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Abstract. During the last decade, machine learning algorithms have
massively integrated the defense arsenal made available to security pro-
fessionals, especially for intrusion detection. However, and despite the
progress made in this area, machine learning models have been found to
be vulnerable to slightly modified data samples called adversarial exam-
ples. Thereby, a small and well-computed perturbation may allow adver-
saries to evade intrusion detection systems. Numerous works have already
successfully applied adversarial examples to network intrusion detection
datasets. Yet little attention was given so far to the practicality of these
examples in the implementation of end-to-end network attacks. In this
paper, we study the applicability of network attacks based on adversar-
ial examples in real networks. We minutely analyze adversarial examples
generated with state-of-the-art algorithms to evaluate their consistency
based on several criteria. Our results show a large proportion of invalid
examples that are unlikely to lead to real attacks.

Keywords: Adversarial machine learning · Adversarial examples ·
Intrusion detection · Evasion attacks

1 Introduction

The importance of Artificial Intelligence (AI) and particularly Machine Learn-
ing (ML) in cybersecurity cannot be overstated. The synergistic integration of
the two disciplines is considered by most specialists as one of the most prof-
itable advances in cybersecurity [30]. Indeed, a description of the current threats
landscape is sufficient to understand the interest of cybersecurity professionals
from industry and academia in AI and ML. However, it is still relatively sim-
ple to deliberately mislead ML models, by means of what is commonly called
Adversarial Machine Learning (AdvML) attacks.
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AdvML research community has been very active in the last few years to illus-
trate the fragility of ML models with regards to Adversarial Examples (AEs) [19].
AEs are data samples to which a small and deliberate perturbation is added to
maliciously influence the output of an ML model towards erroneous predictions.
For instance, applied to intrusion detection models, an attacker could transform
an instance, that was originally classified as an attack, to be misleadingly clas-
sified as a benign entry. Thus allowing adversaries to evade intrusion detection
systems.

Contribution: This article tries to answer the question: Do we really need to
worry about AEs in intrusion detection? In order to do so, we investigate the
practicality of AEs generated by state-of-the-art approaches in the execution
of end-to-end cyberattacks on computer networks. We provide a comprehensive
literature review of research initiatives addressing the vulnerability of intrusion
detection systems to AEs. We also design and train an intrusion detection model
on the well-known NSL-KDD dataset [33] and generate AEs against it with the
most prominent methods. Furthermore, we evaluate their impact on the model
and their distance from the original examples. Through an in-depth analysis of
the network features of these examples, we identify several criteria that invalidate
these attacks. In practice, the outcomes of our work are three-fold:

– An automated environment to train an intrusion detection model and analyse
the impact and the consistency of AEs generated against it. The environment
is available through a public repository1 to stimulate further investigations.

– An implementation of Carlini and Wagner [6] L0-attack that is made available
to the community through the well-established open-source library Adversar-
ial Robustness Toolbox [23].

– A description of validity criteria that can be used to discard unpractical AEs
(cf. Sect. 6).

Paper Organization: Section 2 defines some basic background about artifi-
cial neural networks, adversarial machine learning, and the algorithms we use
to generate AEs. In Sect. 3 we propose a literature review of research initia-
tives applying AdvML to intrusion detection. Section 4 details the experimental
methodology we followed. In Sect. 5 we present and discuss the results of our
experiments and analyze the generated AEs. Section 6 introduces the list of
validity criteria for practical AEs. Finally, concluding remarks and future works
are detailed in Sect. 7.

2 Background

In this section, we present some background knowledge on artificial neural net-
works, adversarial machine learning and adversarial examples.

1 https://github.com/mamerzouk/adversarial analysis.

https://github.com/mamerzouk/adversarial_analysis
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2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning model represented
as a function f(·) that takes a data sample x ∈ Rn as an input and outputs a
prediction l. ANNs are made of interconnected layers of neurons (perceptrons):
small units that compute the sum of their inputs, weighted by the model parame-
ters θ, and pass it through a non-linear activation function to produce an output
(activation); this output is then propagated to be the input the neurons of the
next layer.

The parameters of a neural network are randomly initialized and optimized
through training. The loss function Jθ(x, l) estimates the error of the model by
computing the difference between its output and the correct label. The gradient
of the loss function with respect to the parameters ∇Jθ(x, l) is then used by
algorithms like Stochastic Gradient Descent or Adam to optimize the parameters
in order to minimize the loss.

