
Deukjo Hong (Ed.)
LN

CS
 1

25
93

Information Security
and Cryptology –
ICISC 2020
23rd International Conference
Seoul, South Korea, December 2–4, 2020
Proceedings

Lecture Notes in Computer Science 12593

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Deukjo Hong (Ed.)

Information Security
and Cryptology –

ICISC 2020
23rd International Conference
Seoul, South Korea, December 2–4, 2020
Proceedings

123

Editor
Deukjo Hong
Jeonbuk National University
Jeonju-si, Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-68889-9 ISBN 978-3-030-68890-5 (eBook)
https://doi.org/10.1007/978-3-030-68890-5

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0998-2958
https://doi.org/10.1007/978-3-030-68890-5

Preface

The 23rd International Conference on Information Security and Cryptology (ICISC
2020) was held in virtual format during December 2–4, 2020. This year’s conference
was hosted by the KIISC (Korea Institute of Information Security and Cryptology).

The aim of this conference was to provide an international forum for the latest
results of research, development, and applications within the field of information
security and cryptology. This year, we received 51 submissions and were able to accept
15 papers, resulting in 15 presentations at the conference. The challenging review and
selection processes were successfully conducted by Program Committee (PC) members
and additional reviewers via the EasyChair review system. For transparency, it is worth
noting that each paper underwent a blind review by three PC members. Furthermore, to
aid in resolving conflicts concerning the reviewers' recommendations, individual
review reports were open to all PC members, and detailed interactive discussions on
each paper took place. For the LNCS post-proceedings, the authors of selcted papers
had a few weeks to prepare their final versions, based on the comments received from
the reviewers.

The conference featured three invited talks: “Tweakable Block Cipher-Based
Cryptography” by Thomas Peyrin, “Designing the NIST post-quantum public-key
candidate Saber” by Sujoy Sinha Roy, and “Next Generation Cryptography Standards”
by Lily Chen. We thank the invited speakers for their kind acceptances and excellent
presentations, all authors who submitted their papers to ICISC 2020, all PC members,
and the additional reviewers. It was a truly wonderful experience to work with such
talented and hard-working researchers.

Finally, we also thank all attendees for their active participation and the Organizing
Committee (OC) members who successfully managed this conference.

December 2020 Deukjo Hong

Organization

General Chairs

Souhwan Jung Soongsil University, South Korea
Hyojin Choi National Security Research Institute, South Korea

Organizing Committee Chairs

Seungjoo Kim Korea University, South Korea
HeeSeok Kim Korea University, South Korea

Program Committee Chair

Deukjo Hong Jeonbuk National University, South Korea

Program Committee

Joonsang Baek University of Wollongong, Australia
Lynn Batten Deakin University, Australia
Jonathan Bootle IBM Research Zürich, Switzerland
Zhenfu Cao East China Normal University, China
Donghoon Chang IIIT-Delhi, India
Paolo D’Arco University of Salerno, Italy
Keita Emura NICT, Japan
Johann Groszschädl University of Luxembourg, Luxembourg
Dong-Guk Han Kookmin University, South Korea
Swee-Huay Heng Multimedia University, Malaysia
David Jao University of Waterloo, Canada
Seok Won Jung Mokpo National University, South Korea
Dongchan Kim Kookmin University, South Korea
Dongseong Kim The University of Queensland, Australia
Howon Kim Pusan National University, South Korea
Huy Kang Kim Korea University, South Korea
Jihye Kim Kookmin University, South Korea
Kee Sung Kim Daegu Catholic University, South Korea
Minkyu Kim National Security Research Institute, South Korea
Myungsun Kim The University of Suwon, South Korea
Sungwook Kim Seoul Women’s University, South Korea
Young-Gab Kim Sejong University, South Korea
Alptekin Küpçü Koç University, Turkey
Jin Kwak Ajou University, South Korea
Taekyoung Kwon Yonsei University, South Korea

Changhoon Lee SeoulTech, South Korea
Changmin Lee École Normale Supérieure de Lyon, France
Hyung Tae Lee Jeonbuk National University, South Korea
Jooyoung Lee KAIST, South Korea
Kwangsu Lee Sejong University, South Korea
Manhee Lee Hannam University, South Korea
Mun-Kyu Lee Inha University, South Korea
Iraklis Leontiadis Inpher, Switzerland & USA
Jiqiang Lu Beihang University, China
Sjouke Mauw University of Luxembourg, Luxembourg
Atsuko Miyaji JAIST, Japan
Nicky Mouha National Institute of Standards and Technology, USA
Khoa Nguyen Nanyang Technological University, Singapore
Katsuyuki Okeya Hitachi High-Tech GLOBAL, Japan
Jong Hwan Park Sangmyung University, South Korea
Ki-Woong Park Sejong University, South Korea
Young-Ho Park Sejong Cyber University, South Korea
Pedro Peris-Lopez Universidad Carlos III de Madrid, Spain
Josef Pieprzyk Queensland University of Technology, Australia
Dongyoung Roh National Security Research Institute, South Korea
Bimal Roy Indian Statistical Institute, India
Hwajeong Seo Hansung University, South Korea
Jae Hong Seo Hanyang University, South Korea
Seog Chung Seo Kookmin University, South Korea
Taeshik Shon Ajou University, South Korea
Daniel Slamanig Austrian Institute of Technology, Austria
Hung-Min Sun National Tsing Hua University, Taiwan
Shi-Feng Sun Monash University, Australia
Jaechul Sung University of Seoul, South Korea
Atsushi Takayasu University of Tokyo, Japan
Qiang Tang Ying Wu College of Computing, USA
Wenling Wu ISCAS, China
Toshihiro Yamauchi Okayama University, Japan
Okyeon Yi Kookmin University, South Korea
Hyejeong Yoo Sejong Cyber University, South Korea
Dae Hyun Yum Myongji University, South Korea
Joobeom Yun Sejong University, South Korea

Additional Reviewers

Behzad Abdolmaleki
Osman Biçer
Jiageng Chen
Long Chen
Xihui Chen
Seulki Choi

Valerio Cini
Hanwen Feng
Olga Gadyatskaya
Tomoaki Mimoto
Sebastian Ramacher

viii Organization

Contents

Security Models

Security Definitions on Time-Lock Puzzles . 3
Daiki Hiraga, Keisuke Hara, Masayuki Tezuka, Yusuke Yoshida,
and Keisuke Tanaka

Secret Sharing with Statistical Privacy and Computational Relaxed
Non-malleability . 16

Tasuku Narita, Fuyuki Kitagawa, Yusuke Yoshida, and Keisuke Tanaka

Cryptography in Quantum Computer Age

(Quantum) Cryptanalysis of Misty Schemes . 43
Aline Gouget, Jacques Patarin, and Ambre Toulemonde

An Efficient Authenticated Key Exchange from Random Self-reducibility
on CSIDH . 58

Tomoki Kawashima, Katsuyuki Takashima, Yusuke Aikawa,
and Tsuyoshi Takagi

Constructions and Designs

A Sub-linear Lattice-Based Submatrix Commitment Scheme. 87
Huang Lin

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking
Software Implementations . 99

Hangi Kim, Yongjin Jeon, Giyoon Kim, Jongsung Kim, Bo-Yeon Sim,
Dong-Guk Han, Hwajeong Seo, Seonggyeom Kim, Seokhie Hong,
Jaechul Sung, and Deukjo Hong

Efficient Implementations

Curve448 on 32-Bit ARM Cortex-M4 . 125
Hwajeong Seo and Reza Azarderakhsh

Efficient Implementation of SHA-3 Hash Function on 8-Bit AVR-Based
Sensor Nodes . 140

YoungBeom Kim, Hojin Choi, and Seog Chung Seo

Security Analysis

Can a Differential Attack Work for an Arbitrarily Large Number
of Rounds?. 157

Nicolas T. Courtois and Jean-Jacques Quisquater

Key Mismatch Attack on ThreeBears, Frodo and Round5 182
Jan Vacek and Jan Václavek

A New Non-random Property of 4.5-Round PRINCE 199
Bolin Wang, Chan Song, Wenling Wu, and Lei Zhang

Artificial Intelligence and Cryptocurrency

Generative Adversarial Networks-Based Pseudo-Random Number
Generator for Embedded Processors . 215

Hyunji Kim, Yongbeen Kwon, Minjoo Sim, Sejin Lim, and Hwajeong Seo

A RDBMS-Based Bitcoin Analysis Method . 235
Hyunsu Mun, Soohyun Kim, and Youngseok Lee

Fault and Side-Channel Attack

Federated Learning in Side-Channel Analysis . 257
Huanyu Wang and Elena Dubrova

Differential Fault Based Key Recovery Attacks on TRIAD. 273
Iftekhar Salam, Kim Young Law, Luxin Xue, and Wei-Chuen Yau

Author Index . 289

x Contents

Security Models

Security Definitions on Time-Lock
Puzzles

Daiki Hiraga1(B), Keisuke Hara1,2, Masayuki Tezuka1, Yusuke Yoshida1,
and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
hiraga.d.aa@m.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

Abstract. Time-lock puzzles allow one to encapsulate a message for a
pre-determined amount of time. The message is required to be concealed
from any algorithm running in parallel time less than the pre-determined
amount of time. In the previous works, the security of time-lock puzzles
was formalized in an indistinguishability manner. However, it is unclear
whether it directly meets the security requirements of time-lock puzzles.
In this work, we define semantic security for time-lock puzzles, which
captures the security requirements of the time-lock puzzle more directly.
We consider three computational restrictions of an adversary and see
how the security relationship changes. At first, in the traditional set-
ting, we observe that it is difficult to prove that the semantic security
implies the indistinguishability, same as the opposite implication. Sec-
ondly, in a slightly relaxed setting, we show that it is possible to prove
that the semantic security implies the indistinguishability. By contrast,
we observe that it is difficult to prove the opposite implication. Thirdly,
in the more relaxed setting, we show that it is possible to prove that
semantic security is equivalent to the indistinguishability. This shows
that an indistinguishability meets the security requirements of time-lock
puzzles in a certain restriction.

1 Introduction

1.1 Background and Motivation

One of the important topics in cryptography is to design schemes that are secure
against adversaries whose running time is bounded by some polynomial. In some
real-world applications, it is more desirable to consider a more flexible quantifi-
cation of an adversary’s computational resources. In such cases, a fundamental
primitive are cryptographic puzzles which can handle the flexible amount of com-
putational time or space. As mentioned in [DN92,RSW96], these puzzles have
a wide range of applications, such as combating junk mail and delayed digital
cash payments.

As one of the novel cryptographic puzzles, Rivest, Shamir, and Wagner
[RSW96] introduced the notion of time-lock puzzles, following May’s work on
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-68890-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_1

4 D. Hiraga et al.

timed-release cryptography [May93]. Informally, time-lock puzzles allow one to
encapsulate messages for a precise amount of time. More specifically, a sender
can generate a puzzle with a message m which is hidden until time t has elapsed.
Regarding its efficiency requirement, the time needed to generate a puzzle must
be much shorter than t. Moreover, as a security requirement, m should be hidden
from adversaries running in time less than t. Here, we take into account parallel
adversaries with many processors, or more widely, polynomial-sized circuits of
depth less than t.

One of the obvious applications of time-lock puzzles is an e-voting protocol.
An e-voting protocol consists of a voting phase and a counting phase. To explain
the usefulness of time-lock puzzles, we consider the following naive e-voting pro-
tocol (without time-lock puzzles). In the voting phase, a voter decides his/her
voting value and generates its commitment. Then, a voter posts this commit-
ment to a public bulletin board which ensures that anyone cannot be deleted
or changed. In the counting phase, voters are asked to open their commitments.
By counting all open voting contents, everyone can know the voting result. At
first glance, the above protocol seems to work well and make sense, but in fact,
we have an important problem. The problem is that if some voters do not open
their commitments in the counting phase, we cannot complete the protocol and
obtain an exact result.

By utilizing time-lock puzzles in the above protocol, we can solve this prob-
lem. Instead of generating a commitment of a voting content in the voting phase,
a voter generates a time-lock puzzle of his/her voting content with a precise
period. Even if there are some voters who do not reveal their contents in the
counting phase, we can solve their time-lock puzzles after the period and obtain
their voting contents.

Currently, the security for time-lock puzzles is formalized in the indistin-
guishability setting by Bitansky, Goldwasser, Jain, Paneth, Vaikuntanathan, and
Waters [BGJ+16]. Informally, this security captures that given a puzzle of one
chosen by two messages at random, any circuit with a depth of tε or less cannot
distinguish which one is encapsulated. However, this security is artificial and it
is unclear whether it directly captures the security requirements of time-lock
puzzles.

1.2 Our Contributions

We revisit the security definition of time-lock puzzles. In Sect. 3, we define new
security for time-lock puzzles, semantic security, to see if indistinguishability is
a practical security definition. In a nutshell, semantic security ensures that the
information of a message that can be obtained by an adversary who knows some
(partial) information (the “semantics”) of the puzzle is only the information that
can be obtained without knowing the puzzle. Intuitively, this security means
that an adversary with a circuit with a depth less than a specified depth cannot
extract any information about messages in a puzzle. Therefore, semantic security
can directly capture the security requirement for time-lock puzzles. Note that the
computational restriction of the adversary for indistinguishability and semantic

Security Definitions on Time-Lock Puzzles 5

security is O(tε). This is because it is difficult to prove the security relationship
in Sect. 4 if the computational restriction is tε.

In Sect. 4, we investigate the relationship between indistinguishability
and semantic security for time-lock puzzles. In the existing security defini-
tion [BGJ+16], the adversary is modeled as a circuit family of depth tε or less
(0 < ε < 1). It is difficult to show that indistinguishability and semantic security
are equivalent. This is because, in a security proof, it is difficult to construct an
adversary that breaks the security of one, while satisfying the calculation con-
straint, by using the adversary that breaks the security of the other. Therefore,
we set the adversary’s computational power in the indistinguishability and the
semantic security to O(tε) and prove the equivalence between indistinguishability
and semantic security under this restriction. Since the adversary’s computational
power is changed to O(tε), the security we improve is weaker than the security
proposed by Bitansky et al. [BGJ+16], but the security proof is more strict.

In Sect. 5, we consider the adversary’s computational power setting into three:
O(tε), tε +O(1) or less, and tε or less, and consider how the security relationship
changes. The security relationship is as follows.

1. O(tε)
As above, we can prove that the semantic security implies the indistinguisha-
bility, same as the opposite implication.

2. less than tε + O(1)
We can prove that the semantic security implies the indistinguishability. By
contrast, we cannot prove the opposite implication.

3. less than tε

This restriction is proposed by Bitansky et al. [BGJ+16]. We cannot prove
that the semantic security implies the indistinguishability, same as the oppo-
site implication.

1.3 Related Works

The concept of time-lock puzzles was proposed by Rivest et al. [RSW96].
They constructed a time-lock puzzle from the inherent sequentiality of repeated
squaring in the RSA group. Bitansky et al. [BGJ+16] took a different app-
roach and constructed (succinct/pre-processing/weak) time-lock puzzles, from
non-parallelizable languages together with (succinct/reusable/non-succinct) ran-
domized encodings [BGL+15], which can be instantiated from (indistin-
guishability obfuscation/sub-exponential LWE/one-way function). Liu, Jager,
Kakvi, and Warinschi [LJKW18] constructed a time-lock puzzle using witness
encryption [GGSW13] and blockchains. Also, Mahmoody, Moran, and Vad-
han [MMV11] constructed a weak time-lock puzzle in the random oracle model.

Malavolta and Thyagarajan [MT19] constructed a fully homomorphic time-
lock puzzle from indistinguishable obfuscators in addition to the inherent sequen-
tiality of repeated squaring in RSA group. Brakerski, Döottlinng, Garg, and
Malavolta [BDGM19] also constructed a fully homomorphic time-lock puzzle
from LWE and the inherent sequentiality of repeated squaring in RSA group.

6 D. Hiraga et al.

Ephraim, Freitag, Komargodski, and Pass [EFKP20] constructed a non-
malleable time-lock puzzle in the random oracle model.

2 Preliminaries

2.1 Notations

Let λ be the security parameter and ε be a real number satisfying 0 < ε < 1.
PPT denotes the probabilistic polynomial time. poly(λ) denotes a polynomial
in λ. For a circuit A, dep(A) denotes the depth of A, y ← A(x) denotes that
A takes x as input and outputs y. For a finite set S, s ← S denotes that s is
sampled from S uniformly at random. For a distribution M over a space M ,
m ← M denotes that m is sampled from M.

2.2 Time-Lock Puzzles

A formal definition of time-lock puzzles was introduced by Bitansky et al.
[BGJ+16]. They proposed three definitions of time-lock puzzles depending on
the efficiency requirement: weak, pre-processing, and succinct. Among them, we
discusses succinct time-lock puzzles. In the following, unless otherwise noted,
time-lock puzzles means succinct time-lock puzzles. In this section, we recall a
definition of time-lock puzzles.

Definition 1 (Time-Lock Puzzles). A time-lock puzzle scheme is a tuple of
two PPT algorithms (Gen,Solve) defined as follows.

z ← Gen(t,m): The puzzle generation algorithm takes a hardness-parameter t
and a message m ∈ M , then outputs a puzzle z.

m ← Solve(z): The solve algorithm takes a puzzle z, then outputs a message m.

We require the following correctness and efficiency.

Correctness: For all λ ∈ N, polynomials t(λ), and m ∈ M , m = Solve(Gen(t,m))
holds.

Efficiency: The running time of Gen is bounded by O(log t) and the running time
of Solve is t · poly(λ).

Bitansky et al. [BGJ+16] define security for time-lock puzzles as follows.

Definition 2 (Security). For a time-lock puzzle scheme P = (Gen,Solve) and
an adversary A = (A1,A2), we define the following experiment Expε-sec-b

P,A (λ) for
b ∈ {0, 1}.

– Expε-sec-b
P,A (λ):

1. The challenger executes z∗ ← Gen(t,mb) and sends z∗ and state to A2.
2. A2(z∗, state) outputs b′ ∈ {0, 1}.

Security Definitions on Time-Lock Puzzles 7

A time-lock puzzle scheme P is secure with gap ε < 1 if there exists a poly-
nomial t̃(λ) such that for all t ≥ t̃ and every pair of messages m0,m1 ∈ M , it
holds that

Advε-sec
P,A (λ) =

∣
∣Pr[Expε-sec-0

P,A (λ) → 1] − Pr[Expε-sec-1
P,A (λ) → 1]

∣
∣ < negl(λ).

Here, the depth of A1 is poly(λ) and the depth of A2 is tε.

3 New Definition for Time-Lock Puzzles

In this section, we define new security for time-lock puzzles, the semantic security,
to see if the indistinguishability is a practical security definition. Along with that,
we redefine the indistinguishability for time-lock puzzles.

3.1 Indistinguishability for Time-Lock Puzzles

We redefine indistinguishability proposed by Bitansky et al. [BGJ+16] as the
ε-indistinguishability (ε-IND). To do so, we change the security definition as
follows.

The first is to relax an adversary’s computational restriction to consider
the relationship between indistinguishability and semantic security. Concretely,
we restrict the depth of the adversary after receiving the puzzle to O(tε). We
discuss on this modification in Sect. 5. Note that the weaker the adversary’s
computational restriction, the more strict the security.

The second is that an adversary can decide the challenge messages (m0,m1)
after it receives t.

Definition 3 (Indistinguishability (ε-IND)). For a time-lock puzzle scheme
P = (Gen,Solve) and an adversary A = (A1,A2), we define the following experi-
ment Expε-IND-b

P,A (λ) for b ∈ {0, 1}.

– Expε-IND-b
P,A (λ):

1. A1(t) outputs a pair of messages (m0,m1) and state information state.
2. The challenger executes z∗ ← Gen(t,mb) and sends z∗ and state to A2.
3. A2(z∗, state) outputs b′ ∈ {0, 1}.

A time-lock puzzle scheme P satisfies the ε-indistinguishability (ε-IND) if
there exists a polynomial t̃(λ) such that for all t ≥ t̃ and every polynomial-sized
adversary A = (A1,A2), it holds that

Advε-IND
P,A (λ) =

∣
∣
∣Pr[Expε-IND-0

P,A (λ) → 1] − Pr[Expε-IND-1
P,A (λ) → 1]

∣
∣
∣ < negl(λ).

Here, the depth of A1 is poly(λ), and the depth of A2 is O(tε).

8 D. Hiraga et al.

3.2 Semantic Security for Time-Lock Puzzles

We introduce semantic security for time-lock puzzles. This directly captures the
intuition that no information about the message is leaked from the puzzle by
the time. Informally, this security states that for enough large t, it is hard to
distinguish the following two experiments by time O(tε).

– Real: An adversary can get the puzzle generated from the message and tried
to get information about the message in time O(tε).

– Ideal: The simulator tried to get information about the message without the
puzzle.

In conjunction with ε-IND, an adversary’s computational restrictions are dis-
cussed in Sect. 5. Formally, the definition of semantic security for time-lock puz-
zles is given as follows.

Definition 4 (Semantic Security (ε-SS)). For a time-lock puzzle P = (Gen,
Solve), an adversary A = (A1,A2), and a simulator Sim = (Sim1,Sim2), we
define the following two experiments Expε-SS-real

P,A (λ) and Expε-SS-ideal
P,Sim (λ).

– Expε-SS-real
P,A (λ):

1. A1(t) outputs a distribution M over the message space M and state infor-
mation state.

2. The challenger samples m ← M, computes z∗ ← Gen(t,m), and sends
z∗ and state to A2.

3. A2(z∗, state) outputs out.
4. The experiment outputs (M,m, out).

– Expε-SS-ideal
P,Sim (λ):

1. Sim1(t) outputs a distribution M over the message space M and state
information state.

2. The challenger samples m ← M and sends state to Sim2.
3. Sim2(state) outputs out.
4. The experiment outputs (M,m, out).

A time-lock puzzle scheme P satisfies ε-semantic security (ε-SS) if there exists
a polynomial t̃(λ) , for any t ≥ t̃, for any adversary A = (A1,A2), exists a
simulator Sim = (Sim1,Sim2), for any distinguisher D,

Advε-SS
P,A,Sim,D(λ) =

∣
∣
∣Pr[D(Expε-SS-real

P,A (λ)) → 1] −Pr[D(Expε-SS-ideal
P,Sim (λ)) → 1]

∣
∣
∣

< negl(λ)

holds where dep(A1) = poly(λ), dep(Sim1) = poly(λ), dep(A2) = O(tε),
dep(Sim2) = O(tε), and dep(D) = O(tε).

Security Definitions on Time-Lock Puzzles 9

4 The Equivalence of Indistinguishability and Semantic
Security

In this section, we show that ε-IND is equivalent to ε-SS for time-lock puzzles. In
this proof, the adversary’s computational restriction in ε-IND and ε-SS is O(tε).
We stress that if the computational restrictions remain conventional, the proof
will not work. Details on these changes are discussed in Sect. 5.

First, we show that ε-IND implies ε-SS.

Theorem 1. If a time-lock puzzle P satisfies ε-IND, then P satisfies ε-SS.

Proof. Let A = (A1,A2) be an adversary against ε-SS of P where dep(A1) =
poly(λ) and dep(A2) = O(tε). We construct a simulator Sim = (Sim1,Sim2) as
follows.

– Sim1(t):
1. Given a hardness-parameter t, execute A1(t) and receive a distribution

M and information state.
2. Sample a message m1 according to the distribution M.
3. Execute z∗ ← Gen(t,m1) and send (M, state′) to the challenger where

state′ = (M,m1, z
∗, state).

– Sim2(state′):
1. Execute A2(z∗, state) and receive out.
2. Output out′ = (M,m1, out).

Note that dep(Sim1) = poly(λ) and dep(Sim2) = O(tε). For any adversary
A and the simulator Sim described above, let D be an arbitrary distinguisher
where dep(D) = O(tε). Since there is no difference between the information that
Sim1 obtained and the information that Sim2 obtained, there is essentially no
difference even if the calculation amount of Sim2 is O(tε).

Here, we introduce the following experiment sequence {Expi}3i=0.

Exp0: The original experiment Expε-SS-real
P,A (λ).

Exp1: Same as Exp0 except for the following:
In Step 3 of Exp0, the challenger samples two messages m0 and m1 accord-
ing to the distribution M over the message space, calculate a puzzle z∗ ←
Gen(t,m0) and send z∗ and state to A2.

Exp2: Same as Exp1 except for the following:
In Step 3 of Exp1, we change the message to be a puzzle from m0 to m1.

Exp3: Same as Exp2 except for the following:
We replace the adversary A = (A1,A2) in Steps 2, 3, and 4 of Exp2
with the simulator Sim := (Sim1,Sim2). This experiment is the same as
Expε-SS-ideal

P,A (λ).

10 D. Hiraga et al.

For each i = 0, . . . , 3, let out′i be the final output of the challenger in Expi

and Ti be the event that the challenger outputs 1 in Expi.
To evaluate Advε-IND

P,A (λ) = |Pr[T0]−Pr[T3]|, we show the following lemmas.

Lemma 1. |Pr[T0] − Pr[T1]| = 0.

Proof. The difference between Exp1 and Exp0 is that, in Step 3, the number of
messages sampled according to the distribution M and the puzzle output by the
challenger. It does not change any information that the adversary can get about
the message. Therefore, |Pr[T0] − Pr[T1]| = 0 holds.

�� (Lemma 1)

Lemma 2. There exists an adversary against ε-SS B = (B1,B2) where
|Pr[T1] − Pr[T2]| = Advε-IND

P,B (λ), dep(B1) = poly(λ), and dep(B2) = O(tε).

Proof. We construct an adversary B = (B1,B2) against ε-IND for P as follows:

– B1(t):
1. Execute A1(t) and receive (M, state).
2. Sample m0,m1 ← M and output (m0,m1, state

′) where state′ = (m0,M,
state).

– B2(z∗, state′):
1. Execute A2(z∗, state) and receive out.
2. Execute D(M,m0, out), receive b′, and send b′ to the challenger.

First, we evaluate the depth of B1 and B2. You can see that

dep(A1) = poly(λ) (1)
dep(A2) = O(tε) (2)
dep(D) = O(tε) (3)

holds. By (1),

dep(B1) = poly(λ)

holds. By (2) and (3),

dep(B2) = dep(A2) + dep(D) = O(tε)

holds. If computational restriction of A2 and B2 is equal or less than tε, this
construction of B does not satisfy the computational restriction. The case where
the adversary’s computational restriction is changed is explained in Sect. 5.

Next, we evaluate |Pr[T1] − Pr[T2]|. In the case of Expε-IND-0
P,B (λ), A2 have

received a puzzle z∗ of m0. B completely simulates Exp1 against A. Since
the distribution of the input to D is the same as the distribution in Exp1,

Security Definitions on Time-Lock Puzzles 11

Pr[T1] = Pr[Expε-IND-0
P,B (λ) → 1] holds. In the case of Expε-IND-1

P,B (λ), A2 have
received a puzzle z∗ of m1. B completely simulates Exp2 against A. Since
the distribution of the input to D is the same as the distribution in Exp2,
Pr[T2] = Pr[Expε-IND-1

P,B (λ) → 1] holds. Therefore,

|Pr[T1] − Pr[T2]| =
∣
∣
∣Pr[Expε-IND-0

P,B (λ) → 1] − Pr[Expε-IND-1
P,B (λ) → 1]

∣
∣
∣

= Advε-IND
P,B (λ)

holds. �� (Lemma 2)

Lemma 3. |Pr[T2] − Pr[T3]| = 0.

Proof. In the case of Exp3, A2 executed by Sim2 has received a puzzle z∗ of m1.
The output of Sim in Exp3 has the same distribution as the output of A in Exp2.
Therefore, |Pr[T2] − Pr[T3]| = 0 holds. �� (Lemma 3)

Now, we evaluate Advε-IND
P,A (λ) = |Pr[T0] − Pr[T3]|. The advantage

Advε-IND
P,A (λ) can be evaluated as follows.

Advε-SS
P,A (λ) = |Pr[T0] − Pr[T3]| ≤

2∑

i=0

∣
∣
∣Pr[Ti] − Pr[Ti+1]

∣
∣
∣

By combining Lemma 1, 2, and 3,

Advε-SS
P,A,Sim,D(λ) ≤ Advε-IND

P,B (λ)

holds. Since, P is ε-IND secure, Advε-IND
P,B (λ) = negl(λ) holds. Therefore, we can

conclude Theorem 1.
�� (Theorem 1)

Next, we show that ε-SS implies ε-IND. The adversary’s computational
restrictions are the same as in Theorem 1.

Theorem 2. If a time-lock puzzle P satisfies ε-SS, then P satisfies ε-IND.

Proof. Take any ε-IND adversary A = (A1,A2), and construct an ε-SS adversary
B := (B1,B2) and ε-SS distinguisher as follows.

– B1(t):
1. Execute A1(t) and receive a pair of message (m0,m1) and informa-

tion state.
2. Set the distribution M over the message space as uniform distribution on

{m0,m1}.
3. Outputs (M, state′) where state′ = (M,m0,m1, state).

12 D. Hiraga et al.

– B2(z∗, state′):
1. Execute A2(z∗, state) and receive b′.
2. Output out = mb′ .

– Di(M,m, out):
1. If ‖M‖
= 2, then output 1 − i.
2. If ‖M‖ = 2 and out = m, output 0.
3. Otherwise output 1.

In this construction, We can see that

dep(A1) = poly(λ) (4)

dep(A2) = O(tε) (5)

hold. By (4),

dep(B1) = poly(λ)

holds. By (5),

B2 = O(tε) and Di = O(tε)

holds. If the computational restrictions of A2 and B2 is equal or less than tε, this
construction of B does not satisfy the computational restriction. It is because B2

uses ε-IND adversary A2 as a subroutine, and selects the message m0,m1 based
on b′ ∈ {0, 1} received from A2. The case where the adversary’s computational
restriction is changed is explained in Sect. 5.

Let ‖M‖ be the number of messages that can be taken when choosing accord-
ing to the distribution M. Eb the event that the challenger selects mb when
choosing according to the distribution M.

First, we show that ‖M‖
= 2 contradicts the security of ε-SS for the time-
lock puzzle. Since puzzle P is ε-SS secure, there is a simulator Sim and the
following holds for any i = 0, 1.

∣
∣
∣Pr[Di(Expε-SS-real

P,B (λ)) → 1] −Pr[Di(Expε-SS-ideal
P,Sim (λ)) → 1]

∣
∣
∣ < negl(λ) (6)

If the distribution M output from Sim is ‖M‖
= 2, the following holds.

Pr[D0(Expε-SS-ideal
P,Sim (λ)) → 1] = 1

Pr[D1(Expε-SS-ideal
P,Sim (λ)) → 1] = 0

Pr[D0(Expε-SS-real
P,B (λ)) → 1] = Pr[D1(Expε-SS-real

P,B (λ)) → 1] (7)

From (6), the difference between the probability that the distinguisher of
Expε-SS-real

P,B (λ) and Expε-SS-ideal
P,Sim (λ) outputs 1 is negligible. However, there does

not exists Pr[D0(Expε-SS-real
P,B (λ)) → 1] that simultaneously satisfies (6) and (7).

Security Definitions on Time-Lock Puzzles 13

This contradicts the assumption that the time-lock puzzle P is ε-SS secure, and
thus the output of Sim M must satisfy ‖M‖ = 2. At this time, in Expε-SS-ideal

P,Sim (λ),
the following holds because no information about the selection of m0,m1 is input
in Sim.

Pr[Di(Expε-SS-ideal
P,Sim (λ)) → 1] =

1
2

(8)

For any i ∈ {0, 1}, we can see that the following equations hold.

Pr[E0] = Pr[E1] =
1
2

Pr[Di(Expε-SS-real
P,B (λ)) → 1 | E0] = Pr[Expε-IND-0

P,A (λ) → 0]

Pr[Di(Expε-SS-real
P,B (λ)) → 1 | E1] = Pr[Expε-IND-1

P,A (λ) → 1]

Using these equations, we can evaluate the following. In the following proof, let
pb be the probability that 1 is output in Expε-IND-b

P,A (λ) for b ∈ {0, 1} Next, we
evaluate Pr[Di(Expε-SS-real

P,B (λ)) → 1] using p0, p1.

Pr[Di(Expε-SS-real
P,B (λ)) → 1]

= Pr[E0] · Pr[Di(Expε-SS-real
P,B (λ)) → 1 | E0]

+ Pr[E1] · Pr[Di(Expε-SS-real
P,B (λ)) → 1 | E1]

=
1
2
(Pr[Expε-IND-0

P,A (λ) → 0] + Pr[Expε-IND-1
P,A (λ) → 1])

=
1
2
((1 − Pr[Expε-IND-0

P,A (λ) → 1]) + Pr[Expε-IND-1
P,A (λ) → 1])

=
1
2
((1 − p0) + p1)

=
1
2

+
1
2
(p1 − p0) (9)

Therefore, from the equations (6), (8), (9), the following holds.

|p1 − p0| = 2
∣
∣
∣
∣

1
2

+
1
2
(p1 − p0) − 1

2

∣
∣
∣
∣

= 2
∣
∣
∣Pr[Di(Expε-SS-real

P,B (λ)) → 1] −Pr[Di(Expε-SS-ideal
P,Sim (λ)) → 1]

∣
∣
∣

< negl(λ)

Therefore, we can conclude Theorem 2. �� (Theorem 2)

5 Reconsideration on Computational Power

In our security definition in Sect. 3, the depth of an adversary after receiving a
puzzle and a distinguisher is limited to O(tε). In Sect. 4, under this restriction, we

14 D. Hiraga et al.

show the equivalence of ε-IND and ε-SS. In this section, we consider the relation
between ε-IND and ε-SS as the adversary’s computational power changes. In the
following, the discussion about the computational restriction of a distinguisher
in the semantic security is omitted because it does not affect the implications.

1. dep(A2) = O(tε)
This is a restriction considered in Sect. 3 and 4. Under this restriction, ε-IND
and ε-SS are equivalent, as shown in Sect. 4.

2. dep(A2) ≤ tε + O(1)
This is a restriction that allows the depth of the adversary’s circuit to be
not only tε but also the calculation of a constant that is independent of the
security parameter λ.
In this setting, it cannot be shown that ε-IND implies ε-SS by the same proof
method in Sect. 4. More precisely, in Lemma 2, the adversary against ε-IND
B2 after receiving the puzzle uses ε-SS adversary A2 as a subroutine, and then
uses the distinguisher D. The depth of the circuit B2 is as follows.

dep(B2) = dep(A2) + dep(D) ≤ 2tε + O(1)

This does not satisfy the computational power restriction.
On the other hand, it can be shown that ε-SS implies ε-IND. In Theorem 2,
the adversary against ε-SS B2 uses the adversary against ε-IND A2 as a
subroutine, and selects the message m0,m1 based on b′ ∈ {0, 1} received
from A2. Now, the depth of A2 is tε + O(1), and subsequent calculations can
be performed with a constant depth. Therefore, B2 satisfies the restriction of
computational power and can be concluded.

3. dep(A2) ≤ tε

This is a restriction that the depth of an adversary cannot exceed tε. Bitansky
et al. [BGJ+16] use this restriction to define the indistinguishability of a time-
lock puzzle.
In this setting, it cannot be shown that ε-IND implies ε-SS by the same proof
method in Sect. 4. This is because the depth of ε-IND adversary B2 exceeds
tε in Lemma 2. The opposite implication cannot be shown because the depth
of the ε-SS adversary B2 exceeds tε.

Previous definition proposed by Bitansky et al. [BGJ+16] use dep(A2) ≤ tε

as a restriction on an adversary’s computational power. However, under this
restriction, it is unclear the security relationship between the indistinguishabil-
ity and the semantic security as described above. In this work, we considered
changing the computational restrictions of the adversary, so we can see the rela-
tionship. Therefore, it can be said that the time-lock puzzle that satisfies ε-IND
essentially meets security requirements of time-lock puzzles.

Acknowledgements. A part of this work was supported by NTT Secure Platform
Laboratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAK-
ENHI JP16H01705, JP17H01695, JP19J22363, JP20J14338.

Security Definitions on Time-Lock Puzzles 15

References

[BDGM19] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear
decryption: rate-1 fully-homomorphic encryption and time-lock puzzles. In:
Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 407–437.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 16

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, Cambridge, MA, USA, 14–16 January 2016, pp. 345–356 (2016)

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct random-
ized encodings and their applications. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Port-
land, OR, USA, 14–17 June 2015, pp. 439–448 (2015)

[DN92] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[EFKP20] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Non-malleable time-
lock puzzles and applications. IACR Cryptol. ePrint Arch. 2020:779 (2020)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 467–476 (2013)

[LJKW18] Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock
encryption. Des. Codes Cryptogr. 86(11), 2549–2586 (2018). https://doi.
org/10.1007/s10623-018-0461-x

[May93] May, T.C.: Timed-release crypto (1993)
[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the ran-

dom oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 3

[MT19] Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and
applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 620–649. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26948-7 22

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto. Technical report, Cambridge, MA, USA (1996)

https://doi.org/10.1007/978-3-030-36033-7_16
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22

Secret Sharing with Statistical Privacy
and Computational Relaxed

Non-malleability

Tasuku Narita1(B), Fuyuki Kitagawa2, Yusuke Yoshida1, and Keisuke Tanaka1

1 Tokyo Institute of Technology, Tokyo, Japan
narita.t.ad@m.titech.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. Goyal and Kumar (STOC ’18, CRYPTO ’18) initiate the
study of non-malleability for secret sharing and proposed the definition of
information-theoretical non-malleability for secret sharing. Subsequently,
Brian, Faonio, and Venturi (CRYPTO ’19, TCC ’19) proposed computa-
tional variants of non-malleability for secret sharing and showed that by
focusing on computational non-malleability, it is possible to construct
more efficient schemes compared to the existing ones. However, their
schemes have a drawback that they do not satisfy statistical privacy.

In this paper, we propose a new definition of computational non-
malleability for secret sharing in the public parameter model. Although
our definition is relaxed compared to the one proposed by Brian et al., it
captures a strong security notion called non-malleability against overlap-
joint tampering. Then, we show how to transform any secret sharing
scheme into the one satisfying our computational non-malleability with
small efficiency overhead. This transformation has a nice property that it
preserves the statistical privacy of the underlying secret sharing scheme.
Thus, through our transformation, we can obtain efficient secret shar-
ing schemes satisfying computational non-malleability and statistical pri-
vacy. We achieve this transformation using lossy encryption which satis-
fies IND-CCA security in the injective mode.

Keywords: Secret sharing · Non-malleability · Lossy encryption ·
Chosen ciphertext attack

1 Introduction

1.1 Background

Secret sharing was introduced by Shamir [Sha79] and Blakley [Bla79] as a tool
that enables to securely store secret information. A secret sharing scheme divides
a secret message into shares and distributes them to parties. Access structure
of a secret sharing scheme describes access control to the shared message. If
a set of parties is contained in the access structure, they can reconstruct the
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 16–39, 2021.
https://doi.org/10.1007/978-3-030-68890-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_2

Secret Sharing with Computational Relaxed Non-malleability 17

message from the distributed shares. On the other hand, if a set of parties is
not contained in the access structure, they cannot learn any information on the
message from their shares. Secret sharing is used as a fundamental building block
for various cryptographic primitives such as multi-party computation [GMW87,
CCD88,BGW88].

Classical secret sharing schemes are not tolerant against an adversary who
tampers shares. To remedy this shortcoming, Goyal and Kumar [GK18a,GK18b]
introduced the notion of non-malleable secret sharing (NMSS). Intuitively, their
basic definition of non-malleability ensures that even if all shares are tampered
once individually, the reconstructed message results in the original value or unre-
lated value. This tampering model is known as individual tampering. Also, they
considered a more powerful tampering model called joint tampering. In the joint
tampering, the adversary is allowed to partition the shares into any number of
groups and tamper the shares in each group. Furthermore, they introduced the
tampering model that allows overlap in the above partition. This model is called
overlap-joint tampering and captures the most powerful adversarial tampering
attacks.

Previous Works. Goyal and Kumar defined non-malleability for secret sharing
for the first time. Goyal and Kumar focused on the complexity of the access
structure and the partition of the adversary’s input shares to evaluate the secret
sharing scheme. We can say that their goal is to construct a scheme that recog-
nizes the general access structure and has non-malleability against over-lap joint
tampering.

Goyal and Kumar constructed a scheme that recognizes general access struc-
ture and has non-malleability against individual tampering. Also they con-
structed a scheme that recognizes an n-out-of-n access structure and has non-
malleability against over-lap joint tampering. Since [GK18b], various studies of
NMSS have been conducted. A line of works [BS19,SV19,ADN+19] considered
multi-time tampering. In the multi-time tampering, the adversary tampers the
shares several times. They considered individual tampering and general access
structures. Kumar, Meka, and Sahai [KMS18] construct general access struc-
ture NMSS with leakage-resilience. In the leakage-resilient NMSS, the adversary
can learn the part of information about all shares. The tampering model is
individual tampering. Chattopadhyay and Li [CL18] construct threshold access
structure non-malleable ramp secret-sharing schemes against joint tampering.
Lin, Cheraghchi, Guruswami, Safavi-Naini, and Wang [LCG+19] studied affine
tampering, which is a non-compartmentalized restriction on tampering. They
proposed threshold NMSS against affine tampering.

The above non-malleable secret-sharing schemes satisfy the information-
theoretical non-malleability. Recently, Faonio and Venturi [FV19] introduced
computational non-malleable secret sharing. They introduced continuous NMSS
and constructed it for threshold access structure. The continuous tampering
is a variant of multi-time tampering. The tampering model is individual. Fur-
ther, Brian, Faonio, and Venturi [BFV19] constructed a general access struc-
ture NMSS against individual tampering. Also, they constructed NMSS against

18 T. Narita et al.

selective k-partitioning joint tampering using a variant of non-interactive zero-
knowledge proofs. Thus the latter scheme is constructed in the common refer-
ence strings model. In selective k-partitioning joint tampering, the size of the
partitions must be smaller than k. Their NMSS has leakage-resilience and they
considered continuous tampering. In addition, Brian, Faonio, Obremski, Simkin,
and Venturi [BFO+20] proposes a scheme that satisfies the k-joint p-time non-
malleability that recognizes the general access structure.

Brian et al. [BFO+20] proposed the compiler that obtains the scheme which
recognizes the general access structure and has non-malleability against joint
tampering. However, in their scheme, the size of the partition is limited to
k ∈ O(

√
log n). We still do not have a secret sharing scheme for general access

structure which is non-malleable against joint tampering without any limitation
to the size of the partition.

Motivation. Goyal and Kumar [GK18a,GK18b] defined the non-malleability for
secret sharing as an extension of non-malleable codes proposed by Dziembowski,
Pietrzak and Wichs [DPW10]. NMSS studied in other prior works are also
defined essentially as extensions of non-malleable codes. However, under those
definitions, there is still no scheme that recognizes the general access structure
and has non-malleability for over-lap joint tampering. Consider this situation,
we give up to refer to the line of non-malleable codes once and explore the pos-
sibility of non-malleability definition by focusing on another non-malleability.
Specifically, we focus on the definition of non-malleable commitment proposed
by Crescenzo, Katz, Ostrovsky, and Smith [CKOS01], and we extend this defi-
nition to non-malleable secret sharing.

Focusing on a computational non-malleability opens up the possibility of
constructing efficient schemes satisfying non-malleability against powerful tam-
pering attacks. However, the existing computational non-malleable schemes have
a drawback that they do not satisfy statistical privacy. We observe that in many
cases it is desirable for secret sharing schemes to satisfy statistical privacy even
if they satisfy only computational non-malleability. In some cases, it is realistic
that an adversary may not able to spend enormous computational power on
tampering shares that honest parties have rather than on extracting informa-
tion from the shares the adversary has. Moreover, for some sort of information
to be shared, we would wish that privacy holds for a much longer time period
compared to non-malleability. Thus, it is an interesting question of whether we
can construct efficient NMSS that is secure against powerful tampering attacks
and satisfies statistical privacy.

1.2 Our Contribution

In this work, we introduce a new definition of computational non-malleability
for secret sharing and propose a simple and efficient compiler that transforms
any secret sharing scheme into the one satisfying our notion of computational
non-malleability. Our compiler has an advantage that it preserves the statistical

Secret Sharing with Computational Relaxed Non-malleability 19

privacy of the underlying secret sharing scheme. Thus, through our transfor-
mation, we can obtain efficient secret sharing schemes satisfying computational
non-malleability and statistical privacy.

Below, we first explain our new definition and then provide the details of our
construction.

On Our Definition. We aimed at constructing a simple and efficient compiler
that makes any secret sharing scheme non-malleable against overlap-joint tam-
pering. For this goal, we employ non-malleable commitment, unlike existing non-
malleable secret sharing schemes that essentially employ non-malleable codes.

To follow this approach, we reconsider the definition of NMSS and explore
other possibilities. The existing definitions of non-malleable secret sharing have
the same spirit as the definition of non-malleable codes proposed by Dziembowski
et al. [DPW10]. In this work, we work with a somewhat relaxed definition that
has the same spirit as the definition of the non-malleable commitment proposed
by Crescenzo, Katz, Ostrovsky, and Smith [CKOS01].1 The motivation of the
work by Crescenzo et al. was to propose an efficient and simple non-malleable
commitment scheme by working with a relaxed definition. This work shows a
similar possibility in the context of non-malleable secret sharing.

Our definition adopts the simulation-based paradigm similar to the existing
definitions. In our definition, a simulator, who is not given any information
about the target shares, is allowed to succeed in tampering with significantly
better probability than an adversary who receives shares. Recall that in many
definitions of non-malleability, a simulator is required to succeed in tampering
with essentially the same probability as the adversary.

As discussed in the work by Crescenzo et al. [CKOS01], even if we allow
such relaxation for simulators, the definition still captures the intuition of non-
malleability since it guarantees that the success probability of an adversary is not
(significantly) greater than that of a simulator who is not given any information
about the shares and does not have any chance to succeed in tampering.

At first glance, it seems unnatural that a simulator is more successful than
an adversary because the adversary could use the simulator and be as successful
as the simulator. However, the adversary has an option to make a difference. It
can intentionally fail on tampering in a way that the simulator does not notice.

Due to this difference, our relaxed definition does not imply existing defini-
tions. Intuitively, in our definition, a tampering attack is not considered to be
successful if the result of the tampering is ⊥ (it means reconstruction failed)
though such an attack can be considered to be successful in the previous defini-
tions. We note that whenever the reconstructed message is ⊥, parties can notice
that a tampering attack was occurred. Thus, by treating those cases appropri-
ately as exceptions, we can exclude tampering attacks that result in ⊥ from our
focus.

1 For the definition of non-malleable commitment proposed by Crescenzo et al., see
the Sect. 3.

20 T. Narita et al.

By working with this definition, we show that we can construct a rela-
tively efficient and simple compiler that makes any secret sharing scheme non-
malleable.

In Sect. 6, we show the gap between our definition and the conventional
definition.

On Our Construction. Our construction strategy is simple. In the construction,
essentially, we use a non-malleable commitment scheme to protect the secret
message from tampering and use the underlying secret sharing scheme to share
the decommitment. Thus, each of the resulting shares consists of the commitment
of the secret message and a share of the decommitment. When reconstructing
the message, we first gather the shares of the underlying secret sharing scheme
to reconstruct the decommitment, then verify the consistency of all of the com-
mitments attached to the shares.

However, it turns out that the above approach seems not to work if we
use ordinary non-malleable commitment schemes such as those proposed by
Crescenzo et al. [CKOS01]. The technical difficulty comes from our goal that
our compiler preserves statistical privacy of secret sharing schemes. Specifically,
in the above design strategy, a simulator somehow obtains a tampered message
from outputs of an adversary which includes only an unauthorized set of shares.
The only way to make this possible is to somehow extract the message from the
commitment. However, without requiring any additional property to the com-
mitment scheme, this is impossible because the commitment scheme needs to
satisfy statistically-hiding property in order to make the resulting secret sharing
scheme statistically private.

IND-CCA Secure Lossy Encryption. We solved this problem by introducing a
primitive that we call IND-CCA secure lossy encryption (CCA-LE) and use it as
an alternative to the non-malleable commitment. CCA-LE is a public key encryp-
tion where we can generate a public key in two modes: the injective mode and
the lossy mode. In the lossy mode, CCA-LE guarantees that a ciphertext statisti-
cally loses the information of the encrypted message. Thus, CCA-LE in the lossy
mode can play the role of the statistical-hiding commitment scheme in the secu-
rity proof of the statistical privacy of the resulting secret sharing scheme. On the
other hand, in the injective mode, CCA-LE satisfies the IND-CCA security that
is equivalent to non-malleability.2 Thus, CCA-LE in the injective mode can play
the role of the non-malleable commitment that has an additional extractability
since we can extract an encrypted message from a ciphertext in the injective
mode. We construct such IND-CCA secure lossy encryption from the combina-
tion of IND-CCA secure public-key encryption and lossy encryption. Each of
them can be instantiated from many standard assumptions such as the DDH
assumption.

This approach preserves the statistical privacy of the underlying secret shar-
ing schemes. This is in contrast to the compiler proposed by Brian et al. [BFV19]
2 In the definition of ordinary lossy encryption [BHY09], it is required to satisfy only

IND-CPA security.

Secret Sharing with Computational Relaxed Non-malleability 21

with which the resulting scheme satisfies the computational non-malleability
against joint tampering, but satisfies only computational privacy even if the
underlying secret sharing scheme is statistically private.

On the Use of the Public Parameter Model. One caveat of this work is that we
work in the public parameter model similar to the work by Brian et al. [BFV19].
This is because, in order to use the security notion of CCA-LE, we have to keep
the public key of it intact in the security experiments. Note that Crescenzo et
al. [CKOS01] showed any perfectly correct IND-CCA secure PKE scheme can
be used as a non-malleable commitment scheme that is computationally private
in the public parameter model. We extend this idea.

2 Preliminaries

In this section, we define some notations and cryptographic primitives.

2.1 Notations

In this paper, x
r←− X denotes selecting an element from a finite set X uni-

formly at random, and y ← A(x; r) denotes that the algorithm A is performed
on the input x and the randomness r and outputs y. If there is no need to
specify the randomness used by A, just write y ← A(x). For strings x and
y, x‖y denotes the concatenation of x and y. λ denotes a security parame-
ter. A function f(λ) is negligible function if f(λ) tends to 0 faster than 1

λc for
every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being negli-
gible function. For an integer �, [�] denotes the set of integers {1, . . . , �}. For
a set A, |A| denotes the number of elements of A. The statistical distance
between two random variables X and Y over a finite common domain D is
defined by Δ(X,Y) = 1

2

∑
z∈D |Pr[X = z] − Pr[Y = z]|. We say that two fami-

lies X = (Xλ)λ∈N and Y = (Yλ)λ∈N of random variables are statistically close
or statistically indistinguishable, denoted by X ≈s Y , if Δ(Xλ, Yλ) is negligible
in λ.

2.2 Public Key Encryption

Here, we define public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme Π is a three tuple
(KG,Enc,Dec) of PPT algorithms. Below, let M be the message space of Π.

– The key generation algorithm KG, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

– The encryption algorithm Enc, given a public key pk and message m ∈ M,
outputs a ciphertext ct.

– The decryption algorithm Dec, given a secret key sk and ciphertext ct, outputs
a message m̂ ∈ {⊥} ∪ M.

22 T. Narita et al.

Correctness: We require Dec(sk ,Enc(pk ,m)) = m for every m ∈ M and
(pk , sk) ← KG(1λ).

We introduce indistinguishability against chosen ciphertext attacks
(IND-CCA security) for PKE.

Definition 2 (IND-CCA security). Let Π be a PKE scheme. We define the
IND-CCA game between a challenger and an adversary A as follows. We let M
be the message space of Π.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates a key pair (pk , sk) ← KG(1λ) and sends pk to A.
2. A sends ct to the challenger. The challenger returns m ← Dec(sk , ct) to A.

A can make this query repeatedly polynomially many times.
3. A sends (m0,m1) ∈ M2 to the challenger. We require that |m0| = |m1|. The

challenger computes ct∗ ← Enc(pk ,mb) and sends ct∗ to A.
4. A sends ct to the challenger, where ct 	= ct∗. The challenger returns m ←

Dec(sk , ct) to A. A can make this query repeatedly polynomially many times.
5. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advindcca
Π,A (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ .

We say that Π is IND-CCA secure if for any PPT adversary A, we have
Advindcca

Π,A (λ) = negl(λ).

2.3 Lossy Encryption

Lossy encryption [BHY09] is a variant of PKE with two modes. The first one is
called the injective mode. In this mode, lossy encryption works in the same way as
ordinary PKE. The other one is called the lossy mode. In this mode, a ciphertext
output by the encryption algorithm has no information about the underlying
message. We can switch these two modes by switching key generation algorithms.
For this, a lossy encryption scheme has a lossy key generation algorithm in
addition to the ordinary algorithms consisting of a PKE scheme. The formal
definition is as follows.

Definition 3 (Lossy encryption). A lossy encryption scheme LPKE is a four
tuple (Gen, LGen, LEnc, LDec) of PPT algorithms. Below, let M be the message
space of LPKE.

– The key generation algorithm for injective mode Gen, given a security parame-
ter 1λ, outputs a public key pkinj and a secret key skinj . We call pkinj injective
key.

Secret Sharing with Computational Relaxed Non-malleability 23

– The key generation algorithm for lossy mode LGen, given a security parameter
1λ, outputs a public key pklos . We call pklos lossy key. Note that LGen does
not output a secret key.

– The encryption algorithm LEnc, given a public key (pkinjor pklos) and message
m ∈ M, outputs a ciphertext ct.

– The decryption algorithm LDec, given a secret key skinj and ciphertext ct,
outputs a message m̂ ∈ {⊥} ∪ M.

We require LPKE satisfies the following properties:

1. Correctness under injective keys: We require LDec(skinj , LEnc(pkinj ,m)) = m
for every m ∈ M and (pkinj , skinj) ← Gen(1λ).

2. Key indistinguishability: For any PPT distinguisher A it holds that the advan-
tage

Advind-keys
LPKE,A (λ) :=

∣
∣
∣
∣
Pr[1 ← A(pkinj) | (pkinj , skinj) ← Gen(1λ)]

−Pr[1 ← A(pklos) | pklos ← LGen(1λ)]

∣
∣
∣
∣

is negligible in λ.
3. Lossiness under lossy keys: For any pklos ← LGen(1λ) and pair of message

(m0,m1) ∈ M2, it holds that

LEnc(pklos ,m0) ≈s LEnc(pklos ,m1).

2.4 Secret Sharing

Before defining a secret sharing scheme, we define the notion of access structures.
An access structure is a family of parties that can reconstruct a message.

Definition 4 (Access structure). Let {1, . . . , n} be a set of parties. A collec-
tion AS ⊆ 2{1,...,n} is monotone if B ∈ AS and B ⊆ C imply that C ∈ AS. An
access structure over {1, . . . , n} is a monotone collection AS ⊆ 2{1,...,n}.

Next, we define the secret sharing scheme in the public parameter model.

Definition 5 (Secret sharing scheme). Let {1, . . . , n} be a set of parties and
AS be an access structure on {1, . . . , n}. A secret sharing scheme Σ in the public
parameter model realizing AS is three tuple (Setup,Share,Rec) of PPT algorithms.
Below, let M be the message space of Σ.

– The setup algorithm Setup, given a security parameter 1λ, outputs a public
parameter pp.

– The share algorithm Share, given a public parameter pp and a message m ∈
M, outputs a set of shares {(i, si)}i∈[n].

– The reconstruction algorithm Rec, given a public parameter pp and a set of
shares {(i, si)}i∈B, outputs a message m̂ ∈ {⊥} ∪ M, where B ∈ 2{1,...,n} is
a set of parties.

24 T. Narita et al.

Correctness: We require Rec(pp, {(i, si)}i∈T) = m for every n ∈ N,m ∈ M, and
T ∈ AS, where pp ← Setup(1λ) and {(i, si)}i∈[n] ← Share(pp,m).

Definition 6 (Statistical privacy). Let AS be an access structure on
{1, . . . , n}, and Σ = (Setup,Share,Rec) be a secret sharing scheme for AS.
We say that Σ satisfies the statistical privacy if for every n ∈ N, any B /∈
AS, and any (m0,m1) ∈ M2, we have {si}i∈B ≈s {s′

i}i∈B, where pp ←
Setup(1λ), {(i, si)}i∈[n] ← Share(pp,m0), and {(i, s′

i)}i∈[n] ← Share(pp,m1).

3 IND-CCA Secure Lossy Encryption in the Injective
Mode

In this section, we construct a lossy encryption scheme that satisfies IND-CCA
security in the injective mode. We call such a lossy encryption CCA-LE. Our
construction is a fairly simple combination of a lossy encryption scheme and an
IND-CCA secure PKE scheme. It encrypts a message by using a lossy encryption
scheme firstly and then encrypt the ciphertext with an IND-CCA secure scheme.

3.1 Construction

Let Π = (KG,Enc,Dec) be an IND-CCA secure PKE scheme and Λ =
(G, LG, LE, LD) be a lossy encryption scheme. A CCA-LE scheme LPKE =
(Gen, LGen, LEnc, LDec) is constructed as follows.

Gen(1λ): Compute (pkinj , skinj) ← G(1λ) and (pk , sk) ← KG(1λ), then output
(pk∗, sk∗), where pk∗ := (pkinj , pk) and sk∗ := (skinj , sk).

LGen(1λ): Compute pklos ← LG(1λ) and (pk , sk) ← KG(1λ), then output pk∗ :=
(pklos , pk).

LEnc(pk∗,m): Let pk∗ = (pkΛ, pk). Compute c ← LE(pkΛ,m) and ct ←
Enc(pk , c), then output ct.

LDec(sk∗, ct): Let sk∗ = (skinj , sk). Compute ĉ ← Dec(sk , ct) and m̂ ←
LD(skinj , ĉ), then output m̂.

The correctness in the injective mode of LPKE follows from the correctness
of Π and the correctness in the injective mode of Λ. In the following subsections,
we show that LPKE satisfies key indistinguishability and lossiness under lossy
keys. Moreover, we show that LPKE satisfies IND-CCA security in the injective
mode.

3.2 Key Indistinguishability

Here, we prove that LPKE satisfies the key indistinguishability. Specifically, we
have the following theorem.

Theorem 1. If Λ is a lossy encryption scheme, then LPKE satisfies the key
indistinguishability.

Secret Sharing with Computational Relaxed Non-malleability 25

Proof of Theorem 1. A public key of LPKE consists of two components, that are
public keys of Λ and Π. We see that the second component is always an honestly
generated public key of Π thus distributes identically regardless of the mode in
which the key of Λ is generated. Then, the key indistinguishability of LPKE
follows from that of Λ. � (Theorem 1)

3.3 Lossiness Under Lossy Key

Here, we prove that LPKE satisfies the lossiness under lossy keys. Specifically,
we have the following theorem.

Theorem 2. If Λ is a lossy encryption scheme, then LPKE satisfies lossiness
under lossy keys.

Proof of Theorem 2. For any (m0,m1) ∈ M2, let pklos ← LG(1λ), (pk , sk) ←
KG(1λ), pk∗ := (pklos , pk), c0 := LE(pklos ,m0; r�), and c1 := LE(pklos ,m1; r′

�),
where r� and r′

� are randomness of LE.
We have to show LEnc(pk∗,m0) ≈s LEnc(pk∗,m1). That is, we have to show

Enc(pk , c0; r) ≈s Enc(pk , c1; r′), where r and r′ are randomness of Enc. Since pk ,
r and r′ are independent of c0 and c1, and c0 ≈s c1 follows from the lossiness of
Λ, we can say that Enc(pk , c0; r) ≈s Enc(pk , c1; r′).

This means that LPKE satisfies the lossiness property. � (Theorem 2)

3.4 IND-CCA Security

Here, we prove that LPKE satisfies IND-CCA security. Specifically, we prove the
following theorem.

Theorem 3. If Π satisfies IND-CCA security, then LPKE satisfies IND-CCA
security.

Proof of Theorem 3. Let A be a PPT adversary that attacks the IND-CCA
security of LPKE. Using A, we construct a PPT adversary B that attacks the
IND-CCA security of Π.

1. B receives pk as an input from the challenger, computes (pkinj , skinj) ← G(1λ)
and sets pk∗ := (pkinj , pk). B sends pk∗ to A.

2. B receives a pair of message (m0,m1) from A. B sets M0 :=
LE(pkinj ,m0),M1 := LE(pkinj ,m1) and sends (M0,M1) to the challenger.
B receives ct∗ from the challenger, and sends ct∗ to A.

3. When A queries decryption of a ciphertext ct, B sends it to the challenger. B
receives c from the challenger, then computes m ← LD(skinj , c) and sends m
to A.

4. B receives bit b′ from A, and sends b′ to the challenger.

26 T. Narita et al.

Since B perfectly simulates the IND-CCA game of LPKE for A, we can esti-
mate advantage of B as

Advindcca
Π,B (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣ = Advindcca

LPKE,A(λ).

Given Π satisfies the IND-CCA security, Advindcca
LPKE,A(λ) = negl(λ) holds. Thus

LPKE satisfies the IND-CCA security. � (Theorem 3)
In this way, IND-CCA secure lossy encryption in the injective mode can

be constructed. In this paper, we use the constructed lossy encryption as a non-
malleable commitment. In the next subsection, we show that the above CCA-LE
is a non-malleable commitment.

3.5 IND-CCA Secure Lossy Encryption is a Non-malleable
Commitment

Commitment Schemes. A commitment scheme is a three tuple Com =
(G,Com,Decom) of PPT algorithm. G(1λ) outputs a public parameter pp. The
commit algorithm Com(pp,m) computes commitment to m com and its decom-
mitment dec. The decommit algorithm Decom(pp, com, dec) outputs the com-
mitted message m. Com satisfies statistically-hidng if commitments of m0 and
m1 are statistically indistinguishable. Computational binding property demands
that no PPT algorithm can find dec′ such that Decom(pp, com, dec′) = m′ 	= m.

Next, we review the non-malleability for commitment. The following defini-
tion subtly differs from the one in [CKOS01], still they are essentially the same.

Definition 7 (Non-malleable commitment). Let Com be a statistical-
hiding commitment scheme. Let D be a distribution on message space M and R
be a relation that can be computed in polynomial time, where for any message
m ∈ M, R satisfies R(m,⊥) = 0. The following two experiments are defined for
a PPT adversary A and a PPT simulator Sim.

We say Com satisfies the non-malleability with respect to opening, if for any
D,A there exists a simulator Sim such that for any relation R

Pr[Expreal
Com,A(λ) = 1] − Pr[Expsim

Com,Sim(λ) = 1] ≤ negl(λ)

holds.

Secret Sharing with Computational Relaxed Non-malleability 27

Next, we show IND-CCA secure loosy encryption CCA-LE is a non-malleable
commitment scheme.

We use the lossy key pklos as a public parameter pp. A commitment to m,
com is a ciphertext ct ← LEnc(pklos ,m; r). The decommitment dec consists of
m‖r. The Decommit algorithm Decom on input (pklos , ct,m‖r) outputs m if
ct = LEnc(pklos ,m; r) holds.

Statistical-hiding follows from the lossiness of CCA-LE. Computational bind-
ing follows from the key indistinguishability of CCA-LE because if an adversary
success in breaking the binding property, the adversary could sure that the key
is pklos , not pkinj .

Theorem 4. IND-CCA secure lossy encryption satisfies the non-malleability
with respect to opening as a commitment scheme.

Proof of Theorem 4. We define the following experiments.

Exp 0: This experiment is identical to Expreal
Com,A(λ).

1. Compute pp := pklos ← LGen(1λ).
2. Sample m ← D.
3. Compute com := ct ← LEnc(pklos ,m; r).
4. Run c̃t ← A1(pklos , ct).
5. Run d̃ec := m̃‖r̃ ← A2(pklos , ct,m‖r).
6. Set m̃ := ⊥ if c̃t 	= LEnc(pklos , m̃; r̃).
7. Output ct 	= c̃t ∧ R(m, m̃).

Exp 1: This experiment is identical to Exp 0 except that we generate
(pkinj , skinj) ← Gen(1λ) in step 1 and use pkinj instead of pklos through the
experiment.

Exp 2: In this experiment, we set m̃ := LDec(sk , c̃t) instead of the decommitment
output by A2.

Exp 3: In this experiment, the commitment is computed as ct ←
LEnc(pkinj , 0; r).

Now we have the simulator Sim as follows.

1. Compute (pkinj , skinj) ← Gen(1λ).
2. Compute ct ← LEnc(pkinj , 0; r).
3. Run c̃t ← A1(pkinj , ct).
4. Output m̃ ← LDec(sk , c̃t).

Let Rt be the event in which Exp t outputs 1. To complete the proof, we
show

Pr[Expreal
Com,A(λ) = 1] − Pr[Expsim

Com,Sim(λ) = 1] = Pr[R0] − Pr[R3] ≤ negl(λ).

This is shown from the following lemmas.

28 T. Narita et al.

Lemma 1. |Pr[R0] − Pr[R1]| = negl(λ) holds by the key indistinguishability of
CCA-LE.

This hold because |Pr[R0] − Pr[R1]| is the advantage of distinguishing the
keys.

Lemma 2. Pr[R1] ≤ Pr[R2] holds.

This holds because if the output is 1 in Exp 1, then so is in Exp 2. Specifically,
if the output of Exp 1 is 1, then ct 	= c̃t, R(m, m̃) = 1 and c̃t = LEnc(pkinj , m̃; r̃)
holds. By the correctness of CCA-LE, the same m̃ is decrypted from c̃t in the
Exp 2. Thus, the same condition ct 	= c̃t ∧ R(m, m̃) holds also in Exp 2. So the
output of Exp 2 is 1.

Lemma 3. |Pr[R2] − Pr[R3]| = negl(λ) holds by the IND-CCA security of
CCA-LE.

We show a reduction B which using D,A, R, attacks the IND-CCA security
of CCA-LE.

On receiving pkinj , B samples m ← D and sends (m0,m1) = (m, 0) to
the challenger. The challenger chooses a challenge bit b ← {0, 1} and sends
ct := LEnc(pkinj ,mb) to B. B runs c̃t ← A(pkinj , ct). If ct = c̃t then B outputs
b′ := 0. Otherwise B queries c̃t to the challenger and receives m̃. B outputs
b′ := R(m, m̃).

4 Definition of Computational Non-malleability

In this section, we introduce the definition of computational non-malleability
for secret sharing that we work with. The non-malleability for secret sharing
introduced by Goyal and Kumar [GK18a,GK18b] was defined in a similar way
as the non-malleable codes [DPW10]. In this work, we define non-malleability in
a similar way as the non-malleability for non-malleable commitment defined by
Crescenzo et al. [CKOS01].

Definition 8 (Computational non-malleability). Let AS be an access
structure on {1, . . . , n} and Σ = (Setup,Share,Rec) be a secret sharing scheme
for AS. Below, let M be a message space of Σ.

We say Σ satisfies the computational non-malleability, if for any PPT adver-
sary F , a distribution D on M, there exists a simulator Sim such that for any
relation R,

Pr[Expreal
Σ,F (λ) = 1] − Pr[Expsim

Σ,Sim(λ) = 1] ≤ negl(λ)

holds, where the two experiments are defined as follows.

Secret Sharing with Computational Relaxed Non-malleability 29

In the above experiment, we do not allow F to perform an obvious attack.3

Concretely, F executes tampering in the following steps.

1. Depending on the public parameter pp, F selects a set T ∈ AS and functions
{fj}j∈T .

2. Each function fj(pp, {(i, si)}i∈Ij /∈AS) outputs (j, s̃j).
3. F outputs {(i, s̃i)}i∈T .

We also require the relation R to satisfy

R(pp,m,m) = R(pp,m,⊥) = 0

for any message m ∈ M and public parameter pp ← Setup(1λ).

We give some notes on the above definition.

– Non-malleability for secret sharing cannot prevent the tampering performed
by an adversary that once reconstructs the original message. This attack is
called an obvious attack and not considered in the definition by Goyal and
Kumar [GK18a,GK18b]. Similarly, we require that F does not perform the
obvious attacks. More specifically, we pose the restriction that F consists of
multiple sub-routine functions {fj}j∈T each of whose inputs are not sufficient
to reconstruct the original message. Since we do not require any restriction
on F except prohibiting the obvious attacks, the above definition considers a
powerful adversary who performs the overlap-joint tampering. Especially, we
allow Ij1 and Ij2 (j1, j2 ∈ T) to include the same indicies. Furthermore, we
allow T and {Ij}j∈T to be determined after seeing the public parameter.

– The adversary receives shares of a message m and aims to generate shares
that are reconstructed to some message related to m. In the definition of
non-malleability using a simulator, the adversary is simulated by a simu-
lator that does not have any information on the message m. We consider
the difference of tampering success probability between the adversary and
the simulator. Many existing definitions of non-malleability including Goyal
and Kumar [GK18a,GK18b] require that the difference in success probability
between the adversary and the simulator be negligible.

3 Intuitively, the obvious attack is the tampering performed by the adversary that
once reconstructs the original message.

30 T. Narita et al.

The definition of non-malleability for commitment defined by Crescenzo et
al. [CKOS01] allows the simulator to satisfy the relation R with a proba-
bility significantly better than the adversary. We adopted such a definition
because of the observation that even if the simulator without information
about the message satisfies the relation R better than the adversary, the
definition still captures the intuition of non-malleability. Similarly to the def-
inition by Crescenzo et al. [CKOS01], our definition allows the simulator to
satisfy the relation R better than the adversary.

– In most usage scenarios of secret sharing, it seems that we do not have to care
about the cases in which the original message is reconstructed as expected
even if the shares are tampered with. Thus, the relation R is required to satisfy
R(pp,m,m) = 0 for any message m to exclude such (harmless) attacks in the
above definition.

– Our definition is weaker than the conventional one. Our non-malleability
ensures that an adversary can not tamper shares meaningfully. In other words,
if the result of reconstruction is ⊥, we do not regard the tampering is success-
ful. By contrast, in the conventional definition, tampering which results in ⊥
may be regarded as a success. This is because such tampering can help the
adversary to leak partial information on m. The conventional non-malleability
regards such attacks as a success.
Therefore, there is a gap between the two definitions. We give a detailed proof
of this gap in Sect. 6.

5 Computationally Non-malleable Secret Sharing

In this section, we give a construction of a secret sharing scheme satisfying the
above computational non-malleability. We use the CCA-LE as a building block.

5.1 Construction

Let LPKE = (Gen, LGen, LEnc, LDec) be a CCA-LE scheme, AS be an access struc-
ture on {1, . . . , n}, and Σ = (Setup,Share,Rec) be a secret sharing scheme realiz-
ing AS. Let the message space of LPKE be {0, 1}k, the randomness space of LEnc
be {0, 1}λ, and the message space of Σ be {0, 1}k+λ. From these, the secret shar-
ing scheme ΣNM = (NMSetup,NMShare,NMRec) that realizes the access structure
AS is constructed as follows. The message space of ΣNM is {0, 1}k.

NMSetup(1λ): Compute pk∗ ← LGen(1λ) and pp ← Setup(1λ), then output
ppnm := (pk∗, pp).

NMShare(ppnm,m): Compute ct ← LEnc(pk∗,m; r) and {(i, si)}i∈[n] ←
Share(pp,m‖r), then output {(i, sharei)}i∈[n], where sharei := (ct, si) for
all i ∈ [n].

NMRec(ppnm, {(i , sharei)}i∈B⊂[n]) :
1. For all i ∈ B, parse sharei as (cti, si).
2. Let B = {i1, . . . , i|B|}. If there exists j ∈ B such that cti1 	= ctj , then

output ⊥ and terminate. Otherwise execute step 3, where i1 is the smallest
index in B.

Secret Sharing with Computational Relaxed Non-malleability 31

3. Compute m̂‖r̂ ← Rec(pp, {(i, si)}i∈B).
4. Compute ĉt ← LEnc(pk∗, m̂; r̂). If ĉt 	= cti1 , then output ⊥ and terminate.

Otherwise output m̂ and terminate.

Correctness. The correctness of ΣNM follows from that of LPKE and Σ.
In the following subsections, we show that ΣNM satisfies the statistical privacy

and the computational non-malleability.

5.2 Statistical Privacy

In this section, we prove that ΣNM satisfies the statistical privacy. Specifically, we
prove the following theorem.

Theorem 5. If Σ satisfies the statistical privacy and LPKE is a CCA-LE, then
ΣNM satisfies the statistical privacy.

Proof of Theorem 5. In the construction of ΣNM, a key of CCA-LE is always
generated in the lossy mode. In this case, we see that ΣNM satisfies statistical
privacy based on the statistical privacy of Σ and the lossieness under lossy keys
of CCA-LE. � (Theorem 5)

5.3 Computational Non-malleability

In this section, we prove that ΣNM satisfies the computational non-malleability.
Specifically, we prove the following theorem.

Theorem 6. If Σ satisfies the statistical privacy and LPKE is a CCA-LE, then
ΣNM satisfies the computational non-malleability.

Proof of Theorem 6. Let F be an adversary for the computational non-
malleability of ΣNM, which determines subset T = {i1, . . . , i�} ∈ AS and its sub-
routines (f1, . . . , f�). Ij is the indices of the domain of each sub-routine fj . Let
D be any distribution on {0, 1}k and R be any relation that can be computed
in polynomial time, where for any message m ∈ {0, 1}k and public parameter
pp ← Setup(1λ), R satisfies R(pp,m,m) = R(pp,m,⊥) = 0.

We define the following sequence of experiments.

Exp 0: This experiment is identical to Expreal
ΣNM,F (λ).

1. Compute pk∗ ← LGen(1λ) and pp ← Setup(1λ), and set ppnm := (pk∗, pp).
2. Sample the message m ← D(pp), then compute ct ← LEnc(pk∗,m; r) and

{(i, si)}i∈[n] ← Share(pp,m‖r). Set {(i, sharei)}i∈[n], where for all i ∈ [n],
sharei := (ct, si).

3. Run {(i, s̃harei)}i∈T ← F(ppnm, {(i , sharei)}i∈[n]). In more detail, for j ∈ [�],

run (ij , s̃hareij) ← fj(ppnm, {(i , sharei)}i∈Ij).

32 T. Narita et al.

4. Reconstruct m̃ ← NMRec(ppnm, {(i , s̃harei)}i∈T). In more detail, perform the
following.
(a) Let s̃harei = (c̃ti, s̃i) for all i ∈ T .
(b) Let i1 be the smallest index in T . If there exists t ∈ T such that c̃tt 	= c̃ti1 ,

then let m̃ := ⊥ and jump to step 5.
(c) Compute m̂‖r̂ ← Rec(pp, {(i, s̃i)}i∈T).
(d) If LEnc(pk∗, m̂; r̂) 	= c̃ti1 , then set m̃ := ⊥. Otherwise set m̃ := m̂.

5. Output R(ppnm,m, m̃).

Exp 1: In this experiment, we change step 1 from Exp 0 in the following way.
We compute (pk∗, sk∗) ← Gen(1λ) instead of pk∗ ← LGen(1λ). In other words,
LPKE is switched from the lossy mode to the injective mode.

Exp 2: In this experiment, only step 4 is different from Exp 1. We set m̃ as
m̃ := LDec(sk∗, c̃ti1) at step 4.

Exp 3: In this experiment, only step 3 is different from Exp 2. We run only f1
and not f2, . . . , f� in step 3.

Exp 4: In this experiment, we change step 2 from Exp 3. We change the input
of the Share algorithm in step 2, from m‖r to 0k+λ. That is, we compute
{(i, si)}i∈[n] ← Share(pp, 0k+λ) instead of {(i, si)}i∈[n] ← Share(pp,m‖r).

Exp 5: In this experiment, we change step 4 from Exp 4. We set m̃ := ⊥ if
ct = c̃ti1 holds. Otherwise, we set the value of m̃ in the same way as Exp 4
(That is, we set m̃ as the decryption result of c̃ti1).

Exp 6: In this experiment, we change step 2 from Exp 5. We change the input
of LEnc from m to 0k. That is, we compute ct ← LEnc(pk∗, 0k; r) instead of
ct ← LEnc(pk∗,m; r).

Exp 6 is identical to the experiment Expsim
ΣNM,Sim(λ) for Sim described below,

except for a conceptual change.

Sim(1λ):
1. Sim computes (pk∗, sk∗) ← Gen(1λ) and pp ← Setup(1λ), then sets

ppnm := (pk∗, pp).
2. Sim computes ct ← LEnc(pk∗, 0k; r) and {(i, si)}i∈[n] ← Share(pp, 0k+λ),

then sets {(i, sharei)}i∈[n], where sharei := (ct, si) for all i ∈ [n].

3. Sim computes (i1, s̃harei1) ← f1(ppnm, {(i , sharei)}i∈I1). Below, we let
s̃harei1 = (c̃ti1 , s̃i1).

4. If ct = c̃ti1 , then Sim sets m̃ := ⊥. Otherwise, Sim sets m̃ ←
LDec(sk∗, c̃ti1).

5. Sim outputs m̃.

Secret Sharing with Computational Relaxed Non-malleability 33

For every t ∈ {0, . . . , 6}, we define Rt as the event that the output of Exp t
is 1, that is, R(ppnm,m, m̃) = 1 holds.

Using the above events, we can estimate

Pr[Expreal
ΣNM,F (λ) = 1] − Pr[Expsim

ΣNM,Sim(λ) = 1]

as

Pr[R0] − Pr[R6] =
5∑

t=0

Pr[Rt] − Pr[Rt+1].

In the following, we estimate Pr[Rt] − Pr[Rt+1] for every t ∈ {0, . . . , 5}.

Lemma 4. Pr[R0] − Pr[R1] = negl(λ) holds by the key indistinguishability of
LPKE.

Proof of Lemma 4. Using the adversary F , we construct an PPT adversary B
that attacks the key indistinguishability of LPKE.

