first iteration leaving
the second MIP to be detected during the second iteration. Similarly, in the four MIP
scenarios, first, third, and fourth MIPs are localized during the first iteration and
the second MIP, during the second iteration. This is consistent with the discussion
presented in Sect. 8.4.4.2. The results show that both detection and localization can
be achieved in real-time. If a system requires only detection, the architecture of this
framework allows easy decoupling of the two steps.



206 S. Charles and P. Mishra

Fig. 8.20 Attack localization time when running real benchmarks with the presence of different
number of MIPs

Fig. 8.21 Block diagram of NoC architecture showing additional hardware required to implement
the security protocol in red

8.5.4 Overhead Analysis

The overhead is caused by the additional hardware that is required to implement
the DoS attack detection and localization processes. The detection process requires
additional hardware components and memory implemented at each router to
monitor packet arrivals as well as store the parameterized curves. The localization
process uses DLCs stored at IPs and the communication protocol implemented at
the routers. Figure 8.21 shows an overview of how the security components are
integrated into the NoC components. The observation made in Sect. 8.5.1 allows
the reduction of the number of parameters required to model the PACs, and as
a result, reduces the additional memory requirement and improves performance.
The following sections evaluate the power, performance, and area overhead of the
optimized algorithms.
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8.5.4.1 Performance Overhead

In this work, a 5-stage router pipeline (buffer write, virtual channel allocation,
switch allocation, switch traversal, and link traversal) was implemented in gem5.
The computations related to the leaky bucket algorithm can be carried out in parallel
to these pipeline stages once separate hardware is implemented. Therefore, no
additional performance penalty for DoS attack detection.

During the localization phase, the diagnostic messages do not lead to additional
congestion for two reasons. (1) As shown in Algorithm 8.2, the diagnostic message
is transmitted along the reverse direction of the congested path. Since routers utilize
two separate uni-directional links, the diagnostic messages are not sent along the
congested path. (2) While it is unlikely, it is possible for multiple MIPs to carefully
select multiple victims to construct a congested path in both directions. Even in this
scenario, the number of diagnostic messages is negligible. This is because when an
attack is flagged by the detection mechanism, diagnostic messages are sent to the
source IPs which have violated the DLC threshold. Since the number of such source
IPs can be at most the number of IPs communicating with the node that detected the
attack, the performance impact by diagnostic messages is negligible.

8.5.4.2 Hardware Overhead

The overhead due to modifications in the router, packet header, and local IPs is as
follows.

Router The proposed leaky bucket algorithm is lightweight and can be efficiently
implemented with just three parameters per PAC bound as discussed above. The
localization protocol requires two-bit flags at each port resulting in 10 bits of
memory per router in Mesh topology. To evaluate the area and power overhead
of adding the distributed DoS attack detection and localization mechanism at each
router, the RTL of an open-source NoC Router [53] was modified. The design was
synthesized with the 180 nm GSCLib Library from Cadence using the Synopsys
Design Compiler. It gave area and power overhead of 6% and 4%, respectively,
compared to the default router.

Packet Header In a typical packet header, the header flit contains basic fields such
as source, destination addresses, and the physical address of the (memory) request.
Some cache coherence protocols include special fields such as flags and timestamps
in the header. If the header carries only the basic fields, the space required by these
fields is much less compared to the wide bit widths of a typical NoC link. Therefore,
most of the available flit header space goes unused [59]. This approach uses some of
these bits to carry the timestamp to calculate latency. This eliminates the overhead
of additional flits, making better utilization of bits that were being wasted. If the
available header bit space is not sufficient, adding an extra “monitor tail flit” is an
easily implementable alternative [59]. In most NoC protocols, the packet header
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has a hop count or time-to-live field. Otherwise, it can be derived from the source,
destination addresses, and routing protocol details.

Local IP The DLPs are stored and processed by IPs connected to each node of
an NoC. Since the IPs have much more resources than any other NoC component,
the proposed lightweight approach has negligible power and performance overhead.
μi,k + 1.96σi,k is stored as a 4-byte integer for each hop count. Therefore, the entire
DLP at each IP can be stored using 1 × m parameters where m is the maximum
number of hops between any two IPs in the NoC. It gives a total memory space of
just 1 × m × 4 bytes.

These evaluations demonstrate that the area, power, and performance overhead
introduced by this approach are negligible.

8.6 Case Study with Intel KNL Architecture

In the previous section, the DoS attack detection and localization method was
evaluated using a regular 4×4 Mesh architecture (Fig. 8.14). In order to demonstrate
the applicability of this approach across NoC architectures, in this section, we
evaluate the efficiency of the approach in an architecture model similar to one
of the commercially available SoCs—Intel’s KNL architecture. Knights Landing
(KNL) is the codename for the second generation Xeon-Phi processor introduced by
Intel [62]. The architecture was modeled on gem5 according to a validated simulator
model [14].

The KNL architecture, which is designed for highly parallel workloads, provide
36 tiles interconnected on a Mesh NoC. An overview of the KNL architecture
is shown in Fig. 8.22. It implements a directory-based cache coherence protocol
and supports two types of memory (1) multi-channel DRAM (MCDRAM) and (2)
double data rate (DDR) memory. The architecture gives the option of configuring
these two memories in several configurations which are called memory modes.
Furthermore, the affinity between cores, directories, and memory controllers can
be configured in three modes which are known as cluster modes. The memory and
cluster modes allow configuration of the architecture depending on the applica-
tion characteristics to achieve optimum performance and energy efficiency. Each
combination of memory and cluster modes cause different traffic patterns in the
NoC [17]. The goal is to simulate the NoC traffic behavior in a realistic architecture
and evaluate how the security framework performs in it.

The gem5 model is adopted from previous work in [14] which validated the
gem5 simulator statistics with the actual hardware behavior of a Xeon Phi 7210
platform [36]. In this model, 32 tiles connect on a Mesh NoC. Each tile is composed
of a core that runs at 1.4 GHz, private L1 cache, tag directory, and a router.
Each cache is split into data and instruction caches with 16kB capacity each. The
complete set of simulation parameters are summarized in Table 8.1. The memory
controllers are placed to match the architecture shown in Fig. 8.22. A few modeling
choices were made that deviates from the actual KNL hardware due to the following
reasons:
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Fig. 8.22 Overview of the KNL architecture together with an example of MCDRAM miss in
cache memory mode and all-to-all cluster mode: (1) L2 cache miss. Memory request sent to check
the tag directory, (2) request forwarded to MCDRAM which acts as a cache after miss in tag
directory, (3) request forwarded to memory after miss in MCDRAM, (4) data read from memory
and sent to the requester [62]

• 32 tiles are used instead of the 36 in KNL since the number of cores in gem5 must
be a power of 2. This can be considered as a use-case where the KNL hardware
has switched off cores in four of its tiles.

• The cache sizes used in the model are less compared to the actual KNL hardware
numbers. This was done to get 95% hit rate in L1 cache, which is usually the hit
rate when running embedded applications for the benchmarks used. If a larger
cache size was used, the L1 hit rate would be 100%, and NoC optimization will
not affect cache performance.

• KNL runs AVX512 instructions whereas the gem5 model runs X86. gem5 is yet
to support AVX512 instructions.

• Each tile in KNL consists of two cores. The detection mechanism is capable of
detecting DoS attacks irrespective of whether one or both cores in a tile are active.
However, the localization method can only pinpoint which tile is malicious. Since
detection as well as localization happens at the router level, it is not possible to
pinpoint the malicious core in a tile if both cores are active. Therefore, in the
experimental setup, it was assumed that one core per tile is active simulating
50% utilization.
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Table 8.1 System configuration parameters used when modeling KNL on gem5 simulator

Parameter class Parameter Value

Processor
configuration

Number of cores 32

Core frequency 1.4 GHz

Instruction set architecture ×86

Memory system
configuration

L1 cache Private, separate instruction and data cache.
Each 16 kB in size

Cache coherence Distributed directory-based protocol

Memory size 4 GB DDR

MCDRAM Shared, direct mapped cache

Access latency 300 cycles

Interconnection
network
configuration

Topology 8 × 4 Mesh

Routing scheme X–Y deterministic

Router 4 port, 4 input buffer router with 5 cycle
pipeline delay

Link latency 1 cycle

Therefore, the gem5 model is a simplified version of the real KNL hardware.
However, previous work has validated the model and related performance and
energy results to show that it accurately captures relative advantages/disadvantages
of using different memory and cluster modes [14]. To evaluate the security
framework, out of the memory and cluster modes, the cache memory mode and
all-to-all cluster mode were modeled.

• Cache memory mode: In the cache mode, MCDRAM acts as a last level cache
which is placed in between the DDR memory and the private cache. All memory
requests first go to the MCDRAM for a cache memory lookup, if there is a cache
miss, they are sent to the DDR memory.

• All-to-all cluster mode: In this mode, there is no affinity between the core,
memory controller, and directory. That is, a memory request can go from any
directory to any memory controller.

The traffic flow when applications are running is defined by these modes. Fig-
ure 8.22 shows an example traffic flow.

The same real traffic patterns used in Sect. 8.5.1 were used to evaluate the KNL
setup. To mimic the highly parallel workloads executable by the KNL architecture,
50% of the total available cores were utilized when running each application by
running an instance of the benchmarks in each active core. The DDR address
space was used uniformly for each benchmark. Attackers were modeled and placed
randomly in 25% of the tiles that does not have an application instance. The DoS
attack was launched at the memory controller that experienced highest traffic during
normal operation. Given that the model has 32 cores, 16 of them ran instances of the



8 Detection and Localization of DoS Attacks 211

Fig. 8.23 4 × 8 Mesh NoC architecture used to simulate DoS attacks in an architecture similar to
KNL

Fig. 8.24 Attack detection time when running real benchmarks on an architecture similar to KNL
with the presence of different number of MIPs

benchmark and 4 of the non-active cores injected packets directed at the memory
controller to simulate the behavior of malicious IPs launching a DoS attack. The
packet stream period and attack period were selected as explained in Sect. 8.5.2.
Figure 8.23 shows the placement of the four MIPs, cores running the benchmarks
(active cores), and the victim IP when running the RADIX benchmark. The victim
IP depends on the benchmark since it is the IP connected to the memory controller
experiencing highest traffic during normal operation.

Similar to the experimental results presented in Sect. 8.5.1, the DoS attack
detection results are shown in Figs. 8.24 and 8.25. Figure 8.24 shows detection
time variation across benchmarks and number of MIPs. A zoomed-in version of the
four MIP scenario is shown in Fig. 8.25. Attack localization results are shown in
Fig. 8.26. Until the fourth MIP is added, there are no overlapping congested paths.
Therefore, the MIPs are localized using only one iteration. Once the fourth MIP
is added, the first, third, and fourth MIPs are localized during the first iteration
and a second iteration is required to localize the second MIP. This is reflected in
localization time in Fig. 8.26. From these as well as the previous results we notice
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Fig. 8.25 Attack detection time when running real benchmarks on an architecture similar to KNL
with the presence of four MIPs

Fig. 8.26 Attack localization time when running real benchmarks on an architecture similar to
KNL with the presence of different number of MIPs

that the DoS attack detection and localization framework gives real-time results
across different topologies and architectures.

8.7 Discussion

This approach is designed for DoS attack detection and localization, and therefore,
it is not suitable to capture other forms of security violations such as eavesdropping,
snooping, and buffer overflow. Specific security attacks would require other security
countermeasures which are not covered in this chapter. Due to the low implementa-
tion cost, this approach can be easily coupled with other security countermeasures.
For example, [60] discussed a snooping attack in which the header of the packet
is modified before injecting into the NoC. This will alter the source address of
the packet. While this detection mechanism does not depend on any of the header
information of the packet, since the localization method uses the source address
to localize the MIPs, an address validation mechanism needs to be implemented
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at each router to accommodate header modification. The address validation can be
implemented as follows. Before a router injects each packet that comes from the
local IP into the NoC, the router can check the source address and if it is not the
address of the local IP attached to that router, the router can drop it without injecting
into the NoC.

This work is targeted for embedded systems with real-time constraints. Such
systems allow only a specific set of scenarios in order to provide real-time
guarantees. Features commonly observed in general-purpose computing such as
task mapping, runtime task-migration, adaptive routing, and introduction of new
applications during runtime cannot be addressed by this work. In order to apply
this approach in general-purpose systems, we need to store PACs and DLCs
corresponding to each scenario and select the respective curves during runtime. As
discussed in Sect. 8.5.4, the hardware overhead to store the parameterized curves for
each scenario is minimal, which consists of two major parts (1) overhead for storing
the curves (1 × m × 4 bytes), and (2) overhead for runtime monitoring (6% of NoC
area). For example, if we consider an 8×8 Mesh, the memory overhead to store the
curves would be 56 bytes (m = 14). If N scenarios are considered, the overhead
would be 6% + N × 56. Therefore, it may be feasible to consider a small number of
scenarios (e.g., N < 10) without violating area overhead constraints.

8.8 Summary

This chapter presented a real-time and lightweight DoS attack detection and
localization mechanism for IoT and embedded systems. It relies on real-time
network traffic monitoring to detect unusual traffic behavior. This chapter described
a real-time and efficient technique for detection of DoS attacks originating from
multiple malicious IPs in NoC-based SoCs. Once an attack is detected, this approach
is also capable of real-time localization of the malicious IPs using the latency data
in the NoC routers. The effectiveness of the approach is demonstrated using several
NoC topologies and traffic patterns. Experimental results showed that all the attack
scenarios can be detected and localized in a timely manner. Overhead calculations
have revealed that the area overhead is less than 6% to implement the proposed
framework on a realistic NoC model. This framework can be easily integrated with
existing security mechanisms that address other types of attacks such as buffer
overflow and information leakage.
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Chapter 9
Securing on-Chip Communication Using
Digital Watermarking

Subodha Charles and Prabhat Mishra

9.1 Introduction

Design considerations for roads in a city involve accessibility, traffic distribution,
and handling of specific scenarios. For example, an important objective in the
design of a network of roads is to ensure ease of access to popular and important
places in the city such as offices, schools, parks, etc. If prominent places are
all located in the same area, the roads in that area will be congested while
roads in other areas will remain (relatively) empty. An architect should ensure
that the traffic is as uniformly distributed as possible or the main roads have
enough lanes to mitigate congestion. A System-on-chip (SoC) designer faces similar
challenges when designing the communication infrastructure connecting all the SoC
components, i.e., processor cores, memories, controllers, input/output, etc. As the
complexity of SoCs increases, more and more Intellectual Property (IP) cores are
integrated on the same SoC. State-of-the-art SoCs have hundreds of components.
For example, a typical automotive SoC may include 100–200 diverse IP cores. The
demand for scalable and high-throughput interconnects has made Network-on-chip
(NoC) the standard interconnection solution for complex SoCs [67].

Due to time-to-market constraints, it is a common practice for manufacturers
to outsource IPs to third-party vendors. Typically, manufacturers produce only a
few important IPs in-house and integrate them with third-party IPs to obtain the
final SoC. As a result of this distributed supply chain, it is feasible for an attacker
to insert malicious implants, such as hardware Trojans, into the IPs [5, 18, 58].
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Fig. 9.1 Illustration of an eavesdropping attack through colluding hardware and software. A
hardware Trojan integrated in a router (X) copies packets passing through it and sends them to
a malicious application running on an IP (Y ). An NI and an IP core are connected to each router
(For clarity, only three such pairs are shown)

A recent occurrence of a hardware security breach due to third-party vendors aiming
at industrial espionage raised concerns across top US authorities [10]. The attack
was facilitated by a hardware Trojan that acted as a covert backdoor and spied on
computer servers used by more than 30 companies in USA, including Amazon and
Apple.

A similar attack scenario can be considered in the NoC context. A hardware
Trojan integrated in the NoC IP launches an attack to eavesdrop on the NoC packets.
The goal is to exfiltrate information while remaining hidden, and thus the Trojan
will not perform any action that would reveal its presence, such as corrupting
packets to cause SoC malfunction (data integrity attacks) or degrade performance
causing denial-of-service (DoS) attacks. Existing literature has explored the most
effective way of launching an eavesdropping attack in NoC, considering attack
effectiveness and difficulty to detect the Trojan. It identified Trojan(s) inserted
in NoC component(s) colluding with another malicious IP(s) as the strongest
attack model. An illustrative example of this scenario is shown in Fig. 9.1,
where a hardware Trojan-infected router and an accomplice application launch an
eavesdropping attack where the infected router copies packets passing through it
and sends them to the accomplice application running on another malicious IP. This
hardware-software collusion attack is similar to the Illinois Malicious Processor
(IMP) [41]. This setting and related threat models have been the focus of [5] as well
as several prior studies [11, 19, 35, 49, 58, 64].

NoC security research has proposed authenticated encryption (AE) as a solution
to eavesdropping attacks [11, 35, 64]. With AE, packets are encrypted to ensure
confidentiality and an authentication tag is appended to each packet to ensure
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integrity (and detect re-routed packets). However, the use of AE as the defense
to eavesdropping attacks is sub-optimal for two reasons. First, it incurs significant
performance degradation on resource-constrained devices (as shown experimentally
in Sect. 9.3). Second, authentication tags may be unnecessarily complex if used only
for the purpose of detecting eavesdropping attackers who seek to remain undetected
as long as possible—and thus are unlikely to interfere with data integrity.

In this chapter, we ask a fundamental question: is it possible to replace authen-
ticated encryption with a lightweight defense while maintaining security against
eavesdropping attacks? Specifically, the method replaces the costly computation of
authentication tags with a lightweight eavesdropping attack detection mechanism
based on digital watermarking. The attack detection capabilities achieved by digital
watermarking is coupled with encryption to ensure data confidentiality.

The remainder of this chapter is organized as follows. Section 9.2 gives an
overview of related research and describes the threat model in detail. Section 9.3
motivates the need for a lightweight alternative under the given threat model
by comparing with other approaches. Section 9.4 introduces the watermarking-
based attack detection method. Section 9.5 provides theoretical guarantees on
performance and security of the approach followed by experimental results in
Sect. 9.6. Section 9.7 discusses additional security considerations. Finally, Sect. 9.8
concludes the chapter.

9.2 Threat Model and Related Work

In this section, we discuss related research and describe the threat model.

9.2.1 Related Work

NoC Security State-of-the-art NoC security revolves around protecting informa-
tion traveling in the network against physical, software, and side-channel attacks
[12–14, 16, 18–20]. There are many side-channel analysis methods for effective
Trojan detection in integrated circuits [33, 34, 44–46, 54]. While detecting hardware
Trojans in NoC IPs during design time is still in its infancy, most solutions aim
to detect/mitigate the threat of hardware Trojans during runtime. To identify most
prominent threats in NoC-based SoCs, we surveyed 25 related papers published in
the last 10 years and categorized them into five widely studied categories of NoC
security attacks: (1) eavesdropping, (2) spoofing and data integrity, (3) denial-of-
service, (4) buffer overflow and memory extraction, and (5) side-channel attacks.
Results are shown in Table 9.1.

The survey makes it evident that eavesdropping attacks are indeed one of the
most widely explored threat models related to security in NoC-based SoC. The
threat model used in this work is well-established and has been considered in
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Table 9.1 Summary of NoC
security papers found in
literature categorized by
attack class and defense type.
Attack Class: Eavesdropping
(EAV), Spoofing/Data
Integrity (SDI),
Denial-of-service (DOS),
Buffer Overflow and Memory
Extraction (BOM), and
Side-Channel Attacks (SCA).
Defense Type: Obfuscation
(OBF), Detection (DET), and
Localization (LOC)

Paper Attack class Defense type

Sajeesh and Kapoor [62] EAV OBF, DET

Porquet et al. [55] BOM OBF

Wang and Suh [69] SCA OBF

Kapoor et al. [40] EAV OBF, DET

Yu and Frey [73] SDI OBF

Ancajas et al. [5] EAV OBF

Saeed et al. [61] BOM DET

Sepúlveda et al. [63] BOM OBF, DET

Rajesh et al. [57] DOS DET

Biswas et al. [9] DOS DET

Reinbrecht et al. [59] SCA OBF, DET

Boraten and Kodi [11] EAV OBF

Prasad et al. [56] DOS DET

Sepúlveda et al. [64] EAV OBF

Frey and Yu [27] DOS OBF, DET

Indrusiak et al. [37] SCA OBF

Sepúlveda et al. [65] DOS DET

Hussain et al. [35] EAV DET, LOC

Kumar et al. [49] DOS OBF

Chittamuru et al. [21] EAV OBF, DET

Lebiednik et al. [42] EAV OBF

Indrusiak et al. [38] SCA OBF

Charles et al. [18] DOS DET, LOC

Raparti and Pasricha [58] EAV DET, LOC

Charles et al. [19] EAV OBF

previous work that proposed solutions to protect the SoC from a compromised NoC
IP eavesdropping on data [5, 11, 19, 21, 35, 49, 58, 64]. Ancajas et al. proposed
a combination of data scrambling, packet authentication, and node obfuscation
to prevent eavesdropping attacks [5]. In [58], a combination of threshold voltage
degradation and an encoding based packet duplication detector was proposed.
Charles et al. proposed to increase the difficulty of information extraction by
introducing anonymous routing in the NoC [19]. Manor et al. attempted to reduce
the effectiveness of hardware Trojans trying to manipulate data packets using bit
shuffling and Hamming error correction codes [49]. When eavesdropping attacks
are considered, packet authentication combined with encryption (authenticated
encryption) is the most popular countermeasure [5, 11, 21, 35, 40, 62, 64].

Digital Watermarking The process of hiding information related to digital data in
the data itself is called digital watermarking. An overview of a typical watermarking
mechanism is shown in Fig. 9.2. It has been widely used in domains such
as broadcast monitoring, copyright identification, transaction tracking, and copy
control. For example, in the movie industry, a unique watermark can be embedded in
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Fig. 9.2 Overview of a typical watermarking mechanism

every movie. If the movie later gets published on the internet illegally, the embedded
watermark can be used to identify the person who leaked it. Biswas et al. [8]
presented a technique called circular path-based fingerprinting using fingerprint
embedding against NoC IP stealing attacks. However, the threat model used in this
chapter—eavesdropping attacks, cannot be addressed using their approach. Network
flow watermarking is one possible solution to prevent eavesdropping attacks [36].
In network flow watermarking, watermarks are embedded into the packet flow using
packet content [22], timing information [70], or packet size [43]. This can be used
for tracing botmasters in a botnet [30], tracing other network-based attacks [31], and
service dependency detection [74].

9.2.2 Threat Model

The global trend of distributed design, validation, and fabrication has raised con-
cerns about security vulnerabilities [2, 24–26, 47, 48, 52, 53]. Malicious implants,
such as hardware Trojans, can be inserted into the RTL or into the netlist of an
IP core with the intention of launching attacks without being detected at the post-
silicon verification stage or during runtime [2, 24–26, 47, 48, 52, 53]. Insertion of
Trojans can happen in many places of the long, distributed supply chain such as by
an untrusted CAD tool or designer or at the foundry via reverse engineering [52].
As evidence of the globally distributed supply chain of NoC IPs, iSuppli, an
independent market research firm, reports that the FlexNoC on-chip interconnection
architecture [4] is used by four out of the top five Chinese fabless semiconductor
OEM (original equipment manufacturer) companies [66]. In fact, Arteris, the
company that developed FlexNoC, achieved a sales growth of 1002% over a 3-
year time period through IP licensing [66]. Therefore, there is ample opportunity
for attackers to integrate hardware Trojans in the NoC IP and compromise the SoC.
NoC IPs are ideal candidates to insert hardware Trojans due to several reasons: (1)
the complexity of NoC IPs makes it extremely difficult to detect hardware Trojans
during functional verification as well as runtime [58], (2) extracting data from
NoC packets allows attackers to obtain confidential information without relying on
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memory access or hacking into individual IPs, and (3) the distributed nature of NoC
components across the SoC makes it easier to launch attacks.

We focus on eavesdropping attacks, also known as snooping attacks, which pose
a serious threat to applications running on many-core SoCs. IPs that are integrated
on the same SoC use the NoC IP when communicating through message passing as
well as through shared memory. For example, the Intel Knights Landing architecture
prompts memory requests/responses from cores to traverse the NoC for shared cache
look-ups and for off-chip memory accesses [67]. Therefore, eavesdropping on data
transferred through the NoC allows adversaries to extract confidential information.

Adversarial Model In this chapter, we consider an adversary consisting of a
hardware Trojan-infected router and a colluding malicious application running on
an IP. The goal of the adversary is to exfiltrate confidential information by observing
NoC traffic without being detected. Remaining hidden is key for the adversary
to exfiltrate as much information as possible. Because the adversary must remain
hidden, we assume that the adversary does not interfere with the normal operation of
the NoC. For example, this means that the adversary does not modify the content of
packets (attack on integrity) or cause large delays in processing of packets (denial-
of-service) as either would likely lead to detection.

Attack Scenario Eavesdropping attacks by malicious NoC IPs rely on the hard-
ware Trojan creating duplicate packets with modified headers (specifically, desti-
nation address in the header) and sending them into the NoC for an accomplice
application to receive them [5, 58]. Figure 9.1 shows an illustrative example.
A commonly used 2D Mesh NoC topology is considered where IPs are connected to
the NoC, more specifically to the router, via a network interface (NI). When the NI
receives a message from the local IP, the message is packetized and injected into the
network.1Packets injected into the NoC are routed using the hop-by-hop, turn-based
XY routing algorithm and received by the destination router. The NI then combines
the packets to form the message which is passed to the intended destination IP.
In the example (Fig. 9.1), two trusted applications running in nodes S and D are
communicating with each other, and an eavesdropping attack is launched to steal
confidential information. The attack is carried out by two main components: (1) a
Trojan-infected router, and (2) an IP running a malicious application. The malicious
router (X) copies packets passing through it and sends them to the IP running the
malicious program at node Y , which reads the confidential information. To facilitate
this attack, several steps should be carried out by the attacker. First, the hardware
Trojan is inserted by the third-party NoC IP provider during design time. The Trojan
is designed such that it can act upon commands sent by the malicious application.
Once the SoC is deployed, the malicious application sends commands at a desired
time to launch the attack. The Trojan then starts copying and sending packets to the

1Most NoCs facilitate flits, which is a further breakdown of a packet used for flow control purposes.
We stick to the level of packets for the ease of explanation as this method remains the same at the
flit level as well.
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Fig. 9.3 Router infected with
a hardware Trojan

malicious application. The malicious application can also send commands to pause
the attack to avoid being detected.

Figure 9.3 shows a block diagram of a router design infected with the Trojan
that launches the attack described in the threat model [5]. The Trojan copies
packets arriving at the input buffer, changes the header information so that the new
destination of the packet is where the malicious application is (node Y according
to the illustrative example), and injects the new packet back to the input buffers so
that it gets routed through the NoC to reach Y . The Trojan does not tamper with
any other part of the packet, except for the header to re-route the packet, due to two
reasons: (1) the goal is to extract information, so corrupting data defeats the purpose,
and (2) corrupting data increases chances of the Trojan getting detected. Since the
original packet is not tampered with and is routed to the intended destination D,
the normal operation of the SoC is preserved. The Trojan also has a very small
area and power footprint. Ancajas et al. [5] used a similar threat model in their
work and reported 4.62 and 0.28% area and power overheads, respectively, when
compared with the router design without the Trojan. The performance overhead
when copying and routing packets to the malicious application is less than 1% [5].
Therefore, the likelihood of the Trojan being detected is very small unless additional
security mechanisms (such as the one discussed in this chapter) are implemented.

9.3 Motivation

As explained in Sect. 9.2.1, AE is a widely accepted countermeasure against
eavesdropping attacks. Figure 9.4 shows a block diagram of how authenticated
encryption can be implemented in an NoC as proposed in existing literature. The
block diagram closely resembles the Galois Counter Mode (GCM) based encryption
and authentication [51]. Packets originating from each IP are encrypted and an
authentication tag is appended to each packet at the NI before injecting it to the
NoC. The entire packet, which consists of H ‖ C ‖ T traverses the NoC and arrives
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Fig. 9.4 Overview of an authenticated encryption scheme implemented to provide security to NoC

at the destination. The header H is sent as plaintext so that intermediate routers can
use the header information for routing. At the destination, the tag T is validated
and if valid, the ciphertext C is decrypted to send the plaintext to the desired IP.
Encryption ensures that the plaintext of the secure information is not leaked and
authentication detects any tampering with the packet including header information.
Since the header is modified by the hardware Trojan in order to re-route the packet
to the malicious application, the authentication tag validation fails and the attack is
detected.

To analyze the performance overhead introduced by an AE scheme, FFT, RADIX
(RDX), FMM, and LU benchmarks from the SPLASH-2 benchmark suite [72] were
run on an 8 × 8 Mesh NoC-based SoC with 64 IPs using the gem5 simulator [7]
considering two scenarios:

• Default-NoC: Bare NoC that does not implement encryption or authentication.
• AE-NoC: NoC that uses an authenticated encryption scheme.

More details about the experimental setup are given in Sect. 9.6.1. Results
are shown in Fig. 9.5. A 12-cycle delay was assumed for encryption/decryption
and authentication tag calculation when simulating AE-NoC according to the
evaluations in [40]. The values are normalized to the scenario that consumes the
most time. AE-NoC shows 59% (57% on average) increase in NoC delay (average
NoC traversal delay for all packets) and 17% (13% on average) increase in execution
time compared to the Default-NoC. The overhead for security has a relatively lower
impact on execution time compared to the NoC delay since the execution time also
includes the time for executing instructions and memory operations (in addition
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Fig. 9.5 (a) NoC delay and
(b) execution time
comparison across different
levels of security for four
SPLASH-2 benchmarks

to NoC delay). NoC delay in Default-NoC case is caused by delays at routers,
links, and the NI. In AE-NoC, in addition to those delays, encryption/decryption
delays and authentication tag calculation/validation delays are added to each packet.
Additional delays are due to complex encryption/decryption operations and hash
calculations for authentication.

When security is considered, Default-NoC leaves the data totally vulnerable to
attacks, whereas AE-NoC ensures confidentiality and data integrity. For systems
with real-time requirements, an execution time increase of 17% to accommodate
a security mechanism is unacceptable. Furthermore, validating the authentication
tag for each packet contributes to the SoC power consumption. While there are
a wide variety of techniques to improve energy efficiency in NoC-based SoCs
[3, 15, 17, 28, 32, 71], they are not suitable in this case. Since the Trojan is rarely
activated and only the packet header is modified (packet data is not corrupted) to
avoid detection, authenticating each packet becomes inefficient in terms of both
performance and power consumption [35]. Clearly, authenticating to detect re-
routed packets introduces unnecessary overhead. It would be ideal if the security
provided by AE-NoC could be achieved while maintaining the performance of
Default-NoC. However, in resource-constrained environments, there is always a
trade-off between security and performance.

This motivates the need for the novel digital watermarking-based security
mechanism that incurs minimal overhead while providing high security. The
watermarking-based security mechanism replaces authentication by watermarking.
Encryption is used to ensure data confidentiality. This method achieves a better
trade-off than: (1) no authentication that is vulnerable to credible Trojan attacks,
and (2) authenticated encryption, which incurs performance degradation prohibiting
their use in applications with real-time constraints.
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9.4 NoC Packet Watermarking

In this section, we first present a few key definitions and concepts used in the
watermarking construction. We then describe the lightweight eavesdropping attack
detection mechanism based on digital watermarking.

9.4.1 Definitions

9.4.1.1 Hoeffding’s Inequality

Let {X1, . . . , Xn} be a sequence of independent and bounded random variables with
Xi ∈ [a, b] for all i, where −∞ < a ≤ b < ∞. Then

Pr

[∣∣∣∣
1

n

n∑

i=1

(Xi − E [Xi])

∣∣∣∣ ≥ t

]
≤ e

(
− 2nt2

(b−a)2

)

for all t ≥ 0 [29]. By Hoeffding’s Lemma, which says if Xi ∈ [a, b] then E
[
eλX

] ≤
eλ2(b−a)2/8 for any λ ≥ 0, a random variable bounded in [a, b] is sub-Gaussian with

variance proxy σ 2 = (b−a)2

4 . Therefore

Pr

[∣∣∣∣
1

n

n∑
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(Xi − E [Xi])

∣∣∣∣ ≥ t

]
≤ e

(
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2σ2

)

9.4.1.2 Bounds for Binary Codes

Let C be a binary code of length w, size M (i.e., having M codewords), and
minimum Hamming distance δ between any two codewords denoted by (w,M, d).
The distance distribution of C can be calculated as

Bi = 1

M

∑

c∈C
|c′ ∈ C : D(c, c′) = i|, 0 ≤ i ≤ n

It is clear that B0 = 1 and Bi = 0 for 0 < i < d [60].
Let A(w, d) represent the maximum number of codewords M in any binary

code of length w and minimum Hamming distance d between codewords. Finding
optimum A(w, d) for a given w and d is an NP-Hard problem [23]. However, exact
solutions are known for few combinations of values and in the general case, upper
and lower bounds of the maximum number of codewords are known [6].
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9.4.2 Overview

The flow of packets sent from one IP (source) to another IP (destination) is called a
packet stream. The detection mechanism relies on the following assumptions about
the architecture and threat model.

• The Trojan does not tamper with the legitimate packet content as this may reveal
its presence (Sect. 9.2.2). The Trojan only modifies the header of duplicated
packets to change the destination (data fields of the duplicated packets are not
tampered with) and it allows the legitimate packets to pass as usual.

• Packets are not dropped by intermediate routers and the order of packets in a
packet stream is kept constant. This is reasonable as deadlock and livelock free
XY routing is used together with FIFO buffers [58].

• When the attacker injects copied packets into the NoC, all the packets can get
delayed due to congestion. While this delay is random, the maximum delay is
bounded. We explore this assumption in detail in Sect. 9.5.2.

The proposed approach is to embed a unique watermark into every packet stream.
Figure 9.6 shows an overview. The watermark encoder and decoder are included at
the NI of each node. It is reasonable to assume that the NI can be trusted since it
acts as the interface between all the IPs in the SoC and the NoC IP, and is typically
designed in-house [19, 40]. The NI at source S encodes the watermark and the NI
at destination D decodes it to identify that the packet stream is valid, or in other
words, the packets in the packet stream are intended to be received by D. This
process is followed by each source/destination pair in the NoC. In case of an attack,
the watermark decoded by the NI of the receiving node (node Y according to the
illustrative example) will be invalid and a potential attack is flagged. To ensure this
behavior, the watermarking mechanism must have the following characteristics:

Fig. 9.6 Overview of the watermarking scheme where the watermark encoder and decoder are
implemented at the NI



230 S. Charles and P. Mishra

1. The watermark is unique to each packet stream.
2. There is a shared secret between S and D, which is “hard” for any other node to

guess or deduce.

In addition to watermarking, this approach relies on encryption/decryption
modules implemented at the NIs. The watermark is embedded in the encrypted
packets and is decoded before the decryption process. Encrypting packets is required
to provide data confidentiality during packet transfers and due to the nature of
the watermarking scheme that allows the malicious application to receive some
packets before detecting the attack. Proposing an encryption mechanism is beyond
the scope of this chapter and several previous works have already proposed NoC-
based SoC architectures with encryption/decryption modules implemented at the
NI [19, 40, 62]. The proposed watermarking scheme can be implemented on top of
those solutions. The performance improvement is achieved by replacing the authen-
tication scheme with the lightweight digital watermarking scheme. The following
sections describe the approach in detail. First, the concept behind probabilistic
NoC packet watermarking is outlined (Sect. 9.4.3), and then the operation of the
watermark encoder and decoder is discussed in detail (Sect. 9.4.4). Finally, we
outline an effective method for managing secrets shared between nodes (Sect. 9.4.5).

9.4.3 Probabilistic Watermarking Concept

The watermark ωSD is embedded by the NI of S before the packets are injected
into the NoC. This approach uses a timing-based watermark (as opposed to size
or content-based) for three reasons: (1) timing alterations are harder to detect by
an attacker, (2) it allows a lightweight implementation as it is easy to manipulate,
and (3) it does not alter the packet content allowing encryption schemes to be
implemented together with watermarking. The watermark is embedded by slightly
delaying certain packets in the stream. If ωSD is unique, it should be correctly
decoded at the NI of destination D with high probability. In contrast, the probability
of decoding ωSD as valid at any other NI should be very low.

Given n packets of a packet stream PSD such that

PSD = {pSD,1, pSD,1, . . . , pSD,i , . . . , pSD,n}

the inter-packet delay (IPD) between any two packets can be calculated as
τSD,i,i+1 = tSD,i+1 − tSD,i where tSD,i is the timestamp of the packet pSD,i .
Without loss of generality, for the ease of illustration, we will remove “SD” from
the notation and denote the packet stream PSD as P and IPD τSD,i,i+1 as τi .

The encoder selects 2m packets {pr1, pr2 , . . . , pr2m
} out of the n packets of

packet stream P . The selected packets are paired with another 2m packets (outside
of the initially selected 2m packets) to create 2m pairs such that each pair is
constructed as {prz , prz+x} where x ≥ 1 and z = 1, . . . , 2m. Therefore, it is
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assumed that the packet stream has at least 4m packets. The IPD between each
pair of packets can be calculated as

τrz = trz+x − trz (9.1)

Given that the 2m packets are selected independently and randomly, the IPDs are
modeled as independently and identically distributed (IID) random variables with a
common distribution. The IPD values are then divided into two groups. Since there
are 2m pairs of packets, each group will have m IPD values. Let the IPD values of
the two groups be denoted by τ 1

k and τ 2
k (k = 1, . . . , m), respectively. It follows that

both τ 1
k and τ 2

k are IID. Therefore, the expected values μ (and the variances) of the
two distributions are equal. Let � be the average difference between the two IPD
distributions:

� = 1

m
·

m∑

k=1

τ 1
k − τ 2

k

2
(9.2)

Then, the expected value and variance of � can be calculated as

E [�] = E

[
τ 1
k

]
− E

[
τ 2
k

]
= 0 , Var(�) = σ 2

m

Where σ 2 is the variance of the distribution
τ 1
k −τ 2

k

2 . In other words, the distribution
of � is symmetric and centered around zero. The parameter m is referred to as the
sample size.

The core idea of the watermarking approach is to intentionally delay a selected
set of packets to shift the � distribution left or right to encode the watermark bits
in the timing information of the packets. Specifically, the distribution of � can be
shifted along the x-axis to be centered on −α or α by decreasing or increasing �

by α, where α is called the shift amount. As a result, the probability of � being
negative or positive will increase. Concretely, to embed bit 0, decrease � by α. To

embed bit 1, increase � by α. Decreasing � can be done by decreasing each
τ 1
k −τ 2

k

2

by α (Eq. (9.2)). Decreasing
τ 1
k −τ 2

k

2 can be achieved by decreasing each τ 1
k by α and

increasing each τ 2
k by α. It is easy to see that increasing � can be done in a similar

way. Decreasing or increasing one IPD (τ 1
k ) is achieved by delaying the first packet

or the second packet of the pair, respectively.
The encoded watermark can be detected by calculating � and checking if � is

positive or negative. If � > 0, bit 1 is decoded. Otherwise (if � ≤ 0) bit 0 is
decoded. This scheme can be extended to a w-bit watermark (ωSD) by repeating the
above process w times. During the decoding process, a w-bit watermark (ω′

SD) is
extracted from the packet stream and if the hamming distance between ωSD and ω′

SD

is lower than a pre-defined error margin δ, it can be concluded that the watermark
embedded at the source S is detected at the receiver. If the watermark does not
match, an attack is flagged.
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Fig. 9.7 Example showing
the � distribution shifted
by α

Fig. 9.8 Sample packet stream with m = 1 and x = 3

Figure 9.7 shows the distribution of � and the corresponding distribution after
shifting it by α > 0. Since this scheme is probabilistic, there is a probability that the
embedded watermark bits will be incorrectly decoded, thus leading to false alarms
(false positives) or missed detection (false negatives). This is because for any α > 0,
a small portion of the distribution of � falls outside the range (−∞, α]. Therefore, if
bit 0 is embedded, there is a small probability that the bit will be incorrectly decoded
as 1. It can be seen that this probability is the same as the probability that a sample
from the unshifted distribution takes a value outside the range (−∞, α]. Similarly,
a bit encoded to be 1 can be decoded incorrectly because samples from � have a
small probability of falling outside the range [−α,∞). However, it is possible to
tune parameters m (sample size), α (shift amount), and δ (error margin) to achieve
a very high (nearly 100%) decoding success rate as shown in Sect. 9.6.

To provide formal guarantees, the bit decoding success rate (BDSR) is defined as
the probability of the embedded watermark bit being decoded correctly (for a shift
amount of α). This quantity is denoted by Pr [� < α]. Note that the BDSR also
depends on m and σ 2, but this is not explicit in the notation Pr [� < α] because it
is implicitly captured by �. We now give an illustrative example to further explain
this concept.

Illustrative Example Figure 9.8 shows a sample packet stream in the time domain
with packet injection times. For ease of explanation in this example, m is set to one
and therefore, two packets (2m) are selected from the packet stream (Pr1 and Pr2 ).
Both packets are paired with two other packets that are x (=3) packets away in the
packet stream (Pr1 with Pr1+3 and Pr2 with Pr2+3). The IPD between each pair
is calculated as τr1 = tr1+3 − tr1 and τr2 = tr2+3 − tr2 . The two IPD values are

then divided into two groups and � calculated according to Eq. (9.2) as
τr1−τr2

2
(sum for all m and division by m not shown since m = 1). The process was
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Fig. 9.9 Distribution of � with m = 1 and x = 3

repeated using a packet stream that had more than 3000 packets obtained by running
a simulation using the gem5 architectural simulator [7] on a real benchmark. An
8 × 8 Mesh NoC was modeled using the Garnet2.0 [1] interconnection network
model. The node in the top left corner (node S) ran the RADIX benchmark from
the SPLASH-2 benchmark suite [72]. One memory controller was modeled and
attached to the node in the bottom right corner (node D) so that the memory requests
always traverse from S to D. Figure 9.9 shows the histogram collected at the NI of
S for the distribution of � with m = 1 and x = 3. Packets were collected at
random with the above parameter values to plot �. We can observe from Fig. 9.9 that
the distribution closely approximates the distribution we expected. The calculated
sample mean (E [�]) for this particular example was 0.0053, which is very close to
zero. Increasing the number of selected packets (2m) further increases the likelihood
of the sample mean being zero.

The next section describes the details of the watermark encoder and decoder
operations.

9.4.4 Watermark Encoder and Decoder

As outlined in Sect. 9.4.2, the watermarking scheme includes a shared secret
between S and D, which is “hard” for any other node to guess or deduce. In addition,
several parameters are shared between S and D. Specifically, S and D share the
tuple 〈m,α,wSD,K〉. The first three parameters were introduced in Sect. 9.4.2 as
the sample size (m), the shift amount (α), and the unique watermark that represents
PSD (wSD). The length of wSD (w) can be derived from wSD . In addition, K is a
secret which is used to derive a key for the encryption scheme and a seed S using
a key derivation function. S is used to seed the pseudo-random number generator
which selects the 2m IPDs. We assume the attacker does not know wSD or K, but
may know m and α.
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Algorithm 9.1: Selection function F
Input: Seed S

Output: Two IPD groups used to encode one watermark bit
Procedure: F
1: rz, x ← PRNG(S)

2: for all k = 1, . . . , 2m do
3: A ← selectNextWindow(PSD)

4: prz ← A[rz]
5: prz+x ← A[rz + x]
6: τrz ← trz+x − trz
7: if kis odd then
8: τ 1

k ← τrz

9: else
10: τ 2

k ← τrz

11: end if
12: end for
13: return [{τ 1

1 , τ 1
2 , . . . , τ 1

m}, {τ 2
1 , τ 2

2 , . . . , τ 2
m}]

9.4.4.1 Watermark Encoding Process

When the watermark encoder, which is integrated in the NI of node S, receives
packets from its local IP with the destination node D, it encodes the watermark
according to the process outlined in Sect. 9.4.3 and the shared secret between S

and D. The selection of the IPDs that construct the � distribution needs to be
deterministic so that the process is identical for the watermark encoder and decoder,
and it needs to ensure that an attacker cannot replicate the same behavior. To achieve
this, we need a method to pair packets deterministically based on the shared secret,
but that appears uniformly random to the attacker (who does not know the shared
secret). This approach proposes to implement this using a pseudo-random number
generator (PRNG) seeded (i.e., initialized) with S (or something derived from it).
This ensures that the encoder and decoder produce the same sequence of random
numbers. Further, an attacker (who does not know the seed) cannot predict the next
PRNG output, even with the knowledge of the previous output [68].

LetF denote the selection function that given a packet stream, selects and divides
2m IPDs into two groups, each of size m. A window of packets is chosen and two
random packets are paired together from each window. Therefore, to construct 2m

IPDs, 2m such packet windows are required. The operation of F used in this method
is outlined in Algorithm 9.1. The PRNG seeded with S is used to randomly generate
two integers rz and x (line 1) such that 0 ≤ rz ≤ W − 1 and 0 < x and rz + x ≤
W−1, where W is the size of the window. This can be done using rejection sampling
to ensure that rz �= x and then calling the smaller integer rz and the larger rz + x.
The packet at the index rz (prz ) is paired with the packet that is x packets away
giving the random pair {prz , prz+x} (lines 4–5). The calculated IPD values are then
evenly divided into two groups (lines 6–11).
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Since 2m IPDs are required to encode a 1-bit watermark, w iterations of the
procedure F are required to encode the w-bit watermark. When encoding one
watermark bit, the distribution discussed in Sect. 9.4.3 holds only when each pair
of packets is the same distance x apart from each other. Therefore, the same rz and
x values are used for each iteration of k. When encoding another watermark bit,
another iteration of F is required in which another pair of rz and x values will be
generated by the PRNG. To ensure that the same rz and x values are not generated
for subsequent watermark bits, the PRNG must be seeded only once. An example to
show how the selection function can be used to encode a w-bit watermark including
how to select the window is given in Sect. 9.6.

9.4.4.2 Watermark Decoding Process

Node D upon examining the packet stream PSD decodes the w-bit watermark w′
SD

by following the process outlined in Sect. 9.4.3 and the shared secret tuple. The
decoder concludes that the watermark is valid if the Hamming distance between
wSD (taken from the shared secret tuple) and w′

SD (decoded from the received
packet stream PSD) is less than or equal to the error margin δ. Formally, the
watermark is valid if

D(wSD,w′
SD) ≤ δ (9.3)

where D is the Hamming distance between two bit strings and 0 ≤ δ ≤ w. The
reason for allowing an error margin δ and not looking for an exact match is that
no matter how large the shift amount α is, there is a probability that the watermark
is decoded incorrectly as discussed in Sect. 9.5.1. Tuning parameter δ allows us to
minimize this probability. In addition, as shown in Sect. 9.5.2, it allows to minimize
the impact of the attack.

9.4.5 Managing Shared Secrets

The watermark encoder and decoder operation introduced in Sect. 9.4.4 relies
on shared secret tuples between nodes to make sure the watermarking scheme
cannot be compromised. To facilitate this, an efficient way to generate and manage
such secrets is required. Many previous studies have addressed the challenge of
developing an efficient key management system in several ways. One such example
is the key management system proposed by Lebiednik et al. [42]. In their work,
a separate IP called the key distribution center (KDC) handles the distribution of
keys. Each node in the network negotiates a new key with the KDC using a pre-
shared portion of memory that is known by only the KDC and the corresponding
node. The node then communicates with the KDC using this unique key whenever
it wants to obtain a new key. The KDC can then allocate keys and inform other nodes
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as required. The digital watermarking scheme can be integrated with a similar key
generation and management mechanism.

9.5 Theoretical Analysis

In this section, we discuss mathematical guarantees about the correctness and
security of the watermarking scheme which are further validated with experimental
results in Sect. 9.6. First, we discuss a bound on BDSR during normal operation
(Sect. 9.5.1). Then the impact of an attacker on BDSR is evaluated (Sect. 9.5.2).
Finally, a method to select the error margin δ is presented such that it maximizes the
chance of successfully decoding the watermark while minimizing the chances of an
attack if the attacker is aware of the detection method (Sect. 9.5.3).

9.5.1 Bit Decoding Success Rate During Normal Operation

Given this watermark encoding/decoding scheme, it is clear that larger the shift
amount α is, the higher the bit decoding success rate (BDSR) will be. However,
having arbitrarily large α is not feasible in systems with real-time constraints. In this
section, we show that close to 100% BDSR can be achieved for arbitrarily small α

by changing the sample size m.
As discussed in Sect. 9.4.3, a watermark bit can be decoded incorrectly if at the

receiver’s end, |�| > α. Therefore, we should analyze the behavior of Pr [|�| > α].
There are several well-established statistical tools for this, but in particular we can
use concentration results, also known as tail bounds. Since the IPDs are bounded
and independent, we can use Hoeffding’s inequality (introduced in Sect. 9.4.1.1)
and equations from Sect. 9.4.3 related to the distribution of �:

Pr [|�| ≥ α] ≤ e

(
− mα2

2σ2

)

Using symmetry; Pr [� < α] ≥ 1 − 1

2
e

(
− mα2

2σ2

)

(9.4)

Therefore, we can observe that the BDSR is lower bounded by a value that depends
on α and m. The results show that irrespective of the distribution of the IPDs,
for arbitrarily small α values, we can always take the BDSR close to 100% by
increasing the sample size m. In other words, no matter how small the shift amount
α needs to be to abide by the timing constraints of the system, we can still achieve
high BDSR by selecting more packets in each IPD group.
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9.5.2 Impact of an Attack on the Bit Decoding Success Rate

Having established mathematical guarantees about BDSR during normal operation,
we shift our focus to explore how BDSR of legitimate packet streams can be affected
by an attack. According to the threat model, the Trojan-infected router copies
packets and sends them to a malicious application running on a different IP. As
a result, more packets are introduced to the network which can cause congestion.
All packets in the network can be delayed because of this. Therefore, the attack can
introduce additional delays to the legitimate packet streams. It is safe to assume that
these additional delays are finite. If the attacker delays packets indefinitely through
congestion, the attack is no longer a snooping attack, but rather a flooding type of
denial-of-service attack [18] that is beyond the scope of this threat model.

Therefore, assume that the attack introduces a delay εi (i = 1, 2, . . . , n) for each
packet in packet stream PSD . Since the delay is finite, we can denote εi ≤ ξ where ξ

is an upper-bound on the delay. Given that the Trojan-infected router does not know
which packets were selected by the watermark encoder (as explained in Sect. 9.4.4),
the delay introduced by the attacker (whatever it is) on the selected IPDs is IID from
the perspective of S and D.

Let θ1
k and θ2

k be the impact on the IPDs of the groups τ 1
k and τ 2

k as a result of the
delays, respectively. We observe that θ1

k and θ2
k are in the interval (−ξ, ξ), and since

they are IID, E
[
θ1
k

] = E
[
θ2
k

]
and Var(θ1

k ) = Var(θ2
k ). Let Var(θ1

k ) = Var(θ2
k ) =

2σ 2
d and �′ denote the distribution after modifying � defined in Eq. (9.2) with the

added delays.

�′ = 1

m
·
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(τ 1
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It is easy to see that E
[
�′] = 0. From the properties of variance of IID variables,

we can deduce

Var(�′) = 1

m
Var

([
(τ 1

k − τ 2
k )

2
+ (θ1

k − θ2
k )

2

])

Let A = (τ 1
k −τ 2

k )

2 and B = (θ1
k −θ2

k )

2 . According to the definitions above, Var(A) = σ 2

and Var(B) = σ 2
d . Therefore
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m · Var(�′) = Var(A) + Var(B) + 2Cov(A,B)

≤ σ 2 + σ 2
d + 2σσd

= (σ + σd)2

Since the random delays and the packet timing of the legitimate packet flow are
independent, we can assume those two variables are not correlated. To understand
how BDSR has changed with � changing to �′, we apply the Hoeffding’s inequality
to �′ similar to what we did when deriving Eq. (9.4).

Pr
[|�′| ≥ α

] ≤ e

(
− α2

2Var(�′)
)

= e

(
− mα2

2(σ+σd )2

)

Using symmetry,

Pr [� < α] ≥ 1 − 1

2
e

(
− mα2

2(σ+σd )2

)

(9.5)

Observe that the only change is the increase in variance caused by the attacker.
We can choose σd depending on the amount of congestion the attacker is willing
to cause without risking being detected. Similar to the argument we made when
reasoning about the BDSR using Eq. (9.4), we can see that BDSR is lower bounded
and by manipulating the sample size, we can make the BDSR be arbitrarily close to
100%. Therefore, the impact on the watermarking detection is a bounded increase of
variance on an otherwise 100% successful watermarking scheme. As the illustrative
example that calculates BDSR in Sect. 9.5.1 outlines, the success rate can be brought
very close to 100% even with the selection of a modest value for m.

