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Abstract. In this paper, we review the best known cryptanalysis results
on the variants of Misty schemes and we provide new (quantum) crypt-
analysis results. First, we describe a non-adaptive quantum chosen plain-
text attack (QCPA) against 4-round Misty L and Misty LKF schemes,
and a QCPA against 3-round Misty R and Misty RKF schemes. We
extend the QCPA attack against 3-round Misty RKF schemes to recover
the keys of d-round Misty RKF schemes with complexity Õ(2(d−3)n/2).
We then provide a security proof for Misty R schemes with 3 rounds
against chosen plaintext attacks using the H coefficients technique. This
shows that the best known non-quantum attack against Misty R schemes
with 3 rounds is optimal.

Keywords: Misty permutations · Pseudo-random permutation ·
Cryptanalysis · Quantum cryptanalysis · H coefficients

1 Introduction

The most studied way to build pseudo-random permutations from random func-
tion or random permutation is the d-round Feistel construction. However, there
exist other well-known constructions such as the Misty constructions that we
analyze in this paper. We study generic attacks on Misty schemes where we
assume that the internal permutations f1, . . . , fd are randomly chosen. The Misty
construction is important from a practical point of view since it has been used
as a generic construction to design Kasumi [2] algorithm that has been adopted
as the standard blockcipher in the third generation mobile systems.

The plaintext message of a Misty scheme is denoted by [L,R] that stands for
Left and Right and the ciphertext message, after applying d rounds, is denoted by
[S, T ]. Misty L and Misty R schemes are two different variants of Misty schemes.
Indeed, the first round of a Misty L scheme takes as input [L,R] and it outputs
[R,R⊕f1(L)] with f1 a secret permutation from n bits to n bits whereas the first
round of a Misty R scheme takes as input [L,R] and it outputs [R⊕f1(L), f1(L)]
with f1 a secret permutation from n bits to n bits. We also consider in this paper
a particular case of Misty L and Misty R constructions such that each round
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function fi is defined by fi(x) = Fi(Ki⊕x) with a public function Fi and a round
secret key Ki. These constructions are named, respectively, d-round Misty LKF
scheme and d-round Misty RKF scheme. To simplify the notation, the public
functions Fi in each round are all denoted by F . These four variants of Misty
schemes are studied in this paper.

Related Work. Cryptanalysis of Misty schemes have been studied by Nachef,
Patarin and Treger in [9,10]. They described Known Plaintext Attack (KPA),
Chosen Plaintext Attack (CPA) and Chosen Ciphertext Attack (CCA) against
Misty L and Misty R schemes. In particular, they showed that there exists CPA
and KPA attacks for d = 5 with complexity strictly less than 22n. They also
studied some generic properties of Misty L and Misty R schemes such as the
inversion property. They showed that the inverse of a Misty L function is a Misty
R function, after composition by a permutation μ and μ−1 on the inputs and
outputs, where μ is a permutation on 2n bits such that μ([L,R]) = [R,L ⊕ R].
They then showed that the security of Misty L and Misty R schemes are the
same for all attacks where the inputs and outputs have the same possibilities
which is the case for example in KPA attack and CCA attack. However, the
security of Misty L and Misty R schemes may differ regarding CPA attacks as
we will see in this paper for 3 rounds.

Quantum cryptanalysis has received much more attention in the last past
years. It is known that Grover’s algorithm [3] could speed up brute force search.
Given a n-bit key, Grover’s algorithm allows to recover the key using O(2n/2)
quantum steps. It seems that doubling the key-length of one block cipher could
achieve the same security against quantum attackers. However, Kuwakado and
Morii [6] introduced a new family of quantum attacks using Simon’s algo-
rithm [12] which could find the period of a periodic function in polynomial time
in a quantum computer. Indeed, they describe a quantum distinguishing CPA
attack on the 3-round Feistel scheme. This work has been then extended by Ito
et al. [5] to a quantum CCA distinguisher against the 4-round Feistel cipher.

Luo et al. [8] present quantum attacks on 3-round Misty L and Misty R
schemes using Simon’s algorithm. We describe a similar quantum attack on
the 3-round Misty R structure. In this paper, we provide additional (quantum)
cryptanalysis on variants of Misty L and Misty R schemes as explained in the
“Our Contribution” paragraph.

