®

Check for
updates

A Deeper Analysis of Adversarial
Examples in Intrusion Detection

Mohamed Amine Merzouk™2(®) Frédéric Cuppens?®, Nora Boulahia-Cuppens?®,
and Reda Yaich*

! Ecole Nationale Supérieure d’Informatique, Algiers, Algeria
fm_merzouk@esi.dz

2 IMT Atlantique, Rennes, France

mohamed-amine.merzouk@imt-atlantique.fr

3 Polytechnique Montréal, Montréal, Canada

{frederic.cuppens,nora.boulahia-cuppens}@polymtl.ca
4 IRT SystemX, Plaiseau, France
reda.yaich@irt-systemx.fr

Abstract. During the last decade, machine learning algorithms have
massively integrated the defense arsenal made available to security pro-
fessionals, especially for intrusion detection. However, and despite the
progress made in this area, machine learning models have been found to
be vulnerable to slightly modified data samples called adversarial exam-
ples. Thereby, a small and well-computed perturbation may allow adver-
saries to evade intrusion detection systems. Numerous works have already
successfully applied adversarial examples to network intrusion detection
datasets. Yet little attention was given so far to the practicality of these
examples in the implementation of end-to-end network attacks. In this
paper, we study the applicability of network attacks based on adversar-
ial examples in real networks. We minutely analyze adversarial examples
generated with state-of-the-art algorithms to evaluate their consistency
based on several criteria. Our results show a large proportion of invalid
examples that are unlikely to lead to real attacks.

Keywords: Adversarial machine learning - Adversarial examples -
Intrusion detection * Evasion attacks

1 Introduction

The importance of Artificial Intelligence (AI) and particularly Machine Learn-
ing (ML) in cybersecurity cannot be overstated. The synergistic integration of
the two disciplines is considered by most specialists as one of the most prof-
itable advances in cybersecurity [30]. Indeed, a description of the current threats
landscape is sufficient to understand the interest of cybersecurity professionals
from industry and academia in Al and ML. However, it is still relatively sim-
ple to deliberately mislead ML models, by means of what is commonly called
Adversarial Machine Learning (AdvML) attacks.

© Springer Nature Switzerland AG 2021
J. Garcia-Alfaro et al. (Eds.): CRiSIS 2020, LNCS 12528, pp. 67-84, 2021.
https://doi.org/10.1007/978-3-030-68887-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-68887-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-68887-5_4

68 M. A. Merzouk et al.

AdvML research community has been very active in the last few years to illus-
trate the fragility of ML models with regards to Adversarial Examples (AEs) [19].
AEs are data samples to which a small and deliberate perturbation is added to
maliciously influence the output of an ML model towards erroneous predictions.
For instance, applied to intrusion detection models, an attacker could transform
an instance, that was originally classified as an attack, to be misleadingly clas-
sified as a benign entry. Thus allowing adversaries to evade intrusion detection
systems.

Contribution: This article tries to answer the question: Do we really need to
worry about AEs in intrusion detection? In order to do so, we investigate the
practicality of AEs generated by state-of-the-art approaches in the execution
of end-to-end cyberattacks on computer networks. We provide a comprehensive
literature review of research initiatives addressing the vulnerability of intrusion
detection systems to AEs. We also design and train an intrusion detection model
on the well-known NSL-KDD dataset [33] and generate AEs against it with the
most prominent methods. Furthermore, we evaluate their impact on the model
and their distance from the original examples. Through an in-depth analysis of
the network features of these examples, we identify several criteria that invalidate
these attacks. In practice, the outcomes of our work are three-fold:

— An automated environment to train an intrusion detection model and analyse
the impact and the consistency of AEs generated against it. The environment
is available through a public repository! to stimulate further investigations.

— An implementation of Carlini and Wagner [6] Lg-attack that is made available
to the community through the well-established open-source library Adversar-
ial Robustness Toolbox [23].

— A description of validity criteria that can be used to discard unpractical AEs
(cf. Sect.6).

Paper Organization: Section 2 defines some basic background about artifi-
cial neural networks, adversarial machine learning, and the algorithms we use
to generate AFEs. In Sect.3 we propose a literature review of research initia-
tives applying AdvML to intrusion detection. Section 4 details the experimental
methodology we followed. In Sect.5 we present and discuss the results of our
experiments and analyze the generated AEs. Section 6 introduces the list of
validity criteria for practical AEs. Finally, concluding remarks and future works
are detailed in Sect. 7.

2 Background

In this section, we present some background knowledge on artificial neural net-
works, adversarial machine learning and adversarial examples.

! https://github.com/mamerzouk /adversarial _analysis.

https://github.com/mamerzouk/adversarial_analysis

A Deeper Analysis of Adversarial Examples in Intrusion Detection 69

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a machine learning model represented
as a function f(-) that takes a data sample z € R™ as an input and outputs a
prediction {. ANNs are made of interconnected layers of neurons (perceptrons):
small units that compute the sum of their inputs, weighted by the model parame-
ters 0, and pass it through a non-linear activation function to produce an output
(activation); this output is then propagated to be the input the neurons of the
next layer.

The parameters of a neural network are randomly initialized and optimized
through training. The loss function Jy(z,1) estimates the error of the model by
computing the difference between its output and the correct label. The gradient
of the loss function with respect to the parameters VJy(z,[) is then used by
algorithms like Stochastic Gradient Descent or Adam to optimize the parameters
in order to minimize the loss.

2.2 Adversarial Machine Learning

Adversarial Machine Learning (AdvML) is a recent research discipline that aims
to evaluate and improve the robustness of machine learning models against mali-
cious manipulations. The extensive literature in this field reports a wide variety
of attacks that fall into four categories [5]:

— Poisoning attacks are achieved before the training phase by introducing per-
turbations among the training data to generate a corrupted model [4].

