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Abstract. In this paper, we report results on a large scale measure-
ment campaign to collect temporal information about events associated
with software vulnerabilities. The data is curated so as to extract dates
from each of the analyzed security advisories. The resulting time series
are our object of study. From our measurements we were able to iden-
tify which role was assumed by different platforms (such as websites and
forums) in the security landscape, including sources and aggregators of
information about vulnerabilities. Then, we propose an analytical model
to express the flow of information through security advisories across mul-
tiple platforms. The model is based on a queueing network, where each
platform corresponds to a queue which adds a delay in the information
propagation. Such delays, in turn, have an impact on the visibility of the
information at different platforms. Leveraging the proposed model and
the collected data, we assess how different system parameters, such as
the delays incurred by each platform to propagate its messages, impact
the overall flow of information across platforms.

1 Introduction

Background. Software vulnerabilities which threaten modern computer sys-
tems are disclosed in a daily basis. Platforms such as the National Vulnerability
Database (NVD) and vendor websites are responsible for informing users about
such vulnerabilities, through security advisories. Each vulnerability, identified
through its Common Vulnerabilities and Exposures identifier (CVE id), is typ-
ically associated with many security advisories, which reflect, for instance, the
availability of exploits and patches [13].

Timely information about early disclosure of vulnerabilities is key. Accu-
rate information about the impact of vulnerabilities and about which systems
are exposed helps to guide decisions, e.g., related to risk aware patch manage-
ment [19]. Although security platforms play a fundamental role in the security
landscape, the flow of information among them is still poorly understood. In this
paper, our goal is to report measurements, and present models and methods to
provide insight into how information about vulnerabilities flows across security
platforms.
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Challenges. There are several challenges pertaining a characterization of the
flow of information across security platforms. First, each security platform
uses its own format to disseminate data about vulnerabilities. The informa-
tion retrieved from those platforms must be curated, e.g., to extract publication
dates by the sources. Second, there are no models to capture the dynamics of
how information flows in the ecosystem. Such models can be instrumental to
assess what would occur to the security landscape given events such as impor-
tant platforms being attacked, e.g., by a DDoS attack, or two platforms merging
together. As an example, relevant platforms, such as Security Focus and Secu-
rity Tracker, have not been recently updated, and the impact is still unclear.
Third, some security advisories may be shared in private platforms or in black
hat forums, making them unreachable to the general public.

Gaps in Prior Art. The quality and timeliness of security advisories have
been considered, for instance, in the context of threat information feeds [12].
However, most of those results are derived from data collected under restrictive
non-disclosure agreements, and may not be reproducible in a non-industrial set-
ting. One of our goals is to analyze security advisories made available through
public platforms, referred by NVD as authoritative sources for information about
vulnerabilities. In addition, there are works considering the flow of vulnerabili-
ties across software modules [8]. Nonetheless, we are not aware of previous work
on measurements and models of flow of advisories across software platforms.

Methods. To tackle the above challenges, we report results on a large scale mea-
surement campaign to collect temporal information about events associated with
software vulnerabilities. The data is curated so as to extract dates from each of
the analyzed security advisories. The resulting time series of security advisories
associated with vulnerabilities are our objects of study. From our measurements
we are able to identify which role was assumed by different platforms (such as
websites and forums) in the security landscape, including sources and aggrega-
tors of information about vulnerabilities. Then, we propose an analytical model
to express the flow of information through security advisories across multiple
platforms. The model is based on a network of queues, where each platform
corresponds to a queue which adds a delay in the information propagation.

Contributions. In summary, our contributions are threefold.

Measurement Campaign and Insights: we retrieved security advisories from
the top platforms referred to by NVD. By analyzing the time series of events
associated with each vulnerability, we identified and quantified the extent at
which platforms are used either as the ultimate sources of information about
CVEs or as aggregators to forward advisories from its sources to other platforms.

Analytical Model: we propose and parametrize a queueing network comprised
of M/G/∞ queues to express the flow of information through security advisories
across multiple platforms. The model is inspired by Sankey diagrams, which are
derived from the collected data.
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Fig. 1. CDF of risk given number of vulnerability advisories (left) and fraction of CVEs
with given number of advisories (right): more advisories correlate with higher risk.