2.2 Adversarial Machine Learning

Adversarial Machine Learning (AdvML) is a recent research discipline that aims
to evaluate and improve the robustness of machine learning models against mali-
cious manipulations. The extensive literature in this field reports a wide variety
of attacks that fall into four categories [5]:

– Poisoning attacks are achieved before the training phase by introducing per-
turbations among the training data to generate a corrupted model [4].

– Evasion attacks happen after the model is trained. They are used to manip-
ulate the input data of a model to provoke erroneous predictions [3].

– Extraction attacks try to steal the parameters of a remote model in order to
reproduce its behavior or rob confidential information [13].

– Inversion attacks abuse a model to extort sensitive information learned from
the training data [9].

In our work, we focus on evasion attacks; there are two main types of them:
Untargeted attacks that aim to cause the model to make erroneous predictions
regardless of the output result and Targeted attacks that are much complex as
they intend to orient the erroneous outcome towards a specific result. The two
approaches are equivalent in binary classification (between two classes).

2.3 Adversarial Examples

Adversarial Examples (AEs) are inputs deliberately crafted to fool machine
learning models. An AE x′ is generally based on a clean example x to which
a well-computed and minimal perturbation η is added. This perturbation must
be sufficiently important to misclassify the sample in the false class l′ instead
of the correct class l, while limiting changes to maintain malicious functionality
and minimize effort [34]. These changes are communally measured with distance
metrics like Lp norms. We described below the three most used Lp norms.



70 M. A. Merzouk et al.

– L0 measures the number of perturbed features i such as xi �= x′
i.

– L2 measures the Euclidean distance between two samples
√∑n

i=1 (xi − x′
i)

2.
– L∞ measures the maximum perturbation applied to any data feature.

The problem of finding AEs with minimal perturbation regarding an Lp

norm is formulated in Eq. 1. In targeted attacks, l′ is known in advance, while
in untargeted attacks, l′ can be any class other than the correct class l. We also
assume that the features must stay in a limited interval we refer to as I.

minimize ‖x − x′‖p such that f (x′) = l′, f (x) �= l′, x′ ∈ In (1)

This problem being too complex to solve, Szegedy et al. [32] reformulated it
in Eq. 2, where c is a positive constant minimized by line-search. They then used
the box-constrained L-BFGS optimization method to solve it.

minimize c · ‖x − x′‖2 + Jθ(x′, l′) such that x′ ∈ In (2)

2.4 Adversarial Examples Generation Methods

We present some of the ground-breaking methods for the generation of AEs.
These methods will later be used in our experiments. Readers interested in a
detailed survey on AEs can refer to Yuan et al. [38].

Fast Gradient Sign Method (FGSM) was introduced by Goodfellow et
al. [11] to allow the generation of AEs much faster than L-BFGS. It uses the
concept of backpropagation but updates the inputs instead of the parameters.
Thus, the sign of the gradient of the loss function with respect to the inputs is
used to guide the perturbation ε (positive or negative), as shown in Eq. 3.

x′ = x + ε · sign(∇Jθ(x, l)) (3)

Basic Iterative Method (BIM) was introduced by Kurakin et al. [16]
and consists of applying FGSM in many iterations with a small perturbation
magnitude. The advantage of BIM is that it adapts the perturbation to each
iteration, the more iterations it does, the finer the perturbation is. In addition,
BIM applies a clipping method, shown in Eq. 4, for every iteration to avoid
getting feature values out of the interval I (considered [0, 1] in the equation).

Clipx,ξ {x′} = min {1, x + ξ,max {0, x − ε, x′}} (4)

DeepFool was introduced by Moosavi-Dezfooli et al. [21]. This method looks
for the closest distance from a normal example to the classification boundary it
must cross to be misclassified. This distance is the perturbation applied to the
example. Since it only looks for the closest distance to a different class, no matter
which class, this attack is untargeted. This method originally optimizes the L2

norm since it uses the Euclidean distance. The author overcame the obstacle
of non-linearity in high dimensionality by using an iterative attack with linear
approximation. In the case of binary differentiable classifiers, the perturbation
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is approximated attractively by considering f linear around xi. The minimal
perturbation is then computed by Eq. 5. Despite its efficiency, DeepFool provides
only a coarse approximation of the optimal perturbation vectors.

argminηi
‖ηi‖2 such that f(xi) + ∇f(xi)T · ηi = 0 (5)

Jacobian-based Saliency Map Attack (JSMA) was introduced by
Papernot et al. [24]. Unlike previous methods, this method tries to minimize
the number of perturbed features in order to create AEs with minimal L0 norm.
It starts with an empty set of features and chooses a new feature to perturb
in each iteration. It iterates and adds perturbation until the example becomes
adversarial or until it reaches another stop criterion. JSMA starts by computing
the Jacobian matrix shown in Eq. 6. It is the matrix of the derivatives of each
output logit with respect to each feature.