1. Given pk∗ as an input, B computes pp ← Setup(1λ). B then sets ppnm :=
(pk∗, pp) and samples a message m ← D(ppnm). Then B computes ct ←
LEnc(pk∗,m; r) and {(i, si)}i∈[n] ← Share(pp,m‖r), and sets sharei := (ct, si)
for i ∈ [n]. B sends ppnm and {(i, sharei)}i∈[n] to F .

2. B receives {(i, s̃harei)}i∈T from F . B computes m̃ = NMRec

(pp, {s̃harei}i∈T). B sends b′ := 0 to the challenger if R(ppnm,m, m̃) = 0
and B sets b′ := 1 if R(ppnm,m, m̃) = 1 .

We can estimate the advantage of B as Advind-keys
LPKE,B (λ) = 1

2 |Pr[R0] − Pr[R1]|.
Since LPKE satisfies the key indistinguishability, we have Pr[R0] − Pr[R1] =
negl(λ). � (Lemma 4)

Lemma 5. Pr[R1] ≤ Pr[R2] holds.

Proof of Lemma 5. We define the following events Xt for t ∈ {1, 2}.

Xt: In Exp t, R(ppnm,m, LDec(sk∗, c̃t i1)) = 1 holds, where m is the message
sampled in step 2, sk∗ is the secret key corresponding to pk∗.

Consider the relation between events Xt and Rt. Since in Exp 1, event X1 always
occurs when event R1 occurs, Pr[R1] ≤ Pr[X1] holds. Furthermore, the difference
between Exp 1 and Exp 2 does not affect the probability that Xt occurs. Thus,
we have Pr[X1] = Pr[X2]. Finally, in Exp 2, since we determine the value of m̃ as
the message obtained by decrypting c̃ti1 , Pr[X2] = Pr[R2] holds.

From the above, we have Pr[R1] ≤ Pr[X1] = Pr[X2] = Pr[R2]. � (Lemma 5)

Lemma 6. Pr[R2] = Pr[R3] holds.

Proof of Lemma 6. By the change from Exp 1 to Exp 2, the output distribution
of Exp 2 is no longer affected by the outputs of f2, . . . , f�. Thus, the change from
Exp 2 to Exp 3 is only conceptual, and we have Pr[R2] = Pr[R3]. � (Lemma 6)

34 T. Narita et al.

Lemma 7. Pr[R3] − Pr[R4] = negl(λ) holds by the statistical privacy of Σ.

Proof of Lemma 7. In Exp 3 and Exp 4, we run only f1 and not f2, . . . , f�. In
other words, we can simulate these experiments with shares {(i, sharei)}i∈I1 for
an unauthorized set I1. Therefore, we can rely on the statistical privacy of Σ in
this step, and we obtain Pr[R3] − Pr[R4] = negl(λ). � (Lemma 7)

Lemma 8. Pr[R4] = Pr[R5] holds.

Proof of Lemma 8. In Exp 4 and Exp 5, if ct = c̃ti1 holds, then R(ppnm,m, m̃) = 0
holds. This is because Π has the (perfect) correctness and R has the condition
that R(ppnm,m ′,m ′) = 0 . Therefore, since we also have R(ppnm,m ′,⊥) = 0 for
any m′, the transition from Exp 4 to Exp 5 does not affect the output distribution
of experiments. Thus, we have Pr[R4] = Pr[R5]. � (Lemma 8)

Lemma 9. Pr[R5] − Pr[R6] = negl(λ) holds by the IND-CCA security of Π.

Proof of Lemma 9. Using the adversary f1, we construct an PPT adversary B
that attacks the IND-CCA security of Π.

1. Given pk∗ as an input, B computes pp ← Setup(1λ) and sets ppnm := (pk∗, pp).
2. B samples message m ← D(ppnm), sends (M0 := m,M1 := 0k) to the chal-

lenger, and receives ct∗. B also computes {(i, si)}i∈[n] ← Share(pp, 0k+λ) and
sets sharei := (ct∗, si) for i ∈ I1. Moreover, B sends ppnm and {(i, sharei)}i∈I1

to f1 and obtains (i1, s̃harei1).
3. Letting s̃harei1 = (c̃ti1 , s̃i1), B sets m̃ as follows. If ct∗ = c̃ti1 , B sets m̃ := ⊥.

Otherwise, B sends c̃ti1 as an decryption query and obtain the decryption
result m̃.

4. B sends β′ := R(ppnm,m, m̃) to the challenger.

Let β be the challenge bit of IND-CCA game for Π played by B. Then, we
have

Advindcca
Π,B (λ) =

1
2
|Pr[β′ = 1|β = 0] − Pr[β′ = 1|β = 1]|. (1)

In this game, B simulates Exp 5 for f1 when β = 0, and B simulates Exp 6 for
f1 when β = 1. Moreover, β′ = 1 occurs if and only if R(ppnm,m, m̃) = 1 holds.
Therefore, the Eq. 1 is described as

Advindcca
Π,B (λ) =

1
2
|Pr[R5] − Pr[R6]|.

Since Π satisfies the IND-CCA security, Pr[R5] − Pr[R6] = negl(λ) holds.
� (Lemma 9)

From Lemma 4 to Lemma 9, we have

Pr[Expreal
ΣNM,F (λ) = 1] − Pr[Expsim

ΣNM,Sim(λ) = 1] ≤ negl(λ).

From these arguments, we can conclude that ΣNM satisfies the computational
non-malleability. � (Theorem 6)

Secret Sharing with Computational Relaxed Non-malleability 35

6 Gap with Conventional Definition

In this section, we describe the gap between our non-malleability and the con-
ventional non-malleability proposed by Goyal and Kumar [GK18a,GK18b]. Let
us consider a situation where the result of reconstruction is ⊥ in the real exper-
iment, but the simulator outputs m̃. In this situation, success probability in the
real experiment is smaller than the success probability of the simulator because
the relation R satisfies R(pp,m,⊥) = 0 in our definition. On the other hand, in
the conventional definition, this difference is distinguished. Thus, there is a gap
between the two definitions.

First, we extend the conventional definition to the definition in the public
parameter model. Next, we show that our non-malleability is weaker than the
conventional non-malleability.

Definition 9. Let AS be an access structure and F be a family of tampering
functions. The following two experiments are defined for f ∈ F , distribution D,
distinguisher Dis, authorized set T ∈ AS and simulator Sim.

A secret sharing scheme Σ is non-malleable if for all f ∈ F , and T ∈ AS,
there exists a simulator Sim such that for any distinguisher Dis and distribution
D, ∣

∣
∣Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]

∣
∣
∣ = negl(λ)

holds.

When simulating a tampering function f that makes the shares reconstructed
to the original message, Sim outputs the special symbol same∗. We show that
the conventional definition is truly stronger than our definition by showing the
following two theorems. First, we show that if a scheme satisfies the conventional
definition, then it also satisfies our definition.

Theorem 7. If an NMSS scheme Σ = (Setup,Share,Rec) satisfies Definition 9,
Σ satisfies Definition 8.

Proof of Theorem 7. We prove that if a simulator exists which satisfies the Defi-
nition 9, then we can use it to construct a simulator that meets our definition.

36 T. Narita et al.

Using the simulator Sim for f, T , we can construct the simulator S and using
the relation R, we can construct a distinguisher Dis as follows.

Since Sim exists for any f and T , and
∣
∣
∣Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]

∣
∣
∣ = negl(λ)

holds for any Dis and D, thus the above equation holds even if Dis is constructed
as above.

Also, at this time, the following holds.

Pr[Expreal
Σ,F (λ) = 1] = Pr[STamperf,T,D(λ) = 1]

Pr[Expsim
Σ,Sim(λ) = 1] = Pr[SSimf,T,D(λ) = 1]

From the above and the construction of Dis,

Pr[Expreal
Σ,F (λ) = 1] − Pr[Expsim

Σ,Sim(λ) = 1]

= Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]
= negl(λ)

holds for arbitrary R and D. Therefore, we can say that the PPT algorithm S
exists for any f ′ and T ′, and Pr[Expreal

Σ,F (λ) = 1]−Pr[Expsim
Σ,Sim(λ) = 1] ≤ negl(λ)

holds for any R and D′. � (Theorem 7)
Next, we prove that even if a scheme satisfies our definition, it does not

necessarily satisfy the conventional definition.

Theorem 8. Even if an NMSS scheme Σ = (Setup,Share,Rec) satisfies Defi-
nition 8, it does not necessarily satisfy Definition 9.

Proof of Theorem 8. We construct f, T, Dis and D and show that
∣
∣
∣Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]

∣
∣
∣ 	= negl(λ)

Let σ = (setup, share, rec) be a secret sharing scheme that has homomorphism
in the OR operation. We can compute the share of m ∨ m′ using the share s of
the message m and the share s′ of m′. We express this calculation as s ∨ s′. Let
LPKE = (Gen, LGen, LEnc, LDec) be a CCA-LE scheme, Σ = (Setup,Share,Rec)
be the NMSS scheme obtained by applying our compiler to σ and LPKE. Let M
be a message space of share and R a random space of LEnc.

We construct D, f, T and Dis as follows.

Secret Sharing with Computational Relaxed Non-malleability 37

Dis(pp,m, m̃) :
if((the first bit of m̃ = the first bit of m) ∧ (the others of m̃ = the others of m))
Output: 0

else
Output: 1

We define the event that the simulator outputs same∗ in SSim as Same.
Thus, we can estimate about

∣
∣
∣Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]

∣
∣
∣

as follows.
∣
∣
∣Pr[STamperf,T,D(λ) = 1] − Pr[SSimf,T,D(λ) = 1]

∣
∣
∣

=
∣
∣
∣0 −

(

Pr[SSimf,T,D(λ) = 1 ∧ Same] + Pr[SSimf,T,D(λ) = 1 ∧ ¬Same]
)∣
∣
∣

=
∣
∣
∣Pr[Same] Pr[SSimf,T,D(λ) = 1|Same] + Pr[¬Same] Pr[SSimf,T,D(λ) = 1|¬Same]

∣
∣
∣

=

∣
∣
∣
∣
Pr[Same] + Pr[¬Same]

(

1 − 1

|M|
)∣

∣
∣
∣

=

∣
∣
∣
∣
1 − 1

|M| Pr[¬Same]
∣
∣
∣
∣

�= negl(λ)

� (Theorem 8)
From Theorem 7 and Theorem 8, it is clear that our definition is truly weaker

than the conventional definition.

7 Conclusion

In this work, we proposed a new definition of non-malleability for secret sharing
in the public parameter model. Although our definition is relaxed compared to
the one proposed by Brian et al. [BFV19], it captures the strong security notion
called non-malleability against overlap-joint tampering.

Using a CCA secure lossy encryption scheme, we showed a simple and efficient
transformation that makes any secret sharing scheme to the one satisfying non-
malleability without sacrificing statistical privacy. One interesting open question
is to propose a similar transformation in the plain model (i.e. model where there
is no public parameter).

Acknowledgments. A part of this work was supported by NTT Secure Platform Lab-
oratories, JST OPERA JPMJOP1612, JST CREST JPMJCR14D6, JSPS KAKENHI
JP16H01705, JP17H01695, JP19J22363.

38 T. Narita et al.

References

[ADN+19] Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret
sharing schemes for general access structures. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 18

[BFO+20] Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-
malleable secret sharing against bounded joint-tampering attacks in the
plain model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 127–155. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-56877-1 5

[BFV19] Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret shar-
ing for general access structures. In: Hofheinz, D., Rosen, A. (eds.) TCC
2019. LNCS, vol. 11892, pp. 211–232. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-36033-7 8

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, 2–4 May, pp. 1–10. ACM Press (1988)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS
1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

[BS19] Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476,
pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17653-2 20

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th Annual ACM Symposium on The-
ory of Computing, Chicago, IL, USA, 2–4 May, pp. 11–19. ACM Press
(1988)

[CKOS01] Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-
interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 4

[CL18] Chattopadhyay, E., Li, X.: Non-malleable codes, extractors and secret shar-
ing for interleaved tampering and composition of tampering. Cryptology
ePrint Archive, Report 2018/1069 (2018)

[DPW10] Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao,
A.C.-C. (ed.) ICS 2010: 1st Innovations in Computer Science, Tsinghua
University, Beijing, China, 5–7 January, pp. 434–452. Tsinghua University
Press (2010)

[FV19] Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational
setting: adaptive tampering, noisy-leakage resilience, and improved rate.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693,
pp. 448–479. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 16

https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-56877-1_5
https://doi.org/10.1007/978-3-030-56877-1_5
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/978-3-030-17653-2_20
https://doi.org/10.1007/3-540-44987-6_4
https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-030-26951-7_16

Secret Sharing with Computational Relaxed Non-malleability 39

[GK18a] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I.,
Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory
of Computing, Los Angeles, CA, USA, 25–29 June, pp. 685–698. ACM Press
(2018)

[GK18b] Goyal, V., Kumar, A.: Non-malleable secret sharing for general access struc-
tures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 17

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or
A completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th Annual ACM Symposium on Theory of Computing, New York
City, NY, USA, 25–27 May, pp. 218–229. ACM Press (1987)

[KMS18] Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 25, p. 200
(2018)

[LCG+19] Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-
malleable secret sharing against affine tampering. CoRR, abs/1902.06195
(2019)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[SV19] Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and appli-

cations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 17

https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-030-26951-7_17
https://doi.org/10.1007/978-3-030-26951-7_17

Cryptography in Quantum Computer
Age

(Quantum) Cryptanalysis of Misty
Schemes

Aline Gouget1, Jacques Patarin2, and Ambre Toulemonde1,2(B)

1 Thales DIS, Meudon, France
{aline.gouget,ambre.toulemonde}@thalesgroup.com

2 Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
jpatarin@club-internet.fr

Abstract. In this paper, we review the best known cryptanalysis results
on the variants of Misty schemes and we provide new (quantum) crypt-
analysis results. First, we describe a non-adaptive quantum chosen plain-
text attack (QCPA) against 4-round Misty L and Misty LKF schemes,
and a QCPA against 3-round Misty R and Misty RKF schemes. We
extend the QCPA attack against 3-round Misty RKF schemes to recover
the keys of d-round Misty RKF schemes with complexity Õ(2(d−3)n/2).
We then provide a security proof for Misty R schemes with 3 rounds
against chosen plaintext attacks using the H coefficients technique. This
shows that the best known non-quantum attack against Misty R schemes
with 3 rounds is optimal.

Keywords: Misty permutations · Pseudo-random permutation ·
Cryptanalysis · Quantum cryptanalysis · H coefficients

1 Introduction

The most studied way to build pseudo-random permutations from random func-
tion or random permutation is the d-round Feistel construction. However, there
exist other well-known constructions such as the Misty constructions that we
analyze in this paper. We study generic attacks on Misty schemes where we
assume that the internal permutations f1, . . . , fd are randomly chosen. The Misty
construction is important from a practical point of view since it has been used
as a generic construction to design Kasumi [2] algorithm that has been adopted
as the standard blockcipher in the third generation mobile systems.

The plaintext message of a Misty scheme is denoted by [L,R] that stands for
Left and Right and the ciphertext message, after applying d rounds, is denoted by
[S, T]. Misty L and Misty R schemes are two different variants of Misty schemes.
Indeed, the first round of a Misty L scheme takes as input [L,R] and it outputs
[R,R⊕f1(L)] with f1 a secret permutation from n bits to n bits whereas the first
round of a Misty R scheme takes as input [L,R] and it outputs [R⊕f1(L), f1(L)]
with f1 a secret permutation from n bits to n bits. We also consider in this paper
a particular case of Misty L and Misty R constructions such that each round
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 43–57, 2021.
https://doi.org/10.1007/978-3-030-68890-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_3

44 A. Gouget et al.

function fi is defined by fi(x) = Fi(Ki⊕x) with a public function Fi and a round
secret key Ki. These constructions are named, respectively, d-round Misty LKF
scheme and d-round Misty RKF scheme. To simplify the notation, the public
functions Fi in each round are all denoted by F . These four variants of Misty
schemes are studied in this paper.

Related Work. Cryptanalysis of Misty schemes have been studied by Nachef,
Patarin and Treger in [9,10]. They described Known Plaintext Attack (KPA),
Chosen Plaintext Attack (CPA) and Chosen Ciphertext Attack (CCA) against
Misty L and Misty R schemes. In particular, they showed that there exists CPA
and KPA attacks for d = 5 with complexity strictly less than 22n. They also
studied some generic properties of Misty L and Misty R schemes such as the
inversion property. They showed that the inverse of a Misty L function is a Misty
R function, after composition by a permutation μ and μ−1 on the inputs and
outputs, where μ is a permutation on 2n bits such that μ([L,R]) = [R,L ⊕ R].
They then showed that the security of Misty L and Misty R schemes are the
same for all attacks where the inputs and outputs have the same possibilities
which is the case for example in KPA attack and CCA attack. However, the
security of Misty L and Misty R schemes may differ regarding CPA attacks as
we will see in this paper for 3 rounds.

Quantum cryptanalysis has received much more attention in the last past
years. It is known that Grover’s algorithm [3] could speed up brute force search.
Given a n-bit key, Grover’s algorithm allows to recover the key using O(2n/2)
quantum steps. It seems that doubling the key-length of one block cipher could
achieve the same security against quantum attackers. However, Kuwakado and
Morii [6] introduced a new family of quantum attacks using Simon’s algo-
rithm [12] which could find the period of a periodic function in polynomial time
in a quantum computer. Indeed, they describe a quantum distinguishing CPA
attack on the 3-round Feistel scheme. This work has been then extended by Ito
et al. [5] to a quantum CCA distinguisher against the 4-round Feistel cipher.

Luo et al. [8] present quantum attacks on 3-round Misty L and Misty R
schemes using Simon’s algorithm. We describe a similar quantum attack on
the 3-round Misty R structure. In this paper, we provide additional (quantum)
cryptanalysis on variants of Misty L and Misty R schemes as explained in the
“Our Contribution” paragraph.

Our Contribution. In this paper, we describe a non-adaptive quantum chosen
plaintext attack (QCPA) against 4-round Misty L and Misty LKF schemes, and
a non-adaptive quantum chosen plaintext attack (QCPA) against 3-round Misty
R and Misty RKF schemes. These attacks enable to distinguish these Misty
schemes from random permutations in polynomial time. We extend the quan-
tum distinguishing attack against 3-round Misty RKF schemes to obtain a quan-
tum key recovery attack against d-round Misty RKF schemes with complexity
Õ(2(d−3)n/2). Then, we show that security of Misty L and Misty R schemes with
3 rounds differs regarding CPA attacks. The best known attack against Misty L
schemes with 3 rounds has complexity 4 operations with 4 distinct messages. The

(Quantum) Cryptanalysis of Misty Schemes 45

best known attack against Misty R schemes has complexity 2n/2 operations with
2n/2 messages. In this paper, we provide a security proof with the same bound
2n/2 which shows that the best known cryptanalysis against Misty R schemes is
optimal.

Organization. Section 2 describes the four variants of Misty schemes. Section 3
gives an overview of previous works and the new results provided in this paper.
In Sect. 4, we present our QCPA against the four variants of Misty schemes and
the quantum key recovery attack on Misty RKF schemes. Section 5 provides
the security proof of Misty R schemes with 3 rounds against adaptive Chosen
Plaintext attack (CPA-2). Finally, we conclude in Sect. 6.

2 Misty Constructions

In this section, we describe the four variants of Misty schemes. The set of all
functions from {0, 1}n to {0, 1}n is denoted by Fn and the set of all permutations
from {0, 1}n to {0, 1}n is denoted by Bn. We have Bn ⊂ Fn. We denote by Md a
Misty scheme of d rounds: f = Md(f1, . . . , fd), where f1, . . . , fd are permutations
from n bits to n bits, and f is a permutation from 2n bits to 2n bits.

2.1 Misty L Scheme

Let f1 be a permutation of Bn. Let L,R, S and T be elements in {0, 1}n. Then
by definition we have:

ML(f1)([L,R]) = [S, T] ⇔ S = R and T = R ⊕ f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md
L(f1, . . . , fd) = ML(fd) ◦ . . . ML(f2) ◦ ML(f1)

The permutation Md
L(f1, . . . , fd) is called a Misty L scheme with d rounds. We

describe in detail the equations of Misty L for the first four rounds.

1 round:

{
S = R

T = R ⊕ f1(L) = X1
2 rounds:

{
S = X1

T = X1 ⊕ f2(R) = X2

3 rounds:

{
S = X2

T = X2 ⊕ f3(X1) = X3
4 rounds:

{
S = X3

T = X3 ⊕ f4(X2) = X4

The figure of Misty L schemes for the first round is given in Fig. 1.

46 A. Gouget et al.

L

�
f1 �

R

�

�

�

�

S = R T = R ⊕ f1(L)

Fig. 1. First round of Misty L

Misty LKF Scheme. Let F be a public function of Fn and K1 be a key chosen
in {0, 1}n. Let L,R, S and T be elements in {0, 1}n. Then, we define:

MLKF (F,K1)([L,R]) = [S, T] ⇔ S = R and T = R ⊕ F (K1 ⊕ L)

Let K1, . . . ,Kd be d keys chosen in {0, 1}n. Then we have:

Md
LKF (F,K1, . . . ,Kd) = MLKF (F,Kd) ◦ . . . MLKF (F,K2) ◦ MLKF (F,K1)

In this paper, we call Md
LKF (F,K1, . . . ,Kd) a Misty LKF scheme with d rounds.

The equations of the first four rounds of Misty LKF are as follows.

1 round:

{
S = R

T = R ⊕ F (K1 ⊕ L) = A1
2 rounds:

{
S = A1

T = A1 ⊕ F (K2 ⊕ R) = A2

3 rounds:

{
S = A2

T = A2 ⊕ F (K3 ⊕ A1) = A3
4 rounds:

{
S = A3

T = A3 ⊕ F (K4 ⊕ A2) = A4

The figure of Misty LKF schemes for the first round is given in Fig. 2.

L

�
K1

� �

�
F �

R

�

�

�

�

S = R T = R ⊕ F (K1 ⊕ L)

Fig. 2. First round of Misty LKF

(Quantum) Cryptanalysis of Misty Schemes 47

2.2 Misty R Scheme

Let f1 be a permutation of Bn. Let L,R, S and T be elements in {0, 1}n. Then
by definition we have:

MR(f1)([L,R]) = [S, T] ⇔ S = R ⊕ f1(L) and T = f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md
R(f1, . . . , fd) = MR(fd) ◦ . . . MR(f2) ◦ MR(f1)

The permutation Md
R(f1, . . . , fd) is called a Misty R scheme with d rounds. We

describe in detail the equations of Misty R for the first four rounds.

1 round:

{
S = R ⊕ f1(L) = Y 1

T = f1(L)
2 rounds:

{
S = f1(L) ⊕ f2(Y

1) = Y 2

T = f2(Y
1)

3 rounds:

{
S = f2(Y

1) ⊕ f3(Y
2) = Y 3

T = f3(Y
2)

4 rounds:

{
S = f3(Y

2) ⊕ f4(Y
3) = Y 4

T = f4(Y
3)

The figure of Misty R schemes for the first round is given in Fig. 3.

L

�
f1

�

��

R

�

�

S = R ⊕ f1(L) T = f1(L)

Fig. 3. First round of Misty R

Misty RKF Scheme. Let F be a public function of Fn and K1 be a key chosen
in {0, 1}n. Let L,R, S and T be elements in {0, 1}n. Then, we define:

MRKF (F,K1)([L,R]) = [S, T] ⇔ S = R ⊕ F (K1 ⊕ L) and T = F (K1 ⊕ L)

Let K1, . . . ,Kd be d keys chosen in {0, 1}n. Then we have:

Md
RKF (F,K1, . . . ,Kd) = MRKF (F,Kd) ◦ . . . MRKF (F,K2) ◦ MRKF (F,K1)

48 A. Gouget et al.

In this paper, we call Md
RKF (F,K1, . . . ,Kd) a Misty RKF scheme with d rounds.

The equations of Misty RKF for the first four rounds are as follows:

1 round: 2 rounds:{
S = R ⊕ F (K1 ⊕ L) = B1

T = F (K1 ⊕ L)

{
S = F (K1 ⊕ L) ⊕ F (K2 ⊕ B1) = B2

T = F (K2 ⊕ B1)

3 rounds: 4 rounds:{
S = F (K2 ⊕ B1) ⊕ F (K3 ⊕ B2) = B3

T = F (K3 ⊕ B2)

{
S = F (K3 ⊕ B2) ⊕ F (K4 ⊕ B3) = B4

T = F (K4 ⊕ B3)

The figure of Misty RKF schemes for the first round is given in Fig. 4.

L

�
K1

� �

�
F

�

��

R

�

�

S = R ⊕ F (K1 ⊕ L) T = F (K1 ⊕ L)

Fig. 4. First round of Misty RKF

3 Overview of (Quantum) Cryptanalysis on Misty
Schemes

In this section, we review the cryptanalysis results of the state of the art on the
Misty L and Misty R schemes and we point out the new results provided in this
paper.

3.1 Misty L Schemes with Few Rounds

In Fig. 5, we summarize the cryptanalysis results on few rounds of Misty L
schemes based on the state of the art distinguishing attacks presented in [9,10]
together with our new contributions.

(Quantum) Cryptanalysis of Misty Schemes 49

KPA CPA CCA QCPA QCCA
M1

L 1 1 1 1 1
M2

L 2n/2 2 2 2 2
M3

L 2n 4 3 4 3
M4

L 2n 2n/2 4 This paper : 4
n (distinguishing attack)

Fig. 5. Number of computations to distinguish Misty L schemes (with 1, 2, 3 and 4
rounds) from random permutations

On Misty L schemes with 1 round, we have S = R which gives an attack with
one message in all security models. We only have to check whether S is equal to
R. For a Misty L scheme, this happens with probability 1 whereas for a random
permutation it happens with probability 1

2n .
On Misty L schemes with 2 rounds, we have 2 cases depending on the security

model. For CPA attack, we can choose 2 messages [L1, R1] and [L2, R2] such that
L1 = L2. Then, we can check whether S1 ⊕ S2 is equal to R1 ⊕ R2. For a Misty
L scheme, this happens with probability 1 whereas for a random permutation
it happens with probability 1

2n . This cryptanalysis result is valid for other secu-
rity models CCA, QCPA and QCCA. For KPA model, the CPA attack can be
transformed into a KPA attack using 2n/2 messages and the birthday paradox
bound to find a collision such that Li = Lj .

On Misty L schemes with 3 rounds, there is a CPA attack with 4 messages [9]
that can be transformed into a KPA attack with approximately 2n messages and
a CCA attack with 3 messages [10]. These two attacks also apply in the quantum
model.

On Misty L schemes with 4 rounds, there is a CCA attack with 4 messages [10]
that can be transformed into KPA attack or CPA attack. The same attacks in
the quantum models hold. However, in this paper we describe a QCPA attack
that enables to distinguish a Misty L permutation from a random permutation
using only n computations instead of 2n/2 computations.

Misty LKF with Few Rounds. The KPA, CPA and CCA attacks against
Misty L schemes of [9,10] can be applied on Misty LKF schemes. Therefore, we
describe in Sect. 4 the QCPA attack that distinguishes a 4-round Misty LKF
scheme from a random permutation using n computations.

3.2 Misty R Schemes with Few Rounds

On Misty R schemes, the results on 1 and 2 rounds are similar to the case of
Misty L schemes. On Misty R schemes with 3 rounds and with 4 rounds, the
results of the KPA, CCA and QCCA attacks are similar to those of Misty L
schemes since a Misty R scheme is the inverse of a Misty L scheme [10].

On Misty R schemes with 3 rounds, the best known attack has a complexity in
2n/2 computations with 2n/2 messages [10]. In this paper, we provide the security

50 A. Gouget et al.

proof of Misty R schemes with 3 rounds against CPA-2 with the same bound
2n/2. We describe also a QCPA attack that distinguishes a Misty R scheme from
a random permutation by using n computations.

Figure 6 summarizes the cryptanalysis results that are distinguishing attacks
on Misty R schemes based on [10] and our new contributions.

KPA CPA CCA QCPA QCCA
M1

R 1 1 1 1 1
M2

R 2n/2 2 2 2 2
M3

R 2n This paper: 3 This paper: 3
2n/2 (security proof) n (distinguishing attack)

M4
R 2n 2n/2 4 2n/2 4

Fig. 6. Number of computations to distinguish Misty R schemes (with 1, 2, 3 and 4
rounds) from random permutations

Misty RKF Schemes. The state of the art distinguishing attacks on Misty
R schemes are similar for Misty RKF schemes and are summarized in Fig. 7
together with our new contribution. In this paper, we provide first a QCPA attack
that distinguishes a 3-round Misty RKF scheme from a random permutation by
using n computations. Then, we describe a QCPA attack that uses this quantum
distinguishing attack on 3-round Misty RKF schemes to recover the keys of d-
round Misty RKF schemes, for d > 3, in time 2(d−3)n/2.

KPA CPA CCA QCPA QCCA
M3

RKF 2n 2n/2 3 This paper: 3
n (distinguishing attack)

M6
RKF 22n 22n 22n This paper: 22n

23n/2(key recovery)
M7

RKF 24n 24n 24n This paper: 24n

22n(key recovery)
M8

RKF 24n 24n 24n This paper: 24n

25n/2(key recovery)
M9

RKF 26n 26n 26n This paper: 26n

23n(key recovery)
M10

RKF 26n 26n 26n This paper: 26n

27n/2(key recovery)
Md

RKF , d odd d ≥ 9 2(d−3)n 2(d−3)n 2(d−3)n This paper: 2(d−3)n

2(d−3)n/2(key recovery)
Md

RKF , d even d ≥ 8 2(d−4)n 2(d−4)n 2(d−4)n This paper: 2(d−4)n

2(d−3)n/2(key recovery)

Fig. 7. Number of computations to distinguish Misty RKF schemes from random per-
mutations and number of computations to recover the keys when explicitly specified

(Quantum) Cryptanalysis of Misty Schemes 51

4 Quantum Cryptanalysis on Misty

In this section, we recall the results of the two quantum algorithms that we use
in our quantum cryptanalysis. The full details on how the algorithms work can
be found in [3,12]. Then, we describe our QCPA attacks against the four variants
of Misty schemes and the key recovery attack against Misty RKF schemes.

4.1 Simon’s and Grover’s Algorithms

Simon’s Problem. Given a Boolean function, f : {0, 1}n �→ {0, 1}n, that is
observed to be invariant under some n-bit XOR period a, find a.

Simon presents a quantum algorithm [12] that provides exponential speedup
and requires only O(n) quantum queries to find a.

Grover’s Problem. Given a Boolean function f : {0, 1}n → {0, 1} and suppose
that there exists a unique x0 ∈ {0, 1}n such that f(x0) = 1. Given an oracle
access to f , find x0.

Grover presents a quantum algorithm [3] that requires O(2n/2) quantum
queries to find x0.

4.2 Quantum Distinguishing Attack on 4-Round Misty L Schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes
a 4-round Misty L scheme from a 2n-bit random permutation in polynomial
time. We also apply this attack on Misty LKF schemes to obtain a quantum
distinguishing attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] be four messages such that L1 	= L2,
R1 	= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. As it has been shown in [9],
for such four messages, we have:

X3
1 ⊕ X3

2 ⊕ X3
3 ⊕ X3

4 = f3(X1
1) ⊕ f3(X1

2) ⊕ f3(X1
3) ⊕ f3(X1

4)

where X3
i is the left half of M4

L([Li, Ri]) as denoted in Sect. 2. Then, we have:

X3
1 ⊕ X3

2 ⊕ X3
3 ⊕ X3

4 = f3(X1
1) ⊕ f3(X1

2) ⊕ f3(X1
3) ⊕ f3(X1

4)
= f3(R1 ⊕ f1(L1)) ⊕ f3(R2 ⊕ f1(L2)) ⊕ f3(R2 ⊕ f1(L1))

⊕f3(R1 ⊕ f1(L2))

We set R1 = x and we define the function

g(x) = f3(x ⊕ f1(L1)) ⊕ f3(R2 ⊕ f1(L2)) ⊕ f3(R2 ⊕ f1(L1)) ⊕ f3(x ⊕ f1(L2))

We observe that we have g(x) = g (x ⊕ f1(L1) ⊕ f1(L2)). Thus, the function
g is periodic and the period is f1(L1) ⊕ f1(L2). Note that, this period works
even if x = R2. We can use the Simon’s algorithm on g to get the period
s = f1(L1) ⊕ f1(L2) in polynomial time.

In the case where g is constructed with a 2n-bit random permutation instead
of a 4-round Misty L scheme, g is not periodic with overwhelming probability. If
we apply Simon’s algorithm on g, the algorithm fails to find a period. Therefore,
we can distinguish a 4-round Misty L scheme from a random permutation in
polynomial time by using Simon’s algorithm to check if g has a period.

52 A. Gouget et al.

Quantum Distinguishing Attack on 4-Round Misty LKF Schemes. In
the same way as for 4-round Misty L schemes, we have a quantum distinguishing
attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] four messages such that L1 	= L2,
R1 	= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. We have also for Misty
LKF:

A3
1 ⊕ A3

2 ⊕ A3
3 ⊕ A3

4 = F (K3 ⊕ A1
1) ⊕ F (K3 ⊕ A1

2) ⊕ F (K3 ⊕ A1
3) ⊕ F (K3 ⊕ A1

4)
= F (K3 ⊕ R1 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R2 ⊕ F (K1 ⊕ L2))

⊕F (K3 ⊕ R2 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R1 ⊕ F (K1 ⊕ L2))

where A3
i is the left half of M4

LKF ([Li, Ri]) as denoted in Sect. 2. We set R1 = x
and we define the function g by

g(x) = F (K3 ⊕ x ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ R2 ⊕ F (K1 ⊕ L2))
⊕F (K3 ⊕ R2 ⊕ F (K1 ⊕ L1)) ⊕ F (K3 ⊕ x ⊕ F (K1 ⊕ L2))

We observe that g(x) = g(x ⊕ F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2)). Thus, the function g
is periodic and the period is F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2). We can use the Simon’s
algorithm on g to get the period s = F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2) in polynomial
time. Thus, we obtain a quantum distinguishing attack on a 4-round Misty LKF
scheme by checking with the Simon’s algorithm if g has a period.

4.3 Quantum Distinguishing Attack on 3-Round Misty R Schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes
a 3-round Misty R scheme from a 2n-bit random permutation in polynomial time
that is already known [8]. We also apply this attack on Misty RKF schemes to
obtain a quantum distinguishing attack on 3-round Misty RKF schemes.

We consider the value S ⊕ T = f2(Y 1) = f2(R ⊕ f1(L)) where [S, T] =
M3

R([L,R]) as described in Sect. 2. Let [L1, R], [L2, R] two messages such that
L1 	= L2. We set R = x and we define the function

g(x) = S1 ⊕ T1 ⊕ S2 ⊕ T2

= f2(x ⊕ f1(L1)) ⊕ f2(x ⊕ f1(L2))

where [Si, Ti] = M3
R([Li, R]). We observe that g(x) = g (x ⊕ f1(L1) ⊕ f1(L2)).

Thus, g is a periodic function and the period is f1(L1) ⊕ f1(L2). We can use
the Simon’s algorithm on g to get the period s = f1(L1) ⊕ f1(L2) in polynomial
time.

In the case where we apply Simon’s algorithm on g that is constructed with
a 2n-bit random permutation, the algorithm fails to find a period with over-
whelming probability. Thus, we can distinguish a 3-round Misty R scheme from
a random permutation by checking with the Simon’s algorithm if g has a period.

Quantum Distinguishing Attack on 3-Round Misty RKF Schemes. In
the same way as for 3-round Misty R scheme, we have a quantum distinguishing

(Quantum) Cryptanalysis of Misty Schemes 53

attack on 3-round Misty RKF scheme. We can also consider the value S ⊕ T =
F (K2⊕B1) = F (K2⊕R⊕F (K1⊕L)) where [S, T] = M3

RKF ([L,R]) as described
in Sect. 2. Let [L1, R], [L2, R] two messages such that L1 	= L2. Thus, we set
R = x and we define the function g by

g(x) = S1 ⊕ T1 ⊕ S2 ⊕ T2

= F (K2 ⊕ x ⊕ F (K1 ⊕ L1)) ⊕ F (K2 ⊕ x ⊕ F (K1 ⊕ L2))

where [Si, Ti] = M3
RKF ([Li, R]). We observe that g(x) = g(x ⊕ F (K1 ⊕ L1) ⊕

F (K1⊕L2)). The function g is periodic and the period of the function is F (K1⊕
L1) ⊕ F (K1 ⊕ L2). We can use the Simon’s algorithm on g to get the period
s = F (K1 ⊕ L1) ⊕ F (K1 ⊕ L2) in polynomial time.

Thus, we obtain a quantum distinguishing attack on 3-round Misty RKF
scheme by using Simon’s algorithm on g to check if g has a period.

4.4 Key Recovery Attack Against Misty RKF Schemes

Based on [1,4,7], we combine the quantum distinguishing attack on the 3-round
Misty RKF scheme (Sect. 4.3) with the Grover search to obtain a key recovery
attack against a d-round Misty RKF scheme. The attack recovers the keys of the
d-round Misty RKF scheme (K1, . . . ,Kd). We apply the technique of [4] recalled
in Proposition 1.

Proposition 1 (Proposition 3 in [4]). Let Ψ : Fm × Fn → Fn be a function
such that Ψ(k, ·) : Fn → Fn is a random function for any fixed k ∈ Fm. Let
Φ : Fm × Fn → Fn be a function such that Φ(k, ·) : Fn → Fn is a random
function for any fixed k ∈ Fm \ {k0} and Φ(k0, x) = Ψ(k0, x ⊕ k1). Then, given
a quantum oracle access to Φ(·, ·) and Ψ(·, ·), we can recover (k0, k1) with a
constant probability and O((m + n2)2m/2) queries, using O(m + n2) qubits.

For our attack, the key k0 in Proposition 1 corresponds to the keys of the last
(d − 3)-round of a d-round Misty RKF scheme K4, ...,Kd and k1 corresponds
to the period s recovered in the quantum distinguishing attack on the 3-round
Misty RKF scheme described in Sect. 4.3. The idea is to search for the correct key
k0 = (K4, ...,Kd) with the Grover search and check if Φ(·, ·) ⊕ Ψ(·, ·) is periodic
or not for the candidate key k = (K ′

4, ...,K
′
d) by running the Simon’s algorithm

in parallel.
The attack is the following. Assume that we have a quantum encryp-

tion oracle of a d-round Misty RKF scheme O : {0, 1}2n → {0, 1}2n. For
k = (K ′

4, ...,K
′
d) ∈ {0, 1}(d−3)n, let Dk : {0, 1}2n → {0, 1}2n denotes the partial

decryption of the last (d−3)-round of Misty RKF with the key candidate k. Let
W : {0, 1}(d−3)n × {0, 1}n × {0, 1}n → {0, 1}n be the function that is the sum
of the right part and the left part obtained after the 3-round of the Misty RKF
scheme. W is defined by

W (k, L,R) := the sum of the left and right halves of Dk ◦ O(L,R)

54 A. Gouget et al.

We implement a quantum circuit of W using the quantum encryption oracle O.
In the case where k = k0, then W (k0, L,R) = F (K2 ⊕ R ⊕ F (K1 ⊕ L)).

Then, we choose two different n-bits string α, β and define Ψ : {0, 1}(d−3)n ×
{0, 1}n → {0, 1}n and Φ : {0, 1}(d−3)n × {0, 1}n → {0, 1}n by Ψ(k, x) :=
W (k, α, x) and Φ(k, x) := W (k, β, x). The function Ψ(k, ·) is an almost ran-
dom function for each k and Φ(k, ·) is also an almost random function for each
k 	= k0. In the case where k = k0, we have Φ(k0, x) = Ψ(k0, x ⊕ k1) where
k1 = F (K1 ⊕ α) ⊕ F (K1 ⊕ β). Indeed, we have:

Ψ(k0, x ⊕ k1) = W (k, α, x ⊕ k1)
= F (K2 ⊕ x ⊕ F (K1 ⊕ α) ⊕ F (K1 ⊕ β) ⊕ F (K1 ⊕ α))
= F (K2 ⊕ x ⊕ F (K1 ⊕ β)) = W (k, β, x) = Φ(k0, x)

Thus, we can apply Proposition 1 and recover the keys K4, . . . ,Kd. Then, we
can recover K1. To this end, we construct a quantum circuit that calculates
the first 3 rounds of the Misty RKF scheme. Then, we compute the period
s = F (K1 ⊕ α) ⊕ F (K1 ⊕ β) with the quantum distinguishing attack on the
3-round Misty RKF scheme with two arbitrary messages [α, x], [β, x] such that
x, α, β ∈ {0, 1}n and α 	= β. Thus, we can recover K1 by using the Grover
search. Finally, we can easily recover K2 and K3 using the Grover search and
the recovered key K1.

Attack Complexity. By Proposition 1, we can recover (K4, . . . ,Kd) in time
O(2(d−3)n/2)1. Since the last keys K1,K2 and K3 are recovered by using the
Grover search in time O(2n/2), the complexity of the key recovery attack against
a Misty RKF scheme is Õ(2(d−3)n/2).

5 Security Proof on Misty R Scheme with 3 Rounds

The best known CPA-1 attack against a Misty R scheme with 3 rounds is in
O(2n/2) messages and computations [10]. In this section, we prove the security
of the 3-round Misty R scheme against adaptive Chosen Plaintext CPA-2 attacks
when the number of queries q is significantly smaller than 2n/2. Since this proof
and the best known attack have the same bound 2n/2, the cryptanalysis of the
3-round Misty R scheme is optimal. For this proof, we use the result on H
coefficients technique provided in [11].

5.1 H Coefficient Technique

Let N be a positive integer. Let IN be the set {0, 1}N and FN be the set of all
applications from IN to IN . Let BN be the set of permutations from IN to IN .
Let K denotes a set of k-uples of functions (f1, . . . , fk) of FN . We define G as
an application of K → FN .
1 Taking into account the required numbers of qubits and operations, the complexity

is in O(n32(d−3)n/2) as explained in [4].

(Quantum) Cryptanalysis of Misty Schemes 55

Definition 1 (H coefficient). Let q be a positive integer. Let (a1, . . . , aq) with
ai ∈ IN for i = 1, . . . , q be a sequence of pairwise distinct elements of IN . Let
(b1, . . . , bq) with bi ∈ IN for i = 1, . . . , q. The H coefficient denoted by H(a, b)
or simply by H is the number of (f1, . . . , fk) ∈ K such that:

∀i, 1 ≤ i ≤ q,G(f1, . . . , fk)(ai) = bi

5.2 Application to Misty R Scheme with 3 Rounds

Theorem 1 (Adaptive Chosen Plaintext attack with q queries) [11].
Let ε and β be positive real numbers. Let E be a subset of IqN such that |E| ≥
(1 − β)2Nq. If for all (a1, . . . , aq) with ai ∈ IN for i = 1, . . . , q such that ai 	= aj

when i 	= j and for all β ∈ E we have:

H ≥ |k|
2Nq

(1 − ε)

Then, the advantage AdvCPA−2 to distinguish G(f1, . . . , fk) with (f1, . . . , fk) ∈R

K from a random function f ∈R FN fulfills:

AdvCPA−2 ≤ β + ε.

Theorem 2 (CPA-2 security on 3 rounds Misty R). The advantage of an
attacker in an adaptive chosen plaintext attack against the construction Misty R
with 3 rounds is upper bounded by:

AdvCPA−2 ≤ 3
2

q(q − 1)
2

1
2n

Proof. On Misty R schemes with 3 rounds, the set of keys K is equal to B3
N

with N = 2n.
The transformation MR sends [Li, Ri] to [Ui, Ti] such that:{

Ui = Ti ⊕ Si = f2(Ri ⊕ f1(Li))
Ti = f3(f1(Li) ⊕ Ui)

We are looking to H = {(f1, f2, f3) ∈ B3
n such that ∀i, 1 ≤ i ≤ q,MR[Li, Ri] =

[Ui, Ti]}.
Let E be the set defined as follows: E = {[Ui, Ti], 1 ≤ i ≤ q, Ui 	= Uj when

i 	= j}. We have:

|E| ≥ 2Nq

(
1 − q(q − 1)

2 · 2n

)

and we deduce that we have β = q(q−1)
2·2n .

We select f1 such that the values Ri ⊕ f1(Li) are pairwise distinct and the
values Ui ⊕ f1(Li) are pairwise distinct with [Ui, Ti] ∈ E.

– Ri ⊕ f1(Li) = Rj ⊕ f1(Lj) implies that Li 	= Lj or Ri 	= Rj since i 	= j. Then
we have to remove at most q(q−1)

2·2n |Bn| permutations f1.

56 A. Gouget et al.

– f1(Li) ⊕ Ui = f1(Lj) ⊕ Uj implies Li 	= Lj since we have Ui 	= Uj . Then we
have to remove at most q(q−1)

2·2n |Bn| permutations f1.

Now, the function f1 is chosen and both f2 and f3 are fixed in q points pairwise
distinct. Then we have:

H ≥ [Bn|3
22nq

(
1 − q(q − 1)

2n

)
=

|K|
2Nq

(
1 − q(q − 1)

2n

)

Then, by applying Theorem1, we have ε = q(q−1)
2n , β = q(q−1)

2·2n and

AdvCPA−2 ≤
(

3
2

)
q(q − 1)

2
1
2n

This concludes the proof.

6 Conclusion

In this paper, we provide a quantum cryptanalysis of four variants of Misty
schemes. Indeed, we describe QCPA attacks that enable to distinguish 4-round
Misty L and Misty LKF schemes, and 3-round Misty R and Misty RKF schemes,
from random permutations in complexity O(n) instead of O(2n/2). Note that the
QCPA attack on 3-round Misty R schemes is already known in [8]. Moreover,
we extend the quantum distinguishing attack on 3-round Misty RKF schemes
to obtain a key recovery attack against Misty RKF schemes which recovers the
keys of d-round Misty RKF schemes in time O(2(d−3)n/2). Then, we provide
the security proof of 3-round Misty R schemes against CPA-2 attack with a
complexity in O(2n/2). Since the best known attack against the 3-round Misty
R schemes has the same bound, this shows that the state of the art attack is
then optimal.

References

1. Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. Sci. China
Inf. Sci. 61(10), 1–7 (2018). https://doi.org/10.1007/s11432-017-9468-y

2. ETSI: Specification of the 3GPP Confidentiality and Integrity Algorithm KASUMI.
Document http://www.etsi.org/

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219 (1996)

4. Hosoyamada, A., Sasaki, Yu.: Quantum Demiric-Selçuk meet-in-the-middle
attacks: applications to 6-round generic Feistel constructions. In: Catalano, D.,
De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98113-0 21

5. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Yu., Iwata, T.: Quantum chosen-
ciphertext attacks against Feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019.
LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12612-4 20

https://doi.org/10.1007/s11432-017-9468-y
http://www.etsi.org/
https://doi.org/10.1007/978-3-319-98113-0_21
https://doi.org/10.1007/978-3-030-12612-4_20
https://doi.org/10.1007/978-3-030-12612-4_20

(Quantum) Cryptanalysis of Misty Schemes 57

6. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: Proceedings of the IEEE International
Symposium on Information Theory, ISIT 2010, pp. 2682–2685. IEEE (2010)

7. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-
construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 6

8. Luo, Y.Y., Yan, H.L., Wang, L., Hu, H.G., Lai, X.J.: Study on block cipher struc-
tures against Simon’s quantum algorithm. J. Cryptol. Res. 6(5), 561 (2019)

9. Nachef, V., Patarin, J., Treger, J.: Generic attacks on Misty schemes -5 rounds is
not enough. IACR Cryptology ePrint Archive 2009, 405 (2009)

10. Nachef, V., Patarin, J., Treger, J.: Generic attacks on Misty schemes. In: Abdalla,
M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 222–240.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8 14

11. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

12. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-319-70697-9_6
https://doi.org/10.1007/978-3-642-14712-8_14
https://doi.org/10.1007/978-3-642-04159-4_21

An Efficient Authenticated Key Exchange
from Random Self-reducibility on CSIDH

Tomoki Kawashima1(B), Katsuyuki Takashima2, Yusuke Aikawa2,
and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
{tomoki kawashima,takagi}@mist.i.u-tokyo.ac.jp

2 Mitsubishi Electric Corporation, Kamakura, Kanagawa, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp,

Aikawa.Yusuke@bc.MitsubishiElectric.co.jp

Abstract. SIDH and CSIDH are key exchange protocols based on iso-
genies and conjectured to be quantum-resistant. Since the protocols are
similar to the classical Diffie–Hellman, they are vulnerable to the man-
in-the-middle attack. A key exchange which is resistant to such an attack
is called an authenticated key exchange (AKE), and many isogeny-based
AKEs have been proposed. However, the parameter sizes of the existing
schemes should be large since they all have relatively large security losses
in security proofs. This is partially because the random self-reducibility
of isogeny-based decisional problems has not been proved yet.

In this paper, we show that the computational problem and the gap
problem of CSIDH are random self-reducible. A gap problem is a com-
putational problem given access to the corresponding decision oracle.
Moreover, we propose a CSIDH-based AKE with small security loss, fol-
lowing the construction of Cohn-Gordon et al. in CRYPTO 2019, as an
application of the random self-reducibility of the gap problem of CSIDH.
Our AKE is proved to be the fastest CSIDH-based AKE when we aim
at 110-bit security level.

Keywords: Post-quantum · Tight security · Authenticated key
exchange · Isogeny-based cryptography · CSIDH

1 Introduction

1.1 Backgrounds

Most of the public key cryptosystems currently used depend on the difficulty
of Discrete Logarithm Problem (DLP) or factorization, so will be broken by
Shor’s algorithm [22] with quantum computers. To prepare for the appearance
of quantum computers, quantum-resistant cryptosystems are needed. Isogeny-
based cryptosystems, such as SIDH [16] and CSIDH [5], are expected to be
quantum-resistant. CSIDH can be considered to be an instantiation of Hard
Homogeneous Spaces (HHS) proposed in [8], and its protocol is similar to the
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 58–84, 2021.
https://doi.org/10.1007/978-3-030-68890-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_4

An Efficient AKE from Random Self-reducibility on CSIDH 59

classical Diffie–Hellman. SIDH also has a very similar protocol to the classical
Diffie–Hellman, but we cannot regard it as an instantiation of HHS.

Since SIDH and CSIDH are subject to the man-in-the-middle attack, we can-
not use them under insecure channels. Although the classical Diffie–Hellman is
also vulnerable to the man-in-the-middle attack, there are many Diffie–Hellman-
based key exchange protocols which are secure under insecure channels, e.g.,
[17,18]. Such key exchange protocols are called authenticated key exchanges
(AKE).

As for isogeny-based cryptosystems, there are several SIDH-based AKEs [14,
19,23]. There also exist CSIDH-based AKEs [13], though [13] mainly focuses on
a group AKE. However, these existing isogeny-based AKEs are not so efficient
in that they all have large security losses. When we have a small security loss,
we can use smaller parameters to achieve a specific security level, e.g., 110-bit
security, which means the protocol becomes faster.

To achieve an AKE with a small security loss, “random self-reducibility” of
the underlying problem is useful. Informally, we say that a problem is random
self-reducible when we can produce multiple independent instances from a single
instance such that we can restore the original answer from the answer of any one
of the generated instances. In other words, a problem is random self-reducible if
we can reduce the problem tightly to the corresponding multi-instance problem.
It is well-known that the decisional Diffie–Hellman (DDH) problem and the
computational Diffie–Hellman (CDH) problem are random self-reducible, see
the left part of the Fig. 1.

Since the security of an AKE is often defined in the decisional game, it is plau-
sible to use a decisional problem for the security proof. However, even though
the (classical) DDH problem is random self-reducible, the decisional problem
of SIDH and that of CSIDH (denoted as SI-DDH and CSI-DDH respectively)
have not been proved so, see the middle and right part of the Fig. 1. Thus it
seems difficult to construct an AKE with a small security loss from the decisional
isogeny-based problems. Here, the next candidates are isogeny-based computa-
tional problems. However, the security proof of an AKE from a computational
problem is often difficult, since we have to reduce the computational problem to
the decisional game. Thus, other kinds of problems are needed to construct an
AKE with a small security loss.

For that reason, we use gap problems introduced by Okamoto and Pointcheval
[21]. A gap problem is a problem to solve a computational problem given access
to the corresponding decisional oracle, and often used in the security proof of an
AKE [13,18]. Though not quantum-resistant, the gap problem of the classical
Diffie–Hellman (the GDH problem in short) is also random self-reducible, see
the left part of the Fig. 1. As for SIDH, no gap problem which is suitable for
cryptosystems has been found. Related discussions are in [10,15]. So we put our
hope on the gap problem of CSIDH, CSI-GDH problem.

Following the discussion above, a natural question which arises is:

Can we construct a (almost) tightly secure quantum-resistant key exchange
which is secure against man-in-the-middle attack from isogenies?

60 T. Kawashima et al.

1.2 Contributions

Random Self-Reducibility of the Gap Problem of CSIDH. Our first
contribution is that we prove the random self-reducibility of the CSI-GDH prob-
lem. Though the classical Diffie–Hellman, CSIDH, and SIDH have very similar
structures, the situations about random self-reducibility are different. As for the
classical Diffie–Hellman, the decisional problem and the gap problem are both
random self-reducible (see the left part of the Fig. 1). On the contrary, neither
the decisional problem and the gap problem of SIDH has been proved to be
random self-reducible (see the right part of the Fig. 1). Here, our contribution
is that we prove that the gap problem of CSIDH, CSI-GDH problem, is random
self-reducible (see the middle part of the Fig. 1). So, among the classical Diffie–
Hellman, SIDH, and CSIDH, CSIDH is the only quantum-resistant cryptosystem
which has random self-reducibility.

Fig. 1. The comparison of our result with existing result. We prove that the random
self-reducibility of the CSI-GDH problem. As for the gap problems of SIDH, no suitable
problems has been proposed, see the Sect. 3.2 for more details.

Efficient CSIDH-Based AKE. Our second contribution is that we construct
a quantum-resistant efficient AKE based on CSIDH, following the construction
of Cohn-Gordon et al. [7]. Our AKE has a security loss of O(μ), where μ is
the number of users and Cohn-Gordon et al. showed that it is optimal among
“simple” reductions.1 So, even though the loss of O(μ) is not tight, i.e., the
security loss is not constant, it is optimally tight, and our AKE is efficient in this
sense. Moreover, since our AKE is based on CSIDH, it is quantum-resistant. As
far as we know, our AKE has the smallest security loss among isogeny-based
AKEs as shown in Table 1.

We also compare our AKE with other existing CSIDH-based AKEs. As far
as we know, [13] is the only study that proposes other CSIDH-based AKEs. [13]
proposes two CSIDH-based AKEs and we show that our AKE is faster than
these two AKEs if we aim at 110-bit security.

1 Informally, a reduction is simple if the reduction runs the adversary only once.

An Efficient AKE from Random Self-reducibility on CSIDH 61

Table 1. AKEs proposed in the literature. “Assumption” shows which problem is
assumed to be hard and “Model” represents which AKE security model was used. The
number of hash queries and RevealSessKey are denoted as h and q. Also, l and ns denote
the maximum number of sessions per user and the number of sessions activated by the
adversary.

Protocol Assumption Model Loss

the classical Diffie–Hellman-based
HMQV [17] CDH CK μ2l2

NAXOS [18] GDH strong AKE μ2l2

Protocol Π [7] stDH CCGJJ μ

SIDH-based
SIDH UM [12] SI-DDH CK μl
SIDH-AKE [14] SI-CDH CK μ2l2

SIGMA-SIDH [19] SI-DDH SK μns

SIAKE2 [23] SI-DDH CK+ μ2lq
SIAKE3 [23] 1-OSIDH CK+ μ2lq

CSIDH-based
CSIDH UM [13] 2DDH G-CK μns(h + q)2

CSIDH Biclique [13] 2GDH G-CK+ max(μ2, n2
s)

Proposed Protocol CSI-stDH CCGJJ μ

1.3 Key Techniques

Relationship Between AKE and Random Self-reducibility. The security
of an AKE is defined with the following game between a challenger C and an
adversary A. First, C gives public information of the AKE to A, such as public
keys of users and public parameters. Second, A carries out some attacks allowed
in the security model. Finally, A chooses some sessions to get each person’s
shared keys or random keys. Such sessions are called test sessions. Here, a session
is a single execution of the protocol. If A cannot decide whether the given keys
are real-or-random with noticeable advantage, we say the AKE is secure. For
further details, see Appendix A.

When we want to prove the security of an AKE from the difficulty of a
problem, we construct a simulator of the game above. Given an instance of
the problem, the simulator embeds the instance to the AKE. For example, the
simulator sets a user’s public key to the instance. The simulator embeds the
problem deliberately so that if the adversary wins the game, then the simulator
can answer the problem with high probability. In this case, the security loss is
often equal to the reciprocal of the probability of the event that the adversary
chooses one of the embedded sessions as a test session.

To lower the security loss, embedding the instance of the underlying problem
to multiple sessions is helpful. This is because the probability that A “hits” the
embedded sessions becomes higher and the security loss becomes smaller. In this
case, the simulator has to embed instances so that the simulator can solve the
underlying problem if the adversary hits the embedded sessions. However, while

62 T. Kawashima et al.

embedding the instance to AKE-settings, the simulator has to set the embedded
keys independently. So, the simulator must generate multiple keys independently
while the embedded keys are related to the original (single) instance.

Though it sounds difficult, we can do it easily if the underlying problem
is random self-reducible. In the proof of the random self-reducibility, we make
multiple and independent instances from one instance, which is analogous to the
proof technique in AKE above.

Difference Between the Classical Diffie–Hellman and Isogeny-Based
Cryptosystems. As for the classical Diffie–Hellman, the DDH problem and
the CDH problem are both random self-reducible. The random self-reducibility
of the GDH problem follows from that of the CDH problem.

Here, we describe the proof technique. Let G be a cyclic group of prime order
p. Given (X = gx, Y = gy, Z = gz), the DDH problem is to decide whether Z =
gxy, where g is a generator of G. In the proof of the random self-reducibility of the
DDH problem, we take random elements ui, vi, wi ∈ Z/pZ and generate random
instances (Xi, Yi, Zi) = (Xwigui , Y gvi , ZwiXviwiY uiguivi) for i = 1, 2, · · · . Note
that in this rerandomization, we use the operations in Z/pZ and G. In other
words, we use the operations in the set of secret keys and the set of public keys.
On the contrary, in CDH case, we only use the operation in Z/pZ, the set of
secret keys as discussed in Sect. 3.1.

As for SIDH, the key exchange is modeled as a random walk in isogeny
graphs. Thus, we have poor algebraic structure. For example, the set of secret
keys and public keys are the set of torsion points and the set of isomorphism
classes of supersingular elliptic curves, respectively. So, we cannot transfer the
proof of the classical Diffie–Hellman case to SIDH. This is the main reason why
the random self-reducibilities of SIDH-related problems have not been proved
yet.

In contrast, as for CSIDH, we have algebraic structure, i.e., we use the action
of the ideal class group C�(Z[

√−p]) on the set of isomorphic classes of supersin-
gular elliptic curves E��p(Z[

√−p]), where p is a prime such that p ≡ 3 mod 4.
Since we still have no operations in E��p(Z[

√−p]), we cannot transfer the proof
of DDH case to CSIDH. However, in CSIDH, the set of secret keys is C�(Z[

√−p]),
the ideal class “group” of an order Z[

√−p]. So, we have an operation in the set
of secret keys and it is homomorphic to the action. This operation enables us to
transfer the proof of the CDH-case to CSIDH, which is our main contribution.

Related Works. In an independent work, de Kock et al. [9] proposed exactly
the same optimally-tight CSI-GDH based (thus post-quantum) AKE, while the
main focus of their study is not the random self-reducibility itself.

Moreover, Brendel et al. [2] introduced an interesting notion of split KEM,
and they suggest that the CSI-GDH problem seems to be helpful to construct a
post-quantum split KEM.

An Efficient AKE from Random Self-reducibility on CSIDH 63

2 Hard Homogeneous Spaces and CSIDH

Commutative Supersingular Isogeny-based Diffie–Hellman, CSIDH, is one of the
candidates for post-quantum cryptosystems, proposed by Castryck et al. in 2018
[5]. CSIDH realizes Hard Homogeneous Space (HHS), formulated by Couveignes
[8], using elliptic curves and isogenies. We briefly introduce CSIDH here. More
detailed description of CSIDH is in Appendix B.

2.1 Hard Homogeneous Space

First, we give an informal definition of HHS. See [8] for more details.

Definition 1 (Homogeneous Space). Let G be a finite abelian group and
X be a finite set. (G,X) is called homogeneous space if G acts on X simply
transitively, i.e., for every x ∈ X, a map G → X such that g �→ gx is bijective.

Here, we consider two problems in a homogeneous space. The first one is
the vectorization, which is to invert the group action, i.e., given x1, x2 ∈ X,
find g ∈ G such that x2 = gx1. The second one is the parallelization, which is,
given x1, x2, x3, compute gx3, where g ∈ G is the unique element in G which
enjoys x2 = gx1. We say (G,X) is a hard homogeneous space (HHS) if these two
problems are hard.

2.2 CSIDH

Let p be a large prime such that p ≡ 3 mod 4. It is a well known fact that
C�(Z[

√−p]), the ideal class group of an order Z[
√−p] acts simply transitively

on E��(Z[
√−p]), the set of Fp-isomorphic classes of supersingular elliptic curves

whose Fp-endomorphism ring is isomorphic to Z[
√−p]. It is believed that this

action is hard to invert even for quantum computers, and thus we can regard
(C�(Z[

√−p]), E��p(Z[
√−p])) as a quantum-resistant HHS.

Remark 2. A recent study [4] proposes a protocol similar to CSIDH and slightly
faster than CSIDH. This protocol is called CSURF, CSIDH on the surface. Since
CSURF is also an instantiation of HHS, our result is also applicable to CSURF.

2.3 Key Exchanges Based on HHS

We can construct a Diffie–Hellman type key exchange protocol from HHS as
shown in [8]. For a HHS (G,X), the key exchange between Alice and Bob pro-
ceeds as follows:

1. Alice and Bob share a public parameter x0 ∈ X beforehand.
2. Alice chooses a random element a ∈ G and sends ax0 to Bob as a public key.

Bob sends bx0 to Alice in the same way.
3. On receiving Bob’s public key bx0, Alice computes KA = a(bx0) = abx0. Bob

computes KB = b(ax0) = bax0 in the same way.

64 T. Kawashima et al.

It is easy to see that KA = KB because G is an abelian group. CSIDH is a
Diffie–Hellman-like key exchange of this form. As mentioned above, CSIDH is
conjectured to be a quantum-resistant key exchange protocol. For more details,
see Appendix B and [5].

Note that this kind of key exchange is vulnerable to the man-in-the-middle
attack. Let Charlie be an attacker who conducts the man-in-the-middle attack.
Charlie intercepts Bob’s message bx0 and sends C = cx0 to Alice instead, where
c ∈ G is chosen by Charlie. Then, receiving altered message C, Alice computes
her shared key aC = (ac)x0. Here, Charlie can compute this key with cA =
(ca)x0. So, we cannot use this kind of key exchange in insecure channels.

3 Random Self-reducibility of Isogeny-Based Problems

In this section, we discuss the random self-reducibility of isogeny-based problems.
First, we review the classical Diffie–Hellman-based problems in Sect. 3.1 to see
what kinds of techniques are used to prove the random self-reducibility. Then,
we move on to isogeny-based problems such as SIDH-based ones (Sect. 3.2)
and CSIDH-based ones (Sect. 3.3). Our main contribution, the random self-
reducibility of the gap problem of CSIDH, is in Sect. 3.3.

We first define the random self-reducibility:

Definition 3 (Random Self-Reducibility). Let f be a function f : X → Y .
For a problem P , which is to evaluate f(x) for randomly chosen x ∈ X, we
say P is k-random self-reducible when we can generate x1, . . . , xk in polynomial
time such that (1) x1, . . . , xk independently follow the same distribution which x
follows and (2) given any one of (1, f(x1)), . . . , (k, f(xk)), we can compute f(x)
efficiently with high probability. Moreover, if the solver of P whose instance is
x′ is given the access to the oracle Ox′ , then P is k-random self-reducible if we
can simulate Oy perfectly for all generated instances y with or without the help
of Ox.

If the problem P is k-random self-reducible for arbitrary positive integer k,
we say P is random self-reducible.

3.1 The Classical Diffie–Hellman-Related Problems

Firstly, we will review Diffie–Hellman based problems in this subsection.

Decisional Problems of the Classical Diffie–Hellman. Now, we will
describe the random self-reducibility of the DDH problem. We start with the
definition of the DDH problem.

Problem 4 (Decisional Diffie–Hellman (DDH) Problem). Let p be a large prime,
G be a cyclic group of prime order p, and g be a generator of G. Furthermore, a
random bit b ∈ { 0, 1 } is taken uniformly. For uniformly sampled x, y, z ∈ Z/pZ,
(X,Y,Z) = (gx, gy, gxy) if b = 1 and (X,Y,Z) = (gx, gy, gz) otherwise. Here,
the problem is to guess b, given p,G, g, (X,Y,Z).

An Efficient AKE from Random Self-reducibility on CSIDH 65

Here, for an adversary A whose guess is b′, the advantage is defined as

AdvA
DDH(λ) =

∣
∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
∣
.

Note that even when b = 0, Z happens to be equal to gxy. However, since
this event happens only with negligible probability, we can ignore such a case to
avoid pathologies. In other words, we assume that Z = gxy if and only if b = 1
throughout this paper.

It is a well-known fact that the DDH problem is random self-reducible.

Proposition 5. The DDH problem is random self-reducible.

Proof. For an instance (X,Y,Z) of the DDH problem, we generate independent
exponents ui, vi, wi ∈ Z/pZ for all i = 1, 2, Then, we generate instances of
the DDH problem as

(Xi, Yi, Zi) = (Xwigui , Y gvi , ZwiXviwiY uiguivi). (1)

Finally, given j-th answer (j, bj), we answer bj to the original problem.
Here, we check that (Xi, Yi, Zi) are distributed uniformity and independently,

and that b = bj , where b denotes the correct answer of the original problem. Let
(X,Y,Z) = (gx, gy, gz) and (Xi, Yi, Zi) = (gxi , gyi , gzi). Then, we have xi =
wix+ui, yi = y +vi, zi = xiyi +wi(z −xy). Since ui and vi are independent and
uniform, we can easily check that Xi and Yi are uniform and independent. When
b = 1, z = xy, thus zj = xjyj , which means that bj = 1. Otherwise, z − xy �= 0,
so uj , vj , wj(z − xy) distribute independently and uniformly.2 Then, Xj , Yj , Zj

are uniform and independent, so bj = 0. �	
Note that we use two actions of Z/pZ on G in this proof. One is the “additive
action”, which maps (x, h) ∈ Z/pZ×G to h·gx. This action is additive in that we
regard Z/pZ as an additive group. The other is the “multiplicative action”, which
maps (x, h) ∈ Z/pZ × G to hx. We regard (Z/pZ)× as a multiplicative group
in this case. Both actions are necessary to maintain independency of generated
instances. Here, we remark that the additive action cannot be used to construct
HHS because we can compute h · gx+y from g, h, h · gx, h · gy easily, which means
that the parallelization is easy. However, the multiplicative action is considered
to form HHS, and the classical Diffie–Hellman utilizes this action to achieve a
secure key exchange.

Computational Problems of the Classical Diffie–Hellman. Here, we dis-
cuss the random self-reducibility of the CDH problem. As above, we start with
the definition of problem.

Problem 6 (Computational Diffie–Hellman (CDH) Problem). Let p be a large
prime, G be a cyclic group of prime order, and g be a generator of G. For

2 As mentioned above, we assume that z = xy if and only if b = 1 to avoid pathology.

66 T. Kawashima et al.

uniformly sampled x, y ∈ Z/pZ, the CDH problem is to compute gxy given p, g,
and (gx, gy).

Here, for an adversary A whose output is Z, the advantage is defined as
AdvA

CDH(λ) = Pr[Z = gxy].

Note that we can prove the random self-reducibility of the CDH problem in
the same way as the DDH problem.

Proposition 7. The CDH problem is random self-reducible.

Proof. Given a CDH instance (X,Y) = (gx, gy), we generate instances of the
CDH problem (Xi, Yi) = (Xui , Y vi), where ui and vi are chosen independently

and uniformly. Then, given j-th answer Zj , we answer Z
(vjuj)

−1

j to the original
problem. Here, independency and uniformness are checked in a similar way to
Proposition 5. As for correctness, let (Xi, Yi) = (gxi , gyi). Then we have xiyi =

xuiyvi, so Z
(vjuj)

−1

j = (gxujyvj)(vjuj)
−1

= gxy. �	
On the contrary to the DDH-case, we use only multiplicative action in this

proof. This difference enables us to prove the random self-reducibility of the
computational problem of CSIDH as discussed later in Sect. 3.3.

Gap Problems of the Classical Diffie–Hellman. Now, we see the GDH
problem, the gap Diffie–Hellman problem. The GDH problem is defined as fol-
lows:

Problem 8 (Gap Diffie–Hellman (GDH) problem). Notation as in Problem 6.
The GDH problem is to compute gxy, given access to the decision oracle DDH,
which solves the DDH problem, i.e., DDH(ga, gb, gc) = true if and only if c = ab.

Here, for an adversary A whose output is Z, the advantage is defined as
AdvA

GDH(λ) = Pr[Z = gxy].

Note that if the DDH problem is solved, we have to consider the CDH problem
as the GDH problem. In other words, the GDH problem is the CDH problem
where the DDH problem is solved. Note that the GDH problem is also random
self-reducible. The proof is almost identical to the proof of Proposition 7. The
only difference is that we have to simulate the decision oracles but we have only
to pass the query to the original oracle.

3.2 SIDH-Related Problems

Secondly, we discuss the problems related to SIDH, Supersingular Isogeny Diffie–
Hellman. SIDH is one of the most major isogeny-based cryptosystems proposed
in [16], so we cannot ignore SIDH if we try to construct an isogeny-based AKE.
However, our conclusion is that it is difficult to construct a SIDH-based AKE
with small security loss since there is no suitable problem assumed to be hard.

An Efficient AKE from Random Self-reducibility on CSIDH 67

Decisional and Computational Problems of SIDH. SIDH is a key
exchange protocol which can be modeled as random walks on the isogeny graphs.
Thus, SIDH has a very pour algebraic structure. See [16] for the detailed proto-
col. Note that neither the decisional nor the computational problem of SIDH has
been proved to be random self-reducible. Poor algebraic structure is one of the
reason for this. Thus we cannot transfer the proof of the classical Diffie–Hellman
case naively.

Since SIDH is subject to the man-in-the-middle attack, a lof of SIDH-based
AKEs have been proposed [12,19,23]. Most of them are based on the difficulty
of decisional problems, and have relatively large security loss, which indicates
that the decisional problem of SIDH is not random self-reducible. To the best of
our knowledge, no AKE based on the computational problem of SIDH has been
proposed.

As a summary, it seems difficult to construct an AKE with small security
loss from the decisional or the computational problem of SIDH.

Gap Problems of SIDH. Gap problems are very helpful to prove the security
of AKE in the random oracle model, because we can capture the hash query of an
adversary and check if the query contains the correct answer of the problem with
the decision oracle. However, as for SIDH, it is hopeless at present as discussed
below.

As pointed out in [14], gap assumptions related to SIDH sometimes do not
hold, that is, there are cases that we can solve the gap problems efficiently, see
[15]. So, it is risky to use a gap type problem for a security proof of SIDH-
based schemes. As a result, the security of almost all existing SIDH-based AKE
schemes [14,19,23] are proved without using gap problems contrary to the utility
of gap problems in security proofs for the classical Diffie–Hellman setting. This
is one of the biggest obstruction to construct SIDH-based AKE schemes.

On the other hand, there is an attempt to overcome this obstruction. The
gap problem which proved to be easy has a restriction on the degree of isogenies,
which is essential condition for Galbraith-Vercauteren attack [15] work. So, in
order to avoid this attack, removing the condition on the degree of isogenies,
Fujioka et al. propose a new gap problem, the degree-insensitive SI-GDH prob-
lem, see [12] §4. They use such a gap problem in the security proof of their AKE
protocol. However, in [10], it is conjectured with an evidence that public keys in
the degree-insensitive version are uniformly distributed. This conjecture shows
that the degree-insensitive SI-GDH problem no longer makes sense. Here, we
note that this does not mean that the AKE scheme in [12] is broken and only
that its security is not supported by the computational assumption used in [12],
for more detail, see [10].

Summary. As discussed above, since the mechanism of SIDH is modeled as
random walks in the isogeny graph, formulating a well-defined gap problem in
SIDH setting is difficult. So, in order to construct AKE from SIDH, we have

68 T. Kawashima et al.

to employ decisional problems. However, the random self-reducibility of SIDH-
related decisional problems has not been proved yet. In conclusion, constructing
tightly secure AKE schemes in SIDH setting is seems to be difficult currently.

3.3 CSIDH-Related Problems

Finally, we move on to CSIDH. Though the decisional problem of CSIDH is still
likely not to be random self-reducible, we show that the computational and the
gap problems are random self-reducible.

Decisional Problem of CSIDH. The decisional problem of CSIDH, CSI-
DDH problem, seems not to be random self-reducible. In this subsection, we
will compare the CSI-DDH problem with the DDH problem and discuss what
prevents the random self-reducibility of the CSI-DDH problem.

First, we define the CSI-DDH problem.

Problem 9 (Commutative Supersingular Isogeny Decisional Diffie–Hellman
(CSI-DDH) Problem). Let p be a large prime such that p ≡ 3 mod 4 and E
be a supersingular elliptic curve in E��(Z[

√−p]). Then, given (E1, E2, E
′) =

([x]E, [y]E,E′) for uniformly chosen [x], [y] ∈ Cl(Z[
√−p]), guess whether E′

[xy]E or not.
Here, for an adversary A, the advantage is defined as AdvA

CSI-DDH(λ) =
∣
∣
∣
∣
∣
Pr[guess is correct] − 1

2

∣
∣
∣
∣
∣
.

One may imagine that the CSI-DDH problem is also random self-reducible
since CSIDH and the classical Diffie–Hellman have very similar structures. How-
ever, to the best of our knowledge, we have not succeeded in proving so. For
example, a recent study [11] leaves it as an open problem.

Here, we discuss the difference between the classical Diffie–Hellman and
CSIDH, i.e., why we cannot prove the random self-reducibility of the CSI-DDH
problem in the same way for the DDH problem. As for the classical Diffie–
Hellman case, we use both additive action and multiplicative action to prove the
random self-reducibility of the decisional problem. In CSIDH case, we have only
one action, so it seems difficult to transfer the proof to the CSIDH settings. How-
ever, this lack of operation is inevitable to achieve quantum-resistance because
of Shor’s algorithm [22].

Remark 10. A recent study of the DDH assumption [6] shows that we can solve
the DDH problem of HHS from ideal-class group action under certain circum-
stances. That is, if p ≡ 1 mod 4, we can solve the CSI-DDH problem efficiently.
This is not the case here because we restrict p ≡ 3 mod 4 and in this case we
cannot use this result directly. However, some modification may be required in
the future even when p ≡ 3 mod 4.

An Efficient AKE from Random Self-reducibility on CSIDH 69

Computational Problems of CSIDH. Now, we will show that the compu-
tational problem of CSIDH is random self-reducible.

First, we define the CSI-CDH problem. It is defined in an analogous way to
the classical Diffie–Hellman.

Problem 11 (Commutative Supersingular Isogeny-Computational Diffie-Hell-
man (CSI-CDH) Problem). Let p be a large prime such that p ≡ 3 mod 4
and E be a supersingular elliptic curve in E��(Z[

√−p]). Then, given (E1, E2) =
([x]E, [y]E) for uniformly chosen [x], [y] ∈ Cl(Z[

√−p]), compute [xy]E.
Here, for an adversary A whose output is E′, the advantage is defined as

AdvA
CSI-CDH(λ) = Pr[E′ = [xy]E].

Here, we probe the random self-reducibility of the CSI-CDH problem.

Theorem 12. The CSI-CDH problem is random self-reducible.

Proof. For an instance (EA, EB) of the CSI-CDH problem, we generate random
ideal classes [ρi], [ηi] ∈ C�(O). Then, we generate instances as ([ρi]EA, [ηi]EB).
Then, given (j, Ej) for some j, we answer [ηj]−1[ρj]−1Ej to the original problem.
Since the action is simply transitive, the independency and uniformity of these
generated elliptic curves are assured. Here, since Ej = [ρi][ηi]E, [ηj]−1[ρj]−1Ej =
[xy]E, we complete the proof. �	

In this proof, we use almost the same technique as in Theorem 7, the CDH
case, while it is impossible in the decisional case. This is mainly because the proof
of the random self-reducibility of the CDH problem uses only one operation,
whereas we use two operations in the decisional case. In the CDH problem case,
as discussed above, we use only the multiplicative action to prove the random
self-reducibility. Since only the multiplicative action forms HHS in the classical
DH case, the action in CSIDH corresponds to the multiplicative action of the
classical DH, so it is plausible that we can transfer the proof to CSIDH settings
in this case.

Gap Problems of CSIDH. As a corollary of Theorem 12, we can prove that
the gap problem of CSIDH, CSI-GDH problem, is also random self-reducible.
We start with the definition of the problem:

Problem 13 (Commutative Supersingular Isogeny Gap Diffie–Hellman problem
(CSI-GDH problem)). Notation as in Problem 11. The CSI-GDH problem is to
compute [xy]E, given access to the decision oracle CSI-DDH, which solves the
corresponding CSI-DDH problem, i.e., given ([a]E, [b]E,E′), CSI-DDH returns
true if and only if E′ = [ab]E.