Our Contribution. In this paper, we describe a non-adaptive quantum chosen
plaintext attack (QCPA) against 4-round Misty L and Misty LKF schemes, and
a non-adaptive quantum chosen plaintext attack (QCPA) against 3-round Misty
R and Misty RKF schemes. These attacks enable to distinguish these Misty
schemes from random permutations in polynomial time. We extend the quan-
tum distinguishing attack against 3-round Misty RKF schemes to obtain a quan-
tum key recovery attack against d-round Misty RKF schemes with complexity
Õ(2(d−3)n/2). Then, we show that security of Misty L and Misty R schemes with
3 rounds differs regarding CPA attacks. The best known attack against Misty L
schemes with 3 rounds has complexity 4 operations with 4 distinct messages. The
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best known attack against Misty R schemes has complexity 2n/2 operations with
2n/2 messages. In this paper, we provide a security proof with the same bound
2n/2 which shows that the best known cryptanalysis against Misty R schemes is
optimal.

Organization. Section 2 describes the four variants of Misty schemes. Section 3
gives an overview of previous works and the new results provided in this paper.
In Sect. 4, we present our QCPA against the four variants of Misty schemes and
the quantum key recovery attack on Misty RKF schemes. Section 5 provides
the security proof of Misty R schemes with 3 rounds against adaptive Chosen
Plaintext attack (CPA-2). Finally, we conclude in Sect. 6.

2 Misty Constructions

In this section, we describe the four variants of Misty schemes. The set of all
functions from {0, 1}n to {0, 1}n is denoted by Fn and the set of all permutations
from {0, 1}n to {0, 1}n is denoted by Bn. We have Bn ⊂ Fn. We denote by Md a
Misty scheme of d rounds: f = Md(f1, . . . , fd), where f1, . . . , fd are permutations
from n bits to n bits, and f is a permutation from 2n bits to 2n bits.

2.1 Misty L Scheme

Let f1 be a permutation of Bn. Let L,R, S and T be elements in {0, 1}n. Then
by definition we have:

ML(f1)([L,R]) = [S, T ] ⇔ S = R and T = R ⊕ f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md
L(f1, . . . , fd) = ML(fd) ◦ . . . ML(f2) ◦ ML(f1)

The permutation Md
L(f1, . . . , fd) is called a Misty L scheme with d rounds. We

describe in detail the equations of Misty L for the first four rounds.

1 round:

{
S = R

T = R ⊕ f1(L) = X1
2 rounds:

{
S = X1

T = X1 ⊕ f2(R) = X2

3 rounds:

{
S = X2

T = X2 ⊕ f3(X1) = X3
4 rounds:

{
S = X3

T = X3 ⊕ f4(X2) = X4

The figure of Misty L schemes for the first round is given in Fig. 1.
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S = R T = R ⊕ f1(L)

Fig. 1. First round of Misty L

Misty LKF Scheme. Let F be a public function of Fn and K1 be a key chosen
in {0, 1}n. Let L,R, S and T be elements in {0, 1}n. Then, we define:

MLKF (F,K1)([L,R]) = [S, T ] ⇔ S = R and T = R ⊕ F (K1 ⊕ L)

Let K1, . . . ,Kd be d keys chosen in {0, 1}n. Then we have:

Md
LKF (F,K1, . . . ,Kd) = MLKF (F,Kd) ◦ . . . MLKF (F,K2) ◦ MLKF (F,K1)

In this paper, we call Md
LKF (F,K1, . . . ,Kd) a Misty LKF scheme with d rounds.

The equations of the first four rounds of Misty LKF are as follows.