9.5.3 Optimal Error Margin Selection

As discussed in Sect. 9.4.4, the use of the error margin δ instead of an exact match
between the decoded and the expected watermark enables tuning δ to maximize
the watermark detection success rate (WDSR). Unlike BDSR, which refers to the
success of decoding a single bit, WDSR considers the entire watermark with w bits.
The probabilistic nature of this watermarking scheme leaves a small probability
that the watermark will be incorrectly decoded irrespective of the values chosen
for the parameters. While this probability is small, efficient selection of δ can push
WDSR as close as possible to 100%. On the other hand, using a larger error margin
also increases the success of potential attacks. Indeed, assuming that the attacker
is aware of the detection strategy, the best strategy for an attacker to eavesdrop on
data without being detected is to try to forge a watermark. If the attacker succeeds,
then the duplicated packets will be accepted as valid by the node that runs the
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accomplice application and the watermarking-based defense will be defeated. We
call the success probability of such a forging attack the watermark forging success
probability (WFSP). The goal of the detection scheme is thus to set the parameters
such that WDSR is maximized while minimizing WFSP. We explore how this can
be achieved in this section.

9.5.3.1 Maximizing Watermark Detection Rate

The probability of incorrectly decoding a bit was formalized using the metric
BDSR as Pr [� < α]. Considering symmetry, let ϑ = Pr [−∞ < � < α] =
Pr [−α < � < ∞]. Then for a w-bit watermark, probability of accurately decoding
all w bits will be ϑw. Therefore, the expected WDSR can be calculated as

δ∑

i=0

(
w

i

)
ϑw−i (1 − ϑ)i (9.6)

We can see that with a large δ, the expected WDSR increases. We observe from
Eq. (9.6) that

δ∑

i=0

(
w

i

)
ϑw−i (1 − ϑ)i ≥ ϑw

Therefore, it is possible to make the expected WDSR larger than the desired WDSR
by increasing ϑ . Revisiting Eq. (9.5), we observe that ϑ can be made sufficiently
close to 1 by increasing the sample size m irrespective of α, σ , and σd . Therefore,
we can conclude that in theory, it is possible to make WDSR close to 100% even
with a modest error margin.

9.5.3.2 Minimizing Risk of Watermark Forging Attacks

While increasing δ can increase WDSR, larger the δ, larger the expected WFSP will
be. This is addressed in two steps. First, watermarks are selected such that under a
given error margin δ, the probability that one watermark can be incorrectly decoded
as another watermark (watermark collision) is minimized. Then, we discuss the case
where an attacker, after knowing the detection mechanism, tries to inject duplicated
packets such that the decoder at the receiver incorrectly validates the watermark
(watermark forging) and accepts the duplicated packet steam as valid.

The problem of selecting distinct w-bit watermarks for each source–destination
pair can be recast as the problem of selecting distinct codewords. This is a well-
established problem that has been extensively studied in the information theory
literature. Indeed, it is known that for any given set of distinct codewords, if the
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minimum Hamming distance between any two codewords is at least 2δ + 1, a
nearest neighbor decoder will always decode correctly when there are δ or fewer
errors [50]. Therefore, if the watermarks are chosen such that any two watermarks
are at least 2δ+1 distance apart, the probability of a watermark collision is minimal.
This approach selects the number of bits in the watermark w such that this property
is satisfied using the method explained in Sect. 9.4.1.2. An example of how w is
selected is given in Sect. 9.6.2.2.

Even if w is selected such that watermark collision probability is minimized, an
attacker may still try to impersonate a legitimate sender. Assume that wSD and wSY

are valid watermarks with distance 2δ +1 (minimum possible distance between two
watermarks) between nodes S and D and S and Y , respectively. A Trojan-infected
router in the path from S to D duplicates packets and sends to an accomplice
application in node Y . For Y to accept the duplicated packet stream as a legitimate
packet stream coming from S, the watermark of the duplicated packet stream should
match wSY . We refer to this attack as a watermark forging attack.

Sections 9.4.4 and 9.4.5 detailed how watermarks are kept unknown to any other
parties, except for the sender and receiver in a packet stream, using shared secrets.
Therefore, the attacker’s method to forge a watermark can be reduced to a random
bit flipping game with the goal of matching wSY . Random bit flipping is achieved
by randomly delaying the duplicated packets in PSD . For the attacker to win the
game, wSD should change to wSY . Since the minimum distance between any two
watermarks is 2δ + 1, considering the error margin of δ, the minimum required
number of bit flips is δ + 1. Therefore, the attacker should flip at least δ + 1 bits
to win the game. However, flipping the wrong bits can take the target even further.
Therefore, the best chance for the attacker to win the game is if it flips the correct
δ+1 bits of wSD to match wSY (to end up within the error margin of wSY , i.e., within
δ-Hamming distance of wSY ). The probability that the attacker flips the correct δ+1
bits at any given round of the game is thus:

(
w

δ+1

)−1. Assuming the attacker plays
n times, the attacker’s probability of winning, or in other words, the probability of
successfully forging the watermark (WFSP) at least once (after n attempts) is

1 −
[

1 − 1(
w

δ+1

)
]n

(9.7)

Observe that by manipulating w and δ, this probability can be made arbitrarily small.
Furthermore, n cannot be arbitrarily large because if the probability of winning in
the first few attempts is low, then the attacker will be detected before the attacker
can successfully forge the watermark.

This allows the conclusion that it is possible to make WDSR close to 100% and
WFSP close to 0%. Equations (9.5)–(9.7) combined give us the theoretical trade-
off model between WDSR and WFSP. However, accommodating arbitrarily large m

and w is not possible in practical scenarios. Therefore, the next section (Sect. 9.6)
provides experimental evaluations and discusses realistic values that can be achieved
under the threat model and architecture.
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9.6 Experimental Results

In this section, an experimental evaluation of the theoretical models established
in previous sections is presented. The experimentally selected parameters are then
used to explore the performance gain achieved by using this method compared to
traditional AE based schemes.

9.6.1 Experimental Setup

This approach is evaluated by modeling an NoC-based SoC using the cycle-accurate
full-system simulator—gem5 [7]. “GARNET2.0” interconnection network model
that is integrated with gem5 was used to model an 8×8 Mesh 2D NoC [1]. To
ensure the accuracy of the simulator model when compared to real hardware, the
simulator framework proposed in [16] was used, which has validated simulator
results with results from the Intel Knights Landing (KNL) architecture (Xeon Phi
7210 hardware platform [39]). Figure 9.10 shows an overview of the NoC-based
SoC model. Each IP was modeled as a processor core executing a given task
at 1 GHz with a private L1 Cache. Eight memory controllers were modeled and
attached to the IPs in the boundary providing the interface to off-chip memory. In
case of a cache miss, the memory request/response messages were sent to/from
memory controllers as NoC packets. The NoC was modeled with 3-stage (buffer
write, route compute + virtual channel allocation + switch allocation, and link
traversal) pipelined routers with wormhole switching and 4 virtual channel buffers
at each input port. Packets are routed using the deadlock and livelock free, hop-by-
hop, turn-based XY deterministic routing protocol.

Fig. 9.10 8×8 Mesh NoC setup used to generate results
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Each processor core in the SoC was assigned an instance out of FFT, RADIX
(RDX), FFM, and LU benchmarks from the SPLASH-2 benchmark suite [72]. Each
simulation round can in theory give

(64
2

) × 2 = 4032 packet streams (assuming
two-way communication between any pair out of the 64 nodes) and the number
of iterations that depended on the number of benchmarks (four in this case) can
give 4 × (64

2

) × 2 = 16,128 packet streams. However, depending on the address
mapping, only some node pairs out of all the possible node pairs communicate.
The experiments generated 3072 packet streams for all benchmarks between 1024
unique node pairs which were used to evaluate the method. However, to decide the
number of bits in the watermark w, looking at only the number of unique node
pairs is not sufficient because to avoid watermark collisions, the Hamming distance
between any two watermarks should be at least 2δ + 1. According to Sect. 9.4.1.2,
as δ increases, w increases as well. Therefore, more packets are required to encode
the watermark and as a result, the time to detect an ongoing attack increases (more
packets need to be observed before recognizing the watermark). Increasing m has
a similar impact. Increasing α increases the application execution time and it takes
longer to detect eavesdropping attacks. This motivates the exploration of optimum
parameter (m, α and δ) values such that WDSR is maximized and attack detection
time, execution time as well as WFSP are minimized.

9.6.2 Parameter Tuning

We first explore m and α when encoding a single watermark bit and then extend the
discussion to consider WDSR, WFSP, execution time, and detection time.

9.6.2.1 Bit Decoding Success Rate Behavior with m and α

When embedding one watermark bit in a packet stream, Eq. (9.4) gives a theoretical
estimate of the BDSR. To compare the theoretically expected BDSR with experi-
mental results, a non-overlapping sliding window of λ packets is used and 2m IPDs
are selected according to the method in Sect. 9.4.4.1. One bit is encoded in each of
the 3072 selected packet steams following the same methodology and decoded at the
receiver’s side according to the method introduced in Sect. 9.4.3. λ = 8 is chosen
to ensure adequate randomness in the IPD selection process. A detailed analysis of
λ value selection is given in Sect. 9.7. α = 60 ns is fixed and m is varied from 2 to
15. Results are shown in Fig. 9.11. We compare the outcome from the experiments
with the theoretical model (Eq. (9.4)). For example, expected BDSR for m = 4,
α = 60 ns, and σ 2 = 2662 is calculated as

Pr [� < 60] ≥ 1 − 1

2
e

(
− 4×602

2×2662

)

≈ 0.967
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Fig. 9.11 BDSR variation with sample size m. α = 60 ns

Fig. 9.12 BDSR variation with shift amount α. m = 4

m is now fixed at 4 and α is varied from 10 to 100 ns to explore BDSR
variation with α. Figure 9.12 shows the comparison between the theoretical model
(Eq. (9.4)) and results generated from the experiments. The experimental results in
both Figs. 9.11 and 9.12 show that the theoretical model gives an accurate bound
on BDSR. As α and m are increased, BDSR converges to 1. However, the goal
is to detect any attack with high accuracy while incurring minimum performance
overhead. Therefore, BDSR is not the only deciding factor. As α and m is increased,
the execution time of the application/benchmark running with the attack detection
mechanism increases as well. α and m should be chosen such that this trade-off is
maintained.

While Figs. 9.11 and 9.12 show how BDSR varies with m and α, both figures
had one parameter fixed while varying the other. To observe how both m and α

effect the BDSR as well as the execution time, we did a grid search in the ranges
2 ≤ m ≤ 10, 10 ≤ α ≤ 80, and w = 20 and eliminated cases where expected
BDSR was less than 0.95 and execution time increase was more than 5%. These
thresholds were chosen to achieve the optimum balance in the trade-off. Results are
shown in Fig. 9.13. w = 20 is chosen because, to provide a unique watermark for
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Fig. 9.13 BDSR and execution time variation with m and α. w fixed at 20. The green cells show
expected BDSR, purple show experimental BDSR, and yellow indicate execution time increase.
Crosses indicate either expected BDSR or execution time increase falling beyond the selected
thresholds

each communicating node pair (1024 in these experiments), 10 bits are required.
10 additional bits are kept to allow error margins as well as to avoid collisions.
However, as discussed in Sect. 9.6.2.2, w can be further optimized leading to a better
execution time. Execution time increase is measured as the average execution time
increase as a percentage when benchmarks are run with this approach compared to
Default-NoC introduced in Sect. 9.3. Out of the possible combinations in Fig. 9.13,
we pick m = 4 and α = 60 as it gives an adequate trade-off for the exploration.

9.6.2.2 Choosing δ and w

With the values selected for m and α, the impact of the error margin δ on WDSR is
explored. To calculate expected WDSR according to Eq. (9.6), w should be decided.
However, the value of w is dependent on the value selected for δ. Therefore, we
explore the behavior of expected WDSR with respect to δ for several fixed w values
(w ∈ {14, 16, 18, 20}). Results are shown in Fig. 9.14. δ = 0 represents exact
matches between the decoded watermark and the expected watermark without using
an error margin. The importance of using δ is evident when the scenario of looking
for exact matches (δ = 0) is compared with any other δ value. For example, for the
values ϑ = 0.967 and w = 20, WDSR with exact matches is ϑw = 51.1% whereas
for the same ϑ and w values with an error margin of 2, WDSR is 97.3%.

As outlined in Sect. 9.5.3.2, the chosen δ value affects the chances of the attacker
succeeding in a forging attack (WFSP). To evaluate the impact, we explored WDSR
(Eq. (9.6)) and WFSP (Eq. (9.7)) values for different combinations of w and δ.
However not all w and δ values can co-exist if watermark collisions are to be
avoided. Assume that the chosen δ value is 2. As outlined in Sect. 9.5.3.2, for two
watermarks not to collide, they should be at least 2δ + 1(= 5 if δ = 2) Hamming
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Fig. 9.14 Expected WDSR variation with error margin δ for several w values. m and α fixed at 4
and 60 ns, respectively

Table 9.2 WDSR, WFSP, and execution time increase for varying w and δ. ϑ = 0.967, n = 10

δ w Expected WDSR WFSP Experimental WDSR Execution time increase

1 14 0.9238 0.1046 0.9538 3.49%

1 15 0.9139 0.0912 0.9512 3.61%

2 18 0.9797 0.0121 0.9801 3.95%

2 19 0.9765 0.0102 0.97884 4.06%

3 21 0.9955 0.0075 0.9987 4.29%

3 22 0.9946 0.0064 0.9964 4.40%

distance apart. Since there are 1024 unique node pairs, w can be set as the minimum
number of bits required to generate 1024 unique codewords such that the minimum
Hamming distance between any two codewords is 5. In other words, we are looking
for w such that A(w, 5) ≥ 1024 according to Sect. 9.4.1.2. From [6], we can derive
w ≥ 18. Therefore, to ensure that there are no collisions between watermarks with
an error margin of 2, at least 18 bits are required for the watermark. Similarly, we
can derive w ≥ 21, for δ = 3, and w ≥ 14 for δ = 1. Since increasing w has an
impact on execution time as well, for each δ value, we pick the two smallest possible
w value such that there are no watermark collisions. Table 9.2 shows expected
WDSR, WFSP values, experimental WDSR value, and execution time increase for
the selected configurations.

These results strongly support the claim that WFSP can be made arbitrarily small
by manipulating w and δ. We observe from Fig. 9.14 that WDSR converges to 1
starting δ = 2. Furthermore, observing values in Table 9.2, we can pick δ = 2 and
w = 18 as a configuration that gives an adequate trade-off.
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Fig. 9.15 (a) NoC delay and (b) execution time comparison

9.6.3 Performance Evaluation

With the selected parameters, m = 4, α = 60, δ = 2, w = 18, we explore the
performance improvement achieved by this method compared to the traditional
AE based defenses. Section 9.3 introduced two scenarios—Default-NoC and AE-
NoC against which the performance of this approach (digital watermarking-based
attack detection coupled with encryption) is evaluated. NoC delay and execution
time comparison are shown in Fig. 9.15 considering Default-NoC, AE-NoC, and
the watermarking-based attack detection method. This approach only increases the
NoC delay by 27.9% (26.3% on average) and execution time by 5.2% (3.95% on
average) compared to the default-NoC whereas AE-NoC increased NoC delay by
59% (57% on average) and execution time by 17% (13% on average). Therefore,
this method has the ability to significantly improve performance compared to other
state-of-the-art security mechanisms intended at preventing eavesdropping attacks.

In addition to execution time comparison, time taken to detect an ongoing attack
(detection time) is also critical. Detection time is calculated as the time taken
to decode the complete watermark from a packet stream. As soon as the w-bit
watermark is decoded and validated, any eavesdropping attack can be detected.
Table 9.3 shows detection time for each benchmark normalized to total execution
time. This shows that the watermark detection scheme is capable of detecting any
eavesdropping attacks in a timely manner.
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Table 9.3 Attack detection time for different applications/benchmarks. Each value is normalized
to the corresponding benchmark execution time

FFT RDX FMM LU

6.56E−3 4.8E−5 1.9E−4 3.9E−4

In summary, these results validate the theoretical model and provide a framework
to tune the parameters such that eavesdropping attacks can be detected quickly with
high accuracy while providing a significant performance improvement compared to
existing state-of-the-art solutions.

9.7 Discussion

The security of the watermarking scheme depends on the secrecy of some parame-
ters (Sect. 9.4.4). Parameters include the watermark wSD as well as the key K for
each PSD . A key distribution center (KDC) acts as a trusted dealer to distribute
these parameters. In this section, we discuss security implications if some of these
assumptions do not hold.

9.7.1 Eliminating the Trusted Dealer

In the absence of a trusted dealer, each communicating node pair will have to agree
on a watermark and a key. While this can be facilitated by key-exchange protocols
such as the Diffie–Hellman key exchange, the lack of a trusted dealer can cause
duplicated watermarks (watermark collisions). If watermarks are selected uniformly
at random to minimize the chances of collision, according to the birthday bound, the
number of bits assigned to the watermark should be double of what is required. For
example, if an 18-bit watermark is required in the presence of a trusted dealer, 36 bits
are required in its absence because of the birthday bound. While this watermarking
scheme can give better accuracy and less collisions for a 36-bit watermark, the
execution time as well as the detection time will increase. Therefore, a designer
needs to carefully select the size of the watermark to minimize the collision without
violating the performance budget.

9.7.2 What Can Be Inferred from Packet Timing?

It is important to note that the watermark is encoded in the IPD values, not in the
individual packet injection/received times. Furthermore, packet injection times can
vary depending on the behavior of the application as well. There can be phases in the



248 S. Charles and P. Mishra

application execution where more packets are injected to the NoC whereas in some
other phases, delay between packet injections is comparatively high. Therefore,
“guessing” the watermark cannot be easily accomplished by merely observing
packet arrival times. Moreover, the only way for an attacker to forge the watermark
successfully is to know both the watermark and the PRNG seed.

Indeed, even if the watermark could be inferred from packet timing, the PRNG
seed cannot be inferred from packet-timing information due to cryptographic
guarantees of using a PRNG. In the next section, we assume that the watermark
is known by the adversary but not the PRNG seed and analyze the probability that
an attacker can forge the watermark. This probability can be reduced to a random
bit flipping game (probability = 1

2 ).

9.7.3 Watermark Is Not a Secret Anymore?

Assume that the attacker knows the watermark, but not the PRNG seed. To forge
the watermark, the attacker must select the two correct packets (that forms the IPD)
from each window. Observe that without the PRNG seed, the attacker’s probability
of correctly guessing the two packets from a given window is 1/

(
λ
2

)
(Case I).

Similarly, we can derive that the probability of two packets chosen by the attacker
partially overlapping with the correct two packets and the probability of the attacker
not selecting either one of the two correct packets are 2(λ − 2)/

(
λ
2

)
(Case II) and(

λ−2
2

)
/
(
λ
2

)
(Case III), respectively. Therefore, the higher the value chosen for λ, the

lower the chances of a successful attack. The probability of the attacker not selecting
either one of the two packets correctly (Case III) goes above 0.5 at λ = 8. In the
overlapping scenario, if the first packet selected by the attacker is the correct second
packet (or vice versa), delaying it will give the incorrect watermark bit. However,
to give a conservative estimate, we ignore that possibility and use λ = 8 so that the
probability of selecting both packets incorrectly is at least 1

2 . This analysis shows
that this watermarking scheme can be tuned to work even in scenarios with very
strong security assumptions such as the watermark being leaked to the attacker.
Additionally, for systems which require even stronger security, another layer of
security can be added if the watermark assigned between each pair of nodes is
rotated after some number of iterations.

9.8 Summary

In this chapter, we introduced a lightweight eavesdropping attack detection mecha-
nism using digital watermarking in NoC-based SoCs. We consider a widely explored
threat model in on-chip communication architectures where a hardware Trojan-
infected router in the NoC IP copies packets passing through it, and re-routes the
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duplicated packets to an accompanying malicious application running on another IP
in an attempt to leak information. Compared to existing authenticated encryption
based methods, this approach offers significant performance improvement while
providing the required security guarantees. Performance improvement is achieved
by replacing authentication with packet watermarking that can detect duplicated
packet streams at the network interface of the receiver. We discussed the accuracy
and security of the approach using theoretical models and empirically validated
them. Experimental results demonstrated that this approach can significantly out-
perform the state-of-the-art methods.
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Chapter 10
Network-on-Chip Attack Detection using
Machine Learning

Chamika Sudusinghe, Subodha Charles, and Prabhat Mishra

10.1 Introduction

Network-on-chip (NoC) is widely used for on-chip communication in modern
system-on-chips (SoC). NoC has allowed computer architects to fully utilize the
computational power in an SoC by facilitating low-latency and high-throughput
communication between intellectual property (IP) cores in a many-core SoC. As a
result, NoC has become a critical component in state-of-the-art SoC designs [56,
59]. The drastic increase in SoC complexity has led to a significant increase in
SoC design and validation complexity [3, 20, 22, 24, 37, 41–44]. With the increased
complexity of SoCs, manufacturers have favored IP licensing and outsourcing where
only a subset of IPs are manufactured in house and the rest is sourced from third-
party vendors.

There are multiple avenues to introduce malicious implants (e.g., hardware
Trojans) in designs during the long supply chain, such as by an untrusted CAD
tool, a rouge designer or at the foundry via reverse engineering [45]. The Trojans
are carefully crafted such that they can evade design-time detection by requiring
a specific, usually very rare, trigger condition (such as time, input sequence, traffic
pattern, thermal conditions, etc.) to be met before behaving maliciously [5]. A recent
occurrence of a security breach caused by a hardware Trojan (HT) implanted by
a third-party vendor impacted several blue-chip companies including Apple and
Amazon [8]. Recent efforts try to combine the advantages of logic testing and side-
channel analysis for effective Trojan detection in integrated circuits [33–36, 38, 48].
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In spite of such extensive efforts, it is not feasible to capture all security vulnerabili-
ties using security validation tools during design time [2, 23, 25, 26, 39, 40, 45, 46].

The NoC is at an elevated risk of being vulnerable to hardware attacks due to
several reasons: (1) NoC interconnects IPs manufactured in house and/or sourced
from trusted vendors (secure IPs) together with IPs from potentially untrusted
vendors (non-secure IPs) allowing Trojan-infected malicious IPs (MIPs) to utilize
NoC to launch attacks, (2) the distributed nature of NoC makes it easier to replicate
an attack, and (3) the complexity of NoC design allows Trojans to hide without
being detected. These vulnerabilities have motivated both industry and academic
researchers to develop countermeasures to secure NoC-based SoCs [11–14, 17–
19]. Existing research on NoC security has explored two orthogonal directions: (1)
the NoC is assumed to be secure and security countermeasures are built utilizing
secure NoC to prevent attacks on trusted IPs from other malicious IPs [17, 18], and
(2) trusted IPs need to be protected from malicious IPs as well as Trojan-infected
NoC [9, 19].

There are a wide variety of threats from MIPs such as eavesdropping attacks, data
integrity attacks, denial-of-service (DoS) attacks, etc. In this chapter, the focus is on
securing the SoC from DoS attacks using machine learning assuming a secure and
trustworthy NoC architecture. The primary objective of a DoS attack is to prevent
legitimate users from accessing services and information. In the context of NoC,
MIPs sending unnecessary requests to IPs can delay legitimate requests leading to
delay of service (e.g., deadline violations in real-time systems) or denial-of-service
(e.g., temporary or permanent service failure). Such “flooding” type of DoS attacks
can also cause congestion in the network, further degrading performance and energy
efficiency [17, 18].

Some of the existing work on mitigating flooding type of DoS attacks explored
traffic latency comparison [52] and packet arrival monitoring [17, 18]. These
approaches made an unrealistic assumption, highly predictable NoC traffic patterns,
which allowed the construction of linear statistical bounds to detect DoS attacks.
Unfortunately, this assumption does not hold during many realistic scenarios that
include task migration, task preemption, changing application characteristics due to
major input variations, etc.

In this chapter, we discuss the feasibility of using machine learning (ML) for
DoS attack detection as a potential solution to address runtime variations in NoC
traffic. Major focus areas are as follows:

• We describe an ML-based DoS attack detection method that trains ML models
during design time and uses the trained models to classify network traffic
behavior as normal or attack during runtime to detect flooding type of DoS
attacks.

• We outline features that can be extracted from NoC traffic as well as engineered
features, and experimental evaluation of the most suitable features.

• We present a comprehensive exploration of 12 different ML models to select the
best fit for the given architecture and threat models.
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• We analyze the accuracy in DoS attack detection across different NoC traffic
patterns caused by various applications and application mappings.

• This approach can detect DoS attacks in real-time with detection times compara-
ble to previous work [17, 18] without requiring highly predictable traffic patterns.

The rest of the chapter is organized as follows. Section 10.2 outlines the
threat model and related efforts. Section 10.3 motivates the need for ML-based
detection of DoS attacks. Section 10.4 describes the ML-based DoS attack detection
methodology. Section 10.5 presents the experimental results. Finally, Sect. 10.6
concludes the chapter.

10.2 Threat Model and Related Work

In this section, we first outline the threat model. Next, we provide a brief survey of
related efforts.

10.2.1 Threat Model

Figure 10.1 shows the architecture model considered that includes a 4 × 4 mesh
NoC connecting 16 IP cores. When a memory request (e.g., memory LOAD or
STORE instruction) is initiated by a core during application execution, in case
of a cache miss, a memory request is injected into the NoC in the form of NoC
packets. Typically, the packets are further broken down into smaller units called flits
to facilitate flow control mechanisms. The flits are routed in the appropriate virtual
network (vnet) that matches the cache coherence request type, via routers and links.
When the flits arrive at the memory controller, the memory fetch is initiated and once
the operation is completed, the response is routed back to the original requestor.
Intel’s Knights Landing (KNL) architecture [56] and Tilera’s Tile64 architecture
both utilize their NoCs for similar memory transactions [59].

DoS attacks can happen from MIPs intentionally degrading SoC performance
by flooding the NoC with packets. MIPs can target a component that is critical
to SoC performance, such as a memory controller that provides the interface to
off-chip memory, and inject unnecessary requests [18]. As a result, the legitimate
requests can experience severe delays leading to deadline violations, performance
degradation, and reduced energy efficiency. While there are a wide variety of
techniques to improve energy efficiency in NoC-based SoCs [4, 15, 16, 31, 32, 57],
they are not suitable in this scenario. Figure 10.1 shows a MIP at node 1 that targets
its victim at node 7 and injects additional packets. The traffic rate in routers along
the routing path is increased causing NoC congestion, which leads to performance
degradation and reduced energy efficiency. Since the victim receives a lot more
requests than it is designed to handle, responses are delayed and that can lead to



256 C. Sudusinghe et al.

Fig. 10.1 Example DoS attack from a malicious IP to a victim IP in a mesh NoC setup. The
thermal map shows high traffic near the victim IP

violation of task deadlines. Violation of real-time requirements can be catastrophic
for safety-critical applications. A similar threat model was also used by previous
work that explored DoS attacks in NoC-based SoCs [17, 18, 52].

10.2.2 Related Work

In this section, we describe the related efforts in three broad categories: DoS attacks
in computer networks, DoS attacks in on-chip networks, and machine learning for
network security.

10.2.2.1 DoS Attacks in Computer Networks

Before discussing DoS attacks in the NoC context, we outline two well-known DoS
attack scenarios (“Bashlite” and “Mirai”) from the computer networks domain [47,
49]. Bashlite (also known as Gafgyt) infects many devices to form a botnet.
If a botnet is formed successfully, the attacker may remotely orchestrate DDoS
(Distributed Denial-of-Service) attack and download other malware by sending
commands to infected devices (also known as “bots”). This malware utilizes a
client-server model in which the attacker’s device functions as the command-and-
control (CnC) server, and the infected devices function as clients. The client bots
constantly poll for server commands. Large botnets can overwhelm target servers by
simultaneously making requests when the attacker sends the command. Mirai is a
more sophisticated version of Bashlite as shown in Fig. 10.2. Mirai includes a wider
variety of commands, and can infect a wider variety of IoT devices. Because Mirai
is compatible with more devices, it has the potential to build a larger botnet. The
number of devices included in the botnet improves the botnet’s ability to overwhelm
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Fig. 10.2 Overview of the Mirai botnet operation [55]

target servers. The wider range of vulnerable devices also improves Mirai malware’s
ability to steal information from these devices.

10.2.2.2 DoS Attacks in NoC-based SoCs

DoS attack threat models in NoCs can be divided into three broad categories: (1)
flooding [17, 18, 27, 50, 52], (2) packet corruption [10, 28], and (3) traffic flow
manipulation [7, 53]. The focus of this chapter is on flooding type of DoS attacks.
Existing efforts explored defenses against flooding type of DoS attacks by traffic
flow monitoring [17, 18, 27, 52] and developing additional validation checks [50] as
countermeasures. The traffic latency comparison method in [52] proposed to inject
additional packets to the network to detect congested paths. However, it can further
congest the network [52] due to the additional packets. Fiorin et al. introduced a
countermeasure against DoS attacks that has an architecture similar to the method
discussed in this chapter [27]. Their method is fundamentally different from this
method since they monitor the bandwidth considering the data loaded/stored by
an initiator from/to a specific memory block or range of addresses. Charles et
al. proposed to statically profile the normal behavior of the SoC and detect DoS
attacks during runtime [17, 18]. In their work, each router statically profiled NoC
traffic behavior based on packet arrivals at routers and used that as an upper bound
to detect attacks. While such methods are efficient when the applications and the
application mappings are fixed, they are not suitable in many real-world scenarios
where variations can alter the NoC traffic behavior.
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Fig. 10.3 Machine learning based network traffic analysis in Stealthwatch [29]

10.2.2.3 Securing Networks using Machine Learning

Machine learning (ML) has been widely adopted in various domains for efficient
data processing and fast decision making. For example, ML can analyze encrypted
HTTP traffic to differentiate between malicious and benign execution [29, 51, 54].
Cisco encrypted traffic analytics [29] and IBM QRadar security intelligence [30] are
two state-of-the-art network security countermeasures developed by the industry.
Figure 10.3 shows an overview of Cisco Stealthwatch that utilizes machine learning
for encrypted traffic analysis to correlate traffic with global threat behaviors to
automatically identify infected hosts, command-and-control communication, and
suspicious traffic [29]. The usage of ML models in network security ranges from
linear models such as logistic regression and naive Bayes to non-linear models
such as decision trees, support vector machines with kernels, MLP neural networks,
random forests and gradient boosting. Shekhawat et al. [54] showed that XGBoost,
an algorithm based on gradient boosting, is able to classify encrypted traffic as
malicious or benign with an accuracy of 99.15%. In the domain of NoC security,
Wang et al. [58] proposed TSA-NoC, a framework based on artificial neural
networks for runtime HT detection and an adaptive routing design based on deep
reinforcement learning for HT mitigation. They have shown that TSA-NoC can
detect HTs with an accuracy of 97% with an improvement of 70% in energy
efficiency and 29% reduced network latency. While ML has shown promising
results in computer network security in the past decade, there are limited efforts
for utilizing ML to secure NoC-based SoCs.
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10.3 Motivation

To evaluate the potential of using ML to detect DoS attacks in NoC-based SoCs, we
simulated both malicious and benign programs using the gem5 cycle-accurate full-
system simulator [6] and extracted features from NoC traffic. A 4 × 4 mesh NoC
was modeled using the GARNET2.0 [1] interconnection network model. The mesh
consisted of 16 IP cores and 4 memory controllers as shown in Fig. 10.4. Each router
in the middle of the mesh is connected to four other routers in the four directions and
to an IP core. Figure 10.4 shows the architecture model used for both normal and
attack scenarios. During normal execution, two processor cores ran two instances
of the FFT benchmark from the SPLASH-2 benchmark suite [60]. For the attack
scenario, in addition to the two applications, a MIP was modeled to inject packets
at the four memory controllers uniformly, increasing the overall network traffic by
50%. More details about the experimental setup are given in Sect. 10.5.1.

We extracted NoC traffic features and labeled them based on normal (target
label = 0) and attack (target label = 1) scenarios. Figure 10.5 shows the correlation
matrix of features extracted from NoC traffic. Each feature is denoted by a feature
ID instead of the feature name. A detailed description of the features is given in
Sect. 10.4. The highlighted column shows the correlation of each feature to the
target label (feature ID—V ). The values shown in Fig. 10.5 are the pairwise Pearson
Correlation Coefficients (PCC) of all the features. PCC, calculated as:

ρX,Y = cov(X, Y )

σX · σY

gives a measure of the linear correlation between a pair of random variables (X, Y ).
PCC value ranges from −1 to 1. ρX,Y = 1 (light color shades) implies that X and Y

Fig. 10.4 Architecture models used to extract NoC traffic features. (a) Normal scenario. (b)
Attack scenario
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Fig. 10.5 Correlation matrix
of extracted NoC traffic
features

have a linear relationship where Y increases as X increases. ρX,Y = −1 (dark
color shades) also implies a linear relationship, but in this case, Y decreases as X

increases. ρX,Y = 0 implies that there is no linear correlation between the variables.
We can observe the following from Fig. 10.5:

• Most features are not perfectly correlated to each other and falls in the low to
medium (0 ± 0.5) correlation range. In other words, the dataset does not exhibit
“Multicollinearity”. Multicollinearity, if existed, can severely affect performance
of ML models outside of the original (training) dataset. Therefore, NoC features
have the potential to train accurate classifiers.

• Since column V shows values in the range of (0 ± 0.3), we can conclude that the
target label is not linearly correlated with the features. Therefore, a linear model,
such as linear regression or naive bayes classifier, to differentiate normal and
attack scenarios are unlikely to yield good results. Exploration of ML techniques
that capture non-linear behavior, such as neural networks, decision trees or
gradient boosting, is required.

These observations give us evidence that if an ML model is to be trained based
on these features, it has the ability to distinguish between normal and attack traffic
without causing multicollinearity. Therefore, a trained ML model can potentially
detect DoS attacks during runtime irrespective of the location of the MIP(s). Based
on this premise, in subsequent sections, we present the ML-based runtime DoS
attack detection mechanism and empirically validate the approach.
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10.4 NoC Attack Detection Using Machine Learning

In order to achieve high accuracy in detecting DoS attacks in the presence of runtime
variations of NoC traffic, we have developed an efficient mechanism for ML-based
DoS attack detection. An overview of the approach is shown in Fig. 10.6. During
design time, NoC traffic is statically analyzed to gather the dataset that is used to
train the ML models. Both normal and attack scenarios are emulated during this
phase using a few known application mappings. The trained models are stored in a
dedicated IP denoted as the Security Engine (SE). During runtime, NoC traffic data
is gathered at each router using probes attached to routers and the collected data is
sent to the SE using a separate physical Service NoC. The models at the SE use data
collected within a predefined time window to make inferences about the condition
of the NoC. Section 10.5 demonstrates that the ML-based approach is capable of
classifying data as normal or attack, irrespective of the locations of cores running
the applications and the locations of MIP(s).

The ML-based DoS attack detection mechanism relies on the following features
of the architecture model.

• Probes attached to routers can gather data from NoC packets with minor
performance and power overhead.

• The SoC architecture comprises two physical NoCs: (1) a Data NoC that is used
to communicate between IPs for application execution, and (2) a Service NoC
which transfers data collected from probes to the SE.

The remainder of this section is organized as follows. Section 10.4.1 presents the
NoC traffic features and the ML models used to make inferences. Section 10.4.2
discusses the hardware implementation to have probes connected to routers that
gather data and send to the SE via the Service NoC.

Fig. 10.6 Major steps of the ML-based DoS attack detection mechanism
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10.4.1 Machine Learning Model

As outlined in Sect. 10.2.1, NoC packets/flits in the architecture model correspond
to memory requests/responses between IPs running the applications and the memory
controllers. Information is extracted when flits are transferred through routers. The
features consist of data extracted from NoC packets as well as engineered features
(marked with the symbol † in Table 10.1) created using the extracted data. A
complete list of NoC traffic features used in the exploration is shown in Table 10.1.
However, as elaborated in Sect. 10.5.3, some features are experimentally eliminated

Table 10.1 NoC traffic features used in the ML model

Feature ID Feature name Feature description

A Outport* Port used by the flit to exit the router
(0-local,1-north,2-east,3-south,4-west)

B Inport Port used by the flit to enter the router
(0-local,1-north,2-east,3-south,4-west)

C cc type Cache coherence type of the packet corresponding to the
flit

D Flit id Identifier used to denote each flit of a packet

E Flit type Type of flit (head, tail, body)

F vnet Virtual network used by the flit

G vc* Virtual channel used by the flit

H Traversal id*† Identifier used to group all packet transfers related to one
NoC traversal

J Hop count*† Number of hops from the source to the destination

K Current hop† Number of hops from the source to the current router

L Hop percentage† Ratio between the current hop and the hop count

M Enqueue time* Time spent inside the router by the flit

N Packet count
decr.*†

Cumulative no. of flit arrivals within time window τ

(decremented as packets arrive)

O Packet count
incr.*†

Cumulative no. of flit arrivals within time window τ

(incremented as packets arrive)

P Max packet
count*†

Maximum no. of flits transferred through the router within
a given time window τ

Q Packet count
index*†

Packet count incr × packet count decr

R Port index† Outport × inport

S Traversal
index*†

Cache coherence type × flit id × flit type × traversal id

T cc vnet index† Cache coherence type × vnet

U vnet vc cc index† Cache coherence vnet index × vc



10 Network-on-Chip Attack Detection using Machine Learning 263

based on feature importance1in an attempt to find the optimum trade-off between the
least number of features and the highest model accuracy. Feature IDs of the selected
features, when running the final model, are marked with a star (*) in Table 10.1.

Gradient Boosting, a powerful technique to perform supervised ML classifica-
tion, is used to classify normal and attack scenarios. It is an ensemble learner that
creates the final model based on a collection of weak predictive models, decision
trees in most instances, and that results in better overall prediction capabilities due
to iterative learning from each model. The key concept of the algorithm is to create
new base-learners having a maximum correlation with the negative gradient of the
loss function of the entire ensemble. Weaker predictive models in the ensemble are
trained gradually, additively, and sequentially, and their shortcomings are identified
by the use of gradients in the loss function which indicates the acceptability of
the model’s coefficients at fitting the underlying data. The decision to use gradient
boosting for the classification was made experimentally as outlined in Sect. 10.5.2.

10.4.1.1 Training the ML model

The ML model is trained statically, during design time. A few application mapping
scenarios are chosen to train the model that includes both normal execution and
attack scenarios. A list of all training and testing configurations is outlined in
Sect. 10.5.1. Network traces are collected during application execution at each
router. When flits pass through the routers, a feature vector is constructed including
the selected features for each flit. Selected features are transformed using MinMaxS-
caler to fit into the range of 0–1, without distorting the shape of the original features.
Transformed features are then used to tune the hyperparameters of the model using
Bayesian Optimization, which outputs the best-optimized list of parameters while
learning from previous iterations in each iteration. This process is repeated for all
16 routers separately to train 16 models, one per router.

10.4.1.2 Attack Detection

During runtime, probes attached to the routers gather data and send to the SE for
evaluation. The SE aggregates data and constructs feature vectors corresponding
to each router, following a process similar to that of during model training. LetMi

correspond to the model trained for router ri using gradient boosting. Feature vectors
that fall within a predefined time window τj is then used as input to each trained
model, which gives a probability of an attack as the output. If Vi,j denotes the set
of feature vectors constructed at ri for τj , the probability of an attack is denoted by

1Feature importance gives a score to indicate how important a feature is in the decision making
process of an ML model. In a trained model, the more a feature contributes to key decisions, the
higher its relative importance.
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pi,j , where pi,j ←Mi (Vi,j ). The probability is calculated as the portion of feature
vectors labeled as “attack” during τj . If all feature vectors are classified as “attack”
by the model, the probability is 1. If all feature vectors are classified as “normal”,
the probability is 0. The overall probability of an attack for the time window τj is
calculated after pooling all probabilities as;

Pj =
∑

∀i (pi,j · |Vi,j |)∑
∀i |Vi,j | (10.1)

The overall probability for the time window τj (Pj ) is a weighted average of
probabilities from each model where the weights correspond to the number of flits
transferred through each router within the given time window. If Pj is greater than
a predefined threshold λ, an attack is flagged. This process is repeated for every τj

during SoC operation to detect attacks that can be potentially initiated at any point
in time.

Weights based on the number of flits indicate that when a model makes a decision
based on a lot of data points, it can be trusted to give a more accurate result.
The choice was motivated by the fact that there are no assumptions made about
the placement of the secure and non-secure IPs. However, if more information is
available, the weighted average can be adjusted so that some models contribute more
to the final decision. For example, if the locations of the non-secure (potentially
malicious) IPs are known, the probabilities of models corresponding to those routers
can be given more weight and it would result in a better overall performance in
distinguishing normal traffic from an attack scenario. How to combine different
probabilities to arrive at a single conclusion under various assumptions is well
studied in the area of Opinion Pooling, which is a part of probability theory, and
can be used in the approach based on the assumptions made.

It is important to note that all the features that have been used in the method
can be extracted from the packet header or by counting flits or as a combination
of header and count information. Observing the packet payload (e.g., memory
data block in case of a memory data fetch packet) is not required. Therefore,
this approach can be used together with other NoC security mechanisms such as
encryption and authentication.

10.4.2 Implementation of Hardware Components

This approach relies on collecting features at routers using probes and sending the
data via a separate physical NoC (Service NoC) to the SE to make inferences. This
section describes the implementation details for these hardware components.
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10.4.2.1 Multiple Physical NoCs

Two main types of packets are identified to be transferred through the NoC
to facilitate the ML-based DoS attack detection method: (1) packets related to
application execution as introduced in Sect. 10.2.1, and (2) packets related to
extracted NoC features transferred from probes at routers to the SE. Instead of using
different virtual networks to carry the different packets types, it is proposed to use
two separate physical NoCs (Data NoC and Service NoC) to carry the two main
types of packets. The choice is motivated by state-of-the-art commercial NoC-based
SoC architectures that follow the same practise of carrying different types of packets
over multiple physical NoCs [56, 59].

There is a trade-off between area and performance when considering one versus
multiple NoCs. When different packet types are facilitated through the same NoC,
header fields must be added to distinguish between the packets’ types. Furthermore,
the buffer space must be shared between virtual networks. This can lead to
performance degradation, especially when scaling to many-core processors. On the
other hand, separate physical NoCs contribute to the area overhead. However, due
to advances in manufacturing technologies, additional wiring to facilitate the NoCs
incurs minimal overhead as long as the wires stay on-chip. On-chip buffer area has
become the more scarce resource. If virtual networks are used, the increased buffer
space due to sharing and the logic complexity to handle virtual networks can closely
resemble to having a separate physical NoC. Intel and Tilera opted for separate
physical NoCs for the same reasons. Yoon et al’s work provides a comprehensive
trade-off analysis [61]. When the analysis from [61] is applied to fit the parameters
in this work, the power and area overhead of having two physical NoCs versus one
NoC are 7% and 6%, respectively.

10.4.2.2 Probes at Routers and Security Engine

Hardware implementations for probes collecting data at routers and the SE have
been explored in several prior work [21, 27]. Fiorin et al. [27] utilized probes
attached to the network interfaces to collect data and send to a central processing
element to detect DoS attacks. The runtime NoC monitoring and debugging frame-
work proposed in [21] also used a similar setup where event related information
is gathered at NoC routers and sent to a central unit for processing. This security
mechanism is built using a similar architecture. In the framework, the probes are
event triggered on flit arrival. The probes consist of a sniffer, an event generator and
an interface to the Service NoC. The sniffer extracts the features from flits and sends
to the event generator to create the timestamped messages. The network interface
then packetizes the messages and sends to the SE via the Service NoC. The SE
completes feature engineering and combines the engineered and extracted features
to construct the final feature vectors. Previous work performed detailed overhead
analysis and reported minimal area overhead, for example, the probes consumed
0.05 mm2 compared to a 0.26 mm2 router area when synthesized with 0.13 micron
technology [21]. The overhead analysis is consistent with the analysis done in [21].
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Table 10.2 Train and test configurations

Iteration ID (IID)
Train Test

Normal Attack Attack

1 N-0-15 N-0-15-A-1 N-0-15-A-7

N-0-15-A-11

N-0-15-A-12

2 N-0-15 N-0-15-A-1 N-0-15-A-7

N-0-15 N-0-15-A-11 N-0-15-A-12

N-0-9 N-0-9-A-1 N-0-9-A-7

N-0-9 N-0-9-A-11 N-0-9-A-12

N-0-6 N-0-6-A-1 N-0-6-A-7

N-0-6 N-0-6-A-11 N-0-6-A-12

N-0-4 N-0-4-A-1 N-0-4-A-7

N-0-4 N-0-4-A-11 N-0-4-A-12

3 N-0-6-9-15 N-0-6-9-15-A-1-11 N-0-6-9-15-A-1-7

N-0-6-9-15-A-7-11

N-0-6-9-15-A-11-12

N-0-6-9-15-A-7-12

10.5 Experiments

In this section, we evaluate the effectiveness of ML-based DoS attack detection.
First, we describe the experimental setup (Sect. 10.5.1). Next, we explore several
machine learning models to identify the best performing one and justify the
choice of gradient boosting (Sect. 10.5.2). Then, we rank the feature importance
according to the selected model and eliminate low priority features in an attempt
to find the optimum trade-off between the number of features and model accuracy
(Sect. 10.5.3). Finally, we show how the ML-based DoS attack detection mechanism
performs across several training and testing configurations by exploring model
accuracy for all the test cases in Table 10.2 (Sect. 10.5.4).

10.5.1 Experimental Setup

Following the realistic architecture model proposed in [14], the 4 × 4 mesh NoC
was modeled using the “GARNET2.0” framework [1] that is integrated with the
gem5 [6] cycle-accurate full-system simulator. The NoC model was implemented
using X-Y routing with wormhole switching, 3-stage router pipeline (buffer write,
route compute + virtual channel allocation + switch allocation, and link traversal)
and 4 virtual channel buffers per input port. Each IP was modeled as a processor
core executing a given task at 1 GHz with a private L1 cache. Processor cores
used the NoC for memory operations as outlined in Sect. 10.2.1. The four memory
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controllers attached to four boundary nodes of the NoC provided the interface
to off-chip memory. The address space was shared equally between the memory
controllers. Four benchmarks from the SPLASH-2 benchmark suite [60] (FFT, LU,
FMM, RADIX) were used as application instances. The same set of benchmarks
has been used in [17, 18] that explored DoS attacks in NoC-based SoCs. First, the
results using the FFT benchmark is presented and in Sect. 10.5.4, it is shown that
similar trends can be observed from other benchmarks as well.

During normal operation, n IPs out of the 16 IPs in the 4 × 4 mesh, were chosen
at random to run an instance of the benchmark (active IPs). To model the DoS attack
scenario, an IP that did not run an instance of the benchmark injects memory request
packets to the four memory controllers increasing the overall network traffic by
50%. Figure 10.1 shows one configuration of the random active, idle, and malicious
IP placement where n = 1. A complete set of training and testing configurations are
listed in Table 10.2. Iteration ID (IID) 1 indicates that the model has been trained
with two datasets: (1) normal execution scenario with applications running on IPs 0
and 15 (N-0-15), and (2) attack scenario with an attacker at IP 1 launching a DoS
attack while applications are running on IPs 0 and 15 (N-0-15-A-1). The trained
model has been tested with three attack scenarios: (1) N-0-15-A-7, (2) N-0-15-A-
11, and (3) N-0-15-A-12. The IP numbers correspond to the node numbers given in
Fig. 10.1.

10.5.2 Machine Learning Model Comparison

To identify which ML model performs the best for the given architecture and
threat models, a performance comparison was made between 12 ML models—
Naive Bayes Classifier (NBC), Logistic Regression (LRN), 2-Layer Neural Network
(2NN), 3-Layer Neural Network (3NN), 4-Layer Neural Network (4NN), 5-Layer
Neural Network (5NN), 6-Layer Neural Network (6NN), K-Neighbors Classifier
(KNN), LightGBM Classifier (LGB), Decision Tree Classifier (DCT), Random
Forest Classifier (RFC), and XGBoost Classifier (XGB). Each model was trained
using the training dataset of IID 2. Figure 10.7 shows training accuracy and
validation accuracy measured using an 80:20 training:validation split from the
dataset at router 0 (r0). The model comparison results at other routers manifested a
similar trend (omitted from Fig. 10.7 for clarity). It can be observed that non-linear
ML models perform better than linear models with XGB showing the best results.
XGBoost is an algorithm based on gradient boosting machines.

To evaluate the selected XGB model further, we use cross validation, which is a
resampling process used to evaluate the performance of a trained ML model. We use
StratifiedKFold cross validation method since it gives a better representation over
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Fig. 10.7 ML model performance comparison using IID 2 training dataset

Fig. 10.8 Validation results of the trained XGBoost model using StratifiedKFold cross validation

the entire dataset.2Results for 10 folds of StratifiedKFold cross validation is shown
in Fig. 10.8. The results generated by cross validation confirm that the model is less
biased, performing well in unseen data and not overfitting. Since the exploration
indicated that XGB performs best in the given scenario, XGB is selected as the ML
model for the DoS attack detection method.

10.5.3 Feature Importance

While using more features can certainly increase model accuracy, extracting
redundant features from NoC traffic can lead to unnecessary performance and
power overhead. Therefore, features that show the least importance for the decision
making process of the ML model-XGB are eliminated. Figure 10.9 shows the
feature importance rank of each feature. Since each router runs a model trained
from the data extracted at that particular router, the feature importance rank slightly

2 KFold cross validation shuffles the dataset and splits it into k subsets, then trains on k − 1
and evaluates on the other set iteratively. In contrast, StratifiedKFold cross validation shuffles the
dataset and splits it into k subsets by class and uses a subset from each class in the test set emulating
a representation of the entire dataset in each fold for both training and validation.
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Fig. 10.9 Feature importance rank for each feature at each router for IID 2 dataset with least
important features highlighted

changes from router to router. However, the overall trend remains consistent where
the highlighted features are the least used. Therefore, for the rest of the exploration,
the highlighted features are eliminated when training and testing the accuracy of the
DoS attack detection mechanism.

10.5.4 DoS Attack Detection Accuracy

With the selected model and features, in this section, the accuracy of the DoS attack
detection method is evaluated. As outlined in Sect. 10.4, each model outputs the
attack probability independently for a given time window τj . The overall attack
probability during τj (Pj ) is calculated according to Eq. 10.1. Figures 10.10 and
10.11 show excerpts from results generated during an attack (IID 2 and test case
N-0-15-A-12) and a normal (IID 2 and test case N-0-15) scenario, respectively. The
threshold for inferring attacks fromPj is set to 0.5 (λ = 0.5) since an attack scenario
should give probabilities close to 1, whereas in a normal scenario, the probabilities
should be close to 0. Columns “r0” through “r15” in Figs. 10.10 and 10.11 show
the probabilities outputted by models corresponding to each router. Column “Pj ”
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Fig. 10.10 Results of attack scenario for IID 2 and test N-0-15-A-12 (τj = 1000)

Fig. 10.11 Results of normal scenario IID 2 and test N-0-15 (τj = 1000)

shows the overall probability for time window τj calculated using Eq. (10.1) and the
“Status” column indicates the final decision of the ML model for each τj . The two
excerpts show 100% accuracy since all the time windows are classified accurately.
However, each test case consists of more than 3000 such time windows (3280 in
the complete table corresponding to Fig. 10.10), which is related to the application
execution time. The DoS attack detection accuracy is calculated as the portion of
accurately classified time windows.

Figure 10.12 shows DoS attack detection accuracy for all test cases shown in
Table 10.2. In IID 1, the model is trained with only two datasets (N-0-15 and N-0-15-
A-1) and tested with varying MIP locations (7, 11, and 12). Even though the number
of training datasets is low, the ML model still achieves an accuracy of ∼90%. As
the number of training datasets is increased, the model achieves very high accuracy
(∼99%), even when tested with MIP locations which the model was not trained on.
Since a decision is made at the end of each time window, the time taken to detect
an attack is τj , which is experimentally set to 1000 cycles (1 μs). Attack detection
times of previous work that addressed DoS attack detection in real-time systems
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Fig. 10.12 DoS attack detection accuracy for all test cases in Table 10.2

Fig. 10.13 DoS attack detection accuracy across different applications for IID 2, test case N-0-
15-A-7

fall in the same range (3–8 μs) [17, 18]. Results show that the approach is capable
of detecting DoS attacks with high accuracy and in real-time, irrespective of the
number or the placement of MIPs and the number of applications running on the
SoC. High attack detection accuracy is achieved not only if active and malicious
IP placements match the training configurations, but also in new MIP placements,
which the model has not been trained on.