Here, for an adversary A whose output is E′, the advantage is defined as
AdvA

CSI-GDH(λ) = Pr[E′ = [xy]E].

Here, we can prove that the CSI-GDH problem is also random self-reducible:

Corollary 14. The CSI-GDH problem is random self-reducible.

70 T. Kawashima et al.

Proof. The only difference from the CSI-CDH case (Proposition 7) is that there
exists a decision oracle, but we don’t need special treatment since we have only
to pass every query to the original oracle. �	

Moreover, we will consider the CSI-stDH problem, which is a CSIDH-version
of strong DH problem used in [7]. This problem is also random self-reducible, and
we will construct an AKE which is secure under the difficulty of this problem in
the following section. The proof of the random self-reducibility of the CSI-stDH
problem is in Appendix C.

Problem 15 (strong Diffie–Hellman (stDH) Problem). Notation as in Problem 6.
The stDH problem is to compute gxy, given access to the stDH oracle stDHx(·, ·),
which solves the corresponding decisional problem, i.e., stDHx(gb, gc) = true if
and only if c = xb.

Here, for an adversary A whose output is Z, the advantage is defined as
AdvA

stDH(λ) = Pr[Z = gxy].

Problem 16 (Commutative Supersingular Isogeny strong Diffie–Hellman (CSI-
stDH) Problem). Let p be a large prime such that p ≡ 3 mod 4 and E be a
supersingular elliptic curve in E��(Z[

√−p]). Then, given (E1, E2) = ([x]E, [y]E)
for uniformly chosen [x], [y] ∈ Cl(Z[

√−p]), compute [xy]E. Here, the solver can
query to the CSI-strong DH oracle CSI-stDHx(·, ·), such that CSI-stDHx(E′, E′′) =
true if and only if E′′ = [x]E′.

Here, for an adversary A whose output is E′, the advantage is defined as
AdvA

CSI-stDH(λ) = Pr[E′ = [xy]E].

Summary. We have proved that the computational problem and the gap prob-
lem of CSIDH are random self-reducible. This is in stark contrast between com-
putational problems and decisional problems. So, our conclusion is: If we hope
for (somewhat) tight reduction in quantum-resistant HHS, we should use com-
putational assumptions rather than decisional assumptions.

4 Protocol ΠCSIDH

In this section, we propose an isogeny-based AKE ΠCSIDH, which is a variation of
the Protocol Π in [7]. The security loss is O(μ), where μ stands for the number of
users. In the security proof, we use the random self-reducibility of the CSI-stDH
problem implicitly. Since ΠCSIDH uses CSIDH instead of the classical Diffie–
Hellman, it is expected to be quantum-resistant.

4.1 AKE Security Model

In this subsection, we discuss the security model briefly.
The security of an AKE is often defined through a game between a challenger

C and an adversary A. First, C shows public information of AKE to A. Second,

An Efficient AKE from Random Self-reducibility on CSIDH 71

A executes some attacks defined in the model. The main difference among AKE
security models is which attacks are allowed to the attacker. We regard every
single execution of a user as an oracle, and every attack is written in the form of
a query to an oracle. Finally, A chooses some oracles to get real session keys or
random session keys. This procedure is often called test-query, and A wins the
game if A can decide correctly whether the given keys are real keys or random
keys.

In this paper, we use the same model as [7]. We call this model “CCGJJ
model”. CCGJJ model does not allow the adversary to reveal the internal state
of an oracle, compared to the CK model [3], which is one of the most popular
models. In other words, we achieved an optimally tight AKE at the expense of
security. The CCGJJ model is described in Appendix A in a formal way. We
note here that the adversary in CCGJJ model is allowed to reveal the static key
of user i if i is not the intended peer of the tested oracles, where intended peer
of an oracle is the user the oracle “wants” to communicate.

4.2 Construction

Protocol ΠCSIDH is defined in Fig. 2. In this protocol, we use both static keys
(users’ key) and ephemeral keys (oracles’ key) to establish a shared secret key.
Note that we choose an element from C�(O) in the same way as in CSIDH, see
Appendix B for more details.

Fig. 2. Proposed AKE based on CSIDH (Protocol ΠCSIDH). M denotes the Mont-
gomery coefficient.

4.3 Security

Here, we state the security theorem of ΠCSIDH. We denote the advantage of an
adversary A against a problem P whose parameters are param as AdvA

P,param(λ),
where λ is the security parameter. We often omit some parameters when we
don’t have much attention to the parameters.

Theorem 17. Let A be an adversary against Protocol ΠCSIDH in CCGJJ model
under the random oracle model and assume we use [−m,m]n as a secret key

72 T. Kawashima et al.

space of CSIDH for positive integers m,n. Then, there are adversaries B1,B2,B3

against the CSI-stDH problem such that

AdvA
ΠCSIDH

(λ) ≤ μ · AdvB1
CSI-stDH(λ) + AdvB2

CSI-stDH(λ)

+ μ · AdvB3
CSI-stDH(λ) +

μl2

(2m + 1)n
,

where μ and l are the number of users and the maximum number of sessions per
user, respectively. Moreover, the adversaries B1,B2,B3 all run in essentially the
same time as A and make essentially the same number of queries to the hash
oracle H.

Here, we explain the proof technique and discuss the relation to the random
self-reducibility of the CSI-stDH problem. The detailed proof is in Appendix
A.2.

The Security Proof of Cohn-Gordon et al. In [7], the authors construct a
simulator S that reduce the AKE’s security to the hardness of the stDH problem.
We briefly review the technique they used. S tries to solve the stDH problem, so
it gets (X = gx, Y = gy) as an instance of the stDH problem. Then, S chooses
one user i uniformly and sets i’s static public key to X = gx. Moreover, for every
oracle whose intended peer is i, S sets its ephemeral public key to Y ·gρ. Here, ρ’s
are chosen independently and uniformly for every oracle, so embedded keys are
also uniform and independent. Note that S cannot compute the corresponding
static secret key or ephemeral secret keys in polynomial time since S has to solve
the DLP which contradicts the assumption that stDH problem is hard.

Now, we assume that A test-queries to an oracle whose intended peer is i. This
assumption prevents A from revealing the secret key of the user i. In this case, A
has to compute gx(y+ρ) and query it to the hash oracle in order to decide whether
the given key is real-or-random correctly with noticeable advantage. Here, in
the random oracle model, the simulator can catch the hash-queries made by the
adversary, so S catches every queries and checks if the query contains gx(y+ρ)

with the decision oracle. Since we can eliminate ρ by computing X−ρ · gx(y+ρ),
this enables the simulator to solve the stDH problem correctly whenever A wins
the game. Since our assumption occurs with probability at least 1/μ, the security
loss is O(μ).

Our Proof Sketch. We apply the technique above to ΠCSIDH. Let S be the
simulator for an adversary A. Given (X = [x]E,Y = [y]E), S chooses a user
i uniformly and sets i’s static public key to X. Then, for every oracle whose
intended peer is i, S chooses independent [ρ] ∈ C�(O) uniformly and sets the
oracle’s ephemeral public key to [ρ]Y. We assume that A chooses the oracle
whose intended peer is i as a test oracle as above. In this case, in order for A
to win the game, A has to compute [xρy]E and query it to the random oracle,
so S can detect it. Since S knows ρ and can invert it in CSIDH-setting, S can
compute [xy]E in this case, which completes the proof.

An Efficient AKE from Random Self-reducibility on CSIDH 73

In our proof sketch above, we make multiple independent ephemeral keys,
[ρ]Y. This is a similar rerandomization to the proof of Theorem 7. So we
can regard this proof as an application of the random self-reducibility of the
CSI-CDH problem or the CSI-stDH problem, which follows from our main
contribution.3

4.4 Efficiency Analysis

In this subsection, we compare our AKE, ΠCSIDH, with other existing CSIDH-
based AKEs in terms of efficiency. To the best of our knowledge, [13] is the
only study that proposes other CSIDH-based AKEs. In [13], two CSIDH-based
AKEs, CSIDH UM and CSIDH Biclique, are proposed.

Assume that we want to construct an AKE of λ-bit security, with μ
 2m

users and each user conducts sessions at most l
 2n times. Then, for CSIDH
UM, we should use the parameters such that the 2DDH assumption provides
at least (2λ + 2m + 2n − 1)-bit security. This evaluation follows from the
inequality in the security proof. In the same way, the 2GDH assumption for
CSIDH Biclique (resp. the CSI-stDH problem for ΠCSIDH) should provide at
least (λ + 2max(m,n))-bit (resp. (λ + m)-bit) security.

As a concrete example, suppose that we want to achieve 110-bit classical
security (λ = 110), with 216 users (μ = 216 and m = 16), and every user
conducts sessions at most 216 times (l = 216 and n = 16), as done in [7]. In this
case, security levels required for the underlying hard problems of CSIDH UM,
CSIDH Biclique, and ΠCSIDH are 283, 143, and 126-bits, respectively. Though
these assumptions are different, we assume that the fastest way to solve these
problems is to invert the group action, since we have not found any other way
to solve these problems yet.

Comparing ΠCSIDH with CSIDH Biclique, ΠCSIDH is the faster because the
number of actions and the required security level of the underlying problem are
both lower. As for CSIDH UM, the required security level of the underlying
problem is about twice as much as that of ΠCSIDH. This is mainly because, in
the security proof of CSIDH UM, the square of the advantage of the adversary
against CSIDH UM is bounded from above by the advantage of the reduction. As
a consequence, we have to use much larger parameters for CSIDH UM. Actually,
we can use the parameter set CSIDH-512 [5] for the ΠCSIDH, since CSIDH-512
offers 128-bit classical security. On the other hand, for CSIDH UM, we should
use the parameter set CSIDH-1024 (or larger parameters), since CSIDH-1024
offers 256-bit classical security. As [1] shows, the evaluation of the group action
with parameters CSIDH-1024 takes more than 6 times as much as that of the
CSIDH-512. So, although CSIDH UM has relatively fewer number of actions
than ΠCSIDH, ΠCSIDH is the faster because every evaluation of the group action
takes much less time. The comparison above is summarized in Table 2.

As a conclusion, our AKE is the fastest CSIDH-based AKE when we consider
concrete security.
3 Similarly, the proof of Cohn-Gordon et al. can be considered as an application of the

random self-reducibility of the stDH problem.

74 T. Kawashima et al.

Table 2. Efficiency analysis when we aim for 110-bit secure AKE. We assume that there
exist 216 users and each users executes the session at most 216 times. “Assumption”
shows the problems assumed to be hard. We use either CSIDH-512 or CSIDH-1024 [5]
for the parameters. “Number of actions” shows how many times every user evaluates
the group actions in a session. We estimated the expected clock cycles using the result
of Bernstein et al. [1].

Protocol Assumption Parameters
CSIDH UM 2DDH CSIDH-1024
CSIDH Biclique 2GDH CSIDH-512
ΠCSIDH CSI-stDH CSIDH-512

Protocol Number of actions Expected clock cycles
CSIDH UM 3 719, 084, 288 × 3 = 2, 157, 252, 864
CSIDH Biclique 5 119, 995, 936 × 5 = 599, 979, 680
ΠCSIDH 4 119, 995, 936 × 4 = 479, 983, 744

5 Conclusion

In this paper, we proved that the computational problem and the gap problem
of CSIDH are random self-reducible and concluded that we should use computa-
tional or gap problems to construct a CSIDH-based protocol with small security
loss. Moreover, we proposed an AKE from CSIDH as an application, following
the construction of Cohn-Gordon et al. [7]. This AKE is proved to be the fastest
CSIDH-based AKE when we aim for a certain level of security.

Now, we have some future works. First, we have to analyse the difficulty of
the CSI-GDH problem. Though the CSI-GDH problem is regarded as hard even
for quantum computers at present, since few works have been done on this gap
problem, we have to study this problem more. Second, we need to study more
about how secure the CCGJJ model is, particularly compared to CK or CK+

model. CCGJJ model is weaker than the CK model in that the states of the
oracles are never leaked to the adversary. This difference seems very large, so we
have to analyze the security of CCGJJ model more. Finally, if we can construct
a CSIDH-based AKE in CK or CK+ model with (optimally) tight proof, it is
a very large contribution because one of the solution to the above future works
is to construct a CSIDH-based AKE in CK model with (optimally) tight proof.
Note that it seems impossible to use random self-reducibility since if we embed
the instance of a problem to multiple oracles in the CK model, the adversary
may try to reveal one of such oracle’s secret key.

An Efficient AKE from Random Self-reducibility on CSIDH 75

A Authenticated Key Exchange

In this section, we give a detailed proof of Theorem 17.

A.1 CCGJJ Security Model

First, we will introduce the security model, which we call CCGJJ model in this
paper. This model was introduced by [7]. The most important difference between
CCGJJ model and CK model [3] is that the adversary cannot reveal an oracle’s
internal state, including an ephemeral secret key. In both models, we define a
game between a challenger and an adversary, and if the advantage of an arbitrary
efficient adversary is negligible, the protocol is regarded to be secure.

Execution Environment. Here, we describe the mathematical model of the
execution environment. We assume that there exist μ users and each user i ∈
{1, · · · , μ} has long-term public key pki and long-term secret key ski. We assume
that each user i executes the protocol at most l times and each execution is
regarded as an oracle. User i’s s-th oracle is denoted as πs

i . πs
i uses not only

user’s static key but also its ephemeral key in the execution. Note that a static
key is a user’s key, so if two oracles belong to the same user, then these two
oracles use the same static key, where the ephemeral keys are different with high
probability. Each invocation of the protocol is called a session, and the shared
secret is called a session key.

Each oracle πs
i has an intended peer, denoted as Pids

i . Also, the session key
of πs

i is denoted as ks
i , where ks

i = ∅ if πs
i has not computed the session key

yet. The oracles send messages each other, and sents
i /recvs

i are the messages
sent/received by πs

i . Moreover, each oracle πs
i has a role, roles

i ∈ {∅, init, resp}.
Here, the role of an oracle is either an initiator (denoted as init) or a responder
(denoted as resp). An initiator is an oracle which sends a message first, and the
responder oracle follows. In Fig. 2, Alice’s oracle is the initiator and Bob’s one
is the responder. Note that a responder oracle computes its session key first in
the session, and the initiator follows.

To describe partnering between oracles, we define two notions:

Definition 18 (Origin oracle). πt
j is an origin oracle of πs

i if both oracles have
completed its execution and the messages sent by πt

j are equal to the messages
received by πs

i , i.e., sentt
j = recvs

i .

Definition 19 (Partner oracles). πs
i and πt

j are called partners if (1) πt
j is

an origin oracle of πs
i and vice versa, (2) both oracles believe the other as an

intended peer, i.e., Pids
i = j and Pidt

j = i, and (3) their roles are distinct, i.e.,
roles

i �= rolet
j.

76 T. Kawashima et al.

Attacker’s Model. Since each execution is regarded as an oracle, what attacker
can do are described as queries. In CCGJJ model, attacker can issue four queries,
Send, RevLTK, RegisterLTK, and RevSessKey.

Send represents the ability of the adversary to control the network, i.e., Send
query allows the adversary to send arbitrary message to arbitrary oracle, or even
starts an oracle. RevLTK and RevSessKey stand for Reveal Long-Term Key and
Reveal Session Key. The adversary can reveal arbitrary oracle’s long-term key
or session key. Here, the user whose oracle’s long-term key is revealed with this
query is said to be corrupted. RegisterLTK allows the adversary to add a new
user. Any oracle of users added by this query is corrupted by definition.

Moreover, the adversary can issue special queries, Test.

Definition 20 (Test query). Assume b ∈ {0, 1} is determined beforehand. If
an adversary queries a Test query to πs

i , πs
i returns kb, where k0 is a random

key and k1 is its session key. This query is denoted as Test(i, s).

Here, we note that all oracles use the same bit b. Now, we define a state of
an oracle, fresh.

Definition 21 (Freshness). We say πs
i is fresh if following conditions hold:

(1) RevSessKey(i, s) has not been queried, (2) when πt
j is the partner oracle of

πs
i , neither Test(j, t) nor RevSessKey(j, t) has been issued, and (3) Pids

i was not
corrupted when πs

i completed its execution if πs
i has an origin oracle, and not

corrupted at all otherwise.

The session key of a fresh oracle is not revealed by queries (it is fresh in this
sense). So, if all tested oracles are fresh and the adversary can guess b correctly,
we can conclude that the adversary can break the AKE’s security. The following
definition of the AKE security game describe this formally. We say that an AKE
is secure if all efficient adversary have negligible advantages.

Definition 22 (AKE security game). Let C be a challenger and A be an
adversary. The security game proceeds as follows:

1. C chooses μ static keys (ski, pki) (i = 1, 2, · · · , μ) and b ∈ {0, 1} uniformly at
random, and initializes all oracles.

2. C runs A with inputs pk1, · · · , pkμ. The model allows A to make some attacks
on oracles as queries to an oracle, including Test queries. Here, A must keep
tested oracles fresh. Otherwise, the game aborts and b′ is set to be a random
bit.4

3. A outputs b′, a guess of b.

The advantage of an adversary is

AdvA
prot(λ) =

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
,

where λ denotes a security parameter.
4 In this case, the advantage of the adversary is zero.

An Efficient AKE from Random Self-reducibility on CSIDH 77

A.2 Detailed Security Proof of ΠCSIDH

In this subsection, we give a proof of Theorem 17. First, we classify the oracles
into 5 types in the same way as [7].

Type I Initiator oracles whose response message is sent by a responder which
has the same ctxt and whose intended peer is honest, i.e., not corrupted when
the message is received.

Type II Other initiators whose intended peer is honest until the initiator com-
pletes the execution.

Type III Responder oracles whose initial message is sent by a initiator which
has the same ctxt up to the responder message and whose intended peer is
honest when the message is received.

Type IV Other responders whose intended peer is honest until the responder
completes the execution.

Type V Oracles that are not Type I, II, III, or IV. In other words, oracles whose
intended peer is corrupted.

Note that Type I, II, III, and IV oracles are fresh, whereas Type V oracles
are not fresh. So we have only to consider first four types of oracles when we
make a security proof, because we don’t need to care the case when non-fresh
oracles are tested.

Again, the security theorem is as follows:

Theorem 17. Let A be an adversary against Protocol ΠCSIDH in CCGJJ model
under the random oracle model and assume we use [−m,m]n as a secret key
space of CSIDH for positive integers m,n. Then, there are adversaries B1,B2,B3

against the CSI-stDH problem such that

AdvA
ΠCSIDH

(λ) ≤ μ · AdvB1
CSI-stDH(λ) + AdvB2

CSI-stDH(λ)

+ μ · AdvB3
CSI-stDH(λ) +

μl2

(2m + 1)n
,

where μ and l are the number of users and the maximum number of sessions per
user, respectively. Moreover, the adversaries B1,B2,B3 all run in essentially the
same time as A and make essentially the same number of queries to the hash
oracle H.

In this Appendix, we give a proof of this theorem.

Proof. We prove this theorem by changing the game little by little. This tech-
nique is called “game-hopping” technique. Let Sj (j = 0, 1, · · · , 5) be events that
the adversary wins in Game j.

Game 0. Game 0 is the original security game.

78 T. Kawashima et al.

Game 1. In Game 1, we abort if two initiators or responders have the same
ctxt. Since the size of our key space is (2m + 1)n, we have

|Pr[S0] − Pr[S1]| ≤ μl2

(2m + 1)n
(2)

Game 2. In Game 2, the oracles change the way they choose their session keys.
Intuitively, they try to choose their session key uniformly at random, not using
the hash function.

For example, let πt
j be a Type IV oracle with skj = [b] and pkj = B. Also,

let πt
j ’s ephemeral secret key and ephemeral public key be [s] and S. Moreover,

for i = Pidt
j , let i′s long-term public key and ephemeral public key be A and R,

respectively.
Then, πt

j has to query

x = î||ĵ||M(A)||M(B)||M(R)||M(S)||M([s]A)||M([b]R)||M([s]R)

to the hash oracle in Game 1. If x has not been queried or “registered” to
the random oracle, then πt

j takes its session key k uniformly at random, and
“register” (x, k). If (x, k′) is registered to the random oracle, then πt

j sets its
session key to k′. In the beginning of the game, no queries are registered.

Other type of the oracles choose their session key in similar ways, so we omit
the description. For further details, see [7].

Random oracle model assures that no difference is observable by A, so we
have

Pr[S1] = Pr[S2]. (3)

Game 3. In this game, Type IV oracles choose their session keys uniformly
at random and do not modify the hash oracle unless whose intended peer is
corrupted.

Let πt
j be a type IV responder and we use the same notation as in Game 2.

Then, πt
j must have queried

x = î||ĵ||M(A)||M(B)||M(R)||M(S)||M([s]A)||M([b]R)||M([s]R) (4)

in Game 2. If queries of the form (4) do not happen before user i is corrupted,
Game 2 and Game 3 are identical. So when we define the event Fi as the event
that such queries are made, we have

|Pr[S2] − Pr[S3]| ≤
∑

i

Pr[Fi].

In order to make our proof simple, we define event Gi as the event that
queries of the form

î||ĵ||M(A)||M(B)||M(R)||M(S)||M(W)|| � || � ,W = [as]E (5)

An Efficient AKE from Random Self-reducibility on CSIDH 79

are made before user i is corrupted. The symbol � means an arbitrary element.
Since Pr[Fi] ≤ Pr[Gi] holds, we have

|Pr[S2] − Pr[S3]| ≤
∑

i

Pr[Gi]. (6)

We can bound the righthand side by the advantage of a CSI-stDH adversary.

CSI-stDH Adversary B1. The reduction B1 is an algorithm whose inputs are
two elliptic curves (E1, E2) = ([x]E, [y]E) ∈ Ell(O)2, and output is an elliptic
curve E3. The advantage of B1 is Pr[E3 = [xy]E].

When B1 is given a tuple (E1, E2) ∈ Ell(O)2, it chooses a user i uniformly at
random, and sets its static public key to E1. Then, for every Type IV responder,
B1 sets its ephemeral public key to [ρ]E2, where each [ρ] ∈ Cl(O) is sampled in
the same way as key generation for every oracle. Here, [ρ] is chosen independently
for every Type IV responders.

Suppose that Gi happens in Game 2. Then, a query of the form (5) is made to
the random oracle before user i is corrupted. The simulator can detect this query
by querying CSI-stDHx(S,W). If the answer is true, B1 outputs [ρ]−1W, which
means whenever Gi happens, the simulator can answer the CSI-stDH problem
correctly. So we have

Pr[Gi] ≤ AdvB1
CSI-stDH(λ). (7)

From (6),(7), it is obvious that

|Pr[S2] − Pr[S3]| ≤ μ · AdvB1
CSI-stDH(λ). (8)

We note here that other hash queries in which the identity i is included can be
detected using CSI-stDH oracle.

For Game 4 and 5, the proof is similar to [7], so we just give an intuitive
proof.

Game 4. In Game 4, all type III responders choose their session key at random,
and do not modify the hash oracle.

Assume that the adversary B2 is given a CSI-stDH instance (E1, E2). Then,
for all type I or II oracles, B2 generates random elements [ρ1] ∈ Cl(O) indepen-
dently, and sets their ephemeral public keys to [ρ1]E1. Similarly, Type III oracles
have ephemeral public keys [ρ2]E2. If the adversary against Game 3 does not
make any hash query corresponding to Type III oracles, the Game 4 is identi-
cal to Game 3, whereas if such query is made, B2 can solve the strong CSIDH
problem. Here, we have

|Pr[S3] − Pr[S4]| ≤ AdvB2
CSI-stDH(λ). (9)

80 T. Kawashima et al.

Game 5. In Game 5, all type II initiator oracles choose their session key at ran-
dom and do not modify the hash oracle unless their intended peer is corrupted.
The proof is identical to that of Game 3, so we have

|Pr[S4] − Pr[S5]| ≤ μ · AdvB3
CSI-stDH(λ) (10)

for an adversary B3 against strong CSIDH problem.
Since all honest oracles choose their session keys uniformly at random in

Game 5, the advantage of an arbitrary adversary against Game 5 is strictly 0.
Then, we have

Pr[S5] =
1
2
. (11)

Combining (2), (3), (8), (9), (10), and (11), we have

AdvA
ΠCSIDH

(λ) = |Pr[S0] − 1/2|

≤
(

4∑

i=0

|Pr[Si] − Pr[Si+1]|
)

+ |Pr[S5] − 1/2|

≤ μl2

(2m + 1)n
+ μ · AdvB1

CSI-stDH(λ)

+ AdvB2
CSI-stDH(λ) + μ · AdvB3

CSI-stDH(λ).

Here, we complete the proof. �	

B CSIDH

In this section, we introduce the detailed protocol of CSIDH.

B.1 CSIDH as an Instantiation of HHS

In CSIDH, HHS is realized with the ideal class group of an imaginary quadratic
field and supersingular elliptic curves. In this subsection, we see how the ideal
class group C�(O) for an order O acts on E��p(O), the set of Fp-isomorphic classes
of supersingular elliptic curves whose Fp-endomorphism ring is isomorphic to O.

Ideal Class Group. Let K be an imaginary quadratic field and O ⊂ K be an
order, a subring which is a free Z-module of rank 2. Then, a fractional ideal of O
is an O-submodule of K which can be written in the form of αa, where α ∈ K×

and a is an ideal of O. Note that a multiplication of fractional ideals is induced
by the multiplication of ideals naturally. We say a fractional ideal a is invertible
when there exists a fractional ideal b such that ab = O.

The set of all invertible fractional ideals I(O) forms an abelian group under
the above multiplication, and the set of all principle ideals P (O) is a normal
subgroup of I(O). So we can define a quotient group Cl(O) = I(O)/P (O), which
is called the ideal class group of O. We denote the class containing a ∈ I(O) by
[a]. For more details, see [20].

An Efficient AKE from Random Self-reducibility on CSIDH 81

The Action on Supersingular Elliptic Curves. For an order O in an imag-
inary quadratic field K, we define E��p(O) as a set of isomorphism classes of
elliptic curves E over Fp such that EndFp

(E)
 O. Here, EndFp
(E) is the ring

of Fp-endomorphisms of E.
Now, we define a group action of Cl(O) on E��p(O). Fix [a] ∈ Cl(O) and

E ∈ E��p(O), then there uniquely exist nonnegative integer r and [as] ∈ Cl(O)
such that [a] = [(πO)]r[as] and as �⊆ πO, where π denotes the Frobenius map.
For such [as], we take an isogeny ψ from E with ker ψ =

⋂

α∈as
ker α. Then, for

[a], we take an isogeny πrψ, and whose codomain is denoted as [a]E. We can
easily show that this correspondence enjoys the conditions to be a group action.
A Hard Homogeneous Space can be constructed by this action.

B.2 Detailed Description of CSIDH

Let �1 . . . �n be small distinct odd primes such that p = 4�1 · · · �n − 1 is a prime
for some n. We can efficiently compute the class group action of li = (�i, π − 1)
and l−1

i = (�i, π + 1), since we have only to find a �i-torsion point.
Moreover, it is assumed heuristically that the map which maps (e1, . . . , en) ∈

[−m,m]n to le1
1 le2

2 · · · len
n ∈ C�(Z[

√−p]) is almost bijective, when m enjoys (2m+
1)n ≥ #Cl(Z[

√−p]). So we can choose e1, . . . , en instead of [a], and its action can
be computed efficiently. In this case, the size of the key space is approximately
(2m + 1)n.

Here, we describe how the protocol proceeds between Alice and Bob. Fix
E0 ∈ Ellp(Z[

√−p]) as a public parameter. First, Alice chooses ei ∈ [−m,m] for
i = 1, 2, . . . , n uniformly at random, and computes EA = [a]E0, where [a] =
[le1

1 le2
2 · · · len

n]. Then, Alice sends EA to Bob. Bob also computes EB = [b]E0,
and sends it to Alice. Finally, Alice computes [a]EB , and Bob computes [b]EA.
The shared secret is M([a]EB) = M([b]EA), where M denotes the Montgomery
coefficient.

C Random Self-reducibility of the CSI-stDH Problem

In this section, we prove the random self-reducibility of the CSI-stDH problem.
Here, we use another definition of the random self-reducibility. First, we define
the CSI-stMDH problem, the multi-instance version of the CSI-stDH problem.

Problem 18 (Commutative Supersingular Isogeny strong Multi Diffie–Hellman
(CSI-stMDH) Problem). Assume that a large prime p which enjoys p ≡ 3 mod 4
and an elliptic E ∈ Ellp(O) for O = Z[

√−p] are given. Then, given (X =
[x]E; (Yi = [yi]E)i∈[S]), the CSI-stMDH problem with parameter S is to compute
[xyj]E for the index j chosen by the solver. Here, the solver is given accesses to
the decision oracle CSI-stDHx(·, ·).

For an adversary A whose output is E′, the advantage of A is defined as
AdvA

CSI-stMDH(λ) = Pr[E′ = [xy]E].

82 T. Kawashima et al.

In this subsection, we say that the CSI-stDH is random self-reducible if we
can reduce the CSI-stDH problem to the CSI-stMDH problem tightly. The only
difference from the Definition 3 is that we fix the first curve X. Though we can
prove the random self-reducibility of the CSI-stDH problem in a similar way
following the Definition 3, we use this definition here so that we can see the
analogy with the security proof of ΠCSIDH easily. Actually, X corresponds to the
user i’s long-term public key in the security proof in Sect. A, and Yi’s correspond
to the ephemeral public keys of the oracles whose intended peer is i.

Here, our goal is to prove the random self-reducibility of CSI-stDH problem,
i.e., the existence of tight reduction from the CSI-stDH problem to the CSI-
stMDH problem:

Corollary 19 (Random Self-Reducibility of the CSI-stDH Problem).
For arbitrary adversary A against the CSI-stMDH problem with parameter S,
there is an adversary B against the CSI-stDH problem such that

AdvA,S
CSI-stMDH(λ) ≤ AdvB,S

CSI-stDH(λ), and Time(A)
 Time(B)

hold.

Proof. For an instance (X,Y) = ([x]E, [y]E) of the CSI-stDH problem, B gen-
erates random ideal classes [ηi] ∈ C�(O) for i ∈ [S]. Then, B generates a CSI-
stMDH instance (X; (ηiY)i∈[S]) and inputs this to A. If A outputs Zj for j ∈ [S],
A outputs [ηj]−1Zj . For CSI-stDHx query made by A, B queries it to its own
CSI-stDHx oracle. Here, if A succeeds, B answers the CSI-stMDH problem cor-
rectly, which completes the proof. �	
Remark 20. If we use the Definition 3 for the definition of the random self-
reducibility, we also rerandomize the first curve X as Xi = [ξi]X for randomly
chosen [ξi] ∈ C�(O). Here, to prove the random self-reducibility, we should answer
to the decision queries CSI-stDHξix(E1, E2) for every i. However, since

E2 = [ξix]E1 ⇔ [ξ−1
i]E2 = [x]E1,

we have CSI-stDHξix(E1, E2) = CSI-stDHx(E1, [ξ−1
i]E2), thus we can simulate

the oracles perfectly.

References

1. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Cryptology ePrint Archive, Report 2020/341 (2020). https://
eprint.iacr.org/2020/341

2. Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D.: Towards post-
quantum security for signal’s X3DH handshake. In: Selected Areas in Cryptography
(SAC) (2020, to appear)

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

https://eprint.iacr.org/2020/341
https://eprint.iacr.org/2020/341
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28

An Efficient AKE from Random Self-reducibility on CSIDH 83

4. Castryck, W., Decru, T.: CSIDH on the surface. Cryptology ePrint Archive, Report
2019/1404 (2019). https://eprint.iacr.org/2019/1404

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

6. Castryck, W., Sotáková, J., Vercauteren, F.: Breaking the decisional Diffie-Hellman
problem for class group actions using genus theory. Cryptology ePrint Archive,
Report 2020/151 (2020). https://eprint.iacr.org/2020/151

7. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 767–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26954-8 25

8. Couveignes, J.-M.: Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

9. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with
optimal tightness. In: Selected Areas in Cryptography (SAC) 2020 (2020, to
appear)

10. Dobson, S., Galbraith, S.D.: On the degree-insensitive SI-GDH problem and
assumption. Cryptology ePrint Archive, Report 2019/929 (2019). https://eprint.
iacr.org/2019/929

11. El Kaafarani, A., Katsumata, S., Pintore, F.: Lossy CSI-FiSh: efficient signature
scheme with tight reduction to decisional CSIDH-512. In: Kiayias, A., Kohlweiss,
M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 157–186.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 6

12. Fujioka, A., Takashima, K., Terada, S., Yoneyama, K.: Supersingular isogeny Diffie-
Hellman authenticated key exchange. In: ICISC 2018, pp. 177–195 (2018)

13. Fujioka, A., Takashima, K., Yoneyama, K.: One-round authenticated group key
exchange from isogenies. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS,
vol. 11821, pp. 330–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-31919-9 20

14. Galbraith, S.D.: Authenticated key exchange for SIDH. Cryptology ePrint Archive,
Report 2018/266 (2018). https://eprint.iacr.org/2018/266

15. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic
curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

16. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

17. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

18. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

19. Longa, P.: A Note on Post-Quantum Authenticated Key Exchange from Super-
singular Isogenies. Cryptology ePrint Archive, Report 2018/267 (2018). https://
eprint.iacr.org/2018/267

20. Neukirch, J.: Algebraic Number Theory, vol. 322. Springer, Heidelberg (2013)

https://eprint.iacr.org/2019/1404
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2020/151
https://doi.org/10.1007/978-3-030-26954-8_25
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2019/929
https://eprint.iacr.org/2019/929
https://doi.org/10.1007/978-3-030-45388-6_6
https://doi.org/10.1007/978-3-030-31919-9_20
https://doi.org/10.1007/978-3-030-31919-9_20
https://eprint.iacr.org/2018/266
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://eprint.iacr.org/2018/267
https://eprint.iacr.org/2018/267

84 T. Kawashima et al.

21. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. An Efficient Authenticated Key Exchange
from Random Self-Reducibility on CSIDH. In: Public Key Cryptography 2001, pp.
104–118. Springer, Heidelberg (2001)

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

23. Xu, X., Xue, H., Wang, K., Au, M.H., Tian, S.: Strongly secure authenticated key
exchange from supersingular isogenies. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019. LNCS, vol. 11921, pp. 278–308. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34578-5 11

https://doi.org/10.1007/978-3-030-34578-5_11
https://doi.org/10.1007/978-3-030-34578-5_11

Constructions and Designs

A Sub-linear Lattice-Based Submatrix
Commitment Scheme

Huang Lin(B)

Mercury’s Wing and Suterusu Project, Beijing, China
huanglinepfl@gmail.com

Abstract. Subvector commitment is a recently proposed cryptographic
primitive that provides the underlying cryptographic tool to design many
interesting security systems such as succinct non-interactive arguments
of knowledge (SNARK), verifiable database, dynamic accumulators, etc.
In this paper, we present a generalization of subvector commitment,
a public-coin-setup lattice-based submatrix commitment, which allows a
commitment of a message matrix to be opened on multiple entries of the
matrix simultaneously. It exploits a conceptual similarity between Single-
Instruction Multiple-Data (SIMD) in homomorphic encryption and sub-
matrix commitment, and develops a novel position binding technique
based on the Chinese Remainder Theorem. We show that the position
binding property can be reduced to module-based short integer solu-
tion (SIS) problem, a standard assumption that is believed to be post-
quantum secure. We also show that the commitment and opening size
of our commitment scheme are both sublinear, i.e., proportional to the
square root of the message size. As far as we know, this is the first public-
coin-setup and post-quantum secure subvector commitment scheme.

Keywords: Subvector commitment · Homomorphic encryption ·
Lattice-based cryptography · Position binding

1 Introduction

Digital commitment is a crucial cryptographic primitive that serves as a funda-
mental building block for various cryptographic protocols such as zero-knowledge
proof, accumulators, etc. Recently, we have seen multiple generalizations of com-
mitment schemes such as vector commitment [1], subvector commitment [2], and
functional commitment [3].

A vector commitment scheme allows a prover to commit to a message vector,
and open the commitment to the i−th component of the vector, while functional
commitment allows a prover to commit to a vector v and open the commitment to
a function-evaluation tuple (f, f(v)). A subvector commitment scheme [2], which
is a generalization of the vector commitment, commits to a message vector and
allows the opening of multiple entries of the message vector simultaneously. A
subvector commitment can be derived from a functional commitment scheme by

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 87–98, 2021.
https://doi.org/10.1007/978-3-030-68890-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_5

88 H. Lin

restricting the function f to a linear map that maps the original message vector
to its subvector.

Subvector commitment was proposed as the foundation for the succinct
non-interactive arguments of knowledge (SNARK) scheme [2], which can be
built upon probabilistically checkable proof (PCP) and subvector commitment
schemes. The prover first commits to the PCP string by running a subvector
commitment scheme. After receiving the indices of the entries to be inspected
from the verifier, the prover runs the opening algorithm for the subvector com-
mitment scheme to open these entries. SNARK scheme has recently found its
real-world applications in building anonymous cryptocurrency such as Zcash [4].
There exists a vast literature on SNARK schemes with trusted setup. However,
the trusted setup is a bottleneck because the trapdoor information of the setup
phase could be exploited by an adversary to weaken the soundness property of
SNARK schemes [5,6], which implies that an attacker could exploit the weakness
of the trusted setup phase to generate an unlimited amount of cryptocurrency [7].
Consequently, an efficient SNARK scheme without the need of a trusted setup,
i.e., a public-coin-setup SNARK, has long been considered as the holy grail in
cryptography research. A public-coin-setup SNARK scheme can be derived from
a public-coin-setup subvector commitment by applying the “CS proof” frame-
work [8]. As a matter of fact, the SNARK scheme proposed in [2] was the first
public-coin-setup SNARK scheme with constant argument size.

The subvector commitment scheme guarantees the position binding prop-
erty [2,9] in the sense that the subvector opening is bond to its positions in
the committed vector. In contrast, vector commitment scheme only accommo-
dates the opening of one entry [9], and a straightforward subvector commitment
scheme derived from a vector commitment scheme would require running mul-
tiple instances of the vector commitment schemes [9].

The first public-coin-setup subvector commitment scheme proposed in [2]
has reduced its position binding property to a non-standard assumption in class
groups of unknown order, i.e., adaptive root assumption over class groups of
imaginary quadratic orders. It is well known that this assumption cannot resist
the quantum attack [9]. Whether it is possible to design an efficient subvec-
tor commitment scheme based on plausibly post-quantum-secure assumptions
remains an interesting open problem [9].

As an answer to this open problem, we propose a lattice-based subma-
trix commitment scheme, in which the position binding property is reduced to
module-based shortest integer solution (SIS) assumption, a well-studied assump-
tion that is believed to be resistant to quantum attacks. As a matter of fact, it is
the underlying security assumption coming from one of the NIST post-quantum
digital signature competition candidates, i.e., Dilithium scheme [10]. Obviously,
a subvector commitment scheme can be derived from our proposed submatrix
commitment scheme by simply rearranging a message vector with N entries into
a

√
N × √

N matrix. The commitment size and opening size of our scheme are
both proportional to the square root of the message size.

A Sub-linear Lattice-Based Submatrix Commitment Scheme 89

Our proposed scheme exploits a conceptual similarity between the submatrix
scheme and the SIMD (Single-Instruction Multiple-Data) technique in homo-
morphic encryption [11] based on the Chinese Remainder Theorem (CRT).
We develop a novel technique by exploiting the composite-order feature and
CRT representation to ensure the representation in the homomorphic encryption
compatible with the position binding property for our submatrix commitment
scheme. In fact, this technique is of independent interest for the future design of
lattice-based cryptographic techniques.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the definitions of related concepts and problem setting for our lattice-based com-
mitment construction. Afterwards, in Sect. 2.3, we present preliminaries for our
submatrix commitment. Sect. 3 presents the construction of our submatrix com-
mitment scheme and its security proof. We then provide the complexity analysis
of our scheme and its comparison with several related schemes in Sect. 4. We
conclude the paper in Sect. 5.

2 Preliminaries

For a, b ∈ N, we use [a, b] to denote the set {a, a + 1, · · · , b − 1, b}. Let s ← S
denote uniformly random sampling an element s from the set S. Given a matrix

w =

⎛
⎜⎜⎜⎝

w0,0 w0,1 · · · w0,N−1

w1,0 w1,1 · · · w1,N−1

...
...

. . .
...

wh−1,0 wh−1,1 · · · wh−1,N−1

⎞
⎟⎟⎟⎠

that is also denoted as
{

〈wi,0, wi,1, . . . , wi,N−1〉i∈[0,h−1]

}
, we define a submatrix

wI,J =
{〈wi,j |j ∈ J〉i∈I

}
as an ordered subset of the entries of the matrix indexed

by I ⊆ [0, h − 1] and J ⊆ [0, N − 1].

2.1 System Setting

Let R be the cyclotomic ring R = Z [X]
/〈

XN + 1
〉
, where N is a power of 2

[12,13]. Let q be a positive integer and define Rq = Zq [X]
/〈

XN + 1
〉
. Here Zq

denotes the integers modulo q. For f(X) =
∑

i fiX
i ∈ R, the norms of f are

defined as l1 : ‖f‖1 =
∑

i |fi|, l2 : ‖f‖2 =
(∑

i |fi|2
)1/2

, l∞ : ‖f‖∞ = max
i

|fi| .
In our system, q is a product of two primes p1 and p2. For a positive integer β,
we write Sβ to be the set of all elements in Rp2 with l∞-norm at most β.

We denote by λ ∈ N the security parameter and by poly(λ) the sets of
polynomials in λ.

2.2 Module-SIS Assumption (MSIS)

The position binding property in our submatrix commitment scheme can be
reduced to the hardness of Module-SIS, which is the underlying assumption used

90 H. Lin

in the post-quantum secure signature scheme Dilithium [10], and the recently
proposed lattice-based commitment scheme [13] and ring signature scheme [12].
It is a variant of the well-known SIS [14] but is defined on modules.

The homogeneous Module-SIS problem [10] (or the search Knapsack Problem
as in [13]) is defined as follows.

Definition 1 (MSISn,k,β). Given A ← Rn×(k−n)
q , find a short vector r ∈ Rk

such that (In,A) · r = 0 and 0 < ‖r‖2 ≤ β. For an algorithm A, we define
Advmsis

n,k,β(A) as

Pr

⎡
⎢⎢⎣ b = 1

A ← Rn×(k−n)
q ;

r ← A(A);
b :=

(
r ∈ Rk

) ∧ ((In,A) · r = 0) ∧
(0 < ‖r‖2 ≤ β)

⎤
⎥⎥⎦,

where ∧ indicates the conjunctive operation. We say an algorithm A has at least
an advantage ε in solving the Module-SISn,k,β problem if Advmsis

n,k,β(A) ≥ ε.

2.3 Definitions Related to the Submatrix Commitment Scheme

Since a submatrix commitment scheme is a generalization to subvector commit-
ment schemes [2,9], the definitions related to the submatrix commitment scheme
also follow those of subvector commitment schemes [2,9].

Definition 2 (Submatrix commitment syntax). A submatrix commitment
scheme consists of five algorithms:
Setup(1λ, h,N): Given security parameter λ, the dimension of a matrix h and
N , outputs the public parameters PP.
Com (w): Given a matrix w, outputs a commitment C and an auxiliary mes-
sage aux.
Open (I,J,wI,J, aux,C): Given two order index sets I, J and the auxiliary mes-
sage aux, outputs an opening ΛI,J that proves wI,J is the submatrix of the mes-
sage committed under C.
Verify(C, I, J, wI,J, ΛI,J): Given inputs commitment C, two order index sets
I and J, the submatrix of the message wI,J and opening ΛI,J, outputs 1 (accept)
or 0 (reject).

Definition 3 (Correctness). A submatrix commitment scheme is correct if
for all message w in the message space and index sets I ⊆ [0, h − 1] and J ⊆
[0, N − 1], the probability

Pr

⎡
⎢⎢⎣ b = 1

PP ← Setup(1λ, h,N)
C, aux ← Com (w)
ΛI,J ← Open (I,J,wI,J, aux,C)
b := Verify(C, I, J, wI,J, ΛI,J)

⎤
⎥⎥⎦

is equal to 1.

A Sub-linear Lattice-Based Submatrix Commitment Scheme 91

Definition 4 (Position Binding). A submatrix commitment scheme is posi-
tion binding if for any adversary A, there exists a negligible function negl(λ)
such that:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b = 1

PP ← Setup(1λ, h,N)(
C, I,J,wI,J, ΛI,J

I′,J′,w′
I′,J′ , Λ′

I′,J′

)
← A (PP)

b := (Verify(C, I,J,wI,J, ΛI,J)) ∧(
Verify(C, I′,J′,w′

I′,J′ , Λ′
I′,J′)

) ∧(∃i ∈ I ∩ I′ ∧ j ∈ J ∩ J′

s.t. wi,j �= w′
i,j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is smaller than or equal to negl(λ).

It is important to note that the hiding property is not taken into account
in the original definition of a subvector commitment [2,9] because this prop-
erty is not vital in the construction of its major applications, i.e., the SNARK
scheme, but one can achieve the hiding property by combining the subvector (or
submatrix) commitment scheme with a general commitment scheme in a rather
straightforward manner as specified in [2].

3 Submatrix Commitment Scheme

In our scheme, the modulus q is a product of two primes p1 and p2. The com-
mitted message of our scheme is an element in Zp1 with p1 being a small prime.
In practice, one could set p1 to 2. The cyclotomic polynomial Φ(X) is chosen to
split into linear terms modulo p1 · p2, i.e.,

Φ (X) =

[
N−1∏
i=0

(X − ςi)

]

p1p2

where ςi is the i-th root of Φ(X). We will use [·]p to denote mod p operation
from here on. From the Chinese Remainder Theorem (CRT), one can define an
isomorphism:

Zq [X] /〈Φ (X)〉 �→ (Zq [X] /〈X − ς0〉, . . . ,Zq [X] /〈X − ςN−1〉)

One could further define another isomorphism based on CRT:

Zp1p2 [X]/〈Φ (X)〉 �→ (Zp1 [X]/〈Φ (X)〉,Zp2 [X]/〈Φ (X)〉)

We do not distinguish these two isomorphisms for the ease of exposition in
the subsequent development. To invoke which isomorphism in the concrete steps
of the scheme is determined by the outputs of the isomorphism used in the
context.

92 H. Lin

Similar to the setting in [11], an element m ∈ Rp1p2 can be represented
either in its polynomial form m(X), or its evaluation representation, which is a
vector of ring elements, i.e., CRT(m(X)) = 〈m0,m1, . . . ,mN−1〉, where mj =
[m(X)](X−ςj ,p1p2)

= m(X) mod (X − ςj , p1p2) = m(ςj) mod (p1p2).
Our scheme employs the CRT isomorphism to represent the subset map,

which could be formed either as its evaluation representation, i.e., a binary vec-
tor, such as J = < 0, 1, 1, · · · , 0 >1 or its own coefficient representation, J(X) =
CRT−1(J), where CRT−1 denotes the inverse CRT map. The component-wise
multiplication between a vector m and J, i.e.,

m ⊗ J = 〈m0 ∗ J0,m1 ∗ J1, . . . ,mN−1 ∗ JN−1〉
corresponds to the polynomial multiplication m(X) × J(X) under the CRT iso-
morphism. Here the component-wise multiplication gives us the subvector of m
defined by J.

Our matrix commitment scheme is based on a recently proposed commit-
ment scheme from structured lattice [13], and we develop several techniques to
prove the position binding property. Our proposed scheme compresses the com-
mitment size by committing to the hashed value of the column vectors of the
message matrix. The hashing guarantees that as long as there is any difference
at any entry of the committed message column vector, the ring elements in Rq

representing the message will be different. However, the hashing technique can
only guarantee the position binding property in the message column.

To guarantee the position binding property in the message row vector, we
need to make sure that the randomness used in Rp1 is equal to zero such that the
difference of the message row vector in Rp1 can be translated into the difference
in the randomness vector of Rp2 when the commitment in Rp1·p2 is assumed to
be identical in the proof. We define the component of J(X) in Rp2 as 1 so that
we can reduce the position binding property to MSIS problem in Rp2 .
Now, we are ready to present the formal description of our submatrix commit-
ment scheme below. t

– Setup(1λ, h,N): Choose q = p1 · p2 and a cyclotomic polynomial Φ(X) =
XN + 1, where p1 and p2 are two primes, and N is a power of 2. p1 is chosen
such that Φ(X) can be decomposed into N linear factors in Zp1 , i.e.,

Φ(X) =
N−1∏
i=0

(X − ςi) mod p1

Sample two random matrices A1 ∈ Rn×k
q and A2 ∈ R�×k

q formed as in the
KeyGen algorithm of [13], i.e.,

A1 = (In,A′
1) with A′

1 ← Rn×(k−n)
q and

A2 =
(
0�×n, I�,A′

2

)
with A′

2 ← R�×(k−n−�)
q ,

1 Technically, J is a subset of [0, N − 1]. The evaluation representation of J is defined
in such way that Ji is equal to 1 whenever i ∈ [0, N − 1] belongs to J and Ji = 0
otherwise.

A Sub-linear Lattice-Based Submatrix Commitment Scheme 93

where In and I� are both identity matrices. Here �, k and n are chosen in the
same way as in [13] to ensure Module SIS problem is hard. In our performance
analysis, we assume the message matrix is a square matrix and hence we
have h = N equal to the square root of the message matrix size. Note since
the message in our Com algorithm is really the hash of the column vectors
of the message matrix, one could simply set � as poly(λ) to guarantee the
collision-resistance property of the hash function. Select a collision-resistant
cryptographic functions H ′ : (Zp1)

h → (Zp1)
� and an extensible function

H : {0, 1}λ → Sk
β .

– Com
({

〈wi,0, wi,1, . . . , wi,N−1〉i∈[0,h−1]

})
:

Let wi = 〈wi,0, wi,1, . . . , wi,N−1〉, where wi,j ∈ Zp1 .

Generate w(X) ∈ (Rq)
� in the following way:

1. ∀m ∈ [0, � − 1], j ∈ [0, N − 1], compute [wm(X)](X−ςj ,p1)
as2

H ′
m (w0,j ||w1,j || · · · ||wh−1,j) ;

2. ∀m ∈ [0, � − 1], Set [wm(X)]p2
= 0;

3. Compute wm(X) as

CRT−1
(
[wm(X)]p1

, [wm(X)]p2

)
;

where

[wm(X)]p1
= CRT−1

(
[wm(X)](X−ς0,p1)

, · · · , [wm(X)](X−ςN−1,p1)

)

4. Set w(X) = 〈w0(X), . . . ,w�−1(X)〉.
Generate r(X) as follows:

1. Sample random ρ ← {0, 1}λ;
2. Generate [r (X)]p2

= H(ρ);
3. Set [r(X)]p1

= 0;

4. Compute r(X) = CRT−1
(
[r(X)]p1

, [r(X)]p2

)
.

Generate the commitment as follows:

C = Com(w(X), r(X)) =
(

A1

A2

)
r(X) +

(
0

w(X)

)
;

Let aux be a vector consisting of the original message w and the random-
ness ρ.

2 H ′
m(·) denote the m−th bit of the hash output.

94 H. Lin

– Open (I,J,wI,J, aux,C):

Generate the opening as

ΛI,J = (Λ1, Λ2) =
(〈

wi,j

∣∣i ∈ [0, h − 1], j ∈ J
〉
, ρ

)
.

– Verify(C, I, J, w′
I,J, ΛI,J):

For i ∈ I and j ∈ J, check whether w′
i,j = wi,j , where wi,j belongs to Λ1.

Recover w(X)J (X) as follows:

1. ∀j ∈ J,m ∈ [0, � − 1], compute

[wm(X)J(X)](X−ςj ,p1)

= H ′
m (w0,j ||w1,j || · · · ||wh−1,j) .

2. ∀j ∈ [0, N − 1]/J, set [wm(X)J(X)](X−ςj ,p1)
= 0.

3. Compute

[wm(X)J (X)]p1

= CRT−1
(
[wm(X)J(X)](X−ςj ,p1)

, j ∈ [0, N − 1]
)

.

4. Set [wm(X)J (X)]p2
= 0.

5. Compute

wm(X)J (X)
= CRT−1

(
[wm(X)J (X)]p1

, [wm(X)J (X)]p2

)
.

6. Set w(X)J (X)=
〈
wm(X)J (X)

∣∣m ∈ [0, � − 1]
〉
.

Recover r(X) as CRT−1 (0,H(ρ)).
Compute J(X) as follows:

1. ∀j ∈ [0, N − 1], set [J(X)](X−ςj ,p1)
= Jj

2. Set [J(X)]p2
= 1.

3. Compute J(X)=CRT−1
(
[J(X)]p1

, [J(X)]p2

)
.

Check whether the following equation holds

J(X)C =
(
A1

A2

)
J(X)r(X) +

(
0

w(X)J(X)

)
.

Theorem 1. The proposed submatrix commitment scheme is correct in the
sense of Definition 3.

Proof. When the Com and Open algorithms are run according to the definition,
the opening information contains {wi,j

∣∣i ∈ [0, h− 1], j ∈ J} and the randomness

A Sub-linear Lattice-Based Submatrix Commitment Scheme 95

ρ. When the Verify algorithm invokes the CRT−1 algorithm, wm(X)J (X) can
be recovered since [wm(X)J(X)](X−ςj ,p1)

can be recovered as it amounts to the
hashing of the message vectors {wi,j

∣∣i ∈ [0, h − 1], j ∈ J}. The correctness of
the recovered r(X) can be attributed to the fact that it is recovered exactly as
how it is generated in the Com algorithm. The verification of the final equation
in Verify will pass because all the components are recovered exactly as in the
Com algorithm.

Theorem 2. Assuming MSISn,k,β problem is hard over Rp2 and the collision-
resistance property of the underlying hash functions, the proposed submatrix
commitment scheme is position binding (in the sense of Definition 4) with non-
negligible probability.

Proof. Suppose A is the algorithm that an adversary uses to break the position
binding property, we want to show that we could construct an algorithm C to
solve the MSIS problem as follows, resulting in the desired contradiction.

Assume that C generates A1,A2 as in practice, which means both A1 and A2

would have uniformly random components in Rp2 . This satisfies the requirement
of input matrix of the MSISn,k,β problem. Now A will output C, I, J, wI,J,
ΛI,J, I′, J′, w′

I,J, ΛI′,J′ such that Verify(C, I, J, wI,J, ΛI,J)=Verify(C, I′, J′,
w′

I,J, ΛI′,J′) = 1 and ∃i ∈ I ∩ I′ ∧ j ∈ J ∩ J′ such that wi,j �= w′
i,j .

According to the final verification equation, we have

J(X)C =
(
A1

A2

)
J(X)r(X) +

(
0

w(X)J(X)

)

J′(X)C =
(
A1

A2

)
J′(X)r′(X) +

(
0

w(X)J′(X)

)

and hence we have

J′(X)J(X)C = J′(X)J(X)
((

A1

A2

)
r(X) +

(
0

w(X)

))

J′(X)J(X)C = J′(X)J(X)
((

A1

A2

)
r′(X) +

(
0

w′(X)

))

By substracting these two equations, we have
(
A1

A2

)
J′(X)J(X)(r(X) − r′(X)) +

(
0

J′(X)J(X)(w(X) − w′(X))

)
= 0 (1)

We first prove that J′(X)J(X) (w(X) − w′(X)) �= 0 mod q by contradiction.
If J′(X)J(X) (w(X) − w′(X)) = 0 mod q, we have J′(X)J(X) (w(X) − w′(X))
= 0 mod p1. Then, ∀j ∈ [0, N − 1], we have

[J′(X)J(X)w(X)](X−ςj ,p1)
= [J′(X)J(X)w′(X)](X−ςj ,p1)

96 H. Lin

Thus,
[wm(ςj)]p1

= [w′
m(ςj)]p1

,∀j ∈ J ∩ J′,m ∈ [0, � − 1]

According to the verification, ∀j ∈ J ∩ J′,m ∈ [0, � − 1], we further have

H ′
m (w0,j ||w1,j || · · · ||wh−1,j) = H ′

m

(
w′

0,j ||w′
1,j || · · · ||w′

h−1,j

)

However, since ∃i ∈ I ∩ I′ ∧ j ∈ J ∩ J′ such that wi,j �= w′
i,j and finding

a collision for a collision-resistant hash function happens only with negligible
probability, hence we have a contradiction except with negligible probability.
Consequently, from Eq. (1), we have

A2J′(X)J(X) (r(X) − r′(X)) �= 0 mod q

and hence
J′(X)J(X) (r(X) − r′(X)) �= 0 mod q

Since we have [r(X)]p1 = [r′(X)]p1 = 0, we can deduce

J′(X)J(X) (r(X) − r′(X)) �= 0 mod p2

As [J(X)]p2 = [J′(X)]p2 = 1, we have

(r(X) − r′(X)) �= 0 mod p2

and
A1 (r(X) − r′(X)) = 0 mod p2

from the upper part of Eq. (1), therefore we have found a solution to MSIS
problem with respect to A1 in Rp2 since both r(X) and r′(X) belong to Sk

β .
This completes the proof.

4 Performance Analysis

The complexity comparison between our proposed subvector commitment
scheme and the existing public-coin-setup schemes can be found in Table 1.
Our proposed scheme is the first to achieve post-quantum security. The compu-
tational cost of three algorithms in our proposed scheme is mainly determined by
the amounts of required polynomial multiplications, and CRT/inverse CRT oper-
ations. All these operations can be optimized through number-theoretic trans-
formation, the details of which could be found in [15]. An optimized polynomial
multiplication takes λ2N log(N) operations, where N is the degree of the poly-
nomial, which is set to be

√
M in our scheme. The message size M = h × N is

assumed to be a square, which can always be satisfied through padding (append-
ing 0’s entries to the matrix).

In the following table, W=
√

M log
(√

M
)
. U = |wi,j |i ∈ I, j ∈ J |, i.e., the

size of the opening set. We use CRH to denote collision-resistant hash and Root
to denote the strong or adaptive root assumption. pp is an abbreviation for public
parameters.

A Sub-linear Lattice-Based Submatrix Commitment Scheme 97

Table 1. Comparison of setup-free subvector commitment schemes.

Scheme Merkle tree [2] This work

|pp| 1 λM λ

|C| λ λ2 λ2
√

M

|Λ| λU log M λ2 λU
√

M

Com λM λ2M λ2W

Open λU log M λ2(M − q2) λ2 (W + 1)

Verify λU log M λ2U λ2W

Assumption CRH Root MSIS

PQ secure? YES NO YES

5 Conclusion

This work presents a sub-linear lattice-based submatrix commitment scheme
under MSIS assumption, which is the first post-quantum secure subvector com-
mitment scheme with sublinear commitment and opening size.

Acknowledgments. We thank Jonathan Bootle from IBM Research in Zurich for
insightful discussions on subvector commitment and its application in SNARK.

References

1. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) Public-Key Cryptography – PKC 2013. PKC 2013. Lecture
Notes in Computer Science, vol. 7778. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36362-7 5

2. Lai, R.W., Malavolta, G.: Succinct arguments from subvector commitments and
linear map commitments (2018). https://eprint.iacr.org/2018/705

3. Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: from poly-
nomial commitments to pairing-based accumulators from simple assumptions.
In: 43rd International Colloquium on Automata, Languages and Programming
(ICALP 2016) (2016)

4. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
IEEE Symposium on Security and Privacy, vol. 2014, pp. 459–474. IEEE (2014)

5. Kim, J., Lee, J., Oh, H.: Simulation-extractable zk-SNARK with a single verifica-
tion. Cryptology ePrint Archive, Report 2019/586 (2019). https://eprint.iacr.org/
2019/586

6. Miers, I., et al.: Decentralized anonymous payments. Ph.D. dissertation, Johns
Hopkins University (2017)

7. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the
public parameters of the Pinocchio zk-SNARK. In: Zohar, A. et al. (eds.) Financial
Cryptography and Data Security. FC 2018. Lecture Notes in Computer Science,
vol. 10958. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-
8 5

https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2018/705
https://eprint.iacr.org/2019/586
https://eprint.iacr.org/2019/586
https://doi.org/10.1007/978-3-662-58820-8_5
https://doi.org/10.1007/978-3-662-58820-8_5

98 H. Lin

8. Micali, S.: Cs proofs. In: Proceedings 35th Annual Symposium on Foundations of
Computer Science, pp. 436–453. IEEE (1994)

9. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with appli-
cations to IOPs and stateless blockchains. Cryptology ePrint Archive, Report
2018/1188, Tech. Rep. (2018)

10. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.: Crys-
tals - dilithium: digital signatures from module lattices. Cryptology ePrint Archive,
Report 2017/633 (2017). http://eprint.iacr.org/2017/633

11. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012.
CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 49

12. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. In: Naccache, D., et al. (eds.) Information and Communications
Security. ICICS 2018. Lecture Notes in Computer Science, vol. 11149. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 18

13. Baum, C., Damgard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. Cryptology ePrint Archive,
Report 2016/997 (2016). https://eprint.iacr.org/2016/997

14. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

15. Zucca, V.: Towards efficient arithmetic for Ring-LWE based homomorphic encryp-
tion. Ph.D. dissertation (2018)

http://eprint.iacr.org/2017/633
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-01950-1_18
https://eprint.iacr.org/2016/997

PIPO: A Lightweight Block Cipher with
Efficient Higher-Order Masking Software

Implementations

Hangi Kim1, Yongjin Jeon1, Giyoon Kim1, Jongsung Kim1,2(B), Bo-Yeon Sim1,
Dong-Guk Han1,2, Hwajeong Seo3, Seonggyeom Kim4, Seokhie Hong4,

Jaechul Sung5, and Deukjo Hong6

1 Department of Financial Information Security, Kookmin University,
Seoul, Republic of Korea
jskim@kookmin.ac.kr

2 Department of Information Security, Cryptology, and Mathematics,
Kookmin University, Seoul, Republic of Korea

3 Division of IT Convergence Engineering, Hansung University,
Seoul, Republic of Korea

4 School of Cyber Security, Korea University, Seoul, Republic of Korea
5 Department of Mathematics, University of Seoul, Seoul, Republic of Korea

6 Department of Information Technology and Engineering,
Jeonbuk National University, Jeonju, Republic of Korea

Abstract. In this paper, we introduce a new lightweight 64-bit block
cipher PIPO (PIPO stands for “Plug-In” and “Plug-Out”, representing
its use in side-channel protected and unprotected environments, respec-
tively.) supporting a 128 or 256-bit key. It is a byte-oriented and bitsliced
cipher that offers excellent performance in 8-bit AVR software imple-
mentations. In particular, PIPO allows for efficient higher-order masking
implementations, since it uses a minimal number of nonlinear operations.
Our implementations demonstrate that PIPO outperforms existing block
ciphers (for the same block and key lengths) in both side-channel pro-
tected and unprotected environments, on an 8-bit AVR. Furthermore,
PIPO records competitive round-based hardware implementations.

For the nonlinear layer of PIPO, we have developed a new lightweight
8-bit S-box that provides an efficient bitsliced implementation including
only 11 nonlinear bitwise operations. Furthermore, its differential and
linear branch numbers are both 3. This characteristic enables PIPO to
thwart differential and linear attacks with fewer rounds. The security of
PIPO has been scrutinized with regards to state-of-the-art cryptanalysis.

Keywords: Lightweight S-boxes · Differential and linear branch
numbers · PIPO · Higher-order masking

This work was supported by Institute for Information & communications Technol-
ogy Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-
00520, Development of SCR-Friendly Symmetric Key Cryptosystem and Its Applica-
tion Modes).

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 99–122, 2021.
https://doi.org/10.1007/978-3-030-68890-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_6

100 H. Kim et al.

1 Introduction

Most devices in IoT environments are miniature and resource-constrained.
Therefore, lightweight cryptography, which is an active area of research, is essen-
tial. Some lightweight block ciphers such as PRESENT [22] and CLEFIA [44] have
been standardized by ISO/IEC. Additionally, a lightweight cryptography stan-
dardization project is ongoing at NIST. A variety of lightweight block ciphers
have been introduced in the literature, many of which are hardware-friendly sys-
tems [9,22,24,33,43]. Others focus on software performance [10,28,31] or both
hardware and software performance [8,12,14,32,49].

In 1996, Paul Kocher first proposed side-channel attacks, which extract secret
information by analyzing side-channel information [37]. Since secure designs
for mathematical cryptanalysis cannot guarantee security against side-channel
attacks, various countermeasures have been studied. With side-channel attacks
becoming more advanced and the associated equipment cost decreasing [47],
the application of side-channel countermeasures to ciphers has become critical.
Recently, various studies have been actively conducted on efficient implementa-
tions of side-channel countermeasures, especially on efficient masked implemen-
tations. To minimize performance overhead, the focus has been on reducing the
number of nonlinear operations. Several lightweight block ciphers, whose design
goal is a low nonlinear operation count, have been proposed [2,28,31]. These are
intended for use in side-channel protected environments.

However, most existing lightweight block ciphers are unsuitable for at least
one type of hardware, software, or side-channel protected implementations in low
resource environments. Consequently, it is challenging to design general-purpose
lightweight block ciphers capable of operating in any resource-constrained envi-
ronment.

In this paper, we propose a new lightweight versatile block cipher PIPO. Dur-
ing the PIPO design process, the focus was on minimizing the number of nonlin-
ear operations because this is the most significant factor for efficient higher-order
masking implementations. To construct an 8-bit S-box with a small number of
nonlinear operations, we devised a unbalanced-Bridge structure that accepts one
3-bit and two 5-bit S-boxes and produces 8-bit S-boxes. This structure allows us
to construct a new 8-bit S-box that offers good cryptographic properties and an
efficient bitsliced implementation including only 11 nonlinear bitwise operations.
We also present theorems applied to the unbalanced-Bridge structure, which
show the conditions that the both differential and linear branch numbers of the
S-boxes constructed through the structure are greater than 2. We investigated
the linear layer with the highest security against differential and linear crypt-
analyses when combined with the new S-box, through which we could reduce
the number of rounds of PIPO. Consequently, PIPO achieves fast higher-order
masking implementations, and its execution time increases less with the number
of shares (i.e., the masking order) compared with other lightweight 64-bit block
ciphers with 128-bit keys. Additionally, PIPO records excellent performance on
8-bit microcontrollers and competitive round-based hardware implementations.

The following notation and definitions are used throughout this paper.

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 101

DDT Difference Distribution Table of an n-bit S-box whose

(Δα, Δβ) entry is #{x ∈ F
n
2 |S(x) ⊕ S(x ⊕ Δα) = Δβ},

where Δα, Δβ ∈ F
n
2

LAT Linear Approximation Table of an n-bit S-box whose (λα, λβ)

entry is #{x ∈ F
n
2 |λα • x = λβ • S(x)} − 2n−1,

where λα, λβ ∈ F
n
2 , and the symbol • denotes the canonical

inner product in F
n
2

Differential uniformity max
Δα�=0,Δβ

#{x ∈ F
n
2 |S(x) ⊕ S(x ⊕ Δα) = Δβ}

Non-linearity 2n−1 − 2−1 × max
λα,λβ �=0

|Φ(λα, λβ)|, where Φ(λα, λβ)

=
∑

x∈Fn
2

(−1)λβ•S(x)⊕λα•x

DBN Differential Branch Number of an S-box defined as

min
a,b�=a

(wt(a ⊕ b) + wt(S(a) ⊕ S(b)))

LBN Linear Branch Number of an S-box defined as

min
a,b,Φ(a,b) �=0

(wt(a) + wt(b))

2 Specification of PIPO

The PIPO block cipher accepts a 64-bit plaintext and either a 128 or 256-bit key,
generating a 64-bit ciphertext. It performs 13 rounds for a 128-bit key and 17
rounds for a 256-bit key. Each round is composed of a nonlinear layer denoted
as the S-layer, a linear layer denoted as the R-layer, and round key and constant
XOR additions. The overall structure of PIPO is depicted on the left side of
Fig. 1. Here, RK0 is a whitening key and RK1, RK2, · · · , RKr are round keys,
where r = 13 (128-bit key) or 17 (256-bit key). The i-th round constant ci is i
(the round counter) which is XORed with RKi. During the enciphering process,
the intermediate state is regarded as an 8 × 8 array of bits, as shown on the
right side of Fig. 1, where X[i] represents the i-th row byte for i = 0 ∼ 7. The
S-layer executes eight identical 8-bit S-boxes (denoted as S8) in parallel. The S8

is applied to each column of the 8 × 8 array of bits, where the uppermost bit is
the least significant. The S8 is shown in Table 7 of Appendix C.1. The R-layer
rotates the bits in each row by a given offset (Fig. 2).

The key schedule of PIPO is very simple. We first split a 128-bit master key K
into two 64-bit subkeys K0 and K1, i.e., K = K1||K0. The whitening and round
keys are then defined as RKi = Ki mod 2, where i = 0, 1, 2, · · · , 13. Similarly, a
256-bit master key K is divided into four 64-bit subkeys K0, K1, K2, and K3,
i.e., K = K3||K2||K1||K0. In this case, RKi = Ki mod 4 where i = 0, 1, 2, · · · , 17.
Some test vectors for PIPO are provided in Appendix A. Note that resistance to
related-key attacks was not considered when designing the PIPO cipher.

102 H. Kim et al.

Fig. 1. Overall structure (left) and intermediate state (right) of PIPO

Fig. 2. R-layer

3 Design Rationale of PIPO

3.1 S-Layer

Overall Structure. We focused on the following three criteria when designing
our 8-bit S-box, S8.

1. It should offer an efficient bitsliced implementation including 11 or fewer
nonlinear operations.

2. Its differential and linear branch numbers (DBN and LBN) should both be
greater than 2.

3. Its differential uniformity should be 16 or less, and its non-linearity should
be 96 or more.

Criterion 1 minimizes the number of nonlinear operations required by PIPO,
which allows for efficient higher-order masking implementations. Criteria 2 and 3

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 103

ensure the cryptographic strengths of the S8 against differential cryptanalysis
(DC) and linear cryptanalysis (LC). Any inferior criteria will lead to the imple-
mentation of more rounds to achieve acceptable security against these attacks,
eventually resulting in a weak proposal. The thresholds of the criteria were
selected based on the properties of the existing lightweight 8-bit S-boxes (refer
to Table 1).

The Bridge structure was first proposed in [36], and revisited in [15]. In order
to construct an S8 satisfying all the aforementioned three criteria, we employed
the unbalanced-Bridge structure depicted in Fig. 3, where Sj

i represents the
j-th and i-bit S-box in the structure. This structure has the following three
characteristics. First, it uses 3-bit and 5-bit S-boxes instead of 4-bit S-boxes.
We observe that 8-bit S-box constructions using three 4-bit S-boxes would have
difficulty satisfying criterion 1, even though they conform to criteria 2 and 3.
Second, all eight output bits are generated from at least two smaller S-boxes
(to meet criterion 3). Finally, at least one non-bijective smaller S-box can be
adopted to increase the number of possible combinations of smaller S-boxes.

Fig. 3. The unbalanced-Bridge structure

The notation used in this section is introduced below.

ρc : F5
2 → F

5
2, ρc(x||y) = y||x, for x ∈ F

3
2, y ∈ F

2
2,

τn : F5
2 → F

n
2 , τn(x||y) = x, for x ∈ F

n
2 , y ∈ F

5−n
2 , n ∈ {1, 2, 3, 4},

τ ′
n : F5

2 → F
n
2 , τ ′

n(x||y) = y, for x ∈ F
5−n
2 , y ∈ F

n
2 , n ∈ {1, 2, 3, 4},

F1
A : F3

2 → F
5
2, F1

A(X) = (S1
5)−1(X||A) for A ∈ F

2
2,

F2
A : F3

2 → F
5
2, F2

A(X) = S2
5(X||A) for A ∈ F

2
2.

Now we can define an 8-bit S-box constructed by the unbalanced-Bridge.
Let S8(XL||XR) = CL(XL,XR)|| CR(XL,XR), where XL and XR represent
the input variables of the S8 which are in F

5
2 and F

3
2, respectively. Then

CL(XL,XR) = τ3(S1
5(XL)) ⊕ S3(XR) and CR(XL,XR) = ρc(S2

5(S1
5(XL) ⊕

(S3(XR)||0(2))))⊕ (0(2)||S3(XR)) with CL : F5
2×F

3
2 → F

3
2 and CR : F5

2×F
3
2 → F

5
2.

104 H. Kim et al.

Proposition 1 shows the conditions for the 8-bit S-box constructed by the
unbalanced-Bridge to be bijective.

Proposition 1. The 8-bit S-box constructed using the unbalanced-Bridge is
bijective if and only if the following three conditions are all satisfied:

i) S3 is bijective.
ii) S1

5 is bijective.
iii) For all y ∈ F

3
2, fy(x) = τ ′

2(S
2
5(y||x)) is a bijective function with fy : F2

2 →
F
2
2.

Proof. Refer to Appendix B.1.

Construction of 8-Bit S-Boxes with DBN> 2 and LBN> 2 and Our
S8 Selection. We present here how to construct 8-bit S-boxes with DBN> 2
and LBN> 2. Our framework is to eliminate all the input and output differences
(masks) where the sum of their Hamming weights is 2. During this elimination
process, we can obtain some conditions of smaller S-boxes. Theorems 1 and 2
present the necessary and sufficient conditions of smaller S-boxes so that the
8-bit S-boxes constructed by Fig. 3 have both differential and linear branch
numbers greater than 2.

Theorem 1. The DBN of bijective 8-bit S-boxes constructed using the
unbalanced-Bridge is greater than 2 if and only if conditions i), ii), and iii) are
all satisfied (Δα and Δβ below represent arbitrary differences where wt(Δα) =
wt(Δβ) = 1):

i) For each Δα,Δβ ∈ F
3
2, at least one of the entry (Δα,Δβ) in DDT of S3

and the entry (Δβ||0(2),Δβ||0(2)) in DDT of S2
5 is 0,

ii) For each Δα,Δβ ∈ F
5
2, for each A,B(�= A) ∈ F

2
2, at least one of F1

A(X) ⊕
F1

B(X) = Δα and F2
A(X)⊕F2

B(X) = Δβ has no solution X, where X ∈ F
3
2,

iii) For each Δα ∈ F
3
2 and Δβ ∈ F

5
2, for each A,B ∈ F

2
2, at least one of

F1
A(X) ⊕ F1

B(X ⊕ Δα) = Δβ and F2
A(X) ⊕ F2

B(X ⊕ Δα) = Δ0 has no
solution X, where X ∈ F

3
2.

Proof. Refer to Appendix B.2.

The following theorem concerning the LBN can be similarly obtained.

Theorem 2. The LBN of bijective 8-bit S-boxes constructed using the
unbalanced-Bridge is greater than 2 if and only if conditions i), ii), and iii)
are all satisfied (λα and λβ below represent arbitrary masks where wt(λα) =
wt(λβ) = 1):

i) For each λα, λβ ∈ F
3
2, at least one of the entry (λα, λβ) in LAT of S3 and

the entry (0, λβ ||0(2)) in LAT of S2
5 is 0,

ii) For each λα ∈ F
5
2 and λβ ∈ F

3
2,

∑
A∈F2

2
X · Y = 0 where X is the entry

(λβ , λα) in LAT of F1
A and Y is the entry (λβ , λβ ||0(2)) in LAT of F2

A,

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 105

iii) For each λα, λβ ∈ F
5
2 satisfying τ3(λβ) = 0,

∑
A∈F2

2
X · Y = 0 where X is

the entry (0, λα) in LAT of F1
A and Y is the entry (0, λβ) in LAT of F2

A.

Proof. Refer to Appendix B.3.

Our S8 search process is outlined as follows. First, we generated 3-bit and
5-bit S-box sets; for 3-bit S-boxes we ran an exhaustive search with AND, OR,
XOR, and NOT instructions while restricting the number of nonlinear (resp.
linear) operations to 3 (resp. 4), and for 5-bit S-boxes we ran an exhaustive
search with AND, OR, and XOR instruction while restricting the number of
nonlinear (resp. linear) operations to 4 (resp.7) with a differential uniformity
of 8 or less. Second, we classified two 5-bit S-boxes and one 3-bit S-box that
satisfy the conditions of Proposition 1, Theorems 1 and 2. During this process,
the search space for the S8 could be significantly reduced because the early
abort technique was used to select S3, S5

1 , and S5
2 . Third, we randomly chose

the combination of S3, S1
5 , and S2

5 to verify whether the corresponding 8-bit
S-box satisfies criterion 3, and no fixed point. During the search, we found more
than 8,000 candidates for the S8. We selected the one that leads to the best
resistance to differential and linear attacks when combined with the linear layer
of PIPO (refer to section 3.2). The final selected input/output values of the S8

are presented in Table 7; its bitsliced implementation is given in Appendix C.2.
Table 1 compares the cryptographic properties and operations with those of

other 8-bit S-boxes built from smaller 3 S-boxes.

Table 1. Comparison of bitslice 8-bit S-boxes with respect to cryptographic properties
and number of operations

Blockcipher PIPO FLY Fantomas Robin LILLIPUT

Differential uniformity 16 16 16 16 8

DBN 3 3 2 2 2

Non-linearity 96 96 96 96 96

LBN 3 3 2 2 2

Algebraic degree 5 5 5 6 6

#(Fixed points) 0 2 0 16 1

#(Nonlinear operations)11 12 11 12 12

#(Linear operations) 23 24 27 24 27

Construction method *U-Bridge Lai-Massey*U-MISTYMISTYFeistel

Reference This paper[35] [31] [31] [1]

*‘U-’ represents ‘Unbalanced-’.
**Nonlinear (resp. linear) operations represent AND, OR (resp. XOR, NOT).

3.2 R-Layer

To ensure efficient hardware and software implementations, we chose the R-
layer to be a bit permutation which only uses bit-rotations in bytes. Its bitsliced
implementation is given in Listing 1.1. During the design of the R-layer, the
following criteria were considered.