Model-Based Analysis: in light of the proposed analytical model, we extract
additional insights about the security advisory ecosystem. Our model allows us to
study how different system parameters, such as the order at which platforms issue
advisories and the delays incurred by each platform to propagate its advisories,
impact the mean number of days it takes for an authority such as NVD to report
an advisory.

Paper Organization. The following section sets the ground in the realm of risk
aware patch management and reports related work. Measurements and the ana-
lytical model are introduced in Sects. 3 and 4. The proposed model is evaluated
using the collected measurements at Sect. 5 and Sect. 6 concludes.

2 Risk Aware Patch Management and Related Work

Patch management is key for product developers and asset owners. Patches imply
outages explaining why industrial control systems (ICS) patches are typically
deferred by 2–3 months [19]. Many enterprises help asset owners to manage risks
associated to vulnerabilities, and risk aware vulnerability management products
are available in the market; Siemens has the Industrial Vulnerability Manager
(IVM) for ICS; Tenable has a complementary product for enterprise IT; the open
source community has similar initiatives, e.g., the Exploit Prediction Scoring
System (EPSS), a data-driven framework for assessing vulnerability threat.

Risk aware patch management (RAPM) involves tracking risk, e.g., CVSS
or EPSS, ranging between 0 and 10, over time. It relies on data made available
at security advisory platforms, e.g., to parameterize the temporal components
of CVSS or EPSS. We illustrate the applicability of the results reported in the
remainder of this paper through two examples in the realm of RAPM.

Assess Impact of Sources on Delays. The measurements and model in this
paper support RAPM: if one plans patches based on information from a subset
of platforms, how late may patches occur?

Estimate Confidence Levels of Risk. The proposed model supports what-if
analysis for RAPM: what are the biases incurred when predicting risk? What is
the confidence interval (CI) of risk estimates? How is CI expected to change?



34 L. Miranda et al.

Answering the above questions requires knowledge on how the number of
data points associated with vulnerabilities varies over time, which is the main
theme of this work. To illustrate that point, Fig. 1, obtained from our measure-
ments (Sect. 3), shows the CDF of risk (CVSS) for three classes of vulnerabil-
ities, varying according to the number of data points associated to each CVE.
Vulnerabilities with 1 or 2 advisories tend to have lower risk when compared
against vulnerabilities with 5 or more advisories, which attract more visibility.
Figure 1(right) further supports that point, showing that vulnerabilities with
high risk tend to have more advisories. Advisories are issued by multiple plat-
forms, and confidence levels on risk build up during the period at which the
advisories are made public. One of our aims is to measure and model the flow of
advisories so as to understand how such confidence builds up across the lifecycle
of vulnerabilities.

The lifecycle of vulnerabilities has been considered in previous works,
accounting for weaponization and exploitation events [3,18], patching prac-
tices [19] and the role of CVSS [10,17] and TI feeds [12]. Our work considers the
vulnerability lifecycle from a novel angle, accounting for platforms delays and
leveraging Sankey diagrams and networks of queues. Whereas most works focus
on predicting weaponization and exploitation, we focus on the flow of advisories
across platforms, which is key for RAPM.

We rely on NVD as our reference to select the analyzed security platforms.
Previous studies relied on NVD to cluster vulnerabilities [9] and to predict soft-
ware vulnerabilities and corresponding risks [21]. None of these works leveraged
the list of hyperlinks provided by NVD with advisories about each vulnerability,
as considered in this paper.

Most of the literature on vulnerability disclosures tracks how vulnerabilities
evolve within a software product [11] or across software modules [8]. In this
paper, we take a different approach towards the evolution of software vulnera-
bilities, focusing on evolution across platforms. We believe that those approaches
are complementary. In particular, one of the platforms considered in our study,
Github [2,7,15], has within itself a rich history of software patches and upgrades
whose timelines complement the time series considered in this paper.

3 Measurement Setup and Measurement Insights

Next, we describe our measurement setup, indicating how we selected the mul-
tiple sources of data and how we extracted temporal information from those.
Then, we report insights obtained from the measurements.