1 round:

{
S = R

T = R ⊕ F (K1 ⊕ L) = A1
2 rounds:

{
S = A1

T = A1 ⊕ F (K2 ⊕ R) = A2

3 rounds:

{
S = A2

T = A2 ⊕ F (K3 ⊕ A1) = A3
4 rounds:

{
S = A3

T = A3 ⊕ F (K4 ⊕ A2) = A4

The figure of Misty LKF schemes for the first round is given in Fig. 2.
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Fig. 2. First round of Misty LKF
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2.2 Misty R Scheme

Let f1 be a permutation of Bn. Let L,R, S and T be elements in {0, 1}n. Then
by definition we have:

MR(f1)([L,R]) = [S, T ] ⇔ S = R ⊕ f1(L) and T = f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md
R(f1, . . . , fd) = MR(fd) ◦ . . . MR(f2) ◦ MR(f1)

The permutation Md
R(f1, . . . , fd) is called a Misty R scheme with d rounds. We

describe in detail the equations of Misty R for the first four rounds.

1 round:

{
S = R ⊕ f1(L) = Y 1

T = f1(L)
2 rounds:

{
S = f1(L) ⊕ f2(Y

1) = Y 2

T = f2(Y
1)

3 rounds:

{
S = f2(Y

1) ⊕ f3(Y
2) = Y 3

T = f3(Y
2)

4 rounds:

{
S = f3(Y

2) ⊕ f4(Y
3) = Y 4

T = f4(Y
3)

The figure of Misty R schemes for the first round is given in Fig. 3.
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Fig. 3. First round of Misty R

Misty RKF Scheme. Let F be a public function of Fn and K1 be a key chosen
in {0, 1}n. Let L,R, S and T be elements in {0, 1}n. Then, we define:

MRKF (F,K1)([L,R]) = [S, T ] ⇔ S = R ⊕ F (K1 ⊕ L) and T = F (K1 ⊕ L)

Let K1, . . . ,Kd be d keys chosen in {0, 1}n. Then we have:

Md
RKF (F,K1, . . . ,Kd) = MRKF (F,Kd) ◦ . . . MRKF (F,K2) ◦ MRKF (F,K1)
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In this paper, we call Md
RKF (F,K1, . . . ,Kd) a Misty RKF scheme with d rounds.

The equations of Misty RKF for the first four rounds are as follows:

1 round: 2 rounds:{
S = R ⊕ F (K1 ⊕ L) = B1

T = F (K1 ⊕ L)

{
S = F (K1 ⊕ L) ⊕ F (K2 ⊕ B1) = B2

T = F (K2 ⊕ B1)

3 rounds: 4 rounds:{
S = F (K2 ⊕ B1) ⊕ F (K3 ⊕ B2) = B3

T = F (K3 ⊕ B2)

{
S = F (K3 ⊕ B2) ⊕ F (K4 ⊕ B3) = B4

T = F (K4 ⊕ B3)

The figure of Misty RKF schemes for the first round is given in Fig. 4.
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S = R ⊕ F (K1 ⊕ L) T = F (K1 ⊕ L)

Fig. 4. First round of Misty RKF

3 Overview of (Quantum) Cryptanalysis on Misty
Schemes

In this section, we review the cryptanalysis results of the state of the art on the
Misty L and Misty R schemes and we point out the new results provided in this
paper.

3.1 Misty L Schemes with Few Rounds

In Fig. 5, we summarize the cryptanalysis results on few rounds of Misty L
schemes based on the state of the art distinguishing attacks presented in [9,10]
together with our new contributions.
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KPA CPA CCA QCPA QCCA
M1

L 1 1 1 1 1
M2

L 2n/2 2 2 2 2
M3

L 2n 4 3 4 3
M4

L 2n 2n/2 4 This paper : 4
n (distinguishing attack)

Fig. 5. Number of computations to distinguish Misty L schemes (with 1, 2, 3 and 4
rounds) from random permutations

On Misty L schemes with 1 round, we have S = R which gives an attack with
one message in all security models. We only have to check whether S is equal to
R. For a Misty L scheme, this happens with probability 1 whereas for a random
permutation it happens with probability 1

2n .
On Misty L schemes with 2 rounds, we have 2 cases depending on the security

model. For CPA attack, we can choose 2 messages [L1, R1] and [L2, R2] such that
L1 = L2. Then, we can check whether S1 ⊕ S2 is equal to R1 ⊕ R2. For a Misty
L scheme, this happens with probability 1 whereas for a random permutation
it happens with probability 1

2n . This cryptanalysis result is valid for other secu-
rity models CCA, QCPA and QCCA. For KPA model, the CPA attack can be
transformed into a KPA attack using 2n/2 messages and the birthday paradox
bound to find a collision such that Li = Lj .