JF (x) =
∂F (x)

∂x
=

[
∂Fj(x)

∂xi

]

i×j

(6)

The Jacobian matrix estimates the contribution of each feature to each class.
In order to prioritize the most salient attributes, a saliency map is built on the
basis of the Jacobian matrix. The attribute with the highest saliency value for
the targeted class is chosen to be perturbed in the current iteration.

Carlini&Wagner’s attack (C&W) was introduced in Carlini and Wagner
[6] as an efficient method to defeat existing defense techniques. The authors first
reformulated Eq. 1 as an appropriate optimization instance.

minimize ‖η‖p + c · g(x + η) such that x + η ∈ In (7)

In Eq. 7, g is an objective function such that f(x + η) = l′ if and only if g(x +
η) ≤ 0. Thus, the two constraints become a single term to minimize. A positive
constant c is chosen by binary search to scale the minimization problem. In [6]
three methods are introduced for the optimization of each of the L0, L2 and L∞
distance norms:

– L2-attack optimizes Eq. 7 with p = 2 using an optimization function to find
AEs. It is the main method of the Carlini&Wagner attack, the other methods
are based on this one.

– L∞-attacks is an iterative attack, because the L∞ distance norm is not fully
differentiable, and thus optimization algorithms are not efficient. The first
term of Eq. 7 is replaced by a new penalty that estimates the L∞ norm.

– L0-attacks is also iterative since the L0 norm is not differentiable. In each
iteration it applies the L2-attack, it identifies the feature that contributes the
least to the AEs using the gradient of the objective function and it fixes its
value. The algorithm stops when the remaining subset of features is insuffi-
cient to construct AEs.
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3 Literature Review

While often chiefly presented as a challenge for AI, AdvML has rapidly attracted
the attention of the security research community. This is particularly evident
when we analyze the extensive literature devoted to attacking techniques used
to evade ML-based intrusion detection and malware detection models [19]. In
this section, we review the research initiatives applying pioneer approaches to
network intrusion detection.

Rigaki and Elragal [28] first explored the applicability of AEs on deep learn-
ing based intrusion detection models and their transferability to other machine
learning models. Their experiments were performed using FGSM [11] and JSMA
[24]. Wang [35] extended their work by testing DeepFool [21] and the three C&W
attacks [6]. The author also discussed the contribution of each feature to the
AEs and gave some guidelines on how these features could be manipulated by
an adversary. Warzyński and Ko�laczek [36] has also used FGSM [11] and suc-
cessfully misclassified all attack samples as normal traffic. However, the attack
parameters and the distance norms have not been reported.

Unlike previous works, Yang et al. [37] assumed a black-box attack scenario
where the adversary only knows the output of the model (label or confidence).
Three different black-box algorithms were evaluated: Transferring AEs generated
on a substitute model using C&W [6], Zeroth Order Optimization (ZOO) [7] and
Generative Adversarial Nets (GANs) [10]. Lin et al. [17] introduced IDSGAN,
a framework based on GANs to generate AEs that can deceive a black-box
intrusion detection system.

It is worth noticing that the experiments of all the previously mentioned
works used a Multi-Layer Perceptron (MLP) neural network trained on the NSL-
KDD dataset [33].

Martin et al. [18] applied the main attack methods to six different classifiers.
They used NSL-KDD [33] and CICIDS2017 [31], a more recent dataset. They
showed the robustness of different models before and after re-training them with
AEs. Peng et al. [26] proposed an improved boundary-based method to craft
AEs for DoS attacks, they also used CICIDS2017 [31].