Terminology. We begin by introducing some basic terminology.

CVE id is the Common Vulnerabilities and Exposures (CVE) identifier, which
is a unique id used to refer to vulnerabilities.

CVE authority, also known as CVE numbering authority (CNA), is any entity
that can issue CVE ids.
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Fig. 2. CVEs per platform.

NVD CVE published date is the date at which the CVE was disclosed at the
National Vulnerability Database (NVD). Both CVE and NVD are sponsored by
the U.S. Department of Homeland Security (DHS). All vulnerabilities granted a
CVE are eventually published by NVD [16].

Security advisory is any piece of information published about a given CVE,
including patches, exploits and notes. We encompass NVD disclosures as security
advisories, whose publication dates equal NVD CVE published dates.

Security advisory platform is a platform that issues security advisories.
Examples include NVD and Security Focus.

Security advisory hyperlink is a hyperlink to a security advisory published
at a given platform.

Security advisory date is the date at which the material contained in the
security advisory was published by its author.

Platform CVE disclosure date is the earliest security advisory date for a
given CVE among the collected advisories from a given platform. In particular,
the NVD CVE disclosure date coincides with the NVD CVE published date.

CVE disclosure date is the earliest security advisory date for a given CVE
among all collected advisories.

In the remainder of this paper, we contrast security advisory dates among
platforms and against NVD CVE published dates.

Measurement Setup. We take NVD as our reference platform of security advi-
sories. For each vulnerability, NVD provides its CVE, its NVD CVE published
date, and hyperlinks to security advisories by other platforms. We select the top
13 platforms, in addition to NVD, ranked based on the number of encompassed
CVEs (see Fig. 2).

For each vulnerability, NVD reports its CVE id together with a list of hyper-
links to security advisories. We download the content of those hyperlinks, and
process the corresponding HTML files as described below. Note that for each of
the considered platforms we find at least 1500 unique hyperlinks at NVD, and
each advisory typically accounts for up to 2 CVEs.
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Fig. 3. Security advisory categories.

Accounting for the specifics of the format of the HTML files provided by
each platform, we use XPath, the XML Path Language, to extract temporal
information from each of those files. Each platform corresponds to a given XPath
parametrization to extract the HTML element corresponding to the publication
dates of the advisories posted by that platform. After implementing such process,
for each security advisory we have its (i) publication date, (ii) NVD hyperlink,
(iii) list of CVEs at NVD that contain that hyperlink. We store the elements in
a database from which we derive the analysis and insights that follow.1

Dataset. Next, we report findings and insights obtained from our measure-
ment campaign. We considered the NVD bundle of vulnerabilities accounting
for all vulnerabilities released up to March 26, 2020. This amounts to a total
of 576,750 references (hyperlinks) to 336,559 distinct security advisories (unique
hyperlinks), from 129,504 CVEs. Then, we crawled the security advisory plat-
forms of interest between March 27, 2020 and March 30, 2020, with March 25,
2020 being the latest CVE publication date at our database. In the analysis
that follows we account for 232,873 references to more than 108,889 distinct
advisories released by 13 platforms referred by NVD, targeting 98,407 CVEs.

Flow of Information Across Security Advisory Platforms. We begin by
considering the nature of the security advisories exchanged in the considered
platforms. To that aim, Fig. 3 indicates the distribution of the categories of the
security advisories, as reported by NVD. Note that some advisories pertain to
multiple categories and others have not been classified. The security advisories
are distributed across remediation, weaponization, issue tracking and general
advisories. In particular, information about exploitation of vulnerabilities in the
wild is not captured through those advisories.

The flow of advisories across platforms can be captured through Sankey dia-
grams, as illustrated in Fig. 4. To produce Fig. 4, we consider for each vulnera-
bility the sequence of platforms that published advisories about the correspond-
ing CVE, ordered by their security advisory dates. The longest sequence in our
1 The data and scripts to produce the reported results are available by contacting the

authors.
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Fig. 4. Flow of information across security advisory platforms

dataset corresponds to CVE-2009-3555, and consists of 13 platforms. Heartbleed
(CVE-2014-0196), Shellshock (CVE-2014-6271) and Meltdown (CVE-2017-5754)
are vulnerabilities whose sequences comprise at least 6 platforms.