On Misty L schemes with 3 rounds, there is a CPA attack with 4 messages [9]
that can be transformed into a KPA attack with approximately 2n messages and
a CCA attack with 3 messages [10]. These two attacks also apply in the quantum
model.

On Misty L schemes with 4 rounds, there is a CCA attack with 4 messages [10]
that can be transformed into KPA attack or CPA attack. The same attacks in
the quantum models hold. However, in this paper we describe a QCPA attack
that enables to distinguish a Misty L permutation from a random permutation
using only n computations instead of 2n/2 computations.

Misty LKF with Few Rounds. The KPA, CPA and CCA attacks against
Misty L schemes of [9,10] can be applied on Misty LKF schemes. Therefore, we
describe in Sect. 4 the QCPA attack that distinguishes a 4-round Misty LKF
scheme from a random permutation using n computations.

3.2 Misty R Schemes with Few Rounds

On Misty R schemes, the results on 1 and 2 rounds are similar to the case of
Misty L schemes. On Misty R schemes with 3 rounds and with 4 rounds, the
results of the KPA, CCA and QCCA attacks are similar to those of Misty L
schemes since a Misty R scheme is the inverse of a Misty L scheme [10].

On Misty R schemes with 3 rounds, the best known attack has a complexity in
2n/2 computations with 2n/2 messages [10]. In this paper, we provide the security
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proof of Misty R schemes with 3 rounds against CPA-2 with the same bound
2n/2. We describe also a QCPA attack that distinguishes a Misty R scheme from
a random permutation by using n computations.

Figure 6 summarizes the cryptanalysis results that are distinguishing attacks
on Misty R schemes based on [10] and our new contributions.

KPA CPA CCA QCPA QCCA
M1

R 1 1 1 1 1
M2

R 2n/2 2 2 2 2
M3

R 2n This paper: 3 This paper: 3
2n/2 (security proof) n (distinguishing attack)

M4
R 2n 2n/2 4 2n/2 4

Fig. 6. Number of computations to distinguish Misty R schemes (with 1, 2, 3 and 4
rounds) from random permutations

Misty RKF Schemes. The state of the art distinguishing attacks on Misty
R schemes are similar for Misty RKF schemes and are summarized in Fig. 7
together with our new contribution. In this paper, we provide first a QCPA attack
that distinguishes a 3-round Misty RKF scheme from a random permutation by
using n computations. Then, we describe a QCPA attack that uses this quantum
distinguishing attack on 3-round Misty RKF schemes to recover the keys of d-
round Misty RKF schemes, for d > 3, in time 2(d−3)n/2.

KPA CPA CCA QCPA QCCA
M3

RKF 2n 2n/2 3 This paper: 3
n (distinguishing attack)

M6
RKF 22n 22n 22n This paper: 22n

23n/2(key recovery)
M7

RKF 24n 24n 24n This paper: 24n

22n(key recovery)
M8

RKF 24n 24n 24n This paper: 24n

25n/2(key recovery)
M9

RKF 26n 26n 26n This paper: 26n

23n(key recovery)
M10

RKF 26n 26n 26n This paper: 26n

27n/2(key recovery)
Md

RKF , d odd d ≥ 9 2(d−3)n 2(d−3)n 2(d−3)n This paper: 2(d−3)n

2(d−3)n/2(key recovery)
Md

RKF , d even d ≥ 8 2(d−4)n 2(d−4)n 2(d−4)n This paper: 2(d−4)n

2(d−3)n/2(key recovery)

Fig. 7. Number of computations to distinguish Misty RKF schemes from random per-
mutations and number of computations to recover the keys when explicitly specified
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4 Quantum Cryptanalysis on Misty

In this section, we recall the results of the two quantum algorithms that we use
in our quantum cryptanalysis. The full details on how the algorithms work can
be found in [3,12]. Then, we describe our QCPA attacks against the four variants
of Misty schemes and the key recovery attack against Misty RKF schemes.