106 H. Kim et al.

1. The number of rounds to achieve full diffusion – through which any input bit
can affect the entire output bits – should be minimized.

2. Combining the R-layer with the S-layer should enable the cipher to have the
best resistance to DC and LC (among all bit permutations satisfying the first
criterion).

To meet the first criterion, we adopted a bit permutation that enables PIPO
to achieve full diffusion in two rounds by using rotation offsets 0 ∼ 7 for all
rows. The second criterion was taken into account when deciding which rota-
tion to use for which row. We applied all 5,040(=7!) R-layers (except for all
rotation equivalences) to the S-layer and selected one with the lowest probabili-
ties of 6 and 7-round best differential and linear trails. Our analysis found that
the selected combination of the S and R layers provides superior resistance to
DC and LC than any other combinations even when other S-boxes among the
aforementioned candidates were chosen. Note that most combinations of S and
R layers candidates could not provide best 7-round differential and linear trails
with less than probability 2−64.

Listing 1.1. Bitsliced implementation of R-layer (in C code)

//Input: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)

X[1] = ((X[1] << 7)) | ((X[1] >> 1));

X[2] = ((X[2] << 4)) | ((X[2] >> 4));

X[3] = ((X[3] << 3)) | ((X[3] >> 5));

X[4] = ((X[4] << 6)) | ((X[4] >> 2));

X[5] = ((X[5] << 5)) | ((X[5] >> 3));

X[6] = ((X[6] << 1)) | ((X[6] >> 7));

X[7] = ((X[7] << 2)) | ((X[7] >> 6));

//Output: (MSB) X[7], X[6], X[5], X[4], X[3], X[2], X[1], X[0] (LSB)

4 Security Evaluation of PIPO

Table 2 shows the maximum numbers of rounds of characteristics and key recov-
ery attacks that we found for each attack [3,18–20,40,42,46]. In addition to
the cryptanalysis shown in Table 2, we conducted algebraic attack [23], integral
attack [48], statistical saturation attack [25], invariant subspace attack [38,39],
nonlinear invariant attack [45] and slide attack [21], but they were not applied
more effectively than DC or LC.

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 107

Table 2. The numbers of rounds of the best characteristics for each cryptanalysis

Key length Cryptanalysis Best characteristic Key recovery attack

128-bit Differential 6-round 9-round

Linear 6-round 9-round

Impossible differential 4-round 6-round

Boomerang/Rectangle 6-round 8-round

Meet-in-the-Middle 6-round 6-round

256-bit Differential 6-round 11-round

Linear 6-round 11-round

Impossible differential 4-round 8-round

Boomerang/Rectangle 6-round 10-round

Meet-in-the-Middle 10-round 10-round

One of the major design considerations for PIPO is to adopt a compact num-
ber of rounds (not enough rounds to guarantee security that is (too) high) based
on thorough security analyses. We discovered that the best attacks applied to
PIPO are DC and LC. An exhaustive search (based on the branch and bound
technique [41]) for the DC and LC distinguishers was performed, in which the
best reaches 6 rounds. Our analyses could recover the key of up to 9 and 11
rounds of PIPO-64/128 and PIPO-64/256, respectively.

5 Performance Evaluation of Higher-Order Masking
Implementations of PIPO

Bitsliced implementations, initially proposed by Biham [17], are known to be
efficient when applying Boolean masking, since secure S-box computations can be
carried out in parallel [29–31,34]. Thus, we used an S-box that can be efficiently
implemented in this way, and only involves 11 nonlinear bitwise operations. The
number of nonlinear operations is very important for Boolean masking schemes,
since they have a quadratic complexity, i.e., O(d2), compared with the linear
complexity, i.e., O(d), for other operations.

We constructed PIPO using higher-order masked S-layer and R-layer. There
are several variations of ISW-AND [6,7,16], however, in this paper, we apply
original ISW-AND. Since logical OR of two inputs a and b satisfies a ∨ b =
(a ∧ b) ⊕ a ⊕ b, thus, ISW-OR can be calculated by replacing logical AND with
ISW-AND.

108 H. Kim et al.

Table 3. Comparison of required ROM (bytes) for round constant, number of nonlinear
bitwise operations, and permutation layers of round functions

Block cipher Table
size

#(nonlinear bitwise
operations)

Permutation

PIPO-64/128 0 1,144 7 bit-rotations in bytes

PRIDE-64/128 80 1,280 MixColumns*

SIMON-64/128 62 1,408 3 bit-rotations in 32-bit words

RoadRunneR-64/128 0 1,536 24 bit-rotations in bytes

RECTANGLE-64/128 25 1,600 3 bit-rotations in 16-bit words

CRAFT-64/128 64 1,984 MixColumns*, PermuteNibbles

PRESENT-64/128 0 1,984 Bit permutation

SKINNY-64/128 62 2,304 ShiftRows, MixColumns*

* : multiply with binary matrix

We compare our proposed PIPO with 64-bit block ciphers with 128-bit keys
as shown in Table 3. All the ciphers compared were implemented using bitslice
techniques, and only round constants were precomputed. There is no need to
precompute round constants of PIPO, RoadRunneR, and PRESENT, because they
are the i or NR− i for i = 0, 1, · · · , NR−1, where NR is the number of rounds.
Therefore, the required ROM for round constants is shown in Table 3. Only
CRAFT used an additional 16-byte diffusion table for generating tweakeys. The
same secure logical operations of PIPO were applied to implement higher-order
masking structures.

1 2 3 4 5
0

2

4

6

·105

Number of shares

C
y
c
le
s
p
e
r
b
y
te

PIPO-64/128
PRIDE-64/128
SIMON-64/128
RoadRunneR-64/128
RECTANGLE-64/128
CRAFT-64/128
PRESENT-64/128
SKINNY-64/128

Fig. 4. Execution times of one-block encryptions according to the number of shares in
an Atmel AVR XMEGA128 (1 means unprotected)

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 109

Figure 4 shows the execution times for different numbers of shares on an 8-
bit AVR processor. Especially, it shows that the more nonlinear operations, the
greater increase in execution time with the number of shares, refer to Table 3.
PIPO has the smallest number of nonlinear operations.

6 Performance Evaluation of Software and Hardware
Implementations of PIPO

6.1 Software Implementations

The PIPO block cipher consists of permutation (R-layer) and S-box (S-layer)
computations. The permutation routine is performed in 8-bit rotation opera-
tions, and 22 XOR, 6 AND, 5 OR, 1 COM and 24 MOV instructions are used
to compute the S-box. This uses a total of 21 general-purpose registers: six for
temporal storage, one for a zero constant, eight for a plaintext, four for address
pointers and two for counter variables.

The developers of SIMON and SPECK have proposed a new metric to measure
overall performance on low-end devices, namely RANK [11]. This is calculated
as follows:

RANK = (106/CPB)/(ROM + 2 × RAM).

In this metric, higher values of RANK correspond to better performance.
Table 4 compares results for several block ciphers on an 8-bit AVR platform.
Here, we used Atmel Studio 6.2, and compiled all implementations with opti-
mization level 3. The target processor was an ATmega128 running at 8 MHz [4].
PIPO requires 320 bytes of code, 31 bytes of RAM and an execution time of 197
CPB. We used the RANK metric to compare the ciphers’ overall performances,
finding that PIPO achieved the highest score among block ciphers with the same
parameter lengths.

Table 4. Comparison of block ciphers on 8-bit AVR*

Block cipher Code size (bytes) RAM (bytes) Execution time
(cycles per byte)

RANK

PIPO-64/128 320 31 197 13.31

SIMON-64/128 [11] 290 24 253 11.69

RoadRunneR-64/128 [10] 196 24 477 8.59

RECTANGLE-64/128 [26] 466 204 403 2.84

PRIDE-64/128 [26] 650 47 969 1.39

SKINNY-64/128 [26] 502 187 877 1.30

PRESENT-64/128 [27] 660 280 1,349 0.61

CRAFT-64/128 [13] 894 243 1,504 0.48

PIPO-64/256 320 47 253 9.54

*The code size represents ROM, and RAM metric includes STACK.

110 H. Kim et al.

6.2 Hardware Implementations

We implemented PIPO-64/128 and PIPO-64/256 in Verilog, and synthesized the
proposed architectures using the Synopsys Design Compiler with 130 nm CMOS
technology. Figure 5 shows the datapath of an area-optimized encryption-only
PIPO block cipher, which performs one round per clock cycle (i.e., uses a 64-
bit-wide datapath). The S-layer uses the same 8-bit S-box 8 times, whereas the
R-layer is implemented in wiring. For lightweight key generation, we obtain the
round key from the master key, directly. This feature avoids including the key
storage. Our implementations require 13 and 17 clock cycles to encrypt a 64-bit
plaintext with 128-bit and 256-bit keys, respectively.

Table 5 shows the areas required by PIPO-64/128 and PIPO-64/256. Most of
the areas are taken up by the S-layer, in order to compute eight 8-bit S-boxes in
parallel. The flip-flops are used for storing plaintext and counter, and the other
areas consist of MUX and other logical operations.

Table 6 compares the results for several different block ciphers implemented
as ASICs. Compared with the other block ciphers using the same parameter
lengths, PIPO needs more gates than CRAFT, Piccolo and SIMON but its cycles
per block are much lower, resulting in the highest figure of merit FOM (nano

Fig. 5. Datapath of an area-optimized version of PIPO

Table 5. Area requirement of PIPO-64/128 and PIPO-64/256.

PIPO-64/128 PIPO-64/256

Module GE % GE %

Data and Counter States 341 24 360 22

S-layer 581 40 581 36

Add Round Key 170 12 170 11

Others 354 24 491 31

Total 1,446 100 1,602 100

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 111

Table 6. Comparison of round-based and area optimized implementations for block
ciphers using 130 nm ASIC library.

Block cipher Area Throughput cycles FOM

[GE] (Kbps@100KHz) /block [bits×109

clk×GE2]

PIPO-64/128 1,446 492 13 2,355

CRAFT-64/128 [13] 949 200 32 2,221

Piccolo-64/128 [43] 1,197 194 33 1,354

SIMON-64/128 [12] 1,417 133 48 664

RECTANGLE-64/128 [49] 2,064 246 26 578

PIPO-64/256 1,602 376 17 1,467

bits per clock cycle per GE squared [5,32]). It is obvious that the high FOM of
PIPO requires less energy and battery consumption.

7 Conclusion

In this paper, we proposed a new lightweight versatile block cipher PIPO suit-
able for diverse resource-constrained environments. In particular, PIPO exhibits
excellent performance in both side-channel protected and unprotected environ-
ments on 8-bit microcontrollers, and fast round-based hardware implementations
as well. Furthermore, a thorough security analysis of PIPO was conducted.

A Test Vectors

The following test vectors are represented in big endian representation.

– PIPO-64/128
• Secret key: 0x6DC416DD 779428D2 7E1D20AD 2E152297
• Plaintext: 0x098552F6 1E270026
• Ciphertext: 0x6B6B2981 AD5D0327

– PIPO-64/256
• Secret key:0x009A3AA4 76A96DB5 54A71206 26D15633 6DC416DD

779428D2 7E1D20AD 2E152297
• Plaintext: 0x098552F6 1E270026
• Ciphertext: 0x816DAE6F B6523889

112 H. Kim et al.

B Proofs of Proposition and Theorems

B.1 Proof of Proposition 1

(⇒)
If S3 or S1

5 is non-bijective, there are two different inputs XL||XR,X ′
L||X ′

R sat-
isfying (S1

5(XL), S3(XR)) = (S1
5(X ′

L), S3(X ′
R)). Then, it is easy to see that

S8(XL||XR) = S8(X ′
L||X ′

R), and thus two conditions i) and ii) should hold.
Assume that the fy in condition iii) is non-bijective for some y ∈ F

3
2. Then

there should be two different inputs a, a′ satisfying fy(a) = fy(a′). It induces
τ ′
2(S

2
5(y||a)) = τ ′

2(S
2
5(y||a′)). On the other hand, we can take a pair XR,X ′

R

satisfying τ3(S2
5(y||a)) ⊕ S3(XR) = τ3(S2

5(y||a′)) ⊕ S3(X ′
R), and thus CR = C ′

R.
Combining the above two equations yields S2

5(y||a)⊕(S3(XR)||0(2)) = S2
5(y||a′)⊕

(S3(X ′
R)||0(2)). And, we take a pair XL,X ′

L satisfying S1
5(XL) = (y⊕S3(XR))||a

and S1
5(X ′

L) = (y ⊕ S3(X ′
R))||a′. Since a �= a′, we have XL �= X ′

L satisfying
S8(XL||XR) = S8(X ′

L||X ′
R). Therefore, condition iii) should also hold.

(⇐)
Assume that XL �= X ′

L and XR = X ′
R. If τ3(S1

5(XL)) �= τ3(S1
5(X ′

L)),
then CL(XL,XR) �= CL(X ′

L,X ′
R). Let τ3(S1

5(XL)) = τ3(S1
5(X ′

L)). It leads
to CL(XL,XR) = CL(X ′

L,X ′
R), and τ ′

2(S
1
5(XL)) �= τ ′

2(S
1
5(X ′

L)). Because of
condition iii), τ2(CR(XL, XR)) �= τ2(CR(X ′

L,X ′
R)). Assume that XL = X ′

L

and XR �= X ′
R. Since S3(XR) �= S3(X ′

R), CL(XL,XR) �= CL(X ′
L,X ′

R).
Assume that XL �= X ′

L, XR �= X ′
R. If CL(XL,XR) = CL(X ′

L,X ′
R), either

τ ′
2(S

1
5(XL)) �= τ ′

2(S
1
5(X ′

L)) or τ ′
2(S

1
5(XL)) = τ ′

2(S
1
5(X ′

L)). The former case
leads to τ2(CR(XL,XR)) �= τ2(CR(X ′

L,X ′
R)), and the latter case leads to

τ ′
3(CR(XL,XR)) �= τ ′

3(CR(X ′
L,X ′

R)). Therefore, the 8-bit S-box is bijective. �

B.2 Proof of Theorem 1

We define the following notation for ease of expression.

Y = S1
5(XL), Z = S1

5(XL) ⊕ (S3(XR)||0(2)), A = τ ′
2(Y) = τ ′

2(Z), Y = Y ′||A,
Z = Z ′||A.

Then, the expression of the CL and CR is

CL(XL,XR) = τ3(Y) ⊕ S3(XR) = τ3(Z),
CR(XL,XR) = ρc(S2

5(Y ⊕ (S3(XR)||0(2)))) ⊕ S3(XR) = ρc(Z) ⊕ S3(XR).

For convenience, we do not write 0 paddings on MSBs of smaller-bit data operat-
ing with larger-bit data; here, the 5-bit operand S3(XR) represents 0(2)||S3(XR).

(0(5)||Δa, 0(3)||Δc) : It happens if and only if there exists at least one (XL,XR)
satisfying both CL(XL,XR) ⊕ CL(XL,XR ⊕ Δa) = Δ0 and CR(XL,XR) ⊕
CR(XL,XR ⊕ Δa) = Δc. The first equation is expressed as

τ3(Y) ⊕ S3(XR) ⊕ τ3(Y) ⊕ S3(XR ⊕ Δa) = S3(XR) ⊕ S3(XR ⊕ Δa) = Δ0.

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 113

Since S3 is bijective, the (0(5)||Δa, 0(3)||Δc) case dose not happen.

(0(5)||Δa,Δd||0(5)) : It happens if and only if there exists at least one (XL,XR)
satisfying both CL(XL,XR) ⊕ CL(XL,XR ⊕ Δa) = Δd and CR(XL,XR) ⊕
CR(XL,XR ⊕ Δa) = Δ0. The first equation is expressed as

τ3(Y) ⊕ S3(XR) ⊕ τ3(Y) ⊕ S3(XR ⊕ Δa) = S3(XR) ⊕ S3(XR ⊕ Δa) = Δd. (1)

Similarly, the second equation CR(XL,XR) ⊕ CR(XL,XR ⊕ Δa) = Δ0 is
expressed as

ρc(S
2
5(Y ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)

⊕ ρc(S
2
5(Y ⊕ (S3(XR ⊕ Δa)||0(2)))) ⊕ S3(XR ⊕ Δa)

= ρc(S
2
5(Y ⊕ (S3(XR)||0(2)))) ⊕ ρc(S

2
5(Y ⊕ ((S3(XR) ⊕ Δd)||0(2)))) ⊕ Δd = Δ0.

By applying ρ−1
c , we have

S2
5(Y ⊕ (S3(XR)||0(2))) ⊕ S2

5(Y ⊕ ((S3(XR) ⊕ Δd)||0(2))) = Δd||0(2).
By applying Z, we obtain

S2
5(Z) ⊕ S2

5(Z ⊕ (Δd||0(2))) = Δd||0(2). (2)

Since the function (XL,XR) �→ (Z,XR) is bijective, the (0(5)||Δa,Δd||0(5)) case
does not happen if and only if there is no (Z,XR) satisfying both Eqs. (1) and (2),
which is equivalent to condition i) where Δα = Δa, Δβ = Δd.

(Δb||0(3), 0(3)||Δc) : It happens if and only if there exists at least one (XL,XR)
satisfying both CL(XL,XR) ⊕ CL(XL ⊕ Δb,XR) = Δ0 and CR(XL,XR) ⊕
CR(XL ⊕ Δb,XR) = Δc. The first equation is expressed as

τ3(S1
5(XL)) ⊕ S3(XR) ⊕ τ3(S

1
5(XL ⊕ Δb)) ⊕ S3(XR) = τ3(S

1
5(XL)) ⊕ τ3(S1

5(XL ⊕ Δb)) = Δ0.

Since S1
5 is bijective, for a non-zero difference Δω ∈ F

2
2, the above equation

becomes
S1
5(XL) ⊕ S1

5(XL ⊕ Δb) = Δω.

The equation is rewritten as

S1
5(XL ⊕ Δb) = S1

5(XL) ⊕ Δω.

By applying (S1
5)−1, we obtain

XL ⊕ Δb = (S1
5)−1(S1

5(XL) ⊕ Δω).

By using the variables Y, Y ′ and A, we have

(S1
5)−1(Y) ⊕ (S1

5)−1(Y ⊕ Δω) = Δb,

(S1
5)−1(Y ′||A) ⊕ (S1

5)−1(Y ′||(A ⊕ Δω)) = Δb. (3)

114 H. Kim et al.

And the second equation CR(XL,XR)⊕CR(XL ⊕Δb,XR) = Δc is expressed as

ρc(S2
5(S1

5(XL) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)

⊕ ρc(S2
5(S1

5(XL ⊕ Δb) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)

= ρc(S2
5(Z)) ⊕ ρc(S2

5(Z ⊕ Δω)) = Δc.

By applying ρ−1
c , we obtain

S2
5(Z) ⊕ S2

5(Z ⊕ Δω) = ρ−1
c (Δc).

This gives the equation

S2
5(Z ′||A) ⊕ S2

5(Z ′||(A ⊕ Δω)) = ρ−1
c (Δc). (4)

For each A, the above Eqs. (3) and (4) are equivalent to

F1
A(Y ′) ⊕ F1

A⊕Δω(Y ′) = Δb, (5)

F2
A(Z ′) ⊕ F2

A⊕Δω(Z ′) = ρ−1
c (Δc). (6)

Here, Δω is arbitrary nonzero 2-bit difference, and thus we can define B =
A ⊕ Δω i.e., B �= A. Since the function (XL,XR) �→ (Y ′, A, Z ′) is bijective, the
(Δb||0(3), 0(3)||Δc) case does not happen if and only if there is no (Y ′, A, Z ′)
satisfying both Eqs. (5) and (6) for all B(�= A), which is equivalent to condition
ii) where Δα = Δb, Δβ = ρ−1

c (Δc).

(Δb||0(3),Δd||0(5)) : It happens if and only if there exists at least one (XL,XR)
satisfying both CL(XL,XR) ⊕ CL(XL ⊕ Δb,XR) = Δd and CR(XL,XR) ⊕
CR(XL ⊕ Δb,XR) = Δ0. The first equation is expressed as

τ3(S1
5(XL)) ⊕ S3(XR) ⊕ τ3(S1

5(XL ⊕ Δb)) ⊕ S3(XR) = τ3(S1
5(XL)) ⊕ τ3(S1

5(XL ⊕ Δb)) = Δd.

For a difference Δω ∈ F
2
2, the above equation becomes

S1
5(XL) ⊕ S1

5(XL ⊕ Δb) = Δd||Δω.

As in Eq. (3), we obtain

(S1
5)−1(Y ′||A) ⊕ (S1

5)−1((Y ′ ⊕ Δd)||(A ⊕ Δω)) = Δb. (7)

And the second equation is expressed as

ρc(S2
5(S1

5(XL) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)

⊕ ρc(S2
5(S1

5(XL ⊕ Δb) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)

= ρc(S2
5(Z)) ⊕ ρc(S2

5(Z ⊕ (Δd||Δω))) = Δ0.

Clearly,
S2
5(Z) ⊕ S2

5(Z ⊕ (Δd||Δω)) = Δ0.

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 115

It becomes
S2
5(Z ′||A) ⊕ S2

5((Z ′ ⊕ Δd)||(A ⊕ Δω)) = Δ0. (8)

For each A, the above Eqs. (7) and (8) are equivalent to

F1
A(Y ′) ⊕ F1

A⊕Δω(Y ′ ⊕ Δd) = Δb, (9)

F2
A(Z ′) ⊕ F2

A⊕Δω(Z ′ ⊕ Δd) = Δ0. (10)

Similarly to the case above, we define B = A⊕Δω. In this time, B can be either
A or not, since Δω can be a zero difference. The (Δb||0(3),Δd||0(5)) case does
not happen if and only if there is no (Y ′, A, Z ′) satisfying both Eqs. (9) and (10)
for all B, which is equivalent to condition iii) where Δα = Δd, Δβ = Δb. �

B.3 Proof of Theorem 2

We use Y, Y ′, Z, Z ′, and A defined in proof B.2.

(0(5)||λa, 0(3)||λc) : This case is expressed as XR•λa = CR(XL,XR)•λc. It follows
XR•λa = (ρc(S2

5(S1
5(XL)⊕(S3(XR)||0(2))))⊕S3(XR))•λc. By applying the vari-

able Z, the equation becomes XR •λa ⊕S3(XR)•λc = ρc(S2
5(Z))•λc. Note that

the function (XL,XR) �→ (Z,XR) is bijective. Suppose τ2(λc) �= 0. Then, the
equation becomes XR • λa = ρc(S2

5(Z)) • λc. This should have zero bias because
the equation XR•λa = 0 has zero bias, and Z and XR are independent variables.
Now, suppose τ2(λc) = 0. The equation XR • λa ⊕ S3(XR) • λc = ρc(S2

5(Z)) • λc

has zero bias if and only if at least one of the entries (λa, τ ′
3(λc)) in LAT of

S3 and (0, τ ′
3(λc)||0(2)) in LAT of S2

5 is zero. This is due to the fact that Z is
independent of XR. It is equivalent to condition i)

(0(5)||λa, λd||0(5)) : This case is expressed as XR•λa = CL(XL,XR)•λd. It follows
XR•λa = (τ3(S1

5(XL))⊕S3(XR))•λd. The equation becomes XR•λa = τ3(Z)•λd

by using the definition of Z. So, this case has zero bias, because τ3(Z) is inde-
pendent of XR.

(λb||0(3), 0(3)||λc) : This case is expressed as XL • λb = CR(XL,XR) • λc. It
follows XL • λb = (ρc(S2

5(S1
5(XL) ⊕ (S3(XR)||0(2)))) ⊕ S3(XR)) • λc. We can

replace the equation to

XL • λb ⊕ S1
5(XL) • λt

= (S1
5(XL) ⊕ (S3(XR)||0(2))) • λt ⊕ ρc(S2

5(S1
5(XL) ⊕ (S3(XR)||0(2)))) • λc,

where λt = τ ′
3(λc)||0(2) (here, 0(2) can be replaced by 01, 10 or 1(2)). By applying

the variables of Y and Z, this becomes equivalent to the following equations

116 H. Kim et al.

(S1
5)−1(Y) • λb ⊕ Y • λt = Z • λt ⊕ (ρc(S2

5(Z))) • λc,

(S1
5)−1(Y ′||A) • λb ⊕ (Y ′||A) • λt = (Z ′||A) • λt ⊕ (ρc(S2

5(Z ′||A))) • λc.

For all A ∈ F
2
2, we have

F1
A(Y ′) • λb ⊕ (Y ′||A) • λt = (Z ′||A) • λt ⊕ (ρc(F2

A(Z ′))) • λc.

Clearly,

F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt) = Z ′ • τ3(λt) ⊕ (ρc(F2

A(Z ′))) • λc.

A collection of (Y ′, Z ′) that satisfies the above equation is equivalent to

{Y ′|0 = F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt)} × {Z′|0 = Z′ • τ3(λt) ⊕ (ρc(F

2
A(Z′))) • λc}

∪ {Y ′|1 = F1
A(Y ′) • λb ⊕ Y ′ • τ3(λt)} × {Z′|1 = Z′ • τ3(λt) ⊕ (ρc(F

2
A(Z′))) • λc}

Then the number of the above set is (4 + aA)(4 + bA) + (4 − aA)(4 − bA) =
32+2aAbA, where aA and bA are the entries of (τ3(λt), λb) and (τ3(λt), ρ−1

c (λc))
in LAT of F1

A and F2
A, respectively. The above equation has zero bias if and only

if
∑

A∈F2
2

(32 + 2aAbA) = 2(
∑

A∈F2
2

aAbA) + 128 = 128

It leads to
∑

A∈F2
2
aAbA = 0. Because τ3(λt) = τ ′

3(λc), it is equivalent to condi-
tion ii) (when τ ′

3(λc) �= 0) and condition iii) (when τ ′
3(λc) = 0).

(λb||0(3), λd||0(5)) : This case is expressed as XL•λb = CL(XL,XR)•λd. It follows
XL •λb = (τ3(S1

5(XL))⊕S3(XR)) •λd. The equation becomes XL •λb = Z ′ •λd

by using the definition of Z ′. We note that the function (XL,XR) �→ (XL, Z ′) is
bijective, and XL and Z ′ are independent variables. So, this equation has zero
bias. �

C 8-bit S-box of PIPO, S8

C.1 Table of the S8

Table 7 shows the S8.

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 117

Table 7. 8-bit S-box of PIPO in hexadecimal notation: For example, S8(31)=86.

S8(x||y) y

0 1 2 3 4 5 6 7 8 9 A B C D E F

x 0 5E F9 FC 00 3F 85 BA 5B 18 37 B2 C6 71 C3 74 9D

1 A7 94 0D E1 CA 68 53 2E 49 62 EB 97 A4 0E 2D D0

2 16 25 AC 48 63 D1 EA 8F F7 40 45 B1 9E 34 1B F2

3 B9 86 03 7F D8 7A DD 3C E0 CB 52 26 15 AF 8C 69

4 C2 75 70 1C 33 99 B6 C7 04 3B BE 5A FD 5F F8 81

5 93 A0 29 4D 66 D4 EF 0A E5 CE 57 A3 90 2A 09 6C

6 22 11 88 E4 CF 6D 56 AB 7B DC D9 BD 82 38 07 7E

7 B5 9A 1F F3 44 F6 41 30 4C 67 EE 12 21 8B A8 D5

8 55 6E E7 0B 28 92 A1 CC 2B 08 91 ED D6 64 4F A2

9 BC 83 06 FA 5D FF 58 39 72 C5 C0 B4 9B 31 1E 77

A 01 3E BB DF 78 DA 7D 84 50 6B E2 8E AD 17 24 C9

B AE 8D 14 E8 D3 61 4A 27 47 F0 F5 19 36 9C B3 42

C 1D 32 B7 43 F4 46 F1 98 EC D7 4E AA 89 23 10 65

D 8A A9 20 54 6F CD E6 13 DB 7C 79 05 3A 80 BF DE

E E9 D2 4B 2F 0C A6 95 60 0F 2C A5 51 6A C8 E3 96

F B0 9F 1A 76 C1 73 C4 35 FE 59 5C B8 87 3D 02 FB

C.2 Bitsliced Implementations of the S8 and Its Inverse

Listing 1.2 is the bitsliced implementation of the S8.1 The bitsliced implemen-
tation of the inverse S8 cannot be obtained by reversing the bitsliced implemen-
tation of the S8 because the input bits of S2

5 are not all given. The Listing 1.3
shows how to implement the inverse S8 with the given input bits. Since the S8

applies each column of 8 × 8 array of bits depicted in Fig. 1, we can implement
the S-layer by replacing bit x[i] with byte X[i] which represents the i-th row
value, where i = 0, 1, 2, · · · , 7.

Listing 1.2. The bitsliced implementation of the S8 (in C code)

//(MSb: x[7], LSb: x[0]) :"b" represents bit

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]

// S5_1

x[5] ^= (x[7] & x[6]);

x[4] ^= (x[3] & x[5]);

x[7] ^= x[4];

x[6] ^= x[3];

x[3] ^= (x[4] | x[5]);

x[5] ^= x[7];

1 For a higher resistance against DC and LC, swapping bits is additionally conducted
in the S8 design (refer to section 3.2).

118 H. Kim et al.

x[4] ^= (x[5] & x[6]);

// S3

x[2] ^= x[1] & x[0];

x[0] ^= x[2] | x[1];

x[1] ^= x[2] | x[0];

x[2] = ~x[2];

// Extend XOR

x[7] ^= x[1]; x[3] ^= x[2]; x[4] ^= x[0];

//S5_2

t[0] = x[7]; t[1] = x[3]; t[2] = x[4];

x[6] ^= (t[0] & x[5]);

t[0] ^= x[6];

x[6] ^= (t[2] | t[1]);

t[1] ^= x[5];

x[5] ^= (x[6] | t[2]);

t[2] ^= (t[1] & t[0]);

// truncate XOR and swap

x[2] ^= t[0]; t[0] = x[1] ^ t[2]; x[1] = x[0]^t[1];

x[0] = x[7]; x[7] = t[0];

t[1] = x[3]; x[3] = x[6]; x[6] = t[1];

t[2] = x[4]; x[4] = x[5]; x[5] = t[2];

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]

Listing 1.3. The bitsliced implementation of the inverse S8 (in C code)

//(MSb: x[7], LSb: x[0]) :"b" represents bit

// Input: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]

t[0] = x[7]; x[7] = x[0]; x[0] = x[1]; x[1] = t[0];

t[0] = x[7]; t[1] = x[6]; t[2] = x[5];

// S52 inv

x[4] ^= (x[3] | t[2]);

x[3] ^= (t[2] | t[1]);

t[1] ^= x[4];

t[0] ^= x[3];

t[2] ^= (t[1] & t[0]);

x[3] ^= (x[4] & x[7]);

// Extended XOR

x[0] ^= t[1]; x[1] ^= t[2]; x[2] ^= t[0];

t[0] = x[3]; x[3] = x[6]; x[6] = t[0];

t[0] = x[5]; x[5] = x[4]; x[4] = t[0];

// Truncated XOR

x[7] ^= x[1]; x[3] ^= x[2]; x[4] ^= x[0];

// Inv_S5_1

x[4] ^= (x[5] & x[6]);

x[5] ^= x[7];

x[3] ^= (x[4] | x[5]);

x[6] ^= x[3];

x[7] ^= x[4];

x[4] ^= (x[3] & x[5]);

x[5] ^= (x[7] & x[6]);

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 119

// Inv_S3

x[2] = ~x[2];

x[1] ^= x[2] | x[0];

x[0] ^= x[2] | x[1];

x[2] ^= x[1] & x[0];

// Output: x[7], x[6], x[5], x[4], x[3], x[2], x[1], x[0]

References

1. Adomnicai, A., et al.: Lilliput-AE: a new lightweight tweakable block cipher
for authenticated encryption with associated data. Submission to the NIST
Lightweight Cryptography Standardization Process (2019)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 4

3. Aoki, K., Sasaki, Yu.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–
119. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 7

4. Atmel Corporation, ATmega128(L) Datasheet. www.microchip.com/
wwwproducts/en/ATmega128. Accessed 23 Apr 2019

5. Badel, S., et al.: ARMADILLO: a multi-purpose cryptographic primitive dedicated
to hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 398–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15031-9 27

6. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

7. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

8. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Yu., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–
345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

9. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

10. Baysal, A., Şahin, S.: RoadRunneR: a small and fast bitslice block cipher for low
cost 8-bit processors. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec
2015. LNCS, vol. 9542, pp. 58–76. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29078-2 4

11. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T.,
Öztürk, E. (eds.) LightSec 2014. LNCS, vol. 8898, pp. 3–20. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16363-5 1

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-642-04159-4_7
www.microchip.com/wwwproducts/en/ATmega128
www.microchip.com/wwwproducts/en/ATmega128
https://doi.org/10.1007/978-3-642-15031-9_27
https://doi.org/10.1007/978-3-642-15031-9_27
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-29078-2_4
https://doi.org/10.1007/978-3-319-29078-2_4
https://doi.org/10.1007/978-3-319-16363-5_1

120 H. Kim et al.

12. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers, Cryptology ePrint
Archive (2013)

13. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019(1), 5–45 (2019)

14. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

15. Bilgin, B., De Meyer, L., Duval, S., Levi, I., Standaert, F.X.: Low AND depth
and efficient inverses: a guide on s-boxes for low-latency masking. IACR Trans.
Symmetric Cryptol. 2020(1), 144–184 (2020)

16. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

17. Biham, E.: A fast new DES implementation in software. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 260–272. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052352

18. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

19. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

20. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

21. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 41

22. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

23. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 15

24. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

25. Collard, B., Standaert, F.-X.: A statistical saturation attack against the block
cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–
210. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 13

26. Dinu, D., Biryukov, A., Großschädl, J., Khovratovich, D., Corre, Y.L., Perrin, L.:
FELICS-fair evaluation of lightweight cryptographic systems. In: NIST Workshop
on Lightweight Cryptography (2015)

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-00862-7_13

PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking 121

27. Engels, S., Kavun, E.B., Paar, C., Yalçin, T., Mihajloska, H.: A non-linear/linear
instruction set extension for lightweight ciphers. In: IEEE 21st Symposium on
Computer Arithmetic, pp. 67–75 (2013)

28. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

29. Goudarzi, D., Journault, A., Rivain, M., Standaert, F.-X.: Secure multiplication for
bitslice higher-order masking: optimisation and comparison. In: Fan, J., Gierlichs,
B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 3–22. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89641-0 1

30. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

31. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46706-0 2

32. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

33. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 4

34. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

35. Karpman, P., Grégoire, B.: The littlun s-box and the fly block cipher. In:
Lightweight Cryptography Workshop (2016)

36. Kim, J., Lee, C., Sung, J., Hong, S., Lee, S., Lim, J.: Seven new block cipher
structures with provable security against differential cryptanalysis. IEICE Trans.
91-A(10), 3047–3058 (2008)

37. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

38. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

39. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace
attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 11

40. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

41. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-319-89641-0_1
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/11894063_4
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-662-46800-5_11
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/BFb0053451

122 H. Kim et al.

42. Sasaki, Yu., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 8

43. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

44. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74619-5 12

45. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack on
full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.) ASI-
ACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 1

46. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

47. Worthman, E.: ChaoLogix: integrated security. Semiconductor Eng. (2015)
48. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-pattern based integral

attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4 23

49. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/978-3-540-71039-4_23

Efficient Implementations

Curve448 on 32-Bit ARM Cortex-M4

Hwajeong Seo1(B) and Reza Azarderakhsh2,3

1 IT Department, Hansung University, Seoul, South Korea
hwajeong84@gmail.com

2 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA

razarderakhsh@fau.edu
3 PQSecure Technologies, LLC, Boca Raton, USA

Abstract. Public key cryptography is widely used in key exchange and
digital signature protocols. Public key cryptography requires expensive
primitive operations, such as finite-field and group operations. These
finite-field and group operations require a number of clock cycles to exe-
cute. By carefully optimizing these primitive operations, public key cryp-
tography can be performed with reasonably fast execution timing. In this
paper, we present the new implementation result of Curve448 on 32-bit
ARM Cortex-M4 microcontrollers. We adopted state-of-art implementa-
tion methods, and some previous methods were re-designed to fully uti-
lize the features of the target microcontrollers. The implementation was
also performed with constant timing by utilizing the features of micro-
controllers and algorithms. Finally, the scalar multiplication of Curve448
on 32-bit ARM Cortex-M4@168 MHz microcontrollers requires 6,285,904
clock cycles. To the best of our knowledge, this is the first optimized
implementation of Curve448 on 32-bit ARM Cortex-M4 microcontrollers.
The result is also compared with other ECC and post-quantum cryptog-
raphy (PQC) implementations. The proposed ECC and the-state-of-art
PQC results show the practical usage of hybrid post-quantum TLS on
the target processor.

Keywords: ARM Cortex-M4 · Curve448 · Public key cryptography ·
Hybrid post-quantum TLS

1 Introduction

Public key cryptography is widely used in key exchange and digital signature
protocols. For public key cryptography, implementation is a challenge with low-
end microcontrollers, which have the disadvantages of low energy, performance,
and memory. In particular, the efficiency of elliptic curve cryptography (ECC)
depends on the compact implementation of finite-field arithmetic and group
operation. For this reason, the optimized implementation of finite-field arith-
metic and group operation should be considered. In this paper, we present
the first Curve448 implementation result on 32-bit ARM Cortex-M4 microcon-
trollers. The motivations of this work may be summarized as follows:
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 125–139, 2021.
https://doi.org/10.1007/978-3-030-68890-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_7&domain=pdf
http://orcid.org/0000-0003-0069-9061
https://doi.org/10.1007/978-3-030-68890-5_7

126 H. Seo and R. Azarderakhsh

– Curve448 offers 224-bit security and is designed for use with the elliptic curve
Diffie-Hellman (ECDH) key agreement scheme [1]. The curve was favored
by the Internet Research Task Force Crypto Forum Research Group (IRTF
CFRG) for inclusion in transport layer security (TLS) standards along with
Curve25519. The curve is an approved elliptic curve for use by the US federal
government, which is confirmed in FIPS 186-5. However, the implementation
of algorithms has not been actively conducted. This work fills this gap.

– The target microcontroller, namely the 32-bit ARM Cortex-M4, is the most
widely used in practice because it has relatively powerful computation abil-
ities in terms of the arithmetic logic unit (ALU), frequency of the CPU,
RAM, and ROM in comparison to legacy embedded processors, such as 8-
bit AVR ATmega and 16-bit MSP430(X) microcontrollers. Furthermore, the
NIST recommended this board for evaluation of post-quantum cryptography
(PQC). For this reason, a number of cryptographic implementations have
been recently done over 32-bit ARM Cortex-M4 microcontrollers [2–5]. How-
ever, Curve448 had not been implemented on this target microcontroller. This
work evaluated Curve448 on ARM Cortex-M4 microcontrollers for the first
time.

For high performance, we adopted state-of-art implementation methods and
some previous methods were re-designed to fully utilize the features of the target
microcontrollers. This was the first implementation of Curve448 on this target
processor. The result was compared with those of other 128-bit security ECC
implementations. The scalar multiplication of Curve448 on 32-bit ARM Cortex-
M4@168 MHz microcontrollers requires 6,285,904 clock cycles. The result shows
that Curve448 is reasonably fast enough on the target microcontroller. The result
was also compared with other PQC implementations. This shows the practical
usage of hybrid post-quantum TLS on the target processor is available.

1.1 Contribution

Detailed contributions are as follows:

First Implementation of Curve448 on 32-Bit ARM Cortex-M4. This
paper presents the first implementation of Curve448 on 32-bit ARM Cortex-M4
processors. State-of-art techniques were applied to improve the performance.
The result shows that the implementation is practically fast enough.

Secure and Efficient Implementation of Primitive Operations. All prim-
itive operations such as finite-field arithmetic and group operation were imple-
mented in a secure and efficient way. By using constant and regular implemen-
tation, the timing attack was efficiently prevented. Furthermore, cache attack
were prevented by avoiding the pre-computed value access. All requirements for
constant timing on ARM Cortex-M4 specifically are also presented for interested
cryptographic researchers.

Curve448 on 32-Bit ARM Cortex-M4 127

In-Depth Comparison of Pre-quantum and Post-quantum Cryptogra-
phy. We compared pre-quantum and post quantum cryptography on the tar-
get processors. The performance report shows the availability of hybrid post-
quantum TLS. Furthermore, we discuss the trade-off between performance and
security in detail.

First Curve448 on ARM Cortex-M4 as an Open Source. The imple-
mentation will be public domain after publication. The source code will be a
helpful resource for researchers.

The remainder of this paper is organized as follows. In Sect. 2, we introduce
the target curve (Curve448), the target microcontroller (32-bit ARM Cortex-
M4), and previous implementations. The optimized implementation techniques
for Curve448 on 32-bit ARM Cortex-M4 are presented in Sect. 3. In Sects. 4, we
evaluate and compare implementation results. Finally, we conclude the paper in
Sect. 6.

2 Related Works

In this section, we introduce the target curve (Curve448), target microcontroller
(32-bit ARM Cortex-M4), and previous implementations.

2.1 Target Curve: Curve448

Edwards curves, which were suggested in [6] provide complete addition formu-
las, which does not have a case (division by zero). The one proper Edwards
curve for cryptography is Curve448–Goldilocks, which is faster and simpler than
traditional NIST curves [1]. Curve448–Goldilocks provides high-security level
(224-bit) and the related equation is as follows:

E : y2 + x2 = 1 + dx2y2

defined over the field F2448−2224−1 with curve parameter d = −39081. Curve448
satisfies the requirement of SafeCurves [7] and is one of ECC standards for TLS
1.3 [8].

2.2 Target Microcontroller: 32-Bit ARM Cortex–M4

The ARM Cortex–M4 microcontroller is a small and energy-efficient ARM pro-
cessor. The microcontroller supports the ARMv7E-M instruction set, which com-
prises Thumb-2 instructions and additional DSP extensions. The Cortex-M4
architecture has a 3-stage pipeline with branch speculation. It includes 16 32-bit
registers (R0:R15), and supports a mix of 16 and 32-bit operations corresponding
to Thumb-2.

Instructions that are relevant for the proposed implementation include 32-
bit arithmetic and logical instructions, such as addition (ADD) and addition with

128 H. Seo and R. Azarderakhsh

carry (ADC), as well as memory instructions that perform multiple-data load-
ing/storing (LDM/STM).

The microcontroller is equipped with powerful single-cycle multiply and
multiply-and-accumulate instructions from DSP extensions, including UMUL,
UMLAL, and UMAAL. These instructions compute the product 32 × 32-bit → 64-bit
(UMUL), plus a 64-bit accumulation with a single 64-bit value (UMLAL) or plus a
64-bit accumulation with two 32-bit values (UMAAL). The core instruction set is
presented in detail in Table 1.

Table 1. Instruction set summary for ARM Cortex-M4.

Inst Operands Description Operation

ADD C, A, B Addition without Carry C ← A+B

ADC C, A, B Addition with Carry C ← A+B+Carry

SUB C, A, B Subtraction without Carry C ← A-B

MOV C, A Move 32-bit word between registers C ← A

UMAAL D, C, A, B Multiplication with Accumulation {D|C} ← A×B+C+D

LDM A!, {B-C} Loading data from memory to registers –

STM A!, {B-C} Storing data from registers to memory –

2.3 Previous Implementations

Since Curve448 was recently presented, it has become a new ECC standard as
a TLS 1.3. For this reason, only few implementations of Curve448 on low-end
microcontrollers are available. In [9], the first Curve448 implementations on both
8-bit AVR ATmega and 16-bit MSP430 microcontrollers were presented. These
works achieved 103,228,541 and 73,477,660 clock cycles for scalar multiplica-
tion of Curve448 on 8-bit AVR ATmega and 16-bit MSP430 microcontrollers,
respectively. To improve the performance, the Karatsuba algorithm is utilized for
multi-precision multiplication. On the 32-bit ARM Cortex-M4 microcontroller,
several studies have investigated optimized implementations of the well-known
Curve25519 [10–13]. Curve25519 provides a 128-bit security level (i.e. short-term
security), while Curve448 provides a 224-bit security level (i.e. long-term secu-
rity). For long-term security, implementation of Curve448 should be considered
rather than Curve25519. In this paper, we present an optimized implementation
of Curve448 on the 32-bit ARM Cortex-M4 microcontroller for the first time.

3 Optimization Techniques for Curve448 on 32-Bit ARM
Cortex-M4

ECC implementations consist of finite-field arithmetic and group operation. For
finite-field arithmetic, modular addition, subtraction, multiplication, squaring,
and inversion operations are required. For group operations, point addition, point
doubling, and scalar multiplication operations are required.

Curve448 on 32-Bit ARM Cortex-M4 129

3.1 Finite-Field Operations

Finite-Field Addition/Subtraction. The 448-bit addition and subtraction
operations are performed together with modular reduction for finite-field addi-
tion and subtraction. First, addition or subtraction is performed. Then, modular
reduction is performed when the addition or subtraction generates a carry bit
or borrow bit as follows:

Integer Addition/Subtraction → Modular Reduction

According to the school-book approach, modular reduction is performed
whenever a carry bit or borrow bit is captured. This approach generates leak-
age information from branch statements. For this reason, modular reduction is
always performed regardless of the carry or borrow bit, which removes the rela-
tion between secret information and modular reduction. When the carry bit or
borrow bit is set, the mask value is generated from it. For example, when the bor-
row bit is set, the value is 0xFFFFFFFF, which is used to mask the modulus. When
the carry bit is set, the zero value is subtracted by the carry bit, which also gen-
erates 0xFFFFFFFF mask. Afterward, the masked modulus is added/subtracted
to/from the intermediate results for modular subtraction and modular addition,
respectively.

For efficient memory access, the usage of registers is also optimized further
because the register access is much faster than the memory access. The 32-bit
ARM Cortex-M4 microcontroller provides 14 general purpose registers. These
registers cannot maintain all operands and intermediate results throughout the
computation to reduce the number of memory accesses. For this reason, only
some of the intermediate results are maintained in registers, while the others are
stored in memory. For this purpose, 9, 2, and 3 registers are used for intermediate
results, temporal storage, and memory pointers, respectively.

Finite-Field Multiplication. Multiplication is the most expensive operation
of ECC implementation. The multiplication consists of integer multiplication
and modular reduction. The proposed implementation performs each operation
separately.

Integer Multiplication → Modular Reduction

To improve the multiplication performance on the 32-bit ARM Cortex-M4
microcontroller, the operand caching (OC) method is utilized [14]. The OC
method caches many operands in registers, which reduces the number of memory
accesses efficiently. In a previous work, the OC method with a width of 4 was
adopted utilizing general purpose registers [4]. The order of instructions was also
optimized to reduce the number of pipeline stalls.

Figure 1 illustrates strategies for implementing 448-bit multiplication on
32-bit ARM Cortex-M4 microcontroller. Let A and B be operands of length
448 bits each. Each operand is written as A = (A[13], ..., A[1], A[0]) and
B = (B[13], ..., B[1], B[0]). The result C = A ·B is represented as C = (C[27], ...,

130 H. Seo and R. Azarderakhsh

Fig. 1. 448-bit Operand Scanning multiplication at the word-level on ARM Cortex-M4
[4].

C[1], C[0]). In the rhombus form, the lowest indices (i, j = 0) of the product
appear at the rightmost corner, whereas the highest indices (i, j = 13) appear
at the leftmost corner. A black arrow over a point indicates the processing of a
partial product. The lowermost points represent the results C[i] from the right-
most corner (i = 0) to the leftmost corner (i = 27). Computation is performed
from 1© to 4©. Because the length of the operand caching is set to 4, the process
is divided into 4 sections.

Finally, the implementation achieved 566 clock cycles for 448-bit multipli-
cation. Because this approach achieves the best performance, we adopted our
implementation. For better performance, the Karatsuba algorithm was also con-
sidered but performance improvement was not observed during the experiment
due to the high efficiency of UMAAL instructions. For the modular reduction, the
fast reduction method introduced in [9] was adopted. Detailed descriptions of
Curve448 are given in Algorithm 1. All general purpose registers are utilized to
maintain the intermediate results. In Step 1, both operands A[2] and A[3] are
added and output the intermediate result (ε0‖T). The intermediate result (T)
is maintained in registers, and the carry bit (ε0‖T) is stored in STACK.

In Step 2, both operands A[0] and ε0‖T are added and output intermediate
result (ε1‖C[0]). The intermediate result (ε1‖C[0]) is stored in STACK, while the
intermediate result (T) is maintained in registers.

In Step 3, the operand (A[1]) is loaded and the intermediate result (ε0‖T) is
added. Then, the operand (A[3]) is added to the intermediate result and output
the intermediate result (ε2‖C[1]).

From Step 4 to Step 7, carry bits are added to the intermediate result. Both
intermediate results (C[0] and C[1]) are maintained in registers. Two registers
are utilized to handle carry bits, while part of registers are stored in STACK.

Curve448 on 32-Bit ARM Cortex-M4 131

Algorithm 1. Fast reduction Curve448 [9].
Require: 896-bit intermediate result A (A[3]∼A[0] in 224-bit)

Ensure: 448-bit result C (C[1]‖C[0] in 224-bit)

1: ε0‖T ← A[2]+A[3]

2: ε1‖C[0] ← A[0]+ε0‖T
3: ε2‖C[1] ← A[1]+A[3]+ε0‖T

4: ε3‖C[0] ← C[0]+ε2
5: ε4‖C[1] ← C[1]+(ε1+ε2+ε3)

6: ε5‖C[0] ← C[0]+ε4
7: C[1] ← C[1]+(ε4+ε5)

8: return C

Finite-Field Inversion. The finite-field inversion can be performed by follow-
ing Fermat’s Theorem. The prime of Curve448 is p = 2448 − 2224 − 1 and the
computation of inversion is a = z−1 ≡ z2

448−2224−3 mod p. The inversion opera-
tion can be performed with 447 modular squaring and 13 modular multiplication
operations. Detailed descriptions are given in Algorithm 2.

3.2 Group Operations

The scalar multiplication of Curve448 requires a number of point addition and
point doubling operations. The school-book approach to perform the scalar
multiplication executes the addition operation depending on the secret value
(i.e. branch statement). In order to ensure the constant execution timing for
scalar multiplication, Montgomery ladder algorithm is utilized [15]. The Mont-
gomery ladder algorithm performs point addition and point doubling in a reg-
ular pattern. The inner routine of the point addition performs addition of two
points, including P1(x1, y1, z1, e1, h1) in extended projective coordinates and
P2(u2, v2, w2) in extended affine coordinates. This point addition outputs the
point P3(x3, y3, z3, e3, h3) in extended projective coordinates. The detailed pro-
cedure of point addition is given in Algorithm 3.

The inner routine of the point doubling performs doubling of one point,
including P1(x1, y1, z1, e1, h1) in extended projective coordinates. This point
doubling outputs the point P3(x3, y3, z3, e3, h3) in extended projective coordi-
nates. The detailed procedure of point doubling is given in Algorithm 4.

3.3 Side-Channel Attack Protection

The cryptography implementation may include the conditional branch depend-
ing on the secret. The proposed implementation of finite-field operation is

132 H. Seo and R. Azarderakhsh

Algorithm 2. Fermat-based inversion for Curve448 (p = 2448 − 2224 − 1).
Require: Integer z satisfying 1 ≤ z ≤ p − 1.
Ensure: Inverse t7 = zp−2 mod p = z−1 mod p.

1: z3 ← z21 · z { cost: 1S+1M}
2: t0 ← z22

3 · z3 { cost: 2S+1M}
3: t1 ← t2

1

0 · z { cost: 1S+1M}
4: t2 ← t2

4

1 · t0 { cost: 4S+1M}
5: t3 ← t2

9

2 · t2 { cost: 9S+1M}
6: t4 ← (t2

18

3 · t3)
2 · z { cost: 19S+2M}

7: t5 ← (t2
37

4 · t4)
237 · t4 { cost: 74S+2M}

8: t6 ← t2
111

5 · t5 { cost: 111S+1M}
9: t7 ← (t2

1

6 · z2223 · t6)
22 · z { cost: 226S+3M}

10: return t7

Table 2. Evaluation of finite-field operation and group operation on the 32-bit ARM
Cortex-M4 microcontrollers in speed (in clock cycles).

Frequency Finite-field Operation Group Operation

Addition Subtraction Multiplication Inversion Addition Doubling Scalar Multiplication

24MHz 164 161 821 363,485 6,566 6,567 6,218,135

168MHz 181 172 838 363,626 6,686 6,674 6,285,904

performed with constant timing by replacing the conditional branch with masked
operation. The mask generation is as follows:

mask ← 0 − (carry or borrow)

Furthermore, the legacy ARM Cortex-M3 has early termination issues
depending on the input values [23]. Because the ARM Cortex-M4 is the succes-
sor of the ARM Cortex-M3, all arithmetic and logical operations are performed
in one clock cycle. This satisfies one requirement for constant timing.

For the case of group operation, the Montgomery ladder algorithm always
performs point doubling and point addition in regular fashion [24]. When the tar-
get processor equips the cache, the implementation must prevent a cache attack.
The cache is activated when memory accesses happen frequently depending on a
certain regular pattern of input (i.e. pre-computed result). The proposed imple-
mentation does not utilize the pre-computed result to avoid a cache attack.

With the above approaches, the implementation achieved constant timing
and this is a basic requirement for cryptographic implementation (i.e. timing
attack resistant). The checklist for constant timing is presented in Table 4. The
proposed implementation satisfies all requirements for constant timing.

Curve448 on 32-Bit ARM Cortex-M4 133

Algorithm 3. Point Addition for Curve448.
Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates, Point

P2 = (u2, v2, w2) in extended affine coordinates
Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates

1: t1 ← e1 · h1
2: e3 ← y1 − x1
3: h3 ← y1 + x1
4: x3 ← e3 · v2 { A = (y1 − x1) · (y2 − x2)}
5: y3 ← h3 · u2 { B = (y1 + x1) · (y2 + x2)}
6: e3 ← y3 − x3 { E = B − A}
7: h3 ← y3 + x3 { H = B + A}
8: x3 ← t1 · w2 { C = t1 · w2}
9: t1 ← z1 − x3 { F = z1 − C}

10: x3 ← z1 + x3 { G = z1 + C}
11: z3 ← t1 · x3 { Z3 = F · G}
12: y3 ← x3 · h3 { Y 3 = G · H}
13: x3 ← e3 · t1 { X3 = E · F}

14: return P3(x3, y3, z3, e3, h3)

4 Evaluation

In this section, we first evaluate the proposed implementations of finite-field
operation and group operation for 448-bit wise on the 32-bit ARM Cortex-M4
microcontroller. Then, a comparison of scalar multiplication on low-end proces-
sors will be presented.

A benchmark result was obtained on an STM32F4 Discovery board equipped
with 32-bit ARM Cortex-M4 microcontrollers. The execution timing in clock
cycles was obtained at two frequencies (24 MHz and 168 MHz). The high fre-
quency (i.e. 168 MHz) was for the real-world application, and it showed the
highest performance. The low frequency (i.e. 24 MHz) is to avoid wait cycles due
to the speed of the memory controller, which ensures the correct clock cycles.
All implementations of arithmetic were implemented in the ARM assembly, and
the libraries were compiled with GCC with optimization flags set to -O3.

The results of finite-field operation and group operation on the 32-bit ARM
Cortex-M4 microcontroller is presented in Table 2. Finite-field addition, subtrac-
tion, multiplication, and inversion operations require 164/181, 161/172, 821/838,
and 363,485/363,626 clock cycles for 24 MHz/168 MHz, respectively. Clock cycles
24 MHz show better performance than 168 MHz case because the frequency does
not have a wait delay. Group addition, doubling, and scalar multiplication oper-
ations require 6,566/6,686, 6,567/6,674, and 6,218,135/6,285,904 clock cycles for
24 MHz/168 MHz, respectively.

In Table 3, a comparison of scalar multiplication on 8-bit AVR, 16-bit MSP,
and 32-bit ARM processors is presented. For other low-end microcontrollers,
NIST P-256 shows the worst performance among 128-bit security ECCs. The

134 H. Seo and R. Azarderakhsh

Algorithm 4. Point Doubling for Curve448.
Require: Point P1 = (x1, y1, z1, e1, h1) in extended projective coordinates
Ensure: P3 = (x3, y3, z3, e3, h3) in extended projective coordinates

1: e3 ← x1 · x1 { A = x1 · x1}
2: h3 ← y1 · y1 { B = y1 · y1}
3: t1 ← e3 − h3 { G = A − B}
4: h3 ← e3 + h3 { H = A + B}
5: x3 ← x1 + y1
6: e3 ← x3 · x3
7: e3 ← h3 − e3 { E = H − (x1 + y1) · (x1 + y1)}
8: y3 ← z1 · z1
9: y3 ← 2 · y3 { C := 2 · z1 · z1}

10: y3 ← t1 + y3 { F := G + C}
11: x3 ← e3 · y3 { X3 := E · F}
12: z3 ← y3 · t1 { Z3 := F · G}
13: y3 ← t1 · h3 { Y 3 := G · H}

14: return P3(x3, y3, z3, e3, h3)

fastest performance is achieved in the implementation of FourQ. Implemen-
tations of Curve25519 show middle performance. The 224-bit security ECC
(i.e. Curve448) on 8-bit AVR ATmega and 16-bit MSP430 requires 103M and
73M clock cycles, respectively. The performance of Curve448 is relatively slower
than that of 128-bit security ECC implementations because of its parameters.
On the 32-bit ARM Cortex-M4 microcontroller, the fastest implementation of
Curve25519 requires 847,048 clock cycles [13], while the FourQ requires 542,900
clock cycles [20]. The proposed implementation of Curve448 requires 6,218,135
clock cycles. Compared with other ECC implementations, the implementation
of Curve448 is 86% and 91% slower than Curve25519 and FourQ because these
curves are defined over small finite-fields, which ensure compact finite-field imple-
mentations on the target processor. ROM and RAM sizes are 3,828 bytes and
2,128 bytes, respectively.

4.1 Trade-Off Between Performance and Security

Performance and security have trade-off relations between them. In the imple-
mentation, we focused on security first. The recommended security level by 2030
is 128-bit (i.e. Curve25519 and FourQ) [25,26]. Even though the performance of
128-bit security ECCs (i.e. Curve25519 and FourQ) is better than that of 224-
bit security ECC (i.e. Curve448), security-sensitive services should ensure high
security levels. This is even more secure against quantum attacks. The quan-
tum resources for the 224-bit security ECC are significantly more than those for
128-bit security ECCs [27].

Curve448 on 32-Bit ARM Cortex-M4 135

Table 3. Comparison of scalar multiplication on 8-bit AVR ATmega, 16-bit
MSP430(X), and 32-bit ARM Cortex-M4 processors in speed (in clock cycles).

Target Implementation 128-bit security 224-bit security

NIST P-256 Curve25519 FourQ Curve448

8-bit AVR ATmega Wenger et al. [16] 34,930 000 – – –

Hutter and Schwabe [17] – 22,791,580 – –

Nascimento et al. [18] – 20,153,658 – –

Düll et al. [19] – 13,900,397 – –

Liu et al. [20] – – 7,296,000 –

Seo [9] – – – 103,228,541

16-bit MSP430 Wenger et al. [16] 22,170 000 – – –

Gouvêa and López [21] 20,476,234 – – –

Seo [9] – – – 73,477,660

16-bit MSP430X Hinterwälder et al. [22] – 6,513,011 – –

Düll et al. [19] – 5,301,792 – –

Liu et al. [20] – – 4,826,100 –

32-bit ARM Cortex-M4 Groot [10] – 1,816,351 – –

Santis and Sigl [11] – 1,563,852 – –

Fujii and Aranha [12] – 907,240 – –

Haase and Labrique [13] – 847,048 – –

Liu et al. [20] – – 542,900 –

This work – – – 6,218,135

Table 4. Checklist for ECC implementations in constant timing.

Masked implementation Early termination prevention Montgomery ladder w/o look-up table
√ √ √ √

5 Hybrid Post-Quantum TLS

During the transition from pre-quantum cryptography to post-quantum cryptog-
raphy, both algorithms should be supported in real-world applications. Recently,
AWS cryptography proposed supersingular isogeny key encapsulation (SIKE)
based hybrid post-quantum transport layer security (TLS) algorithms1. Because
SIKE is an alternative candidates, this algorithm should be counted for PQC2

Classical TLS 1.2 and hybrid post-quantum TLS 1.2 are compared in detail in
Table 5. The protocol performs two independent key exchanges (one classical
and one post-quantum). Then, both keys are combined into a single TLS master
secret. The hybrid post-quantum TLS allows network connections to be secure
when one of the key exchanges (i.e. classical or post-quantum) for TLS is com-
promised by hackers. One of the potential scenarios is quantum computers. If
a large-scale quantum computer is developed in the near future, the current

1 https://aws.amazon.com/ko/blogs/security/round-2-hybrid-post-quantum-tls-
benchmarks/.

2 https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement.

https://aws.amazon.com/ko/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/
https://aws.amazon.com/ko/blogs/security/round-2-hybrid-post-quantum-tls-benchmarks/
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

136 H. Seo and R. Azarderakhsh

discrete logarithm problem (DLP) and integer factorization (IF)-based public
key cryptography will be vulnerable. Under this difficult condition, the hybrid
post-quantum TLS still keeps the connection in secret. Similarly, PQC is not
completely proven to be secure against the quantum computer and quantum
algorithm. When PQC has a backdoor, the legacy PKC still ensures security.

In Table 6, the performance of isogeny based post-quantum cryptography (i.e.
SIKE) is presented. The execution timing for SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 require 184, 257, 493, and 770 million clock cycles, respectively.
Implementations on the 168 MHz Cortex-M4 take 1.09, 1.53, 2.94, and 4.58 s for
SIKEp434, SIKEp503, SIKEp610, and SIKEp751, respectively. The performance
is not as fast as pre-quantum PKC but it is still practically fast enough for real-
world applications, considering that PKC is not frequently performed. When
ECC and SIKE cryptography systems are adopted for hybrid post-quantum
TLS, the multiplication part can be shared. This optimizes the code size. It is
also possible to adopt other PQC candidates for protocols. This is our future
work.

Table 5. Comparison result between classical TLS 1.2 and hybrid post-quantum TLS
1.2 [28].

Classical TLS 1.2 Hybrid Post-Quantum TLS 1.2

premaster secret = ECDHE KEY premaster secret = ECDHE KEY ‖ PQ KEY

seed = “master secret” seed = “hybrid master secret”

‖ ClientHello.random ‖ ClientHello.random

‖ ServerHello.random ‖ ServerHello.random

master secret=HMAC(premaster secret,seed) master secret=HMAC(premaster secret,seed)

Table 6. SIKE implementations on the ARM Cortex-M4 microcontrollers.

Implementation Timings [cc × 106] Timings [second]

KeyGen Encaps Decaps Total KeyGen Encaps Decaps Total

SIKEp434 (AES-128)

Seo et al. [4] 74 122 130 252 0.44 0.73 0.77 1.50

Seo et al. [29] 54 89 95 184 0.32 0.53 0.56 1.09

SIKEp503 (SHA-256)

Seo et al. [4] 104 172 183 355 0.62 1.02 1.09 2.11

Seo et al. [29] 76 125 133 257 0.45 0.74 0.79 1.53

SIKEp610 (AES-192)

Seo et al. [29] 134 246 248 493 0.80 1.46 1.47 2.94

SIKEp751 (AES-256)

Seo et al. [4] 282 455 491 946 1.68 2.71 2.92 5.63

Seo et al. [29] 229 371 399 770 1.36 2.21 2.37 4.58

Curve448 on 32-Bit ARM Cortex-M4 137

6 Conclusion

In this paper, we presented the first optimized implementation of Curve448 on
the 32-bit ARM Cortex-M4 microcontroller. State-of-art implementation tech-
niques are used to achieve the optimal performance. The proposed implementa-
tion achieved 6,218,135 clock cycles. This is practically fast enough considering
that the target microcontroller supports 168 MHz operating frequency. Further-
more, the implementation is secure against timing attacks by avoiding condi-
tional branch and cache access.

Our future work is practical implementation of a hybrid post-quantum TLS
protocol for pre-quantum and post-quantum cryptography algorithms. We will
investigate the secure and efficient implementation of both protocols to achieve
the highest performance.

Acknowledgement. This work of Hwajeong Seo was supported by Institute for Infor-
mation & communications Technology Planning & Evaluation (IITP) grant funded by
the Korea government(MSIT) (<Q|Crypton>, No.2019-0-00033, Study on Quantum
Security Evaluation of Cryptography based on Computational Quantum Complexity).
This work of Reza Azarderakhsh was supported by ARO grant W911NF2010328.

References

1. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. IACR Cryptol. ePrint Arch.
2015, 625 (2015)

2. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: testing and
benchmarking NIST PQC on ARM Cortex-M4 (2019)

3. Kannwischer, M.J., Rijneveld, J., Schwabe, P.: Faster multiplication in Z2m[x] on
Cortex-M4 to speed up NIST PQC candidates. In: Deng, R., Gauthier-Umana, V.,
Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 281–301. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21568-2 14

4. Seo, H., Jalali, A., Azarderakhsh, R.: SIKE round 2 speed record on ARM Cortex-
M4. In: Mu, Y., Deng, R., Huang, X. (eds.) CANS 2019. LNCS, vol. 11829, pp.
39–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31578-8 3

5. Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed imple-
mentation of Kyber on Cortex-M4. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 209–228. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0 11

6. Edwards, H.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3), 393–
422 (2007)

7. Bernstein, D.J., Lange, T., et al.: SafeCurves: choosing safe curves for elliptic-curve
cryptography (2013). http://safecurves.cr.yp.to

8. Rescorla, E., et al.: The transport layer security (TLS) protocol version 1.3 (2017).
https://tools.ietf.org/html/draft-ietf-tls-tls13-21

9. Seo, H.: Compact implementations of Curve Ed448 on low-end IoT platforms.
ETRI J. 41(6), 863–872 (2019)

10. de Groot, W.: A performance study of X25519 on Cortex-M3 and M4, Ph. D.
thesis, Eindhoven University of Technology (2015)

https://doi.org/10.1007/978-3-030-21568-2_14
https://doi.org/10.1007/978-3-030-31578-8_3
https://doi.org/10.1007/978-3-030-23696-0_11
http://safecurves.cr.yp.to
https://tools.ietf.org/html/draft-ietf-tls-tls13-21

138 H. Seo and R. Azarderakhsh

11. De Santis, F., Sigl, G.: Towards side-channel protected X25519 on ARM Cortex-M4
processors. In: Proceedings of Software Performance Enhancement for Encryption
and Decryption, and Benchmarking, Utrecht, The Netherlands, pp. 19–21 (2016)

12. Fujii, H., Aranha, D.F.: Curve25519 for the Cortex-M4 and beyond. In: Lange,
T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 109–127.
Springer, Cham (2017). https://doi.org/10.1007/978-3-030-25283-0 6

13. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 1–48, 2019 (2019)

14. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-23951-9 30

15. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

16. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve cryp-
tography on embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03515-4 16

17. Hutter, M., Schwabe, P.: NaCl on 8-bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-
7 9

18. Nascimento, E., López, J., Dahab, R.: Efficient and secure elliptic curve cryptogra-
phy for 8-bit AVR microcontrollers. In: Chakraborty, R.S., Schwabe, P., Solworth,
J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 289–309. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24126-5 17

19. Düll, M., et al.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcon-
trollers. Des. Codes Cryptogr. 77(2–3), 493–514 (2015). https://doi.org/10.1007/
s10623-015-0087-1

20. Liu, Z., Longa, P., Pereira, G., Reparaz, O., Seo, H.: FourQ on embedded devices
with strong countermeasures against side-channel attacks. IEEE Trans. Depend.
Secure Comput. 17, 536–549 (2018)

21. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography
on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N.
(eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10628-6 17

22. Hinterwälder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: Aranha, D.F.,
Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 31–47. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16295-9 2

23. Franck, C., Großschädl, J., Le Corre, Y., Tago, C.L.: Energy-scalable montgomery-
curve ECDH key exchange for ARM cortex-M3 microcontrollers. In: 2018 6th
International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), pp. 231–236. IEEE (2018)

24. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

25. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M., et al.: Recommendation for
key management: Part 1: General. National Institute of Standards and Technology,
Technology Administration (2006)

https://doi.org/10.1007/978-3-030-25283-0_6
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-642-23951-9_30
https://doi.org/10.1007/978-3-319-03515-4_16
https://doi.org/10.1007/978-3-319-03515-4_16
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-319-24126-5_17
https://doi.org/10.1007/s10623-015-0087-1
https://doi.org/10.1007/s10623-015-0087-1
https://doi.org/10.1007/978-3-642-10628-6_17
https://doi.org/10.1007/978-3-319-16295-9_2
https://doi.org/10.1007/3-540-36400-5_22

Curve448 on 32-Bit ARM Cortex-M4 139

26. Orman, H., Hoffman, P.: Determining strengths for public keys used for exchanging
symmetric keys. Technical report, BCP 86, RFC 3766, April 2004

27. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 9

28. Campagna, M., Crockett, E.: Hybrid post-quantum key encapsulation methods
(PQ KEM) for transport layer security 1.2 (TLS). Internet Engineering Task Force,
Internet-Draft draft-campagna-tls-bike-sike-hybrid-01 (2019)

29. Seo, H., Anastasova, M., Jalali, A., Azarderakhsh, R.: Supersingular isogeny key
encapsulation (SIKE) round 2 on ARM Cortex-M4. IACR Cryptol. ePrint Arch.
2020, 410 (2020)

https://doi.org/10.1007/978-3-319-70697-9_9

Efficient Implementation of SHA-3 Hash
Function on 8-Bit AVR-Based Sensor

Nodes

YoungBeom Kim, Hojin Choi, and Seog Chung Seo(B)

Department of Information Security, Cryptology, and Mathematics,
Kookmin University, Seoul, South Korea

{darania,ondoli0312,scseo}@kookmin.ac.kr

Abstract. The Keccak algorithm was selected by NIST as the standard
SHA-3 hash algorithm for replacing currently used SHA-2 algorithm in
2015. Despite SHA-3’s improved security compared to SHA-2, its low per-
formance in software implementation limits its wide use. In this paper,
we propose an optimized SHA-3 implementation on 8-bit AVR microcon-
trollers (MCU) which are dominantly used for sensor devices in WSNs.
Until now, there are only a few researches on optimization of SHA-3 in
spite of its security importance. Furthermore, it is very challenging to
optimize hash function, especially, SHA-3, on 8-bit AVR MCUs. This
is because the internal state of SHA-3 is 1,600-bit which is much larger
than internal state of symmetric algorithms (typically, 128-bit) like AES,
ARIA, and so on. In other words, it is difficult to accommodate the
whole of SHA-3’s internal state on the registers of AVR MCUs, which
incurs heavy memory accesses during computation. Thus, we analyzed
the structure of SHA-3 algorithm and found that each lane of the internal
state can be executed independently for each process in SHA-3. By using
this fact, we propose an optimization method which can reduce efficiently
the times of memory accesses to the internal state. With this proposed
method minimizing the memory accesses, our implementation of SHA3-
256 achieves around 25.0% of performance improvement when hashing
500 bytes message compared with the previous best work on 8-bit AVR
MCU. To the best of our knowledge, our software is the fastest SHA-3
implementation on AVR platforms until now. In addition, the proposed
optimization method can be easily extended to other embedded MCUs
such as 16-bit MSP430, 32-bit RISC-V and ARM-based MCUs.

Keywords: SHA-3 · Keccak algorithm · 8-bit AVR MCUs ·
Embedded · Microcontroller · WSN

1 Introduction

As the recent Internet of Things (IoT) era has arrived, many applications are
being implemented with Wireless Sensor Networks (WSNs) [1]. However, due

This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2019R1F1A1058494).

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 140–154, 2021.
https://doi.org/10.1007/978-3-030-68890-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_8&domain=pdf
http://orcid.org/0000-0001-8016-2808
https://doi.org/10.1007/978-3-030-68890-5_8

Efficient Implementation of SHA-3 Hash Function 141

to the characteristics of wireless communication in WSNs, the transmitted data
can be easily modified or forged. Hash function is cryptographic algorithm that
provides data integrity and be used to prove whether the data have been mod-
ified or not. Furthermore, it is also used in other various cryptographic appli-
cations, e.g., PBKDF2, HMAC, DRBG, and digital signature algorithms such
as DSA, ECDSA, and RSA-PSS. Hash functions (e.g., SHA-1 or SHA2) are the
most significant cryptographic algorithms from an integrity perspective. How-
ever, several vulnerabilities in SHA-1 have been identified; thus, the US National
Institute of Standards and Technology (NIST) currently does not recommend
the use of SHA-1 [2–6]. Public attacks on the SHA-2 family have continued since
2008. Note that SHA-1 and SHA-2 differ significant; however, they share a sim-
ilar algorithm (i.e., SHA) [7,8]. Therefore, SHA-1 and SHA-2 are vulnerable to
attacks with some identical digests. In some scenarios, the security of SHA-2 is
superior to that of SHA-1, except SHA-2 uses larger inputs and outputs [7,8]. In
addition, several theoretical preimage attacks on SHA-2 have been found [9–11].
Prior to the discovery of preimage attacks on SHA-2, NIST held the SHA-3 com-
petition, concerning that SHA-2 had a similar structure to SHA-1. The Keccak
algorithm was the winner and selected to be the next-generation hash function
standard, i.e., SHA-3 [12].

Through numerous verification, the security of SHA-3(Keccak) has been to
be secure against existing attacks threatening the security of SHA-1 and SHA-2.
However, in spite of higher security of SHA-3, it is currently used less in the field.
One of the biggest reasons is SHA-3 has low performance in software [13–20]. In
the software implementation, SHA-3 (256-bit) is three times slower than SHA-
256 in the 8-bit AVR platform [12,15–17] and SHA-3 (512-bit) is two times slower
than SHA-512 in a CPU environment [2,18–20]. Therefore, software optimization
studies on SHA-3 applicable to various platforms are essential in the future.

In this paper, we propose optimization methods for SHA-3 software imple-
mentation. Also, we demonstrate the efficiency of the proposed optimization
method, for typical low-end 8-bit AVR microcontrollers which are mainly used
for sensor devices in WSNs. The proposed SHA-3 optimization method exploits
the fact that each of the 25 lanes of the internal state can be operated indepen-
dently. Unlike the general implementation order of the existing implementation
methods, we combine θ process and ρ process into a single process to reduce
memory accesses to the internal state in an efficient manner. By using this fact,
π process can be executed implicitly. In addition, the proposed optimization
method does not require additional operations or lookup tables. This advantage
is especially efficient for limited embedded devices which used in WSNs.

Using the propose method, we present a carefully-optimized assembler imple-
mentation of SHA-3 for 8-bit AVR microcontrollers, specifically the ATmega128.
When hashing a 500 bytes message, we obtained an execution time of 1073 Cycles
Per Byte (CPB) using the Assembly implementation. This is 79.1% and 25.0%
faster than the latest implementations proposed by Otte et al. [15] and Balasch
et al. [16], respectively. In addition, our optimized implementation of SHA-3 is
faster than the implementation proposed by Balasch et al., which is currently

142 Y. Kim et al.

the fastest SHA-3 software implementation on the same platform. Furthermore,
the proposed method can be applied to various platforms, e.g., 16-bit MSP430,
32-bit ARM-based MCUs, 32-bit RISC-V, CPUs, GPUs [16], and so on.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review SHA-3 and provides an overview of the 8-bit AVR microcontroller.
Section 3 analysis a related work on the 8-bit AVR microcontroller. Section 4
propose a new optimization method for SHA-3. Section 5 compares the perfor-
mance. Finally, Sect. 6 concludes the paper.

2 Background

2.1 Overview of SHA-3

In 1993, NIST proposed Secure Hash Algorithm 0 (SHA-0) hash function. Later,
SHA-1 and SHA-2 were proposed and standardized. However, Stevens et al. pro-
posed the collision pair of SHA-1 [2], and, as the security of SHA-2 hash algo-
rithm has improved [8,21,22], NIST selected the Keccak algorithm by Bertoni
et al. as SHA-3 in order to substitute SHA-2 in a competition on August 5,
2015 [12]. The Keccak algorithm is based on a sponge construction structure,
which differs from the structure of SHA-2; thus, the Keccak algorithm is resistant
against attacks that are applicable to SHA-2 [12].

0

0

⊕ ⊕ ⊕

Fig. 1. Overview of sponge structure

Sponge Structure. Figure 1 shows the sponge structure of SHA-3. The oper-
ational process of SHA-3 assumes a sponge structure comprising absorbing and
squeezing processes. The absorbing process compresses the message using the
b-bit permutation f -function and a padding function to pad the message. Then,
using the exclusive-OR (XOR) operation, the padded message is calculated with
the output of f -function. The digest is calculated in the squeezing process. In
SHA-3, b-bit permutation means the size of the state and is fixed with b ∈ {25,

Efficient Implementation of SHA-3 Hash Function 143

50, 100, 200, 400, 800, 1600}. Here, b comprises bitrate (r) and capacity (c), and
satisfies b = r + c. In the squeezing process, if the required digest length is greater
than r, then f -function is called to update the internal state. In this paper, the
values of the SHA-3 parameters are b = 1600, r = 1088, and c = 512, and the
digest length is 256 bits. These parameters are generally used for safety [12].

Fig. 2. State of SHA-3[12]

Table 1. the values of w and l for each b

b (bit) 25 50 100 200 400 800 1600

w (bit) 1 2 4 8 16 32 64

l 0 1 2 3 4 5 6

State of SHA-3. f -function is the primary process of SHA-3. f -function takes
the state as input data. Figure 2 shows the structure of the state in SHA-3.