Ibitoye et al. [12] compared the performance of Self-normalizing Neural Net-
works (SNNs) [14] with traditional Feed-forward Neural Networks (FNNs) for
intrusion detection on the BoT-IoT dataset [15]. Their results show that FNNs
outperform SNNs based on multiple performance metrics, while SNNs demon-
strate better resilience against AEs. AbouKhamis et al. [1] used a min-max (or
saddle-point) approach to train a model against AEs generated using variants of
FGSM on the NSW-NB 15 dataset [22]. Principal Component Analysis (PCA)
was applied to the dataset to evaluate its impact on the robustness of the model.
Clements et al. [8] were able to efficiently fool an intrusion detection model by
modifying 1.38 features on average. Alhajjar et al. [2] explored the use of evo-
lutionary computation and GANs to generate AEs against network intrusion
detection models. Piplai et al. [27] showed that even intrusion detection models
trained with AEs can still be fooled.
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Moisejevs [20] proposed a survey on adversarial attacks and defenses in intru-
sion detection, and Martins et al. [19] provided a systematic review on adversarial
machine learning applied to intrusion and malware scenarios.

Despite the large number of works addressing adversarial attacks against
intrusion detection, little attention was paid to the consistency of the generated
AEs. In fact, even if these attacks can fool detection models, they do not rep-
resent a real threat if they cannot be implemented. The work reported in this
article tries to provide a deeper analysis of the AEs to evaluate whether they
can practically lead to the implementation of end-to-end network attacks. As far
as we know, no other research initiative presents a such deep analysis to derive
comprehensive validity criteria for adversarial attacks (cf. Sect. 6).

4 Experimentation Approach and Settings

In order to evaluate the impact of different adversarial attacks and the con-
sistency of the generated AEs in intrusion detection, we set up a methodical
experimentation approach. In this section, we describe our approach, starting
from the choice of the dataset and the pre-processing techniques applied to it.
Then we present the target ML model, discuss its design and its training. We
finally introduce the AEs generation methods and their parameters.

4.1 Dataset and Pre-processing

With all the attention paid to intrusion detection in recent years, several interest-
ing datasets have emerged. Ring et al. [29] presented a detailed survey of network
intrusion detection datasets, they evaluated 34 datasets based on 15 properties
they identified. In order to allow proper comparison with related works, all our
experiments are performed using the NSL-KDD dataset [33]. Indeed, despite
some drawbacks like its age, NSL-KDD remains the most widely used dataset
in the intrusion detection literature.

In terms of pre-processing, we use One-Hot-Encoding to transform categor-
ical features into a vector of binary features. For instance, in NSL-KDD, the
Protocol-type feature can take three values: TCP, UDP and ICMP. When apply-
ing One-Hot-Encoding, this feature is represented by three different binary fea-
tures and its values can be : (1, 0, 0), (0, 1, 0) or (0, 0, 1). Only one binary feature
can hold the value 1 since the instance belongs to a single category. One-Hot-
Encoding pre-processing is paramount, particularly for neural network models,
as they require numerical features. By applying it, the features count of our
dataset rose from 41 to 120.

In addition, we removed the 20th feature Num-out-bound-cmds that only
held the value 0. Min-Max normalization was also used to scale the values in
the range [0, 1] to prevent features with large value ranges from influencing the
classification.

Since the main concern of our study is evasion attacks against intrusion
detection (classifying attacks as normal traffic), for our experiments, we only
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consider the attack samples in the test set of NSL-KDD. Also, the dataset has
been processed in order to regroup all the attack types into a single label. The
classification will only be between two classes: normal and malicious (binary clas-
sification problem), which makes the targeted and untargeted attacks equivalent
in our scenario.

4.2 Target Model Design and Training

Similarly to most of the previous works, the target model used in our experi-
ments is a Multi-Layer Perceptron (MLP). It has 2 hidden layers of 256 neurons
and a Softmax output layer with 2 neurons (Since we have a binary classifica-
tion problem). The neurons of the hidden layers use the Rectified Linear Unit
activation function (ReLU). The loss is computed using the Cross-Entropy Loss
function. The model is trained for 1000 epochs using the Adam optimizer to
adjust the parameters with a learning rate of 0.001. The model is made as sim-
ple and as close as possible to the models used in similar work in order to allow
realistic comparisons. Thus, no regularization has been applied to avoid intro-
ducing any bias. Neural networks in our experiments are implemented using the
open-source machine learning library Pytorch [25] on the programming platform
Google Colaboratory.