4.1 Simon’s and Grover’s Algorithms

Simon’s Problem. Given a Boolean function, f : {0, 1}n �→ {0, 1}n, that is
observed to be invariant under some n-bit XOR period a, find a.

Simon presents a quantum algorithm [12] that provides exponential speedup
and requires only O(n) quantum queries to find a.

Grover’s Problem. Given a Boolean function f : {0, 1}n → {0, 1} and suppose
that there exists a unique x0 ∈ {0, 1}n such that f(x0) = 1. Given an oracle
access to f , find x0.

Grover presents a quantum algorithm [3] that requires O(2n/2) quantum
queries to find x0.

4.2 Quantum Distinguishing Attack on 4-Round Misty L Schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes
a 4-round Misty L scheme from a 2n-bit random permutation in polynomial
time. We also apply this attack on Misty LKF schemes to obtain a quantum
distinguishing attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] be four messages such that L1 	= L2,
R1 	= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. As it has been shown in [9],
for such four messages, we have:

X3
1 ⊕ X3

2 ⊕ X3
3 ⊕ X3

4 = f3(X1
1 ) ⊕ f3(X1

2 ) ⊕ f3(X1
3 ) ⊕ f3(X1

4 )

where X3
i is the left half of M4

L([Li, Ri]) as denoted in Sect. 2. Then, we have:

X3
1 ⊕ X3

2 ⊕ X3
3 ⊕ X3

4 = f3(X1
1 ) ⊕ f3(X1

2 ) ⊕ f3(X1
3 ) ⊕ f3(X1

4 )
= f3(R1 ⊕ f1(L1)) ⊕ f3(R2 ⊕ f1(L2)) ⊕ f3(R2 ⊕ f1(L1))

⊕f3(R1 ⊕ f1(L2))

We set R1 = x and we define the function

g(x) = f3(x ⊕ f1(L1)) ⊕ f3(R2 ⊕ f1(L2)) ⊕ f3(R2 ⊕ f1(L1)) ⊕ f3(x ⊕ f1(L2))

We observe that we have g(x) = g (x ⊕ f1(L1) ⊕ f1(L2)). Thus, the function
g is periodic and the period is f1(L1) ⊕ f1(L2). Note that, this period works
even if x = R2. We can use the Simon’s algorithm on g to get the period
s = f1(L1) ⊕ f1(L2) in polynomial time.

In the case where g is constructed with a 2n-bit random permutation instead
of a 4-round Misty L scheme, g is not periodic with overwhelming probability. If
we apply Simon’s algorithm on g, the algorithm fails to find a period. Therefore,
we can distinguish a 4-round Misty L scheme from a random permutation in
polynomial time by using Simon’s algorithm to check if g has a period.
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Quantum Distinguishing Attack on 4-Round Misty LKF Schemes. In
the same way as for 4-round Misty L schemes, we have a quantum distinguishing
attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] four messages such that L1 	= L2,
R1 	= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. We have also for Misty
LKF:

A3
1 ⊕ A3

2 ⊕ A3
3 ⊕ A3

4 = F (K3 ⊕ A1
1) ⊕ F (K3 ⊕ A1

2) ⊕ F (K3 ⊕ A1
3) ⊕ F (K3 ⊕ A1

4)
= F (K3 ⊕ R1 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R2 ⊕ F (K1 ⊕ L2))

⊕F (K3 ⊕ R2 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R1 ⊕ F (K1 ⊕ L2))

where A3
i is the left half of M4

LKF ([Li, Ri]) as denoted in Sect. 2. We set R1 = x
and we define the function g by

g(x) = F (K3 ⊕ x ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R2 ⊕ F (K1 ⊕ L2))
⊕F (K3 ⊕ R2 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ x ⊕ F (K1 ⊕ L2))

We observe that g(x) = g(x ⊕ F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2)). Thus, the function g
is periodic and the period is F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2). We can use the Simon’s
algorithm on g to get the period s = F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2) in polynomial
time. Thus, we obtain a quantum distinguishing attack on a 4-round Misty LKF
scheme by checking with the Simon’s algorithm if g has a period.