Given the sequences of platforms associated to each CVE, we extract the
ordered pairs of consecutive platforms appearing in those sequences. Let P be the
multiset of obtained ordered pairs. If two platforms A and B produce advisories
for a given CVE at the same day, no entry is added to P. If they are followed
by C at an upcoming day, we add both (A,C) and (B,C) into P. The Sankey
diagram in Fig. 4 is generated from P. The width of lines is proportional to the
CVE flow between pairs of platforms, i.e., the width of the line between (A,B)
is proportional to the frequency of ordered pair (A,B) in P. The lines between
layers 1 and 2 correspond to ordered pairs (A,B) wherein platform A is the
first to publish an advisory about the corresponding CVE. The lines between
layers 2 and 3 account for the additional ordered pairs. The analysis in this
section accounts for CVEs published by NVD and by at least one additional
platform, at a distinct day, noting that those correspond to more than 90% of
the vulnerabilities in our dataset.

Figure 4 indicates that Security Focus and Security Tracker platforms play
a relevant role in the security advisory ecosystem. Interestingly, they have not
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been updated since the end of 2019. We envision that in a couple of years some of
the platforms shown in Fig. 4 will replace Security Focus and Security Tracker,
and one of our purposes is to present a methodology to track how the ecosystem
of security advisories evolves over time.

Figure 4 allows us to further assess the contribution of different platforms
with respect to the flow of information, accounting for the ordering at which advi-
sories for CVEs flow across platforms. Some platforms behave as sources of infor-
mation, while others as aggregators. Security Focus, for instance, is the source
of advisories for 80% (49774/(10390 + 49774 + 1654)) of its CVE flows. NVD,
in contrast, is the aggregator of advisories for 92% ((88171 + 25488)/(88171 +
9150 + 25488)) of its CVE flows in Fig. 4. Other platforms are more symmet-
ric in the flow of CVEs. For example, KBCert is source of advisories for 49%
(3097/(3097 + 2131 + 1051)) of its CVE flows.

Fig. 5. NVD delay against platforms: (a) accounting for CVEs whose disclosure at
platforms other than NVD occurred first and (b) accounting for CVEs whose disclosure
at NVD occurred first.

NVD, as an aggregator, typically publishes CVEs after advisories have been
announced at other platforms (see Fig. 2). Nonetheless, note that even though
NVD is typically not the first platform to report information about vulnerabili-
ties, in many instances it is the second to do so. As we move from the second to
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the third layer, the height of the NVD bar decreases, indicating its diminishing
relevance for advisories already published by more than one platform.

Figure 4 shows that security advisory platforms complement each other with
respect to the timing at which they share information. It provides a birds eye of
view of the flow of information across platforms, which we detail, analyze and
model in the remainder of this work.

Fig. 6. NVD CVE published date minus source disclosure date.

NVD CVE Published Dates. Next, we aim at contrasting the date at which
NVD publishes CVE information, as reported by NVD itself, in its NVD CVE
published date field, against the date at which we first found information about
the corresponding vulnerabilities in our dataset. Let f be the day at which we
first find information about a given vulnerability in a platform other than NVD,
and let n be the NVD CVE published date. Figures 5(a) and 5(b) show the
cumulative distribution function (CDF) of n−f and f −n for the cases wherein
f ≤ n and f > n, respectively, measured in days. Each solid line corresponds
to a different platform. The dashed lines account for data across all platforms,
ignoring platform identities to produce the plots.

Figure 5(a) indicates that NVD publishes advisories for up to 60% of the
vulnerabilities in less than one month after the disclosure of the corresponding
CVE. However, for the other 40% of the vulnerabilities, it may take more than
one year for NVD to publish CVE information. The worst case scenario occurs
when contrasting NVD against Bugzilla, for which we discover that after two
years CVEs were not published at NVD for up to 15% of the vulnerabilities
disclosed by Bugzilla.