— Fwvasion attacks happen after the model is trained. They are used to manip-
ulate the input data of a model to provoke erroneous predictions [3].

— FExtraction attacks try to steal the parameters of a remote model in order to
reproduce its behavior or rob confidential information [13].

— Inversion attacks abuse a model to extort sensitive information learned from
the training data [9].

In our work, we focus on evasion attacks; there are two main types of them:
Untargeted attacks that aim to cause the model to make erroneous predictions
regardless of the output result and Targeted attacks that are much complex as
they intend to orient the erroneous outcome towards a specific result. The two
approaches are equivalent in binary classification (between two classes).

2.3 Adversarial Examples

Adversarial Examples (AEs) are inputs deliberately crafted to fool machine
learning models. An AE 2z’ is generally based on a clean example z to which
a well-computed and minimal perturbation n is added. This perturbation must
be sufficiently important to misclassify the sample in the false class I’ instead
of the correct class [, while limiting changes to maintain malicious functionality
and minimize effort [34]. These changes are communally measured with distance
metrics like L, norms. We described below the three most used L, norms.

70 M. A. Merzouk et al.

— Lo measures the number of perturbed features i such as x; # /.

— L, measures the Euclidean distance between two samples y/> " ; (z; — x;)Q
— Lo measures the maximum perturbation applied to any data feature.

The problem of finding AEs with minimal perturbation regarding an L,
norm is formulated in Eq. 1. In targeted attacks, I’ is known in advance, while
in untargeted attacks, I’ can be any class other than the correct class [. We also
assume that the features must stay in a limited interval we refer to as I.

minimize ||z — 2'[|, such that f (2') =V, f (v) #U',2" € I" (1)

This problem being too complex to solve, Szegedy et al. [32] reformulated it
in Eq. 2, where c is a positive constant minimized by line-search. They then used
the box-constrained L-BFGS optimization method to solve it.

minimize ¢ - ||z — 2’|, + Jo(2', 1) such that 2’ € I" (2)

2.4 Adversarial Examples Generation Methods

We present some of the ground-breaking methods for the generation of AEs.
These methods will later be used in our experiments. Readers interested in a
detailed survey on AEs can refer to Yuan et al. [38].

Fast Gradient Sign Method (FGSM) was introduced by Goodfellow et
al. [11] to allow the generation of AEs much faster than L-BFGS. It uses the
concept of backpropagation but updates the inputs instead of the parameters.
Thus, the sign of the gradient of the loss function with respect to the inputs is
used to guide the perturbation e (positive or negative), as shown in Eq. 3.

' =z +e-sign(Vdy(z,1)) (3)

Basic Iterative Method (BIM) was introduced by Kurakin et al. [16]
and consists of applying FGSM in many iterations with a small perturbation
magnitude. The advantage of BIM is that it adapts the perturbation to each
iteration, the more iterations it does, the finer the perturbation is. In addition,
BIM applies a clipping method, shown in Eq.4, for every iteration to avoid
getting feature values out of the interval I (considered [0, 1] in the equation).

Clip, ¢ {2’} = min {1,z + £, max {0,z — €,2"}} (4)

DeepFool was introduced by Moosavi-Dezfooli et al. [21]. This method looks
for the closest distance from a normal example to the classification boundary it
must cross to be misclassified. This distance is the perturbation applied to the
example. Since it only looks for the closest distance to a different class, no matter
which class, this attack is untargeted. This method originally optimizes the Lo
norm since it uses the Euclidean distance. The author overcame the obstacle
of non-linearity in high dimensionality by using an iterative attack with linear
approximation. In the case of binary differentiable classifiers, the perturbation

A Deeper Analysis of Adversarial Examples in Intrusion Detection 71

is approximated attractively by considering f linear around z;. The minimal
perturbation is then computed by Eq. 5. Despite its efficiency, DeepFool provides
only a coarse approximation of the optimal perturbation vectors.

argmin,,_ [|7;|, such that f(z;) + Vf(z:)" -1 =0 (5)

Jacobian-based Saliency Map Attack (JSMA) was introduced by
Papernot et al. [24]. Unlike previous methods, this method tries to minimize
the number of perturbed features in order to create AEs with minimal Ly norm.
It starts with an empty set of features and chooses a new feature to perturb
in each iteration. It iterates and adds perturbation until the example becomes
adversarial or until it reaches another stop criterion. JSMA starts by computing
the Jacobian matrix shown in Eq.6. It is the matrix of the derivatives of each
output logit with respect to each feature.

_OF(x) _ [aFj(ar)}

(6)

The Jacobian matrix estimates the contribution of each feature to each class.
In order to prioritize the most salient attributes, a saliency map is built on the
basis of the Jacobian matrix. The attribute with the highest saliency value for
the targeted class is chosen to be perturbed in the current iteration.

Carlini& Wagner’s attack (C& W) was introduced in Carlini and Wagner
[6] as an efficient method to defeat existing defense techniques. The authors first
reformulated Eq. 1 as an appropriate optimization instance.

minimize ||7]|, 4+ ¢- g(x +n) such that z +n € I" (7)

In Eq.7, g is an objective function such that f(z +n) =1’ if and only if g(z +
7) < 0. Thus, the two constraints become a single term to minimize. A positive
constant ¢ is chosen by binary search to scale the minimization problem. In [6]
three methods are introduced for the optimization of each of the Ly, Lo and Lo
distance norms:

— Lo-attack optimizes Eq. 7 with p = 2 using an optimization function to find
AEs. It is the main method of the Carlini&Wagner attack, the other methods
are based on this one.

— Loo-attacks is an iterative attack, because the L., distance norm is not fully
differentiable, and thus optimization algorithms are not efficient. The first
term of Eq.7 is replaced by a new penalty that estimates the L., norm.