4.3 Quantum Distinguishing Attack on 3-Round Misty R Schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes
a 3-round Misty R scheme from a 2n-bit random permutation in polynomial time
that is already known [8]. We also apply this attack on Misty RKF schemes to
obtain a quantum distinguishing attack on 3-round Misty RKF schemes.

We consider the value S ⊕ T = f2(Y 1) = f2(R ⊕ f1(L)) where [S, T ] =
M3

R([L,R]) as described in Sect. 2. Let [L1, R], [L2, R] two messages such that
L1 	= L2. We set R = x and we define the function

g(x) = S1 ⊕ T1 ⊕ S2 ⊕ T2

= f2(x ⊕ f1(L1)) ⊕ f2(x ⊕ f1(L2))

where [Si, Ti] = M3
R([Li, R]). We observe that g(x) = g (x ⊕ f1(L1) ⊕ f1(L2)).

Thus, g is a periodic function and the period is f1(L1) ⊕ f1(L2). We can use
the Simon’s algorithm on g to get the period s = f1(L1) ⊕ f1(L2) in polynomial
time.

In the case where we apply Simon’s algorithm on g that is constructed with
a 2n-bit random permutation, the algorithm fails to find a period with over-
whelming probability. Thus, we can distinguish a 3-round Misty R scheme from
a random permutation by checking with the Simon’s algorithm if g has a period.

Quantum Distinguishing Attack on 3-Round Misty RKF Schemes. In
the same way as for 3-round Misty R scheme, we have a quantum distinguishing
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attack on 3-round Misty RKF scheme. We can also consider the value S ⊕ T =
F (K2⊕B1) = F (K2⊕R⊕F (K1⊕L)) where [S, T ] = M3

RKF ([L,R]) as described
in Sect. 2. Let [L1, R], [L2, R] two messages such that L1 	= L2. Thus, we set
R = x and we define the function g by

g(x) = S1 ⊕ T1 ⊕ S2 ⊕ T2

= F (K2 ⊕ x ⊕ F (K1 ⊕ L1)) ⊕ F (K2 ⊕ x ⊕ F (K1 ⊕ L2))

where [Si, Ti] = M3
RKF ([Li, R]). We observe that g(x) = g(x ⊕ F (K1 ⊕ L1) ⊕

F (K1⊕L2)). The function g is periodic and the period of the function is F (K1⊕
L1) ⊕ F (K1 ⊕ L2). We can use the Simon’s algorithm on g to get the period
s = F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2) in polynomial time.

Thus, we obtain a quantum distinguishing attack on 3-round Misty RKF
scheme by using Simon’s algorithm on g to check if g has a period.

4.4 Key Recovery Attack Against Misty RKF Schemes

Based on [1,4,7], we combine the quantum distinguishing attack on the 3-round
Misty RKF scheme (Sect. 4.3) with the Grover search to obtain a key recovery
attack against a d-round Misty RKF scheme. The attack recovers the keys of the
d-round Misty RKF scheme (K1, . . . ,Kd). We apply the technique of [4] recalled
in Proposition 1.

Proposition 1 (Proposition 3 in [4]). Let Ψ : Fm × Fn → Fn be a function
such that Ψ(k, ·) : Fn → Fn is a random function for any fixed k ∈ Fm. Let
Φ : Fm × Fn → Fn be a function such that Φ(k, ·) : Fn → Fn is a random
function for any fixed k ∈ Fm \ {k0} and Φ(k0, x) = Ψ(k0, x ⊕ k1). Then, given
a quantum oracle access to Φ(·, ·) and Ψ(·, ·), we can recover (k0, k1) with a
constant probability and O((m + n2)2m/2) queries, using O(m + n2) qubits.