To explore the behavior of the method across different applications, the model
was trained on IID 1 with the FFT benchmark and tested on test case N-0-15-A-7
with LU, FMM, and RADIX running as application instances. Results in Fig. 10.13
show that even though the model is not trained on a particular application (traffic
pattern), it is capable of detecting attacks with high accuracy.
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10.6 Summary

In this chapter, we discuss about the potential of using a machine learning based
DoS attack detection mechanism for NoC-based SoCs. A widely explored threat
model was considered for the exploration where a malicious IP floods the NoC with
a large number of packets causing deadline violations, performance degradation,
or reduced energy efficiency. Unlike the existing DoS attack detection methods
that rely on highly predictable NoC traffic patterns and specific use cases, this
approach is capable of detecting DoS attacks with high accuracy in real-time, in
the presence of unpredictable NoC traffic patterns caused by diverse applications
with input variations and application mappings. Experimental results demonstrated
that non-linear models, such as gradient boosting, produce the best results for the
given architecture and threat models. The observations from ML model performance
and feature importance reveal that the key to achieving high accuracy is to carefully
craft features out of the data extracted from NoC traffic. This approach is capable of
detecting DoS attacks with high accuracy in a wide variety of scenarios.
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Chapter 11
Trojan Aware Network-on-Chip Routing

Manju Rajan, Abhijit Das, John Jose, and Prabhat Mishra

11.1 Introduction

With the noting growth in Internet-of-Things (IoT) devices and embedded systems,
outsourcing of circuit design and fabrication process has significantly accelerated
over the years. The race for bringing more devices into the market made semicon-
ductor industries paying less attention to the hardware security of these devices.
Due to the reduced emphasis on security standards, new hardware vulnerabilities are
uncovered every now and then. For example, one of the recently exposed glitches
in modern Intel processors allows an adversary to access kernel memory [46]. The
flaw is able to bypass most of the hardware level protections available in the system.

Due to the increasing demand for data and compute-intensive tasks in the
era of IoT and embedded systems, design of Multi-Processor System-on-Chips
(MPSoCs) gained popularity. The use of packet-based on-chip interconnect technol-
ogy called Network-on-Chip (NoC) in MPSoCs outperforms the existing bus-based
interconnect, thereby circumventing the low wire routing congestion and low
operation frequencies of the system. NoC provides separation between computation
and communication, supports modularity and Intellectual Property (IP) reuse via
standard interfaces and handles synchronisation issues, which in turn improve the
performance of the system. However, the long and globally distributed supply
chain of hardware IPs makes MPSoC design increasingly vulnerable to diverse
trust/integrity issues. For example, MPSoCs built with third party NoCs create more
vulnerabilities due to its emphasis on performance and backward compatibility
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rather than security [1, 20, 23, 24, 34, 35, 38, 41]. Being the backbone of inter-
core communication, NoC has access to all the cores of an MPSoC and hence if
malicious, it can wreak havoc. Thus, security aware communication architectures
gathered attention and became a major area of recent research [8–14, 16].

A hardware-oriented attack is defined as the exploitation of state values and
the manipulation of control signals that can result in the violation of security in a
computing platform. The attacker can exploit information like power consumption,
branch prediction speculation, execution time, memory access pattern and memory
access time to launch an attack. Such hardware orientated attacks become a major
concern due to the difficulty in analysing their processing permutations for all
the IP cores of an MPSoC, especially in real-time systems. One of the significant
hardware-oriented security compromises in MPSoCs is the insertion of a malicious
circuit called Hardware Trojan(HT) [28], which can alter the functionality of the
system to deploy an attack. Example of frequent attacks with HTs includes Denial
of Service (DoS), information leakage, high jacking [16], unauthorised memory
access [43], etc. These threats in MPSoCs are critical challenges in the hardware
security domain.

11.1.1 Overview of Hardware Trojans

One of the biggest HT attacks reported is the failure of the Syrian radar to warn of
an incoming air strike [39]. Also, report shows that US NSA embedded HT circuitry
into the USB port to steal secret data from all over the world, including the military’s
network in China and Russia, information about Mexican drug cartels [50], etc.

Figure 11.1 shows the generic structure of an HT. It consists of a trigger logic
which initiates the activation of an HT and a payload logic which perform the
malicious modification of the circuit or the functionality to deploy the attack [4].
HTs can be broadly classified into two categories based on the mechanism of this
trigger/activation and payload/action [4], as shown in Fig. 11.2. They can be further
divided based on the types of signal used to initiate the HT, whether analog or
digital or anything else. For example, analog HTs can be initiated by conditions like
delay, power, temperature, device aging effect, etc. Similarly, digital HTs initiated

Fig. 11.1 Structure of a
Hardware Trojan
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logic

Payload
logic 
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by Boolean logic function use sequential or combinational circuits where the HT
gets activated either by the sequence of events that occur in the system or during the
outcome of a combination of events which are undetectable during the functional
testing phase.

An HT can be injected into a system at any stage of the IP supply chain, like spec-
ification, design, fabrication, etc. EDA vendors can alter the logic implementations
deduced by their tools, which can do more than required to activate the HT. Third
party IP vendors can easily manipulate the RTL and insert malicious codes which
can modify the system’s behaviour [28]. An untrusted staff who has access to the
fabrication process and facility can tweak the system chip [4]. Once activated, the
HT payload can create catastrophic effects like DoS, functional failure, information
leakage, high jacking [16], unauthorised memory access [43], alteration to the
system, etc. Based on the intention and attack model, an adversary can mount HT on
locations like processor, interconnect, memory, input-output devices, etc. In modern
MPSoCs, HTs can be deployed either in the processor or the interconnect (NoC).
Due to the positional advantage, an HT mounted and activated on the NoC can cause
severe performance degradation and bring down the entire system to a near halt.
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11.1.2 Trojan-Based Attacks on NoC Architectures

As NoC is shared by all the connected heterogeneous cores of an MPSoC, avoiding
interference in underlying applications poses a greater challenge. This makes NoC
more vulnerable to hardware-oriented security threats, where an attacker can analyse
the communication flow, variation in power consumption, etc. to launch the attack.
Among other attacks, HTs mounted on NoC of MPSoCs impose unique challenges
as they remain hidden until they are triggered. Identifying the rare condition that
triggers an HT requires to examine all the possible input patterns to the MPSoC.
However, it is not feasible due to the time constrained post-silicon debug and
validation [2, 15, 19, 21, 22, 32, 33, 36, 37]. Figure 11.3 lists well known attacks
an HT can initiate when mounted on NoC. A brief introduction about each one of
them is as follows:

HT impact 
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corruption

Information
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Functional 
modification

Misrouting
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Deadlock
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Bandwidth
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Fig. 11.3 Impact of HT threats on NoC
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11.1.2.1 Denial of Service (DoS)

DoS attack by an HT on NoC is mainly aimed towards resource depletion, including
bandwidth, being one of the most critical resources in a communication framework.
The HT can deploy such an attack by flooding the network with frequent and
useless packets. As a consequence, the victim packets suffer from buffer and
link unavailability, which eventually leads to a deadlock, halting the entire NoC
communication. In some cases, the HT modifies the employed routing algorithm to
misroute packets, thus denying them to reach their destination. This behaviour of
the HT makes the victim packets suffer from livelock, thus wasting the resources
without any productivity.

11.1.2.2 Information Leakage

The objective of a leakage Trojan is to snoop on the ongoing data communication on
NoC and steal critical information. These information leakage/data snooping attacks
are performed by duplicating the incoming packets from a processing core [3, 45].
In most of the cases, such Trojans get triggered by an accomplice thread that resides
in some other core. HT taps the incoming links from the network interface (NI) or
even the internal links and watches out for covert signals from a possible accomplice
thread. Once an activation signal is received by the HT, it initiates sending snooped
data from the link to the accomplice thread, waiting to steal the critical information.

11.1.2.3 Data Corruption

An adversary with the intention of a data corruption attack injects an HT which
attempts to learn the key used for packet encryption. When activated, the HT inserts
different combination of inputs to the encoder to determine a sequence of errors
which can mask a corrupted data into another valid data. With a side channel
analysis [26, 27, 29–31, 42], the adversary can also monitor how encoders and
decoders respond to different combination of inputs over a period of time. Once
the adversary obtains sufficient insights, the HT attempts to decipher the encryption
key. Once it gets hold of the key, the whole system running sensitive applications is
compromised.

11.1.2.4 Functional Modification

In a functional modification attack, an HT tries to change the operation of a circuit
by maliciously modifying its design or by adding new component into the existing
design. Since most of the components and the design of a circuit are outsourced, an
attacker can be any third party IP vendor or untrustworthy staff who can inject the
HT in any one of the phases like logical synthesis, physical P & R, etc. One such
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attack is the addition of a malicious logic that replaces a circuit’s original ‘AND’
logic with a multiplexer (MUX). The detection of these kind of HTs is very hard as
the malicious logic may not be triggered under the normal execution.

The remainder of this chapter is organised as follows. Section 11.2 provides
an overview of Trojan placements at four different locations: network interface,
network link, input/output buffers and network routers. While there are many
possible Trojan placements, Trojans at network routers are the most explored attacks
in the literature. Section 11.3 describes a Trojan aware routing algorithm when
Trojans are present in the network routers. Section 11.4 presents the experimental
evaluation along with the overheads. Finally, Sect. 11.5 concludes the chapter,
giving a summary of everything.

11.2 Different Placements of Hardware Trojans

In the previous section, various forms of HT induced attacks are described.
Irrespective of the type of attack, an HT can be mounted at different locations within
the NoC infrastructure. In this section, three different placements along with the
associated Trojan detection and mitigation techniques are discussed. Specifically,
HTs placed at major locations within NoC are presented with their abstract/high-
level design, detection and mitigation mechanisms. Specific examples are selected
from the existing literature so that readers can understand the HTs at a certain depth
and can refer to if interested for further details.

11.2.1 Trojan at Network Interface (NI)

Available research shows that an adversary can deploy an HT that can initiate a data
snooping attack by modifying the flit queue in the NI of an NoC router [45]. This
HT makes use of an accomplice thread that sends messages to initiate the attack.
Upon HT activation, packets that reach NI are duplicated with less interference to
the standard NI functions and sent to the accomplice thread.

Once activated, the HT starts monitoring the cyclic flit queue associated with the
NI. Whenever a head flit is transmitted from the NI queue to the router, HT exploits
its location in the queue, as shown in Fig. 11.4. Before the location of the head flit
is overwritten in the queue, HT copies the content of the head flit into a new flit and
set its destination as the malicious core. The duplicate flit reaches the router like
any other flit to travel towards the malicious core where the accomplice thread is
residing thereby achieving data snooping.

Unlike the state-of-the-art techniques [3], a snooping detection module
(THANOS) that utilises threshold voltage degradation can be used for run-time
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detection of the core that uses the malicious application for data snooping.
A snooping invalidation module (SIM) which uses an encoding-based duplicate
packet detection mechanism is employed to prevent malicious data replication by
the HT on NoC.

11.2.2 Trojan at Network Link

Existing literature has an attack using HT that snoops on passing packets in the
network link to inject a fault into some target packets [7]. The fault corrupts a packet
and triggers re-transmission, which in turn creates congestion and then deadlock
in the on-chip network. This attack makes use of a kill switch to control the HT
activation as well as to avoid HT triggering during the verification process.

Figure 11.5 shows the HT which is named as target-activated sequential payload
(TASP). It has a target block which is used to identify the victim packet by checking
the information like source, destination, virtual channel (VC), process ID, memory
address, etc. It has a payload counter that is used to inject faults at different locations
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and thus avoids getting noticed by fault aware architectures. The HT also has an
XOR tree to change the bits on the wires selected within the link during the attack.

A threat detection module integrated into the output buffer of an NoC router is
used to monitor the re-transmission of packets and the possibility for transient or
permanent faults. These kinds of attacks can be circumvented by a heuristic switch
to switch mitigation technique which obfuscates the packets to avoid HT triggering.
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11.2.3 Trojan at Input/Output Buffers

A Trojan at input/output buffers, as shown in Fig. 11.6 can initiate an attack that
changes the flit type, modify packet’s destination and sabotage the integrity of a
packet that leaves the NI [25]. In NoC based MPSoCs, FIFO based input/output
buffers become a primary target for attackers due to their regularity in implemen-
tation and large area footprints. The main consequence of an HT at input/output
buffers is resource depletion.

When activated, the HT placed at the input/output buffers modifies the critical
bits of a flit. It can change the head/body/tail bit of a flit to change the flit type, thus
creating problem in routing and arbitration. The HT can also modify routing path
bits to enable misrouting for the victim packets. It can even modify the destination
address bits to send the victim packets to a malicious core for data snooping.

To proactively defence the HT’s impact on NoC’s integrity, the mitigation
technique uses three modules HTM1, HTM2 and HTM3. The HTM1 module uses a
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dynamic flit permutation technique to reorder the incoming flits before they are sent
to the FIFO based input buffer. HTM2 checks for flit’s integrity to flush malicious
flits and HTM3 is used to recover the flit to its original form in output buffer.

11.2.4 Trojan at Network Routers

Routers being the most important component in NoC framework are the primary
target for attackers. Many popular attacks on NoC place a Trojan in the Routing
Computation (RC) unit to manipulate routing information. Such an HT changes the
routing algorithm/routing table contents to initiate packet misrouting [6, 17, 44].
Other consequences include DoS, delay of service, information leakage, bandwidth
depletion, unauthorised access, etc. Attacks on NoC through an HT at the routers
have grown exponentially in recent years due to their ability of creating multiple
damages at once. Section 11.3 presents an efficient technique to enable trusted NoC
communication in the presence of an HT at the routers [44].

11.3 SECTAR: Secure NoC Using Trojan Aware Routing

SECTAR introduced an intermittent HT threat model that misroutes packets to
initiate multiple attacks on NoC based MPSoCs. To deal with a threat of this nature,
SECTAR proposed Trojan Aware Routing (TAR), a technique that dynamically
detects a misrouting HT, isolates the HT and route packets in the network bypassing
the HT. The following subsections describe everything about SECTAR.

11.3.1 Threat Model

SECTAR presented an HT threat model that tampers the routing algorithm
employed in RC unit to enable misrouting. When triggered, the HT maliciously
assigns a wrong output port to the head flit of a packet, making it travel to a wrong
next router. As a result, all the flits of the packet get misrouted (due to wormhole
routing) and contribute to one of the attack scenarios: DoS, injection suppression
and delay of service. DoS is a scenario where the flits of a packet get indefinitely
delayed in the path and never reach their destination. Injection suppression scenario
is a by-product of DoS where new flits cannot be injected into the network due
to unavailability of router buffers. Delay of service is a scenario similar to DoS
except that the flits eventually reach their destination. The HT threat model can be
formulated as follows:
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An NoC packet P can be represented as:

P = {Fp
head ‖ F

p

body1 ‖ F
p

body2 ‖ . . . ‖ F
p
bodyn ‖ F

p
tail} (11.1)

where F
p
i are flits of packet P such that:

F
p
head = [{SRC, DEST, CT RLMSG}]

F
p
body = [{CT RLMSG}, {Data}]
F

p
tail = [{CT RLMSG}, {Data}]

Path of packet P from source to destination can be given as:

P = {Rsrc, . . . Rk−1, Rk, Rk+1, . . . Rdest } (11.2)

where Ri denotes router i in the NoC. Let RAi denote the routing algorithm
employed in the RC unit of Ri . Then for packet P , it can be said from Eqs. (11.1)
and (11.2) that

RAk(F
p
head) = Rk+1 (11.3)

where for the head flit FP
head of packet P , the routing algorithm RAk employed in

router Rk will assign the next router as Rk+1.
Let HT denotes the proposed threat model such that

HT (RAk) = RA∗
k and

RA∗
k(F

p
head) = R∗

k+1 and

R∗
k+1 �= Rk+1

Packets carry cache miss requests, cache miss replies, evicted cache blocks and
coherence messages from source to their destination through the underlying NoC.
A router infected with the proposed HT can misroute these packets and degrade the
application-level performance of latency-critical applications. Such type of HTs can
be added to an NoC IP at any stage of the supply chain, including specification,
design and fabrication [28, 47]. To make it hard to get detected, SECTAR assumed
that the proposed HT is intermittently malicious and internally triggered [28, 49].

Figure 11.7 shows an illustration of an 8×8 mesh NoC based MPSoC with the
proposed HT mounted on router 35. An adversary can insert any number of such
HTs in the NoC. However, activating multiple HTs can create an unusual variation
in energy and power consumption and hence may be easily noticed (detected). To
make it hard to get detected, SECTAR assumed that the adversary had infected
only a single router with the proposed HT. Based on the location of HT, the entire
8×8 NoC is divided into eight different regions: N , E, S, W , NE, SE, SW and
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NW . When triggered, the impact of HT varies across different regions based on
their inter-core communication. The compromised MPSoC encounters the following
attack scenarios:

11.3.1.1 Attack Scenario: Denial of Service (DoS)

To understand how a misrouting HT can initiate a DoS attack, consider a case shown
in Fig. 11.8 with the Trojan hiding at router 35. The underlying NoC employed
X-Y dimension order routing algorithm for packet traversal. During inter-core
communication, a packet P 1 with source S1 on its way to destination D1 reaches
router 35. Instead of forwarding P 1 to router 43 as per X-Y routing, the activated
HT at router 35 misroutes P 1 to router 34. Note that the HT can misroute this packet
to any other direction than the valid one (say router 27, router 34 or router 36). When
the misrouted packet reaches router 34, following X-Y routing, it will be re-sent to
router 35. Destination D1 is at router 59, which is on the same column as that of HT
infected router 35. So as per X-Y routing, P 1 can reach destination D1 only through
router 35, which is currently compromised. Since router 35 always misroutes, P 1
will never reach its destination D1. This is a DoS attack scenario created by the
proposed misrouting HT threat model in SECTAR.
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According to Fig. 11.7, source S1 is in region E and destination D1 is in region
N . With further analysis, it is concluded that an inter-region communication of
type E −→ N leads to a DoS attack scenario. In general, for all the inter-region
communication where the destination router is on the same column as that of the HT
infected router 35, DoS attack like scenario is possible. Hence, any packet traversal
between the following regions is susceptible to a DoS attack scenario:
E −→ N , E −→ S, W −→ N , W −→ S NE −→ S, NW −→ S, SE −→ N ,
SW −→ N .

11.3.1.2 Attack Scenario: Injection Suppression

A misrouting HT can also create injection suppression in the network. Most of the
time this occurs as the by-product of a DoS attack. SECTAR defined the HT in
such a way that the direction of misrouting is non-deterministic. For example, in
the case considered in Fig 11.8, the HT infected router 35 can misroute packet P 1
in different invalid directions at different instances. As a result, P 1 gets trapped
into a ping-pong state between the neighbours of router 35, except with router
43. Packets are buffered in virtual channels (VCs) of routers while taking part
in routing and arbitration decisions. Prolonged ping-pong of P 1 leads to VC
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unavailability in neighbouring routers and propagates the effect to others by back-
pressure. Eventually, a scenario of injection suppression arises in the entire system.
When the traffic is high, unavailability of NoC resources due to the ping-pong effect
also leads the system into a deadlock.

SECTAR analysed the proposed threat model for injection suppression and
its effect on an 8×8 NoC based MPSoC as shown in Fig. 11.9. Simulating a
uniform_random synthetic traffic reveals that with the increase in packet injection
rate, impact of the proposed HT escalates, and the number of packets injected
decreases drastically. The increasing injection suppression eventually leads the
network into a deadlock.

11.3.1.3 Attack Scenario: Delay of Service

Another attack scenario created by the proposed HT threat model in SECTAR is a
delay of service. Consider an inter-core communication, where a packet P 2 with
source S2 is travelling towards its destination D2, as shown in Fig 11.10. When P 2
reaches the HT infected router 35, instead of forwarding the packet towards router
36 (as per X-Y routing), the Trojan at router 35 misroutes P 2. Since the direction
of misrouting is random, packet P 2 can reach any one of the neighbours of router
35, like 27, 34 or 43. If P 2 reaches either router 27 or 43, following X-Y routing it
can reach the destination D2 incurring a small delay. However, if the HT misroutes
P 2 towards router 34, then it enters a ping-pong state between router 34 and 35,
something similar to the DoS scenario (refer Fig 11.8). But, due to the randomness
of misrouting, the ping-pong breaks when P 2 gets misrouted to either router 27 or
43 in the near future. In that case, packet P 2 eventually reaches its destination with
an indefinite delay. This is a delay of service attack scenario.

Again, according to Fig. 11.7, source S2 is in region W and destination D2 is in
region NE. Thus, an inter-region communication of type W −→ NE creates a delay
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of service attack scenario. To generalise, a delay of service attack like scenario is
possible when there is a communication between the following regions:
E −→ W , E −→ NW , E −→ SW , W −→ E, W −→ NE, W −→ SE.

11.3.2 Trojan Aware Routing

11.3.2.1 Detecting the Trojan

SECTAR employed X-Y routing where a packet travels along the X direction and
reaches the same column as that of destination. Then, the packet travels along the
Y direction to reach the destination. Let P be a packet with source S(x1, y1) and
destination D(x2, y2). As per X-Y routing, when P reaches an intermediate router
R(x, y), it is forwarded along the X direction until (x < x2). When P reaches a
router where (x == x2), it changes the direction and starts travelling along the Y
direction until (y < y2). When P reaches a router where (y == y2), it reaches
the destination D(x2, y2). The X-Y dimension order routing algorithm decides the
output port for a packet based on the position of destination router with respect to the
current router. The routing algorithm does not consider the input port of the packet
and its previous router for its routing decisions. The proposed HT threat model in
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Algorithm 1: Working of the detection module
Input: Input Direction of flit; in_dir
Output: Violated output direction of a flit: outv_dir
if xdiff < 0 and indir is WEST then

set outvdir as WEST
else if xdiff > 0 and indir is EAST then

set outvdir as EAST
else if xdiff > 0 and indir is NORTH then

set outvdir as NORTH
else if xdiff > 0 and indir is SOUTH then

set outvdir as SOUTH
end

SECTAR exploits this feature of the routing algorithm and enables misrouting. Now,
even if a packet is misrouted and reaches a router where it should not have reached
as per X-Y routing, the employed routing algorithm is not able to detect it. The
packet is forwarded to destination without knowing the misrouting that has brought
the packet to this router.

To identify packet misrouting and HT infected router, TAR adds a detection
module, a 1-bit alert_flag and a 3-bit alert_dir at every NoC router. The working of
the detection module is given in Algorithm 1. alert_flag is set only if the neighbour
is identified as an HT infected router and reset otherwise. alert_dir either denotes
no direction or the direction where the HT is detected; north, east, south, or west.
In the DoS attack scenario shown in Fig. 11.8, packet P 1 is forwarded to router 34
because of the misrouting at router 35. With the detection module in place, router
34 knows that P 1 has entered through east input port from router 35. Analysing
the position of destination D1 at router 59 with respect to router 35, the detection
module concludes that X-Y routing is violated and P 1 is misrouted. Router 34 sets
its alert_flag and updates alert_dir as east since router 35 misrouted packet P 1 and
hence must be an HT infected router. alert_flag and alert_dir are also used in the
subsequent phases of shielding and bypassing the Trojan.

11.3.2.2 Shielding the Trojan

Once the HT is detected by one of its neighbours (27, 34, 36 or 43), a dynamic
shielding protocol is activated. The router that detects the HT generates a special
alert flit to be sent to its neighbours about the detection of the HT. In TAR, such
routers are known as generators. Neighbours upon receiving the alert flit propagates
the message further by creating a propagation flit. In TAR, routers generating the
propagation flits are called propagators. The structure of these special flits is very
similar to normal flits, as shown in Fig. 11.11. Alert flit contains a 1-bit msg_dir
indicating the direction an alert flit needs to be forwarded by generators. A 3-
bit DHT_alert_dir indicates the direction an alert flit needs to be forwarded by
propagators. The alert message also contains a 3-bit NHT_alert_dir which indicates
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Fig. 11.12 Working of dynamic shielding in TAR

the direction where the HT is detected. Figure 11.11 presents all the possible values
for different fields of the alert flit. When the message of HT detection is propagated
among all the neighbouring routers using alert and propagation flits, each router
accordingly updates its alert_flag and alert_dir. This results in a shield creation
around the HT that successfully isolates the HT infected router from the rest of the
network. The third and final phase of TAR uses this shielding to route packets by
bypassing the isolated HT infected router.

Working of the dynamic shielding phase in TAR is explained using Fig. 11.12.
From the previous phase of HT detection, let us assume that router 34 has identified
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router 35 as an HT infected router. alert_flag in router 34 is now set to 1 and
alert_dir as 100 (East). As shown in Fig. 11.12, router 34 generates two alert
flits, GN and GS . With an alert message {msg_dir = 0, DHT_alert_dir = 100,
NHT_alert_dir = 011}, alert flit GN is forwarded from router 34 to router 42, where
msg_dir = 0 indicates GN to be forwarded in clockwise direction. DHT_alert_dir
= 100 (East) in GN indicates that upon reaching router 42, the message needs to
be propagated in East direction. Router 42 generates a propagation flit PE with an
alert message {msg_dir = 0, DHT_alert_dir = 000, NHT_alert_dir = 011} to be
forwarded to router 43. When PE reaches router 43, NHT_alert_dir = 011 (South)
indicates that the HT is detected in South direction of router 43; which is router 35.
alert_flag and alert_dir are updated as 1 and south, respectively, in router 43 which
can be a generator for other neighbours. Similarly, GS and PE′ also propagate the
message of HT detection to other neighbours. Here, 27, 34, 43 and 36 are generator
routers and 26, 42, 44 and 28 are propagation routers. The message propagation
continues from both sides until a logical shield is created around the HT infected
router. In this example, the shield is completed when alert_dir is set for router 27
as north, router 34 as east, router 43 as south and router 36 as west. After the end
of dynamic shielding, the detected HT infected router is isolated from rest of the
network.

11.3.2.3 Bypassing the Trojan

The final phase of TAR implements a bypass routing mechanism, as presented in
Algorithm 2. When a packet arrives at a router, bypass mechanism checks the
alert_flag and alert_dir of that router. Only if the alert_flag is set and alert_dir
matches with the desired output port direction of the packet, bypass routing is
activated. In all other cases, a packet follows normal X-Y routing to reach its
destination. Working of the Trojan bypassing phase is explained using Fig. 11.13.
Let us consider the same scenarios of DoS and delay of service attacks shown in
Figs. 11.8 and 11.10 for the sake of simplicity and continuity. A packet P 1 with
source S1 on its way to destination D1 reaches router 36. After the completion
of shielding in the previous phase, router 36 has its alert_flag set and alert_dir as
west. As per X-Y routing, the desired output port of packet P 1 at router 36 is west
which matches with the alert_dir of router 36. Now the Trojan bypass algorithm
initiates and reroutes packet P 1 away from the HT infected router 35 as presented
in Part I of Algorithm 2. Packet P 1 is rerouted from router 36 to router 44, and Part
II of Algorithm 2 is initiated since 44 is a propagation router. Now, packet P 1 is
forwarded from router 44 to router 43, and from there it directly reaches destination
D1 at router 59.

Since destination D1 is in the same column as that of HT infected router 35, with
HT activated, it becomes impossible for P 1 to reach D1 using the conventional
approach and hence it results into a DoS like scenario. With the Trojan bypass
algorithm in place, now P 1 can reach its destination, thus mitigating the impact of
DoS. Since packets like P 1 are not trapped in the network anymore, the proposed
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Fig. 11.13 Working of Trojan bypassing in TAR

bypass routing also diminishes the possibility of injection suppression. Similarly,
packet P 2 with source S2 on its way to destination D2 reaches router 34. Instead of
forwarding to router 35 which is HT infected, router 34 reroutes P 2 towards router
42. The Trojan bypass algorithm rerouted packet P 2 in such a way that it reaches
destination D2 without any additional delay. Hence, the delay of service scenario
created by the proposed HT threat model in SECTAR is mitigated by intelligent
bypassing. Note that router 35 misroutes only those packets that are passing through
it. Hence, even after bypassing is activated, the packets whose source or destination
is router 35 will continue to come out of/go into router 35, thus not hampering the
application executing in the infected core. Due to the nature of run-time detection,
when an HT is detected, it might have already misrouted first few flits of some
packets while rest of the flits are on the way. Intuitively, it seems that the bypassing
algorithm will not allow the rest of the flits to travel to the HT infected router in
order to avoid misrouting. However, this situation will not arise since only the head
flit takes part in routing and arbitration. Hence, if a head flit is already misrouted
before HT detection, all the following flits will go through the same route. After HT
detection, when such a misrouted head flit comes out of the HT infected router due to
the ping-pong effect, it will never enter the HT again due to the employed bypassing.
Hence, even misrouted flits will eventually reach their respective destination.

Rerouting packets using the bypass algorithm violates normal X-Y routing and
creates a possibility for network deadlock. To ensure deadlock prevention, TAR
employed the concept of intermediate destination [18]. When packet P 2 is rerouted
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Algorithm 2: Trojan bypass
Input: Packet header
Output: Output port direction of a flit
/*Part I: Mitigation by generator routers */
if alert f lag is SET and current router is generator then

if xdiff and ydiff is not equal to zero then
if alert dir is EAST or WEST then

if ydiff < 0 then
set out dir as SOUTH

else
set out dir as NORTH

end
else if xdiff is zero then

if (ydiff > 0 and alert dir is NORT H) ||
(ydiff < 0 and alert dir is SOUT H) then

set out dir as EAST or WEST
else if ydiff is zero then

if (xdiff > 0 and alert dir is EAST ) ||
(xdiff < 0 and alert dir is WEST ) then

set out dir as NORTH or SOUTH
end

/*Part II: Mitigation by propagation routers */
else if alert f lag is RESET and current router is propagator then

if (xdiff < 0 and indir is WEST ) ||
(xdiff > 0 and indir is EAST ) then

if ydiff < 0 then
set out dir as SOUTH

else
set out dir as NORTH

end
else if xdiff < 0 and indir is SOUT H then

set out dir as WEST
else if xdiff > 0 and indir is NORT H then

set out dir as EAST
end

end

from router 34 to router 42, it starts travelling in the Y direction. However, when
it travels from router 42 to router 43, P 2 violates X-Y routing, since turning X
from Y direction is prohibited. Using the concept of intermediate destination [18],
router 42 is made the new destination for packet P 2. Now, after getting rerouted
from router 34, packet P 2 reaches router 42 and gets ejected into its local output
port, since 42 is the new destination. Only after router 42 finds out that P 2 is
meant for destination D2 at router 62, it re-injects P 2 as a new packet destined
for D2. Packet P 2 now follows normal X-Y routing like any other packet to reach
the destination. The ejection of packet P 2 and re-injection as a new packet from
the intermediate destination 42 makes sure that X-Y routing is not violated thus
eliminating deadlock.
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11.4 Performance Evaluation

To evaluate the performance of SECTAR, three system models are considered: (1)
A baseline system to represent a normal NoC based MPSoC without any embedded
Trojan (Baseline), (2) an NoC based MPSoC with an HT infected router (HT) and
(3) an NoC based MPSoC integrated with the Trojan aware routing technique (TAR).

11.4.1 Simulation Framework and Workloads

For all the system models to be evaluated (Baseline, HT and TAR), SECTAR
considered a 64-core NoC based MPSoC. Each core contains a simple CPU, and
32KB, 4-way set associative, 64B block, private L1 instruction and data caches.
L2 cache is shared, and distributed as multiple banks using SNUCA technique. So,
each core also has a 256KB, 16-way associative, 64B block, shared L2 cache bank.
These MPSoCs use a traditional 8×8 2D mesh NoC with 5 VCs per input port
routers and a 128-bit flit channel for inter-core communication. Usually, L1 cache
miss triggers the generation of NoC request packets, which travels from source to
the appropriate destination core where the corresponding L2 cache sets are mapped.
Similarly, reply packets travel back to the requesting core through the underlying
NoC. X-Y dimension order routing algorithm is employed for packet traversal,
where request packets are 1-flit, and reply packets are of 5-flits. Garnet module
in gem5 simulator [5] is modified to implement different router microarchitectures
for Baseline, HT and TAR. The HT is modelled in such a way that there exists a
single Trojan infected NoC router at specific times.

To evaluate the performance, Uniform Random and Bit Complement synthetic
traffic patterns are used with varying injection rates. SECTAR also used SPEC
CPU2006 benchmark based real workloads where one benchmark is assigned to
each of the 64 cores of the MPSoC. Different categories of workloads are created
by grouping the benchmarks based on their Misses Per Kilo Instructions (MPKIs).
These categories are High MPKI (greater than 40), Medium MPKI (less than 40
but greater than 20) and Low MPKI (less than 20). leslie3d, lbm, GemsFDTD and
mcf fall under High MPKI, soplex and astar under Medium MPKI and sjeng, bzip2,
omnetpp and sphinx under Low MPKI, as given in Table 11.1. These categories are
used to make six workload mixes, M1, M2, M3, M4, M5 and M6, each having 64
benchmark instances, as presented in Table 11.2.

Table 11.1 Benchmark
classification based on MPKI

Category Benchmarks

High MPKI leslie3d, lbm, GemsFDTD, mcf

Medium MPKI soplex, astar

Low MPKI sjeng , bzip2, omnetpp, sphnix
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Table 11.2 Workload
characteristics

Workload Benchmarks

M1 100% High MPKI

M2 100% Low MPKI

M3 100% Medium MPKI

M4 50% High MPKI & 50% Low MPKI

M5 50% Low MPKI & 50% Medium MPKI

M6 50% High MPKI & 50% Medium MPKI
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Fig. 11.14 Effective average packet latency: uniform random

11.4.2 Results and Discussion

11.4.2.1 Effective Average Packet Latency

Average Packet Latency (APL) is defined as the number of cycles required for a
packet to reach its destination. To understand the effect on packet latency when the
HT is triggered, APL is an appropriate metric. However, there are times when an
HT infected NoC shows inconsistent latency due to packet loss. Hence, SECTAR
used Effective APL (EAPL) to get a consistent measure. EAPL can be defined as:

EAPL = APL ∗ PacketsEjectedwithoutHT

PacketsEjectedwithHT

(11.4)

While analysing EAPL using synthetic traffic patterns as shown in Figs. 11.14
and 11.15, it is observed that with increasing injection rate, packet latency also
increases in Baseline, HT and TAR. Due to the deflection of packets by the HT
router, the MPSoC experiences DoS and delay of service attacks. Hence, there is
an escalation in latency in HT system model when compared to the Baseline and
TAR models. However, TAR achieves a reduction in EAPL when compared to HT
infected NoC model. As TAR uses HT bypassing to secure communication, majority
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Fig. 11.16 Effective average packet latency: SPEC CPU2006 Workloads

of the packets that are supposed to travel through the HT infected router now take
extra few hops through the intermediate destination to reach their actual destination.
This leads to an increase in EAPL when compared to the Baseline model. Simulation
results show that there is a 16% increase in latency when compared to the Baseline.

While analysing the EAPL using real workloads as shown in Fig. 11.16, it is
observed that for all the workload mixes, HT triggering increases packet latency
by an average of 87% over the Baseline. However, TAR exhibits a reduction in the
EAPL by 38% with respect to HT infected NoC, with 7% increase in latency when
compared to the Baseline. This is due to the bypass routing incorporated in the NoC
routers.
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11.4.2.2 Effective Average Deflected Packet Latency

A variant of Average Packet Latency (APL) called Average Deflected Packet
Latency (ADPL) is defined as the APL of only those packets which are meant to
travel through the HT infected router. Similar to EAPL, to get realistic measures,
SECTAR used Effective ADPL (EADPL) which is given as:

EADPL = ADPL ∗ Def lectedPacketsEjectedwithoutHT

Def lectedPacketsEjectedwithHT

(11.5)

Analysis using synthetic traffic patterns as given in Figs. 11.17 and 11.18 clearly
shows that as injection rate increases, EADPL increases on the HT infected NoC.
When HT is active, some of the packets get trapped in ping-pong state between HT’s
neighbours due to deflection. Because of its intermittent nature, when the HT is not
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Fig. 11.19 Effective average deflected packet latency: SPEC CPU2006 workloads

active, some of these packets manage to escape the ping-pong state and reach their
destination with increased latency. During heavy traffic in NoC (high injection rate),
the ping-pong state exhausts router buffers and delays deflected packets even further.
With the inclusion of TAR, EADPL reduces significantly as the victim packets are
bypassed from the HT. Experimental results show that compared to HT infected
NoC, TAR reduces EADPL by 97%. However, due to the rerouting of packets and
ejection at intermediate destinations, TAR shows an average increase of 38% in
EADPL when compared to the Baseline.

Analysis using SPEC CPU2006 benchmark based real workloads as given in
Fig. 11.19 shows that across all workload mixes, TAR achieves 62% reduction in
EADPL compared to HT infected NoC model, and 40% increase in EADPL when
compared with the Baseline model.

11.4.2.3 Throughput

In every network, throughput plays a vital role in determining the Quality-of-Service
(QoS) of the underlying applications. In the context of NoC, throughput is defined
as the number of packets that have reached their destination per router per clock
cycle. Throughput for the system models when using synthetic traffic patterns are
shown in Figs. 11.20 and 11.21. It is clearly evident that the delivery rate of packets
is almost similar for both Baseline and TAR models. It was possible due to the
efficient implementation of the proposed Trojan aware routing. However, when it
comes to HT infected NoC, more than 25% reduction in the delivery rate of packets
is observed. This reduction is due to the ping-pong state and induced injection
suppression. When analysing the SPEC CPU2006 benchmark based real workloads
as shown in Fig. 11.22, the HT infected NoC receives around 80% fewer packets
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when compared to the Baseline, while TAR model suffers only 6% throughput
reduction.

11.4.2.4 Injection Suppression Avoidance

To understand how Trojan aware routing avoids injection suppression, buffer (VC)
availability in NoC routers during the simulation is analysed. Experiments show that
the number of packets processed around the HT infected router is very high. This
is due to the ping-pong state of the packets created by the HT induced misrouting.
The ping-pong state fills up all the VCs in the HT infected router as well as its
neighbours. Unavailability of VCs creates back-pressure and eventually leads to
injection suppression, as already shown in Fig. 11.9.
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Fig. 11.23 Virtual channel (VC) availability

To analyse VC availability in NoC routers, the number of free VCs available in
the routers at different time intervals is calculated, as given in Fig. 11.23. Results
show that as the simulation progresses, the number of free VCs in HT infected NoC
model reduces drastically. For example, when the simulation reaches time interval
T4, VC availability in HT infected NoC model reaches zero. This represents the
induced injection suppression in the entire NoC due to packet misrouting. However,
the bypassing algorithm employed in the TAR system model ensures that a DoS
attack scenario never arises. Since injection suppression is a by-product of DoS, no
DoS meaning no injection suppression. Hence, the VC availability in TAR system
model is maintained as close as in the Baseline model.
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11.4.3 Overhead

SECTAR is implemented using standard 3-stage pipelined input buffered routers,
where the stages are (1) buffer write and route computation, (2) VC allocation and
switch allocation and (3) switch traversal. The detection module in TAR works in
parallel with the route computation stage. Dynamic shielding is entirely independent
and works in parallel to the regular router operations. However, the bypass algorithm
works within the route computation stage. According to the existing literature [40],
VC allocation and switch allocation stage is the slowest and determines the router
pipeline latency. As the route compilation stage is comparatively smaller, even with
the added bypassing logic, TAR enabled NoC routers can be operated at the same
frequency at that of the Baseline model.

The usage of 1-bit alert_flag and 3-bit alert_dir in NoC routers result in a storage
overhead of 4-bits per router. Therefore, in a 64-core NoC based MPSoC, only extra
32B (4-bits × 64-core) is added. To evaluate the area and power overheads, DSENT
simulator [48] with 22nm processor technology at 1GHz operating frequency is
used. The additional circuitry for detection, shielding and bypassing logic incurs
a negligible area overhead of 2.78% and a leakage power overhead of 3% when
compared to the Baseline NoC routers.

11.5 Summary

This chapter presented a broad picture of the widely popular hardware Trojans
(HTs) in NoC based MPSoCs. It began with an introduction about HTs and
different attack scenarios created by such HTs, like DoS, information leakage, data
corruption and functional modification. Then, this chapter briefly talked about the
placement of HTs at different places in NoC, their impact, detection and mitigation.
Finally, it concentrated on a specific state-of-the-art technique called SECTAR
that is capable of enabling trusted NoC communication in the presence of HTs
at routers. The intermittent HT in SECTAR misroutes packets to initiate DoS,
injection suppression and delay of service like attack scenarios. To deal with such
an HT, SECTAR proposed Trojan Aware Routing (TAR) that dynamically detects a
misrouting HT and isolates the HT by routing packets away from it. Experimental
evaluation with synthetic and real workloads validated that TAR is capable of
implementing a trusted NoC communication with graceful degradation in overall
system performance.
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Part IV
NoC Validation and Verification



Chapter 12
Network-on-Chip Security and Trust
Verification

Aruna Jayasena, Subodha Charles, and Prabhat Mishra

12.1 Introduction

Network-on-chip (NoC) provides a scalable on-chip communication architecture
that enables energy-efficient communication between hundreds of diverse intellec-
tual property (IP) cores in modern system-on-chip (SoC) designs. Figure 12.1 shows
a typical SoC utilizing NoC to communicate between IP cores such as processors,
memory, controllers, etc. The complexity of modern SoC designs coupled with time-
to-market deadlines have motivated manufacturers to design few IPs in-house and
outsource the rest to third-party vendors. While this trend of globally distributed
supply chain of designing, manufacturing, and testing has increased manufacturing
efficiency, it paved way for security concerns.

In order to meet the performance requirements of different IP cores, NoC
design has evolved to be quite complex as different techniques are employed to
accommodate high communication bandwidth. As shown in Fig. 12.2, data is
transmitted as “packets” that can be divided further into smaller blocks (of fixed
length) called “flits” inside NoC. Packets injected by IPs through the network
interfaces (NI) are transmitted to their destinations via a network of different routers
and communication links, according to a given routing protocol. These routers
consist of structures employing various advanced features, such as shared buffers,
message prioritization, complex allocation strategies and pipelining methodolo-
gies [54]. With these advanced performance features, it has definitely become a
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Fig. 12.1 An example SoC with NoC-based communication fabric to interact with a wide variety
of third-party IP cores

Fig. 12.2 Overview of a Network-on-Chip (NoC) architecture and associated post-silicon debug
platform

challenge to ensure correct functionality under all possible scenarios for the entire
NoC [1, 5, 27, 54].

Malicious implants such as hardware Trojans can be integrated into the designs
during the long IP supply chain [9]. Once integrated, hardware Trojans can
contribute to a plethora of attack scenarios such as industrial espionage, device
malfunction, and device performance degradation. The distributed nature of the
NoC across the SoC makes the impact of attacks even more severe. A survey
conducted by an independent market research firm revealed that the FlexNoC on-
chip interconnection architecture [5] is used by four out of the top five Chinese
fabless semiconductor companies [61]. As a result, Arteris, the company that
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designed the FlexNoC architecture, has achieved a sales growth of 1002% over
three years through IP licensing [8]. Such widespread usage of NoC IPs coupled
with the distributed manufacturing process make the NoC a focal point of security
attacks. Therefore, developing security countermeasures against potential attacks
have been a primary focus of SoC designers [12–14, 16, 18–20]. Recent efforts try
to combine the advantages of logic testing and side-channel analysis for effective
Trojan detection in integrated circuits [30, 31, 35, 36, 39, 53].

Traditional SoC validation methodology is unlikely to detect malicious implants
due to various reasons including: (1) it is infeasible to get 100% coverage of
functional scenarios for complex (billion-gate) SoC designs [3, 21, 22, 24, 37, 42–
44, 47], (2) Trojans can stay benign and act maliciously when a predefined trigger
condition is met, which can be extremely rare [48], and (3) a carefully crafted Trojan
has a very low performance and power footprint that can be hidden in typical process
variations and environmental noise margins. For example, Ancajas et al. [7] pre-
sented an eavesdropping attack based on NoC packet duplication at routers that incur
only 4.62%, 0.28%, and 1% area, power, and performance overhead, respectively.
Therefore, the likelihood of the Trojan being detected is very small unless suitable
security validation mechanism is employed [2, 23, 25, 26, 40, 41, 48, 52]. In this
chapter, we describe a NoC security and trust validation framework consisting of
assertion-based validation, formal verification, and post-silicon debug of security
vulnerabilities.

NoC security validation can be performed during design time (pre-silicon vali-
dation) or post fabrication (post-silicon validation and debug). Formal verification
and simulation-based validation are two primary techniques for pre-silicon NoC
validation. While formal methods can ensure 100% coverage of a design, the
complexity of IP designs make the exploration space grow exponentially, making
100% coverage infeasible. On the other hand, simulation-based techniques cannot
provide guarantees about the verification completeness. Typically, an effective
combination of formal verification, simulation-based validation, and post-silicon
debug are used for verifying NoC security vulnerabilities.

The remainder of this chapter is organized as follows. Section 12.2 describes
NoC architecture as well as security vulnerabilities. The next three sections cover
NoC security validation using formal verification, simulation-based validation, and
post-silicon debug. Section 12.6 presents experimental results. Finally, Sect. 12.7
concludes the chapter.

12.2 Network-on-Chip Architectures and Security
Vulnerabilities

In this section, we first provide a brief overview of Network-on-Chip (NoC)
architectures. Next, we discuss NoC security vulnerabilities.
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12.2.1 Network-on-Chip (NoC) Architectures

Figure 12.2 shows an example NoC architecture consisting of several IPs connected
together via routers and electrical wires (links). IPs are connected to the routers via
a network interface (NI). The combination of an IP, an NI, and a router is referred
as a “node” in the NoC. NoC architectures use packets to communicate between
IPs. For example, when a memory instruction (Load/Store) is executed by source IP
S, the private caches located in the same node are checked first and if it is a miss,
the off-chip memory at destination IP D has to be accessed to retrieve the data.
Therefore, a memory fetch request message is created and injected in the appropriate
virtual network. The message created by the IP is first received by the NI, which
converts it to network packets before sending the packets into the network via the
local router.1 The packets are routed through the routers and links according to the
routing protocol until the destination node is reached. The NI connected to D re-
creates the message from the packets and passes it to D, which initiates the memory
access. The response message from memory follows a similar process when going
from D to S. Similarly, all IPs integrated in the SoC leverage the resources provided
by the NoC to communicate with each other.

12.2.2 NoC Security Vulnerabilities

We consider an attacker who is able to tamper with the NoC IP and implant Trojans
in the routers during design time. The malicious implants can be inserted by a
rogue designer, buggy design automation/computer-aided design (CAD) tools, or
at the foundry via reverse engineering [9]. Once integrated, the Trojans remain
hidden (deactivated) in order to avoid detection. Pre-programmed wake times and/or
a specific activation logic can be used to fully activate the Trojans. Even when
behaving maliciously, Trojans exhibit negligible power and performance overhead.
For example, Sepúlveda et al. [59] explored a similar threat model and showed that
a malicious router that can corrupt/duplicate/misroute packets incurs 2.2%, 0.2%,
and 0.3% area, power, and performance overhead, respectively, when compared to
normal operation.

In this chapter, we assume that the Trojans can duplicate, corrupt, drop, misroute,
and starve packets when packets pass through routers. Figure 12.3 shows a block
diagram of a Trojan architecture that can facilitate the attacks. The capabilities of
the Trojan include all possible attacks that can be caused by a Trojan-infected router
as outlined in the rest of this section.

1Most NoC architectures facilitate flits, which is a further breakdown of a packet used for flow
control purposes. We stick to the level of packets for the ease of explanation as these methods
remain the same at the flit level as well.
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Fig. 12.3 Trojan architecture

12.2.2.1 Packet Duplication

IPs rely on the NoC to ensure secure data communication. An attacker can eavesdrop
on the packets in an attempt to leak sensitive information. A common threat model
is a hardware-software coalition attack where a Trojan-infected router and an
accomplice application work together to eavesdrop. When packets are received at
the input buffer of the router, the Trojan copies the packets, modifies the destination
address in the header so that the new destination is an IP that runs an accomplice
malicious application, and places it back in the input buffer. The NoC then routes
the duplicated packets to the malicious application. The same threat model has been
widely used to explore eavesdropping attacks in NoC [7, 19].

12.2.2.2 Packet Corruption

SoC relies on the integrity of data communicated through the NoC for correct
execution of tasks. If an attacker corrupts data intentionally, it can cause erroneous
behavior and/or system failure. Furthermore, since corrupted data can trigger re-
transmissions, it can incur significant power and performance overheads leading to
denial-of-service attacks. While designers employ a wide variety of techniques to
improve energy efficiency in NoC-based SoCs [4, 15, 17, 28, 29, 63], these methods
are not suitable here. The Trojan architecture in Fig. 12.3 facilitates data corruption
by replacing the packet content with the content in a malicious register. A similar
threat model utilized packet corruption at a router to discuss eavesdropping, denial-
of-service and illegal packet forwarding based attacks [32].

12.2.2.3 Packet Starvation

The SoC operation and performance guarantees can rely on a few critical com-
ponents. For example, the response time of a memory controller that provides the
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interface to off-chip memory can be critical in serving all the memory requests. If an
attacker intentionally delays packets originating from such a critical component, the
SoC performance can suffer significant degradation. Delays can lead to catastrophic
consequences in real-time safety-critical applications. A Trojan can selectively
delay packets originating from an IP, which is referred to as “packet starvation.”
Starvation can be caused by a Trojan-infected router de-prioritizing packets from a
particular origin at the arbiter [55]. In other words, packets are treated unfairly such
that all the input ports do not get an equal chance of accessing the output.

12.2.2.4 Packet Dropping

Packet dropping is considered as the next step of packet starvation. In starvation,
packets are intentionally delayed and can reach the destination at some point of
time. However, when the packets are dropped, the destination will not receive the
packets unless they are re-transmitted. Similar to the consequences of starvation,
packet dropping can cause severe performance degradation and malfunction [46].

12.2.2.5 Packet Misrouting

The NoC uses routing protocols to route packets between the senders and the
receivers. A key requirement of routing protocols is to ensure packet routing without
causing deadlocks and livelocks. A Trojan that corrupts packet header information
and/or routing tables can force some packets to loop around and force deadlocks
and livelocks. Such attacks are capable of rendering single application to full chip
failures [10]. Re-routing packets are also a critical component in eavesdropping
attacks as explained above (see Packet Duplication).

12.3 Formal Verification of NoC Security Vulnerabilities

Formal verification is widely used for functional as well as security validation of
hardware designs. In this chapter, we focus on how formal verification can be
employed for checking the correctness of NoC security properties [60]. Formal
verification requires a set of properties that NoC design should satisfy. Figure 12.4
shows an overview of formal verification of NoC architectures that consists of two
important steps [60]: property definition and formal verification. We briefly describe
these steps. The details are available in [60].
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Fig. 12.4 Formal verification of NoC security properties [60]

12.3.1 Definition of NoC Security Properties

The security properties can be defined based on the threat models outlined in
Sect. 12.2.2. Table 12.1 elaborates the properties where the first column identifies
the property number (P#) and the second column describes the property as well
as temporal logic description. Notations used to denote these properties are shown
in Table 12.2. Each attack type discussed in Sect. 12.2.2 corresponds to several
combinations of properties. The mapping between the attack scenarios and the
combined properties is illustrated in the Table 12.3. For example, if we consider
the packet duplication attack (discussed in Sect. 12.2.2.1), the combined property
corresponding to that is indicated as P6, P11, and P14 from first row in Table 12.3.

12.3.2 Verification of NoC Security Properties

There are many model (property) checking tools for verifying security properties.
For example, satisfiability (SAT)-based bounded model checking can accept the
NoC design and associated property as inputs, and check whether the NoC design
satisfies the property. In case of a failure, the tool produces a counterexample that
can be used to localize the vulnerability and fix it.