The state of SHA-3 is a three-dimensional x × y × z matrix, where row
x and column y are both fixed to five. The state comprises 25 lanes and the
length of each lane depends on parameters b, w, and l in SHA-3. According to
b, the state is composed of 5 × 5 × w. Table 1 shows the w and l values for each
value of b. As shown in Table 1, l is equal to log2(b/25), and w is equal to 2l. In
SHA-3, f -function repeats the same process by the number of rounds (denoted
nr). Using parameter l, nr is represented by 12 + 2 × l.

f -function. f -function is an internal function of the sponge structure. f -
function is a b-bit permutation. In SHA-3, f -function comprise five processes:
θ, π, ρ, χ and ι). These five processes are used to update state, and f -function
repeats the processes in times of nr rounds.

144 Y. Kim et al.

The effect of θ process is to XOR each bit in the state with parties of two
columns in the array. In the θ process, if this process operates for the bit (x0, y0,
z0), the x-coordinates of the required columns are (x0 + 1) mod 5, (x0 - 1) mod
5. In addition, in this process, the z-coordinate of the column with x-coordinate
(x0 - 1) mod 5 is (z0 - 1) mod w. Algorithm 1 shows the pseudocode of the θ
process. Line 2 in Algorithm 1 is referred to as the initial θ, which generates D[x,
z].

Algorithm 1. θ Process

Require: state A
Ensure: state A′

1: For all pairs(x, z) such that 0 ≤ x ¡ 5 and 0 ≤ z ¡ w
C[x, z] = A[x, 0, z] ⊕ A[x, 1, z] ⊕ A[x, 2, z] ⊕ A[x, 3, z] ⊕ A[x, 4, z];

2: For all pairs(x, z) such that 0 ≤ x ¡ 5 and 0 ≤ z ¡ w
//This step is initial θ
D[x, z] = C[(x - 1) mod 5, z] ⊕ C[(x + 1) mod 5, (z - 1) mod w];

3: For all triples(x, y, z) such that 0 ≤ x, y ¡ 5 and 0 ≤ z ¡ w
A′[x, y, z] = A[x, y, z] ⊕ D[x, z];

4: return A′

[20] [21] [22] [23] [24][15] [16] [17] [18] [19][10] [11] [12] [13] [14][5] [6] [7] [8] [9][0] [1] [2] [3] [4]

[19] [20] [11] [7] [3][17] [23] [14] [5] [1][15] [21] [12] [8] [4][18] [24] [10] [6] [2][16] [22] [13] [9] [0]

Fig. 3. Overview of π process

The effect of π process is to rearrange the positions of the lanes, as shown in
Fig. 3. Here, S[i] (i ∈ [0, 24]) is each lane of state. Note that S[12] is a lane of (x
= 0, y = 0) in state [12].

The effect of ρ process is to right-rotate the bits of each lane by length
(referred to as the offset), which depends on the fixed x- and y-coordinates of
the lane [12]. Equivalently, for each bit in the lane, the z-coordinate is modified
by adding the offset, modulo the lane size. The offsets for each lane that require
the operation are listed in Table 2.

Efficient Implementation of SHA-3 Hash Function 145

Table 2. Offsets of ρ Process

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171

y = 1 55 276 36 300 6

y = 0 28 91 0 1 190

y = 4 120 78 210 66 253

y = 3 21 136 105 45 15

The effect of χ process is to XOR each bit with a nonlinear function of two
other bits in its row [12]. Note that the difference between χ process and the
other processes (i.e., θ, π, and ρ processes) is that χ process should be operated
in row form and implemented accordingly.

ι process execute an XOR operation, for the lane of (x = 0, y = 0) of the
state and constants RC [12]. Since ι process operates only one lane, in the most
implementations, χ process and ι process are combined into a single process.

2.2 Overview of 8-Bit AVR MCUs

The 8-bit AVR microcontroller is an embedded device made into a single inte-
grated circuit by adding memory and I/P to the microprocessor. And this micro-
controller is currently the most used worldwide in the WSNs environment [1].

Table 3. 8-bit AVR Assembly Instructions [23,24], cc means clock cycles.

Asm Operands Description Operation cc

ADD Rd, Rr Add without Carry Rd ← Rd+Rr 1

ADC Rd, Rr Add with Carry Rd ← Rd+Rr+C 1

MOV Rd, Rr Copy Register Rd ← Rr 1

LDI Rd, K Load Immediate Rd ← K 1

LD Rd, X Load Indirect Rd ← (X) 2

ST Z, Rr Store Indirect (Z) ← Rr 2

EOR Rd, Rr Exclusive OR Rd ← Rd⊕Rr 1

LSL Rd Logical Shift Left C|Rd ← Rd<<1 1

LSR Rd Logical Shift Right Rd|C ← 1>>Rd 1

ROL Rd Rotate Left Through Carry C|Rd ← Rd<<1||C 1

ROR Rd Rotate Right Through Carry Rd|C ← C||1>>Rd 1

BST Rd, b Bit store from Bit in Reg to T Flag T ← Rd(b) 1

BLD Rd, b Bit load from T Flag to a Bit in Reg Rd(b) ← T 1

146 Y. Kim et al.

The 8-bit AVR microcontroller’s commands comprise operation codes and an
operand. Table 3 shows the operands and clock cycles of the commands used in
this paper. The 8-bit AVR-MCU consists of flash memory, SRAM, and EEP-
ROM with a Harvard architecture. Our target device is ATmega128 which is
widely used for sensor nodes in Wireless Sensor Networks [25]. ATmega128 has
a 128 KB of flash memory, 4 KB SRAM, and 4 KB EEPROM. The device sup-
ports throughput of 16 MIPS 16 MHz and operates between 4.5-5.5 volts [26].
The AVR-MCU has 32 8-bit general-purpose resisters, which are used for vari-
ous purposes, e.g., basic private operations and bit operations. Specifically, the
R26-R31 registers can be combined and used as three 16-bit registers, i.e., X, Y,
and Z registers. These registers (X,Y, and Z) are used as pointers to indirectly
specify a 16-bit address for data memory. The Status REGister (SREG) shows
the status and result after Arithmetic Logic Unit (ALU) calculations.

3 Analysis of Existing Implementations of Hash
Functions on 8-Bit AVR MCUs

Since Keecak algorithm was selected as SHA-3 standard in 2012, it has been
implemented in various low-end-processors. Basically, the hardware implemen-
tation of SHA-3 is faster than SHA-2 and SHA-1 [27]. In particular, ARM-v8
architectures include special commands to increase the speed of the SHA-3 algo-
rithm [28]. However, the software implementation of SHA-3 is much slower than
SHA-2 [13–17]. Currently, the existing software-implemented SHA-3 algorithm
in various IoT devices, including 8-bit AVR MCUs, follows the order of the
standard SHA-3 implementation listed by NIST [13–16]. In the implementations
based on order of standard way [13–16], π and ρ processes were implemented in
once (π ∼ ρ process), because rotate-operation can be executed while executing
π process. Note that standard implementation execute f -function as follows: θ
process → π ∼ ρ process → χ ∼ ι process.

We found two representative SHA-3 implementations in 8-bit AVR MCUs [15,
16]. First, we analyzed the implementation of Otte et al. in AVR-Crypto-Lib;
however, this implementation is based on the C-language (not 8-bit AVR assem-
bly) [15]. The Otte et al.’s implementation of SHA-3 (256-bit) from AVR-Crypto-
Lib requires 2,570,828 clock cycles to compute the digest of a 500 bytes message,
which corresponds to a hash rate of 5,142 (CPB). This incurs nearly seven times
the cost of 783 (CPB) of the SHA-2 implementation proposed by Otte et al. [15].
Therefore, we analyzed the SHA-3 implementation presented by Balasch et al.,
which is the most popular hash function implementations with an assembly on
the 8-bit AVR microcontroller [16]. The Balash et al.’s implementation of SHA-3
(256-bit) requires 716,483 (CPB) to compute the digest of a 500 bytes message,
which corresponds to a hash rate of 1,432 (CPB). This is the fastest implemen-
tation among existing SHA-3 implementations.

Balash et al. implemented the efficient shift-rotation for operating π ∼ ρ
process. The only rotation instructions in the 8-bit AVR microcontroller are
rotations of 8-bit operands by 1 bit to the left (ROL) and right (ROR). In SHA-3,

Efficient Implementation of SHA-3 Hash Function 147

for b = 1600 and w = 64, the length of a single lane is 64 bits. to rotate 64-bit
in ρ process, eight general-purpose registers are required. Typically, in an 8-bit
AVR MCUs, a 1-bit left-rotation is implemented via a 1-bit logical left-shift
(LSL) followed by seven 1-bit left-rotations through carry (ROL) and an addition
with carry (ADC) [29]. In contrast, a 1-bit right-rotation is implemented by a
1-bit store to T in SREG ((BST)) followed by eight 1-bit right-rotations through
carry (ROR) and a 1-bit load from T in SREG (BLD). Rotation of 64-bit data
by n bits, where 1 < n < 8, can be calculated by repeating the sequence of
instructions to rotate a 64-bit quantity by one bit in the same direction n times.
However, the execution time is not equal when executing 1-bit left-rotation and
1-bit right-rotation for 64-bit data; therefore, for efficient implementation, the
n-bit rotation or (64-n)-bit rotation is employed as required [29]. In addition,
for n-bit rotations greater than 8, the actual execution time of all n-bit shift-
rotation operations can be reduced to 40 clock cycles or fewer if x = (x ≫ n)
operations are replaced by x = (x ≫ n%8). In this process, operation of x =
(x ≫ n/8) directly allocate and store in memory. When storing to memory (ρ
process), the implementation of Balasch et al. combines π and ρ processes into
a single process (π ∼ ρ). Note that Balasch et al. implemented SHA-3 based on
the order of standard implementation [12].

However, even though the implementation presented by Balasch et al. is effi-
cient for the 8-bit AVR MCUs, SHA-3 remains much slower than SHA-2. In
low-end processors, accessing memory requires longer execution time compared
to arithmetic operations. In addition, the state in SHA-3 where b = 1600 requires
at least 200 bytes, which is a heavier memory requirement compared to symmet-
ric ciphers, where the state is only 128 bits. Therefore, in 8-bit AVR MCUs, it
is important to optimize memory access to the state during SHA-3 execution.

Table 4. Number of times to memory accesses to the state of previous implementation,
e.g., Balasch et al. and Otte et al. [13–17]

Standard
initial θ θ process π ∼ ρ process χ ∼ ι process Total Access

Method

Load o o o o 7
Store x o o o

Table 4 shows the number of times to memory access to state in the standard
implementation of SHA-3 recommended by NIST. Here, π ∼ ρ process indicates
that π and ρ processes are combined, and θ ∼ ρ process indicates that θ process
and ρ process are combined. χ and ι processes are also combined with the same
logic. Note that initial θ, which creates D[x, z] in Algorithm1, is part of θ
process. Table 4 shows that state stored in memory is accessed three times during
θ process and is accessed twice when π ∼ ρ process is executed. In addition,
the state is access twice in the χ ∼ ι process. Therefore, existing standard
implementations require seven memory accesses to the state. The size of state is

148 Y. Kim et al.

200 bytes (25×64/8), where b = 1600, w = 64, and l = 16. In addition, the θ, π,
ρ, χ, and ι processes should be executed in 24 rounds (12 + 6 × 2). Therefore,
each execution of f -function of SHA-3 results in 168 = 24 × 7 memory accesses
for 200 bytes (200 bytes are state stored in memory).

In the embedded device, currently used in the WSNs, the high number of
memory accesses to state causes low performance of the algorithm; therefore,
in Sect. 4, we propose a new optimization method that reduces memory access
without additional computation and lookup tables.

4 Proposed SHA-3 Implementations in 8-Bit AVR MCUs

4.1 Main Idea

Here, we propose a generic SHA-3 optimization method that can be used for var-
ious platforms, e.g., low-end and high-end processors. In addition, we present the
optimized techniques of SHA-3 on 8-bit AVR microcontroller. As mentioned in
Sect. 3, in low-end-processors, memory access to state requires longer execution
time compared to arithmetic operations. Therefore, it is important to schedule
the use of general-purpose registers for the state efficiently and optimize memory
access during SHA-3.

The main idea is to execute π process implicitly at minimum cost and com-
bine the θ and ρ processes into a single process (θ ∼ ρ process) to reduce accesses
to the state. Figure 4 shows an overview of proposed SHA-3 method. Each lane
of the state is operated independently in the θ process; thus, ρ process can be
applied to each lane. In other words, after generating D[x, z] through the initial
θ, we can execute the remained θ process and ρ process. Note that initial θ is part
of θ process. Twice memory accesses (Load and Store) occur for state executing
θ ∼ ρ process. π process is performed implicitly while executing θ ∼ ρ process;
also, changes only the position of the lane without directly affecting the value
of the lane in the state. Therefore, our main idea implicitly executes π process,
when storing the calculated state in the memory.

Table 5. Number of memory accesses to the state

Standard
initial θ θ process π ∼ ρ process χ ∼ ι process Total Access

Method

Load o o o o 7
Store x o o o

Proposed
initial θ θ ∼ ρ process π process χ ∼ ι process Total Access

Method

Load o o x(Implied) o 5
Store x o x(Implied) o

Efficient Implementation of SHA-3 Hash Function 149

Fig. 4. Proposed main idea

Table 5 shows the number of accesses to the state for the proposed implemen-
tation, compared the previous implementations based on the order of standard
methods. The proposed method reduces memory accesses twice compared to the
standard method. Therefore, a total of five accesses to the state occur, and when
f -function is called, 120 (24 × 5) memory accesses to the 200-byte state occur.
In other words, the proposed implementation reduces the amount of memory
access 48 (168 - 120) compared to the standard implementation.

Implementations of SHA-3 on the 8-bit AVR MCUs depend on the value of
b. If b is less than 200 (w is less than 7), the general-purpose register can store
all lanes of the state. However, if b is 400, 800, or 1600, the length of a single
lane is 16-bit, 32-bit, and 64-bit, respectively; therefore, it is difficult to store
all lanes of state in a general-purpose register. Therefore, an important point in
implementing SHA-3 is how efficiently memory is accessed when the length of
the lane is more than 8-bit. In this section, we present the SHA-3 implementation
technique where b = 1600, which conforms to the Korean Cryptographic Module
Validation Program (KCMVP) [30].

150 Y. Kim et al.

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31

Fig. 5. Register scheduling for proposed implementation in 8-bit AVR MCUs

4.2 Proposed Implementation Technique on 8-Bit AVR MCUs

Figure 5 shows the register scheduling for the proposed method on the 8-bit AVR
microcontroller. Here, eight registers are required to compute a single lane (64-
bit) within the state. Here, registers R8-R15 are used to perform operations on
the single lane. Note that registers R16-R23 and R8-R15 can also store a single
lane. Registers R2-R5 are required to handle the state address value of in θ ∼ ρ
process. R26:R27 keep the address value of state of f -function. R28:R29 keep the
address value of D[x, z] stored initial θ. In addition, R30:R31 keep the address
value of the constant data used in ι process.

Algorithm 2 shows the pseudocode for computation of the initial four lanes
of the state in θ ∼ ρ process. Here, load state is a macro that uses registers
R24 and R25 as offsets to perform an XOR operation using the D[x, z] made in
initial θ, and the results are stored in registers R8-R15. load state comprises
assembly instructions as 2 ADD, 2 ADC, 16 LD, and 8 EOR. First, load state loads
the value of the lane to the registers R8-R15. Then, load state loads 8-bit of
D[x, z] to R0 and execute the EOR instruction for registers R8 (EOR R8, R0). In
load state macro, the sequence of loading D[x, z] and executing EOR instruction
is repeated eight times, because one of lane is 64-bit: thus, load state completes
the computational part of θ process for a single lane. In other words, for θ process,
only the memory update to the state remains. load temp is a macro with the
same logic as load state that stores the computational value in registers R16-
R23. rotate store s is a macro that executes ρ process for the eight registers
that have completed θ process stored in registers R8-R15 and updates registers
R8-R15 to state using the offset stored in register R24. rotate store t is a
macro of logic such as rotate store s that uses R16-R23.

In line 1 of Algorithm2, load state stores the results of θ process for S[0].
This value is S′[0]. Here, θ process has been completed; however, to execute π
process implicitly, S[4] must be loaded to registers R16-R23, because the lane
of S[0] move to S[4] in π process. Line 2 (Algorithm 2) sets the offset of S[4],
and line 3 sets offset D[4]. Then, line 4 makes S′[4] into the same logic as line 1,
and, at line 5, ρ process is executed to make S′[0] to S̄[0]. Line 5 updates S[4]

Efficient Implementation of SHA-3 Hash Function 151

Algorithm 2. AVR Assembly Codes for proposed combined θ ∼ ρ process for
implicitly executing π process with initial four lane, D[i] (i ∈ [0, 4]) : D[i, z] of
initial θ, S[j] : 64-bit data of one lane of state, S′[j] : 64-bit data with θ process
calculated, S′[j] : 64-bit data with θ and ρ process calculated, j ∈ [0, 24].

S[4]←S̄[0] computation

1: load state

//R8-R15 : S′[0]←(S[0]⊕D[0])

2: LDI R24, 32 // S[4]

3: LDI R25, 32 // D[4]

4: load temp

//R16-R23 : S′[4]←(S[4]⊕D[4])

5: rotate store s //S[4]←S̄[0]

S[14]← S̄[4] computation

6: LDI R24, 112 // S[14]

7: LDI R25, 32 // D[4]

8: load state

//R8-R15 : S′[14]←(S[14]⊕D[4])

9: rotate store t // S[14]←S̄[4]

S[17]←S̄[14] computation

10: LDI R17, 136 // S[17]

11: LDI R17, 16 // D[2]

12: load temp

//R16-R23 : S′[17]←(S[17]⊕D[2])

13: rotate store s // S[17]←S̄[14]

S[15]← S̄[17] computation

14: LDI R24, 120 // S[15]

15: EOR R25, R25 // D[0]

16: load state

//R8-R15 : S′[15]←(S[15]⊕D[0])

17: rotate store t // S[15]←S̄[17]

to S̄[0] using the offset stored in register R24. Here, where π process is executed
implicitly. In the standard method, the implementation order is θ → π → ρ. In
proposed method, π process is executed through the step of store in memory;
thus, the offset used in ρ process, which is executed before π process, is the offset
where π process should be applied. Our implementation is actually implemented
in θ → ρ → π order. Since the offset in table applied π process can be used
rather than the offset in Table 2, no additional memory cost and generating
cost is incurred. When computation of line 5 is completed, S[4] is updated to
S̄[0] with θ, π, ρ processes applied. The proposed implementation repeats this
sequence. In lines 6–17, the proposed implementation repeats same logic of lines
2–5. If Algorithm 2 is within same logic, executing π process implicitly, and θ ∼ ρ
process for all lanes of state is completed.

The advantage of the proposed implementation on the 8-bit AVR MCUs
is that there is no additional memory cost, which is significant for resource-
limited environments. In other words, with the proposed implementation, mem-
ory accesses are reduced without having to generate a lookup table. In addition,
no additional clock cycles occur in the proposed implementation. As with line 2
and 3, the cost of setting offsets is the same as the offset setup costs required by
θ ∼ ρ process in the standard implementation method [15,16].

152 Y. Kim et al.

5 Performance Analysis

We compared the performance of the proposed implementation method to that
of existing implementation method on 8-bit AVR MCUs. In this evaluation, we
used the following of SHA-3 (256-bit) parameters: b = 1600, r = 1088, and c =
512. Thus, in the sponge structure absorbing process, the message block was
divided into 136 bytes. Therefore, if the length of the message was a multiple
of 136 bytes, the maximum performance relative to clock cycles per byte can be
achieved. The performance was measured relative to execution time (CPB) by
hash rate when hashing a byte of various messages in the 8-bit AVR microcon-
troller. The software was implemented using Atmel Studio 7, and the code was
compiled using the -O2 option in avr-gcc version 5.4.0. All reported execu-
tion times were determined using the cycle-accurate instruction set simulator in
Atmel Studio 7, where we used the ATmega128 microcontroller as the target
device.

Table 6. Performance of proposed SHA-3 Implementations by hash rate when hashing
a byte of various message in 8-bit AVR microcontroller, hash rate represent cyc/byte
(CPB)[15,16]

Reference Algorithm Language
Length of message byte

50 byte 100 byte 500 byte

This Paper SHA-3(256-bit) Asm
2667 1333 1073

(+25.1%) (+25.7%) (+25.0%)

Otte et al. [15] SHA-3 (256-bit) C 12854 6427 5142

Balasch et al. [16] SHA-3 (256-bit) Asm 3560 (-) 1795 (-) 1432 (-)

Balasch et al. [16] SHA-256 Asm 672 668 532

Balasch et al. [16] Blake (256-bit) Asm 714 708 562

Balasch et al. [16] Grφstl (256-bit) Asm 1220 1012 686

Balasch et al. [16] Photon (256-bit) Asm 9723 7982 4788

Table 6 compares the proposed implementation to previous SHA-3 implemen-
tations, e.g., the implementations proposed by Otte et al. [15] and Balasch et
al. [16]. In addition, we compared the proposed implementation to a previous
SHA-2 implementation and three SHA-3 candidates. When hashing a 500 bytes
message, we obtained an overall execution time of 1073 CPB for the Assembly
implementation. The proposed implementation obtained a 79.1% performance
improvement over the implementation method proposed by Otte et al. and a
25.0% performance improvement over the method proposed by Balasch et al.
The existing implementation [16] incurs nearly three times the CPB cost for
SHA-256. However, the proposed implementation requires the CPB by nearly
two times to SHA-256 [16], compared to Balash et al.’s implementation [16].

Efficient Implementation of SHA-3 Hash Function 153

6 Concluding Remarks

In this paper, we have proposed software optimization method for SHA-3 on 8-bit
AVR MCUs. The proposed method optimizes SHA-3 process without requiring
a lookup table and additional operations from a memory access perspective.
With the proposed optimization method, our implementation on an 8-bit AVR
microcontroller obtained 25.0% performance improvement over the previous best
results on the same condition [16]. The proposed method is applicable to a variety
of algorithms using SHA-3, e.g., HASH DRBG, HMAC DRBG, PBKDF2, and
digital signature algorithms. Furthermore, our method is a generic optimization
method that can be applied to various platforms, e.g., both high-end and low-end
processor environments.

References

1. Park, S.-E., Hwang, C.-G., Park, D.-C.: Internet of Things (IoT) on system imple-
mentation with minimal Arduino based appliances standby power using a smart-
phone alarm in the environment. JKIECS 10, 1175–1182 (2015)

2. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

3. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

4. Rijmen, V., Oswald, E.: Update on SHA-1. IACR Cryptology ePrint Archive
2005:10 (2005)

5. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 1

6. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Cryptogr. 59(1–3), 247–263 (2011)

7. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: attacks
on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 244–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34047-5 15

8. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
IACR Cryptology ePrint Archive 2011:37 (2011)

9. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 16

10. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. IACR Cryptology ePrint Archive 2016:374 (2016)

11. Sasaki, Y., Wang, L., Aoki, K.: Preimage attacks on 41-step SHA-256 and 46-step
SHA-512. IACR Cryptology ePrint Archive 2009:479 (2009)

12. Dworkin Morris, J.: SHA-3 standard: permutation-based hash and extendable-
output functions (2015). https://doi.org/10.6028/NIST.FIPS.202

https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.6028/NIST.FIPS.202

154 Y. Kim et al.

13. Lee, H.-W., Hong, D., Kim, H., Seo, C., Park, K.: An implementation of an SHA-3
hash function validation program and hash algorithm on 16bit-UICC. J. Korea
Inst. Inf. Secur. Cryptol. 41, 885–891 (2014)

14. Kang, M., Lee, H., Hong, D., Seo, C.: Implementation of SHA-3 algorithm based
on arm-11 processors. J. Korea Inst. Inf. Secur. Cryptol. 25, 749–757 (2015)

15. Otte et al.: AVR-crypto-lib (2015). https://wiki.das-labor.org/w/-AVR-Crypto-
Lib/en

16. Balasch, J., et al.: Compact implementation and performance evaluation of hash
functions in ATtiny devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol.
7771, pp. 158–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37288-9 11

17. Keccack Team. Extended Keccack code package (2018). https://keccak.team/
index.html

18. KISA. SHA-3 source code manual (2020). https://seed.kisa.or.kr/kisa/kcmvp/
EgovVerification.do

19. Keccack Team. The extended Keccak code package (open-source implementations
of the cryptographic schemes defined by the Keccak team). https://github.com/
XKCP/XKCP

20. Korea internet & security agency open cryptography algorithms. https://seed.kisa.
or.kr/kisa/reference/EgovSource.do

21. Sanadhya, S.K., Sarkar, P.: New collision attacks against up to 24-step SHA-2.
IACR Cryptology ePrint Archive 2008:270 (2008)

22. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential
collisions for reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 15

23. Atmel. AVR instruction set manual (2012). http://ww1.microch-ip.com/downloads/
en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf

24. Kwon, H., Kim, H., Choi, S.J., Jang, K., Park, J., Kim, H., Seo, H.: Compact
implementation of CHAM block cipher on low-end microcontrollers. In: You, I.
(ed.) WISA 2020. LNCS, vol. 12583, pp. 127–141. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-65299-9 10

25. Kim, Y.B., Seo, S.C.: An efficient implementation of AES on 8-Bit AVR-based
sensor nodes. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 276–290. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-65299-9 21

26. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-
compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE
Trans. Inf. Forensics Secur. 11(7), 1385–1397 (2016)

27. Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: Fair and comprehensive per-
formance evaluation of 14 second round SHA-3 ASIC implementations, January
2010

28. ARM Coporation. ARM architecture reference manual Armv8 (2010). https://
www.scss.tcd.ie/∼waldroj/3d1/arm arm.pdf

29. Cheng, H., Dinu, D., Großschädl, J.: Efficient implementation of the SHA-512 hash
function for 8-Bit AVR microcontrollers. In: Lanet, J.-L., Toma, C. (eds.) SECITC
2018. LNCS, vol. 11359, pp. 273–287. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-12942-2 21

30. KISA. KCMVP manual for cryptography (2020). https://seed.k-isa.or.kr/kisa/
Board/79/detailView.do

https://wiki.das-labor.org/w/-AVR-Crypto-Lib/en
https://wiki.das-labor.org/w/-AVR-Crypto-Lib/en
https://doi.org/10.1007/978-3-642-37288-9_11
https://doi.org/10.1007/978-3-642-37288-9_11
https://keccak.team/index.html
https://keccak.team/index.html
https://seed.kisa.or.kr/kisa/kcmvp/EgovVerification.do
https://seed.kisa.or.kr/kisa/kcmvp/EgovVerification.do
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://seed.kisa.or.kr/kisa/reference/EgovSource.do
https://seed.kisa.or.kr/kisa/reference/EgovSource.do
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/978-3-642-25385-0_15
http://ww1.microch-ip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microch-ip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
https://doi.org/10.1007/978-3-030-65299-9_10
https://doi.org/10.1007/978-3-030-65299-9_10
https://doi.org/10.1007/978-3-030-65299-9_21
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
https://doi.org/10.1007/978-3-030-12942-2_21
https://doi.org/10.1007/978-3-030-12942-2_21
https://seed.k-isa.or.kr/kisa/Board/79/detailView.do
https://seed.k-isa.or.kr/kisa/Board/79/detailView.do

Security Analysis

Can a Differential Attack Work for an
Arbitrarily Large Number of Rounds?

Nicolas T. Courtois1(B) and Jean-Jacques Quisquater2

1 University College London, Gower Street, London, UK
n.courtois@ucl.ac.uk

2 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
jjq@uclouvain.be

Abstract. Differential cryptanalysis is one of the oldest attacks on block
ciphers. Can anything new be discovered on this topic? A related question
is that of backdoors and hidden properties. There is substantial amount
of research on how Boolean functions affect the security of ciphers, and
comparatively, little research, on how block cipher wiring can be very
special or abnormal. In this article we show a strong type of anomaly:
where the complexity of a differential attack does not grow exponentially
as the number of rounds increases. It will grow initially, and later will
be lower bounded by a constant. At the end of the day the vulnerability
is an ordinary single differential attack on the full state. It occurs due
to the existence of a hidden polynomial invariant. We conjecture that
this type of anomaly is not easily detectable if the attacker has limited
resources.

Keywords: Feistel ciphers · Boolean functions · Multivariate
polynomials · T-310 · Generalized linear cryptanalysis · Polynomial
invariants · Hidden polynomial problems · Annihilators · Markov
ciphers · k-normality · Algebraic cryptanalysis

1 Introduction

Differential Cryptanalysis (DC) is a well-known basic attack on block ciphers
[4,32] and it may seem that what remains to study are just some fine details,
cf. [28]. In order to improve DC, researchers have considered various ways to
aggregate a larger number of differences [31], for example with truncated differ-
entials of Knudsen [40]. We can hardly just combine two truncated differentials
and expect that the propagation probabilities would just be multiplied [9,29,30].
There is a hidden complexity and a lot of non-uniformity: probabilities of individ-
ual differentials may differ very substantially. However we do not expect anything
special to happen with just old ordinary DC with single differentials. In fact we
do: it is the well-known question of Markov ciphers [42]. In this paper we study
cases where this property is violated, and DC does not work as expected because
relevant events are not independent. What is interesting is showing that this can
advantage the attacker in a substantial way.
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 157–181, 2021.
https://doi.org/10.1007/978-3-030-68890-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_9&domain=pdf
http://orcid.org/0000-0003-0736-431X
https://doi.org/10.1007/978-3-030-68890-5_9

158 N. T. Courtois and J.-J. Quisquater

This paper is also about backdooring and hidden properties. Here we will
have a hidden polynomial equation in a similar way as in certain public key
cryptosystems. It is not apparent for the attacker, even if the attacker knows
another, related set of polynomials, which they use for encryption. Our hid-
den property is going to be a non-linear invariant property, a topic which has
attracted considerable attention in recent years [12–19,43,51]. A wider funda-
mental open problem is the very existence of new attacks on block ciphers, of
any sort, such that their complexity would not grow exponentially with the num-
ber of rounds. Even though such attacks exist, they seem extremely complex.
Surely this would not be possible with good old differential cryptanalysis? In
this paper we show that this is actually possible. A similar result for a trun-
cated differential attack was presented at Crypto 2011, cf. Section 3 of [43]. This
earlier result worked only for some weak keys. Our attack works with a single
differential, which is harder, as probabilities are lower. It is uniform and works
for all 2240 keys without any exception. It also works in spite of the presence of
round constants in T-310.

In this article these considerations come together. We show how to design
an anomalous differential attack. The only thing that the attacker observes,
will be that a certain differential propagates with a probability which will be
bounded by a constant for any number of rounds. This is quite surprising and
hides the existence of a hidden polynomial invariant property, the existence of
which the attacker could potentially ignore forever; even if they know about the
(derived) differential property. Sometimes, differential cryptanalysis does not
work as predicted by a “naive” theory and the events in different rounds are not
independent. However, this is not just an annoying discrepancy; a bug which
was typically ignored by researchers until now. We discover that an anomaly of
this sort conceals another strong property extremely useful for the attacker.

This article is organised as follows. In Sect. 2 we explain the philosophy of
what we do. In Sect. 3 we study the T-310 cipher. In Sect. 4 we present some older
examples of invariant attacks on T-310. In Sect. 5 we describe our attack with
one main theorem and 3 technical lemmas. In Sect. 6 we show what happens in
practice. In Sect. 7 we discuss several future cryptanalysis research ideas and we
wonder if some sort of converse result could be true. Then comes the Conclusion.
In AppendixA we look at vulnerability of Boolean functions against our attacks.
In AppendixB we consider how invariant properties we study can be used for
key recovery.

2 Background: Markov Ciphers and Nonlinear Invariants

The notion of Markov ciphers was introduced at Eurocrypt 1991 by Lai, Massey,
and Murphy, see [42]. Probably these questions were already studied earlier, in
the Eastern Bloc, cf. [23,24,41]. In short, we have a Markov cipher when the
probability that a certain output difference is obtained, does not depend on the
input value (but depends on the input difference), when the round key is chosen
random. This formulation ignores the question of how the probability depends

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 159

also on the key, and therefore, our current understanding is yet greatly simplified
(we refer to [28,41] to see why this matters). In short, in [42] it is simply assumed
that the keys are chosen uniformly at random, similar to averaging probabilities
over all possible keys. Many known ciphers are Markov ciphers, for example DES,
FEAL, LOKI and IDEA, [42]. Other ciphers such as GOST behave as Markov
ciphers with some degree of approximation [9,28].

The importance of Markov ciphers is explained in page 24 of [42]: in a Markov
cipher “every differential will be roughly equally likely” after sufficiently many
rounds, cf. also [47]. The main goal of the present article is to show that there
exists a block cipher violating this exact long-term derived property of Markov
ciphers in an extremely strong way. Here all differentials will vanish progressively,
with probability being zero in practical terms, except with very few special
differentials. These differences are able to survive for an arbitrarily large number
of rounds. If so, not being a Markov cipher degrades the security of our cipher
in a very substantial way. Compared to earlier results in [43], our attack cf.
Theorem 5.1.1 works for any key, 100% of keys. Moreover, it works with round
constants in T-310. Eliminating the round constants and the key bits alike are
hard problems in non-linear cryptanalysis. Many known attacks only work for
some keys, not all, see [43,51], or only for some round constants, see Section 7.4
in [14].

What we study in this paper is very much like a backdoor, a hidden unex-
pected property leading to a strong attack. We emphasise the fact that events
of this kind can be easily overlooked. There is an exponential number of dif-
ferences to study and specific events are detectable only if we have sufficient
computing power and a sufficient number of Plaintext/Ciphertext (P/C) pairs.
They could also be detected if a specific difference with abnormal propagation
is already known, or we are able to characterize some specific input states on n
bits where the propagation behaves in an unusual way. Researchers who study
this on the experimental side might also discard this result as an outlier. We
found it very hard to believe that this is real. Therefore, it is important that
in the present article we establish our result through rigourous mathematical
proof, see Thoerem 5.1.1 page 10. It is also confirmed by computer simulations
in Sect. 6.

2.1 Weak Keys and Weak Components - Long Term Key

There is a substantial amount of research on how non-linear components
(Boolean functions and S-boxes) affect the security of ciphers and compara-
tively little research, on how the block cipher wiring can be special or weak, for
example with DES P-box, see [5] or the long-term key LZS in T-310 [21]. In
cryptanalysis, we always look for special or even abnormal cases, for example,
the block cipher KeeLoq can be broken in an extremely short time of type only
223 for 15 % of keys, cf. [2]. A fair assessment of weakness requires the assump-
tion that weak keys occur at random, with their “natural” probability; see the
“multiple random key scenario” in Section 29 in [10]. Here we study the proba-
bility for a Boolean function that a certain product of polynomials is zero, see

160 N. T. Courtois and J.-J. Quisquater

AppendixA. An essential observation is that in the ring of Boolean polynomials,
factorization is not unique and there are typically numerous solutions to such
problems, see [15], and one may eventually lead to an attack [17,19].

2.2 Nonlinear Cryptanalysis and Higher Order Nonlinear
Cryptanalysis

In recent years many authors show how to construct attacks where a certain
non-linear polynomial is invariant [12–19,43,51]. Following ICISC 2019, a good
way to study these attacks is a white box method [19]. We formulate our attacks
using Boolean polynomial arithmetic. As such, the whole attack could potentially
apply to another cipher modulo renaming of variables and we do not use the full
specification of the cipher, see [19] and [14]. If a cipher satisfies a certain number
of initial conditions on some basic polynomials, then our attack works for an
arbitrarily large number of rounds. If a property involves just one encryption,
we say it is a property of order 1. The invariants in [16,17,19] and a majority
of other recent works on non-linear invariants are of order one (for one single
encryption). In this paper a property of order 1 will be used to alter the behaviour
of a differential attack. Overall we get an invariant property of order 2.

An important family of invariant attacks are product attacks: the invariant is
a product of polynomials. Constructing a non-linear invariant attack is a difficult
combinatorial problem. At Eurocrypt’96 Knudsen and Robshaw claimed that
this cannot work for Feistel ciphers [44]. Initially, attempts to find a non-linear
invariant attack on DES have failed, or produced a tiny improvement compared
to Matsui’s Linear Cryptanalysis (LC), cf. Crypto 2004 in [20]. Certain block
ciphers such as T-310 use only very few key bits in each round, cf. [23], and are
particularly vulnerable to this type of attack. Consequently, we have a plethora
of attacks of this type [12,14,51] with increasing degrees [13,16,19], which is
expected to make the attack increasingly powerful. More general attacks can
work with sums of two or more products. For T-310 this is shown in [18], with
an example of type AC+BD which we reproduce below in Sect. 4.3. An example
with DES is found in Remark 2 in Section 10 of [19].

2.3 On Success Probability and Annihilation Degree in Previous
Attacks

In ICISC 2019 the best attack on T-310 was such that if our Boolean function is
such that (Z +e)(a+b)(c+d) = 0 then a certain product of 8 linear polynomials
is an invariant working for any number of rounds, any key, and any choice of
round constants. A Boolean function with this type of annihilation with 2 factors
is called 4-weakly-normal, where 4 = 6 − 2, cf. Appendix A and [7]. This notion
was earlier studied by Dobbertin [34]. It is easy to see that a Boolean function Z
chosen at random will be 4-weakly-normal with very high probability of 2−0.68,
cf. Table 4. A yet stronger or more realistic attack which would only require
that Z is 3-normal with Z(a + d)(b + e)(c + f) = 0 was described in [16], and a
similar attack will be studied inside this paper as a technical Lemma5.3.1 page

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 161

13. The degree of freedom for the attacker increases at last. 100% of all Boolean
functions on 6 bits are 3-normal, see Section 5 in [19] and [35]. Moreover, several
methods to annihilate with a product of 3 factors exist typically. A recent paper
shows that a similar attack with 3 factors exists also with the original Boolean
function used during the Cold War to protect government communications [17].

3 Short Description of T-310

We recall the definition of T-310 block cipher from [50]. T-310 operates on 36 bit
blocks and a secret key on 240 bits. Each round involves two key bits K,L and
one round constant bit F , which is derived from a fixed IV of 61 bits which is
transmitted in clear text. The secret key of 240 bits is stored on a paper punch
card and is reused after every 120 rounds. The actual encryption is done in a
peculiar stream cipher mode which we will ignore here. We refer to [49,50] and
[21] for more details. In this paper we only study the underlying block cipher (a
keyed permutation on 36 bits).

The wiring or the long term key in T-310, is the equivalent of the P-box
in DES, and it is known under the name of LZS or Langzeitschlüssel, which
means a long-term key. It is changed once per year typically. Formally the LZS
wiring is defined by two functions: D : {1 . . . 9} → {0 . . . 36}, P : {1 . . . 27} →
{1 . . . 36} which are typically injective. We need to specify which input state
bits are connected to contacts named D1-D9 and v1-v27 in Fig. 2. For example
D(5) = 36 is about what happens inside the small square box with letter D in
Fig. 1. D(5) = 36 means that input bit x36 is connected to the wire called D5

Fig. 1. High-level overview of one round of T-310.

162 N. T. Courtois and J.-J. Quisquater

in Fig. 2 which then becomes U5 = y17 after XOR with bit g4. Then P (1) = 25
refers the content of the square box with letter P in Fig. 1. It means that input
x25 is connected to v1 or the 2nd input of Z1 in Fig. 2.

In each round only 2 key bits K,L are used. The secret key is defined as
s1...120,1...2 ∈ {0, 1}240 which is 240 bits. The same 2 bits are repeated after 120
rounds with

K = sm,1 and L = sm,2

In addition each round has a round constant called F , which is derived from
the public IV value. In all, for any F,K,L ∈ {0, 1}3 one round of this block cipher
is a permutation on 36 bits. This requirement is not obvious and it requires some
complex technical conditions on the cipher wiring, see [22].

Fig. 2. The internal structure of one round of T-310 block cipher.

In Fig. 3 we give a set of closed formulas to compute the output bits y1−36

in each round from the input bits x1−36. These formulas are self contained, i.e.
everything can be derived just from these formulas. In one round 9 new bits
are created and 36 − 9 = 27 bits are shifted by one position. The cipher uses
4 identical Boolean functions of 6 bits which are denoted by Z1, Z2, Z3, Z4 on
Fig. 2. A common convention is to rename these 4 Boolean functions and use 1-
letter notations Z(), Y (),X(),W () respectively (backwards naming convention).

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 163

Fig. 3. The specification of one round of T-310.

Notation. When we work on invariant attack, we use more compact notations.
and the 36 bits x1, . . . , x36 are replaced by single letters, cf. Fig. 4.

Fig. 4. Variable naming conventions.

We work on invariants, and variables y1 and x1 will be treated likewise and
denoted by the same letter (!). Letters were chosen to avoid certain letters like F
or W used for a different purpose. Traditionally, if we want to avoid ambiguity,
we will distinguish between the variable a at input denoted by ai and the same
variable at output denoted by ao. Moreover later inside this paper we study two
distinct encryptions, in which case we can distinguish the two instances of a by
a1 or a2 added in the exponent.

164 N. T. Courtois and J.-J. Quisquater

4 Some Early Attacks on T-310 and Related Questions

The T-310 block cipher is a good target for cryptanalysis with non-linear invari-
ants. The key reason for this is that extremely few key bits and other round
constants are used in each round. This is a crucial property, which distinguishes
block ciphers made in the West, typically stronger, and weaker block ciphers
made in the Eastern Bloc, a question which was discussed in [23,24]. For this
reason, DES is substantially more secure than T-310, even though apart from this
property, both ciphers are extremely similar, and can be attacked in the same
way. The difference is mainly quantitative: many more key bits are involved in
each round of DES. Consequently, attacks on DES typically only work for a
small fraction of the key space. This was shown very clearly in ICISC 2019 [19]
where two ciphers are studied side-by-side, and earlier in [16].

In Section 7 of [27] the authors propose to look for a non-linear invariant
property for T-310, yet at the time no such property was known. For many
decades researchers knew about this type of attack [20,38,39], and yet failed to
find convincing examples, except for contrived ciphers [25]. More recently, only
with T-310 we get powerful invariants working for any number of rounds, any
key, and any choice of round constants.

4.1 Linear and Non-Linear Invariants and Phase Transitions

A good way to study such attacks, is the so called “white box” algebraic approach
[14,19]. We operate in the cipher specification space and we characterise exactly
in which cases the attack works by formal polynomial algebra. The goal of the
attacker is to find an invariant and eliminate all the internal state bits, this
including the key bits and round constants. As a toy example, we consider the
cipher wiring known as 847 in [12].

847: P=32,22,26,14,21,36,30,17,15,29,27,13,4,23,1,8,35,20,
5,16,24,9,10,6,7,28,12 D=24,12,8,16,36,4,20,28,32

We consider two cycles shown in Fig. 5, which show the group action of one
encryption round, cf. Fig. 3, instantiated with wiring 847 above, on some very
basic polynomials:

Fig. 5. Transitions between polynomials in an older attack from [12].

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 165

Let polynomial P be the addition of all polynomials of degree 1 and 2 in
Fig. 5, excluding those with W , which represents the Boolean function. Here g2
depends on the cipher state and the key in a complex way, see Fig. 2, and yet
all terms with g2 appear an even number of times modulo 2 and are cancelled.
Then, it is easy to see that this P will be a degree 2 polynomial invariant for
our cipher, IF the Boolean function W satisfies the following equation:

W (1 + M + Q) = 0

This is known in general as the Fundamental Equation (FE). Terms W , WM
and WQ are eliminated when we add them, not individually. This was not a very
good attack. Extremely few Boolean functions satisfy this equation, cf. Table 3
in AppendixA, and our Boolean function cannot be balanced, cf. Theorem 6.4
in [19].

4.2 Phase Transitions or How Impossible Becomes Possible

Here the crucial question is the one of phase transition, cf. Section 2.4 in [16].
This is how ciphers with stronger components can eventually be attacked. The
idea is that a spectacular improvement can occur as the degree of the invariant
polynomial grows. The paper [14] contains a large body of examples with growing
degree and effectively demonstrates this. This leads to the methodology of attack
“hopping” or/and attack “lifting”. Sometimes the cipher can be modified and
fundamental equation does not change. In [18] the attacker modifies a cycle and
adds additional polynomials to it. Finally, we also can add one more cycle to our
attack, while avoiding our invariant polynomial becoming zero, cf. [19]. We can
then hope to obtain a Fundamental Equation which has more roots, or to find
an attack which will work for a larger set of Boolean functions, or even find an
attack in a real-life setting, cf. Section 3 in [15] and [17].

4.3 Invariant Hopping and Attack Lifting - Example

A short self-contained introduction which shows this process at work can be
found in [18]. For example in Section 7.1. and Thm. 7.3. in [18], we find that for
a certain cipher wiring known as 551, if we have

(Z(a, b, c, d, e, f) + f)(d + e) = 0

then the polynomial

P = (e + m) · (g + o) + (f + n) · (h + p)

is an invariant for our cipher where e = x32 etc, which is different than input e
of Z above, following the cipher state variable naming convention of Fig. 4.

In contrast a better product invariant attack of degree 4 can be constructed
with

P = (e + m)(f + n)(g + o)(h + p)

166 N. T. Courtois and J.-J. Quisquater

which invariant works for a substantially larger proportion of Boolean functions.
In this case it was shown in [18] that we only need something like:

(Z + f)(d + e)(a + b)(c + f) = 0

and this happens for any Boolean function with large probability of 2−8, cf.
AppendixA or Appendix C in [16]. In general as the degree grows, it becomes
easier to find a Boolean function where our polynomial invariant actually works.
At this stage, if for a particular function our cipher is still not broken, this is
rather accidental than deliberate. Eventually it can also be made to work with
a real-life Boolean function, see [17].

Note. All the attacks above were invariant attacks of order 1, dealing with just
one encryption. In this paper we will construct an invariant attack of order 2.

5 Constructing An Anomalous Differential Invariant
Attack

We define the following 8 basic polynomials:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
def
= (m + i) which is bits 24, 28 cf. Fig. 4.

B
def
= (n + j) which is bits 23, 27

C
def
= (o + k) which is bits 22, 26

D
def
= (p + l) which is bits 21, 25

E
def
= (O + y) which is bits 8, 12

F
def
= (P + z) which is bits 7, 11

G
def
= (Q + M) which is bits 6, 10

H
def
= (R + N) which is bits 5, 9.

These polynomials allow to greatly simplify our attack. We start by observing
that we have the following incomplete cycle, or pseudo-cycle, also shown in later
Fig. 7:

H → G → F → E →? D → C → B → A →? H

Here six transitions are completely trivial for example H → G and due
to the internal wiring: these bits are just shifted inside this cipher. Two other
transitions, namely E →? D and A →? H are in contrast just impossible. They
would be true only if certain complex Boolean functions namely W () and Y ()
were equal to zero for every input, which is not the case and will not be the
case. However certain multiples of these polynomials will be annihilated (i.e.
0 for every input, and formally 0 as a polynomial). For example, the attacker
discovers that under certain conditions a certain polynomial such as P = ABCD
or AC + BD will be invariant, and its value will not change cf. [14–19].

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 167

5.1 Our Main Theorem - An Order Two Invariant Property

Theorem 5.1.1. (An Anomalous Differential Attack). Given the eight
basic polynomials A − H defined as above and reproduced also in Fig. 7, AND
for each cipher wiring for T-310 s.t.

{
{D(2),D(3)} = {6 · 4, 7 · 4}
{D(6),D(7)} = {2 · 4, 3 · 4}

AND and if these four multiples of four being 8,12,24,28 are absent from
the set of 27 inputs in {P (1) . . . P (27)}, where P : {1 . . . 27} → {1 . . . 36} is an
injective wiring, AND for any1 Boolean function2 which is such, that we have:

Z(a + d)(b + e)(c + f) = 0

AND if the 6 inputs of W () defined by integers P (21), . . . , P (26), are mapped
to any 3 out of 6 polynomials B,C,D, F,G,H, in a way which preserves3

the partitioning in three sets or pairs in (a+d)(b+e)(c+f), for example the
inputs of W can be 5, 22, 7, 9, 26, 11 AND the 6 inputs of Y () defined by
integers P (7), . . . , P (12) are the mapped to remaining 3 out of 6 polynomi-
als B,C,D, F,G,H, while also preserving a partitioning in 3 sets of pairs in
(a+d)(b+e)(c+f), for example in order 25, 10, 27, 21, 6, 23,

THEN for any short term key of 240 bits, and for any initial state on 36 bits,
and for any IV, the input difference [7, 11] corresponding to F , i.e. we flip both
bits 7 and 11, will be preserved at the output after any number of rounds being
a multiple of 8 with probability of at least 2−8.

Remark. This theorem can be transposed by considering arbitrary permuta-
tions of 6 inputs a, b, c, d, e, f . These do not need to be applied consistently at
both W () and Y (), for example inputs 5 and 9 could be exchanged. However,
we need to get the same partitioning of 6 inputs into 3 sets of 2 which needs to
be consistent in W , in Y and with the partitioning which actually annihilates
our Boolean function. We can also consider an arbitrary choice of 3 out of 6
polynomials in BCDFGH to split between W and Y . In our example D,G,B
are 3 × 2 inputs of W () and the remaining 3 go to Y (), but it could be any choice
of 3 out of 6. For the sake of simplicity and to make our theorem and its proof
shorter and easier to follow, we work with a fixed mapping of these 12 variables
(Fig. 6).

1 This happens with probability at least 2−8 for any Boolean function, see Appendix A.
2 This function is used twice as W and as Y for 2 disjoints sets of 6 inputs.
3 For example if one input A is b the other must be e.

168 N. T. Courtois and J.-J. Quisquater

Fig. 6. For both W and Y we divide inputs in 3 sets of 2 variables in a consistent way.

5.2 A Concrete Example

This is for example achieved for the following full cipher wiring:

268: P=1,20,33,34,15,13,25,10,27,21,6,23,16,14,2,4,3,19,
35,29,5,22,7,9,26,11,17 D=16,28,24,20,32,8,12,4,36

and the following Boolean function Z(a, b, c, d, e, f) = 1 + a + b + bc + d+

abd+cd+acd+bcd+e+ae+abe+ce+ace+de+ade+abde+af+bf+abf+acf+df+

bdf + abdf + cdf + bcdf + ef + abef + bcef + adef + abdef + acdef + abcdef

In Table 1 page 16 we show what happens as the number of round grows. This
choice of Boolean function is in no way special: any Boolean function chosen at
random will work with high probability of at least 2−8, see Appendix A, or
Appendix C in [16].

5.3 Proof of Thoerem 5.1.1

We will show that a certain polynomial expression is invariant for any number
of rounds. This for each of two encryptions we consider. The difference we study,
[7, 11], is the same as flipping both bits active in our polynomial F . If we have
A1 = cA, B1 = cB , . . . H1 = cH for the first encryption, for some constants
cA, . . . cH ∈ {0, 1}8, then we also have A2 = cA, B2 = cB , . . . H2 = cH for
the second encryption. Since our hidden polynomial is built from A,B,C,D, . . .
flipping bits [7, 11] will also preserve this invariant, see Lemma 5.3.1 below. Two
invariants will remain linked together for any number of rounds.

The fact that we have two invariants propagating for any number of rounds,
which remains yet to be shown, makes that the difference (a bitwise XOR)
between both encryptions is mapped to zero, through the linear application
ψ : {0, 1}36 → {0, 1}8. Here ψ is defined precisely by the set of 8 linear polyno-
mials A . . .H we defined earlier. This polynomial invariant attack is yet a weak
constraint in itself. The fact that P = ABCDEFGH is an invariant in both
encryptions makes that the output difference Δ after any number of rounds can
take only 228 possible values with ψ(Δ) = 08, on 8 bits. It remains therefore
quite surprising that one of these values, namely exactly F = [7, 11] on 28+8

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 169

Fig. 7. A cycle on 8 basic polynomials used in our attack with LZS 268 which conceals
the existence of a hidden polynomial invariant with P = ABCDEFGH.

bits, is reproduced after any multiple of 8 rounds. This is 28 bits more than
expected. Additional things must happen here for our theorem to be true. There
is limited diffusion for a few rounds, and these is a finite number of possible
output differences Δ which can at all be obtained from the initial difference
F = [7, 11]. Since the image of the difference ψ(Δ), is fixed and strongly con-
strained, we expect that Δ takes fewer values than expected. In fact will show
that Δ is fixed, only one value is possible. A rigourous proof with some technical
lemmas is given below.

We will first prove that P = ABCDEFGH an invariant in both/any
encryption.

Lemma 5.3.1. The polynomial P = ABCDEFGH is a non-zero polynomial
and under conditions of Thoerem5.1.1 it is invariant after 1 round of encryption
∀F,K,L ∈ {0, 1}3.
Proof: We distinguish input and output-side polynomials by an index in the
exponent such as Ao vs. Ai. We try to eliminate all output-side variables and
express everything in input-side polynomials only. Later when there is no ambi-
guity we will just write A again instead of Ai.

By following the (shortest) path from output 9 to 5 in Fig. 8, or by XORing
together the equations (r7) and (r8) in Fig. 3 we get:

Ho = y9 + y5 = xD(3) + W (.) + xD(2) = W (.) + x6·4 + x7·4 = W (.) + Ai

170 N. T. Courtois and J.-J. Quisquater

Fig. 8. Internal structure of one round of T-310 block cipher with focus on W and Y
in our attack.

then following the path from output 25 to 21 in Fig. 8, or by XORing together
the equations (r3) and (r4) in Fig. 3 we get:

Do = y25 + y21 = xD(7) + Y (.) + xD(6) = Y (.) + x2·4 + x3·4 = Y (.) + Ei

At the input side P is equal to Pi = ABCDEFGH and at the output of
our cipher

Po = AoBoCoDoEoF oGoHo = BiCiDi(Y (.) + Ei)F iGiHi(W (.) + Ai) =

at this moment only input variables are left and we can drop the exponents i

and we have:
Po = BCD(Y (.) + E)FGH(W (.) + A) =

Now we observe that the inputs of W () are 5, 22, 7, 9, 26, 11, and our assump-
tion Z(a + d)(b + e)(c + f) = 0 translated to W (H)(C)(F) = 0. Since HCF is
a factor of BCDFGH here, we can simply erase W () as it is annihilated, and
we get:

Po = BCD(Y (.) + E)FGH(A) =

Likewise, we recall our input mappings on Fig. 9 below, inputs of Y ()
are 25, 10, 27, 21, 6, 23, and therefore Z(a + d)(b + e)(c + f) = 0 translates to
Y (D)(G)(B) = 0. Therefore we can also erase Y () and we get:

Po = ABCDEFGH

which is the same as Pi and hence P is an invariant after 1 round of encryption.
which ends the proof the our invariant work for any input and any F,K,L and
any number of rounds. We have a formal equality of two polynomials. ��

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 171

Fig. 9. We map inputs of W and Y to 3 sets with 2 variables in a way consistent with
our annihilation property. In some sense we get two annihilations for the price of one
(amplification).

This was just a proof of our lemma. We need yet to show that F = [7, 11]
propagates in a certain way which implies our Thoerem5.1.1. In order to lower
bound the propagation probability in general, we need to show that the propaga-
tion is special in some cases, so that the invariant F = [7, 11] will be reproduced
after 8 rounds, and we can ignore all other cases. It is easy to see that we have
for any input I on 36 bits:

P(I) =
∏8

i=1
(ψ(I))i

which simply means that P is the same as applying a single 8-ary multipli-
cation

∏
to the 8 outputs of ψ. More precisely we are going to show that:

Lemma 5.3.2. If for 2 different encryptions with I1 ⊕ I2 = [8, 12] of E we have

P(I1) = 1

then we have O1 ⊕ O2 = [21, 25] a.k.a. D after one round of encryption.

Proof: If I1 ⊕ I2 = [8, 12] and P(I1) = 1 then we also have P(I2) = 1 due
to the fact that flipping both bits of F = [8, 12] preserves all the values of ψ()
including the E coordinate, which is also unchanged due to double negation. We
can then apply Lemma 5.3.1 and we obtain that P(O1) = 1 and P(O2) = 1
after one round for each respective encryption. If Δ = O1 ⊕O2 we already know
that ψ(Δ) = 0. However Δ has 36 bits, not only 8.

We now observe that flipping 8,12 changes nothing else from the equations
(r3) and (r4) in Fig. 3 we have

y25 = F + Z() + xP (6) + xD(7)

y21 = F + Z() + xP (6) + Y () + xD(6)

and that outputs of (r5) and all further equations in Fig. 3 are unchanged
because, actually all the gi in Fig. 8 are the same in both encryptions and
the inputs 8, 12 are used only once with D(6) and D(7), due to the fact that
in Theorem 5.1.1 we assume that 8,12 are absent from the set of 27 outputs
{P (1) . . . P (27)}. Thus the only effect of flipping bits E = 8, 12 and is to flip
bits D = 21, 25 in the next round. Similarly we have:

172 N. T. Courtois and J.-J. Quisquater

Lemma 5.3.3. If for 2 different encryptions with I1 ⊕ I2 = [24, 28] from A we
have

P(I1) = 1

then we have O1 ⊕ O2 = [5, 9] a.k.a. H after one round of encryption.

Proof. If I1 ⊕ I2 = [24, 28] and P(I1) = 1 then we also have P(I2) = 1 due
to the fact that flipping both bits of F = [24, 28] preserves all the values of ψ()
including the A coordinate. We now observe that flipping 24,28 changes nothing
else from the equations (r7) and (r8) in Fig. 3 we have

y9 = F + Z() + xP (6) + Y () + xP (13) + L + X() + xP (20) + xD(3)

y5 = F + Z() + xP (6) + Y () + xP (13) + L + X() + xP (20) + W () + xD(2)

and that outputs of all other equations in Fig. 3 are unchanged because and
all internal values in Fig. 8 are the same in both encryptions except y9 and y5.
This is because inputs 24, 28 are used only once with D(2) and D(3), due to the
fact that in Theorem 5.1.1 we assumed that 24,28 are absent from the set of 27
outputs {P (1) . . . P (27)}. Thus the only effect of flipping bits of A = 24, 28 is to
flip just bits of H = 5, 9 in the next round.

So far, Lemmas 5.3.2 and 5.3.3 only cover 2 transitions out of 6 for 8 rounds.
What if both bits of F = [7, 11] are flipped? Do they flip only E = [8, 12]
inside the next round? This is not so obvious as these bits are inputs c, f of
W and the output of W could change if we flip both. Now we have twice
Z(a + d)(b + e)(c + f) = 0 in each encryption, which was already shown to imply
W (H)(C)(F) = 0 and Y (D)(G)(B) = 0. in each encryption. Now if at the input
side all the polynomials ABCDEFGH are at 1, due to ABCDEFGH = 1, we
conclude that outputs of W and Y must be zero. This carries on forever, again
assuming P(I1) = 1 for the beginning round input. This also implies P(I2) = 1,
as already seen in Lemma 5.3.2. If the value of W is zero in both encryptions,
flipping two bits of F = [7, 11] has no effect on both Boolean functions W,Y .

Likewise, flipping bits [21, 25] has no effect, and likewise, for all the 6 possi-
bilities corresponding to B,C,D and F,G,H knowing that cases of E = [8, 12]
and A = [24, 28] were already covered by Lemmas 5.3.2 and 5.3.3 respectively.
Overall we see that we can do a full circle, exactly as in Fig. 7), and the differ-
ence F = [7, 11] will after 8 round will become F = [7, 11] again, and all this
because the polynomial invariant propagates and remains valid at each round
input. More precisely we have in order

F → E → D → C → B → A → H → G → F

This ends the proof that the difference [7, 11] propagates with probability at
least 2−8. ��

Linear Spaces. It is easy to see that the same result holds for any linear
combination of 8 basic differences A = [24, 28] to H = [5, 9] shown in Fig. 7. The
set of anomalous differentials forms a linear space of dimension 8.

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 173

6 Computer Simulations and the Choice of the Boolean
Function

Is our Theorem 5.1.1 confirmed by computer simulations? The question is really
whether our cipher behaves like a typical Markov cipher (in approximation)
outside of the proportion of 2−8 anomalous input states with P = 1. The answer
is yes as it seems. We show two “typical” cases, essentially chosen at random.
Our first table is obtained with the exact Boolean function listed as an example
after Thoerem 5.1.1 in page 10.

Table 1. Probabilities observed with our Boolean function as the number of rounds
grows.

Rounds 8 16 24 32 40 48 56 64

Proba 2−2.40 2−4.82 2−6.74 2−7.71 2−7.95 2−7.99 2−8.00 2−8.00

We see very clearly that, at the beginning, the probability grows exponen-
tially, 2−4.82 is almost exactly the square of 2−2.40. Then, however, for 24 rounds
there is already a substantial deviation: we would predict 2−3·2.40 = 2−7.20 and
we obtain 2−6.74, a substantially lower result. The results vary very substantially
for other Boolean functions which satisfy Z(a + d)(b + e)(c + f) = 0. For exam-
ple, it is easy to see that if we add (a + d + 1)b to our Boolean function which
works, we also obtain a function which works. In this case, the cipher is stronger
and our differential property less visible, see Table 2.

Table 2. Probabilities observed with a stronger Boolean function.

Rounds 8 16 24 32 40 48 56 64

Proba 2−4.53 2−7.51 2−7.98 2−8.00 2−8.00 2−8.00 2−8.00 2−8.00

6.1 On Hiding Differentials

We conjecture that this sort of anomaly is not detectable if we have limited
computing power or a limited number of samples. There are countless works
about backdoors in block ciphers. In 1990s, authors typically concluded that
this was infeasible and “hiding differentials” was claimed particularly difficult,
Section 3.4. in [48]. The main idea in our work is that we do not need to hide high
probability events. We hide low probability differentials, the probability of which
can be as low as we want, if our invariant polynomial P had more than 8 factors.
Therefore, it appears that we have discovered a valid method of concealing an
attack inside a block cipher so that it is not easily detected. In our 2 examples
above, we also see that the number of rounds where the propagation will stop
decaying exponentially, and the anomaly becomes visible, is not constant and
depends on the exact Boolean function used.

174 N. T. Courtois and J.-J. Quisquater

7 The Reciprocal Question, Nash Postulate, and Future
Research

In this article, we show that with a well-chosen invariant property we can have a
strong anomaly in the propagation of ordinary differentials in Differential Crypt-
analysis (DC). The key observation is that the complexity of our attack does
NOT tend to zero and remains constant for any number of rounds. The probabil-
ity success first decreases, but eventually it becomes constant. In contrast, with
ordinary DC, typically and in the “regular” Markov cipher case, we expect that
the complexity will grow exponentially and eventually every differential will be
“roughly equally likely” following [42]. An interesting question is whether inter-
mediate cases are possible: where the probability of a single differential in a block
cipher is not constant but grows polynomially or sub-exponentially with the
number of rounds. This would violate the postulate of exponential complexity
proposed by John Nash in his letter from 1955 exposed at NSA crypto museum,
cf. [46]. More precisely Nash postulated that “For almost all sufficiently com-
plex types of enciphering” where “different portions of the key interact complexly
with each other in the determination of their ultimate effects” the computation
cost should increase “exponentially with the length of the key”. The words of
Nash from 1955 are substantially older than modern block ciphers which were
invented in 1970s, cf. [24,27,32,36]. However, very clearly these words are what
block cipher designers have been aiming at ever since. John Nash also had an
intuition that this sort of strong or absolute security claim or result cannot be
taken for granted, nor it can be proven in mathematics (today most security
results are relative). He wrote: “The nature of this conjecture is such that I
cannot prove it, even for a special type of ciphers. Nor do I expect it to be
proven.” In this article, we suggest that the Nash and many cipher designers
were very optimistic and their security will sometimes increase at a slower rate
than expected.

7.1 Some Conjectures - Differential Anomalies Vs. Invariants

Moreover, we conjecture that there exists a third possibility, e.g. sub-exponential
curve. In present work we show that sometimes, the success probability of a plain
ordinary differential attack, does not decrease exponentially, when the number of
rounds tends to infinity. The main reason for this is that there is more than just
one property. A non-linear invariant property is present, and is acting behind
the scenes distorting the input probability distribution forever, each time the
differential property propagates. We can then wonder if some sort of reciprocal
result exists. Maybe each time when a differential propagates with a probability
which does not depend on the number of rounds, some sort of a non-linear
invariant would be always present.

This conjecture seems quite strong. However, we do not see any other reason
why differential cryptanalysis would behave in such a strongly anomalous way.
The space of non-linear invariant attacks is in fact extremely large, and in this

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 175

way maybe we can efficiently discover further new invariant attacks such as P
in present article and possibly attacks more complex than just product attacks.

There is abundant literature about differential cryptanalysis, and it may seem
that this topic is well understood. In this article, we show that this topic is not
yet well understood and some major questions regarding how the attack could
behave asymptotically, when the number of rounds grows, and why this happens,
remain actually widely open.

7.2 Related Research - Special Contrived Ciphers

In [26] a toy cipher is presented which is not secure for as many as 2n rounds, yet
it is provably secure if we further increase the number of rounds. We generate
the group of all possible permutations on n bits, cf. AppendixA and B in the
extended version of [25]. In contrast, in our Theorem5.1.1 the differential never
vanishes, the cipher is not secure no matter how large is the number of rounds.

7.3 Weak Is Beautiful - The World of Periodic Attacks and Weak
Keys

It is a major misconception in cryptography research that the interesting attacks
to study are those which work for every key. We claim that the special cases are
the most interesting ones. Sometimes, they lead to spectacular improvements
w.r.t. best attack known in the general case. In addition all differential and
polynomial invariant properties we study here are periodic (with a period of 8).

This is particularly interesting in the context of block ciphers when the key
scheduling is also periodic. In this (very common) case the key question is to
exploit this periodicity and show that in some cases a large number of rounds
can be broken for the price of breaking fewer rounds. In this precise sense, a
periodic key schedule is a tremendous weakness with T-310, KeeLoq in [1,2], in
GOST, but not in DES. The best known single key attack on GOST with trun-
cated differentials has a running time of 2179 in [29]. Now, if we study anomalous
events with data encrypted with multiple random keys, the (imperfect) periodic
structure of GOST is exploited better, and there exists an attack with total run-
ning time of 2101 in [33]. A wider comprehensive picture is shown in Section 29
in [10]. We see a near-continuous space with various attacks, improving as the
proportion of weak keys goes down. Many of these attacks involve differentials.
In T-310 the period in the key scheduling is 120, cf. Fig. 3, and our differen-
tial property of Theorem 5.1.1 has a period of 8 which divides 120. Unhappily
keystream for encryption is extracted in T-310 with a different prime period, cf.
Section 3 in [15] and key recovery could be difficult, see AppendixB. Interest-
ingly, previous research has not exhibited differential anomalies as strong as in
the present paper for ordinary single differentials. Overall, it appears that the
question of weak keys in periodic block ciphers, and in particular the question
of anomalous choice of constants (a weak long term key question), has yet not
received sufficient attention.

176 N. T. Courtois and J.-J. Quisquater

8 Conclusion

In this paper we have demonstrated that the propagation of differentials inside
a block cipher can in some cases be truly pathological. This is to the point that
the complexity of the attack does not grow exponentially with the number of
rounds, and that an arbitrarily large number of rounds can be attacked. After
an initial period of quasi-exponential growth, which does not at all look unusual,
cf. Table 1, the anomaly begins.

We see that block ciphers can become extremely weak due to a weaker cipher
wiring. Interestingly, such modifications are officially allowed, in the sense of
being 100 % compatible with the original T-310 encryption hardware. The long
term key in T-310 took the form of a printed board, and was changed every
few years [21]. This result is particularly significant for T-310, a government
encryption system, the hardware implementation cost of which is very large;
thousands of times larger than with modern ciphers such as DES or AES, see
[23]. However, increasing the number of rounds does not help if the complexity
of an attack is constant and it works for an arbitrarily large number of rounds.

This paper is a proof of concept in just one case. We make the unthinkable
happen, and show that this works beyond any doubt with a mathematical proof.
We conjecture that this sort of anomaly is not detectable, if we have limited
computing power or a limited quantity of encrypted data. We conjecture that
this kind of Non-Markovian vulnerability exists also in other ciphers. If the
hidden polynomial has a higher degree, it will become very hard to know if such
a property is present or not, in any given cipher.

In comparison to an earlier result of this type presented at Crypto 2011,
see [43], our Theorem 5.1.1 works with ordinary single differentials, for any key,
and in spite of the presence of round constants in T-310. The vulnerability is
principally a question of cipher wiring, which is without doubt very special. In
contrast, no Boolean function should be considered to be resistant to our attack.
Our vulnerability works with any Boolean function chosen at random with a
probability of 2−8, which is not at all small. Several works such as [16] and
[17] show, that 100 % of Boolean functions are vulnerable against polynomial
invariant attacks. Now we also have a similar result for ordinary differential
cryptanalysis. The security of the whole block cipher cannot be taken for granted,
cf. [47], just on the basis of avoiding high probability iterative differentials.

Appendix A On Boolean Function Vulnerability

It is possible to see that a Boolean function chosen at random will satisfy our
exact property Z(a + d)(b + e)(c + f) = 0 with probability 2−8, cf. Section 5
in [13] and/or Appendix C in [16]. The result is the same as long as we have
three linear factors which are linearly independent. In general, Boolean functions
which are constant over large affine spaces are not an exception, it is systematic.
100% of Boolean functions in 6 variables are 3-normal and can be annihilated by
a product of 3 affine polynomials. cf. Section 5 in [19] and [35]. We use another

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 177

method to obtain the same result. It is sufficient to check all the 150357 classes
of Boolean functions based on a database of Boolean functions of [6] based on
earlier work by Maiorana [45].

Moreover, our experience shows that typically (when the Boolean function is
balanced) both Z or Z + 1 will admit numerous solutions of this type, some of
which could work with an attack such as described in this paper.

Table 3. Classes of Boolean Functions with 6 Variables w.r.t. k-normality

total ↓ (any k)

k value →
150357

100%

k-normal Boolean functions

6 ≥ 5 ≥ 4 ≥ 3

1 205 47446 150357

2−17.2 2−9.52 2−1.66 2−0.0

Table 4. Classes of Boolean Functions with 6 Variables w.r.t. k-weak-normality

total ↓ (any k)

k value →
150357

100%

k-weakly-normal B. functions

6 ≥ 5 ≥ 4 ≥ 3

1 205 93760 150357

2−17.2 2−9.52 2−0.68 2−0.0

No Boolean function whatsoever should be assumed to be secure against the
attacks such as described in this paper. For example with the original Boolean
function used in T-310 we have Zc(b + d)f = 0 and Z(a + b)c(1 + e) = 0 and
many other relations of this type. From here it is possible to construct a product
invariant attack on demand, using exactly one single relation like this, see [17].
In other words, just one such annihilation equation, which was not chosen by
the attacker, can lead to an attack on T-310 working for any number of rounds.
This is already for an invariant attack at order 1. Properties which involve two
encryptions like in our Theorem5.1.1 and the existence of multiple ways to
annihilate polynomials further increase the freedom for the attacker.

Appendix B The Key Recovery Question

There exists multiple ways in which non-linear invariant attacks can be exploited
in cryptanalysis in order to decrypt actual encrypted communications. This ques-
tion was already studied in Section 9 in [16] and Section 6 in [12] and Section 6 in
[13] and there are several distinct ways to approach this problem. Some invariants
(not all) introduce pervasive biases made of higher order correlation properties
which do not degrade as the number of rounds increases. Other invariants do
directly involve some key bits. In some sense we expect that most invariants
are NOT suitable for actual attacks, in the sense that other invariants are more
suitable for various technical reasons.

178 N. T. Courtois and J.-J. Quisquater

Appendix B.1 New Ways to Exploit Polynomial Invariants

In this paper we discover a possibility to convert a non-linear invariant attack
into a differential attack. This opens new possibilities for key recovery in 3 steps
as follows. First, we guess some key bits, then, determine some internal values,
finally, confirm through a statistical distinguisher. It is important to note that the
question of which key bits should be guessed and which ones are determined, is
a major practical combinatorial optimization problem in cryptanalysis. It leads
to interesting security “metric” notions such as SAT immunity and UNSAT
immunity, cf. [11].

Appendix B.2 Multiple Simultaneous Differentials and Cube
Attacks

A more advanced method to enable key recovery would be to explore the rich
world of cube attacks which is a form of a higher order differential attack. This
type of discrete differential properties is much older than it is usually assumed,
it was studied since at least 1976, cf. [24], and there are many flavours of cube
attacks [52,53]. It is quite rare that several differential properties can work simul-
taneously and that the overall combined probability remains very high. One
example of this is with MiFare classic in [8,37], and it happens again here. Our
attack has 8 differences which form a linear space and could be used simulta-
neously in a variety of combined differential, invariant or/and cube attacks. An
interesting question is then how quickly the complexity of such attacks increases
as the number of rounds grows. Here we need to look at a new type of conditional
cube attack: when a certain product of polynomials is at 1. We need to focus
on cube properties which involve key bits, which cannot be taken for granted in
general, cf. Section 4.1. in [3]. The space of possible attacks is enormous and we
leave this for future research.