4.3 Adversarial Attacks Models

In our experiments, the attacks are implemented using the open-source library
Adversarial Robustness Toolbox (ART) [23]. The L0-attack of Carlini&Wagner
was not available, so we undertook its implementation to enrich ART. The
parameters used for each attack are described below. Default parameters are
preferred and no clipping was applied, since only few studies specify the param-
eters used in their experiments. The complete implementation of our experiments
can be found on: https://github.com/mamerzouk/adversarial analysis.

Fast Gradient Sign Method. For our experiments, we apply FGSM as defined
in [11]. The gradient of the loss, with respect to the original class, is added to the
examples, which makes it untargeted. The perturbation is applied in one single
step (no iterations). The maximum perturbation magnitude ε is set to 0.1 and
the batch size is set to 128.

Basic Iterative Method. For our experiments, we apply BIM with the same
parameters as FGSM. We do not specify a target, the attack is thus untargeted.
We set the number of iterations to 100 and the magnitude of the perturbation for
each iteration to 0.001. This way, the maximum magnitude of the perturbation
cannot exceed 0.1. We also set the batch size to 128.

DeepFool: In our experiment, we use DeepFool with a magnitude of 10−6 over
100 iterations and a batch size of 128. DeepFool is untargeted by definition and
optimizes the L2 norm.

https://github.com/mamerzouk/adversarial_analysis
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Carlini&Wagner: The C&W attacks were applied in an untargeted way and
with no minimum confidence imposed. The learning rate for the optimization
algorithm was set to 0.01, and the batch size was set to 128. The rest of the
parameters are kept in the ART default values. Since ART did not contain an
implementation of Carlini&Wagner L0-attack, we implemented this attack and
made the code available in the experiment notebook.

Jacobian-Based Saliency Map Attack: We allow JSMA to perturb 100%
of the features. We apply a perturbation of 0.1 in each iteration. The batch
size is set to 128. Since JSMA is a targeted attack, if no target is specified, the
implementation of ART randomly chooses a target from the false classes.

5 Evaluation of the Perturbation Potential

In this section, we present the results of our experiments and evaluate the gen-
erated AEs. Table 1 shows the accuracy of the model on the AEs generated by
each method, along with the mean and maximum of each distance metric.

Table 1. Detection rate and distance metrics of different methods.

Methods Detection L0 norm L2 norm L∞ norm

Mean Max Mean Max Mean Max

Clean 75.1188% 0 0 0 0 0 0

FGSM 24.8811% 121 121 1.2099 1.2099 0.1 0.1

BIM 24.8811% 120.9543 121 0.9936 1.1578 0.1 0.1

DeepFool 25.1305% 120.9979 121 0.0177 0.1792 0.0469 0.1772

C&W L2 22.7382% 13.8185 22 1.1977 7.2848 0.5078 1.4739

C&W L∞ 28.1306% 13.0478 43 0.5832 3.0571 0.2138 0.3

C&W L0 24.1175% 3.7126 21 2.5272 22.1609 0.9099 2.4803

JSMA 24.8811% 2.0804 4 0.075 0.5 0.1729 0.5

We observe in Table 1 that before perturbing the data, the trained model
achieved 75.11% detection rate on attack samples. These results are consistent
with state-of-the-art performance on NSL-KDD. More details on the perfor-
mance of the model can be found in the publicly available notebook.

Table 1 also shows that all the attacks had an impact on the detection rate
of the model. Almost all of them considerably decreased the accuracy to around
24%, which represents a 68% decrease.

The similarity in the degradation caused by different methods allows an unbi-
ased evaluation since the differences in the distance metrics are highlighted.
These metrics demonstrate the various behavior of each method concerning the
perturbation. Thus, we can understand how the attacks perturb the data differ-
ently to achieve, approximately, the same result. In the following subsections, we
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Table 2. Samples of feature values from AEs of different methods.

Methods IRC Telnet Logged-in Same-srv-rate

FGSM −0.1 0.1 −0.1 1.1

BIM 0.1 −0.1 −0.1 1.1

DeepFool −0.0172 −0.0051 −0.0034 −0.0007

C&W L2 0 1.4425 1.8378 2.3132

C&W L∞ 1.28 0 0.7274 1.3

C&W L0 0 1.8155 0.8127 2.0155

JSMA 0.5 1 0 0

analyze the results of each method, and we examine the consistency of generated
adversarial examples.