12.4 Simulation-Based Validation Using Security Assertions

A major challenge in NoC validation is how to increase controllability and
observability of the hardware design. The ability to control the internal signal is
referred to as controllability, whereas observability refers to the ability to view
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Table 12.1 Security properties to detect various NoC attacks

P# Description of security property

P 1

Write pointers incremented when wr_en are enabled

wren ∧ (¬rd en ∧ ¬f ull) ↔ (X(wrptr) == (wrptr + 1))

Read pointers incremented when rd_en are enabled

rd en ∧ (¬wren ∧ ¬empty) ↔ (X(rdptr) == (rdptr + 1))

P 2
Age of packet is incremented in each cycle

X(agepacket ) == (agepacket + 1)

P 3

Write pointers are not incremented when the buffer is full

(wr en ∧ ¬rd en ∧ f ull → (wrptr == X(wrptr)))

Read pointers are not incremented when the buffer is empty

(rd en ∧ ¬wren ∧ empty → (rdptr == X(rdptr)))

P 4
Buffer cannot be both full and empty at the same time

G¬(empty ∧ f ull)

P 5
Data that was read from the buffer was at some point in time written into the buffer

G(dataout == ∃P(datain))

P 6
The same number of packets that were written in to the buffer can be read from the buffer∑

(wr en ∧ rd en) ∧ (wr en ∧ ¬rd en ∧ ¬f ull) ==∑
(wr en ∧ rd en) ∧ (rd en ∧ wren ∧ ¬empty)

P 7
Route can issue at most one request

G((
∑Nports

i=0 reqporti ) ≤ 1)

P 8
Route should issue a request whenever a data is valid

G(datavalid ↔ (
∑Nports

i=0 reqporti ) == 1)

P 9
Routing algorithm (XY ) should be correctly implemented

G((destx > currentx ↔ destportnext == EAST ) ∨ (destx < currentx ↔
destportnext == WEST ) ∨ (desty > currenty ↔ destportnext == SOUT H) ∨
(desty < currenty ↔ destportnext == NORT H) ∨ (destportnext == LOCAL))

P 10
Always at most one grant issued by the arbiter

G((
∑Nports

i=0 gntporti ) ≤ 1)

P 11
As long as the request is available, it will eventually be granted by the arbiter within T
cycles

(reqport U gntport) → F(gntport)

P 12
No grant can be issued without a request

¬reqport → X(¬gntport)

P 13
Time between two issued grants is same for all requests

G(∀i, j ∈ {north,west, south, east, local}ΔTi = ΔTj )

P 14
During multiplexing, output should be equal to input data

G((
∑Nports

i=0 (selecti ∧ (dataini == dataout ))) == 1)

P 15
Age of the packet leaving the router will be at least Tmin

G(P 2 ↔ �(agedataout < Tmin))

P 16
Age of the packet leaving the router should not exceed Tmax

G((P 10∧P 11∧P 12∧P 1∧P 2∧P 4∧P 14∧P 7∧P 8∧P 9) ↔ �(agedataout > Tmax))
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Table 12.2 Notations used to define properties.

Symbol Operator Description

Xφ Next Property should hold in the next cycle

Gφ Always Property should always hold

Fφ Eventually Property will at some point in time (future) hold

Pφ Prev. state Specifies a state at some point in time in the past

φUω Hold φ will be the case until a time when ω is the case

Table 12.3 Property combinations developed using properties in Table 12.1 that map to the threat
models in Sect. 12.2.2

Vulnerability Combinations

Packet No packet loss inside the router:

Duplication G(P 6 ∧ P 11 ∧ P 14)

Packet No packet duplication inside the router:

Corruption G(P 7 ∧ P 10 ∧ P 14)

Packet No packet modification inside the router:

Starvation G(P 1 ∧ P 3 ∧ P 4 ∧ P 5 ∧ P 14)

Packet Packet that enters the router will eventually leave the router at some
point of time:

Dropping G(P 1∧P 2∧P 4∧P 7∧P 8∧P 9∧P 10∧P 11∧P 12∧P 14∧P 15∧P 16)

Packet Packet is correctly routed to the correct port according to the
destination:

Misrouting G(P 7 ∧ P 9 ∧ P 10 ∧ P 14)

the internal signals by propagating them to observable points (such as primary
outputs). Assertion-based validation (ABV) has shown promising results in both
of these areas. Assertions can capture unusual behavior and depending on where the
assertion is embedded, can give information about the internal state of the design.
This increased observability reduces overall hardware validation time significantly.
While assertions do not directly improve controllability, a lot of research on ABV
have proposed efficient techniques to generate tests that can activate the assertions.

Assertions can be viewed as a check embedded in the design. Failure to adhere to
the condition will prompt warnings. For example, assertions can check whether the
output of an adder is always equal to the sum of the two inputs. While ABV is widely
used for functional validation, there is limited effort in utilizing assertions to detect
security vulnerabilities [34]. Note that there is a fundamental difference between
the objectives of functional and security assertions—while functional assertions
monitor expected behaviors, security assertions are designed to monitor unexpected
vulnerabilities.

Figure 12.5 shows an overview of the NoC vulnerability analysis framework
using security assertions. It consists of three major tasks. First, we discuss various
types of assertions. Next, we elaborate how security assertions can be embedded in
the NoC design. Finally, we show how to generate test cases to activate the assertions
in order to compute the assertion coverage and prove the validity of the assertions.
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Fig. 12.5 Overview of NoC trust verification framework using security assertions

Assertions

Properties Conditions

Safety Liveness Implications Immediate Concurrent

Fig. 12.6 Various types of assertions

Fig. 12.7 Four-way traffic
intersection example

12.4.1 Types of Assertions

Figure 12.6 shows that the assertions can be categorized based on the properties
(behaviors) or conditions (sequences). The first category of assertions monitors
properties that can be divided as safety or liveness properties. Consider a traffic-
light example in Fig. 12.7 to understand safety and liveness properties. A safety
property implies that nothing bad will happen. For example, the green signal should
be given to only one direction to avoid accidents. A liveness property indicates
that something good will eventually happen. For example, every direction should
eventually get a green light. This prevents starvation (waiting forever) for vehicles
from certain direction of the road. Of course, the implementation needs to consider
many other aspects such as how long should a vehicle wait for the particular event
(green light) to happen.
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The second category of assertions monitors conditions and sequences. These
assertions can be further divided into three types: implication assertions, immediate
assertions, and concurrent assertions. Implication assertions follow the format of
(a → b) where a and b can be sequence of expressions. Here, a is considered
as the antecedent while b is considered as the consequent. Implication assertions
simply monitor sequences based on satisfying specific criteria. For example, A1
in Table 12.4 is an implication type security assertion. Immediate assertions check
features such as (a == b) that can be embedded inside a sequential code. For
example, A6 in Table 12.4 is an immediate type security assertion. Similarly,
concurrent assertions are in the format of ¬(a&b) that has the ability to check
relationships between signals from different concurrent blocks. The assertion will
fail when both a and b are true at the same time. For example, A5 in Table 12.4 is a
concurrent type security assertion.

12.4.2 Generation of Security Assertions

To launch an attack identified in Sect. 12.2.2, the hardware Trojan must change
the normal behavior of the NoC. We identify the changes to the normal communi-
cation characteristics that happen during an attack and formulate them as security
properties that should hold during runtime to detect ongoing attacks. The identified
properties are written as assertions and embedded in the NoC design. If the security
checks defined by the assertions are not violated during runtime, we can conclude
that there are no ongoing attacks. One way to generate security assertions to capture
hardware Trojans is to determine the rare nodes (signals) in the design, and generate
combinations of these rare nodes as potential triggers for security assertions.

Section 12.3 shows the individual properties in Table 12.1 that should hold during
execution. Note that the properties shown in Table 12.1 can be implemented as
SystemVerilog assertions (referred with A# in the chapter). This approach is suitable
for pre-silicon (design time) trust analysis using security assertions. These security
assertions can also be synthesized as checkers to enable post-silicon (run time)
security validation as described in Sect. 12.5.

12.4.3 Directed Test Generation to Activate Security Assertions

Given that the security assertions represent unexpected behaviors, they are not
expected to be activated during the traditional validation methodology. Therefore,
it is important to generate directed tests to activate the security assertions. Once
an assertion is activated by a directed test, it indicates that the assertion is valid
and it is able to accurately detect a specific security threat. Figure 12.8 shows
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Table 12.4 Security assertions to detect various NoC attacks.

A# Description of security assertions

A1
Write pointers incremented when wr_en are set

wren ∧ (¬rd en ∧ ¬f ull) ↔ (X(wrptr) == (wrptr + 1))

A2
Read pointers incremented when rd_en are set

rd en ∧ (¬wren ∧ ¬empty) ↔ (X(rdptr) == (rdptr + 1))

A3
Write pointers are not incremented when the buffer is full

(wr en ∧ ¬rd en ∧ f ull → (wrptr == X(wrptr)))

A4
Read pointers are not incremented when the buffer is empty

(rd en ∧ ¬wren ∧ empty → (rdptr == X(rdptr)))

A5
Buffer cannot be both full and empty at the same time

G¬(empty ∧ f ull)

A6
Data that was read from the buffer was at some point in time written into the buffer

G(dataout == ∃P(datain))

A7
Route can issue at most one request

G((
∑Nports

i=0 reqporti ) ≤ 1)

A8
Route should issue a request whenever a data is valid

G(datavalid ↔ (
∑Nports

i=0 reqporti ) == 1)

A9
Routing algorithm (XY ) should be correctly implemented

G((destx > currentx ↔ destportnext == EAST ) ∨ (destx < currentx ↔
destportnext == WEST ) ∨ (desty > currenty ↔ destportnext == SOUT H) ∨
(desty < currenty ↔ destportnext == NORT H) ∨ (destportnext == LOCAL))

A10
Always at most one grant issued by the arbiter

G((
∑Nports

i=0 gntporti ) ≤ 1)

A11
No grant can be issued without a request

¬reqport → X(¬gntport)

our test generation framework with two complementary approaches. We use SAT-
based bounded model checking (BMC) that accepts the NoC design and assertions
(negated properties) as inputs. The counterexamples generated from EBMC model
checker [51] can be used as a directed test that is guaranteed to activate the
respective security assertion. Unfortunately, EBMC may fail to handle complex
properties due to state space explosion. In such cases, we use concolic testing [38]
that can effectively utilize concrete simulation and symbolic execution to generate
the required test patterns. Concolic testing addresses the state space explosion
problem by exploring one path at a time compared to model checking that tries
to explore all possible paths. To activate the security assertions non-vacuously, we
first convert the security assertions into branch statements and then use concolic
testing to activate the specific branches.
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Fig. 12.8 Directed test generation using SAT-based bounded model checking as well as concolic
testing

Fig. 12.9 Overview of the post-silicon security validation framework. It consists of four major
tasks: vulnerability analysis, signal selection, trigger design, and post-silicon debug

12.5 Post-Silicon NoC Security Validation

Post-silicon validation and debug of SoCs have emerged as a challenging problem
[47, 49]. Recent research efforts have addressed post-silicon functional validation
issues for NoC architectures [54, 56–58]. Rout et al. [56–58] explored efficient
router and trace buffer design for post-silicon validation of NoC-based SoCs. The
techniques in [56–58] mainly cater to ascertaining the functional correctness of NoC
designs. This chapter describes existing efforts on post-silicon security validation
for NoC architectures.

Figure 12.9 provides an overview of the methodology that consists of four major
tasks: vulnerability analysis, signal selection, trigger generation, and post-silicon
debug. The first task leads to the generation of security assertions. The second task
enables automated generation of trigger logic based on security assertions. The third
task enables security-aware signal selection without compromising observability
requirements. The final task performs trace analysis for post-silicon debug of
functional bugs as well as security vulnerabilities. The remainder of this section
describes these four tasks in detail.
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12.5.1 Vulnerability Analysis for Security Assertion
Generation

There are automated approaches for generation of functional assertions [62]. There
are some initial efforts in generation of SoC security assertions [45] as well as
security properties [60]. We have applied the same basic principles in this work to
derive the NoC security assertions based on the threat models outlined in Sect. 12.3.
Table 12.2 shows the notations we have used in defining security assertions.
Table 12.4 presents the NoC security assertions that we have derived based on
different threat models and attacks.

12.5.2 On-Chip Trigger Design Using Security Assertions

Implementation of assertions can assist in checking design correctness [27]. Sim-
ilarly, security assertions [34] can also be implemented on-chip. Typically, the
generation of such assertions can be done automatically [62]. However, as a large
number of assertions can be obtained through mining techniques, the implemen-
tation of the assertions for on-chip triggers becomes a difficult problem owing
to the associated overhead. An approach to obtain the on-chip implementation of
assertions (specified in property specification language) is presented in [11] based
on the concepts of automata theory. However, these techniques do not specifically
cater to the objective of security assertions/properties. Since the enumeration of
design behaviors based on specification tend to be typically large, we adopt a threat
model-centric approach for obtaining security assertions. The assertions described
in the Table 12.4 are defined based on the behavior of the threat models for different
types of assertions as outlined in Sect. 12.4.1. Table 12.5 shows illustrative examples
of different types of assertions and respective trigger logic. Note that we need to
generate one trigger (Ti) for each assertion (Ai) for post-silicon debug. For example,
if assertion A2 fails, trigger T2 will be activated. Typically, it is simple (negligible
hardware overhead) to implement triggers corresponding to safety properties (e.g.,
trigger T1 for assertion A1). However, implementation of triggers for liveness
checking may introduce significant hardware overhead. For example, in order to
implement T6 (trigger for assertion A6), we have implemented check_buffer to
store flit data that enters the flit_buffer. If we store the entire flit, it will introduce
unacceptable area overhead. We hashed the flit data by converting them from 32 bits
to 8 bits using Knuth Variant on Division to minimize the overhead. When a packet
leaves the flit_buffer, we do a hash calculation on the particular flit and compare it
with the check_buffer. If there is no match, the trigger will be activated and the trace
data would be dumped to the trace_buffer.
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Table 12.5 Illustrative
examples of different
assertion types and
corresponding trigger logic

Assertion type Example assertion Trigger logic

Implication (a|− > b) a&¬b

Immediate (a == b) (a! = b)

Concurrent ¬(a&b) (a&b)

Algorithm 1: T raceSignalSelection

Input: Design,M ,SA

Output: T rsignals

1 sv, dv ← ∅ ;
2 Design = RTL description of the Design;
3 M = modules of Design;
4 � = {�1,�2.....�M};
5 SA = security assertions;
6 svj ← candidate variables from each Aj in A for selection;
7 for each module �i in M do
8 A ← assertion(s) related to Mi from SA;
9 sv ← sv ∪ svi ;

10 dvi ← variables from �i ;
11 dv ← dv ∪ dvi ;
12 DGi ← construct dependency graph for variables of dvi in dv;
13 end
14 Edgei ← calculate edges connected to each dvi from constructed dependency graph;
15 Rank variables of dv across all �i by Edgei ;
16 sdv ← dv ∪ sv;
17 T rsignals ← variables from sdv as per trace-buffer width limit;

12.5.3 Security-Aware Trace Signal Selection

Algorithm 1 outlines the method for selecting trace signals to be stored in on-
chip trace buffers to maximize the coverage of security assertions. With the help
of dependency graph analysis, the trace signals are selected. During the design
execution, the on-chip trace buffers contain the traced signals that are to be off-
loaded for further fine-grained analysis (for the purpose of localization).

To enable effective on-chip debug and security validation, trace signals must
be selected carefully. It is a major challenge to identify efficient trace signals
due to the exponential nature of possible trace signal combinations as well as
conflicting requirements such as error detection and internal visibility enhancement
[33]. We explain the algorithm using an illustrative example. Consider the following
SystemVerilog assertion: (a == 1)&&(b == 0)|− > (c == 0). Here, c is the
destination signal, and a and b can be register-variables (flip-flops), primary inputs
or wires (internal nets). The above assertion basically means that signal c is false
when signal a is true and signal b is false. The condition present in the left-hand
side (antecedent) can be translated into triggers and the same applies to the signal
condition in the right-hand side (consequent). The goal of the signal selection is to
trace variables that will be able to infer the values of signals a, b, and c.
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Fig. 12.10 An example signal dependency graph for flit_buffer

One illustration of the dependency graph is shown in Fig. 12.10 where the nodes
represent different signals in the design and the edges depict the dependencies
between them (inferred from the assignments in the RTL design description). This
illustration corresponds to flit_buffer module of the NoC design. Based on these
graphs, we select the signals that are maximally connected with other signals. The
underlying reasoning is that maximum number of signals needed for functional
behavior checking can be obtained for selection. To select variables related to
security, we analyzed different types of security assertions developed in Sect. 12.5.1.
Thereafter, the variables that were involved in the security assertions are chosen as
probable candidates of trace signals. We perform a commonality search between the
variables chosen from the security assertions and those chosen from the dependency
variable analysis.

As discussed in Sect. 12.6, the trace buffer width is limited to 48 bits and a portion
of it is used by the trace header data. Therefore, we cannot select all the signals to
the trace buffer. We have to find the most beneficial signals that can be used to
regenerate other signals during the offline analysis. For this task, we generate the
variable dependency graph for each component of the NoC design. Then we order
(sort) all the signals in different modules based on their connectivity (number of
edges) with the other signals. This method arranges all the variables in each module
in descending order of their restoration capability. Then we select the most relevant
signals for a particular trigger giving the priority based on the ordered variables
until we reach the trace width limit. For triggers implemented at route_mesh and
arbiter, the trace width was enough to fit all the variables. However, for flit_buffer
triggers, we applied the above technique to select the most profitable ones in terms
of restorability. For example, the selected trace signals for flit_buffer trigger are
listed in Table 12.6.



12 Network-on-Chip Security and Trust Verification 327

Table 12.6 Selected trace signals for flit_buffer triggers

TID Signals

T1/T3 depth,wr_ptr,wr_ptr_next,wr_addr,vc_wr_addr,wr_en

T2/T4 depth,rd_ptr,rd_ptr_next,rd_addr,vc_num_rd,vc_rd_addr,rd_en

T5 depth,wr_ptr,rd_ptr,wr_addr,rd_addr,wr_en,rd_en
T6 flit_source(dout),flit_destination(dout),flit_source(check_buffer),

flit_destination(check_buffer),Hashed-flit_body(dout),

Hashed-flit_body(check_buffer),rd_en

Algorithm 2: Post − SiliconT raceAnalysis

Input: Dtr , SA

Output: V alidationResult

1 Dtr= data from traced flip-flops/signals;
2 for each SAi in SA do
3 pa ← antecedent signals of SAi ;
4 pc ← consequent signals of SAi ;
5 Check signals values of pa in Dtr ;
6 if pa signal values as per SAi then
7 Check signals values of pc in Dtr ;
8 if pc different from SAi then
9 SAi fails;

10 end
11 if pc signal values as per SAi then
12 SAi passes;
13 end
14 end
15 if pa different from SAi then
16 SAi fails;
17 end
18 end
19 V alidationResult ← failed/passed SAi ;

12.5.4 Post-Silicon Debug of Security Vulnerabilities

After the activation of on-chip triggers, the fixed number of trace buffers can store
certain important information related to the design execution. The contents of these
buffers need to be off-loaded and analyzed for several purposes. The primary benefit
out of them being the understanding of internal signals after the activation of triggers
leading to analysis of the bug (or, the security threat) in a fine-grained manner.

The methodology for offline trace analysis is presented in Algorithm 2. The
validation algorithm relies on checking the security assertion on the off-loaded
data from the trace buffer. The observed violation of the security property can
hint towards a possible attack scenario. Note that because of the on-chip trigger
framework, the respective trigger must have been activated. Therefore, the detection
of the security attacks is achieved in a quick manner with minimal detection latency.
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12.6 Experiments

This section demonstrates the effectiveness of the NoC security validation frame-
work. We first describe the experimental setup. Next, we present the experimental
results.

12.6.1 Experimental Setup

We first describe the experimental setup for pre-silicon NoC validation using
security assertions. Next, we describe the experimental setup for post-silicon
validation and debug.

12.6.1.1 Pre-Silicon NoC Validation Setup

We used the RTL design of an open-source NoC-based SoC generation platform—
ProNoC [50]. A 2×2 Mesh NoC was configured that interconnects 4 IPs as
shown in Fig. 12.11. Each IP was configured with a mor1k processor with the
parameters outlined in Table 12.7. A simple message passing application and a
message gathering application were written in “C” language and compiled using
the mor1k tool-chain. The compiled binaries were placed in relevant block-RAMs
on respective IPs. The application simulated a scenario where IPs 0, 1, and 2 are
sending three types of packets to IP 3 as shown in Fig. 12.11. Debug statements
were added to print the intermediate results to the terminal.

The simulation was done using ModelSim to verify the behavior. Once the
functional accuracy of the experimental setup was verified, the selected security
properties were implemented using SystemVerilog assertions. The assertions were
implemented at the corresponding router components in the NoC RTL model.

Table 12.7 Parameters used in the experimental setup

Parameter Value

Router type Virtual channel (VC) based router

VCs per port 2

Payload width 32

Switch (SW) allocator arbitration
type

Round robin arbitration

Buffer flits per VC 4

Routing algorithm X-Y routing

VC/SW combination type Comb-Nonspec: VC allocator combined with
non-speculative SW allocator where the validity of
speculative requests are checked at the beginning of
SW allocation
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Fig. 12.11 2×2 Mesh
NoC-based SoC used for
simulation (left) and the
message passing scenario
(right)

Table 12.8 Assertions
implemented at different NoC
modules

Module Implemented assertions

flit_buffer.sv A1, A2, A3, A4, A5, A6, A15, A16

route_mesh.sv A7, A8, A9

arbiter.sv A10, A11, A12, A13

main_comp.sv A14

Listing 12.1 Implementation of A9 assertion in SystemVerilog as well as its equivalent branch
representation

/ / A s s e r t i o n S t a t e m e n t
a s s e r t ( ( d e s t _ x > c u r r e n t _ x && d e s t p o r t _ n e x t ==EAST)

| | ( d e s t _ x < c u r r e n t _ x && d e s t p o r t _ n e x t ==WEST)
| | ( d e s t _ y > c u r r e n t _ y && d e s t p o r t _ n e x t ==SOUTH)
| | ( d e s t _ y < c u r r e n t _ y && d e s t p o r t _ n e x t ==NORTH)
| | ( d e s t p o r t _ n e x t ==LOCAL ) ) ;

/ / Branch S t a t e m e n t
i f ( ( d e s t _ x > c u r r e n t _ x && d e s t p o r t _ n e x t ==EAST)

| | ( d e s t _ x < c u r r e n t _ x && d e s t p o r t _ n e x t ==WEST)
| | ( d e s t _ y > c u r r e n t _ y && d e s t p o r t _ n e x t ==SOUTH)
| | ( d e s t _ y < c u r r e n t _ y && d e s t p o r t _ n e x t ==NORTH)
| | ( d e s t p o r t _ n e x t ==LOCAL) ) f lag_A9 <=1 ’ b0 ;

e l s e f lag_A9 <=1 ’ b1 ;

Table 12.8 provides information about the security assertion implementation. The
first column provides the module name in the ProNoC benchmark. The second
column indicates the assertions implemented in that module.

Note that SystemVerilog assertions are not synthesizable as post-silicon check-
ers. Previous work has proposed several alternatives to address this. Omar et al. [6]
proposed a method that generates RTL netlists from assertions. We use a different
approach by creating equivalent branch statements corresponding to each assertion.
For example, Listing 12.1 shows the SystemVerilog description of assertion A9 as
well as its branch equivalent representation. The SoC was simulated again with
assertions and the relevant branch statements using ModelSim to verify the assertion
implementation.

We considered both safety and liveness related assertions introduced in
Sect. 12.4.2. Implementation of liveness assertions is more complex compared
to safety assertions since liveness behaviors include the “eventual” operator.
For example, assertion A5 ensures that data that was read from the buffer
was at some point in time written into the buffer. This property captures two
critical vulnerabilities: i) flit modification and ii) dropped packets. To capture flit
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modifications, we validate the flit content at the input and the output of the buffer.
The straightforward approach would be to keep a copy of the packet data and
validate the entire packet at the output. However, this adds unacceptable memory
overhead. Alternatively, we used a lightweight hash function called the Knuth
Variant on Division to store the hashed value of each flit. The header flit, which
arrives first, is hashed and stored in a check buffer. Subsequently, when the body and
tail flits arrive, each flit is hashed and the hashed value is XORed with the existing
value in the check buffer. The process is repeated at the buffer output and validated
against the value in the check buffer. To capture the behavior of the “eventual”
operator, the maximum time each packet spends in the router buffer is required.
However, finding an exact upper bound for buffer wait times is not possible using
only the RTL design. Therefore, we derived an upper bound using simulations and
used in the assertions.

To validate the accuracy of the assertions, the Trojan behavior was implemented
according to the threat models introduced in Sect. 12.2.2 by modifying the RTL
design. Specific modifications are as follows. Packet Duplication/Eavesdropping:
Duplicate packets inside the flit buffer and change the destination of the duplicated
packet. Packet Corruption: Randomly alter the packet data during transmission.
Packet Starvation: Randomly stop issuing grants through the arbiter to some nodes.
Packet Dropping: Randomly drop packets. Packet Misrouting: Modify the routing
algorithm to change the destination.

We ran independent simulations for the above scenarios to observe assertion
activation and to verify the accuracy of assertions in Table 12.3. Once design
time (pre-silicon) security analysis was complete, the assertion statements were
replaced with equivalent branch statements with a dedicated flag for each branch.
The design was then synthesized with Quartus Prime. The comparison showed
that the overhead of added logic for assertions is negligible (approximately 1%)
compared to the original ProNoC design.

12.6.1.2 Post-Silicon NoC Debug Setup

We created a 4x4 Mesh NoC consisting of 16 “mor1k” processors IPs using the
open-source ProNoc tool [50]. Figure 12.12 shows this configuration. This Verilog
RTL design has the configuration parameters of the NoC as shown in Table 12.7. A
simple message passing scenario was designed to send three packets of data from
each IP core to the IP core numbered 10. The designed scenario was implemented
in C programming language, and using mor1k tool-chain the required binaries
were created for each IP core. The binary files were placed in the RAM modules
of relevant IP cores. Then the design was simulated in Modelsim to validate
the functionality. Next, we injected vulnerabilities and performed different debug
experiments using Modelsim simulator.

A centralized trace buffer was created, with a buffer length of 48 bits. Individual
trigger circuits were designed and implemented to convert each of the security
assertion (discussed in Section 12.5.1) to a synthesizable trigger logic. The Design-
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Fig. 12.12 4×4 Mesh NoC
consisting of 16 “mor1k"
processors

R0

IP0

R1

IP1

R2

IP2

R6

IP6

IP10

R10

R5

IP5

IP9

R9

R12

IP12

IP8

R8

IP4

R4

R13

IP13

R14

IP14

R15

IP15

R3

IP3

R7

IP7

IP11

R11

R/IP RID/IPID Trace ID Trace Signals

Fig. 12.13 Abstract trace packet structure

for-Debug (DfD) circuit was created with a dedicated packet structure for the trace.
Figure 12.13 illustrates the bit structure for the trace packet. The first bit (R/IP) is
dedicated to identifying the source of the trace, whether it was originated from the
NoC or an IP. The next four bits represent the routerID or IP-ID (16 routers/IPs in
this instance). The next four bits represent the trace ID. The remaining bits store the
selected trace signals.

12.6.2 Pre-Silicon Validation Utilizing Security Assertions

The previous section presented the approach for creating assertions to monitor
vulnerabilities. In this section, we discuss the assertion validation results using
the test generation framework outlined in Sect. 12.4.3. We used the unbounded
model checker EBMC [51] to generate directed tests. The generated tests were
used to verify whether the added assertions are valid by activating these assertions.
Table 12.9 presents the time (s) and space (MB) taken by EBMC [51] to activate
the assertions. All the experiments were performed on a machine with an Intel i7-
10510U CPU @ 1.80 GHz CPU with 16 GB RAM.

As shown in Table 12.9, we are able to activate all but three assertions (A5,
A6 and A13) using EBMC [51]. These three assertions exceeded the capability
of the model checker due to state space explosion (insufficient memory). We used
concolic testing [38] to activate A5, A6, and A13. Results in Table 12.9 show the
time and memory requirement for test generation using concolic testing. Overall, we
generated tests for activating all the assertions mentioned in Table 12.4 using either
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EBMC or concolic testing. Therefore, we can confirm that the security assertions
are valid and satisfies the design requirements.

12.6.3 Post-Silicon Debug of Injected Vulnerabilities

In order to mimic real-life debug context, several attack scenarios were created by
closely following the threat models without considering the assertions or triggers.
These bugs and attacks were inserted in different routers (selected randomly) to be
activated at random clock cycles. Separate Modelsim simulations were carried out
for each of these attack scenarios (one randomly inserted vulnerability at a time).
Table 12.10 presents different cases of evaluation with the debug framework. The
first column provides different types of vulnerabilities. The second column indicates
whether it is a functional bug or a security vulnerability. The third column indicates
the activated trigger. The last column shows the average latency for activating each
vulnerability. From the off-loaded trace contents, we checked for possible violation
of the security assertions. As expected, trigger T6 requires different number of
cycles since it captures liveness behavior, whereas the activation of the remaining
triggers can be detected in one clock cycle.

Table 12.10 Results of bug injections with average time to activate the trigger from the activation
of the vulnerability

Vulnerability Type Activated trigger Latency (cycles)

Eavesdropping attack Security T6 446

Packet corruption (FIFO
input)

Security T6 7

Packet missing(FIFO input) Security T1/T6 1/330

Packet missing(FIFO output) Security T2/T6 1/336

Starvation (Arbiter) Security T11 1

Wr/rd pointer fails when
buffer is not full/empty

Functional T1/T2 1

Wr/rd pointer increments
when buffer is full/empty

Functional T3/T4 1

Packet destination changing
(Flit buffer)

Security T6 450

Packet misrouting
(Algorithm bug)

Functional and Security T9 1

Invalid destination ports
from route

Functional T8 1

Multiple destination port
selection (route)

Functional T7 1

Invalid grants (arbiter) Functional and Security T11 1

Multiple grants (arbiter) Functional T10 1
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12.7 Summary

Network-on-Chip (NoC) is widely used as a scalable solution to provide com-
munication between a large number of Intellectual Property (IP) cores in modern
System-on-Chip (SoC) designs. It is critical to protect NoC against security threats
in order to design trustworthy systems. In this chapter, we defined a set of
vulnerabilities for NoC architectures, and described security assertions to monitor
these vulnerabilities. We also described a test generation framework to activate
the security assertions. We have also described an efficient post-silicon debug
framework for NoC designs utilizing security assertions. On-chip triggers derived
from these security assertions provide an opportunity to enable the debugging
features. Experimental results using an NoC benchmark demonstrated that existing
validation methods are effective in NoC vulnerability analysis using security
assertions.

Acknowledgments This work was partially supported by the National Science Foundation (NSF)
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Chapter 13
NoC Post-Silicon Validation and Debug

Sidhartha Sankar Rout, Mitali Sinha, and Sujay Deb

13.1 Introduction

Network-on-Chip (NoC) is considered as a suitable and scalable interconnect
solution for modern multi-core Systems-on-Chip (SoC) [1]. NoC is primarily
comprised of routers, which are responsible for taking data routing decisions.
Routers along with the wired links establish the whole data communication network.
All the routers are connected to their neighboring nodes through the wired links.
Each processing core (PC) is attached to a router through a network interface (NI)
and can communicate with other on-chip modules through router switch paths.
The shared and distributed nature of NoC allows multiple cores to transfer data
simultaneously.

The contemporary SoCs integrating multiple heterogeneous cores in a single chip
demand efficient and reliable communication among on-chip modules. Performance
and power efficiency along with a high level of Quality of Service (QoS) are desired
during on-chip data communication. To achieve these goals, the NoC module is
supported with multiple advanced features like power management, speculation,
redundancy, run-time controllability, fault tolerance, etc. Although these features
result in efficient communication, it makes the contemporary NoCs extremely
complex. Due to design intricacy, it is very difficult and time-consuming to detect all
the functional bugs during the pre-silicon verification stage [2]. As a result, multiple
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Fig. 13.1 Broad verification steps in a system development cycle

errors may slip on to fabricated interconnect module. A survey conducted by [3]
shows that a significant percentage of total design errors in multi-core architectures
come from the interconnection networks. The survey summarizes the design errors
found in different components of recent multi-core architectures collected from
their respective errata sheets. It finds around 48%, 26%, 16.07%, and 13% errors
appearing in the interconnect modules of ARM MX6, Intel Xeon E5, Intel Xeon Phi,
and AMD Opteron, respectively. The errors on interconnect may introduce several
data communication faults, and lead to complete system failure. Therefore, efficient
post-silicon validation is required to capture the escaped errors and provide a bug-
free interconnect system.

Figure 13.1 shows typical verification steps in a system development process.
Pre-silicon verification is performed before fabrication, whereas post-silicon val-
idation and manufacturing tests are performed after the fabrication. Post-silicon
validation is executed on the initial prototype chips to find functional and electrical
bugs in the design. However, manufacturing tests are carried out on each of the
fabricated chips after the mass production to detect any manufacturing defect.
Finally, the good chips are shipped, and the bad ones are discarded. Though
post-silicon validation and manufacturing tests are performed after fabrication, it
can be seen that planning for them starts from the very beginning during the
system development phase. Design for Debug (DFD) and Design for Test (DFT)
infrastructures are augmented to the actual design, which facilitates observable and
controllable points within the design during the post-fabrication validation steps.
This particular chapter focuses on state-of-the-art post-silicon validation methods
for NoC.
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Post-silicon validation is performed on a few fabricated prototypes of the design.
The prototype chip is mounted on a test board with all the peripherals connected, and
test stimuli are applied for validation. It is expected that the escaped design errors
should be detected during this phase. Pre-silicon verification is performed through
simulators. The slow execution rate of such simulators results in longer testing time.
In contrast, post-silicon validation is a faster process as it can run at the speed of
system clock frequency. A significant increase in test speed allows a debug engineer
to validate the design for more test cases within a short period of time. Another
advantage of post-silicon validation is that the design can be tested for electrical
errors that originate due to voltage fluctuation, noise, hotspot, process variation,
etc. Detecting electrical errors during pre-silicon verification is challenging as it is
cumbersome to model such operating environments on the simulator.

While post-silicon validation provides an efficient platform to remove elusive
design bugs, it suffers from very poor system observability and controllability,
which is limited to the I/O pins of the chip. As a result, it becomes very difficult
to debug and localize a bug upon the detection of a fault. To enhance the system’s
internal observability during validation, DFD structures are instrumented to the
original design during the development phase. Such structures include on-chip
trace buffer, trigger unit, trace bus, etc. During the DFD plan, observable points
and trigger conditions are decided. Through the validation phase, whenever trigger
conditions are satisfied, the run-time traces of the observable points are captured
and stored in the trace buffer. These traces improve the internal observability of the
system and help to detect as well as find the root-cause of the bugs during fault
analysis.

The remainder of the chapter is organized as follows. Section 13.2 discusses
different data communication faults in NoC. A generalized NoC validation platform
is presented in Sect. 13.3. Packet trace collection, trace data transfer, and fault
analysis are three major steps of NoC post-silicon validation, which are discussed
in Sects. 13.4, 13.5, and 13.6, respectively. An example NoC debug framework is
discussed in Sect. 13.7. To optimize the debug hardware overhead cost, reuse of
NoC debug infrastructure is discussed in Sect. 13.8. Finally, Sect. 13.9 concludes
the work along with insights into the future research opportunities in this domain.

13.2 NoC Fault Model

NoC being an interconnect module, reliable and efficient data transfer is its main
functionality. So, to evaluate the functional correctness of NoC, communication-
centric validation methods are popularly adopted [4]. This section presents a fault
model that illustrates commonly found data communication faults on an NoC [5, 6].
These faults can be of two different types such as short-lived fault and permanent
fault. Moreover, this section also indicates the probable buggy component(s) within
the NoC router for which a particular fault may occur.



342 S. S. Rout et al.

Fig. 13.2 Basic architecture
of NoC router

Figure 13.2 shows a basic architecture of NoC router. Before discussing different
data communication faults, an overview of the data routing operation inside a router
is presented. Here, we have considered wormhole flow control routing [7] for our
discussion. Whenever a header flit of a packet arrives at an input port of a router, the
Header Decoder (HD) reads the destination and VCID (Virtual Channel Identifier)
of the packet. According to VCID, the flit is placed in a particular VC. The Routing
Computation (RC) within the Routing Unit (RU) decides the output port for the flit
based on its destination. VC Arbiter (VA) allocates a VC in the downstream router
to the flit after the arbitration among the competing flits. Similarly, Switch Arbiter
(SA) assigns the Crossbar inputs to different flits. Arbitration in both VA and SA are
performed in a round-robin or oldest-first manner. Many a time, priority logics are
implemented in these arbiters for early allocation of resources to critical data. As
soon as the reserved output port and VC in the downstream router are available, RU
removes the flit from the VC and asserts the corresponding select signal at the output
multiplexer. The flit is forwarded to the allocated Crossbar input, and the Crossbar
unit establishes the routing path to the desired output port multiplexer. Finally, the
multiplexer transfers the data flit available at its selected input to the output link.
Till the time the reserved resources are not available, the flit has to wait in the VC.
Once the header flit is forwarded, the remaining flits of the packet follow the same
path. Anomalies in packet routing operation introduce several data communication
faults to NoC, which are illustrated in Fig. 13.3. The following sub-sections provide
a brief discussion on these network faults.
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Fig. 13.3 Different data communication faults on an NoC

13.2.1 Short-lived Faults

Short-lived faults exist on the network for a short span of time. These faults may
occur due to bugs in different functional units of NoC. Even though the visibility
period of such faults is small on the network, they can badly impact system
performance. Moreover, if the functional bugs that are the root-cause of such faults
remain unaddressed, the fault may affect a critical packet or multiple data packets
leading to catastrophic situation. As an example, data drop is a short-lived fault. Let
us say a particular input port of an NoC router is buggy, and the result is that any
packet coming to that port is getting dropped. This may happen that memory access
packets for a critical application may get dropped leading to significant performance
degradation. Therefore, the root-cause of such faults should be carefully identified
and debugged. This sub-section discusses the commonly observable short-lived
network faults.

13.2.1.1 Dropped Data Fault (DDF)

Whenever a packet drops midway before reaching its destination, the error is known
as dropped data fault (DDF). In this case, the packet is received at an input port of a
router but is never forwarded out of its intended output port. Such fault may occur in
VC buffer or RU. For instance, a buggy head counter pointing to the first location of
a VC buffer would increase by 2 or more each time a flit is removed. This will lead
to multiple flit-drops. Moreover, an erroneous RU may remove the flit from the VC
but would not issue an appropriate select signal for output multiplexer. In this case,
the flit will never come out of the output port and will be lost inside the router. DDF
is visible on the network until the actual arrival time of the packet at its destination.
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13.2.1.2 Corrupt Data Fault (CDF)

Whenever the actual information carried by the packet is altered, the fault is known
as a corrupt data fault (CDF). Such fault may occur due to error in the VC buffer.
Error in one or more bits of buffer memory would change the data value from “0”
to “1” or vice versa. This would change the payload information if any of the body
flits is corrupted or may change the destination if the head flit is corrupted. Such
fault is active till the time the destination node consumes the packet.

13.2.1.3 Direction Fault (DF)

If a packet is sent to an output port other than the intended one, then the fault is
known as direction fault (DF). Such fault occurs due to bug in RU or Crossbar
component. If the RC module inside the RU decodes a wrong output port from the
destination address, the packet flits would be transferred to an unintended output
port. Similarly, a fault in the Crossbar module may forward a flit in a wrong
direction. This type of fault exists in the network until the packet traverses on the
unintended path.

13.2.1.4 Multiple Copies in Space Fault (MCSF)

Due to a buggy RU, it may happen that select signal of multiple output multiplexers
may get activated. Thereby a flit would be forwarded to multiple output ports.
Such fault is known as multiple copies in space fault (MCSF). The fault can be
experienced on the network till the time all the flits taking the wrong paths are live.

13.2.1.5 Multiple Copies in Time Fault (MCTF)

Multiple copies in time fault (MCTF) may originate from the VC buffer in the router.
For instance, if the empty signal of a VC is faulty, it may happen that multiple copies
of the same flit are being received from an upstream router. Though all the copies of
the flit are taking the correct path, all of them are not intended to be on the network.
Such a fault can be realized until the unwanted packets are on the network.

13.2.1.6 Starvation

A flit experiences starvation, when it does not get an NoC resource to move forward
for a long time. Such type of fault may appear due to faulty arbitration mechanism in
VA and/or SA modules. In general, whenever the VC waiting time of a flit exceeds
beyond an allowable threshold, the anomaly is considered as starvation. This fault
exists until the flit gets access of the resource to move forward.
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13.2.2 Permanent Faults

A permanent fault exists on the NoC forever once it occurs, and continues to thwart
the normal operation of the network. We discuss two commonly observed permanent
faults on NoC such as deadlock and livelock.

13.2.2.1 Deadlock

Deadlock occurs whenever a cyclic dependency among packets is developed as
shown in Fig. 13.3. This happens when all the packets wait for each other to release
the resource in a cyclic manner, but none of them proceeds. Such type of scenario
may occur due to error in VC allocator. Deadlock is a permanent fault and the
affected packets keep on waiting in their respective VC forever.

13.2.2.2 Livelock

Livelock is another permanent fault, where the packet keeps on traversing across
network routers, but never reaches its destination as demonstrated in Fig. 13.3. This
may happen due to error in RU, or Crossbar module.

From the above discussions, we came to know about the probable erroneous
NoC component(s) that may result in a data communication fault. Therefore, in a
communication-centric validation framework, whenever such a fault is detected, the
root-cause of the bug can be found by evaluating the suspected NoC components.

13.3 NoC Post-Silicon Validation Framework

Post-silicon validation framework enables capturing signal states during system run,
and analyzing the same for fault detection and localization. A trace-based debug
platform inherited from [8, 9] is demonstrated as debug framework for NoC in
Fig. 13.4. As shown in the figure, an NoC-based multi-core system is considered as
the Circuit Under Debug (CUD). The integrated DFD hardware provides the suitable
infrastructure to observe and capture the NoC behavior during normal operation.
The off-chip debug analyzer examines the behavioral traces of the interconnect by
running debugger software, and detects any existing network fault. Upon any fault
detection, the localization process is carried out. Finally, the root-cause of the fault
is diagnosed and fixed.

In Fig. 13.4, it can be observed that the DFD hardware includes an embedded
trace buffer, a trigger unit, trace bus, a trace port, and a JTAG interface. Trace buffer
is an on-chip memory, where the run-time signal traces can be stored. Trigger unit
invokes the tracing operation and trace bus provides the communication medium for
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Fig. 13.4 Trace-based NoC debug platform

Fig. 13.5 Debug flow during traced-based post-silicon validation

trace transfer. Trace port and JTAG interface export the traces to the external debug
analyzer.

The cost of debug hardware is majorly dependent on the size of the trace buffer
[10]. This restricts the number of observable points, frequency of tracing, and the
width of observation window during the debug phase. Trace buffer width decides
the number of observable points, and its depth decides the width of the observation
window. By varying the frequency of trace capture, the width of the observation
window can also be varied. As the observable points are limited, it is a challenging
task to decide which signals to be traced among the plethora of signals in a design.
This is known as Signal Selection, and is performed during design time. Multiple
researchers have proposed several efficient signal selection techniques that can
provide greater visibility to the system’s internal states [9, 11].

Figure 13.5 presents a generalized flow of trace-based post-silicon validation
process. At the beginning of the debug phase, the trigger unit is configured through
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a debug access port (DAP). Generally, the JTAG interface is used as the DAP. The
trigger unit is configured so that signal traces can be captured whenever pre-set
trigger events are detected. A trigger event can be expressed in terms of certain state
conditions that are transferred by the condition signals from the DUT to the trigger
unit. The efficiency of bug localization depends upon the event detection capability
and amount of traced data [12]. The event detection capability depends on how
well a trigger event is specified, and its relevance to a particular fault. Whereas,
the amount of traced data is driven by the size of the trace buffer. The captured
traces are either streamed to the off-chip analyzer via the trace port during run-time
or stored in the on-chip trace buffer for later analysis. Due to the trace bandwidth
limitation and low-speed I/O interface, most of the debug framework follows the
store and forward trace mechanism. In this mechanism, the stored traces in the trace
buffer are accessed and transferred to the debug analyzer via the JTAG interface
later. During post-silicon debug analysis, the traces are checked for any anomalous
behavior. Upon the detection of any fault, the root-cause is investigated and fixed. If
no fault is detected, then more traces are collected for the same trigger setup, or the
trigger event and/or the trigger unit are reconfigured.

As discussed earlier, a communication-centric debug is adopted for NoC post-
silicon validation. Therefore, the packet movement is traced during NoC debug. The
trigger unit is configured based on trace capture frequency. For short-lived faults, the
capture frequency is kept high, whereas it can be kept low for permanent faults. The
NoC validation process can broadly be divided into three steps, namely Packet Trace
Collection (PTC), Trace Data Transfer (TDT), and Fault Analysis (FA).

13.4 Packet Trace Collection

Trace collection is the most important step in post-silicon validation. In an NoC,
payload data is transported in the form of packets. Thus, capturing packet traces can
provide a globally consistent view of data communication across the interconnect.
The following sub-sections discuss about monitoring infrastructure for NoC-based
system, and the process of packet trace collection.

13.4.1 NoC Monitoring Infrastructure

To capture packet movement activities, monitoring units are traditionally deployed
at different interface levels of NoC as a significant part of debug infrastructure.
Such monitors collect transaction-level packet traces, which are then analyzed
to detect any anomaly in packet communication. Many research works propose
such monitoring infrastructure for NoC that enhances the debug process of whole
SoC [13–17]. Figure 13.6 shows a basic monitoring infrastructure for transaction-
based communication-centric system debug. The read and write transactions of
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Fig. 13.6 Monitoring infrastructure for transaction-based communication-centric NoC debug

processing cores (PCs) initiate activities on interconnect. These transactions are
fragmented into packets that communicate through the network. Based on the
placement in the NoC architecture, the monitors can be broadly classified as
transaction monitors and communication monitors. Transaction monitors are placed
in between the PC and network interface (NI). It inspects the transactions and detects
either missing transactions or transactions with incorrect attributes. On the other
hand, communication monitors residing between the routers observe the packet
communication to detect faulty packets and paths.

The authors in [13] present a monitoring setup for system debug that uses
structural and temporal abstraction techniques along with debug data interpretation
to visualize an SoC’s state at the logical communication level. A monitoring
infrastructure is deployed in [14] to carry out the debugging of the interactions
among the embedded processors, along with system performance analysis. An
event-based NoC monitoring framework is proposed in [15] that integrates hardware
probes to NoC’s NI ports. The infrastructure provides run-time observability of
NoC behavior and supports system-level and application debugging. In another
work [16], a system-level debug agent is provided along with the hardware probes
integrated between the PCs and the NIs. The debug agent delivers several in-depth
analysis features of an NoC-based system such as NoC transaction analysis, multi-
core cross-triggering, and global synchronized timestamping for more effective
debugging. The authors in [17] propose to integrate monitors and filters to NoC,
which observe and filter transactions at run-time. This work also implements
programmable finite state machines in the debug unit to validate the correct relation
of transactions at run-time.

The above-mentioned proposals integrate monitoring infrastructure to NoC
interfaces for providing SoC level debug solutions. Additionally, there are proposals
[6, 18, 19], which embed monitors inside each NoC routers to provide dedicated
NoC debug solutions. Such an in-router monitoring setup is shown in Fig. 13.7 that
can observe and capture the packet traces within the router. These packet traces
can be analyzed to find any data communication fault discussed in Sect. 13.2. Upon
the detection of any fault, the packet traversal path can be reconstructed using the
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Fig. 13.7 Packet monitoring infrastructure inside NoC router [19]

Fig. 13.8 Individual packet
trace pattern

corresponding packet traces, and thereby the buggy functional unit of the NoC
can be localized. The following sub-section discusses the process of packet trace
collection using the in-router monitoring infrastructure.

13.4.2 Process of Trace Collection

During the packet trace collection phase, routing status of all the packets inside
each router node is monitored. Periodic snapshots of packet states are captured
and stored as traces in the trace buffer. The trigger unit is configured such that it
can repeatedly generate the trigger signal for trace capture after a fixed time unit
known as snapshot interval (SI). Packet trace is constructed by concatenating packet
information extracted from its header flit, packet’s routing status, and timestamp
value. Figure 13.8 shows the trace pattern of individual packet trace. Packet ID in the
trace is a piece of static information and acts as the identifier of the corresponding
packet. Packet number along with source and destination information from the
header flit constitute the unique packet ID for each packet. At every core, a
packet number is produced and embedded into the header flit whenever a packet



350 S. S. Rout et al.

is generated. Other than packet ID, the trace of a packet contains multiple dynamic
information such as instantaneous timestamp, current node, port number, and VC
number. These dynamic entities change according to the packet routing status.

Whenever a packet reaches an input port of a router, it is temporarily stored
in an input VC. Thereafter different operations such as HD, RC, VA, and SA are
performed to forward the packet from the input VC to an output VC as discussed
in Sect. 13.2. An additional buffer known as header buffer (HB) is included in
the DFD structure to store the header flit of all the existing packets inside the
router. With the arrival of a packet, a copy of the header flit is transferred to the
HB as shown in Fig. 13.7. The monitor unit captures the packet traces from HB,
RC, and VA modules whenever a trigger event occurs or a global snapshot time
(GST) period completes. The packet ID is collected from HB, and packet routing
status is extracted from RC and VA. Additionally, snapshot time is provided by the
timestamp unit. GST is a large enough time period, and a snapshot is captured after
each GST that would help in detecting permanent faults as discussed in Sect. 13.6.
A redundant trace elimination unit (RTEU) is provided to discard the redundant
traces, which is discussed in Sect. 13.5.3. Once the packet traces are collected, they
are transferred via trace bus to the trace buffer for storage.

13.5 Trace Data Transfer and Storage

Both interconnection fabric and trace buffer are important components of DFD
structure. DFD interconnection allows the transfer of trace data, whereas trace buffer
stores these trace data on-chip for further analysis.

13.5.1 Trace Transfer

Trace bus provides a dedicated routing path for trace data transfer to trace buffer
and/or trace port. Standard solutions typically use pipelined multiplexer (MUX)
trees to transfer traces [20, 21]. But, such MUX tree-based interconnection incurs
high area overhead to provide increased trace bandwidth. To overcome this limi-
tation, the authors in [22] propose a two-level interconnection network consisting
of a MUX network and a non-blocking concentration network for trace transfer.
In the case of NoC-based system debug, there is an opportunity to reuse the same
NoC infrastructure for transferring the traces. Both [18] and [6] have reused the
same NoC (which is the CUD) for on-chip trace transfer. Conventionally, a JTAG
interface is used to transfer the trace data to an off-chip debug analyzer for trace
analysis [23]. The authors in [18] propose to use augmented wireless interface (WI)
on NoC for this purpose to increase the off-chip trace transfer speed.
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13.5.2 Trace Storage

Trace buffer is an on-chip memory, which stores run-time traces for debugging
purpose. The amount of trace data that can be collected during a single post-silicon
validation run is limited by the storage capacity of the on-chip trace buffer. To
efficiently use the limited storage space in the trace buffer, the authors in [24]
have proposed distributed as well as dynamic allocation of trace buffers at run-
time. Moreover, the authors in [18] and [6] have proposed debug structure for
NoC sub-system, where L2 cache of each processing core is effectively reused
as local trace buffer of corresponding router node. To deal with the trace buffer
storage constraint while maintaining the system’s internal observability, several
trace reduction techniques are proposed in the literature, which is highlighted in
the following sub-section.

13.5.3 Trace Reduction

Size of trace buffer is one of the major controlling factors of on-chip DFD cost.
Therefore, different trace reduction mechanisms are used to maintain observability
with minimal overhead. State restoration and trace compression are the two major
techniques that are used for trace reduction. Special state restoration mechanisms [9,
11, 25] can enhance the amount of traced information by data expansion. This allows
less number of observable signals to be selected without any visibility loss, which
leads to a smaller trace buffer requirement. Moreover, trace compression techniques
can reduce the total amount of trace by 20–30% [26–28].

In the case of an NoC-based system, there is another opportunity to reduce
trace amount driven by an inherent nature of NoC operation. During NoC debug,
packet traces are captured periodically once after each SI. If the state of a particular
packet does not change frequently, then with small SI, multiple redundant traces
get generated for the same packet. This scenario can easily be visualized for the
congested network, where packets in routers get stuck at different pipeline stages for
multiple additional cycles than expected. Based on such observations, a mechanism
is presented in [19] that can distinguish the redundant traces and keep only one
copy from each redundant group. As a result, one instance of all unique traces
is collected and thus the amount of trace data reduces while maintaining the
system observability. The scheme is called Redundant Trace Elimination (RTE)
that is able to save a significant amount of trace buffer space in an NoC-based
system by discarding the redundant traces. Figure 13.9 demonstrates the structure
and operation of both periodic trace collection, and redundant trace elimination.
Whenever the packet monitor unit collects new packet trace Snapshot(t) (Fig. 13.9a),
it is compared with the corresponding packet trace Snapshot(t-SI) previously stored
in the Snapshot Buffer (SB) (Fig. 13.9b). If both the traces are different, then the
new trace Snapshot(t) would be overwritten in the SB. The output of the SB would
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Fig. 13.9 Periodic trace collection and redundant trace elimination [19]

be enabled to export the new trace through the trace transfer link to the trace
bus. Otherwise, if both the traces are the same then the previously stored trace
Snapshot(t-SI) will be retained in the SB. No trace will be transferred to the trace
bus. This enables the system to discard all the redundant traces and only stores
the unique ones. Thus, the RTE mechanism reduces the total trace amount without
degrading the network internal observability.