References

1. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 6

2. Courtois, N.T., Bard, G.V.: Random permutation statistics and an improved slide-
determine attack on KeeLoq. In: Naccache, D. (ed.) Cryptography and Security:
From Theory to Applications. LNCS, vol. 6805, pp. 35–54. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28368-0 6

3. Bard, G.V., Courtois, N.T., Nakahara, J., Sepehrdad, P., Zhang, B.: Algebraic,
AIDA/Cube and side channel analysis of KATAN family of block ciphers. In: Gong,
G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8 14

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4, 3–72 (1991). https://doi.org/10.1007/BF00630563

https://doi.org/10.1007/978-3-540-71039-4_6
https://doi.org/10.1007/978-3-642-28368-0_6
https://doi.org/10.1007/978-3-642-17401-8_14
https://doi.org/10.1007/BF00630563

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 179

5. Brown, L., Seberry, J.: On the design of permutation P in des type cryptosystems.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 696–705. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-
4 71

6. Çalık, Ç., Sönmez Turan, M., Peralta, R.: The multiplicative complexity of 6-
variable Boolean functions. Cryptogr. Commun. 11(1), 93–107 (2018). https://
doi.org/10.1007/s12095-018-0297-2. https://ia.cr/2018/002.pdf

7. Charpin, P.: Normal Boolean functions. J. Complex. 20(2–3), 245–265 (2004)
8. Courtois, N.T.: The dark side of security by obscurity and cloning MiFare classic

rail and building passes anywhere, anytime. In: SECRYPT 2009, pp. 331–338.
INSTICC Press (2009). ISBN 978-989-674-005-4

9. Courtois, N.T., Mourouzis, T.: Propagation of truncated differentials in
GOST. In: SECURWARE (2013). http://www.thinkmind.org/download.php?
articleid=securware 2013 7 20 30119

10. Courtois, N.T.: Algebraic complexity reduction and cryptanalysis of GOST. Mono-
graph study on GOST cipher, 224 p. https://ia.cr/2011/626

11. Courtois, N., Gawinecki, J.A., Song, G.: Contradiction immunity and guess-then-
determine attacks on GOST. In: CECC 2912, Tatra Mt. Math. Publ. vol. 53, no. 3,
pp. 65–79 (2012). http://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf

12. Courtois, N.T., Georgiou, M.: Variable elimination strategies and construction of
nonlinear polynomial invariant attacks on T-310. Cryptologia 44(1), 20–38 (2020).
https://doi.org/10.1080/01611194.2019.1650845

13. Courtois, N.T., Patrick, A., Abbondati, M.: Construction of a polynomial invariant
annihilation attack of degree 7 for T-310. Cryptologia 44(4), 289–314 (2020)

14. Courtois, N.T.: On the existence of non-linear invariants and algebraic polyno-
mial constructive approach to backdoors in block ciphers. https://ia.cr/2018/807.
Accessed 27 Mar 2019

15. Courtois, N.T., Patrick, A.: Lack of unique factorization as a tool in block cipher
cryptanalysis. https://arxiv.org/abs/1905.04684. Accessed 12 May 2019

16. Courtois, N.T.: Structural nonlinear invariant attacks on T-310: attacking arbitrary
Boolean functions. https://ia.cr/2018/1242. Accessed 12 Sept 2019

17. Courtois, N.T.: A nonlinear invariant attack on T-310 with the original Boolean
function. Cryptologia, 23 Apr 2020. https://www.tandfonline.com/doi/full/10.
1080/01611194.2020.1736207. to appear also in paper version in 2020

18. Courtois, N.T.: Invariant hopping attacks on block ciphers. In: Presented at WCC
2019, Abbaye de Saint-Jacut de la Mer, France, 31 March–5 April 2019. https://
arxiv.org/pdf/2002.03212.pdf. Accessed 8 Feb 2020

19. Courtois, N.T., Abbondati, M., Ratoanina, H., Grajek, M.: Systematic construc-
tion of nonlinear product attacks on block ciphers. In: Seo, J.H. (ed.) ICISC 2019.
LNCS, vol. 11975, pp. 20–51. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-40921-0 2

20. Courtois, N.T.: Feistel schemes and bi-linear cryptanalysis. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 2

21. Courtois, N.T., et al.: Cryptographic security analysis of T-310. Monography
study on the T-310 block cipher, 132 p. 20 May 2017. https://ia.cr/2017/440.
pdf. Accessed 29 June 2018

22. Courtois, N.T., Oprisanu, M.-B.: Ciphertext-only attacks and weak long-term keys
in T-310. Cryptologia, 42(4), 316–336 (2018). http://www.tandfonline.com/doi/
full/10.1080/01611194.2017.1362065

https://doi.org/10.1007/3-540-46885-4_71
https://doi.org/10.1007/3-540-46885-4_71
https://doi.org/10.1007/s12095-018-0297-2
https://doi.org/10.1007/s12095-018-0297-2
https://ia.cr/2018/002.pdf
http://www.thinkmind.org/download.php?articleid=securware_2013_7_20_30119
http://www.thinkmind.org/download.php?articleid=securware_2013_7_20_30119
https://ia.cr/2011/626
http://www.sav.sk/journals/uploads/0114113604CuGaSo.pdf
https://doi.org/10.1080/01611194.2019.1650845
https://ia.cr/2018/807
https://arxiv.org/abs/1905.04684
https://ia.cr/2018/1242
https://www.tandfonline.com/doi/full/10.1080/01611194.2020.1736207
https://www.tandfonline.com/doi/full/10.1080/01611194.2020.1736207
https://arxiv.org/pdf/2002.03212.pdf
https://arxiv.org/pdf/2002.03212.pdf
https://doi.org/10.1007/978-3-030-40921-0_2
https://doi.org/10.1007/978-3-030-40921-0_2
https://doi.org/10.1007/978-3-540-28628-8_2
https://doi.org/10.1007/978-3-540-28628-8_2
https://ia.cr/2017/440.pdf
https://ia.cr/2017/440.pdf
http://www.tandfonline.com/doi/full/10.1080/01611194.2017.1362065
http://www.tandfonline.com/doi/full/10.1080/01611194.2017.1362065

180 N. T. Courtois and J.-J. Quisquater

23. Courtois, N., Drobick, J., Schmeh, K.: Feistel ciphers in East Germany in the
communist era. Cryptologia 42(6), 427–444 (2018)

24. Courtois, N.T.: Block ciphers: lessons from the cold war. In: Slides pre-
sented at 2019 biennial Symposium on Cryptologic History, Laurel, Mary-
land, US, October 2019. http://www.nicolascourtois.com/papers/Feistel East
Cold War US Oct2019.pdf

25. Courtois, N.T.: The inverse S-Box, non-linear polynomial relations and crypt-
analysis of block ciphers. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 170–188. Springer, Heidelberg (2005). https://doi.
org/10.1007/11506447 15. https://www.researchgate.net/publication/221005723
The Inverse S-Box Non-linear Polynomial Relations and Cryptanalysis of Block
Ciphers

26. Courtois, N.: The inverse S-box and two paradoxes of whitening. Long extended
version of the Crypto 2004 rump session presentation, Whitening the AES S-box.
http://www.nicolascourtois.com/papers/invglc rump c04.pdf

27. Courtois, N., Oprisanu, M.-B., Schmeh, K.: Linear cryptanalysis and block
cipher design in East Germany in the 1970s. Cryptologia (2018). https://www.
tandfonline.com/doi/abs/10.1080/01611194.2018.1483981

28. Courtois, N.: The best differential characteristics and subtleties of the Biham-
Shamir attacks on DES. https://ia.cr/2005/202

29. Courtois, N.T.: An improved differential attack on full GOST. In: Ryan, P.Y.A.,
Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp.
282–303. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-
4 18

30. Courtois, N.: An improved differential attack on full GOST. Cryptology ePrint
Archive, Report 2012/138, 15 March 2012. https://ia.cr/2012/138. Accessed Dec
2015

31. Courtois, N., Misztal, M.: Aggregated differentials and cryptanalysis of PP-1 and
GOST. Periodica Mathematica Hungarica 65(2), 11–26 (2012). https://doi.org/
10.1007/s10998-012-2983-8. In CECC 2011, 11th Central European Conference on
Cryptology

32. Courtois, N.T., Mourouzis, T., Misztal, M., Quisquater, J.J., Song, G.: Can GOST
be made secure against differential cryptanalysis? Cryptologia 39(2), 145–156
(2015)

33. Courtois, N.: On multiple symmetric fixed points in GOST. Cryptologia 39(4),
322–334 (2015)

34. Dobbertin, H.: Construction of bent functions and balanced Boolean functions
with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–
74. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8 5

35. Dubuc, S.: Etude des propriétés de dégénérescence et de normalité des fonctions
booléennes et construction de fonctions q-aires parfaitement non-linéaires, Ph.D.
thesis, Université de Caen (2001)

36. Feistel, H., Notz, W.A., Smith, J.L.: Cryptographic techniques for machine to
machine data communications, 27 Dec 1971, Report RC-3663, IBM T. J. Watson
Research (1971)

37. Golić, J.D.: Cryptanalytic attacks on MIFARE classic protocol. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 239–258. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 16

38. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis
and the applicability of Matsui’s Piling-up lemma. In: Guillou, L.C., Quisquater,

http://www.nicolascourtois.com/papers/Feistel_East_Cold_War_US_Oct2019.pdf
http://www.nicolascourtois.com/papers/Feistel_East_Cold_War_US_Oct2019.pdf
https://doi.org/10.1007/11506447_15
https://doi.org/10.1007/11506447_15
https://www.researchgate.net/publication/221005723_The_Inverse_S-Box_Non-linear_Polynomial_Relations_and_Cryptanalysis_of_Block_Ciphers
https://www.researchgate.net/publication/221005723_The_Inverse_S-Box_Non-linear_Polynomial_Relations_and_Cryptanalysis_of_Block_Ciphers
https://www.researchgate.net/publication/221005723_The_Inverse_S-Box_Non-linear_Polynomial_Relations_and_Cryptanalysis_of_Block_Ciphers
http://www.nicolascourtois.com/papers/invglc_rump_c04.pdf
https://www.tandfonline.com/doi/abs/10.1080/01611194.2018.1483981
https://www.tandfonline.com/doi/abs/10.1080/01611194.2018.1483981
https://ia.cr/2005/202
https://doi.org/10.1007/978-3-662-49301-4_18
https://doi.org/10.1007/978-3-662-49301-4_18
https://ia.cr/2012/138
https://doi.org/10.1007/s10998-012-2983-8
https://doi.org/10.1007/s10998-012-2983-8
https://doi.org/10.1007/3-540-60590-8_5
https://doi.org/10.1007/978-3-642-36095-4_16

Can a Differential Attack Work for an Arbitrarily Large Number of Rounds? 181

J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-49264-X 3

39. Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0052331

40. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

41. Kovalchuk, L.V.: Generalized Markov ciphers: evaluation of practical security
against differential cryptanalysis. In: Proceedings of 5th All-Russian Scientific Con-
ference MaBIT-06, 25–27 Oct 2006, MGU, Moscow, pp. 595–599 (2006). (in Rus-
sian)

42. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6 2

43. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

44. Knudsen, L.R., Robshaw, M.J.B.: Non-Linear Characteristics in Linear Crypto-
analysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–
236. Springer, Heidelberg (1996)

45. Maiorana, J.A.: A classification of the cosets of the Reed-Muller code R(1,6). Math.
Comput. 57(195), 403–414 (1991)

46. John Nash, handwritten letters and documents relating to their evaluation,
available at NSA crypto museum, January-March 1955. cryptologicfoundation.org.
https://www.nsa.gov/news-features/declassified-documents/nash-letters/assets/
files/nash letters1.pdf. declassified in 2012

47. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 41

48. Peyrin, T., Wang, H.: The MALICIOUS framework: embedding backdoors into
tweakable block ciphers. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020.
LNCS, vol. 12172, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-56877-1 9

49. Referat 11: Kryptologische Analyse des Chiffriergerätes T-310/50. Central Cipher
Organ, Ministry of State Security of the GDR, document referenced as ‘ZCO
402/80’, a.k.a. MfS-Abt-XI-594, Berlin, 123 p. (1980)

50. Schmeh, K.: The East German encryption machine T-310 and the algorithm it
used. Cryptologia 30(3), 251–257 (2006)

51. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack: practical attack on
full SCREAM, iSCREAM and Midori 64. J. Cryptol. 32, 1–40 (2018)

52. Vielhaber, M.: AIDA Breaks BIVIUM (A&B) in 1 Minute Dual Core CPU Time.
https://ia.cr/2009/402

53. Winter, R., Salagean, A., Phan, R.C.-W.: Comparison of cube attacks over different
vector spaces. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 225–238.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27239-9 14

https://doi.org/10.1007/3-540-49264-X_3
https://doi.org/10.1007/BFb0052331
https://doi.org/10.1007/BFb0052331
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://cryptologicfoundation.org/
https://www.nsa.gov/news-features/declassified-documents/nash-letters/assets/files/nash_letters1.pdf
https://www.nsa.gov/news-features/declassified-documents/nash-letters/assets/files/nash_letters1.pdf
https://doi.org/10.1007/3-540-48071-4_41
https://doi.org/10.1007/978-3-030-56877-1_9
https://doi.org/10.1007/978-3-030-56877-1_9
https://ia.cr/2009/402
https://doi.org/10.1007/978-3-319-27239-9_14

Key Mismatch Attack on ThreeBears,
Frodo and Round5

Jan Vacek and Jan Václavek(B)

Thales DIS, Prague, Czech Republic
{jan.vacek,jan.vaclavek}@thalesgroup.com

Abstract. In the last years, several key reuse attacks were proposed
against Round 2 candidates of the NIST Post-Quantum Cryptography
Standardization Process. In these attacks, the adversary has access to
the key mismatch oracle which tells her if a given ciphertext decrypts
to a given message under the targeted secret key. One of the so far
non-targeted candidates is ThreeBears, which is a key encapsulation
mechanism based on the integer module learning with errors (I-MLWE)
problem. In this paper, we present a first key mismatch attack against the
ThreeBears cryptosystem. Our attack recovers the whole secret key with
probability of 100% and requires about 211 queries on average. Besides
that, we use our technique to target other Round 2 candidates Frodo
and Round5, and we improve the state-of-the-art results for them.

Keywords: ThreeBears · Frodo · Round5 · Key mismatch attack ·
Post quantum cryptography · Cryptanalysis · Attack

1 Introduction

The increasingly relevant threat of a large-scale quantum computer has moti-
vated the community to base cryptosystems on problems believed to be resistant
even against quantum computers. One of the second-round candidates of the
NIST Standardization Process is ThreeBears which is a key exchange algorithm
based on the integer module learning with errors (I-MLWE) problem. Among
other candidates belong Frodo and Round5, which are schemes based on learning
with errors (LWE) and learning with rounding (LWR) problems, respectively.

In the last years, several key mismatch attacks were proposed against Round
2 candidates [3,5,6,8,11–14]. In these attacks, the adversary has access to the key
mismatch oracle which tells her if a given ciphertext decrypts to a given message
under the targeted secret key. Such an attack model was originally proposed in
[8] and is relevant in scenarios when the same secret key is reused for several
key exchanges since a lot of matches/mismatches are usually needed to recover
the secret key. One of the candidates without a proposed key mismatch attack
against it is ThreeBears.

If a secret key is reused in a passively secure (IND-CPA) encryption based
KEM, then it is quite straightforward for the attacker to access the key mismatch
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 182–198, 2021.
https://doi.org/10.1007/978-3-030-68890-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_10

Key Mismatch Attack on ThreeBears, Frodo and Round5 183

oracle. The attacker just sends the chosen ciphertext to the party doing the
decryption and tries to communicate with this party using the chosen message
(which plays the role of the shared key). If the attacker is able to communicate,
they must have the same key, which corresponds to a match from the oracle. On
the other hand, if the attacker cannot communicate with the second party, they
do not have the same key, which corresponds to a mismatch from the oracle.

For the actively secure (IND-CCA) variants, it is necessary to use some side-
channel or fault injection attacks to get access to the oracle. For example, in [15],
they observed that a hash function operating on the decrypted message within
the Fujisaki-Okamoto transformation exhibits a differential behavior based on
the value of the decrypted message. They used the fact that this behavior can be
observed over the electromagnetic side-channel to instantiate the key mismatch
oracle.

Despite the fact that a key reuse is considered as a misuse by the specifica-
tion of the targeted schemes, we think that the condition of the attack is still
relevant since being considered as a misuse does not prevent it from happening.
We suppose that it can still easily happen either as a result of misinterpreting
the specification of the scheme or by deliberately reusing the secret key for effi-
ciency reasons due to the lack of understanding of possible attacks and their
complexities in this case.

1.1 Our Contribution

In this paper, we mainly focus on ThreeBears [10] and we present the first key
mismatch attack against it. First, we recall the attack model and formally define
the key mismatch oracle. After that, we show the main idea of the attack and
then we provide the details about the choice of the concrete queries to the oracle.

Besides that, we target other Round 2 candidates, Frodo [1] and Round5
[2]. The only key mismatch attacks on Frodo and Round5 we are aware of were
published in [3,6,15]. We improve and extend the attacks on Frodo and provide
the first complete results for all variants of Round5 since the attack from [6]
is actually against a predecessor of Round5, HILA5, and the attack from [15]
targets only the variant with the error-correcting code. Our method shares some
similarities with the attack from [15]. We both try to reduce the number of
possibilities for the targeted secret coefficient, but in a different manner. The
concrete differences are described in more details later at the end of Subsect. 4.1.
We developed our method without being aware of the method presented in [15]
and we analyze the similarities between the two methods a posteriori.

All three targeted schemes use an encryption based approach and we target
the underlying public key encryption schemes. Our attacks against all three
above mentioned candidates recover the whole secret key with success probability
of 100% and the required number of queries to recover the whole secret key
is shown in Table 1 for the NIST security level 5 variants. The complete and

184 J. Vacek and J. Václavek

detailed results are discussed in Subsect. 3.4 and at the end of Subsects. 4.1 and
4.2. We implemented the attacks in Python1 and they confirm the given results.

Table 1. Results for NIST security level 5 variants

Name of the variant Average number of queries to
recover the whole secret key

ThreeBears PapaBear 2847

Frodo FrodoPKE-1344 28 008

Round5 R5N1 5CPA 0d 15 005

Round5 R5ND 5CPA 0d 1525

Round5 R5ND 5CPA 5d 1551

1.2 Outline of the Paper

In Sect. 2, we introduce the notation, define the key mismatch oracle and briefly
describe the ThreeBears cryptosystem. In Sect. 3, we describe the attack against
ThreeBears. In Sect. 4, we sketch the attacks against Frodo and Round5. In
Sect. 5, we conclude the paper. Moreover, we provide some missing proofs in the
Appendices.

2 Preliminaries

2.1 Notations

For a positive integer q, we denote by Zq the quotient ring Z/qZ, where we take
the elements of Zq to be the integers between 0 and q − 1. For an integer x and
a positive integer q, we define the x mod q operation in a standard way to always
produce an integer between 0 and q − 1.

For a set A, we denote by $←− A sampling an element uniformly random from
the set A. Similarly, for a probability distribution ψ, we denote by $←− ψ picking
an element according to ψ. For x ∈ R, we define �x� = �x + 1

2� ∈ Z, where �y�
is the greatest integer not exceeding y.

2.2 Key Mismatch Oracle

In the targeted underlying public key encryption schemes, Alice first generates
her secret key S and computes the public key pk, which she sends to Bob. Bob
encrypts the message m and sends the ciphertext ct back to Alice. Alice then
decrypts the ciphertext and gets the message m′.

1 https://github.com/Mismatch-attack-threebears-frodo-round5/Attacks.

https://github.com/Mismatch-attack-threebears-frodo-round5/Attacks

Key Mismatch Attack on ThreeBears, Frodo and Round5 185

In the key mismatch attack, the adversary Eve, who is acting as Bob, wants
to recover Alice’s secret key S. She does not compute the ciphertext according to
the specification, but she chooses a message mE and an arbitrary ciphertext ct,
which she sends back to Alice. The key mismatch oracle tells her if the ciphertext
ct decrypts to mE .

We define the key mismatch oracle formally in the next definition.

Definition 1 (Key mismatch oracle). Let S be the secret key of Alice. On
input of ct and mE, the output of the key mismatch oracle O is defined as follows:

O(ct,mE) =

{
+ if Decryption(ct,S) = mE

− otherwise.
(1)

We already discussed ways to access key mismatch oracle in the introduction.

2.3 Description of ThreeBears

ThreeBears is based on a non-standard variant of LWE called integer module
learning with errors (I-MLWE) which was first introduced in 2017 by Chunsheng
in [9]. By the words of its author, ThreeBears is based on KYBER at a high level.
The difference is that instead of working in some polynomial ring Zq[x]/f(x), the
ring Zf(q) is used by substituting x with q. In ThreeBears, all parameter sets use
f(x) = x312−x156−1 and q = 210. The degree of the polynomial f is denoted by
D, i.e., D = 312. Furthermore, f(q) is denoted by N , i.e., N = 23120 − 21560 − 1.
A special multiplication is used, for a, b ∈ ZN it is

clar · a · b mod N

instead of a standard a · b mod N , where clar = q156 −1. This extra factor, clar,
is called a clarifier and the purpose of this clarifier is to distort the noise and so
to decrease the failure probability. The dimension of the underlying module is
2, 3 or 4 and is denoted by d.

To sample from the noise distribution, an auxiliary distribution ψ with very
small support, which is either [−1, 1] or [−2, 2], is used. Sampling noise elements
from ZN is then described in Algorithm 1. We denote this noise distribution on
ZN by χ.

As in other LWE based schemes, encode and decode functions are used,
see Algorithms 3 and 4. These functions make use of another function called
extract, which is described in Algorithm 2. The whole simplified version of
ThreeBears is depicted in Fig. 1. We omitted some parts which are unnecessary
for the attack, such as using seeds.

Error correcting code. Moreover, a forward error-correcting code is applied to
the message before encrypting it in order to reduce the failure probability.2

2 Which means that during decryption after I-MLWE decoding, the ECC decoding is
performed.

186 J. Vacek and J. Václavek

The authors chose a Melas-type BCH code that corrects 2 errors. We described
the scheme without this error-correcting code and in the next section, we first
describe the attack on the version of the scheme without the code as it is simpler
and more straightforward. Then we comment on how to target the variant with
the error-correcting code in Subsect. 3.3. We point out that targeting the variant
with the error-correcting code does not require any additional queries to the
oracle compared to targeting the same variant without the error-correcting code.

Algorithm 1. Sampling noise
1: function χ
2: s ← 0
3: for i from 0 to D − 1 do

4: digit
$←− ψ

5: s ← s + digit · qi

6: end for
7: return s mod N ∈ ZN

8: end function

Algorithm 2. Extracting bits
1: function Extractb(S, i)
2: if i mod 2 == 0 then
3: j ← i/2
4: else
5: j ← D − (i + 1)/2
6: end if
7: S ← S mod N
8: return �S · 2b/qj+1�
9: end function

Algorithm 3. Encoding message
1: function Encode(C ∈ ZN , mes-

sage m ∈ {0, 1}L)
2: encr ← 0
3: for i from 0 to L − 1 do
4: encr[i] ← (extract4(C, i) +

8 · m[i]) mod 16
5: end for
6: return encr
7: end function

Algorithm 4. Decoding message
1: function Decode(C ∈ ZN , encr ∈

[0, 15]L)
2: m′ ← 0
3: for i from 0 to L − 1 do
4: m′[i] ←

� 2·encr[i]−extract5(C,i)
16

� mod 2
5: end for
6: return m′

7: end function

3 Key Mismatch Attack on ThreeBears

A secret key is an element of Zd
N , which is formed by d · 312 numbers from the

distribution ψ, where each 312 numbers of these d · 312 determine one noise
element in ZN (see Algorithm 1). We target each of these d · 312 small numbers
separately and we call them as secret coefficients si,j , where i ∈ [0, d − 1] and
j ∈ [0, 311] based on to which part and by which power of q it contributes to the
secret key.

First, we need to take care of the special form of multiplication using the
so-called clarifier. We observe that

clar · q156 = (q156 − 1) · q156 = 1 (mod N).

If we want a standard multiplication by C′
1, we can simply set C1 = q156 ·C′

1,
because

clar · C1S = clar · q156 · C′
1S = C′

1S (mod N).

Key Mismatch Attack on ThreeBears, Frodo and Round5 187

boBecilA

Key generation:

A $←− Z
d×d
N

S,E $←− χd

B ← clar · AS+E mod N

pk = (A,B)

Encryption (message m):

S′,E′ $←− χd

E′′ $←− χ

C1 ← clar · S′A+E′ mod N

C2 ← clar · S′B+E′′ mod N

encr ← encode(C2, m)

ct = (C1, encr)

Decryption:

C ← clar · C1S mod N

m′ ← decode(C, encr)

Fig. 1. Simplified version of ThreeBears

Another difficulty is that the length of the message, denoted by L, is less
than D, which means that not every part of C is used within the decode
function. For that reason, we cannot use exactly the same method to target all
secret coefficients. We use three sets of queries with small differences to the oracle
based on the second index j in a secret coefficient si,j . First group are coefficients
with j ∈ [0, 127]∪ [184, 311], second group are coefficients with j ∈ [128, 155] and
the third group are coefficients with j ∈ [156, 183].

3.1 High Level Description of the Attack

As mentioned above, the secret coefficients si,j are targeted one by one. The
main idea of the attack is to gradually reduce the possibilities for the targeted
coefficient.

We are interested in queries for which the output from the oracle depends
only on one secret coefficient from the secret key S. Then the output from the
oracle can give us useful information on this concrete coefficient, because the
output is independent from the other coefficients.

Moreover, we prefer queries such that for some values of the targeted coeffi-
cient, the output from the oracle would be +, and for some of them would be −.
Then, using this query, we will know in which group the targeted coefficient lies.

188 J. Vacek and J. Václavek

By repeating this process, we can further reduce the number of possibilities for
the targeted coefficient. Then, if there is only one possibility left, it must be the
targeted coefficient.

We construct suitable queries which can recover each possible coefficient.
The actual attack then just consists of using these already defined queries and
of reducing the possibilities for the targeted coefficient. The gradual splitting
of possible values for the targeted coefficient into two smaller disjoint groups
naturally corresponds to a binary tree. Hence, the queries form a binary tree
and the actual attack consists of following a path within this tree to some leaf
corresponding to the value of the targeted coefficient.

We keep in mind two objectives. First, we have to choose the queries such that
it is possible to recover each possible value of the secret coefficient. Otherwise, the
attack does not work with a success probability of 100%. Second, we minimize
the expected number of queries to recover the secret coefficient, which equals
the weighted average of depths3 of the leaves and the probabilities of values
corresponding to these leaves.

3.2 Choice of Queries

We use the same guessed message mE = 0L = (0, . . . , 0) ∈ {0, 1}L for all queries
to the oracle. We choose the ciphertext ct = (C1, encr) to the oracle depending
on which group we target. Recall that C1 ∈ Z

d
N . First, based on the index j, we

set

g =

⎧⎪⎨
⎪⎩

55 · q156 if j ∈ [0, 127] ∪ [184, 311]
55 if j ∈ [128, 155]
55 · q212 if j ∈ [156, 183]

(2)

and then, we set

C1[k] =

{
g if k = i

0 if k �= i.
(3)

This C1 is then multiplied with the secret vector S, so by setting all entries in
C1 except one to 0 ensures that only one part of S appears in the result, i.e., only
coefficients with the same index i. The reason for different powers of q is that
not all parts of C are used during the decryption as mentioned earlier. For that
reason, by using these different powers we shift the secret key S correspondingly
so that we can recover all its parts at the end.

The constant 55 is chosen such that we can have control over decryption (m′

will have a specific form, see Lemma 1) but still we get some useful information
from the key mismatch oracle. With values larger than 55, we start losing control
over decryption. With values smaller than 55, we start losing useful information
from the oracle due to the compression.
3 The number of queries to recover some coefficient equals the depth of the leaf cor-

responding to the value of this coefficient.

Key Mismatch Attack on ThreeBears, Frodo and Round5 189

In the following lemma, we justify the mentioned control over decryption
using constant 55. In the paper of Bauer et al. [5], the assumption of having
such control was called Hypothesis 1. We sketch the proof in the AppendixA.

Lemma 1. Let C1 have the form as in Eq. 3 and set encr[l] = 0 for some
l ∈ [0, . . . , L − 1]. Then, in decryption, m′[l] = 0.

Choice of encr. Above, we have defined the choice of the first part of the cipher-
text ct (i.e. C1) queried to the oracle. This part is fixed during targeting some
coefficient si,j . Now we define the second part, i.e. encr, which will vary for
each oracle query depending on the position in the binary tree. Motivated by
Lemma 1, all parts of encr except one are set to zero. First, based on the index
j, we set

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2j if j ∈ [0, 127]
2(311 − j) + 1 if j ∈ [184, 311]
2(155 − j) + 1 if j ∈ [128, 155]
2(255 − j) + 1 if j ∈ [156, 183]

(4)

and then we set

encr[l] =

{
node.value if l = k

0 otherwise.
(5)

The values of k are chosen to be in accordance with the choice of C1, i.e., to
correspond to particular shifts of the secret key S.

Concrete Binary Tree. Recall that encr ∈ [0, 15]L, so we are choosing node.value
from [0, 15]. Because the range of the targeted coefficients is very small, i.e. [−1, 1]
or [−2, 2], we were even able to construct the binary trees manually instead of
using some recursive search. We used values 2, 4, 5 and 11 in the trees. We show
the trees in Figs. 2 and 3.4 In the leaves there are the possible values of the secret
coefficient. For the inner nodes, the first part is the remaining set of possibilities,
the second part is the value substituted to encr[k] for this particular query. We
denoted this value as node.value above.

[−2, 2], 11

[0, 2], 4

s = 0 [1, 2], 5

s = 1 s = 2

[−2, −1], 2

s = −2 s = −1

−

− +

− +

+

− +

Fig. 2. T1, search tree for ThreeBears,
range [−2, 2]

[−1, 1], 11

[0, 1], 4

s = 0 s = 1

s = −1

−

− +

+

Fig. 3. T2, search tree for ThreeBears,
range [−1, 1]

4 We point out that it is possible to deduce the smaller tree from the larger one.

190 J. Vacek and J. Václavek

We show the pseudocode for the attack against ThreeBears in Algorithms 5
and 6. The function setup sets the C1[k] and k depending on the index j as in
Subsect. 3.2. The input is the tree which we are using, i.e. either T1 or T2, which
depends on the support of the distribution ψ.

Algorithm 5. Key mismatch attack
against ThreeBears
1: function Recover(Tree)
2: S ← 0d ∈ Z

d
N

3: for i from 0 to d − 1 do
4: for j from 0 to 311 do
5: si,j ← Coeff(i, j, T ree)
6: S[i] ← S[i] + si,j · qj

7: end for
8: end for
9: return S

10: end function

Algorithm 6 . Recover one secret
coefficient in ThreeBears
1: function Coeff(i, j, Tree)
2: C1 ← 0d ∈ Z

d
N

3: encr ← 0L ∈ [0, 15]L

4: mE = 0L ∈ {0, 1}L

5: C1[i], k ← setup(j)
6: Node ← Tree.root
7: while Node �= leaf do
8: encr[k] ← Node.value
9: ct = (C1, encr)

10: b ← O(ct, mE)
11: if b = ’+’ then
12: Node ← Node.right
13: else
14: Node ← Node.left
15: end if
16: end while
17: si,j ← Node.coefficient
18: return si,j
19: end function

3.3 Error-Correcting Code

In this subsection, we describe how to adjust the attack to work also for the
variants with the error-correcting code. So far, we chose the ciphertext such that
after the decryption, it results in zero bits except for one position which could
be possibly 1.

The problem with the error-correcting code is that both decryption variants,
i.e. all zeroes or all zeroes except one 1, result into all zeroes after performing
ECC decoding.5 This means that we get only matches from the oracle which
gives us no useful information. Because the error-correcting code corrects two
errors, we change the ciphertext such that after decryption, it results into zero
bits except for three positions:

– First of these three positions is the same as before and the resulting bit is
zero or one depending on the targeted secret coefficient si,j .

– The resulting bit for the other two positions is always one. These positions
are fixed at indices 256 and 257, because these correspond to the correcting
bits and hence are not used in the original attack.

5 All zeroes are encoded to all zeroes using this error-correcting code and the code
correct up to two errors.

Key Mismatch Attack on ThreeBears, Frodo and Round5 191

The guessed message remains the same, i.e. all zeroes. Now we realize that
the output from the oracle is the same as in the original attack. If the resulting
bit on the position we are interested in (corresponding to the targeted coefficient
si,j) is 0, then there are 2 ones which are corrected to all zeroes and we get a
match from the oracle. On the other hand, if this bit is 1, then there are 3 ones
which are no longer corrected to all zeroes (code corrects up to 2 errors, not 3)
and we get a mismatch as before.

We know that if we choose encr[l] = 0, then m′[l] = 0 no matter what the
secret key S is. Hence, we can set encr[l] = 8 and we get that m′[l] = 1. The full
justification of this fact is proved in AppendixB. This concludes the required
modifications to target also the full variants with the error-correcting code. We
can see that there are no extra queries needed to handle the error-correcting
code.

3.4 Results

Using this method, the number of queries required to recover some value is
equal to the depth of the leaf corresponding to this value in the binary tree.
The expected number of queries to recover one coefficient is then computed as
a weighted average of these depths by probabilities of the corresponding values.

We use the probabilities of values from ψ to compute the expected number
of queries to recover one secret coefficient and to recover the whole secret key S.
Results are shown in Table 2. We denote by # coeffs the total number of secret
coefficients, by E[one coeff] the expected number of queries to recover one secret
coefficient and by E[whole key] the expected number of queries to recover the
whole secret key.

4 Key Mismatch Attack on Frodo and Round5

In this section, we apply the same method, i.e. gradually reduce the possibilities
for the targeted coefficients, against other candidates Frodo and Round5.

Except for targeting coefficients one by one as before, we target them now also
by pairs, triplets and possibly by quadruplets6 using the exactly same method
via the binary trees. Again, we choose the queries such that the output from the
oracle depends only on the targeted pair/triplet/quadruplet of coefficients. The
guessed message again consists only of zero bits.

4.1 Frodo

Frodo was first introduced in [7] in 2016 and is based on the standard LWE
problem. The overall structure of the scheme is similar to all other LWE-based
schemes including ThreeBears (see Fig. 1). In Frodo, all the underlying objects

6 We call this the dimension of the attack. For example, dimension 2 means targeting
pairs of coefficients.

192 J. Vacek and J. Václavek

are matrices and operations are matrix multiplications modulo some integer.
Range of the secret coefficients is larger than in ThreeBears, it is [−12, 12],
[−10, 10] or [−6, 6] depending on the concrete parameter set. For all details, we
refer the reader to the specification of Frodo [1].

The Key Mismatch Attack. The key mismatch attack is simpler against Frodo,
because we do not have to distinguish any cases depending on the indices of the
targeting coefficients. Secret key S is an element of Zn×8

q , where the particular
entries of this matrix, called secret coefficients si,j , come from the error distri-
bution with the above mentioned range. Now, we define the structure of the
queried ciphertext7 such that the output from the oracle depends only on the
targeted coefficients and hence it is possible to use our method using the binary
trees.

In order to target the secret coefficient si,j , we set

C1[0, i] = 1 and C2[0, j] = node.value

and the remaining entries are set to zeroes.
In order to target the pair si,j , si+1,j , we set

C1[0, i] = node.α and C1[0, i + 1] = node.β,

the remaining entries of C1 are set to zeroes and the choice of C2 remains
unchanged.

Having the structure of the queries, we have to choose the values of
node.value, node.α and node.β which then define the binary trees. As men-
tioned earlier, we want to be able to recover each possible coefficient (or pair of
coefficients) and simultaneously minimize the expected number of queries.

When targeting coefficients one by one, it was again possible to construct
the trees manually. For the pairs, there is a huge number of possibilities and we
had to use a recursive search to find a tree as optimal as possible. Nevertheless,
the number of possible trees is too huge and it is not computationally feasible to
try each of them. Hence, we used the following heuristic: we were splitting the
sets of remaining possibilities into the two disjoint subsets in a way that these
two subsets have similar probability.

Results and Comparison. The only key mismatch attacks on Frodo we are aware
of are the attacks from [3] and [15]. In [3], they use a different approach. Using the
key mismatch oracle, they recover linear equations with the secret coefficients
being the unknown. From these equations, they compute the secret key. The
authors target only the NIST security level 1 variant and need 216 queries.

In [15], they find a sequence of queries G such that they can associate each
value of the secret coefficient with a unique output sequence from G. Then,
during the attack, they perform this sequence of queries G and determine the

7 We use the notation from the specification of Frodo.

Key Mismatch Attack on ThreeBears, Frodo and Round5 193

value of the secret coefficient from the output sequence. Unfortunately, they have
not provided the required number of queries for their attack against Frodo.

Nevertheless, we think that the attack from [15] requires less queries than the
attack from [3], but requires more queries than our attack. The reason why we
think that the attack from [15] requires more queries than our attack is twofold.
First, our attack uses the binary tree, which allows for a flexible number of
queries to recover one secret coefficient compared to [15], where a fixed number
of queries is used to recover one secret coefficient. Second, using our method, we
know precisely what the expected number of queries to recover a secret coefficient
is. Hence, we choose the queries not randomly but in order to minimize the
expected number of queries.

We target all three variants of Frodo and for the NIST security level 1 variant,
we need about 214 queries using our method. Complete results are presented in
Table 2.

4.2 Round5

Round5 is a merger of Round 1 candidates HILA5 and Round2. Round5 is based
on the learning with rounding (LWR) and on the ring learning with rounding
(RLWR) problems. These two problems were first introduced by Banerjee et al. in
2011 in [4]. The authors propose ring parameter sets with error-correction, ring
parameter sets without error-correction and non-ring parameter sets without
error-correction.

The non-ring variants are similar to Frodo, but instead of adding errors from
some noise distribution, rounding is used. In the ring variants, the underlying
structures are polynomials and operations are computed in some polynomial
ring.

Key Mismatch Attack Against LWR Variant. We recall that the secret key S is
an element of {−1, 0, 1}n×n. Due to the above mentioned similarity with Frodo,
we use analogous structure of queries to the oracle as in the attack against Frodo.
Because the range of the secret coefficients is only [−1, 1], it was possible to target
also triplets and quadruplets of secret coefficients. When targeting coefficients
individually, we again constructed binary trees manually. For pairs, triplets and
quadruplets, we had to use a recursive search to find suitable binary trees. We
used the same heuristic as for Frodo described above.

Key Mismatch Attack Against RLWR Variant. We recall that the secret key S
is a polynomial of degree at most n − 1 with coefficients from {−1, 0, 1}. We use
similar structure of queries as in the non-ring case, but the situation is more
complicated now. The first problem is that, similarly to ThreeBears, only a part
of the polynomial is used within the decode function. Hence, we need to shift the
polynomials accordingly, which adds extra noise to the polynomials and makes
the attack more difficult. Moreover, when targeting pairs (or triplets) it is more

194 J. Vacek and J. Václavek

difficult to combine two (three) coefficients into one entry of a polynomial. To
resolve these problems, we need to have several binary trees and we choose a
suitable tree during the attack based on the previous recovered coefficients.

Error-Correcting Code. Actually, it is easier to target the variants using the
error-correcting code. The reason is that these variants are working in a different
polynomial ring where it is easier to shift polynomials and to combine several
coefficients into one entry. Otherwise, the structure of queries is similar, but it
is enough to have only one binary tree. We use the same trick as in the attack
against ThreeBears to handle the issue with the error-correcting code.

Results and Comparison. In [6], a key mismatch attack against a predecessor of
Round5, HILA5, was published. Despite the fact that it was referenced as the
attack against Round5 in [11], we think that the two schemes are quite different
and hence we do not compare our attack with the attack from [6].

In [15], they use the same attack methodology used against Frodo also against
Round5. They target the ring variants with the error-correcting code. For these
variants, our attack requires about 16–33% less queries to recover the secret key.

Moreover, in [15] they argue that their method is also applicable to other
variants of Round5, but they do not define the structure of queries nor provide
any concrete results.

We want to point out that in our opinion, the attack against the variants
of Round5 which do not use the error-correcting code is more difficult because
of the different polynomials used in these variants. Hence, the queries must be
chosen more carefully which is also the reason why we use more binary trees for
these variants.

5 Conclusion

In this paper, we presented the first (to our best knowledge) key mismatch attack
against ThreeBears and we improved the key mismatch attacks on Frodo and
Round5.

We found out that it is often more efficient to target coefficients in
tuples instead of just one by one. The biggest difference was for the variant
R5ND 1CPA 0d of Round5, where targeting triplets of secret coefficients saved
more than 40% of queries to the oracle compared to targeting the coefficients
individually. On the other hand, it is more difficult to construct the binary trees
for bigger tuples since the trees are also bigger and at some point, it starts to
be infeasible to improve the results by targeting bigger tuples.

Our method using the binary trees provides a general technique to target
LWE-based schemes. We applied the same method against NewHope [16], where
we improved the state-of-the-art by a wide margin, and also against Kyber and
Saber, where we achieved minor improvements, usually between 3–10%.

Key Mismatch Attack on ThreeBears, Frodo and Round5 195

Table 2. Comparison of our results, d is the dimension of the attack

d Security level # coeffs E[one coeff] E[whole key]

BabyBear 1 1 624 2.31 1443

FrodoPKE-640 2 1 5120 3.56 18 239

R5N1 1CPA 0d 4 1 4158 1.39 5790

R5ND 1CPA 0d 3 1 618 1.11 687

R5ND 1CPA 5d 4 1 490 1.34 656

MamaBear 1 3 936 2.30 2150

FrodoPKE-976 2 3 7808 3.29 25 672

R5N1 3CPA 0d 4 3 7048 1.20 8436

R5ND 3CPA 0d 2 3 786 1.55 1221

R5ND 3CPA 5d 4 3 756 1.69 1277

PapaBear 1 5 1248 2.28 2847

FrodoPKE-1344 2 5 10752 2.60 28 008

R5N1 5CPA 0d 3 5 9488 1.58 15 005

R5ND 5CPA 0d 2 5 1018 1.50 1525

R5ND 5CPA 5d 4 5 940 1.65 1551

A Proof of Lemma1

Proof. Let start with the first case from Eq. 2, i.e.

C1[k] =

{
55 · q156 if k = i

0 if k �= i.
(6)

Then
C = clar · C1S mod N = 55 · S[i] mod N.

We call S[i] just S from now on. Let first assume that S ≥ 0. Then

C = 55 · S mod N = 55 · S.

So according to the definition of the decode function, we have that

m′[l] =

⌊
2 · encr[l] − extract5(C, l)

16

⌉
mod 2 =

⌊
2 · 0 − extract5(C, l)

16

⌉
mod 2

(7)
According to the definition of extract function, we have

extract5(C, l) =
⌊
C · 32
qj′+1

⌋
(8)

196 J. Vacek and J. Václavek

for some j′ depending on l. We know that

C = 55 · S = 55 ·
311∑
i=0

si · qi,

which we substitute back to the Eq. 8, which leads to

extract5(C, l) =

⌊
32 · 55 · ∑311

i=0 si · qi

qj′+1

⌋

=

⎢⎢⎢⎣32 · 55 ·
j′∑

m=0

sm
qj′+1−m

+ 32 · 55 ·
311∑

m=j′+1

sm · qm−j′−1

⎥⎥⎥⎦

= ε + 32 · 55 ·
311∑

m=j′+1

sm · qm−j′−1

(9)

with ε ∈ [−4, 3], because sm is small (see definition of χ and ψ). Substituting
this to the Eq. 7, we have

m′[l] =

⌊
ε − 32 · 55 · ∑311

m=j′+1 sm · qm−j′−1

16

⌉
mod 2

=

⎛
⎝⌊ ε

16

⌉
− 2 · 55 ·

311∑
m=j′+1

sm · qm−j′−1

⎞
⎠ mod 2

=
⌊ ε

16

⌉
mod 2 = 0.

(10)

For the case S < 0, we have S mod N = N +S = q312 −q156 −1+S and the rest
of the proof is similar. For the C1 having the other forms, we have to take into
account the multiplication by other powers of q and the proof is more technical
and shows actually the motivation for the value 55.8

B Proof of m′[l] = 1

Proof.

m′[l] =
⌊

2 · encr[l] − extract5(C, l)
16

⌉
mod 2

=
⌊

16 − extract5(C, l)
16

⌉
mod 2

=
(

1 +
⌊−extract5(C, l)

16

⌉)
mod 2

= 1,

8 This part of the proof would work with any constant ∈ [−127, 127] instead of 55.

Key Mismatch Attack on ThreeBears, Frodo and Round5 197

where we used that ⌊−extract5(C, l)
16

⌉
mod 2 = 0,

which we know from Lemma 1.

References

1. Alkim, E., et al.: FrodoKEM - specifications and supporting documentation (2019)
2. Baan, H., et al.: Round5: KEM and PKE based on (Ring) Learning with Rounding

(2020)
3. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Mis-

use attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17656-3 26

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

5. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp.
272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4 14

6. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 Pindakaas:
on the CCA security of lattice-based encryption with error correction. In: Joux,
A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp.
203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 12

7. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from
LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 1006–1018. Association for Computing
Machinery, New York (2016). https://doi.org/10.1145/2976749.2978425

8. Fluhrer, S.: Cryptanalysis of Ring-LWE based key exchange with key share reuse.
Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.org/2016/
085

9. Gu, C.: Integer version of Ring-LWE and its applications. In: Meng, W., Furnell,
S. (eds.) SocialSec 2019. CCIS, vol. 1095, pp. 110–122. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-15-0758-8 9

10. Hamburg, M.: Post-quantum cryptography proposal: threebears (2019)
11. Huguenin-Dumittan, L., Vaudenay, S.: Classical misuse attacks on NIST round 2

PQC. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 208–227. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4 11

12. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope
with fewer queries. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp.
505–524. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3 26

13. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack
on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-29962-0 24

https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-030-17656-3_26
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-030-12612-4_14
https://doi.org/10.1007/978-3-319-89339-6_12
https://doi.org/10.1145/2976749.2978425
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2016/085
https://doi.org/10.1007/978-981-15-0758-8_9
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-57808-4_11
https://doi.org/10.1007/978-3-030-55304-3_26
https://doi.org/10.1007/978-3-030-29962-0_24
https://doi.org/10.1007/978-3-030-29962-0_24

198 J. Vacek and J. Václavek

14. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST sec-
ond round candidate Kyber. Cryptology ePrint Archive, Report 2019/1343 (2019).
https://eprint.iacr.org/2019/1343

15. Ravi, P., Sinha Roy, S., Chattopadhyay, A., Bhasin, S.: Generic side-channel
attacks on CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020(3), 307–335 (2020). https://doi.org/10.13154/tches.
v2020.i3.307-335. https://tches.iacr.org/index.php/TCHES/article/view/8592

16. Vacek, J., Václavek, J.: Key mismatch attack on newhope revisited. Cryptology
ePrint Archive, Report 2020/1389 (2020). https://eprint.iacr.org/2020/1389

https://eprint.iacr.org/2019/1343
https://doi.org/10.13154/tches.v2020.i3.307-335
https://doi.org/10.13154/tches.v2020.i3.307-335
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://eprint.iacr.org/2020/1389

A New Non-random Property
of 4.5-Round PRINCE

Bolin Wang1,2(B), Chan Song1,2, Wenling Wu1,2(B), and Lei Zhang1,2

1 TCA Laboratory, SKLCS, Institute of Software, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

{wangbolin,songchan,wwl,zhanglei}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences,
Beijing 100049, People’s Republic of China

Abstract. PRINCE is a widely analyzed block cipher proposed in 2012.
Subspace trail cryptanalysis is a new cryptanalytic technique to gener-
alize the invariant subspace attack. So far, two subspace trails that exist
with probability 1 are known for 2.5 rounds of PRINCE. In this paper,
we first describe a new non-random property for 4.5 rounds of PRINCE
based on subspace trail with certain probability, which is independent
of the secret key, the details of the Linear layer and of the S-Box layer.
Then, we obtain that by appropriate choices of difference for a number
of input pairs, it is possible to make sure that the number of times that
the difference of the resulting output pairs lie in a particular subspace
is always a multiple of 8. Later, a detailed proof is given as why it has
to exist. Relying on this property, a new distinguisher can be set up to
distinguish the 4.5-round PRINCE from a random permutation.

Keywords: PRINCE · Subspace trail · Block cipher · Structural
property · Permutation

1 Introduction

The area of lightweight cryptography, i.e., ciphers with particularly low imple-
mentation costs, has drawn considerable attention over the last years. Most of
the existing lightweight block cipher algorithms are influenced by the design
principles of DES and AES. PRINCE is a low-latency block cipher proposed at
ASIACRYPT 2012 [1]. It is an iterated block cipher structured as a substitution-
permutation network (SPN). And a round of PRINCE is similar to a round of
AES, with one exception: the MixColumns operation of the forward round func-
tion is before the ShiftRows operation. PRINCE has a new, original feature called
the α-reflection property that involves a specific fixed parameter α. Because of
this property, decryption with round key K is identical to encryption with round
key K ⊕α, which significantly reduces the cost of implementation of decryption.

Over the past few years, with the development of lightweight block cipher
algorithms, some new cryptanalytic methods have been proposed. Invariant

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 199–212, 2021.
https://doi.org/10.1007/978-3-030-68890-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_11

200 B. Wang et al.

attack method is one of them. Invariant subspace attack was first proposed by
Leander et al. [2] in CRYPTO 2011, which was used to analyze the block cipher
PRINT [3]. Later, Bulygin et al. [4] conducted a complete study on the invariant
subspace attack of PRINT. In EUROCRYPT 2015, Leander et al. [5] proposed a
generic algorithm for detecting invariant subspaces and applied it to iSCREAM
[6], Robin [7] and Zorro [8]. In 2016, Guo et al. [9] applied this method to con-
duct a full-round attack on Midori64 [10]. In CRYPTO 2017, Beierle et al. [11]
analyzed the influence of the selection of round constants and linear layer on
resisting invariant subspace attack. In ASIACRYPT 2016, Todo et al. [12] pro-
posed nonlinear invariant attack. This new method is able to distinguish the full
versions of the (tweakable) block ciphers SCREAM, iSCREAM and Midori64
in a weak-key setting. In order to eliminate the influence of round constants,
Wei et al. [13] proposed a generalized nonlinear invariant attack using a pair of
constants in the input of nonlinear invariant functions. The subspace trail crypt-
analysis is a generalization of invariant subspace attack, which was introduced
by Grassi et al in [14]. The authors implemented competitive key-recovery attack
with very low data complexity on 2, 3 and 4 rounds of AES. In EUROCRYPT
2017, Grassi et al. [15] described a new structural property for up to 5 rounds
of AES.

PRINCE has received considerable attention with many different attacks on
round-reduced version since it has been proposed. In [16], Derbez and Perrin
described attacks relying on a Meet-in-the-Middle approach, applicable (theo-
retically) up to 10 rounds. In [17], Morawiecki introduced up to 7 rounds of
integral and higher-order differential cryptanalysis based on a 3.5-round distin-
guisher with one active nibble. In [18], Posteuca and Negara found a 4.5-round
integral distinguisher which needs three (not arbitrary) active nibbles instead of
one. Due to the involution structure of PRINCE, an improved differential attack
was proposed in [19]. A related work on truncated differentials was presented in
[20], which showed the existence of 5- and 6-round truncated difference distin-
guishers. In [21], the first application of reflection cryptanalysis on PRINCE-like
ciphers is presented. The authors showed that there exist values of α which would
allow a key-recovery attack on the full 12-round cipher. Moreover, because of new
cryptanalysis method, new design criteria concerning the selection of the value
of α for PRINCE-like ciphers are obtained.

In [22], Grassi et al. set up truncated differential attacks on round-reduced
PRINCE that exploit subspace trails. However, the subspace trails used in their
paper exist with probability 1. As we will argue below, it is possible to find
a structural property of PRINCE which exploits subspace trails with certain
probability.

This paper is organized as follows. In Sect. 2, we start by recalling the block
cipher PRINCE and the subspace trail cryptanalysis, and then continue to intro-
duce the existing subspaces of PRINCE. In Sect. 3, we illustrate our new subspace
trails for 4.5 rounds of PRINCE. Later, we present a new structural property
of PRINCE using the two 4.5-round subspace trails. In Sect. 4 we present our
proof details. Finally, we conclude in Sect. 5.

A New Non-random Property of 4.5-Round PRINCE 201

2 Preliminaries

2.1 The Block Cipher PRINCE

The lightweight PRINCE cipher [1] uses a block size of 64 bits and a key size of
128 bits. The cipher state is conceptually arranged in a 4 × 4 grid where every
cell represents a nibble. PRINCE is based on the so-called FX construction,
where one part of the key is used for a core cipher F , which contains the major
encryption process, and the remaining parts are used for whitenings before and
after the core: FXk,k1,k2 = k2 ⊕ Fk(x ⊕ k1). The key is first split into two parts
of 64 bits each (i.e. k = k0||k1), and then it is expanded into 192 with a simple
linear transformation:

(k0||k1) → (k0||k′
0||k1) := (k0||(k0 >>> 1) ⊕ (k0 � 63)||k1)

The 64-bit subkeys k0 and k
′
0 are used as whitening keys to the underlying block

cipher called PRINCEcore, while the 64-bit key k1 is used for the 12-round
PRINCEcore.

Each round of PRINCEcore consists of an S-box layer, a linear layer, a
ShiftRows operation, a key addition and the addition of a round constant.
S-Box Layer. The cipher uses a 4-bit S-Box. The action of the S-Box in hex-
adecimal notation is given by the following table (Table 1).

Table 1. S-Box of PRINCE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Linear Layer M
′
: In the linear layer, the 64-bit state is multiplied with a 64×64

matrix. More precisely, two 16× 16 submatrices M̂ (0) and M̂ (1) are arranged on
the diagonal of a bigger matrix, where every submatrix affects a 16-bit chunk xi

of the 64-bit state x = (x1||x2||x3||x4):

M
′ · x = (M̂ (0) · x1|

∣
∣M̂ (1) · x2

∣
∣|M̂ (1) · x3||M̂ (0) · x4).

ShiftRows Operation SR: Equal to the one in the AES.
RCi-add: A 64-bit round constant is xored with the state.
ki-add: The 64-bit state is xored with the 64-bit subkey.

In the last 5 rounds (the backward rounds), the order of operations is
inverse with respect to the first 5 rounds (the forward rounds), where only
the round constants differ. The middle rounds consist of three key-less oper-
ations: an S-Box layer, a matrix multiplication with M

′
and an inverse S-Box

layer. The difference between RCi and RC11−i is always equal to a constant
α and since M

′
is self-inverting (i.e. M

′
= M

′−1), the core cipher has the
so called α-reflection property, i.e. the core cipher is such that the inverse of
PRINCEcore parametrized with k is equal to PRINCEcore parametrized with
k ⊕ α : D(k0||k′

0||k1)
(·) = E(k

′
0||k0||k1⊕α)(·).

202 B. Wang et al.

2.2 Subspace Trails

Let F denote a round function in an iterated block cipher EK(·). Assume there
exists a coset V ⊕a such that F (V ⊕a) = V ⊕b, then if the round key K ∈ V ⊕a⊕b,
it follows that F (V ⊕ a) ⊕ K = V ⊕ a. We say that V ⊕ a is an invariant coset
of the subspace V for the function F . In [14], the authors generalized the above
concept to subspace trails. The specific definition is as follows.

Definition 1. Let (V1, V2, · · · , Vr+1) denote a set of r + 1 subspaces with
dim(Vi) ≤ dim(Vi+1). If for each i = 1, 2, · · · , r and for each ai ∈ V ⊥

i , there
exists (unique) ai+1 ∈ V ⊥

i+1 such that

F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1,

then (V1, V2, · · · , Vr+1) is a subspace trail of length r for the function F . If
the previous relation holds with equality, then the trail is called a constant-
dimensional subspace trail.

2.3 Subspaces of PRINCE

In this section, we recall the subspace trails of PRINCE presented in [22].
We denote five families of subspaces essential to PRINCE: the column sub-
spaces CI , the diagonal subspaces DI , the inverse-diagonal subspaces IDI ,
the mixed subspaces MI and the inverse-mixed subspaces IMI . Moreover, let
E = {e[0], · · · , e[15]} denote the unit vectors of F 16

24 (ei has a single 1 in posi-
tion i).

Definition 2. (Column subspaces) The column subspaces Ci are defined as:

Ci = 〈e[4 · i], e[4 · i + 1], e[4 · i + 2], e[4 · i + 3]〉 .

For instance, C0 corresponds to matrix representation:

C0 =

⎧

⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

x 0 0 0
y 0 0 0
z 0 0 0
w 0 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∀x, y, z, w ∈ F24

⎫

⎪⎪⎬

⎪⎪⎭

≡

⎡

⎢
⎢
⎣

x 0 0 0
y 0 0 0
z 0 0 0
w 0 0 0

⎤

⎥
⎥
⎦

.

Definition 3. (Diagonal subspaces, Inverse-diagonal subspaces) The diagonal
subspaces Di and inverse-diagonal subspaces IDi are defined as

Di = SR(Ci), IDi = SR−1(Ci).

For instance, D0 and ID0 correspond to matrix representations:

D0 =

⎡

⎢
⎢
⎣

x 0 0 0
0 0 0 y
0 0 z 0
0 w 0 0

⎤

⎥
⎥
⎦

, ID0 =

⎡

⎢
⎢
⎣

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

⎤

⎥
⎥
⎦

.

A New Non-random Property of 4.5-Round PRINCE 203

Definition 4. (Mixed subspaces, Inverse-mixed subspaces) The mixed subspaces
Mi and inverse-mixed subspaces IM i are defined as:

Mi = M
′
(Di), IM i = M

′
(IDi).

For instance, M0 and IM0 correspond to matrix representations:

M0 =

⎡

⎢
⎢
⎣

α3(x) α3(w) α0(z) α2(y)
α2(x) α2(w) α3(z) α1(y)
α1(x) α1(w) α2(z) α0(y)
α0(x) α0(w) α1(z) α3(y)

⎤

⎥
⎥
⎦

, IM0 =

⎡

⎢
⎢
⎣

α3(x) α1(y) α0(z) α0(w)
α2(x) α0(y) α3(z) α3(w)
α1(x) α3(y) α2(z) α2(w)
α0(x) α2(y) α1(z) α1(w)

⎤

⎥
⎥
⎦

where αi(·) are defined as

αi(x) = x ∧ (0x2i ⊕ 0xf)

and where ∧ is the and (logic) operator.
Given I ⊆ {0, 1, 2, 3}, subspaces CI ,DI , IDI ,MI , IM I are defined as:

CI = ⊕
i∈I

Ci, DI = ⊕
i∈I

Di, IDI = ⊕
i∈I

IDi, MI = ⊕
i∈I

Mi, IM I = ⊕
i∈I

IM i

In this paper, we are working over the field GF (2). The dimension of any of the
subspaces CI ,DI , IDI ,MI , IM I is 16·|I|.

In the following, we present two subspace trails for 2.5 rounds of PRINCE in
[22]. Let R denote one round of PRINCE, ARK (·) means a bit-wise XOR with
the secret key k1. To simplify the notation, we denote by super-SBox the middle
two rounds.

Theorem 1. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥
I , there exists unique b ∈ M⊥

I

such that R1+1.5(CI ⊕ a) = MI ⊕ b, where b depends on a and on the secret key.
Equivalently:

Prob(R(1+1.5)(x) ⊕ R(1+1.5)(y) ∈ MI |x ⊕ y ∈ CI) = 1.

This means that a coset of CI is certainly mapped into a coset of MI after 2.5
rounds:

CI ⊕ a
R◦ARK(·)−−−−−−−→ DI ⊕ b

M
′ ◦S−Box(·)−−−−−−−−−→ MI ⊕ c.

The middle rounds without the final S-Box are denoted by 1.5 rounds.

Theorem 2. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥
I , there exists unique b ∈ IM⊥

I

such that R2+0.5(CI ⊕ a) = IM I ⊕ b, where b depends on a and on the secret
key. Equivalently:

Prob(R(2+0.5)(x) ⊕ R(2+0.5)(y) ∈ IM I |x ⊕ y ∈ CI) = 1.

This means that a coset of CI is mapped into a coset of IM I after 2.5 rounds:

CI ⊕ a
super−SBox◦ARK(·)−−−−−−−−−−−−−−→ CI ⊕ b

M
′ ◦SR−1◦ARK(·)−−−−−−−−−−−−→ IM I ⊕ c.

204 B. Wang et al.

The linear part of the next round is defined as 0.5 rounds.
These two theorems state that the two 2.5-round subspace trails exist with

probability 1 and both start with a coset of CI . Therefore, we consider two
elements that belong to the same coset of CI , which belong to the same coset
of DI with probability 1 after one round, and belong to the same coset of CQ

with certain probability after one more round. In the following section, we will
continue with these properties of PRINCE subspace trails.

3 New Structural Property of 4.5-Round PRINCE

In this section, we present two subspace trails for 4.5 rounds of PRINCE with
certain probability. Moreover, we propose a new property for PRINCE based on
the two 4.5-round subspace trails.

3.1 4.5-Round Subspace Trails for PRINCE

Using the two subspace trails of PRINCE in Sect. 2, it is possible to extend
backward by two rounds to obtain two 4.5-round subspace trails. Before we go
on, we have the following proposition that is analogous in [14].

Proposition 1. For any DI and CJ , we have that

Prob(x ∈ CJ |x ∈ DI) = 2−16|I|+4|I|·|J|.

Proof. Let Y ∈ DI ∩ CJ . We have that dimension(Y) = dimension(DI ∩
CJ) = 4|I| · |J |. Let Z be the subspace of dimension 16|I| − 4|I| · |J | such that
DI = Y ⊕Z, and let πY and πZ be the projection of DI on Y and Z respectively.
That is

πY : DI → Y, πY (x) = xy,

πZ : DI → Z, πZ(x) = xz.

It follows ∀x ∈ DI , there exists unique xy ∈ Y and xz ∈ Z such that x = xy ⊕xz.
Thus, we can obtain that Pr(x ∈ CJ |x ∈ DI) = Pr(πz(x) = 0|x ∈ DI). Since Z
has dimension 16|I| − 4|I| · |J |, we get that:

Pr(x ∈ CJ |x ∈ DI) = Pr(πz(x) = 0|x ∈ DI) = 2−16|I|+4|I|·|J|.

According to this proposition, given two texts in the same coset of CI , then
they belong to the same coset of DI after one forward round, while they are in the
same coset of DI ∩CJ with probability 2−16|I|+4|I|·|J|. Because of DI ∩CJ ⊆ CJ ,
a coset of CJ is mapped into a coset of DJ after one more round. Considering the
intersection of DJ and CQ again, we can obtain that if two elements belong to
the same coset of DJ , then they belong to the same coset of CQ with probability
2−16|J|+4|J|·|Q|.

As we have just seen, considering the first subspace trail for 1 + 1.5 rounds
of PRINCE, a coset of CQ is mapped into a coset of MQ after 2.5 rounds. Using

A New Non-random Property of 4.5-Round PRINCE 205

Proposition 1 twice, we can set up a 4.5-round subspace trail for PRINCE. It
follows that if two texts belong to the same coset of CI , then the probability that
they belong to the same coset of MQ after 4.5 rounds is equal to 2−16|I|+4|I|·|J| ·
2−16|J|+4|J|·|Q|.

Same analysis can be applied to the subspace trail for 2 + 0.5 rounds of
PRINCE. If two texts belong to the same coset of CI , then the probability that
they belong to the same coset of IMQ after 4.5 rounds is equal to 2−16|I|+4|I|·|J| ·
2−16|J|+4|J|·|Q|. As a result, the following theorems hold.

Theorem 3. Let I, J,Q ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, 0 < |J | ≤ 3, 0 < |Q| ≤
3. For any I, J and Q, we have that Rm1(CI ⊕ a) = MQ ⊕ e with probability
2−16|I|+4|I|·|J| · 2−16|J|+4|J|·|Q|, where the input and output of second round need
to consider the intersection of DI and CJ , DJ and CQ respectively. Equivalently:

Prob(Rm1(x) ⊕ Rm1(y) ∈ MQ|x ⊕ y ∈ CI) = 2−16|I|+4|I|·|J| · 2−16|J|+4|J|·|Q|,

CI ⊕ a
R(·)−−→ DI ⊕ b

R(·)−−→ CQ ⊕ c
R(·)−−→ DQ ⊕ d

Λ(·)−−→ MQ ⊕ e

where m1 = 2 + 1 + 1.5 and Λ(·) = M
′ ◦ S − Box(·).

Theorem 4. Let I, J,Q ⊆ {0, 1, 2, 3} where 0 < |I| ≤ 3, 0 < |J | ≤ 3, 0 < |Q| ≤
3. For any I, J and Q, we have that Rm2(CI ⊕ a) = IMQ ⊕ e with probability
2−16|I|+4|I|·|J| · 2−16|J|+4|J|·|Q|, where the input and output of second round need
to consider the intersection of DI and CJ , DJ and CQ respectively. Equivalently:

Prob(Rm2(x) ⊕ Rm2(y) ∈ IMQ|x ⊕ y ∈ CI) = 2−16|I|+4|I|·|J| · 2−16|J|+4|J|·|Q|,

CI ⊕ a
R(·)−−→ DI ⊕ b

R(·)−−→ CQ ⊕ c
Γ1(·)−−−→ CQ ⊕ d

Γ2(·)−−−→ IMQ ⊕ e

where m2 = 2 + 2 + 0.5, Γ1(·) = super − SBox ◦ ARK(·) and Γ2(·) = M
′ ◦

SR−1 ◦ ARK(·).
As a consequence, we obtain two subspace trails for 4.5 rounds of PRINCE

with certain probability.

3.2 New Property of 4.5-Round PRINCE

Using the first 4.5-round subspace trail presented in Theorem3, it is possible to
show a new structural property of 4.5-round PRINCE. Let’s consider a set of
plaintexts in the same coset of column subspace CI , that is CI ⊕ a for a certain
a ∈ C⊥

I , and the corresponding ciphertexts after 4.5 rounds. In order to set up
the distinguisher on 4.5 even more rounds of PRINCE, the core idea is to count
the number of different pairs of ciphertexts that belong to the same coset of MQ

for a fixed Q. Through analysis, we can prove that for 4.5-round PRINCE this
number is a multiple of 8 with probability 1. Instead, for a random permutation
the same number does not have any special property. Therefore, this allows to
distinguish 4.5-round PRINCE from a random permutation. The same property
holds for the second 4.5-round subspace trail of PRINCE in Theorem4. The
above property of PRINCE can be summarized as the following theorems.

206 B. Wang et al.

Theorem 5. Let CI and MQ be the subspaces defined as before for certain fixed
I and Q, and assume |I| = 1. Given an arbitrary coset of CI , consider all the 216

plaintexts and the corresponding ciphertexts after 4.5 rounds (three rounds before
+ middle 1.5 rounds), that is (pi, ci) for i = 0, · · · , 216 − 1 where pi ∈ CI ⊕ a
and ci = R2+1+1.5(pi). The number n of different pairs of ciphertexts (ci, cj) for
i �= j such that ci ⊕ cj ∈ MQ (i.e. ci and cj belong to the same coset of MQ)

n := |{(pi, ci), (pj , cj)|∀ pi, pj ∈ CI ⊕ a, pi < pj and ci ⊕ cj ∈ MQ}|

is a multiple of 8, that is ∃n
′ ∈ N such that n = 8 · n

′
.

Theorem 6. Let CI and IMQ be the subspaces defined as before for certain
fixed I and Q, and assume |I| = 1. Given an arbitrary coset of CI , consider all
the 216 plaintexts and the corresponding ciphertexts after 4.5 rounds (two rounds
before + middle 2 rounds + 0.5 round), that is (pi, ci) for i = 0, · · · , 216−1 where
pi ∈ CI ⊕a and ci = R2+2+0.5(pi). The number n of different pairs of ciphertexts
(ci, cj) for i �= j such that ci ⊕ cj ∈ IMQ (i.e. ci and cj belong to the same coset
of IMQ)

n := |{(pi, ci), (pj , cj)|∀ pi, pj ∈ CI ⊕ a, pi < pj and ci ⊕ cj ∈ IMQ}|

is a multiple of 8, that is ∃n
′ ∈ N such that n = 8 · n′

. “<” in Theorem5 and 6
means the partial order [15].

In the following, we will prove Theorem5 in detail, and Theorem6 has similar
analysis. Since

CI ⊕ a
R(·)−−→ DI ⊕ b

R(·)−−→ CQ ⊕ c
R1+1.5(·)−−−−−−→ MQ ⊕ d,

the main idea is to focus on the second round DI ⊕ b
R(·)−−→ CQ ⊕ b in order to

prove the statement of Theorem 5. Therefore, the proof of Theorem 5 is related
to the following lemma on 1-round PRINCE.

Lemma 1. Let DI and CQ be the subspaces defined as before for certain fixed
I and Q, and assume |I| = 1. Given an arbitrary coset of DI , consider all the
216 plaintexts and the corresponding ciphertexts after 1 round, that is (p̂i, ĉi)
for i = 0, · · · , 216 − 1 where ĉi = R(p̂i). The number n of different pairs of
ciphertexts (ĉi, ĉj) for i �= j such that ĉi ⊕ ĉj ∈ CQ (i.e. ĉi and ĉj belong to the
same coset of CQ) is a multiple of 8, that is ∃n

′ ∈ N such that n = 8 · n
′
.

The complete proof is provided in the next section - Sect. 4. The proof of Theo-
rem 5 follows immediately by the proof of Lemma 1.

4 A Detailed Proof of Lemma1 and Theorem5

In this section we will give a formal and detailed proof of Theorem5. As already
known, it is sufficient to prove Lemma 1 in order to prove Theorem 5. Firstly, let
us concentrate on Lemma 1.

A New Non-random Property of 4.5-Round PRINCE 207

Consider two elements p1 and p2 in the same coset of Di ⊕ a for a ∈ D⊥
i .

Without loss of generality (W.l.o.g.), assume i = 0 (it is analogous for the other
cases). By definition of Di, there exist x, y, z, w ∈ F24 and x

′
, y

′
, z

′
, w

′ ∈ F24

such that:

p1 = a ⊕

⎡

⎢
⎢
⎣

x 0 0 0
0 0 0 y
0 0 z 0
0 w 0 0

⎤

⎥
⎥
⎦

, p2 = a ⊕

⎡

⎢
⎢
⎣

x
′

0 0 0
0 0 0 y

′

0 0 z
′

0
0 w

′
0 0

⎤

⎥
⎥
⎦

.

For the following, we say that p1 is “generated” by the variables 〈x, y, z, w〉
and that p2 is “generated” by the variables 〈x′

, y
′
, z

′
, w

′〉.
First Case. Firstly, we consider the case in which three variables are equal.
W.l.o.g. we assume that y = y

′
, z = z

′
, w = w

′
and x �= x

′
(the other cases are

analogous). In other words, we suppose that p1 and p2 belong to the same coset
of (D0 ∩ C0) ⊕ a, where a ∈ (D0 ∩ C0)⊥. Since D0 ∩ C0 ⊆ C0, it follows that if
p1 ⊕ p2 ∈ C0, then R(p1) ⊕ R(p2) ∈ D0. In more details, R(p1) ⊕ R(p2) is given
by:

(R(p1) ⊕ R(p2))0,0 = α3(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0)),

(R(p1) ⊕ R(p2))1,3 = α2(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0)),

(R(p1) ⊕ R(p2))2,2 = α1(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0)),

(R(p1) ⊕ R(p2))3,1 = α0(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0)).

Since S −Box(x⊕a0,0)⊕S −Box(x
′ ⊕a0,0) is different from zero, it follows that

at least three output nibbles (one per column) must be different from zero. In
other words, it is possible that p1 and p2 exist such that R(p1)⊕R(p2) ∈ CQ for
|Q| = 3. Moreover, observe that R(p1) ⊕ R(p2) ∈ CQ for |Q| = 3 if and only if
one column of R(p1)⊕R(p2) is equal to zero. Since there are two “free” variables
(i.e. x, x

′
) and one equation, such a system can have a non-negligible solution.

Finally, since the previous result is independent of the values of y = y
′
, z =

z
′
, w = w

′
, it follows that the number of collisions for this case must be a multiple

of 212.

Second Case. Secondly, we consider the case in which two variables are equal.
W.l.o.g. we assume for example that y = y

′
, z = z

′
while x �= x

′
, w �= w

′
(the

other cases are analogous). That is, we suppose that p1 and p2 belong to the
same coset of (D0 ∩ C0,1) ⊕ a, where a ∈ (D0 ∩ C0,1)⊥.

Assume that - for certain y = y
′

and z = z
′

- there exist two elements p1

(generated by 〈x,w〉) and p2(generated by 〈x′
, w

′〉) defined as before in the same
coset D0 that belong to the same coset of CQ for a certain Q with |Q| = 3 after
one round. This implies that the two elements p̂1(generated by 〈x′, w〉) and p̂2

(generated by 〈x,w′〉)

208 B. Wang et al.

p̂1 = a ⊕

⎡

⎢
⎢
⎣

x
′

0 0 0
0 0 0 0
0 0 0 0
0 w 0 0

⎤

⎥
⎥
⎦

, p̂2 = a ⊕

⎡

⎢
⎢
⎣

x 0 0 0
0 0 0 0
0 0 0 0
0 w

′
0 0

⎤

⎥
⎥
⎦

belong to the same coset of CQ after one round since R(p1) ⊕ R(p2) = R(p̂1) ⊕
R(p̂2). Note that the existence of the two elements p̂1 and p̂2 is guaranteed by
the fact that we are working with the entire coset of D0. This implies that the
number of collisions must be even, that is a multiple of 2.

Then we have only to prove that it is possible that x, x
′
, w, w

′
can exist such

that R(p1) ⊕ R(p2) ∈ CQ for |Q| = 3. We compute and analyze the first column
(the others are analogous):

(R(p1) ⊕ R(p2))·,0 =

⎡

⎢
⎢
⎣

α3(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0))

α2(S − Box(w ⊕ a3,1) ⊕ S − Box(w
′ ⊕ a3,1))

0
0

⎤

⎥
⎥
⎦

.

Since S−Box(x⊕a0,0)⊕S−Box(x
′ ⊕a0,0) and S−Box(w⊕a3,1)⊕S−Box(w

′ ⊕
a3,1) are different from zero, it follows that at least 3×2 output nibbles must be
different from zero. That is to say, it is possible that p1 and p2 exist such that
R(p1)⊕R(p2) ∈ CQ for |Q| = 3. Similarly, R(p1)⊕R(p2) ∈ CQ for |Q| = 3 holds
if and only if one column of R(p1) ⊕ R(p2) is equal to zero. Since there are four
“free” variables (i.e. x, x

′
, w, w

′
) and a system of two equations, such a system

can have a non-negligible solution.
Finally, since the previous result is independent of the values of y = y

′
, z = z

′
,

it follows that the number of collisions for this case must be a multiple of 29.

Third Case. Thirdly, we consider the case in which only one variable is equal.
W.l.o.g. we assume for example that y = y

′
, while x �= x

′
, z �= z

′
and w �= w

′

(the other cases are analogous). That is, we suppose that two texts p1 and p2

belong to the same coset of (D0 ∩ C0,1,2) ⊕ a, where a ∈ (D0 ∩ C0,1,2)⊥.
Assume there exist two elements p1 (generated by 〈x, z, w〉) and p2(generated

by 〈x′
, z

′
, w

′〉) defined as before in the same coset D0 that belong to the same
coset of CQ with |Q| = 3 after one round. Similar to before, it follows that the
following three pairs of elements in the same coset of D0 generated by:

– 〈x′
, z, w〉 and 〈x, z

′
, w′〉

– 〈x, z
′
, w〉 and 〈x′

, z, w′〉
– 〈x, z, w

′〉 and 〈x′, z
′
, w〉

belong to the same coset of CQ after one round since R(p1) ⊕ R(p2) = R(p̂1) ⊕
R(p̂2), where p̂1 and p̂2 are generated by the previous combinations of variables.
Note that the existence of these elements is guaranteed by the fact that we are
working with the entire coset of D0. This implies that the number of collisions
must be a multiple of 4.

A New Non-random Property of 4.5-Round PRINCE 209

Then we just need to prove that such x, z, w and x
′
, z

′
, w

′
can exist. As before

we compute and analyze the first column (the others are analogous):

(R(p1) ⊕ R(p2))·,0 =

⎡

⎢
⎢
⎣

α3(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0))

α2(S − Box(w ⊕ a3,1) ⊕ S − Box(w
′ ⊕ a3,1))

α2(S − Box(z ⊕ a2,2) ⊕ S − Box(z
′ ⊕ a2,2))

0

⎤

⎥
⎥
⎦

.

Since S−Box(x⊕a0,0)⊕S−Box(x
′ ⊕a0,0), S−Box(w⊕a3,1)⊕S−Box(w

′ ⊕a3,1)
and S −Box(z ⊕a2,2)⊕S −Box(z

′ ⊕a2,2) are different from zero, it follows that
at least 3 × 3 output nibbles must be different from zero. This implies that the
event R(p1)⊕R(p2) ∈ CQ for |Q| = 3 is possible. As before, R(p1)⊕R(p2) ∈ CQ

for |Q| = 3 holds if and only if one column of R(p1)⊕R(p2) is equal to zero. Also
in this case, variables x, x

′
, z, z

′
, w, w

′
can exist since the number of equations is

less than the number of variables.
Finally, since the previous result is independent of the values of y = y

′
, it

follows that the number of collisions for this case must be a multiple of 26.

Fourth Case. Fourthly, we consider the case in which all variables are different.
W.l.o.g. we assume that x �= x

′
, y �= y

′
, z �= z

′
and w �= w

′
. That is, we suppose

that two texts p1 and p2 belong to the same coset of D0 ⊕ a, where a ∈ D⊥
0 .

Assume there exist two elements p1(generated by 〈x, y, z, w〉) and
p2(generated by 〈x′, y′, z′, w′〉) defined as before in the same coset of D0 that
belong to the same coset of CQ with |Q| = 3 after one round. Similarly, it follows
that the following seven pairs of elements in the same coset of D0 generated by:

− 〈x′
, y, z, w〉 and 〈x, y

′
, z

′
, w

′〉 − 〈x, y
′
, z, w〉 and 〈x′

, y, z
′
, w

′〉
− 〈x, y, z

′
, w〉 and 〈x′

, y
′
, z, w

′〉 − 〈x, y, z, w
′〉 and 〈x′

, y
′
, z

′
, w〉

− 〈x′
, y

′
, z, w〉 and 〈x, y, z

′
, w

′〉 − 〈x′
, y, z

′
, w〉 and 〈x, y

′
, z, w

′〉
− 〈x′

, y, z, w
′〉 and 〈x, y

′
, z

′
, w〉

belong to the same coset of CJ after one round since R(p1) ⊕ R(p2) = R(p̂1) ⊕
R(p̂2), where p̂1 and p̂2 are generated by the previous combinations of variables.
Note that the existence of these elements is guaranteed by the fact that we are
working with the entire coset of D0 as before. This implies that the number of
collisions must be a multiple of 8.

Then we have only to prove that such x, y, z, w and x
′
, y

′
, z

′
, w

′
can exist. As

before we compute and analyze the first column (the others are analogous):

(R(p1) ⊕ R(p2))·,0 =

⎡

⎢
⎢
⎣

α3(S − Box(x ⊕ a0,0) ⊕ S − Box(x
′ ⊕ a0,0))

α2(S − Box(w ⊕ a3,1) ⊕ S − Box(w
′ ⊕ a3,1))

α2(S − Box(z ⊕ a2,2) ⊕ S − Box(z
′ ⊕ a2,2))

α3(S − Box(y ⊕ a1,3) ⊕ S − Box(y
′ ⊕ a1,3))

⎤

⎥
⎥
⎦

.

Since S−Box(x⊕a0,0)⊕S−Box(x
′ ⊕a0,0), S−Box(w⊕a3,1)⊕S−Box(w

′ ⊕a3,1),
S −Box(z⊕a2,2)⊕S −Box(z

′ ⊕a2,2) and S −Box(y⊕a1,3)⊕S −Box(y
′ ⊕a1,3)

are different from zero, it follows that at least 3 × 4 output nibbles must be
different from zero. This means that the event R(p1) ⊕ R(p2) ∈ CQ for |Q| = 3

210 B. Wang et al.

is possible. Also in this case, variables x, x
′
, y, y

′
, z, z

′
, w, w

′
can exist since the

number of equations is less than the number of variables.
To sum up, according to the previous analysis, there exist n1, n2, n3, n4 ∈ N

such that the total number of collisions n is equal to n = 212 · n1 + 29 · n2 + 26 ·
n3 + 8 · n4 = 8 · (29 · n1 + 26 · n2 + 23 · n3 + n4), i.e. it is a multiple of 8. This
proves the lemma.

For completeness, we briefly recall why the proof of Lemma 1 implies Theo-
rem 5. Consider the following description of 4.5-round of PRINCE:

CI ⊕ a
R(·)−−→ DI ⊕ b

R(·)−−→ CQ ⊕ c
R(·)−−→ DQ ⊕ d

M
′ ◦S−Box(·)−−−−−−−−−→ MQ ⊕ e.

Combining Lemma 1, we start with the second round and extend it forward
by 2.5 rounds, then we obtain that a coset of CQ is mapped into a coset of MQ.
Let’s consider the second round again and extend it backward by one round, then
we obtain that a coset of DI is mapped into a coset of CI . Since these two events
hold with probability 1, this finally proves Theorem5, and Theorem 6 is the same.
For completeness, for the cases |I| = 2 and |I| = 3, there are similar theorems.
Moreover, we have practically verified the property of PRINCE using C/C++
implementation. To verify Theorem 5, we have chosen |I| = 1 and |Q| = 3
fixed, given plaintexts in the same coset of Ci, the programs counts the number
of collisions n among the ciphertexts in the same coset of MQ and prints the
corresponding n%8. The experimental results show that for 4.5-round PRINCE
n is a multiple of 8, while it can take any possible value in the case of a random
permutation. Finally, note that Theorem6 holds exactly in the similar way for
PRINCE.

5 Conclusion

Over the past several years, we’ve seen the rapid deployment of secure micro-
controllers in the Internet of Things, automotive, and cloud infrastructure. Var-
ious areas of technology, including industrial automation, robotics as well as the
5th generation mobile networks, require real-time operation, low latency execu-
tion, while preserving the highest level of security. PRINCE is the first publicly
known low-latency family of block ciphers that got scrutinized by the crypto-
graphic community. In this paper, we have presented two new subspace trails
for 4.5 rounds of PRINCE. Additionally, we showed a new structural property
that can be exploited to set up an efficient 4.5-round secret-key distinguisher
for PRINCE, which is independent of the secret key, improving the previous
results in [21]. Starting from our results, this new 4.5-round property might be
applied to set up round-reduced attacks on PRINCE. We leave these questions
for further study.