5.1 Fast Gradient Sign Method

We observe in Table 1 that FGSM has an important impact on the detection
rate of the model, it decreases the detection rate to 24.88%. Among all the
experimented algorithms, FGSM was the fastest. It has the lowest maximum L∞
distance, which is the same as the mean L∞ distance. This absence of variance is
due to the fact that FGSM perturbs with the same amount all the features of all
the examples. The objective is to spread the perturbation on the whole feature
space with minimal perturbation magnitude (slightly perturb all the features
instead of heavily perturb few features).

However, this method leads to indiscriminate perturbation of all the features.
The mean and maximum of the L0 norm, which refers to the number of perturbed
features, is equal to the total number of features. This is consistent with the
results of the Fig. 1, a heat map of the percentage of AEs perturbing each feature,
that shows that all the features are perturbed in 100% of the AEs generated by
FGSM.

This property of FGSM might be problematic for binary features: Since the
perturbation applied is always equal to 0.1, it cannot change the value of a binary
feature from one state to the other. For example, Table 2 shows an adversarial
example generated by FGSM that puts the value of the binary feature Telnet to
0.1. This value invalidates the data sample, making it not practically possible to
implement. This observation is valid for 100% of the AEs generated by FGSM,
as shown in the Table 3.

Categorical features are also impacted by FGSM: Using One-Hot-Encoding
transformed every categorical feature into multiple binary features. Only one
of the binary features generated from the same categorical feature can hold
the value 1, all the others must hold the value 0. However, FGSM perturbs
all these binary features, which consequently activates multiple categories at
the same time. We can see in Table 2 that the features IRC and Telnet which
are derived from the category Service are both perturbed by FGSM. Since an
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instance cannot belong to multiple categories, this perturbation invalidates the
data sample. Table 3 shows that this observation is also valid for all the AEs
generated by FGSM.

FGSM perturbs all the data samples following the sign of the gradient. This
perturbation does not consider the definition domain of the feature. Thus, with-
out a clipping function, the perturbation might put the value of a feature below
its minimum or above its maximum. The example shown in Table 2 puts the
value of Same-srv-rate, which is the proportion of connection to the same
service among the connection aggregated in count, to 1.1. This value is not pos-
sible since the maximum proportion is 1. We can also see that Logged-in has a
negative value −0.1. This value has no interpretation in a real network, so this
adversarial example cannot be implemented. As well as all the other examples
generated by FGSM according to Table 3.

FGSM was designed to generate AEs very quickly. It uses the simple idea of
propagating the gradient of the loss all the way back to the inputs. This method
is useful for adversarial training [11] since it allows the fast generation of AEs to
re-train the model. However, it spreads the perturbation on all the features to
minimise the L∞ norm. This might be useful for unstructured data like images
where features (pixels) do not hold a semantic value. But in the case of heavily
structured data like network records, FGSM generates inconsistent values and
breaks the semantic links between the features.

5.2 Basic Iterative Method (BIM)

As shown in Table 1, BIM has the same impact as FGSM with slightly bet-
ter mean distance norms. The maximums are the same, except the L2 norm
which has a smaller maximum for BIM. The difference between the two can be
explained by the finer optimization method of BIM that applies small FGSM
steps in each iteration. This leads to smaller norm distances.

However, BIM perturbs the features the same way FGSM does. It also inherits
all its disadvantages. Table 2 shows that AEs generated by BIM share the same
properties as FGSM. Without clipping, the values of the features get out of their
definition domain, as Telnet, it puts non-binary values on binary features like
Logged-in and it activates multiple categories of Service. These criteria are
present in 100% of the AEs generated by BIM, as shown in Table 3, and are
sufficient to invalidate them.

5.3 DeepFool

Table 1 shows that DeepFool performs almost as well as the other methods.
Since the objective of DeepFool is to optimize the L2 norm, it has the smallest
mean Euclidean distance. It is also noteworthy that DeepFool shows the best
mean L∞ norm and a slightly larger maximum L∞ than FGSM and BIM.

Just like FGSM or BIM, the mean L0 norm is almost equal to the total
number of features. This demonstrates that DeepFool perturbs all the features
of practically all instances. Figure 1 supports the results of the L0 norm. It shows
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Table 3. Proportion of invalidation criteria in AEs of different methods.

Methods Out-of-range values Non-binary values Multiple categories

Clean 0% 0% 0%

FGSM 100% 100% 100%

BIM 100% 100% 100%

DeepFool 100% 100% 100%

C&W L2 94.7089% 99.9688% 0%

C&W L∞ 80.5345% 90.0802% 0.8493%

C&W L0 63.5393% 54.0559% 0.1636%

JSMA 0.0155% 67.2952% 67.2796%

indeed that the vast majority of features are perturbed on more than 99% of
instances.