Figure 5(b) indicates that when NVD is the first to release information about
vulnerabilities, at least one of the other platforms quickly catches up. This is
represented by the dashed line in Fig. 5(b), with a sharp increase close to zero.
The corresponding dashed line in Fig. 5(a), in contrast, indicates that when NVD
is not the first to release information, for roughly 20% of the vulnerabilities it
may take up to three months for NVD to disclose the corresponding CVE.

Figure 6 provides further insights on how NVD positions against other plat-
forms. Figure 6 shows the mean and standard deviation of NVD CVE pub-
lished dates minus disclosure dates at other platforms, accounting for vulnera-
bilities that appeared at the two considered platforms. First, note that Bugzilla
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Fig. 7. Disclosure delays between consecutive advisories.

Fig. 8. Rate at which security advisories are published by platforms.

(respectively, Ubuntu) is the platform that provides the most (resp., less) com-
plementary information, concerning timeliness, when contrasted against NVD.
Second, note that the standard deviation of the number of days is very large,
which might pose challenges for predictive models. Advisories for some vulner-
abilities are issued during a long period of time, some of them on the order of
years.

Platform Delays. Next, we consider the delays incurred while different secu-
rity advisories are disclosed at the considered platforms. Figure 7 shows the
delays between advisories about a given vulnerability being disclosed in a given
platform and the succeeding advisory for the same vulnerability being disclosed
by the next platform. The mean delays are much higher than the correspond-
ing medians, indicating that outliers can significantly impact the average. This
finding is similar in essence to the observations made on Fig. 6.

Publishing Rates. Figure 8 shows the rate at which security advisories are
published by each platform, in units of advisories per day. The corresponding
normalized rates, reported in Fig. 9, will be used to validate the model in Sect. 5.
As expected, NVD plays a key role in the security advisory ecosystem, publish-
ing and average of 11.2 advisories per day. To account for the order at which
information flows across platforms, Fig. 8 also shows the rate at which security
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Fig. 9. Normalized rate of security advisory disclosures and model validation.

advisories are first published by each platform. Figure 8, in agreement with the
Sankey diagram in Fig. 4, indicates that Security Focus is the platform which
most commonly ranks as first to publish security advisories.

4 Analytical Model

Next, we propose and describe an analytical model to assess how local properties
of security advisory platforms, such as the probability that an advisory at a
platform yields a new advisory at another platform, impact global aspects of
the system, such as the mean number of platforms wherein advisories for a
given vulnerability are reported. Our model is inspired by the Sankey diagram
presented in Fig. 4. While Sankey diagrams are instrumental to provide a visual
perspective on the flow of information, the analytical model quantifies the role
of each platform by augmenting the Sankey diagrams with temporal information
about how many days each platform took to relay advisories to other platforms,
as well as probabilistic information about the routing of vulnerabilities across
platforms.

Parameters and Metrics of Interest. The model is introduced in Sect. 4.1.
Basic output metrics obtained from the model appear in Sect. 4.2. The param-
eterization of model inputs is described at the end of Sect. 4.2 and the parame-
terized model is evaluated in Sect. 5.

4.1 Model Description

We model the flow of advisories across platforms through a “network of
queues” [6, Chapter 17]. In the simplest setting, each queue corresponds to a
security advisory platform. Platforms receive advisories from other platforms in
the network or from outside the network of considered platforms, and propagate
them after a certain delay. To capture delays, we leverage M/G/∞ queues [6].
We denote by di the mean delay incurred between an advisory being published
at platform i and at its succeeding platform, measured in days.
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In what follows, we refer to an advisory as being relayed or routed from
platform i to platform j when platform j publishes an advisory about the vul-
nerability of interest after i has done so. In particular, after an advisory is relayed
from i to j, the advisory at platform j may leverage the advisory published at i.
The advisory published by platform j may explicitly refer to previous advisories
or may implicitly rely on their content, e.g., to propose a countermeasure.