13.6 Fault Analysis

During the fault analysis phase, the collected traces are analyzed for fault detection,
identification, root-causing, and localization. The root-cause of faulty behavior
needs to be located both in space and time. Bug localization being the most
important step in debug [10], it requires extensive packet path reconstruction. In
the case of an NoC debug process, the individual packet paths are reconstructed
using packet ID and timestamp values once the traces are collected in the debug
analyzer. All the traces related to a particular packet are extracted using the unique
packet ID assigned to it. Then the traces corresponding to each packet are stitched
together according to the increasing timestamp values. Thus the paths traversed
by every packet are reconstructed. The percentage of packet path reconstruction
depends upon the amount of traces present for the respective packet. Each packet
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Algorithm 1: Short-lived fault detection algorithm
1: while (curtime − starttime) < GST do
2: if curtime == prevtime then
3: if curnode, prevnode on path(src, dest) then
4: f ault ← MCTF
5: else
6: f ault ← MCSF
7: end if
8: else if curnode ! on path(src, dest) then
9: f ault ← DF

10: else if endtrace && (curnode ! = dest) then
11: f ault ← DDF
12: end if
13: end while

Algorithm 2: Permanent fault detection algorithm
1: while (curtime − starttime) > GST do
2: if curtrace == prevtrace then
3: f ault ← Deadlock
4: else
5: f ault ← Livelock
6: end if
7: end while

path is examined by several fault detection algorithms based on the faults for which
the design is getting evaluated. This section discusses two such algorithms presented
in [19]; one for short-lived faults (Algorithm 1), and another for permanent faults
(Algorithm 2). If the time difference between the current trace and the packet start
trace is less than GST, the packet path is evaluated for short-lived faults, else the
path is evaluated for permanent faults.

When more than one instance of the same packet is present on the network, the
fault can be MCTF or MCSF. In such cases, if all the instances are taking the correct
path one after another, then the fault is known to be MCTF. Otherwise, if all the
instances are taking different paths then the fault is called MCSF. These faults are
described from line numbers 2–6 in Algorithm 1. Line numbers 7 and 8 represent
DF that indicates the packet is routed to a wrong output port than the desired one.
DDF is a case of a lost packet inside a router, which is shown in line numbers 9
and 10. Deadlock condition arises when a cyclic dependency is formed and packets
keep on waiting for each other to release the network resources but none of them
proceed. So, the packet state never changes, which can be realized from the line
numbers 2 and 3 of Algorithm 2. It must be noted that the traces collected at each
GST (discussed in Sect. 13.5.3) are directly sent to the trace buffer and do not pass
through the RTE unit. Hence, in case of a deadlock, the packet trace collected at a
GST that is the same as the previous trace would not be discarded. This will help in
detecting deadlock during the analysis phase. Similarly, livelock displayed in line
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numbers 4 and 5 happens when a packet continues to move on the network but it
never reaches its destination.

Once a fault is detected, the fault location can be traced back from the constructed
path of the corresponding packet. After fault localization, the functional modules
of the concerned router node are examined to find the root-cause of the fault and
identify the exact functional bug. Thereafter the bug is fixed, and once all such bugs
are identified and fixed the design is sent for mass production.

13.7 NoC Validation Framework using Wireless Links

This section discusses an efficient post-silicon validation framework for NoC using
augmented wireless links [18]. The framework facilitates better observability of
the system in case of short-lived packet faults like direction fault and packet drop.
This is achieved without any additional overhead in terms of trace buffer size and
trace bandwidth requirement. The wireless interfaces (WIs) on the network are
used to efficiently transport the traces to the external debug analyzer. This results
in eliminating the need for additional trace bus while elevating the speed of trace
communication.

The average hop count of packet communication reduces notably in wireless
augmented NoC in comparison to wired NoC [29]. This creates an opportunity to
capture traces either for more packets at the same capture frequency or for the same
number of packets at the increased capture frequency without increasing the trace
buffer size. As a result, it enables the debug system to detect the network short-lived
faults (that demand more frequent trace collection) more efficiently. Augmented on-
chip wireless links are used to accelerate the trace data transfer. The traditional low
bandwidth JTAG interface used for transferring traces to the external debug analyzer
is replaced by WIs. This significantly increases the speed of trace data transfer.

13.7.1 Debug Operation using WIs

An NoC validation framework using wireless links is shown in Fig. 13.10. For an
illustration purpose, a 36-node system is shown in the figure that is augmented with
4 WIs. The whole network is divided into four clusters, and each cluster is assigned
with a WI. The framework also uses a wireless enabled off-chip debug analyzer.
The WIs transfer long-range on-chip test payload during packet trace collection
(PTC), and perform off-chip trace communication during trace data transfer (TDT)
phase. Each WI is responsible for transferring traces of the corresponding cluster.
The framework provides trace buffer at each router node (distributed trace buffer)
that stores the traces of the packets traversing across that node. To save the on-
chip area and routing overhead, the proposed method reuses L2 cache of each core
as local trace buffer of the corresponding router node. A specified portion of the
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Fig. 13.10 NoC validation framework using wireless links [18]

local caches are temporarily used to store packet traces during the debug phase and
are released for normal operations after the post-silicon validation. Dedicated trace
buffers are provided to the nodes that are not connected to a processing core.

During the PTC phase, traces are captured for all the packets present inside a
router as discussed in Sect. 13.4.2. The router architecture can be referred from
Fig. 13.7. The tracing operation is performed after every snapshot interval (SI), and
the collected traces in each router are stored in the reserved space of the attached
L2 cache (local trace buffer). The SI value can be controlled by the trigger unit
depending on the type of suspected fault and the type of network node. The SI is kept
low for short-lived faults and high for permanent faults. To ensure the correctness
of the wireless communication, SI of WI hubs are fixed at one cycle. In contrast, the
SI of wired nodes is decided based upon the size of the local trace buffer.

The packet traces are built from the packet header information and the packet
routing status. Figure 13.11 shows the format of packet and header flit transmitted
over wireless enabled NoC, where each WI is assigned with a unique WI Address.
The packet header holds the WI Address of both source and destination WI along
with the actual source and destination node addresses of the corresponding packet.
The pattern of packet trace at both wired node and WI hub is shown in Fig. 13.12.

Once the trace buffer space is filled, the TDT phase is initiated. Trace data
need to be communicated to the off-chip debug analyzer for Fault Analysis (FA).
Conventionally, a dedicated trace bus is used for trace communication. In the
proposed method, this is achieved by the existing network resources. This further



356 S. S. Rout et al.

Fig. 13.11 Format of packet and header flit content transmitted over wireless enabled NoC.
Unused space in header flit can be used to hold Packet Number, Source WI and Dest WI. [18]

Fig. 13.12 Packet trace pattern. (a) trace pattern for wired node, (b) trace pattern for WI HUB
[18]

reduces the on-chip area and routing overhead. During the TDT phase, the normal
execution of the network is stopped. Trace data stored in the local trace buffer
of each router gets transferred to the WI hub of the corresponding cluster using
the wired NoC path. Then, the accumulated traces at each WI hub are sent to the
off-chip debug analyzer for post-processing. This communication is conventionally
accomplished using a low bandwidth JTAG interface [23]. In the proposed approach,
high bandwidth inter-chip wireless communication is used to transport the trace data
to the analyzer as shown in Fig. 13.10. This enhances the speed of trace data transfer
during the debug phase.

Upon the collection of packet traces, the debug analyzer processes the data and
reconstructs the packet traversal paths. The detection algorithm in the analyzer can
take these paths as input to make a decision on the occurrence of any functional
fault as discussed in Sect. 13.6. The reconstructed path also indicates the location of
the fault. Once the fault is localized, its root-cause and concerned buggy functional
units are identified and fixed.

13.7.2 Wireless Interface

In the proposed validation framework, WIs are used for trace as well as test payload
communication. This wireless enabled NoC topology is comprised of Base Routers
(BRs) and few Hybrid Routers (HRs) shown as WI hubs in Fig. 13.10. HR integrates
WI with BR components and can convert digital packet data to the RF domain
and vice versa. This is composed of serializer/deserializer, modulator/demodulator,
Power Amplifier (PA), and Low-Noise Amplifier (LNA) components. An omni-
directional antenna is used for both transmission and reception of wireless data.
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Table 13.1 Network topology and simulation setup

Component Configuration

Topology 8×8 wireless enabled NoC (Mesh augmented with WIs), 4 WI hubs

Router 5 I/O wired ports, 2 virtual channels, 8 flit buffers, 8 flit packets, 32 bit flits

Wireless Link 60 GHz carrier, 16 Gbps bandwidth, single cycle latency

For low overhead implementation, on-off keying (OOK) based wireless transceivers
are used, and a single wireless channel is shared between all the WIs [30]. A
variable gain PA [31] is used, which can provide different data transfer amplification
levels depending on whether the WI is used for normal on-chip test payload
communication or is used for off-chip trace transfer. The amplifier pumps more
power to transfer traces to the off-chip debug analyzer. Power gated WIs are used to
reduce the energy consumption [32].

13.7.3 Results and Analysis

This section discusses the experimental setup for WI-based debug platform. The
multi-core interconnect fabric is modeled on a cycle-accurate network simulator,
Noxim [33]. The details of the network topology and the simulation setup are
shown in Table 13.1. All cores and wired network modules are operated at a
clock frequency of 1 GHz. Fault detection and path reconstruction capability of the
proposed framework is evaluated by injecting several faults into the network. To
evaluate the efficacy of the proposed framework, the authors have compared the
performance of the wireless platform against the wired platform.

Figure 13.13 shows the fault detection and path reconstruction ability of the
proposed platform with different SI and for Random traffic workload. The results
are shown for short-lived network faults. From the results, it can be observed that
with increasing SI, the percentage of fault detection, as well as path reconstruction,
degrades significantly. This is because snapshots after large SI are unable to capture
most of the traversal information of short-lived faulty packets. Hence, such faults
demand very frequent trace collection for efficient debugging.

13.7.3.1 Trace Buffer Size

Smaller trace buffer size is always desired as it saves silicon area as well as cost.
Though this work reuses a small portion of each L2 cache memory as trace buffer,
it is required to assign a large portion of the cache for normal operation even during
the debug phase. In this work, the size of a packet trace from a wired node is 52
bits. This includes 22 bits of packet ID, 14 bits of packet routing status, and 16 bits
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Fig. 13.13 (a) Percentage fault detection, (b) Percentage path reconstruction for different network
short-lived faults with varying SI [18]

Table 13.2 Comparison of
wireless and wired
post-silicon validation
platforms

% Improvement DDF DF MCSF MCTF

Fault detection 25 37 11 26

Path reconstruction 33 26 38 35

of timestamp value. Trace of a packet from WI hub adds 4 more bits of WI address
values on top of the wired packet trace and consumes a total of 56 bits.

This work considers an 8 × 8 2D mesh network with 4 WI hubs. For a Random
traffic workload, the wireless enabled network results average hop count of 4 in
comparison to 6 per packet communication with a wired-only network. If packet
trace is captured once at each hop during a packet transmission, in the case of
a wired network, total of 3.81 KB of trace buffer size is needed to accommodate
traces for 100 packets. In case of a wireless network, two hops involved in wireless
transmission would require 56 bits each to store the trace while the remaining
hops require 52 bits only. So, with around 10% of test payload transferred through
wireless medium, the network requires a 2.54 KB of trace buffer which is around
67% of wired case. Hence, the proposed wireless post-silicon validation platform
can show a considerable amount of improvement both in the case of short-lived fault
detection and path reconstruction in comparison to a wired post-silicon validation
platform. This can be observed in Table 13.2 for a Random traffic workload for
different short-lived faults.

13.7.3.2 Efficient Trace Data Transfer

In the proposed post-silicon validation framework, trace data is transferred to the
external debug analyzer using the wireless medium. An average of 54% packet
latency reduction in the case of wireless inter-chip communication has been sown in
[34] compared to wire-based silicon interposer communication. In terms of bit-rate
capacity, the proposed wireless interface can export traces with 16 Gbps data rate.
Whereas a JTAG based ARM CoreSight debug and trace connector (ULINKpro)
provides up to 800 Mbps of trace communication speed [35]. This ensures that the
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proposed framework provides fast off-chip trace transfer during NoC post-silicon
validation.

In summary, the framework proposed in this work augments WIs to the NoC
debug platform that provides high-speed trace transfer and better short-lived fault
analysis during post-silicon validation of the NoC sub-system.

13.8 Reuse of NoC Debug Infrastructure

On-chip DFD structures are used to capture escaped faults during post-silicon
debug. Most of the DFD modules are left idle after the debug process. Reuse of
such structures can compensate for the area overhead introduced by them. The work
in [36] proposes to re-utilize the trace buffers as extended virtual channels (VCs)
for the router nodes of an NoC during in-field execution. The addition of VCs to
routers can significantly improve network throughput [7, 37]. Therefore, extending
the number of VCs by reusing the trace buffers can improve the average network
throughput and latency considerably.

System internal visibility and DFD overhead are competing in nature. Trace
buffer is one of the significant components of DFD structure. As the size and
complexity of NoC-based multi-core SoCs are increasing, the trace buffer footprint
is also growing to maximize the system observability during the debug process. The
area overhead introduced by trace buffers is considered as a major design concern
as the DFD hardware becomes non-functional once the SoC goes into production.
To address this issue, reuse of architectural component as DFD component or vice
versa has been proposed in several research fronts [6, 18, 38–42]. The work in [38],
instead of using a dedicated trace buffer, uses data cache to store both traces and
data during debug. The authors in [39] propose to use L1 and L2 caches to store
memory operation activity logs required for memory consistency and coherence
validation. A dedicated portion of L2 cache of each node is used as trace buffer for
NoC validation in [6, 18]. Similarly, there are few efforts that demonstrate the reuse
of DFD hardware for some architectural enhancements. The authors in [40] have
re-employed the debug structure for online monitoring during run-time verification.
Embedded trace buffers are re-purposed for malware prevention in [41], and reused
as victim cache to enhance cache performance in [42].

The work in [36] proposes to reuse the NoC trace buffer as extended VCs of
network routers to improve the throughput and performance of NoC-based multi-
core SoCs. Total trace buffer can be distributed among all the routers to store
corresponding packet traces during debug phase as shown in Fig. 13.14a. Whereas
the same trace buffers can be reused as extended VCs of router input channels to
improve network throughput during in-field execution as shown in Fig. 13.14b.
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Fig. 13.14 (a) Trace buffer used for storing traces during debug, (b) Trace buffer used as extended
VCs during in-field execution [36]

13.8.1 Trace Buffer Distribution

In this work, the trace buffers are distributed among all the nodes present in
the network and are utilized as extended VCs during in-field normal operation.
Distribution of trace buffers are performed using a Fair Division (FD) algorithm. A
proportional fair division method says every agent receives at least its due share of
a set of resources according to its own value function [43]. In this context, routing
nodes are agents, trace buffers are resources, and profile index (PI) of each node
based on traffic condition are considered to be respective value function f (v). The
Following two sub-sections present the details about the calculation of PI of each
node, and accordingly fair distribution of available trace buffer resources among all
the nodes.

13.8.1.1 Profiling the Router Nodes

Each of the network routing nodes is profiled based on the amount of traffic passing
through it for an application. Separate profiling of individual node is done for all
the applications meant for the corresponding multi-core SoC. Finally, each node is
assigned with a PI, which is the arithmetic mean of all of its profiling values. For a
network with n nodes {N1, N2, . . . Nn} and m applications {A1, A2, . . . Am}, PI of
each node can be realized as below in Eq. (13.1):

PINi
|i∈{1 to N} =

{ m∑

j=1

pi,j

}
/j (13.1)

Here pi,j represents profiling of ith node for j th application, and PINi
represents

the final profile index value of ith node. Value of pi,j becomes high if large
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number of packets traverse through the ith node while j th application is executed.
The PI value indicates an average occupancy level of the respective node by the
payload packets. It can be concluded that the trace buffer requirement of each node
is proportional to its PI value. So, value function f (v) of each routing node is
calculated based upon the corresponding normalized PI as shown in Eq. (13.2).

fi(v) = PINi
/

{ n∑

i=1

PINi

}
(13.2)

These value functions are used in the FD method for the optimal distribution of the
available trace buffers.

13.8.1.2 Fair Division of Trace Buffers

The objective of fair division is to divide and allocate resource share to each
candidate so that everyone would feel that it has got its due share according to its
value function. In the proposed work Dubins-Spanier Moving-Knife Procedure [44]
is adopted for the fair distribution of trace buffers. The Moving-Knife Procedure
is originally proposed to solve the fair division of cake problem among n people,
where n > 2. A knife is slowly moved across a cake from its extreme left position,
and whenever a person feels that the knife has moved 1/nth of the total cake
according to his measure, he calls “cut.” Then he takes that piece of cake and exits.
If two persons call at the same time, then the piece is given randomly to any one of
them. The process is repeated for n − 1 participants.

In the context of trace buffer distribution, a modified FD algorithm is illustrated
in Algorithm 3. This is shown for a NoC comprised of n nodes with individual node
value function fi(v) and total trace buffer size of Stb. The cake problem deals with
the division of continuous resource, whereas trace buffer distribution is a discrete
resource division problem. The smallest unit of trace buffer that can be assigned to
a particular port of a router node should have the size equal to one VC. In the case
of a 2D mesh topology (considered for experiments in the work), each router having
5 ports results into minimum trace buffer share per router node (tbN(min)) as 5 times
a VC. Each time the trace buffer share of a node according to its value function is
found not to be a whole number multiple of tbN(min), the final share is rounded up
to either the next or previous whole number multiple of tbN(min). Final adjustment
of trace buffer share to meet the size limit of available trace buffer is done on the
top ranked nodes claiming the largest portions of it, as shown in Algorithm 3.
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Algorithm 3: Modified fair division algorithm for trace buffer distribution
assumption: Stb = p ∗ tbN(min);  where Stb is the trace buffer size, tbN(min) is minimum
trace buffer share per router, and p is a whole number

initial: m = n; j = 1;  total n number of nodes in the network N = {N1, N2 . . . Nn}, j

represents node number

while m > 0 do  trace buffer distribution
call function tb_fair_div
i = Node number that asked for the trace buffer partition
if tbNi

� tbN(min) then
tbNi

= tbN(min)
else

if (tbNi
% tbN(min)) � tbN(min)/2 then

tbNi
= �tbNi�

else
tbNi

= �tbNi�
end if

 �tbNi
� and �tbNi

� returns the next and previous whole number divisible by tbN(min)

respectively
end if
Stb = Stb − tbNi

make i /∈ N

m − −
end while

if (q = ∑n
j=1 tbNj

/ tbN(min)) > p then
For top q-p nodes assigned with maximum trace buffer share are reduced by tbN(min) each

else if q < p then
For top q-p nodes assigned with maximum trace buffer share are increased by tbN(min) each

end if

function tb_fair_div definition
Start the Stb division
Wait till any node asks for the trace buffer partition according to its value function f(v)
If more than one node ask for the same partition then assign randomly to any one of them

13.8.2 Network Operation

This section discusses the network operation for the proposed solution in both debug
as well as in-field execution modes. Figure 13.15a shows a 64-node network and (b)
illustrates the supporting router structure. Each router node gets a portion of the total
trace buffer based on its value function as discussed in Sect. 13.8.1.2. The following
sub-sections highlight the use of trace buffer for different purposes during different
operation modes. A mode signal coming from the debug support unit (DSU) decides
the mode of operation of the network.
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13.8.2.1 During Debug Mode

During post-silicon debug, the trace buffer is used for packet trace storage. Trace
buffers corresponding to a particular router can equally be distributed among all
the input ports during physical implementation (Fig. 13.15b). Though distributed
among ports, the trace buffer controller (TBUF Ctrl) considers all the trace buffers
inside the router as a lumped trace storage space as can be seen in Fig. 13.14a.
The packet monitor unit collects the packet state information (packet ID, current
node, input port, output port, and VC number) from HD, RC, and VA and builds the
respective packet trace by adding the corresponding timestamp value. The TBUF
Ctrl generates the trace buffer address (tbaddr) and forwards the generated packet
trace (tdata_in) to the corresponding tbaddr location. Generated tbaddr is usually
a trace buffer location associated with the input port receiving the packet flit. If
no trace buffer space is available at a particular input port, the TBUF Ctrl looks
for empty trace buffer at other input ports of the same router and generates the
corresponding tbaddr of a free trace buffer space. TBUF Ctrl asserts a tb_full signal
when it finds no free trace buffer space inside a router. This necessitates exporting
the trace buffer content (tdata_out) of the filled router to the external debug analyzer.

Trace transfer from the network routers is performed in two stages, namely local
trace transfer (LTT), and global trace transfer (GTT). Whenever a particular router
node runs out of trace buffer space, the LTT phase starts for the corresponding
router. As an example, node A in Fig. 13.15a is a busy node, and its trace buffer
fills up quickly. During the LTT phase, traffic switching in router A is paused and
packet traces stored in its trace buffer are transferred to the trace bus through the
existing network trace port (NTP). The network can be divided into multiple sub
networks and each of them can have an NTP. While transferring the packet traces to
the corresponding NTP, the intermediate routers (routers on the path from A to B)
give higher priority to the traces over the normal payload while switching, and thus

Fig. 13.15 Debug and in-field operations with trace buffer reused as NoC VCs [36]. (a) A 64 node
network, (b) Router node architecture
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provide a faster trace transfer. The remaining network exhibits normal operation
during LTT. After the completion of the LTT phase, node A resumes with its normal
operation. A GTT phase starts periodically after a pre-decided (during the design
phase) large time period. During this phase, the normal operation of the whole
network is paused, and traces from all router nodes are collected through the NTP
ports. This is performed to collect complete network traces, so that trace analysis
can be started in the debug analyzer. The network gets back to its normal operation
after the GTT phase.

13.8.2.2 During In-field Execution Mode

During in-field execution mode, the trace buffers are no more used for debug
purposes. In the proposed method, the router trace buffer is re-utilized as extended
VCs (Fig. 13.15b) to enhance the network performance. The incoming payload flits
now find additional buffer space at each router input ports, leading to reduced chance
of packet drop and deadlock conditions. During this mode, the TBUF Ctrl and
packet monitor units are power gated by the Power Management Controller (PMC).
The VA unit is designed according to the total VC (existing + extended), so that
it can perform the desired arbitration during in-field execution mode. VA module
keeps on snooping the available VC credit information of the downstream routers to
assign the output channel to a particular incoming flit. The extended VC scenario in
the proposed method increases the possibility of VC credit having a positive value
in most of the time, and thus increases the throughput of the network.

13.8.3 Experimental Results

This section describes the simulation setup and discusses the results generated.
Three VC distribution scenarios are evaluated such as: (1) baseline architecture
(only existing VC and no extended VC), (2) existing VC + equally distributed
extended VC (whole trace buffer being equally distributed among the existing
nodes), and (3) existing VC + fair distribution based extended VC (whole trace
buffer being distributed among the existing nodes according to their value func-
tions). Network topology and simulation setup is listed in Table 13.3. For simulation,
a 8 × 8 2D mesh NoC is modeled on Noxim [33]. The router module is modified
to incorporate the debug structures and VC extension. The proposed scheme is
evaluated using three synthetic workloads and three workloads from SPLASH-2
benchmark suite [45].
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Table 13.3 Network topology and simulation setup

Component Configuration

Topology 8×8 baseline 2D mesh NoC, XY routing

Router 5 I/O ports, 4 existing VCs per port, extended VCs based upon value function,
2 flit buffers, 8 flit packets, 32-bit flits, 1 GHz operating clock

Debug Setup 8 KB trace buffer size, single cycle snapshot, 32 bits packet trace size

Workload Synthetic—Random, Transpose, Butterfly;
SPLASH-2—Barnes, FFT, Radix

Fig. 13.16 (a) Normalized PI and value function of each node, (b) Trace buffer distribution in
terms of extended VCs for both equal and Fair Division distribution [36]

13.8.3.1 Value Function Calculation and Trace Buffer Distribution

Profiling of each NoC node is performed based on traffic conditions for the
calculation of value function f (v). All the 6 workload patterns are executed on
the 64 nodes NoC and profile index pi,j of each node for the individual workload
is calculated. Figure 13.16a shows the graphs of normalized pi,j for all the
workload patterns. The f (v) of each node is calculated from Eq. (13.2) mentioned
in Sect. 13.8.1.1 and is plotted in the same figure. Based on these f (v) values, each
node gets its due share of the trace buffer. Figure 13.16b shows the distribution of
trace buffer as a measure of extended VCs at each node of the NoC for both equal
distribution and FD based distribution. The figure shows that for an 8 KB of total
trace buffer size, an equal distribution provides 15 additional VCs per router node
while FD allocates as high as 30 additional VCs and as low as 10 additional VCs,
which is proportional to the corresponding value function.

13.8.3.2 Trace Buffer Overflow

Whenever the local trace buffer of a router node gets filled, the local trace transfer
(LTT) phase starts as discussed in Sect. 13.8.2. This pauses the concerned router
operation and degrades the intermediate routers’ operation while transferring the
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Fig. 13.17 Percentage
reduction in local trace buffer
overflow in case of Fair
Division over equal
distribution [36]

traces to the network trace port (NTP). Therefore, it can be concluded that as
the number of local trace buffer overflow increases, the time period of the debug
process also gets extended. Figure 13.17 shows an average 7% reduction in local
trace buffer overflow in case of FD distribution over equal trace buffer distribution.
This is because, fair distribution of trace buffers encourages parallel filling of buffer
space in all routers, while in case of equal distribution, trace buffers in few routers
fill up quickly, and in few others, they are mostly unused. This shows that FD based
trace buffer distribution would considerably speed up the debug process than the
equal distribution case.

13.8.3.3 Network Performance

Network performance has been evaluated in terms of throughput and latency.
The proposed scheme provides a few additional VCs to each port of every
router. As a result, network congestion reduces, and thereby network throughput
increases, and global average packet delay decreases. Results shown in Fig. 13.18a,
b demonstrate that equal trace buffer distribution provides an average of 8.36%
throughput improvement and 9.25% average delay reduction over baseline archi-
tecture. Whereas the proposed FD scheme provides an average of 11.36% increase
in throughput and 13.97% decrease in average packet delay. The enhancement in
performance parameters in the case of the FD scheme over equal distribution is
achieved as the router nodes are allocated with additional VCs according to their
requirement.

In summary, proposed trace buffer reuse as extended VCs of NoC improves
the network performance considerably, and thereby notably reduces the overhead
associated with the DFD structure.
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Fig. 13.18 (a) % increase in network throughput (b) % decrease in network average delay for
equal and Fair Division trace buffer distribution in comparison to the baseline architecture [36]

13.9 Conclusion and Future Work

This chapter provides an overview of the NoC post-silicon debug framework. It
discusses about communication-centric trace-based debug platform for NoC, and
the steps as well as infrastructure involved in it. This chapter presents two detailed
example works on NoC validation; the first one illustrates a wireless enabled
efficient debug structure, and the second one shows the reuse of trace buffer as
extended VCs for the improvement of NoC performance.

Post-silicon debug of NoC has a tremendous amount of future research scope.
This is because NoC is an emerging interconnect solution for future multi-core
SoCs. Moreover, due to multi-fold complexity growth in embedded systems, post-
silicon debug is the ultimate validation step followed by the industries before
mass production. Secured NoC debug structure and reuse of debug components
for architectural purpose are two less explored areas that can be pursued for new
findings.
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Chapter 14
Design of Reliable NoC Architectures

Noel Daniel Gundi, Prabal Basu, Sanghamitra Roy,
and Koushik Chakraborty

14.1 Introduction

Rapid technology scaling has fueled a seismic growth in the number of on-chip
resources. To procure an efficient performance throughput, effective communication
between the hundreds of cores proves to be a very vital feature. Communication
delay in System-on-Chips is a massive determinant in the overall system perfor-
mance. In order to facilitate the ongoing communication needs between hundreds of
cores, Network-on-Chip has been embraced as the de facto standard for the on-chip
communication, owing to their performance, scalability, and flexibility advantages.

Providing a reliable NoC design has been a challenging task, as the performance
of an NoC is primarily based on the network topology and routing algorithm. As
the NoC plays an important role in the performance and energy efficiency of the
system, addressing the factors affecting the NoC reliability appears to be of prime
importance. This chapter focuses on the enhanced design techniques for an NoC
architecture with prime stress on addressing factors affecting the reliability of an
NoC. Section 14.2 discusses the challenges posing a threat on the NoC reliability.
Section 14.3 elaborates the various schemes to tackle the NoC reliability issues.
Section 14.4 summarizes the promising design solutions discussed in this chapter.
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14.2 Factors Affecting NoC Reliability

As an NoC is deployed across the parallel computing environment, multiple issues
emerge, which questions the credibility of an NoC design. Reliability of NOC is
affected by various factors ranging from the problems arising due to device aging
to unbalanced utilization of NoC components. Sections 14.2.1–14.2.6 address the
various issues which degrade the performance of the NoC thereby, affecting the
entire system performance.

14.2.1 Negative Bias Temperature Instability and
Electromigration

Negative Bias Temperature Instability (NBTI) occurs due to the negative bias
voltages at higher temperatures creating traps between layers of MOSFETs [1].
NBTI causes a degradation in drain current and absolute increase in the threshold
voltage. On the other hand, Electromigration is the process of the transportation of
metallic atoms by the electron current flow.

Table 14.1 shows the different schemes considering the varying impact of NBTI
and Electromigration on the NoC routers and links. Figure 14.1 depicts the increase
of latency with time due to the individual and combined effect of NBTI and
Electromigration.

14.2.2 Asymmetric Traffic Utilization

Asymmetric utilization of NoC components significantly exacerbates the aging
degradation. Higher utilization in particular NoC components manifests in a power-
performance degradation due to rapid aging of these NoC components. Mishra
et al. [2] observed that there is up to 2× utilization in the centralized routers
in comparison to the peripheral routers. Increase in utilization symmetry in the
centralized routers is demonstrated in Fig. 14.2.

Table 14.1 Different degradation schemes

Scheme Degradation in routers Degradation in links

A NBTI NONE

B NBTI NBTI

C NBTI Electromigration

D NBTI NBTI and Electromigration
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Fig. 14.1 Time taken for the
network to become faulty
under various aging models
(high injection rate)

Fig. 14.2 Percentage traffic
increase of each router using
Buffered-Router Aware
Routing (average across
PARSEC benchmarks). This
utilization difference leads to
more than 2× divergence in
NBTI induced performance
degradation

14.2.3 Hot Carrier Injection

The phenomenon of Hot Carrier Injection (HCI) occurs when a carrier leaves the
channel overcoming the potential barrier between the silicon and the gate oxide [3].
Carriers leaving the channel are deposited in the gate oxide region of the transistor.
Over a period of time, the conductive properties of the transistor are altered due
to the deposited carriers leading to an overall degradation in the threshold voltage,
drain saturation current, and transconductance [4–6]. HCI degradation is majorly
dependent on the switching activity of the transistors.

Figure 14.3 depicts the switching activity for the gates across an NoC architec-
ture. From Fig. 14.3 it is evident that only 25% of the gates are responsible for
75% of the switching activity. The resulting asymmetry leads to an unbalanced HCI
degradation across the NoC architecture leading to an early failure of an NoC.

14.2.4 Quality-of-Service (QoS) Policies

Enforcement of Quality-of-Service (QoS) Policies becomes quintessential to ensure
fairness among different users/programs when limited number of resources are
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Fig. 14.3 Cumulative
distribution function of the
switching activity vs gate
count

shared by large exascale computing system [7]. However, as NoC is scaled,
administering QoS dramatically lowers its Mean Time To Failure (MTTF) due
to the increased power consumption and raised thermal profile. The elevated
power/thermal characteristics arises due to the balanced resource management
provided by the QoS support [8], rather than an increase in performance. Hence,
QoS support leads to a wearout acceleration and shortened lifetime even though it
offers an identical bandwidth.

Figure 14.4a demonstrates the three nodes A, B, and E attempting to send flits to
D. Nodes A and B receive unfair treatment without QoS as they receive only 1/4th
of the bandwidth due to contention. Fair distribution of the link bandwidth for all
three nodes between E–D link is provided by the QoS support. However, the risen
network activity results in an increase in the power consumption which results in
wearout acceleration for NoC devices. Figure 14.4b and c demonstrate the effects
of QoS support on the power and MTTF of an NoC.

14.2.5 Voltage Emergencies

Voltage Emergencies in an NoC (VEN) arise due to the collaboration of various
technology trends. A substantial increase in energy savings can be observed in
computation than in communication due to technology scaling. NoCs consume a
remarkable proportion (i.e., 36%) of chip power [9]. NoC draws a large current
in its circuit components due to its rising power footprint. VENs emerge in the
system resulting in timing errors, due to the variations in the current drawn by the
NoC. Timing errors1 generated by VEN can be mitigated by voltage guardbands.
However, using guardbands alone can significantly deteriorate the energy efficiency.
Timing errors in an NoC router pipeline presents a distinct challenge in comparison
to the processor pipeline [10], as pipeline flush and recovery mechanisms cannot be
used in the NoC pipeline.

1A timing error is observed when the pipe stage delay in exceeds the clock period.
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Fig. 14.4 Figure (a) and (b) shows the conflicting goals of QoS support and sustainability:
although the bandwidth offered by the NoC remains unchanged, different resource usage under
QoS causes an accelerated wearout and a shortened lifetime. Figure (c) shows the effect of
providing QoS on the average router power consumption

Fig. 14.5 Frequency of
timing errors in the routers of
a 8 × 8 NoC for real world
applications
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Figure 14.5 depicts the frequency of timing errors in the routers of a 8 × 8 NoC
for the voltage guardbands (VG_x1, VG_x2, VG_x3) set at (22%, 26%, and 30%)
above the nominal supply voltage. Timing errors induced from VEN lead to data
corruption, flit redirection, and other functional errors. Hence, it is crucial to design
energy efficient techniques to handle VEN induced timing errors.
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Fig. 14.6 Result is
normalized to the
corresponding 32-nm
technology values. Figure
highlights the variation of
interconnect circuit
parameters per unit length

14.2.6 Power Supply Noise

Modern multiprocessor system-on-chips (MPSoCs) encounter a rising concern due
to the integrity of supply voltage. Switching of logic devices due to the uneven
distribution of current results in the emergence of noise in Power Delivery Network
(PDN), leading to a drop in the supply voltage. The performance and energy
efficiency of the system components is severely affected by the Power Supply Noise
(PSN). Additionally, scaling of technology node further exacerbates the problem
due to the decreasing size and higher device density.

Sources of voltage noise in a PDN are: resistive drop (IR) and inductive drop
(L(�i/�t)). Voltage drop across the resistances of the power delivery wires causes
IR drop, which is proportional to the current (I) in the circuit. Inductive drop, on
the other hand, is caused by the wire inductance (L) of the power grid and is
proportional to the rate of change of current through the inductance. Figure 14.6
depicts the trend of RLC parameters at smaller technology nodes. Figure 14.6
shows that, the peak noise increases from 40% of the supply voltage at the 32-nm
technology node to about 80% of the supply voltage at the 14-nm technology node,
if the power distribution strategy remains unchanged.

14.3 Reliable NoC Design Methodologies

Overcoming the reliability problems requires a profound understanding of the intrin-
sic architecture details, which in turn can be utilized to procure a feasible solution.
Additionally, understanding whether the problem can be mitigated or whether the
effects of the problem can be delayed proves vital in the direction of developing
a reliable design. For example, NBTI (Sect. 14.2.1) is critical, but a recoverable
device aging mechanism. However, HCI (Sect. 14.2.3) is an unrecoverable aging
phenomenon [11]. To restore the impacts of the factors affecting an NoC design
discussed in Sect. 14.2, variety of strategies based on the investigations from
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innovative research [12–17] will be explored in this section, in addition to various
concurrent research works (Sect. 14.3.7) in this field of work.

14.3.1 Overcoming NBTI and Electromigration

To tackle the problem of NBTI and Electromigration, balancing of the network
traffic is essential. Balancing of the asymmetric network utilization can be achieved
using a reliability metric and utilizing this metric in an aging-aware adaptive routing
algorithm.

The reliability metric is determined based on the intensity of traffic a stressed
router/link can handle. Hence the reliability metric TTPE is defined as the fraction
of the nominal traffic that a stressed router/link should accept during a particular
epoch [12]. Significance of the TTPE for an aging-stressed NoC design is based on
the following facts:

1. TTPE determines an upper limit on the amount of traffic that a router or link
should accept so as to keep the variation in network latency below a pre-defined
threshold for a particular aging period.

2. TTPE is derived from continuous monitoring of the traffic, and is used to adapt
the routing policies for every epoch to mitigate the long-term degradation in the
NoC.

TTPE varies over the runtime with different values during different epochs for
each stressed router and link.

The calculation of TTPE involves the following stages:

• Threshold calculation: The congestion-aware routing algorithm that routes the
flits based on both local and global congestion information is profiled. The
total time taken to route these flits is then divided into several epochs. The
significance of adding epochs lies in the fact that an application’s communication
characteristics may change during the runtime and therefore the traffic must
be monitored continuously. This process keeps track of the link and the router
utilization during runtime and takes additional measures if the utilization reaches
TTPE for the epoch under consideration. For each epoch, the n most stressed
links and routers are considered based on their utilization. Based on the NBTI
and electromigration of these stressed links and routers, the TTPE is calculated.

• Using TTPE Estimation in Routing: The computed TTPE for different epochs
is stored in the form of lookup tables (SLset ) in each router. The router at runtime
can then select the appropriate TTPE depending on the epoch. During this stage,
the routing tables for each router are computed. In order to minimize network
latency and communication energy, only the deadlock-free shortest paths for each
flow are selected.

The routing algorithm involves the following two stages (Algorithm 1):
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Algorithm 1: Aging_Adaptive
For each flow,

1. Select the best shortest path from the routing table which:
a) suffers from least delay variation due to aging (scage is minimum).
b) is least congested based on global and local congestion information

(sccong is minimum).
2. For each stressed link in SLset of each epoch:

a) Check if the link meets its T T PE:
- If the link has already reached its T T PE, keep the link idle for
the rest of the epoch (insert recovery cycles).

- If link utilization is safely below its T T PE then there is no
need for inserting recovery cycles.

1. Congestion and aging-aware routing: For each flow at runtime, the routing
algorithm selects the best shortest path from the routing table that (i) suffers
from least aging degradation i.e. the path that suffers from least delay variation
due to aging (1-a); and (ii) is least congested (1-b). Higher priority is given to a
path that least degraded as compared to a path with the least congestion.

2. Honoring TTPE by employing recovery cycles: During the execution of the
routing algorithm, each stressed link in SLset is checked to see if it meets its
respective TTPE for every epoch (2-a). There can be two possible cases: (i) In
the epoch, if the link has already reached its TTPE, then the link must be kept
idle for the rest of the epoch so that its utilization does not exceed its TTPE; and
(ii) If the link operates safely inside its TTPE for that epoch, then there is no need
for inserting idle cycles. The physical significance of inserting these idle cycles
is that they provide additional time to the links and routers to recover from the
aging stress. Therefore, these additional idle cycles are called as recovery cycles.
This procedure also avoids unnecessary insertion of recovery cycles in the epoch
and thus keeps the network latency in check.

14.3.2 Balancing Traffic Utilization

Balancing of the traffic utilization can be achieved by exploiting the criticality
of the various flits in the NoCs [13]. The health of the routers in the network is
tracked using a Wearout Monitoring System (WMS). The WMS and the criticality
information are used to implement an aging-aware routing schemes.
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14.3.2.1 Criticality of Different Flits in NoCs

The latencies of various packets transmitted through an NoC can have varied effects
on performance. Previous works have exploited this criticality to improve system
performance [18, 19].

Criticality Classification

In general, precise estimation of the packet criticality at the NoC router is hard as
it merely has information about source–destination and the packet type. A thorough
criticality estimation may require information about the relative performance of
running program threads [18, 20], detailed cache coherence transitions, and so forth.
To mitigate this complexity, a low-complexity approach is employed, which requires
no change in existing interfaces. This involves identifying criticality based on packet
type and source–destination. Table 14.2 shows the summary of classification. Using
this policy, data packet transmitted from L1 to L2 (destination) is tagged as non-
critical in a shared two level cache hierarchy. A vast majority of these packets are
writebacks because of cache eviction, and thus the system performance is insensitive
to their network latency. Some of these packets are also a result of data sharing
among on-chip cores, but these are expected to be a much smaller component due
to the predominance of private data even in multi-threaded programs [21].

Figure 14.7 shows the percentage of non-critical packets of PARSEC benchmarks
averaged across all the buffered routers. An average of 49% of packets traversing
through the buffered routers are non-critical and can actually take a different
routing path with minimal performance degradation. Moreover, all benchmarks
show substantial opportunity, ranging from 44% to 51% in these benchmarks. By
redirecting non-critical traffic to the bufferless routers, the utilization of the buffered
routers is minimized, thereby mitigating the aging effects in the buffered routers.

Table 14.2 Packet criticality
classification

Data messages
ClassificationSource Destination

L1 Cache L2 Cache Non-critical

L2 Cache L1 Cache Critical

Memory L2 Cache Critical

L2 Cache Memory Non-critical

Control Messages
ClassificationSource Destination

L1 Cache L2 Cache Critical

L2 Cache L1 Cache Critical

Memory L2 Cache Critical

L2 Cache Memory Critical



380 N. D. Gundi et al.

Fig. 14.7 Percentage of
non-critical data packets
routed through the buffered
routers

Fig. 14.8 WMS circuit. Each path delay is sampled through a buffer sequence and compared with
the reference delay to calculate the WF

14.3.2.2 Wearout Monitoring System (WMS) for NoC Routers

To be able to guide the aging-aware routing algorithm, the WMS profiles the extent
of degradation in each router. The WMS circuit shown in Fig. 14.8 augments all
pipeline stages of a router. As the performance degradation of a router is dictated
by the worst case delay degradation in any pipeline stage, the monitoring system
measures the maximum delay degradation across all paths in different pipeline
stages. Within a stage, the WMS uses a multiplexer to estimate the delay of all
n paths in a combinational logic. The control unit in Fig. 14.8 alters the multiplexer
select signal in each cycle to choose which path to measure. Then, a series of
m cascaded delay buffers (db1, db2, . . . , dbm) sample the signal at equal time
intervals. The state transition captured at the output of each delay buffer provides
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an estimate of the delay of the path. Finally, the comparator selects the maximum
delay degradation among the n paths over a span of n cycles. The WMS measures
the Wearout Factor (WF) as follows:

WFrouter = max(wf1, wf2, . . . , wfN) (14.1)

wfi = max(wfp1, wfp2, . . . , wfpn) (14.2)

where, wf1, wf2, . . . , wfN are the wearout factors for N stages of the router micro-
architecture, and wfp1, wfp2, . . . . , wfpn are the wearout factors of the n paths in a
single stage i.

14.3.2.3 Criticality-Driven Path Selection

The criticality-driven routing incorporates two major design considerations:

1. Criticality of the incoming packet.
2. WF that dictates the current aging.

The maximum threshold for deflecting non-critical packets is defined as
DFLMax . Subsequently, based on the aging degradation in a router, the defection
rate is pro-rated in that router.

Integrating Criticality in Routing

To drive the deflection logic in the routing path selection, the source router adds a
single bit to store the criticality in the header flit of every packet. All intermediate
routers peek into this criticality bit to select different routing paths based on
criticality.

Integrating Wearout Monitoring

Different routers can undergo different aging degradation based on their utilization
history. In a given router, the WF provides its current aging degradation. Table 14.3
shows the pro-rating scheme used in this work. For example, a router with a WF

Table 14.3 WF based
deflection estimation

Wearout factor range Scheme

0.00–0.50 1
8 × DFLmax

0.50–0.75 1
4 × DFLmax

0.75–1.00 1
2 × DFLmax

1.00− + ∞ 1 × DFLmax
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of 0.8 will deflect 25% of all non-critical packets, assuming DFLMax is 0.5. At
every sampling interval of the WMS, the WF will be sent to adjacent routers to
communicate the degradation of a particular router and a corresponding link. Each
router stores the WF of four adjacent routers (North, South, East, West) in dedicated
WF registers.

Deflecting Non-critical Packets

For every incoming flit in a router, the deflection logic uses the WF and packet
criticality information to determine whether the packet will be sent in the direction
of the pre-established path or deflected away from the buffered router. For a
bufferless router, this task is accomplished by using a multiplexer and a selection
logic. For a buffered router, an additional entry is added in the routing table
corresponding to the possible deflection paths for each output port. For instance,
an output in the North direction can be deflected to East or West if it is coming from
the South input. This logic is accomplished using a 4-bit XOR of the number of
ports (N,S,E,W) and the ports used for input and the desired output. Since there can
be multiple deflection paths, the one that has no pending flits in the output buffer is
used. For ties, the first port using a standard priority encoder is utilized.

14.3.3 Tackling HCI

HCI degradation can be handled by distributing the switching activity across the
NoC. The following four techniques are explored in the router micro-architecture:
Bit Cruising (BC); Distributed Cycle Mode (DCM); Crossbar Lane Switching
(CLS); and BCCLS that is a combination of schemes BC and CLS [14].

14.3.3.1 Bit Cruising (BC)

Bit Cruising interchanges the different portions of the data being transmitted in the
crossbar. Bit Cruising is largely motivated by two properties of the programs.

1. Most data in the cache line are aggregated at the lower bits. Hence, most data
traversing through the NoC does not occupy the complete channel width of the
network. In some cases, all data bits are actually zero.

2. Control requests sent as a single flit do not store information in the most
significant portions of the channel as routing information can fit in the first few
bytes of the whole channel. The control flit only utilizes 25% of the channel
width, leaving the remaining 75% constant [14]. These two characteristics
radically lower the switching activity in certain bits while emphasizing others.
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To prevent the asymmetry in HCI degradation, the data being sent across the
network must be such that the switching activity across the channel is distributed.
Passing different data values each time a gate is used will balance the switching
activity and uniformly degrade all gates. Hence, the highly changing bits are being
circulated around the channel. The Bit Cruiser circuit will be situated in the Network
Interface (NI) and does not add any overhead in the critical path of the pipeline of
an NoC.

14.3.3.2 Distributed Cycle Mode (DCM)

The Distributed Cycle Mode balances out degradation of transistors by latching
an input value in the crossbar during idle times such that unswitched transistors
in previous cycles will transition and experience equivalent aging. This scheme
does not relieve any HCI aging compared to other schemes but can be beneficial
as equally aged transistors have smaller leakage power.

14.3.3.3 Crossbar Lane Switching (CLS)

Another asymmetrical degradation also occurs in the crossbar lanes that are immune
to techniques applied in the channel level. This type of asymmetric degradation
arises when some input–output pairs are used more than others. This occurrence is
demonstrated with an example in Fig. 14.9 where there are two paths (p0 and p1)
that both use the same East output port. If path p0 is used more than p1, then
the transistors along the path p0 will be sensitized more and hence, experience
more HCI degradation. CLS is situated at the frontend of the router pipeline and
aims to balance the usage of the crossbar lanes. In the canonical router model,
an input port directly forwards flits to the output ports by establishing a physical
connection between the two via the crossbar switch. As such, flits coming from the
same input port will always use the same crossbar lane to connect to different output

Fig. 14.9 East section of A
crossbar switch. CLS works
on the inter-lane (by changing
the path of the data) level
while BC works only on the
intra-lane level (by changing
the bit ordering within a path)
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ports. However, the introduction of Input Buffers (IB) and Virtual Channels (VC) in
modern router architectures decouples this one-to-one association because the flits
are first stored in the IB before being transmitted to the output ports. With trivial
modifications in the VC allocator and the Route Calculation part of the pipeline, it
is possible to control the crossbar lane, which an input port will utilize at any given
time. This new allocation and routing policy will now cause the crossbar circuit to
use a different path and activation circuit, but still send the same data as if it were
coming from the original input port. Thus, the correctness of the flit and the route
is preserved. Similar to the Bit Cruising technique’s cruise setting, CLS will need a
knob input to indicate the new mapping between input ports and crossbar lanes.

14.3.3.4 Bit Cruising and Crossbar Lane Switching (BCCLS)

Bit Cruising and Crossbar Lane Switching (BCCLS) is a combination of the BC and
CLS schemes. BCCLS combines both the benefit of switching distribution inside
a channel (BC scheme) and the distribution of activity across many channels (CLS
scheme). The implementation of BCCLS comes naturally because both BC and CLS
tackle different portions of the router circuit. BC reshuffles the data sent through the
network while CLS effectively changes the port a flit is coming from by modifying
the VC allocation and route calculation.

14.3.4 Managing QoS support

Wearout degradation due to a QoS support in an NoC can be managed [15] using a
three-step approach as follows:

1. Device level wearout of routers and links is monitored using NoC Health Meter.
2. The wearout information is communicated across the NoC.
3. The wearout information is utilized during NoC routing to dynamically mitigate

the effects of aging.

14.3.4.1 NoC Health Meter (NHM)

The NHM profiles the level of degradation in each router and incoming links. The
pipe stages of a router is augmented by the NHM circuit as shown in Fig. 14.10,
NHM measures the delay degradation in the combinational circuit between two
pipeline registers by measuring the slack in each stage. A high resolution all-digital,
self-calibrating time-to-digital converter (HR-TDC) consisting of a Vernier Chain
(VChain) circuit that has a measurement resolution of 5 ps [22] is used by the
NHM to measure the slack. HR-TDC is an in situ delay-slack monitor consisting
of a Vernier Chain circuit with an overall measurement window of 150 ps, which



14 Design of Reliable NoC Architectures 385

Fig. 14.10 NoC router
augmented with NHM

Fig. 14.11 High resolution in situ delay-slack measurement from Fick et al. [22]

is sufficient for timing slack measurements in 2 Ghz+ systems. After measuring the
delay degradation of each stage, Dmax : the maximum degradation among all pipe
stages is estimated. Fick et al. has demonstrated that a complete full self-calibration
of an entire TDC implemented on a 64-bit Alpha processor can take only 5 min [22].

HR-TDC in NoCs

Usage of HR-TDC circuits to measure the slack or propagation delay of each
pipeline stage in an NoC is important because exascale chips with thousands of
nodes can experience both global and local Process–Voltage–Temperature (PVT)
variability. HR-TDC operates in three modes:
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1. Normal operation: HR-TDC is measuring the delay fed from the NoC Data
Path. Delays of only 30% of the top most critical paths are measured, as
measuring all paths is expensive [23]. Data for the Time-to-Digital converter will
be aggregated by the NHM to decide the maximum delay among all the pipeline
stages.

2. Reference Delay Chain (RDC) Calibration: HR-TDC measures the delay
of the “Reference Delay Chain” using statistical sampling. Before VChain
calibration starts, calibration of the RDC has to be completed.

3. Vernier Chain Calibration: HR-TDC calibrates the Vernier Chain in order to
maintain a delay of 5ps in each stage of the chain. Eight firmware-controlled
capacitor loads are used to make a stage in the VChain tunable, with each load
designed to introduce 1 ps shifts in the delay.

Vernier Chain (i.e. red portion of Fig. 14.11) is responsible for measuring the
slacks from the NoC data paths in each pipeline stage and converting it to a digital
code.

14.3.4.2 Propagating Delay Information and Routing Table Update

The encoded delay information is estimated and propagated through the firmware
during the system boot-up, once a month by performing the following three steps :

1. All nodes estimate their Dmax in parallel throughout the system.
2. Dmax is broadcasted through the flit link network. To avoid extreme flooding, the

network is divided into small equally sized regions. Then, one node from each
region broadcasts its Dmax throughout the system.