Despite its good results, DeepFool stays a method that only focuses on the
Euclidean distance. It does not optimize the number of perturbed features;
rather, it perturbs a large number of features in practically all the instances
to minimize the L2 norm.

Table 2 shows examples where DeepFool generates non-binary values on
binary features like Logged-in. It activates multiple categories of Service as
IRC and Telnet. It also generates out-of-range values, as for Same-server-rate,
which is a proportion and cannot be negative. These properties are found in 100%
of generated AEs, according to Table 3. Besides, the simultaneous perturbation
of all the features may damage the semantic links between them. In the case of
network data, this leads to inconsistent samples that cannot be implemented.

5.4 Carlini and Wagner

L2-Attack: As shown in Table 1, Carlini&Wagner L2-attack reduces the detec-
tion rate of the model to 22.73%, which is the lowest detection rate recorded.
Though it is supposed to optimize the L2 norm, it has one of the highest mean
and maximum Euclidean distance. The L∞ norm is also high compared to pre-
vious methods. However, the L2-attack of Carlini&Wagner does not perturb all
the features, the L0 norm has a mean of 13.81 features and a maximum of 22
features.

From the samples shown in Table 2, we can see how the L2-attack introduces
non-binary values like 1.8378 for Logged-in. Because of the large magnitude
of the perturbation, some features are pushed out of their definition range. For
example Same-server-rate is pushed to 2.3132 when it should not exceed 1.
However, unlike other methods, Carlini&Wagner does not activate multiple cat-
egories of the same categorical feature on any data sample. Despite this inter-
esting result, the two first properties make the AEs generated by the L2-attack
not applicable to real-world network traffic.
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Fig. 1. Heat map of the proportion of AEs perturbing each feature

L∞-Attack: Our results show that Carlini&Wagner L∞-attack, with the used
parameters, was the less efficient method on NSL-KDD. It decreased the accu-
racy to 28.13%. Even though this method is supposed to optimize the L∞ norm,
its mean and maximum perturbation values are larger than FGSM, BIM or
DeepFool. However, the AEs generated by this method showed relatively small
L0 norm values. Only 12.71 features were perturbed in average with a maximum
of 43 perturbed features.

Despite all this, the L∞-Attack of Carlini&Wagner presents insufficiency that
prevents its use in network data. First, its lower impact on the accuracy reduces
the number of feasible adversarial attacks. Even if the perturbation is not spread
on a large number of features, Table 2 shows that this attack perturbs some
binary features with a non-binary value, it is the case for Logged-in. It also
puts out-of-range values on features like Same-server-rate. But it does not
activate multiple categories on more then 0.8% of its AEs.

L0-Attack: As shown in Table 1, the L0-attack of Carlini&Wagner had strong
impact on the detection rate by only perturbing 3.7 features on average and a
maximum of 21 features. However, these results are explained by the L2 and L∞
norms that are excessively large, by far the highest among all the methods. The
Euclidean distance reached 22.16, and the maximum perturbation was up to 2.48
and 0.9 on average. These metrics are extremely high and make the L0-attack
of Carlini&Wagner unsuited for network data.

We can see in Table 2 that even if it only perturbs a few features, there is still
inconsistency in the data. Binary features like Logged-in hold non-binary values.
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Also, some features reach very large values, like Telnet that was set to 1.81 when
its maximum should be 1. However, our results showed that Carlini&Wagner L0-
attack, just like other Carlini&Wagner attacks, almost never perturbs multiple
categories of the same categorical feature. It focuses its perturbation on the
actual category of the instance. This result holds true for the three categorical
features Protocol-type, Service and Flag.

5.5 Jacobian-Based Saliency Map Attack

The Jacobian-based Saliency Map Attacks decreased the accuracy to 24.88%,
which is the same score as FGSM and BIM. This finding was observed in several
executions.

JSMA showed the best L0, it only perturbed 2.08 features on average and a
maximum of 4 features. The average Euclidean distance was around 0.07, and
the maximum was 0.5. These are the second-best L2 norms after DeepFool. The
mean L∞ norm was better than all Carlini&Wagner attacks but the maximum
L∞ reached 0.5, the third-highest after C&W L0-attack and C&W L2-attack.