Key Simplifying Assumption. The key simplifying assumption considered
in our model consists of characterizing the flow of information between security
platforms inspired by the Sankey diagram in Fig. 4 accounting for two layers
while still capturing the fact that information about each CVE may be published
by advisories across more than two platforms. Let L be the number of layers in
the diagram, with L = 3 in Fig. 4. The proposed analytical model requires
the estimation of roughly (L − 1)P 2 parameters corresponding to the routing of
advisories between platforms, where P denotes the number of platforms, and the
notion of routing is made precise in what follows. As in any modeling exercise,
we trade off between simplicity and accuracy, and find that the simplest model
with L = 2 suffices for our purposes (see Sect. 5). Nonetheless, the model can
be easily extended to account for L > 2, at the cost of additional complexity.

Routing of Advisories. We consider a set of P security advisory platforms.
In addition to those platforms, we introduce a virtual platform, that is always
the last platform to publish an advisory about a given vulnerability. The vir-
tual platform, whose sole goal is to simplify model presentation, is denoted as
platform ∞, and its index is P + 1.

The routing of advisories between security advisory platforms is captured
through a routing matrix. Let R denote the routing matrix. Element rij denotes
the probability that platform i routes an advisory to j, where

∑P+1
j=1 rij = 1.

Note that as the virtual platform P + 1 is a sink, rP+1,P+1 = 1.
The platforms can be grouped into two blocks. The platforms in the first

(resp., second) block are transient (resp., absorbing) platforms. Let R0 (resp.,
Iu) be the intra-block transition matrix corresponding to elements in the first
(resp., second) block, and let R1 be the inter-block transition matrix. Note that
we assume there are u absorbing platforms, and Iu is an u × u identity matrix.
In the simplest case, which constitutes our reference setup, we have a single
absorbing platform corresponding to the virtual sink, namely ∞, and u = 1.
Whenever the dimension of the identity matrix is clear from context, we drop
subscript u. Then,

R =
(

R0 R1

0 I

)

. (1)

A published vulnerability is said to be at platform i if platform i was the last
platform to publish an advisory about it. Then, the state of the queueing network
is given by (σ1, . . . , σP ) where σi is the number of vulnerabilities at platform i.
The queueing network state dynamics are given by a continuous time Markov
chain, whose infinitesimal generator and steady state probabilities readily follow
from the above description and are found in [6].
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4.2 Security Advisory Platforms Metrics of Interest

Platform Publishing Rates. Let λi be the rate at which advisories for unheard
vulnerabilities are first published by platform i, i.e., λi is the rate at which
platform i discloses advisories whose corresponding CVE disclosure date equals
platform i CVE disclosure date. Accordingly, let pi be the probability that plat-
form i is the first to publish an advisory for a given vulnerability, i.e., pi is the
fraction of vulnerabilities for which advisories are first published by platform
i. Then, λi = piΛ, where Λ is the rate at which new vulnerabilities (and the
corresponding security advisories) are reported online.

Let mij be the mean number of advisories for a given vulnerability, initially
published at platform i, to appear at platform j. Matrix M is known as the
fundamental matrix [6], and is given by

M =
∞∑

k=0

Rk
0 = (I − R0)−1 (2)

where I is the identity matrix and R0 is the routing matrix R with the row and
column corresponding to ∞ being removed as described above. In what follows,
we indicate how the fundamental matrix yields our metrics of interest.

Let γi be the rate at which advisories are published by platform i. Vector γ
is the vector of publishing rates,

γ = λM = λ(I − R0)−1. (3)

Note that whereas λ is the vector of rates at which advisories for unheard vul-
nerabilities are published by each platform, vector γ accounts for all advisories.

Platform Hitting and Absorption Probabilities. Next, we consider the
problem of quantifying the relative freshness of advisories published across a set
of platforms. To that aim, consider a set of S competing platforms. Let bij be
the probability that a given platform j ∈ S is the first, among the platforms
in S, to publish about a vulnerability originally issued by platform i /∈ S. To
compute bij , we include all platforms in S into a group of absorbing platforms,
together with the virtual platform ∞. Following the terminology introduced in
Sect. 4.2, let R1 be a (P −|S|)×(|S|+1) matrix, whose elements characterize the
routing probabilities between platforms outside S to platforms in S. Similarly,
M is the fundamental matrix accounting for platforms outside S. Then, bij is
given by element (i, j) in matrix B

B = MR1. (4)

The derivation of the above equation can be found in [6]. In Sect. 5 we evaluate
the above expression to assess how early four of the most popular platforms
publish their advisories, when contrasted against the others.