For our attack, the key k0 in Proposition 1 corresponds to the keys of the last
(d − 3)-round of a d-round Misty RKF scheme K4, ...,Kd and k1 corresponds
to the period s recovered in the quantum distinguishing attack on the 3-round
Misty RKF scheme described in Sect. 4.3. The idea is to search for the correct key
k0 = (K4, ...,Kd) with the Grover search and check if Φ(·, ·) ⊕ Ψ(·, ·) is periodic
or not for the candidate key k = (K ′

4, ...,K
′
d) by running the Simon’s algorithm

in parallel.
The attack is the following. Assume that we have a quantum encryp-

tion oracle of a d-round Misty RKF scheme O : {0, 1}2n → {0, 1}2n. For
k = (K ′

4, ...,K
′
d) ∈ {0, 1}(d−3)n, let Dk : {0, 1}2n → {0, 1}2n denotes the partial

decryption of the last (d−3)-round of Misty RKF with the key candidate k. Let
W : {0, 1}(d−3)n × {0, 1}n × {0, 1}n → {0, 1}n be the function that is the sum
of the right part and the left part obtained after the 3-round of the Misty RKF
scheme. W is defined by

W (k, L,R) := the sum of the left and right halves of Dk ◦ O(L,R)
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We implement a quantum circuit of W using the quantum encryption oracle O.
In the case where k = k0, then W (k0, L,R) = F (K2 ⊕ R ⊕ F (K1 ⊕ L)).

Then, we choose two different n-bits string α, β and define Ψ : {0, 1}(d−3)n ×
{0, 1}n → {0, 1}n and Φ : {0, 1}(d−3)n × {0, 1}n → {0, 1}n by Ψ(k, x) :=
W (k, α, x) and Φ(k, x) := W (k, β, x). The function Ψ(k, ·) is an almost ran-
dom function for each k and Φ(k, ·) is also an almost random function for each
k 	= k0. In the case where k = k0, we have Φ(k0, x) = Ψ(k0, x ⊕ k1) where
k1 = F (K1 ⊕ α) ⊕ F (K1 ⊕ β). Indeed, we have:

Ψ(k0, x ⊕ k1) = W (k, α, x ⊕ k1)
= F (K2 ⊕ x ⊕ F (K1 ⊕ α) ⊕ F (K1 ⊕ β) ⊕ F (K1 ⊕ α))
= F (K2 ⊕ x ⊕ F (K1 ⊕ β)) = W (k, β, x) = Φ(k0, x)

Thus, we can apply Proposition 1 and recover the keys K4, . . . ,Kd. Then, we
can recover K1. To this end, we construct a quantum circuit that calculates
the first 3 rounds of the Misty RKF scheme. Then, we compute the period
s = F (K1 ⊕ α) ⊕ F (K1 ⊕ β) with the quantum distinguishing attack on the
3-round Misty RKF scheme with two arbitrary messages [α, x], [β, x] such that
x, α, β ∈ {0, 1}n and α 	= β. Thus, we can recover K1 by using the Grover
search. Finally, we can easily recover K2 and K3 using the Grover search and
the recovered key K1.

Attack Complexity. By Proposition 1, we can recover (K4, . . . ,Kd) in time
O(2(d−3)n/2)1. Since the last keys K1,K2 and K3 are recovered by using the
Grover search in time O(2n/2), the complexity of the key recovery attack against
a Misty RKF scheme is Õ(2(d−3)n/2).

5 Security Proof on Misty R Scheme with 3 Rounds

The best known CPA-1 attack against a Misty R scheme with 3 rounds is in
O(2n/2) messages and computations [10]. In this section, we prove the security
of the 3-round Misty R scheme against adaptive Chosen Plaintext CPA-2 attacks
when the number of queries q is significantly smaller than 2n/2. Since this proof
and the best known attack have the same bound 2n/2, the cryptanalysis of the
3-round Misty R scheme is optimal. For this proof, we use the result on H
coefficients technique provided in [11].