3. The routing tables in each node are updated using this Dmax information.

14.3.4.3 Routing Algorithm

The routing algorithm profiles all two-turn minimal paths of all source–destination
pairs. The paths are chosen based on a particular metric such as average router
degradation or maximum router degradation. The path for a particular source–
destination pair is updated once per month. Figure 14.12 shows an example of our
routing algorithm in action. The firmware has already decided which turns to make
for a flit with a source–destination of 0 and 11, respectively. The turns are made on
nodes 2 and 10. Additionally, a single bit in the head flit is used to indicate which
direction the flit should first go, X or Y direction. Whether it is up/down or left/right
will be decided by the algorithmic routing based on the relative address of the source
and the turning points. Once the flit hits one of the turning nodes, it is going to turn
towards the direction of the destination. The algorithm is very scalable because no
matter what the size of the exascale NoC is, the routing information stored in a flit
(i.e. address of turning points) to be sent from a node to another will only grow by
log(n) with n being the number of nodes.
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Fig. 14.12 Two-turn path
routing

Deadlock Avoidance

Routing packets using various two-turn path configurations can lead to protocol
deadlock when cyclic resource dependencies exist. One Virtual Channel (VC) is
allocated in each port as an escape channel only to be used when avoiding a
deadlock. Normally, when there is no contention, the flits will be routed on the non-
escape channels. However, when all non-escape VCs from all routers are occupied
for a certain period of time, a cyclic dependency could exist. This is possible because
the flits are not restricted to use the same VC ID in each hop in order to maximize
the bandwidth of the network. This cyclic dependency is broken by halting further
injection in the NoC and allowing in-flight flits to arrive at their destination using
deterministic routing via the escape channels.

14.3.4.4 Applying NoC Health Meter in Dynamic Wearout Resilient
Routing

NoC health meter can be harnessed by the routing algorithm in two unique ways
to dampen QoS-induced traffic stress in NoC routers. Duato’s theory is used to
restrict virtual channels to specific packet classes to avoid deadlocks [24]. The two
algorithms are explained below:

1. Fresh Routing (FR): This algorithm always routes the flits using the least
degraded path. This path is constructed by considering several minimal paths
and comparing the average wearout information in each path.

2. Latency Reclamation routing (LR): This algorithm seeks to balance congestion
and reliability objectives by using dynamic runtime information when deciding
a path. LR first compares the number of available credits—a metric quantifying
the level of congestion in a node of neighboring routers. If the least degraded
path is congested, LR will choose the non-congested path.
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The two variants each of these two algorithms are elaborated considering the
routing path with p routers, having maximum delays D1, D2, . . . , Dp, respectively.

• FRAvg: This scheme uses the average wearout of all routers in a path to select
the least-aged path. (Dpath = avg(D1,D2, . . . , Dp)).

• FRMax : This variant of the FR algorithm selects the least-aged path using the
maximum router wearout of each path. (Dpath = max(D1,D2, . . . , Dp)). This
scheme seeks to limit the wearout of the most degraded router at any time
interval.

• LRAvg: This scheme is similar to FRAvg , selecting the least-aged path based on
average. However, during congestion, it avoids queuing delay by sending flits
in the direction with more credits at times, when the least-aged path is overly
congested.

• LRMax : This variant of the LR algorithm also allows credit-based exceptions to
the least-aged path. However, like the FRMax scheme, it determines the least
aged path using the maximum router delay in each path.

14.3.5 Voltage Emergencies

A reliable design to tackle Voltage Emergencies [16] will comprise of two key parts:

• Error detection and confinement system.
• Recovery mechanisms used to recover corrupted flits.

14.3.5.1 Error Detection and Confinement

VEN induced timing errors are detected at the NoC router pipeline registers using
shadow flip-flops [10]. The shadow flip-flops use a delayed clock, allowing double
sampling of the combinational logic output. A discrepancy between the sample data
in the regular flip-flop and the shadow flip-flop indicates a timing error. Inserting
shadow flip-flop is relatively straightforward in an NoC router, as the circuit path
in a router pipeline is more uniform in comparison to a typical processor pipeline.
Figure 14.13 outlines the circuit-level modifications in an NoC router with 4 pipe
stages: input buffer/route calculation, VC allocation, switch traversal, and output
buffer. Once an error is detected, restoring error-free communication can only
proceed after the error is confined within the router pipeline. On the detection of
error, the error has to be confined within the route pipeline, to restore the NoC to
error-free communication state. As a traditional NoC pipeline cannot stop a flit from
transmission after it has reached the switch traversal stage, two strategies for error
confinement based on the error location are explored:

1. Error before switch traversal: Mark the VC as free and increase the credit for
the specific port to block the flit before switch traversal. The corrupted flit is
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Fig. 14.13 Error detection, confinement, and SRE

overridden, as the new flip is allocated to the free VC entry in the subsequent
cycle.

2. Error during switch traversal: Add a poison bit to every output buffer entry.
Poison bit is set, when an error is detected on a flit during switch traversal.
Therefore, the link traversal is revoked for the particular flit in the next cycle
and the buffer and poison bit are cleared to reclaim that entry.

14.3.5.2 Recovery Mechanisms

Two variants of the design based on the tradeoff in performance and complexity
overhead are explored.

1. Router Temporization (RT) is a low-complexity source-based recovery tech-
nique that relies on flit re-transmission.

2. Selective Router Echo (SRE) is an in situ dynamic recovery mechanism with a
low performance overhead.

Router Temporization (RT)

Router Temporization uses a combination of flit re-transmission and temporary
frequency scaling to implement error-free communication in the presence of VEN.

• Re-Transmission: The NoC router checks the source for the acknowledgment
(ACK) packet to verify the receipt of the data at the destination. The router
assumes that the flit has been dropped if the ACK packet is not received after a
set amount of time and sends the same flip again until an ACK packet is received.
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• Frequency Scaling: As the threshold of dropped flits is exceeded, the frequency
is lowered (i.e. frequency is halved) to prevent the continuous corruption of flits.
VEN typically lasts for a short time span [25]. If the errors persist, the frequency
will be consequently lowered until the errors stop. Once the errors stop, the
original frequency will be restored using an exponential back-off algorithm.

Selective Router Echo (SRE)

Selective Router Echo is an error recovery system embedded in the NoC router
pipeline. In SRE, the router micro-architecture is augmented to mimic a processor
pipeline. Figure 14.13 shows the pipeline for the SRE-enabled router. Extra virtual
channels are added in the router, called Reserve VCs (RVCs) to keep a record of
all in-flights flits which have crossed the input buffer stage. RVCs will replay the
erroneous flits in the pipeline in the event of a VEN.

The steps involved in the recovery mechanism are:

• Stall: In the case of a VEN induced timing error, the router is stalled and
incoming flits to the router are temporarily delayed.

• Restart: The router is restarted after stall completion. The delayed flits in the
input buffers are permitted to pass through, as the input buffers are cleared to
enable the recovery of flits from the RVCs.

• Restore: The entries from the RVCs are restored to the input buffers thereby,
restoring the router to an earlier state.

• Resume: The credit restrictions are lifted and the flits in the input buffer are
sent to the targeted output buffers thereby, resuming the normal operation of the
router.

14.3.6 Power Supply Noise

PSN can be tackled using flow-control protocols and routing algorithms. The design
of a PSN-aware flow-control (PAF) involves a hierarchical approach to dictate
the Maximum Current Load (MCL) across the NoC, while ensuring a minimal
performance impact [17]. The flow-control information is then utilized in a PAF-
aware routing algorithm to tackle PSN.

14.3.6.1 Hierarchical MCL Allocation

High concurrent switching of proximal regions is avoided by carefully adjusting the
MCL allocated to each region. To realize the MCL allocation principles at different
granularities, a metric Flit Acceptance Potential (FLAP) is defined. For a given
input channel of a router, the FLAP is set to 1 when it can receive an incoming



14 Design of Reliable NoC Architectures 391

flit (otherwise it is set to 0). For a router, the FLAP indicates the aggregate FLAP
of its input channels. Similarly, the FLAP of a particular region represents the
aggregate FLAP of the routers in that region. At any given time, the FLAP of a
router employing wormhole flow control in a 2-D mesh with four input channels
is 4, when all of its input channels can receive at least one flit. The PAF allocates
variable MCL to each region by dynamically throttling their FLAPs, irrespective of
the space availability in the input channel’s buffers. MCL allocation is a hierarchical
process that can be applied at multiple spatial granularities. For example, a large
region consists of many smaller subregions. The allocated MCL for the large region
is distributed among the subregions, ensuring that proximal subregions are not
simultaneously allocated with high MCLs. At the lowest granularity, each router’s
FLAP is managed in a manner that is consistent with the MCL allocation of the
entire subregion.

14.3.6.2 Optimizations of PAF

The generic PAF technique needs multiple optimizations to efficiently tackle the
design challenges.

Minimizing Performance Impact

Complementary approaches are explored to retain a high performance in the PAF.

• Judicious FLAP management: To avoid a large flit delay in a given region, the
PAF allows intermittent high and low FLAPs in a router.

• Topological awareness: The PAF can be adapted based on the network topology
and expected traffic pattern. For example, central routers in a mesh typically
experience a high resource demand. This demand can be met by allocating
greater FLAPs to the central routers.

• Congestion awareness: Two broad classifications of the PAF are explored
(Sects. 14.3.6.2 and 14.3.6.2).

Congestion-Agnostic PAF

This variant of PAF statically allocates high and low FLAPs to the regional
routers based on a round-robin fairness scheme. The FLAP allocation policy is not
influenced by the network buffer occupancy.
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Congestion-Aware PAF

This variant of the PAF manages the FLAP allocation based on the relative
congestion of the network buffers. The following two congestion awareness at
different granularities are considered.

1. Channel granularity: The FLAP of the least congested channel of a router is set
to 1, so that it can always receive an incoming flit. The other channels’ FLAPs
are dictated by the aggregate FLAP of the router.

2. Router granularity: The least congested router of a region is allocated with a
high FLAP. However, the other routers are allocated with low FLAPs to avoid
high simultaneous switching. The aggregate FLAPs of the routers are consistent
with the allocated MCL of the region.

Avoiding Starvation

Repeated blocking of the flits at the same input channel of a router in successive
cycles can cause a starvation. To avoid starvation, the PAF adopts a round-robin
fairness scheme to restrict flit reception across all the input channels of a router.
Moreover, the PAF uses deterministically routed escape VCs, allowing all the
possible turns without a deadlock situation.

Scalability

The PAF is a hierarchical technique that uses local network information at the
smallest regional granularity to ascertain the FLAPs of the routers. As the size of the
smallest region remains the same even for a larger NoC, the PAF can scale efficiently
with the network size.

14.3.6.3 PAF-Aware Adaptive Routing Algorithm

Dynamically throttling the FLAP of a router may cause an intermittent upsurge in
the local PSN due to an increased resource contention. This upsurge is circumvented
using a PAF cognizant routing algorithm—PAR, which steers the flit toward an
unthrottled downstream path. Figure 14.14 depicts the conceptual overview of the
PAR. PAR primarily makes the routing decision based on the relative regional
congestion information, aggregated solely along the minimal paths. If the chosen
output channel has a throttled FLAP, the PAR reroutes the flit to an orthogonal
output channel, strictly maintaining the minimal path constraint. This strategy
reduces local current spike and the PSN by relieving router contention, but may
occasionally increase the network latency by routing some flits toward more
congested downstream paths. In a scenario, where both the minimal paths are
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Fig. 14.14 PAR algorithm

blocked due to throttled FLAPs, the flit adheres to the initial channel assignment
and waits in the upstream router for another cycle. The PAR incurs no additional
circuit overhead as it utilizes the same information required for the PAF.

14.3.7 Concurrent Research Works

In addition to the methodologies discussed through Sects. 14.3.1–14.3.6, cutting-
edge research contributions have also been made towards achieving an enhanced
NoC design which further stresses on the impact of the reliability threat posed by
the issues addressed in Sect. 14.2 [26–35].

14.4 Summary

Increasing performance needs have led to a rapid deterioration of the components
in the communication network (NoC). A major cause of this degradation has been
the asymmetric utilization of the network components due to device characteristics,
resource allocation policies, and uneven traffic flow. In order to restore the reliability
of an NoC infrastructure, unique solutions have been explored to mitigate the
impending issues. The in situ solutions aid in increasing the lifetime of an NoC
and contribute towards the overall system performance.
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Chapter 15
Securing Silicon Photonic NoCs Against
Hardware Attacks

Ishan G. Thakkar, Sai Vineel Reddy Chittamuru, Varun Bhat,
Sairam Sri Vatsavai, and Sudeep Pasricha

15.1 Introduction

Since the end of Dennard scaling in mid-2000s, the furtherance of CMOS transistor
scaling has allowed continued increase in transistor count per microprocessor chip.
This growing number of transistors, which is already in a few billions today, have
been utilized to integrate increasingly greater number of cores per microprocessor
chip. Such microprocessor chips with multiple integrated cores are often referred
to as chip-multiprocessors (CMPs). To enable efficient communication between
these cores within a CMP, conventional bus-based interconnects have been replaced
with network-on-chips (NoCs) (e.g., [4, 36]). In NoCs, processing cores use routers
connected by segmented links for efficient and scalable communication devoid of
global wire delays.
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15.2 State of the Art in NoCS

In CMPs, electrical NoCs (ENoCs) have emerged as the standard communication
fabric, as they are more scalable and modular compared to the traditional bus-based
interconnects. Many CMPs have been implemented with ENoCs, such as Intel’s
48-core SCC [33], Tilera’s 72-core TILE-Gx [34], Kalray’s 256-core MPPA [35],
Intel’s 80-core TeraFlops chip [37], Sun’s Niagara [38], and MIT’s RAW chip [39].
Moreover, a 496-core CMP mesh topology ENoC has been recently implemented
in [40]. Increasing core count and decreasing transistor size elevates the concerns
associated with reliability, power consumption, performance and security in ENoCs.
This also reflects in the ongoing research efforts in the field of NoCs. With shrinking
technology node size, ENoCs become prone to faults that arise due to manufacturing
defects, increased demand for traffic, and aging of various components. Several
techniques have been proposed to address fault tolerance in ENoCs (e.g., [41–45]).
For instance, in [41], a bypass path around faulty nodes is set up to improve fault
tolerance in ENoCs.

In addition to faults, avoiding congestion, deadlock, and livelock in ENoCs
is also important, as the performance of ENoCs depends on that. Congestion is
caused in an ENoC when majority of data packets traverse through a common
path, deadlock is caused because of a cyclic buffer dependency, and livelock occurs
when the packets keep spinning around the network without progressing to their
destination. To avoid congestion, deadlock, and livelock conditions in ENoCs,
several effective routing algorithms have been proposed in prior works (e.g., [46–
50]). For instance, [46] uses the Hamiltonian routing strategy to adaptively route the
packets through deadlock-free paths in a diametrical 2D mesh ENoC.

Furthermore, the increase in number of cores and shrinking feature size also
increases power density in CMPs, which causes electromigration, negative bias tem-
perature instability, hot carrier injection, and time-dependent dielectric breakdown.
All of these effects accelerate aging in CMPs that degrades reliability and lifetime
of CMPs. Substantial research has been done to address the reliability and low
lifetime related issues in ENoCs (e.g., [51–53]). For example, an adaptive routing
algorithm is utilized in [51] to improve lifetime reliability of ENoCs. Moreover,
high dynamic energy consumption in ENoCs is also a critical challenge, as ENoCs
consume significant portion of overall CMP power budget [54, 55]. Several prior
works have focused on minimizing the dynamic energy consumption in ENoCs
(e.g., [55–59]). For instance, [59] manages the dynamic energy consumption in
ENOCs by combining thread migration with dynamic voltage and frequency scaling
techniques. Further, a good amount of research is also being conducted in using
CMPs with NoCs for developing application specific processors for datacenters
(e.g., SmarCo [60]), cloud based computing (e.g., Piton [61]), and reconfigurable
accelerator systems (e.g., MITRACA [62]).

Another critical challenge for ENoCs is their poor performance scalability. With
increasing core count and the resultant increase in communication distances, the
achievable throughput and latency for data transfers with ENoCs substantially
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degrade. With the motivation of providing better communication for longer dis-
tances, the use of wireless networks-on-chip (WiNoCs) has been proposed in place
of ENoCs [63]. A WiNoC architecture is proposed in [64] that uses on-chip antennas
to transfer data across long distances, while an arbitration mechanism to ensure
high-average and guaranteed performance for WiNoCs had been developed in
[65]. In [66], a WiNoC uses an adaptable algorithm that works in the background
along with a token sharing scheme to fully utilize the wireless bandwidth effi-
ciently. Furthermore, the recent advancements in emerging technologies like silicon
nanophotonics have made it possible to realize photonics with NoCs (PNoCs).
Therefore, several PNoC architectures have been proposed for CMPs, e.g., Corona
[67], FireFly [7], LumiNoC [68], CAMON [69]. These PNoC architectures leverage
the high bandwidth density and low dynamic power consumption of photonics to
address the scalability issues of ENoCs.

Another crucial challenge faced by ENoCs is security. ENoCs are vulnerable to
various types of security attacks such as Hardware Trojans, hijacking, extraction
of sensitive information, and Denial of Service (DoS). Physical hardware security
concerns due to Hardware Trojan (HT) attacks are especially important. An HT
is realized through malicious modification of an integrated circuit (IC) during its
design or fabrication phase. Such malicious ICs are generally third-party IPs that
are used for reducing the design time of CMPs. Such HT-related security risks need
to be detected and mitigated in order to ensure trusted functionality. Therefore,
several recent works have addressed these security issues in ENoCs (e.g., [70–
74]). To mitigate the DoS and timing attacks in ENoCs, [70] proposed the use of
a non-Interference based adaptive routing. Similarly, to improve hardware security
in WiNoCs, [71] employed a machine learning based engine to protect WiNoCs
from DoS, spoofing, and eavesdropping attacks.

15.3 Photonic NoCS (PNoCS) and Related Security
Challenges

Due to the ever-increasing core count to meet the growing performance demands of
modern Big Data and cloud computing applications, ENoCs su˙er from high power
dissipation and severely reduced performance [31]. The crosstalk and electromag-
netic interference are also increasing with technology scaling, which further reduces
the performance and reliability of electrical NoCs [32]. Thus, there is a crucial
need of a new viable interconnect technology that can address the shortcomings of
ENoCs. Recent developments in silicon photonics have enabled the integration of
photonic components and interconnects with CMOS circuits on a chip. The ability
to communicate at near light speed, larger bandwidth density, and lower dynamic
power dissipation are the prolific advantages that Photonic NoCs (PNoCs) provide
over their metallic counterparts [5]. These advantages motivate the use of PNoCs for
inter-core communication in modern CMPs [6]. Several PNoC architectures have
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been proposed to date (e.g., [19–21]). These architectures employ on-chip pho-
tonic links, each of which connects two or more gateway interfaces. A cluster of
processing cores are connected to PNoC by a gateway interface (GI). Each photonic
link comprises one or more photonic waveguides and each waveguide can support a
large number of dense-wavelength-division-multiplexed (DWDM) wavelengths. A
data signal is carried by a wavelength. Typically, Each source GI generates multiple
data signals in the electrical domain (as sequences of logical 1 and 0 voltage levels)
that are modulated onto the multiple DWDM carrier wavelengths simultaneously,
using a bank of modulator MRs at the source GI [9].The data-modulated carrier
wavelengths traverse a link to a destination GI, where an array of detector MRs
filter them and drop them on photodetectors to regenerate electrical data signals.

In general, each GI in a PNoC is able to send and receive data in the optical
domain on all of the utilized carrier wavelengths. Therefore, a bank of modulator
MRs (i.e., modulator bank) and a bank of detector MRs (i.e., detector bank)
are present at each GI. Each MR in a bank resonates with and operates on a
specific carrier wavelength. The high bandwidth parallel data transfers is enabled
in PNoCs because of the excellent wavelength selectivity of MRs and DWDM
capability of waveguides. However, the excellent wavelength selectivity of MRs
and DWDM capability of waveguides also impose serious hardware security threats
in PNoCs. The hardware security issues in PNoCs are especially exacerbated
due to the complexity of hardware in modern CMPs. This is because to meet
the growing performance demands of modern Big Data and cloud computing
applications, the complexity of hardware in modern CMPs has increased. To reduce
the hardware design time of these complex CMPs, third-party hardware IPs are
frequently used. But these third party IPs can introduce security risks [1, 2]. For
instance, the presence of Hardware Trojans (HTs) in the third-party IPs can lead to
leakage of critical and sensitive in-formation from modern CMPs [3]. Thus, security
researchers are now increasingly interested in overcoming hardware-level security
risks in addition to traditionally focused software-level security.

Similarly, the CMPs with PNoCs are also expected to use several third party IPs
similar to ENoCs and therefore, are vulnerable to security risks [10]. For instance,
if the entire PNoC used within a CMP is a third-party IP, then this PNoC with HTs
within the control units of its GIs can snoop on packets in the network. Sensitive
in-formation can be determined by malicious core (a core running a malicious
program) in CMP using these transferred packets.

Unfortunately, MRs of PNoCs are especially susceptible to security threatening
manipulations from HTs. In particular, the MR tuning circuits that are essential for
supporting data broadcasts and to counteract MR resonance shifts due to process
variations (PV) make it easy for HTs to retune MRs and initiate snooping attacks.
The tuning circuits of detector MRs partially detune them from their resonance
wavelengths to enable data broadcast, [7, 11–12], such that a significant portion of
the photonic signal energy in the data carrying wavelengths continues to propagate
in the waveguide to be absorbed in the subsequent detector MRs. On the other hand,
resonance wavelengths shifts in MRs due to process variations (PV) [13]. MR tuning
circuits are used to counteract PV-induced resonance shifts in MRs by retuning the
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resonance wavelengths using carrier injection/depletion or thermal tuning [6]. These
tuning circuits of detector MRs can be manipulated by the HT to partially tune the
detector MR to a passing wavelength in the waveguide, which enables snooping of
the data that is modulated on the passing wavelength. Such covert data snooping is
a serious security risk in PNoCs.

In this work, we present a framework that improves the hardware security in
PNoCs by protecting data from snooping attacks. Our framework can be easily
implemented in any existing DWDM-based PNoC without major changes to the
architecture and it has low overhead. To the best of our knowledge, this is the first
work that attempts to improve hardware security for PNoCs. Our novel contributions
are:

• We analyze security risks in photonic devices and extend this analysis to
linklevel, to determine the impact of these risks on PNoCs;

• We propose a circuit-level PV-based security enhancement scheme that uses PV-
based authentication signatures to protect data from snooping attacks in photonic
waveguides.

• We propose an architecture-level reservation-assisted security enhancement
scheme to improve security in DWDM-based PNoCs;

• We combine the circuit-level and architecture-level schemes into a holistic
framework called SOTERIA; and analyze it on the Firefly [7] and Flexishare [8]
crossbar-based PNoC architectures.

15.4 Related Work

Several prior works [10, 15, 16] discuss the presence of security threats in ENoCs
and have proposed solutions to mitigate them. Data scrambling, packet certification,
and node obfuscation were used to present three-layer security system approach
[10] to enable protection against data snooping attacks. A symmetric-key based
cryptography design was presented in [15] for securing the NoC. In [16], a
framework was presented to use permanent keys and temporary session keys for
NoC transfers between secure and non-secure cores. However, no prior work has
analyzed security risks in photonic devices and links; or considered the impact of
these risks on PNoCs.

Fabrication-induced PV impact the cross-section, i.e., width and height, of pho-
tonic devices, such as MRs and waveguides. Thermal tuning or localized trimming
are techniques used at device level to counteract the drifts in resonant wavelength
because of PV in MRs [6]. Trimming can induce blue shifts in the resonance wave-
lengths of MRs using carrier injection into MRs, whereas thermal tuning can induce
red shifts in MR resonances through heating of MRs using integrated heaters. Device
level trimming/tuning techniques are inevitable to remedy PV; but their use also
enables partial detuning of MRs that can be used to snoop data from a shared
photonic waveguide. In addition,the impact of PV-remedial techniques on crosstalk
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noise and proposed techniques to mitigate it were discussed in prior works [17–18].
None of the prior works analyze the impact of PV-remedial techniques on hardware
security in PNoCs.

Our proposed framework in this chapter is novel as it enables security against
snooping attacks in PNoCs for the first time. Our framework improves security for
any DWDM-based PNoC architecture being network agnostic, mitigating PV, and
with minimal overhead.

15.5 Hardware Security Concerns in PNoCS

15.5.1 Device-Level Security Concerns

Undesirable changes in MR widths and heights due to Process variation (PV) causes
“shifts” in MR resonance wavelengths, which can be remedied using localized
trimming and thermal tuning methods. The localized trimming method injects (or
depletes) free carriers into (or from) the Si core of an MR using an electrical tuning
circuit, which reduces (or increases) the MR’s refractive index owing to the electro-
optic effect, thereby remedying the PV-induced red (or blue) shift in the MR’s
resonance wavelength. An integrated micro-heater is employed in thermal tuning
to adjust the temperature and refractive index of an MR (owing to the thermo-
optic effect) for PV remedy. Typically, the modulator MRs and detectors use the
same electro-optic effect (i.e., carrier injection/depletion) implemented through the
same electrical tuning circuit as used for localized trimming, to move in and out of
resonance (i.e., switch ON/OFF) with a wavelength [19]. A HT can manipulate this
electrical tuning circuit, which may lead to malicious operation of modulator and
detector MRs, as discussed next.

Figure 15.1 (left) shows the malicious operation of a modulator MR. A malicious
modulator MR is partially tuned to a data-carrying wavelength (shown in purple)
that is passing by in the waveguide. The malicious modulator MR draws some power
from the data-carrying wavelength, which can ultimately lead to data corruption
as optical ‘1’s in the data can lose significant power to be altered into ‘0’s.
Alternatively, a partially tuned malicious detector (Fig. 15.1 (right)) to a passing
data-carrying wavelength can filter only a small amount of its power and drop it on
a photodetector for data duplication. This small amount of filtered power does not
alter the data in the waveguide so that it continues to travel to its target detector
for legitimate communication [11]. Further, a malicious detector MR can also cause
data corruption (by partially tuning to a wavelength) and denial of communication
(by fully tuning to a wavelength). Thus, both malicious modulator and detector MRs
can corrupt data (which can be detected and corrected) or cause Denial of Service
(DoS) type of security attacks. In addition, malicious detector MRs can also snoop
data from the waveguide without altering it. Thus, major security threat in photonic
links is malicious detector MRs snooping data from the waveguide without altering
it. Note that malicious modulator MRs only corrupt data (which can be detected)
and do not covertly duplicate it and are thus not a major security risk.
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Fig. 15.1 Data transfer in a DWDM-based photonic waveguide, with (left) a malicious modulator
MR leading to data corruption, and (right) a malicious detector MR leading to data snooping [75]

15.5.2 Link-Level Security Concerns

Typically, one or more DWDM-based photonic waveguides are present in a photonic
link. A modulator bank (a series of modulator MRs) at the source GI and a
detector bank (a series of detector MRs) at the destination GI are used in a DWDM
based photonic waveguide. DWDM-based waveguides can be broadly classified
into four types: single-writer-single-reader (SWSR), single-writer-multiple-reader
(SWMR), multiple-writer-single-reader (MWSR), and multiple-writer-multiple-
reader (MWMR). We restricted our link-level analysis to MWMR waveguides as
SWSR,SWMR and MWSR waveguides are subsets of MWMR.

An MWMR waveguide typically passes through multiple GIs, connecting the
modulator banks of some GIs to the detector banks of the remaining GIs. Multiple
GIs (referred to as source GIs) can send data using their modulator banks and
multiple GIs (referred to as destination GIs) can receive (read) data using their
detector banks in an MWMR waveguide. An MWMR waveguide with two source
GIs and two destination GIs are shown in Fig. 15.2 as an example. The impact of
malicious source and destination GIs on this MWMR waveguide is presented in
Fig. 15.2a, b, respectively. The modulator bank of source GI S1 is sending data
to the detector bank of destination GI D2. When source GI S2, which is in the
communication path, becomes malicious with an HT in its control logic, it can
manipulate its modular bank to modify the existing ‘1’s in the data to ‘0’s leading
to data corruption. For example, in Fig. 15.2a, S1 is supposed to send ‘0110’ to D2,
but due to data corruption by malicious GI S2, ‘0010’ is received by D2. However,
using parity or error correction code (ECC) bits in the data can be used to detect and
correct this type of data corruption. Thus, malicious source GIs do not cause major
security risks in DWDM-based MWMR waveguides.

Let us consider another scenario for the same data communication path (i.e., from
S1 to S2). When destination GI D1, which is in the communication path, becomes
malicious with an HT in its control logic, the detector bank of D1 can be partially
tuned to the utilized wavelength channels to snoop data. In the example shown in
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Fig. 15.2 Impact of (a) malicious modulator (source) bank, (b) malicious detector bank on data
in DWDM-based photonic waveguides [30]

Fig. 15.2b, D1 snoops ‘0110’ from the wavelength channels that are destined to
D2. The sensitive information can be determined by transferring snooped data from
D1 to a malicious core within the CMP. Since, the intended communication among
CMP cores is not disrupted, this type of snooping attack from malicious destination
GIs are hard to detect. Therefore, there is a pressing need to address the security
risks imposed by snooping GIs in DWDM-based PNoC architectures. To address
this need, we propose a novel framework SOTERIA that improves hardware security
in DWDM-based PNoC architectures.

15.6 SOTERIA Framework:Overview

Our proposed multi-layer SOTERIA framework enables secure communication in
DWDM-based PNoC architectures by integrating circuit-level and architecture-level
enhancements. Figure 15.3 gives a high-level overview of this framework. The Privy
Data Encipherment Scheme (PDES) uses the PV profile of the destination GIs’
detector MRs to encrypt data before it is transmitted via the photonic waveguide.
This scheme is sufficient to protect data from snooping GIs, if they not aware of
target destination GI. However, a snooping GI can decipher the encrypted data if
the target destination GI information is known. Many PNoC architectures (e.g.,
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Fig. 15.3 Overview of proposed SOTERIA framework that integrates a circuit-level Privy Data
Encipherment Scheme (PDES) and an architecture-level Reservation-Assisted Metadata Protection
Scheme (RAMPS) [75]

[10, 26]) use the same waveguide to transmit both the destination GI information
and actual data, making them vulnerable to data snooping attacks despite using
PDES. We devise an architecture-level reservation-assisted metadata protection
scheme (RAMPS) that uses a secure reservation waveguide to avoid the stealing of
destination GI information by snooping GIs to enhance the security of these PNoCs.
The next two sections present details of our PDES and RAMPS schemes.

15.7 Privy Data Encipherment Scheme (PDES)

As discussed earlier (Sect. 1.3.2), malicious destination GIs can snoop data from a
shared waveguide. Data encryption can be used to address this security concern so
that the malicious destination GIs cannot decipher the snooped data. The encryption
key used for data encryption should be kept secret from the snooping GIs for the
encrypted data to be truly undecipherable, which can be challenging as the identity
of the snooping GIs in a PNoC is not known. Therefore, it becomes very difficult
to decide whether or not to share the encryption key with a destination GI (that
can be malicious) for data decryption. Each destination GI can have a different key
to resolve this conundrum so that a key that is specific to a secure destination GI
does not need to be shared with a malicious destination GI for decryption purpose.
Moreover, to keep these destination specific keys secure, the malicious GIs in a
PNoC must not be able to clone the algorithm (or method) used to generate these
keys.

To generate unclonable encryption keys, the PV profiles of the destination GIs’
detector MRs are used in our Privy Data-Encipherment scheme (PDES) scheme. As
discussed in [13], PV induces random shifts in the resonance wavelengths of the
MRs used in a PNoC. These resonance shifts can be in the range from 3 nm to 3 nm
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[13]. PV profiles are different for the MRs that belong to different GIs in a PNoC. In
fact, the MRs that belong to different MR banks of the same GI also have different
PV profiles. Due to their random nature, these MR PV profiles cannot be cloned
by the malicious GIs, which makes the encryption keys generated using these PV
profiles truly unclonable. PDES uses the PV profiles of detector MRs to generate
a unique encryption key for each detector bank of every MWMR waveguide in a
PNoC.

Our PDES scheme generates encryption keys during the testing phase of the
CMP chip, by using a dithering signal based in-situ method [14] to generate an
antisymmetric analog error signal for each detector MR of every detector bank
that is proportional to the PV-induced resonance shift in the detector MR. Then,
it converts the analog error signal into a 64-bit digital signal. Thus, a 64-bit digital
error signal is generated for every detector MR of each detector bank. We consider
64 DWDM wavelengths per waveguide, and hence, we have 64 detector MRs in
every detector bank and 64 modulator MRs in every modulator bank. For each
detector bank, our PDES scheme XORs the 64 digital error signals (of 64 bits each)
from each of the 64 detector MRs to create a unique 64-bit encryption key. Note
that our PDES scheme also uses the same anti-symmetric error signals to control
the carrier injection and heating of the MRs to remedy the PV-induced shifts in their
resonances.

To understand how the 64-bit encryption key is utilized to encrypt data in
photonic links, consider Fig. 15.4 which depicts an example photonic link that has
one MWMR waveguide and connects the modulator banks of two source GIs (S1
and S2) with the detector banks of two destination GIs (D1 and D2). PDES creates
two 64-bit encryption keys corresponding to two destination GIs on the link, and
stores them at the source GIs. When data is to be transmitted by a source GI, the key
for the appropriate destination is used to encrypt data at the flit-level granularity, by
performing an XOR between the key and the data flit. The encryption key matching

Fig. 15.4 Overview of proposed PV-based security enhancing Privy Data Encipherment Scheme
(PDES) [75]
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the data flit size is required. We consider the size of data flits to be 512 bits.
Therefore, the 64-bit encryption key is appended eight times to generate a 512-bit
encryption key. In Fig. 15.4, 512-bit encryption keys (for destination GIs D1 and D2)
are stored in the source GI local ROM, whereas every destination GI stores only its
corresponding 512-bit key in its ROM. To eliminate the latency overhead of affixing
64-bit keys we store 512-bit key to generate 512-bit keys, at the cost of a reasonable
area/energy overhead in the ROM. As an example, if S1 wants to send a data flit to
D2, then S1 first accesses the 512-bit encryption key corresponding to D2 from its
local ROM and XORs the data flit with this key in one cycle, and then transmits
the encrypted data flit over the link. As the link employs only one waveguide with
64 DWDM wavelengths, therefore, the encrypted 512-bit data flit is transferred on
the link to D2 in eight cycles. At D2, the data flit is decrypted by XORing it with
the 512-bit key corresponding to D2 from the local ROM. In this scheme,D1 cannot
decipher the data even if D1 snoops the data intended for D2, as it does not have
access to the correct key (corresponding to D2) for decryption. Thus, our PDES
encryption scheme protects data against snooping attacks in DWDM-based PNoCs.

Limitations of PDES: The PDES scheme can protect data from being deciphered
by a snooping GI, if the following two conditions about the underlying PNoC
architecture hold true: (i) the snooping GI does not know the target destination
GI for the snooped data, (ii) the snooping GI cannot access the encryption key
corresponding to the target destination GI. As discussed earlier, only all source GIs
have an encryption key stored and at the corresponding destination GI making it
physically inaccessible to a snooping destination GI. However, if more than one
GIs in a PNoC are compromised due to HTs in their control units and if these HTs
launch a coordinated snooping attack, then it may be possible for the snooping GI
to access the encryption key corresponding to the target destination GI.

For instance, consider the photonic link in Fig. 15.4. If both S1 and D1 are
compromised, then the HT in S1’s control unit can access the encryption keys
corresponding to both D1 and D2 from its ROM and transfer them to a malicious
core (a core running a malicious program). Moreover, the data intended for D2 can
be snooped by the HT in D1’s control unit and transfer it to the malicious core. Thus,
the malicious core may have access to the snooped data as well as the encryption
keys stored at the source GIs. Nevertheless, to decipher the snooped data accessing
the encryption keys stored at the source GIs is not sufficient for the malicious GI
(or core). This is because the compromised ROM typically has multiple encryption
keys corresponding to multiple destination GIs, and choosing a correct key that
can decipher data requires the knowledge of the target destination GI. Thus, our
PDES encryption scheme can secure data communication in PNoCs as long as the
malicious GIs (or cores) do not know the target destinations of the snooped data.

Unfortunately, many PNoC architectures, e.g., [10, 26], that employ photonic
links with multiple destination GIs utilize the same waveguide to transmit both
the target destination information and actual data. In such PNoCs, from shared
waveguide malicious GI can manage to tap the target destination information, then it
can access the correct encryption key from the compromised ROM to decipher the
snooped data. Thus, there is a need to conceal the target destination information
from malicious GIs (cores). This motivates us to propose an architecture-level
solution, as discussed next.
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15.8 Reservation-Assisted Metadata Protection Scheme

In PNoCs that use photonic links with multiple destination GIs, data is typically
transferred in two time-division-multiplexed (TDM) slots called reservation slot and
data slot [10, 26]. Figure 15.5a shows PNoCs using the same waveguide to transfer
both slots to minimize photonic hardware. To enable reservation of the waveguide,
each destination is assigned a reservation selection wavelength. In Fig. 15.5a, λ1
and λ2 are the reservation selection wavelengths corresponding to destination GIs
D1 and D2, respectively. Ideally, detector switches ON its detector bank to receive
data in the next data slot when a destination GI detects its reservation selection
wavelength in the reservation slot. But in the presence of an HT, a malicious GI can
snoop signals from the reservation slot using the same detector bank that is used
for data reception. For example, in Fig. 15.5a, malicious GI D1 is using one of its
detectors to snoop λ2 from the reservation slot. By snooping λ2, D1 can identify that

Fig. 15.5 Reservation-assisted data transmission in DWDM-based photonic waveguides (a)
without RAMPS, (b) with RAMPS [30]
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the data it will snoop in the subsequent data slot will be intended for destination D2.
Thus, D1 can decipher its snooped data now by choosing the correct encryption key
from the compromised.

To address this security risk, we propose an architecture-level reservation-
assisted metadata protection scheme (RAMPS) scheme. In RAMPS, a reservation
waveguide is added, whose main function is to carry reservation slots, whereas data
slots are carried by data waveguide. We use double MRs to switch the signals of
reservation slots from the data waveguide to the reservation waveguide, as shown
in Fig. 15.5b. Double MRs are used instead of single MRs for switching to ensure
that the switched signals do not reverse their propagation direction after switching
[28].Double MRs also have lower signal loss due to steeper roll-off of their filter
responses [28] compared to single MRs.

In a photonic link the double MRs are switched ON only in a reservation slot,
otherwise they are switched OFF to let the signals of the data slot pass by in the data
waveguide. Furthermore, in RAMPS, each destination GI has only one detector on
the reservation waveguide, which corresponds to its receiver selection wavelength.
For example, in Fig. 15.5b, D1 and D2 will have detectors corresponding to
their reservation selection wavelengths λ1 and λ2, respectively, on the reservation
waveguide. Figure 15.5b shows this making it difficult for the malicious GI D1 to
snoop λ2 from the reservation slot, as D1 does not have a detector corresponding
to λ2 on the reservation waveguide. However, the HT in D1’s control unit may
still attempt to snoop other reservation wavelengths (e.g., λ2) in the reservation
slot by retuning D1’s λ1 detector. The HT would required to perfect the timing
and target wavelength of its snooping attack to succeed in these attempts, which is
very difficult due to the large number of utilized reservation wavelengths. Thus, the
correct encryption key cannot be identified by D1 to decipher the snooped data. In
summary, RAMPS enhances security in PNoCs by protecting data from snooping
attacks, even if the encryption keys used to secure data are compromised.

15.9 Implementing SOTERIA Framework on PNoCS

We characterize the impact of SOTERIA on two popular PNoC architectures: Firefly
[7] and Flexishare [8], both of which use DWDM-based photonic waveguides for
data communication. We consider Firefly PNoC with 8 × 8 SWMR crossbar [7]
and a Flexishare PNoC with 32 × 32 MWMR crossbar [8] with 2-pass token stream
arbitration. We adapt the analytical equations from [28] to model the signal power
loss and required laser power in the SOTERIA-enhanced Firefly and Flexishare
PNoCs. XOR gates are required to enable parallel encryption and decryption of 512-
bit data flits at each source and destination GI of the SOTERIA-enhanced Firefly and
Flexishare PNoCs. The overhead for encryption and decryption of every data flit was
as 1 cycle delay. The overall laser power and delay overheads for both PNoCs are
quantified in the results section.
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Firefly PNoC: Firefly PNoC [7], for a 256-core system, has 8 clusters (C1-
C8) with 32 cores in each cluster. Firefly uses reservation-assisted SWMR data
channels in its 8x8 crossbar for inter-cluster communication. Each data channel
consists of 8 SWMR waveguides, with 64 DWDM wavelengths in each waveguide.
A reservation waveguide was added to every SWMR channel to integrate SOTERIA
with Firefly PNoC. This reservation waveguide has 7 detector MRs to detect
reservation selection wavelengths corresponding to 7 destination GIs. Further-
more, 64 double MRs (corresponding to 64 DWDM wavelengths) are used at each
reservation waveguide to implement RAMPS. To enable PDES, each source GI has
a ROM with seven entries of 512 bits each to store seven 512-bit encryption keys
corresponding to seven destination GIs. In addition, each destination GI requires a
512-bit ROM to store its own encryption key.

Flexishare PNoC: We also integrate SOTERIA with the Flexishare PNoC archi-
tecture [8] with 256 cores. We considered a 64-radix 64-cluster Flexishare PNoC
with four cores in each cluster and 32 data channels for inter-cluster communication.
Each data channel has four MWMR waveguides with each having 64 DWDM
wavelengths. In SOTERIA-enhanced Flexishare, we added a reservation waveguide
to each MWMR channel. Each reservation waveguide has 16 detector MRs to detect
reservation selection wavelengths corresponding to 16 destination GIs. A ROM with
16 entries of 512 bits each to store the encryption keys at each source GI is required,
whereas each destination GI requires a 512-bit ROM to enable PDES.

15.10 Evaluations

15.10.1 Evaluation Setup

To evaluate our proposed SOTERIA (PDES+RAMPS) security enhancement
framework for DWDM-based PNoCs, we integrate it with the Firefly [7] and
Flexishare [9] PNoCs, as explained in Sect. 1.7. We modeled and performed
simulation based analysis of the SOTERIA-enhanced Firefly and Flexishare PNoCs
using a cycle-accurate SystemC based NoC simulator, for a 256-core single-
chip architecture at 22 nm. The power dissipation and energy consumption were
validated from the DSENT tool [21]. We used real-world traffic from the PARSEC
benchmark suite [22]. GEM5 full-system simulation [23] of parallelized PARSEC
applications were used to generate traces that were fed into our NoC simulator. We
set a “warmup” period of 100 million instructions and then captured traces for the
subsequent 1 billion instructions. These traces are extracted from parallel regions
of execution of PARSEC applications. We performed geometric calculations for a
20 mm × 20 mm chip size, to determine lengths of SWMR and MWMR waveguides
in Firefly and Flexishare. Based on this analysis, the time needed for light to travel
from the first to the last node was estimated as 8 cycles at 5 GHz clock frequency
[12]. We use a 512-bit packet size, as advocated in the Firefly and Flexishare PNoCs.
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Similar to [28], we adapt the VARIUS tool [19] to model random and systematic
die-to-die (D2D) as well as within-die (WID) process variations in MRs for the
Firefly and Flexishare PNoCs.

The static and dynamic energy consumption values for electrical routers and
concentrators in Firefly and Flexishare PNoCs are based on results from DSENT
[21]. We model and consider the area, power, and performance overheads for
our framework implemented with the Firefly and Flexishare PNoCs as follows.
SOTERIA with Firefly and Flexishare PNoCs has an electrical area overhead of
12.7mm2 and 3.4mm2, respectively, and power overhead of 0.44 W and 0.36 W,
respectively, using gate-level analysis and CACTI 6.5 [24] tool for memory and
buffers. The photonic area of Firefly and Flexishare PNoCs is 19.83mm2 and
5.2mm2, respectively, based on the physical dimensions [20] of their waveguides,
MRs, and splitters. For energy consumption of photonic devices, we adapt model
parameters from recent work [25, 27] with 0.42pJ/bit for every modulation and
detection event and 0.18pJ/bit for the tuning circuits of modulators and photodetec-
tors. The MR trimming power is 130μW/nm [29] for current injection and tuning
power is 240μW/nm [29] for heating.

15.10.2 Overhead Analysis of SOTERIA on PNoCs

Our first set of experiments compare the baseline (without any security enhance-
ments) Firefly and Flexishare PNoCs with their SOTERIA enhanced variants.
From Sect. 1.7, all 8 SWMR waveguide groups of the Firefly PNoC and all
32 MWMR waveguide groups of the Flexishare PNoC are equipped with PDES
encryption/decryption and reservation waveguides for the RAMPS scheme.

The total signal loss at the detectors of the worst-case power loss node (NWCPL)
were calculated by adapting the analytical models from [28], which corresponds
to router C4R0 for the Firefly PNoC [7] and node R63 for the Flexishare PNoC
[8]. Figure 15.6a summarizes the worst-case signal loss results for the baseline
and SOTERIA configurations for the two PNoC architectures. The loss is increased
by 1.6 dB for Firefly PNoC with SOTERIA and Flexishare PNoC with SOTERIA
increased by 1.2 dB on average, compared to their respective baselines. Compared
to the baseline PNoCs that have no single or double MRs to switch the signals
of the reservation slots, the double MRs used in the SOTERIA-enhanced PNoCs
to switch the wavelength signals of the reservation slots increase through losses
in the waveguides, which ultimately increases the worst-case signal losses in the
SOTERIA-enhanced PNoCs. Using the worst-case signal losses shown in Fig.
15.6a, we determine the total photonic laser power and corresponding electrical laser
power for the baseline and SOTERIA-enhanced variants of Firefly and Flexishare
PNoCs, shown in Fig. 15.6b. From this figure, the laser power overheads are 44.7%
and 31.40% for the Firefly and Flexishare PNoCs with SOTERIA on average,
compared to their baselines.
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Fig. 15.6 Comparison of (a) worst-case signal loss and (b) laser power dissipation of SOTERIA
framework on Firefly and Flexishare PNoCs with their respective baselines considering 100
process variation maps [30]

Figure 15.7 presents detailed simulation results that quantify the average packet
latency and energy-delay product (EDP) for the two configurations of the Firefly
and Flexishare PNoCs. Results are shown for twelve multi-threaded PARSEC
benchmarks. From Fig. 15.7a, Firefly with SOTERIA has 5.2% and Flexishare
with SOTERIA has 10.6% higher latency on average compared to their respective
baselines. The increase in average latency is due to the additional delay due to
encryption and decryption of data (Sect. 1.7.1) with PDES.

From the results for EDP shown in Fig. 15.7b, Firefly with SOTERIA has 4.9%
and Flexishare with SOTERIA has 13.3% higher EDP on average compared to their
respective baselines. The increase in their average packet latency and the presence of
additional RVSC reservation waveguides leads to increase in EDP for the SOTERIA-
enhanced PNoCs, which increases the required photonic hardware (e.g., more
number of MRs) in the SOTERIA-enhanced PNoCs. This in turn increases static
energy consumption (i.e., laser energy and trimming/tuning energy), ultimately
increasing the EDP.
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Fig. 15.7 (a) normalized average latency and (b) energy-delay product (EDP) comparison
between different variants of Firefly and Flexishare PNoCs that include their baselines and their
variant with SOTERIA framework, for PARSEC benchmarks. Latency results are normalized with
their respective baseline architecture results. Bars represent mean values of average latency and
EDP for 100 PV maps; confidence intervals show variation in average latency and EDP across
PARSEC benchmarks [30]

15.10.3 Analysis of Overhead Sensitivity

Our last set of evaluations explore how the overhead of SOTERIA changes with
varying levels of security in the network. Typically, in a manycore system, sensitive
information (i.e., keys) is present only at certain portion of the data and hence only a
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certain number of communication links need to be secure. Therefore, we secure only
a certain number channels using SOTERIA for our analysis in this section, instead
of securing all data channels of the Flexishare PNoC. Out of the total 32 MWMR
channels in the Flexishare PNoC, we secure 4 (FLEX-ST-4), 8 (FLEX-ST-8), 16
(FLEX-ST-16), and 24 (FLEX-ST-24) channels, and evaluate the average packet
latency and EDP for these variants of the SOTERIA-enhanced Flexishare PNoC.

In Fig. 15.8, we present average packet latency and EDP values for the five
SOTERIA-enhanced configurations of the Flexishare PNoC. From Fig. 15.8a,
FLEX-ST-4, FLEX-ST-8, FLEX-ST-16, and FLEX-ST-24 have 1.8%, 3.5%, 6.7%,
and 9.5%higher latency on average compared to the baseline Flexishare. Increase in
number of SOTERIA enhanced MWMR waveguides increases number of packets
that are transferred through the PVSC encryption scheme, which contributes to
the increase in average packet latency across these variants. From the results for
EDP shown in Fig. 15.8b, FLEX-ST-4, FLEX-ST-8, FLEX-ST-16, and FLEX-
ST-24 have 2%, 4%, 7.6%, and 10.8% higher EDP on average compared to the
baseline Flexishare. EDP in Flexishare PNoC increases with increase in number
of SOTERIA enhanced MWMR waveguides. Overall EDP across these variants is
increased due to increase in average packet latency and signal loss due to the higher
number of reservation waveguides and double MRs.

15.11 Conclusion

We presented a novel security enhancement framework called SOTERIA that
secures data during unicast communications in DWDM-based PNoC architectures
from snooping attacks. Our proposed SOTERIA framework shows interesting
trade-offs between security, performance, and energy overhead for the Firefly
and Flexishare PNoC architectures. Our analysis shows that SOTERIA enables
hardware security in crossbar based PNoCs with minimal overheads of up to 10.6%
in average latency and of up to 13.3% in EDP compared to the baseline PNoCs.
Thus, an attractive solution to enhance hardware security in emerging DWDM-
based PNoCs is presented as SOTERIA.

Acknowledgments This research is supported by grants from the University of Kentucky and
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Fig. 15.8 (a) normalized latency and (b) energy-delay product (EDP) comparison between
Flexishare baseline and Flexishare with 4, 8, 16, and 24 SOTERIA enhanced MWMR waveguide
groups, for PARSEC benchmarks. Latency results are normalized to the baseline Flexishare results
[30]
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Chapter 16
Security Frameworks for Intra and
Inter-Chip Wireless Interconnection
Networks

M. Meraj Ahmed, Abhishek Vashist, Andrew Keats, Amlan Ganguly,
and Sai Manoj Pudukotai Dinakarrao

16.1 Introduction

With the advent of the multi or many-core paradigm towards enhanced performance,
traditional bus-based interconnect mechanisms were found to be non-scalable from
a design perspective. This led to the adoption of the Network-on-Chip (NoC)
paradigm for interconnecting tens to hundreds of cores on a single die [1]. Regular
NoC architectures such as mesh or torus-based architectures have shown a reduced
design complexity and provided the benefits such as easy-to-replicate, verify and
reduced time-to-market [2]. However, such regular architectures resulted in non-
scalable performance with increase in number of cores due to long multi-hop paths
over wired links [3]. Along with other emerging interconnect technologies such as
silicon photonics or Through-Silicon-Vias (TSVs) for 3D NoCs, wireless intercon-
nects were envisioned to enable scalable communication fabrics in multicore chips
[4]. Though emerging interconnects such as silicon photonics and 3D TSVs provide
high bandwidth communication, the design and overhead costs, and concerns of
reliability limits their adoptability [5, 6].

In contrast, advancements in low-power Millimeter-Wave (mm-wave) wireless
transceivers, efficient on-die miniature antennas, and smart designs of hybrid
architectures with wired as well as single hop wireless links resulted in lower
packet latency and energy consumption in on-chip communication and facilitated
investigation of wireless NoCs (WiNoCs) in emerging many-core systems [7] as
well as in multichip computing systems [8].

M. M. Ahmed · A. Vashist · A. Keats · A. Ganguly (�)
Rochester Institute of Technology, Rochester, NY, USA
e-mail: ma9205@rit.edu; av8911@rit.edu; axk7655@rit.edu; axgeec@rit.edu

S. M. Pudukotai Dinakarrao
George Mason University, Fairfax, VA, USA
e-mail: spudukot@gmu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
P. Mishra, S. Charles (eds.), Network-on-Chip Security and Privacy,
https://doi.org/10.1007/978-3-030-69131-8_16

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69131-8_16&domain=pdf
mailto:ma9205@rit.edu
mailto:av8911@rit.edu
mailto:axk7655@rit.edu
mailto:axgeec@rit.edu
mailto:spudukot@gmu.edu
https://doi.org/10.1007/978-3-030-69131-8_16


424 M. M. Ahmed et al.

Fig. 16.1 Bandwidth and
energy consumption
comparison between wired
and WiNoC

A case study is performed to compare a wired NoC and a WiNoC for a 64 core
system with four wireless interfaces (WIs) overlaid on a mesh in 65nm technology
node over a 20 mm×20 mm die. The size of each packet is set to 2 Kb. More
details on experimental setup are presented in Sect. 16.5.1. One can observe from
Fig. 16.1 that the WiNoC improves the bandwidth per core and energy per packet
by 15% and 39%. This demonstrates the potential benefits of adopting WiNoCs for
interconnecting multicore or many-core processors.