Mean Time Between Platforms. Next, we consider the mean time between
platforms, in days. Let column vector t(i) characterize the mean time for a
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vulnerability to be forwarded by each platform, except i, i.e., t(i) equals d, after
excluding the i-th element from the latter. Then, the mean time to reach either
platform i or the virtual platform ∞, whichever occurs first, is given by

T (i) =
(
I − R

(i)
0

)−1

t(i) (5)

where R
(i)
0 is obtained from R0 after removing the column and row corresponding

to platform i. Note that if t(i) is a column vector with all its elements equal to
1, the resulting vector obtained from the above equation is the mean number
of advisories issued until reaching either platform i or the virtual platform ∞,
whichever occurs first.

To obtain matrix T , whose element ti,j corresponds to the mean time to
reach platforms j or ∞, given that an advisory is first published at i, it suffices
to concatenate column vectors T̃ (i), i = 1, . . . , P , where T̃ (i) is obtained from
T (i) adding an entry equal to zero at the i-th position, to capture the fact that
the mean time to reach platform i starting from i is zero [6]. In Sect. 5 we
evaluate the above expression to assess the time it takes for advisories to flow
across platforms.

How to Parametrize Model from Data. The model is parametrized through
three sets of parameters: the arrival rates of advisories for new vulnerabilities
from outside the considered network of platforms, the delays and the routing
matrix.

Let ni be the number of advisories published by platform i, as observed in the
measurements. Similarly, let fi be the number of advisories published by i, when
no other advisory for the corresponding vulnerability has been issued, fi ≤ ni.
Also, let τ be the measurement duration, i.e., the time between the publication
of the first and last advisories present in the dataset. We denote by λ̂i and p̂i the
estimators of λi and pi, respectively. Then, λ̂i = fi/τ and p̂i = fi

/∑P
k=1 fk. We

also have Λ̂ =
∑P

k=1 λ̂k. To parametrize the delays and the routing matrix, we
begin by generating the multiset P of ordered pairs of platforms, as described
in Sect. 3. Each ordered pair (i, j) ∈ P corresponds to an instance wherein
platform j published an advisory about a given vulnerability after an advisory
for the same vulnerability appeared at i. Let r̃ij be the number of times that
the ordered pair (i, j) appears at P. Then, denoting by r̂ij the estimator of rij ,

r̂ij = r̃ij

/P+1∑

k=1

r̃ik. (6)

To determine d̂i, the estimator of di, we also rely on P. To each element (i, j) ∈ P
we associate its corresponding delay in days, d, and denote the resulting triple
by (i, j, d). The mean delay estimate d̂i is given by the average of the third
component of the triples wherein the first component equals i and the second
component is different from ∞.
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Model Extensions. The proposed model can be easily extended to account for
additional layers, i.e., L > 2, providing more accurate estimates of the quantities
of interest at the expense of a more complex model, involving more parameters
to be estimated. Consider, for instance, the Sankey diagram presented in Fig. 4,
wherein L = 3. To account for L = 3, we associate to each node in the first
L − 1 layers in Fig. 4 its corresponding queue. The resulting queueing network
comprises (L − 1)P 2 routing probabilities across queues.

5 Evaluation

Next, we evaluate our model leveraging data collected from our measurement
campaign. Our goals are to (a) validate the theory using real data, indicating
that the estimated metrics of interest are accurate even when the assumptions
of the model do not hold and (b) numerically analyze the metrics derived from
the model.

The model is parameterized using the methodology described in Sect. 4.2.
The routing matrix estimator, R̂, is given by (6), the vector of delays, d̂, is
obtained from Fig. 7, and the vector of disclosure rates of advisories for unheard
CVEs, λ̂, is obtained from Fig. 8 (“published as first source” bars).

Model Validation. Next, we validate our model against measurements. In
particular, we aim at verifying if the key simplifying assumption discussed in
Sect. 4.1, according to which the flow of advisories across platforms can be
approximated through a two layer model, with L = 2, already leads to accurate
estimates.