— Log-attacks is also iterative since the Lo norm is not differentiable. In each
iteration it applies the Lo-attack, it identifies the feature that contributes the
least to the AEs using the gradient of the objective function and it fixes its
value. The algorithm stops when the remaining subset of features is insuffi-
cient to construct AEs.

72 M. A. Merzouk et al.

3 Literature Review

While often chiefly presented as a challenge for AI, AdvML has rapidly attracted
the attention of the security research community. This is particularly evident
when we analyze the extensive literature devoted to attacking techniques used
to evade ML-based intrusion detection and malware detection models [19]. In
this section, we review the research initiatives applying pioneer approaches to
network intrusion detection.

Rigaki and Elragal [28] first explored the applicability of AEs on deep learn-
ing based intrusion detection models and their transferability to other machine
learning models. Their experiments were performed using FGSM [11] and JSMA
[24]. Wang [35] extended their work by testing DeepFool [21] and the three C&W
attacks [6]. The author also discussed the contribution of each feature to the
AEs and gave some guidelines on how these features could be manipulated by
an adversary. Warzynski and Kolaczek [36] has also used FGSM [11] and suc-
cessfully misclassified all attack samples as normal traffic. However, the attack
parameters and the distance norms have not been reported.

Unlike previous works, Yang et al. [37] assumed a black-box attack scenario
where the adversary only knows the output of the model (label or confidence).
Three different black-box algorithms were evaluated: Transferring AEs generated
on a substitute model using C&W [6], Zeroth Order Optimization (ZOO) [7] and
Generative Adversarial Nets (GANs) [10]. Lin et al. [17] introduced IDSGAN,
a framework based on GANs to generate AEs that can deceive a black-box
intrusion detection system.

It is worth noticing that the experiments of all the previously mentioned
works used a Multi-Layer Perceptron (MLP) neural network trained on the NSL-
KDD dataset [33].

Martin et al. [18] applied the main attack methods to six different classifiers.
They used NSL-KDD [33] and CICIDS2017 [31], a more recent dataset. They
showed the robustness of different models before and after re-training them with
AEs. Peng et al. [26] proposed an improved boundary-based method to craft
AEs for DoS attacks, they also used CICIDS2017 [31].

Ibitoye et al. [12] compared the performance of Self-normalizing Neural Net-
works (SNNs) [14] with traditional Feed-forward Neural Networks (FNNs) for
intrusion detection on the BoT-IoT dataset [15]. Their results show that FNNs
outperform SNNs based on multiple performance metrics, while SNNs demon-
strate better resilience against AEs. AbouKhamis et al. [1] used a min-max (or
saddle-point) approach to train a model against AEs generated using variants of
FGSM on the NSW-NB 15 dataset [22]. Principal Component Analysis (PCA)
was applied to the dataset to evaluate its impact on the robustness of the model.
Clements et al. [8] were able to efficiently fool an intrusion detection model by
modifying 1.38 features on average. Alhajjar et al. [2] explored the use of evo-
lutionary computation and GANs to generate AEs against network intrusion
detection models. Piplai et al. [27] showed that even intrusion detection models
trained with AEs can still be fooled.

A Deeper Analysis of Adversarial Examples in Intrusion Detection 73

Moisejevs [20] proposed a survey on adversarial attacks and defenses in intru-
sion detection, and Martins et al. [19] provided a systematic review on adversarial
machine learning applied to intrusion and malware scenarios.

Despite the large number of works addressing adversarial attacks against
intrusion detection, little attention was paid to the consistency of the generated
AEs. In fact, even if these attacks can fool detection models, they do not rep-
resent a real threat if they cannot be implemented. The work reported in this
article tries to provide a deeper analysis of the AEs to evaluate whether they
can practically lead to the implementation of end-to-end network attacks. As far
as we know, no other research initiative presents a such deep analysis to derive
comprehensive validity criteria for adversarial attacks (cf. Sect. 6).

4 Experimentation Approach and Settings

In order to evaluate the impact of different adversarial attacks and the con-
sistency of the generated AEs in intrusion detection, we set up a methodical
experimentation approach. In this section, we describe our approach, starting
from the choice of the dataset and the pre-processing techniques applied to it.
Then we present the target ML model, discuss its design and its training. We
finally introduce the AEs generation methods and their parameters.

4.1 Dataset and Pre-processing

With all the attention paid to intrusion detection in recent years, several interest-
ing datasets have emerged. Ring et al. [29] presented a detailed survey of network
intrusion detection datasets, they evaluated 34 datasets based on 15 properties
they identified. In order to allow proper comparison with related works, all our
experiments are performed using the NSL-KDD dataset [33]. Indeed, despite
some drawbacks like its age, NSL-KDD remains the most widely used dataset
in the intrusion detection literature.

In terms of pre-processing, we use One-Hot-Encoding to transform categor-
ical features into a vector of binary features. For instance, in NSL-KDD, the
Protocol-type feature can take three values: TCP, UDP and ICMP. When apply-
ing One-Hot-Encoding, this feature is represented by three different binary fea-
tures and its values can be : (1,0,0), (0,1,0) or (0,0, 1). Only one binary feature
can hold the value 1 since the instance belongs to a single category. One-Hot-
Encoding pre-processing is paramount, particularly for neural network models,
as they require numerical features. By applying it, the features count of our
dataset rose from 41 to 120.

In addition, we removed the 20th feature Num-out-bound-cmds that only
held the value 0. Min-Max normalization was also used to scale the values in
the range [0, 1] to prevent features with large value ranges from influencing the
classification.

Since the main concern of our study is evasion attacks against intrusion
detection (classifying attacks as normal traffic), for our experiments, we only

74 M. A. Merzouk et al.

consider the attack samples in the test set of NSL-KDD. Also, the dataset has
been processed in order to regroup all the attack types into a single label. The
classification will only be between two classes: normal and malicious (binary clas-
sification problem), which makes the targeted and untargeted attacks equivalent
in our scenario.