5.1 H Coefficient Technique

Let N be a positive integer. Let IN be the set {0, 1}N and FN be the set of all
applications from IN to IN . Let BN be the set of permutations from IN to IN .
Let K denotes a set of k-uples of functions (f1, . . . , fk) of FN . We define G as
an application of K → FN .
1 Taking into account the required numbers of qubits and operations, the complexity

is in O(n32(d−3)n/2) as explained in [4].
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Definition 1 (H coefficient). Let q be a positive integer. Let (a1, . . . , aq) with
ai ∈ IN for i = 1, . . . , q be a sequence of pairwise distinct elements of IN . Let
(b1, . . . , bq) with bi ∈ IN for i = 1, . . . , q. The H coefficient denoted by H(a, b)
or simply by H is the number of (f1, . . . , fk) ∈ K such that:

∀i, 1 ≤ i ≤ q,G(f1, . . . , fk)(ai) = bi

5.2 Application to Misty R Scheme with 3 Rounds

Theorem 1 (Adaptive Chosen Plaintext attack with q queries) [11].
Let ε and β be positive real numbers. Let E be a subset of IqN such that |E| ≥
(1 − β)2Nq. If for all (a1, . . . , aq) with ai ∈ IN for i = 1, . . . , q such that ai 	= aj

when i 	= j and for all β ∈ E we have:

H ≥ |k|
2Nq

(1 − ε)

Then, the advantage AdvCPA−2 to distinguish G(f1, . . . , fk) with (f1, . . . , fk) ∈R

K from a random function f ∈R FN fulfills:

AdvCPA−2 ≤ β + ε.

Theorem 2 (CPA-2 security on 3 rounds Misty R). The advantage of an
attacker in an adaptive chosen plaintext attack against the construction Misty R
with 3 rounds is upper bounded by:

AdvCPA−2 ≤ 3
2

q(q − 1)
2

1
2n

Proof. On Misty R schemes with 3 rounds, the set of keys K is equal to B3
N

with N = 2n.
The transformation MR sends [Li, Ri] to [Ui, Ti] such that:{

Ui = Ti ⊕ Si = f2(Ri ⊕ f1(Li))
Ti = f3(f1(Li) ⊕ Ui)

We are looking to H = {(f1, f2, f3) ∈ B3
n such that ∀i, 1 ≤ i ≤ q,MR[Li, Ri] =

[Ui, Ti]}.
Let E be the set defined as follows: E = {[Ui, Ti], 1 ≤ i ≤ q, Ui 	= Uj when

i 	= j}. We have:

|E| ≥ 2Nq

(
1 − q(q − 1)

2 · 2n

)

and we deduce that we have β = q(q−1)
2·2n .

We select f1 such that the values Ri ⊕ f1(Li) are pairwise distinct and the
values Ui ⊕ f1(Li) are pairwise distinct with [Ui, Ti] ∈ E.

– Ri ⊕ f1(Li) = Rj ⊕ f1(Lj) implies that Li 	= Lj or Ri 	= Rj since i 	= j. Then
we have to remove at most q(q−1)

2·2n |Bn| permutations f1.



56 A. Gouget et al.

– f1(Li) ⊕ Ui = f1(Lj) ⊕ Uj implies Li 	= Lj since we have Ui 	= Uj . Then we
have to remove at most q(q−1)

2·2n |Bn| permutations f1.

Now, the function f1 is chosen and both f2 and f3 are fixed in q points pairwise
distinct. Then we have:

H ≥ [Bn|3
22nq

(
1 − q(q − 1)

2n

)
=

|K|
2Nq

(
1 − q(q − 1)

2n

)

Then, by applying Theorem1, we have ε = q(q−1)
2n , β = q(q−1)

2·2n and

AdvCPA−2 ≤
(

3
2

)
q(q − 1)

2
1
2n

This concludes the proof.

6 Conclusion

In this paper, we provide a quantum cryptanalysis of four variants of Misty
schemes. Indeed, we describe QCPA attacks that enable to distinguish 4-round
Misty L and Misty LKF schemes, and 3-round Misty R and Misty RKF schemes,
from random permutations in complexity O(n) instead of O(2n/2). Note that the
QCPA attack on 3-round Misty R schemes is already known in [8]. Moreover,
we extend the quantum distinguishing attack on 3-round Misty RKF schemes
to obtain a key recovery attack against Misty RKF schemes which recovers the
keys of d-round Misty RKF schemes in time O(2(d−3)n/2). Then, we provide
the security proof of 3-round Misty R schemes against CPA-2 attack with a
complexity in O(2n/2). Since the best known attack against the 3-round Misty
R schemes has the same bound, this shows that the state of the art attack is
then optimal.
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