Acknowledgements. The authors would like to thank all anonymous referees for
their valuable comments. This work is supported by National Natural Science Foun-
dation of China (No. 61672509, No. 62072445), and the National Cryptography Devel-
opment Foundation of China (no. MMJJ20170101).

A New Non-random Property of 4.5-Round PRINCE 211

References

1. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

2. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

3. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a
block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 2

4. Bulygin, S., Walter, M., Buchmann, J.: Full analysis of PRINTcipher with respect
to invariant subspace attack: efficient key recovery and countermeasures. Des.
Codes Crypt. 73(3), 997–1022 (2014)

5. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace
attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 11

6. Grosso, V., Leurent, G., Standaert, F.X., et al.: SCREAM & iSCREAM. Entry in
the CAESAR competition (2014). http://competitions.cr.yp.to/round1/screamv1.
pdf

7. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46706-0 2

8. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

9. Guo, J., Jean, J., Nikolic, I., et al.: Invariant subspace attack against Midori64
and the resistance criteria for S-box designs. IACR Trans. Symmetric Cryptol.
2016(1), 33–56 (2016)

10. Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 17

11. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against
invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 22

12. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack. In: Cheon, J.H., Tak-
agi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 1

13. Wei, Y., Ye, T., Wu, W., Pasalic, E.: Generalized nonlinear invariant attack and
the new design criterion for round constants. IACR Trans. Symmetric Cryptol.
2018(4), 62–79 (2018)

14. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-642-15031-9_2
https://doi.org/10.1007/978-3-662-46800-5_11
http://competitions.cr.yp.to/round1/screamv1.pdf
http://competitions.cr.yp.to/round1/screamv1.pdf
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1007/978-3-662-53890-6_1

212 B. Wang et al.

15. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56614-6 10

16. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 10

17. Morawiecki, P.: Practical attacks on the round-reduced PRINCE. IET Inf. Secur.
11(3), 146–151 (2017)

18. Posteuca, R., Negara, G.: Integral cryptanalysis of round-reduced PRINCE cipher.
Proc. Rom. Acad. 2015(16), 265–270 (2015)

19. Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against biclique
and differential cryptanalysis. Cryptology ePrint Archive, Report 2016/712 (2016)

20. Zhao, G., Sun, B., Li, C., Su, J.: Truncated differential cryptanalysis of PRINCE.
Secur. Commun. Netw. 8(16), 2875–2887 (2015)

21. Soleimany, H., et al.: Reflection cryptanalysis of PRINCE-like ciphers. J. Cryptol.
28(3), 718–744 (2013). https://doi.org/10.1007/s00145-013-9175-4

22. Grassi, L., Rechberger, C.: Practical low data-complexity subspace-trail crypt-
analysis of round-reduced PRINCE. In: Dunkelman, O., Sanadhya, S.K. (eds.)
INDOCRYPT 2016. LNCS, vol. 10095, pp. 322–342. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49890-4 18

https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-319-56614-6_10
https://doi.org/10.1007/978-3-662-48116-5_10
https://doi.org/10.1007/s00145-013-9175-4
https://doi.org/10.1007/978-3-319-49890-4_18

Artificial Intelligence and
Cryptocurrency

Generative Adversarial Networks-Based
Pseudo-Random Number Generator

for Embedded Processors

Hyunji Kim, Yongbeen Kwon, Minjoo Sim, Sejin Lim, and Hwajeong Seo(B)

IT Department, Hansung University, Seoul, South Korea
khj1594012@gmail.com, vexyoung@gmail.com, minjoos9797@gmail.com,

dlatpwls834@gmail.com, hwajeong84@gmail.com

Abstract. A pseudo-random number generator (PRNG) is a fundamen-
tal building block for modern cryptographic solutions. In this paper, we
present a novel PRNG based on generative adversarial networks (GAN).
A recurrent neural network (RNN) layer is used to overcome the prob-
lems of predictability and reproducibility for long random sequences,
which is found in the result of the NIST test suite for the previous
method. The proposed design generates a random number of 1,099,200-
bits with a 64-bit seed. The proposed method is also efficiently imple-
mented on embedded processors by using the Edge TPU. To support the
Edge TPU, the proposed GAN based PRNG is converted to a Tensor-
Flow Lite model. During model training, the number of epochs is signif-
icantly reduced with the proposed approach. The PRNG generates ran-
dom numbers in 13.27 ms using the Edge TPU. Also, our PRNG achieved
a speed of 1.0 GB/s, which is about 6.25x compared to the speed of other
lightweight PRNG. To the best of our knowledge, this is the first GAN
based PRNG for embedded processors. Finally, generated random num-
bers were tested through the NIST random number test suite. Compared
with the previous method, the proposed method reduced the percentage
of test failures by 2.85x. The result shows that the proposed GAN-based
PRNG achieved high randomness even on embedded processors.

Keywords: Pseudo-random number generator · Generative
adversarial networks · Edge TPU · Recurrent neural networks

1 Introduction

Pseudo-random number generators (PRNGs) are widely used in cryptographic
applications. For this reason, the implementation of PRNGs on modern com-
puters is important for real-world applications. In the past, a number of PRNG
implementations have been investigated [1–4].

Previous PRNG implementations utilized unique hardware features and
mathematical functions. Recently, a novel approach to a generative adversarial

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 215–234, 2021.
https://doi.org/10.1007/978-3-030-68890-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_12&domain=pdf
http://orcid.org/0000-0003-0069-9061
https://doi.org/10.1007/978-3-030-68890-5_12

216 H. Kim et al.

network (GAN)-based PRNG was presented. It was proved that the machine-
learning algorithm can efficiently generate random sequences [5]. However, previ-
ous methods require a number of epochs and achieve low generation performance
and randomness.

In this paper, we present the first GAN-based PRNG for embedded proces-
sors. The proposed approach improved the previous GAN-based PRNG by mod-
ifying the neural network layers and output type, which also reduces the number
of epochs. Moreover, the model is tailored to support embedded environments
(i.e. Edge TPU). Finally, the generated random number sequence passes the
NIST test suite with high randomness and performance.

1.1 Contribution

Novel Generative Adversarial Networks-Based Pseudo-Random Num-
ber Generator. We present a novel GAN-based PRNG. Unlike the previous
approach, the proposed design generates 1,099,520-bit random numbers with
only a 64-bit seed. During the model training session, the number of epochs is
significantly reduced with new approach. Finally, the proposed PRNG shows
better randomness and performance than previous works.

Lightweight GAN-Based PRNG for Embedded Processors. We tailored
the proposed GAN-based PRNG for Edge TPU to ensure high-performance and
high entropy. The model was successfully converted to a Tensorflow Light model
and uploaded to the Edge TPU. Random number sequences were successfully
generated on the embedded processor. Also, the GAN-based PRNG achieved
faster speed than other lightweight PRNG.

Randomness Test Based on NIST Suite. The proposed PRNG was evalu-
ated through the NIST suite. The generated random sequence successfully passed
the NIST test. The entropy was also higher than that achieved by previous
methods.

The remainder of this paper is organized as follows. In Sect. 2, related tech-
nologies, such as random number generator, deep learning framework, genera-
tive adversarial networks, and previous GAN-based PRNG implementations are
presented. In Sect. 3, the proposed GAN-based PRNG implementation is intro-
duced. In Sect. 4, the evaluation of proposed GAN-based PRNG implementation
is discussed. Finally, Sect. 5 concludes the paper.

2 Related Works

2.1 Random Number Generator

A random number generator (RNG) produces a sequence of numbers that can-
not be predicted better than by random chance. Random number generators
are largely divided into true random number generators (TRNGs) and pseudo-
random number generators (PRNGs). In the following subsection, we describe
both RNG approaches in detail.

Random Number Generator for Embedded Processors 217

True Random Number Generator. A TRNG generates genuinely random
numbers. These numbers are non-deterministic. According to Kerchoff’s prin-
ciple, the random number generator must produce unpredictable bits even if
every detail of the generator is available [6]. Physical sources, including John-
son’s noise, Zener noise, radioactive decay, photon path splitting at a two-way
beam splitter, and photon arrival times, have been utilized to achieve random-
ness [7–11].

Pseudo Random Number Generator. A PRNG, namely, a deterministic
random bit generator (DRBG), generates numbers that look random by pro-
ducing the random sequence with perfect balance between 0’s and 1’s. How-
ever, these numbers are deterministic, periodic, and predictable. For this reason,
these numbers can be reproduced when the inner state of the PRNG is available.
A PRNG suitable for cryptographic applications is a cryptographically secure
PRNG (CSPRNG). Some examples of CSPRNGs include stream ciphers and
block ciphers in the counter mode of operation [12].

2.2 Random Number Generator Attack

The inner state of a RNG is updated through the update function with a seed,
and it outputs a random number. Because the previous state is not known by
using a one-way function, such as the update function, it can prevent predictive
attacks. If the length of the inner state is short, an attacker is able to predict
the output through a brute force attack on the inner state. Therefore, the length
of the inner state should be sufficiently long enough. If the attacker can predict
or control even some of the operating conditions used to generate or control the
output, it would be relatively easy to carry out a brute force attack on the inner
conditions. Therefore, as much noise as possible should be used to generate the
inner state. The entropy of the noise must be large enough.

2.3 Deep Learning Framework

The deep learning method is a type of machine learning method based on arti-
ficial neural networks with representation learning. The deep learning method
uses multiple layers to extract higher-level features from raw input. There are
various deep learning structures. There are software (TensorFlow) and hardware
(Tensor Processing Unit) frameworks to support the deep learning method.

TensorFlow. TensorFlow is an open-source software library for machine learn-
ing applications, such as neural networks [13]. The library is used for both
research and production, such as DeepDream, which generates automated image-
captioning1. The programming language is Python.

1 https://www.vice.com/en uk/topic/motherboard.

https://www.vice.com/en_uk/topic/motherboard

218 H. Kim et al.

Keras. Keras is a deep learning library for machine learning and artificial intel-
ligence. It provides a high-level API for users to easily build neural networks and
runs on TensorFlow. Using the Keras library, we can easily design a model using
pre-implemented modules and additionally use TensorFlow for detailed design
(low-level). Recently, with the release of TensorFlow 2.0, TensorFlow allows the
Keras function to be used through the tf.keras module. This makes Tensor-
Flow’s low-level design and Keras’s high-level design more flexible than before.
We designed the model using Keras in this work.

Edge TPU. In 2018, Google announced the Edge tensor processing unit (TPU),
which runs machine learning models for edge computing. It is available as a
USB companion or as a self-contained development board. [14] The Edge TPU
performs 4 trillion operations per second while using only 2W2. In comparison
to a floating-point architecture with a similar form factor, the Intel Compute
Stick, the Edge TPU has shown superior performance in terms of latency and
computational efficiency. The machine learning models on the Edge TPU are
based on TensorFlow Lite3. Because the Edge TPU is capable of accelerating
forward-pass operations, the Edge TPU is efficient for making inferences.

The Edge TPU is mainly used for classification, becuase it provides pre-
trained and pre-compiled model detection tasks for image classification and
objects4.

2.4 Generative Adversarial Networks

A generative adversarial network (GAN) is a type of machine learning frame-
work [15]. A GAN is an in-depth neural network structure consisting of two
networks, generator and discriminator. Given a training set, a GAN learns to
generate new data with the same statistics as the training set. The generator
is intended to produce data that is as real as possible, and the discriminator is
intended to distinguish between real and fake data. The training course repeats
the process of training the discriminator first and then the generator and dis-
criminator exchange data. The discriminator follows two main courses. The first
is to enter real data and learn that the network really classifies that data. The
second is the process of entering fake data generated by the generator and learn-
ing to classify that data as fake. This allows the discriminator to classify real
data as real or fake. If it determines that data is real, it outputs 1, and if it
determines that data is fake, it outputs 0. After the discriminator has completed
this learning process, the generator is trained to deceive the learned discrimi-
nator. In other words, the generator gradually develops its output based on the
discriminator judgment so that it can judge its output as true data. By repeat-
ing the above training process, both the discriminator and the generator will be
2 https://coral.ai/docs/edgetpu/benchmarks/.
3 https://www.blog.google/products/google-cloud/bringing-intelligence-to-the-edge-

with-cloud-iot/.
4 https://coral.ai/models/.

https://coral.ai/docs/edgetpu/benchmarks/
https://www.blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot/
https://www.blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot/
https://coral.ai/models/

Random Number Generator for Embedded Processors 219

gradually developed. As a result, the generator will be able to create fake data
that is completely identical to real data, and the discriminator will be unable to
distinguish between real data and fake data.

GANs have been used for various fields, such as fashion, art, science, and
video games [16,17]. In this paper, we used GAN for pseudo-random number
generation.

2.5 Previous GAN-Based PRNG Implementations

In [5], the first GAN based PRNG implementation was presented. The GAN’s
generator is partially hidden, and the adversary is trained to discover a mapping
from the overt part to the hidden part. In that study, the generated random
numbers achieved randomness.

In general, a GAN is a model consisting of the learning of the generator and
the discriminator. However, it was novel that a GAN was designed with the
learning of a generator and a predictor rather than a discriminator. The dis-
criminative approach requires an external source of randomness that it attempts
to imitate, whereas this predictive approach does not require external inputs. In
the predictor approach, the output of the generator cannot be predicted by the
improved predictor.

3 Proposed Method

We propose an PRNG based on GAN for embedded processors. In Fig. 1, the
proposed system configuration is presented. The basic GAN model consists of a
generator and a discriminator. The proposed method uses the predictor intro-
duced in the previous method rather than a discriminator. For each training
session, a fresh random seed source is entered into the generator. Then, the gen-
erator produces a random bit stream based on the random seed. The generated
random bit stream is split into two parts. The predictor is trained to predict
the back part by the divided front part. Then, the generator produces a ran-
dom bit stream so that the predictor cannot predict by reflecting the predictor’s
training result. Because the inner state of the generator is updated according
to the training result of the predictor, different results are generated even if the
same random seed input is given. The generator produces a bit stream with high
randomness because both models are alternately trained. As shown in Fig. 2, a
model trained to generate a random bit stream is deployed to edge devices using
Edge TPU and TensorFlow Lite. A random seed is generated from a secure
entropy source for the embedded device. The random bit stream generated by
the trained generator is converted to random numbers. Finally, a PRNG for an
embedded processor is designed.

3.1 Design of Generator Model

As shown in Fig. 3, the generator model consists of four fully connected layers.
The generator uses a random seed as input, and a bit stream with a length of

220 H. Kim et al.

∙
Generate

random bit stream

Generate
random bit stream

after training

Split into 2 parts

Predict
random bit stream

from

Compare

Fig. 1. System configuration for proposed method.

convert to
TensorFlow Lite

compile & deploy

Fig. 2. Configuration of random bit stream generation in embedded processors using
Edge TPU.

n · k is generated. In this case, n and k are adjustable hyper-parameters. The
generator is trained by using the combined model. Algorithm1 shows only the
process of predicting a random bit stream, not the training process. Because the
proposed method learns the bit stream, the sigmoid is used as the activation
function. The value of the sigmoid activation function is a floating-point number
between 0 and 1. For this reason, we round the value to 0 or 1 to generate the
result in a bit stream format. The generated output is used as the input of the
predictor model.

Random Number Generator for Embedded Processors 221

Fig. 3. Architecture of generator.

Algorithm 1. Generator mechanism
Input: Random seed (s), Generator (G)
Output: Random bit stream (RBS)
1: x ← Dense(s)
2: for i = 1 to 4 do
3: x ← Dense(x)
4: end for
5: x ← Sigmoid(x)
6: RBS ← round x into nearest integer (0 or 1)
7: return RBS

3.2 Design of Predictor Model

In Algorithm 2, the predictor mechanism is expressed. First, the bit stream
received by the generator is split into one for training(split0) and one for
loss(split1). Figure 4 shows the process of splitting the input data before train-
ing. split0 is (n − 1) · k-bits and split1 is k-bits. The predictor uses split0 as
the RNN layer’s input for training. The predictor uses spilt0 as training data to
predict what split1 was. In other words, the predictor does not require training
data, unlike the basic GAN model.

As shown in Fig. 5, the predictor model adds a recurrent neural network
(RNN) layer to the convolution layer used in the previous method. An RNN
learns the correlation of data points in a sequence [18]. Because the past infor-
mation is stored through hidden states, it is possible to learn even long sequence
data. Each row of the generator’s output used as the predictor’s input becomes
time-series data. Each of the n time series data has k features. This feature is
suitable for learning and predicting the sequence of bit streams. In particular,

222 H. Kim et al.

Lambda
split 1 (1)

split 0 (n-1)
1 1 1 0 0 1 1 0⋮
0 1 0 1 1 1 0 1

1 1 1 0 0 1 1 0
0 1 0 1 1 1 0 1

Fig. 4. Split the input bit stream into two parts for training.

by adjusting the k, each time series data can be learned in decimal or hexadec-
imal units within the desired range. In addition, features of time-series data in
a specific range are reflected, and long-term dependencies can be maintained.
As in the previous work, using only a convolution layer means that there is less
weight to learn. However, there is a tendency to learn regional features, which
reduces randomness. In Sect. 4, the NIST test suite result shows how effective
the use of RNN is in ensuring the randomness of long bit streams. In the case
of the proposed model, using LSTM, a type of RNN, it takes too long to train.
In addition, the weight of learning is four times greater than that for a simple
RNN, so it is inefficient compared to the randomness being learned. For this
reason, we selected a simple RNN layer for training the random bit stream.

Because the predictor also learns and predicts the bit stream, we use the
sigmoid activation function. The sigmoid activation function returns a value
between 0 and 1, the return value is rounded to the nearest integer and is used
as a bit.

0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1

Predictor

Conv1D

LeakyReLu

Conv1D

LeakyReLu

Conv1D

LeakyReLu

Dense

Sigmoid
RNN

split 1prediction

compare

1 1 1 0 0 1 1 0⋮ split 0

Fig. 5. Architecture of a predictor.

Random Number Generator for Embedded Processors 223

Algorithm 2. Predictor mechanism
Input: Random bit stream (RBS), Length of
Output: Predicted random bit stream (RBSP)
1: n ← row size of RBS
2: k ← column size of RBS
3: for i = 0, to n do
4: for j = 0, to k do
5: if i < n − 1 then
6: Split0[i][j] = RBS[i][j]
7: else
8: Split1[i][j] = RBS[i][j]
9: end if

10: end for
11: end for
12: x ← RNN(Split0)
13: for i = 1, to 3 do
14: x ← Conv1D(x)
15: end for
16: x ← Dense(x)
17: x ← Sigmoid(x)
18: RBSP ← round x into nearest integer (0 or 1)
19: Lossp ← mean(| Split1 − RBSP |)
20: Train to minimize Lossp
21: return RBSP , Split1

The loss is calculated as the mean absolute error over split1 and RBSP which
is the predicted random bit stream by learning split0. If split1 and the predicted
random bit stream are the same, the predictor has made a correct prediction,
and the loss is minimized. Therefore, the predictor performance is improved by
training, which reduces the loss.

3.3 Design of GAN-Based PRNG

The GAN-PRNG is the final model that combines two models, including a gen-
erator and a predictor. The generator is trained through a combined model to
reflect the results of the predictor. Algorithm3 shows the detailed operation of
the proposed GAN-PRNG.

Built-in random functions are used as a random seed in the training pro-
cess. However, we obtain the entropy from a secure entropy source or generator
implemented in hardware to generate the random seed in the inference process.
The GAN requires a random seed that is the input of the generator and uses a
value randomly extracted from a uniform distribution or a normal distribution.
This simple distribution is mapped to a complex distribution through training.

The random seed is 64 bits, and it is used as input to the generator. The
random bit stream is generated through the generator and used as the input of
the predictor. After the predictor is trained, the predicted bit stream(RBSP)

224 H. Kim et al.

Algorithm 3. Proposed RNG based on GAN
Input: Random seed (s), Generator (G), Predictor (P), epochs (EPOCHS), Secure

parameter (t), Range of random number (r), The number of bits needed to represent
random number (m)

Output: Random Number (num)
1: for epoch = 1 to EPOCHS do
2: s ← sample entropy from IoT device
3: RBS ← G(s)
4: RBSP , Split1 ← P (RBS)
5: LossG ← mean(abs(1 − Split1 − RBSP)) · 0.5
6: Train G to minimize LossG
7: RBS ← G(s)
8: end for

9: c ←
m+t−1∑

i=0

2i · RBSi

10: num ← c mod r
11: return num

and the actual bit stream(split1) are returned. The combined model computes
the loss with two loss values and trains the generator to minimize the loss. If
split1 and the predicted random bit stream are different, the loss of the combined
model is minimized to zero. This means that the predictor cannot predict the
random bit stream generated by the generator. In other words, the generator
also generates a better bit stream by reflecting the predictor’s output.

This process is repeated for each epoch. A bit stream with high randomness
is generated. Then the random bit stream is converted to a random number.
There are three methods (the simple discard method, complex discard method,
and simple modular method) of converting a random bit stream into a random
number. Among them, we chose the simple modular method. Compared to the
other methods, it does not require a conditional loop; therefore, it is possible to
operate in constant time. Through this entire process, a random number stream
is generated.

Both loss values are calculated as seen in Algorithm 3. Through the training,
the predicted bit stream and the actual bit stream become similar, reducing
the loss of the predictor. The loss of the generator is also calculated using the
predicted bit stream and the actual bit stream. If the predictor fails to predict
the random bit stream, the generator loss is reduced by the calculation formula.
Both models are trained to minimize the loss function. This means that the
generator is trained to generate an unpredictable random bit stream.

3.4 GAN-Based PRNG in Embedded Processors

The predictor is trained from its own model with the output of the generator.
The model that directly generates a random bit stream is a generator. Among
the trained models, only the generator model is converted into a TensorFlow
Lite model. Algorithm 4 shows the process of converting a trained model into a

Random Number Generator for Embedded Processors 225

TensorFlow Lite model. We compiled the TensorFlow Lite model and performed
the inference using the Edge TPU. The inference model expressed in Algorithm 5
is to generate random bit stream without the training process through the pre-
trained model. The fixed weight means that the inner state of the model is fixed.
When the input is exposed, there is a risk of prediction. In the previous work, the
random seed extraction and their PRNG model are separated. For that reason,
instead of a secure entropy source, the built-in random function is used. In the
proposed method, the entropy is obtained on embedded processors as random
seeds (e.g. sensor data) to prevent such prediction [19].

Fig. 6. Flowchart from model design to inference on Edge TPU.

The entire flow chart from the design of the model to inferring a random
bit sequence is shown in Fig. 6. The deployment of the proposed GAN based
PRNG on embedded processors is carried out as follows. First, the GAN model
is set, which includes the generator (G) model and predictor (P) model. Second,
the models (G, P) are trained under the GAN framework. Third, the trained
models are saved with fixed weights. Fourth, only a G model is converted into a
TensorFlow flatbuffer file. This is because we need a random bit generator, not a
random bit predictor. It is the generator that generates the random bits directly,
and because there is no training process on the embedded processor, only the
generator model is converted. The G model has the ability to generate a random
bit sequence with random seeds. Three types of models can be converted into a
TensorFlow flatbuffer file.

– Using SavedModel Directories
The first way to save the trained model is to use the ‘SavedModel’ for-
mat. TensorFlow offers an API module to save a trained model named

226 H. Kim et al.

Algorithm 4. Converting algorithm
Input: Trained Combined Model (M), TFLiteConverter
Output: TensorFlow Lite FlatBuffer file
1: trained G ← M.get generator
2: converter ← TFLiteConverter(trained G)
3: tflite model ← converter.convert()
4: with tf.io.gfile.GFile(‘trained G.tflite’, ‘wb’) as f :
5: f.write(tflite model)
6: return trained G.tflite

Algorithm 5. Inference for TPU
Input: TensorFlow Lite Model LM , Entropy, Interpreter I
Output: Inferred Random Bit Stream (RBS)
1: s ← sample entropy from IoT device
2: I.setModel(LM)
3: input size ← I.get input details()
4: output size ← I.get output details()
5: s.reshape(input size)
6: I.setTensor(s)
7: I.Invoke()
8: results ← I.getTensor()
9: RBS ← I.get Output

10: return RBS

‘tf.saved model’, which has the functions of save and load. The save func-
tion makes a directory consisting of model weights and functions. It can be
loaded and used as a trained model with fixed weights. This model cannot
have a specified input shape.

– Using tf.keras models
The second way to save a trained model is to use ‘tf.keras’ models. ‘tf.keras’
can support a sequential model, which is constructed by a list of layers. Each
layer in a sequential model must have one input and one output. A sequential
model can be trained by the inner function ‘fit’ with epochs. After training,
the model has fixed weights. For saving a tf.keras model, all functions should
be from a single module. Otherwise, module synchronization problems occur
during the conversion process.

– Using concrete functions
The third way to save a trained model is to use concrete functions. Currently,
only one concrete function is supported for one model.

Python supports API ‘tf.lite.TFLiteConverter’ for converting these types of
models. Through the API functions ‘from saved model()’, ‘from keras module()’
and ‘from concrete functions()’, each type of models is converted into a Tensor-
Flow FlatBuffer file, for which the filename extension is .tflite.

Random Number Generator for Embedded Processors 227

Finally, this TensorFlow FlatBuffer file can be deployed as a PRNG. For
using the full potential of Edge TPU, there are some limitations for models and
layers.

In our case, we saved only the G model as a tf.keras model. To generate
a random bit stream, only the G model is needed. Fourth, a tf.keras model
is converted to a TensorFlow Lite FlatBuffer file (.tflite). We converted the G
model to a FlatBuffer file. Fifth, we compiled the model and deployed it to the
embedded processors.

4 Evaluation

For the experiment, Google Co-laboratory PRO, a cloud-based service, was uti-
lized. It ran on Ubuntu 18.04.3 LTS and consists of an Nvidia GPU (Tesla T4,
Tesla P100, or Tesla K80) with 25 GB RAM. In terms of the programming envi-
ronment, Python 3.6.9, TensorFlow 2.2.0-rc and Keras 2.3.1 version were used.

The GAN-PRNG for the embedded processor was implemented using the
TensorFlow Lite model and Google Edge TPU. We saved the trained model in
the Colab environment and converted it to a TensorFlow Lite model. Using a
TensorFlow Lite file (.tflite), random numbers can be generated on embedded
devices without training. In addition, we performed statistical tests on random
bit sequences generated by the GAN-PRNG using NIST test suite.

4.1 NIST Test Suite

The randomness was verified for the output generated by the RNG through
the NIST test suite. The test suite consists of 188 individual tests. Each test is
repeated 10 times, which is called a test instance. For each repetition, 1,000,000
bits are used as input. The p-value is measured for each instance. The ideal
random number sequence has a p-value of 1, and the test is passed when the
threshold value is greater than α (α = 0.01). The final analysis report shows the
number of instances passed and the p-value for the distribution of instance p-
value. In the proposed method, the execution time on the Edge TPU is measured
to measure the rate of random number generation on the embedded processor.

Parameters. For the fair comparison, the hyper parameters were set as fol-
lows. Table 1 compares the hyper parameters optimized for each model with the
previous method. First, the data types for random number generation in the
previous work and this work are decimal and bit, respectively. The activation
function must change according to the data type. Therefore, the previous work
uses the customized activation function to generate a decimal in the range[0,216-
1], and this work uses the sigmoid function with the range[0,1]. So, the range of
data does not exceed 1 in this work. In this case, using the mean squared error
loss function is not effective because the distance between the actual value and
the predicted value is reduced by the square. So we use mean absolute error to
calculate the difference between the two values. The previous method consists of

228 H. Kim et al.

400 mini-batches of 2,048 input vectors. It predicts and learns 1 integer from 7
integers. Therefore, 112-bits are learned to predict 16-bits, and 262,144-bits are
learned in one mini-batch. It trained 104,857,600-bits in 1 epoch. The proposed
method consists of 100 mini-batches of 137,440 input vectors, so 1,099,192-bits
are learned to predict 8 bits, and 1,099,200-bits are learned in one mini-batch.
The total number of bits trained in 1 epoch is 109,920,000-bits. In both meth-
ods, a 64-bit seed is the input in one mini-batch. This means that the proposed
method generates a longer random number stream in comparison to the previous
method using the same length seed. It also shows that our method learns about
longer sequences, and this work achieves a similar level of randomness, up to 2.5
million bits per random seed. The unit of the generator’s dense layer is 30. The
unit of the RNN layer is 8, the filter of the convolution layer is set to 8, and the
kernel size is set to 1.

The learning rate of this neural network is 0.02, and an Adam optimizer with
a learning rate of 0.0002 is used as an optimization function. In addition, only
30 epochs are used for training, which improves the previous method by 200,000
epochs.

Table 1. Comparison of parameters with the previous works.

Bernardi et al. [5] This work

Data type Decimal Bit

Activation Custom (range[0, 216 − 1]) Sigmoid (0 or 1)

Loss Mean Square Error Mean Absolute Error

Seed: Output (bits) 64:262,144 64:1,099,200

Output Length 104,857,600-bits 109,920,000-bits

Optimizer Adam (lr = 0.02) Adam (lr = 0.0002)

Learning rate of network 0.02 0.02

Epoch 200,000 30

Results. Table 2 shows the NIST test suite results and inference time. Figure 7
presents the final analysis report of the NIST test suite. For one of the individual
tests, the random excursion (variant), each experiment has different numbers.
Therefore, TI is measured differently from the previous work. The results before
training show that it passed only 2 out of 188 individual tests; thus, it cannot
be used as an PRNG.

The proposed method achieve better randomness for longer sequences than
the original method. In 10 experiments on 1794 test instances, 196 test instances
failed. There was no case where the p-value did not exceed the minimum pass
rate. There was only 1 individual test for which it did not pass in the entire
experiment. Because the minimum pass rate is 8 for each individual test, more
than 8 test instances passed for all individual tests except 1 individual test.
Therefore, this does not indicate that there is a vulnerability for a particular

Random Number Generator for Embedded Processors 229

individual test. There were several failed test instances, but for individual tests,
the pass criterion was achieved.

The results for p-value and individual tests were reduced by about 2.85 and
45 times, respectively, compared to the previous work. In the previous method,
there was no content of time measurement. Also, because it is not an PRNG
on an embedded processor, it was measured on a desktop for testing purposes.
The proposed method is an PRNG on an embedded processor. Therefore, we
use Edge TPU, an ASIC designed to accelerate inference. The result was 14.1
times faster than that achieved by the previous method on the desktop.

The individual tests that the previous method failed to pass were mainly
frequency, cumulative sum, run, fast Fourier transform (FFT), and non-
overlapping-template. The frequency test concerns the proportion of zeroes and
ones for the entire sequence. This means that randomness was not secured due
to statistical bias. The cumulative sum test converts 0 to -1 and then calcu-
lates the cumulative sum. This is a random walk test and the result of an ideal
sequence of random numbers is zero. In the cumulative sum test, if the value
is 0, there is randomness, and the farther from 0, the more the test cannot be
passed. Consecutive bits of either 0 or 1 are called a run, and the run test checks
the probability that a run of 0 will change to a run of 1. For an ideal sequence
of random numbers, the probability value is 0.5. The purpose of an FFT test is
to detect periodic features using the peak heights in the FFT. This means that
the sequence of random numbers has a periodic pattern that is not truly ran-
dom. Thus, there is a problem that the random number can be reproduced. The
non-overlapping-template test checks the number of occurrences of pre-defined
target strings. This test rejects sequences that exhibit too many occurrences of
a given non-periodic (aperiodic) pattern. The GAN-PRNG learns how to learn
the bit stream in the front part to predict the bit stream in the back, and then
generate an unpredictable bit stream through the predicted bit stream. In other
words, it learns not to repeat a specific bit stream after a specific bit stream,
which has the effect of not having a pattern even periodically. Considering such
a training process, it indicates that the previous method was not trained enough
to achieve randomness. In summary, the fact that the previous method failed
these tests indicates that an ideal random number stream cannot be achieved
due to frequency problems or the presence of patterns.

However, the proposed method passed most of the tests in the NIST test
suite. Using the RNN layer makes it suitable for sequence data that has long-
term dependencies, so even longer sequences can learn a previous bit stream
and overall features. Compared to the results of the previous method learned
with regional features using only the convolution layer, the result of learning the
entire sequence has better randomness. Therefore, the proposed method achieves
overall improvement in several tests (frequency, cumulative sum, run, FFT and
non-overlapping-template) that, the previous method mostly failed. Finally, our
method achieved high randomness and overcame the problems of predictability
and reproducibility by using time series neural networks (RNN).

230 H. Kim et al.

Table 2. Comparison of GAN based PRNG, where T, TI , FI , FI/ %, FP , FT , F%
are the number of individual tests, test instances, failed instances, their percentage,
individual tests with p-value below the threshold, individual tests that failed, their
percentage, respectively. The inference time is the time to generate a random number
through trained generator.

T TI FI FI/% FP FT F% Inference time

Before training 188 1789 1769 98.8 160.8 186 98.9 177.32 ms

Bernardi et al. [5] 188 1830 56 3.0 2.7 4.5 2.5 187.09 ms

Proposed method 188 1794 19.6 1.09 0.00 0.1 0.00 13.27 ms

Fig. 7. Final analysis report of NIST test suite; (Left side) Bernardi et al. [5], (Right
side) proposed method.

To see the pattern of the generated bit stream, we converted the bit stream
into the form of a bitmap. Figure 8 shows the result of visualizing the genera-
tor output before and after training. The two images are different. The results
before training are repeated with regular patterns. However, as the inner state
changes in the training process, it learns not to produce a predictable repetitive
pattern, which improves the randomness of generator output in comparison to
that produced before training.

4.2 Comparison with Existing PRNGs

The exitings PRNGs were measured on an Intel Core i5-8259 CPU@2.30 GHz
x 8, 16 GB RAM and Ubuntu 18.04.4LTS environment. The proposed method
was measured by connecting the Edge TPU to the embedded processor. When
an operation not supported by the TPU is performed, the CPU performs sub-
sequent operations. The proposed method performs multiplication using only
fully connected layers supported by the Edge TPU. So, it’s the result of infer-
ence from the TPU. Table 3 is the experimental result. The proposed method
was slower than the PRNGs in the desktop environment. However, Xorshift,
Mersenne Twister decreases the speed when measured on STM32F4 as in [20].
In addition, in [21], lightweight PRNG shows a speed of 0.16 GB/s. As mentioned

Random Number Generator for Embedded Processors 231

Fig. 8. Visualization of random number generated by the generator. (left) before train-
ing and (right) after training.

earlier, the proposed method is the result of using TPU on embedded. Consider-
ing this point, we think that the proposed method has a high speed as a PRNG
for an embedded processor.

Table 3. Comparison with existing PRNGs.

Throughput Method Machine

Xorshift128+ 8.3 GB/s XOR, Shift Desktop

Xoroshiro128+ 8.5 GB/s XOR, Shift Desktop

PCG64 4.3 GB/s LCG Desktop

MT19937-64 2.9 GB/s Twisted GFSR Desktop

MPCG [21] 0.16 GB/s PCG Embedded processors

This work 1.0 GB/s GAN (Deep Learning) Embedded processors

4.3 Next Bit Test

CSPRNG must satisfy the next bit test and be resistant to state compromise
extensions attacks. The next bit test is that given a bit stream of m-bits, the m+
1th bit should not be predicted. As explained earlier, we train to be unpredictable
which bit stream will come after some bit stream. So, if the proposed PRNG
has been trained to reduce its losses sufficiently, the next bit test is satisfied.
Figure 9 shows the losses of the generator and predictor. The loss values of the
generator and predictor decrease in a similar pattern. And it can be seen that
the value is decreasing to very close to 0.00.

232 H. Kim et al.

Fig. 9. Loss of a generator and a predictor.

4.4 State Compromise Attack Resistance

In general, CSPRNG uses an unpredictable random seed from the operating
system, special hardware, or external sources. And it is not safe to use the
built-in random function. In this work, entropy sources that can be collected in
an embedded environment are used as random seed. It is necessary to reseed
the CSPRNG to recover from potential state compromise [20]. In our proposed
method, we generate 1, 099, 200-bits with one seed and then reseeded. Reseed
from a new entropy source to generate a more unpredictable bit stream. As
the entropy of the random seed increases, the performance as a CSPRNG will
improve to ensure the security of the cryptographic algorithm. Considering these
features of GAN-PRNG, it is faster than other lightweight PRNG and satisfies
the requirements of CSPRNG.

5 Conclusion

In this paper, we presented a novel GAN-based PRNG for embedded processors.
The new GAN model was designed for embedded processors. The model was
successfully ported to the Edge TPU. Finally, the random number sequence
produced by this method passed the NIST test suite. In our future work we will
applying other GAN models for high randomness and efficiency. Depending on
the GAN model, the quality of random number sequences is totally different. In
addition, we plan to reduce the random seed length for a resource-constrained
environment.

Acknowledgement. This work was partly supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2020R1F1A1048478) and this work was partly supported by Institute for Information
& communications Technology Promotion (IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2018-0-00264, Research on Blockchain Security Technology for IoT
Services).

Random Number Generator for Embedded Processors 233

References

1. Dabal, P., Pelka, R.: FPGA implementation of chaotic pseudo-random bit gen-
erators. In: Proceedings of the 19th International Conference Mixed Design of
Integrated Circuits and Systems, MIXDES 2012, pp. 260–264. IEEE (2012)

2. Pande, A., Zambreno, J.: A chaotic encryption scheme for real-time embedded
systems: design and implementation. Telecommun. Syst. 52(2), 551–561 (2013)

3. Azzaz, M., Tanougast, C., Sadoudi, S., Dandache, A.: Real-time FPGA implemen-
tation of Lorenz’s chaotic generator for ciphering telecommunications. In: 2009
Joint IEEE North-East Workshop on Circuits and Systems and TAISA Confer-
ence, pp. 1–4. IEEE (2009)

4. de la Fraga, L.G., Torres-Pérez, E., Tlelo-Cuautle, E., Mancillas-López, C.: Hard-
ware implementation of pseudo-random number generators based on chaotic maps.
Nonlinear Dyn. 90(3), 1661–1670 (2017). https://doi.org/10.1007/s11071-017-
3755-z

5. De Bernardi, M., Khouzani, M.H.R., Malacaria, P.: Pseudo-random number gen-
eration using generative adversarial networks. In: Alzate, C., et al. (eds.) ECML
PKDD 2018. LNCS (LNAI), vol. 11329, pp. 191–200. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-13453-2 15

6. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

7. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1),
110 (1928)

8. Stipčević, M.: Fast nondeterministic random bit generator based on weakly corre-
lated physical events. Rev. Sci. Instrum. 75(11), 4442–4449 (2004)

9. Figotin, A., et al.: Random number generator based on the spontaneous alpha-
decay. US Patent 6,745,217, 1 June 2004

10. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum
random number generator. J. Mod. Opt. 47(4), 595–598 (2000)

11. Vincent, C.: The generation of truly random binary numbers. J. Phys. E: Sci.
Instrum. 3(8), 594 (1970)

12. Schneier, B., Kohno, T., Ferguson, N.: Cryptography Engineering: Design Princi-
ples and Practical Applications. Wiley, Hoboken (2013)

13. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016), pp. 265–283 (2016)

14. Sengupta, J., Kubendran, R., Neftci, E., Andreou, A.G.: High-speed, real-time,
spike-based object tracking and path prediction on google edge TPU. In: AICAS,
pp. 134–135 (2020)

15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

16. Schawinski, K., Zhang, C., Zhang, H., Fowler, L., Santhanam, G.K.: Generative
adversarial networks recover features in astrophysical images of galaxies beyond
the deconvolution limit. Monthly Not. R. Astron. Soci. Lett. 467(1), L110–L114
(2017)

17. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial net-
works. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5 5

18. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Signal Process. 45(11), 2673–2681 (1997)

https://doi.org/10.1007/s11071-017-3755-z
https://doi.org/10.1007/s11071-017-3755-z
https://doi.org/10.1007/978-3-030-13453-2_15
https://doi.org/10.1007/978-3-030-11021-5_5

234 H. Kim et al.

19. Hong, S.L., Liu, C.: Sensor-based random number generator seeding. IEEE Access
3, 562–568 (2015)

20. Kietzmann, P., Schmidt, T., Wählisch, M.: A guideline on pseudorandom number
generation (PRNG) in the IoT, July 2020

21. Paul, B., Khobragade, A., Javvaji Sai, S., Goswami, S.S.P., Dutt, S., Trivedi,
G.: Design and implementation of low-power high-throughput PRNGs for secu-
rity applications. In: 2019 32nd International Conference on VLSI Design and
2019 18th International Conference on Embedded Systems (VLSID), pp. 535–536
(2019)

A RDBMS-Based Bitcoin Analysis
Method

Hyunsu Mun , Soohyun Kim , and Youngseok Lee(B)

Chungnam National University, Daejeon, Republic of Korea
{munhyunsu,shkim95,lee}@cnu.ac.kr

Abstract. Due to the proliferation of Bitcoin and Ethereum, over 1000
cryptocurrencies have appeared in the market. As hundreds of thousands
of cryptocurrency transactions are taken place per day, cryptocurrency
exchange, service operators, or government agencies have to observe user
transaction activities for legal concerns or economic purposes. Cryptocur-
rencies generally use the blockchain structure where every transaction
is connected in the linked list with the public key hash function. In
order to examine specific transaction, address or a group of addresses,
called a cluster, we need an efficient cryptocurrency data analyzer and
scalable storage. Though a few studies on cryptocurrency analysis tools
have been presented, they do not generally satisfy all the requirements.
In this paper, we propose an extensible and user-friendly Bitcoin anal-
ysis software based on RDBMS. From extensive Bitcoin experiments,
we demonstrate that RDBMS queries are useful to perform analysis of
Bitcoin transaction, cluster and graph. In addition, we show that the
indexed SQLite3 database provides quick response time and the exten-
sible Bitcoin storage. This study contributes to a method of analyzing
Bitcoin blockchain data using an easy-to-use RDBMS.

Keywords: Bitcoin · Cryptocurrency · Relational database system ·
Data analysis

1 Introduction

As over 1000 cryptocurrencies, including Bitcoin and Ethereum, have been pop-
ular in the market across the world1, the cryptocurrency exchange, service
providers, and government agencies have to monitor cryptocurrency transac-
tion activities and user trends for various purposes. Cryptocurrency exchanges
such as Huobi, Binance, Bithumb, and UPBit provide services to deposit, with-
draw, and transfer the cryptocurrency. On the other hand, in the deep web,
1 https://coinmarketcap.com/all/views/all/.

This work was supported by Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2020-0-00901, Information tracking technology related with cyber crime activity includ-
ing illegal virtual asset transactions).

c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 235–253, 2021.
https://doi.org/10.1007/978-3-030-68890-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_13&domain=pdf
http://orcid.org/0000-0003-0644-5054
http://orcid.org/0000-0001-7335-1838
http://orcid.org/0000-0002-3015-5922
https://coinmarketcap.com/all/views/all/
https://doi.org/10.1007/978-3-030-68890-5_13

236 H. Mun et al.

online markets such as Silkroad and Dream market allow a customer to pur-
chase illegal goods with the cryptocurrency. Transactions in the deep web are
often used for crimes related with weapons, drugs, child pornography, and ran-
somware. Government agencies should collect and analyze the cryptocurrency of
illegal transactions for tracking and detecting abnormal transactions early.

Though the Bitcoin software itself is an open-source project, there is no
functional or manageable analysis platform for cryptocurrency exchange oper-
ators or government agencies. Recently, there have been a few Bitcoin analysis
tools such as BlockSci, GraphSense, BTCSpark and Bitcoin-Abe in open-source
projects. BlockSci provides a Python wrapper and C++ core engine for the Bit-
coin analysis. As BlockSci focuses on high performance, it requires dedicated
LevelDB and data structure. GraphSense is a visual analyzer of Bitcoin trans-
actions and it needs a distributed filesystem called Cassandra. BTCSpark is
an Apache Spark-based Bitcoin analyzer platform, which has not been updated
recently. Bitcoin-Abe is a MySQL-based platform that has a web interface. So
it is not suited for general purpose processing and analyzing Bitcoin data.

Overall, Bitcoin data analysis are classified into three functions. First, we
need to retrieve the Bitcoin transaction and its address information and to search
for specific transactions with time or date conditions. Second, we have to examine
the transactions among a group of addresses, called a cluster. For this purpose,
we have to build a set of addresses into a tagged cluster, which is often carried out
by heuristic algorithms. Then, we have to investigate the wallets in the cluster
and transactions between clusters. Third, we perform graph analysis algorithms
on the Bitcoin graph consisting of Bitcoin addresses and transactions.

When designing a Bitcoin analysis method, we have to meet the following
challenges.

– Scalable Bitcoin data ingestion and storage: Bitcoin data includes transaction
information consisting of public key and hash function. Bitcoin addresses and
transaction data should be ingested into the storage which should support
scalable and efficient manipulation functions of a large amount of blockchain
data.

– Easy interface of analytics: Bitcoin analysis often needs plain questions that
can be expressed with user-friendly interface for the data analyzers. For this
purpose, we should build transaction information and related metadata.

– Compatibility of software integration: Bitcoin analysis requires integration
with the related software such as Bitcoin core, data storage, visualization
and web servers.

In this paper, we propose an extensible and scalable Bitcoin analysis based
on relational database. We harness the relational database to ingest and store
Bitcoin data. For scalability, we present three-layer databases with seven Bitcoin
tables which can store Bitcoin transaction and address information. With the
relational database such as SQLite3 and MariaDB, we support easy analytics in
queries. We present representative queries on Bitcoin analytics, cluster analytics,
and graph analytics. As we use SQLite3 database, our analysis method can be

A RDBMS-Based Bitcoin Analysis Method 237

easily integrated with the web or visualization software. This study contributes
to a method of analyzing Bitcoin blockchain data using an easy-to-use RDBMS.

2 Related Work

As Bitcoin software2 is an open source project, the Bitcoin P2P network is
available to the public. Bitcoin software provides only the access function to
the P2P network and it does not have convenient and useful analysis modules.
There are various analysis tools with their own databases as well as Bitcoin block
parsers that extract information from Bitcoin block byte files (Table 1).

Kalodner et al. [1] proposed a Bitcoin data analysis software named BlockSci3

that uses an append-only data structure instead of atomicity, consistency, isola-
tion, and durability (ACID) features of the database. It is known that BlockSci
has the improved performance with C++ for cluster analysis. Bitcoin data can
be expressed as an address-transaction graph or a graph that uses an address
and a transaction as nodes. Masarah et al. [2] proposed a software called Graph-
Sense4 that expresses and analyzes Bitcoin transactions in a graph, and analyzed
the relationship of Bitcoin addresses used in 35 ransomwares from 2013 to 2017.

BTCSpark5, proposed by Rubin et al. [3], is a software that allows a user
to analyze the Bitcoin blockchain on the Apache Spark that uses a distributed
cluster. In 2011, an open source project called Bitcoin-Abe6 allowed data stor-
age using a SQL database such as PostgreSQL, MySQL’s InnoDB engine, and
SQLite. Since Bitcoin-Abe was created to provide the analysis function of Bit-
coin block data through the web, it is suitable for examining bitcoin blockchain,
transaction, and address information, but not for performing Bitcoin address
clustering and graph analysis.

Bitcoin and Ethereum have different structures, making it difficult to analyze
them all with one tool. Massimo et al. [4] proposed an API tool named BlockAPI7

for analyzing the blockchain, demonstrating that Bitcoin and Ethereum data can
be stored and analyzed in MongoDB, MySQL, and PostgreSQL.

It is essential to analyze the addresses owned by cryptocurrency exchanges
to understand Bitcoin transactions. Zhen et al. [5] found addresses of 10 famous
cryptocurrency exchanges such as Huobi and Binance using Bitcoin address
clustering heuristics, and classified the addresses of those exchanges into user
addresses, hot wallets, and cold wallets. They suggest 20 features of a cold wal-
let that stores Bitcoins, a hot wallet that is used for transactions, and a user
address.

Since users can have multiple Bitcoin addresses, in order to know the owner of
the Bitcoin address, it is necessary to cluster Bitcoin addresses through Bitcoin

2 https://Bitcoin.org/.
3 https://github.com/citp/BlockSci.
4 https://graphsense.info/.
5 https://github.com/JeremyRubin/BTCSpark.
6 https://github.com/Bitcoin-abe/Bitcoin-abe.
7 https://github.com/blockchain-unica/blockapi.

https://Bitcoin.org/
https://github.com/citp/BlockSci
https://graphsense.info/
https://github.com/JeremyRubin/BTCSpark
https://github.com/Bitcoin-abe/Bitcoin-abe
https://github.com/blockchain-unica/blockapi

238 H. Mun et al.

Table 1. Comparison of Bitcoin analysis tools: our method vs. previous studies.

Ours BlockSci GraphSense BTCSpark Bitcoin-Abe BlockAPI

Cryptocurrency Bitcoin

Ethereum

Bitcoin

Bitcoin-like

Bitcoin Bitcoin Bitcoin Bitcoin

Ethereum

Language SQL C++

Python 3

Scala Scala C++ JAVA

Scala

Dependency - LevelDB BlockSci

Casandra

Spark LevelDB

MySQL

LevelDB

Bitcoin Analytics © © © © © ©
Cluster Analytics © © × × × ×
Graph Analytics © × © × × ×
Response Time Low Low High High High High

address heuristics or graph analysis. Mikkel Alexander et al. [6] use the Bitcoin
address cluster data provided by Chainalysis to classify the Bitcoin address clus-
ter into 10 categories such as exchange, gambling, ransomware, scam, and tor
market by machine learning. Lee et al. [7] analyzed the flow of Bitcoin addresses
collected at Tor darknet and proposed a method to track criminals’ behavior
using exchanges to exchange Bitcoins. Baokun et al. [8] proposed a method
to create a Bitcoin address cluster using the Bitcoin address heuristic and the
improved the Louvain community detection algorithm. Zhen et el. [9] performed
a Bitcoin address cluster by combining the Bitcoin-address tag collected from
the surface web and Bitcoin graph analysis, and then found the entity of the
cluster.

3 RDMBS-Based Bitcoin Analysis

3.1 Architecture

For the RDBMS-based Bitcoin analysis, we designed a Bitcoin data collector that
ingests Bitcoin information from Bitcoin Core as shown in Fig. 1, The Bitcoin
data collector imports transaction data through JSON-RPC into the temporary
JSON files. In order to explain the address and transaction information, we
collect tag data corresponding addresses from web, like WalletExplorer8, and
Tor-based deep web. We store the Bitcoin data in the SQLite3 consisting of
three databases and seven data tables. The Bitcoin analyzer provides analysis
queries on the SQLite3 tables. The web and visualization modules like a Neo4j9,
Matplotlib10, NetworkX11 can be connected to the SQLite3 database APIs. We
make the database construction script, detailed schema, and example queries
available on Github project12.
8 https://www.walletexplorer.com/.
9 https://neo4j.com/.

10 https://matplotlib.org/.
11 https://networkx.github.io/.
12 https://github.com/munhyunsu/BitcoinAnalysis/.

https://www.walletexplorer.com/
https://neo4j.com/
https://matplotlib.org/
https://networkx.github.io/
https://github.com/munhyunsu/BitcoinAnalysis/

A RDBMS-Based Bitcoin Analysis Method 239

Fig. 1. RDBMS-based Bitcoin Analysis Architecture

3.2 Database Schema

Although Bitcoin Core provides transaction data on the blockchain, it will
take a long time to retrieve addresses or transactions for the given time period
or specific cluster. In order to minimize the access time to transactions across
the long blockchain, we create the transaction tables for the input and output
indexed by block id, transaction id, and address id (AppendixA). We also create
the cluster table where each cluster consists of a set of addresses with the help
of crowd-sourced tag information and the active probe method.

We present three-layer databases of index, core, and utility as follows. Index
database has key identifier tables for blocks, transactions and addresses with
the integer type. The index database is useful for reducing the long Bitcoin
hash value to the integer variable so we can decrease the size of Bitcoin core
tables by 65% from 906 GB to 314 GB. The core database maintain the trans-
action information tables through JSON-RPC by iterating all transactions along
the blockchain. Due to the core database, we can improve the response time of
transaction analysis including specific addresses for input or output, and clus-
tering heuristics. We also retain utility database for the fast response time of
joining tables.

3.3 Bitcoin Analytics

Based on the Bitcoin database, we can easily retrieve Bitcoin address, trans-
action, and cluster information with date, time, and clusters’ conditions. For
example, if a user wants to perform analysis on transactions and addresses gen-
erated during a specific period, the user must know the transaction hash mined

240 H. Mun et al.

during that period (ListingB2). By using the proposed analysis method, the
query can be analyzed as a conditional statement. The representative examples
of Bitcoin analytics queries are as follows.

– Retrieving a number of transactions for a time period
– Finding a top addresses in the order of Bitcoin balance
– Retrieving a transaction fee
– Retrieving UTXO addresses
– Calculating withdrawing count and volume
– Calculating Transfer count and volume
– Computing Address balance

3.4 Cluster Analytics

A Bitcoin cluster is defined as a set of addresses belonging to a single organization
such as an cryptocurrency exchange. For instance, an exchange will issue an
account and related addresses for a customer. A marketplace or ransomware
operators often maintain their own addresses, which form a cluster. Therefore,
we need to group a set of addresses for a specific cluster. As Bitcoin has the
anonymous feature, we cannot explicitly know which address belongs to which
organization. For this purpose, we employ Bitcoin address clustering heuristics.

In our analysis method, we implemented two representative Bitcoin address
clustering heuristics. The first one is the multi-input heuristic which groups the
input addresses for a single transaction, because they will usually belong to a
single owner (Listing B4). Though the multi-input heuristic is not perfect, it is
still useful for finding the seed of Bitcoin address clusters. The other one is the
one-time change heuristic that groups newly generated addresses not used by
any future transaction. After applying the address clustering step, we put the
appropriate tag to the cluster by using the crowd-sourcing data such as http://
www.walletexplorer.com. Then, we provide queries for the cluster analytics such
as intra- or inter-cluster address or transaction information. A sample of cluster
analysis queries are as follows.

– Grouping a set of addresses into a cluster with the given heuristic (e.g., multi-
input or one-time change)

– Retrieving a set of addresses belonging to a cluster
– Retrieving transaction information between clusters
– Sorting the addresses within a given cluster (e.g., hot wallet or cold wallet

addresses of a cluster)

3.5 Graph Analytics

As Bitcoin addresses and transactions can be modeled as a graph, we can issue
graph analysis queries as follows.

http://www.walletexplorer.com
http://www.walletexplorer.com

A RDBMS-Based Bitcoin Analysis Method 241

– Calculating indegree and outdegree of an address node
– Computing PageRank of address nodes
– Finding shortest paths between addresses or clusters
– Finding maximum flow between two clusters

With queries on the Bitcoin graph, we can examine the graph characteris-
tics. In addition, it is possible to analyze important addresses among 7 million
Bitcoin addresses by using the PageRank algorithm (ListingB5). We can use
various graph analysis tools such as NetworkX, iGraph, or Neo4j for analyzing
the Bitcoin address transaction graph after exporting the csv file from the Bit-
coin tables (Listing B7). From RDBMS tables, we can generate Bitcoin address
transaction edges. ListingB6 is a query that lists all bitcoin address transac-
tion graph information. We can also extract a subgraph with conditions such as
duration, block height, address tag or cluster.

4 Analysis Results with Queries

4.1 Bitcoin Data

For the experiment, we import all blocks the height from 0 to 644,806 into the
database as shown in Table 2. We extract input transaction, output transaction,
and cluster tables from raw block data for efficient query performance. For the
continuous update of Bitcoin addresses and transactions, we append the newly
created Bitcoin block data to the existing table.

Table 2. Bitcoin data information for database construction.

Block height 0–644,806

Date 2009-01-03 06:15:05 (UTC)–2020-08-22 06:24:55 (UTC)

Transactions 560,882,950

Addresses 704,688,729

Database volume 357 GB

4.2 Which Address Has the Largest Amount of Bitcoin?

As Bitcoin is based on unspent transaction output (UTXO), we must add all
the UTXO BTC values of the address to find the balance of a specific address.
For the balance query operation, we add the deposits to the target address from
every block, which takes long response time even with high performance tools
like BlockSci. In order to know the balance for each address, we create a UTXO
table up to the last block and calculate the amount of BTC of the address by
performing a GROUP BY operation on each address (Listing B3).

242 H. Mun et al.

Fig. 2. Histogram of Bitcoin balance by address on 2020-08-22 (Block height: 644,805)

Bitcoin is generated every time a block is mined and 18467457.8422912
BTC has been generated as of 2020-08-22 06:24:55 (UTC). 31,362,395 addresses
hold this Bitcoin, and the distribution is shown in Fig. 2. The Bitcoin address
35hK24tcLEWcgNA4JxpvbkNkoAcDGqQPsP has 355 UTXOs and 1.14% of the gen-
erated Bitcoins as shown in Table 3. According to https://bitcointalk.org/, this
address is known as the cold wallet of the cryptocurrency exchange Huobi.com.

Table 3. Top 10 Bitcoin holdings and the number of UTXOs on 2020-08-22 (Block
height: 644,805)

Rank Bitcoin address Balance (% of Bitcoins) # of UTXOs

1 35hK24tcLEWcgNA4JxpvbkNkoAcDGqQPsP 247,502 (1.34) 355

2 37XuVSEpWW4trkfmvWzegTHQt7BdktSKUs 94,505 (0.51) 70

3 34EiJfy4jGF32M37aQ2ZobupwiRQWa1Siy 92,857 (0.50) 7

4 1FeexV6bAHb8ybZjqQMjJrcCrHGW9sb6uF 79,957 (0.43) 336

5 34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo 73,436 (0.40) 45

6 3D8qAoMkZ8F1b42btt2Mn5TyN7sWfa434A 70,000 (0.38) 171

7 1HQ3Go3ggs8pFnXuHVHRytPCq5fGG8Hbhx 69,370 (0.38) 212

8 37tRFZw7n94Jddq6TfVs3MbCXmDX6eMfeY 68,101 (0.37) 5

9 3JurbUwpsAPqvUkwLM5CtwnEWrNnUKJNoD 65,236 (0.35) 9

10 bc1qgdjqv0av3q56jvd82tkdjpy7gdp... 60,000 (0.32) 5

https://bitcointalk.org/
http://huobi.com/

A RDBMS-Based Bitcoin Analysis Method 243

4.3 Clustering Bitcoin Addresses with Heuristics

We have performed a multi-input heuristic for all Bitcoin transactions on more
than 641,039 blocks. For improving the performance of heuristic, we save the
temporary cluster information on the memory. The final clustered addresses are
recorded in the table. Figure 3 shows the cluster size distribution for the multi-
input and one-time change heuristics.

With our own multi-input heuristics, we processed 691,806,723 addresses and
grouped 418,493,080 addresses into 61,918,407 clusters. We observed that 95.7%
of clusters are small, with less than 10 addresses in Fig. 3a. On the other hand,
we found super-clusters with more than 10 million addresses.

(a) Multi-input heuristic

(b) Multi-input heuristic and one-time change heuristic

Fig. 3. The cluster size distribution for 690 million addresses on 641,039 blocks.

Multi-input heuristic cannot cluster UTXOs, and addresses that are not used
together are not clustered into the same cluster. To solve this problem, we clus-
tered the Bitcoin addresses using both the one-time change heuristic and the
multi-input heuristic. As a result, one-time change heuristic grouped 464,473,950
addresses into 74,339,475 clusters. We clustered 4,598,0870 more addresses com-
pared to using only multi-input heuristic, but super cluster with 177 million
addresses clustered into one was created as Fig. 3b. Because of this heuristic
inaccuracy, we presume that the Bitcoin address heuristic should compensated
with machine learning or graph analysis.

244 H. Mun et al.

4.4 Identify Clusters with Address-Tag Information

We find out the entity of the cluster by using the Bitcoin address-tag information
collected by https://www.walletexplorer.com. From the result of the multi-input
heuristic, 137,733 (0.2%) clusters were identified, which contained 86,278,071
(20.62%) addresses. Multiple tags such as cryptocurrency exchange, ransomware,
mixing, and gambling were attached to a single cluster.

Fig. 4. The cluster size distribution of the multi-input heuristic for 690 million
addresses on 641,039 blocks.

As shown in Fig. 4, We identify 86,278,071 addresses into exchanges, ran-
somware, payment services, and gambling. 92.4% of the addresses are included
in the top 4 categories. Bter.com, NoobCrypt, Epay.info, and SecondsTrade.com
are entities with the most weight in each category.

4.5 What Is the Amount and Count of Transactions
to CryptoLocker Addresses?

After applying the Bitcoin address clustering heuristic, we identify the owner of
the cluster through Bitcoin address-tag information. Using our database, we can
perform intra- or inter-cluster analysis. The representative inter-cluster analysis
example is to examine the transaction history between clusters. Ransomware vic-
tims usually pay attackers through exchanges. Therefore, in order to analyze the
amount of ransomware fee, it is necessary to investigate transactions transferred
from the exchange cluster to the ransomware cluster.

Figure 5 shows the number of Bitcoin transactions and BTC amount trans-
ferred to Cryptolocker from September 5, 2013 to May 2014. According to
Wikipedia and news reports, Cryptolocker has broken out and continued until
May 2014. However, through the Cryptolocker inter-cluster analysis, we observe
that no transaction has occurred since February 2014. A total of 2,789.15 BTC
was transferred, and the number of transactions was 1,839 with the largest trad-
ing volume in October 2013 when Cryptolocker was widely spread out.

https://www.walletexplorer.com

A RDBMS-Based Bitcoin Analysis Method 245

Fig. 5. The number of daily Bitcoin transactions and Bitcoin amount sent to Cryp-
tolocker (Circle size: BTC amount, 2013-09-01–2014-03-31)

4.6 List the Hot Wallet Addresses of a Korean Exchange A

Cryptocurrency exchange operators not only exchange real and virtual curren-
cies, but also issue Bitcoin addresses for a customers and perform transactions
on behalf of customers. In general, for this purpose, exchanges use three types
of wallet addresses: a user wallet that is distributed to users; a hot wallet used
to collect cryptocurrencies deposited at the user’s address and to send cryp-
tocurrency to outside the exchange; a cold wallet that stores cryptocurrency for
storage and security. Among these three wallets, it is essential to find a hot wal-
let in order to identify and analyze the wallet address of the exchange because
the hot wallet is the center of operation of the exchange.

We use the high indegree or outdegree of the address node as the feature
for finding exchange’s hot wallets that deposit Bitcoins to the user’s address
and transfer money to other addresses. On the Bitcoin graph, we performed
intra-cluster analysis to find hot wallet in the Korean exchange A. Table 4 shows
the top 12 degree addresses in Korean exchange A, with high transaction count
(degree). From this experiment, we observe that 12 of the 3,545 addresses of the
exchange A has a degree of more than 1000.

4.7 Graph Analysis Algorithm Using Graph Tools

Bitcoin blockchain can be represented as a graph because the input address and
the output address are connected with a transaction. After building a graph with
Bitcoin address nodes and transaction edges, we carry out graph analysis.

246 H. Mun et al.

Table 4. Top 12 hot wallet list of Korean exchange A

Rank Bitcoin address Degree Value

1 1En5ErLPzF9RMeP8z8hjna3.......... 2,870 21,198

2 1JeyZBDbJTz5d1rfSkGqywzw.......... 2,520 122

3 19iGtbDzXSASmcyJFbdgCiFi.......... 2,082 102

4 1KHFeyp2Sb4xXg1rjnNRi4c8.......... 2,076 28,549

5 1Gxd9c2VuLcQjee1tubhHSJS.......... 2,072 108

6 19Ls2qFMEztRVgSYyFFtFReE.......... 1,516 14

7 1CsTzASjqs8f63pzcw5f9LJo.......... 1,477 128

8 181acE6XdV4JToqMFRNmmKDq.......... 1,402 70

9 1GoxkdmiZzFKwndzGihHcW82.......... 1,352 33

10 1QJ13PRLkWBF4s1XGKUMr9Ab.......... 1,162 12,051

11 18rWxfA3Qv6uFKwKexGtskPx.......... 1,130 4,842

12 1AvGPjBB3PcdhLYwy7twKFrP.......... 1,116 50

We extract a graph of Silkroad, which is the famous black market from 2011
to 2013, and investigate the main address with the PageRank algorithm. As the
PageRank algorithm can reveal the importance of nodes in the weighted graph,
we employ this algorithm in iGraph for analyzing the core of Bitcoin addresses.
We used iGraph13 to generate and analyze the extracted edge data (Listing
B6,B7).

After finding the most important address of the Silkroad cluster with the
PageRank algorithm, we looked at the transaction change of the address over
time. Figure 6 is a graph showing the transaction volume over time. After the
Silkroad was arrested by the FBI in 201314, its operation was stopped. However,
we can observe that the recently occurred transactions.

4.8 Community Detection Algorithm on Korean Exchange B
Cluster

We use the Bitcoin address heuristic in order to find a Bitcoin address cluster.
However, as the heuristics do not provide the accurate results, we harness the
alternative clustering algorithm with graph community detection algorithms.

We built a Bitcoin address-transaction graph of a Korean exchange B, and
found clusters with the Leiden community detection algorithm as shown in Fig. 7.
From this the community detection algorithm experiment, we can observe that
the largest community was a cluster of 51,714 out of 275,952 addresses. There
were 7 communities over 10,000 addresses.

13 https://igraph.org/.
14 https://en.wikipedia.org/wiki/Silk Road (marketplace).

https://igraph.org/
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)

A RDBMS-Based Bitcoin Analysis Method 247

Fig. 6. The balance of top 3 PageRank address in Silkroad marketplace graph

4.9 Performance

For the Bitcoin analysis method, both the initial database construction perfor-
mance and the quick response time of a query are important. In particular, when
analyzing large-scale blockchain data, we have to construct the Bitcoin database
within acceptable time and process queries quickly. In SQLite3, we often meet
the slow response time of analysis queries without database optimization. For
instance, we increase PRAGMA cache size of SQLite3. This is the size of the
cache used by the database, and has a great impact on the database construc-
tion performance. When building the database with the initial value of 8 KB, it
takes about 40 h. However, with 300 GB, it takes only about 7 h.

Indexing is a major technology that accelerates search performance in
RDBMS and is important in our proposed analysis method. For example, when
performing a task of generating a Bitcoin address edge list, it takes only 15 min
with index. However, without index, the address-edge generation time increases
to over 24 h. In addition, our three-layer table structure has a great impact
on improving performance. For example, when creating the edge table (TxID,
SrcAddrID, DstAddrID, BTC) in advance, the Bitcoin address edge list query
job was completed only in 2 s.

248 H. Mun et al.

Fig. 7. A result of Leiden community detection on B address graph

5 Conclusion

The problem of RDBMS Bitcoin analysis is difficult to solve because we have to
deal with large-scale data storage construction and complicated Bitcoin analysis
jobs. In this paper, we propose an extensible and user-friendly Bitcoin analysis
software based on RDBMS. We present three-layer databases with seven Bit-
coin tables which can store Bitcoin transaction and address information. We
show that the proposed tool supports Bitcoin analytics, cluster analytics, and
graph analytics through an example of analyzing Bitcoin addresses, clusters, and
graphs. The proposed method can be used for various applications with scalabil-
ity. In the future, we plan to enhance Bitcoin address cluster analysis, machine
learning, and graph analysis functions.

A RDBMS-Based Bitcoin Analysis Method 249

Appendix

A Three-Layer Table and Index Creation Query

Listing A1. Bitcoin Index Tables

CREATE TABLE IF NOT EXISTS BlkID (

id INTEGER PRIMARY KEY ,

blkhash TEXT NOT NULL UNIQUE);

CREATE TABLE IF NOT EXISTS TxID (

id INTEGER PRIMARY KEY ,

txid TEXT NOT NULL UNIQUE);

CREATE TAblE IF NOT EXISTS AddrID (

id INTEGER PRIMARY KEY ,

addr TEXT NOT NULL UNIQUE);

Listing A2. Bitcoin Core Tables and Indices

CREATE TABLE IF NOT EXISTS BlkTime (

blk INTEGER PRIMARY KEY ,

unixtime INTEGER NOT NULL);

CREATE TABLE IF NOT EXISTS BlkTx (

blk INTEGER NOT NULL ,

tx INTEGER NOT NULL ,

UNIQUE (blk , tx));

CREATE TABLE IF NOT EXISTS TxIn (

tx INTEGER NOT NULL ,

n INTEGER NOT NULL ,

ptx INTEGER NOT NULL ,

pn INTEGER NOT NULL ,

UNIQUE (tx, n));

CREATE TABLE IF NOT EXISTS TxOut (

tx INTEGER NOT NULL ,

n INTEGER NOT NULL ,

addr INTEGER NOT NULL ,

btc REAL NOT NULL ,

UNIQUE (tx, n, addr));

CREATE INDEX idx_BlkTime_2 ON BlkTime(unixtime);

CREATE INDEX idx_BlkTx_2 ON BlkTx(tx);

CREATE INDEX idx_TxIn_3_4 ON TxIn(ptx , pn);

CREATE INDEX idx_TxOut_3 ON TxOut(addr);

Listing A3. Bitcoin Utility tables and Indices

CREATE TABLE IF NOT EXISTS Edge (

tx INTEGER NOT NULL ,

src INTEGER NOT NULL ,

dst INTEGER NOT NULL ,

btc REAL NOT NULL ,

UNIQUE (tx, src , dst , btc));

250 H. Mun et al.

CREATE TABLE IF NOT EXISTS Cluster (

addr INTEGER PRIMARY KEY ,

cluster NOT NULL);

CREATE TABLE IF NOT EXISTS TagID (

id INTEGER PRIMARY KEY ,

tag TEXT UNIQUE);

CREATE TABLE IF NOT EXISTS Tag (

addr INTEGER NOT NULL ,

tag INTEGER NOT NULL ,

UNIQUE (addr , tag));

CREATE INDEX idx_Edge_1 ON Edge(tx);

CREATE INDEX idx_Edge_2 ON Edge(src);

CREATE INDEX idx_Edge_3 ON Edge(dst);

CREATE INDEX idx_Cluster_2 ON Cluster(cluster);

B Example Queries (Code Block)

Listing B1. (CB:AddrID) Address ID by Address hash

SELECT DBINDEX.AddrID.id

FROM DBINDEX.AddrID

WHERE DBINDEX.AddrID.addr = ’ADDRHASH ’;

Listing B2. (CB:TxTime) Transaction hash for a specific period

SELECT BlkTx.tx

FROM BlkTx

INNER JOIN BlkTime ON BlkTime.blk = BlkTx.blk

WHERE (

SELECT STRFTIME(’%s’, ’2020 -06 -01 T00 :00:00+00:00 ’)) <=

BlkTime.unixtime

AND BlkTime.unixtime <= (

SELECT STRFTIME(’%s’, ’2020 -06 -31 T23 :59:59+00:00 ’));

Listing B3. (CB:Balance) Increase or decrease the balance of the address for a specific
period

SELECT Income.value -Outcome.value AS Balance

FROM

(SELECT SUM(btc) AS value

FROM TxOut

WHERE TxOut.addr = ([CB:AddrID]) AND

TxOut.tx IN ([CB:TxTime]) AS Income ,

(SELECT SUM(btc) AS value

FROM TxIn

INNER JOIN TxOut ON TxIn.ptx = TxOut.tx AND

TxIn.pn = TxOut.n

WHERE TxOut.addr = ([CB:AddrID]) AND

TxIn.tx IN ([CB:TxTime])) AS Outcome;

A RDBMS-Based Bitcoin Analysis Method 251

Listing B4. (CB:MultiInput) Multi input Bitcoin address heuristic

SELECT TxOut.addr AS addr

FROM TxIn

INNER JOIN TxOut ON TxIn.ptx = TxOut.tx AND TxIn.pn = TxOut.n

WHERE txIn.tx IN (SELECT TxIn.tx

FROM TxIn

INNER JOIN TxOut ON TxIn.ptx = TxOut.tx AND

TxIn.pn = TxOut.n

WHERE addr = ([CB:AddrID]))

GROUP BY addr;

Listing B5. (CB:Edge) Address-Transaction graph edge

SELECT TXI.tx, TXI.addr , TXO.addr , TXO.btc

FROM (

SELECT TxIn.tx AS tx, TxIn.n AS n,

TxOut.addr AS addr , TxOut.btc AS btc

FROM TxIn

INNER JOIN TxOut ON TxOut.tx = TxIn.ptx AND

TxOut.n = TxIn.pn) AS TXI

INNER JOIN (

SELECT TxOut.tx AS tx, TxOut.n AS n,

TxOut.addr AS addr , TxOut.btc AS btc

FROM TxOut) AS TXO ON TXO.tx = TXI.tx;

Listing B6. (CB:ExportGraph) Export csv file for address transaction graph

.header on

.mode csv

.once edge.csv

SELECT SRC.addr AS saddr , DST.addr AS daddr ,

SUM(Edge.btc) AS btc , Edge.src AS saddr_id ,

Edge.dst AS daddr_id , COUNT(Edge.tx) AS cnt

FROM Edge

INNER JOIN TxID ON TxID.id = Edge.tx

INNER JOIN AddrID AS SRC ON SRC.id = Edge.src

INNER JOIN AddrID AS DST ON DST.id = Edge.dst

WHERE Edge.src in (

SELECT Cluster.addr

FROM Cluster WHERE Cluster.cluster IN (

SELECT Cluster.cluster

FROM Cluster WHERE Cluster.addr IN (

SELECT Tag.addr

FROM Tag WHERE Tag.tag = (

SELECT TagID.id

FROM TagID WHERE TagID.tag = ’TAG’))))

AND Edge.dst in (

SELECT Cluster.addr

FROM Cluster WHERE Cluster.cluster IN (

SELECT Cluster.cluster

252 H. Mun et al.

FROM Cluster WHERE Cluster.addr IN (

SELECT Tag.addr

FROM Tag WHERE Tag.tag = (

SELECT TagID.id

FROM TagID WHERE TagID.tag = ’TAG’))))

GROUP BY Edge.src , Edge.dst;

Listing B7. PageRank algorithm using iGraph

Export edge to csv using query (file: edge.csv)

df = pd.read_csv(’./edge.csv’)

vertices = set()

edges = list()

weights = list()

for index , row in df.iterrows ():

if row[’saddr ’] not in vertices:

vertices.add(row[’saddr ’])

if row[’daddr ’] not in vertices:

vertices.add(row[’daddr ’])

edges.append ((row[’saddr ’], row[’daddr ’]))

weights.append ((row[’cnt’]))

vertices = list(vertices)

g = igraph.Graph ()

g.add_vertices(vertices)

g.add_edges ([(x[0], x[1]) for x in edges])

g.es[’weight ’] = weights

Comunity detection

partition = g.community_leiden (

objective_function=’modularity ’)

Page rank

pagerank = g.pagerank(weights=weights)

References

1. Kalodner, H., Goldfeder, S., Chator, A., Möser, M., Narayanan, A.: BlockSci: design
and applications of a blockchain analysis platform. arXiv preprint arXiv:1709.02489
(2017)

2. Paquet-Clouston, M., Haslhofer, B., Dupont, B.: Ransomware payments in the bit-
coin ecosystem. J. Cybersecur. 5(1), tyz003 (2019)

3. Rubin, J.: BTCSpark: scalable analysis of the bitcoin blockchain using spark. Dec
16, 1–14 (2015)

4. Bartoletti, M., Lande, S., Pompianu, L., Bracciali, A.: A general framework for
blockchain analytics. In: Proceedings of the 1st Workshop on Scalable and Resilient
Infrastructures for Distributed Ledgers, pp. 1–6 (2017)

5. Li, Z., Zheng, Y., Li, Q., Ming, W., Peng, K.: Dragnet: a method for tagging bitcoin
addresses of exchanges (2020)

6. Harlev, M.A., Yin, H.S., Langenheldt, K.C., Mukkamala, R., Vatrapu, R.: Breaking
bad: de-anonymising entity types on the bitcoin blockchain using supervised machine
learning. In: Proceedings of the 51st Hawaii International Conference on System
Sciences (2018)

http://arxiv.org/abs/1709.02489

A RDBMS-Based Bitcoin Analysis Method 253

7. Lee, S., et al.: Cybercriminal minds: an investigative study of cryptocurrency abuses
in the dark web. In: Network and Distributed System Security Symposium, pp. 1–15.
Internet Society (2019)

8. Zheng, B., Zhu, L., Shen, M., Du, X., Guizani, M.: Identifying the vulnerabilities
of bitcoin anonymous mechanism based on address clustering. Sci. China Inf. Sci.
63(3), 1–15 (2020). https://doi.org/10.1007/s11432-019-9900-9

9. Zhang, Z., Zhou, T., Xie, Z.: Bitscope: scaling bitcoin address deanonymization
using multi-resolution clustering. In: Proceedings of the 51st Hawaii International
Conference on System Sciences (2018)

https://doi.org/10.1007/s11432-019-9900-9

Fault and Side-Channel Attack

Federated Learning in
Side-Channel Analysis

Huanyu Wang(B) and Elena Dubrova

KTH Royal Institute of Technology, Stockholm, Sweden
{huanyu,dubrova}@kth.se

Abstract. Recently introduced federated learning is an attractive
framework for the distributed training of deep learning models with thou-
sands of participants. However, it can potentially be used with malicious
intent. For example, adversaries can use their smartphones to jointly
train a classifier for extracting secret keys from the smartphones’ SIM
cards without sharing their side-channel measurements with each other.
With federated learning, each participant might be able to create a strong
model in the absence of sufficient training data. Furthermore, they pre-
serve their anonymity. In this paper, we investigate this new attack vector
in the context of side-channel attacks. We compare the federated learn-
ing, which aggregates model updates submitted by N participants, with
two other aggregating approaches: (1) training on combined side-channel
data from N devices, and (2) using an ensemble of N individually trained
models. Our first experiments on 8-bit Atmel ATxmega128D4 microcon-
troller implementation of AES show that federated learning is capable
of outperforming the other approaches.