4.2 Target Model Design and Training

Similarly to most of the previous works, the target model used in our experi-
ments is a Multi-Layer Perceptron (MLP). It has 2 hidden layers of 256 neurons
and a Softmax output layer with 2 neurons (Since we have a binary classifica-
tion problem). The neurons of the hidden layers use the Rectified Linear Unit
activation function (ReLU). The loss is computed using the Cross-Entropy Loss
function. The model is trained for 1000 epochs using the Adam optimizer to
adjust the parameters with a learning rate of 0.001. The model is made as sim-
ple and as close as possible to the models used in similar work in order to allow
realistic comparisons. Thus, no regularization has been applied to avoid intro-
ducing any bias. Neural networks in our experiments are implemented using the
open-source machine learning library Pytorch [25] on the programming platform
Google Colaboratory.

4.3 Adversarial Attacks Models

In our experiments, the attacks are implemented using the open-source library
Adversarial Robustness Toolbox (ART) [23]. The Lg-attack of Carlini&Wagner
was not available, so we undertook its implementation to enrich ART. The
parameters used for each attack are described below. Default parameters are
preferred and no clipping was applied, since only few studies specify the param-
eters used in their experiments. The complete implementation of our experiments
can be found on: https://github.com/mamerzouk/adversarial_analysis.

Fast Gradient Sign Method. For our experiments, we apply FGSM as defined
in [11]. The gradient of the loss, with respect to the original class, is added to the
examples, which makes it untargeted. The perturbation is applied in one single
step (no iterations). The maximum perturbation magnitude e is set to 0.1 and
the batch size is set to 128.

Basic Iterative Method. For our experiments, we apply BIM with the same
parameters as FGSM. We do not specify a target, the attack is thus untargeted.
We set the number of iterations to 100 and the magnitude of the perturbation for
each iteration to 0.001. This way, the maximum magnitude of the perturbation
cannot exceed 0.1. We also set the batch size to 128.

DeepFool: In our experiment, we use DeepFool with a magnitude of 10~% over
100 iterations and a batch size of 128. DeepFool is untargeted by definition and
optimizes the Lo norm.

https://github.com/mamerzouk/adversarial_analysis

A Deeper Analysis of Adversarial Examples in Intrusion Detection 75

Carlini&Wagner: The C&W attacks were applied in an untargeted way and
with no minimum confidence imposed. The learning rate for the optimization
algorithm was set to 0.01, and the batch size was set to 128. The rest of the
parameters are kept in the ART default values. Since ART did not contain an
implementation of Carlini&Wagner Lg-attack, we implemented this attack and
made the code available in the experiment notebook.

Jacobian-Based Saliency Map Attack: We allow JSMA to perturb 100%
of the features. We apply a perturbation of 0.1 in each iteration. The batch
size is set to 128. Since JSMA is a targeted attack, if no target is specified, the
implementation of ART randomly chooses a target from the false classes.

5 Evaluation of the Perturbation Potential
In this section, we present the results of our experiments and evaluate the gen-

erated AEs. Table 1 shows the accuracy of the model on the AEs generated by
each method, along with the mean and maximum of each distance metric.

Table 1. Detection rate and distance metrics of different methods.

Methods | Detection Lo norm Lo norm Lo norm
Mean Max Mean | Max Mean | Max
Clean 75.1188% | 0 0 0 0 0 0
FGSM 24.8811% | 121 121 1.2099 | 1.2099 | 0.1 0.1
BIM 24.8811% |120.9543 | 121 0.9936 1 1.1578 |0.1 0.1

DeepFool |25.1305% |120.9979 | 121 0.017710.1792 | 0.0469 | 0.1772
C&W Lo |22.7382% |13.8185 |22 1.1977|7.2848 |0.5078 | 1.4739

C&W Lo |28.1306% |13.0478 |43 0.5832|3.0571 | 0.2138 | 0.3
C&W Lo |24.1175% |3.7126 |21 2.5272|22.1609 | 0.9099 | 2.4803
JSMA 24.8811% |2.0804 |4 0.075 0.5 0.1729 1 0.5

We observe in Table 1 that before perturbing the data, the trained model
achieved 75.11% detection rate on attack samples. These results are consistent
with state-of-the-art performance on NSL-KDD. More details on the perfor-
mance of the model can be found in the publicly available notebook.

Table 1 also shows that all the attacks had an impact on the detection rate
of the model. Almost all of them considerably decreased the accuracy to around
24%, which represents a 68% decrease.

The similarity in the degradation caused by different methods allows an unbi-
ased evaluation since the differences in the distance metrics are highlighted.
These metrics demonstrate the various behavior of each method concerning the
perturbation. Thus, we can understand how the attacks perturb the data differ-
ently to achieve, approximately, the same result. In the following subsections, we

76 M. A. Merzouk et al.

Table 2. Samples of feature values from AEs of different methods.

Methods | IRC Telnet |Logged-in Same-srv-rate
FGSM —0.1 0.1 —0.1 1.1

BIM 0.1 -0.1 —0.1 1.1

DeepFool | —0.0172| —0.0051 | —0.0034 | —0.0007

C&W Ly |0 1.4425 |1.8378 2.3132

C&W Lo | 1.28 0 0.7274 1.3

C&W Lo |0 1.8155 |0.8127 2.0155

JSMA 0.5 1 0 0

analyze the results of each method, and we examine the consistency of generated
adversarial examples.

5.1 Fast Gradient Sign Method

We observe in Table 1 that FGSM has an important impact on the detection
rate of the model, it decreases the detection rate to 24.88%. Among all the
experimented algorithms, FGSM was the fastest. It has the lowest maximum L,
distance, which is the same as the mean L, distance. This absence of variance is
due to the fact that FGSM perturbs with the same amount all the features of all
the examples. The objective is to spread the perturbation on the whole feature
space with minimal perturbation magnitude (slightly perturb all the features
instead of heavily perturb few features).