On the other hand, high-performance computing nodes such as blade servers
and embedded systems have been undergoing a massive paradigm shift from single
core, single chip architecture to multicore-multichip (MCMC) architecture. This
paradigm shift is justified as follows, for a large single chip, different factors such
as sub-wavelength lithography, line edge roughness, and random dopant fluctuations
can cause wide process variations, which can result in higher fault density and
hence, reduces the manufacturing yield.

Performance of the MCMC system is mostly limited by the high latency and
power-hungry off-chip I/Os. Conventionally, C4 bumps coupled with in-package
transmission lines or flip-chip packaging [9] is used to interconnect chips within
a MCMC system. However, signal quality deterioration due to microwave effects,
crosstalk coupling effects, and frequency-dependent line losses in the transmission
line limit the number of concurrent, high-speed inter-chip I/O and hence chip-
to-chip bandwidth. In recent literature it has been shown that WIs operating at
GigaHertz (GHz) bandwidth in mm-wave bands can mask off-chip I/O delay by
establishing single hop, energy-efficient chip-to-chip communication links [8, 10].
In this chapter, we refer such MCMC systems with in-package mm-wave wireless
interconnect as Wireless Network-in-Package (WiNiP).

Although extensive research has been carried out towards improving perfor-
mance and energy dissipation in both WiNoCs and WiNiPs, relatively little attention
has been given to the information integrity and security or privacy aspects of
the on and off-chip wireless communication. While security of traditional wired
NoCs against various kinds of attacks such as hardware Trojans (HT) [11],
eavesdropping (ED) has resulted in appropriate defense mechanisms, the additional
threats that unguided wireless interconnects can engender have not received the
necessary attention. Wireless interconnects are vulnerable to attacks, similar to
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those encountered in other wireless networks such as sensor networks or mobile
networks. Furthermore, conventional defenses against persistent jamming attacks
such as frequency or channel hopping [12] are not applicable in a WiNoC/WiNiP,
as the WIs have access to a single shared channel and extremely limited resources.
This calls for an embedded defense mechanism for current and emerging mm-wave
based on and off-chip interconnection architectures.

Wireless being an unguided, shared transmission medium is vulnerable to many
attacks such as Denial-of-Service (DoS), ED, and spoofing. Although each of these
attacks requires its own detection and defense mechanism, in this chapter we focus
on persistent jamming-based DoS attack as well as ED attacks as they are some
of the most common, simple, and yet powerful attack on wireless systems. To
replicate such an attack, we consider an external attacker that produces a high energy
electromagnetic (EM) radiation that causes interference in the ongoing wireless
transmission.

Moreover, it is also possible that a HT planted in the system from a vulnerable
design and manufacturing process can cause a WI to transmit persistent jamming
signals to cause DoS for other WIs. In this case, one of the WIs infected by
a HT will send data over the wireless channel irrespective of whether it is
enabled by the adopted Medium Access Control (MAC) mechanism. This will
cause contention or interference with legitimate transmissions causing DoS on the
remaining WIs. While well-known defenses exist against DoS attacks in large-
scale wireless networks [12], those techniques are not directly applicable to the
WiNoC or WiNiP scenario due to specific architecture and MAC constraints for
wireless interconnection architecture. Similarly, for ED attack, we assume an
external receiver can be tuned to the wireless channel used for on and off-chip
wireless communication, resulting in information leakage or that an internal HT
passes packets received over the wireless channel downstream to a malicious node
even when the packet is not addressed to the particular receiver. Such an attack can
lead to leakage of sensitive information either directly via an external eavesdropper
or through an internal malicious node.

In this chapter, we propose a mechanism to detect and recover from persistent
jamming-based DoS attacks that can disable the wireless communication in both
WiNoCs and WiNiPs. We re-use the existing Design for Testability (DFT) hardware
and deploy a Machine Learning (ML) classifier to detect and defend against
persistent jamming attack. To handle more intelligently crafted jamming attacks and
ensure a robust, accurate detection and defense mechanism we utilize an Adversarial
Machine Learning (AML) and adversarial training for the deployed ML classifiers.
Moreover, under such jamming attack, especially for WiNiP architectures, it is non-
trivial to synchronize and inform all other WIs about the presence of an adversary
as inter-chip communication happens through only wireless medium which is itself
vulnerable to the attack. To address this issue, we also develop a MCMC wireless
communication protocol along with a reconfigurable MAC that can ensure robust
and secure communication under internal and external persistent jamming attack.
In addition to DoS attack, we propose to equip each wireless transceiver with
a mechanism to prevent information leakage through ED. To achieve this, each
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wireless transceiver will encode sensitive data using a secret code to minimize the
overheads as well as maintain a high throughput.

The chapter has been organized as follows. Section 16.2 describes the contempo-
rary works in NoC security. The attack model for wireless interconnect architectures
considered in this chapter has been described in Sect. 16.3. Section 16.4 elab-
orates the security architecture for WiNoCs and Sect. 16.6 expands the security
methodology for WiNiP communication. Results for secure WiNoC and WiNiP
interconnection architectures are presented in Sects. 16.5 and 16.7, respectively.
Section 16.8 concludes the chapter.

16.2 Contemporary Works

Considerable research has been done on developing techniques for securing con-
ventional NoCs and NoC based multicore processors [13–16]. However, these
security measures are confined to wired NoCs and not applicable to wireless
interconnections. Very little attention has been dedicated to this important problem
of securing on and off-chip wireless communication, although it has been identified
as an important challenge to be overcome to make intra and inter-chip wireless
communication a reality [7]. In [17], a small-world graph based WiNoC architecture
was proposed to mitigate DoS attacks. On the other hand, hash based authentication
to prevent eavesdropping has been proposed in [18]. In [19] a secure WiNoC
architecture has been proposed that can protect against DoS, eavesdropping and
spoofing but engages the Operating System (OS) to block DoS attacks in a WiNoC
with contention-free channel access. However, this work does not address the issue
of jamming attack from an external attacker assuming that the packaging will protect
against such attacks. This may not be true for all kinds of chips or packaging
materials and can create DoS attack on WiNiPs. Persistent jamming-based DoS
attack for on-chip wireless interconnect has been addressed in [20]. In case of
external jamming, the authors in [20] utilized the underlying wired NoC to sustain
communication. However, such solution cannot be adopted for WiNiP, as in WiNiP,
off-chip communication happens only through wireless interconnect In addition,
there exist techniques such as Signature-based attack detection [21], event-based
attack detection, which are primarily carried out in software, as the hardware to
support such techniques will incur overheads. Though such techniques can detect
anomalies, they are hampered by its large latencies and processing overheads, which
might not suit a multicore NoC. Furthermore, threshold-based attack detection [22]
can be seen as another viable approach for attack detection with low complexity.
However, if one utilizes the recoverable error rate as a threshold to distinguish
burst and jamming induced errors, the chances of false negatives could be high,
as unrecoverable burst errors need not always be caused by jamming.

Similarly, ED poses another threat in securing the communication information.
Encryption has been widely proposed in order to secure the communication
information. Some of the encryption techniques such as asymmetric key encryption,



16 Security Frameworks for Intra and Inter-Chip Wireless Interconnection Networks 427

though efficient, poses large overheads, especially in the case of on-chip commu-
nications due to utilization of hash tables and computational complexities. This
necessitates adoption of symmetric key encryption techniques such as Advanced
Encryption Standard (AES) [23]. Though AES has a proven robustness against side-
channels in the networking domain, adapting it for WiNoC communications adds
large processing overheads and thus is not feasible. In contrast, the work presented
in this chapter performs encoding to scramble or mask the data to protect against
external eavesdropping and an embedded functional block to detect and prevent
internal eavesdropping, leading to lower overheads with sophisticated detection
schemes for different kinds of attacks.

In [24], the authors developed a spoofing detection and defense mechanism based
on received signal power for on-chip wireless interconnect. However, the proposed
mechanism in [24] imposes placement restrictions for WI nodes to distinctly
identify the senders that are equidistant from the receiver. Such WI placement
restrictions can have significant performance impacts and placement challenges.
Moreover, such mechanism cannot be extended for WiNiP systems specially in the
presence of an internal or external jammer. Persistent jamming-based DoS attack
in WiNiP context has been addressed in [25] which forms the basis of WiNiP
security mechanism described in Sect. 16.6. Though persistent jamming attacks
are less studied in WiNiPs, a vast amount of research is performed in Wireless
Sensor Networks (WSN) for potential solutions. For instance, frequency hopping
has been traditionally employed in order to overcome the presence of a jammer [26].
However, multiple jamming devices operating on different bands can effectively
block the entire spectrum.

On other hand, although ML has been used in the context of NoC systems
for congestion-aware routing [27], it is not used for securing NoC, especially
against DoS attacks due to resource constraints. However, there exist works on
detecting DoS attacks on cloud or IoT systems. We review some of them and
outline the differences here. In [28], a decision tree (DT) based algorithm is
devised for detecting DoS attacks in cloud environment. Further, it is combined
with signature detection techniques for improving efficiency. Similar works using
radial basis function (RBF) neural networks (RBFNNs) [29], artificial NNs (ANNs)
[30], are proposed, and [31] presents a comparison of different ML algorithms when
detecting Distributed DOS (DDoS) attacks in cloud and IoT devices. The work in
[32] employs 23 features to detect the DDoS attacks using different ML classifiers.
Despite having the similar objective of detecting DoS/DDoS attacks, the constraints,
protocols, and traffic flow are different for miniature NoC systems.

Thus, the main differences and challenges compared to existing works using
ML for security against DoS/ED attacks can be outlined as follows: in the existing
works, the detection is carried out in a cloud or resource-ample environment, where
complex computations can be afforded. However, on a NoC like miniature system
that is considered in this work, the overhead and processing resources are limited
and play a pivotal role. As such, a direct adoption is inefficient and leads to large
overhead and performance penalties.
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16.3 Attack Model for WiNoCs and WiNiPs

Here, we discuss the attacks and their manifestations on the adopted WiNoC and
WiNiP architectures considered in this chapter. Several security and privacy attacks
have emerged in the recent times on multicore processors [33]. In this chapter,
we consider persistent jamming-based DoS attacks and ED (arising internally as
well as externally) on the wireless interconnection architecture used in WiNoC and
WiNiPs. In the presence of a persistent DoS jamming attack either from an external
or internal attacker, there will be interference among the attacker and the legitimate
transmitter. This interference will cause high error rates due to interference noise.
Moreover, as the attack is over a relatively long period of time, it will cause errors
in contiguous bits of flits resulting in burst errors. Over the duration of attack,
these errors will span multiple flits and therefore, cause burst errors in multiple
consecutive flits of a packet. On the other hand, burst errors in both wired and
wireless NoC links can happen as a random event as well. Burst errors can also
be a result of power source fluctuations, ground bounce or crosstalk [34]. However,
the burst errors due to random events such as crosstalk will be relatively short lived,
typically, a single clock cycle, due to the data transition pattern in that cycle. On the
other hand, burst errors resulting from persistent jamming could be sustained for
longer duration, as a short DoS attack is not an effective attack.

A few burst errors caused by a short-lived DoS can be corrected/detected by
a burst error correction/detection (BEC/BED) code depending on its correction
capability. In the absence of such a BEC mechanism, a request for retransmission
can be sent in case of erroneous flits from the upper layers of the NoC protocol
stack. Therefore, to be truly effective as an attack, the jamming has to last for
relatively long duration to cause enough flits to be in error such that the existing
BEC mechanism either cannot correct it or retransmission requests are prohibitively
expensive due to a potentially large number of requests. Therefore, we need a
mechanism to detect jamming-based DoS attacks and distinguish it from a random
burst error. We consider attacks either from a single external attacker or a single
internal hardware trojan based attacker which affect one or more WIs in the
communication infrastructure. The jamming signal can be caused by an external
source equipped with a RF transmitter tuned to the spectral band used in the on
and off-chip wireless communication. Another likely scenario is when a particular
WI already existing in the WiNoC/WiNiP is affected by a hardware trojan which
forces the WI to ignore the contention-free MAC mechanism and continue to inject
traffic from the transmitter of the WI. This constitutes an internal attack. We do
not assume that an additional WI is placed as a trojan in the chip as that would be
relatively easy to detect. Rather, one of the existing WIs is infected by the trojan and
ignore the MAC rules and create jamming even when it is not supposed to transmit
over the shared wireless medium.

Despite ML being robust to random noises, it has been shown that ML techniques
are vulnerable to crafted threats, termed as adversarial samples [35]. Adversarial
samples exploit the sensitive features in the input or the ML model, adding noise
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to which can lead to misleading the output of the ML model [36, 37]. In similar
manner, in this work, we introduce an adversarial attacker who can attack the system
by cognitively crafting the attack.

The first step to launch such an adversarial threat is to determine the model
(and/or parameters). This is performed through reverse engineering process by
iteratively sending in the data and obtaining the responses, similar to that in [38].
Once the reverse engineered model is built, then, the attacker tries to estimate the
model and introduce the perturbations by incrementally increasing the noise to the
input features that are sensitive similar to [39] to evade detection or to induce false
alarms. In this chapter, we utilize Fast Gradient Sign Method (FGSM) attack [35] to
craft such an adversarial attack. However, it needs to be noted that direct application
of FGSM is not feasible, as it does not have a notion of relativity between individual
features when crafting an adversarial sample. To combat such scenario, we introduce
the relationship between different features such as number of errors not more than
the total number of packets sent in the form of constraints.

In similar manner, we consider the ED attack can arise either from an external
or internal attacker. In both cases, we assume that the attacker is passive, thus hard-
to-detect and can receive any information communicated between different nodes
in the wireless interconnection fabric by tuning into the unguided and unprotected
wireless channel. For external eavesdropper, we consider a passive external receiver
tuned to the band used in the WIs with enough sensitivity capable of receiving the
data transmitted over the wireless channel. In the case of internal eavesdropper, the
passive attacker receives data that is not addressed for it and routes it downstream
to a malicious agent.

16.4 Security Framework for On-Chip Wireless NoC
(WiNoC)

Here, we describe the elements and design of a secure WiNoC interconnec-
tion architecture focused on mm-wave wireless communication between various
cores/modules within a multicore single chip environment. This adopted WiNoC
architecture is generic and adopts elements from various designs over the past few
years.

16.4.1 WiNoC Topology

We consider each core in the multicore chip is connected to a NoC switch via a
Network Interface (NI). The switches are then connected by wired links forming a
mesh topology. We adopt a mesh architecture for the wired NoC topology due to its
low complexity, ease to verify and manufacture due to uniformity of link lengths.
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Fig. 16.2 WiNoC topology and WI components (inset)

However, other topologies such as torus or small-world can be chosen if required
by the system design constraints. In addition to the wired links, a few NoC switches
are equipped with an additional port connected to a wireless transceiver to access to
the mm-wave channel, thus forming a hybrid WiNoC architecture. These switches
are referred to as Wireless Interfaces (WIs).

Based on several previous works such as [40], we partition the mesh into multiple
subnets to deploy the WIs among the NoC switches, as shown in Fig. 16.2. A
central switch in each subnet is a WI to facilitate access to the wireless medium.
The selection of subnet size (or the number of WIs) offers a trade-off between
performance of the WiNoC and area overhead of the WIs, which can be designed
with system-level simulations. The underlying cores are not shown for the purpose
of brevity. To ensure WiNoC security, we consider equipping the WIs with a
Wireless Security Unit (WSU), which can detect and protect against persistent
jamming and ED attacks from both internal and external attackers. The WSU is
embedded in the WIs so that it can process the data and detect the attack before the
data passes downstream to other NoC switches. More details on WSU are presented
in the next section.

16.4.2 Wireless Interconnect Overview

We consider using of on-chip embedded miniature antennas operating in the 60 GHz
mm-wave band unlicensed by Federal Communications Commission (FCC), which
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Fig. 16.3 WSU architecture

can establish direct communication channels between the WIs. We intend that
the chosen antenna to be compact as well as non-directional, so that they can
communicate with other WIs in all directions. We adopt the 60 GHz zig-zag antenna
with these characteristics from [40].

To ensure high bandwidth and energy efficiency, we adopt a transceiver design
where low-power design considerations are taken into account [41, 42]. Non-
coherent On-Off Keying (OOK) modulation is chosen, as it allows relatively simple
and low-power circuit implementation without the need for power-hungry carrier
recovery and high-frequency synchronization circuitry. Each WI is a combined
transceiver with a single antenna enabling half-duplex communication. Parallel data
from a NoC switch is serialized using a Parallel In Serial Out (PISO) register before
transmission and vice-versa after reception, where they are received into a Serial In
Parallel Out (SIPO) buffer. The PISO buffer receives data from the output virtual
channel (VC) of the transmitting WI while the SIPO sends the received data to the
input VCs of the receiving WI, as shown in Fig. 16.3.

To avoid non-scalable central arbitrations and power-hungry synchronization
across the chip and facilitate contention-free wireless channel access, we adopt a
distributed wireless token passing MAC mechanism to grant access of the shared
wireless channel to only the WI possessing the token. Each WI can only occupy the
token for a pre-determined maximum time that is optimized based on system-level
simulations.

We consider using a forwarding-table based routing algorithm over pre-computed
shortest paths along a Minimum Spanning Tree (MST) determined by Dijk-
stra’s algorithm. Consequently, deadlock is avoided by transferring flits along the
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extracted shortest path routing tree. The routing decisions are made locally based
on the forwarding table for determining the next hop and is done only for the header
flit, reducing computing requirements and maintaining global routing information.

16.4.3 WSU Design for Secure Wireless Communication

In this subsection, we discuss the mechanism to secure the adopted WiNoC against
the DoS and ED attacks. To enable the proposed secure WiNoC, each WI is
equipped with a WSU to sustain functionality of the interconnection fabric even
under jamming-based DoS attack.

The proposed WSU shown in Fig. 16.3 has two main components, the DoS
Security Block and the ED Security Block. The DoS Security Block consists of
a Linear Feedback Shift Register (LFSR) called MAC-LFSR, a Burst Error Control
Unit (BEU), an Attack Detection Unit (ADU), and a Defense Unit (DU). In the
normal mode of operation, the data flits are received at the SIPO buffer of a NoC
switch equipped with a WI. Upon reception of flits at the receiver’s SIPO buffer,
flits are sent to the BEU. The BEU then detects a burst error and sends its output to
the ADU. The BEU employs the BEC proposed in [34] to detect burst errors. The
corrected flits after burst error correction are sent to the input VCs of the NoC switch
to be routed downstream in parallel to the error related information (as discussed in
the next subsection) being sent to the ML Classifier. This removes the DoS detection
mechanism from the critical path of the data transfer. The ADU further comprises of
an intelligent unit which uses an ML classifier, and an attacker detection unit. The
ML classifier is responsible for detecting if the system is under attack based on the
input it receives from the BEU. More details of the ML classifier are presented in the
next subsection. If the ML classifier detects an attack as opposed to a random burst
error, it asserts a flag to the ADU. The ADU receives the input from the ML classifier
and determines if the attack is internal or external as discussed in Sect. 16.4.4.3.
Based on the kind of attack, corresponding security measure is chosen.

The Eavesdropping Security Block consists of a Linear Feedback Shift Register
(LFSR) called code-LFSR, security encoder (Sec-ENC), and security decoder
(Sec-DEC) as shown in Fig. 16.3. The code-LFSR generates code words pseudo-
randomly which are used to encode the data flits using parallel bitwise XOR gates in
the Sec-ENC. The Sec-DEC in the receiver uses the same code to XOR the received
flits to recover the original data. To protect against brute-force eavesdropping the
code-LFSR is clocked periodically to generate a new code. This will protect against
a suspected external ED. To protect from internal ED, each packet that accesses
the wireless interconnect will have the address of the intermediate WIs embedded
in a header field in addition to its final destination. A rule-based checker in the WI
compares the address of the target WI of the received packet headers with that of the
WI to verify if it is a legitimate packet or if it is being eavesdropped. The operations
of these components are elaborated in the next subsections.
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16.4.4 DoS Attack Detection and Defense Mechanism

In order to detect a DoS attack, various ML classifiers have been deployed. First, we
present the details of ML classifier and modeling of DoS attack, followed by DoS
attack detection and activated defense in the event of DoS attack detection.

16.4.4.1 Machine Learning for Attack Detection

As aforementioned, the considered attacks in this chapter primarily result in causing
continuous sustained burst errors in the flits (data corruption). In the proposed
WiNoC, the output of BEU, which is the number of burst errors within a block,
is fed to an ML classifier to detect and differentiate attacks. We experimented
with multiple ML classifiers to evaluate the robustness and efficiency of attack
detection in the proposed system. The different ML classifiers considered here are:
multi-layer perceptron (MLP), support vector machine (SVM), k-nearest neighbors
(KNN), Decision tree (DT), and J48 classifiers. The rationale for experimenting
with different classifiers are: (a) there exist no unique classifier that has “perfect”
yield; (b) different classifiers have different resource requirements and performance
(accuracy, and latency) and (c) the chosen classifiers represent different branch of
ML, thus representing a wide spectrum of ML classifiers. The ML classifiers in the
ADU utilizes an offline learning with runtime inference to alleviate the complexity,
processing overheads and facilitate faster inference (attack detection). The ML
classifiers output a flag signal when an attack is detected. The ML classifier does not
send any data to the switch buffers. This prevents ML classifier from creating any
DoS attack. In addition, we also assume that the detector unit along with all other
security blocks is designed, verified, and tested in a secure environment, similar to
secure IC design, thereby preventing any HT insertion in the security blocks.

In order to train the ML classifier, the attacks mentioned in Sect. 16.3 are
deployed on a WiNoC (shown in Fig. 16.2) with no security mechanisms deployed.
A cycle-accurate NoC simulator was modeled to operate in one of the three modes:
normal, random burst errors, and DoS attack. In the normal mode, the wireless
interconnects are assumed to work with the reliability level determined by the
operation of the transceiver and their operating thermal noise. This type of noise is
shown to result in a random Bit Error Rate (BER) of 10−10 or less [42]. The second
mode (random burst errors) is modeled with higher BERs as the burst errors are
contiguous bits of flits. BERs of 10−5 are used in this case [34]. Lastly, under DoS
attack, a high BER of 0.5 is assumed as for identically and independently distributed
(iid) data bits even a very high power jamming signal can cause errors only half
of the time on an average. This is because the adopted modulation mechanism in
these wireless interconnects is OOK, where the data bits are represented as presence
or absence of transmission. Therefore, a persistent jamming signal will only cause
errors when the transmission is supposed to be absent, which can be assumed to be
half of the time for iid data.
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Fig. 16.4 Markov chain process with different operating states

The simulator is modeled to create flit errors based on these BER information,
which are then assumed to be detected by the BEU. The simulator is made to
operate in one of the three modes dynamically by using a Markov Chain driven
process, as shown in Fig. 16.4. The manifestation of the DoS attack is considered to
result in the same kind of burst errors for both internal and external attackers. The
probability of staying in the attack mode, when already under attack is considered
high, as a persistent jamming attack is effective only when it is sustained for a long
duration. The probability of staying in a random burst error mode when already in it,
is modeled as low as random burst errors are short-lived phenomena. The probability
of transition into normal mode from a random burst error mode is therefore high.
The specific probability values can be altered to model any particular scenario.
This observed data (number of errors, flits transmitted and received) along with the
operating mode as encountered in each WI is used to train the ML classifier at that
WI. As the duration of the individual mode are determined by the Markov Chain
randomly, each specific instance of the mode has varying duration, resulting in a
diverse training data set.

For the inference, i.e., attack detection, the ML classifiers are fed runtime
information such as whether a flit is received or not, and whether a burst error is
detected or not to detect the mode of operation of system. Training of ML classifiers
is performed with a hundred thousand cycles of data.

16.4.4.2 Strengthening Attack Detection with Adversarial Learning

In order to craft the adversarial perturbations, we consider a functionally reverse
engineered ML classifier, i.e., a neural network with θ as the hyper-parameters, x

as the input to the model (communication information such as number of packets
transmitted, packet errors), and y as the output for a given input x, and L(θ, x, y)
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as the cost function used to train the neural network. Then the perturbation required
to misclassify the ongoing communication is determined based on the cost function
gradient of the neural network (in this case). The adversarial perturbation generated
based on the gradient loss, similar to the FGSM [35], is given by

xadv = x + εsign(∇xL(θ, x, y)) (16.1)

where ε is a scaling constant ranging between 0.0 and 1.0 is set to be very small such
that the variation in x (δx) is undetectable. In case of FGSM the input x is perturbed
along each dimension in the direction of gradient by a perturbation magnitude of ε.
Considering a small ε leads to well-disguised adversarial samples that successfully
fool the machine learning model. In contrast to the images, where the number of
features is large, the number of features in our environment, i.e., flit errors is limited.
Thus the perturbations need to be crafted carefully and also ensured that they can be
generated during runtime by the applications. For instance, a flit error higher than
transmitted flits makes no sense and is impossible to implement. Hence, we include
a lower bound on the adversary values that can be predicted.

Once the adversarial pattern is predicted or determined, the attacker crafts the
attacks through induced errors or by spacing the attack in time so that the errors
split over time as predicted. The attacker internal or external, is modeled to display
the adversarial behavior as discussed above to create errors in the communicated
flits only when the adversarial model allows rather than assuming constantly high
BERs when in the attack state of the Markov Chain as in the previous subsection.
Therefore, even when the simulator is in the attack stage, BERs may not be
consistently high making the attack more sophisticated and decrease the likelihood
of a detection. In order to defend against such threats, we incubate a hardener unit.
The hardener unit predicts the adversarial samples, similar to the aforementioned
attack and updates the ML classifier model through adversarial training [43]. The
hardener is deployed off-chip (on a connected system), but it updates the weights of
the ML classifier to robustify against the adversarial threats. One can argue that the
adversarial training is inefficient in defending against wide range of crafted threats
and large range of perturbations. However, in this given context, crafting too many
vivid range of threats is not feasible due to the correlation between features. Further,
large variations or perturbations can be easily caught, as large deviation in the errors
clearly indicate the presence of anomaly.

16.4.4.3 Attack Detection Unit Operation

In this section, we discuss the logic block that is designed to distinguish an external
attacker from an internal one in the proposed secure WiNoC, ensuring different
defense mechanisms are activated. The detector takes as an input the signal from
the ML classifier that detects the occurrence of a jamming-based DoS attack. On
the detection of an attack, the ADU activates the probe mode, in which all the WIs
operate according to the token based MAC mechanism controlled by the MAC-
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LFSR. The MAC-LFSR is enabled when the ML classifiers of any of the WIs detects
an attack. They send this single-bit signal to the MAC-LFSR. We consider the MAC-
LFSR to be located in a secure part of the chip and it is reasonable to assume that
it is not affected by the wireless jamming attack model assumed here. The MAC-
LFSR then grants access to the wireless medium to each WI in a pseudo-random
pattern. A probe-clock triggers the MAC-LFSR to generate the encoded grant signal
which is decoded to create a one-hot signal which is sent over a pipelined link to the
transmitters of all the WIs. A parallel-load shift register is used to serialize this one-
hot signal. The token register in each WI is converted into a scan Flip-Flop. At each
transmitter this signal is ANDed with the power supply routed from a secure Power
Management Unit (PMU) [44], which is not vulnerable to the wireless attacks, to
regulate the power supply to the transmitter. Thus, only one transmitter transmits
data flits over the WI in one instance.

The very first signal is initialized as an all-zero signal to disable all WIs from
transmitting. In this case, if any of the WIs still receives wireless transmission,
it implies that the jamming source is an external attacker as none of the internal
transmitters are powered on. The probe mode is then terminated and the decision
is sent to the defense block for appropriate action. However, if in this case, there
is no RF transmissions received, the MAC-LFSR progresses to further probing by
cycling through the MAC-LFSR, where only one transmitter is powered on in each
cycle. In these cases, where the enabled WI is not the internal attacker, there will
be interference in received flits at the WIs due to continuous jamming from the
attacker. Only in the case where the MAC-LFSR enables the attacker there will be
no interference and correct reception will be received at the WIs. The ID of this WI
is then passed to the defense block. The data packet that each WI sends in the probe
mode can be a pre-programmed pseudo-random data that can be distinguished from
random bits when the WIs receive this packet. It could also be same or different
for each sending WI. Alternatively, these can be generated by a local LFSR and
compacted into signatures at the receiving WIs to match with a known signature.
So, the algorithm declares the WI that is enabled by the MAC-LFSR in which case
correct data packet or signature is received, as the internal attacker. Figure 16.5
depicts the ADU process.

16.4.4.4 WiNoC Defense Mechanism Against DoS Attack

The ADU passes the address of the WI that is determined to be the attacker to the
DU. In case the attacker is an external agent, the address is an all-zero string. If the
address received indicates an external attacker, the DU sends a signal to the secure
PMU to shut down all the WIs and also update the routing tables of the WIs such
that the wireless links are not used for data routing. These updates of the routing
tables can be done without hardware overhead as these alternative values can be
pre-computed for each WI for the alternative shortest path routing when the WIs are
not available and stored in the OS. Therefore, in this case, all the WIs are disabled
and data is routed via the wired links, eliminating the advantage of the wireless
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Fig. 16.5 Jamming-based DoS attack detection and defense mechanism flow diagram in WiNoC

interconnections. In order to benefit from the wireless interconnection, the probe
mode is periodically activated by the ADU to check if the attack has stopped. In
this case the use of the WIs can be resumed by using the PMU and by updating the
routing tables.

If the address passed on to the DU indicates the address of an internal attacker,
the DU sends a signal to disable only the power supply to the indicated WI and
updates the routing table of its NoC switch to not use the WI. In this way, only the
trojan infected WI is disabled and the rest of the WIs continue to use the wireless
medium. Unlike the previous case, as the attacker is an internal hardware trojan, the
associated WI may never be safe to use again and therefore will be permanently
disabled using the PMU and quarantined. The core or cores attached to the infected
WI will continue to route their packets over wired links using the NoC switch as the
HT does not influence the wired part of the NoC in the threat model that we have
considered in this work.

16.4.5 Defending WiNoC Against Eavesdropping

In this section protection against passive eavesdropping has been discussed as it
is relatively easy to launch and very difficult to detect. We discuss our protection
strategy against both an internal and an external passive eavesdropping attack from
a single attacker.
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16.4.5.1 Defense against External Eavesdropper

For a single agent external passive ED, it is complex and nearly impossible to
detect with the available resources and capability of the WiNoC. This is because,
there may not be any change in the behavior of the overall system during such
an attack. Furthermore, we assume that the wireless NoC communications will
have enough power and/or the eavesdropping attacker is sensitive enough to
pick up the transmission and decipher the information. This is in-line with real-
world eavesdropping attack scenarios. The attacker needs to be equipped with a
wireless receiver tuned to the wireless channel used in the WiNoC and have basic
depacketization functions which are extremely simple and low-overhead in NoCs
and therefore easy to instantiate.

In order to address this threat, we propose to deploy a simple XOR-based data
scrambling approach. The header flits are not encoded to enable routing as in
traditional networks. The rest of the flits, which are the body flits, are XORed with
a code word from each WI and transmitted over the wireless channel. We propose
to use the same length of the code word as that of each flit with parallel bitwise
XOR gates to reduce, the delay in communication. Therefore, the bandwidth is not
affected as the number of bits transmitted for a flit does not change. At the receiver,
the same code will be used to XOR the received flit to receive the uncoded data
back. In general, unless an eavesdropper has the same code, it cannot decode the
received flit. However, with enough time, an eavesdropper can determine the used
code with brute-force trials. Therefore, such schemes continuously change the code
used by each transmitter. In order to change the code periodically we generate the
codes from an LFSR in each WI. The LFSR can be of the same length as that of
the flit size (in number of bits). If a higher degree of pseudorandomness is desired
then a larger LFSR can also be used. In this paper, we consider the LFSR to be
of the same size as that of the flit. We refer to these LFSRs as code-LFSRs. The
enable signals for these code-LFSRs to generate a new code can be routed from the
Security Controller through the serializer in the normal mode of operation (not in
the probe mode when a jamming attack has been detected by the ADU). The special
all-“1” code can be used to signal all the code-LFSRs to change the code they are
creating to the next pseudo-random code in all the transmitters. All transmitters
have the same code-LFSR which is shared with the receivers collocated with the
transmitter. This code is used by the security encoder (Sec-ENC) and the security
decoder (Sec-DEC) in each WI as shown in Fig. 16.3. Therefore, the code used by
all the WIs is same at all times. Each transmitter does not need to have a unique
code-LFSR as this mechanism is for protection from an external eavesdropper and
not an internal one.

16.4.5.2 Defense Against Internal Eavesdropper

We model the internal ED as follows: we assume that one of the WIs is an internal
eavesdropper. The attack model is such that this WI is either always or intermittently
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processing data packets transmitted over the on-chip wireless medium which are not
meant for it. Therefore, the attacker WI can receive and leak (to the outside) data that
is not meant for it. This can be achieved with a HT which is embedded at the wireless
input port which does not allow the port to drop a packet that is not addressed for
the particular WI. As this is an internal attacker, we propose a mechanism to detect
such an attacker and to protect the WiNoC once such an attack is detected.

In order to detect the internal eavesdropper, power consumption based detectors
could be deployed. However, deploying such power measurement units incur
additional silicon footprint as well as computational overheads even in the absence
of attacks. Therefore, we propose equipping the input port of each WI with a
low-complexity rule-based checker. Moreover, as a WI transmits a packet over the
wireless medium it will embed the address(es) of the recipient WIs which may then
pass the packet further downstream to the final destinations. The rule checker will
match the WI address(es) of the header with the local address of the receiving WI.
If there is no match, the WI should not pass this header to any downstream port and
kill the packet to avoid packet duplication in the WiNoC. However, if this WI sends
this packet to any outgoing port including the local port to the core, the checker
raises a flag and this triggers an action in the secure PMU. The PMU then powers
down the particular WI to prevent it from eavesdropping further.

The location of the checker is critical in order to reduce the overheads and
delay in detecting such an eavesdropping. As the location of the checker should
be downstream from the logic block that is supposed to flush out a packet not meant
for the WI we propose to implement this checker after the input arbiter of the WI
switch. In this way, an eavesdropped packet can be detected if it is not flushed out
of the input buffers and progresses to the next step of routing. As during routing the
destination address of the header flit will be parsed anyway, it can also be used in
parallel to check for eavesdropping. This will minimize the additional overhead of
this checking. Moreover, in this way we do not delay the routing of the header of all
legitimate packets due to this checking. If the result is positive (detected ED) then
the flag is simply sent to the PMU which will prevent further reception of packets
at that WI. In addition, the flag is also sent to all the output ports of the WIs to flush
out the current packet when routing is completed to prevent information leakage of
that packet. This ensures quick reaction on detection of an internal eavesdropping.
The flushing of the input or output buffers is achieved by activating the reset on the
buffers without the need for any additional circuitry.

However, there are some exceptions to the proposed internal eavesdropper
detection and defense. For instance, when the packets are broadcast to all the WIs
or the eavesdropper WI happens to be one of the addressees in the packet header,
the proposed defense mechanism will fail and will have to rely on mechanisms at
higher layers of the system such as the application layer.
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16.5 Experimental Results and Analysis

In this section we present the evaluations of the proposed secure WiNoC and the
simulation tools used to evaluate it.

16.5.1 Simulation Setup

Simulation of wireless interconnection requires a combination of multiple simula-
tion tools. We use ASIC design flows with Synopsys Design Compiler using 65 nm
CMP standard cell libraries (https://mycmp.fr/) to model the digital parts of the
WiNoC such as NoC switches and the WSU. The BEU encoder and decoder are
implemented as two pipelined stages in the WIs to accommodate their delay [34]
thereby maintaining the pipelined communication of the WiNoC. Each switch has
three pipeline stages implementing backpressure flow control [45]. We consider
each input and output port of a switch including those with the wireless transceivers
to have 8 VCs with a buffer depth of 4 flits for all the architectures considered
in this work. We consider a packet size of 64 flits with a flit size of 32 bits in
our experiments. A uniform random traffic distribution is assumed with self-similar
temporal behavior at maximum injection load of 1 flit/core/cycle to evaluate the
NoCs under worst case traffic. All the digital components are driven by a 2.5 GHz
clock and 1 V power supply. The delay and energy dissipation on the wireline links
is obtained through Cadence simulations considering the specific lengths of each
link based on the NoC topology assuming a 20 mm×20 mm chip. The adopted
wireless transceiver circuits consume 2.075 pJ/bit at 16 Gbps in 65 nm technology
[41, 42].

The adopted antenna has a 3-dB bandwidth of 16 GHz [40]. The characteristics
of the transceivers, routers, and wired links are annotated into a system-level
cycle-accurate simulator to evaluate the performance of the WiNoC in presence
of DoS attacks and the proposed defense mechanism. The simulator monitors the
progression of flits on a cycle-by-cycle basis accounting for all flits that move or are
stalled. We evaluate the proposed system in terms of average packet latency, peak
bandwidth per core and average packet energy. Average packet latency is defined as
the number of cycles required for a packet to reach its final destination after being
injected on an average. Peak bandwidth per core is defined as the number of bits
received per core of the WiNoC per second with full injection load. Average packet
energy is the average energy dissipated by a packet to be transferred to the final
destination over the WiNoC fabric through switches, wired and wireless links.

https://mycmp.fr/
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16.5.2 ML Classifier Performance for DoS Attack Detection

Table 16.1 presents the accuracy and robustness (in terms of precision, recall, and
the area-under-curve (AUC) metrics) of different ML classifiers when deployed to
detect the DoS attacks. Higher the value of accuracy and robustness metrics, better
will be the performance.

One can observe from Table 16.1, among different classifiers, KNN achieves
high attack detection accuracy of nearly 99.87%, which is higher than the other
techniques. We anticipate this behavior, as no assumptions are made regarding
the data during the training phase of KNN. For the KNN, a Euclidean distance
function is employed with k = 1 due to its lower complexity. Therefore, KNN is
deployed in this ADU for attack detection. Though SVM displayed high accuracy,
it is observed in experiments that it is not able to detect sporadic variations such as
spontaneous random errors, and is hence not the best option. For the neural network
(MLP) a single hidden layer with 20 nodes is utilized. It can be argued that the
hyper-parameters of the ML classifiers can be tuned to improve the performance,
however, optimizing the ML classifiers is not the focus of this work. To compare
the ML classifiers with a heuristic method, we consider a threshold-based approach.
As shown in Table 16.1, the threshold-based mechanism is not as accurate as the
chosen machine learning (KNN) approach. Despite having low latency, threshold-
based approach has higher area and power consumption due to the involved floating
point computations and comparisons, as shown in Table 16.3. In this threshold-
based approach, two thresholds are necessary, to separate between the attack mode,
burst error mode, and normal mode. The thresholds are computed based on the same
data that was used to train the machine learning algorithms. The threshold between
the attack mode and burst error mode is chosen to be equidistant from the average
number of erroneous flits in burst errors and jamming induced errors. Likewise, the
threshold to separate the burst error mode from the normal mode is chosen to be
equidistant from the average number of flit errors in burst mode and normal mode.
For all the employed classifiers, the inputs (flits received, flits at error, and flit error
ratio) and output classes (normal, random error, DoS error) are same.

Table 16.1 ML classifiers’
performance for attack
detection

ML classifier Accuracy (%) Recall F-score AUC

MLP 47.86 0.48 0.65 0.47

SVM 98.96 0.98 0.98 0.99

KNN 99.87 0.99 0.99 0.99

DT 52.46 0.52 0.69 0.53

Thresh 94.55 0.92 0.92 0.95
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16.5.3 Detection Accuracy with Adversarial Attacks

We also evaluate the impact of the crafted adversaries on the traditional ML-based
threat detectors and the impact on the enhanced detector, i.e., hardener unit trained
with adversarial samples. Table 16.2 presents the performance of the traditional and
hardener detectors. As one can observe that under normal threat conditions, the
ML classifier (KNN) is able to achieve an accuracy of 99.87%. However, under the
adversarial scenarios, the accuracy of the same KNN drops to 85.67%. A similar
degradation in terms of performance is observed in other metrics too. Subsequently,
through the adversarial training an improvement in the accuracy to 95.95% is
observed with a similar trend in other performance metrics. One can observe that the
performance with adversarial training makes the classifier to have lower accuracy
compared to the normal classifier. However, it should be noted that in this case the
system is under attack from a smarter attacker which has adversarial knowledge of
the system and that without the adversarial training the WSU would be much less
accurate.

In addition to performance benefits, ML classifiers also incur silicon and resource
overheads. Table 16.3 presents the incurred overhead in terms of area, power, and
delay of the deployed ML Classifiers. The characteristics of the various classifiers
are obtained from post-synthesis RTL models are synthesized using 65 nm standard
cell libraries, as mentioned earlier. As the KNN Classifier has the highest accuracy
and lowest area and power consumption, we adopt the KNN Classifier for the
evaluation of overall system. Although, the delay of the KNN classifier is not
optimal, we choose KNN for attack detection, as the ML Classifier is not in the
path of data transmission of the WiNoC, as shown in the proposed secure wireless
architecture in Fig. 16.3. One can question the impact of false Negatives, i.e., DoS
not detected despite its presence. This scenario can lead to a DoS attack. However,
for any classification technique, false negatives/positives are inevitable. However,
the deployed classifier has shown robustness against such scenarios (0.13% for
employed KNN, smaller compared to others), which indicates a high detection
capability and low probability of misclassification.

Table 16.2 AML
performance evaluation

Accuracy (%) Recall F-score Precision

After attack 85.67 0.94 0.86 0.79

W Adv. Training 95.95 0.97 0.97 0.97

Table 16.3 Implementation
overheads of ML classifiers

Classifier Area (μm2) Power (μW) Timing (ns)

MLP 34,448.79 6299.3 0.41

SVM 5412.01 8076.1 0.37

KNN 105.28 27.075 0.56

DT 127.32 41.12 0.23

Thresh 24,262.63 22,515.2 0.07
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Table 16.4 WSU implementation overheads

MAC Decoder Scan ML BEU Code- Sec- Address Wireless

Metric LFSR FF Detector LFSR ENC/DEC Checker Tx-Rx

Area (μm2) 41.08 37.96 15.08 105.28 4357.5 326.4 26 219.49 200,000

Power (mW) 0.0594 0.0147 0.0247 0.027 0.0047 0.48 0.0361 0.859 36

Delay (ns) 0.16 0.09 0.07 0.56 0.80 0.16 0.07 0.24 0.0625

16.5.4 Performance of the WiNoC in Presence of DoS Attacks

This section describes the performance of the proposed WiNoC in presence of DoS
attacks from internal and external attackers. We consider a WiNoC with 64 cores in
a 20 mm × 20 mm die interconnected with a wired mesh and overlaid with 4 WIs at
the central node of each subnet of 16 cores. The WiNoC with embedded security
is also compared with an equivalent 64 core wired mesh in terms of performance.
The characteristics of the individual blocks in the WIs of the secure WiNoC are
shown in Table 16.4 and used in the simulation platform for the system-level
evaluations. From Table 16.5, it is clear that the WiNoC outperforms the wired
mesh in terms of peak bandwidth, latency, and packet energy due to the low power
wireless shortcuts between distant cores, which reduce the average path length and
also use a low-power wireless medium for communication. This performance can
change depending on the number of subnets and WIs deployed on the WiNoC [40],
however, that study or optimization is not within the scope of this work. The security
measures developed in this chapter will be effective irrespective of the number of
WIs for the assumed attack model.

Next, it can be seen that in presence of an external DoS attack, the performance
of the WiNoC is similar to that of the wired mesh. This is expected, as on detecting
an external attacker, the WSU deactivates all the WIs leaving wired links as the
only medium of communication for the purpose of security. On the other hand,
when the attacker is an internal agent, only the infected WI is disabled, retaining
the advantage due to the presence of the rest of the WIs. Thus, in the case of an
internal DoS attack, a degradation of <3% in communication bandwidth compared
to WiNoC without any attack is achieved. That is why the ADU is an important
design element to distinguish an internal attacker from an external attacker.

16.5.5 WiNoC Performance Against Eavesdropping

In this section, we evaluate the performance of the WiNoC in presence of eavesdrop-
ping attacks. For external eavesdropping, we adopt the XOR-based data scrambling
approach. The overheads of the additional code-LFSR and Sec-ENC/DEC is shown
in Table 16.3. Due to the parallel XOR gates scrambling all bits of the body flits
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in parallel, the delay of the encoder or decoder is very low, minimally affecting
the packet latency. The delay of the code-LFSR is not in the path of the data,
therefore, it does not impact the packet latency. Due to the adopted light-weight
scrambling approach, the impact of a threat of external eavesdropping is negligible
on the performance of the secure WiNoC.

In case of internal eavesdropping where the rule checker is able to detect
the attack, it will disable the infected WI and therefore, that WI will neither be
able to send nor receive packets over the wireless interconnections. Moreover, the
checker will add additional overhead albeit really marginal, as shown in Table 16.4.
Therefore, the performance will degrade compared to the system with no attack, as
shown in Table 16.5. Due to the disabling of the infected WI the overall performance
of this system is similar to the case of a detected internal DoS attack as in that case,
the system disables the attacking WI as well.

16.6 Security Framework for Multichip Systems with
Wireless Network-in-Package (WiNiP) Interconnect

In this section, we describe how we can expand the proposed on-chip WiNoC secu-
rity framework for MCMC systems using mm-wave wireless interconnect for inter-
chip communication. As discussed earlier, we refer MCMC systems using mm-
wave wireless interconnect for off-chip communication as WiNiP. Like WiNoC,
for WiNiP, we consider the same attack model, ML and AML-based detection
mechanism for persistent jamming-based DoS attack. However, unlike WiNoC,
WiNiP has multiple chips in the system and inter-chip communication happens
only through WIs located in different chips. Therefore, under external jamming
attack, especially for MCMC systems, it is non-trivial to synchronize and inform all
other WIs located at different chips about the presence of an adversary and continue
inter-chip communication in such attack conditions. Moreover, the existing chip-to-
chip wireless communication mechanism needs to be reconfigured as the attacker
has invaded the current carrier frequency and the wireless communication channel
has been compromised which is the only possible way to communicate with other
chips in a WiNiP architecture. To address this issue, we develop a MCMC wireless
communication protocol along with a reconfigurable MAC that can ensure robust
and secure communication under internal and external persistent jamming attack
for WiNiPs. Therefore, in this section of the chapter, we mainly focus on designing
the reconfigurable MAC and communication protocol to design a sustainable WiNiP
infrastructure for MCMC communication during jamming-based DoS attack.
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16.6.1 Multichip Topology

To meet the increasing memory demands for current and emerging applications and
mimic real MCMC architectures, we consider an MCMC system with multicore
processors and in-package memory modules. The memory modules are connected
to the edge cores through wired interconnect. Each tile in the multicore chips is
composed of a processing core, a switch, L1 private cache, and a distributed shared
last level cache (LLC). Tiles in each chip are connected with each other through
a regular wired mesh-based NoC. For inter-chip communication, in each chip, we
equip two NoC switches with WIs as shown in Fig. 16.6. Keeping the number of
WIs minimum for inter-chip communication helps to reduce the communication
overhead during jamming attack for our proposed approach.

However, a minimum of two WIs are necessary for each chip to ensure
connectivity and reliable communication with the rest of the system even if one
of them is compromised by an internal HT. A higher number of HTs within a single
chip are assumed to be unlikely as it will make HT detection easier. Typically,
the footprint of HTs is minimal by design and hence we assume a maximum of
a single HT per chip in our analysis. Although inter-chip communication happens

Fig. 16.6 A WiNiP topology in MCMC environment
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only through the WIs in functional mode, the MCMC system is compliant to Joint
Test Action Group (JTAG) test architecture where their boundary scans are daisy
chained. We leverage this JTAG infrastructure for enhancing the security of MCMC
system.

16.6.2 Persistent Jamming-based DoS-Aware Reconfigurable
MAC

A wireless medium MAC mechanism enables a contention-free communication
over the shared wireless channel among multiple transceivers. So far, no MAC has
been proposed which is jamming-aware and can sustain communication in both
normal and attack scenario. Therefore, we consider designing a reconfigurable MAC
mechanism operating in two modes for sustainable communication even under
persistent jamming attack. In the absence of persistent jamming attacks, we consider
using a reservation-based MAC, termed as Normal MAC (NMAC) for MCMC
communication. In NMAC, to get the channel access, each sender sends a non-
overlapping reservation request to all the receivers encoded by a Common (C) code.
Figure 16.8 shows the structure of the reservation packet and is discussed in details
in the next subsection. As each receiver is equipped with same arbitration logic, each
of them grants access to the same transmitter that gets the whole channel access at a
time. In NMAC, as one sender gets the whole channel access, it ensures a contention
free, high bandwidth off-chip communication.

The above mentioned mode of WiNiP communication is unaware of any
persistent external jamming. Therefore, we switch the MAC to Pseudo-random
Noise (PN) encoded Asynchronous Code Division Multiple Access (ACDMA)
during external jamming attack and call it Attack MAC (AMAC). In this work, by
ACDMA we only refer to using PN sequences and no other protocol overheads
present in ACDMA communication in mobile cellular network. Data encoded
with PN sequence is jamming and eavesdropping resistant because of the spread
spectrum technology where the transmitted signals appear as noise to every receiver,
except the one that has the PN code which was used to encode the data during its
transmission. Therefore, any transmission not encoded with the same code appears
as noise due to the weak cross-correlation, making this AMAC resilient to jamming.
The PN codes used for ACDMA communication should have a strong auto-
correlation and weak cross-correlation property. While maximal-length sequence
(m-sequence) and Kasami sequence can be used to generate PN sequences, these
sequences have worse cross-correlation property to Gold sequence [46]. Moreover,
Gold sequence can also support more users than both Kasami and m-sequence.
Therefore, we consider generating PN codes using Gold sequence.

We use the hybrid Transmitter-Common (TC) [47] PN code protocol to enable
communication in AMAC mode where each transmitter has specific codes to
encode packets they transmit and receivers have decoders for all channels to
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Fig. 16.7 Reconfigurable MAC flow diagram

be able to receive data simultaneously from multiple transmitters. The common
channel is used for arbitration and attack information propagation. We do not use
AMAC in normal, attack free operation circumstances, as it reduces communication
bandwidth of each link by its spreading factor. The focus of this paper is to ensure
robust WiNiP communication in presence of persistent jamming attack on a high
bandwidth WiNiP not to ensure high performance during such attack. Figure 16.7
shows the proposed reconfigurable MAC with the underlying operations.

16.6.3 Attack and Normal Mode Communication Protocol

Some of the key challenges of such jamming-aware hybrid MAC are to ensure
proper switching and synchronous operation across MCMC system for both NMAC
and AMAC modes with low overheads. In this section, we discuss our proposed
flow control that addresses these issues.

For high bandwidth off-chip communication during NMAC, each WI sends its
reservation signal encoded by a fixed common PN code to all other WIs. The PN
code being common to every WI increases the chance of corrupting the source-
destination addresses of the multiple simultaneous requests. Therefore, we propose
a non-overlapping/non-interfering source-destination representation. As shown in
Fig. 16.8a and b, each transmitter has its own slot to define its intended receivers.
The slots being non-overlapping and orthogonal do not create any interference with
each other in their aggregate signal as shown by Fig. 16.8c. Hence, receivers can
arbitrate among multiple requests and grant the channel to a single transmitter in
NMAC mode. The adopted arbitration logic considers channel access starvation for
WIs and provides priority to multi-cast traffic [48]. We re-use such non-overlapping
signals to ensure synchronous operation even under jamming attack as discussed in
the next paragraph.

When the MCMC system is under attack, all the WIs in the system change its
MAC to ACDMA mode and continue their communication, but with a reduced
bandwidth as the data is now encoded with PN sequence. We consider providing
the highest priority to attack conditions which is indicated by the attack flag in
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Fig. 16.8 Channel reservation and AMAC mode synchronization using attack flag

Fig. 16.8d. After detecting a potential external jamming attack as described in
Sect. 16.4.4, a WI uses such signaling encoded by fixed PN code to inform other
WIs during external jamming. All the other WIs in MCMC system after receiving
the attack signal switches to AMAC mode simultaneously due to the priority in
attack bit. The PN sequence generation and AMAC communication are described
in the next subsections.

16.6.3.1 Selection and Generation of PN Code

The PN codes are binary sequences that appears to be random, but, they can be
generated in a deterministic manner. However, to generate Gold sequence, two
preferred m-sequences of the same length are required. In each of the transmitters,
we configure two LFSRs according to the preferred polynomial pair and XOR their
output to finally generate the desired Gold sequence. Figure 16.9 shows the LFSR
configuration to generate a 32-bit gold code. Moreover, to generate a different PN
sequence for each of the transmitter, we choose different seed values for each of the
transmitters.