Keywords: Federated learning · Side-channel attack · AES · Power
analysis

1 Introduction

Federated learning (FL) is a new paradigm in machine learning that can help
meet regulatory requirements (GDPR [31], HIPAA [1]) and mitigate privacy con-
cerns while taking advantage of massive distributed data [15,16,23]. FL allows
its participants to collaboratively train a global model without sharing partici-
pant’s local training data. At every communication round, each participant trains
a local model based on his/her training data and submits the model updates to
the server. The server employs a secure aggregation [3] to build a global model
by averaging the local models’ weights. Motivating applications for FL include
image classifiers for self-driving cars, keyboard next-word predictors, and per-
sonalized product recommendation services [18].

However, as any great scientific discovery, FL can potentially be used with
malicious intent. Since FL preserves not only training data confidentiality, but
also participant’s anonymity, its setting is very appealing to adversaries. Fur-
thermore, an adversary who does not have enough training data might still be
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 257–272, 2021.
https://doi.org/10.1007/978-3-030-68890-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-68890-5_14

258 H. Wang and E. Dubrova

able to create a strong deep-learning model by training in a FL framework. For
example, adversaries can use their smartphones to jointly train a classifier for
extracting secret keys from the smartphones’ SIM cards without sharing their
local side-channel measurements with each other. At each round, every partici-
pant independently trains a local model update based on traces captured from
his/her profiling device and uploads it to the aggregator, where the submitted
updates are combined to construct a global model. The aggregator can be either
a participant, or a third party.

In this paper, we investigate this new attack vector in the context of Deep-
Learning Side-Channel Attacks (DL-SCAs). DL-SCA is one of the most power-
ful attacks against implementations of cryptographic algorithms at present [26].
During the execution of a cryptographic algorithm, physical implementations
tend to leak side-channel information which is related to the secret key. An adver-
sary first trains a deep-learning model on power traces captured from profiling
devices which he/she controls, and then applies the trained model to recover the
key of a victim device. Using more than one device for profiling (called multi-
source training), is known to reduce the negative effect of inter-chip variation,
which is prominent in advanced technologies, and helps generalization [9,33,35].

Another known technique for reducing generalization error in machine learn-
ing is bootstrap aggregating, or bagging [4]. In bagging, several different, sepa-
rately trained models are used in an ensemble to vote on the output results.
Since different models usually do not make the same errors on the test set, on
average, an ensemble of N models is expected to perform better than its mem-
bers [11]. Bagging has been successfully applied to power analysis of hardware
implementations of Advanced Encryption Standard (AES) [34]. The attack pre-
sented in [34] uses an ensemble of three Convolutional Neural Networks (CNNs)
trained on different attack points.

While it is obvious that a DL-SCA in FL framework will outperform a DL-
SCA based on a single classifier trained on a single profiling device, the outcome
of a competition between FL (model-level aggregation), bagging (output-level
aggregation), and multi-source training (data-level aggregation) methods is not
evident. We present such an evaluation in this paper. We apply FL, bagging,
and multi-source training aggregation methods to power analysis of a microcon-
troller implementation of AES. Our first experiments show that FL is capable
of outperforming the other two approaches.

2 Background

This section reviews the background, including AES-128 and the general concept
of DL-SCA.

2.1 AES-128

The AES [8] is a symmetric encryption algorithm standardized by NIST in FIPS
197 and included in ISO/IEC 18033-3. AES-128 takes a 128-bit block of plaintext

Federated Learning in Side-Channel Analysis 259

Algorithm 1. Pseudo-code of the AES-128 algorithm [8, 33]
// AES-128 Cipher
// in: 128 bits (plaintext)
// out: 128 bits (ciphertext)
// Nr: number of rounds, Nr = 10 for AES-128
// Nb: number of columns in a state, Nb = 4
// ke: expanded key K, Nb ∗ (Nr + 1) = 44 words, (1 word = Nb bytes)

state = in;
AddRoundKey(state, ke[0, Nb − 1]);
for round = 1 step 1 to Nr − 1 do

SubBytes(state); // Point of attack in round 1
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, ke[round ∗ Nb, (round + 1) ∗ Nb − 1]);

end for
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, ke[Nr ∗ Nb, (Nr + 1) ∗ Nb − 1]);
out = state;

and a 128-bit key K as input and computes a 128-bit block of ciphertext as
output. In this section, we describe AES-128 algorithm whose implementation
is used in our experiments. Its pseudo-code is shown in Algorithm 1. AES-128
performs encryption iteratively, in 10 rounds for the 128-bit key. Each round
except the last repeats the four steps: non-linear substitution, transposition of
rows, mixing of columns, and round key addition. The last round does not mix
columns. The non-linear substitution is implemented by the function SubBytes()
which applies the 8-input 8-output substitution box (S-Box) to state byte-by-
byte. As any block cipher, AES can be used in several modes of operation. In
our experiments we use Electronic Codebook (ECB) mode, in which the message
is divided into blocks and each block is encrypted separately.

An attack point is a selected intermediate state which can be used to describe
the power consumption. We use the output of the S-Box procedure in the first
round as the attack point in our following experiments. Since its value needs to
be loaded from a memory onto a data bus, which is known to be the dominant
fraction of the total power consumed by a software implementation of AES.

2.2 Deep Learning Side-Channel Attacks

Side-channel attacks were pioneered by Paul Kocher in his seminal paper on
timing analysis [14] where he has shown that non-constant running time of a
cipher can leak information about its key. Kocher has also introduced power
analysis [13] which exploits the fact that circuits typically consume differing
amounts of power based on their input data. The power consumption remains
one of the most successfully exploited side-channels today. We focus on power
analysis in this paper.

260 H. Wang and E. Dubrova

Table 1. Local model’s architecture summary.

Layer type Output shape Parameter #

Input (Dense) (None, 200) 19400

Dense 1 (None, 200) 40200

Dense 2 (None, 200) 40200

Dense 3 (None, 200) 40200

Dense 4 (None, 200) 40200

Output (Dense) (None, 256) 51456

Total parameters: 231,656

The target of a side-channel attack is to recover the 128-bit key K ∈ K of
AES, where K is the set of all possible keys. To recover the key, the attacker
uses of a set of known input data (e.g. the plaintext) and a set of the physical
measurements (e.g. power consumption). Usually a divide-and-conquer strategy
is used in which the key K is divided into 8-bit subkeys Kk, and the subkeys Kk

are recovered independently, for k ∈ {1, 2, . . . , 16}.
With advances in deep learning, side-channel attacks become several orders

of magnitude more effective since deep-learning techniques are good at finding
correlations in raw data [4,11,37]. Deep learning can be used in side-channel anal-
ysis in two settings: profiling and non-profiling. Profiling attacks [22] first learn
a leakage profile of the cryptographic algorithm under attack, and then attack.
Non-profiling attacks [30] recover the secret keys directly, as the traditional Dif-
ferential Power Analysis [13] or Correlation Power Analysis (CPA) [5]. In non-
profiling attacks, deep neural networks are commonly used as pre-processing
techniques. In this paper, we focus on profiling attacks.

A profiling deep-learning side-channel attack is done in two stages.

1. At the profiling stage, the selected type of deep-learning model is trained to
learn a leakage profile of the cryptographic algorithm under attack for all
possible values of the sensitive variable. The sensitive variable is typically a
subkey. The training is done by using a large set of side-channel data captured
from profiling device(s) which are labeled according to the selected attack
point and the leakage model.

2. At the attack stage, the trained model is used to classify the side-channel data
captured from a victim device.

A leakage model describes the leakage of a device at attack point during the
execution of the algorithm. Common leakage models for power analysis are the
identity, the Hamming weight, and the Hamming distance. In this paper, we use
the identity model which assumes that the power consumption is proportional
to the value of the data processed at the attack point.

Federated Learning in Side-Channel Analysis 261

3 Training of Local Models

In this section we describe how local models are trained.

3.1 Choice of Neural Network Type

Previous work investigated which type of deep neural networks is suitable for var-
ious side-channel analysis scenarios. For example, CNNs have been successfully
applied to bypass the trace misalignment and to overcome jitter-based counter-
measures [6]. CNNs were also used to break protected AES [10,12,21,26] and the
convolutional layer has been applied to handle the noise in both EM [36] and
power traces [38]. However, when traces are well-synchronized and less noisy,
Multiple Layer Perception (MLP) seems to be a more suitable choice in side-
channel context [32,33], since MLPs are more computational efficient during the
profiling stage. MLPs are shown successful in extracting keys from both soft-
ware [2,9,19,21,33] and hardware [17] implementations of AES.

In our experiments, the target board contains an 8-bit microcontroller which
is programmed to a standard version of AES-128 without masks. In [20], we know
that the leakage in software implementations is time-dependent and less noisy
since instructions are executed sequentially. This makes deep-learning models
easier to learn features from traces [34]. For each subkey, the model only needs
to learn the features within a specific part of traces. Furthermore, we capture
traces by using ChipWhisperer [25], which assures a perfect trace alignment. For
these reasons, we use MLPs.

3.2 Training Process

Given a set of power traces T = { T1,T2, ...,Tm} , where T denotes a single
trace and m represents the number of traces in the dataset, the objective is
to classify a trace T to its label l(T) ∈ L and derive the subkey Kk from the
recovered label, where L is the set of intermediate data processed at the attack
point.

The process of training a neural network can be viewed as to build a function
M : R

n → I
|L|, which maps a trace T to a score vector S = M(T) ∈ I

|L|

whose element si represents the probability of the label with value i ∈ L, where
I = {x ∈ R | 0 ≤ x ≤ 1}. We use the categorical cross-entropy loss to quantify the
classification error of the network. To minimize the loss, the gradient of the loss
with respect to the score vector S is computed and back-propagated through
the network to tune model’s internal parameters according to the RMSprop
optimizer [28]. This is repeated for a chosen number of iterations called epochs.

Once the network is trained, to classify a trace T captured from the victim
device with an unknown label l(T), we determine the most likely label l̃ among
all |L| candidates as

l̃ = arg max
i∈|L|

si

If l̃ = l(T), the classification is successful and the attacker is able to derive
the key from the obtained intermediate value.

262 H. Wang and E. Dubrova

Fig. 1. Model-level aggregation in the deep-learning side-channel analysis context.

3.3 Choice of Neural Network Architecture

The architecture of MLP networks used in our experiments is shown in Table 1.
The network contains an input layer, four hidden layers and an output layer. The
input size is set to 96, which is corresponding to the number of data samples for
one S-box execution in a trace, see Fig. 5. By using the identity power model,
the set of intermediate data processed at the attack point can be set as L =
{0, 1, ..., 255}. Thus, the output size of the model is |L| = 256.

4 Aggregation Methods

This section describes model-, output- and data-level aggregation methods in
the side-channel analysis context.

4.1 Model-Level Aggregation

Figure 1 illustrates the model-level aggregation for SCA which utilizes the hori-
zontal federated learning framework [23,29]. There are N participants (clients)
jointly constructing a federated deep-learning model. Suppose each client j has
nj traces captured from his/her private profiling device, for j ∈ {1, . . . , N}. The
total number of training traces of N clients is denoted by n, with n =

∑N
j=1 nj .

At the beginning of the training process, a typical model structure is initial-
ized by an aggregator (server) and sent to each client. At each communication
round t, a random fraction ηt ∈ [0, 1] of N clients is selected by the aggregator
to independently update local models based on their private data and upload

Federated Learning in Side-Channel Analysis 263

Fig. 2. Output-level aggregation in the deep-learning side-channel analysis context.

the updates to the aggregator. In our experiment, we set ηt = 1, which means
that all clients contribute to the global model in each communication round. For
each client, local updates are typically done by using the Stochastic Gradient
Descent (SGD) taken on the private data based on the weights ωt

0 of the shared
global model:

ωt+1
j = ωt

0 − α∇φ(ωt
j)

where α is the learning rate, ∇φ is gradient of the classification loss φ, and ωt
j

are weights of current local model of the client j.
A typical aggregation approach of federated learning is averaging. The aggre-

gator computes the weights ωt+1
0 of the global model by averaging the weights

of submitted local models:

ωt+1
0 =

N∑

j=1

nj

n
ωt+1
j

At the end of communication round t, the aggregator sends the global model
with the weights ωt+1

0 back to each client.
All clients can use the global model to classify the data samples captured

from a victim device.

4.2 Output-Level Aggregation

Figure 2 shows an overview of the output-level aggregation approach with N
participants, which is inspired by a machine learning algorithm called bootstrap
aggregating [4]. In this approach, N different classifiers are trained on traces

264 H. Wang and E. Dubrova

Fig. 3. Data-level aggregation in the deep-learning side-channel analysis context.

captured from N different devices independently. During the attack stage, these
trained models are used to classify the same trace captured from the victim board
and then the aggregator obtains the final classification result by multiplying all
guess vectors generated by local classifiers. Suppose each participant j uses nj

private traces captured from his/her profiling device to train the local model j,
and obtains the corresponding score vector Sj by classifying the trace captured
from the victim device. Thus, the final classification result (cumulative guess
vector) S can be defined as:

S =
N∑

j=1

Sj

Combining the outputs of several weak classifiers are expected to perform
better than local classifiers since different models usually do not make the same
errors on the test set. This can avoid overfitting and reduce the generalization
error [27].

4.3 Data-Level Aggregation

Figure 3 illustrates the data-level aggregation. The basic idea is to train a model
on traces captured from different devices, which is proved to be an efficient way
to mitigate the effect caused by the board diversity.

In a data-level aggregation approach, each participant j uploads nj pri-
vate traces captured from his/her profiling device to the aggregator, for j ∈
{1, . . . , N}. The aggregator combines the local data into a global data set with
n =

∑N
j=1 nj traces and trains the global model on this mixed dataset. After

the training, the aggregator sends the model back to each participant and all
clients can use this model to classify the trace captured from the victim device.

Federated Learning in Side-Channel Analysis 265

Fig. 4. Equipment for power analysis. In our experiments, three XMEGA boards are
used as the profiling boards and others are for testing.

5 Assumptions

Profiling side-channel attacks assume that:

1. The attacker has at least one device, called the profiling device, which is
similar to the device under attack and runs the same implementation of AES.

2. The attacker has a full control over the profiling device (can apply chosen
plaintext, program chosen keys, and do physical measurements).

3. The attacker has a physical access to the victim device to measure some
side-channel signals during the execution of AES.

In addition, in this paper we assume that only a single power trace from a
victim device is available to the attacker. Such attacks are called the single-trace
attack. Single-trace attacks are particularly threatening because they can recover
the key even if the key is changed for every session.

6 Experimental Setup

This section describes our experimental setup, including the equipment we used
and how we capture the power trace during the execution of AES.

266 H. Wang and E. Dubrova

Fig. 5. Segment of a power trace from an 8-bit ATxmega128D4 microcontroller repre-
senting 16 executions of S-box.

6.1 Equipment for Power Analysis

The equipment we use for power analysis is shown in Fig. 4. It consists of the
ChipWhisperer-Lite board, the CW308 UFO mother board and nine CW308T-
XMEGA target boards. In the sequel, we refer to these target boards as
D1,D2, . . . , D9. The ChipWhisperer is a hardware security evaluation toolkit
based on a low-cost open hardware platform and an open source software [24].
The ChipWhisperer-Lite can be used to measure power consumption with the
maximum sampling rate of 105 MS/s.

The CW308 UFO board is a generic platform for evaluating multiple tar-
gets [7]. The target board is plugged in a dedicated U connector. The CW308T-
XMEGA target board contains an 8-bit ATxmega128D4 microcontroller. We
programmed the microcontrollers to the same version of AES-128 in Electronic
codebook (ECB) mode of operation. In our experiments, D1,D2 and D3 are used
for profiling and others are the victim boards.

6.2 Power Trace Acquisition

To collect training data, 300K power traces are captured from each profiling
device during the execution of AES for randomly selected plaintexts and keys.
We also 1 K power traces from each victim device for testing. Figure 5 shows
the segment of a power trace from an 8-bit ATxmega128D4 microcontroller,
representing 16 executions of S-box in the 1st encryption round. The S-box is a
8 × 8 invertible mapping. AES-128 executes S-box 16 times in each round. One
can see the distinct shape of each S-box execution.

6.3 Estimation Metrics

In our experiments, the adversary has a strictly limited access to the victim
device, which means there is only 1 trace can be captured by the adversary and
classified by the trained deep-learning model. We term this test as single-trace

Federated Learning in Side-Channel Analysis 267

Fig. 6. Probability of recovering a subkey from a single trace captured from devices
D4–D9 by using the global model generated from each communication round in the
model-level aggregation.

test. In this case, we test the model on a single trace captured from the vic-
tim device. If the correct subkey has the highest probability in the generated
score vector, the attack is successful. Otherwise, the attack fails. The estima-
tion metrics used in our experiment is called single-trace key recovery rate [33],
which represents the success probability of recovering a subkey from only 1 trace
captured from the victim board.

7 Evaluation Results

In this section, we apply model-, output- and data-level aggregation methods
to power analysis of AES-128 and compare their results. In all experiments, we
simulate a scenario that N = 3 participants have the same number of training
traces.

7.1 Results of Model-Level Aggregation

In the first experiment, three participants jointly build a global MLP model by
using the federated leanring framework and each participant has nj = 300K
traces captured from Dj for training his/her local model, for j ∈ {1, 2, 3}. All
local models are trained for 40 epochs with a learning rate α = 0.0001 and the
local minimum batch size is set to 128. We have 20 communication rounds in total
and at the end of each round, the global model is sent back to all participants
to further update the model based on their local traces.

We test the generated global model of each round on a single trace captured
from the victim device. We run 1,000 single-trace tests for each model and each
victim device to obtain the average. Figure 6 shows the average probability of

268 H. Wang and E. Dubrova

Table 2. Probability of recovering a subkey from a single trace using aggregated
models.

Device Aggregation method

Model-level approach Output-level approach Data-level approach

D4 89.8% 64.5% 74.6%

D5 91.2% 76.0% 83.0%

D6 91.4% 66.0% 73.6%

D7 35.5% 18.4% 37.5%

D8 88.5% 68.3% 62.3%

D9 69.6% 58.8% 81.5%

Average 77.7% 58.7% 68.8%

these models recovering a subkey from a single trace captured from different
victim devices. In Fig. 6, one can see that the federated model generated from
the 17th communication round has the highest average success probability over
all rounds. The 2nd column in Table 2 shows the probability of recovering a
subkey from a single trace captured from different victim devices by using this
model. We can see that the average is 77.7%.

7.2 Results of Output-Level Aggregation

In the output-level aggregation, three participants first train their local MLP
models independently. Each participant j has nj = 300K traces captured from
Dj 60K traces set aside for validation, for j ∈ {1, 2, 3}. We denote these local
classifiers as local model 1, 2 and 3, respectively. Afterwards, the trained local
models are used to classify the trace captured from the victim device and the
aggregator applies an element-wise multiplication to all local models’ classifi-
cation results. Such an approach is known to work well for power analysis of
hardware implementations of AES [34].

The 3rd column of Table 2 shows the probability of recovering a subkey
from a single trace by using the output-level aggregation approach. The average
probability of recovering a subkey from a single trace captured from the victim
device is 58.6%. Note that we use the same attack point (S-box output in the
1st round) to create labels for local models. In [34], different attack points are
used for training different local models. This might have negatively affected the
ensemble’s results.

For a comparison, We further test each local models and Table 3 shows the
results for local model 1, 2 and 3. We see that success probabilities of these local
models vary a lot for different devices. This is because different pairs of devices
have different amounts of variability. Some devices are less different, some are
more different. For example, on the one hand, local model 1 and 2 can recover
a subkey from a single trace captured from D5 in 48.4% and 63.8% of cases,
respectively. Contrary, for local model 3, the subkey recovery rate for D5 is only

Federated Learning in Side-Channel Analysis 269

Table 3. Probability of recovering a subkey from a single trace by using local models
in the output-level aggregation (averaged by 1,000 tests).

Device Local model 1 Local model 2 Local model 3

D4 29.1% 42.6% 40.8%

D5 48.4% 63.8% 21.8%

D6 38.3% 33.6% 39.7%

D7 6.8% 10.4% 57.9%

D8 27.3% 36.1% 50.0%

D9 33.9% 51.8% 35.4%

Average 34.9% 41.3% 40.9%

21.8%. Probably D1 and D2 are less different from D5 than D3. On the other
hand, local model 3 significantly outperforms local model 1 and 2 on D7 (57.9%
vs 6.8% and 10.4%, respectively). Probably D3 is similar to D7, while D1 and
D2 are very different from D7. High dissimilarly of D1 and D2 from D7 might
be the reason why the global model in the federated learning case performs so
poorly on D7. From Table 3 we can also conclude that D3 is very different from
D9, which explains the worse result of the global model in the federated learning
case for D9 as compared to the results for D4–D6 and D8.

7.3 Results of Data-Level Aggregation

In this experiment, each participant 300K training traces captured from D1,D2

and D3, respectively, and upload the training data to the aggregator. The aggre-
gator combines theses sets into a global training set of 900K and sets 270K traces
for validation. Then, the aggregator trains a MLP model on this mixed train-
ing dataset, which is a data-level aggreagtion for combining different profiling
devices.

The 4th column of Table 2 shows the probability of recovering a subkey from
a single trace using the data-level aggregation approach. We can see that the
average is 68.8%.

8 Conclusion

We compared the federated learning approach to two other aggregating
approaches - on data and on output levels. Our first results show that feder-
ated learning is capable of outperforming the other approaches. This is quite
surprising.

Intuitively, it should be more difficult to train a global model in a federated
learning framework due to challenges related to training on distributed data
while keeping these data private. Apparently, in the case of power analysis,
moves due to averaging of weights of local models take neural network parameters

270 H. Wang and E. Dubrova

into the region of function space which is beneficial for the optimization of the
objective function.

We plan to further investigate this phenomena by training new models using
other combinations of profiling devices.

Acknowledgment. This work was supported in part by the research grant 2018-04482
from the Swedish Research Council.

References

1. Atchinson, B.K., Fox, D.M.: From the field: the politics of the health insurance
portability and accountability act. Health Affairs 16(3), 146–150 (1997)

2. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. ANSSI,
France & CEA, LETI, MINATEC Campus, France, vol. 22 (2018). https://eprint.
iacr.org/2018/053.pdf

3. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1175–1191 (2017)

4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

7. CW308 UFO Target. https://wiki.newae.com/CW308 UFO Target
8. The Design of Rijndael. ISC. Springer, Heidelberg (2020). https://doi.org/10.1007/

978-3-662-60769-5 9
9. Das, D., Golder, A., Danial, J., Ghosh, S., Raychowdhury, A., Sen, S.: X-deepsca:

cross-device deep learning side channel attack. In: Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6 (2019)

10. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

12. Jin, M., Zheng, M., Hu, H., Yu, N.: An enhanced convolutional neural network in
side-channel attacks and its visualization. arXiv preprint arXiv:2009.08898 (2020)

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

15. Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527 (2016)

https://eprint.iacr.org/2018/053.pdf
https://eprint.iacr.org/2018/053.pdf
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://wiki.newae.com/CW308_UFO_Target
https://doi.org/10.1007/978-3-662-60769-5_9
https://doi.org/10.1007/978-3-662-60769-5_9
http://www.deeplearningbook.org
http://arxiv.org/abs/2009.08898
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
http://arxiv.org/abs/1610.02527

Federated Learning in Side-Channel Analysis 271

16. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

17. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel
attack against hardware implementations of AES. In: 2019 22nd Euromicro Con-
ference on Digital System Design (DSD), pp. 261–268. IEEE (2019)

18. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., He, B.: A survey on federated learning
systems: Vision, hype and reality for data privacy and protection (2019)

19. Maghrebi, H.: Deep learning based side channel attacks in practice. Technical
Report, IACR Cryptology ePrint Archive 2019, vol. 578 (2019)

20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

21. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on
MLP in DPA contest v4. 2. In: 2016 39th International Conference on Telecom-
munications and Signal Processing (TSP), pp. 223–226. IEEE (2016)

22. Martinasek, Z., Malina, L., Trasy, K.: Profiling power analysis attack based on
multi-layer perceptron network. In: Mastorakis, N., Bulucea, A., Tsekouras, G.
(eds.) Computational Problems in Science and Engineering. LNEE, vol. 343, pp.
317–339. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15765-8 18

23. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-
efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629 (2016)

24. NewAE Technology Inc.: Chipwhisperer. https://newae.com/tools/chipwhisperer
25. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware

embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

26. Perin, G., Ege, B., van Woudenberg, J.: Lowering the bar: deep learning for side-
channel analysis (white-paper). In: Proceedings of BlackHat, pp. 1–15 (2018)

27. Polikar, R.: Ensemble learning. In: Ensemble Machine Learning, pp. 1–34. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-1-4419-9326-7 1

28. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22,
400–407 (1951)

29. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learn-
ing. In: Advances in Neural Information Processing Systems, pp. 4424–4434 (2017)

30. Timon, B.: Non-profiled deep learning-based side-channel attacks. IACR Cryptol.
ePrint Arch. 2018, 196 (2018)

31. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation
(GDPR). A Practical Guide. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-57959-7

32. Wang, H.: Side-Channel Analysis of AES Based on Deep Learning. Master’s thesis,
KTH, School of Electrical Engineering and Computer Science (EECS) (2019)

33. Wang, H., Brisfors, M., Forsmark, S., Dubrova, E.: How diversity affects deep-
learning side-channel attacks. In: 2019 IEEE Nordic Circuits and Systems Con-
ference (NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC), pp. 1–7. IEEE (2019)

34. Wang, H., Dubrova, E.: Tandem deep learning side-channel attack against FPGA
implementation of AES. Cryptology ePrint Archive, Report 2020/373 (2020).
https://eprint.iacr.org/2020/373

http://arxiv.org/abs/1610.05492
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-15765-8_18
http://arxiv.org/abs/1602.05629
https://newae.com/tools/chipwhisperer
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1007/978-3-319-57959-7
https://eprint.iacr.org/2020/373

272 H. Wang and E. Dubrova

35. Wang, H., Forsmark, S., Brisfors, M., Dubrova, E.: Multi-source training deep
learning side-channel attacks. IEEE 50th International Symposium on Multiple-
Valued Logic (2020)

36. Wang, R., Wang, H., Dubrova, E.: Far field em side-channel attack on AES
using deep learning. Cryptology ePrint Archive, Report 2020/1096 (2020). https://
eprint.iacr.org/2020/1096

37. Wu, Y., Shen, K., Chen, Z., Wu, J.: Automatic measurement of fetal cavum septum
pellucidum from ultrasound images using deep attention network. In: 2020 IEEE
International Conference on Image Processing (ICIP), pp. 2511–2515. IEEE (2020)

38. Yang, G., Li, H., Ming, J., Zhou, Y.: CDAE: towards empowering denoising in side-
channel analysis. In: International Conference on Information and Communications
Security, pp. 269–286. Springer (2019)

https://eprint.iacr.org/2020/1096
https://eprint.iacr.org/2020/1096

Differential Fault Based Key Recovery
Attacks on TRIAD

Iftekhar Salam(B) , Kim Young Law, Luxin Xue, and Wei-Chuen Yau

School of Electrical and Computer Engineering, Xiamen University Malaysia,
Sepang, Malaysia

{iftekhar.salam,swe1704069,cst1609025,wcyau}@xmu.edu.my

Abstract. We demonstrate two fault based key recovery attacks – a
bit-flipping fault attack, and a random fault attack, on the authenticated
encryption stream cipher TRIAD. The attacks discussed in this paper are
applicable mainly due to the simplicity of the TRIAD keystream func-
tion during the first few hundred rounds. We investigated the algebraic
normal form (ANF) of the first 160 output keystream bits of TRIAD.
The ANF of these output keystream bits shows specific patterns that are
used in our fault attacks. We first use these patterns with a bit-flipping
fault model combined with solving a system of low degree algebraic equa-
tions that requires 85 faults to recover the secret key of TRIAD, with
a data complexity of 27.43. We then relax our assumptions by using a
random fault model. The random fault model described in this paper is
also combined with solving a system of low degree algebraic equations
and requires on average 170 faults to recover the secret key of TRIAD
with a data complexity of 28.01. For both of the attacks, the complex-
ity of solving the low degree algebraic equations is negligible. We have
not performed experiments on the actual hardware implementation, but
we have verified all the attacks using simulation on TRIAD software
implementation.

Keywords: Fault attack · Random fault · TRIAD · NIST LWC
project · Key recovery

1 Introduction

The Lightweight Cryptography (LWC) Project [1] is an ongoing project orga-
nized by the National Institute of Standards and Technology (NIST) to evaluate
and standardize lightweight cryptographic algorithms to be used in a resource-
constrained environment. Some applications of the LWC include automobiles,
smart home appliances, Internet of Things (IoT) devices, medical sensors. Fifty-
six candidates were chosen as the Round 1 candidates of the NIST LWC project,
where TRIAD [2] is one of the candidates. In this paper, we analyze the security
of TRIAD against several fault attack models.

TRIAD is an authenticated encryption (AE) stream cipher algorithm. The
construction of TRIAD is inspired by the design of TRIVIUM [3], which was a
c© Springer Nature Switzerland AG 2021
D. Hong (Ed.): ICISC 2020, LNCS 12593, pp. 273–287, 2021.
https://doi.org/10.1007/978-3-030-68890-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68890-5_15&domain=pdf
http://orcid.org/0000-0003-1395-4623
http://orcid.org/0000-0003-4059-6358
https://doi.org/10.1007/978-3-030-68890-5_15

274 I. Salam et al.

candidate in the eStream project [4]. TRIAD adopts a new structure without
changing Trivium’s global structure and increases the security level to 112 bits.
Few cryptanalysis models have been investigated against TRIAD. He et al. [5]
demonstrated a key recovery attack on a reduced round (521-round) initialization
phase of TRIAD using a cube attack with a cube size of 16. With a cube size
of 30, it led to a key recovery attack for the 565-round TRIAD. The complexity
for these cube attacks on the 521-round TRIAD and 565-round TRIAD are
224.81 and 248, respectively. Kesarwani et al. [6] also performed a cube tester
on TRIAD. The authors provided heuristics to obtain useful cubes for the cube
tester. With a cube size of 34, it can distinguish 550 initialization rounds of
TRIAD. All the existing key recovery attacks on TRIAD are performed on the
reduced-round variants of the cipher.

In this work, we demonstrate two fault based key recovery attacks on the full
version of TRIAD. To the best of our knowledge, there are currently no existing
fault attacks that have been applied to TRIAD. The motivation of this research
is to determine the applicability of fault attacks to TRIAD. This study’s findings
contribute to the understanding of the security level provided by TRIAD against
the bit-flipping fault attack and the random fault attack. We show that both
of these attacks can recover the secret key of TRIAD with practical complexity.
The work in this paper may also contribute to the consideration of the evaluation
of TRIAD.

2 Fault Attack

Fault attack exploits the output of a cryptographic implementation after an
error is induced in the cryptographic scheme. Each stream cipher responds to
faults differently, whether the fault is intentional or accidental. An adversary
may recover information regarding the secret key or the state by comparing the
faulty and fault-free outputs. The main goal of the fault attacks is to recover the
secret key or the internal state. The fault attack is an active attack that requires
an adversary to access the cipher’s physical implementation.

2.1 Fault Attack Models

The adversarial models of a fault attack are defined based on the assumptions
made on an adversary’s capability. These fault attack models consider different
criteria, including the modification type of the fault, the number of bits affected
by the fault, the precision of the fault, and the duration of the fault.

The modification type defines the impact of the fault in the target location.
Depending on the modification type, fault models are categorized into three
types: stuck-at-fault, bit-flipping fault, and random fault.

– Stuck-at-fault: sets the faulty bit(s) to a specific value of either zero or one.
Stuck-at-fault is also known as a set-to-zero fault or a set-to-one fault when
the fault injection sets the target location to a value of either zero or one,
respectively.

Differential Fault Based Key Recovery Attacks on TRIAD 275

– Bit-flipping fault: complement the contents of the target fault location.
– Random fault: the target location is set to either zero or one with an equal

probability. That is, the probability of the bit in the target location may
remain the same or may get complemented with a probability of 0.5.

The number of bits affected by the fault can also be considered a factor in
modeling the fault attacks. Depending on the model, fault injection may affect
a single bit, a few bits, one byte, or multiple bytes.

Based on the precision of affecting the target location and the timing of
the fault injection, fault models can be categorized into three types: precise
control, moderate control, and random control. In the precise control model,
the adversary is assumed to have access to fault injection equipment that can
inject faults at a precise time and precise location of the internal components.
In the moderate control model, the adversary has reduced control over injecting
faults to the target location at any given time. For the random control model,
the adversary does not have any control over the fault target location and the
timing; that is, the adversary can inject a fault that may affect a random location
at a random time.

Fault injection can be either transient or permanent, depending on the dura-
tion that the faults remain active. The transient fault remains active only for
a specific duration, typically a single clock cycle; whereas, the permanent fault
remains active for the entire duration of the operation.

2.2 Fault Injection Techniques

The fault injection techniques may fall under one of the three categories: invasive,
non-invasive, or semi-invasive. The invasive technique requires an adversary to
tamper with the physical device, which may cause harm to the device. The non-
invasive technique will not cause any physical damage to the device. The semi-
invasive technique will fall in between the invasive and non-invasive techniques.

The fault injection can be performed using inexpensive methods such as
voltage glitch [7], temperature variations [8], clock glitch [9], electromagnetic
pulses [10], or laser beam [11]. Among these methods, voltage glitch and clock
glitch have low precision; whereas, the laser beam induced fault has a compara-
tively high precision on the fault location. The faults also may have a different
impact, such as skipping an instruction, complementing a bit, destroying a mem-
ory cell, depending on the method/equipment used to inject the faults.

The fault attacks presented in this paper require an adversary to inject faults
at a specific location and time. Regarding the impact of the fault, we discuss
two different attacks – one with a bit-flipping fault and the other with a random
fault. Skorobogatov and Anderson [11] have already demonstrated fault attacks
that use a focused flash light to set specific memory cells to a value of zero or
one. With the advances in the fault attack techniques, it was also demonstrated
that multiple laser beams could be used to complement multiple memory cells
simultaneously [12], as well as to complement the same memory cell multiple
times [13]. So, we consider the assumptions made in this paper are feasible to
apply the fault attacks on TRIAD.

276 I. Salam et al.

3 Description of TRIAD

TRIADv1 is a family of lightweight authenticated encryption stream cipher,
designed by Subhadeep Banik, Takanori Isobe, Willi Meier, Yosuke Todo, and
Bin Zhang [2]. TRIADv1 consists of two main parts. The first part describes an
authenticated encryption mode named TRIAD-AE. The second part describes
a hash function named TRIAD-HASH. The authenticated encryption mode
TRIAD-AE uses a stream cipher algorithm called TRIAD-SC to ensure the
message’s confidentiality and a message authentication code (MAC) algorithm
called TRIAD-MAC to detect the message’s integrity. Our work mainly focuses
on the confidentiality component, and so TRIAD-SC is the primary focus of our
investigation.

TRIAD-AE uses a 128-bit key, K ∈ {0, 1}128 and a 96-bit nonce N ∈ {0, 1}96.
The cipher accepts an arbitrary length byte-array plaintext M and an arbitrary
length byte array for associated data A. The output of TRIAD-AE consists
of a ciphertext C ∈ {0, 1}�m , where �m is the length of original plaintext M .
TRIAD-AE also outputs a 64-bit tag T .

3.1 TRIAD-AE Component Functions

TRIAD has a 256-bit internal state, consisting of three feedback shift registers
(FSR) a, b, and c. The registers a, b, c are of length 80, 88 and 88 bits, respectively
and their contents are denoted as a = (a0||a1|| · · · ||a79), b = (b0||b1|| · · · ||b87),
and c = (c0||c1|| · · · ||c87).

Keystream Generation Function. TRIAD-AE consists of a stream cipher
TRIAD-SC. The keystream is generated by combining a set of state bits. At
time t, the keystream generation of TRIAD-AE is computed as:

zt = at
67 ⊕ at

79 ⊕ bt
63 ⊕ bt

87 ⊕ ct
67 ⊕ ct

87 ⊕ bt
84c

t
84 (1)

Feedback Functions. TRIAD-AE has three non-linear feedback functions
f1, f2 and f3. These feedback functions at time t are defined as:

f t
1 = at

67 ⊕ at
79 ⊕ bt

84c
t
84 ⊕ at

72a
t
78 ⊕ bt

65 (2)

f t
2 = bt

63 ⊕ bt
87 ⊕ bt

64b
t
86 ⊕ ct

83 (3)

f t
3 = ct

67 ⊕ ct
87 ⊕ ct

76c
t
86 ⊕ at

73 (4)

State Update Function. The state of the TRIAD-AE needs to be updated
after the generation of the keystream z so that the same keystream is not
repeated at the next time instant. TRIAD-AE uses a state update function
TriadUpd to update the 256-bit internal state. The contents of registers a, b and
c at time t + 1 are updated as per Eqs. (5), (6), and (7), respectively.

at+1
i =

{
f t
3 ⊕ msgt for i = 0

at
i−1 for i = 1, · · · , 79

(5)

Differential Fault Based Key Recovery Attacks on TRIAD 277

bt+1
i =

{
f t
1 ⊕ msgt for i = 0

bt
i−1 for i = 1, · · · , 87

(6)

ct+1
i =

{
f t
2 ⊕ msgt for i = 0

ct
i−1 for i = 1, · · · , 87

(7)

As shown in Eqs. (5), (6), and (7), all the registers in a, b and c are updated by
shifting, except that registers a0, b0 and c0 are updated by combining the output
of specific non-linear feedback functions, f1, f2 and f3 with the input message,
msg. Depending on the operating mode of the cipher, the input message, msg,
could be either the plaintext, or the associated data, or a fixed constant. Note
that for TRIAD-SC, the input message, msg, is set to zero, that is, msg = 0.

3.2 Operation Phases of TRIAD-AE

TRIAD-AE has mainly four operation phases: initialization, encryption, tag gen-
eration, and decryption & verification. For encryption and decryption, TRIAD-
AE uses a stream cipher algorithm TRIAD-SC, whereas, for the tag generation,
TRIAD-AE uses a separate message authentication code (MAC) algorithm called
TRIAD-MAC. Both of these algorithms, TRIAD-SC and TRIAD-MAC, need to
go through the initialization process. Note that TRIAD-SC and TRIAD-MAC
use two different initialization functions for their initialization process. Here, we
briefly discuss the initialization and keystream generation process of TRIAD-SC
as we apply a fault attack in the TRIAD-SC. Interested readers may refer to
the original specification of TRIAD [2] for more details on the other phases of
operation.

The initialization process of TRIAD-SC uses a 128-bit key K, a 96-bit nonce
N , and a fixed 32-bit constant as the inputs to the internal state of the stream
cipher. First, the inputs are loaded into the registers a, b, and c in a pre-defined
format. The internal state is then updated using the state update function
TriadUpd for 1024 iterations without producing any keystream bits. That is,
for these 1024 iterations the contents of registers a, b and c are updated using
Eqs. (5), (6), and (7), respectively. During these updates, the external message,
msg is set to zero. The state obtained after these updates is the initial internal
state of TRIAD-SC. Once the initialization phase of TRIAD-SC is completed,
the cipher iteratively computes the keystream zt using Eq. (1), and XORs the
keystream with the corresponding plaintext to compute the ciphertext. Simul-
taneously, at each iteration t, the state is updated accordingly.

4 Fault Attacks on TRIAD

We applied two different fault attacks to TRIAD – a bit-flipping fault attack
and a random fault attack. In this section, we describe these attacks. First, we
describe some theoretical observations on the application of the fault attacks on
TRIAD. Next, we implement these attacks to verify our theoretical observations.
The techniques used in this paper are adapted from the work of Dey et al. [14],
Salam et al. [15] and Bartlett et al. [16].

278 I. Salam et al.

4.1 Algebraic Normal Form (ANF) of the Keystream Function

Our fault attacks on TRIAD first require to generate a set of keystream equa-
tions, and then identify specific patterns in the equations. These equations have
certain structure which may help us to identify the fault target locations. To
understand the structure of the keystream function, we first compute the alge-
braic normal form (ANF) of successive keystream bits constructed in terms of
the initial state of TRIAD. Let S = {s0, · · · , s255} denotes the initial internal
state of TRIAD. These 256 bits of the initial state is formed by concatenat-
ing the initial state of registers at, bt, and ct, at time t = 1024; that is, S =
(s0, · · · , s79, s80, · · · , s167, s168, · · · , s255) = (a1024

0 , · · · , a1024
79)||(b10240 , · · · , b102487)

||(c10240 , · · · , c102487). Using the variables from the initial state S, we can use
Sage [17] to generate the algebraic normal form (ANF) of successive keystream
bits of TRIAD. Based on Eq. (1), we implemented the TRIAD keystream func-
tion in Sage to compute the keystream equation, zt, for different time instant, t.
Examples of the ANF of the first five keystream equations z0, · · · , z4 are shown
below.

z0 = s164s252 ⊕ s67 ⊕ s79 ⊕ s143 ⊕ s167 ⊕ s235 ⊕ s255 (8)
z1 = s163s251 ⊕ s66 ⊕ s78 ⊕ s142 ⊕ s166 ⊕ s234 ⊕ s254 (9)
z2 = s162s250 ⊕ s65 ⊕ s77 ⊕ s141 ⊕ s165 ⊕ s233 ⊕ s253 (10)
z3 = s161s249 ⊕ s64 ⊕ s76 ⊕ s140 ⊕ s164 ⊕ s232 ⊕ s252 (11)
z4 = s160s248 ⊕ s63 ⊕ s75 ⊕ s139 ⊕ s163 ⊕ s231 ⊕ s251 (12)

In our fault attacks, we use the following observations from the ANF of the
generated equations.

i. The equations have a clear pattern, consisting of a quadratic term and several
other linear terms. The variables involved in the quadratic terms are unique,
as they do not appear anywhere else in that equation. This particular struc-
ture forms the basis of our bit-flipping fault attack to identify the target fault
register(s) and the corresponding register bit(s) that may be recovered with
the fault injection.

ii. There are several linear terms (register sj) involved, which are also appearing
uniquely in each of these equations. Using such unique linear terms, we can
compute the value of a random fault induced in the register sj . This obser-
vation, combined with observation (i), forms the basis of our random fault
attack. We first use the equations with the unique linear terms to identify
the target register’s faulty value and then use the equations that contain the
corresponding unique quadratic term to recover particular register bit(s).

We analyze the ANF of the first 160 keystream bits to identify equations
consisting of such unique patterns. More details on the usage of such equations
to apply fault attacks are provided in the later sections.

For the rest of the paper, we use the notation z′
i,sj

to denote the ith bit of
faulty keystream for a fault injection at register sj , where i ≥ 0 and 0 ≤ j ≤ 255.

Differential Fault Based Key Recovery Attacks on TRIAD 279

We use the notation ej to indicate a random fault that has been injected into
a target register sj . For all the attacks, we limit our fault injections only to the
register c1024, that is, initial state bits s168, · · · , s255.

4.2 Bit-Flipping Fault Attack on TRIAD

We first attempt to recover the initial states of the cipher using a bit-flipping
fault. The bit-flipping fault exploits the differences in the faulty and fault-free
outputs when a bit is complemented in a specific target register. We make several
assumptions to apply the bit-flipping fault attack, including:

i. An adversary has access to the first 157 bits of the keystream.
ii. An adversary can complement the bit in a specific target register.

We first take a theoretical approach towards the bit-flipping attack. The first
step in the theoretical approach is to generate the equations in terms of the
initial states. In this case, we used SageMath to generate the algebraic normal
from (ANF) of the keystream equations of TRIAD in terms of the initial state
variables, as discussed in Sect. 4.1. After that, we carefully examined the struc-
tures of the equations to identify quadratic terms with unique variables in the
equations.

We take Eq. (8) as an example to illustrate the theoretical observations on the
bit-flipping fault attack on TRIAD. In Eq. (8), notice that there is a quadratic
term involving two initial state register bits: s252 and s164. Also, these two bits
do not appear anywhere else in the equation. Suppose the adversary introduces
a bit-flipping fault in the state bit s252. Based on the fault at register s252, a
faulty equation can be produced and written as:

z′
0,s252

= s164s252 ⊕ s67 ⊕ s79 ⊕ s143 ⊕ s167 ⊕ s235 ⊕ s255 (13)

where z′
0,s252

indicates the 0th bits of the faulty keystream when a fault is applied
to s252 and s252 represents the complement of s252. Applying XOR operation on
Eqs. (8) and (13), the value of s164 can be recovered as shown in Eq. (14).

z0 ⊕ z′
0,s252

= s164(s252 ⊕ s252)

= s164 (14)

A similar observation can also be applied where an adversary can apply bit-
flipping fault in s164 to recover the register bit s252. Our analysis shows that
the patterns in the first 157 keystream equations are sufficient to recover all the
initial state bits of TRIAD, except s79, s167, and s255. However, this approach
requires a comparatively large number of faults (253 faults) and may require to
inject the faults in all the three registers a1024, b1024, c1024.

Instead of recovering all the bits by injecting faults, we used fault injections
only to recover certain parts of the initial state. The remaining bits can be
recovered by solving a system of equations. The goal is to recover the initial
state with a minimal amount of faults. Particularly, we used the bit-flipping

280 I. Salam et al.

faults to recover the initial register bits s80, · · · , s164 and s168, · · · , s254, that is,
b10240 , · · · , b102484 and c10240 , · · · , c102486 , respectively.

In our fault attack, we aim to minimize the number of faults required to
recover these register bits. We notice that the same fault can recover multiple
register contents simultaneously by considering the faulty keystream equations
at different time instants. For example, consider the 82nd keystream bit z82 as
below.

z82 = s54s60 ⊕ s130s152 ⊕ s82s170 ⊕ s146s234 ⊕ s230s240 ⊕ s242s252 ⊕ s49 ⊕ s59 ⊕ s61

⊕ s71 ⊕ s85 ⊕ s127 ⊕ s129 ⊕ s153 ⊕ s173 ⊕ s221 ⊕ s233 ⊕ s237 ⊕ s241 ⊕ s253 (15)

Notice that in both keystream bits z0 and z82 (Eqs. (8) and (15)), the register
bit s252 appears in quadratic terms together with s164 and s242, respectively.
Therefore, with a single fault injection at s252 we can compute z0⊕z′

0,s252
= s164

and z82 ⊕ z′
82,s252

= s242. In our application, we identify such registers as the
target locations to minimize the number of faults.

Table 1 shows the patterns identified from the equations that can be used
to apply a fault attack with minimal faults. As shown in Table 1, an adver-
sary applies faults in registers s168, · · · , s252 (i.e., c10240 , · · · , c102484) to recover the
register bits s80, · · · , s164 and s168, · · · , s254.

Based on these patterns from Table 1, Algorithm 1 illustrates the bit-flipping
fault injection targets in s168, · · · , s252 to recover the register bits s80, · · · , s164
and s168, · · · , s254. In Algorithm 1, we use:

– faulty keystream bits z′
0,s252

, · · · , z′
84,s168

to recover s164, · · · , s80,
– faulty keystream bits z′

82,s252
, · · · , z′

156,s178
to recover s242, · · · , s168, and

– faulty keystream bits z′
68,s244

, · · · , z′
79,s233

to recover s254, · · · , s243.

In total, Algorithm 1 requires an adversary needs to apply 85 bit-flipping faults
to recover 172 register bits of the initial state. The process for recovering the
remaining initial state bits are explained in Sects. 4.4.

4.3 Random Fault Attack on TRIAD

The random fault attack model extends the concept of the bit-flipping fault
attack model described in Sect. 4.2. As compared to the bit-flipping fault attack
model, the random fault model is more practical. The assumptions are more
realistic as the fault generated is random, and the effect of the fault is unknown
to the adversary. The injection of a random fault may not affect the target
register’s contents or may complement the target register’s contents with an
equal probability. So, unlike the bit-flipping model, the random fault model
does not guarantee to recover the contents of the target register with just a
single fault. Multiple faults may be needed in order to recover each register bit.
We make the following assumptions for our random fault attack on TRIAD.

Differential Fault Based Key Recovery Attacks on TRIAD 281

Table 1. Useful equation patterns to recover s80,··· ,s164 and s168, · · · , s254 by injecting
faults at registers s168, · · · , s252

Fault target, sj Required faulty keystream, z′
i,sj Recovered bit

s252 z′
0,s252 s164

z′
82,s252 s242

s251 z′
1,s251 s163

z′
83,s251 s241

...
...

...

s246 z′
6,s246 s158

z′
88,s246 s236

s245 z′
7,s245 s157

z′
89,s245 s235

s244 z′
8,s244 s156

z′
90,s244 s234

z′
68,s244 s254

s243 z′
9,s243 s155

z′
91,s243 s233

z′
69,s243 s253

...
...

...

s179 z′
73,s179 s91

z′
155,s179 s169

z′
133,s179 s189

s178 z′
74,s178 s90

z′
156,s178 s168

z′
134,s178 s188

s177 z′
75,s177 s89

z′
135,s177 s187

s176 z′
76,s176 s88

z′
136,s176 s186

...
...

...

s169 z′
83,s169 s81

z′
143,s169 s179

s168 z′
84,s168 s80

z′
144,s168 s178

i. An adversary has access to the first 157 bits of the keystream.
ii. An adversary can inject a random fault several times in a specific target

register.

282 I. Salam et al.

Algorithm 1: Bit-flipping fault attack on TRIAD
Input: Fault target location(s): s168, · · · , s252
Output: Initial state bits: s80, · · · , s164, and s168, · · · , s254

1 Initialise with the K and N
2 Generate and store the first 157 bits of the fault-free keystream z0, · · · , z156
3 for j ← 252 to 168 do
4 Re-initialise the cipher with the K, N
5 Inject bit-flipping fault to sj
6 Compute the faulty keystream z′

252−j,sj

7 Output sj−88 = z252−j,sj ⊕ z′
252−j,sj

8 if j ≥ 178 then
9 Compute the faulty keystream z′

334−j,sj

10 Output sj−10 = z334−j,sj ⊕ z′
334−j,sj

11 if j ≥ 233 and j ≤ 244 then
12 Compute the faulty keystream z′

312−j,sj

13 Output sj+10 = z312−j,sj ⊕ z′
312−j,sj

We take the keystream bits z0 and z3 (Eqs. (8) and (11)) as an example
to illustrate the theoretical considerations for applying the random fault attack
on TRIAD. Notice that the keystream bit z0 in Eq. (8) consists of a quadratic
monomial s252s164. These two variables s252 and s164 appears together only in
the quadratic term in Eq. (8). Carefully looking into the patterns, we notice that
the keystream bit z3 in Eq. (11) also contains both of these variables s252 and
s164, but in this case, these variables appear as unique linear terms. Using these
observations, we can use keystream bit z3 to determine whether the injected
random fault has complemented the target registers s252, and s164. That is,
we can determine the effect of the random fault by such equations where the
target register appears as a unique linear term in the corresponding keystream
polynomial. For example, suppose a random fault e252 is applied to s252. Let
s′
252 denotes the corresponding faulty register, where s′

252 = s252 ⊕ e252. The
corresponding faulty keystream bit z′

3,s252 can be written as:

z′
3,s252

= s161s249 ⊕ s64 ⊕ s76 ⊕ s140 ⊕ s164 ⊕ s232 ⊕ s′
252 (16)

XOR-ing the faulty and fault free keystream z′
3,s252

and z3 we get

z′
3,s252

⊕ z3 = s252 ⊕ s′
252

= s252 ⊕ s252 ⊕ e252

= e252 (17)

Equation (17) allows an adversary to identify whether the target register bit
has been complemented or not. The fault value e252 = 0 means that the fault
did not complement register bit s252, while e252 = 1 means that the fault has
complemented the bit in the target location s252. Now, if the register bit s252

Differential Fault Based Key Recovery Attacks on TRIAD 283

Table 2. Unique linear terms in the equations to identify the fault value ej

Fault Target, sj Required faulty keystream, z′
i,sj Recovered faulty value, ej

s252 z′
3,s252 e252

s251 z′
4,s251 e251

s250 z′
5,s250 e250

...
...

...

s169 z′
86,s169 e169

s168 z′
87,s168 e168

has been complemented, then similar to Sect. 4.2, an adversary is able to use
keystream equations z0 and z′

0,s252
to recover the register bit s164. As the fault

is random, the target register bit may not get complemented with single fault
injection, and multiple faults may need to be injected until the desired outcome
is achieved. Analysis of the equation patterns reveals that this concept of the
random fault can be used to identify the fault impact on all the required target
registers and hence can be used to recover the 253 state bits of TRIAD.

However, to reduce the number of faults, as similar to Sect. 4.2, we only aim to
recover the register bits s80, · · · , s164 and s168, · · · , s254 using such random faults.
We can apply the same process from Sect. 4.2, except that the injected fault is
random, and the value of the injected fault needs to be determined first using the
process shown in Eq. (17). To recover the register bits specified in Table 1 with a
random fault model, we need to inject random faults in registers s168, · · · , s252,
and also need to determine the value of the random fault e168, · · · , e252 using
suitable equations. We found that there are enough suitable equations among
the first 160 keystream functions. Table 2 lists the necessary patterns in the
keystream bits where these registers s168, · · · , s252 appear as a unique linear
term and can be used to recover the corresponding fault value e168, · · · , e252,
injected into those registers.

Using the keystream bits from Table 2, we need to repeat the fault injection
to the same target register sj until the value of the injected fault is one, i.e.,
ej = 1. Once the random fault ej has complemented the corresponding target
register sj , we can use the same approach from Sect. 4.2 to recover the resulting
state bit. Algorithm 2 shows the process of the random fault attack on TRIAD.
The difference between Algorithm 1 and 2 is that we used a random fault in the
latter algorithm, and the fault may be required to inject several times to the
same target register.

4.4 Recovering the Remaining Register Bits

The fault attacks discussed in Sects. 4.2 and 4.3 recovers the register bits
s80, · · · , s164 and s168, · · · , s254. The register bits s0, · · · , s79, s165, · · · , s167 and

284 I. Salam et al.

Algorithm 2: Random fault attack on TRIAD
Input: Fault target location(s): s168, · · · , s252
Output: Initial state bits: s80, · · · , s164, and s168, · · · , s254

1 Initialise with the K and N
2 Generate and store the first 157 bits of the fault-free keystream z0, · · · , z156
3 for j ← 252 to 168 do
4 Re-initialise the cipher with the K, N
5 Inject a random fault to sj
6 Compute the faulty keystream z′

255−j,sj

7 if z′
255−j,sj ⊕ z255−j,sj = 0 then

8 Go back to step 4 and repeat

9 else
10 Output sj−88 = z252−j,sj ⊕ z′

252−j,sj

11 if j ≥ 178 then
12 Compute the faulty keystream z′

334−j,sj

13 Output sj−10 = z334−j,sj ⊕ z′
334−j,sj

14 if j ≥ 233 and j ≤ 244 then
15 Compute the faulty keystream z′

312−j,sj

16 Output sj+10 = z312−j,sj ⊕ z′
312−j,sj

s255 are not recovered directly using the faults. In this section we discuss the
recovery of these remaining bits by solving a set of equations with low algebraic
degree.

The equation system used in the fault attack covers keystream bits up to the
first 157 rounds. During these 157 rounds, the degree of the output keystream
function ranges from 2 to 6. However, we can reduce this degree further by
substituting the variables recovered using fault attacks. So, we first substitute
the values from registers s80, · · · , s164 and s168, · · · , s254 into keystream bits
z0, · · · , z156. The substitution of the known (recovered using faults) values into
the equation system resulted in a comparatively low degree equation system.
In fact, after substituting the recovered variables, a majority of these keystream
equations are turned into linear equations with respect to the unknown variables.
We use Buchberger’s algorithm [18] to compute Gröbner bases to solve these low
degree equations, which resulted in the recovery of all the remaining unknown
register bits. Therefore, in general, with the fault attacks from Sects. 4.2 and
4.3, an adversary is able to recover all the initial state bits of TRIAD.

4.5 Experimental Analysis and Discussions

The implementations of the experiments are conducted in SageMath on a stan-
dard laptop with 16GB of memory. We implemented Algorithm 1 to verify the
theoretical observations from Sect. 4.2. The physical injection of the fault is
simulated through the code in SageMath, assuming that we can complement

Differential Fault Based Key Recovery Attacks on TRIAD 285

Table 3. Comparison of bit-flipping and random fault attacks on TRIAD

Fault type Total number of required faults Data complexity Nonce reuse

Bit-flipping 85 27.43 26.41

Random 170 28.01 27.41

the contents of the target register. We assume that the attacker can access the
selected keystream outputs and inject faults in the targeted locations at a cho-
sen time. The experiment is repeated multiple times with 1, 000 random keys
and nonces to recover the selected register bits from Table 1 by computing the
differentials of the corresponding faulty and fault-free keystream outputs. We
compared the recovered bits with the actual bits for each of these experiments,
and all these experiments can successfully retrieve the respective register bits.
In our experiments, a total of 85 bit-flipping faults are applied to recover the
state bits from Table 1.

We also experimentally verified the theoretical observations on the random
fault attack as described in Algorithm 2. The physical injection of the random
fault ej is simulated using the built-in random function in Python. To verify the
random fault attack, we first experimentally determined the average number of
random faults required to complement the bit in the respective target register
sj , i.e., to get ej = 1. We found that, on average, two random faults are required
to complement the contents of a single target register sj . That is, a total of
85 × 2 = 170 faults are expected to recover the initial register bits from Table 1.
We also tested Algorithm 2 using 1, 000 random keys and nonces, and all the
results from these experiments verify our expected outcome.

We also verified the recovery of the remaining state bits for each of the bit-
flipping fault and the random fault attack experiments with random keys and
nonces. We substitute the recovered register values s80, · · · , s164, s168, · · · , s252 in
the keystream bits z0, · · · , z156, and then solve the resulting low degree equations
using Gröbner bases. Experimental results confirm the recovery of TRIAD’s
initial state for all the experiments with different random keys and nonces. The
computational complexity of solving these equations is negligible.

Table 3 provides an overall comparison between the bit-flipping fault attack
and the random fault attack. As shown in Table 3, the bit-flipping fault attack
requires an adversary to apply 85 bit-flipping faults and observe 27.43 keystream
bits to recover TRIAD’s initial state. On the other hand, the random fault attack
requires an adversary to apply in average 170 random faults and observe 28.01

keystream bits to recover TRIAD’s initial state.
Note that the state update function of TRIAD is bijective. Therefore, a state

recovery essentially means a key recovery, as we can clock backward from the
initial state to the loaded state (t = 0) to recover the secret key, K.

286 I. Salam et al.

5 Conclusion

This paper describes two fault-based key recovery attacks on TRIAD under the
nonce-reuse scenario. We demonstrated a bit-flipping fault attack on TRIAD
that can recover the initial state with 85 faults. We also demonstrated a random
fault attack that can recover the initial state of TRIAD with about 170 faults on
average. The recovery of TRIAD’s initial state leads to a key recovery by clocking
backward to the beginning state; hence, both of these attacks can recover the
secret key without any additional faults. These attacks do not require injecting
faults in all the registers of TRIAD; instead, it targets the fault injection in only
one of the feedback shift register, c. Both of these key recovery attacks can be
performed with practical complexity. The random fault attack requires a slightly
large number of faults, but this attack is comparatively more practical as the
random fault model’s assumption is less stringent.

We have not performed these attacks on a physical device but have simulated
the attacks on TRIAD’s software implementation. We note that these types of
fault injections have been demonstrated in other hardware devices [11–13], and so
we consider these approaches to be feasible. The results confirm the importance
of having adequate physical protection of the device to prevent an adversary
from using these vulnerabilities.

Acknowledgements. This research is supported by Xiamen University Malaysia
Research Fund (Grant No: XMUMRF/2019-C3/IECE/0005).

References

1. NIST Lightweight Cryptography Project (2019). https://csrc.nist.gov/projects/
lightweight-cryptography

2. Banik, S., Isobe, T., Meier, W., Todo, Y., Zhang, B.: TRIAD v1 - A Lightweight
AEAD and Hash Function based on Stream Cipher, NIST Lightweight Cryp-
tography (LWC) Project (2019). https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/TRIAD-spec.pdf

3. De Cannière, C., Preneel, B.: Trivium: A stream cipher construction inspired by
block cipher design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis,
S., Preneel, B. (eds.) Information Security - ISC 2006, LNCS, vol. 4176, pp. 171–
186. Springer, Heidelberg (2006). https://doi.org/10.1007/11836810 13

4. eSTREAM: the ECRYPT Stream Cipher Project. https://www.ecrypt.eu.org/
stream/. Accessed 11 Sep 2020

5. He, Y., Wang, G., Li, W., Ren, Y.: Improved cube attacks on some authenticated
encryption ciphers and stream ciphers in the Internet of Things. IEEE Access 8,
20920–20930 (2020). https://doi.org/10.1109/ACCESS.2020.2967070

6. Kesarwani, A., Sarkar, S., Venkateswarlu, A.: Some cryptanalytic results on
TRIAD. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) Progress in Cryptology -
INDOCRYPT 2019, LNCS, vol. 11898, pp. 160–174. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35423-7 8

7. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: 5th
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 53–58. IEEE,
Washington, DC (2008). https://doi.org/10.1109/FDTC.2008.10

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TRIAD-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/TRIAD-spec.pdf
https://doi.org/10.1007/11836810_13
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://doi.org/10.1109/ACCESS.2020.2967070
https://doi.org/10.1007/978-3-030-35423-7_8
https://doi.org/10.1109/FDTC.2008.10

Differential Fault Based Key Recovery Attacks on TRIAD 287

8. Hutter, M., Schmidt, J.: The temperature side channel and heating fault attacks.
In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Appli-
cations - CARDIS 2013, LNCS, vol. 8419, pp. 219–235. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 15

9. Amiel, F., Clavier, C., Tunstall, M.: Fault analysis of DPA-resistant algorithms.
In: Breveglieri, L., Koren, I., Naccache, D., Seifert, JP. (eds.) Fault Diagnosis and
Tolerance in Cryptography - FDTC 2006, LNCS, vol. 4236, pp. 223–236. Springer,
Heidelberg (2006). https://doi.org/10.1007/11889700 20

10. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012). https://doi.org/10.1109/JPROC.2012.2188769

11. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems -
CHES 2002, LNCS, vol. 2523, pp. 2–12, Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36400-5 2

12. Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by simultane-
ous laser fault injections. In: 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 36–46. IEEE, Santa Barbara (2016). https://doi.org/
10.1109/FDTC.2016.16

13. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected CRT-RSA. In:
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 75–86.
IEEE, Santa Barbara (2010). https://doi.org/10.1109/FDTC.2010.14

14. Dey, P., Rohit, R.S., Sarkar, S., Adhikari, A.: Differential fault analysis on Tiaoxin
and AEGIS family of ciphers. In: Mueller, P., Thampi, S., Alam, B.M., Ko R.,
Doss, R., Alcaraz, C.J. (eds.) Security in Computing and Communications - SSCC
2016, CCIS, vol. 625, pp. 74–86, Springer, Singapore (2016). https://doi.org/10.
1007/978-981-10-2738-3 7

15. Salam, I., Mahri, H.A., Simpson, L., Bartlett, H., Dawson, E., Wong, K.K.: Fault
attacks on Tiaoxin-346. In: Proceedings of the the Australasian Computer Science
Week - ASCW 2018, pp. 1–9. ACM Digital Library, New York (2018). https://doi.
org/10.1145/3167918.3167940

16. Bartlett, H., Dawson, E., Mahri, H.A., Salam, M.I., Simpson, L., Wong, K.K-H.:
Random fault attacks on a class of stream ciphers, security and communication
networks, vol. 2019, Article ID 1680263, 12 pages (2019). https://doi.org/10.1155/
2019/1680263

17. The Sage Developers. SageMath, The Sage Mathematics Software System (Version
9.0) (2020). https://www.sagemath.org

18. Buchberger, B.: Gröbner-bases: an algorithmic method in polynomial ideal the-
ory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel
Publishing Company, Dodrecht (1985)

https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/11889700_20
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1109/FDTC.2016.16
https://doi.org/10.1109/FDTC.2016.16
https://doi.org/10.1109/FDTC.2010.14
https://doi.org/10.1007/978-981-10-2738-3_7
https://doi.org/10.1007/978-981-10-2738-3_7
https://doi.org/10.1145/3167918.3167940
https://doi.org/10.1145/3167918.3167940
https://doi.org/10.1155/2019/1680263
https://doi.org/10.1155/2019/1680263
https://www.sagemath.org

Author Index

Aikawa, Yusuke 58
Azarderakhsh, Reza 125

Choi, Hojin 140
Courtois, Nicolas T. 157

Dubrova, Elena 257

Gouget, Aline 43

Han, Dong-Guk 99
Hara, Keisuke 3
Hiraga, Daiki 3
Hong, Deukjo 99
Hong, Seokhie 99

Jeon, Yongjin 99

Kawashima, Tomoki 58
Kim, Giyoon 99
Kim, Hangi 99
Kim, Hyunji 215
Kim, Jongsung 99
Kim, Seonggyeom 99
Kim, Soohyun 235
Kim, YoungBeom 140
Kitagawa, Fuyuki 16
Kwon, Yongbeen 215

Law, Kim Young 273
Lee, Youngseok 235
Lim, Sejin 215
Lin, Huang 87

Mun, Hyunsu 235

Narita, Tasuku 16

Patarin, Jacques 43

Quisquater, Jean-Jacques 157

Salam, Iftekhar 273
Seo, Hwajeong 99, 125, 215
Seo, Seog Chung 140
Sim, Bo-Yeon 99
Sim, Minjoo 215
Song, Chan 199
Sung, Jaechul 99

Takagi, Tsuyoshi 58
Takashima, Katsuyuki 58
Tanaka, Keisuke 3, 16
Tezuka, Masayuki 3
Toulemonde, Ambre 43

Vacek, Jan 182
Václavek, Jan 182

Wang, Bolin 199
Wang, Huanyu 257
Wu, Wenling 199

Xue, Luxin 273

Yau, Wei-Chuen 273
Yoshida, Yusuke 3, 16

Zhang, Lei 199

	Preface
	Organization
	Contents
	Security Models
	Security Definitions on Time-Lock Puzzles
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Time-Lock Puzzles

	3 New Definition for Time-Lock Puzzles
	3.1 Indistinguishability for Time-Lock Puzzles
	3.2 Semantic Security for Time-Lock Puzzles

	4 The Equivalence of Indistinguishability and Semantic Security
	5 Reconsideration on Computational Power
	References

	Secret Sharing with Statistical Privacy and Computational Relaxed Non-malleability
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notations
	2.2 Public Key Encryption
	2.3 Lossy Encryption
	2.4 Secret Sharing

	3 IND-CCA Secure Lossy Encryption in the Injective Mode
	3.1 Construction
	3.2 Key Indistinguishability
	3.3 Lossiness Under Lossy Key
	3.4 IND-CCA Security
	3.5 IND-CCA Secure Lossy Encryption is a Non-malleable Commitment

	4 Definition of Computational Non-malleability
	5 Computationally Non-malleable Secret Sharing
	5.1 Construction
	5.2 Statistical Privacy
	5.3 Computational Non-malleability

	6 Gap with Conventional Definition
	7 Conclusion
	References

	Cryptography in Quantum Computer Age
	(Quantum) Cryptanalysis of Misty Schemes
	1 Introduction
	2 Misty Constructions
	2.1 Misty L Scheme
	2.2 Misty R Scheme

	3 Overview of (Quantum) Cryptanalysis on Misty Schemes
	3.1 Misty L Schemes with Few Rounds
	3.2 Misty R Schemes with Few Rounds

	4 Quantum Cryptanalysis on Misty
	4.1 Simon's and Grover's Algorithms
	4.2 Quantum Distinguishing Attack on 4-Round Misty L Schemes
	4.3 Quantum Distinguishing Attack on 3-Round Misty R Schemes
	4.4 Key Recovery Attack Against Misty RKF Schemes

	5 Security Proof on Misty R Scheme with 3 Rounds
	5.1 H Coefficient Technique
	5.2 Application to Misty R Scheme with 3 Rounds

	6 Conclusion
	References

	An Efficient Authenticated Key Exchange from Random Self-reducibility on CSIDH
	1 Introduction
	1.1 Backgrounds
	1.2 Contributions
	1.3 Key Techniques

	2 Hard Homogeneous Spaces and CSIDH
	2.1 Hard Homogeneous Space
	2.2 CSIDH
	2.3 Key Exchanges Based on HHS

	3 Random Self-reducibility of Isogeny-Based Problems
	3.1 The Classical Diffie–Hellman-Related Problems
	3.2 SIDH-Related Problems
	3.3 CSIDH-Related Problems

	4 Protocol CSIDH
	4.1 AKE Security Model
	4.2 Construction
	4.3 Security
	4.4 Efficiency Analysis

	5 Conclusion
	A Authenticated Key Exchange
	A.1 CCGJJ Security Model
	A.2 Detailed Security Proof of CSIDH

	B CSIDH
	B.1 CSIDH as an Instantiation of HHS
	B.2 Detailed Description of CSIDH

	C Random Self-reducibility of the CSI-stDH Problem
	References

	Constructions and Designs
	A Sub-linear Lattice-Based Submatrix Commitment Scheme
	1 Introduction
	2 Preliminaries
	2.1 System Setting
	2.2 Module-SIS Assumption (MSIS)
	2.3 Definitions Related to the Submatrix Commitment Scheme

	3 Submatrix Commitment Scheme
	4 Performance Analysis
	5 Conclusion
	References

	PIPO: A Lightweight Block Cipher with Efficient Higher-Order Masking Software Implementations
	1 Introduction
	2 Specification of PIPO
	3 Design Rationale of PIPO
	3.1 S-Layer
	3.2 R-Layer

	4 Security Evaluation of PIPO
	5 Performance Evaluation of Higher-Order Masking Implementations of PIPO
	6 Performance Evaluation of Software and Hardware Implementations of PIPO
	6.1 Software Implementations
	6.2 Hardware Implementations

	7 Conclusion
	A Test Vectors
	B Proofs of Proposition and Theorems
	B.1 Proof of Proposition 1
	B.2 Proof of Theorem 1
	B.3 Proof of Theorem 2

	C 8-bit S-box of PIPO, S8
	C.1 Table of the S8
	C.2 Bitsliced Implementations of the S8 and Its Inverse

	References

	Efficient Implementations
	Curve448 on 32-Bit ARM Cortex-M4
	1 Introduction
	1.1 Contribution

	2 Related Works
	2.1 Target Curve: Curve448
	2.2 Target Microcontroller: 32-Bit ARM Cortex–M4
	2.3 Previous Implementations

	3 Optimization Techniques for Curve448 on 32-Bit ARM Cortex-M4
	3.1 Finite-Field Operations
	3.2 Group Operations
	3.3 Side-Channel Attack Protection

	4 Evaluation
	4.1 Trade-Off Between Performance and Security

	5 Hybrid Post-Quantum TLS
	6 Conclusion
	References

	Efficient Implementation of SHA-3 Hash Function on 8-Bit AVR-Based Sensor Nodes
	1 Introduction
	2 Background
	2.1 Overview of SHA-3
	2.2 Overview of 8-Bit AVR MCUs

	3 Analysis of Existing Implementations of Hash Functions on 8-Bit AVR MCUs
	4 Proposed SHA-3 Implementations in 8-Bit AVR MCUs
	4.1 Main Idea
	4.2 Proposed Implementation Technique on 8-Bit AVR MCUs

	5 Performance Analysis
	6 Concluding Remarks
	References

	Security Analysis
	Can a Differential Attack Work for an Arbitrarily Large Number of Rounds?
	1 Introduction
	2 Background: Markov Ciphers and Nonlinear Invariants
	2.1 Weak Keys and Weak Components - Long Term Key
	2.2 Nonlinear Cryptanalysis and Higher Order Nonlinear Cryptanalysis
	2.3 On Success Probability and Annihilation Degree in Previous Attacks

	3 Short Description of T-310
	4 Some Early Attacks on T-310 and Related Questions
	4.1 Linear and Non-Linear Invariants and Phase Transitions
	4.2 Phase Transitions or How Impossible Becomes Possible
	4.3 Invariant Hopping and Attack Lifting - Example

	5 Constructing An Anomalous Differential Invariant Attack
	5.1 Our Main Theorem - An Order Two Invariant Property
	5.2 A Concrete Example
	5.3 Proof of Thoerem5.1.1

	6 Computer Simulations and the Choice of the Boolean Function
	6.1 On Hiding Differentials

	7 The Reciprocal Question, Nash Postulate, and Future Research
	7.1 Some Conjectures - Differential Anomalies Vs. Invariants
	7.2 Related Research - Special Contrived Ciphers
	7.3 Weak Is Beautiful - The World of Periodic Attacks and Weak Keys

	8 Conclusion
	Appendix A On Boolean Function Vulnerability
	Appendix B The Key Recovery Question
	Appendix B.1 New Ways to Exploit Polynomial Invariants
	Appendix B.2 Multiple Simultaneous Differentials and Cube Attacks

	References

	Key Mismatch Attack on ThreeBears, Frodo and Round5
	1 Introduction
	1.1 Our Contribution
	1.2 Outline of the Paper

	2 Preliminaries
	2.1 Notations
	2.2 Key Mismatch Oracle
	2.3 Description of ThreeBears

	3 Key Mismatch Attack on ThreeBears
	3.1 High Level Description of the Attack
	3.2 Choice of Queries
	3.3 Error-Correcting Code
	3.4 Results

	4 Key Mismatch Attack on Frodo and Round5
	4.1 Frodo
	4.2 Round5

	5 Conclusion
	A Proof of Lemma1
	B Proof of m'[l] = 1
	References

	A New Non-random Property of 4.5-Round PRINCE
	1 Introduction
	2 Preliminaries
	2.1 The Block Cipher PRINCE
	2.2 Subspace Trails
	2.3 Subspaces of PRINCE

	3 New Structural Property of 4.5-Round PRINCE
	3.1 4.5-Round Subspace Trails for PRINCE
	3.2 New Property of 4.5-Round PRINCE

	4 A Detailed Proof of Lemma1 and Theorem5
	5 Conclusion
	References

	Artificial Intelligence and Cryptocurrency
	Generative Adversarial Networks-Based Pseudo-Random Number Generator for Embedded Processors
	1 Introduction
	1.1 Contribution

	2 Related Works
	2.1 Random Number Generator
	2.2 Random Number Generator Attack
	2.3 Deep Learning Framework
	2.4 Generative Adversarial Networks
	2.5 Previous GAN-Based PRNG Implementations

	3 Proposed Method
	3.1 Design of Generator Model
	3.2 Design of Predictor Model
	3.3 Design of GAN-Based PRNG
	3.4 GAN-Based PRNG in Embedded Processors

	4 Evaluation
	4.1 NIST Test Suite
	4.2 Comparison with Existing PRNGs
	4.3 Next Bit Test
	4.4 State Compromise Attack Resistance

	5 Conclusion
	References

	A RDBMS-Based Bitcoin Analysis Method
	1 Introduction
	2 Related Work
	3 RDMBS-Based Bitcoin Analysis
	3.1 Architecture
	3.2 Database Schema
	3.3 Bitcoin Analytics
	3.4 Cluster Analytics
	3.5 Graph Analytics

	4 Analysis Results with Queries
	4.1 Bitcoin Data
	4.2 Which Address Has the Largest Amount of Bitcoin?
	4.3 Clustering Bitcoin Addresses with Heuristics
	4.4 Identify Clusters with Address-Tag Information
	4.5 What Is the Amount and Count of Transactions to CryptoLocker Addresses?
	4.6 List the Hot Wallet Addresses of a Korean Exchange A
	4.7 Graph Analysis Algorithm Using Graph Tools
	4.8 Community Detection Algorithm on Korean Exchange B Cluster
	4.9 Performance

	5 Conclusion
	A Three-Layer Table and Index Creation Query
	B Example Queries (Code Block)
	References

	Fault and Side-Channel Attack
	Federated Learning in Side-Channel Analysis
	1 Introduction
	2 Background
	2.1 AES-128
	2.2 Deep Learning Side-Channel Attacks

	3 Training of Local Models
	3.1 Choice of Neural Network Type
	3.2 Training Process
	3.3 Choice of Neural Network Architecture

	4 Aggregation Methods
	4.1 Model-Level Aggregation
	4.2 Output-Level Aggregation
	4.3 Data-Level Aggregation

	5 Assumptions
	6 Experimental Setup
	6.1 Equipment for Power Analysis
	6.2 Power Trace Acquisition
	6.3 Estimation Metrics

	7 Evaluation Results
	7.1 Results of Model-Level Aggregation
	7.2 Results of Output-Level Aggregation
	7.3 Results of Data-Level Aggregation

	8 Conclusion
	References

	Differential Fault Based Key Recovery Attacks on TRIAD
	1 Introduction
	2 Fault Attack
	2.1 Fault Attack Models
	2.2 Fault Injection Techniques

	3 Description of TRIAD
	3.1 TRIAD-AE Component Functions
	3.2 Operation Phases of TRIAD-AE

	4 Fault Attacks on TRIAD
	4.1 Algebraic Normal Form (ANF) of the Keystream Function
	4.2 Bit-Flipping Fault Attack on TRIAD
	4.3 Random Fault Attack on TRIAD
	4.4 Recovering the Remaining Register Bits
	4.5 Experimental Analysis and Discussions

	5 Conclusion
	References

	Author Index