To validate our model against measurements, we compare the normalized
rate at which platforms disclose security advisories obtained from the model
against measurements. We choose the normalized rate as our reference metric
for validation purposes as most of the other quantities can be derived from it.
Similar results hold for those other metrics (omitted due to space constraints).

According to the model (resp., measurements), the normalized disclosure
rate is obtained from (3) (resp., Fig. 8), normalizing the resulting vector so that
the sum of rates equals one. Figure 9 indicates that our model estimates are
accurate when compared against measurements, with the largest absolute error
being less than 0.05. If smaller errors are required, one can trade off between
model complexity and accuracy, and parametrize an extended version of the
proposed model (see Sect. 4.2).

Assessing Distances Between Platforms. From the routing matrix, we com-
pute our metrics of interest. Figure 10 shows the mean time between platforms,
measured in days. It corresponds to matrix T , whose derivation is described in
Sect. 4.2 (see Eq. (5)). Each entry (i, j) in the matrix in Fig. 10 corresponds to
the mean number of days to route an advisory from platform i to either platform
j or to the virtual platform ∞, whatever occurs first. Figure 10 shows that all
vulnerabilities take, on average, more than one month to reach a target.

Figure 10 shows that from some platforms, such as Bugzilla and Openwall,
it takes a long time to reach all other platforms. This can be explained from
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Fig. 10. Mean time between platforms in days.

Figs. 6 and 7. Figure 6 shows that Bugzilla and Openwall are the top two plat-
forms ranked based on the delay until reaching NVD. As NVD is an important
hub in the system to relay advisories across platforms, the advisories published
on those two platforms tend to take longer to reach any other platform. Recall
from Sect. 4.2 that we parametrize delays through the number of days between
succeeding advisories are published at consecutive platforms, which for measure-
ments is given by Fig. 7. Bugzilla and Openwall appear as the first and third
elements in Fig. 7. This, in turn, indicates that the mean number of days to
route an advisory from one of those two platforms to the virtual platform ∞ is
the largest among all platforms.

Figure 11 shows the percentage of vulnerabilities for which an advisory first
published at platform s will eventually reach platform t, before reaching the vir-
tual absorbing platform ∞ or any other platform in the considered set of targets,
comprising Security Tracker, Security Focus and NVD. The figure is obtained
using Eq. (4) and the methodology described in Sect. 4.2, and complements
Fig. 10. In particular, it indicates that with high probability the advisories ini-
tially posted in most of the platforms will reach NVD before absorption. Return-
ing to the Bugzilla and Openwall platforms, this observation, together with the
fact that the time to reach NVD from those platforms is large, explains why
vulnerabilities initially generated at those platforms take longer to reach either
one of the other platforms in the system or be absorbed.
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Fig. 11. Percentage of vulnerabilities issued from s for which t is reached first, consid-
ering Security Tracker, Security Focus and NVD as targets.

6 Conclusion

In the realm of security, information is the oxygen and security advisory plat-
forms, the trees. Understanding how information flows across platforms is a key
step in the full characterization of vulnerability lifecycles. After conducting a
large scale measurement campaign, we use those measurements to parametrize a
queueing model which allows us to estimate the impact of different parameters,
such as the rate at which platforms relay information, on the mean time that
vulnerability advisories take to reach a given platform.

Understanding the flow of information across platforms is instrumental for
real world operations, such as data-driven risk aware patch management [19]
and cybersecurity insurance [4,14,20]. In both cases, the confidence level on the
estimates of risk is a function of the quality and the number of security advisories.
While assessing how CVSS and EPSS evolve over time, the number of issued
advisories serves to parameterize confidence intervals either in retrospect using
measurements (Sect. 3) or in hindsight using the proposed model (Sect. 4).

Admins increasingly rely on automated data-driven approaches for decision-
making, being utterly bound by the quality and freshness of the ingested informa-
tion. This work is a step towards characterizing the latter, opening up a number
of interesting avenues for research, accounting for advisories maturity and the
modeling of topics and their evolution across security advisory platforms [1,5].
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