16.6.3.2 ACDMA Communication Mechanism in Attack Mode

During any persistent jamming attack, all the WIs in the multichip system change
the MAC to ACDMA mode as discussed in Sect. 16.6.2. In ACDMA mode, the
PN codes are managed using TC protocol. Before any transmission, similar to
reservation assisted NMAC mode, the senders use a common PN code to send
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Fig. 16.9 PN code generation using Data and MAC-LFSR

non-overlapping send requests as shown in Fig. 16.8. However, based on the
received requests, multiple receivers can grant access to multiple transmitters as
now communication happens through different ACDMA channels. We consider the
LFSR length to be 5 so that each PN sequence repeats after 32 cycles which is
exactly the same time duration of a single bit of the baseband signal. Therefore,
each signal in a particular transmitter will be modulated by the same PN sequence.
However, different transmitters use different codes of the same length because of
having different seed values. Each receiver stores the seed values in a small tamper-
proof memory where the address of the seeds matches their transmitter address.
Therefore, the receiver already knows which PN code to use for demodulation in a
particular channel while granting the channel access through reservation requests.
Hence, the additional delay for seed search does not have any impact on data
transmission. To enhance security the seed values can be dynamically changed as
commonly practiced in cellular networks [49]. The AMAC steps are also depicted
in Fig. 16.7. The transmitter and receiver architecture will be discussed in the next
section.

16.6.4 DoS Attack Detection and Defense for WiNiP

We utilize the same WSU unit and AML-based detection mechanism discussed in
Sect. 16.4.4 for WiNoC. However, as WiNiP does not have any wired interconnec-
tion between multiple chips and chip-to-chip communication happens only through
wireless channel, the defense mechanism for external jamming is completely
different than WiNoC. Here, we describe the defense for the internal and external
DoS attack in WiNiP.

DU implements different defensive measures based on the attack type. The ADU
passes the address of the WI that is determined to be the attacker to the DU. If the
address passed on to the DU indicates the address of an internal attacker, the DU
sends the signal to disable only the power supply to the indicated WI and updates
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the routing table of its NoC switch to prevent the use of the WI equipped port.
Moreover, as there are at least 2 WIs in each chip, the WI that is not compromised
will inform other WIs in the MCMC system to update their routing table for the
compromised WI. Now, all the incoming packets at the compromised WI will be
diverted to the other WI on the chip via wired links. Hence, only the HT infected
WI is disabled and other WIs continue to use the wireless medium.

In case the attacker is an external agent, the DU enables the detecting WI to
send control signal as shown in Fig. 16.8d over the common reservation channel
by setting the reservation flag on the transmitter side. The reservation channel like
the other ACDMA channels is resilient to jamming. Moreover, as the signal has the
attack flag set and is broadcast in nature, every WI in MCMC can switch the MAC
mode to AMAC simultaneously and continue communication even under external
persistent jamming attack. Moreover, for an external attack, the ADU periodically
probes the system to restore the system to NMAC mode once the external jammer
is no longer active.

16.7 Simulation Results

Here, we evaluate the performance of the proposed unified test and security of
WiNiP under different attack scenarios. The section concludes with our study on
the code length selection and system scaling.The simulation parameters are listed in
Table 16.6.

We evaluate the proposed system in terms of average packet latency and average
packet energy for application-specific traffic patterns from PARSEC and SPLASH2
benchmark suites. We consider a 4-chip system with 4 in-package memory modules.
The core configurations in Table 16.6 have been used to extract the core-to-memory
and cache coherency traffic for these applications when they are executed until
completion using SynFull [51]. In order to map these traffic patterns to the MCMC
environment, we consider multiple threads of the same application kernel running
on the MCMC system where each processing core executes a single thread and

Table 16.6 Simulation parameters considered for WiNiP

Component Configuration

System size 64 cores, Out-of-Order, 16cores/chip

Cache 32 KB (private L1), 512 KB (shared L2), MOESI

NoC router 3 stage pipelined 5 ports,0.078 pJ/bit(wired)

Total VC 4, each 8 flits deep, 32 bits/flit

Wired NoC links 32-bit flits, single cycle latency, 0.2 pJ/bit/mm

OOK transceiver 16 Gbps, 2.07 pJ/bit, 60 GHz, 2WIs/chip

CDMA Encoder, decoder [50], 16 Gbps, 0.66 pJ/bit

HBM links 128 Gbps, 6.5 pj/bit

Technology 65 nm, 1 V supply, 1 GHz clock
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Fig. 16.10 Simulation process

the memory stacks are shared among threads. Figure 16.10 depicts the simulation
process for the WiNiP architecture considered in this chapter. In the next section
we discuss the performance of the WiNiP architecture in presence of internal and
external jamming-based DoS attack.

16.7.1 Evaluation Under Persistent Jamming-Based DoS
Attack

As the proposed architecture takes different defensive measures for internal and
external attack, in this subsection, we study the impact of such measures on system
energy and latency using application-specific traffic patterns.

16.7.1.1 Internal jamming

Disabling a compromised WI (CWI) in case of internal attack forces the incoming
flits to change its route toward the remaining WI for chip-to-chip communication.
Therefore, it introduces congestion for other WI nodes and increases latency as
well as energy consumption. We consider three scenarios for our performance
evaluation under internal attack. First, we consider MCMC system with one CWI
for the entire (4 chip) system (1-CWI/sys). Second, we consider an MCMC system
having one CWI per chip (1-CWI/chip). We compared these scenarios with a wired-
only MCMC system where the cores at the edges of each chip are connected to
corresponding cores in the other chip with a mesh topology over high-speed I/Os.
As we considered two WIs per chip, a system having more than one CWIs in a
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Fig. 16.11 (a) Latency. (b) Energy under internal jamming attack for different MCMC systems

chip indicate a complete system failure and JTAG chain can be used for multichip
communication with huge latency penalty. It can be observed from Fig. 16.11 that,
although both the latency and energy consumption of the WiNiP increase with
increasing number of compromised nodes, it is still lower than the wired MCMC
system as each flit does not have to traverse through energy and latency-hungry
NoC links and I/O modules. However, the average packet latency is 1.44× of the
baseline system.

16.7.1.2 External Jamming

In the presence of an external persistent jamming attack, the MAC switches to
ACDMA which ensures secure communication. However, it increases the average
packet latency due to the encoding and decoding through PN sequence. Moreover,
the runtime PN sequence generation through LSFRs and CDMA transceivers
introduces additional energy overhead. The energy and latency overhead of the
MCMC system increase with the PN Code Length (CL). The relative performance
degradation of ACDMA communication under external persistent jamming with
respect to the baseline NMAC mode communication for different PN CL in bits
(16b, 32b, 64b) has been shown in Fig. 16.12. It can be observed from the figure
that, using a higher CL increases latency and energy consumption while providing
higher security. It is also interesting to note here that, even with a PN CL of 32b, the
WiNiP system under external attack outperforms the wired MCMC system. Only
for a PN CL of 64b, the performance of the WiNiP drops below the wireline system.

16.7.2 Optimum PN Code Length Selection

In AMAC mode communication, the system performance and communication
security are heavily depended on PN code length. Figure 16.12 shows the effect
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Fig. 16.12 Relative (a) Latency. (b) Energy degradation under external jamming attack for PN
code length variation

of PN CL on system latency and energy. In this subsection we analyze the effect of
CL on system security.

In ACDMA, all the simultaneous wireless transmissions appear as noise for
a particular receiver. Moreover, the attacker can also introduce its interference
noise and vary its output power to decrease the Signal to Noise plus Interference
Ratio (SINR). Therefore, we determine the maximum power of the attacker that
can be tolerated for a reliable communication for each of the CL considered
above. We target an SINR of 15 db [8] that results in a BER of 10−15 which is
comparable of wired link’s BER. For each transmitter and receiver pair we adopt
the transmitter power of −23.93 dBm, the noise floor of −69.43 dBm, and the path
loss of 26.5 dB [50]. We consider one valid communicating WI pair and model
other and attacker transmission as noise in the receiver side. Figure 16.13 shows
the SINR variation for various PN CL (in bits) in any receiver after considering
the auto and cross-correlation among PN codes. The 16b PN code results in lower
SINR although it showed better latency and energy performance in Fig. 16.12. The
64b PN code though provides marginally better SINR than 32b PN, its latency and
energy performance are worse than wireline interconnection architecture as shown
in Fig. 16.12. From Fig. 16.12 it can be seen that the 32-bit PN sequence increases
the average packet latency by 1.56×, and average packet energy by 1.31× compared
to baseline while still outperforming the wired counterpart and therefore, we choose
the 32b PN code for the best trade-off between performance and security.

16.7.3 Eavesdropping in WiNiP

Like WiNoC, we consider similar passive internal and external ED attacks as
described in Sect. 16.3, where the attacker can listen to any intra or inter-chip wire-
less communication if it is tuned to the carrier frequency of the communicating WIs.
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Fig. 16.13 Effect of PN code length variation on SINR for the proposed WiNiP architecture

In WiNiP, the PN encoded communication during AMAC mode prevent external
eaves dropping and we re-use the PMU managed power gating methodology for
internal ED attack as discussed in Sect. 16.5.5.

16.7.4 Overhead Analysis

As noted in Fig. 16.3, each WI is equipped with the BEU, ML Classifier, ADU,
Defense Units, code-LFSR, sec-ENC/DEC, and the ED checker. The largest blocks
as shown in Table 16.4 are the BEU, KNN classifier, and the code-LFSR. The
adopted KNN Classifier occupies an area of 105.3 μm2. The BEU [34] occupies
an area of 4357.5 μm2. The code-LFSR occupies 326.4 μm2 in each WI. The area
of the ADU, Defense Unit, and Sec-ENC/DEC blocks are negligible. Therefore, the
total area overhead for each WI is 0.005 mm2. The area of each wireless transceiver
is 0.2 mm2, making this overhead 2.5% per wireless transceiver in the system. The
area of the single MAC-LFSR and its decoder are 41 μm2 and 38 μm2. As can be
seen that the area overhead incurred by embedding proposed secure mechanism is
small when compared to the die size of 400 mm2 considered in this work.
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16.8 Conclusions

Though wireless interconnects can improve the performance of the on and off-chip
communication through energy-efficient single hop links, they are also vulnerable
to various security threats like jamming-based DoS attack, eavesdropping. In this
chapter, we described a novel detection and defense mechanism for WiNoCs against
jamming-based DoS attacks and eavesdropping originating from either an internal
HT or an external attacker. We also demonstrated how such security architecture and
AML-based detection mechanism can be extended for multichip systems using in-
package mm-wave wireless interconnect, known as WiNiP, to ensure a sustainable
communication even under jamming attack. Unlike WiNoC, a novel reconfigurable
MAC and communication protocol were required to combat the jamming-based
DoS attack in WiNiPs. In summary, with the proposed ML-based attack detection
and defense scheme, the security architecture considered in this chapter can detect
both external and internal persistent jamming-based DoS attack with an accuracy
of 99.87%. Moreover, the proposed ML is also robust and shows an accuracy of
95.95% even in presence of adversaries. Most importantly, with the reconfigurable
MAC proposed in this paper, the MCMC system could sustain on and off-chip
communication even under persistent jamming attack with an average latency
increment of 1.56× compared to baseline for a 32b PN code length while the
WiNoC suffers only a bandwidth degradation of <3% . However, both WiNiP and
WiNoC secure interconnection architectures outperformed the wired counterpart
for internal as well as external persistent jamming attack with very minimal area
overhead.
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Chapter 17
Securing 3D NoCs from Hardware
Trojan Attacks

Venkata Yaswanth Raparti and Sudeep Pasricha

17.1 Introduction

With the rise in number of processing cores and growing parallelism in applications,
the communication traffic in a manycore processor has been increasing. Chip
designers and manufacturers are moving towards network-on-chip (NoC) as their
de-facto intra-chip communication fabric [1, 2]. Typically, emerging manycore
processors have tens to hundreds of components that are designed either by in-house
engineers or obtained from third-party vendors (3PIP), and then finally integrated
together in a single global facility. With the growing complexity in NoC design,
designers are opting for third-party NoC IPs, e.g., [3], to connect the components in
their processors. This global trend of distributed design, validation, and fabrication
has led to major challenges in ensuring secure execution of applications on
manycore platforms, in the presence of potentially untrusted hardware and software
components.

3D integration has gained much attention recently as it brings numerous advan-
tages over traditional 2D integration to overcome CMOS scalability bottleneck [4].
3D ICs have demonstrated higher transistor density, lower power dissipation, and
smaller area footprint compared to 2D ICs. Additionally, 3D ICs deliver better
application performance owing to their shorter distance between compute and
memory units that are connected using through-silicon-vias [5]. However, in 3D
integration, dies are individually tested and stacked and often not subjected to
extensive examination of the inter-die integration defects before and after stacking.
Thus, security of crucial components such as NoC in 3D ICs is compromised by
malicious agents at third party foundries or manufacturers.
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Much work has been done to mitigate side-channel attacks on shared resources
and to detect counterfeit ICs that compromise manycore chip performance in both
2D [6] and 3D NoCs [7]. This work focuses on an orthogonal attack scenario where
an adversary can insert a hardware Trojan (HT) into the RTL or the netlist of a
manycore processor to disrupt or alter the integrity of its behavior without being
detected at the post silicon verification stage. HTs can be inserted by an intellectual
property (IP) vendor, untrusted CAD tool/designer, or at the foundry via reverse
engineering [8]. We focus on one such attack called a data-snooping attack where a
malicious software and an HT work together to steal information from applications
executing on manycore processors.

3D NoCs are ideal candidates for such attacks as they have a complex design
that can be used to hide an HT which cannot be easily detected via functional
verification. HTs can be placed in NoC links, routers, or network interfaces (NIs) to
secretly snoop on the data or corrupt data passing through them. Typically, in data-
snooping attacks HTs create duplicate packets with modified headers and send them
into the NoC for an accomplice thread to receive them [9]. Several works propose
packet encoding/error correction mechanisms such as parity bits and ECC in NoC
packets to detect faulty data packets at the receiver [10, 11]. Other works such as [9,
12–14] have also proposed data protection mechanisms in the presence of an HT in
NoC components. However, there are three major shortcomings with the state-of-
the-art: (1) these works assume the presence of HTs in 2D NoC routers or links
which can be detected by physical inspection or functional verification, without
employing costly security mechanisms; (2) the mechanisms proposed in prior works
protect application data from snooping attacks but do not detect the attack and
mitigate future attacks; and (3) most of the security enhancement mechanisms
are costly to implement and increase NoC latency and power consumption which
worsens the overall performance. It is important to design and deploy lightweight
mechanisms that can detect the operation of malicious HTs embedded in 3D NoCs
and accomplice threads, and secure against their data-snooping attacks in emerging
manycore processors.

In this work we focus on security enhancement that do not notably increase
performance and power overheads. We provide robust yet low-power mechanisms
to detect the source of the attacks by utilizing controlled aging in circuits at runtime,
which is not easy to obfuscate or tamper with in the design and fabrication process.
Our novel contributions in this work are as follows:

• We first design and demonstrate a data-snooping attack using an HT in the 3D
NoC interface that duplicates packets and injects them into the 3D NoC with
a minimal area and power footprint, making it difficult to detect by traditional
functional verification mechanisms;

• We then protect against such data-snooping attacks by proposing a novel snoop-
ing invalidation module (SIM) that uses an encoding-based duplicate packet
detection mechanism;
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• We further propose a novel data-snooping detection circuit called THANOS that
uses threshold voltage degradation as a means to detect an on-going attack at
runtime and blacklist the malicious software task that initiated the attack;

• Experimental analysis shows that SIM with THANOS provides security against
HTs with minimal area and power overhead in 3D NoCs.

17.2 Related Work

Significant research has been done to increase robustness against attacks by HTs in
NoCs by assuming that an HT tampers or snoops data passing through it. In [12],
bit shuffling and Hamming ECC are used to reduce the effectiveness of HTs that
corrupt data. In [13], security zones managed by a centralized security manager are
proposed to protect sensitive information from being accessed by malicious agents.
In [9] data scrambling, packet authentication, and node obfuscation are proposed
to prevent data stealing by a compromised NoC. Data scrambling, and packet-
authentication mechanisms use a one-time pad XOR cipher that can be broken by
the malicious tasks when enough encrypted packets are accumulated. In [14], CRC
and algebraic manipulation detection (AMD) are used to encode packet headers to
safeguard from faults and snooping attacks. In [15], a novel wave-based scheduling
mechanism for NoCs is proposed that eliminates the need for TDMA-based NoC
resource sharing, hence providing non-interference between different domains of
applications. In [16], a process variation-based packet encoding and decoding
mechanism is proposed to prevent data-snooping in silicon photonic NoCs. Most
of these schemes that protect application data from NoC security attacks lack an
efficient and low-power attack detection mechanism which makes them incomplete
in providing security.

A few works address HT detection in NoC components at design-time and
runtime. At design time, techniques such as physical inspection [17], functional
testing [18], and side channel analysis [19] have been proposed. But testing for HTs
at design time is still in infancy, and the growing complexity of 3D NoC components
make this even more difficult. Hence, designers are now exploring runtime detection
methods. A key logic built-in self-test (LBIST) was proposed in [20] that uses
test vectors generated by programmable keys to detect Trojans. However, LBIST
requires that the chip operation should be paused while testing at regular and
frequent intervals, which is not suitable for NoCs that should function seamlessly.
A few other works such as [21, 22] propose in-situ HT detection modules that
rely on verification units placed in NoC components to detect HTs. There are two
limitations with all of these works: (1) the verification units used to detect HTs
can also be reverse-engineered and tampered, (2) these mechanisms are used to
detect only HT induced data-corruption attacks. Data-snooping attacks unlike data-
corruption attacks attempt to leak critical application data to malicious software
tasks. None of the prior works have addressed the problem of detecting the software
task that initiates data-snooping attacks to blacklist and prevent future attacks.
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In [23], a run-time technique called NoCAlert is proposed to detect failures in the
control logic of NoC components. This technique is further enhanced by [24] that
proposes modules which alert the host system if the control logic in NoC routers
detects invariance violations caused by HTs placed in its control-path, e.g., logic
for route computation (RC) or virtual channel allocation (VCA). However, these
techniques focus on NoC components that have substantial control logic, such as
routers. They ignore the network interface (NI) which prohibits easy placement of
model checkers to detect packet duplication. In [25] a novel snooping invalidation
module (SIM) in the NI that can mitigate snooping attacks is proposed. Further, a
low-overhead techniques to detect the source of data-snooping attacks in 2D NoCs
is also proposed in [25]. To the best of our knowledge, [25] is the first work that
mitigates snooping attacks in 2D NoCs, while also detecting the source of snooping
attack to protect against future attacks. In this chapter, we embrace the techniques
proposed in [25] to mitigate snooping attacks in 3D NoCs that face the similar threat
from data snooping attacks.

17.3 Background and Attack Model

17.3.1 Background

In this section we discuss our assumed baseline NoC design. We consider a
traditional 3D mesh based NoC with processing elements (PE) connected to the NoC
via a network interface (NI). The packets entering the 3D NoC are routed towards
their destination by routers that use a hop-by-hop, turn-based distributed deadlock
free 4NP-first routing algorithm [26]. Figure 17.1 shows the schematic of the 2D
mesh NoC with an NI and PE connected to routers. In a 3D mesh NoC, a router
has two additional I/O ports {up, down} and their associated channels along with
the four I/O ports {north, east, west, south}of a 2D NoC router. We use traditional
3-stage {buffer write, RC + VCA + SA, LT} pipelined routers in the 3D NoC with
wormhole switching and 4-VC buffers at each input port. PEs communicate using
messages that are passed to the NI which packetizes them before sending them to
the 3D NoC. The packets received by the NI from the 3D NoC are de-packetized and

Fig. 17.1 Baseline NoC
architecture with example
routers, a PE and an NI as
shown in [25]
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sent to the connected PE. We consider ARM Cortex-A73 cores in our PEs that use
the AXI interface for communication. Each PE has a private L1 cache and a shared
distributed L2 cache that uses a scalable directory-based cache coherence protocol
to send messages in the form of NoC packets.

17.3.2 Attack Model

Prior works [9, 12–14] assumed data-snooping attacks to be carried out by HTs
embedded in NoC routers or by compromised links that enable HTs to modify
the packet headers. These HTs, once activated by a flit with a special activation
sequence, make copies of packets passing through the router and transmit them to
the PE that has a malicious accomplice task running on it. Once an HT is activated
in a router, it generates new packets, or diverts an existing packet to the PE running
the accomplice task. This type of HT, that has a high 4% area overhead [9], may
be noticed by testers while conducting physical inspection or side channel analysis.
Moreover, this type of attack can lead to illegal utilization of router resources such as
buffers, VCs, and switch allocators, which cause control logic violations that can be
detected by secure model checkers [24]. We thus focus on a harder-to-detect attack
with an HT embedded in the NI where packets are generated, and hence packets
can be duplicated with relatively simpler logic without interfering with the basic NI
functionality.

Figure 17.2a shows an overview of an on-going data-snooping attack taking place
in a single layer of a 3D NoC based manycore processor with multiple HTs activated
in the 3D NoC NI modules shown in red, and a malicious task running on a PE
connected to the yellow router and NI. The HTs in NIs make duplicate copies of
packets that are sent to the malicious task.

17.3.3 Design Details: Network Interface with a Hardware
Trojan

Figure 17.2b shows the microarchitecture of an NI with an embedded HT in the
packetizer module. The NI receives messages from the PE via the AXI interface that
are then stored in its buffers. The messages usually are read/write commands with
address and data fields. The packetizer module appends source ID, destination ID,
and virtual channel ID information to the commands and creates packets. A packet is
further divided into flits, with the header flit containing the 3D NoC routing related
information. The packet flits are then injected into the circular flit queue that is
accessed via head and tail pointers. After the packetizer injects a flit, the tail pointer
of the queue is incremented. After a flit is transmitted to a router, the head pointer is
incremented to transmit the next flit.
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Fig. 17.2 (a) Overview of attack model on a NoC with a malicious software task coordinating the
data-snooping attack [25], (b) microarchitecture of network interface (NI) with a hardware Trojan
embedded in packetizer module [25], (c) FIFO queue modification by hardware Trojan [25]

An HT can potentially tamper with the pointer values to re-send duplicate packets
intelligently. Once a flit has been transmitted from NI to the router, it stays in the
cyclic queue until a new flit is overwritten on that location. The HT can keep track
of these locations to read a header flit that has already been transmitted to the router,
append it with a duplicate destination ID of the malicious node, and update the
head-pointer. Figure 17.2c shows how the HT modifies the head pointer. By moving
the head pointer at regular intervals, the HT can send duplicate packet flits without
having to store them externally. The duplicate packet is re-sent to the router for
transmission. If the flit queue is full (head pointer = tail pointer), both the HT
and packetizer do not inject new flits into the queue, and do not accept any more
incoming data from the PE until the outstanding flits are transmitted. The HT does
not interfere with the control logic which is mostly present in the AXI interface, and
an attacker can snoop on data using this HT in NIs between two PEs, or between a
PE and a memory controller that is connected to main memory channels.
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Table 17.1 FPGA Implementation of NI packetizer with and without Hardware Trojan (HT)
[25]

Timing (ns) Number of FFs Number of LUTs

NI without HT 3.45 258 535
NI with HT 3.45 273 549

We now perform an overhead analysis of this HT. The proposed HT requires an
internal memory to save the head flit to modify its destination ID, save the header
pointer of the queue, and save the current state of the HT (~72 bits). We designed
the NI shown in Fig. 17.2b by modifying the CONNECT open-source NoC model
[27] and used Xilinx’s Vivado HLS [28] tool to analyze the overheads. Table 17.1
shows the clock cycle period, number of flipflops and LUTs used for an FPGA
implementation of the packetizer. The optimized design indicates that the NI with an
HT requires an additional ~5% FFs and ~ 1% LUTs (1.3% area overhead) without
incurring additional timing latency. This low overhead HT can be inserted at the
RTL level, or by reverse engineering and changing the netlist at the place and routing
stage [8, 17]. The small size of the HT makes it hard to detect by physical inspection
or by side-channel analysis. Also, the run-time secure model checkers from [23, 24]
are not able to check the validity of flits in the NI as it does not interfere with the
control logic. Hence, there is a need to design a low-overhead flit validation module
in NIs to check flit validity before injecting them into the 3D NoC.

17.3.4 Hardware Trojan Attack Model in 3D NoCs

In 3D ICs, a malicious agent can be placed across different dies. Attackers may
split the implementation of a Trojan across multiple tiers. This kind of split
implementation further reduces the area and the power footprint of HTs hidden
in NoC components. For example, as shown in Fig. 17.3, the activation module
for a Trojan may be placed in the bottom most layer, the payload is created in the
middle layer, and the accomplice software thread may listen to the snooped data
in the topmost layer. Traditional testing mechanisms are not effective in detecting
these types of hardware Trojans as the testers evaluate each die (for each tier)
individually. If the dies pass those tests, they are stacked vertically. Beyond testing
for die alignment errors, no further testing is typically performed to detect multi-
layer Trojan implementations. These Trojans take much lower footprint per die than
if they were implemented on a single die, and are thus also harder to detect. The
Trojans are also easy to activate using mechanisms such as thermal trigger circuits
[29] or external probe sensors [30].
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Fig. 17.3 Hardware Trojan implemented across different tiers to carry out attacks

17.4 Mitigation of 3D NoC Snooping Attacks

We propose a novel framework that integrates two mechanisms to mitigate data
snooping attacks from taking place, as well as to detect the source of an on-going
attack, and protect against future snooping attacks. We rule-out data corruption
attacks as they can be detected and corrected using ECC codes such as in [14].
Our proposed framework consists of two security mechanisms, (1) a snooping
invalidator module at the NI output queue to discard duplicate packets, (2) detection
of data-snooping attacks at the PE where an accomplice thread is executing. This
comprehensive protection framework ensures that we proactively mitigate future
attacks and safeguard the application data for the entire lifetime of the processor.
We have designed our security mechanism to be hard to be tampered by adversaries
that use reverse engineering techniques to insert HTs in the netlist. Our approach
also works irrespective of the HT triggering process to start snooping attacks such
as special flit data, circuit aging, or temperature [31]. The following sections discuss
our two security mechanisms.

17.4.1 Security Enhanced NI: Preventing Data-Snooping
Attack

The first security enhancement mechanism is to prevent a snooping attack with
the help of a snooping invalidator module (SIM) at the NI. Using SIM, we aim
to discard packets with invalid header flits from being injected into the 3D NoC.
Unlike traditional ECC-based security enhancement mechanisms, SIM incurs low-
power and low latency overheads because of its lightweight computations that are
designed solely to mitigate snooping attacks. Figure 17.4a shows an overview of the
security enhancement in NI using SIM.
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Fig. 17.4 (a) Security enhanced NI using SIM [25] (b) Flowchart of snooping invalidation
mechanism in NI [25]

We divide the implementation of SIM across the PE and NI to prohibit 3PIP NoC
designers/testers to reverse engineer or tamper with the secret encoding/decoding
information at runtime. The PE and NI communicate using the standard AXI
hand-shake protocol (ready, valid, and valid ready signals). A typical NI receives
messages from the PE to be packetized and sent to the 3D NoC and vice-versa. In
the security enhanced NI, additional encoding information (key) is attached with the
data received from the PE to validate the uniqueness of data packets. The numbered
sequence of steps shown in Fig. 17.4 describe how a packet is validated using SIM.
These steps are discussed next.

In step 1, the PE data dispatcher sends a count (C: increments with each outgoing
data) value to the NI controller along with the AXI ready signal. In step 2, the
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NI controller sends a buffer id (B_id) that is reserved to store the incoming data
along with the AXI valid signal to the PE data dispatcher. The NI controller
simultaneously sends C to SIM that stores it in a “validation table”. The PE uses
an XOR function f to generate an encoded key k as a function of C, B_id, and
destination ID (dest_id) of the packet, as shown in eq. (17.1) below. In step 3, the PE
sends a message {data, k} combination to the data buffers and toggles the valid ready
signal to high. At the same time, the validation table sends a c_id (location where
count is stored in the table) to the NI controller. This is stored with the message sent
by the PE. The {data, k, c_id} combination is stored as a unit in read/write buffers
till the packet is sent out of the NI. While the size of payload data varies from 8B to
128B depending on message type, the values of k, C and c_id require only few bits
of storage (see legend of Fig. 17.4a).

k = C ∧ B_id ∧ dest_id (17.1)

B_id = C ∧ k ∧ dest_id (17.2)

In step 4, the {data, k, c_id} combination is sent to the packetizer to generate
packets. In step 5, flits are generated with k and c_id copied into the header flit.
We save k and c_id in the 24-bits reserved in the header flit to store destinations of
source-routing path [32] which are unused as we adopt distributed routing for our 3D
NoC. The flits are then saved in the output flit queue. Steps 6–9 are part of snooping
invalidation flow explained in more detail in Fig. 17.4b. SIM tries to retrieve the
encoded key k from the C entry in the validation table as a part of packet validation.
In step 6, SIM reads dest_id, k, and c_id bits of the header flit, and performs a
decoding operation shown in eq. (17.2) to obtain B_id of the buffers that stored the
corresponding packet data, and k sent by the PE (step 7). In steps 8 and 9, SIM
retrieves the value of k’ stored in the buffer located at B_id and compares with k that
is read from the header flit. If k = k’, SIM sends a valid signal that the header flit is
valid, and it is injected into the 3D NoC. If SIM sends an invalid signal, the flit queue
discards all the flits corresponding to the duplicate packet. SIM efficiently detects
duplicate packets because, if the value of dest_id is modified by the HT, eq. (17.2)
leads to an incorrect value of B_id that does not retrieve the k value corresponding to
the data of packet sent in step 3. Note that for broadcast/multicast packets, multiple
keys are generated for each dest_id value and key verification steps 8 and 9 are
performed on each of them separately. After a packet is sent out, the corresponding
read/write data buffer and validation table entries are reused for new data. This low-
overhead SIM module with minor modifications can also be used to curb potential
data duplication at router-link interfaces or within a router.
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17.4.1.1 Overhead Analysis

Several steps in the SIM module can be performed in parallel. The existing
communication data channel between the PE and the NI that is established by AXI
interface is used to communicate both packet data and SIM metadata (C, k, B_id
in steps 1 and 2). Hence, no additional wires are needed to transmit SIM metadata.
Steps 1 and 2 are performed in parallel with AXI interface’s ready and valid signal
exchange to minimize the latency overhead. Also, there is no additional overhead
involved in steps 3 to 5. Steps 6 to 9 take one cycle in a 3D NoC that is clocked at
1GHz frequency which was verified via FPGA synthesis of the modified NI [28].
This increases the number of pipeline stages of the NI microarchitecture. SIM takes
additional memory to maintain a validation table, and additional logic to perform
XOR and comparison operations. SIM incurs ~5.5% more power and ~ 2.15% more
area overhead compared to the baseline NI with a buffer capacity of 16 packets, at
the 22 nm technology node.

17.4.2 Detecting the Source of a Data-Snooping Attack

Using our security enhanced NI with the integrated SIM, we can curb packet
duplication at the NI. However, the malicious task that is the source of the attack is
still not detected that could initiate attacks from compromised routers or links [14].
In this section, we propose a module called THANOS, a novel threshold activated
snooping attack detector that is implemented at the interface between an NI and a
PE, as shown in Fig. 17.5a to detect the source of the snooping attack.

A PE sends and receives various types of messages into the 3D NoC that
can be broadly classified into two types: (1) direct messages between cores for

Fig. 17.5 (a) Overview of THANOS [25] (b) block diagram of THANOS showing inputs and
outputs [25] (c) snooping detecting circuit used in THANOS [25]
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Fig. 17.6 Average incoming-outgoing message ratio at normal PE (left), and at snooping PE
(right) across different applications [25]

inter-core communication, and (2) cache-coherence messages between a PE and
directory table. Figure 17.6 (blue bars) shows the average incoming-outgoing
message ratio sent over 64 cores in a 3D NoC by different PARSECv2.1 [33]
benchmark applications with 64 tasks each. The error-bars in Fig. 17.6 represent
variance across 3D NoC nodes. Figure 17.6 shows that the ratio is less than 1 over
all the benchmarks with each node receiving a smaller number of messages than
the messages it sends out (number of “packets” in a “message” can vary based on
message type). Another important observation from Fig. 17.6 is that the incoming-
outgoing message ratio is much greater than 1 (red points) when a data-snooping
attack takes place, because a PE receives significantly higher number of messages
(and packets) than it sends out. This phenomenon can be easily detected in the short
term by placing a counter in the NI and observing the number of incoming and
outgoing messages over an epoch of time. However, observing messages in the short
term can lead to false positives, e.g., due to periodic bursts of messages from a task
that requires higher volumes of input data. Also, a message counter is not the most
secure way to detect a snooping attack, given the reverse engineering techniques
available to tamper digital logic [17].

In THANOS we devise a mechanism that observes the ratio of incoming and
outgoing messages over a period of few hours and identifies the source of a snooping
attack. THANOS is designed using a combination of analog and digital logic to
detect if a PE is snooping on messages over a duration of time. As THANOS is
not entirely a digital logic implementation, it is hard to reverse engineer or tamper
with, and can be used as a final frontier to mitigate data-snooping attacks. THANOS
receives inputs from the PE and sends a security alert signal to the PE as shown
in Fig. 17.5b. The PE then identifies the source of data-snooping attacks and takes
preventive steps to mitigate future attacks. THANOS is designed as a standalone
module that can also be used with prior data protection Schemes [9, 12–14] to detect
the source of attack.
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Fig. 17.7 Threshold voltage
degradation observed across
different stress-recovery
ratios in a NMOS transistor at
22 nm technology node [25]

17.4.2.1 Overview of Snooping Detection Circuit

We take inspiration from a controlled aging module [6] that uses threshold degra-
dation of NMOS transistors due to aging phenomenon such as bias temperature
instability (BTI) and hot carrier injection (HCI) to detect chip usage, which
helps identifying counterfeit ICs. In THANOS we use NMOS threshold voltage
degradation to detect a PE that is receiving duplicate packets injected by multiple
HT activated NIs in the 3D NoC. NMOS transistors undergo stress-recovery periods
in their ON and OFF operations that leads to threshold voltage (Vth) degradation
[34]. Figure 17.7 shows the Vth degradation observed across different ratios of stress
and recovery in an NMOS transistor at 22 nm using the long-term aging model
proposed in [34]. At 100% stress (no recovery) the Vth of a transistor increases by
~100 mV in about 2 hours duration. We use this phenomenon to detect snooping
attacks.

17.4.2.2 Operation of Snooping Detection Circuit

In our snooping detecting circuit shown in Fig. 17.5c, there are 2 transistors; N1 that
acts as a diode connected load and N2 that acts as gate-source voltage (Vgs) sensor.
P1, P2, P3 are diode-connected PMOS transistors that pull the drain voltages of S1,
S2, S3 to high. Transistors S1, S2, S3 are driven using low over-drive voltages In1, In2,
In3 that barely switch them ON. We artificially induce stress in a selected transistor
among S1/S2/S3 when a message is received and induce recovery when a message
is sent out. Hence, we call them stress-transistors. At any point only one of S1,S2,S3
are connected to the circuit (using In and sel signals). When S1/S2/S3 is turned ON,
the source (Vx) of N2 is pulled low, which turns ON N2, leading to a “low” out state.
But, when a stressed transistor (S1/S2/S3) undergoes Vth degradation, its over-drive
voltage (In = Vgs-Vth) is not high enough to turn ON the stress-transistor and hence
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Table 17.2 State transition
of snooping detection circuit

Stress-transistors (S1/S2/S3) Vx N2 out

Saturated Low ON Low
Triode High OFF High

drives it into the triode region. When S1/S2/S3 is in the triode-region, the source
voltage (Vx) of N1 is not pulled low and the out signal is set to “high”.

Table 17.2 gives the states of different transistors and the corresponding changes
in out signal state. When a PE is not receiving snooped packets, its incoming-
outgoing message ratio is less than 1 as shown in Fig. 17.6. Hence, for normal 3D
NoC traffic the stress-recovery ratio of stress-transistors (S1/S2/S3) is less than 40%.
Generally, BTI and HCI are slow wear-out phenomenon in logic circuits. But, we
input low over-drive (Vgs-Vth) voltage of ~100 mV to the stress-transistors through
input signals In1/In2/In3. Hence, the circuit would set the out signal to high state in
a duration of 2–3 days. However, when a malicious task on a PE is snooping with up
to four HT activated in NIs, its incoming-outgoing message ratio is 3× the average
ratio (shown in Fig. 17.6). As a result, the stress-transistors in THANOS undergo
80–90% more stress than recovery when there is a snooping attack. From Fig. 17.7,
when a stress-transistor receives ~90% stress, its threshold voltage increases over a
shorter duration (~3–4 hours). Hence the snooping detection circuit toggles the out
signal to “high” state quicker when PE receives snooped packets.

In THANOS, we use a counter to track the time taken for the out signal to
change its state and compare it with a threshold time that is configured by a trusted
PE firmware, as shown in Fig. 17.5c. THANOS sends an ALERT signal when
the time taken by the out signal to switch the state is less than the threshold.
Overall, THANOS sends a notification about a potential malicious task anywhere
from ~ 2 hours to ~ 2 days based on the number of HTs that are active. The trusted
PE firmware then alerts the OS about the malicious application task executing on
the PE, so that preventive measures can be taken.

The snooping detection circuit should last for the lifetime of the processor to
detect snooping attacks. However, due to artificially induced stress and recovery
cycles, the stress-transistors (S1, S2, S3) wear-out much more rapidly than the rest
of the chip. To increase the lifetime of THANOS we take two measures: (1) We input
low over-drive voltage (In-Vth ≈ 100 mV) and high Vdd using separate power lines
for stress-transistors; after every state change of the out signal, we increment the In
signal by ~100 mV until we satisfy the MOS saturation condition (In-Vth < Vdd);
(2) The stress-transistors are over-provisioned; we use only one stress-transistor at
any time to detect an attack and when an In voltage of a stress-transistor can no
longer be incremented without violating the saturation condition, THANOS switches
to the next stress-transistor using the sel signal. Using three stress-transistors and
Vdd = 3 V, THANOS can seamlessly detect snooping attacks for up to 1.5 years. The
number of stress-transistors in THANOS is hence left to the decision of the designer.
The overhead of THANOS is negligible in power (~50 μW) and area (~0.9 μm2)
compared to the PE (~1 W, ~318 mm2) at 22 nm technology node as it requires just
8 MOSFETs, a counter, a comparator, and a simple control logic block to send input
signals.
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17.5 Experiments

We target a 60-core manycore chip with low power ARM cortex-A73 cores and
a 3D mesh NoC with 5 × 4 × 3 dimension to test the performance, latency,
energy, and area overheads of the proposed lightweight snooping invalidation
module (SIM) and snooping detection circuit (THANOS) compared to the state-of-
the-art. For simulations, we modeled the behavior of SIM and THANOS as part
of the cycle-accurate NoC simulator Noxim [35]. We obtained the power and area
overheads of SIM and THANOS modules from post-synthesis vectorless estimation
in Vivado [28], and Cadence Virtuoso [36], at 22 nm. We integrate the latency and
energy overheads of SIM and THANOS with Noxim for our simulations. We tested
our framework using PARSECv2.1 benchmark NoC traces generated by netrace
[37] to capture the request-response dependencies to accurately simulate parallel
application performance.

We compare our work with a baseline 3D NoC (with a configuration that
is described in Sect. 3.1) with no security mechanism employed, and with two
prior works, FortNoCs [9], and P-Sec [14]. In [9], only data obfuscation and data
scrambling techniques are implemented for a fair comparison in 3D NoC. In [14]
end-to-end algebraic manipulation detection (AMD) and cyclic redundancy codes
(CRC) are appended to the header flit for reliability against faults and HT attacks.
We set the threshold time in the snooping detection circuit of THANOS as ~2.5 days
to get a security violation alert. We first present results of application performance,
3D NoC latency and 3D NoC energy consumption for 4 actively snooping HTs that
are randomly placed in the 3D NoC. Subsequently we present results for scenarios
with 1 and 2 HTs operating in the 3D NoC.

Figure 17.8a shows the comparison of application execution time across different
NoC security mechanisms. P-Sec and FortNoCs cannot prevent the injection of
duplicate packets at the NI, and only discard faulty packets at the receiver, which
leads to higher 3D NoC traffic. Moreover, P-Sec takes two extra cycles for
CRC + AMD encoding/decoding, and FortNoCs takes at least four extra cycles
at the NI for node obfuscation and data scrambling techniques on the entire packet.
This leads to poor application performance with P-Sec and FortNoCs compared
to the baseline. SIM mitigates duplicate data packets near the source, resulting in
less 3D NoC congestion, thereby actually achieving ~49% average improvement in
application execution time, compared to the baseline.

A similar trend is observed for network latency, shown in Fig. 17.8b. The
network latency of FortNoCs is higher due to the packet scrambling mechanism that
encrypts/decrypts the entire packet using XOR operation, which is time consuming
for packets with high payload size. FortNoCs incurs additional overhead due to
packet authentication as an additional security mechanism. SIM, in comparison,
takes one cycle only at the sending NI to detect duplicate packets, and THANOS
has no latency overhead. In the absence of duplicate packets in the 3D NoC, SIM
has the lowest 3D NoC latency, and achieves an average of ~69%, ~80% and ~ 70%
latency reduction compared to the baseline, FortNoCs, and P-Sec in the presence of
active data-snooping HTs.
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Fig. 17.8 (a) Normalized application execution time, (b) normalized network latency, (c) nor-
malized 3D NoC energy consumption, across 3D NoCs with different security mechanisms in the
presence of 4 active HTs attempting to inject duplicate packets to an accomplice thread

Next, we analyze 3D NoC energy consumption. Although SIM + THANOS
consumes ~5.5% additional NI power, its energy consumption is ~50% lower
compared to baseline on average due to the lower application execution time as
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Fig. 17.9 Normalized average values of application execution time, network latency, and 3D NoC
energy consumption across different security mechanisms with 1 HT (top), 2 HTs (bottom)

Table 17.3 Area footprint of different 3D NoC security enhancement mechanisms

SIM + THANOS FortNoCs P-Sec

2.2 μm2 4.9 μm2 500 μm2

shown in Fig. 17.8c. FortNoCs consumes around ~42% additional energy compared
to the baseline due to increased execution time and the overheads incurred to employ
XOR encryption/ decryption logic in the NI. P-Sec consumes up to 200% more
energy compared to the baseline due to its costly AMD, and CRC codec engines
present in NIs and 3D NoC routers. P-Sec is thus much more expensive, although it
provides combined safety against faults and snooping attacks.

We observe similar trends in application execution time, 3D NoC energy, and
latency even when fewer number of HTs are active as shown in Fig. 17.9, with
SIM + THANOS performing better than the baseline unlike FortNoCs and P-
Sec. This shows that our proposed snooping invalidation and snooping detection
mechanisms, SIM + THANOS, does not trade-off 3D NoC performance and 3D
NoC energy consumption to provide security. Lastly, we compare area footprint of
SIM + THANOS with other schemes. As shown in Table 17.3, SIM + THANOS has
the lowest area footprint amongst the three security mechanisms. SIM + THANOS
mechanism consumes only 2.15% additional area in the NI to implement the packet
validation mechanism.

17.6 Conclusions

In this chapter we proposed a low-overhead mechanism called SIM to prevent data-
snooping attacks that are initiated by HTs embedded in 3D NoC network interfaces.
We also proposed a lightweight standalone snooping-attack detection mechanism
called THANOS that uses controlled circuit aging to detect the source of attacks that
can help processors take preventive steps to mitigate future attacks. In FortNoCs
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and P-Sec it is impossible to detect the source of the attack, which can be addressed
by using SIM + THANOS. Experimental results show that SIM + THANOS reduces
application execution time by ~63% and ~ 49% and energy consumption by ~65%
and ~ 85% compared to FortNoCs and P-Sec. SIM + THANOS incurs a minimal
additional 5.5% power and 2.15% area overhead, compared to the baseline, much
lower than the overhead for FortNoCs and P-Sec. Thus SIM + THANOS represents
a promising solution to enhance 3D NoC security in manycore processors.
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Chapter 18
The Future of Secure and Trustworthy
Network-on-Chip Architectures

Prabhat Mishra and Subodha Charles

18.1 Summary

Given the widespread acceptance of Network-on-Chip (NoC) architectures in
designing System-on-Chip (SoC) based devices, it is critical to ensure the security
and trustworthiness of NoC-based SoCs [6–12]. This book provides a compre-
hensive reference for SoC designers, security engineers as well as researchers
interested in designing secure on-chip communication architectures. This book
contains contributions from NoC security and privacy experts. Different chapters
cover a wide variety of security attacks and state-of-the-art countermeasures. The
topics covered in this book can be broadly divided into the following categories.

18.1.1 NoC-Based SoC Design Methodology

The first three chapters introduced the readers to the NoC-based SoC design
methodology. Specifically, it outlined various challenges associated with designing
secure and energy-efficient on-chip communication architectures including discus-
sions on security vulnerabilities in NoC-based SoCs (Chap. 1), modeling of NoC
architectures (Chap. 2), and energy-efficient NoC design (Chap. 3).

P. Mishra (�)
University of Florida, Gainesville, FL, USA
e-mail: prabhat@ufl.edu

S. Charles
University of Moratuwa, Colombo, Sri Lanka
e-mail: s.charles@ieee.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
P. Mishra, S. Charles (eds.), Network-on-Chip Security and Privacy,
https://doi.org/10.1007/978-3-030-69131-8_18

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69131-8_18&domain=pdf
mailto:prabhat@ufl.edu
mailto:s.charles@ieee.org
https://doi.org/10.1007/978-3-030-69131-8_18


484 P. Mishra and S. Charles

18.1.2 Design-for-Security Solutions

The next four chapters described efficient design-time solutions for securing NoC
architectures. The goal of these approaches is to discuss lightweight security
solutions for designing trustworthy NoCs including lightweight encryption using
incremental cryptography (Chap. 4), trust-aware routing (Chap. 5), lightweight
anonymous routing (Chap. 6), and secure cryptography integration (Chap. 7).

18.1.3 Runtime Monitoring Techniques

The next four chapters deal with security solutions for monitoring runtime vulner-
abilities. Specifically, it explores several runtime security monitoring techniques
including detection of denial-of-service attacks (Chap. 8), securing communication
using digital watermarking (Chap. 9), NoC attack detection using machine learning
(Chap. 10), and Trojan-aware NoC routing (Chap. 11).

18.1.4 NoC Validation and Verification

The next three chapters of the book look at NoC validation and verification
techniques. Specifically, it presents efficient techniques for verifying functional
correctness as well as security vulnerabilities including NoC security and trust
validation (Chap. 12), post-silicon validation and debug (Chap. 13), and design of
reliable NoC architectures (Chap. 14).

18.1.5 Emerging NoC Technologies

The next three chapters survey security implications in emerging NoC technologies.
Specifically, it looks at security vulnerabilities and countermeasures for optical
(Chap. 15), wireless (Chap. 16) as well as 3D NoCs (Chap. 17).

18.2 Future Directions

This book covered security challenges in NoC-based SoC architectures. The future
giga and tera-scale architectures can impose new challenges and opportunities.
The introduction of emerging NoC technologies such as wireless and optical have
already shown promising results. However, it is a major challenge to develop low-
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cost and flexible security solutions with minimal impact on area, performance, and
energy. We briefly outline some of the challenges ahead in designing secure and
trustworthy NoC architectures.

18.2.1 Confluence of Functional Validation and Security
Verification

Drastic increase in SoC complexity has led to a significant increase in SoC design
and validation complexity [2, 13, 17, 19, 24, 27, 31, 33, 35]. Therefore, it is crucial
to verify both functional correctness and security guarantees of NoC-based SoCs.
One promising direction is to utilize the existing functional validation methodology
to perform NoC security verification. Specifically, assertion-based validation is
widely used for functional validation of NoC-based SoCs. Verification engineers
can develop security assertions for monitoring security vulnerabilities [32]. Similar
to functional assertions, security assertions can be used to check for any pre-silicon
security vulnerabilities. They can also be synthesized as security checkers (coverage
monitors) for post-silicon security validation. Similar to activating functional
assertions, verification engineers can utilize the same test generation framework to
generate tests for activating security assertions. In the future, verification engineers
can seamlessly integrate assertion-based functional validation with assertion-based
security validation to design secure and trustworthy NoC-based SoCs.

18.2.2 Security of Emerging NoC Architectures

The increased usage of emerging NoC technologies have motivated researchers to
explore security in optical, wireless, and 3D NoC architectures. The applicability
of the proposed ideas to emerging NoC technologies is a promising avenue for
future exploration. The inherent characteristics of emerging NoC technologies can
create unique security vulnerabilities as well. For example, wireless NoCs inher-
ently use broadcast message to communicate between nodes. In such a scenario,
eavesdropping and spoofing attacks can become more prominent. Therefore, future
research can explore required modifications to the proposed approaches to fit the
characteristics of emerging NoC architectures.

18.2.3 Seamless Integration of NoC Security Mechanisms

While existing literature has discussed different threat models, it is naive to think
that mitigating one particular type of threat will secure the SoC. For example,
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defending against eavesdropping attacks does not guarantee that eavesdropping
is the only possible attack in that particular architecture. Developing security
mechanisms for different threat models is a promising starting point. However,
seamless integration of a suite of security mechanisms is required to secure the
hardware root of trust. For example, Intel SGX (Software Guard Extensions) [14]
provides hardware based software protection techniques. Future research needs
to explore how to integrate several NoC security mechanisms and ensure their
interoperability in hardware, firmware, and software layers in order to enable a truly
secure cyberspace.

18.2.4 NoC Security versus Interoperability Constraints

NoC-based SoCs are widely used today in resource-constrained IoT devices.
Designers employ a wide variety of techniques to improve energy efficiency in NoC-
based SoCs [3–5, 20, 23, 39]. IoT applications bring three important considerations:
long application life, conflicting design constraints, and dynamic use-case scenarios.
For example, a car equipped with state-of-the-art security would be vulnerable in
a few years since it was not designed to defend against future attacks. Similarly,
it may be acceptable for a smart watch to trust the wireless network at home
and impose a light-weight security requirement in favor of a lower energy profile.
However, a stronger defense mechanism is necessary when communicating with the
untrusted network in a coffee shop at the cost of power and performance. There
is a critical need for IoT devices to dynamically adapt to the environment over
the lifetime based on four-way interoperability constraints consisting of security,
energy, connectivity, and intelligence. The future NoC-based SoCs need to utilize
a reconfigurable security engine that can be tailored during execution based on the
use-case scenarios as well as interoperability constraints [10].

18.2.5 Comprehensive NoC Security Vulnerability Analysis

Given the increasing design complexity coupled with diversity of attacks, it is
critical to verify NoC-based SoCs to ensure that there are no vulnerabilities. In
the future, there will be a comprehensive vulnerability analysis framework that
utilizes a wide variety of analysis/validation techniques across design stages. While
design-time security validation techniques can detect certain types of vulnerabilities
[1, 15, 16, 18, 29, 30, 34, 36], it is infeasible to remove all possible vulnerabilities
during pre-silicon security validation [35]. Therefore, verification engineers need to
utilize both pre-silicon and post-silicon security validation [16, 35]. There are three
major approaches for NoC security validation: simulation-based validation, formal
verification, and side-channel analysis. While formal methods can provide security
guarantees, the complexity of NoC designs make the exploration space grow
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exponentially. Simulation-based techniques are scalable but they cannot provide
100% security guarantees due to input space complexity. Side-channel analysis is a
promising alternative that relies on side-channel signatures (such as power, delay,
electromagnetic emanation, etc.) to detect vulnerabilities [21, 22, 25, 26, 28, 37].
The future of NoC security validation needs to utilize an effective combination of
simulation, formal methods, and side-channel analysis.

18.2.6 NoC Security and Privacy Analytics Using Machine
Learning

The intersection of machine learning and security has not been given adequate
attention in an NoC context. Apart from a few runtime monitoring techniques
that uses machine learning concepts, this area is still in its infancy. Tools such as
Cisco Encrypted Traffic Analytics [38] utilize machine learning to detect threats
by observing traffic behavior and unencrypted packet header information. It has
shown promising results in the computer networks domain. Models that can be
trained offline and detect threats during runtime has the potential to provide security
guarantees, especially for real-time and safety-critical applications. While this
book covered a wide variety of NoC security vulnerabilities known today, it is
expected that future attacks will exploit new vulnerabilities. Therefore, a synergistic
integration of security validation and machine learning will be crucial to design
emerging NoC-based SoCs.
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