JSMA certainly shows the most interesting results for a network data appli-
cation. Unfortunately, Table 2 shows that even AEs generated by JSMA have
inconsistency problems. Binary features like Telnet are perturbed with non-
binary values. Multiple categories of the same categorical feature are activated,
is the case for IRC and Telnet. These two criteria were found in, respectively,
67.29% and 67.27% of the AEs generated by JSMA. Thus, many examples may
be disqualified. However, only 0.01% of the examples have out-of-range values,
it can be explained by Fig. 1 that shows that JSMA focuses its perturbation on
features like Num-root or Src-bytes and Dst-bytes that can reach high values.

6 Criteria for Valid End-To-End Adversarial Attacks

The results presented previously demonstrate the high perturbation potential of
adversarial examples on ML-based intrusion detection systems. However, when
we perform an in-depth analysis of the data samples generated by the different
methods, one can legitimately question the practicality of these samples when
it comes to performing real end-to-end cyberattacks. Our results showed that
a large portion of the perturbation that was applied to network traffic features
invalidate the original network session, making the derived attack hard, if not
impossible, to execute in real environments. We summarize below the main inval-
idation criteria we have identified in our research. This is a non-exhaustive list
that can be extended with other criteria.

Non-binary Values: Binary features indicate the presence or the absence of
a property in the data, they can only hold the values 0 or 1. Since these fea-
tures are often important to identify intrusion, AEs generation methods focus
on perturbing them. Thus introducing a value between 0 and 1. These values
are inconsistent for binary features and cannot be implemented in real network
traffic. We have seen examples where the binary feature Logged-in was set to
0.72.
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Multiple Categories Membership: Categorical features have been converted
into binary features to make it possible to use them as inputs for neural networks.
One-Hot-Encoding was used to create a binary feature for each instance of the
categorical feature. Thus, only one instance can hold the value 1, while all the
others must be set to 0. Generation methods often perturb these features by
activating multiple categories. Which, even if it is recognized as an attack by
the neural network, cannot be implemented in real network traffic. We gave as
an example the feature Service which cannot be IRC and Telnet at the same
time.

Out-of-Range Values: Every attribute of the network traffic has a limited
range of values it can take. But since generation methods apply the perturbation
until they reach the adversarial boundary, some features might be pushed out
of their definition interval, which generates inconsistent values that cannot be

Fig. 2. Heat map of the correlation matrix of NSL-KDD numerical features. (Color
figure online)
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implemented. As we saw in Table 2, Same-server-rate was set to 2.31 by C&W
L2-attack when it is a proportion that should not exceed 1. In Table 3, we
consider the minimum and maximum values found in the testing set to compute
the proportion of AEs containing out-of-range values.

Semantic Links: In contrast to unstructured data like images, network data
hold semantic links between features. These links create dependencies that must
be kept to ensure the consistency of the traffic. The generation methods do
not consider these semantic links and apply an arbitrary perturbation that often
breaks them and generates incoherent samples. Unlike other invalidation criteria
that are present in Table 3, semantic links are hard to identify. This is due to the
fact that there are no explicit rules to express these links. To better illustrate
our findings, we computed the heat map of the correlation matrix between the
numerical attributes of NSL-KDD illustrated in Fig. 2. The intensity of shades of
blue (resp. red) indicates the level of positive (resp. negative) pairwise correlation
between the attributes. For example, we can notice a strong positive correlation
between Dst-host-rerror-rate and Dst-host-srv-rerror-rate, or between
Srv-serror-rate and Rerror-rate.

7 Conclusion and Future Work

In this paper, we have discussed the applicability of adversarial examples in
network intrusion detection. Through a literature review, we have noticed that
little consideration was given to the validity of AEs with respect to network
traffic structure and constraints.

We have filled that gap by analyzing AEs generated by state-of-the-art algo-
rithms and identifying key criteria that invalidate them. These criteria include
values outpacing the definition domain, assignment of non-binary values to
binary features, belonging to multiple contradictory categories, and breaking
semantic links between features.

Though the described criteria are sufficient to invalidate AEs, they do not
guarantee their validity. Thus, future work should focus on a formal descrip-
tion of network constraints that must be fulfilled in order to validate an attack
example. More recent datasets should be used in order to study the perturbation
potential of adversarial attacks on different data types. Finally, the vulnerability
of intrusion detection models should be proven on real networks with end-to-end
attack scenarios.
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