However, this method leads to indiscriminate perturbation of all the features.
The mean and maximum of the Ly norm, which refers to the number of perturbed
features, is equal to the total number of features. This is consistent with the
results of the Fig. 1, a heat map of the percentage of AEs perturbing each feature,
that shows that all the features are perturbed in 100% of the AEs generated by
FGSM.

This property of FGSM might be problematic for binary features: Since the
perturbation applied is always equal to 0.1, it cannot change the value of a binary
feature from one state to the other. For example, Table 2 shows an adversarial
example generated by FGSM that puts the value of the binary feature Telnet to
0.1. This value invalidates the data sample, making it not practically possible to
implement. This observation is valid for 100% of the AEs generated by FGSM,
as shown in the Table 3.

Categorical features are also impacted by FGSM: Using One-Hot-Encoding
transformed every categorical feature into multiple binary features. Only one
of the binary features generated from the same categorical feature can hold
the value 1, all the others must hold the value 0. However, FGSM perturbs
all these binary features, which consequently activates multiple categories at
the same time. We can see in Table 2 that the features IRC and Telnet which
are derived from the category Service are both perturbed by FGSM. Since an

A Deeper Analysis of Adversarial Examples in Intrusion Detection 7

instance cannot belong to multiple categories, this perturbation invalidates the
data sample. Table 3 shows that this observation is also valid for all the AEs
generated by FGSM.

FGSM perturbs all the data samples following the sign of the gradient. This
perturbation does not consider the definition domain of the feature. Thus, with-
out a clipping function, the perturbation might put the value of a feature below
its minimum or above its maximum. The example shown in Table 2 puts the
value of Same-srv-rate, which is the proportion of connection to the same
service among the connection aggregated in count, to 1.1. This value is not pos-
sible since the maximum proportion is 1. We can also see that Logged-in has a
negative value —0.1. This value has no interpretation in a real network, so this
adversarial example cannot be implemented. As well as all the other examples
generated by FGSM according to Table 3.

FGSM was designed to generate AEs very quickly. It uses the simple idea of
propagating the gradient of the loss all the way back to the inputs. This method
is useful for adversarial training [11] since it allows the fast generation of AEs to
re-train the model. However, it spreads the perturbation on all the features to
minimise the Lo, norm. This might be useful for unstructured data like images
where features (pixels) do not hold a semantic value. But in the case of heavily
structured data like network records, FGSM generates inconsistent values and
breaks the semantic links between the features.

5.2 Basic Iterative Method (BIM)

As shown in Table 1, BIM has the same impact as FGSM with slightly bet-
ter mean distance norms. The maximums are the same, except the Lo norm
which has a smaller maximum for BIM. The difference between the two can be
explained by the finer optimization method of BIM that applies small FGSM
steps in each iteration. This leads to smaller norm distances.

However, BIM perturbs the features the same way FGSM does. It also inherits
all its disadvantages. Table 2 shows that AEs generated by BIM share the same
properties as FGSM. Without clipping, the values of the features get out of their
definition domain, as Telnet, it puts non-binary values on binary features like
Logged-in and it activates multiple categories of Service. These criteria are
present in 100% of the AEs generated by BIM, as shown in Table 3, and are
sufficient to invalidate them.

5.3 DeepFool

Table 1 shows that DeepFool performs almost as well as the other methods.
Since the objective of DeepFool is to optimize the Lo norm, it has the smallest
mean Euclidean distance. It is also noteworthy that DeepFool shows the best
mean L., norm and a slightly larger maximum L., than FGSM and BIM.

Just like FGSM or BIM, the mean Ly norm is almost equal to the total
number of features. This demonstrates that DeepFool perturbs all the features
of practically all instances. Figure 1 supports the results of the Ly norm. It shows

78 M. A. Merzouk et al.

Table 3. Proportion of invalidation criteria in AEs of different methods.

Methods | Out-of-range values | Non-binary values | Multiple categories
Clean 0% 0% 0%

FGSM 100% 100% 100%

BIM 100% 100% 100%

DeepFool | 100% 100% 100%

C&W Ly | 94.7089% 99.9688% 0%

C&W L |80.5345% 90.0802% 0.8493%

C&W Lo | 63.5393% 54.0559% 0.1636%

JSMA 0.0155% 67.2952% 67.2796%

indeed that the vast majority of features are perturbed on more than 99% of
instances.

Despite its good results, DeepFool stays a method that only focuses on the
Euclidean distance. It does not optimize the number of perturbed features;
rather, it perturbs a large number of features in practically all the instances
to minimize the Ly norm.

Table 2 shows examples where DeepFool generates non-binary values on
binary features like Logged-in. It activates multiple categories of Service as
IRC and Telnet. It also generates out-of-range values, as for Same-server-rate,
which is a proportion and cannot be negative. These properties are found in 100%
of generated AEs, according to Table 3. Besides, the simultaneous perturbation
of all the features may damage the semantic links between them. In the case of
network data, this leads to inconsistent samples that cannot be implemented.

5.4 Carlini and Wagner

Lo-Attack: As shown in Table 1, Carlini&Wagner Ls-attack reduces the detec-
tion rate of the model to 22.73%, which is the lowest detection rate recorded.
Though it is supposed to optimize the Lo norm, it has one of the highest mean
and maximum Euclidean distance. The L., norm is also high compared to pre-
vious methods. However, the Lo-attack of Carlini&Wagner does not perturb all
the features, the Ly norm has a mean of 13.81 features and a maximum of 22
features.

From the samples shown in Table 2, we can see how the Ls-attack introduces
non-binary values like 1.8378 for Logged-in. Because of the large magnitude
of the perturbation, some features are pushed out of their definition range. For
example Same-server-rate is pushed to 2.3132 when it should not exceed 1.
However, unlike other methods, Carlini&Wagner does not activate multiple cat-
egories of the same categorical feature on any data sample. Despite this inter-
esting result, the two first properties make the AEs generated by the Lo-attack
not applicable to real-world network traffic.

A Deeper Analysis of Adversarial Examples in Intrusion Detection 79

100
1 Duration LERRIRE] 13.25 15.31 1.75 0.01 23 count O Y 1301 0
2 Protocol-type 100 98.57 85.93 76.21 ALY 24 srv-count -JRINIREREELRERLELLERH 6.23 0.55
3 Service Rl >0-°° 29-33 14.66 GRig 25 Serror-rate -IUIRERERLRE 2535 21.32 573 0
4 Flag ETORIR141.02 37.69 7.64 4.43
26 Srv-serror-rate -JRUNICEEYAYEPI21.76 19.54 9.15 0
5 Src-bytes SR 0.05 0.64 0.02 17.68 80
27 Rerror-rate -IUIREEERLRI 44.25 30.13 17.42 0
6 Dst-bytes 100 033 0 198
28 Srv-rerror-rate -SURERLRLRI 43,25 38.77 14.47 0
7 Land CEXPEVRE] 0.05 0.05 002 0
8 Wrong-fragment PN . 033 033 001 29 Same-srv-rate RISV RPEIREENCI 30.52 0
9 Urgent PRy 0.08 008 002 0 30 Diff-srv-rate -SUIRLEEPECRPS 4337 6.94 0 60
10 Hot FOTOEEE 731 7.53 156 6.44 31 Srv-diff-host-rate JNUNECEERTNE 9.84 9 249 0
11 Num-failed-logins EERERTEN] 360 369 177 0 32 Dst-host-count IR RN TR R eX 1 38.92 1.01
12 Logged-in RERERLRE] 20.3917.29 7.52 0 33 Dst-host-srv-count -JEUNRCEEYALRPRLRIRLEY 28.38 0
13 Num-compromised Bl 012 037 0 291 34 Dst-host-same-srv-rate -JROVECERTREERIRLL R PR 23.27 O -40
X EEXRYRY 029 03 011 O
14 Root-shel 35 Dst-host-diff-srv-rate -IUIRERTRYNPRENSILNY 13.52 0
15 Su-attempted EEXTELER 001 035 o 208
36 Dst-host-same-src-port-rate -JUEUURCERERe[®Z 27.15 25.43 7.06 0
16 Num-root SV 0.12 196 0.02 ARES
37 Dst-host-srv-diff-host-rate -RIIRCRZRLRL] 10.65 9.45 146 1.22
17 Num-file-creations CERZRIPE 025 0.37 006 2.52 20
_host-serror- 100 99.52 98.87 ENERLX LS ETEIN
18 Num-shells [ERRLRE 0.14 0.14 0.02 0.83 38 Dst-host-serror-rate
19 Num-access-files XY 0.16 0.25 0.06 4.54 39 Dst-host-srv-serror-rate -JREUUBCENFAFRNY 25.01 23.59 7.19 O
21 Is-host-login BOGOICERE] 0.09 0.21 0.02 0 40 Dst-host-rerror-rate -JREUURCERIRERPICERTICERE 21,73 0
22 Is-guest-login CEXPELRL] 465 465 117 0 41 Dst-host-srv-rerror-rate -JERUUCERCRCCN:PS 1516 0
- -0

' ' T 0 ' '
FGSM BIM DF CW2 CWe CWO JSMA FGSM BIM DF CW2 CWw CWO JSMA

Fig. 1. Heat map of the proportion of AEs perturbing each feature

Loo-Attack: Our results show that Carlini&Wagner L. -attack, with the used
parameters, was the less efficient method on NSL-KDD. It decreased the accu-
racy to 28.13%. Even though this method is supposed to optimize the L., norm,
its mean and maximum perturbation values are larger than FGSM, BIM or
DeepFool. However, the AEs generated by this method showed relatively small
Ly norm values. Only 12.71 features were perturbed in average with a maximum
of 43 perturbed features.

Despite all this, the Lo.-Attack of Carlini&Wagner presents insufficiency that
prevents its use in network data. First, its lower impact on the accuracy reduces
the number of feasible adversarial attacks. Even if the perturbation is not spread
on a large number of features, Table 2 shows that this attack perturbs some
binary features with a non-binary value, it is the case for Logged-in. It also
puts out-of-range values on features like Same-server-rate. But it does not
activate multiple categories on more then 0.8% of its AEs.

Lo-Attack: As shown in Table 1, the Lg-attack of Carlini&Wagner had strong
impact on the detection rate by only perturbing 3.7 features on average and a
maximum of 21 features. However, these results are explained by the Lo and Lo
norms that are excessively large, by far the highest among all the methods. The
Euclidean distance reached 22.16, and the maximum perturbation was up to 2.48
and 0.9 on average. These metrics are extremely high and make the Lg-attack
of Carlini&Wagner unsuited for network data.

We can see in Table 2 that even if it only perturbs a few features, there is still
inconsistency in the data. Binary features like Logged-in hold non-binary values.

80 M. A. Merzouk et al.

Also, some features reach very large values, like Telnet that was set to 1.81 when
its maximum should be 1. However, our results showed that Carlini&Wagner Lg-
attack, just like other Carlini&Wagner attacks, almost never perturbs multiple
categories of the same categorical feature. It focuses its perturbation on the
actual category of the instance. This result holds true for the three categorical
features Protocol-type, Service and Flag.

5.5 Jacobian-Based Saliency Map Attack

The Jacobian-based Saliency Map Attacks decreased the accuracy to 24.88%,
which is the same score as FGSM and BIM. This finding was observed in several
executions.

JSMA showed the best Ly, it only perturbed 2.08 features on average and a
maximum of 4 features. The average Euclidean distance was around 0.07, and
the maximum was 0.5. These are the second-best Lo norms after DeepFool. The
mean L., norm was better than all Carlini&Wagner attacks but the maximum
L, reached 0.5, the third-highest after C&W Lg-attack and C&W Ls-attack.

JSMA certainly shows the most interesting results for a network data appli-
cation. Unfortunately, Table 2 shows that even AEs generated by JSMA have
inconsistency problems. Binary features like Telnet are perturbed with non-
binary values. Multiple categories of the same categorical feature are activated,
is the case for IRC and Telnet. These two criteria were found in, respectively,
67.29% and 67.27% of the AEs generated by JSMA. Thus, many examples may
be disqualified. However, only 0.01% of the examples have out-of-range values,
it can be explained by Fig. 1 that shows that JSMA focuses its perturbation on
features like Num-root or Src-bytes and Dst-bytes that can reach high values.

6 Criteria for Valid End-To-End Adversarial Attacks

The results presented previously demonstrate the high perturbation potential of
adversarial examples on ML-based intrusion detection systems. However, when
we perform an in-depth analysis of the data samples generated by the different
methods, one can legitimately question the practicality of these samples when
it comes to performing real end-to-end cyberattacks. Our results showed that
a large portion of the perturbation that was applied to network traffic features
invalidate the original network session, making the derived attack hard, if not
impossible, to execute in real environments. We summarize below the main inval-
idation criteria we have identified in our research. This is a non-exhaustive list
that can be extended with other criteria.

Non-binary Values: Binary features indicate the presence or the absence of
a property in the data, they can only hold the values 0 or 1. Since these fea-
tures are often important to identify intrusion, AEs generation methods focus
on perturbing them. Thus introducing a value between 0 and 1. These values
are inconsistent for binary features and cannot be implemented in real network
traffic. We have seen examples where the binary feature Logged-in was set to
0.72.

A Deeper Analysis of Adversarial Examples in Intrusion Detection 81

Multiple Categories Membership: Categorical features have been converted
into binary features to make it possible to use them as inputs for neural networks.
One-Hot-Encoding was used to create a binary feature for each instance of the
categorical feature. Thus, only one instance can hold the value 1, while all the
others must be set to 0. Generation methods often perturb these features by
activating multiple categories. Which, even if it is recognized as an attack by
the neural network, cannot be implemented in real network traffic. We gave as
an example the feature Service which cannot be IRC and Telnet at the same
time.

Out-of-Range Values: Every attribute of the network traffic has a limited
range of values it can take. But since generation methods apply the perturbation
until they reach the adversarial boundary, some features might be pushed out
of their definition interval, which generates inconsistent values that cannot be

1.00

1 Duration
0.75
5 Src-bytes
6 Dst-bytes
12 Logged-in
23 Count 0.50

24 Srv-count

25 Serror-rate

26 Srv-serror-rate
27 Rerror-rate

28 Srv-rerror-rate

29 Same-srv-rate

30 Diff-srv-rate

31 Srv-diff-host-rate

32 Dst-host-count

33 Dst-host-srv-count

34 Dst-host-same-srv-rate

-0.54 -0.54
-0.25
-0.61 -0.6

-0.50

35 Dst-host-diff-srv-rate .52

36 Dst-host-same-src-port-rate

37 Dst-host-srv-diff-host-rate

38 Dst-host-serror-rate

39 Dst-host-srv-serror-rate

40 Dst-host-rerror-rate
-0.75
41 Dst-host-srv-rerror-rate

-1.00

Fig. 2. Heat map of the correlation matrix of NSL-KDD numerical features. (Color
figure online)

82 M. A. Merzouk et al.

implemented. As we saw in Table 2, Same-server-rate was set to 2.31 by C&W
Ls-attack when it is a proportion that should not exceed 1. In Table 3, we
consider the minimum and maximum values found in the testing set to compute
the proportion of AEs containing out-of-range values.

Semantic Links: In contrast to unstructured data like images, network data
hold semantic links between features. These links create dependencies that must
be kept to ensure the consistency of the traffic. The generation methods do
not consider these semantic links and apply an arbitrary perturbation that often
breaks them and generates incoherent samples. Unlike other invalidation criteria
that are present in Table 3, semantic links are hard to identify. This is due to the
fact that there are no explicit rules to express these links. To better illustrate
our findings, we computed the heat map of the correlation matrix between the
numerical attributes of NSL-KDD illustrated in Fig. 2. The intensity of shades of
blue (resp. red) indicates the level of positive (resp. negative) pairwise correlation
between the attributes. For example, we can notice a strong positive correlation
between Dst-host-rerror-rate and Dst-host-srv-rerror-rate, or between
Srv-serror-rate and Rerror-rate.

7 Conclusion and Future Work

In this paper, we have discussed the applicability of adversarial examples in
network intrusion detection. Through a literature review, we have noticed that
little consideration was given to the validity of AEs with respect to network
traffic structure and constraints.

We have filled that gap by analyzing AEs generated by state-of-the-art algo-
rithms and identifying key criteria that invalidate them. These criteria include
values outpacing the definition domain, assignment of non-binary values to
binary features, belonging to multiple contradictory categories, and breaking
semantic links between features.

Though the described criteria are sufficient to invalidate AEs, they do not
guarantee their validity. Thus, future work should focus on a formal descrip-
tion of network constraints that must be fulfilled in order to validate an attack
example. More recent datasets should be used in order to study the perturbation
potential of adversarial attacks on different data types. Finally, the vulnerability
of intrusion detection models should be proven on real networks with end-to-end
attack scenarios.

Acknowledgment. This research was partly funded by the European Union’s Hori-
zon 2020 research and innovation program under the Secure Collaborative Intelligent
Industrial Automation (SeColIA) project, grant agreement No 871967 and IRT Sys-
temX projects (Exploratory research and PFS).

A Deeper Analysis of Adversarial Examples in Intrusion Detection 83

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abou Khamis, R., Shafiq, O., Matrawy, A.: Investigating resistance of deep
learning-based IDS against adversaries using min-max optimization. arXiv
preprint:1910.14107 (2019)

Alhajjar, E., Maxwell, P., Bastian, N.D.: Adversarial machine learning in network
intrusion detection systems. arXiv preprint:2004.11898 (2020)

Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-
keel, H., Kersting, K., Nijssen, S., Zelezny, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387—402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3_25

Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines. arXiv preprint:1206.6389 (2012)

Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition (2018)

Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy. IEEE (2017)

Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: zeroth order optimiza-
tion based black-box attacks to deep neural networks without training substitute
models. In: 10th ACM Workshop on Artificial Intelligence and Security (2017)
Clements, J., Yang, Y., Sharma, A., Hu, H., Lao, Y.: Rallying adversarial tech-
niques against deep learning for network security. arXiv preprint:1903.11688 (2019)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems (2014)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint:1412.6572 (2014)

Ibitoye, O., Shafiq, O., Matrawy, A.: Analyzing adversarial attacks against deep
learning for intrusion detection in IoT networks. In: IEEE Global Communications
Conference (GLOBECOM) (2019)

Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accu-
racy and high fidelity extraction of neural networks. In: 29th USENIX Security
Symposium (2020)

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. In: Advances in Neural Information Processing Systems (2017)
Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development
of realistic botnet dataset in the internet of things for network forensic analytics:
Bot-IoT dataset. arXiv preprint:1811.00701 (2018)

Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale.
arXiv preprint:1611.01236 (2016)

Lin, Z., Shi, Y., Xue, Z.: IDSGAN: generative adversarial networks for attack
generation against intrusion detection. arXiv preprint:1809.02077 (2018)

Martins, N., Cruz, J.M., Cruz, T., Abreu, P.H.: Analyzing the footprint of clas-
sifiers in adversarial denial of service contexts. In: EPIA Conference on Artificial
Intelligence (2019)

Martins, N., Cruz, J.M., Cruz, T., Abreu, P.H.: Adversarial machine learning
applied to intrusion and malware scenarios: a systematic review. IEEE Access
8, 35403-35419 (2020)

https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25

84

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

M. A. Merzouk et al.

Moisejevs, I.: Adversarial attacks and defenses in intrusion detection systems: A
survey. Int. J. Artif. Intell. Expert Syst. (IJAE) 8(3), 44-62 (2019)
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016)

Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intru-
sion detection systems (UNSW-NB15 network data set). In: Military Communica-
tions and Information Systems Conference (MilCIS) (2015)

Nicolae, M.I.,, et al.: Adversarial robustness toolbox v1.2.0. arXiv
preprint:1807.01069 (2018)

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: IEEE European Symposium
on Security and Privacy (EuroS&P) (2016)

Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems (2019)

Peng, X., Huang, W., Shi, Z.: Adversarial attack against dos intrusion detection:
an improved boundary-based method. In: IEEE 31st International Conference on
Tools with Artificial Intelligence (ICTAI) (2019)

Piplai, A., Chukkapalli, S.S.L., Joshi, A.: Nattack! adversarial attacks to bypass a
gan based classifier trained to detect network intrusion. arXiv preprint:2002.08527
(2020)

Rigaki, M., Elragal, A.: Adversarial deep learning against intrusion detection clas-
sifiers. In: NATO IST-152 Workshop on Intelligent Autonomous Agents for Cyber
Defence and Resilience (2017)

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of
network-based intrusion detection data sets. Comput. Secur. 86, 147-167 (2019)
Rosenberg, 1., Shabtai, A., Elovici, Y., Rokach, L.: Adversarial learning in the
cyber security domain. arXiv preprint:2007.02407 (2020)

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intru-
sion detection dataset and intrusion traffic characterization. In: 4th International
Conference on Information Systems Security and Privacy (2018)

Szegedy, C., et al.: Intriguing properties of neural networks. arXiv
preprint:1312.6199 (2013)

Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD
cup 99 data set. In: IEEE Symposium on Computational Intelligence for Security
and Defense Applications (2009)

Vorobeychik, Y., Kantarcioglu, M.: Adversarial machine learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning (2018)

Wang, Z.: Deep learning-based intrusion detection with adversaries. IEEE Access
(2018)

Warzynski, A., Kolaczek, G.: Intrusion detection systems vulnerability on adver-
sarial examples. In: Innovations in Intelligent Systems and Applications (2018)
Yang, K., Liu, J., Zhang, C., Fang, Y.: Adversarial examples against the deep learn-
ing based network intrusion detection systems. In: IEEE Military Communications
Conference (MILCOM) (2018)

Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for
deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30, 2805-2824 (2019)

	A Deeper Analysis of Adversarial Examples in Intrusion Detection
	1 Introduction
	2 Background
	2.1 Artificial Neural Networks
	2.2 Adversarial Machine Learning
	2.3 Adversarial Examples
	2.4 Adversarial Examples Generation Methods

	3 Literature Review
	4 Experimentation Approach and Settings
	4.1 Dataset and Pre-processing
	4.2 Target Model Design and Training
	4.3 Adversarial Attacks Models

	5 Evaluation of the Perturbation Potential
	5.1 Fast Gradient Sign Method
	5.2 Basic Iterative Method (BIM)
	5.3 DeepFool
	5.4 Carlini and Wagner
	5.5 Jacobian-Based Saliency Map Attack

	6 Criteria for Valid End-To-End Adversarial Attacks
	7 Conclusion and Future Work
	References

